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Preface

This booklet includes the solutions relevant to the EXERCISES & PROBLEMS sections of the 6th edition
of Fundamentals of Physics, by Halliday, Resnick, and Walker. We also include solutions to problems in
the Problems Supplement. We have not included solutions or discussions which pertain to the QUESTIONS
sections.

I am very grateful for helpful input from J. Richard Christman, Meighan Dillon, Barbara Moore, and Jearl
Walker regarding the development of this document.
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Chapter 1

1. The metric prefixes (micro, pico, nano, . . .) are given for ready reference on the inside front cover of the
textbook (see also Table 1-2).

(a) Since 1 km = 1× 103 m and 1m = 1× 106 µm,

1 km = 103 m = (103 m)(106 µm/m) = 109 µm .

The given measurement is 1.0 km (two significant figures), which implies our result should be
written as 1.0× 109 µm.

(b) We calculate the number of microns in 1 centimeter. Since 1 cm = 10−2 m,

1 cm = 10−2 m = (10−2 m)(106 µm/m) = 104 µm .

We conclude that the fraction of one centimeter equal to 1.0µm is 1.0× 10−4.

(c) Since 1 yd = (3 ft)(0.3048 m/ft) = 0.9144 m,

1.0 yd = (0.91 m)(106 µm/m) = 9.1× 105 µm .

2. The customer expects 20× 7056 in3 and receives 20× 5826 in3, the difference being 24600 cubic inches,
or

(

24600 in3
)

(

2.54 cm

1 inch

)3(
1 L

1000 cm3

)

= 403 L

where Appendix D has been used (see also Sample Problem 1-2).

3. Using the given conversion factors, we find

(a) the distance d in rods to be

d = 4.0 furlongs =
(4.0 furlongs)(201.168 m/furlong)

5.0292 m/rod
= 160 rods ,

(b) and that distance in chains to be

d =
(4.0 furlongs)(201.168 m/furlong)

20.117 m/chain
= 40 chains .

4. (a) Recalling that 2.54 cm equals 1 inch (exactly), we obtain

(0.80 cm)

(

1 inch

2.54 cm

)(

6 picas

1 inch

)(

12 points

1 pica

)

≈ 23 points ,

(b) and

(0.80 cm)

(

1 inch

2.54 cm

)(

6 picas

1 inch

)

≈ 1.9 picas .

1



2 CHAPTER 1.

5. Various geometric formulas are given in Appendix E.

(a) Substituting
R =

(

6.37× 106 m
) (

10−3 km/m
)

= 6.37× 103 km

into circumference= 2πR, we obtain 4.00× 104 km.

(b) The surface area of Earth is

4πR2 = 4π
(

6.37× 103 km
)2

= 5.10× 108 km2 .

(c) The volume of Earth is

4π

3
R3 =

4π

3

(

6.37× 103 km
)3

= 1.08× 1012 km3 .

6. (a) Using the fact that the area A of a rectangle is width×length, we find

Atotal = (3.00 acre) + (25.0 perch)(4.00 perch)

= (3.00 acre)

(

(40 perch)(4 perch)

1 acre

)

+ 100 perch2

= 580 perch2 .

We multiply this by the perch2 → rood conversion factor (1 rood/40 perch2) to obtain the answer:
Atotal = 14.5 roods.

(b) We convert our intermediate result in part (a):

Atotal = (580 perch2)

(

16.5 ft

1 perch

)2

= 1.58× 105 ft2 .

Now, we use the feet→ meters conversion given in Appendix D to obtain

Atotal =
(

1.58× 105 ft2
)

(

1 m

3.281 ft

)2

= 1.47× 104 m2 .

7. The volume of ice is given by the product of the semicircular surface area and the thickness. The
semicircle area is A = πr2/2, where r is the radius. Therefore, the volume is

V =
π

2
r2 z

where z is the ice thickness. Since there are 103 m in 1 km and 102 cm in 1 m, we have

r = (2000 km)

(

103 m

1 km

)(

102 cm

1 m

)

= 2000× 105 cm .

In these units, the thickness becomes

z = (3000 m)

(

102 cm

1 m

)

= 3000× 102 cm .

Therefore,

V =
π

2

(

2000× 105 cm
)2 (

3000× 102 cm
)

= 1.9× 1022 cm3 .

8. The total volume V of the real house is that of a triangular prism (of height h = 3.0 m and base area
A = 20× 12 = 240 m2) in addition to a rectangular box (height h′ = 6.0 m and same base). Therefore,

V =
1

2
hA+ h′A =

(

h

2
+ h′

)

A = 1800 m3 .
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(a) Each dimension is reduced by a factor of 1/12, and we find

Vdoll =
(

1800 m3
)

(

1

12

)3

≈ 1.0 m3 .

(b) In this case, each dimension (relative to the real house) is reduced by a factor of 1/144. Therefore,

Vminiature =
(

1800 m3
)

(

1

144

)3

≈ 6.0× 10−4 m3 .

9. We use the conversion factors found in Appendix D.

1 acre · ft = (43, 560 ft2) · ft = 43, 560 ft3 .

Since 2 in. = (1/6) ft, the volume of water that fell during the storm is

V = (26 km2)(1/6 ft) = (26 km2)(3281 ft/km)2(1/6 ft) = 4.66× 107 ft3 .

Thus,

V =
4.66× 107 ft3

4.3560× 104 ft3/acre · ft
= 1.1× 103 acre · ft .

10. The metric prefixes (micro (µ), pico, nano, . . .) are given for ready reference on the inside front cover of
the textbook (also, Table 1-2).

1µcentury =
(

10−6 century
)

(

100 y

1 century

)(

365 day

1 y

)(

24 h

1 day

)(

60 min

1 h

)

= 52.6 min .

The percent difference is therefore

52.6 min− 50 min

50 min
= 5.2% .

11. We use the conversion factors given in Appendix D and the definitions of the SI prefixes given in Table 1-
2 (also listed on the inside front cover of the textbook). Here, “ns” represents the nanosecond unit, “ps”
represents the picosecond unit, and so on.

(a) 1 m = 3.281 ft and 1 s = 109 ns. Thus,

3.0× 108 m/s =

(

3.0× 108 m

s

)(

3.281 ft

m

)

( s

109 ns

)

= 0.98 ft/ns .

(b) Using 1 m = 103 mm and 1 s = 1012 ps, we find

3.0× 108 m/s =

(

3.0× 108 m

s

)(

103 mm

m

)(

s

1012 ps

)

= 0.30 mm/ps .

12. The number of seconds in a year is 3.156×107. This is listed in Appendix D and results from the product

(365.25 day/y)(24 h/day)(60 min/h)(60 s/min) .

(a) The number of shakes in a second is 108; therefore, there are indeed more shakes per second than
there are seconds per year.
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(b) Denoting the age of the universe as 1 u-day (or 86400 u-sec), then the time during which humans
have existed is given by

106

1010
= 10−4 u-day ,

which we may also express as

(

10−4 u-day
)

(

86400 u-sec

1 u-day

)

= 8.6 u-sec .

13. None of the clocks advance by exactly 24 h in a 24-h period but this is not the most important criterion
for judging their quality for measuring time intervals. What is important is that the clock advance by
the same amount in each 24-h period. The clock reading can then easily be adjusted to give the correct
interval. If the clock reading jumps around from one 24-h period to another, it cannot be corrected since
it would impossible to tell what the correction should be. The following gives the corrections (in seconds)
that must be applied to the reading on each clock for each 24-h period. The entries were determined by
subtracting the clock reading at the end of the interval from the clock reading at the beginning.

CLOCK Sun. Mon. Tues. Wed. Thurs. Fri.
-Mon. -Tues. -Wed. -Thurs. -Fri. -Sat

A −16 −16 −15 −17 −15 −15
B −3 +5 −10 +5 +6 −7
C −58 −58 −58 −58 −58 −58
D +67 +67 +67 +67 +67 +67
E +70 +55 +2 +20 +10 +10

Clocks C and D are both good timekeepers in the sense that each is consistent in its daily drift (relative
to WWF time); thus, C and D are easily made “perfect” with simple and predictable corrections. The
correction for clock C is less than the correction for clock D, so we judge clock C to be the best and
clock D to be the next best. The correction that must be applied to clock A is in the range from 15 s
to 17s. For clock B it is the range from −5 s to +10 s, for clock E it is in the range from −70 s to −2 s.
After C and D, A has the smallest range of correction, B has the next smallest range, and E has the
greatest range. From best the worst, the ranking of the clocks is C, D, A, B, E.

14. The time on any of these clocks is a straight-line function of that on another, with slopes 6= 1 and
y-intercepts 6= 0. From the data in the figure we deduce

tC =
2

7
tB +

594

7

tB =
33

40
tA −

662

5
.

These are used in obtaining the following results.

(a) We find

t′B − tB =
33

40
(t′A − tA) = 495 s

when t′A − tA = 600 s.

(b) We obtain

t′C − tC =
2

7
(t′B − tB) =

2

7
(495) = 141 s .

(c) Clock B reads tB = (33/40)(400)− (662/5) ≈ 198 s when clock A reads tA = 400 s.

(d) From tC = 15 = (2/7)tB + (594/7), we get tB ≈ −245 s.
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15. We convert meters to astronomical units, and seconds to minutes, using

1000 m = 1 km

1 AU = 1.50× 108 km

60 s = 1 min .

Thus, 3.0× 108 m/s becomes

(

3.0× 108 m

s

)(

1 km

1000 m

)(

AU

1.50× 108 km

)(

60 s

min

)

= 0.12 AU/min .

16. Since a change of longitude equal to 360◦ corresponds to a 24 hour change, then one expects to change
longitude by 360◦/24 = 15◦ before resetting one’s watch by 1.0 h.

17. The last day of the 20 centuries is longer than the first day by

(20 century)(0.001 s/century) = 0.02 s .

The average day during the 20 centuries is (0 + 0.02)/2 = 0.01 s longer than the first day. Since the
increase occurs uniformly, the cumulative effect T is

T = (average increase in length of a day)(number of days)

=

(

0.01 s

day

)(

365.25 day

y

)

(2000 y)

= 7305 s

or roughly two hours.

18. We denote the pulsar rotation rate f (for frequency).

f =
1 rotation

1.55780644887275× 10−3 s

(a) Multiplying f by the time-interval t = 7.00 days (which is equivalent to 604800 s, if we ignore
significant figure considerations for a moment), we obtain the number of rotations:

N =

(

1 rotation

1.55780644887275× 10−3 s

)

(604800 s) = 388238218.4

which should now be rounded to 3.88 × 108 rotations since the time-interval was specified in the
problem to three significant figures.

(b) We note that the problem specifies the exact number of pulsar revolutions (one million). In this
case, our unknown is t, and an equation similar to the one we set up in part (a) takes the form

N = ft

1× 106 =

(

1 rotation

1.55780644887275× 10−3 s

)

t

which yields the result t = 1557.80644887275 s (though students who do this calculation on their
calculator might not obtain those last several digits).

(c) Careful reading of the problem shows that the time-uncertainty per revolution is ±3 × 10−17 s.
We therefore expect that as a result of one million revolutions, the uncertainty should be (±3 ×
10−17)(1 × 106) = ±3× 10−11 s.
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19. IfME is the mass of Earth,m is the average mass of an atom in Earth, andN is the number of atoms, then
ME = Nm or N = ME/m. We convert mass m to kilograms using Appendix D (1 u = 1.661×10−27 kg).
Thus,

N =
ME

m
=

5.98× 1024 kg

(40 u)(1.661× 10−27 kg/u)
= 9.0× 1049 .

20. To organize the calculation, we introduce the notion of density (which the students have probably seen
in other courses):

ρ =
m

V
.

(a) We take the volume of the leaf to be its area A multiplied by its thickness z. With density
ρ = 19.32 g/cm3 and mass m = 27.63 g, the volume of the leaf is found to be

V =
m

ρ
= 1.430 cm3 .

We convert the volume to SI units:

(

1.430 cm3
)

(

1 m

100 cm

)3

= 1.430× 10−6 m3 .

And since V = Az where z = 1× 10−6 m (metric prefixes can be found in Table 1-2), we obtain

A =
1.430× 10−6 m3

1× 10−6 m
= 1.430 m2 .

(b) The volume of a cylinder of length ℓ is V = Aℓ where the cross-section area is that of a circle:
A = πr2. Therefore, with r = 2.500× 10−6 m and V = 1.430× 10−6 m3, we obtain

ℓ =
V

πr2
= 7.284× 104 m .

21. We introduce the notion of density (which the students have probably seen in other courses):

ρ =
m

V

and convert to SI units: 1 g = 1× 10−3 kg.

(a) For volume conversion, we find 1 cm3 = (1 × 10−2 m)3 = 1 × 10−6 m3. Thus, the density in kg/m3

is

1 g/cm3 =

(

1 g

cm3

)(

10−3 kg

g

)(

cm3

10−6 m3

)

= 1× 103 kg/m3 .

Thus, the mass of a cubic meter of water is 1000 kg.

(b) We divide the mass of the water by the time taken to drain it. The mass is found from M = ρV
(the product of the volume of water and its density):

M = (5700 m3)(1× 103 kg/m
3
) = 5.70× 106 kg .

The time is t = (10 h)(3600 s/h) = 3.6× 104 s, so the mass flow rate R is

R =
M

t
=

5.70× 106 kg

3.6× 104 s
= 158 kg/s .
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22. The volume of the water that fell is

V = (26 km2)(2.0 in.)

= (26 km2)

(

1000 m

1 km

)2

(2.0 in.)

(

0.0254 m

1 in.

)

= (26× 106 m2)(0.0508 m)

= 1.3× 106 m3 .

We write the mass-per-unit-volume (density) of the water as:

ρ =
m

V
= 1× 103 kg/m

3
.

The mass of the water that fell is therefore given by m = ρV :

m =
(

1× 103 kg/m
3
)

(

1.3× 106 m3
)

= 1.3× 109 kg .

23. We introduce the notion of density (which the students have probably seen in other courses):

ρ =
m

V

and convert to SI units: 1000 g = 1 kg, and 100 cm = 1 m.

(a) The density ρ of a sample of iron is therefore

ρ =
(

7.87 g/cm
3
)

(

1 kg

1000 g

)(

100 cm

1 m

)3

which yields ρ = 7870 kg/m3. If we ignore the empty spaces between the close-packed spheres, then
the density of an individual iron atom will be the same as the density of any iron sample. That is,
if M is the mass and V is the volume of an atom, then

V =
M

ρ
=

9.27× 10−26 kg

7.87× 103 kg/m
3 = 1.18× 10−29 m3 .

(b) We set V = 4πR3/3, where R is the radius of an atom (Appendix E contains several geometry
formulas). Solving for R, we find

R =

(

3V

4π

)1/3

=

(

3(1.18× 10−29 m3)

4π

)1/3

= 1.41× 10−10 m .

The center-to-center distance between atoms is twice the radius, or 2.82× 10−10 m.

24. The metric prefixes (micro (µ), pico, nano, . . .) are given for ready reference on the inside front cover of the
textbook (see also Table 1-2). The surface area A of each grain of sand of radius r = 50µm = 50×10−6 m
is given by A = 4π(50×10−6)2 = 3.14×10−8 m2 (Appendix E contains a variety of geometry formulas).
We introduce the notion of density (which the students have probably seen in other courses):

ρ =
m

V

so that the mass can be found from m = ρV , where ρ = 2600 kg/m3. Thus, using V = 4πr3/3, the mass
of each grain is

m =

(

4π
(

50× 10−6 m
)3

3

)

(

2600
kg

m3

)

= 1.36× 10−9 kg .
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We observe that (because a cube has six equal faces) the indicated surface area is 6 m2. The number of
spheres (the grains of sand) N which have a total surface area of 6 m2 is given by

N =
6 m2

3.14× 10−8 m2
= 1.91× 108 .

Therefore, the total mass M is given by

M = Nm =
(

1.91× 108
) (

1.36× 10−9 kg
)

= 0.260 kg .

25. From the Figure we see that, regarding differences in positions ∆x, 212 S is equivalent to 258 W and
180 S is equivalent to 156 Z. Whether or not the origin of the Zelda path coincides with the origins of
the other paths is immaterial to consideration of ∆x.

(a)

∆x = (50.0 S)

(

258 W

212 S

)

= 60.8 W

(b)

∆x = (50.0 S)

(

156 Z

180 S

)

= 43.3 Z

26. The first two conversions are easy enough that a formal conversion is not especially called for, but in
the interest of practice makes perfect we go ahead and proceed formally:

(a)

(11 tuffet)

(

2 peck

1 tuffet

)

= 22 peck

(b)

(11 tuffet)

(

0.50 bushel

1 tuffet

)

= 5.5 bushel

(c)

(5.5 bushel)

(

36.3687 L

1 bushel

)

≈ 200 L

27. We make the assumption that the clouds are directly overhead, so that Figure 1-3 (and the calculations
that accompany it) apply. Following the steps in Sample Problem 1-4, we have

θ

360◦
=

t

24 h

which, for t = 38 min = 38/60 h yields θ = 9.5◦. We obtain the altitude h from the relation

d2 = r2 tan2 θ = 2rh

which is discussed in that Sample Problem, where r = 6.37×106 m is the radius of the earth. Therefore,
h = 8.9× 104 m.



9

28. In the simplest approach, we set up a ratio for the total increase in horizontal depth x (where ∆x = 0.05 m
is the increase in horizontal depth per step)

x = Nsteps∆x =

(

4.57

0.19

)

(0.05) = 1.2 m .

However, we can approach this more carefully by noting that if there are N = 4.57/.19 ≈ 24 rises then
under normal circumstances we would expect N −1 = 23 runs (horizontal pieces) in that staircase. This
would yield (23)(0.05) = 1.15 m, which – to two significant figures – agrees with our first result.

29. Abbreviating wapentake as “wp” and assuming a hide to be 110 acres, we set up the ratio 25 wp/11 barn
along with appropriate conversion factors:

(25 wp)
(

100 hide
1 wp

)

(

110 acre
1 hide

)

(

4047 m2

1 acre

)

(11 barn)
(

1×10−28 m2

1 barn

) ≈ 1× 1036 .

30. It is straightforward to compute how many seconds in a year (about 3 × 107). Now, if we estimate
roughly one breath per second (or every two seconds, or three seconds – it won’t affect the result) then
to within an order of magnitude, a person takes 107 breaths in a year.

31. A day is equivalent to 86400 seconds and a meter is equivalent to a million micrometers, so

(3.7 m)(106 µm/m)

(14 day)(86400 s/day)
= 3.1 µm/s .

32. The mass in kilograms is

(28.9 piculs)

(

100 gin

1 picul

)(

16 tahil

1 gin

)(

10 chee

1 tahil

)(

10 hoon

1 chee

)(

0.3779 g

1 hoon

)

which yields 1.747× 106 g or roughly 1750 kg.

33. (a) In atomic mass units, the mass of one molecule is 16 + 1 + 1 = 18 u. Using Eq. 1-9, we find

(18 u)

(

1.6605402× 10−27 kg

1 u

)

= 3.0× 10−26 kg .

(b) We divide the total mass by the mass of each molecule and obtain the (approximate) number of
water molecules:

1.4× 1021

3.0× 10−26
≈ 5× 1046 .

34. (a) We find the volume in cubic centimeters

(193 gal)

(

231 in3

1 gal

)(

2.54 cm

1 in

)3

= 7.31× 105 cm3

and subtract this from 1× 106 cm3 to obtain 2.69× 105 cm3. The conversion gal→ in3 is given in
Appendix D (immediately below the table of Volume conversions).

(b) The volume found in part (a) is converted (by dividing by (100 cm/m)3) to 0.731 m3, which corre-
sponds to a mass of

(

1000 kg/m3
) (

0.731 m2
)

= 731 kg

using the density given in the problem statement. At a rate of 0.0018 kg/min, this can be filled in

731 kg

0.0018 kg/min
= 4.06× 105 min

which we convert to 0.77 y, by dividing by the number of minutes in a year (365 days)(24 h/day)(60 min/h).
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35. (a) When θ is measured in radians, it is equal to the arclength divided by the radius. For very large
radius circles and small values of θ, such as we deal with in this problem,

the arcs may be
approximated as
straight lines –
which for our
purposes corre-
spond to the di-
ameters d and
D of the Moon
and Sun, respec-
tively. Thus,
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θ =
d

RMoon
=

D

RSun
=⇒ RSun

RMoon
=
D

d

which yields D/d = 400.

(b) Various geometric formulas are given in Appendix E. Using rs and rm for the radius of the Sun and
Moon, respectively (noting that their ratio is the same as D/d), then the Sun’s volume divided by
that of the Moon is

4
3πr

3
s

4
3πr

3
m

=

(

rs
rm

)3

= 4003 = 6.4× 107 .

(c) The angle should turn out to be roughly 0.009 rad (or about half a degree). Putting this into the
equation above, we get

d = θRMoon = (0.009)
(

3.8× 105
)

≈ 3.4× 103 km .

36. (a) For the minimum (43 cm) case, 9 cubit converts as follows:

(9 cubit)

(

0.43 m

1 cubit

)

= 3.9 m .

And for the maximum (43 cm) case we obtain

(9 cubit)

(

0.53 m

1 cubit

)

= 4.8 m .

(b) Similarly, with 0.43 m → 430 mm and 0.53 m → 530 mm, we find 3.9×103 mm and 4.8×103 mm,
respectively.

(c) We can convert length and diameter first and then compute the volume, or first compute the volume
and then convert. We proceed using the latter approach (where d is diameter and ℓ is length).

Vcylinder,min =
π

4
ℓ d2 = 28 cubit3

=
(

28 cubit3
)

(

0.43 m

1 cubit

)3

= 2.2 m3 .

Similarly, with 0.43 m replaced by 0.53 m, we obtain Vcylinder,max = 4.2 m3.

37. (a) Squaring the relation 1 ken = 1.97 m, and setting up the ratio, we obtain

1 ken2

1 m2
=

1.972 m2

1 m2
= 3.88 .



11

(b) Similarly, we find

1 ken3

1 m3
=

1.973 m3

1 m3
= 7.65 .

(c) The volume of a cylinder is the circular area of its base multiplied by its height. Thus,

πr2h = π(3.00)2(5.50) = 155.5 ken3 .

(d) If we multiply this by the result of part (b), we determine the volume in cubic meters: (155.5)(7.65) =
1.19× 103 m3.

38. Although we can look up the distance from Cleveland to Los Angeles, we can just as well (for an order of
magnitude calculation) assume it’s some relatively small fraction of the circumference of Earth – which
suggests that (again, for an order of magnitude calculation) we can estimate the distance to be roughly
r, where r ≈ 6 × 106 m is the radius of Earth. If we take each toilet paper sheet to be roughly 10 cm
(0.1 m) then the number of sheets needed is roughly 6× 106/0.1 = 6× 107 ≈ 108.

39. Using the (exact) conversion 2.54 cm = 1 in. we find that 1 ft = (12)(2.54)/100 = 0.3048 m (which also
can be found in Appendix D). The volume of a cord of wood is 8 × 4 × 4 = 128 ft3, which we convert
(multiplying by 0.30483 ) to 3.6 m3. Therefore, one cubic meter of wood corresponds to 1/3.6 ≈ 0.3 cord.

40. (a) When θ is measured in radians, it is equal to the arclength s divided by the radius R. For a
very large radius circle and small value of θ, such as we deal with in Fig. 1-9, the arc may be
approximated as the straight line-segment of length 1 AU. First, we convert θ = 1 arcsecond to
radians:

(1 arcsecond)

(

1 arcminute

60 arcsecond

)(

1◦

60 arcminute

)(

2π radian

360◦

)

which yields θ = 4.85× 10−6 rad. Therefore, one parsec is

Ro =
s

θ
=

1 AU

4.85× 10−6
= 2.06 × 105 AU .

Now we use this to convert R = 1 AU to parsecs:

R = (1 AU)

(

1 pc

2.06 × 105 AU

)

= 4.9× 10−6 pc .

(b) Also, since it is straightforward to figure the number of seconds in a year (about 3.16× 107 s), and
(for constant speeds) distance = speed×time, we have

1 ly = (186, 000 mi/s)
(

3.16× 107 s
)

5.9× 1012 mi

which we convert to AU by dividing by 92.6 × 106 (given in the problem statement), obtaining
6.3× 104 AU. Inverting, the result is 1 AU = 1/6.3× 104 = 1.6× 10−5 ly.

(c) As found in the previous part, 1 ly = 5.9× 1012 mi.

(d) We now know what one parsec is in AU (denoted above as Ro ), and we also know how many miles
are in an AU. Thus, one parsec is equivalent to

(

92.9× 106 mi/AU
) (

2.06 × 105 AU
)

= 1.9× 1013 mi .

41. We reduce the stock amount to British teaspoons:

1 breakfastcup = 2× 8× 2× 2 = 64 teaspoons

1 teacup = 8× 2× 2 = 32 teaspoons

6 tablespoons = 6× 2× 2 = 24 teaspoons

1 dessertspoon = 2 teaspoons
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which totals to 122 teaspoons – which corresponds (since liquid measure is being used) to 122 U.S.
teaspoons. Since each U.S cup is 48 teaspoons, then upon dividing 122/48 ≈ 2.54, we find this amount
corresponds to two-and-a-half U.S. cups plus a remainder of precisely 2 teaspoons. For the nettle tops,
one-half quart is still one-half quart. For the rice, one British tablespoon is 4 British teaspoons which
(since dry-goods measure is being used) corresponds to 2 U.S. teaspoons. Finally, a British saltspoon is
1
2 British teaspoon which corresponds (since dry-goods measure is again being used) to 1 U.S. teaspoon.

42. (a) Megaphone.

(b) microphone.

(c) dekacard (“deck of cards”).

(d) Gigalow (“gigalo”).

(e) terabull (“terrible”).

(f) decimate.

(g) centipede.

(h) nanonannette. (“No No Nanette”).

(i) picoboo (“peek-a-boo”).

(j) attoboy (“at-a-boy”).

(k) Two hectowithit (“to heck with it”).

(l) Two kilomockingbird (“to kill a mockingbird”).

43. The volume removed in one year is

V =
(

75× 104 m2
)

(26 m) ≈ 2× 107 m3

which we convert to cubic kilometers:

V =
(

2× 107 m3
)

(

1 km

1000 m

)3

= 0.020 km3 .

44. (a) Using Appendix D, we have 1 ft = 0.3048 m, 1 gal = 231 in.3, and 1 in.3 = 1.639× 10−2 L. From the
latter two items, we find that 1 gal = 3.79 L. Thus, the quantity 460ft2/gal becomes

(

460 ft2

gal

)(

1 m

3.28 ft

)2(
1 gal

3.79 L

)

= 11.3 m2/L .

(b) Also, since 1 m3 is equivalent to 1000 L, our result from part (a) becomes

(

11.3 m2

L

)(

1000 L

1 m3

)

= 1.13× 104 m−1 .

(c) The inverse of the original quantity is (460 ft2/gal)−1 = 2.17 × 10−3 gal/ft
2
, which is the volume

of the paint (in gallons) needed to cover a square foot of area. From this, we could also figure the
paint thickness (it turns out to be about a tenth of a millimeter, as one sees by taking the reciprocal
of the answer in part (b)).



Chapter 2

1. Assuming the horizontal velocity of the ball is constant, the horizontal displacement is

∆x = v∆t

where ∆x is the horizontal distance traveled, ∆t is the time, and v is the (horizontal) velocity. Converting
v to meters per second, we have 160 km/h = 44.4 m/s. Thus

∆t =
∆x

v
=

18.4 m

44.4 m/s
= 0.414 s .

The velocity-unit conversion implemented above can be figured “from basics” (1000 m = 1 km, 3600 s
= 1 h) or found in Appendix D.

2. Converting to SI units, we use Eq. 2-3 with d for distance.

savg =
d

t

(110.6 km/h)

(

1000 m/km

3600 s/h

)

=
200.0 m

t

which yields t = 6.510 s. We converted the speed km/h→m/s by converting each unit (km→m, h→ s)
individually. But we mention that the “one-step” conversion can be found in Appendix D (1 km/h =
0.2778 m/s).

3. We use Eq. 2-2 and Eq. 2-3. During a time tc when the velocity remains a positive constant, speed is
equivalent to velocity, and distance is equivalent to displacement, with ∆x = v tc .

(a) During the first part of the motion, the displacement is ∆x1 = 40 km and the time interval is

t1 =
(40 km)

(30 km/h)
= 1.33 h .

During the second part the displacement is ∆x2 = 40 km and the time interval is

t2 =
(40 km)

(60 km/h)
= 0.67 h .

Both displacements are in the same direction, so the total displacement is ∆x = ∆x1 + ∆x2 =
40 km + 40 km = 80 km. The total time for the trip is t = t1 + t2 = 2.00 h. Consequently, the
average velocity is

vavg =
(80 km)

(2.0 h)
= 40 km/h .

(b) In this example, the numerical result for the average speed is the same as the average velocity
40 km/h.

13
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(c) In the interest of saving space, we briefly describe the graph (with kilometers and hours understood):
two contiguous line segments, the first having a slope of 30 and connecting the origin to (t1, x1) =
(1.33, 40) and the second having a slope of 60 and connecting (t1, x1) to (t, x) = (2.00, 80). The
average velocity, from the graphical point of view, is the slope of a line drawn from the origin to
(t, x).

4. If the plane (with velocity v) maintains its present course, and if the terrain continues its upward slope
of 4.3◦, then the plane will strike the ground after traveling

∆x =
h

tan θ
=

35 m

tan 4.3◦
= 465.5 m ≈ 0.465 km .

This corresponds to a time of flight found from Eq. 2-2 (with v = vavg since it is constant)

t =
∆x

v
=

0.465 km

1300 km/h
= 0.000358 h ≈ 1.3 s .

This, then, estimates the time available to the pilot to make his correction.

5. (a) Denoting the travel time and distance from San Antonio to Houston as T and D, respectively, the
average speed is

savg 1 =
D

T
=

(55 km/h)T
2 + (90 km/h)T

2

T
= 72.5 km/h

which should be rounded to 73 km/h.

(b) Using the fact that time = distance/speed while the speed is constant, we find

savg 2 =
D

T
=

D
D/2

55 km/h + D/2
90 km/h

= 68.3 km/h

which should be rounded to 68 km/h.

(c) The total distance traveled (2D) must not be confused with the net displacement (zero). We obtain
for the two-way trip

savg =
2D

D
72.5 km/h + D

68.3 km/h

= 70 km/h .

(d) Since the net displacement vanishes, the average velocity for the trip in its entirety is zero.

(e) In asking for a sketch, the problem is allowing the student to arbitrarily set the distanceD (the intent
is not to make the student go to an Atlas to look it up); the student can just as easily arbitrarily
set T instead of D, as will be clear in the following discussion. In the interest of saving space, we
briefly describe the graph (with kilometers-per-hour understood for the slopes): two contiguous line
segments, the first having a slope of 55 and connecting the origin to (t1, x1) = (T/2, 55T/2) and
the second having a slope of 90 and connecting (t1, x1) to (T,D) where D = (55 + 90)T/2. The
average velocity, from the graphical point of view, is the slope of a line drawn from the origin to
(T,D).

6. (a) Using the fact that time = distance/velocity while the velocity is constant, we find

vavg =
73.2 m + 73.2 m
73.2m

1.22m/s + 73.2 m
3.05 m

= 1.74 m/s .

(b) Using the fact that distance = vt while the velocity v is constant, we find

vavg =
(1.22 m/s)(60 s) + (3.05 m/s)(60 s)

120 s
= 2.14 m/s .
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(c) The graphs are shown below (with meters and seconds understood). The first consists of two (solid)
line segments, the first having a slope of 1.22 and the second having a slope of 3.05. The slope of
the dashed line represents the average velocity (in both graphs). The second graph also consists of
two (solid) line segments, having the same slopes as before – the main difference (compared to the
first graph) being that the stage involving higher-speed motion lasts much longer.
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7. Using x = 3t− 4t2 + t3 with SI units understood is efficient (and is the approach we will use), but if we

wished to make the units explicit we would write x = (3 m/s)t− (4 m/s2)t2 + (1 m/s3)t3. We will quote
our answers to one or two significant figures, and not try to follow the significant figure rules rigorously.

(a) Plugging in t = 1 s yields x = 0. With t = 2 s we get x = −2 m. Similarly, t = 3 s yields x = 0 and
t = 4 s yields x = 12 m. For later reference, we also note that the position at t = 0 is x = 0.

(b) The position at t = 0 is subtracted from the position at t = 4 s to find the displacement ∆x = 12 m.

(c) The position at t = 2 s is subtracted from the position at t = 4 s to give the displacement ∆x = 14 m.
Eq. 2-2, then, leads to

vavg =
∆x

∆t
=

14

2
= 7 m/s .

(d) The horizontal axis is 0 ≤ t ≤ 4 with SI units understood.

Not shown is
a straight line
drawn from
the point at
(t, x) = (2,−2)
to the highest
point shown (at
t = 4 s) which
would represent
the answer for
part (c).

t
0

10

x

8. Recognizing that the gap between the trains is closing at a constant rate of 60 km/h, the total time
which elapses before they crash is t = (60 km)/(60 km/h) = 1.0 h. During this time, the bird travels a
distance of x = vt = (60 km/h)(1.0 h) = 60 km.
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9. Converting to seconds, the running times are t1 = 147.95 s and t2 = 148.15 s, respectively. If the runners
were equally fast, then

savg 1 = savg 2 =⇒ L1

t1
=
L2

t2
.

From this we obtain

L2 − L1 =

(

148.15

147.95
− 1

)

L1 ≈ 1.35 m

where we set L1 ≈ 1000 m in the last step. Thus, if L1 and L2 are no different than about 1.35 m, then
runner 1 is indeed faster than runner 2. However, if L1 is shorter than L2 than 1.4 m then runner 2 is
actually the faster.

10. The velocity (both magnitude and sign) is determined by the slope of the x versus t curve, in accordance
with Eq. 2-4.

(a) The armadillo is to the left of the coordinate origin on the axis between t = 2.0 s and t = 4.0 s.

(b) The velocity is negative between t = 0 and t = 3.0 s.

(c) The velocity is positive between t = 3.0 s and t = 7.0 s.

(d) The velocity is zero at the graph minimum (at t = 3.0 s).

11. We use Eq. 2-4.

(a) The velocity of the particle is

v =
dx

dt
=

d

dt

(

4− 12t+ 3t2
)

= −12 + 6t .

Thus, at t = 1 s, the velocity is v = (−12 + (6)(1)) = −6 m/s.

(b) Since v < 0, it is moving in the negative x direction at t = 1 s.

(c) At t = 1 s, the speed is |v| = 6 m/s.

(d) For 0 < t < 2 s, |v| decreases until it vanishes. For 2 < t < 3 s, |v| increases from zero to the value
it had in part (c). Then, |v| is larger than that value for t > 3 s.

(e) Yes, since v smoothly changes from negative values (consider the t = 1 result) to positive (note
that as t→ +∞, we have v → +∞). One can check that v = 0 when t = 2 s.

(f) No. In fact, from v = −12 + 6t, we know that v > 0 for t > 2 s.

12. We use Eq. 2-2 for average velocity and Eq. 2-4 for instantaneous velocity, and work with distances in
centimeters and times in seconds.

(a) We plug into the given equation for x for t = 2.00 s and t = 3.00 s and obtain x2 = 21.75 cm and
x3 = 50.25 cm, respectively. The average velocity during the time interval 2.00 ≤ t ≤ 3.00 s is

vavg =
∆x

∆t
=

50.25 cm− 21.75 cm

3.00 s− 2.00 s

which yields vavg = 28.5 cm/s.

(b) The instantaneous velocity is v = dx
dt = 4.5t2, which yields v = (4.5)(2.00)2 = 18.0 cm/s at time

t = 2.00 s.

(c) At t = 3.00 s, the instantaneous velocity is v = (4.5)(3.00)2 = 40.5 cm/s.

(d) At t = 2.50 s, the instantaneous velocity is v = (4.5)(2.50)2 = 28.1 cm/s.

(e) Let tm stand for the moment when the particle is midway between x2 and x3 (that is, when the
particle is at xm = (x2 + x3)/2 = 36 cm). Therefore,

xm = 9.75 + 1.5t3m =⇒ tm = 2.596

in seconds. Thus, the instantaneous speed at this time is v = 4.5(2.596)2 = 30.3 cm/s.
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(f) The answer to part (a) is given by the slope of the straight line

between t = 2 and
t = 3 in this x-
vs-t plot. The an-
swers to parts (b),
(c), (d) and (e)
correspond to the
slopes of tangent
lines (not shown
but easily imag-
ined) to the curve
at the appropriate
points.

(cm)x

(a)

20

40

60

2 3t

13. Since v = dx
dt (Eq. 2-4), then ∆x =

∫

v dt, which corresponds to the area under the v vs t graph. Dividing
the total area A into rectangular (base×height) and triangular (1

2base×height) areas, we have

A = A0<t<2 +A2<t<10 +A10<t<12 +A12<t<16

=
1

2
(2)(8) + (8)(8) +

(

(2)(4) +
1

2
(2)(4)

)

+ (4)(4)

with SI units understood. In this way, we obtain ∆x = 100 m.

14. From Eq. 2-4 and Eq. 2-9, we note that the sign of the velocity is the sign of the slope in an x-vs-t plot,
and the sign of the acceleration corresponds to whether such a curve is concave up or concave down. In
the interest of saving space, we indicate sample points for parts (a)-(d) in a single figure; this means
that all points are not at t = 1 s (which we feel is an acceptable modification of the problem – since the
datum t = 1 s is not used).

(c) (a)

(b)
(d)

Any change from zero
to non-zero values
of ~v represents in-
creasing |~v| (speed).
Also, ~v ‖ ~a implies
that the particle is
going faster. Thus,
points (a), (b) and
(d) involve increasing
speed.

15. We appeal to Eq. 2-4 and Eq. 2-9.

(a) This is v2 – that is, the velocity squared.

(b) This is the acceleration a.

(c) The SI units for these quantities are (m/s)
2

= m2/s2 and m/s2, respectively.

16. Eq. 2-9 indicates that acceleration is the slope of the v-vs-t graph.
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Based on this, we
show here a sketch
of the acceleration (in
m/s2) as a function
of time. The values
along the acceleration
axis should not be
taken too seriously. –20

–10

0

10

a

5t

17. We represent its initial direction of motion as the +x direction, so that v0 = +18 m/s and v = −30 m/s
(when t = 2.4 s). Using Eq. 2-7 (or Eq. 2-11, suitably interpreted) we find

aavg =
(−30)− (+18)

2.4
= −20 m/s

2

which indicates that the average acceleration has magnitude 20 m/s2 and is in the opposite direction to
the particle’s initial velocity.

18. We use Eq. 2-2 (average velocity) and Eq. 2-7 (average acceleration). Regarding our coordinate choices,
the initial position of the man is taken as the origin and his direction of motion during 5 min ≤ t ≤ 10 min
is taken to be the positive x direction. We also use the fact that ∆x = v∆t′ when the velocity is constant
during a time interval ∆t′.

(a) Here, the entire interval considered is ∆t = 8− 2 = 6 min which is equivalent to 360 s, whereas the
sub-interval in which he is moving is only ∆t′ = 8 − 5 = 3 min = 180 s. His position at t = 2 min
is x = 0 and his position at t = 8 min is x = v∆t′ = (2.2)(180) = 396 m. Therefore,

vavg =
396 m− 0

360 s
= 1.10 m/s .

(b) The man is at rest at t = 2 min and has velocity v = +2.2 m/s at t = 8 min. Thus, keeping the
answer to 3 significant figures,

aavg =
2.2 m/s− 0

360 s
= 0.00611 m/s2 .

(c) Now, the entire interval considered is ∆t = 9 − 3 = 6 min (360 s again), whereas the sub-interval
in which he is moving is ∆t′ = 9 − 5 = 4 min = 240 s). His position at t = 3 min is x = 0 and his
position at t = 9 min is x = v∆t′ = (2.2)(240) = 528 m. Therefore,

vavg =
528 m− 0

360 s
= 1.47 m/s .

(d) The man is at rest at t = 3 min and has velocity v = +2.2 m/s at t = 9 min. Consequently,
aavg = 2.2/360 = 0.00611 m/s2 just as in part (b).

(e) The horizontal line near the bottom of this x-vs-t graph represents
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the man stand-
ing at x = 0 for
0 ≤ t < 300 s
and the linearly
rising line for
300 ≤ t ≤ 600 s
represents his
constant-velocity
motion. The dotted
lines represent the
answers to part (a)
and (c) in the sense
that their slopes
yield those results.

(c)

(a)

0

500

x

0 500t

The graph of v-vs-t is not shown here, but would consist of two horizontal “steps” (one at v = 0
for 0 ≤ t < 300 s and the next at v = 2.2 m/s for 300 ≤ t ≤ 600 s). The indications of the
average accelerations found in parts (b) and (d) would be dotted lines connected the “steps” at the
appropriate t values (the slopes of the dotted lines representing the values of aavg).

19. In this solution, we make use of the notation x(t) for the value of x at a particular t. Thus, x(t) =
50t+ 10t2 with SI units (meters and seconds) understood.

(a) The average velocity during the first 3 s is given by

vavg =
x(3)− x(0)

∆t
=

(50)(3) + (10)(3)2 − 0

3
= 80 m/s .

(b) The instantaneous velocity at time t is given by v = dx/dt = 50 + 20t, in SI units. At t = 3.0 s,
v = 50 + (20)(3.0) = 110 m/s.

(c) The instantaneous acceleration at time t is given by a = dv/dt = 20 m/s2. It is constant, so the

acceleration at any time is 20 m/s
2
.

(d) and (e) The graphs below show the coordinate x and velocity v as functions of time, with SI units
understood. The dotted line marked (a) in the first graph runs from t = 0, x = 0 to t = 3.0 s,
x = 240 m. Its slope is the average velocity during the first 3 s of motion. The dotted line marked
(b) is tangent to the x curve at t = 3.0 s. Its slope is the instantaneous velocity at t = 3.0 s.
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20. Using the general property d
dx exp(bx) = b exp(bx), we write

v =
dx

dt
=

(

d (19t)

dt

)

· e−t + (19t) ·
(

d e−t

dt

)

.
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If a concern develops about the appearance of an argument of the exponential (−t) apparently having
units, then an explicit factor of 1/T where T = 1 second can be inserted and carried through the
computation (which does not change our answer). The result of this differentiation is

v = 16(1− t)e−t

with t and v in SI units (s and m/s, respectively). We see that this function is zero when t = 1 s.
Now that we know when it stops, we find out where it stops by plugging our result t = 1 into the given
function x = 16te−t with x in meters. Therefore, we find x = 5.9 m.

21. In this solution, we make use of the notation x(t) for the value of x at a particular t. The notations v(t)
and a(t) have similar meanings.

(a) Since the unit of ct2 is that of length, the unit of c must be that of length/time2, or m/s2 in the SI
system. Since bt3 has a unit of length, b must have a unit of length/time3, or m/s3.

(b) When the particle reaches its maximum (or its minimum) coordinate its velocity is zero. Since the
velocity is given by v = dx/dt = 2ct− 3bt2, v = 0 occurs for t = 0 and for

t =
2c

3b
=

2(3.0 m/s
2
)

3(2.0 m/s
3
)

= 1.0 s .

For t = 0, x = x0 = 0 and for t = 1.0 s, x = 1.0 m > x0. Since we seek the maximum, we reject the
first root (t = 0) and accept the second (t = 1 s).

(c) In the first 4 s the particle moves from the origin to x = 1.0 m, turns around, and goes back to

x(4 s) = (3.0 m/s
2
)(4.0 s)2 − (2.0 m/s

3
)(4.0 s)3 = −80 m .

The total path length it travels is 1.0 m + 1.0 m + 80 m = 82 m.

(d) Its displacement is given by ∆x = x2 − x1, where x1 = 0 and x2 = −80 m. Thus, ∆x = −80 m.

(e) The velocity is given by v = 2ct− 3bt2 = (6.0 m/s
2
)t− (6.0 m/s

3
)t2. Thus

v(1 s) = (6.0 m/s
2
)(1.0 s)− (6.0 m/s

3
)(1.0 s)2 = 0

v(2 s) = (6.0 m/s
2
)(2.0 s)− (6.0 m/s

3
)(2.0 s)2 = −12 m/s

v(3 s) = (6.0 m/s
2
)(3.0 s)− (6.0 m/s

3
)(3.0 s)2 = −36.0 m/s

v(4 s) = (6.0 m/s2)(4.0 s)− (6.0 m/s3)(4.0 s)2 = −72 m/s .

(f) The acceleration is given by a = dv/dt = 2c− 6b = 6.0 m/s2 − (12.0 m/s3)t. Thus

a(1 s) = 6.0 m/s
2 − (12.0 m/s

3
)(1.0 s) = −6.0 m/s

2

a(2 s) = 6.0 m/s
2 − (12.0 m/s

3
)(2.0 s) = −18 m/s

2

a(3 s) = 6.0 m/s2 − (12.0 m/s3)(3.0 s) = −30 m/s2

a(4 s) = 6.0 m/s
2 − (12.0 m/s

3
)(4.0 s) = −42 m/s

2
.

