
INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & COMPUTER SCIENCE, VOL. 7, NO. 2, JANUARY/FEBRUARY 2013, (ISSN: 2091-1610) 99

Instruction Set Usage Analysis for
Application-Specific Systems Design

Charles Mutigwe
School of Electrical and Computer Systems Engineering

Central University of Technology
Bloemfontein, South Africa 9320

Email: cmutigwe@ieee.org

Johnson Kinyua
School of Computer Information Systems

Virginia International University
Fairfax, VA 22030 USA
Email: jkinyua@viu.edu

Farhad Aghdasi
Faculty of Science and Agriculture

University of Fort Hare
Alice, South Africa 5700

Email: faghdasi@ufh.ac.za

Abstract—The manner in which the resources of a micropro-
cessor are used affects its performance, power consumption and
size. In this work we show how increasing the size of a processor’s
instruction set, in turn, increases the amount of hardware needed
to implement that processor. We also study how efficiently the
hardware resources of four processor architectures are used
by measuring the static instruction set utilization of a group
of benchmark applications. The architectures examined are the
Intel x86, Intel x86-64, MIPS64, and PowerPC. We introduce the
notions of instruction subsets, exact cores and general-purpose
cores, and then we use these concepts to propose a new measure
of processor resource utilization, core density. Based on the
core density measure we show that on average 9 exact cores
are equivalent to a single general-purpose core in the existing
architectures and that in particular instances this multiplier can
go up to 48 exact cores.

Index Terms—Computer architecture, ISA, system-on-a-chip,
core density, design methodology

I. INTRODUCTION

A number of empirical studies on instruction set usage
[1]–[4], including our study presented in this paper, have
shown that most of the instructions in the instruction sets
of microprocessors are rarely used by the applications using
those microprocessors. If a microprocessor’s instruction set is
a measure of the hardware resources needed to implement that
microprocessor, then these results from the empirical studies
suggest that most of the hardware resources on microproces-
sors with a fixed instruction set architecture (ISA) are being
used inefficiently.

The instruction set of a processor serves as an interface
between the processor’s hardware and the software applica-

tions set to run on that hardware. To the software programmer,
the instruction set exposes a processor’s functionality, while
to the processor designer it is a measure of the hardware
resources that will need to be implemented in the processor.
Given two processors with the same bus size, but with different
architectures; the one with a larger instruction set will expose
more features or operations to the software applications and it
will often require more hardware resources (as will be shown
later in this paper) and design effort to implement.

The rest of the paper is organized as follows. Section II
discusses some related research efforts. In Section III we
discuss the relationship between a processor’s instruction set
and the hardware resources needed to support that instruction
set. We also define the core density measure. Section IV
describes the instruction set usage experiments, the results of
the experiments and discusses their implications. Section V
concludes the paper.

II. RELATED WORK

Foster et al. [1] describe two types of instruction set usage
analyses. In the first type, the static case, the frequency counts
of the instructions used to specify the logic of the problem
are collected and analyzed [1], [2]. In the second type, the
dynamic case, the frequency counts of the instructions used to
execute the logic of the problem are collected and analyzed
[3], [4]. Foster et al. [1] also proposed two measures for
instruction usage. The first measure is based on information
theory and it calculates the average number of bits of infor-
mation contained in each opcode for each application that is
analyzed. The second measure estimates the effort needed to

INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & COMPUTER SCIENCE, VOL. 7, NO. 2, JANUARY/FEBRUARY 2013, (ISSN: 2091-1610) 100

recode an application when the number of opcodes available
to the compiler or assembly programmer is reduced after
an initial unconstrained compilation. Furthermore, Foster et
al. [1] found that the hand-assembled code has higher static
opcode usage than machine-compiled code, and that there are
no significant differences in dynamic opcode usage between
the hand-assembled and machine-compiled code.

Empirical studies by Ibrahim et al. [2], Adams and Zim-
merman [3], and Huang and Peng [4] on the x86 instruction
set architecture (ISA), and those by Hennessy and Patterson
[5] on several CISC and RISC ISAs, have shown that modern
applications spend 80-90% of their time accessing only 10-
20% of the ISA. The studies on the x86 ISA also found
that static usage of the top 25 opcodes accounted for more
than 90% of the total number of opcodes in the applications.
In this paper, we will use the terms instruction and opcode
interchangeably.