22. For the automobile ∆v = 55− 25 = 30 km/h, which we convert to SI units:

a =
∆v

∆t
=

(30 km/h)
(

1000 m/km
3600 s/h

)

(0.50 min)(60 s/min)
= 0.28 m/s

2
.

The change of velocity for the bicycle, for the same time, is identical to that of the car, so its acceleration
is also 0.28 m/s2.

23. The constant-acceleration condition permits the use of Table 2-1.
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(a) Setting v = 0 and x0 = 0 in v2 = v2
0 + 2a(x− x0), we find

x = −1

2

v2
0

a
= −1

2

(

5.00× 106

−1.25× 1014

)

= 0.100 m .

Since the muon is slowing, the initial velocity and the acceleration must have opposite signs.

(b) Below are the time-plots of the position x and velocity v of the muon from the moment it enters
the field to the time it stops. The computation in part (a) made no reference to t, so that other
equations from Table 2-1 (such as v = v0 + at and x = v0t+ 1

2at
2) are used in making these plots.
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24. The time required is found from Eq. 2-11 (or, suitably interpreted, Eq. 2-7). First, we convert the
velocity change to SI units:

∆v = (100 km/h)

(

1000 m/km

3600 s/h

)

= 27.8 m/s .

Thus, ∆t = ∆v/a = 27.8/50 = 0.556 s.

25. We use v = v0 + at, with t = 0 as the instant when the velocity equals +9.6 m/s.

(a) Since we wish to calculate the velocity for a time before t = 0, we set t = −2.5 s. Thus, Eq. 2-11
gives

v = (9.6 m/s) +
(

3.2 m/s
2
)

(−2.5 s) = 1.6 m/s .

(b) Now, t = +2.5 s and we find

v = (9.6 m/s) +
(

3.2 m/s2
)

(2.5 s) = 18 m/s .

26. The bullet starts at rest (v0 = 0) and after traveling the length of the barrel (∆x = 1.2 m) emerges with
the given velocity (v = 640 m/s), where the direction of motion is the positive direction. Turning to the
constant acceleration equations in Table 2-1, we use

∆x =
1

2
(v0 + v) t .

Thus, we find t = 0.00375 s (about 3.8 ms).

27. The constant acceleration stated in the problem permits the use of the equations in Table 2-1.

(a) We solve v = v0 + at for the time:

t =
v − v0
a

=
1
10

(

3.0× 108 m/s
)

9.8 m/s2
= 3.1× 106 s

which is equivalent to 1.2 months.
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(b) We evaluate x = x0 + v0t+ 1
2at

2, with x0 = 0. The result is

x =
1

2

(

9.8 m/s
2
)

(

3.1× 106 s
)2

= 4.7× 1013 m .

28. From Table 2-1, v2 − v2
0 = 2a∆x is used to solve for a. Its minimum value is

amin =
v2 − v2

0

2∆xmax
=

(360 km/h)2

2(1.80 km)
= 36000 km/h2

which converts to 2.78 m/s2.

29. Assuming constant acceleration permits the use of the equations in Table 2-1. We solve v2 = v2
0 +2a(x−

x0) with x0 = 0 and x = 0.010 m. Thus,

a =
v2 − v2

0

2x
=

(

5.7× 105
)2 −

(

1.5× 105
)2

2(0.01)
= 1.62× 1015 m/s

2
.

30. The acceleration is found from Eq. 2-11 (or, suitably interpreted, Eq. 2-7).

a =
∆v

∆t
=

(1020 km/h)
(

1000m/km
3600 s/h

)

1.4 s
= 202.4 m/s

2
.

In terms of the gravitational acceleration g, this is expressed as a multiple of 9.8 m/s2 as follows:

a =
202.4

9.8
g = 21g .

31. We choose the positive direction to be that of the initial velocity of the car (implying that a < 0 since
it is slowing down). We assume the acceleration is constant and use Table 2-1.

(a) Substituting v0 = 137 km/h = 38.1 m/s, v = 90 km/h = 25 m/s, and a = −5.2 m/s
2

into v = v0+at,
we obtain

t =
25 m/s− 38 m/s

−5.2 m/s
2 = 2.5 s .

(b) We take the car to be at x = 0 when the brakes are applied

(at time t = 0). Thus, the
coordinate of the car as a
function of time is given by

x = (38)t+
1

2
(−5.2)t2

in SI units. This function
is plotted from t = 0 to t =
2.5 s on the graph to the
right. We have not shown
the v-vs-t graph here; it is
a descending straight line
from v0 to v.
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32. From the figure, we see that x0 = −2.0 m. From Table 2-1, we can apply x − x0 = v0t + 1
2at

2 with
t = 1.0 s, and then again with t = 2.0 s. This yields two equations for the two unknowns, v0 and a. SI
units are understood.

0.0− (−2.0) = v0 (1.0) +
1

2
a(1.0)2

6.0− (−2.0) = v0 (2.0) +
1

2
a(2.0)2 .
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Solving these simultaneous equations yields the results v0 = 0.0 and a = 4.0 m/s2. The fact that the
answer is positive tells us that the acceleration vector points in the +x direction.

33. The problem statement (see part (a)) indicates that a = constant, which allows us to use Table 2-1.

(a) We take x0 = 0, and solve x = v0t + 1
2at

2 (Eq. 2-15) for the acceleration: a = 2(x − v0t)/t
2.

Substituting x = 24.0 m, v0 = 56.0 km/h = 15.55 m/s and t = 2.00 s, we find

a =
2 (24.0 m− (15.55 m/s)(2.00 s))

(2.00 s)2
= −3.56 m/s

2
.

The negative sign indicates that the acceleration is opposite to the direction of motion of the car.
The car is slowing down.

(b) We evaluate v = v0 + at as follows:

v = 15.55 m/s−
(

3.56 m/s
2
)

(2.00 s) = 8.43 m/s

which is equivalent to 30.3 km/h.

34. We take the moment of applying brakes to be t = 0. The deceleration is constant so that Table 2-1 can
be used. Our primed variables (such as v′o = 72 km/h = 20 m/s) refer to one train (moving in the +x
direction and located at the origin when t = 0) and unprimed variables refer to the other (moving in
the −x direction and located at x0 = +950 m when t = 0). We note that the acceleration vector of the
unprimed train points in the positive direction, even though the train is slowing down; its initial velocity
is vo = −144 km/h = −40 m/s. Since the primed train has the lower initial speed, it should stop sooner
than the other train would (were it not for the collision). Using Eq 2-16, it should stop (meaning v′ = 0)
at

x′ =
(v′)2 − (v′o)

2

2a′
=

0− 202

−2
= 200 m .

The speed of the other train, when it reaches that location, is

v =
√

v2
o + 2a∆x =

√

(−40)2 + 2(1.0)(200− 950) =
√

100 = 10 m/s

using Eq 2-16 again. Specifically, its velocity at that moment would be −10 m/s since it is still traveling
in the −x direction when it crashes. If the computation of v had failed (meaning that a negative number
would have been inside the square root) then we would have looked at the possibility that there was no
collision and examined how far apart they finally were. A concern that can be brought up is whether the
primed train collides before it comes to rest; this can be studied by computing the time it stops (Eq. 2-11
yields t = 20 s) and seeing where the unprimed train is at that moment (Eq. 2-18 yields x = 350 m, still
a good distance away from contact).

35. The acceleration is constant and we may use the equations in Table 2-1.

(a) Taking the first point as coordinate origin and time to be zero when the car is there, we apply
Eq. 2-17 (with SI units understood):

x =
1

2
(v + v0) t =

1

2
(15 + v0) (6) .

With x = 60.0 m (which takes the direction of motion as the +x direction) we solve for the initial
velocity: v0 = 5.00 m/s.

(b) Substituting v = 15 m/s, v0 = 5 m/s and t = 6 s into a = (v − v0)/t (Eq. 2-11), we find
a = 1.67 m/s2.

(c) Substituting v = 0 in v2 = v2
0 + 2ax and solving for x, we obtain

x = − v
2
0

2a
= − 52

2(1.67)
= −7.50 m .
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(d) The graphs require computing the time when v = 0, in which case, we use v = v0 + at′ = 0. Thus,

t′ =
−v0
a

=
−5

1.67
= −3.0 s

indicates the moment the car was at rest. SI units are assumed.
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36. We denote the required time as t, assuming the light turns green when the clock reads zero. By this
time, the distances traveled by the two vehicles must be the same.

(a) Denoting the acceleration of the automobile as a and the (constant) speed of the truck as v then

∆x =

(

1

2
at2
)

car

= (vt)truck

which leads to

t =
2v

a
=

2(9.5)

2.2
= 8.6 s .

Therefore,
∆x = vt = (9.5)(8.6) = 82 m .

(b) The speed of the car at that moment is

vcar = at = (2.2)(8.6) = 19 m/s .

37. We denote tr as the reaction time and tb as the braking time. The motion during tr is of the constant-
velocity (call it v0) type. Then the position of the car is given by

x = v0tr + v0tb +
1

2
at2b

where v0 is the initial velocity and a is the acceleration (which we expect to be negative-valued since we
are taking the velocity in the positive direction and we know the car is decelerating). After the brakes
are applied the velocity of the car is given by v = v0 +atb. Using this equation, with v = 0, we eliminate
tb from the first equation and obtain

x = v0tr −
v2
0

a
+

1

2

v2
0

a
= v0tr −

1

2

v2
0

a
.

We write this equation for each of the initial velocities:

x1 = v01tr −
1

2

v2
01

a
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and

x2 = v02tr −
1

2

v2
02

a
.

Solving these equations simultaneously for tr and a we get

tr =
v2
02x1 − v2

01x2

v01v02(v02 − v01)

and

a = −1

2

v02v
2
01 − v01v2

02

v02x1 − v01x2
.

Substituting x1 = 56.7 m, v01 = 80.5 km/h = 22.4 m/s, x2 = 24.4 m and v02 = 48.3 km/h = 13.4 m/s,
we find

tr =
13.42(56.7)− 22.42(24.4)

(22.4)(13.4)(13.4− 22.4)
= 0.74 s

and

a = −1

2

(13.4)22.42 − (22.4)13.42

(13.4)(56.7)− (22.4)(24.4)
= −6.2 m/s2 .

The magnitude of the deceleration is therefore 6.2 m/s2. Although rounded off values are displayed
in the above substitutions, what we have input into our calculators are the “exact” values (such as
v02 = 161

12 m/s).

38. In this solution we elect to wait until the last step to convert to SI units. Constant acceleration is
indicated, so use of Table 2-1 is permitted. We start with Eq. 2-17 and denote the train’s initial velocity
as vt and the locomotive’s velocity as vℓ (which is also the final velocity of the train, if the rear-end
collision is barely avoided). We note that the distance ∆x consists of the original gap between them D
as well as the forward distance traveled during this time by the locomotive vℓt. Therefore,

vt + vℓ

2
=

∆x

t
=
D + vℓt

t
=
D

t
+ vℓ .

We now use Eq. 2-11 to eliminate time from the equation. Thus,

vt + vℓ

2
=

D

(vℓ − vt) /a
+ vℓ

leads to

a =

(

vt + vℓ

2
− vℓ

)(

vℓ − vt

D

)

= − 1

2D
(vℓ − vt)

2
.

Hence,

a = − 1

2(0.676 km)

(

29
km

h
− 161

km

h

)2

= −12888 km/h
2

which we convert as follows:

a =
(

−12888 km/h
2
)

(

1000 m

1 km

)(

1 h

3600 s

)2

= −0.994 m/s
2

so that its magnitude is 0.994 m/s2. A graph is shown below for the case where a collision is just avoided
(x along the vertical axis is in meters and t along the horizontal axis is in seconds). The top (straight)
line shows the motion of the locomotive and the bottom curve shows the motion of the passenger train.
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The other case
(where the colli-
sion is not quite
avoided) would
be similar except
that the slope of
the bottom curve
would be greater
than that of the
top line at the
point where they
meet.

0

200

400

600

800

x

10 20 30
t

39. We assume the periods of acceleration (duration t1) and deceleration (duration t2) are periods of constant
a so that Table 2-1 can be used. Taking the direction of motion to be +x then a1 = +1.22 m/s2 and
a2 = −1.22 m/s2. We use SI units so the velocity at t = t1 is v = 305/60 = 5.08 m/s.

(a) We denote ∆x as the distance moved during t1, and use Eq. 2-16:

v2 = v2
0 + 2a1∆x =⇒ ∆x =

5.082

2(1.22)

which yields ∆x = 10.59 ≈ 10.6 m.

(b) Using Eq. 2-11, we have

t1 =
v − v0
a1

=
5.08

1.22
= 4.17 s .

The deceleration time t2 turns out to be the same so that t1 + t2 = 8.33 s. The distances traveled
during t1 and t2 are the same so that they total to 2(10.59) = 21.18 m. This implies that for a
distance of 190 − 21.18 = 168.82 m, the elevator is traveling at constant velocity. This time of
constant velocity motion is

t3 =
168.82 m

5.08 m/s
= 33.21 s .

Therefore, the total time is 8.33 + 33.21 ≈ 41.5 s.

40. Neglect of air resistance justifies setting a = −g = −9.8 m/s2 (where down is our −y direction) for the
duration of the fall. This is constant acceleration motion, and we may use Table 2-1 (with ∆y replacing
∆x).

(a) Using Eq. 2-16 and taking the negative root (since the final velocity is downward), we have

v = −
√

v2
0 − 2g∆y = −

√

0− 2(9.8)(−1700) = −183

in SI units. Its magnitude is therefore 183 m/s.

(b) No, but it is hard to make a convincing case without more analysis. We estimate the mass of a
raindrop to be about a gram or less, so that its mass and speed (from part (a)) would be less than
that of a typical bullet, which is good news. But the fact that one is dealing with many raindrops
leads us to suspect that this scenario poses an unhealthy situation. If we factor in air resistance,
the final speed is smaller, of course, and we return to the relatively healthy situation with which
we are familiar.

41. We neglect air resistance, which justifies setting a = −g = −9.8 m/s2 (taking down as the −y direction)
for the duration of the fall. This is constant acceleration motion, which justifies the use of Table 2-1
(with ∆y replacing ∆x).
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(a) Starting the clock at the moment the wrench is dropped (vo = 0), then v2 = v2
o − 2g∆y leads to

∆y = − (−24)2

2(9.8)
= −29.4 m

so that it fell through a height of 29.4 m.

(b) Solving v = v0 − gt for time, we find:

t =
v0 − v
g

=
0− (−24)

9.8
= 2.45 s .

(c) SI units are used in the graphs, and the initial position is taken as the coordinate origin. In
the interest of saving space, we do not show the acceleration graph, which is a horizontal line at
−9.8 m/s2.
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42. We neglect air resistance, which justifies setting a = −g = −9.8 m/s2 (taking down as the −y direction)
for the duration of the fall. This is constant acceleration motion, which justifies the use of Table 2-1
(with ∆y replacing ∆x).

(a) Noting that ∆y = y − y0 = −30 m, we apply Eq. 2-15 and the quadratic formula (Appendix E) to
compute t:

∆y = v0t−
1

2
gt2 =⇒ t =

v0 ±
√

v2
0 − 2g∆y

g

which (with v0 = −12 m/s since it is downward) leads, upon choosing the positive root (so that
t > 0), to the result:

t =
−12 +

√

(−12)2 − 2(9.8)(−30)

9.8
= 1.54 s .

(b) Enough information is now known that any of the equations in Table 2-1 can be used to obtain v;
however, the one equation that does not use our result from part (a) is Eq. 2-16:

v =
√

v2
0 − 2g∆y = 27.1 m/s

where the positive root has been chosen in order to give speed (which is the magnitude of the
velocity vector).

43. We neglect air resistance for the duration of the motion (between “launching” and “landing”), so a =
−g = −9.8 m/s2 (we take downward to be the −y direction). We use the equations in Table 2-1 (with
∆y replacing ∆x) because this is a = constant motion.

(a) At the highest point the velocity of the ball vanishes. Taking y0 = 0, we set v = 0 in v2 = v2
0 − 2gy,

and solve for the initial velocity: v0 =
√

2gy. Since y = 50 m we find v0 = 31 m/s.
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(b) It will be in the air from the time it leaves the ground until the time it returns to the ground
(y = 0). Applying Eq. 2-15 to the entire motion (the rise and the fall, of total time t > 0) we have

y = v0t−
1

2
gt2 =⇒ t =

2v0
g

which (using our result from part (a)) produces t = 6.4 s. It is possible to obtain this without
using part (a)’s result; one can find the time just for the rise (from ground to highest point) from
Eq. 2-16 and then double it.

(c) SI units are understood in the x and v graphs shown. In the interest of saving space, we do not
show the graph of a, which is a horizontal line at −9.8 m/s2.
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44. There is no air resistance, which makes it quite accurate to set a = −g = −9.8 m/s2 (where downward
is the −y direction) for the duration of the fall. We are allowed to use Table 2-1 (with ∆y replacing
∆x) because this is constant acceleration motion; in fact, when the acceleration changes (during the
process of catching the ball) we will again assume constant acceleration conditions; in this case, we have
a2 = +25g = 245 m/s2.

(a) The time of fall is given by Eq. 2-15 with v0 = 0 and y = 0. Thus,

t =

√

2y0
g

=

√

2(145)

9.8
= 5.44 s .

(b) The final velocity for its free-fall (which becomes the initial velocity during the catching process)
is found from Eq. 2-16 (other equations can be used but they would use the result from part (a)).

v = −
√

v2
0 − 2g (y − y0) = −

√

2gy0 = −53.3 m/s

where the negative root is chosen since this is a downward velocity.

(c) For the catching process, the answer to part (b) plays the role of an initial velocity (v0 = −53.3 m/s)
and the final velocity must become zero. Using Eq. 2-16, we find

∆y2 =
v2 − v2

0

2a2
=
−(−53.3)2

2(245)
= −5.80 m

where the negative value of ∆y2 signifies that the distance traveled while arresting its motion is
downward.

45. Taking the +y direction downward and y0 = 0, we have y = v0t + 1
2gt

2 which (with v0 = 0) yields

t =
√

2y/g.
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(a) For this part of the motion, y = 50 m so that

t =

√

2(50)

9.8
= 3.2 s .

(b) For this next part of the motion, we note that the total displacement is y = 100 m. Therefore, the
total time is

t =

√

2(100)

9.8
= 4.5 s .

The difference between this and the answer to part (a) is the time required to fall through that
second 50 m distance: 4.5− 3.2 = 1.3 s.

46. We neglect air resistance, which justifies setting a = −g = −9.8 m/s2 (taking down as the −y direction)
for the duration of the motion. We are allowed to use Table 2-1 (with ∆y replacing ∆x) because this is
constant acceleration motion. The ground level is taken to correspond to y = 0.

(a) With y0 = h and v0 replaced with −v0, Eq. 2-16 leads to

v =

√

(−v0)2 − 2g (y − y0) =
√

v2
0 + 2gh .

The positive root is taken because the problem asks for the speed (the magnitude of the velocity).

(b) We use the quadratic formula to solve Eq. 2-15 for t, with v0 replaced with −v0,

∆y = −v0t−
1

2
gt2 =⇒ t =

−v0 +

√

(−v0)2 − 2g∆y

g

where the positive root is chosen to yield t > 0. With y = 0 and y0 = h, this becomes

t =

√

v2
0 + 2gh− v0

g
.

(c) If it were thrown upward with that speed from height h then (in the absence of air friction) it would
return to height h with that same downward speed and would therefore yield the same final speed
(before hitting the ground) as in part (a). An important perspective related to this is treated later
in the book (in the context of energy conservation) .

(d) Having to travel up before it starts its descent certainly requires more time than in part (b). The
calculation is quite similar, however, except for now having +v0 in the equation where we had put
in −v0 in part (b). The details follow:

∆y = v0t−
1

2
gt2 =⇒ t =

v0 +
√

v2
0 − 2g∆y

g

with the positive root again chosen to yield t > 0. With y = 0 and y0 = h, we obtain

t =

√

v2
0 + 2gh+ v0

g
.

47. We neglect air resistance, which justifies setting a = −g = −9.8 m/s2 (taking down as the −y direction)
for the duration of the motion. We are allowed to use Table 2-1 (with ∆y replacing ∆x) because this is
constant acceleration motion. The ground level is taken to correspond to the origin of the y axis.

(a) Using y = v0t− 1
2gt

2, with y = 0.544 m and t = 0.200 s, we find

v0 =
y + 1

2gt
2

t
=

0.544 + 1
2 (9.8)(0.200)2

0.200
= 3.70 m/s .
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(b) The velocity at y = 0.544 m is

v = v0 − gt = 3.70− (9.8)(0.200) = 1.74 m/s .

(c) Using v2 = v2
0 − 2gy (with different values for y and v than before), we solve for the value of y

corresponding to maximum height (where v = 0).

y =
v2
0

2g
=

3.72

2(9.8)
= 0.698 m .

Thus, the armadillo goes 0.698− 0.544 = 0.154 m higher.

48. We neglect air resistance, which justifies setting a = −g = −9.8 m/s2 (taking down as the −y direction)
for the duration of the motion. We are allowed to use Table 2-1 (with ∆y replacing ∆x) because this is
constant acceleration motion. The ground level is taken to correspond to the origin of the y axis. The
total time of fall can be computed from Eq. 2-15 (using the quadratic formula).

∆y = v0t−
1

2
gt2 =⇒ t =

v0 +
√

v2
0 − 2g∆y

g

with the positive root chosen. With y = 0, v0 = 0 and y0 = h = 60 m, we obtain

t =

√
2gh

g
=

√

2h

g
= 3.5 s .

Thus, “1.2 s earlier” means we are examining where the rock is at t = 2.3 s:

y − h = v0(2.3)− 1

2
g(2.3)2 =⇒ y = 34 m

where we again use the fact that h = 60 m and v0 = 0.

49. The speed of the boat is constant, given by vb = d/t. Here, d is the distance of the boat from the bridge
when the key is dropped (12 m) and t is the time the key takes in falling. To calculate t, we put the
origin of the coordinate system at the point where the key is dropped and take the y axis to be positive
in the downward direction. Taking the time to be zero at the instant the key is dropped, we compute
the time t when y = 45 m. Since the initial velocity of the key is zero, the coordinate of the key is given
by y = 1

2gt
2. Thus

t =

√

2y

g
=

√

2(45 m)

9.8 m/s
2 = 3.03 s .

Therefore, the speed of the boat is

vb =
12 m

3.03 s
= 4.0 m/s .

50. With +y upward, we have y0 = 36.6 m and y = 12.2 m. Therefore, using Eq. 2-18 (the last equation in
Table 2-1), we find

y − y0 = vt+
1

2
gt2 =⇒ v = −22 m/s

at t = 2.00 s. The term speed refers to the magnitude of the velocity vector, so the answer is |v| =
22.0 m/s.

51. We first find the velocity of the ball just before it hits the ground. During contact with the ground its
average acceleration is given by

aavg =
∆v

∆t
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where ∆v is the change in its velocity during contact with the ground and ∆t = 20.0 × 10−3 s is the
duration of contact. Now, to find the velocity just before contact, we put the origin at the point where
the ball is dropped (and take +y upward) and take t = 0 to be when it is dropped. The ball strikes the
ground at y = −15.0 m. Its velocity there is found from Eq. 2-16: v2 = −2gy. Therefore,

v = −
√

−2gy = −
√

−2(9.8)(−15.0) = −17.1 m/s

where the negative sign is chosen since the ball is traveling downward at the moment of contact. Con-
sequently, the average acceleration during contact with the ground is

aavg =
0− (−17.1)

20.0× 10−3
= 857 m/s

2
.

The fact that the result is positive indicates that this acceleration vector points upward. In a later
chapter, this will be directly related to the magnitude and direction of the force exerted by the ground
on the ball during the collision.

52. The y axis is arranged so that ground level is y = 0 and +y is upward.

(a) At the point where its fuel gets exhausted, the rocket has reached a height of

y′ =
1

2
at2 =

(4.00)(6.00)2

2
= 72.0 m .

From Eq. 2-11, the speed of the rocket (which had started at rest) at this instant is

v′ = at = (4.00)(6.00) = 24.0 m/s .

The additional height ∆y1 the rocket can attain (beyond y′) is given by Eq. 2-16 with vanishing

final speed: 0 = v′ 2 − 2g∆y1. This gives

∆y1 =
v′ 2

2g
=

(24.0)2

2(9.8)
= 29.4 m .

Recalling our value for y′, the total height the rocket attains is seen to be 72.0 + 29.4 = 101 m.

(b) The time of free-fall flight (from y′ until it returns to y = 0) after the fuel gets exhausted is found
from Eq. 2-15:

−y′ = v′t− 1

2
gt2 =⇒ −72.0 = (24.0)t− 9.80

2
t2 .

Solving for t (using the quadratic formula) we obtain t = 7.00 s. Recalling the upward acceleration
time used in part (a), we see the total time of flight is 7.00 + 6.00 = 13.0 s.

53. The average acceleration during contact with the floor is given by aavg = (v2 − v1)/∆t, where v1 is its
velocity just before striking the floor, v2 is its velocity just as it leaves the floor, and ∆t is the duration
of contact with the floor (12× 10−3 s). Taking the y axis to be positively upward and placing the origin
at the point where the ball is dropped, we first find the velocity just before striking the floor, using
v2
1 = v2

0 − 2gy. With v0 = 0 and y = −4.00 m, the result is

v1 = −
√

−2gy = −
√

−2(9.8)(−4.00) = −8.85 m/s

where the negative root is chosen because the ball is traveling downward. To find the velocity just after
hitting the floor (as it ascends without air friction to a height of 2.00 m), we use v2 = v2

2−2g(y−y0) with
v = 0, y = −2.00 m (it ends up two meters below its initial drop height), and y0 = −4.00 m. Therefore,

v2 =
√

2g(y − y0) =
√

2(9.8)(−2.00 + 4.00) = 6.26 m/s .
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Consequently, the average acceleration is

aavg =
v2 − v1

∆t
=

6.26 + 8.85

12.0× 10−3
= 1.26× 103 m/s

2
.

The positive nature of the result indicates that the acceleration vector points upward. In a later chapter,
this will be directly related to the magnitude and direction of the force exerted by the ground on the
ball during the collision.

54. The height reached by the player is y = 0.76 m (where we have taken the origin of the y axis at the floor
and +y to be upward).

(a) The initial velocity v0 of the player is

v0 =
√

2gy =
√

2(9.8)(0.76) = 3.86 m/s .

This is a consequence of Eq. 2-16 where velocity v vanishes. As the player reaches y1 = 0.76−0.15 =
0.61 m, his speed v1 satisfies v2

0 − v2
1 = 2gy1, which yields

v1 =
√

v2
0 − 2gy1 =

√

(3.86)2 − 2(9.80)(0.61) = 1.71 m/s .

The time t1 that the player spends ascending in the top ∆y1 = 0.15 m of the jump can now be
found from Eq. 2-17:

∆y1 =
1

2
(v1 + v) t1 =⇒ t1 =

2(0.15)

1.71 + 0
= 0.175 s

which means that the total time spend in that top 15 cm (both ascending and descending) is
2(0.17) = 0.35 s = 350 ms.

(b) The time t2 when the player reaches a height of 0.15 m is found from Eq. 2-15:

0.15 = v0t2 −
1

2
gt22 = (3.86)t2 −

9.8

2
t22 ,

which yields (using the quadratic formula, taking the smaller of the two positive roots) t2 = 0.041 s
= 41 ms, which implies that the total time spend in that bottom 15 cm (both ascending and
descending) is 2(41) = 82 ms.

55. We neglect air resistance, which justifies setting a = −g = −9.8 m/s2 (taking down as the −y direction)
for the duration of the motion. We are allowed to use Table 2-1 (with ∆y replacing ∆x) because this is
constant acceleration motion. The ground level is taken to correspond to the origin of the y axis. The
time drop 1 leaves the nozzle is taken as t = 0 and its time of landing on the floor t1 can be computed
from Eq. 2-15, with v0 = 0 and y1 = −2.00 m.

y1 = −1

2
gt21 =⇒ t1 =

√

−2y

g
=

√

−2(−2.00)

9.8
= 0.639 s .

At that moment,the fourth drop begins to fall, and from the regularity of the dripping we conclude that
drop 2 leaves the nozzle at t = 0.639/3 = 0.213 s and drop 3 leaves the nozzle at t = 2(0.213) = 0.426 s.
Therefore, the time in free fall (up to the moment drop 1 lands) for drop 2 is t2 = t1 − 0.213 = 0.426 s
and the time in free fall (up to the moment drop 1 lands) for drop 3 is t3 = t1 − 0.426 = 0.213 s. Their
positions at that moment are

y2 = −1

2
gt22 = −1

2
(9.8)(0.426)2 = −0.889 m

y3 = −1

2
gt23 = −1

2
(9.8)(0.213)2 = −0.222 m ,

respectively. Thus, drop 2 is 89 cm below the nozzle and drop 3 is 22 cm below the nozzle when drop 1
strikes the floor.
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56. The graph shows y = 25 m to be the highest point (where the speed momentarily vanishes). The neglect
of “air friction” (or whatever passes for that on the distant planet) is certainly reasonable due to the
symmetry of the graph.

(a) To find the acceleration due to gravity gp on that planet, we use Eq. 2-15 (with +y up)

y − y0 = vt+
1

2
gpt

2 =⇒ 25− 0 = (0)(2.5) +
1

2
gp(2.5)2

so that gp = 8.0 m/s2.

(b) That same (max) point on the graph can be used to find the initial velocity.

y − y0 =
1

2
(v0 + v) t =⇒ 25− 0 =

1

2
(v0 + 0) (2.5)

Therefore, v0 = 20 m/s.

57. Taking +y to be upward and placing the origin at the point from which the objects are dropped, then the
location of diamond 1 is given by y1 = − 1

2gt
2 and the location of diamond 2 is given by y2 = − 1

2g(t−1)2.
We are starting the clock when the first object is dropped. We want the time for which y2− y1 = 10 m.
Therefore,

−1

2
g(t− 1)2 +

1

2
gt2 = 10 =⇒ t = (10/g) + 0.5 = 1.5 s .

58. We neglect air resistance, which justifies setting a = −g = −9.8 m/s2 (taking down as the −y direction)
for the duration of the motion. We are allowed to use Table 2-1 (with ∆y replacing ∆x) because this is
constant acceleration motion. When something is thrown straight up and is caught at the level it was
thrown from (with a trajectory similar to that shown in Fig. 2-25), the time of flight t is half of its time
of ascent ta, which is given by Eq. 2-18 with ∆y = H and v = 0 (indicating the maximum point).

H = vta +
1

2
gt2a =⇒ ta =

√

2H

g

Writing these in terms of the total time in the air t = 2ta we have

H =
1

8
gt2 =⇒ t = 2

√

2H

g
.

We consider two throws, one to height H1 for total time t1 and another to height H2 for total time t2,
and we set up a ratio:

H2

H1
=

1
8gt

2
2

1
8gt

2
1

=

(

t2
t1

)2

from which we conclude that if t2 = 2t1 (as is required by the problem) then H2 = 22H1 = 4H1.

59. We neglect air resistance, which justifies setting a = −g = −9.8 m/s2 (taking down as the −y direction)
for the duration of the motion. We are allowed to use Table 2-1 (with ∆y replacing ∆x) because this is
constant acceleration motion. We placing the coordinate origin on the ground. We note that the initial
velocity of the package is the same as the velocity of the balloon, v0 = +12 m/s and that its initial
coordinate is y0 = +80 m.

(a) We solve y = y0+v0t− 1
2gt

2 for time, with y = 0, using the quadratic formula (choosing the positive
root to yield a positive value for t).

t =
v0 +

√

v2
0 + 2gy0
g

=
12 +

√

122 + 2(9.8)(80)

9.8
= 5.4 s
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(b) If we wish to avoid using the result from part (a), we could use Eq. 2-16, but if that is not a
concern, then a variety of formulas from Table 2-1 can be used. For instance, Eq. 2-11 leads to
v = v0 − gt = 12− (9.8)(5.4) = −41 m/s. Its final speed is 41 m/s.

60. We neglect air resistance, which justifies setting a = −g = −9.8 m/s2 (taking down as the −y direction)
for the duration of the motion. We are allowed to use Eq. 2-15 (with ∆y replacing ∆x) because this is
constant acceleration motion. We use primed variables (except t) with the first stone, which has zero
initial velocity, and unprimed variables with the second stone (with initial downward velocity −v0, so
that v0 is being used for the initial speed). SI units are used throughout.

∆y′ = 0(t)− 1

2
gt2

∆y = (−v0) (t− 1)− 1

2
g(t− 1)2

Since the problem
indicates ∆y′ =
∆y = −43.9 m,
we solve the
first equation
for t (finding
t = 2.99 s) and
use this result to
solve the second
equation for the
initial speed of
the second stone:

21

0

20

40

y

2t

−43.9 = (−v0) (1.99)− 1

2
(9.8)(1.99)2

which leads to v0 = 12.3 m/s.

61. We neglect air resistance, which justifies setting a = −g = −9.8 m/s2 (taking down as the −y direction)
for the duration of the motion of the shot ball. We are allowed to use Table 2-1 (with ∆y replacing
∆x) because the ball has constant acceleration motion. We use primed variables (except t) with the
constant-velocity elevator (so v′ = 20 m/s), and unprimed variables with the ball (with initial velocity
v0 = v′ + 10 = 30 m/s, relative to the ground). SI units are used throughout.

(a) Taking the time to be zero at the instant the ball is shot, we compute its maximum height y (relative
to the ground) with v2 = v2

0 − 2g(y− yo), where the highest point is characterized by v = 0. Thus,

y = yo +
v2
0

2g
= 76 m

where yo = y′o + 2 = 30 m (where y′o = 28 m is given in the problem) and v0 = 30 m/s relative to
the ground as noted above.

(b) There are a variety of approaches to this question. One is to continue working in the frame of
reference adopted in part (a) (which treats the ground as motionless and “fixes” the coordinate
origin to it); in this case, one describes the elevator motion with y′ = y′o + v′t and the ball motion
with Eq. 2-15, and solves them for the case where they reach the same point at the same time.
Another is to work in the frame of reference of the elevator (the boy in the elevator might be
oblivious to the fact the elevator is moving since it isn’t accelerating), which is what we show here
in detail:

∆ye = v0et−
1

2
gt2 =⇒ t =

v0e +
√

v02
e − 2g∆ye

g
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where v0e = 20 m/s is the initial velocity of the ball relative to the elevator and ∆ye = −2.0 m is
the ball’s displacement relative to the floor of the elevator. The positive root is chosen to yield a
positive value for t ; the result is t = 4.2 s.

62. We neglect air resistance, which justifies setting a = −g = −9.8 m/s2 (taking down as the −y direction)
for the duration of the stone’s motion. We are allowed to use Table 2-1 (with ∆x replaced by y) because
the ball has constant acceleration motion (and we choose yo = 0).

(a) We apply Eq. 2-16 to both measurements, with SI units understood.

v2
B = v2

0 − 2gyB =⇒
(

1

2
v

)2

+ 2g(yA + 3) = v2
0

v2
A = v2

0 − 2gyA =⇒ v2 + 2gyA = v2
0

We equate the two expressions that each equal v2
0 and obtain

1

4
v2 + 2gyA + 2g(3) = v2 + 2gyA =⇒ 2g(3) =

3

4
v2

which yields v =
√

2g(4) = 8.85 m/s.

(b) An object moving upward at A with speed v = 8.85 m/s will reach a maximum height y − yA =
v2/2g = 4.00 m above point A (this is again a consequence of Eq. 2-16, now with the “final” velocity
set to zero to indicate the highest point). Thus, the top of its motion is 1.00 m above point B.

63. The object, once it is dropped (v0 = 0) is in free-fall (a = −g = −9.8 m/s2 if we take down as the −y
direction), and we use Eq. 2-15 repeatedly.

(a) The (positive) distance D from the lower dot to the mark corresponding to a certain reaction time
t is given by ∆y = −D = − 1

2gt
2, or D = gt2/2. Thus for t1 = 50.0 ms

D1 =
(9.8 m/s

2
)(50.0× 10−3 s)2

2
= 0.0123 m = 1.23 cm .

(b) For t2 = 100 ms

D2 =
(9.8 m/s

2
)(100× 10−3 s)2

2
= 0.049 m = 4D1 ;

for t3 = 150 ms

D3 =
(9.8 m/s2)(150× 10−3 s)2

2
= 0.11 m = 9D1 ;

for t4 = 200 ms

D4 =
(9.8 m/s

2
)(200× 10−3 s)2

2
= 0.196 m = 16D1 ;

and for t4 = 250 ms

D5 =
(9.8 m/s

2
)(250× 10−3 s)2

2
= 0.306 m = 25D1 .

64. During free fall, we ignore the air resistance and set a = −g = −9.8 m/s2 where we are choosing down

to be the −y direction. The initial velocity is zero so that Eq. 2-15 becomes ∆y = − 1
2gt

2 where ∆y
represents the negative of the distance d she has fallen. Thus, we can write the equation as d = 1

2gt
2 for

simplicity.



36 CHAPTER 2.

(a) The time t1 during which the parachutist is in free fall is (using Eq. 2-15) given by

d1 = 50 m =
1

2
gt21 =

1

2

(

9.80 m/s
2
)

t21

which yields t1 = 3.2 s. The speed of the parachutist just before he opens the parachute is given by
the positive root v2

1 = 2gd1, or

v1 =
√

2gh1 =

√

(2)(9.80 m/s
2
)(50 m) = 31 m/s .

If the final speed is v2, then the time interval t2 between the opening of the parachute and the
arrival of the parachutist at the ground level is

t2 =
v1 − v2
a

=
31 m/s− 3.0 m/s

2 m/s
2 = 14 s .

This is a result of Eq. 2-11 where speeds are used instead of the (negative-valued) velocities (so that
final-velocity minus initial-velocity turns out to equal initial-speed minus final-speed); we also note
that the acceleration vector for this part of the motion is positive since it points upward (opposite
to the direction of motion – which makes it a deceleration). The total time of flight is therefore
t1 + t2 = 17 s.

(b) The distance through which the parachutist falls after the parachute is opened is given by

d =
v2
1 − v2

2

2a
=

(31 m/s)2 − (3.0 m/s)2

(2)(2.0 m/s
2
)

≈ 240 m .

In the computation, we have used Eq. 2-16 with both sides multiplied by −1 (which changes the
negative-valued ∆y into the positive d on the left-hand side, and switches the order of v1 and v2
on the right-hand side). Thus the fall begins at a height of h = 50 + d ≈ 290 m.

65. The time t the pot spends passing in front of the window of length L = 2.0 m is 0.25 s each way. We use
v for its velocity as it passes the top of the window (going up). Then, with a = −g = −9.8 m/s2 (taking
down to be the −y direction), Eq. 2-18 yields

L = vt− 1

2
gt2 =⇒ v =

L

t
− 1

2
gt .

The distance H the pot goes above the top of the window is therefore (using Eq. 2-16 with the final

velocity being zero to indicate the highest point)

H =
v2

2g
=

(L/t− gt/2)2

2g
=

(2.00/0.25− (9.80)(0.25)/2)
2

(2) (9.80)
= 2.34 m .

66. The time being considered is 6 years and roughly 235 days, which is approximately ∆t = 2.1 × 107 s.
Using Eq. 2-3, we find the average speed to be

30600× 103 m

2.1× 107 s
= 0.15 m/s .

67. We assume constant velocity motion and use Eq. 2-2 (with vavg = v > 0). Therefore,

∆x = v∆t =

(

303
km

h

(

1000 m/km

3600 s/h

))

(

100× 10−3 s
)

= 8.4 m .

68. For each rate, we use distance d = vt and convert to SI using 0.0254 cm = 1 inch (from which we derive
the factors appearing in the computations below).
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(a) The total distance d comes from summing

d1 =

(

120
steps

min

)(

0.762 m/step

60 s/min

)

(5 s) = 7.62 m

d2 =

(

120
steps

min

)(

0.381 m/step

60 s/min

)

(5 s) = 3.81 m

d3 =

(

180
steps

min

)(

0.914 m/step

60 s/min

)

(5 s) = 13.72 m

d4 =

(

180
steps

min

)(

0.457 m/step

60 s/min

)

(5 s) = 6.86 m

so that d = d1 + d2 + d3 + d4 = 32 m.

(b) Average velocity is computed using Eq. 2-2: vavg = 32/20 = 1.6 m/s, where we have used the fact
that the total time is 20 s.

(c) The total time t comes from summing

t1 =
8 m

(

120 steps
min

)

(

0.762m/step
60 s/min

) = 5.25 s

t2 =
8 m

(

120 steps
min

)

(

0.381m/step
60 s/min

) = 10.5 s

t3 =
8 m

(

180 steps
min

)

(

0.914m/step
60 s/min

) = 2.92 s

t4 =
8 m

(

180 steps
min

)

(

0.457m/step
60 s/min

) = 5.83 s

so that t = t1 + t2 + t3 + t4 = 24.5 s.

(d) Average velocity is computed using Eq. 2-2: vavg = 32/24.5 = 1.3 m/s, where we have used the
fact that the total distance is 4(8) = 32 m.

69. The statement that the stoneflies have “constant speed along a straight path” means we are dealing with
constant velocity motion (Eq. 2-2 with vavg replaced with vs or vns, as the case may be).

(a) We set up the ratio and simplify (using d for the common distance).

vs
vns

=
d/ts
d/tns

=
tns

ts
=

25.0

7.1
= 3.52

(b) We examine ∆t and simplify until we are left with an expression having numbers and no variables
other than vs. Distances are understood to be in meters.

tns − ts =
2

vns
− 2

vs

=
2

(vs/3.52)
− 2

vs

=
2

vs
(3.52− 1)

≈ 5

vs
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70. We orient +x along the direction of motion (so a will be negative-valued, since it is a deceleration), and
we use Eq. 2-7 with aavg = −3400g = −3400(9.8) = −3.33 × 104 m/s2 and v = 0 (since the recorder
finally comes to a stop).

aavg =
v − v0

∆t
=⇒ v0 =

(

3.33× 104 m/s
2
)

(

6.5× 10−3 s
)

which leads to v0 = 217 m/s.

71. (a) It is the intent of this problem to treat the v0 = 0 condition rigidly. In other words, we are not
fitting the distance to just any second-degree polynomial in t; rather, we requiring d = At2 (which
meets the condition that d and its derivative is zero when t = 0). If we perform a leastsquares fit
with this expression, we obtain A = 3.587 (SI units understood). We return to this discussion in
part (c). Our expectation based on Eq. 2-15, assuming no error in starting the clock at the moment
the acceleration begins, is d = 1

2at
2 (since he started at the coordinate origin, the location of which

presumably is something we can be fairly certain about).

(b) The graph (d on the vertical axis, SI units understood) is shown.

The horizontal
axis is t2 (as
indicated by
the problem
statement) so
that we have
a straight line
instead of a
parabola.

0

20

40

d

10
t_squared

(c) Comparing our two expressions for d, we see the parameter A in our fit should correspond to 1
2a,

so a = 2(3.587) ≈ 7.2 m/s2. Now, other approaches might be considered (trying to fit the data with
d = Ct2 +B for instance, which leads to a = 2C = 7.0 m/s2 and B 6= 0), and it might be useful to
have the class discuss the assumptions made in each approach.

72. (a) We estimate x ≈ 2 m at t = 0.5 s, and x ≈ 12 m at t = 4.5 s. Hence, using the definition of average
velocity Eq. 2-2, we find

vavg =
12− 2

4.5− 0.5
= 2.5 m/s .

(b) In the region 4.0 ≤ t ≤ 5.0, the graph depicts a straight line, so its slope represents the instantaneous
velocity for any point in that interval. Its slope is the average velocity between t = 4.0 s and t = 5.0
s:

vavg =
16.0− 8.0

5.0− 4.0
= 8.0 m/s .

Thus, the instantaneous velocity at t = 4.5 s is 8.0 m/s. (Note: similar reasoning leads to a value
needed in the next part: the slope of the 0 ≤ t ≤ 1 region indicates that the instantaneous velocity
at t = 0.5 s is 4.0 m/s.)

(c) The average acceleration is defined by Eq. 2-7:

aavg =
v2 − v1
t2 − t1

=
8.0− 4.0

4.5− 0.5
= 1.0 m/s

2
.

(d) The instantaneous acceleration is the instantaneous rate-of-change of the velocity, and the constant
x vs. t slope in the interval 4.0 ≤ t ≤ 5.0 indicates that the velocity is constant during that interval.
Therefore, a = 0 at t = 4.5 s.
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73. We use the functional notation x(t), v(t) and a(t) and find the latter two quantities by differentiating:

v(t) =
dx(t)

t
= 6.0t2 and a(t) =

dv(t)

dt
= 12t

with SI units understood. This expressions are used in the parts that follow.