III. INSTRUCTION SETS AND HARDWARE

Let R be the set of all the hardware resources of the
processor. These resources are represented by functional units.
Let I be the processor’s instruction set, where:

R = {r1, . . . , rM} and I = {i1, . . . , rN} (1)

Let P be the power set of R. For any i where i ∈ I , let
Ri represent the set of resources needed to implement the
instruction i and

Ri ∈ P and Ri ⊂ R (2)

Let RI represent the resources needed to implement all the
instructions in I , then

RI =

N⋃
i=1

Ri (3)

Resources that are not directly related to the implementation
of any instruction, such as the pipelining microarchitecture,
will be treated as a constant and referred to as Mconst, where:

Mconst = |R−RI | (4)

As the number of shared resources decreases, that is as∣∣∣∣∣
N⋂
i=1

Ri

∣∣∣∣∣→ 0,

the processor’s performance improves. An example of
this relationship is the improved performance of directly-
implemented processors versus their microprogrammed ver-
sions.

For directly-implemented processors there is a one-to-one
function f , such that f : I 7→ P and as the number of
instructions in I increases, so does |RI |.

In the case of microprogrammed processors f is not one-to-
one, several instructions may map onto one set of resources.
However, each instruction represents a distinct operation and
this distinction is captured in the microinstructions used to
describe it. All the sets of microinstructions and the lookup
tables matching them to their corresponding instructions are

stored in the control memory. Winiewska et al. found that
as the number of microinstructions was increased by a factor
of 3, the amount of control memory required to store them
increased by a multiple of 54 [6], suggesting an exponential
growth in hardware requirements. Jian-Lun notes that for some
processors (including the Intel x86), the control memory takes
up 50% of the area on the chip [7].

We conclude that regardless of whether a processor is
directly-implemented or it is microprogrammed: as the num-
ber of supported instructions (|I|) increases, then the
hardware resources needed to implement the processor
(|RI |) increases.

|I| ∝ |RI | (5)

A. Instruction Subsets

Each application that executes on a processor uses a set
of instructions, which we will refer to as the application
instruction set, A. The application instruction set is a subset
of the processor instruction set. The resources, RA, required
to implement the application-specific processor for A are,

RA =

|A|⋃
i=1

Ri, where RA ⊂ RI (6)

From the subset relationship A 6 I and using (6), we have

|RA| 6 |RI | (7)

The results of the experiments presented below show that for
the benchmark applications, A� I , so using this along with
(5) and (7) we have:

|RA| � |RI | (8)

That is, the average application-specific processor requires
much less hardware resources than the processor that imple-
ments the complete instruction set. The next section describes
a measure that can be used to compare the resources between
the two processors in (8).

We will refer to the processor that implements the complete
processor instruction set as a general-purpose core (GPC).
While, the processor that implements only the application
instruction sets that will target it, we will call an exact
processor core (EPC). There is another type of core that
allows for run-time extensions to the GPC, which we refer to
as the extensible processor core (XPC). The Xtensa processor
from Tensilica provides an example of an XPC [8]. In every
case, the GPC ⊂ XPC , the ISA utilization of the XPC is at
best only equal to that of the GPC, so in this study we will
only address the relationship between the GPC and the EPC.

B. Core Density

Given a set of applications that have been compiled to run
on a given ISA, we define the applications’ core density (η),
as:

η =
hardware to implement a single GPC

hardware to implement an EPC for application set
(9)

Rewriting (9), we have:

η =
α|I|+Mconst

α|A|+M
′
const

(10)

INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & COMPUTER SCIENCE, VOL. 7, NO. 2, JANUARY/FEBRUARY 2013, (ISSN: 2091-1610) 101

TABLE I
ARCHITECTURES STUDIED

Architecture Unique Opcodes
MIPS64 1182

PowerPC 533

x86 659

x86-64 1101

where α is the ratio of the number of bits required to encode
I to those required to encode A. The core density measure,
through α, is related to the two measures of instruction set
usage proposed by Foster et al. [1].