(a) Using the definition of average velocity, Eq. 2-2, we find

vavg =
x(2)− x(1)

2.0− 1.0
=

2(2)3 − 2(1)3

1.0
= 14 m/s .

(b) The average acceleration is defined by Eq. 2-7:

aavg =
v(2)− v(1)

2.0− 1.0
=

6(2)2 − 6(1)2

1.0
= 18 m/s2 .

(c) The value of v(t) when t = 1.0 s is v(1) = 6(1)2 = 6.0 m/s.

(d) The value of a(t) when t = 1.0 s is a(1) = 12(1) = 12 m/s2.

(e) The value of v(t) when t = 2.0 s is v(2) = 6(2)2 = 24 m/s.

(f) The value of a(t) when t = 2.0 s is a(2) = 12(2) = 24 m/s2.

(g) We don’t expect average values of a quantity, say, heights of trees, to equal any particular height
for a specific tree, but we are sometimes surprised at the different kinds of averaging that can be
performed. Now, the acceleration is a linear function (of time) so its average as defined by Eq. 2-7
is, not surprisingly, equal to the arithmetic average of its a(1) and a(2) values. The velocity is not
a linear function so the result of part (a) is not equal to the arithmetic average of parts (c) and
(e) (although it is fairly close). This reminds us that the calculus-based definition of the average a
function (equivalent to Eq. 2-2 for vavg ) is not the same as the simple idea of an arithmetic average
of two numbers; in other words,

1

t′ − t

∫ t′

t

f(τ) dτ 6= f(t′) + f(t)

2

except in very special cases (like with linear functions).

(h) The graphs are shown below, x(t) on the left and v(t) on the right. SI units are understood. We
do not show the tangent lines (representing instantaneous slope values) at t = 1 and t = 2, but we
do show line segments representing the average quantities computed in parts (a) and (b).
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74. We choose down as the +y direction and set the coordinate origin at the point where it was dropped
(which is when we start the clock). We denote the 1.00 s duration mentioned in the problem as t − t′
where t is the value of time when it lands and t′ is one second prior to that. The corresponding distance
is y − y′ = 0.50h, where y denotes the location of the ground. In these terms, y is the same as h, so we
have h− y′ = 0.50h or 0.50h = y′.
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(a) We find t′ and t from Eq. 2-15 (with v0 = 0):

y′ =
1

2
gt′ 2 =⇒ t′ =

√

2y′

g

y =
1

2
gt2 =⇒ t =

√

2y

g
.

Plugging in y = h and y′ = 0.50h, and dividing these two equations, we obtain

t′

t
=

√

2(0.50h)/g

2h/g
=
√

0.50 .

Letting t′ = t− 1.00 (SI units understood) and cross-multiplying, we find

t− 1.00 = t
√

0.50 =⇒ t =
1.00

1−
√

0.50

which yields t = 3.41 s.

(b) Plugging this result into y = 1
2gt

2 we find h = 57 m.

(c) In our approach, we did not use the quadratic formula, but we did “choose a root” when we assumed
(in the last calculation in part (a)) that

√
0.50 = +2.236 instead of −2.236. If we had instead let√

0.50 = −2.236 then our answer for t would have been roughly 0.6 s which would imply that
t′ = t− 1 would equal a negative number (indicating a time before it was dropped) which certainly
does not fit with the physical situation described in the problem.

75. (a) Let the height of the diving board be h. We choose down as the +y direction and set the coordinate
origin at the point where it was dropped (which is when we start the clock). Thus, y = h designates
the location where the ball strikes the water. Let the depth of the lake be D, and the total time
for the ball to descend be T . The speed of the ball as it reaches the surface of the lake is then
v =
√

2gh (from Eq. 2-16), and the time for the ball to fall from the board to the lake surface is
t1 =

√

2h/g (from Eq. 2-15). Now, the time it spends descending in the lake (at constant velocity
v) is

t2 =
D

v
=

D√
2gh

.

Thus, T = t1 + t2 =
√

2h
g + D√

2gh
, which gives

D = T
√

2gh− 2h = (4.80)
√

(2)(9.80)(5.20)− (2)(5.20) = 38.1 m .

(b) Using Eq. 2-2, the average velocity is

vavg =
D + h

T
=

38.1 + 5.20

4.80
= 9.02 m/s

where (recalling our coordinate choices) the positive sign means that the ball is going downward
(if, however, upwards had been chosen as the positive direction, then this answer would turn out
negative-valued).

(c) We find v0 from ∆y = v0t+
1
2gt

2 with t = T and ∆y = h+D. Thus,

v0 =
h+D

T
− gT

2
=

5.20 + 38.1

4.80
− (9.8)(4.80)

2
= −14.5 m/s

where (recalling our coordinate choices) the negative sign means that the ball is being thrown
upward.



41

76. The time ∆t is 2(60) + 41 = 161 min and the displacement ∆x = 370 cm. Thus, Eq. 2-2 gives

vavg =
∆x

∆t
=

370

161
= 2.3 cm/min .

77. We use the functional notation x(t), v(t) and a(t) and find the latter two quantities by differentiating:

v(t) =
dx(t)

t
= −15t2 + 20 and a(t) =

dv(t)

dt
= −30t

with SI units understood. This expressions are used in the parts that follow.

(a) From 0 = −15t2+20, we see that the only positive value of t for which the particle is (momentarily)
stopped is t =

√

20/15 = 1.2 s.

(b) From 0 = −30t, we find a(0) = 0 (that is, it vanishes at t = 0).

(c) It is clear that a(t) = −30t is negative for t > 0 and positive for t < 0.

(d) We show the two of the graphs below (the third graph, a(t), which is a straight line through the
origin with slope = −30 is omitted in the interest of saving space). SI units are understood.
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78. (a) It follows from Eq. 2-8 that v − v0 =
∫

a dt, which has the geometric interpretation of being the
area under the graph. Thus, with v0 = 2.0 m/s and that area amounting to 3.0 m/s (adding that
of a triangle to that of a square, over the interval 0 ≤ t ≤ 2 s), we find v = 2.0 + 3.0 = 5.0 m/s
(which we will denote as v2 in the next part). The information given that x0 = 4.0 m is not used
in this solution.

(b) During 2 < t ≤ 4 s, the graph of a is a straight line with slope 1.0 m/s3. Extrapolating, we see that
the intercept of this line with the a axis is zero. Thus, with SI units understood,

v = v2 +

∫ t

2.0

a dτ = 5.0 +

∫ t

2.0

(1.0)τ dτ = 5.0 +
(1.0)t2 − (1.0)(2.0)2

2

which yields v = 3.0 + 0.50t2 in m/s.

79. We assume the train accelerates from rest (v0 = 0 and x0 = 0) at a1 = +1.34 m/s2 until the midway
point and then decelerates at a2 = −1.34 m/s2 until it comes to a stop (v2 = 0) at the next station. The
velocity at the midpoint is v1 which occurs at x1 = 806/2 = 403 m.

(a) Eq. 2-16 leads to

v2
1 = v2

0 + 2a1x1 =⇒ v1 =
√

2(1.34)(403)

which yields v1 = 32.9 m/s.

(b) The time t1 for the accelerating stage is (using Eq. 2-15)

x1 = v0t1 +
1

2
a1t

2
1 =⇒ t1 =

√

2(403)

1.34

which yields t1 = 24.53 s. Since the time interval for the decelerating stage turns out to be the
same, we double this result and obtain t = 49.1 s for the travel time between stations.
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(c) With a “dead time” of 20 s, we have T = t+20 = 69.1 s for the total time between start-ups. Thus,
Eq. 2-2 gives

vavg =
806 m

69.1 s
= 11.7 m/s .

(d) We show the two of the graphs below. The third graph, a(t), is not shown to save space; it consists
of three horizontal “steps” – one at 1.34 during 0 < t < 24.53 and the next at −1.34 during
24.53 < t < 49.1 and the last at zero during the “dead time” 49.1 < t < 69.1). SI units are
understood.
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80. Average speed, as opposed to average velocity, relates to the total distance, as opposed to the net
displacement. The distance D up the hill is, of course, the same as the distance down the hill, and since
the speed is constant (during each stage of the motion) we have speed = D/t. Thus, the average speed
is

Dup +Ddown

tup + tdown
=

2D
D

vup
+ D

vdown

which, after canceling D and plugging in vup = 40 km/h and vdown = 60 km/h, yields 48 km/h for the
average speed.

81. During Tr the velocity v0 is constant (in the direction we choose as +x) and obeys v0 = Dr/Tr where
we note that in SI units the velocity is v0 = 200(1000/3600) = 55.6 m/s. During Tb the acceleration is
opposite to the direction of v0 (hence, for us, a < 0) until the car is stopped (v = 0).

(a) Using Eq. 2-16 (with ∆xb = 170 m) we find

v2 = v2
0 + 2a∆xb =⇒ a = − v2

0

2∆xb

which yields |a| = 9.08 m/s2.

(b) We express this as a multiple of g by setting up a ratio:

a =

(

9.08

9.8

)

9 = 0.926g .

(c) We use Eq. 2-17 to obtain the braking time:

∆xb =
1

2
(v0 + v)Tb =⇒ Tb =

2(170)

55.6
= 6.12 s .

(d) We express our result for Tb as a multiple of the reaction time Tr by setting up a ratio:

Tb =

(

6.12

400× 10−3

)

Tr = 15.3Tr .



43

(e) We are only asked what the increase in distance D is, due to ∆Tr = 0.100 s, so we simply have

∆D = v0∆Tr = (55.6)(0.100) = 5.56 m .

82. We take +x in the direction of motion. We use subscripts 1 and 2 for the data. Thus, v1 = +30 m/s,
v2 = +50 m/s and x2 − x1 = +160 m.

(a) Using these subscripts, Eq. 2-16 leads to

a =
v2
2 − v2

1

2 (x2 − x1)
=

502 − 302

2(160)
= 5.0 m/s2 .

(b) We find the time interval corresponding to the displacement x2 − x1 using Eq. 2-17:

t2 − t1 =
2 (x2 − x1)

v1 + v2
=

2(160)

30 + 50
= 4.0 s .

(c) Since the train is at rest (v0 = 0) when the clock starts, we find the value of t1 from Eq. 2-11:

v1 = v0 + at1 =⇒ t1 =
30

5.0
= 6.0 s .

(d) The coordinate origin is taken to be the location at which the train was initially at rest (so x0 = 0).
Thus, we are asked to find the value of x1 . Although any of several equations could be used, we
choose Eq. 2-17:

x1 =
1

2
(v0 + v1) t1 =

1

2
(30)(6.0) = 90 m .

(e) The graphs are shown below, with SI units assumed.
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83. Direction of +x is implicit in the problem statement. The initial position (when the clock starts) is
x0 = 0 (where v0 = 0), the end of the speeding-up motion occurs at x1 = 1100/2 = 550 m, and the
subway comes to a halt (v2 = 0) at x2 = 1100 m.

(a) Using Eq. 2-15, the subway reaches x1 at

t1 =

√

2x1

a1
=

√

2(550)

1.2
= 30.3 s .

The time interval t2 − t1 turns out to be the same value (most easily seen using Eq. 2-18 so the
total time is t2 = 2(30.3) = 60.6 s.

(b) Its maximum speed occurs at t1 and equals

v1 = v0 + a1t1 = 36.3 m/s .

(c) The graphs are not shown here, in the interest of saving space. They are very similar to those
shown in the solution for problem 79, above.
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84. We note that the running time for Bill Rodgers is ∆tR = 2(3600) + 10(60) = 7800 s. We also note that
the magnitude of the average velocity (Eq. 2-2) and Eq. 2-3 (for average speed) agree in this exercise
(which is not usually the case).

(a) Denoting the Lewis’ average velocity as vL (similarly for Rodgers), we find

vL =
100 m

10 s
= 10 m/s vR =

42000 m

7800 s
= 5.4 m/s .

(b) If Lewis continued at this rate, he would covered D = 42000 m in

∆tL =
D

vL
=

42000

10
= 4200 s

which is equivalent to 1 h and 10 min.

85. We choose down as the +y direction and use the equations of Table 2-1 (replacing x with y) with a = +g,
v0 = 0 and y0 = 0. We use subscript 2 for the elevator reaching the ground and 1 for the halfway point.

(a) Eq. 2-16, v2
2 = v2

0 + 2a(y2 − y0), leads to

v2 =
√

2gy2 =
√

2(9.8)(120) = 48.5 m/s .

(b) The time at which it strikes the ground is (using Eq. 2-15)

t2 =

√

2y2
g

=

√

2(120)

9.8
= 4.95 s .

(c) Now Eq. 2-16, in the form v2
1 = v2

0 + 2a(y1 − y0), leads to

v1 =
√

2gy1 =
√

2(9.8)(60) = 34.2 m/s .

(d) The time at which it reaches the halfway point is (using Eq. 2-15)

t1 =

√

2y1
g

=

√

2(60)

9.8
= 3.50 s .

86. To find the “launch” velocity of the rock, we apply Eq. 2-11 to the maximum height (where the speed
is momentarily zero)

v = v0 − gt =⇒ 0 = v0 − (9.8)(2.5)

so that v0 = 24.5 m/s (with +y up). Now we use Eq. 2-15 to find the height of the tower (taking y0 = 0
at the ground level)

y − y0 = v0t+
1

2
at2 =⇒ y − 0 = (24.5)(1.5)− 1

2
(9.8)(1.5)2 .

Thus, we obtain y = 26 m.

87. We take the direction of motion as +x, so a = −5.18 m/s2, and we use SI units, so v0 = 55(1000/3600) =
15.28 m/s.

(a) The velocity is constant during the reaction time T , so the distance traveled during it is dr =
v0T − (15.28)(0.75) = 11.46 m. We use Eq. 2-16 (with v = 0) to find the distance db traveled during
braking:

v2 = v2
0 + 2adb =⇒ db = − 15.282

2(−5.18)

which yields db = 22.53 m. Thus, the total distance is dr +db = 34.0 m, which means that the driver
is able to stop in time. And if the driver were to continue at v0, the car would enter the intersection
in t = (40 m)/(15.28 m/s) = 2.6 s which is (barely) enough time to enter the intersection before the
light turns, which many people would consider an acceptable situation.
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(b) In this case, the total distance to stop (found in part (a) to be 34 m) is greater than the distance to
the intersection, so the driver cannot stop without the front end of the car being a couple of meters
into the intersection. And the time to reach it at constant speed is 32/15.28 = 2.1 s, which is too
long (the light turns in 1.8 s). The driver is caught between a rock and a hard place.

88. We assume v0 = 0 and integrate the acceleration to find the velocity. In the graphs below (the first is
the acceleration, like Fig. 2-35 but with some numbers we adopted, and the second is the velocity) we
modeled the curve in the textbook with straight lines and circular arcs for the rounded corners, and
literally integrated it. The intent of the textbook was not, however, to go through such an involved
procedure, and one should be able to obtain a close approximation to the shape of the velocity graph
below (the one on the right) just by applying the idea that constant nonzero acceleration means a linearly
changing velocity.
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89. We take the direction of motion as +x, take x0 = 0 and use SI units, so v = 1600(1000/3600) = 444 m/s.

(a) Eq. 2-11 gives 444 = a(1.8) or a = 247 m/s2. We express this as a multiple of g by setting up a
ratio:

a =

(

247

9.8

)

g = 25g .

(b) Eq. 2-17 readily yields

x =
1

2
(v0 + v) t =

1

2
(444)(1.8) = 400 m .

90. The graph is shown below. We assumed each interval described in the problem was one time unit long.
A marks where the curve is steepest and B is where it is least steep (where it, in fact, has zero slope).
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91. We use the functional notation x(t), v(t) and a(t) in this solution, where the latter two quantities are
obtained by differentiation:

v(t) =
dx(t)

dt
= −12t and a(t) =

dv(t)

dt
= −12

with SI units understood.
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(a) From v(t) = 0 we find it is (momentarily) at rest at t = 0.

(b) We obtain x(0) = 4.0 m

(c) Requiring x(t) = 0 in the expression x(t) = 4.0− 6.0t2 leads to t = ±0.82 s for the times when the
particle can be found passing through the origin.

(d) We show both the asked-for graph (on the left) as well as the “shifted” graph which is relevant to
part (e). In both cases, the time axis is given by −3 ≤ t ≤ 3 (SI units understood).
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(e) We arrived at the graph on the right (shown above) by adding 20t to the x(t) expression.

(f) Examining where the slopes of the graphs become zero, it is clear that the shift causes the v = 0
point to correspond to a larger value of x (the top of the second curve shown in part (d) is higher
than that of the first).

92. (a) The slope of the graph (at a point) represents the velocity there, and the up-or-down concavity
of the curve there indicates the ± sign of the acceleration. Thus, during AB we have v > 0 and
a = 0 (since it is a straight line). During BC, we still have v > 0 but there is some curvature
and a downward concavity is indicated (so a < 0). The segment CD is horizontal, implying the
particle remains at the same position for some time; thus, v = a = 0 during CD. Clearly, the slope
is negative during DE (so v < 0) but whether or not the graph is curved is less clear; we believe it
is, with an upward concavity (a > 0).

(b) The key word is “obviously.” Since it seems plausible to us that the curved portions can be “fit”
with parabolic arcs (indications of constant acceleration by Eq. 2-15), then our answer is “no.”

(c) Neither signs of slopes nor the sign of the concavity depends on a global shift in one axis or another
(or, for that matter, on rescalings of the axes themselves) so the answer again is “no.”

93. (a) The slope of the graph (at a point) represents the velocity there, and the up-or-down concavity of
the curve there indicates the ± sign of the acceleration. Thus, during AB we have positive slope
(v > 0) and a < 0 (since it is concave downward). The segment BC is horizontal, implying the
particle remains at the same position for some time; thus, v = a = 0 during BC. During CD we
have v > 0 and a > 0 (since it is concave upward). Clearly, the slope is positive during DE (so
v > 0) but whether or not the graph is curved is less clear; we believe it is not, so a = 0.

(b) The key word is “obviously.” Since it seems plausible to us that the curved portions can be “fit”
with parabolic arcs (indications of constant acceleration by Eq. 2-15), then our answer is “no.”

(c) Neither signs of slopes nor the sign of the concavity depends on a global shift in one axis or another
(or, for that matter, on rescalings of the axes themselves) so the answer again is “no.”

94. This problem consists of two parts: part 1 with constant acceleration (so that the equations in Table 2-1
apply), v0 = 0, v = 11.0 m/s, x = 12.0 m, and x0 = 0 (adopting the starting line as the coordinate
origin); and, part 2 with constant velocity (so that x − x0 = vt applies) with v = 11.0 m/s, x0 = 12.0,
and x = 100.0 m.

(a) We obtain the time for part 1 from Eq. 2-17

x− x0 =
1

2
(v0 + v) t1 =⇒ 12.0− 0 =

1

2
(0 + 11.0)t1
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so that t1 = 2.2 s, and we find the time for part 2 simply from 88.0 = (11.0)t2 → t2 = 8.0 s.
Therefore, the total time is t1 + t2 = 10.2 s.

(b) Here, the total time is required to be 10.0 s, and we are to locate the point xp where the runner
switches from accelerating to proceeding at constant speed. The equations for parts 1 and 2, used
above, therefore become

xp − 0 =
1

2
(0 + 11.0)t1

100.0− xp = (11.0)(10.0− t1)

where in the latter equation, we use the fact that t2 = 10.0− t1. Solving the equations for the two
unknowns, we find that t1 = 1.8 s and xp = 10.0 m.

95. We take +x in the direction of motion, so v0 = +24.6 m/s and a = −4.92 m/s2. We also take x0 = 0.

(a) The time to come to a halt is found using Eq. 2-11:

0 = v0 + at =⇒ t = − 24.6

−4.92
= 5.00 s .

(b) Although several of the equations in Table 2-1 will yield the result, we choose Eq. 2-16 (since it
does not depend on our answer to part (a)).

0 = v2
0 + 2ax =⇒ x = − 24.62

2(−4.92)
= 61.5 m .

(c) Using these results, we plot v0t+ 1
2at

2 (the x graph, shown below, on the left) and v0 + at (the v
graph, below right) over 0 ≤ t ≤ 5 s, with SI units understood.
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96. We take +x in the direction of motion, so

v = (60 km/h)

(

1000 m/km

3600 s/h

)

= +16.7 m/s

and a > 0. The location where it starts from rest (v0 = 0) is taken to be x0 = 0.

(a) Eq. 2-7 gives aavg = (v − v0)/t where t = 5.4 s and the velocities are given above. Thus, aavg =
3.1 m/s2.

(b) The assumption that a = constant permits the use of Table 2-1. From that list, we choose Eq. 2-17:

x =
1

2
(v0 + v) t =

1

2
(16.7)(5.4) = 45 m .

(c) We use Eq. 2-15, now with x = 250 m:

x =
1

2
at2 =⇒ t =

√

2x

a
=

√

2(250)

3.1

which yields t = 13 s.
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97. Converting to SI units, we have v = 3400(1000/3600) = 944 m/s (presumed constant) and ∆t = 0.10 s.
Thus, ∆x = v∆t = 94 m.

98. The (ideal) driving time before the change was t = ∆x/v, and after the change it is t′ = ∆x/v′. The
time saved by the change is therefore

t− t′ = ∆x

(

1

v
− 1

v′

)

= ∆x

(

1

55
− 1

65

)

= ∆x(0.0028 h/mi)

which becomes, converting ∆x = 700/1.61 = 435 mi (using a conversion found on the inside front cover
of the textbook), t− t′ = (435)(0.0028) = 1.2 h. This is equivalent to 1 h and 13 min.

99. (a) With the understanding that these are good to three significant figures, we write the function (in
SI units) as

x(t) = −32 + 24t2e−0.03t

and find the velocity and acceleration functions by differentiating (calculus is reviewed Appendix E).
We find

v(t) = 24t(2− 0.03t)e−0.03t and a(t) = 24
(

2− 0.12t+ 0.0009t2
)

e−0.03t .

(b) The v(t) and a(t) graphs are shown below (SI units understood). The time axis in both cases runs
from t = 0 to t = 100 s. We include the x(t) graph in the next part, accompanying our discussion
of its root (which is, as suggested by the graph, a small positive value of t).
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(c) We seek to find a positive value of t for which 24t2e−0.03t = 32. We turn to the calculator or to
a computer for its (numerical) solution. In this case, we ignore the roots outside the 0 ≤ t ≤ 100
range (such as t = −1.14 s and

t = 387.77 s)
and choose
t = 1.175 s as
our answer.
All of these
are rounded-
off values.
We find
v = 53.5 m/s
and
a = 43.1 m/s2

at this time. 0
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(d) It is much easier to find when 24t(2 − 0.03t)e−0.03t = 0 since the roots are clearly t1 = 0 and
t2 = 2/0.03 = 66.7 s. We find x(t1) = −32.0 m and a(t1) = 48.0 m/s2 at the first root, and we find
x(t2) = 1.44× 104 m and a(t2) = −6.50 m/s2 at the second root.
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100. We take +x in the direction of motion, so v0 = +30 m/s, v1 = +15 m/s and a < 0. The acceleration is
found from Eq. 2-11: a = (v1 − v0)/t1 where t1 = 3.0 s. This gives a = −5.0 m/s2. The displacement
(which in this situation is the same as the distance traveled) to the point it stops (v2 = 0) is, using
Eq. 2-16,

v2
2 = v2

0 + 2a∆x =⇒ ∆x = − 302

2(−5)
= 90 m .

101. We choose the direction of motion as the positive direction. We work with the kilometer and hour units,
so we write ∆x = 0.088 km.

(a) Eq. 2-16 leads to

a =
v2 − v2

0

2∆x
=

652 − 852

2(0.088)

which yields a = −1.7× 104 km/h2.

(b) In this case, we obtain

a =
602 − 802

2(0.088)
= −1.6× 104 km/h2 .

(c) In this final situation, we find

a =
402 − 502

2(0.088)
= −5.1× 103 km/h2 .

102. Let the vertical distances between Jim’s and Clara’s feet and the jump-off level be HJ and HC , respec-
tively. At the instant this photo was taken, Clara has fallen for a time TC , while Jim has fallen for TJ .
Thus (using Eq. 2-15 with v0 = 0) we have

HJ =
1

2
gT 2

J and HC =
1

2
gT 2

C .

Measuring directly from the photo, we get HJ ≈ 3.6 m and HC ≈ 6.3 m, which yields TJ ≈ 0.86 s and
TC ≈ 1.13 s. Jim’s waiting time is therefore TC − TJ ≈ 0.3 s.

103. We choose down as the +y direction and place the coordinate origin at the top of the building (which
has height H). During its fall, the ball passes (with velocity v1 ) the top of the window (which is at
y1 ) at time t1, and passes the bottom (which is at y2 ) at time t2 . We are told y2 − y1 = 1.20 m and
t2 − t1 = 0.125 s. Using Eq. 2-15 we have

y2 − y1 = v1 (t2 − t1) +
1

2
g (t2 − t1)2

which immediately yields

v1 =
1.20− 1

2 (9.8)(0.125)2

0.125
= 8.99 m/s .

From this, Eq. 2-16 (with v0 = 0) reveals the value of y1 :

v2
1 = 2gy1 =⇒ y1 =

8.992

2(9.8)
= 4.12 m .

It reaches the ground (y3 = H) at t3 . Because of the symmetry expressed in the problem (“upward flight
is a reverse of the fall”) we know that t3− t2 = 2.00/2 = 1.00 s. And this means t3− t1 = 1.00+0.125 =
1.125 s. Now Eq. 2-15 produces

y3 − y1 = v1 (t3 − t1) +
1

2
g (t3 − t1)2

y3 − 4.12 = (8.99)(1.125) +
1

2
(9.8)(1.125)2

which yields y3 = H = 20.4 m.
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104. (a) Using the fact that the area of a triangle is 1
2 (base)(height) (and the fact that the integral corre-

sponds to area under the curve) we find, from t = 0 through t = 5 s, the integral of v with respect
to t is 15 m. Since we are told that x0 = 0 then we conclude that x = 15 m when t = 5.0 s.

(b) We see directly from the graph that v = 2.0 m/s when t = 5.0 s.

(c) Since a = dv
dt = slope of the graph, we find that the acceleration during the interval 4 < t < 6 is

uniformly equal to −2.0 m/s
2
.

(d) Thinking of x(t) in terms of accumulated area (on the graph), we note that x(1) = 1 m; using this
and the value found in part (a), Eq. 2-2 produces

vavg =
x(5)− x(1)

5− 1
=

15− 1

4
= 3.5 m/s .

(e) From Eq. 2-7 and the values v(t) we read directly from the graph, we find

aavg =
v(5)− v(1)

5− 1
=

2− 2

4
= 0.

105. (First problem of Cluster 1)
The two parts of this problem are as follows. Part 1 (motion fromA to B) consists of constant acceleration
(so Table 2-1 applies) and involves the data v0 = 0, v = 10.0 m/s, x0 = 0 and x = 40.0 m (taking point
A as the coordinate origin and orienting the positive x axis towards B and C). Part 2 (from B to C)
consists of constant velocity motion (so the simple equation ∆x

∆t = v applies) with v = 10.0 m/s and
∆t = 10.0 s.

(a) Eq. 2-16 is an efficient way of finding the part 1 acceleration:

v2 = v2
0 + 2a (x− x0) =⇒ (10.0)2 = 0 + 2a(40.0)

from which we obtain a = 1.25 m/s
2
.

(b) Using Eq. 2-17 avoids using the result from part (a) and finds the time readily.

x− x0 =
1

2
(v0 + v) t =⇒ 40.0− 0 =

1

2
(0 + 10.0)t

This leads to t = 8.00 s, for part 1.

(c) We find the distance traveled in part 2 with ∆x = v∆t = (10.0)(10.0) = 100 m.

(d) The average velocity is defined by Eq. 2-2

vavg =
xC − xA

tC − tA
=

140− 0

18− 0
= 7.78 m/s .

106. (Second problem of Cluster 1)
The two parts of this problem are as follows. Part 1 (motion fromA to B) consists of constant acceleration
(so Table 2-1 applies) and involves the data v0 = 20.0 m/s, v = 30.0 m/s, x0 = 0 and t1 = 10.0 s (taking
point A as the coordinate origin, orienting the positive x axis towards B and C, and starting the clock
when it passes point A). Part 2 (from B to C) also involves uniformly accelerated motion but now with
the data v0 = 30.0 m/s, v = 15.0 m/s, and ∆x = x− x0 = 150 m.

(a) The distance for part 1 is given by

x− x0 =
1

2
(v0 + v) t1 =

1

2
(20.0 + 30.0)(10.0)

which yields x = 250 m.



51

(b) The time t2 for part 2 is found from the same formula as in part (a).

x− x0 =
1

2
(v0 + v) t2 =⇒ 150 =

1

2
(30.0 + 15.0)t2 .

This results in t2 = 6.67 s.

(c) The definition of average velocity is given by Eq. 2-2:

vavg =
xC − xA

tC − tA
=

400− 0

16.7
= 24.0 m/s .

(d) The definition of average acceleration is given by Eq. 2-7:

aavg =
vC − vA

tC − tA
=

15.0− 20.0

16.7
= −0.30 m/s

2
.

107. (Third problem of Cluster 1)
The problem consists of two parts (A to B at constant velocity, then B to C with constant acceleration).
The constant velocity in part 1 is 20 m/s (taking the positive direction in the direction of motion) and
t1 = 5.0 s. In part 2, we have v0 = 20 m/s, v = 0, and t2 = 10 s.

(a) We find the distance in part 1 from x − x0 = vt1, so we obtain x = 100 m (taking A to be at the
origin). And the position at the end of part 2 is then found using Eq. 2-17.

x = x0 +
1

2
(v0 + v) t2 = 100 +

1

2
(20 + 0)(10) = 200 m .

(b) The acceleration in part (a) can be found using Eq. 2-11.

v = v0 + at2 =⇒ 0 = 20 + a(10) .

Thus, we find a = −2.0 m/s
2
. The negative sign indicates that the acceleration vector points

opposite to the chosen positive direction (the direction of motion), which is what we expect of a
deceleration.

108. (Fourth problem of Cluster 1)
The part 1 motion in this problem is simply that of constant velocity, so xB − x0 = v1t1 applies with
t1 = 5.00 s and x0 = xA = 0 if we choose point A as the coordinate origin. Next, the part 2 motion
consists of constant acceleration (so the equations of Table 2-1, such as Eq. 2-17, apply) with x0 = xB

(an unknown), v0 = vB (also unknown, but equal to the v1 above), xC = 300 m, vC = 10.0 m/s, and
t2 = 20.0 s. The equations describing parts 1 and 2, respectively, are therefore

xB − xA = v1t1 =⇒ xB = v1(5.00)

xC − xB =
1

2
(vB + vC) t2 =⇒ 300− xB =

1

2
(vB + 10.0) (20.0)

(a) We use the fact that vA = v1 = vB in solving this set of simultaneous equations. Adding equations,
we obtain the result v1 = 13.3 m/s.

(b) In order to find the acceleration, we use our result from part (a) as the initial velocity in Eq. 2-14
(applied to the part 2 motion):

v = v0 + at2 =⇒ 10.0 = 13.3 + a(20.0)

Thus, a = −0.167 m/s
2
.
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109. (Fifth problem of Cluster 1)
The problem consists of two parts, where part 1 (A to B) involves constant velocity motion for t1 = 5.00 s
and part 2 (B to C) involves uniformly accelerated motion. Assuming the coordinate origin is at point

A and the positive axis is directed towards B and C, then we have xC = 250 m, a2 = −0.500 m/s
2
, and

vC = 0.

(a) We set up the uniform velocity equation for part 1 (∆x = vt) and Eq. 2-16 for part 2 (v2 =
v2
0 + 2a∆x) as a simultaneous set of equations to be solved:

xB − 0 = v1(5.00)

02 = v2
B + 2(−0.500) (250− xB) .

Bearing in mind that vA = v1 = vB, we can solve the equations by, for instance, substituting the
first into the second – eliminating xB and leading to a quadratic equation for v1 :

v2
1 + 5v1 − 150 = 0 .

The positive root gives us v1 = 13.5 m/s.

(b) We obtain the duration t2 of part 2 from Eq. 2-11:

v = v0 + at2 =⇒ 0 = 13.5 + (−0.500)t2

which yields the value t2 = 27.0 s. Therefore, the total time is t1 + t2 = 32.0 s.

110. (Sixth problem of Cluster 1)
Both part 1 and part 2 of this problem involve uniformly accelerated motion, but at different rates a1

and a2. We take the coordinate origin at point A and direct the positive axis towards B and C. In these
terms, we are given xA = 0, xC = 1300 m, vA = 0, and vC = 50 m/s. Further, the time-duration for
each part is given: t1 = 20 s and t2 = 40 s.

(a) We have enough information to apply Eq. 2-17 (∆x = 1
2 (v0 + v)t) to parts 1 and 2 and solve the

simultaneous set:

xB − xA =
1

2
(vA + vB) t1 =⇒ xB =

1

2
vB (20)

xC − xB =
1

2
(vB + vC) t2 =⇒ 1300− xB =

1

2
(vB + 50) (40)

Adding equations, we find vB = 10 m/s.

(b) The other unknown in the above set of equations is now easily found by plugging the result for vB

back in: xB = 100 m.

(c) We can find a1 a variety of ways, using the just-obtained results. We note that Eq. 2-11 is especially
easy to use.

v = v0 + a1t1 =⇒ 10 = 0 + a1(20)

This leads to a1 = 0.50 m/s
2
.

(d) To find a2 we proceed as just as we did in part (c), so that Eq. 2-11 for part 2 becomes 50 =

10 + a2(40). Therefore, the acceleration is a2 = 1.0 m/s2.



Chapter 3

1. The vectors should be parallel to achieve a resultant 7 m long (the unprimed case shown below), antipar-
allel (in opposite directions) to achieve a resultant 1 m long (primed case shown), and perpendicular to
achieve a resultant

√
32 + 42 = 5 m long (the double-primed case shown). In each sketch, the vectors

are shown in a “head-to-tail” sketch but the resultant is not shown. The resultant would be a straight
line drawn from beginning to end; the beginning is indicated by A (with or without primes, as the case
may be) and the end is indicated by B.

b
A

- b -
B

bA
′

- b�
B′

bA
′′

- b

6B′′

2. A sketch of the displace-
ments is shown. The re-
sultant (not shown) would
be a straight line from
start (Bank) to finish
(Walpole). With a careful
drawing, one should find
that the resultant vector
has length 29.5 km at 35◦

west of south.

West East

South

Bank

@
@

@
@

@
@

@
@

@@RHHHHHHHHHHHHHHHYB
B
B
B
B
B
BN

Walpole

3. The x component of ~a is given by ax = 7.3 cos 250◦ = −2.5 and the y component is given by ay =
7.3 sin250◦ = −6.9. In considering the variety of ways to compute these, we note that the vector is
70◦ below the −x axis, so the components could also have been found from ax = −7.3 cos 70◦ and
ay = −7.3 sin 70◦. In a similar vein, we note that the vector is 20◦ from the −y axis, so one could use
ax = −7.3 sin20◦ and ay = −7.3 cos20◦ to achieve the same results.

53
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4. The angle described by a full circle is 360◦ = 2π rad, which is the basis of our conversion factor. Thus,

(20.0◦)
2π rad

360◦
= 0.349 rad

and (similarly) 50.0◦ = 0.873 rad and 100◦ = 1.75 rad. Also,

(0.330 rad)
360◦

2π rad
= 18.9◦

and (similarly) 2.10 rad = 120◦ and 7.70 rad = 441◦.

5. The textbook’s approach to this sort of problem is through the use of Eq. 3-6, and is illustrated in Sample
Problem 3-3. However, most modern graphical calculators can produce the results quite efficiently using
rectangular ↔ polar “shortcuts.”

(a)
√

(−25)2 + 402 = 47.2 m

(b) Recalling that tan (θ) = tan (θ + 180◦), we note that the two possibilities for tan−1 (40/− 25)
are −58◦ and 122◦. Noting that the vector is in the third quadrant (by the signs of its x and y
components) we see that 122◦ is the correct answer. The graphical calculator “shortcuts” mentioned
above are designed to correctly choose the right possibility.

6. The x component of ~r is given by 15 cos 30◦ = 13 m and the y component is given by 15 sin30◦ = 7.5 m.

7. The point P is displaced vertically by 2R, where R is the radius of the wheel. It is displaced horizontally
by half the circumference of the wheel, or πR. Since R = 0.450 m, the horizontal component of the
displacement is 1.414 m and the vertical component of the displacement is 0.900 m. If the x axis is
horizontal and the y axis is vertical, the vector displacement (in meters) is ~r = (1.414 ı̂ + 0.900 ĵ). The
displacement has a magnitude of

|~r| =
√

(πR)2 + (2R)2 = R
√

π2 + 4 = 1.68 m

and an angle of

tan−1

(

2R

πR

)

= tan−1

(

2

π

)

= 32.5◦

above the floor. In physics there are no “exact” measurements, yet that angle computation seemed to
yield something exact. However, there has to be some uncertainty in the observation that the wheel
rolled half of a revolution, which introduces some indefiniteness in our result.

8. Although we think of this as a three-dimensional movement, it is rendered effectively two-dimensional
by referring measurements to its well-defined plane of the fault.

(a) The magnitude of the net displacement is

| ~AB| =
√

|AD|2 + |AC|2 =
√

172 + 222 = 27.8 m .

(b) The magnitude of the vertical component of ~AB is |AD| sin 52.0◦ = 13.4 m.

9. The length unit meter is understood throughout the calculation.

(a) We compute the distance from one corner to the diametrically opposite corner: d =
√

3.002 + 3.702 + 4.302 =
6.42.
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~d

ℓ

w

h

L

(b) The displacement vector is along the straight line from the beginning to the end point of the trip.
Since a straight line is the shortest distance between two points, the length of the path cannot be
less than the magnitude of the displacement.

(c) It can be greater, however. The fly might, for example, crawl along the edges of the room. Its
displacement would be the same but the path length would be ℓ+ w + h.

(d) The path length is the same as the magnitude of the displacement if the fly flies along the displace-
ment vector.

(e) We take the x axis to be out of the page, the y axis to be to the right, and the z axis to be upward.
Then the x component of the displacement is w = 3.70, the y component of the displacement is
4.30, and the z component is 3.00. Thus ~d = 3.70 ı̂ + 4.30 ĵ + 3.00 k̂. An equally correct answer is

gotten by interchanging the length, width, and height.
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ℓ

w

h

(f) Suppose the path of the fly is as shown by the dotted lines on the upper diagram. Pretend there
is a hinge where the front wall of the room joins the floor and lay the wall down as shown on the
lower diagram. The shortest walking distance between the lower left back of the room and the
upper right front corner is the dotted straight line shown on the diagram. Its length is

Lmin =
√

(w + h)2 + ℓ2 =
√

(3.70 + 3.00)2 + 4.302 = 7.96 m .

10. We label the displacement vectors ~A, ~B and ~C (and denote the result



56 CHAPTER 3.

of their vector sum as ~r). We
choose east as the ı̂ direction (+x
direction) and north as the ĵ di-
rection (+y direction). All dis-
tances are understood to be in
kilometers. We note that the an-
gle between ~C and the x axis is
60◦. Thus,

-� 6

?
eastwest

north

south

e
~A - e

6~B

e

~C

�
�
�
�
�
���

~A = 50 ı̂
~B = 30 ĵ

~C = 25 cos (60◦) ı̂ + 25 sin (60◦) ĵ

~r = ~A+ ~B + ~C = 62.50 ı̂ + 51.65 ĵ

which means

that its magnitude is

|~r| =
√

62.502 + 51.652 ≈ 81 km .

and its angle (counterclockwise from +x axis) is tan−1 (51.65/62.50) ≈ 40◦, which is to say that it points
40◦ north of east. Although the resultant ~r is shown in our sketch, it would be a direct line from the
“tail” of ~A to the “head” of ~C.

11. The diagram shows the displacement vectors for the two segments of her walk, labeled ~A and ~B, and
the total (“final”) displacement vector, labeled ~r. We take east to be the +x direction and north to be

the +y direction. We observe that the angle between ~A and the x axis is 60◦. Where the units are not
explicitly shown, the distances are understood

to be in meters. Thus, the components
of ~A are Ax = 250 cos60◦ = 125 and
Ay = 250 sin30◦ = 216.5. The compo-

nents of ~B are Bx = 175 and By = 0.
The components of the total displace-
ment are rx = Ax + Bx = 125 + 175 =
300 and ry = Ay + By = 216.5 + 0 =
216.5. .
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.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

......................
North

East

~A

~B

~r

(a) The magnitude of the resultant displacement is

|~r| =
√

r2x + r2y =
√

3002 + 216.52 = 370 m .

(b) The angle the resultant displacement makes with the +x axis is

tan−1

(

ry
rx

)

= tan−1

(

216.5

300

)

= 36◦ .

(c) The total distance walked is d = 250 + 175 = 425 m.

(d) The total distance walked is greater than the magnitude of the resultant displacement. The diagram

shows why: ~A and ~B are not collinear.

12. We label the displacement vectors ~A, ~B and ~C (and denote the result
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of their vector sum as ~r). We
choose east as the ı̂ direction (+x
direction) and north as the ĵ di-
rection (+y direction). All dis-
tances are understood to be in
kilometers. Therefore,

-� 6

?
eastwest

north

south

e

~A

6
e�

~B

e

~C

?
~A = 3.1 ĵ

~B = −2.4 ı̂
~C = −5.2 ĵ

~r = ~A+ ~B + ~C = −2.1 ı̂− 2.4 ĵ

which means

that its magnitude is
|~r| =

√

(−2.1)2 + (−2.4)2 ≈ 3.2 km .

and the two possibilities for its angle are

tan−1

(−2.4

−2.1

)

= 41◦, or 221◦ .

We choose the latter possibility since ~r is in the third quadrant. It should be noted that many graphical
calculators have polar↔ rectangular “shortcuts” that automatically produce the correct answer for angle
(measured counterclockwise from the +x axis). We may phrase the angle, then, as 221◦ counterclockwise
from East (a phrasing that sounds peculiar, at best) or as 41◦ south from west or 49◦ west from south.

The resultant ~r is not shown in our sketch; it would be an arrow directed from the “tail” of ~A to the
“head” of ~C.

13. We write ~r = ~a + ~b. When not explicitly displayed, the units here are assumed to be meters. Then
rx = ax + bx = 4.0− 13 = −9.0 and ry = ay + by = 3.0 + 7.0 = 10. Thus ~r = (−9.0 m) ı̂ + (10 m) ĵ . The
magnitude of the resultant is

r =
√

r2x + r2y =
√

(−9.0)2 + (10)2 = 13 m .

The angle between the resultant and the +x axis is given by tan−1 (ry/rx) = tan−1 10/(−9.0) which is
either −48◦ or 132◦. Since the x component of the resultant is negative and the y component is positive,
characteristic of the second quadrant, we find the angle is 132◦ (measured counterclockwise from +x
axis).

14. The x, y and z components (with meters understood) of ~r are

rx = cx + dx = 7.4 + 4.4 = 12

ry = cy + dy = −3.8− 2.0 = −5.8

rz = cz + dz = −6.1 + 3.3 = −2.8 .

15. The vectors are shown on the diagram. The x axis runs from west

to east and the y axis run
from south to north. Then
ax = 5.0 m, ay = 0, bx =
−(4.0 m) sin35◦ = −2.29 m,
and by = (4.0 m) cos 35◦ =
3.28 m.
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58 CHAPTER 3.

(a) Let ~c = ~a+~b. Then cx = ax + bx = 5.0 m−2.29 m = 2.71 m and cy = ay + by = 0+3.28 m = 3.28 m.
The magnitude of c is

c =
√

c2x + c2y =
√

(2.71 m)2 + (3.28 m)2 = 4.3 m .

(b) The angle θ that ~c = ~a+~b makes with the +x axis is

θ = tan−1 cy
cx

= tan−1 3.28 m

2.71 m
= 50.4◦ .

The second possibility (θ = 50.4◦ + 180◦ = 126◦) is rejected because it would point in a direction
opposite to ~c.

(c) The vector ~b− ~a is found by adding −~a to ~b. The result is shown

on the diagram to the
right. Let ~c = ~b −
~a. Then cx = bx −
ax = −2.29 m − 5.0 m =
−7.29 m and cy = by −
ay = 3.28 m. The magni-

tude of ~c is c =
√

c2x + c2y
= 8.0 m .

..................................................................................................................................................................................................................................................................................................................
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−~a

~b −~a +~b

W

N

(d) The tangent of the angle θ that ~c makes with the +x axis (east) is

tan θ =
cy
cx

=
3.28 m

−7.29 m
= −4.50, .

There are two solutions: −24.2◦ and 155.8◦. As the diagram shows, the second solution is correct.
The vector ~c = −~a+~b is 24◦ north of west.

16. All distances in this solution are understood to be in meters.

(a) ~a+~b = (3.0 ı̂ + 4.0 ĵ) + (5.0 ı̂− 2.0 ĵ) = 8.0 ı̂ + 2.0 ĵ .

(b) The magnitude of ~a+~b is

|~a+~b| =
√

8.02 + 2.02 = 8.2 m .

(c) The angle between this vector and the +x axis is tan−1(2.0/8.0) = 14◦.

(d) ~b− ~a = (5.0 ı̂− 2.0 ĵ)− (3.0 ı̂ + 4.0 ĵ) = 2.0 ı̂− 6.0 ĵ .

(e) The magnitude of the difference vector ~b− ~a is

|~b− ~a| =
√

2.02 + (−6.0)2 = 6.3 m .

(f) The angle between this vector and the +x axis is tan−1(−6.0/2.0) = −72◦. The vector is 72◦

clockwise from the axis defined by ı̂.

17. All distances in this solution are understood to be in meters.

(a) ~a+~b = (4.0 + (−1.0)) ı̂ + ((−3.0) + 1.0) ĵ + (1.0 + 4.0) k̂ = 3.0 ı̂− 2.0 ĵ + 5.0 k̂ .

(b) ~a−~b = (4.0− (−1.0)) ı̂ + ((−3.0)− 1.0) ĵ + (1.0− 4.0) k̂ = 5.0 ı̂− 4.0 ĵ− 3.0 k̂ .

(c) The requirement ~a−~b+ ~c = 0 leads to ~c = ~b − ~a, which we note is the opposite of what we found

in part (b). Thus, ~c = −5.0 ı̂ + 4.0 ĵ + 3.0 k̂ .
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18. Many of the operations are done efficiently on most modern graphical calculators using their built-in
vector manipulation and rectangular↔ polar “shortcuts.” In this solution, we employ the “traditional”
methods (such as Eq. 3-6).

(a) The magnitude of ~a is
√

42 + (−3)2 = 5.0 m.

(b) The angle between ~a and the +x axis is tan−1(−3/4) = −37◦. The vector is 37◦ clockwise from the
axis defined by ı̂ .

(c) The magnitude of ~b is
√

62 + 82 = 10 m.

(d) The angle between ~b and the +x axis is tan−1(8/6) = 53◦.

(e) ~a+~b = (4 + 6) ı̂ + ((−3) + 8) ĵ = 10 ı̂ + 5 ĵ , with the unit meter understood. The magnitude of this
vector is

√
102 + 52 = 11 m; we rounding to two significant figures in our results.

(f) The angle between the vector described in part (e) and the +x axis is tan−1(5/10) = 27◦.

(g) ~b−~a = (6− 4) ı̂ + (8− (−3)) ĵ = 2 ı̂ + 11 ĵ , with the unit meter understood. The magnitude of this
vector is

√
22 + 112 = 11 m, which is, interestingly, the same result as in part (e) (exactly, not just

to 2 significant figures) (this curious coincidence is made possible by the fact that ~a ⊥ ~b).
(h) The angle between the vector described in part (g) and the +x axis is tan−1(11/2) = 80◦.

(i) ~a −~b = (4 − 6) ı̂ + ((−3) − 8) ĵ = −2 ı̂− 11 ĵ , with the unit meter understood. The magnitude of
this vector is

√

(−2)2 + (−11)2 = 11 m.

(j) The two possibilities presented by a simple calculation for the angle between the vector described in
part (i) and the +x direction are tan−1(11/2) = 80◦, and 180◦ + 80◦ = 260◦. The latter possibility
is the correct answer (see part (k) for a further observation related to this result).

(k) Since ~a−~b = (−1)(~b− ~a), they point in opposite (antiparallel) directions; the angle between them
is 180◦.

19. Many of the operations are done efficiently on most modern graphical calculators using their built-in
vector manipulation and rectangular↔ polar “shortcuts.” In this solution, we employ the “traditional”
methods (such as Eq. 3-6). Where the length unit is not displayed, the unit meter should be understood.

(a) Using unit-vector notation,

~a = 50 cos (30◦) ı̂ + 50 sin (30◦) ĵ

~b = 50 cos (195◦) ı̂ + 50 sin (195◦) ĵ

~c = 50 cos (315◦) ı̂ + 50 sin (315◦) ĵ

~a+~b+ ~c = 30.4 ı̂− 23.3 ĵ .

The magnitude of this result is
√

30.42 + (−23.3)2 = 38 m.

(b) The two possibilities presented by a simple calculation for the angle between the vector described
in part (a) and the +x direction are tan−1(−23.2/30.4) = −37.5◦, and 180◦ + (−37.5◦) = 142.5◦.
The former possibility is the correct answer since the vector is in the fourth quadrant (indicated
by the signs of its components). Thus, the angle is −37.5◦, which is to say that it is roughly 38◦

clockwise from the +x axis. This is equivalent to 322.5◦ counterclockwise from +x.

(c) We find ~a−~b+~c = (43.3− (−48.3)+35.4) ı̂− (25− (−12.9)+(−35.4)) ĵ = 127 ı̂+2.6 ĵ in unit-vector
notation. The magnitude of this result is

√
1272 + 2.62 ≈ 1.3× 102 m.

(d) The angle between the vector described in part (c) and the +x axis is tan−1(2.6/127) ≈ 1◦.

(e) Using unit-vector notation, ~d is given by

~d = ~a+~b− ~c
= −40.4 ı̂ + 47.4 ĵ

which has a magnitude of
√

(−40.4)2 + 47.42 = 62 m.
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(f) The two possibilities presented by a simple calculation for the angle between the vector described
in part (e) and the +x axis are tan−1(47.4/(−40.4)) = −50◦, and 180◦+(−50◦) = 130◦. We choose

the latter possibility as the correct one since it indicates that ~d is in the second quadrant (indicated
by the signs of its components).

20. Angles are given in ‘standard’ fashion, so Eq. 3-5 applies directly. We use this to write the vectors in
unit-vector notation before adding them. However, a very different-looking approach using the special
capabilities of most graphical calculators can be imagined. Where the length unit is not displayed in the
solution below, the unit meter should be understood.

(a) Allowing for the different angle units used in the problem statement, we arrive at

~E = 3.73 ı̂ + 4.70 ĵ
~F = 1.29 ı̂− 4.83 ĵ

~G = 1.45 ı̂ + 3.73 ĵ
~H = −5.20 ı̂ + 3.00 ĵ

~E + ~F + ~G+ ~H = 1.28 ı̂ + 6.60 ĵ .

(b) The magnitude of the vector sum found in part (a) is
√

1.282 + 6.602 = 6.72 m. Its angle measured
counterclockwise from the +x axis is tan−1(6.6/1.28) = 79◦ = 1.38 rad.

21. It should be mentioned that an efficient way to work this vector addition problem is with the cosine
law for general triangles (and since ~a, ~b and ~r form an isosceles triangle, the angles are easy to figure).
However, in the interest of reinforcing the usual systematic approach to vector addition, we note that
the angle ~b makes with the +x axis is 135◦ and apply Eq. 3-5 and Eq. 3-6 where appropriate.

(a) The x component of ~r is 10 cos 30◦ + 10 cos 135◦ = 1.59 m.

(b) The y component of ~r is 10 sin 30◦ + 10 sin 135◦ = 12.1 m.

(c) The magnitude of ~r is
√

1.592 + 12.12 = 12.2 m.

(d) The angle between ~r and the +x direction is tan−1 (12.1/1.59) = 82.5◦.

22. If we wish to use Eq. 3-5 in an unmodified fashion, we should note that the angle between ~C and the
+x axis is 180◦ + 20◦ = 200◦.

(a) The x component of ~B is given by Cx − Ax = 15 cos 200◦ − 12 cos 40◦ = −23.3 m, and the y

component of ~B is given by Cy − Ay = 15 sin200◦ − 12 sin40◦ = −12.8 m. Consequently, its

magnitude is
√

(−23.3)2 + (−12.8)2 = 26.6 m.

(b) The two possibilities presented by a simple calculation for the angle between ~B and the +x axis
are tan−1((−12.8)/(−23.3)) = 28.9◦, and 180◦ + 28.9◦ = 209◦. We choose the latter possibility

as the correct one since it indicates that ~B is in the third quadrant (indicated by the signs of its
components). We note, too, that the answer can be equivalently stated as −151◦.

23. We consider ~A with (x, y) components given by (A cosα,A sinα). Similarly, ~B → (B cosβ,B sinβ). The
angle (measured from the +x direction) for their vector sum must have a slope given by

tan θ =
A sinα+B sinβ

A cosα+B cosβ
.

The problem requires that we now consider the orthogonal direction, where tan θ + 90◦ = − cot θ. If this
(the negative reciprocal of the above expression) is to equal the slope for their vector difference, then we
must have

−A cosα+B cosβ

A sinα+B sinβ
=
A sinα−B sinβ

A cosα−B cosβ
.
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Multiplying both sides by A sinα+B sinβ and doing the same with A cosα−B cosβ yields

A2 cos2 α−B2 cos2 β = A2 sin2 α−B2 sin2 β .

Rearranging, using the cos2 φ+ sin2 φ = 1 identity, we obtain

A2 = B2 =⇒ A = B .

In a later section, the scalar (dot) product of vectors is presented and this result can be revisited with
a more compact derivation.

24. If we wish to use Eq. 3-5 directly, we should note that the angles for ~Q,~R and ~S are 100◦, 250◦ and 310◦,
respectively, if they are measured counterclockwise from the +x axis.

(a) Using unit-vector notation, with the unit meter understood, we have

~P = 10 cos (25◦) ı̂ + 10 sin (25◦) ĵ

~Q = 12 cos (100◦) ı̂ + 12 sin (100◦) ĵ

~R = 8 cos (250◦) ı̂ + 8 sin (250◦) ĵ

~S = 9 cos (310◦) ı̂ + 9 sin (310◦) ĵ

~P + ~Q+ ~R+ ~S = 10.0 ı̂ + 1.6 ĵ

(b) The magnitude of the vector sum is
√

102 + 1.62 = 10.2 m and its angle is tan−1 (1.6/10) ≈ 9.2◦

measured counterclockwise from the +x axis. The appearance of this solution would be quite
different using the vector manipulation capabilities of most modern graphical calculators, although
the principle would be basically the same.

25. Without loss of generality, we assume ~a points along the +x axis, and that ~b is at θ measured counter-
clockwise from ~a. We wish to verify that

r2 = a2 + b2 + 2ab cosθ

where a = |~a| = ax (we’ll call it a for simplicity) and b = |~b| =
√

b2x + b2y. Since ~r = ~a + ~b then

r = |~r| =
√

(a+ bx)2 + b2y. Thus, the above expression becomes

(√

(a+ bx)2 + b2y

)2

= a2 +
(√

b2x + b2y

)2

+ 2ab cos θ

a2 + 2abx + b2x + b2y = a2 + b2x + b2y + 2ab cosθ

which makes a valid equality since (the last term) 2ab cos θ is indeed the same as 2abx (on the left-hand
side). In a later section, the scalar (dot) product of vectors is presented and this result can be revisited
with a somewhat different-looking derivation.

26. The vector equation is ~R = ~A + ~B + ~C + ~D. Expressing ~B and ~D in unit-vector notation, we have
1.69 ı̂ + 3.63 ĵ and −2.87 ı̂ + 4.10 ĵ, respectively. Where the length unit is not displayed in the solution
below, the unit meter should be understood.

(a) Adding corresponding components, we obtain ~R = −3.18 ı̂ + 4.72 ĵ.

(b) and (c) Converting this result to polar coordinates (using Eq. 3-6 or functions on a vector-capable
calculator), we obtain

(−3.18, 4.72) −→ (5.69 6 124◦)

which tells us the magnitude is 5.69 m and the angle (measured counterclockwise from +x axis) is
124◦.
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27. (a) There are 4 such lines, one from each of the corners on the lower face to the diametrically opposite
corner on the upper face. One is shown on the diagram. Using an xyz coordinate system as shown
(with the origin at the back lower left corner) The position vector of the “starting point” of the

diagonal shown is a ı̂ and the position vector of the ending point is a ĵ + a k̂, so the vector along
the line is the difference a ĵ + a k̂− a ı̂.

The point diametrically opposite
the origin has position vector
a ı̂ + a ĵ + a k̂ and this is the vec-
tor along the diagonal. Another
corner of the bottom face is at
a ı̂+a ĵ and the diametrically op-
posite corner is at a k̂, so another
cube diagonal is a k̂ − a ı̂ − a ĵ.
The fourth diagonal runs from a ĵ
to a ı̂ + a k̂, so the vector along
the diagonal is a ı̂ + a k̂− a ĵ.
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z

(b) Consider the vector from the back lower left corner to the front upper right corner. It is a ı̂ +

a ĵ + a k̂. We may think of it as the sum of the vector a ı̂ parallel to the x axis and the vector
a ĵ + a k̂ perpendicular to the x axis. The tangent of the angle between the vector and the x axis
is the perpendicular component divided by the parallel component. Since the magnitude of the
perpendicular component is

√
a2 + a2 = a

√
2 and the magnitude of the parallel component is a,

tan θ =
(

a
√

2
)

/a =
√

2. Thus θ = 54.7◦. The angle between the vector and each of the other two
adjacent sides (the y and z axes) is the same as is the angle between any of the other diagonal
vectors and any of the cube sides adjacent to them.

(c) The length of any of the diagonals is given by
√
a2 + a2 + a2 = a

√
3.

28. Reference to Figure 3-18 (and the accompanying material in that section) is helpful. If we convert ~B to the

magnitude-angle notation (as ~A already is) we have ~B = (14.4 6 33.7◦) (appropriate notation especially
if we are using a vector capable calculator in polar mode). Where the length unit is not displayed in the
solution, the unit meter should be understood. In the magnitude-angle notation, rotating the axis by
+20◦ amounts to subtracting that angle from the angles previously specified. Thus, ~A = (12.0 6 40.0◦)′

and ~B = (14.4 6 13.7◦)′, where the ‘prime’ notation indicates that the description is in terms of the new
coordinates. Converting these results to (x, y) representations, we obtain

~A = 9.19 ı̂′ + 7.71 ĵ
′

~B = 14.0 ı̂′ + 3.41 ĵ
′

with the unit meter understood, as already mentioned.

29. We apply Eq. 3-20 and Eq. 3-27.

(a) The scalar (dot) product of the two vectors is ~a ·~b = ab cosφ = (10)(6.0) cos 60◦ = 30.

(b) The magnitude of the vector (cross) product of the two vectors is |~a×~b| = ab sinφ = (10)(6.0) sin 60◦ =
52.

30. We consider all possible products and then simplify using relations such as ı̂ · k̂ = 0 and ı̂ · ı̂ = 1. Thus,

~a ·~b =
(

ax ı̂ + ay ĵ + az k̂
)

·
(

bx ı̂ + by ĵ + bz k̂
)

= axbx ı̂ · ı̂ + axby ı̂ · ĵ + axbz ı̂ · k̂ + aybx ĵ · ı̂ + aybj ĵ · ĵ + · · ·
= axbx(1) + axby(0) + axbz(0) + aybx(0) + aybj(1) + · · ·
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which is seen to reduce to the desired result (one might wish to show this in two dimensions before
tackling the additional tedium of working with these three-component vectors).

31. Since ab cosφ = axbx + ayby + azbz,

cosφ =
axbx + ayby + azbz

ab
.

The magnitudes of the vectors given in the problem are

a = |~a| =
√

(3.0)2 + (3.0)2 + (3.0)2 = 5.2

b = |~b| =
√

(2.0)2 + (1.0)2 + (3.0)2 = 3.7 .

The angle between them is found from

cosφ =
(3.0)(2.0) + (3.0)(1.0) + (3.0)(3.0)

(5.2)(3.7)
= 0.926 .

The angle is φ = 22◦.

32. We consider all possible products and then simplify using relations such as ı̂× ı̂ = 0 and the important
fundamental products

ı̂× ĵ = − ĵ× ı̂ = k̂

ĵ× k̂ = − k̂× ĵ = ı̂

k̂× ı̂ = − ı̂× k̂ = ĵ .

Thus,

~a×~b =
(

ax ı̂ + ay ĵ + az k̂
)

×
(

bx ı̂ + by ĵ + bz k̂
)

= axbx ı̂× ı̂ + axby ı̂× ĵ + axbz ı̂× k̂ + aybx ĵ× ı̂ + aybj ĵ× ĵ + · · ·
= axbx(0) + axby( k̂) + axbz(− ĵ) + aybx(− k̂) + aybj(0) + · · ·

which is seen to simplify to the desired result.

33. The area of a triangle is half the product of its base and altitude. The base is the side formed by vector
~a. Then the altitude is b sinφ and the area is A = 1

2ab sinφ = 1
2 |~a×~b|.

34. Applying Eq. 3-23, ~F = q~v × ~B (where q is a scalar) becomes

Fx ı̂ + Fy ĵ + Fz k̂ = q (vyBz − vzBy) ı̂ + q (vzBx − vxBz) ĵ + q (vxBy − vyBx) k̂

which – plugging in values – leads to three equalities:

4.0 = 2 (4.0Bz − 6.0By)

−20 = 2 (6.0Bx − 2.0Bz)

12 = 2 (2.0By − 4.0Bx)

Since we are told that Bx = By , the third equation leads to By = −3.0. Inserting this value into the
first equation, we find Bz = −4.0. Thus, our answer is

~B = −3.0 ı̂− 3.0 ĵ− 4.0 k̂ .

35. Both proofs shown below utilize the fact that the vector (cross) product of ~a and ~b is perpendicular to

both ~a and ~b. This is mentioned in the book, and is fundamental to its discussion of the right-hand rule.
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(a) (~b × ~a) is a vector that is perpendicular to ~a, so the scalar product of ~a with this vector is zero.
This can also be verified by using Eq. 3-30, and then (with suitable notation changes) Eq. 3-23.

(b) Let ~c = ~b×~a. Then the magnitude of ~c is c = ab sinφ. Since ~c is perpendicular to ~a the magnitude

of ~a×~c is ac. The magnitude of ~a× (~b×~a) is consequently |~a× (~b×~a)| = ac = a2b sinφ. This too
can be verified by repeated application of Eq. 3-30, although it must be admitted that this is much
less intimidating if one is using a math software package such as MAPLE or Mathematica.

36. If a vector capable calculator is used, this makes a good exercise for getting familiar with those features.
Here we briefly sketch the method. Eq. 3-30 leads to

2 ~A× ~B = 2
(

2 ı̂ + 3 ĵ− 4 k̂
)

×
(

−3 ı̂ + 4 ĵ + 2 k̂
)

= 44 ı̂ + 16 ĵ + 34 k̂ .

We now apply Eq. 3-23 to evaluate 3~C ·
(

2 ~A× ~B
)

:

3
(

7 ı̂− 8 ĵ
)

·
(

44 ı̂ + 16 ĵ + 34 k̂
)

= 3 ((7)(44) + (−8)(16) + (0)(34)) = 540 .

37. From the figure, we note that ~c ⊥ ~b, which implies that the angle between ~c and the +x axis is 120◦.

(a) Direct application of Eq. 3-5 yields the answers for this and the next few parts. ax = a cos 0◦ =
a = 3.00 m.

(b) ay = a sin 0◦ = 0.

(c) bx = b cos 30◦ = (4.00 m) cos 30◦ = 3.46 m.

(d) by = b sin 30◦ = (4.00 m) sin30◦ = 2.00 m.

(e) cx = c cos 120◦ = (10.0 m) cos 120◦ = −5.00 m.

(f) cy = c sin 30◦ = (10.0 m) sin 120◦ = 8.66 m.

(g) In terms of components (first x and then y), we must have

−5.00 m = p(3.00 m) + q(3.46 m)

8.66 m = p(0) + q(2.00 m) .

Solving these equations, we find p = −6.67

(h) and q = 4.33 (note that it’s easiest to solve for q first). The numbers p and q have no units.

38. We apply Eq. 3-20 with Eq. 3-23. Where the length unit is not displayed, the unit meter is understood.

(a) We first note that a = |~a| =
√

3.22 + 1.62 = 3.58 m and b = |~b| =
√

0.52 + 4.52 = 4.53 m. Now,

~a ·~b = axbx + ayby = ab cosφ

(3.2)(0.5) + (1.6)(4.5) = (3.58)(4.53) cosφ

which leads to φ = 57◦ (the inverse cosine is double-valued as is the inverse tangent, but we know
this is the right solution since both vectors are in the same quadrant).

(b) Since the angle (measured from +x) for ~a is tan−1 (1.6/3.2) = 26.6◦, we know the angle for ~c
is 26.6◦ − 90◦ = −63.4◦ (the other possibility, 26.6◦ + 90◦ would lead to a cx < 0). Therefore,
cx = c cos−63.4◦ = (5.0)(0.45) = 2.2 m.

(c) Also, cy = c sin−63.4◦ = (5.0)(−0.89) = −4.5 m.

(d) And we know the angle for ~d to be 26.6◦ + 90◦ = 116.6◦, which leads to dx = d cos 116.6◦ =
(5.0)(−0.45) = −2.2 m.

(e) Finally, dy = d sin 116.6◦ = (5.0)(0.89) = 4.5 m.
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39. The solution to problem 27 showed that each diagonal has a length given by a
√

3, where a is the length
of a cube edge. Vectors along two diagonals are ~b = a ı̂ + a ĵ + a k̂ and ~c = −a ı̂ + a ĵ + a k̂. Using
Eq. 3-20 with Eq. 3-23, we find the angle between them:

cosφ =
bxcx + bycy + bzcz

bc
=
−a2 + a2 + a2

3a2
=

1

3
.

The angle is φ = cos−1(1/3) = 70.5◦.

40. (a) The vector equation ~r = ~a−~b−~v is computed as follows: (5.0− (−2.0)+4.0)̂ı+ (4.0− 2.0+3.0)̂j+

((−6.0)− 3.0 + 2.0)k̂. This leads to ~r = 11 ı̂ + 5.0 ĵ− 7.0 k̂.

(b) We find the angle from +z by “dotting” (taking the scalar product) ~r with k̂. Noting that r =
|~r| =

√

112 + 52 + (−7)2 = 14, Eq. 3-20 with Eq. 3-23 leads to

~r · k̂ = −7.0 = (14)(1) cosφ =⇒ φ = 120◦ .

(c) To find the component of a vector in a certain direction, it is efficient to “dot” it (take the scalar
product of it) with a unit-vector in that direction. In this case, we make the desired unit-vector by

b̂ =
~b

|~b|
=
−2 ı̂ + 2 ĵ + 3 k̂
√

(−2)2 + 22 + 32
.

We therefore obtain

ab = ~a · b̂ =
(5)(−2) + (4)(2) + (−6)(3)

√

(−2)2 + 22 + 32
= −4.9 .

(d) One approach (if we all we require is the magnitude) is to use the vector cross product, as the
problem suggests; another (which supplies more information) is to subtract the result in part (c)

(multiplied by b̂) from ~a. We briefly illustrate both methods. We note that if a cos θ (where θ is

the angle between ~a and ~b) gives ab (the component along b̂) then we expect a sin θ to yield the
orthogonal component:

a sin θ =
|~a×~b|
b

= 7.3

(alternatively, one might compute θ form part (c) and proceed more directly). The second method
proceeds as follows:

~a− ab b̂ = (5.0− 2.35)̂ı + (4.0− (−2.35))̂j + ((−6.0)− (−3.53))k̂

= 2.65 ı̂ + 6.35 ĵ− 2.47 k̂

This describes the perpendicular part of ~a completely. To find the magnitude of this part, we
compute

√

2.652 + 6.352 + (−2.47)2 = 7.3

which agrees with the first method.

41. The volume of a parallelepiped is equal to the product of its altitude and the area of its base. Take the
base to be the parallelogram formed by the vectors ~b and ~c. Its area is bc sinφ, where φ is the angle
between ~b and ~c. This is just the magnitude of the vector (cross) product ~b × ~c. The altitude of the

parallelepiped is a cos θ, where θ is the angle between ~a and the normal to the plane of ~b and ~c. Since
~b×~c is normal to that plane, θ is the angle between ~a and ~b×~c. Thus, the volume of the parallelepiped
is V = a|~b× ~c| cos θ = ~a · (~b × ~c).

42. We apply Eq. 3-30 and Eq. 3-23.

(a) ~a×~b = (axby − aybx) k̂ since all other terms vanish, due to the fact that neither ~a nor ~b have any

z components. Consequently, we obtain ((3.0)(4.0)− (5.0)(2.0)) k̂ = 2.0 k̂ .
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(b) ~a ·~b = axbx + ayby yields (3)(2) + (5)(4) = 26.

(c) ~a+~b = (3 + 2) ı̂ + (5 + 4) ĵ , so that
(

~a+~b
)

·~b = (5)(2) + (9)(4) = 46.

(d) Several approaches are available. In this solution, we will construct a b̂ unit-vector and “dot” it
(take the scalar product of it) with ~a. In this case, we make the desired unit-vector by

b̂ =
~b

|~b|
=

2 ı̂ + 4 ĵ√
22 + 42

.

We therefore obtain

ab = ~a · b̂ =
(3)(2) + (5)(4)√

22 + 42
= 5.8 .

43. We apply Eq. 3-30 and Eq.3-23. If a vector capable calculator is used, this makes a good exercise for
getting familiar with those features. Here we briefly sketch the method.

(a) We note that ~b× ~c = −8 ı̂ + 5 ĵ + 6 k̂. Thus, ~a ·
(

~b× ~c
)

= (3)(−8) + (3)(5) + (−2)(6) = −21.

(b) We note that ~b+ ~c = 1 ı̂− 2 ĵ + 3 k̂. Thus, ~a ·
(

~b+ ~c
)

= (3)(1) + (3)(−2) + (−2)(3) = −9.

(c) Finally, ~a×
(

~b+ ~c
)

= ((3)(3)−(−2)(−2)) ı̂+((−2)(1)−(3)(3)) ĵ+((3)(−2)−(3)(1)) k̂ = 5 ı̂−11 ĵ−9 k̂.

44. The components of ~a are ax = 0, ay = 3.20 cos 63◦ = 1.45, and az = 3.20 sin63◦ = 2.85. The components

of ~b are bx = 1.40 cos 48◦ = 0.937, by = 0, and bz = 1.40 sin48◦ = 1.04.

(a) The scalar (dot) product is therefore

~a ·~b = axbx + ayby + azbz = (0)(0.937) + (1.45)(0) + (2.85)(1.04) = 2.97 .

(b) The vector (cross) product is

~a×~b = (aybz − azby) ı̂ + (azbx − axbz) ĵ + (axby − aybx) k̂

= ((1.45)(1.04)− 0)) ı̂ + ((2.85)(0.937)− 0)) ĵ + (0− (1.45)(0.94)) k̂

= 1.51 ı̂ + 2.67 ĵ− 1.36 k̂ .

(c) The angle θ between ~a and ~b is given by

θ = cos−1

(

~a ·~b
ab

)

= cos−1

(

2.96

(3.30)(1.40)

)

= 48◦ .

45. We observe that |̂ı× ı̂| = |̂ı| |̂ı| sin 0◦ vanishes because sin 0◦ = 0. Similarly, ĵ × ĵ = k̂× k̂ = 0. When the
unit vectors are perpendicular, we have to do a little more work to show the cross product results. First,
the magnitude of the vector ı̂× ĵ is

∣

∣

∣̂ı× ĵ
∣

∣

∣ = |̂ı|
∣

∣

∣̂j
∣

∣

∣ sin 90◦

which equals 1 because sin 90◦ = 1 and these are all units vectors (each has magnitude equal to 1). This

is consistent with the claim that ı̂ × ĵ = k̂ since the magnitude of k̂ is certainly 1. Now, we use the
right-hand rule to show that ı̂× ĵ is in the positive z direction. Thus ı̂× ĵ has the same magnitude and
direction as k̂, so it is equal to k̂. Similarly, k̂ × ı̂ = ĵ and ĵ × k̂ = ı̂. If, however, the coordinate system
is left-handed, we replace k̂→ −k̂ in the work we have shown above and get

ı̂× ı̂ = ĵ× ĵ = k̂× k̂ = 0 .

just as before. But the relations that are different are

ı̂× ĵ = −k̂ k̂× ı̂ = −ĵ ĵ× k̂ = −ı̂ .
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46. (a) By the right-hand rule, ~A× ~B points upward if ~A points north and ~B points west. If ~A and ~B have
magnitude = 1 then, by Eq. 3-27, the result also has magnitude equal to 1.

(b) Since cos 90◦ = 0, the scalar dot product between perpendicular vectors is zero. Thus, ~A · ~B = 0 is
~A points down and ~B points south.

(c) By the right-hand rule, ~A× ~B points south if ~A points east and ~B points up. If ~A and ~B have unit
magnitude then, by Eq. 3-27, the result also has unit magnitude.

(d) Since cos 0◦ = 1, then ~A · ~B = AB (where A is the magnitude of ~A and B is the magnitude of ~B).
If, additionally, we have A = B = 1, then the result is 1.

(e) Since sin 0◦ = 0, ~A× ~B = 0 if both ~A and ~B point south.

47. Let A denote the magnitude of ~A; similarly for the other vectors. The vector equation is ~A + ~B = ~C
where B = 8.0 m and C = 2A. We are also told that the angle (measured in the ‘standard’ sense) for
~A is 0◦ and the angle for ~C is 90◦, which makes this a right triangle (when drawn in a “head-to-tail”
fashion) where B is the size of the hypotenuse. Using the Pythagorean theorem,

B =
√

A2 + C2 =⇒ 8.0 =
√

A2 + 4A2

which leads to A = 8/
√

5 = 3.6 m.

48. We choose +x east and +y north and measure all angles in the “standard” way (positive ones are

counterclockwise from +x). Thus, vector ~d1 has magnitude d1 = 4 (with the unit meter and three

significant figures assumed) and direction θ1 = 225◦. Also, ~d2 has magnitude d2 = 5 and direction

θ2 = 0◦, and vector ~d3 has magnitude d3 = 6 and direction θ3 = 60◦.

(a) The x-component of ~d1 is d1 cos θ1 = −2.83 m.

(b) The y-component of ~d1 is d1 sin θ1 = −2.83 m.

(c) The x-component of ~d2 is d2 cos θ2 = 5.00 m.

(d) The y-component of ~d2 is d2 sin θ2 = 0.

(e) The x-component of ~d3 is d3 cos θ3 = 3.00 m.

(f) The y-component of ~d3 is d3 sin θ3 = 5.20 m.

(g) The sum of x-components is −2.83 + 5.00 + 3.00 = 5.17 m.

(h) The sum of y-components is −2.83 + 0 + 5.20 = 2.37 m.

(i) The magnitude of the resultant displacement is
√

5.172 + 2.372 = 5.69 m.

(j) And its angle is θ = tan−1(2.37/5.17) = 24.6◦ which (recalling our coordinate choices) means it
points at about 25◦ north of east.

(k) and (ℓ) This new displacement (the direct line home) when vectorially added to the previous
(net) displacement must give zero. Thus, the new displacement is the negative, or opposite, of the
previous (net) displacement. That is, it has the same magnitude (5.69 m) but points in the opposite
direction (25◦ south of west).

49. Reading carefully, we see that the (x, y) specifications for each “dart” are to be interpreted as (∆x,∆y)
descriptions of the corresponding displacement vectors. We combine the different parts of this problem
into a single exposition. Thus, along the x axis, we have (with the centimeter unit understood)

30.0 + bx − 20.0− 80.0 = −140.0 ,

and along y axis we have
40.0− 70.0 + cy − 70.0 = −20.0 .

Hence, we find bx = −70.0 cm and cy = 80.0 cm. And we convert the final location (−140,−20) into
polar coordinates and obtain (141 6 −172◦), an operation quickly done using a vector capable calculator
in polar mode. Thus, the ant is 141 cm from where it started at an angle of −172◦, which means 172◦

clockwise from the +x axis or 188◦ counterclockwise from the +x axis.
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50. We find the components and then add them (as scalars, not vectors). With d = 3.40 km and θ = 35.0◦

we find d cos θ + d sin θ = 4.74 km.

51. We choose +x east and +y north and measure all angles in the “standard” way (positive ones counter-

clockwise from +x, negative ones clockwise). Thus, vector ~d1 has magnitude d1 = 3.66 (with the unit

meter and three significant figures assumed) and direction θ1 = 90◦. Also, ~d2 has magnitude d2 = 1.83

and direction θ2 = −45◦, and vector ~d3 has magnitude d3 = 0.91 and direction θ3 = −135◦. We add the
x and y components, respectively:

x : d1 cos θ1 + d2 cos θ2 + d3 cos θ3 = 0.651 m

y : d1 sin θ1 + d2 sin θ2 + d3 sin θ3 = 1.723 m .

(a) The magnitude of the direct displacement (the vector sum ~d1+~d2+~d3 ) is
√

0.6512 + 1.7232 = 1.84 m.

(b) The angle (understood in the sense described above) is tan−1(1.723/0.651) = 69◦. That is, the first
putt must aim in the direction 69◦ north of east.

52. (a) We write ~b = b ĵ where b > 0. We are asked to consider

~b

d
=

(

b

d

)

ĵ

in the case d > 0. Since the coefficient of ĵ is positive, then the vector points in the +y direction.

(b) If, however, d < 0, then the coefficient is negative and the vector points in the −y direction.

(c) Since cos 90◦ = 0, then ~a ·~b = 0, using Eq. 3-20.

(d) Since ~b/d is along the y axis, then (by the same reasoning as in the previous part) ~a · (~b/d) = 0.

(e) By the right-hand rule, ~a×~b points in the +z direction.

(f) By the same rule, ~b×~a points in the −z direction. We note that ~b×~a = −~a×~b is true in this case
and quite generally.

(g) Since sin 90◦ = 1, Eq. 3-27 gives |~a×~b| = ab where a is the magnitude of ~a. Also, |~a×~b| = |~b × ~a|
so both results have the same magnitude.

(h) and (i) With d > 0, we find that ~a× (~b/d) has magnitude ab/d and is pointed in the +z direction.

53. (a) With a = 17.0 m and θ = 56.0◦ we find ax = a cos θ = 9.51 m.

(b) And ay = a sin θ = 14.1 m.

(c) The angle relative to the new coordinate system is θ′ = 56−18 = 38◦. Thus, a′x = a cos θ′ = 13.4 m.

(d) And a′y = a sin θ′ = 10.5 m.

54. Since cos 0◦ = 1 and sin 0◦ = 0, these follows immediately from Eq. 3-20 and Eq. 3-27.

55. (a) The magnitude of the vector ~a = 4.0~d is (4.0)(2.5) = 10 m.

(b) The direction of the vector ~a = 4.0~d is the same as the direction of ~d (north).

(c) The magnitude of the vector ~c = −3.0~d is (3.0)(2.5) = 7.5 m.

(d) The direction of the vector ~c = −3.0~d is the opposite of the direction of ~d. Thus, the direction of ~c
is south.

56. The vector sum of the displacements ~dstorm and ~dnew must give the same result as its originally intended
displacement ~do = 120 ĵ where east is ı̂, north is ĵ, and the assumed length unit is km. Thus, we write

~dstorm = 100 ı̂ and ~dnew = A ı̂ +B ĵ .
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(a) The equation ~dstorm + ~dnew = ~do readily yields A = −100 km and B = 120 km. The magnitude of
~dnew is therefore

√
A2 +B2 = 156 km.

(b) And its direction is tan−1(B/A) = −50.2◦ or 180◦ + (−50.2◦) = 129.8◦. We choose the latter value
since it indicates a vector pointing in the second quadrant, which is what we expect here. The
answer can be phrased several equivalent ways: 129.8◦ counterclockwise from east, or 39.8◦ west
from north, or 50.2◦ north from west.

57. (a) The height is h = d sin θ, where d = 12.5 m and θ = 20.0◦. Therefore, h = 4.28 m.

(b) The horizontal distance is d cos θ = 11.7 m.

58. (a) We orient ı̂ eastward, ĵ northward, and k̂ upward. The displacement in meters is consequently

1000 ı̂ + 2000 ĵ− 500 k̂ .

(b) The net displacement is zero since his final position matches his initial position.

59. (a) If we add the equations, we obtain 2~a = 6~c, which leads to ~a = 3~c = 9 ı̂ + 12 ĵ .

(b) Plugging this result back in, we find ~b = ~c = 3 ı̂ + 4 ĵ .

60. (First problem in Cluster 1)
The given angle θ = 130◦ is assumed to be measured counterclockwise from the +x axis. Angles (if
positive) in our results follow the same convention (but if negative are clockwise from +x).

(a) With A = 4.00, the x-component of ~A is A cos θ = −2.57.

(b) The y-component of ~A is A sin θ = 3.06.

(c) Adding ~A and ~B produces a vector we call R with components Rx = −6.43 and Ry = −1.54.
Using Eq. 3-6 (or special functions on a calculator) we present this in magnitude-angle notation:
~R = (6.61 6 − 167◦).

(d) From the discussion in the previous part, it is clear that ~R = −6.43 ı̂− 1.54 ĵ .

(e) The vector ~C is the difference of ~A and ~B. In unit-vector notation, this becomes

~C = ~A− ~B =
(

−2.57 ı̂− 3.06 ĵ
)

−
(

−3.86 ı̂− 4.60 ĵ
)

which yields ~C = 1.29 ı̂ + 7.66 ĵ .

(f) Using Eq. 3-6 (or special functions on a calculator) we present this in magnitude-angle notation:
~C = (7.77 6 80.5◦).

(g) We note that ~C is the “constant” in all six pictures. Remembering that the negative of a vector

simply reverses it, then we see that in form or another, all six pictures express the relation ~C = ~A− ~B.

61. (Second problem in Cluster 1)

(a) The dot (scalar) product of 3 ~A and ~B is found using Eq. 3-23:

3 ~A · ~B = 3 (4.00 cos130◦) (−3.86) + 3 (4.00 sin130◦) (−4.60) = −12.5 .

(b) We call the result ~D and combine the scalars ((3)(4) = 12). Thus, ~D = (4 ~A)× (3 ~B) becomes, using
Eq. 3-30,

12 ~A× ~B = 12 ((4.00 cos130◦) (−4.60)− (4.00 sin130◦) (−3.86)) k̂

which yields ~D = 284 k̂ .

(c) Since ~D has magnitude 284 and points in the +z direction, it has radial coordinate 284 and angle-
measured-from-z-axis equal to 0◦. The angle measured in the xy plane does not have a well-defined
value (since this vector does not have a component in that plane)
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(d) Since ~A is in the xy plane, then it is clear that ~A ⊥ ~D. The angle between them is 90◦.

(e) Calling this new result ~G we have

~G = (4.00 cos130◦) ı̂ + (4.00 sin130◦) ĵ + (3.00)k̂

which yields ~G = −2.57 ı̂ + 3.06̂j + 3.00 k̂ .

(f) It is straightforward using a vector-capable calculator to convert the above into spherical coordi-
nates. We, however, proceed “the hard way”, using the notation in Fig. 3-44 (where θ is in the xy
plane and φ is measured from the z axis):

|~G| = r =
√

(−2.57)2 + 3.062 + 3.002 = 5.00

φ = tan−1(4.00/3.00) = 53.1◦

θ = 130◦ given in problem 60 .

62. (Third problem in Cluster 1)

(a) Looking at the xy plane in Fig. 3-44, it is clear that the angle to ~A (which is the vector lying

in the plane, not the one rising out of it, which we called ~G in the previous problem) measured
counterclockwise from the −y axis is 90◦ + 130◦ = 220◦. Had we measured this clockwise we would
obtain (in absolute value) 360◦ − 220◦ = 140◦.

(b) We found in part (b) of the previous problem that ~A× ~B points along the z axis, so it is perpendicular
to the −y direction.

(c) Let ~u = −ĵ represent the −y direction, and ~w = 3 k̂ is the vector being added to ~B in this problem.

The vector being examined in this problem (we’ll call it ~Q) is, using Eq. 3-30 (or a vector-capable
calculator),

~Q = ~A×
(

~B + ~w
)

= 9.19 1̂ + 7.71 ĵ + 23.7 k̂

and is clearly in the first octant (since all components are positive); using Pythagorean theorem,

its magnitude is Q = 26.52. From Eq. 3-23, we immediately find ~u · ~Q = −7.71. Since ~u has unit
magnitude, Eq. 3-20 leads to

cos−1

(

~u · ~Q
Q

)

= cos−1

(−7.71

26.52

)

which yields a choice of angles 107◦ or −107◦. Since we have already observed that ~Q is in the first
octant, the the angle measured counterclockwise (as observed by someone high up on the +z axis)

from the −y axis to ~Q is 107◦.
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1. Where the length unit is not specified (in this solution), the unit meter should be understood.

(a) The position vector, according to Eq. 4-1, is ~r = −5.0 ı̂ + 8.0 ĵ (in meters).

(b) The magnitude is |~r| =
√

x2 + y2 + z2 = 9.4 m.

(c) Many calculators have polar ↔ rectangular conversion capabilities which make this computation
more efficient than what is shown below. Noting that the vector lies in the xy plane, we are using
Eq. 3-6:

tan−1

(

8.0

−5.0

)

= −58◦ or 122◦

where we choose the latter possibility (122◦ measured counterclockwise from the +x direction) since
the signs of the components imply the vector is in the second quadrant.

(d) In the interest of saving space, we omit the sketch. The vector is 32◦ counterclockwise from the
+y direction, where the +y direction is assumed to be (as is standard) +90◦ counterclockwise from
+x, and the +z direction would therefore be “out of the paper.”

(e) The displacement is ∆~r = ~r ′ − ~r where ~r is given in part (a) and ~r ′ = 3.0 ı̂. Therefore, ∆~r =
8.0 ı̂− 8.0 ĵ (in meters).

(f) The magnitude of the displacement is |∆~r| =
√

82 + (−8)2 = 11 m.

(g) The angle for the displacement, using Eq. 3-6, is found from

tan−1

(

8.0

−8.0

)

= −45◦ or 135◦

where we choose the former possibility (−45◦, which means 45◦ measured clockwise from +x, or
315◦ counterclockwise from +x) since the signs of the components imply the vector is in the fourth
quadrant.

2. (a) The magnitude of ~r is
√

5.02 + (−3.0)2 + 2.02 = 6.2 m.

(b) A sketch is shown. The coordinate values are in meters.

+y

+z

�
�

�
�
+x

�����
~r

5

−3
2
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3. Where the unit is not specified, the unit meter is understood. We use Eq. 4-2 and Eq. 4-3.

(a) With the initial position vector as ~r1 and the later vector as ~r2, Eq. 4-3 yields

∆r = ((−2)− 5) ı̂ + (6 − (−6)) ĵ + (2 − 2) k̂ = −7.0 ı̂ + 12 ĵ

for the displacement vector in unit-vector notation (in meters).

(b) Since there is no z component (that is, the coefficient of k̂ is zero), the displacement vector is in
the xy plane.

4. We use a coordinate system with +x eastward and +y upward. We note that 123◦ is the angle between
the initial position and later position vectors, so that the angle from +x to the later position vector is
40◦ + 123◦ = 163◦. In unit-vector notation, the position vectors are

~r1 = 360 cos(40◦) ı̂ + 360 sin(40◦) ĵ = 276 ı̂ + 231 ĵ

~r2 = 790 cos(163◦) ı̂ + 790 sin(163◦) ĵ = −755 ı̂ + 231 ĵ

respectively (in meters). Consequently, we plug into Eq. 4-3

∆r = ((−755)− 276) ı̂ + (231− 231) ĵ

and find the displacement vector is horizontal (westward) with a length of 1.03 km. If unit-vector
notation is not a priority in this problem, then the computation can be approached in a variety of ways
– particularly in view of the fact that a number of vector capable calculators are on the market which
reduce this problem to a very few keystrokes (using magnitude-angle notation throughout).

5. The average velocity is given by Eq. 4-8. The total displacement ∆~r is the sum of three displacements,
each result of a (constant) velocity during a given time. We use a coordinate system with +x East and
+y North. In unit-vector notation, the first displacement is given by

∆~r1 =

(

60
km

h

)(

40 min

60 min/h

)

ı̂ = 40 ı̂

in kilometers. The second displacement has a magnitude of 60 km
h · 20min

60 min/h = 20 km, and its direction

is 40◦ north of east. Therefore,

∆~r2 = 20 cos(40◦) ı̂ + 20 sin(40◦) ĵ = 15.3 ı̂ + 12.9 ĵ

in kilometers. And the third displacement is

∆~r3 = −
(

60
km

h

)(

50 min

60 min/h

)

ı̂ = −50 ı̂

in kilometers. The total displacement is

∆~r = ∆~r1 + ∆~r2 + ∆~r3

= 40 ı̂ + 15.3 ı̂ + 12.9 ĵ− 50 ı̂

= 5.3 ı̂ + 12.9 ĵ (km) .