In order to estimate Mconst and M
′

const , we assume that
50% of the processor consists of instruction-dependent hard-
ware. This estimate is in line with Jian-Lun’s findings [7].
Using this approximation (10) reduces to:

η =
|I|
|A|

(11)

IV. EXPERIMENTAL RESULTS

In our experiments we only considered opcodes and their
static usage. We varied four factors; the benchmark applica-
tions, the ISA of the target processors, the compilers, and
the compiler optimizations. Below is a description of how the
experiments were setup.

A. Platforms & Benchmark Applications

A virtual machine with the 64-bit version of the Linux
Ubuntu 10.40 LTS distribution was used as the platform for all
the experiments. We used the GNU Compiler Collection (gcc)
and the Portable C Compiler (pcc) to build the C benchmark
applications. gcc and pcc cross-compilers were built for the
hardware processors shown in Table I.

The benchmark applications consist of the ten C benchmark
applications that are part of the SPEC CPU2006 benchmark
suite [9].

All the benchmark applications were compiled three times
with the gcc compilers and with each compilation a different
optimization scheme was used together with the -S option to
generate assembler files instead of binary files. In the first it-
eration there is no optimization, in the second the applications
were optimized for size (-Os flag), and in the final iteration
they were optimized for speed (-O3 flag). All the applications
were, again compiled twice with the pcc compilers and with
each compilation a different optimization option was used. In
the first pcc iteration there is no optimization, in the second
the applications were optimized for speed (-O flag).

B. Results and Discussions

1) Compiler: The same source code for the benchmark
applications was used with the gcc and pcc compilers. These
two compilers follow different compilation strategies, as dis-
played by the relative differences in the instruction types of
the compiled code in Fig. 1.

However, with regards to the relationship between instruc-
tion set utilization and architecture, the choice of compiler

Fig. 1. Instruction type usage by compiler.

did not make a significant difference as can be seen from
Fig. 2. The average utilization for all the applications in the
C benchmark set is on average 2% higher than when the
applications are considered individually. The PowerPC and
x86 architectures have higher utilization rates compared to the
MIPS and x86-64 architectures. The latter architectures have
larger instruction sets.

2) Optimizations: While the compiler optimizations af-
fected the program size, we observed that they did not have
a significant impact on the ISA utilization rate, as shown in
Fig. 3. With the exception of the PowerPC architecture, the
differences between any pair of results in the ISA utilization-
versus-compiler optimizations all fall within a 3% margin. The
margin for the PowerPC architecture is 6%. Based on this
observation, from this point forward we will only discuss the
results for the applications that were optimized for size.

3) Instruction Set Usage: The ISA utilization results for
the hardware processors, expressed in terms of core density,
are presented in Table II. Considering the case of the x86-
64 processor, we note that if it were used to execute any
one of the ten applications its average core density is 21.5.
However, if it is only executing the 999.specrand benchmark
application its core density is 47.9, indicating that for this
application the traditional processor model or GPC leaves
more than 98% of the processor resources idle, since only
1 exact core is required, but resources equivalent to 48 exact
cores are deployed in the existing traditional processor.

4) TopN Instructions: The top 25 instructions account for
more than 89% of all the instructions used by the benchmark

Fig. 2. Instruction set utilization by compiler and architecture.

INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & COMPUTER SCIENCE, VOL. 7, NO. 2, JANUARY/FEBRUARY 2013, (ISSN: 2091-1610) 102

Fig. 3. Instruction set utilization by optimization.

applications, Figure 4. This result confirms the locality of
reference property of applications and is in line with the results
of Adams and Zimmerman [3], and Hennessy and Patterson
[5]. The top 100 instructions account for all the instructions
used by all the processors. This leads us to question why most
current processors have more than 100 instructions, which is
a reframing of the CISC-RISC debate. A follow-up question
is which 100 instructions are needed?