The time for the trip is 40 + 20 + 50 = 110 min, which is equivalent to 1.83 h. Eq. 4-8 then yields

~vavg =

(

5.3 km

1.83 h

)

ı̂ +

(

12.9 km

1.83 h

)

ĵ = 2.90 ı̂ + 7.01 ĵ

in kilometers-per-hour. If it is desired to express this in magnitude-angle notation, then this is equivalent
to a vector of magnitude

√
2.92 + 7.012 = 7.59 km/h, which is inclined 67.5◦ north of east (or, 22.5◦

east of north). If unit-vector notation is not a priority in this problem, then the computation can
be approached in a variety of ways – particularly in view of the fact that a number of vector capable
calculators are on the market which reduce this problem to a very few keystrokes (using magnitude-angle
notation throughout).
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6. Using Eq. 4-3 and Eq. 4-8, we have

~vavg =
(−2.0 ı̂ + 8.0 ĵ− 2.0 k̂)− (5.0 ı̂− 6.0 ĵ + 2.0 k̂)

10

= −0.70 ı̂ + 1.40 ĵ− 0.40 k̂

in meters-per-second.

7. To emphasize the fact that the velocity is a function of time, we adopt the notation v(t) for dx
dt .

(a) Eq. 4-10 leads to

v(t) =
d

dt

(

3.00t ı̂− 4.00t2 ĵ + 2.00 k̂
)

= 3.00 ı̂− 8.00t ĵ

in meters-per-second.

(b) Evaluating this result at t = 2 s produces ~v = 3.0 ı̂− 16.0 ĵ m/s.

(c) The speed at t = 2 s is v = |~v| =
√

32 + (−16)2 = 16.3 m/s.

(d) And the angle of ~v at that moment is one of the possibilities

tan−1

(−16

3

)

= −79.4◦ or 101◦

where we choose the first possibility (79.4◦ measured clockwise from the +x direction, or 281◦

counterclockwise from +x) since the signs of the components imply the vector is in the fourth
quadrant.

8. On the one hand, we could perform the vector addition of the displacements with a vector capable
calculator in polar mode ((75 6 37◦) + (65 6 − 90◦) = (63 6 − 18◦)), but in keeping with Eq. 3-5 and
Eq. 3-6 we will show the details in unit-vector notation. We use a ‘standard’ coordinate system with +x
East and +y North. Lengths are in kilometers and times are in hours.

(a) We perform the vector addition of individual displacements to find the net displacement of the
camel.

∆~r1 = 75 cos(37◦) ı̂ + 75 sin(37◦) ĵ

∆~r2 = −65 ĵ

∆~r1 + ∆~r2 = 60 ı̂− 20 ĵ km .

If it is desired to express this in magnitude-angle notation, then this is equivalent to a vector of
length

√

602 + (−20)2 = 63 km, which is directed at 18◦ south of east.

(b) We use the result from part (a) in Eq. 4-8 along with the fact that ∆t = 90 h. In unit vector
notation, we obtain

~vavg =
60 ı̂− 20 ĵ

90
= 0.66 ı̂− 0.22 ĵ

in kilometers-per-hour. This result in magnitude-angle notation is ~vavg = 0.70 km/h at 18◦ south
of east.

(c) Average speed is distinguished from the magnitude of average velocity in that it depends on the
total distance as opposed to the net displacement. Since the camel travels 140 km, we obtain
140/90 = 1.56 km/h.

(d) The net displacement is required to be the 90 km East from A to B. The displacement from the
resting place to B is denoted ~r3. Thus, we must have (in kilometers)

~r1 + ~r2 + ~r3 = 90 ı̂
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which produces ~r3 = 30 ı̂ + 20 ĵ in unit-vector notation, or (36 6 33◦) in magnitude-angle notation.
Therefore, using Eq. 4-8 we obtain

|~vavg | =
36 km

120− 90 h
= 1.2 km/h

and the direction of this vector is the same as ~r3 (that is, 33◦ north of east).

9. We apply Eq. 4-10 and Eq. 4-16.

(a) Taking the derivative of the position vector with respect to time, we have

~v =
d

dt

(

ı̂ + 4t2 ĵ + t k̂
)

= 8t ĵ + k̂

in SI units (m/s).

(b) Taking another derivative with respect to time leads to

~a =
d

dt

(

8t ĵ + k̂
)

= 8 ĵ

in SI units (m/s2).

10. We use Eq. 4-15 with ~v1 designating the initial velocity and ~v2 designating the later one.

(a) The average acceleration during the ∆t = 4 s interval is

~aavg =

(

−2 ı̂− 2 ĵ + 5 k̂
)

−
(

4 ı̂− 22 ĵ + 3 k̂
)

4
= −1.5 ı̂ + 0.5 k̂

in SI units (m/s2).

(b) The magnitude of ~aavg is
√

(−1.5)2 + 0.52 = 1.6 m/s2. Its angle in the xz plane (measured from
the +x axis) is one of these possibilities:

tan−1

(

0.5

−1.5

)

= −18◦ or 162◦

where we settle on the second choice since the signs of its components imply that it is in the second
quadrant.

11. In parts (b) and (c), we use Eq. 4-10 and Eq. 4-16. For part (d), we find the direction of the velocity
computed in part (b), since that represents the asked-for tangent line.

(a) Plugging into the given expression, we obtain

~r
∣

∣

∣

t=2
= (2(8)− 5(2)) ı̂ + (6 − 7(16)) ĵ = 6.00 ı̂− 106 ĵ

in meters.

(b) Taking the derivative of the given expression produces

~v(t) =
(

6.00t2 − 5.00
)

ı̂ + 28.0t3 ĵ

where we have written v(t) to emphasize its dependence on time. This becomes, at t = 2.00 s, ~v =
19.0 ı̂− 224 ĵ m/s.

(c) Differentiating the ~v(t) found above, with respect to t produces 12.0t ı̂− 84.0t2 ĵ, which yields ~a =
24.0 ı̂− 336 ĵ m/s2 at t = 2.00 s.
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(d) The angle of ~v, measured from +x, is either

tan−1

(−224

19.0

)

= −85.2◦ or 94.8◦

where we settle on the first choice (−85.2◦, which is equivalent to 275◦) since the signs of its
components imply that it is in the fourth quadrant.

12. Noting that ~v2 = 0, then, using Eq. 4-15, the average acceleration is

~aavg =
∆~v

∆t
=

0− (6.30 ı̂− 8.42 ĵ)

3
= −2.1 ı̂ + 2.8 ĵ

in SI units (m/s2).

13. Constant acceleration in both directions (x and y) allows us to use Table 2-1 for the motion along each
direction. This can be handled individually (for ∆x and ∆y) or together with the unit-vector notation
(for ∆r). Where units are not shown, SI units are to be understood.

(a) The velocity of the particle at any time t is given by ~v = ~v0 + ~at, where ~v0 is the initial velocity
and ~a is the (constant) acceleration. The x component is vx = v0x + axt = 3.00− 1.00t, and the y
component is vy = v0y + ayt = −0.500t since v0y = 0. When the particle reaches its maximum x
coordinate at t = tm, we must have vx = 0. Therefore, 3.00 − 1.00tm = 0 or tm = 3.00 s. The y
component of the velocity at this time is vy = 0−0.500(3.00) = −1.50 m/s; this is the only nonzero
component of ~v at tm.

(b) Since it started at the origin, the coordinates of the particle at any time t are given by ~r = ~v0t+
1
2~at

2.
At t = tm this becomes

(3.00 ı̂)(3.00) +
1

2
(−1.00 ı̂− 0.50 ĵ)(3.00)2 = 4.50 ı̂− 2.25 ĵ

in meters.

14. (a) Using Eq. 4-16, the acceleration as a function of time is

~a =
d~v

dt
=
d

dt

(

(6.0t− 4.0t2)̂ı + 8.0 ĵ
)

= (6.0− 8.0t)̂ı

in SI units. Specifically, we find the acceleration vector at t = 3.0 s to be (6.0 − 8.0(3.0))̂ı =
−18 ı̂ m/s2.

(b) The equation is ~a = (6.0− 8.0t)̂ı = 0; we find t = 0.75 s.

(c) Since the y component of the velocity, vy = 8.0 m/s, is never zero, the velocity cannot vanish.

(d) Since speed is the magnitude of the velocity, we have v = |~v| =
√

(6.0t− 4.0t2)2 + (8.0)2 = 10 in
SI units (m/s). We solve for t as follows:

squaring (6t− 4t2)2 + 64 = 100

rearranging (6t− 4t2)2 = 36

taking square root 6t− 4t2 = ±6

rearranging 4t2 − 6t± 6 = 0

using quadratic formula t =
6±

√

36− 4(4)(±6)

2(8)

where the requirement of a real positive result leads to the unique answer: t = 2.2 s.

15. Since the x and y components of the acceleration are constants, then we can use Table 2-1 for the motion
along both axes. This can be handled individually (for ∆x and ∆y) or together with the unit-vector
notation (for ∆r). Where units are not shown, SI units are to be understood.
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(a) Since ~r0 = 0, the position vector of the particle is (adapting Eq. 2-15)

~r = ~v0t+
1

2
~at2

= (8.0 ĵ)t+
1

2
(4.0 ı̂ + 2.0 ĵ)t2

= (2.0t2) ı̂ + (8.0t+ 1.0t2) ĵ .

Therefore, we find when x = 29 m, by solving 2.0t2 = 29, which leads to t = 3.8 s. The y coordinate
at that time is y = 8.0(3.8) + 1.0(3.8)2 = 45 m.

(b) Adapting Eq. 2-11, the velocity of the particle is given by

~v = ~v0 + ~at .

Thus, at t = 3.8 s, the velocity is

~v = 8.0 ĵ + (4.0 ı̂ + 2.0 ĵ)(3.8) = 15.2 ı̂ + 15.6 ĵ

which has a magnitude of

v =
√

v2
x + v2

y =
√

15.22 + 15.62 = 22 m/s .

16. The acceleration is constant so that use of Table 2-1 (for both the x and y motions) is permitted. Where
units are not shown, SI units are to be understood. Collision between particles A and B requires two
things. First, the y motion of B must satisfy (using Eq. 2-15 and noting that θ is measured from the y
axis)

y =
1

2
ayt

2 =⇒ 30 =
1

2
(0.40 cos θ) t2 .

Second, the x motions of A and B must coincide:

vt =
1

2
axt

2 =⇒ 3.0t =
1

2
(0.40 sin θ) t2 .

We eliminate a factor of t in the last relationship and formally solve for time:

t =
3

0.2 sin θ
.

This is then plugged into the previous equation to produce

30 =
1

2
(0.40 cos θ)

(

3

0.2 sin θ

)2

which, with the use of sin2 θ = 1− cos2 θ, simplifies to

30 =
9

0.2

cos θ

1− cos2 θ
=⇒ 1− cos2 θ =

9

(0.2)(30)
cos θ .

We use the quadratic formula (choosing the positive root) to solve for cos θ:

cos θ =
−1.5 +

√

1.52 − 4(1)(−1)

2
=

1

2

which yields

θ = cos−1

(

1

2

)

= 60◦ .
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17. We adopt the positive direction choices used in the textbook so that equations such as Eq. 4-22 are
directly applicable.

(a) With the origin at the firing point, the y coordinate of the bullet is given by y = − 1
2gt

2. If t is the
time of flight and y = −0.019 m indicates where the bullet hits the target, then

t =

√

2(0.019)

9.8
= 6.2× 10−2 s .

(b) The muzzle velocity is the initial (horizontal) velocity of the bullet. Since x = 30 m is the horizontal
position of the target, we have x = v0t. Thus,

v0 =
x

t
=

30

6.3× 10−2
= 4.8× 102 m/s .

18. We adopt the positive direction choices used in the textbook so that equations such as Eq. 4-22 are
directly applicable.

(a) With the origin at the initial point (edge of table), the y coordinate of the ball is given by y = − 1
2gt

2.
If t is the time of flight and y = −1.20 m indicates the level at which the ball hits the floor, then

t =

√

2(1.20)

9.8
= 0.495 s .

(b) The initial (horizontal) velocity of the ball is ~v = v0 ı̂. Since x = 1.52 m is the horizontal position
of its impact point with the floor, we have x = v0t. Thus,

v0 =
x

t
=

1.52

0.495
= 3.07 m/s .

19. We adopt the positive direction choices used in the textbook so that equations such as Eq. 4-22 are
directly applicable. The initial velocity is horizontal so that v0y = 0 and v0x = v0 = 161 km/h.
Converting to SI units, this is v0 = 44.7 m/s.

(a) With the origin at the initial point (where the ball leaves the pitcher’s hand), the y coordinate
of the ball is given by y = − 1

2gt
2, and the x coordinate is given by x = v0t. From the latter

equation, we have a simple proportionality between horizontal distance and time, which means the
time to travel half the total distance is half the total time. Specifically, if x = 18.3/2 m, then
t = (18.3/2)/44.7 = 0.205 s.

(b) And the time to travel the next 18.3/2 m must also be 0.205 s. It can be useful to write the
horizontal equation as ∆x = v0∆t in order that this result can be seen more clearly.

(c) From y = − 1
2gt

2, we see that the ball has reached the height of − 1
2 (9.8)(0.205)2 = −0.205 m at the

moment the ball is halfway to the batter.

(d) The ball’s height when it reaches the batter is − 1
2 (9.8)(0.409)2 = −0.820 m, which, when subtracted

from the previous result, implies it has fallen another 0.615 m. Since the value of y is not simply
proportional to t, we do not expect equal time-intervals to correspond to equal height-changes; in
a physical sense, this is due to the fact that the initial y-velocity for the first half of the motion is
not the same as the “initial” y-velocity for the second half of the motion.

20. We adopt the positive direction choices used in the textbook so that equations such as Eq. 4-22 are
directly applicable. The initial velocity is horizontal so that v0y = 0 and v0x = v0 = 10 m/s.

(a) With the origin at the initial point (where the dart leaves the thrower’s hand), the y coordinate of
the dart is given by y = − 1

2gt
2, so that with y = −PQ we have PQ = 1

2 (9.8)(0.19)2 = 0.18 m.

(b) From x = v0t we obtain x = (10)(0.19) = 1.9 m.
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21. Since this problem involves constant downward acceleration of magnitude a, similar to the projectile
motion situation, we use the equations of §4-6 as long as we substitute a for g. We adopt the positive
direction choices used in the textbook so that equations such as Eq. 4-22 are directly applicable. The
initial velocity is horizontal so that v0y = 0 and v0x = v0 = 1.0× 109 cm/s.

(a) If ℓ is the length of a plate and t is the time an electron is between the plates, then ℓ = v0t, where
v0 is the initial speed. Thus

t =
ℓ

v0
=

2.0 cm

1.0× 109 cm/s
= 2.0× 10−9 s .

(b) The vertical displacement of the electron is

y = −1

2
at2 = −1

2

(

1.0× 1017 cm/s2
)

(

2.0× 10−9 s
)2

= −0.20 cm .

(c) and (d) The x component of velocity does not change: vx = v0 = 1.0 × 109 cm/s, and the y
component is

vy = ayt =
(

1.0× 1017 cm/s2
)

(

2.0× 10−9 s
)

= 2.0× 108 cm/s .

22. We use Eq. 4-26

Rmax =

(

v2
0

g
sin 2θ0

)

max

=
v2
0

g
=

(9.5 m/s)2

9.80 m/s
2 = 9.21 m

to compare with Powell’s long jump; the difference from Rmax is only ∆R = 9.21− 8.95 = 0.26 m.

23. We adopt the positive direction choices used in the textbook so that equations such as Eq. 4-22 are
directly applicable. The coordinate origin is throwing point (the stone’s initial position). The x com-
ponent of its initial velocity is given by v0x = v0 cos θ0 and the y component is given by v0y = v0 sin θ0,
where v0 = 20 m/s is the initial speed and θ0 = 40.0◦ is the launch angle.

(a) At t = 1.10 s, its x coordinate is

x = v0t cos θ0 = (20.0 m/s)(1.10 s) cos 40.0◦ = 16.9 m

(b) Its y coordinate at that instant is

y = v0t sin θ0 −
1

2
gt2 = (20.0 m/s)(1.10 s) sin 40◦ − 1

2
(9.80 m/s

2
)(1.10 s)2 = 8.21 m .

(c) At t′ = 1.80 s, its x coordinate is

x = (20.0 m/s)(1.80 s) cos 40.0◦ = 27.6 m

(d) Its y coordinate at t′ is

y = (20.0 m/s)(1.80 s) sin 40◦ − 1

2

(

9.80 m/s
2
)

(1.80 s)2 = 7.26 m .

(e) and (f) The stone hits the ground earlier than t = 5.0 s. To find the time when it hits the ground
solve y = v0t sin θ0 − 1

2gt
2 = 0 for t. We find

t =
2v0
g

sin θ0 =
2(20.0 m/s)

9.8 m/s
2 sin 40◦ = 2.62 s .

Its x coordinate on landing is

x = v0t cos θ0 = (20.0 m/s)(2.62 s) cos 40◦ = 40.2 m

(or Eq. 4-26 can be used). Assuming it stays where it lands, its coordinates at t = 5.00 s are
x = 40.2 m and y = 0.
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24. In this projectile motion problem, we have v0 = vx = constant, and what is plotted is v =
√

v2
x + v2

y .

We infer from the plot that at t = 2.5 s, the ball reaches its maximum height, where vy = 0. Therefore,
we infer from the graph that vx = 19 m/s.

(a) During t = 5 s, the horizontal motion is x− x0 = vxt = 95 m.

(b) Since
√

192 + v02
y = 31 m/s (the first point on the graph), we find v0y = 24.5 m/s. Thus, with

t = 2.5 s, we can use ymax − y0 = v0yt − 1
2gt

2 or v2
y = 0 = v0

2
y − 2g(ymax − y0), or ymax − y0 =

1
2

(

vy + v0y

)

t to solve. Here we will use the latter:

ymax − y0 =
1

2

(

vy + v0y

)

t =⇒ ymax =
1

2
(0 + 24.5)(2.5) = 31 m

where we have taken y0 = 0 as the ground level.

25. We adopt the positive direction choices used in the textbook so that equations such as Eq. 4-22 are
directly applicable. The coordinate origin is at the end of the rifle (the initial point for the bullet as it
begins projectile motion in the sense of §4-5), and we let θ0 be the firing angle. If the target is a distance
d away, then its coordinates are x = d, y = 0. The projectile motion equations lead to d = v0t cos θ0 and
0 = v0t sin θ0 − 1

2gt
2. Eliminating t leads to 2v2

0 sin θ0 cos θ0 − gd = 0. Using sin θ0 cos θ0 = 1
2 sin(2θ0),

we obtain

v2
0 sin(2θ0) = gd =⇒ sin(2θ0) =

gd

v2
0

=
(9.8)(45.7)

4602

which yields sin(2θ0) = 2.12 × 10−3 and consequently θ0 = 0.0606◦. If the gun is aimed at a point a
distance ℓ above the target, then tan θ0 = ℓ/d so that

ℓ = d tan θ0 = 45.7 tan0.0606◦ = 0.0484 m = 4.84 cm .

26. The figure offers many interesting points to analyze, and others are easily inferred (such as the point of
maximum height). The focus here, to begin with, will be the final point shown (1.25 s after the ball is
released) which is when the ball returns to its original height. In English units, g = 32 ft/s2.

(a) Using x− x0 = vxt we obtain vx = (40 ft)/(1.25 s) = 32 ft/s. And y − y0 = 0 = v0yt− 1
2gt

2 yields
v0y = 1

2 (32)(1.25) = 20 ft/s. Thus, the initial speed is

v0 = |~v0| =
√

322 + 202 = 38 ft/s .

(b) Since vy = 0 at the maximum height and the horizontal velocity stays constant, then the speed at
the top is the same as vx = 32 ft/s.

(c) We can infer from the figure (or compute from vy = 0 = v0y − gt) that the time to reach the top
is 0.625 s. With this, we can use y − y0 = v0yt − 1

2gt
2 to obtain 9.3 ft (where y0 = 3 ft has been

used). An alternative approach is to use v2
y = v2

0y − 2g(y − y0).
27. Taking the y axis to be upward and placing the origin at the firing point, the y coordinate is given by

y = v0t sin θ0 − 1
2gt

2 and the y component of the velocity is given by vy = v0 sin θ0 − gt. The maximum
height occurs when vy = 0. Thus, t = (v0/g) sin θ0 and

y = v0

(

v0
g

)

sin θ0 sin θ0 −
1

2

g(v0 sin θ0)
2

g2
=

(v0 sin θ0)
2

2g
.

28. We adopt the positive direction choices used in the textbook so that equations such as Eq. 4-22 are
directly applicable. The coordinate origin is at the release point (the initial position for the ball as it
begins projectile motion in the sense of §4-5), and we let θ0 be the angle of throw (shown in the figure).
Since the horizontal component of the velocity of the ball is vx = v0 cos 40.0◦, the time it takes for the
ball to hit the wall is

t =
∆x

vx
=

22.0

25.0 cos40.0◦
= 1.15 s .
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(a) The vertical distance is

∆y = (v0 sin θ0)t−
1

2
gt2

= (25.0 sin40.0◦)(1.15)− 1

2
(9.8)(1.15)2 = 12.0 m .

(b) The horizontal component of the velocity when it strikes the wall does not change from its initial
value: vx = v0 cos 40.0◦ = 19.2 m/s, while the vertical component becomes (using Eq. 4-23)

vy = v0 sin θ0 − gt = 25.0 sin40.0◦ − (9.8)(1.15) = 4.80 m/s .

(c) Since vy > 0 when the ball hits the wall, it has not reached the highest point yet.

29. We designate the given velocity ~v = 7.6 ı̂ + 6.1 ĵ (SI units understood) as ~v1 – as opposed to the velocity
when it reaches the max height ~v2 or the velocity when it returns to the ground ~v3 – and take ~v0 as the
launch velocity, as usual. The origin is at its launch point on the ground.

(a) Different approaches are available, but since it will be useful (for the rest of the problem) to first
find the initial y velocity, that is how we will proceed. Using Eq. 2-16, we have

v2
1 y = v2

0 y − 2g∆y

6.12 = v2
0 y − 2(9.8)(9.1)

which yields v0 y = 14.7 m/s. Knowing that v2 y must equal 0, we use Eq. 2-16 again but now with
∆y = h for the maximum height:

v2
2 y = v2

0 y − 2gh

0 = 14.72 − 2(9.8)h

which yields h = 11 m.

(b) Recalling the derivation of Eq. 4-26, but using v0 y for v0 sin θ0 and v0 x for v0 cos θ0, we have

0 = v0 yt−
1

2
gt2

R = v0 xt

which leads to R =
2 v0 x v0 y

g . Noting that v0 x = v1 x = 7.6 m/s, we plug in values and obtain

R = 2(7.6)(14.7)/9.8 = 23 m.

(c) Since v3 x = v1 x = 7.6 m/s and v3 y = −v0 y = −14.7 m/s, we have

v3 =
√

v2
3 x + v2

3 y =
√

(−14.7)2 + 7.62 = 17 m/s .

(d) The angle (measured from horizontal) for ~v3 is one of these possibilities:

tan−1

(−14.7

7.6

)

= −63◦ or 117◦

where we settle on the first choice (−63◦, which is equivalent to 297◦) since the signs of its compo-
nents imply that it is in the fourth quadrant.

30. We apply Eq. 4-21, Eq. 4-22 and Eq. 4-23.

(a) From ∆x = v0xt, we find v0x = 40/2 = 20 m/s.

(b) From ∆y = v0yt− 1
2gt

2, we find v0y = (53 + 1
2 (9.8)(2)2)/2 = 36 m/s.
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(c) From vy = v0y−gt′ with vy = 0 as the condition for maximum height, we obtain t′ = 36/9.8 = 3.7 s.
During that time the x-motion is constant, so x′ − x0 = (20)(3.7) = 74 m.

31. We adopt the positive direction choices used in the textbook so that equations such as Eq. 4-22 are
directly applicable. The coordinate origin is at the the initial position for the football as it begins
projectile motion in the sense of §4-5), and we let θ0 be the angle of its initial velocity measured from
the +x axis.

(a) x = 46 m and y = −1.5 m are the coordinates for the landing point; it lands at time t = 4.5 s. Since
x = v0xt,

v0 x =
x

t
=

46 m

4.5 s
= 10.2 m/s .

Since y = v0yt− 1
2gt

2,

v0 y =
y + 1

2gt
2

t
=

(−1.5 m) + 1
2 (9.8 m/s2)(4.5 s)2

4.5 s
= 21.7 m/s .

The magnitude of the initial velocity is

v0 =
√

v2
0 x + v2

0 y =
√

(10.2 m/s)2 + (21.7 m/s)2 = 24 m/s .

(b) The initial angle satisfies tan θ0 = v0 y/v0 x. Thus, θ0 = tan−1(21.7/10.2) = 64.8◦.

32. The initial velocity has no vertical component – only an x component equal to +2.00 m/s. Also,
y0 = +10.0 m if the water surface is established as y = 0.

(a) x− x0 = vxt readily yields x− x0 = 1.60 m.

(b) Using y − y0 = v0yt− 1
2gt

2, we obtain y = 6.86 m when t = 0.800 s.

(c) With t unknown and y = 0, the equation y − y0 = v0yt − 1
2gt

2 leads to t =
√

2(10)/9.8 = 1.43 s.
During this time, the x-displacement of the diver is x− x0 = (2.00 m/s)(1.43 s) = 2.86 m.

33. We adopt the positive direction choices used in the textbook so that equations such as Eq. 4-22 are
directly applicable. The coordinate origin is at ground level directly below the release point. We write
θ0 = −30◦ since the angle shown in the figure is measured clockwise from horizontal. We note that
the initial speed of the decoy is the plane’s speed at the moment of release: v0 = 290 km/h, which we
convert to SI units: (290)(1000/3600) = 80.6 m/s.

(a) We use Eq. 4-12 to solve for the time:

∆x = (v0 cos θ0) t =⇒ t =
700

(80.6) cos−30◦
= 10.0 s .

(b) And we use Eq. 4-22 to solve for the initial height y0:

y − y0 = (v0 sin θ0) t−
1

2
gt2

0− y0 = (−40.3)(10.0)− 1

2
(9.8)(10.0)2

which yields y0 = 897 m.

34. We adopt the positive direction choices used in the textbook so that equations such as Eq. 4-22 are
directly applicable. The coordinate origin is at its initial position (where it is launched). At maximum
height, we observe vy = 0 and denote vx = v (which is also equal to v0 x). In this notation, we have

v0 = 5v .
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Next, we observe v0 cos θ0 = v0 x = v, so that we arrive at an equation (where v 6= 0 cancels) which can
be solved for θ0:

(5v) cos θ0 = v =⇒ θ0 = cos−1 1

5
= 78◦ .

35. We denote h as the height of a step and w as the width. To hit step n, the ball must fall a distance nh
and travel horizontally a distance between (n− 1)w and nw. We take the origin of a coordinate system
to be at the point where the ball leaves the top of the stairway, and we choose the y axis to be positive
in the upward direction. The coordinates of the ball at time t are given by x = v0 xt and y = − 1

2gt
2

(since v0 y = 0). We equate y to −nh and solve for the time to reach the level of step n:

t =

√

2nh

g
.

The x coordinate then is

x = v0 x

√

2nh

g
= (1.52 m/s)

√

2n(0.203 m)

9.8 m/s2
= (0.309 m)

√
n .

The method is to try values of n until we find one for which x/w is less than n but greater than n−1. For
n = 1, x = 0.309 m and x/w = 1.52, which is greater than n. For n = 2, x = 0.437 m and x/w = 2.15,
which is also greater than n. For n = 3, x = 0.535 m and x/w = 2.64. Now, this is less than n and
greater than n− 1, so the ball hits the third step.

36. Although we could use Eq. 4-26 to find where it lands, we choose instead to work with Eq. 4-21 and
Eq. 4-22 (for the soccer ball) since these will give information about where and when and these are also
considered more fundamental than Eq. 4-26. With ∆y = 0, we have

∆y = (v0 sin θ0) t−
1

2
gt2 =⇒ t =

(19.5) sin 45◦

1
2 (9.8)

= 2.81 s .

Then Eq. 4-21 yields ∆x = (v0 cos θ0) t = 38.3 m. Thus, using Eq. 4-8 and SI units, the player must
have an average velocity of

~vavg =
∆~r

∆t
=

38.3 ı̂− 5 ı̂

2.81
= −5.8 ı̂

which means his average speed (assuming he ran in only one direction) is 5.8 m/s.

37. We adopt the positive direction choices used in the textbook so that equations such as Eq. 4-22 are
directly applicable. The coordinate origin is at ground level directly below the release point. We write
θ0 = −37◦ for the angle measured from +x, since the angle given in the problem is measured from the
−y direction. We note that the initial speed of the projectile is the plane’s speed at the moment of
release.

(a) We use Eq. 4-22 to find v0 (SI units are understood).

y − y0 = (v0 sin θ0) t−
1

2
gt2

0− 730 = v0 sin(−37◦) (5.00)− 1

2
(9.8)(5.00)2

which yields v0 = 202 m/s.

(b) The horizontal distance traveled is x = v0t cos θ0 = (202)(5.00) cos−37.0◦ = 806 m.

(c) The x component of the velocity (just before impact) is vx = v0 cos θ0 = (202) cos−37.0◦ = 161 m/s.

(d) The y component of the velocity (just before impact) is vy = v0 sin θ0 − gt = (202) sin(−37◦) −
(9.80)(5.00) = −171 m/s.
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38. We assume the ball’s initial velocity is perpendicular to the plane of the net. We choose coordinates so
that (x0, y0) = (0, 3.0) m, and vx > 0 (note that v0y = 0).

(a) To (barely) clear the net, we have

y − y0 = v0yt−
1

2
gt2 =⇒ 3.0− 2.24 = 0− 1

2
(9.8)t2

which gives t = 0.39 s for the time it is passing over the net. This is plugged into the x-equation to
yield the (minimum) initial velocity vx = (8.0 m)/(0.39 s) = 20.3 m/s.

(b) We require y = 0 and find t from y − y0 = v0yt − 1
2gt

2. This value (t =
√

2(3.0)/9.8 = 0.78
s) is plugged into the x-equation to yield the (maximum) initial velocity vx = (17.0 m)/(0.78 s)
= 21.7 m/s.

39. We adopt the positive direction choices used in the textbook so that equations such as Eq. 4-22 are
directly applicable. The coordinate origin is at ground level directly below impact point between bat
and ball. The Hint given in the problem is important, since it provides us with enough information to
find v0 directly from Eq. 4-26.

(a) We want to know how high the ball is from the ground when it is at x = 97.5 m, which requires
knowing the initial velocity. Using the range information and θ0 = 45◦, we use Eq. 4-26 to solve
for v0:

v0 =

√

g R

sin 2θ0
=

√

(9.8)(107)

1
= 32.4 m/s .

Thus, Eq. 4-21 tells us the time it is over the fence:

t =
x

v0 cos θ0
=

97.5

(32.4) cos 45◦
= 4.26 s .

At this moment, the ball is at a height (above the ground) of

y = y0 + (v0 sin θ0) t−
1

2
gt2 = 9.88 m

which implies it does indeed clear the 7.32 m high fence.

(b) At t = 4.26 s, the center of the ball is 9.88− 7.32 = 2.56 m above the fence.

40. We adopt the positive direction choices used in the textbook so that equations such as Eq. 4-22 are
directly applicable. The coordinate origin is at ground level directly below the point where the ball was
hit by the racquet.

(a) We want to know how high the ball is above the court when it is at x = 12 m. First, Eq. 4-21 tells
us the time it is over the fence:

t =
x

v0 cos θ0
=

12

(23.6) cos 0◦
= 0.508 s .

At this moment, the ball is at a height (above the court) of

y = y0 + (v0 sin θ0) t−
1

2
gt2 = 1.103 m

which implies it does indeed clear the 0.90 m high fence.

(b) At t = 0.508 s, the center of the ball is 1.103− 0.90 = 0.20 m above the net.

(c) Repeating the computation in part (a) with θ0 = −5◦ results in t = 0.510 s and y = 0.04 m, which
clearly indicates that it cannot clear the net.
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(d) In the situation discussed in part (c), the distance between the top of the net and the center of the
ball at t = 0.510 s is 0.90− 0.04 = 0.86 m.

41. We adopt the positive direction choices used in the textbook so that equations such as Eq. 4-22 are
directly applicable. The coordinate origin is at the point where the ball is kicked. Where units are not
displayed, SI units are understood. We use x and y to denote the coordinates of ball at the goalpost,
and try to find the kicking angle(s) θ0 so that y = 3.44 m when x = 50 m. Writing the kinematic
equations for projectile motion: x = v0t cos θ0 and y = v0t sin θ0 − 1

2gt
2, we see the first equation gives

t = x/v0 cos θ0, and when this is substituted into the second the result is

y = x tan θ0 −
gx2

2v2
0 cos2 θ0

.

One may solve this by trial and error: systematically trying values of θ0 until you find the two that
satisfy the equation. A little manipulation, however, will give an algebraic solution:
Using the trigonometric identity 1/ cos2 θ0 = 1 + tan2 θ0, we obtain

1

2

gx2

v2
0

tan2 θ0 − x tan θ0 + y +
1

2

gx2

v2
0

= 0

which is a second-order equation for tan θ0. To simplify writing the solution, we denote c = 1
2gx

2/v2
0 =

1
2 (9.80)(50)2/(25)2 = 19.6 m. Then the second-order equation becomes c tan2 θ0 − x tan θ0 + y + c = 0.
Using the quadratic formula, we obtain its solution(s).

tan θ0 =
x±

√

x2 + 4(y + c)c

2c

=
50±

√

502 − 4(3.44 + 19.6)(19.6)

2(19.6)
.

The two solutions are given by tan θ0 = 1.95 and tan θ0 = 0.605. The corresponding (first-quadrant)
angles are θ0 = 63◦ and θ0 = 31◦. If kicked at any angle between these two, the ball will travel above
the cross bar on the goalposts.

42. The magnitude of the acceleration is

a =
v2

r
=

(10 m/s)2

25 m
= 4.0 m/s

2
.

43. We apply Eq. 4-33 to solve for speed v and Eq. 4-32 to find acceleration a.

(a) Since the radius of Earth is 6.37×106 m, the radius of the satellite orbit is 6.37×106 m+640×103 m
= 7.01× 106 m. Therefore, the speed of the satellite is

v =
2πr

T
=

2π(7.01× 106 m)

(98.0 min)(60 s/min)
= 7.49× 103 m/s .

(b) The magnitude of the acceleration is

a =
v2

r
=

(7.49× 103 m/s)2

7.01× 106 m
= 8.00 m/s

2
.

44. We note that the period of revolution is (1200 rev/min)
−1

= 8.3× 10−4 min which becomes, in SI units,
T = 0.050 s.

(a) The circumference is c = 2πr = 2π(0.15) = 0.94 m.

(b) The speed is v = c/T = (0.94)/(0.050) = 19 m/s. This is equivalent to using Eq. 4-33.
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(c) The magnitude of the acceleration is a = v2/r = 192/0.15 = 2.4× 103 m/s2.

(d) As noted above, T = 50 ms.

45. We apply Eq. 4-32 to solve for speed v and Eq. 4-33 to find the period T .

(a) We obtain

v =
√
ra =

√

(5.0 m)(7.0)(9.8 m/s2) = 19 m/s .

(b) The time to go around once (the period) is T = 2πr/v = 1.7 s. Therefore, in one minute (t = 60 s),
the astronaut executes

t

T
=

60

1.7
= 35

revolutions. Thus, 35 rev/min is needed to produce a centripetal acceleration of 7g when the radius
is 5.0 m.

(c) As noted above, T = 1.7 s.

46. The magnitude of centripetal acceleration (a = v2/r) and its direction (towards the center of the circle)
form the basis of this problem.

(a) If a passenger at this location experiences ~a = 1.83 m/s2 east, then the center of the circle is east

of this location. And the distance is r = v2/a = (3.662)/(1.83) = 7.32 m. Thus, relative to the
center, the passenger at that moment is located 7.32 m toward the west.

(b) We see the distance is the same, but now the direction of ~a experienced by the passenger is south –
indicating that the center of the merry-go-round is south of him. Therefore, relative to the center,
the passenger at that moment located 7.32 m toward the north.

47. The radius of Earth may be found in Appendix C.

(a) The speed of a person at Earth’s equator is v = 2πR/T , where R is the radius of Earth (6.37×106 m)
and T is the length of a day (8.64 × 104 s): v = 2π(6.37 × 106 m)/(8.64 × 104 s) = 463 m/s. The
magnitude of the acceleration is given by

a =
v2

R
=

(463 m/s)2

6.37× 106 m
= 0.034 m/s

2
.

(b) If T is the period, then v = 2πR/T is the speed and a = v2/R = 4π2R2/T 2R = 4π2R/T 2 is the
magnitude of the acceleration. Thus

T = 2π

√

R

a
= 2π

√

6.37× 106 m

9.8 m/s
2 = 5.1× 103 s = 84 min .

48. Eq. 4-32 describes an inverse proportionality between r and a, so that a large acceleration results from
a small radius. Thus, an upper limit for a corresponds to a lower limit for r.

(a) The minimum turning radius of the train is given by

rmin =
v2

amax
=

(216 km/h)2

(0.050)(9.8 m/s2)
= 7.3× 103 m .

(b) The speed of the train must be reduced to no more than

v =
√
amax r =

√

0.050(9.8)(1.00× 103) = 22 m/s

which is roughly 80 km/h.
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49. (a) Since the wheel completes 5 turns each minute, its period is one-fifth of a minute, or 12 s.

(b) The magnitude of the centripetal acceleration is given by a = v2/R, where R is the radius of
the wheel, and v is the speed of the passenger. Since the passenger goes a distance 2πR for each
revolution, his speed is

v =
2π(15 m)

12 s
= 7.85 m/s

and his centripetal acceleration is

a =
(7.85 m/s)2

15 m
= 4.1 m/s

2
.

When the passenger is at the highest point, his centripetal acceleration is downward, toward the
center of the orbit.

(c) At the lowest point, the centripetal acceleration vector points up, toward the center of the orbit.
It has the same magnitude as in part (b).

50. We apply Eq. 4-33 to solve for speed v and Eq. 4-32 to find centripetal acceleration a.

(a) v = 2πr/T = 2π(20 km)/1.0 s = 1.3× 105 km/s.

(b)

a =
v2

r
=

(126 km/s)2

20 km
= 7.9× 105 m/s

2
.

(c) Clearly, both v and a will increase if T is reduced.

51. To calculate the centripetal acceleration of the stone, we need to know its speed during its circular
motion (this is also its initial speed when it flies off). We use the kinematic equations of projectile
motion (discussed in §4-6) to find that speed. Taking the +y direction to be upward and placing the
origin at the point where the stone leaves its circular orbit, then the coordinates of the stone during
its motion as a projectile are given by x = v0t and y = − 1

2gt
2 (since v0 y = 0). It hits the ground at

x = 10 m and y = −2.0 m. Formally solving the second equation for the time, we obtain t =
√

−2y/g,
which we substitute into the first equation:

v0 = x

√

− g

2y
= (10 m)

√

− 9.8 m/s
2

2(−2.0 m)
= 15.7 m/s .

Therefore, the magnitude of the centripetal acceleration is

a =
v2

r
=

(15.7 m/s)2

1.5 m
= 160 m/s2 .

52. We write our magnitude-angle results in the form (R 6 θ) with SI units for the magnitude understood (m
for distances, m/s for speeds, m/s2 for accelerations). All angles θ are measured counterclockwise from
+x, but we will occasionally refer to angles φ which are measured counterclockwise from the vertical
line between the circle-center and the coordinate origin and the line drawn from the circle-center to
the particle location (see r in the figure). We note that the speed of the particle is v = 2πr/T where
r = 3.00 m and T = 20.0 s; thus, v = 0.942 m/s. The particle is moving counterclockwise in Fig. 4-37.

(a) At t = 5.00 s, the particle has traveled a fraction of

t

T
=

5.00

20.0
=

1

4

of a full revolution around the circle (starting at the origin). Thus, relative to the circle-center, the
particle is at

φ =
1

4
(360◦) = 90◦
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measured from vertical (as explained above). Referring to Fig. 4-37, we see that this position (which
is the “3 o’clock” position on the circle) corresponds to x = 3.00 m and y = 3.00 m relative to the
coordinate origin. In our magnitude-angle notation, this is expressed as (R 6 θ) = (4.24 6 45◦).
Although this position is easy to analyze without resorting to trigonometric relations, it is useful
(for the computations below) to note that these values of x and y relative to coordinate origin
can be gotten from the angle φ from the relations x = r sinφ and y = r − r cosφ. Of course,
R =

√

x2 + y2 and θ comes from choosing the appropriate possibility from tan−1 (y/x) (or by using
particular functions of vector capable calculators).

(b) At t = 7.50 s, the particle has traveled a fraction of 7.50/20.0 = 3/8 of a revolution around the circle
(starting at the origin). Relative to the circle-center, the particle is therefore at φ = 3/8 (360◦) =
135◦ measured from vertical in the manner discussed above. Referring to Fig. 4-37, we compute
that this position corresponds to x = 3.00 sin135◦ = 2.12 m and y = 3.00− 3.00 cos135◦ = 5.12 m
relative to the coordinate origin. In our magnitude-angle notation, this is expressed as (R 6 θ) =
(5.54 6 67.5◦).

(c) At t = 10.0 s, the particle has traveled a fraction of 10.0/20.0 = 1/2 of a revolution around
the circle. Relative to the circle-center, the particle is at φ = 180◦ measured from vertical (see
explanation, above). Referring to Fig. 4-37, we see that this position corresponds to x = 0 and
y = 6.00 m relative to the coordinate origin. In our magnitude-angle notation, this is expressed as
(R 6 θ) = (6.00 6 90.0◦).

(d) We subtract the position vector in part (a) from the position vector in part (c): (6.00 6 90.0◦) −
(4.24 6 45◦) = (4.24 6 135◦) using magnitude-angle notation (convenient when using vector capable
calculators). If we wish instead to use unit-vector notation, we write

∆~R = (0− 3) ı̂ + (6− 3) ĵ = −3 ı̂ + 3 ĵ

which leads to |∆~R| = 4.24 m and θ = 135◦.

(e) From Eq. 4-8, we have

~vavg =
∆~R

∆t
where ∆t = 5.00 s

which produces −0.6 ı̂ + 0.6 ĵ m/s in unit-vector notation or (0.849 6 135◦) in magnitude-angle
notation.

(f) The speed has already been noted (v = 0.942 m/s), but its direction is best seen by referring again
to Fig. 4-37. The velocity vector is tangent to the circle at its “3 o’clock position” (see part (a)),
which means ~v is vertical. Thus, our result is (0.942 6 90◦).

(g) Again, the speed has been noted above (v = 0.942 m/s), but its direction is best seen by referring
to Fig. 4-37. The velocity vector is tangent to the circle at its “12 o’clock position” (see part (c)),
which means ~v is horizontal. Thus, our result is (0.942 6 180◦).

(h) The acceleration has magnitude v2/r = 0.296 m/s2, and at this instant (see part (a)) it is horizontal
(towards the center of the circle). Thus, our result is (0.296 6 180◦).

(i) Again, a = v2/r = 0.296 m/s2, but at this instant (see part (c)) it is vertical (towards the center of
the circle). Thus, our result is (0.296 6 270◦).

53. We use Eq. 4-15 first using velocities relative to the truck (subscript t) and then using velocities relative
to the ground (subscript g). We work with SI units, so 20 km/h → 5.6 m/s, 30 km/h → 8.3 m/s, and
45 km/h → 12.5 m/s. We choose east as the + ı̂ direction.

(a) The velocity of the cheetah (subscript c) at the end of the 2.0 s interval is (from Eq. 4-42)

~vc t = ~vc g − ~vt g = 12.5 ı̂− (−5.6 ı̂) = 18.1 ı̂ m/s

relative to the truck. The (average) acceleration vector relative to the cameraman (in the truck) is

~aavg =
18.1 ı̂− (−8.3 ı̂)

2.0
= 13 ı̂ m/s2 .
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(b) The velocity of the cheetah at the start of the 2.0 s interval is (from Eq. 4-42)

~v0 c g = ~v0 c t + ~v0 t g = (−8.3 ı̂) + (−5.6 ı̂) = −13.9 ı̂ m/s

relative to the ground. The (average) acceleration vector relative to the crew member (on the
ground) is

~aavg =
12.5 ı̂− (−13.9 ı̂)

2.0
= 13 ı̂ m/s

2

identical to the result of part (a).

54. We choose upstream as the + ı̂ direction, and use Eq. 4-42.

(a) The subscript b is for the boat, w is for the water, and g is for the ground.

~vb g = ~vb w + ~vw g = (14 km/h) ı̂ + (−9 km/h) ı̂ = (5 km/h) ı̂

(b) And we use the subscript c for the child.

~vc g = ~vc b + ~vb g = (−6 km/h) ı̂ + (5 km/h) ı̂ = (−1 km/h) ı̂

55. When the escalator is stalled the speed of the person is vp = ℓ/t, where ℓ is the length of the escalator
and t is the time the person takes to walk up it. This is vp = (15 m)/(90 s) = 0.167 m/s. The escalator
moves at ve = (15 m)/(60 s) = 0.250 m/s. The speed of the person walking up the moving escalator is
v = vp + ve = 0.167 m/s+ 0.250 m/s = 0.417 m/s and the time taken to move the length of the escalator
is

t = ℓ/v = (15 m)/(0.417 m/s) = 36 s .

If the various times given are independent of the escalator length, then the answer does not depend on
that length either. In terms of ℓ (in meters) the speed (in meters per second) of the person walking on the
stalled escalator is ℓ/90, the speed of the moving escalator is ℓ/60, and the speed of the person walking
on the moving escalator is v = (ℓ/90) + (ℓ/60) = 0.0278ℓ. The time taken is t = ℓ/v = ℓ/0.0278ℓ = 36 s
and is independent of ℓ.

56. We denote the velocity of the player with ~v1 and the relative velocity between the player and the ball be
~v2. Then the velocity ~v of the ball relative to the field is given by ~v = ~v1 + ~v2. The smallest angle θmin

corresponds to the case when
~v ⊥ ~v1. Hence,

θmin = 180◦ − cos−1

( |~v1|
|~v2|

)

= 180◦ − cos−1

(

4.0 m/s

6.0 m/s

)

≈ 130◦ .

goal
θmin-

~v1

6
~v

HHHHHHY ~v2

57. Relative to the car the velocity of the snowflakes has a vertical component of 8.0 m/s and a horizontal
component of 50 km/h = 13.9 m/s. The angle θ from the vertical is found from

tan θ = vh/vv = (13.9 m/s)/(8.0 m/s) = 1.74

which yields θ = 60◦.

58. We denote the police and the motorist with subscripts p and m, respectively. The coordinate system is
indicated in Fig. 4-38.



89

(a) The velocity of the motorist with respect to the police car is

~vm p = ~vm − ~vp = −60 ĵ− (−80 ı̂) = 80 ı̂− 60 ĵ (km/h) .

(b) ~vm p does happen to be along the line of sight. Referring to Fig. 4-38, we find the vector pointing

from car to another is ~r = 800 ı̂− 600 ĵ m (from M to P ). Since the ratio of components in ~r is the
same as in ~vm p, they must point the same direction.

(c) No, they remain unchanged.

59. Since the raindrops fall vertically relative to the train, the horizontal component of the velocity of
a raindrop is vh = 30 m/s, the same as the speed of the train. If vv is the vertical component of
the velocity and θ is the angle between the direction of motion and the vertical, then tan θ = vh/vv.
Thus vv = vh/ tan θ = (30 m/s)/ tan 70◦ = 10.9 m/s. The speed of a raindrop is v =

√

v2
h + v2

v =
√

(30 m/s)2 + (10.9 m/s)2 = 32 m/s.

60. Here, the subscript W refers to the water. Our coordinates are chosen with +x being east and +y being
north. In these terms, the angle specifying east would be 0◦ and the angle specifying south would be
−90◦ or 270◦. Where the length unit is not displayed, km is to be understood.

(a) We have ~vA W = ~vA B + ~vB W , so that ~vA B = (22 6 − 90◦) − (40 6 37◦) = (56 6 − 125◦) in
the magnitude-angle notation (conveniently done with a vector capable calculator in polar mode).
Converting to rectangular components, we obtain

~vA B = −32 ı̂− 46 ĵ km/h .

Of course, this could have been done in unit-vector notation from the outset.

(b) Since the velocity-components are constant, integrating them to obtain the position is straightfor-
ward (~r − ~r0 =

∫

~v dt)

~r = (2.5− 32t) ı̂ + (4.0− 46t) ĵ

with lengths in kilometers and time in hours.

(c) The magnitude of this ~r is

r =
√

(2.5− 32t)2 + (4.0− 46t)2

We minimize this by taking a derivative and requiring it to equal zero – which leaves us with an
equation for t

dr

dt
=

1

2

6286t− 528
√

(2.5− 32t)2 + (4.0− 46t)2
= 0

which yields t = 0.084 h.

(d) Plugging this value of t back into the expression for the distance between the ships (r), we obtain
r = 0.2 km. Of course, the calculator offers more digits (r = 0.225...), but they are not significant;
in fact, the uncertainties implicit in the given data, here, should make the ship captains worry.

61. The velocity vector (relative to the shore) for ships A and B are given by

~vA = − (vA cos 45◦) ı̂ + (vA sin 45◦) ĵ

and

~vB = − (vB sin 40◦) ı̂− (vB cos 40◦) ĵ

respectively (where vA = 24 knots and vB = 28 knots). We are taking East as + ı̂ and North as ĵ.
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(a) Their relative velocity is

~vA B = ~vA − ~vB = (vB sin 40◦ − vA cos 45◦) ı̂ + (vB cos 40◦ + vA sin 45◦) ĵ

the magnitude of which is |~vA B| =
√

1.02 + 38.42 ≈ 38 knots. The angle θ which ~vA B makes with
North is given by

θ = tan−1

(

vAB,x

vAB,y

)

= tan−1

(

1.0

38.4

)

= 1.5◦

which is to say that ~vA B points 1.5◦ east of north.

(b) Since they started at the same time, their relative velocity describes at what rate the distance
between them is increasing. Because the rate is steady, we have

t =
|∆rA B|
|~vA B |

=
160

38
= 4.2 h .

(c) The velocity ~vA B does not change with time in this problem, and ~rA B is in the same direction as
~vA B since they started at the same time. Reversing the points of view, we have ~vA B = −~vB A so
that ~rA B = −~rB A (i.e., they are 180◦ opposite to each other). Hence, we conclude that B stays at
a bearing of 1.5◦ west of south relative to A during the journey (neglecting the curvature of Earth).

62. The (box)car has velocity ~vc g = v1 ı̂ relative to the ground, and the bullet has velocity

~v0 b g = v2 cos θ ı̂ + v2 sin θ ĵ

relative to the ground before entering the car (we are neglecting the effects of gravity on the bullet).
While in the car, its velocity relative to the outside ground is ~vb g = 0.8v2 cos θ ı̂ + 0.8v2 sin θ ĵ (due to
the 20% reduction mentioned in the problem). The problem indicates that the velocity of the bullet in
the car relative to the car is (with v3 unspecified) ~vb c = v3 ĵ. Now, Eq. 4-42 provides the condition

~vb g = ~vb c + ~vc g

0.8v2 cos θ ı̂ + 0.8v2 sin θ ĵ = v3 ĵ + v1 ı̂

so that equating x components allows us to find θ. If one wished to find v3 one could also equate the y
components, and from this, if the car width were given, one could find the time spent by the bullet in the
car, but this information is not asked for (which is why the width is irrelevant). Therefore, examining
the x components in SI units leads to

θ = cos−1

(

v1
0.8v2

)

= cos−1

(

85
(

1000
3600

)

0.8(650)

)

which yields 87◦ for the direction of ~vb g (measured from ı̂, which is the direction of motion of the
car). The problem asks, “from what direction was it fired?” – which means the answer is not 87◦ but
rather its supplement 93◦ (measured from the direction of motion). Stating this more carefully, in the
coordinate system we have adopted in our solution, the bullet velocity vector is in the first quadrant, at
87◦ measured counterclockwise from the +x direction (the direction of train motion), which means that
the direction from which the bullet came (where the sniper is) is in the third quadrant, at −93◦ (that
is, 93◦ measured clockwise from +x).

63. We construct a right triangle starting from the clearing on the south
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bank, drawing a line (200 m long)
due north (upward in our sketch)
across the river, and then a line
due west (upstream, leftward in
our sketch) along the north bank
for a distance (82 m)+(1.1 m/s)t,
where the t-dependent contribu-
tion is the distance that the river
will carry the boat downstream
during time t. .
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The hypotenuse of this right triangle (the arrow in our sketch) also depends on t and on the boat’s speed
(relative to the water), and we set it equal to the Pythagorean “sum” of the triangle’s sides:

(4.0)t =

√

2002 + (82 + 1.1t)
2

which leads to a quadratic equation for t

46724 + 180.4t− 14.8t2 = 0 .

We solve this and find a positive value: t = 62.6 s. The angle between the northward (200 m) leg of the
triangle and the hypotenuse (which is measured “west of north”) is then given by

θ = tan−1

(

82 + 1.1t

200

)

= tan−1

(

151

200

)

= 37◦ .

64. (a) We compute the coordinate pairs (x, y) from x = v0 cos θt and x = v0 sin θt− 1
2gt

2 for t = 20 s and
the speeds and angles given in the problem. We obtain (in kilometers)

(xA , yA ) = (10.1, 0.56) (xB , yB ) = (12.1, 1.51)

(xC , yC ) = (14.3, 2.68) (xD , yD ) = (16.4, 3.99)

and (xE , yE ) = (18.5, 5.53) which we plot in the next part.

(b) The vertical (y) and horizontal (x) axes are in kilometers. The graph does not start at the origin.
The curve to “fit” the data is not shown, but is easily imagined (forming the “curtain of death”).

1

2

3

4

5

10 12 14 16 18

65. We denote ~vPG as the velocity of the plane relative to the ground, ~vAG as the velocity of the air relative
to the ground, and ~vPA be the velocity of the plane relative to the air.

(a) The vector diagram is shown below. ~vPG = ~vPA + ~vAG. Since the magnitudes vPG and vPA are
equal the triangle is isosceles, with two sides of equal length. Consider either of the right triangles
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formed when the bisector of θ
is drawn (the dashed line). It
bisects ~vAG, so

sin(θ/2) =
vAG

2vPG

=
70.0 mi/h

2(135 mi/h)

which leads to θ = 30.1◦.
Now ~vAG makes the same an-
gle with the E-W line as the
dashed line does with the N-
S line. The wind is blowing
in the direction 15◦ north of
west. Thus, it is blowing from

75◦ east of south.
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(b) The plane is headed along ~vPA, in the direction 30◦ east of north. There is another solution, with
the plane headed 30◦ west of north and the wind blowing 15◦ north of east (that is, from 75◦ west
of south).

66. (a) The ball must increase in height by ∆y = 0.193 m and cover a horizontal distance ∆x = 0.910 m
during a very short time t0 = 1.65 × 10−2 s. The statement that the “initial curvature of the
ball’s path can be neglected” is essentially the same as saying the average velocity for 0 ≤ t ≤ t0
may be taken equal to the instantaneous initial velocity ~v0. Thus, using Eq. 4-8 to figure its two
components, we have

tan θ0 =
v0y

v0x
=

∆y
t0
∆x
t0

=
∆y

∆x

so that θ0 = tan−1(0.193/0.910) = 12◦.

(b) The magnitude of ~v0 is

√

v2
0x + v2

0y =

√

(

∆x

t0

)2

+

(

∆y

t0

)2

=

√

∆x2 + ∆y2

t0

which yields v0 = 56.4 m/s.

(c) The range is given by Eq. 4-26:

R =
v2
0

g
sin 2θ0 = 132 m .

(d) Partly because of its dimpled surface (but other air-flow related effects are important here) the golf
ball travels farther than one would expect based on the simple projectile-motion analysis done here.

67. (a) Since the performer returns to the original level, Eq. 4-26 applies. With R = 4.0 m and θ0 = 30◦,
the initial speed (for the projectile motion) is consequently

v0 =

√

gR

sin 2θ0
= 6.7 m/s .

This is, of course, the final speed v for the Air Ramp’s acceleration process (for which the initial
speed is taken to be zero) Then, for that process, Eq. 2-11 leads to

a =
v

t
=

6.7

0.25
= 27 m/s2 .

We express this as a multiple of g by setting up a ratio: a = (27/9.8)g = 2.7g.
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(b) Repeating the above steps for R = 12 m, t = 0.29 s and θ0 = 45◦ gives a = 3.8g.

68. The initial position vector ~ro satisfies ~r − ~ro = ∆~r, which results in

~ro = ~r −∆~r = (3 ĵ− 4 k̂)− (2 ı̂− 3 ĵ + 6 k̂) = −2.0 ı̂ + 6.0 ĵ− 10 k̂

where the understood unit is meters.

69. We adopt a coordinate system with ı̂ pointed east and ĵ pointed north; the coordinate origin is the
flagpole. With SI units understood, we “translate” the given information into unit-vector notation as
follows:

~ro = 40 ı̂ and ~vo = −10 ĵ

~r = 40 ĵ and ~v = 10 ı̂ .

(a) Using Eq. 4-2, the displacement ∆~r is

~r − ~ro = (56.6 6 135◦)

where we have expressed the result in magnitude-angle notation. The displacement has magnitude
40
√

2 = 56.6 m and points due Northwest.

(b) Eq. 4-8 shows that ~vavg points in the same direction as ∆~r, and that its magnitude is simply the
magnitude of the displacement divided by the time (∆t = 30 s). Thus, the average velocity has
magnitude 56.6/30 = 1.89 m/s and points due Northwest.

(c) Using Eq. 4-15, we have

~aavg =
~v − ~vo

∆t
= 0.333 ı̂ + 0.333 ĵ

in SI units. The magnitude of the average acceleration vector is therefore 0.333
√

2 = 0.471 m/s2,
and it points due Northeast.

70. The velocity of Larry is v1 and that of Curly is v2. Also, we denote the length of the corridor by L. Now,
Larry’s time of passage is t1 = 150 s (which must equal L/v1 ), and Curly’s time of passage is t2 = 70 s
(which must equal L/v2 ). The time Moe takes is therefore

t =
L

v1 + v2
=

1

v1/L+ v2/L
=

1
1

150 + 1
70

= 48 s .

71. We choose horizontal x and vertical y axes such that both components of ~v0 are positive. Positive angles
are counterclockwise from +x and negative angles are clockwise from it. In unit-vector notation, the
velocity at each instant during the projectile motion is

~v = v0 cos θ0 ı̂ + (v0 sin θ0 − gt) ĵ .

(a) With v0 = 30 m/s and θ0 = 60◦, we obtain ~v = 15 ı̂ + ĵ in m/s, for t = 2.0 s. Converting to
magnitude-angle notation, this is ~v = (16 6 23◦) with the magnitude in m/s.

(b) Now with t = 5.0 s, we find ~v = (27 6 − 57◦).

72. (a) The helicopter’s speed is v′ = 6.2 m/s. From the discussions in §4-9 we see that the speed of the
package is v0 = 12− v′ = 5.8 m/s, relative to the ground.

(b) Letting +x be in the direction of ~v0 for the package and +y be downward, we have (for the motion
of the package)

∆x = v0t and ∆y =
1

2
gt2

where ∆y = 9.5 m. From these, we find t = 1.39 s and ∆x = 8.08 m for the package, while ∆x′ (for
the helicopter, which is moving in the opposite direction) is −v′ t = −8.63 m. Thus, the horizontal
separation between them is 8.08− (−8.63) = 16.7 m.
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(c) The components of ~v at the moment of impact are (vx, vy) = (5.8, 13.6) in SI units. The vertical
component has been computed using Eq. 2-11. The angle (which is below horizontal) for this vector
is tan−1(13.6/5.8) = 67◦.

73. (a) By symmetry, y = H occurs at x = R/2 (taking the coordinate origin to be at the launch point).
Substituting this into Eq. 4-25 gives

H =
R

2
tan θ0 −

gR2/4

2v2
0 cos2 θ0

which leads immediately to
H

R
=

1

2

(

tan θ0 −
gR

4v2
0 cos2 θ0

)

.

In the far right term, we substitute from Eq. 4-26 for the range:

H

R
=

1

2

(

tan θ0 −
g
(

v2
0 sin(2θ0)/g

)

4v2
0 cos2 θ0

)

which, upon setting sin 2θ0 = 2 sin θ0 cos θ0 and simplifying that last term, yields

H

R
=

1

2

(

tan θ0 −
sin θ0

2 cos θ0

)

which clearly leads to the relation we wish to prove.

(b) Setting H/R = 1 in that relation, we have θ0 = tan−1(4) = 76◦.

74. (a) The tangent of the angle φ is found from the ratio of y to x coordinates of the highest point (taking
the coordinate origin to be at the launch point). Using the same notation as in problem 73, we
have

φ = tan−1

(

H
1
2R

)

tan−1

(

2
H

R

)

.

Substituting H/R = 1
4 tan θ0 from problem 73, we obtain the relation

tan−1

(

1

2
tan θ0

)

.

(b) Since tan 45◦ = 1, then φ = tan−1
(

1
2

)

= 27◦.

75. The initial velocity has magnitude v0 and because it is horizontal, it is equal to vx the horizontal
component of velocity at impact. Thus, the speed at impact is

√

v2
0 + v2

y = 3v0 where vy =
√

2gh

where we use Eq. 2-16 with ∆x replaced with the h = 20 m to obtain that second equality. Squaring
both sides of the first equality and substituting from the second, we find

v2
0 + 2gh = (3v0)

2

which leads to gh = 4v2
0 and therefore to v0 =

√

(9.8)(20)/2 = 7.0 m/s.

76. (a) The magnitude of the displacement vector ∆~r is given by

|∆~r| =
√

21.52 + 9.72 + 2.882 = 23.8 km .

Thus,

|~vavg| =
|∆~r|
∆t

=
23.8

3.50
= 6.79 km/h .
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(b) The angle θ in question is given by

θ = tan−1

(

2.88√
21.52 + 9.72

)

= 6.96◦ .

77. With no acceleration in the x direction yet a constant acceleration of 1.4 m/s2 in the y direction, the
position (in meters) as a function of time (in seconds) must be

~r = (6.0t)̂ı +

(

1

2
(1.4)t2

)

ĵ

and ~v is its derivative with respect to t.

(a) At t = 3.0 s, therefore, ~v = 6.0̂ı + 4.2̂j m/s.

(b) At t = 3.0 s, the position is ~r = 18 ı̂ + 6.3 ĵ m.

78. We choose a coordinate system with origin at the clock center and +x rightward (towards the “3:00”
position) and +y upward (towards “12:00”).

(a) In unit-vector notation, we have (in centimeters) ~r1 = 10 ı̂ and ~r2 = −10 ĵ. Thus, Eq. 4-2 gives

∆~r = ~r2 − ~r1 = −10 ı̂− 10 ĵ −→ (14 6 − 135◦)

where we have switched to magnitude-angle notation in the last step.

(b) In this case, ~r1 = −10 ĵ and ~r2 = 10 ĵ, and ∆~r = 20 ĵ cm.

(c) In a full-hour sweep, the hand returns to its starting position, and the displacement is zero.

79. We let gp denote the magnitude of the gravitational acceleration on the planet. A number of the points on
the graph (including some “inferred” points – such as the max height point at x = 12.5 m and t = 1.25 s)
can be analyzed profitably; for future reference, we label (with subscripts) the first ((x0, y0) = (0, 2) at
t0 = 0) and last (“final”) points ((xf , yf ) = (25, 2) at tf = 2.5), with lengths in meters and time in
seconds.

(a) The x-component of the initial velocity is found from xf − x0 = v0xtf . Therefore, v0x = 25/2.5 =
10 m/s. And we try to obtain the y-component from yf − y0 = 0 = v0ytf − 1

2gpt
2
f . This gives us

v0y = 1.25gp , and we see we need another equation (by analyzing another point, say, the next-to-
last one) y−y0 = v0yt− 1

2gpt
2 with y = 6 and t = 2; this produces our second equation v0y = 2+gp

. Simultaneous solution of these two equations produces results for v0y and gp (relevant to part

(b)). Thus, our complete answer for the initial velocity is ~v = 10̂ı + 10̂j m/s.

(b) As a by-product of the part (a) computations, we have gp = 8.0 m/s2.

(c) Solving for tg (the time to reach the ground) in yg = 0 = y0 + v0ytg − 1
2gpt

2
g leads to a positive

answer: tg = 2.7 s.

(d) With g = 9.8 m/s2, the method employed in part (c) would produce the quadratic equation−4.9t2g+
10tg + 2 = 0 and then the positive result tg = 2.2 s.

80. At maximum height, the y-component of a projectile’s velocity vanishes, so the given 10 m/s is the
(constant) x-component of velocity.

(a) Using v0y to denote the y-velocity 1.0 s before reaching the maximum height, then (with vy = 0)
the equation vy = v0y − gt leads to v0y = 9.8 m/s. The magnitude of the velocity vector at that
moment (also known as the speed) is therefore

√

v2
x + v0y

2 =
√

102 + 9.82 = 14 m/s .
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(b) It is clear from the symmetry of the problem that the speed is the same 1.0 s after reaching the
top, as it was 1.0 s before (14 m/s again). This may be verified by using vy = v0y − gt again
but now “starting the clock” at the highest point so that v0y = 0 (and t = 1.0 s). This leads to

vy = −9.8 m/s and ultimately to
√

102 + (−18)2 = 14 m/s.

(c) With v0y denoting the y-component of velocity one second before the top of the trajectory – as
in part (a) – then we have y = 0 = y0 + v0yt − 1

2gt
2 where t = 1.0 s. This yields y0 = −4.9 m.

Alternatively, Eq. 2-18 could have been used, with vy = 0 to the same end. The x0 value more
simply results from x = 0 = x0 +(10 m/s)(1.0 s). Thus, the coordinates (in meters) of the projectile
one second before reaching maximum height is (−10,−4.9).

(d) It is clear from symmetry that the coordinate one second after the maximum height is reached
is (10,−4.9) (in meters). But this can be verified by considering t = 0 at the top and using
y − y0 = v0yt− 1

2gt
2 where y0 = v0y = 0 and t = 1 s. And by using x− x0 = (10 m/s)(1.0 s) where

x0 = 0. Thus, x = 10 m and y = −4.9 m is obtained.

81. With gB = 9.8128 m/s2 and gM = 9.7999 m/s2, we apply Eq. 4-26:

RM −RB =
v2
0 sin 2θ0
gM

− v2
0 sin 2θ0
gB

=
v2
0 sin 2θ0
gB

(

gB

gM
− 1

)

which becomes

RM −RB = RB

(

9.8128

9.7999
− 1

)

and yields (upon substituting RB = 8.09 m) RM −RB = 0.01 m.

82. (a) Using the same coordinate system assumed in Eq. 4-25, we rearrange that equation to solve for the
initial speed:

v0 =
x

cos θ0

√

g

2 (x tan θ0 − y)
which yields v0 = 255.5 ≈ 2.6× 102 m/s for x = 9400 m, y = −3300 m, and θ0 = 35◦.

(b) From Eq. 4-21, we obtain the time of flight:

t =
x

v0 cos θ0
=

9400

255.5 cos35◦
= 45 s .

(c) We expect the air to provide resistance but no appreciable lift to the rock, so we would need a
greater launching speed to reach the same target.

83. (a) Using the same coordinate system assumed in Eq. 4-22, we solve for y = h:

h = y0 + v0 sin θ0 −
1

2
gt2

which yields h = 51.8 m for y0 = 0, v0 = 42 m/s, θ0 = 60◦ and t = 5.5 s.

(b) The horizontal motion is steady, so vx = v0x = v0 cos θ0 , but the vertical component of velocity
varies according to Eq. 4-23. Thus, the speed at impact is

v =

√

(v0 cos θ0 )2 + (v0 sin θ0 − gt)2 = 27 m/s .

(c) We use Eq. 4-24 with vy = 0 and y = H :

H =
(v0 sin θ0 )

2

2g
= 67.5 m .
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84. (a) Using the same coordinate system assumed in Eq. 4-25, we find

y = x tan θ0 −
gx2

2 (v0 cos θ0)
2 = −gx

2

2v2
0

if θ0 = 0 .

Thus, with v0 = 3 × 106 m/s and x = 1 m, we obtain y = −5.4 × 10−13 m which is not practical
to measure (and suggests why gravitational processes play such a small role in the fields of atomic
and subatomic physics).

(b) It is clear from the above expression that |y| decreases as v0 is reduced.

85. (a) Using the same coordinate system assumed in Eq. 4-21, we obtain the time of flight

t =
∆x

v0 cos θ0
=

20

15 cos 35◦
= 1.63 s .

(b) At that moment, its height of above the ground (taking y0 = 0) is

y = (v0 sin θ0) t−
1

2
gt2 = 1.02 m .

Thus, the ball is 18 cm below the center of the circle; since the circle radius is 15 cm, we see that
it misses it altogether.

(c) The horizontal component of velocity (at t = 1.63 s) is the same as initially:

vx = v0x = v0 cos θ0 = 15 cos 35◦ = 12.3 m/s .

The vertical component is given by Eq. 4-23:

vy = v0 sin θ0 − gt = 15 sin 35◦ − (9.8)(1.63) = −7.3 m/s .

Thus, the magnitude of its speed at impact is
√

v2
x + v2

y = 14.3 m/s.

(d) As we saw in the previous part, the sign of vy is negative, implying that it is now heading down
(after reaching its max height).

86. (a) From Eq. 4-22 (with θ0 = 0), the time of flight is

t =

√

2h

g
=

√

2(45)

9.8
= 3.03 s .

(b) The horizontal distance traveled is given by Eq. 4-21:

∆x = v0t = (250)(3.03) = 758 m .

(c) And from Eq. 4-23, we find

|vy| = gt = (9.80)(3.03) = 29.7 m/s .

87. Using the same coordinate system assumed in Eq. 4-25, we find x for the elevated cannon from

y = x tan θ0 −
gx2

2 (v0 cos θ0)
2 where y = −30 m.

Using the quadratic formula (choosing the positive root), we find

x = v0 cos θ0





v0 sin θ0 +

√

(v0 sin θ0)
2 − 2gy

g





which yields x = 715 m for v0 = 82 m/s (from Sample Problem 4-7) and θ0 = 45◦. This is 29 m longer
than the 686 m found in that Sample Problem. The “9” in 29 m is not reliable, considering the low level
of precision in the given data.
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88. (a) With r = 0.15 m and a = 3.0× 10614 m/s2, Eq. 4-32 gives

v =
√
ra = 6.7× 106 m/s .

(b) The period is given by Eq. 4-33:

T =
2πr

v
= 1.4× 10−7 s .

89. The type of acceleration involved in steady-speed circular motion is the centripetal acceleration a = v2/r
which is at each moment directed towards the center of the circle. The radius of the circle is r = 122/3 =
48 m. Thus, the car is at the present moment 48 m west of the center of its circular path; this is equally
true in part (a) and part (b).

90. (a) With v = c/10 = 3× 107 m/s and a = 20g = 196 m/s2, Eq. 4-32 gives

r =
v2

a
= 4.6× 1012 m .

(b) The period is given by Eq. 4-33:

T =
2πr

v
= 9.6× 105 s .

Thus, the time to make a quarter-turn is T/4 = 2.4× 105 s or about 2.8 days.

91. (a) Using the same coordinate system assumed in Eq. 4-21 and Eq. 4-22 (so that θ0 = −20.0◦), we use
v0 = 15.0 m/s and find the horizontal displacement of the ball at t = 2.30 s:

∆x = (v0 cos θ0) t = 32.4 m .

(b) And we find the vertical displacement:

∆y = (v0 sin θ0) t−
1

2
gt2 = −37.7 m .

92. This is a classic problem involving two-dimensional relative motion; see §4-9. The steps in Sample
Problem 4-11 in the textbook are similar to those used here. We align our coordinates so that east

corresponds to +x and north corresponds to +y. We write the vector addition equation as ~vBG =
~vBW +~vWG. We have ~vWG = (2.0 6 0◦) in the magnitude-angle notation (with the unit m/s understood),
or ~vWG = 2.0 ı̂ in unit-vector notation. We also have ~vBW = (8.0 6 120◦) where we have been careful
to phrase the angle in the ‘standard’ way (measured counterclockwise from the +x axis), or ~vBW =
−4.0 ı̂ + 6.9 ĵ .

(a) We can solve the vector addition equation for ~vBG:

~vBG = ~vBW + ~vWG = (2.0 6 0◦) + (8.0 6 120◦) = (7.2 6 106◦)

which is very efficiently done using a vector capable calculator in polar mode. Thus |~vBG| = 7.2 m/s,
and its direction is 16◦ west of north, or 74◦ north of west.

(b) The velocity is constant, and we apply y − y0 = vyt in a reference frame. Thus, in the ground

reference frame, we have 200 = 7.2 sin(106◦)t → t = 29 s. Note: if a student obtains “28 s”, then
the student has probably neglected to take the y component properly (a common mistake).

93. The topic of relative motion (with constant velocity motion) in a two-dimensional setting is covered in
§4-9. We note that

~vPG = ~vPA + ~vAG
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describes a right triangle, with one leg being ~vPG (east), another leg being ~vAG (magnitude = 20,
direction = south), and the hypotenuse being ~vPA (magnitude = 70). Lengths are in kilometers and
time is in hours. Using the Pythagorean theorem, we have

|~vPA| =
√

|~vPG|2 + |~vAG|2 =⇒ 70 =

√

|~vPG|2 + 202

which is easily solved for the ground speed: |~vPG| = 67 km/h.

94. Our coordinate system has ı̂ pointed east and ĵ pointed north. All distances are in kilometers, times in
hours, and speeds in km/h. The first displacement is ~rAB = 483 ı̂ and the second is ~rBC = −966 ĵ.

(a) The net displacement is

~rAC = ~rAB + ~rBC = 483 ı̂− 966 ĵ −→ (1080 6 − 63.4◦)

where we have expressed the result in magnitude-angle notation in the last step. We observe that
the angle can be alternatively expressed as 63.4◦ south of east, or 26.6◦ east of south.

(b) Dividing the magnitude of ~rAC by the total time (2.25 h) gives the magnitude of ~vavg and its
direction is the same as in part (a). Thus, ~vavg = (480 6 −63.4◦) in magnitude-angle notation (with
km/h understood).

(c) Assuming the AB trip was a straight one, and similarly for the BC trip, then |~rAB| is the distance
traveled during the AB trip, and |~rBC | is the distance traveled during the BC trip. Since the
average speed is the total distance divided by the total time, it equals

483 + 966

2.25
= 644 km/h .

95. We take the initial (x, y) specification to be (0.000, 0.762) m, and the positive x direction to be towards
the “green monster.” The components of the initial velocity are (33.53 6 55◦) → (19.23, 27.47) m/s.

(a) With t = 5.00 s, we have x = x0 + vxt = 96.2 m.

(b) At that time, y = y0 + v0yt− 1
2gt

2 = 15.59 m, which is 4.31 m above the wall.

(c) The moment in question is specified by t = 4.50 s. At that time, x − x0 = (19.23)(4.5) = 86.5 m,
and y = y0 + v0yt− 1

2gt
2 = 25.1 m.

96. The displacement of the one-way trip is the same as the displacement, which has magnitudeD = 4350 km
for the flight (we are in a frame of reference that rotates with the earth). The velocity of the flight relative
to the earth is

~vfe = ~va+ ~ae

where ~ae is the velocity of the (eastward) jet stream (with magnitude v > 0), and ~ae is the velocity of
the plane relative to the air (with magnitude u = 966 m/s). And the magnitudes of the eastward flight
velocity (relative to earth) and of the westward flight velocity (primed) are, respectively,

|~vfe| =
D

t
and

∣

∣~v ′
fe

∣

∣ =
D

t′
.

The time difference (5/6 of an hour) is therefore

t′ − t =
D
∣

∣

∣~v ′
fe

∣

∣

∣

− D

|~vfe|

∆t =
D

u− v −
D

u+ v
.

Using the quadratic formula to solve for v, we obtain

v =
−D +

√

D2 + u2(∆t)2

∆t
= 89 km/h .
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97. Using the same coordinate system assumed in Eq. 4-25, we rearrange that equation to solve for the initial
speed:

v0 =
x

cos θ0

√

g

2 (x tan θ0 − y)
which yields v0 = 23 ft/s for g = 32 ft/s2, x = 13 ft, y = 3 ft and θ0 = 55◦.

98. We establish coordinates with ı̂ pointing to the far side of the river (perpendicular to the current) and
ĵ pointing in the direction of the current. We are told that the magnitude (presumed constant) of the
velocity of the boat relative to the water is |~vbw | = u = 6.4 km/h. Its angle, relative to the x axis is θ.
With km and h as the understood units, the velocity of the water (relative to the ground) is ~vwg = 3.2 ĵ .

(a) To reach a point “directly opposite” means that the velocity of her boat relative to ground must

be ~bg = v ı̂ where v > 0 is unknown. Thus, all ĵ components must cancel in the vector sum

~vbw + ~vwg = ~vbg

which means the u sin θ = −3.2, so θ = sin−1(−3.2/6.4) = −30◦.

(b) Using the result from part (a), we find v = u cos θ = 5.5 km/h. Thus, traveling a distance of
ℓ = 6.4 km requires a time of 6.4/5.5 = 1.15 h or 69 min.

(c) If her motion is completely along the y axis (as the problem implies) then with vw = 3.2 km/h (the
water speed) we have

ttotal =
D

u+ vw
+

D

u− vw
= 1.33 h

where D = 3.2 km. This is equivalent to 80 min.

(d) Since
D

u+ vw
+

D

u− vw
=

D

u− vw
+

D

u+ vw

the answer is the same as in the previous part.

(e) The case of general θ leads to

~vbg = ~vbw + ~vwg = u cos θ ı̂ + (u sin θ + vw) ĵ

where the x component of ~vbg must equal ell/t. Thus,

t =
ℓ

u cos θ

which can be minimized using dt/dθ = 0 (though, of course, an easier way is to appeal to either
physical or mathematical intuition – concluding that the shortest-time path should have θ = 0).
Then t = 6.4/6.4 = 1.0 h, or 60 min.

99. With v0 = 30 m/s and R = 20 m, Eq. 4-26 gives

sin 2θ0 =
gR

v2
0

= 0.218 .

Because sin (φ) = sin (180◦ − φ), there are two roots of the above equation:

2θ0 = sin−1(0.218) = 12.6◦ and 167.4◦ .

Therefore, the two possible launch angles that will hit the target (in the absence of air friction and
related effects) are θ0 = 6.3◦ and θ0 = 83.7◦. An alternative approach to this problem in terms of
Eq. 4-25 (with y = 0 and 1/ cos2 = 1 + tan2) is possible – and leads to a quadratic equation for tan θ0
with the roots providing these two possible θ0 values.
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100. (a) The time available before the train arrives at the impact spot is

ttrain =
40 m

30 m/s
= 1.33 s

(the train does not reduce its speed). We interpret the phrase “distance between the car and the
center of the crossing” to refer to the distance from the front bumper of the car to that point. In
which case, the car needs to travel a total distance of ∆x = 40 + 5 + 1.5 = 46.5 m in order for its
rear bumper and the edge of the train not to collide (the distance from the center of the train to
either edge of the train is 1.5 m). With a starting velocity of v0 = 30 m/s and an acceleration of
a = 1.5 m/s2, Eq. 2-15 leads to

∆x = v0t+
1

2
at2 =⇒ t =

−v0 ±
√

v2
0 + 2a∆x

a

which yields (upon taking the positive root) a time tcar = 1.49 s needed for the car to make it.
Recalling our result for ttrain we see the car doesn’t have enough time available to make it across.

(b) The difference is tcar − ttrain = 0.16 s. We note that at t = ttrain the front bumper of the car is
v0t+ 1

2at
2 = 41.33 m from where it started, which means it is 1.33 m past the center of the track

(but the edge of the track is 1.5 m from the center). If the car was coming from the south, then the
point P on the car impacted by the southern-most corner of the front of the train is 2.83 m behind
the front bumper (or 2.17 m in front of the rear bumper). The motion of P is what is plotted below
(the top graph – looking like a
line instead of a parabola be-
cause the final speed of the car
is not much different than its
initial speed). Since the posi-
tion of the train is on an en-
tirely different axis than that
of the car, we plot the dis-
tance (in meters) from P to
“south” rail of the tracks (the
top curve shown), and the dis-
tance of the “south” front cor-
ner of the train to the line-of-
motion of the car (the bottom
line shown).

0
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40
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101. (a) With v0 = 6.3 m/s and R = 0.40 m, Eq. 4-26 gives

sin 2θ0 =
gR

v2
0

= 0.0988 .

Because sin (φ) = sin (180◦ − φ), there are two roots of the above equation:

2θ0 = sin−1(0.0988) = 5.7◦ and 174.3◦ .

Therefore, the two possible launch angles that will hit the target (in the absence of air friction and
related effects) are θ0 = 2.8◦ and θ0 = 87.1◦. But the juggler is trying to achieve a visual effect by
having a relatively high trajectory for the balls, so θ0 = 87.1◦ is the result he should choose.

(b) We do not show the graph here. It would be very much like the higher parabola shown in Fig. 4-51.

(c) , (d) and (e) The problem requests that the student work with his graphs, here, but we – for
doublechecking purposes – use Eq. 4-26 to calculate R− 0.40 m for θ0 − 87.1◦ = −2◦,−1◦, 1◦, and
2◦. We obtain the respective values (in meters) 0.28, 0.14,−0.14, and −0.28.
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102. (First problem in Cluster 1)
Using the coordinate system employed in §4-5 and §4-6, we have v0x = vx > 0 and v0y = 0. Also,
y0 = h > 0, x0 = 0, y = 0 (when it hits the ground at t = 3.00)), and x = 150, with lengths in meters
and time in seconds.

(a) The equation y − y0 = v0yt− 1
2gt

2 becomes −h = − 1
2 (9.8)(3.00)2, so that h = 44.1 m.

(b) The equation vy = v0y − gt gives the y-component of the “final” velocity as vy = −(9.8)(3.00) =
29.4 m/s. The x-component of velocity (which is constant) is computed from vx = (x − x0)/t =
150/3.00 = 50.0 m/s. Therefore,

|~v| =
√

v2
x + v2

y =
√

502 + 29.42 = 58.0 m/s .

103. (Second problem in Cluster 1)
Using the coordinate system employed in §4-5 and §4-6, we have v0x = v0 cos 30◦ > 0 and v0y =
v0 sin 30◦ > 0. Also, y0 = 0 (corresponding to the dashed line in the figure), x0 = 0, y = h > 0 (where
it lands at t = 3.00), and x = 100, with lengths in meters and time in seconds.

(a) The x-equation determines v0

x− x0 = v0 cos (30)t =⇒ 100 = v0(0.866)(3.00)

which leads to v0 = 38.5 m/s. The y-equation y−y0 = v0yt− 1
2gt

2 becomes h = (38.5)(sin 30)(3.00)−
1
2 (9.8)(3.00)2 = 13.6 m.

(b) As a byproduct of part (a)’s computation, we found v0 = 38.5 m/s.

(c) Although a somewhat easier method will be found in the energy chapter (especially Chapter 8),
we will find the “final” velocity components with the methods of §4-6. We have vx = v0x =
38.5 cos 30 = 33.3 m/s. And vy = v0y − gt = 38.5 sin30− (9.8)(3.00) = −10.2 m/s. Therefore,

|~v| =
√

v2
x + v2

y =

√

(33.3)2 + (−10.2)2 = 34.8 m/s .

104. (Third problem in Cluster 1)
Following the hint, we have the time-reversed problem with the ball thrown from the roof, towards the
left, at 60◦ measured clockwise from a leftward axis. We see in this time-reversed situation that it is
convenient to take +x as leftward with positive angles measured clockwise. Lengths are in meters and
time is in seconds.

(a) With y0 = 20.0, and y = 0 at t = 4.00, we have y − y0 = v0yt − 1
2gt

2 where v0y = v0 sin 60◦.
This leads to v0 = 16.9 m/s. This plugs into the x-equation (with x0 = 0 and x = d) to produce
d = (16.9 cos 60◦)(4.00) = 33.7 m.

(b) Although a somewhat easier method will be found in the energy chapter (especially Chapter 8), we
will find the “final” velocity components with the methods of §4-6. Note that we’re still working
the time-reversed problem; this “final” ~v is actually the velocity with which it was thrown. We have
vx = v0x = 16.9 cos 60◦ = 8.43 m/s. And vy = v0y − gt = 16.9 sin 60◦ − (9.8)(4.00) = −24.6 m/s.
We convert from rectangular components to polar (that is, magnitude-angle) representation:

~v = (8.43,−24.6) −→ (26.0 6 − 71.1◦) .

and we now interpret our result (“undoing” the time reversal) as an initial velocity of magnitude
26 m/s with angle (up from rightward) of 71◦.

105. (Fourth problem in Cluster 1)
Following the hint, we have the time-reversed problem with the ball thrown from the ground, towards
the right, at 60◦ measured counterclockwise from a rightward axis. We see in this time-reversed situation
that it is convenient to use the familiar coordinate system with +x as rightward and with positive angles
measured counterclockwise. Lengths are in meters and time is in seconds.
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(a) The x-equation (with x0 = 0 and x = 25.0) leads to 25 = (v0 cos 60◦)(1.50), so that v0 = 33.3 m/s.
And with y0 = 0, and y = h > 0 at t = 1.50, we have y − y0 = v0yt− 1

2gt
2 where v0y = v0 sin 60◦.

This leads to h = 32.3 m.

(b) Although a somewhat easier method will be found in the energy chapter (especially Chapter 8), we
will find the “final” velocity components with the methods of §4-6. Note that we’re still working
the time-reversed problem; this “final” ~v is actually the velocity with which it was thrown. We have
vx = v0x = 33.3 cos 60◦ = 16.7 m/s. And vy = v0y − gt = 33.3 sin 60◦− (9.8)(1.50) = 14.2 m/s. We
convert from rectangular to polar in terms of the magnitude-angle notation:

~v = (16.7, 14.2) −→ (21.9 6 40.4◦) .

We now interpret this result (“undoing” the time reversal) as an initial velocity (from the edge of
the building) of magnitude 22 m/s with angle (down from leftward) of 40◦.

106. (Fifth problem in Cluster 1)
Let y0 = 1.0 m at x0 = 0 when the ball is hit. Let y1 = h (the height of the wall) and x1 describe the
point where it first rises above the wall one second after being hit; similarly, y2 = h and x2 describe the
point where it passes back down behind the wall four seconds later. And yf = 1.0 m at xf = R is where
it is caught. Lengths are in meters and time is in seconds.

(a) Keeping in mind that vx is constant, we have x2 − x1 = 50.0 = v1x(4.00), which leads to v1x =
12.5 m/s. Thus, applied to the full six seconds of motion: xf − x0 = R = vx(6.00) = 75.0 m.

(b) We apply y − y0 = v0yt− 1
2gt

2 to the motion above the wall.

y2 − y1 = 0 = v1y(4.00)− 1

2
g(4.00)2

leads to v1y = 19.6 m/s. One second earlier, using v1y = v0y − g(1.00), we find v0y = 29.4 m/s.
We convert from (x, y) to magnitude-angle (polar) representation:

~v0 = (16.7, 14.2) −→ (31.9 6 66.9◦) .

We interpret this result as a velocity of magnitude 32 m/s, with angle (up from rightward) of 67◦.

(c) During the first 1.00 s of motion, y = y0 +v0yt− 1
2gt

2 yields h = 1.0+(29.4)(1.00)− 1
2 (9.8)(1.00)2 =

25.5 m.

107. (First problem in Cluster 2)

(a) Since v2
y = v0

2
y − 2g∆y, and vy = 0 at the target, we obtain v0y =

√

2(9.8)(5.00) = 9.90 m/s. Since
v0 sin θ0 = v0y, with v0 = 12 m/s, we find θ0 = 55.6◦.

(b) Now, vy = v0y − gt gives t = 9.90/9.8 = 1.01 s. Thus, ∆x = (v0 cos θ0)t = 6.85 m.

(c) The velocity at the target has only the vx component, which is equal to v0x = v0 cos θ0 = 6.78 m/s.

108. (Second problem in Cluster 2)

(a) The magnitudes of the components are equal at point A, but in terms of the coordinate system
usually employed in projectile motion problems, we have vx > 0 and vy = −vx. The problem gives
v0 which is related to its components by v2

0 = v0
2
x + v0

2
y which suggests that we look at the pair of

equations

v2
y = v0

2
y − 2g∆y

v2
x = v0

2
x
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which we can add to obtain 2v2
x = v2

0−2g∆y (this is closely related to the type of reasoning that will
be employed in some Chapter 8 problems). Therefore, we find vx = −vy = 6.53 m/s. Therefore,
∆y = vyt+

1
2gt

2 (Eq. 2-16) can be used to find t.

3.00 = (−6.53)t+
1

2
(9.8)t2 =⇒ t = 1.69 or − 0.36

from the quadratic formula or or with a polynomial solver available with some calculators. We
choose the positive root: t = 1.69 s. Finally, we obtain

∆x = vxt = 11.1 m .

(b) The speed is v =
√

v2
x + v2

y = 9.23 m/s.