Our answer is to keep any existing ISAs, but to provide two
options to create application-specific processors. In the first
option, the instruction set usage of the applications that are
scheduled to run on the processor is performed and the list of
unique opcodes used is extracted. The applications may be pre-
existing application binaries, which are disassembled to get the
unique opcodes or they are applications compiled from source
code. An application-specific processor is then synthesized
using the list of used opcodes; this processor can be referred
to as a subset processor. In the second option, a processor that
supports a pre-determined subset of the ISA is implemented
without knowing beforehand the applications that are going to
use the subset processor. Next, a constrained compiler target-
ing this subset processor is developed. Finally, the applications
set to run on the subset processor are (re)compiled.

V. CONCLUSION

Our study results indicate that the average resource
utilization of modern fixed ISA microprocessors is in the
5-20% range. We show that on average nine heterogeneous
exact cores can be placed on the same microprocessor chip
where currently a single general-purpose core resides. As
part of this study we define a new measure, core density,
to describe the relationship between application-specific
exact cores and general-purpose cores. Static resource
utilization is application-dependent and the results show
that by using exact processor cores the resulting system can
be as much as 48 times more efficient than today’s processors.

TABLE II
APPLICATION CORE DENSITIES

Application\Architecture MIPS PowerPC x86 x86-64
401.bzip2 20.38 5.03 10.14 19.32

403.gcc 16.42 3.37 7.40 13.59

429.mcf 30.31 8.20 16.07 29.76

433.milc 20.74 5.38 8.45 18.35

456.hmmer 16.19 4.26 7.57 13.43

458.sjeng 17.91 5.03 9.98 18.35

464.h264ref 16.19 3.73 7.01 13.59

470.lbm 23.64 8.46 12.43 25.60

482.sphinx3 16.65 4.33 8.04 14.68

999.specrand 39.40 15.68 24.41 47.87

Average 21.78 6.35 11.15 21.45

η/10-App Set 15.76 3.05 6.72 11.35

Maximum η/10-App Set 39.40 15.68 24.41 47.87

REFERENCES

[1] C. C. Foster, R. H. Gonter, and E. M. Riseman, “Measures of op-code
utilization,” IEEE Transactions on Computers, vol. 20, no. 5, pp. 582–
584, 1971.

[2] A. H. Ibrahim, M. B. Abdelhalim, H. Hussein, and A. Fahmy, “Analysis
of x86 instruction set usage for Windows 7 applications,” in 2nd Interna-
tional Conference on Computer Technology and Development (ICCTD),
2010, pp. 511–516.

[3] T. L. Adams and R. E. Zimmerman, “An analysis of 8086 instruction set
usage in MS DOS programs,” SIGARCH Computer Architecture News,
vol. 17, no. 2, pp. 152–160, 1989.

[4] I. J. Huang and T. C. Peng, “Analysis of x86 instruction set usage for
DOS/Windows applications and its implication on superscalar design,”
in Proceedings of the International Conference on Computer Design
(ICCD), 1998, pp. 566–573.

[5] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantita-
tive Approach, 3rd ed. San Francisco, CA: Morgan Kaufmann, 2002.

Fig. 4. Cumulative instruction usage by architecture.

INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & COMPUTER SCIENCE, VOL. 7, NO. 2, JANUARY/FEBRUARY 2013, (ISSN: 2091-1610) 103

[6] M. Wisniewska, M. Adamski, R. Wisniewski, and W. A. Halang, “Appli-
cation of hypergraphs in microcode length reduction of microprogrammed
controllers,” in Proceedings of the 2nd International Workshop on Non-
linear Dynamics and Synchronization (INDS), 2009, pp. 106–109.

[7] S. Jian-Lun, “Researches on the technology of high performance mi-
croprogrammed control,” in Proceedings of the International Conference
on Educational and Information Technology (ICEIT), 2010, pp. V2:20–
V2:24.

[8] R. E. Gonzalez, “Xtensa: A configurable and extensible processor,” IEEE
Micro, vol. 20, no. 2, pp. 60–70, 2000.

[9] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” SIGARCH
Computer Architecture News, vol. 34, no. 4, pp. 1–17, 2006.

	Introduction
	Related Work
	Instruction Sets and Hardware
	Instruction Subsets
	Core Density

	Experimental Results
	Platforms & Benchmark Applications
	Results and Discussions
	Compiler
	Optimizations
	Instruction Set Usage
	TopN Instructions

	Conclusion
	References