109. (Third problem in Cluster 2)

(a) Eq. 4-25, which assumes (x0, y0) = (0, 0), gives

y = 5.00 = (tan θ0)x−
gx2

2 (v0 cos θ0)
2

where x = 30.0 (lengths are in meters and time is in seconds). Using the trig identity suggested in
the problem and letting u stand for tan θ0, we have a second-degree equation for u (its two roots
leading to the values θ0min, and θ0max) parameterized by the initial speed v0.

4410

v2
0

u2 − 30.0u+

(

4410

v2
0

+ 5.00

)

= 0

where numerical simplifications have already been made. To see these steps written with the
variables x, y, v0 and g made explicit, see the solution to problem 111, below. Now, we solve for u
using the quadratic formula, and then find the angles:

θ0 = tan−1

(

1

294
v2
0 ±

1

294

√

v4
0 − 98 v2

0 − 86436

)

where the plus is chosen for θ0max and the negative is chosen for θ0min .

(b) These angles are plotted (in degrees) versus v0 (in m/s) as follows. There are no (real) solutions of
the above equations for 18.0 ≤ v0 ≤ 18.6 m/s (this is further discussed in the next problem).
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110. (Fourth problem in Cluster 2)
Following the hint in the problem (regarding analytic solution), we equate the square root expression,
above, to zero:

√

v4
0 − 98 v2

0 − 86436 = 0 =⇒ v0 = 18.6 m/s .

That solution can be obtained either with the quadratic formula (by writing the equation, first, in terms
of w = v2

0) or with a polynomial solver built into many calculators; in the latter approach, this is
straightforwardly handled as a fourth degree polynomial. Note that the other root (v0 = 15.8 m/s) is
dismissed since we are finding where the real solutions for angle disappear as one decreases the initial
speed from roughly 20 m/s. In case this problem was assigned without assigning Problem 109 first, then
this (the choice of root) might be a confusing point. Plugging v0 = 18.6 m/s into

θ0 = tan−1

(

1

294
v2
0 ±

1

294

√

v4
0 − 98 v2

0 − 86436

)

(which is unambiguous since the square root factor is zero) provides the launch angle: θ0 = 49.7◦ in this
“critical” case.

111. (Fifth problem in Cluster 2)

(a) This builds directly on the solutions of the previous two problems. If we return to the solution of
problem 109 without plugging in the data for x, y, and g, we obtain the following expression for the
θ0 roots.

θ0 = tan−1

(

v2
0

gx

(

1±
√

1− g

v2
0

(

2y +
gx2

v2
0

)

))

And for the “critical case” of maximum distance for a given launch-speed, we set the square root
expression to zero (as in the previous problem) and solve for xmax.

xmax =
v2
0

g

√

1− 2gy

v2
0



106 CHAPTER 4.

which one might wish to check for the “straight-up” case (where x = 0, and the familiar result
ymax = 1

2v
2
0/g is obtained) and for the “range” case (where y = 0 and this then agrees with Eq. 4-

26 where θ0 = 45◦). In the problem at hand, we have y = 5.00 m, and v0 = 15.0 m/s. This leads
to xmax = 17.2 m.

(b) When the square root term vanishes, the expression for θ0 becomes

θ0 = tan−1

(

v2
0

gx

)

= 53.1◦

using x = xmax from part (a).



Chapter 5

1. We apply Newton’s second law (specifically, Eq. 5-2).

(a) We find the x component of the force is

Fx = max = ma cos 20◦ = (1.00 kg)(2.00 m/s2) cos 20◦ = 1.88 N .

(b) The y component of the force is

Fy = may = ma sin 20◦ = (1.0 kg)(2.00 m/s
2
) sin 20◦ = 0.684 N .

(c) In unit-vector notation, the force vector (in Newtons) is

~F = Fx ı̂ + Fy ĵ = 1.88 ı̂ + 0.684 ĵ .

2. We apply Newton’s second law (Eq. 5-1 or, equivalently, Eq. 5-2). The net force applied on the chopping

block is ~Fnet = ~F1 + ~F2 , where the vector addition is done using unit-vector notation. The acceleration

of the block is given by ~a =
(

~F1 + ~F2

)

/m.

(a) In the first case

~F1 + ~F2 =
(

(3.0 N)̂ı + (4.0 N)̂j
)

+
(

(−3.0 N)̂ı + (−4.0 N)̂j
)

= 0

so ~a = 0.

(b) In the second case, the acceleration ~a equals

~F1 + ~F2

m
=

(

(3.0 N) ı̂ + (4.0 N)̂j
)

+
(

(−3.0 N) ı̂ + (4.0 N)̂j
)

2.0 kg
= 4.0 ĵ m/s

2
.

(c) In this final situation, ~a is

~F1 + ~F2

m
=

(

(3.0 N) ı̂ + (4.0 N)̂j
)

+
(

(3.0 N)̂ı + (−4.0 N)̂j
)

2.0 kg
= 3.0 ı̂ m/s2 .

3. We are only concerned with horizontal forces in this problem (gravity plays no direct role). We take East
as the +x direction and North as +y. This calculation is efficiently implemented on a vector capable
calculator, using magnitude-angle notation (with SI units understood).

~a =
~F

m
=

(9.0 6 0◦) + (8.0 6 118◦)

3.0
= (2.9 6 53◦)

Therefore, the acceleration has a magnitude of 2.9 m/s2.

107
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4. Since ~v = constant, we have ~a = 0, which implies

~Fnet = ~F1 + ~F2 = m~a = 0 .

Thus, the other force must be
~F2 = −~F1 = −2̂ı + 6 ĵ N .

5. Since the velocity of the particle does not change, it undergoes no acceleration and must therefore be
subject to zero net force. Therefore,

~Fnet = ~F1 + ~F2 + ~F3 = 0 .

Thus, the third force ~F3 is given by

~F3 = −~F1 − ~F2

= −
(

2 ı̂ + 3 ĵ − 2 k̂
)

−
(

−5 ı̂ + 8 ĵ − 2 k̂
)

= 3 ı̂ − 11 ĵ + 4 k̂

in Newtons. The specific value of the velocity is not used in the computation.

6. The net force applied on the chopping block is ~Fnet = ~F1 + ~F2 + ~F3 , where the vector addition is done

using unit-vector notation. The acceleration of the block is given by ~a =
(

~F1 + ~F2 + ~F3

)

/m.

(a) The forces exerted by the three astronauts can be expressed in unit-vector notation as follows:

~F1 = 32(cos 30◦ ı̂ + sin 30◦ ĵ)

= 27.7 ı̂ + 16 ĵ

~F2 = 55(cos 0◦ ı̂ + sin 0◦ ĵ)

= 55 ı̂

in Newtons, and
~F3 = 41

(

cos(−60◦)̂ı + sin(−60◦)̂j
)

= 20.5 ı̂− 35.5 ĵ

in Newtons. The resultant acceleration of the asteroid of mass m = 120 kg is therefore

~a =
(27.7 ı̂ + 16 ĵ) + (55 ı̂) + (20.5 ı̂− 35.5 ĵ)

120

= 0.86 ı̂− 0.16 ĵ m/s2 .

(b) The magnitude of the acceleration vector is

|~a| =
√

a2
x + a2

y =
√

0.862 + (−0.16)2 = 0.88 m/s
2
.

(c) The vector ~a makes an angle θ with the +x axis, where

θ = tan−1

(

ay

ax

)

= tan−1

(−0.16

0.86

)

= −11◦ .

7. We denote the two forces ~F1 and ~F2. According to Newton’s second law, ~F1 + ~F2 = m~a, so ~F2 = m~a− ~F1.

(a) In unit vector notation ~F1 = (20.0 N)̂ı and

~a = −(12 sin30◦ m/s2)̂ı− (12 cos 30◦ m/s2)̂j = −(6.0 m/s2)̂ı− (10.4 m/s2)̂j .

Therefore,

~F2 = (2.0 kg)
(

−6.0 m/s
2
)

ı̂ + (2.0 kg)
(

−10.4 m/s
2
)

ĵ− (20.0 N)̂ı

= (−32 N)̂ı− (21 N)̂j .
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(b) The magnitude of ~F2 is

∣

∣

∣

~F2

∣

∣

∣ =
√

F 2
2x + F 2

2y =
√

(−32)2 + (−21)2 = 38 N .

(c) The angle that ~F2 makes with the positive x axis is found from tan θ = F2y/F2x = 21/32 = 0.656 .
Consequently, the angle is either 33◦ or 33◦ + 180◦ = 213◦. Since both the x and y components are
negative, the correct result is 213◦.

8. The goal is to arrive at the least magnitude of ~Fnet , and as long as the magnitudes of ~F2 and ~F3 are (in

total) less than or equal to |~F1| then we should orient them opposite to the direction of ~F1 (which is the
+x direction).

(a) We orient both ~F2 and ~F3 in the −x direction. Then, the magnitude of the net force is 50−30−20 =
0, resulting in zero acceleration for the tire.

(b) We again orient ~F2 and ~F3 in the negative x direction. We obtain an acceleration along the +x
axis with magnitude

a =
F1 − F2 − F3

m
=

50 N− 30 N− 10 N

12 kg
= 0.83 m/s2 .

(c) In this case, the forces ~F2 and ~F3 are collectively strong enough to have y components (one positive
and one negative) which cancel each other and still have enough x contributions (in the−x direction)

to cancel ~F1 . Since |~F2| = |~F3|, we see that the angle above the −x axis to one of them should
equal the angle below the −x axis to the other one (we denote this angle θ). We require

−50 N = ~F2x + ~F3x

= −(30 N) cos θ − (30 N) cos θ

which leads to

θ = cos−1

(

50 N

60 N

)

= 34◦ .

9. In all three cases the scale is not accelerating, which means that the two cords exert forces of equal
magnitude on it. The scale reads the magnitude of either of these forces. In each case the tension force
of the cord attached to the salami must be the same in magnitude as the weight of the salami because
the salami is not accelerating. Thus the scale reading is mg, where m is the mass of the salami. Its
value is (11.0 kg)(9.8 m/s

2
) = 108 N.

10. Three vertical forces are acting on the block: the earth pulls down on the block with gravitational force
3.0 N; a spring pulls up on the block with elastic force 1.0 N; and, the surface pushes up on the block
with normal force N . There is no acceleration, so

∑

Fy = 0 = N + (1.0 N) + (−3.0 N)

yields N = 2.0 N. By Newton’s third law, the force exerted by the block on the surface has that same
magnitude but opposite direction: 2.0 N down.

11. We apply Eq. 5-12.

(a) The mass is m = W/g = (22 N)/(9.8 m/s
2
) = 2.2 kg. At a place where g = 4.9 m/s

2
, the mass is

still 2.2 kg but the gravitational force is Fg = mg = (2.2 kg)(4.9 m/s
2
) = 11 N.

(b) As noted, m = 2.2 kg.

(c) At a place where g = 0 the gravitational force is zero.

(d) The mass is still 2.2 kg.
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12. We use Wp = mgp, where Wp is the weight of an object of mass m on the surface of a certain planet p,
and gp is the acceleration of gravity on that planet.

(a) The weight of the space ranger on Earth is We = mge which we compute to be (75 kg)
(

9.8 m/s
2
)

=

7.4× 102 N.

(b) The weight of the space ranger on Mars is Wm = mgm which we compute to be (75 kg)(3.8 m/s
2
) =

2.9× 102 N.

(c) The weight of the space ranger in interplanetary space is zero, where the effects of gravity are
negligible.

(d) The mass of the space ranger remains the same (75 kg) at all the locations.

13. According to Newton’s second law, the magnitude of the force is given by F = ma, where a is the
magnitude of the acceleration of the neutron. We use kinematics (Table 2-1) to find the acceleration
that brings the neutron to rest in a distance d. Assuming the acceleration is constant, then v2 = v2

0 +2ad
produces the value of a:

a =
(v2 − v2

0)

2d
=
−(1.4× 107 m/s)2

2(1.0× 10−14 m)
= −9.8× 1027 m/s

2
.

The magnitude of the force is consequently

F = m|a| = (1.67× 10−27 kg)(9.8 × 1027 m/s
2
) = 16 N .

14. The child-backpack is in static equilibrium while he waits, so Newton’s second law applies with
∑

~F = 0.
Since students sometimes confuse this with Newton’s third law, we phrase our results carefully.

(a) The magnitude of the normal force ~N exerted upward by the sidewalk is equal, in this situation, to

the total weight of the child-backpack, as a result of
∑ ~F = 0. Thus, ~N = (33.5 kg)(9.8 m/s

2
) =

328 N and is directed up; this is ~Fsc – the force of the sidewalk exerted up on the child’s feet. By
Newton’s third law, the force exerted down (at the child’s feet) on the sidewalk is ~Fcs = 328 N
downward.

(b) Except for an entirely negligible gravitation attraction between the child and the concrete, there is
no force exerted on the sidewalk by the child when the child is not in contact with it.

(c) Earth pulls gravitationally on the child, and the child pulls equally in the opposite direction on
Earth. This force is the previously computed weight (29.0)(9.8) = 284 N. The gravitational force
on Earth exerted by the child is 284 N up. But the contact force exerted by the child on the
sidewalk (hence, on Earth) is (see part (a)) 328 N downward. Thus, the net force exerted by the
child on Earth is zero.

(d) Here the answer is simply the gravitational interaction: 284 N up.

15. We note that the free-body diagram is shown in Fig. 5-18 of the text.

(a) Since the acceleration of the block is zero, the components of the Newton’s second law equation
yield T −mg sin θ = 0 and N−mg cos θ = 0. Solving the first equation for the tension in the string,
we find

T = mg sin θ = (8.5 kg)(9.8 m/s
2
) sin 30◦ = 42 N .

(b) We solve the second equation in part (a) for the normal force N :

N = mg cos θ = (8.5 kg)(9.8 m/s
2
) cos 30◦ = 72 N .
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(c) When the string is cut, it no longer exerts a force on the block and the block accelerates. The x
component of the second law becomes −mg sin θ = ma, so the acceleration becomes

a = −g sin θ = −9.8 sin 30◦ = −4.9

in SI units. The negative sign indicates the acceleration is down the plane. The magnitude of the
acceleration is 4.9 m/s2.

16. An excellent analysis of the accelerating elevator is given in Sample Problem 5-8 in the textbook.

(a) From Newton’s second law

N −mg = ma where a = amax = 2.0 m/s
2

we obtain N = 590 N upward, for m = 50 kg.

(b) Again, we use Newton’s second law

N −mg = ma where a = amax = −3.0 m/s
2
.

Now, we obtain N = 340 N upward.

(c) Returning to part (a), we use Newton’s third law, and conclude that the force exerted by the

passenger on the floor is ~FPF = 590 N downward.

17. (a) The acceleration is

a =
F

m
=

20 N

900 kg
= 0.022 m/s2 .

(b) The distance traveled in 1 day (= 86400 s) is

s =
1

2
at2 =

1

2

(

0.0222 m/s
2
)

(86400 s)2 = 8.3× 107 m .

(c) The speed it will be traveling is given by

v = at = (0.0222 m/s
2
)(86400 s) = 1.9× 103 m/s .

18. Some assumptions (not so much for realism but rather in the interest of using the given information
efficiently) are needed in this calculation: we assume the fishing line and the path of the salmon are
horizontal. Thus, the weight of the fish contributes only (via Eq. 5-12) to information about its mass
(m = W/g = 8.7 kg). Our +x axis is in the direction of the salmon’s velocity (away from the fisherman),
so that its acceleration (“deceleration”) is negative-valued and the force of tension is in the −x direction:
~T = −T . We use Eq. 2-16 and SI units (noting that v = 0).

v2 = v2
0 + 2a∆x =⇒ a = − v2

0

2∆x
= − 2.82

2(0.11)

which yields a = −36 m/s2. Assuming there are no significant horizontal forces other than the tension,
Eq. 5-1 leads to

~T = m~a =⇒ −T = (8.7 kg)
(

−36 m/s2
)

which results in T = 3.1× 102 N.

19. In terms of magnitudes, Newton’s second law is F = ma, where F represents |~Fnet|, a represents |~a|
(which it does not always do; note the use of a in the previous solution), and m is the (always positive)
mass. The magnitude of the acceleration can be found using constant acceleration kinematics (Table 2-
1). Solving v = v0 + at for the case where it starts from rest, we have a = v/t (which we interpret
in terms of magnitudes, making specification of coordinate directions unnecessary). The velocity is
v = (1600 km/h)(1000 m/km)/(3600 s/h) = 444 m/s, so

F = (500 kg)
444 m/s

1.8 s
= 1.2× 105 N .
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20. The stopping force ~F and the path of the car are horizontal. Thus, the weight of the car contributes
only (via Eq. 5-12) to information about its mass (m = W/g = 1327 kg). Our +x axis is in the direction
of the car’s velocity, so that its acceleration (“deceleration”) is negative-valued and the stopping force

is in the −x direction: ~F = −F .

(a) We use Eq. 2-16 and SI units (noting that v = 0 and v0 = 40(1000/3600) = 11.1 m/s).

v2 = v2
0 + 2a∆x =⇒ a = − v2

0

2∆x
= −11.12

2(15)

which yields a = −4.12 m/s2. Assuming there are no significant horizontal forces other than the
stopping force, Eq. 5-1 leads to

~F = m~a =⇒ −F = (1327 kg)
(

−4.12 m/s2
)

which results in F = 5.5× 103 N.

(b) Eq. 2-11 readily yields t = −v0/a = 2.7 s.

(c) Keeping F the same means keeping a the same, in which case (since v = 0) Eq. 2-16 expresses a
direct proportionality between ∆x and v2

0 . Therefore, doubling v0 means quadrupling ∆x. That is,
the new over the old stopping distances is a factor of 4.0.

(d) Eq. 2-11 illustrates a direct proportionality between t and v0 so that doubling one means doubling
the other. That is, the new time of stopping is a factor of 2.0 greater than the one found in part (c).

21. The acceleration of the electron is vertical and for all practical purposes the only force acting on it is
the electric force. The force of gravity is negligible. We take the +x axis to be in the direction of the
initial velocity and the +y axis to be in the direction of the electrical force, and place the origin at the
initial position of the electron. Since the force and acceleration are constant, we use the equations from
Table 2-1: x = v0t and

y =
1

2
at2 =

1

2

(

F

m

)

t2 .

The time taken by the electron to travel a distance x (= 30 mm) horizontally is t = x/v0 and its deflection
in the direction of the force is

y =
1

2

F

m

(

x

v0

)2

=
1

2

(

4.5× 10−16

9.11× 10−31

)(

30× 10−3

1.2× 107

)2

= 1.5× 10−3 m .

22. The stopping force ~F and the path of the passenger are horizontal. Our +x axis is in the direction of
the passenger’s motion, so that the passenger’s acceleration (“deceleration”) is negative-valued and the

stopping force is in the −x direction: ~F = −F . We use Eq. 2-16 and SI units (noting that v = 0 and
v0 = 53(1000/3600) = 14.7 m/s).

v2 = v2
0 + 2a∆x =⇒ a = − v2

0

2∆x
= − 14.72

2(0.65)

which yields a = −167 m/s2. Assuming there are no significant horizontal forces other than the stopping
force, Eq. 5-1 leads to

~F = m~a =⇒ −F = (41 kg)
(

−167 m/s
2
)

which results in F = 6.8× 103 N.

23. We note that The rope is 22◦ from vertical – and therefore 68◦ from horizontal.
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(a) With T = 760 N, then its components are

~T = T cos 68◦ ı̂ + T sin 68◦ ĵ = 285 ı̂ + 705 ĵ

understood to be in newtons.

(b) No longer in contact with the cliff, the only other force on Tarzan is due to earth’s gravity (his
weight). Thus,

~Fnet = ~T + ~W = 285 ı̂ + 705 ĵ− 820 ĵ = 285 ı̂− 115 ĵ

again understood to be in newtons.

(c) In a manner that is efficiently implemented on a vector capable calculator, we convert from rect-
angular (x, y) components to magnitude-angle notation:

~Fnet = (285,−115) −→ (307 6 − 22◦)

so that the net force has a magnitude of 307 N.

(d) The angle (see part (c)) has been found to be 22◦ below horizontal (away from cliff)

(e) Since ~a = ~Fnet /m where m = W/g = 84 kg, we obtain ~a = 3.67 m/s2

(f) Eq. 5-1 requires that ~a ‖ ~Fnet so that it is also directed at 22◦ below horizontal (away from cliff).

24. The analysis of coordinates and forces (the free-body diagram) is exactly as in the textbook in Sample
Problem 5-7 (see Fig. 5-18(b) and (c)).

(a) Constant velocity implies zero acceleration, so the “uphill” force must equal (in magnitude) the
“downhill” force: T = mg sin θ. Thus, with m = 50 kg and θ = 8.0◦, the tension in the rope equals
68 N.

(b) With an uphill acceleration of 0.10 m/s
2
, Newton’s second law (applied to the x axis shown in

Fig. 5-18(b)) yields

T −mg sin θ = ma =⇒ T − (50)(9.8) sin 8.0◦ = (50)(0.10)

which leads to T = 73 N.

25. (a) Since friction is negligible the force of the girl is the only horizontal force on the sled. The vertical
forces (the force of gravity and the normal force of the ice) sum to zero. The acceleration of the
sled is

as =
F

ms
=

5.2 N

8.4 kg
= 0.62 m/s

2
.

(b) According to Newton’s third law, the force of the sled on the girl is also 5.2 N. Her acceleration is

ag =
F

mg
=

5.2 N

40 kg
= 0.13 m/s

2
.

(c) The accelerations of the sled and girl are in opposite directions. Assuming the girl starts at the
origin and moves in the +x direction, her coordinate is given by xg = 1

2agt
2. The sled starts at

x0 = 1.5 m and moves in the −x direction. Its coordinate is given by xs = x0 − 1
2ast

2. They meet
when

xg = xs

1

2
agt

2 = x0 −
1

2
ast

2 .

This occurs at time

t =

√

2x0

ag + as
.
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By then, the girl has gone the distance

xg =
1

2
agt

2 =
x0ag

ag + as
=

(15)(0.13)

0.13 + 0.62
= 2.6 m .

26. We assume the direction of motion is +x and assume the refrigerator starts from rest (so that the speed
being discussed is the velocity v which results from the process). The only force along the x axis is the

x component of the applied force ~F .

(a) Since v0 = 0, the combination of Eq. 2-11 and Eq. 5-2 leads simply to

Fx = m
(v

t

)

=⇒ vi =

(

F cos θi

m

)

t

for i = 1 or 2 (where we denote θ1 = 0 and θ2 = θ for the two cases). Hence, we see that the ratio
v2 over v1 is equal to cos θ.

(b) Since v0 = 0, the combination of Eq. 2-16 and Eq. 5-2 leads to

Fx = m

(

v2

2∆x

)

=⇒ vi =

√

2

(

F cos θi

m

)

∆x

for i = 1 or 2 (again, θ1 = 0 and θ2 = θ is used for the two cases). In this scenario, we see that the
ratio v2 over v1 is equal to

√
cos θ.

27. We choose up as the +y direction, so ~a = −3.00 m/s2 ĵ (which, without the unit-vector, we denote
as a since this is a 1-dimensional problem in which Table 2-1 applies). From Eq. 5-12, we obtain the
firefighter’s mass: m = W/g = 72.7 kg.

(a) We denote the force exerted by the pole on the firefighter ~F f p = F ĵ and apply Eq. 5-1 (using SI
units).

~Fnet = m~a

F − Fg = ma

F − 712 = (72.7)(−3.00)

which yields F = 494 N. The fact that the result is positive means ~F f p points up.

(b) Newton’s third law indicates ~F f p = −~Fp f , which leads to the conclusion that ~Fp f = 494 N down.

28. The coordinate choices are made in the problem statement.

(a) We write the velocity of the armadillo as ~v = vx ı̂ + vy ĵ . Since there is no net force exerted on it
in the x direction, the x component of the velocity of the armadillo is a constant: vx = 5.0 m/s. In
the y direction at t = 3.0 s, we have (using Eq. 2-11 with v0 y = 0)

vy = v0 y + ayt = v0 y +

(

Fy

m

)

t =

(

17

12

)

(3.0) = 4.3

in SI units. Thus
~v = 5.0 ı̂ + 4.3 ĵ m/s .

(b) We write the position vector of the armadillo as ~r = rx ı̂ + ry ĵ . At t = 3.0 s we have rx =
(5.0)(3.0) = 15 and (using Eq. 2-15 with v0 y = 0)

ry = v0 y t+
1

2
ay t

2 =
1

2

(

Fy

m

)

t2 =
1

2

(

17

12

)

(3.0)2 = 6.4

in SI units. The position vector at t = 3.0 s is therefore

~r = 15 ı̂ + 6.4 ĵ m .
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29. The solutions to parts (a) and (b) have been combined here. The free-body diagram is shown below,

with the tension of the string ~T , the force of gravity m~g, and the force of the air ~F . Our coordinate
system is shown. The x component of the net force is T sin θ − F and the y component is T cos θ −mg,
where θ = 37◦.

Since the sphere is motionless the
net force on it is zero. We answer
the questions in the reverse order.
Solving T cos θ − mg = 0 for the
tension, we obtain T = mg/ cos θ =
(3.0 × 10−4)(9.8)/ cos 37◦ = 3.7 ×
10−3 N. Solving T sin θ−F = 0 for
the force of the air: F = T sin θ =
(3.7×10−3) sin 37◦ = 2.2×10−3 N.
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~T

m~g

~F

θ

• +x

+y

30. We label the 40 kg skier “m” which is represented as a block in the

figure shown. The force of the
wind is denoted ~Fw and might be
either “uphill” or “downhill” (it is
shown uphill in our sketch). The
incline angle θ is 10◦. The +x di-
rection is downhill.

HHHHHHHHHHHHHHHHHH

�
�
�

�
�
�

HHH

HHHHHjmg sin θ
�

�
�

��� mg cos θ�
�
�
���

~N

HHY ~Fw

(a) Constant velocity implies zero acceleration; thus, application of Newton’s second law along the x
axis leads to

mg sin θ − Fw = 0 .

This yields Fw = 68 N (uphill).

(b) Given our coordinate choice, we have a = +1.0 m/s
2
. Newton’s second law

mg sin θ − Fw = ma

now leads to Fw = 28 N (uphill).

(c) Continuing with the forces as shown in our figure, the equation

mg sin θ − Fw = ma

will lead to Fw = −12 N when a = +2.0 m/s
2
. This simply tells us that the wind is opposite to

the direction shown in our sketch; in other words, ~Fw = 12 N downhill.

31. The free-body diagrams for part (a) are shown below. ~F is the applied force and ~f is the force exerted

by block 1 on block 2. We note that ~F is applied directly to block 1 and that block 2 exerts the force
−~f on block 1 (taking Newton’s third law into account).
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(a) Newton’s second law for block 1 is F − f = m1a, where a is the acceleration. The second law for
block 2 is f = m2a. Since the blocks move together they have the same acceleration and the same
symbol is used in both equations. From the second equation we obtain the expression a = f/m2,
which we substitute into the first equation to get F − f = m1f/m2. Therefore,

f =
Fm2

m1 +m2
=

(3.2 N)(1.2 kg)

2.3 kg + 1.2 kg
= 1.1 N .

(b) If ~F is applied to block 2 instead of block 1 (and in the opposite direction), the force of contact
between the blocks is

f =
Fm1

m1 +m2
=

(3.2 N)(2.3 kg)

2.3 kg + 1.2 kg
= 2.1 N .

(c) We note that the acceleration of the blocks is the same in the two cases. In part (a), the force f
is the only horizontal force on the block of mass m2 and in part (b) f is the only horizontal force
on the block with m1 > m2 . Since f = m2a in part (a) and f = m1a in part (b), then for the
accelerations to be the same, f must be larger in part (b).

32. The additional “apparent weight” experienced during upward acceleration is well treated in Sample
Problem 5-8. The discussion in the textbook surrounding Eq. 5-13 is also relevant to this.

(a) When ~Fnet = 3F −mg = 0, we have

F =
1

3
mg =

1

3
(1400 kg)

(

9.8 m/s2
)

= 4.6× 103 N

for the force exerted by each bolt on the engine.

(b) The force on each bolt now satisfies 3F −mg = ma, which yields

F =
1

3
m(g + a) =

1

3
(1400)(9.8 + 2.6) = 5.8× 103 N .

33. The free-body diagram is shown below. ~T is the tension of the cable and m~g is the force of gravity. If
the upward direction is positive, then Newton’s second law is T −mg = ma, where a is the acceleration.

Thus, the tension is T = m(g + a). We use con-
stant acceleration kinematics (Table 2-1) to find
the acceleration (where v = 0 is the final ve-
locity, v0 = −12 m/s is the initial velocity, and
y = −42 m is the coordinate at the stopping
point). Consequently, v2 = v2

0 + 2ay leads to

a = −v2
0/2y = −(−12)2/2(−42) = 1.71 m/s

2
. We

now return to calculate the tension:

T = m(g + a)

= (1600 kg)(9.8 m/s
2
+ 1.71 m/s

2
)

= 1.8× 104 N .
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~T

m~g

•

34. First, we consider all the penguins (1 through 4, counting left to right) as one system, to which we apply
Newton’s second law:

Fnet = (m1 +m2 +m3 +m4)a

222 N = (20 kg + 15 kg +m3 + 12 kg)a .
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Second, we consider penguins 3 and 4 as one system, for which we have

F ′
net = (m3 +m4)a

111 N = (m3 + 12 kg)a .

We solve these two equations for m3 to obtain m3 = 23 kg. The solution step can be made a little easier,
though, by noting that the net force on penguins 1 and 2 is also 111 N and applying Newton’s law to
them as a single system to solve first for a.

35. We take the down to be the +y direction.

(a) The first diagram (below) is the free-body diagram for the person and parachute, considered as a

single object with a mass of 80 kg + 5 kg = 85 kg. ~Fa is the force of the air on the parachute and
m~g is the force of gravity. Application of Newton’s second law produces mg−Fa = ma, where a is
the acceleration. Solving for Fa we find

Fa = m(g − a) = (85 kg)(9.8 m/s
2 − 2.5 m/s

2
) = 620 N .
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~Fa

mp~g

~Fp

(b) The second diagram (above) is the free-body diagram for the parachute alone. ~Fa is the force of

the air, mp~g is the force of gravity, and ~Fp is the force of the person. Now, Newton’s second law
leads to mpg + Fp − Fa = mpa. Solving for Fp, we obtain

Fp = mp(a− g) + Fa = (5.0)(2.5− 9.8) + 620 = 580 N .

36. We apply Newton’s second law first to the three blocks as a single system and then to the individual
blocks. The +x direction is to the right in Fig. 5-37.

(a) With msys = m1 +m2 +m3 = 67.0 kg, we apply Eq. 5-2 to the x motion of the system – in which

case, there is only one force ~T3 = +T3 ı̂ .

T3 = msys a

65.0 N = (67.0 kg)a

which yields a = 0.970 m/s2 for the system (and for each of the blocks individually).

(b) Applying Eq. 5-2 to block 1, we find

T1 = m1a = (12.0 kg)
(

0.970 m/s
2
)

= 11.6 N .

(c) In order to find T2 , we can either analyze the forces on block 3 or we can treat blocks 1 and 2 as a
system and examine its forces. We choose the latter.

T2 = (m1 +m2) a = (12.0 + 24.0)(0.970) = 34.9 N .

37. We use the notation g as the acceleration due to gravity near the surface of Callisto, m as the mass of
the landing craft, a as the acceleration of the landing craft, and F as the rocket thrust. We take down
to be the positive direction. Thus, Newton’s second law takes the form mg − F = ma. If the thrust is
F1 (= 3260 N), then the acceleration is zero, so mg − F1 = 0. If the thrust is F2 (= 2200 N), then the

acceleration is a2 (= 0.39 m/s2), so mg − F2 = ma2.
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(a) The first equation gives the weight of the landing craft: mg = F1 = 3260 N.

(b) The second equation gives the mass:

m =
mg − F2

a2
=

3260 N− 2200 N

0.39 m/s
2 = 2.7× 103 kg .

(c) The weight divided by the mass gives the acceleration due to gravity: g = (3260 N)/(2.7×103 kg) =

1.2 m/s
2
.

38. Although the full specification of ~Fnet = m~a in this situation involves both x and y axes, only the
x-application is needed to find what this particular problem asks for. We note that ay = 0 so that there
is no ambiguity denoting ax simply as a. We choose +x to the right and +y up, in Fig. 5-38. We also
note that the x component of the rope’s tension (acting on the crate) is Tx = +450 cos38◦ = 355 N, and
the resistive force (pointing in the −x direction) has magnitude f = 125 N.

(a) Newton’s second law leads to

Tx − f = ma =⇒ a =
355− 125

310
= 0.74 m/s

2
.

(b) In this case, we use Eq. 5-12 to find the mass: m = W/g = 31.6 kg. Now, Newton’s second law
leads to

Tx − f = ma =⇒ a =
355− 125

31.6
= 7.3 m/s

2
.

39. The force diagrams in Fig. 5-18 are helpful to refer to. In adapting Fig. 5-18(b) to this problem, the

normal force ~N and the tension ~T should be labeled Fm,ry and Fm,rx , respectively, and thought of as the

y and x components of the force ~Fm,r exerted by the motorcycle on the rider. We adopt the coordinates
used in Fig. 5-18 and note that they are not the usual horizontal and vertical axes.

(a) Since the net force equalsma, then the magnitude of the net force on the rider is (60.0 kg)(3.0 m/s2) =
1.8× 102 N.

(b) We apply Newton’s second law to the x axis:

Fm,rx −mg sin θ = ma

where m = 60.0 kg, a = 3.0 m/s
2
, and θ = 10◦. Thus, Fm,rx = 282 N. Applying it to the y axis

(where there is no acceleration), we have

Fm,ry −mg cos θ = 0

which produces Fm,ry = 579 N. Using the Pythagorean theorem, we find

√

Fm,r
2
x + Fm,r

2
y = 644 N .

Now, the magnitude of the force exerted on the rider by the motorcycle is the same magnitude of
force exerted by the rider on the motorcycle, so the answer is 6.4× 102 N.

40. Referring to Fig. 5-10(c) is helpful. In this case, viewing the man-rope-sandbag as a system means that
we should be careful to choose a consistent positive direction of motion (though there are other ways
to proceed – say, starting with individual application of Newton’s law to each mass). We take down

as positive for the man’s motion and up as positive for the sandbag’s motion and, without ambiguity,
denote their acceleration as a. The net force on the system is the difference between the weight of the
man and that of the sandbag. The system mass is msys = 85 + 65 = 150 kg. Thus, Eq. 5-1 leads to

(85)(9.8)− (65)(9.8) = msys a
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which yields a = 1.3 m/s2. Since the system starts from rest, Eq. 2-16 determines the speed (after
traveling ∆y = 10 m) as follows:

v =
√

2a∆y =
√

2(1.3)(10) = 5.1 m/s .

41. (a) The links are numbered from bottom to top. The forces on the bottom link are the force of

gravity m~g, downward, and the force ~F2on1 of link 2, upward. Take the positive direction to be
upward. Then Newton’s second law for this link is F2on1 −mg = ma. Thus F2on1 = m(a + g) =

(0.100 kg)(2.50 m/s2 + 9.8 m/s2) = 1.23 N.

(b) The forces on the second link are the force of gravity m~g, downward, the force ~F1on2 of link 1,

downward, and the force ~F3on2 of link 3, upward. According to Newton’s third law ~F1on2 has the
same magnitude as ~F2on1. Newton’s second law for the second link is F3on2 − F1on2 −mg = ma, so
F3on2 = m(a+ g) + F1on2 = (0.100 kg)(2.50 m/s2 + 9.8 m/s2) + 1.23 N = 2.46 N.

(c) Newton’s second for link 3 is F4on3−F2on3−mg = ma, so F4on3 = m(a+g)+F2on3 = (0.100 N)(2.50 m/s
2
+

9.8 m/s
2
) + 2.46 N = 3.69 N, where Newton’s third law implies F2on3 = F3on2 (since these are mag-

nitudes of the force vectors).

(d) Newton’s second law for link 4 is F5on4 − F3on4 − mg = ma, so F5on4 = m(a + g) + F3on4 =

(0.100 kg)(2.50 m/s2 +9.8 m/s2)+3.69 N = 4.92 N, where Newton’s third law implies F3on4 = F4on3.

(e) Newton’s second law for the top link is F − F4on5 − mg = ma, so F = m(a + g) + F4on5 =

(0.100 kg)(2.50 m/s2 + 9.8 m/s2) + 4.92 N = 6.15 N, where F4on5 = F5on4 by Newton’s third law.

(f) Each link has the same mass and the same acceleration, so the same net force acts on each of them:

Fnet = ma = (0.100 kg)(2.50 m/s2) = 0.25 N.

42. The mass of the jet is m = W/g = 2.36× 104 kg. Its acceleration is found from Eq. 2-16:

v2 = v2
0 + 2a∆x =⇒ a =

852

2(90)
= 40 m/s

2
.

Thus, Newton’s second law provides the needed force F from the catapult.

F + Fthrust = ma =⇒ F =
(

2.36× 104
)

(40)− 107× 103

which yields F = 8.4× 105 N.

43. The free-body diagram for each block is shown below. T is the tension in the cord and θ = 30◦ is the
angle of the incline. For block 1, we take the +x direction to be up the incline and the +y direction
to be in the direction of the normal force ~N that the plane exerts on the block. For block 2, we take
the +y direction to be down. In this way, the accelerations of the two blocks can be represented by the
same symbol a, without ambiguity. Applying Newton’s second law to the x and y axes for block 1 and
to the y axis of block 2, we obtain

T −m1g sin θ = m1a

N −m1g cos θ = 0

m2g − T = m2a

respectively. The first and third of these equations provide a simultaneous set for obtaining values of a
and T . The second equation is not needed in this problem, since the normal force is neither asked for
nor is it needed as part of some further computation (such as can occur in formulas for friction).
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~T

m2~g

(+y)

(a) We add the first and third equations above: m2g −m1g sin θ = m1a+m2a. Consequently, we find

a =
(m2 −m1 sin θ)g

m1 +m2
=

(2.30 kg)− 3.70 sin30.0◦) (9.8)

3.70 + 2.30
= 0.735 m/s

2
.

(b) The result for a is positive, indicating that the acceleration of block 1 is indeed up the incline and
that the acceleration of block 2 is vertically down.

(c) The tension in the cord is

T = m1a+m1g sin θ = (3.70)(0.735) + (3.70)(9.8) sin 30◦ = 20.8 N .

44. For convenience, we have labeled the 2.0 kg mass m and the 3.0 kg mass M . The +x direction for
m is “downhill” and the +x direction for M is rightward; thus, they accelerate with the same sign.

@
@

@
@

@
@

@@

��

��
@

@
m@@I

~T

���
~Nm @@R mg sin 30◦��	
mg cos 30◦

6

~NM

-~T-~F

?
M~g

M

30◦

(a) We apply Newton’s second law to each block’s x axis:

mg sin 30◦ − T = ma

F + T = Ma

Adding the two equations allows us to solve for the acceleration. With F = 2.3 N, we have
a = 1.8 m/s

2
. We plug back in to find the tension T = 3.1 N.

(b) We consider the “critical” case where the F has reached the max value, causing the tension to vanish.

The first of the equations in part (a) shows that a = g sin 30◦ in this case; thus, a = 4.9 m/s
2
. This

implies (along with T = 0 in the second equation in part (a)) that F = (3.0)(4.9) = 14.7 N in the
critical case.

45. The free-body diagram is shown below. ~N is the normal force of the
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plane on the block and m~g is the
force of gravity on the block. We
take the +x direction to be down
the incline, in the direction of the
acceleration, and the +y direc-
tion to be in the direction of the
normal force exerted by the in-
cline on the block. The x com-
ponent of Newton’s second law is
then mg sin θ = ma; thus, the ac-
celeration is a = g sin θ.
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.~N

(+x)

m~g

θ

(a) Placing the origin at the bottom of the plane, the kinematic equations (Table 2-1) for motion along
the x axis which we will use are v2 = v2

0 + 2ax and v = v0 + at. The block momentarily stops at its
highest point, where v = 0; according to the second equation, this occurs at time t = −v0/a. The
position where it stops is

x = −1

2

v2
0

a

= −1

2

(

(−3.50 m/s)2

(9.8 m/s2) sin 32.0◦

)

= −1.18 m .

(b) The time is

t = −v0
a

= − v0
g sin θ

= − −3.50 m/s

(9.8 m/s
2
) sin 32.0◦

= 0.674 s .

(c) That the return-speed is identical to the initial speed is to be expected since there are no dissipative
forces in this problem. In order to prove this, one approach is to set x = 0 and solve x = v0t+

1
2at

2

for the total time (up and back down) t. The result is

t = −2v0
a

= − 2v0
g sin θ

= − 2(−3.50 m/s)

(9.8 m/s2) sin 32.0◦
= 1.35 s .

The velocity when it returns is therefore

v = v0 + at = v0 + gt sin θ = −3.50 + (9.8)(1.35) sin 32◦ = 3.50 m/s .

46. We write the length unit light-month as c·month in this solution.

(a) The magnitude of the required acceleration is given by

a =
∆v

∆t
=

(0.10)(3.0× 108 m/s)

(3.0 days)(86400 s/day)
= 1.2× 102 m/s2 .

(b) The acceleration in terms of g is

a =

(

a

g

)

g =

(

1.2× 102 m/s
2

9.8 m/s2

)

g = 12g .

(c) The force needed is

F = ma =
(

1.20× 106
) (

1.2× 102
)

= 1.4× 108 N .
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(d) The spaceship will travel a distance d = 0.1 c·month during one month. The time it takes for the
spaceship to travel at constant speed for 5.0 light-months is

t =
d

v
=

5.0 c ·months

0.1c
= 50 months

which is about 4.2 years.

47. We take +y to be up for both the monkey and the package.

(a) The force the monkey pulls downward on the rope has magnitude F . According to Newton’s third
law, the rope pulls upward on the monkey with a force of the same magnitude, so Newton’s second
law for forces acting on the monkey leads to F − mmg = mmam, where mm is the mass of the
monkey and am is its acceleration. Since the rope is massless F = T is the tension in the rope.
The rope pulls upward on the package with a force of magnitude F , so Newton’s second law for the
package is F +N −mpg = mpap , where mp is the mass of the package, ap is its acceleration, and
N is the normal force exerted by the ground on it. Now, if F is the minimum force required to lift
the package, then N = 0 and ap = 0. According to the second law equation for the package, this
means F = mpg. Substituting mpg for F in the equation for the monkey, we solve for am:

am =
F −mmg

mm
=

(mp −mm) g

mm
=

(15− 10)(9.8)

10
= 4.9 m/s

2
.

(b) As discussed, Newton’s second law leads to F−mpg = mpap for the package and F−mmg = mmam

for the monkey. If the acceleration of the package is downward, then the acceleration of the monkey
is upward, so am = −ap. Solving the first equation for F

F = mp(g + ap) = mp(g − am)

and substituting this result into the second equation, we solve for am:

am =
(mp −mm) g

mp +mm
=

(15− 10)(9.8)

15 + 10
= 2.0 m/s

2
.

(c) The result is positive, indicating that the acceleration of the monkey is upward.

(d) Solving the second law equation for the package, we obtain

F = mp (g − am) = (15)(9.8− 2.0) = 120 N .

48. The direction of motion (the direction of the barge’s acceleration) is +ı̂, and +ĵ is chosen so that the

pull ~Fh from the horse is in the first quadrant. The components of the unknown force of the water are
denoted simply Fx and Fy .

(a) Newton’s second law applied to the barge, in the x and y directions, leads to

(7900 N) cos18◦ + Fx = ma

(7900 N) sin18◦ + Fy = 0

respectively. Plugging in a = 0.12 m/s2 and m = 9500 kg, we obtain Fx = 6.4 × 103 N and
Fy = −2.4× 103 N. The magnitude of the force of the water is therefore

Fwater =
√

F 2
x + F 2

y = 6.8× 103 N .

(b) Its angle measured from +ı̂ is either

tan−1

(

Fy

Fx

)

= −21◦ or 159◦.

The signs of the components indicate the former is correct, so ~Fwater is at 21◦ measured clockwise
from the line of motion.
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49. The force diagram (not to scale) for the block is shown below. ~N is the normal force exerted by the
floor and m~g is the force of gravity.

(a) The x component of Newton’s second law is F cos θ = ma, where m is the mass of block and a is
the x component of its acceleration. We obtain

a =
F cos θ

m
=

(12.0 N) cos 25.0◦

5.00 kg
= 2.18 m/s2 .

This is its acceleration provided it remains in contact with the

floor. Assuming it does, we find
the value of N (and if N is
positive, then the assumption is
true but if N is negative then
the block leaves the floor). The
y component of Newton’s sec-
ond law becomes N + F sin θ −
mg = 0, so N = mg − F sin θ =
(5.00)(9.8) − (12.0) sin 25.0◦ =
43.9 N. Hence the block remains
on the floor and its acceleration
is a = 2.18 m/s2.
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.

.

~N

m~g

~F

+x

+y

θ

(b) If F is the minimum force for which the block leaves the floor, then N = 0 and the y component of
the acceleration vanishes. The y component of the second law becomes F sin θ −mg = 0, so

F =
mg

sin θ
=

(5.00)(9.8)

sin 25.0◦
= 116 N .

(c) The acceleration is still in the x direction and is still given by the equation developed in part (a):

a =
F cos θ

m
=

116 cos 25◦

5.00
= 21.0 m/s

2
.

50. The motion of the man-and-chair is positive if upward.

(a) When the man is grasping the rope, pulling with a force equal to the tension T in the rope, the
total upward force on the man-and-chair due its two contact points with the rope is 2T . Thus,
Newton’s second law leads to

2T −mg = ma

so that when a = 0, the tension is T = 466 N.

(b) When a = +1.3 m/s2 the equation in part (a) predicts that the tension will be T = 527 N.

(c) When the man is not holding the rope (instead, the co-worker attached to the ground is pulling on
the rope with a force equal to the tension T in it), there is only one contact point between the rope
and the man-and-chair, and Newton’s second law now leads to

T −mg = ma

so that when a = 0, the tension is T = 931 N.

(d) When a = +1.3 m/s2 the equation in part (c) predicts that the tension will be T = 1.05× 103 N.

(e) The rope comes into contact (pulling down in each case) at the left edge and the right edge of the
pulley, producing a total downward force of magnitude 2T on the ceiling. Thus, in part (a) this
gives 2T = 931 N.

(f) In part (b) the downward force on the ceiling has magnitude 2T = 1.05× 103 N.
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(g) In part (c) the downward force on the ceiling has magnitude 2T = 1.86× 103 N.

(h) In part (d) the downward force on the ceiling has magnitude 2T = 2.11× 103 N.

51. (a) A small segment of the rope has mass and is pulled down by the gravitational force of the Earth.
Equilibrium is reached because neighboring portions of the rope pull up sufficiently on it. Since
tension is a force along the rope, at least one of the neighboring portions must slope up away from
the segment we are considering. Then, the tension has an upward component which means the rope
sags.

(b) The only force acting with a horizontal component is the applied force ~F . Treating the block
and rope as a single object, we write Newton’s second law for it: F = (M +m)a, where a is the
acceleration and the positive direction is taken to be to the right. The acceleration is given by
a = F/(M +m).

(c) The force of the rope Fr is the only force with a horizontal component acting on the block. Then
Newton’s second law for the block gives

Fr = Ma =
MF

M +m

where the expression found above for a has been used.

(d) Treating the block and half the rope as a single object, with mass M + 1
2m, where the horizontal

force on it is the tension Tm at the midpoint of the rope, we use Newton’s second law:

Tm = (M +
1

2
m)a =

(M + 1
2m)F

(M +m)
=

(2M +m)F

2(M +m)
.

52. The coordinate system we wish to use is shown in Fig. 5-18(c) in the textbook, so we resolve this
horizontal force into appropriate components.

������������������

A
A

A A
A

A���
-
~FA

AAU
Fy = F sin θ

����* Fx = F cos θ

θ = 30◦

(a) Referring to Fig. 5-18 in the textbook, we see that Newton’s second law applied to the x axis
produces

F cos θ −mg sin θ = ma .

For a = 0, this yields F = 566 N.

(b) Applying Newton’s second law to the y axis (where there is no acceleration), we have

N − F sin θ −mg cos θ = 0

which yields the normal force N = 1.13× 103 N.

53. The forces on the balloon are the force of gravity m~g (down) and the force of the air ~Fa (up). We take
the +y to be up, and use a to mean the magnitude of the acceleration (which is not its usual use in
this chapter). When the mass is M (before the ballast is thrown out) the acceleration is downward
and Newton’s second law is Fa −Mg = −Ma. After the ballast is thrown out, the mass is M − m
(where m is the mass of the ballast) and the acceleration is upward. Newton’s second law leads to
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Fa − (M −m)g = (M −m)a. The earlier equation gives Fa = M(g − a), and this plugs into the new
equation to give

M(g − a)− (M −m)g = (M −m)a =⇒ m =
2Ma

g + a
.

54. The free-body diagram is shown below. Newton’s second law for the

mass m for the x direction leads
to

T1 − T2 −mg sin θ = ma

which gives the difference in the
tension in the pull cable:

T1 − T2 = m(g sin θ + a)

= (2800) (9.8 sin 35◦ + 0.81)

= 1.8× 104 N .
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55. (a) The mass of the elevator is m = 27800/9.8 = 2837 kg and (with +y upward) the acceleration is
a = +1.22 m/s2. Newton’s second law leads to

T −mg = ma =⇒ T = m(g + a)

which yields T = 3.13× 104 N for the tension.

(b) The term “deceleration” means the acceleration vector is in the direction opposite to the velocity
vector (which the problem tells us is upward). Thus (with +y upward) the acceleration is now
a = −1.22 m/s2, so that the tension T = m(g + a) turns out to be T = 2.43× 104 N in this case.

56. (a) The term “deceleration” means the acceleration vector is in the direction opposite to the velocity
vector (which the problem tells us is downward). Thus (with +y upward) the acceleration is
a = +2.4 m/s2. Newton’s second law leads to

T −mg = ma =⇒ m =
T

g + a

which yields m = 7.3 kg for the mass.

(b) Repeating the above computation (now to solve for the tension) with a = +2.4 m/s2 will, of course,
leads us right back to T = 89 N. Since the direction of the velocity did not enter our computation,
this is to be expected.

57. The mass of the bundle is m = 449/9.8 = 45.8 kg and we choose +y upward.

(a) Newton’s second law, applied to the bundle, leads to

T −mg = ma =⇒ a =
387− 449

45.8

which yields a = −1.35 m/s2 for the acceleration. The minus sign in the result indicates the
acceleration vector points down. Any downward acceleration of magnitude greater than this is also
acceptable (since that would lead to even smaller values of tension).

(b) We use Eq. 2-16 (with ∆x replaced by ∆y = −6.1 m). We assume v0 = 0.

|v| =
√

2a∆y =
√

2(−1.35)(−6.1) = 4.1 m/s .

For downward accelerations greater than 1.35 m/s2, the speeds at impact will be larger than 4.1 m/s.



126 CHAPTER 5.

58. For convenience, we have labeled the 2.0 kg box m1 and the 3.0 kg box m2 – and their weights w′ and
w, respectively. The +x axis is “downhill” for m1 and “uphill” for m2 (so they both accelerate with the
same sign).

@
@

@
@

@
@

@@���������������

A
AA

A
AA

���� ��

��
@

@
m1@@I

~T

���
~N1 @@R w′

x
��	

w′
y

A
AK ~N2

���*
~T

���wx A
AAUwy

30◦

m2

60◦

We apply Newton’s second law to each box’s x axis:

m1g sin 60◦ − T = m1a

T −m2g sin 30◦ = m2a

Adding the two equations allows us to solve for the acceleration a = 0.45 m/s2. This value is plugged
back into either of the two equations to yield the tension T = 16 N.

59. (a) There are six legs, and the vertical component of the tension force in each leg is T sin θ where
θ = 40◦. For vertical equilibrium (zero acceleration in the y direction) then Newton’s second law
leads to

6T sin θ = mg =⇒ T =
mg

6 sin θ

which (expressed as a multiple of the bug’s weight mg) gives roughly 0.26mg for the tension.

(b) The angle θ is measured from horizontal, so as the insect “straightens out the legs” θ will increase
(getting closer to 90◦), which causes sin θ to increase (getting closer to 1) and consequently (since
sin θ is in the denominator) causes T to decrease.

60. (a) Choosing the direction of motion as +x, Eq. 2-11 gives

a =
88.5 km/h− 0

6.0 s
= 15 km/h/s .

Converting to SI, this is a = 4.1 m/s2.

(b) With mass m = 2000/9.8 = 204 kg, Newton’s second law gives ~F = m~a = 836 N in the +x
direction.

61. (a) Intuition readily leads to the conclusion (that the heavier block should be the hanging one, for
largest acceleration). The force that “drives” the system into motion is the weight of the hanging
block (gravity acting on the block on the table has no effect on the dynamics, so long as we ignore
friction).

(b) In Sample Problem 5-5 (where it was assumed the m is the hanging block) Eq. 5-21 gave the
acceleration. Now that we have switched m ↔ M (so that now M is the hanging block) our new
version of Eq. 5-21 is

a =
M

m+M
g = 6.5 m/s2 .

(c) Switching m↔M has no effect on Eq. 5-22, which yields

T =
mM

m+M
g = 13 N .
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62. Making separate free-body diagrams for the helicopter and the truck, one finds there are two forces
on the truck (~T upward, caused by the tension, which we’ll think of as that of a single cable, and m~g

downward, where m = 4500 kg) and three forces on the helicopter (~T downward, ~Flift upward, and M~g
downward, where M = 15000 kg). With +y upward, then a = +1.4 m/s2 for both the helicopter and
the truck.

(a) Newton’s law applied to the helicopter and truck separately gives

Flift − T −Mg = Ma

T −mg = ma

which we add together to obtain

Flift − (M +m)g = (M +m)a .

From this equation, we find Flift = 2.2× 105 N.

(b) From the truck equation T −mg = ma we obtain T = 5.0× 104 N.

63. (a) With SI units understood, the net force is

~Fnet = ~F1 + ~F2 = (3.0 + (−2.0)) ı̂ + (4.0 + (−6.0)) ĵ

which yields ~Fnet = 1.0 ı̂− 2.0 ĵ in Newtons.

(b) Using magnitude-angle notation (especially convenient on a vector-capable calculator), the answer
to part (a) becomes
~Fnet = (2.2 N 6 − 63◦).

(c) Since ~Fnet is equal to ~a multiplied by a positive scalar (which cannot affect the direction of the
vector it multiplies), then the acceleration has the same angle as the net force. The magnitude of

~a comes from dividing the magnitude of ~Fnet by the mass (m = 1.0 kg). Thus, in magnitude-angle
notation, the answer is ~a = (2.2 m/s2 6 − 63◦).

64. We take rightwards as the +x direction. Thus, ~F1 = 20 ı̂ in Newtons. In each case, we use Newton’s
second law ~F1 + ~F2 = m~a where m = 2.0 kg.

(a) If ~a = +10 ı̂ in SI units, then the equation above gives ~F2 = 0.

(b) If ~a = +20 ı̂ m/s2, then that equation gives ~F2 = 20 ı̂ N.

(c) If ~a = 0, then the equation gives ~F2 = −20 ı̂ N.

(d) If ~a = −10 ı̂ m/s2, the equation gives ~F2 = −40 ı̂ N.

(e) If ~a = −20 ı̂ m/s2, the equation gives ~F2 = −60 ı̂ N.

65. (a) Since the performer’s weight is (52)(9.8) = 510 N, the rope breaks.

(b) Setting T = 425 N in Newton’s second law (with +y upward) leads to

T −mg = ma =⇒ a =
T

m
− g

which yields |a| = 1.6 m/s2.

66. The mass of the pilot is m = 735/9.8 = 75 kg. Denoting the upward force exerted by the spaceship (his

seat, presumably) on the pilot as ~F and choosing upward the +y direction, then Newton’s second law
leads to

F −mgmoon = ma =⇒ F = (75)(1.6 + 1.0) = 195 N .
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67. With SI units understood, the net force on the box is

~Fnet = (3.0 + 14 cos 30◦ − 11) ı̂ + (14 sin 30◦ + 5.0− 17) ĵ

which yields ~Fnet = 4.1 ı̂− 5.0 ĵ in Newtons.

(a) Newton’s second law applied to the m = 4.0 kg box leads to

~a =
~Fnet

m
= 1.0 ı̂− 1.3 ĵ m/s2 .

(b) The magnitude of ~a is
√

1.02 + (−1.3)2 = 1.6 m/s2. Its angle is tan−1(−1.3/1.0) = −50◦ (that is,
50◦ measured clockwise from the rightward axis).

68. The net force is in the y direction, so the unknown force must have an x component that cancels the
(8.0 N)̂ı value of the known force, and it must also have enough y component to give the 3.0 kg object

an acceleration of (3.0 m/s
2
)̂j . Thus, the magnitude of the unknown force is
∣

∣

∣

~F
∣

∣

∣ =
√

F 2
x + F 2

y =
√

(−8.0)2 + 9.02 = 12 N .

69. We are only concerned with horizontal forces in this problem (gravity plays no direct role). Thus,
∑

~F = m~a reduces to ~Favg = m~a, and we see that the magnitude of the force is ma, where m = 0.20 kg
and

a = |~a| =
√

a2
x + a2

y

and the direction of the force is the same as that of ~a. We take east as the +x direction and north as
+y. The acceleration is the average acceleration in the sense of Eq. 4-15.

(a) We find the (average) acceleration to be

~a =
~v − ~v0

∆t
=

(−5.0 ı̂)− (2.0 ı̂)

0.50
= −14 ı̂ m/s

2
.

Thus, the magnitude of the force is (0.20 kg)(14 m/s
2
) = 2.8 N and its direction is − ı̂ which means

west in this context.

(b) A computation similar to the one in part (a) yields the (average) acceleration with two components,
which can be expressed various ways:

~a = −4.0 ı̂− 10.0 ĵ → (−4.0,−10.0) → (10.8 6 − 112◦)

Therefore, the magnitude of the force is (0.20 kg)(10.8 m/s2) = 2.2 N and its direction is 112◦

clockwise from east – which means it is 22◦ west of south, stated more conventionally.

70. The “certain force” is denoted F is assumed to be the net force on the object when it gives m1 an
acceleration a1 = 12 m/s2 and when it gives m2 an acceleration a2 = 3.3 m/s2. Thus, we substitute
m1 = F/a1 and m2 = F/a2 in appropriate places during the following manipulations.

(a) Now we seek the acceleration a of an object of mass m2 −m1 when F is the net force on it. Thus,

a =
F

m2 −m1
=

F

(F/a2)− (F/a1)
=

a1a2

a1 − a2

which yields a = 4.6 m/s2.

(b) Similarly for an object of mass m2 +m1 :

a =
F

m2 +m1
=

F

(F/a2) + (F/a1)
=

a1a2

a1 + a2

which yields a = 2.6 m/s2.
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71. We mention that the textbook treats this particular arrangement of blocks and pulleys in extensive detail
in Sample Problem 5-5. Using the usual coordinate system (right = +x and up = +y) for both blocks
has the important consequence that for the 3.0 kg block to have a positive acceleration (a > 0), block
M must have a negative acceleration of the same magnitude (−a). Thus, applying Newton’s second law
to the two blocks, we have

T = (3.0 kg)
(

1.0 m/s
2
)

along x axis

T −Mg = M
(

−1.0 m/s2
)

along y axis .

(a) The first equation yields the tension T = 3.0 N.

(b) The second equation yields the mass M = 3.0/8.8 = 0.34 kg.

72. We take +x uphill for the m = 1.0 kg box and +x rightward for the M = 3.0 kg box (so the accelerations
of the two boxes have the same magnitude and the same sign). The uphill force onm is F and the downhill
forces on it are T and mg sin θ, where θ = 37◦. The only horizontal force on M is the rightward-pointed
tension. Applying Newton’s second law to each box, we find

F − T −mg sin θ = ma

T = Ma

which are added to obtain F −mg sin θ = (m+M)a. This yields the acceleration

a =
12− (1.0)(9.8) sin 37◦

1.0 + 3.0
= 1.53 m/s2 .

Thus, the tension is T = Ma = (3.0)(1.53) = 4.6 N.

73. (a) With v0 = 0, Eq. 2-16 leads to

a =
v2

2∆x
=

(

6.0× 106 m/s
)2

2(0.015 m)

which yields 1.2× 1015 m/s2 for the acceleration. The force responsible for producing this acceler-
ation is

F = ma =
(

9.11× 10−31 kg
) (

1.2× 1015 m/s2
)

= 1.1× 10−15 N .

(b) The weight is mg = 8.9 × 10−30 N, many orders of magnitude smaller than the result of part (a).
As a result, gravity plays a negligible role in most atomic and subatomic processes.

74. We denote the thrust as T and choose +y upward. Newton’s second law leads to

T −Mg = Ma =⇒ a =
2.6× 105

1.3× 104
− 9.8

which yields a = 10 m/s2.

75. (a) The reaction force to ~FMW = 180 N west is, by Newton’s third law, ~FWM = 180 N east.

(b) Applying ~F = m~a to the woman gives an acceleration a = 180/45 = 4.0 m/s2, directed west.

(c) Applying ~F = m~a to the man gives an acceleration a = 180/90 = 2.0 m/s
2
, directed east.

76. We note that mg = (15)(9.8) = 147 N.

(a) The penguin’s weight is W = 147 N.

(b) The normal force exerted upward on the penguin by the scale is equal to the gravitational pull W on
the penguin because the penguin is not accelerating. So, by Newton’s second law, N = W = 147 N.
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(c) The reading on the scale, by Newton’s third law, is the reaction force to that found in part (b). Its
magnitude is therefore the same: 147 N.

77. Sample Problem 5-8 has a good treatment of the forces in an elevator. We apply Newton’s second law
(with +y up)

N −mg = ma

where m = 100 kg and a must be estimated from the graph (it is the instantaneous slope at the various
moments).

(a) At t = 1.8 s, we estimate the slope to be +1.0 m/s2. Thus, Newton’s law yields N ≈ 1100 N (up).

(b) At t = 4.4 s, the slope is zero, so N = 980 N (up).

(c) At t = 6.8 s, we estimate the slope to be -1.7 m/s
2
. Thus, Newton’s law yields N = 810 N (up).

78. From the reading when the elevator was at rest, we know the mass of the object is m = 65/9.8 = 6.6 kg.
We choose +y upward and note there are two forces on the object: mg downward and T upward (in the
cord that connects it to the balance; T is the reading on the scale by Newton’s third law).

(a) “Upward at constant speed” means constant velocity, which means no acceleration. Thus, the
situation is just as it was at rest: T = 65 N.

(b) The term “deceleration” is used when the acceleration vector points in the direction opposite to
the velocity vector. We’re told the velocity is upward, so the acceleration vector points downward
(a = −2.4 m/s2). Newton’s second law gives

T −mg = ma =⇒ T = (6.6)(9.8− 2.4) = 49 N .

79. Since (x0, y0) = (0, 0) and ~v0 = 6.0 ı̂, we have from Eq. 2-15

x = (6.0)t+
1

2
axt

2

y =
1

2
ayt

2 .

These equations express uniform acceleration along each axis; the x axis points east and the y axis
presumably points north (the assumption is that the figure shown in the problem is a view from above).
Lengths are in meters, time is in seconds, and force is in newtons.

Examination of any non-zero (x, y) point will suffice, though it is certainly a good idea to check results by
examining more than one. Here we will look at the t = 4.0 s point, at (8.0, 8.0). The x equation becomes

8.0 = (6.0)(4.0) + 1
2ax(4.0)2. Therefore, ax = −2.0 m/s2. The y equation becomes 8.0 = 1

2ay(4.0)2.

Thus, ay = 1.0 m/s
2
. The force, then, is

~F = m~a = −24 ı̂ + 12 ĵ −→ (27 6 153◦)

where the vector has been expressed in unit-vector and then magnitude-angle notation. Thus, the force
has magnitude 27 N and is directed 63◦ west of north (or, equivalently, 27◦ north of west).

80. We label the 1.0 kg mass m and label the 2.0 kg mass M . We first analyze the forces on m.

The +x direction

HHHHHHHHHHHHHHHHHH

�
�
�

�
�
�

HHH

HHHHHjmg sinβ
�

�
�

��� mg cosβ�
�
�
���

~N

HHj ~T
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is “downhill”
(parallel to ~T ).

With the acceleration
(5.5 m/s

2
) in the positive x direction for m, then Newton’s second law, applied to the x axis, becomes

T +mg sinβ = m(5.5 m/s
2
)

But for M , using the more familiar vertical y axis (with up as the positive direction), we have the
acceleration in the negative direction:

F + T −Mg = M(−5.5 m/s
2
)

where the tension comes in as an upward force (the cord can pull, not push).

(a) From the equation for M , with F = 6.0 N, we find the tension T = 2.6 N.

(b) From the equation for m, using the result from part (a), we obtain the angle β = 17◦.

81. (a) The bottom cord is only supporting a mass of 4.5 kg against gravity, so its tension is (4.5)(9.8) =
44 N.

(b) The top cord is supporting a total mass of 8.0 kg against gravity, so the tension there is (8.0)(9.8) =
78 N.

(c) In the second picture, the lowest cord supports a mass of 5.5 kg against gravity and consequently
has a tension of (5.5)(9.8) = 54 N.

(d) The top cord, we are told, has tension 199 N which supports a total of 199/9.8 = 20.3 kg, 10.3 of
which is accounted for in the figure. Thus, the unknown mass in the middle must be 20.3− 10.3 =
10.0 kg, and the tension in the cord above it must be enough to support 10.0 + 5.5 = 15.5 kg, so
T = (15.5)(9.8) = 152 N. Another way to analyze this is to examine the forces on the 4.8 kg piece;
one of the downward forces on it is this T .

82. The mass of the automobile is 17000/9.8 = 1735 kg, so the net force has magnitude F = (1735)(3.66) =
6.35× 102 N.

83. (First problem in Cluster 1)

(a) Using the coordinate system and force resolution shown in the textbook Figure 5-18(c), we apply
Newton’s second law along the x axis

−mg sin θ = ma

where θ = 30.0◦. Thus, a = −4.9 m/s
2
. The magnitude of the acceleration, then, is 4.9 m/s

2
.

(b) Applying Newton’s second law along the y axis (where there is no acceleration), we have

N −mg cos θ = 0 .

Thus, with m = 10.0 kg, we obtain N = 84.9 N.

84. (Second problem in Cluster 1)

(a) Newton’s second law applied to the x axis yields F −mg sin θ = ma. Thus, with F = 40.0 N, we

find a = −0.90 m/s2. The interpretation is that the magnitude of the acceleration is 0.90 m/s2 and
its direction is downhill.

(b) Substituting F = 60.0 N into F −mg sin θ = ma, we find a = 1.1 m/s2. Thus, the acceleration is

1.1 m/s
2

uphill.
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85. (Third problem in Cluster 1)
The coordinate system we wish to use is shown in Figure 5-18(c) in the textbook, so we resolve this
vertical force into appropriate components.

������������������

A
A

A A
A

A���

6~F

A
A

AAKFy =

F sin 60◦

��*
Fx = F cos 60◦

θ = 30◦

(a) Assuming the block is not pulled entirely off the incline, Newton’s second law applied to the x axis
yields

Fx −mg sin θ = ma .

This leads to a = −1.9 m/s
2
, which we interpret as a acceleration of 1.9 m/s

2
directed downhill.

(b) The assumption stated in part (a) implies there is no acceleration in the y direction. Newton’s
second law along the y axis gives

N + Fy −mg cos θ = 0 .

Therefore, N = 32.9 N. We note that a negative value of N would have been a sure sign that our
assumption was incorrect.

(c) The equation in part (a) can be used to solve for the equilibrium (a = 0) value of F :

F cos 60◦ = mg sin 30◦ = 49 N .

Therefore, F = 98 N.

(d) There are three forces acting on the block: ~N, ~F , and m~g. Equilibrium generally suggests that the
“vector triangle” formed by three such vectors closes on itself. In this case, however, two sides of
that “triangle” are vertical! ~F is up and m~g is down! The insight behind this “squashed triangle”
is that ~N (the only vector that is not vertical) has zero magnitude. Thus, the block is not “bearing
down” on the incline surface. In fact, in this circumstance, the incline is not needed at all for
support; the value F = 98.0 N is just what is needed to hold the block (which weighs 98.0 N) aloft.

86. (Fourth problem in Cluster 1)
The coordinate system we wish to use is shown in Fig. 5-18 in the textbook, so we resolve this horizontal
force into appropriate components.

������������������

A
A

A A
A

A���
-
~FA

AAU
Fy = F sin θ

����* Fx = F cos θ

θ = 30◦

(a) We apply Newton’s second law to the x axis:

Fx −mg sin θ = ma
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This yields a = −1.44 m/s2, which is interpreted as an acceleration of 1.44 m/s2 downhill.

(b) Applying Newton’s second law to the y axis (where there is no acceleration), we have

N − Fy −mg cos θ = 0 .

This yields the normal force N = 105 N.

(c) When we set a = 0 in the part (a) equation, we obtain

F cos 30◦ = mg sin 30◦ .

Therefore, F = 56.6 N. Alternatively, we can use a “vector triangle” approach, referred to in the
previous problem solution. We form a closed triangle.

-~F

?

m~g

A
A

A
A

A
A

A
A

AAK

~N

We note that the angle
between the weight vector
and the normal force is θ.

Thus, we see mg tan θ = F ,
which gives F = 56.6 N.
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Chapter 6

1. We do not consider the possibility that the bureau might tip, and treat this as a purely horizontal motion
problem (with the person’s push ~F in the +x direction). Applying Newton’s second law to the x and y
axes, we obtain

F − fs,max = ma

N −mg = 0

respectively. The second equation yields the normal force N = mg, whereupon the maximum static
friction is found to be (from Eq. 6-1) fs,max = µsmg. Thus, the first equation becomes

F − µsmg = ma = 0

where we have set a = 0 to be consistent with the fact that the static friction is still (just barely) able
to prevent the bureau from moving.

(a) With µs = 0.45 and m = 45 kg, the equation above leads to F = 198 N. To bring the bureau into
a state of motion, the person should push with any force greater than this value. Rounding to two
significant figures, we can therefore say the minimum required push is F = 2.0× 102 N.

(b) Replacing m = 45 kg with m = 28 kg, the reasoning above leads to roughly F = 1.2× 102 N.

2. An excellent discussion and equation development related to this problem is given in Sample Problem 6-3.
We merely quote (and apply) their main result (Eq. 6-13)

θ = tan−1 µs = tan−1 0.04 ≈ 2◦ .

3. The free-body diagram for the player is shown below. ~N is the normal force of the ground on the player,
m~g is the force of gravity, and ~f is the force of friction. The force of friction is related to the normal
force by f = µkN . We use Newton’s second law applied

to the vertical axis to find the normal
force. The vertical component of the ac-
celeration is zero, so we obtainN−mg =
0; thus, N = mg. Consequently,

µk =
f

N

=
470 N

(79 kg)
(

9.8 m/s
2
)

= 0.61 .
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4. To maintain the stone’s motion, a horizontal force (in the +x direction) is needed that cancels the
retarding effect due to kinetic friction. Applying Newtons’ second to the x and y axes, we obtain

F − fk = ma

N −mg = 0

respectively. The second equation yields the normal force N = mg, so that (using Eq. 6-2) the kinetic
friction becomes fk = µkmg. Thus, the first equation becomes

F − µkmg = ma = 0

where we have set a = 0 to be consistent with the idea that the horizontal velocity of the stone should
remain constant. With m = 20 kg and µk = 0.80, we find F = 1.6× 102 N.

5. We denote ~F as the horizontal force of the person exerted on the crate (in the +x direction), ~fk is the

force of kinetic friction (in the −x direction), ~N is the vertical normal force exerted by the floor (in the
+y direction), and m~g is the force of gravity. The magnitude of the force of friction is given by fk = µkN
(Eq. 6-2). Applying Newtons’ second to the x and y axes, we obtain

F − fk = ma

N −mg = 0

respectively.

(a) The second equation yields the normal force N = mg, so that the friction is

fk = µkmg = (0.35)(55 kg)
(

9.8 m/s
2
)

= 1.9× 102 N .

(b) The first equation becomes
F − µkmg = ma

which (with F = 220 N) we solve to find

a =
F

m
− µkg = 0.56 m/s

2
.

6. An excellent discussion and equation development related to this problem is given in Sample Problem
6-3. We merely quote (and apply) their main result (Eq. 6-13)

θ = tan−1 µs = tan−1 0.5 = 27◦

which implies that the angle through which the slope should be reduced is φ = 45◦ − 27◦ ≈ 20◦.

7. The free-body diagram for the puck is shown below. ~N is the normal force of the ice on the puck, ~f is
the force of friction (in the −x direction), and m~g is the force of gravity.

(a) The horizontal component of Newton’s second law gives −f = ma, and constant acceleration
kinematics (Table 2-1) can be used to find the acceleration.

Since the final velocity is zero, v2 =
v2
0 + 2ax leads to a = −v2

0/2x. This is
substituted into the Newton’s law equa-
tion to obtain

f =
mv2

0

2x

=
(0.110 kg)(6.0 m/s)2

2(15 m)

= 0.13 N .
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(b) The vertical component of Newton’s second law gives N−mg = 0, so N = mg which implies (using
Eq. 6-2) f = µkmg. We solve for the coefficient:

µk =
f

mg
=

0.13 N

(0.110 kg)
(

9.8 m/s
2
) = 0.12 .

8. (a) The free-body diagram for the person (shown as an L-shaped block) is shown below. The force
that she exerts on the rock slabs is not directly shown (since the diagram should only show forces

exerted on her), but it is related by Newton’s third law) to the normal forces ~N1 and ~N2 exerted
horizontally by the slabs onto her shoes and back, respectively. We will show in part (b) that
N1 = N2 so that we there is no ambiguity in saying that the magnitude of her push is N2 . The
total upward force due to (maximum) static friction is ~f = ~f1+ ~f2 where (using Eq. 6-1) f1 = µs 1N1

and f2 = µs 2N2 . The problem gives the values µs 1 = 1.2 and µs 2 = 0.8.

?
m~g

� ~N2

-
~N1

6
~f1

6~f2

(b) We apply Newton’s second law to the x and y axes (with +x rightward and +y upward and there
is no acceleration in either direction).

N1 −N2 = 0

f1 + f2 −mg = 0

The first equation tells us that the normal forces are equal N1 = N2 = N . Consequently, from
Eq. 6-1

f1 = µs 1N

f2 = µs 2N

we conclude that

f1 =

(

µs 1

µs 2

)

f2 .

Therefore, f1 + f2 −mg = 0 leads to

(

µs 1

µs 2
+ 1

)

f2 = mg

which (with m = 49 kg) yields f2 = 192 N. From this we find N = f2/µs 2 = 240 N. This is equal
to the magnitude of the push exerted by the rock climber.

(c) From the above calculation, we find f1 = µs 1N = 288 N which amounts to a fraction

f1
W

=
288

(49)(9.8)
= 0.60

or 60% of her weight.
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9. (a) The free-body diagram for the block is shown below. ~F is the applied force, ~N is the normal force

of the wall on the block, ~f is the force of friction, and m~g is the force of gravity. To determine if the
block falls, we find the magnitude f of the force of friction required to hold it without accelerating
and also find the normal force of the wall on the block.

We compare f and µsN . If
f < µsN , the block does
not slide on the wall but if
f > µsN , the block does slide.
The horizontal component of
Newton’s second law is F −
N = 0, so N = F = 12 N and
µsN = (0.60)(12 N) = 7.2 N.
The vertical component is f−
mg = 0, so f = mg = 5.0 N.
Since f < µsN the block does
not slide.
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~f

(b) Since the block does not move f = 5.0 N and N = 12 N. The force of the wall on the block is

~Fw = −N ı̂ + f ĵ = −(12 N) ı̂ + (5.0 N) ĵ

where the axes are as shown on Fig. 6-21 of the text.

10. In addition to the forces already shown in Fig. 6-22, a free-body diagram would include an upward
normal force ~N exerted by the floor on the block, a downward m~g representing the gravitational pull
exerted by Earth, and an assumed-leftward ~f for the kinetic or static friction. We choose +x rightwards
and +y upwards. We apply Newton’s second law to these axes:

(6.0 N)− f = ma

P +N −mg = 0

where m = 2.5 kg is the mass of the block.

(a) In this case, P = 8.0 N leads to N = (2.5)(9.8)− 8.0 so that the normal force is N = 16.5 N. Using
Eq. 6-1, this implies fs,max = µsN = 6.6 N, which is larger than the 6.0 N rightward force – so
the block (which was initially at rest) does not move. Putting a = 0 into the first of our equations
above yields a static friction force of f = P = 6.0 N. Since its value is positive, then our assumption
for the direction of ~f (leftward) is correct.

(b) In this case, P = 10 N leads to N = (2.5)(9.8)− 10 so that the normal force is N = 14.5 N. Using
Eq. 6-1, this implies fs,max = µsN = 5.8 N, which is less than the 6.0 N rightward force – so the
block does move. Hence, we are dealing not with static but with kinetic friction, which Eq. 6-2
reveals to be fk = µkN = 3.6 N. Again, its value is positive, so our assumption for the direction of
~f (leftward) is correct.

(c) In this last case, P = 12 N leads to N = 12.5 N and thus to fs,max = µsN = 5.0 N, which (as
expected) is less than the 6.0 N rightward force – so the block moves. The kinetic friction force,
then, is fk = µkN = 3.1 N. Once again, its value is positive, so our assumption for the direction of
~f (leftward) is correct.

11. A cross section of the cone of sand is shown below. To pile the most sand without extending the radius,
sand is added to make the height h as great as possible. Eventually, however, the sides become so steep
that sand at the surface begins to slide. The goal is to find the greatest height (corresponding to greatest
slope) for which the sand does not slide. A grain of sand is shown on the diagram and the forces on it

are labeled. ~N is the normal force of the surface, m~g is the force of gravity, and ~f is the force of (static)
friction. We take the x axis to be down the plane and the y axis to be in the direction of the normal
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force. We assume the grain does not slide, so its acceleration is zero. Then the x component of Newton’s
second law is mg sin θ − f = 0 and the y component is N −mg cos θ = 0.

The first equation gives f =
mg sin θ and the second
gives N = mg cos θ. If
the grain does not slide, the
condition f < µsN must
hold. This means mg sin θ <
µsmg cos θ or tan θ < µs.
The surface of the cone has
the greatest slope (and the
height of the cone is the
greatest) if tan θ = µs.
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~f
~N

m~g

R R

h

θ

Since R and h are two sides of a right triangle, h = R tan θ. Replacing tan θ with µs we obtain h = µsR.
We substitute this into the volume equation V = πR2h/3 to obtain the result V = πµsR

3/3.

12. We denote the magnitude of 110 N force exerted by the worker on the crate as F . The magnitude of the
static frictional force can vary between zero and fs, max = µsN .

(a) In this case, application of Newton’s second law in the vertical direction yields N = mg. Thus,

fs, max = µsN = µsmg

= (0.37)(35 kg)
(

9.8 m/s
2
)

= 126.9 N

which is greater than F . The block, which is initially at rest, stays at rest. This implies, by applying
Newton’s second law to the horizontal direction, that the magnitude of the frictional force exerted
on the crate is fs = F = 110 N.

(b) As calculated in part (a), fs, max = 1.3× 102 N.

(c) As remarked above, the crate does not move (since F < fs, max).

(d) Denoting the upward force exerted by the second worker as F2, then application of Newton’s
second law in the vertical direction yields N = mg − F2. Therefore, in this case, fs, max = µsN =
µs(mg − F2). In order to move the crate, F must satisfy F > fs, max = µs(mg − F2), i.e.,

110 N > (0.37)
(

(35 kg)
(

9.8 m/s
2
)

− F2

)

.

The minimum value of F2 that satisfies this inequality is a value slightly bigger than 45.7 N, so we
express our answer as F2, min = 46 N.

(e) In this final case, moving the crate requires a greater horizontal push from the worker than static
friction (as computed in part (a)) can resist. Thus, Newton’s law in the horizontal direction leads
to

F + F2 > fs, max

110 N + F2 > 126.9 N

which leads (after appropriate rounding) to F2, min = 17 N.

13. (a) The free-body diagram for the crate is shown below. ~T is the tension force of the rope on the crate,
~N is the normal force of the floor on the crate, m~g is the force of gravity, and ~f is the force of
friction. We take the +x direction to be horizontal to the right and the +y direction to be up. We
assume the crate is motionless. The x component of Newton’s second law leads to T cos θ − f = 0
and the y component becomes T sin θ +N −mg = 0, where θ = 15◦ is the angle between the rope
and the horizontal.
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The first equation gives f =
T cos θ and the second gives N =
mg − T sin θ. If the crate is to
remain at rest, f must be less
than µsN , or T cos θ < µs(mg −
T sin θ). When the tension force
is sufficient to just start the crate
moving, we must have T cos θ =
µs(mg−T sin θ). We solve for the
tension:

T =
µsmg

cos θ + µs sin θ

=
(0.50)(68)(9.8)

cos 15◦ + 0.50 sin15◦

= 304 ≈ 300 N .
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•

~N

~f

m~g

~T
θ

(b) The second law equations for the moving crate are T cos θ − f = ma and N + T sin θ −mg = 0.
Now f = µkN . The second equation gives N = mg − T sin θ, as before, so f = µk(mg − T sin θ).
This expression is substituted for f in the first equation to obtain T cos θ−µk(mg−T sin θ) = ma,
so the acceleration is

a =
T (cos θ + µk sin θ)

m
− µkg

which we evaluate:

a =
(304 N)(cos 15◦ + 0.35 sin15◦)

68 kg
− (0.35)(9.8 m/s

2
) = 1.3 m/s

2
.

14. We first analyze the forces on the pig of mass m. The incline angle is θ.

The +x direction

HHHHHHHHHHHHHHHHHH

�
�
�

�
�
�

HHH

HHHHHjmg sin θ
�

�
�

��� mg cos θ�
�
�
���

~N

HHHY
~fk

is “downhill.”

Application of Newton’s second law to the x and y axes leads to

mg sin θ − fk = ma

N −mg cos θ = 0 .

Solving these along with Eq. 6-2 (fk = µkN) produces the following result for the pig’s downhill accel-
eration:

a = g (sin θ − µk cos θ) .

To compute the time to slide from rest through a downhill distance ℓ, we use Eq. 2-15:

ℓ = v0t+
1

2
at2 =⇒ t =

√

2ℓ

a
.
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We denote the frictionless (µk = 0) case with a prime and set up a ratio:

t

t′
=

√

2ℓ/a
√

2ℓ/a′
=

√

a′

a

which leads us to conclude that if t/t′ = 2 then a′ = 4a. Putting in what we found out above about the
accelerations, we have

g sin θ = 4g (sin θ − µk cos θ) .

Using θ = 35◦, we obtain µk = 0.53.

15. (a) Free-body diagrams for the blocks A and C, considered as a single object, and for the block B are
shown below. T is the magnitude of the tension force of the rope, N is the magnitude of the normal
force of the table on block A, f is the magnitude of the force of friction, WAC is the combined
weight of blocks A and C (the magnitude of force ~Fg AC shown in the figure), and WB is the weight

of block B (the magnitude of force ~Fg B shown). Assume the blocks are not moving. For the

blocks on the table we take the x axis to be to the
right and the y axis to be upward. The x compo-
nent of Newton’s second law is then T −f = 0 and
the y component is N −WAC = 0. For block B
take the downward direction to be positive. Then
Newton’s second law for that block is WB−T = 0.
The third equation gives T = WB and the first
gives f = T = WB . The second equation gives
N = WAC . If sliding is not to occur, f must be
less than µsN , or WB < µsWAC . The smallest
that WAC can be with the blocks still at rest is
WAC = WB/µs = (22 N)/(0.20) = 110 N. Since
the weight of block A is 44 N, the least weight for
C is 110− 44 = 66 N.
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•

~T

~Fg B

(b) The second law equations become T − f = (WA/g)a, N − WA = 0, and WB − T = (WB/g)a.
In addition, f = µkN . The second equation gives N = WA, so f = µkWA. The third gives
T = WB − (WB/g)a. Substituting these two expressions into the first equation, we obtain WB −
(WB/g)a− µkWA = (WA/g)a. Therefore,

a =
g(WB − µkWA)

WA +WB
=

(9.8 m/s2) (22 N− (0.15)(44 N))

44 N + 22 N
= 2.3 m/s2 .

16. We choose +x horizontally rightwards and +y upwards and observe that the 15 N force has components
Fx = F cos θ and Fy = −F sin θ.

(a) We apply Newton’s second law to the y axis:

N − F sin θ −mg = 0 =⇒ N = (15) sin 40◦ + (3.5)(9.8) = 44

in SI units. With µk = 0.25, Eq. 6-2 leads to fk = 11 N.

(b) We apply Newton’s second law to the x axis:

F cos θ − fk = ma =⇒ a =
(15) cos 40◦ − 11

3.5
= 0.14

in SI units (m/s2). Since the result is positive-valued, then the block is accelerating in the +x
(rightward) direction.
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17. (a) Although details in Fig. 6-27 might suggest otherwise, we assume (as the problem states) that only
static friction holds block B in place. An excellent discussion and equation development related to
this topic is given in Sample Problem 6-3. We merely quote (and apply) their main result (Eq. 6-13)
for the maximum angle for which static friction applies (in the absence of additional forces such as

the ~F of part (b) of this problem).

θmax = tan−1 µs = tan−1 0.63 ≈ 32◦ .

This is greater than the dip angle in the problem, so the block does not slide.

(b) We analyze forces in a manner similar to that shown in Sample Problem 6-3, but with the addition
of a downhill force F .

F +mg sin θ − fs,max = ma = 0

N −mg cos θ = 0 .

Along with Eq. 6-1 (fs,max = µsN) we have enough information to solve for F . With θ = 24◦ and
m = 1.8× 107 kg, we find

F = mg (µs cos θ − sin θ) = 3.0× 107 N .

18. We use coordinates and weight-components as indicated in Fig. 5-18 (see Sample Problem 5-7 from the
previous chapter).

(a) In this situation, we take ~fs to point uphill and to be equal to its maximum value, in which case
fs,max = µsN applies, where µs = 0.25. Applying Newton’s second law to the block of mass
m = W/g = 8.2 kg, in the x and y directions, produces

Fmin 1 −mg sin θ + fs,max = ma = 0

N −mg cos θ = 0

which (with θ = 20◦) leads to

Fmin 1 = mg (sin θ − µs cos θ) = 8.6 N .

(b) Now we take ~fs to point downhill and to be equal to its maximum value, in which case fs,max = µsN
applies, where µs = 0.25. Applying Newton’s second law to the block of mass m = W/g = 8.2 kg,
in the x and y directions, produces

Fmin 2 −mg sin θ − fs,max = ma = 0

N −mg cos θ = 0

which (with θ = 20◦) leads to

Fmin2 = mg (sin θ + µs cos θ) = 46 N .

A value slightly larger than the “exact” result of this calculation is required to make it accelerate
up hill, but since we quote our results here to two significant figures, 46 N is a “good enough”
answer.

(c) Finally, we are dealing with kinetic friction (pointing downhill), so that

F −mg sin θ − fk = ma = 0

N −mg cos θ = 0

along with fk = µkN (where µk = 0.15) brings us to

F = mg (sin θ + µk cos θ) = 39 N .
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19. The free-body diagrams for block B and for the knot just above block A are shown below. ~T1 is the
tension force of the rope pulling on block B or pulling on the knot (as the case may be),

~T2 is the tension force exerted
by the second rope (at angle

θ = 30◦) on the knot, ~f is the
force of static friction exerted
by the horizontal surface on
block B, ~N is normal force ex-
erted by the surface on block
B, WA is the weight of block
A (WA is the magnitude of
mA~g), and WB is the weight
of block B (WB = 711 N is
the magnitude of mB~g).
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•

~T2

~T1

mA~g

θ

For each object we take +x horizontally rightward and +y upward. Applying Newton’s second law in
the x and y directions for block B and then doing the same for the knot results in four equations:

T1 − fs,max = 0

N −WB = 0

T2 cos θ − T1 = 0

T2 sin θ −WA = 0

where we assume the static friction to be at its maximum value (permitting us to use Eq. 6-1). Solving
these equations with µs = 0.25, we obtain WA = 103 ≈ 100 N.

20. If the block is sliding then we compute the kinetic friction from Eq. 6-2; if it is not sliding, then we
determine the extent of static friction from applying Newton’s law, with zero acceleration, to the x axis
(which is parallel to the incline surface). The question of whether or not it is sliding is therefore crucial,
and depends on the maximum static friction force, as calculated from Eq. 6-1. The forces are resolved
in the incline plane coordinate system in Figure 6-5 in the textbook. The acceleration, if there is any, is
along the x axis, and we are taking uphill as +x. The net force along the y axis, then, is certainly zero,
which provides the following relationship:

∑

~Fy = 0 =⇒ N = W cos θ

where W = 45 N is the weight of the block, and θ = 15◦ is the incline angle. Thus, N = 43.5 N, which
implies that the maximum static friction force should be fs, max = (0.50)(43.5) = 21.7 N.

(a) For ~P = 5.0 N downhill, Newton’s second law, applied to the x axis becomes

f − P −W sin θ = ma where m =
W

g
.

Here we are assuming ~f is pointing uphill, as shown in Figure 6-5, and if it turns out that it points
downhill (which is a possibility), then the result for fs will be negative. If f = fs then a = 0, we
obtain fs = 17 N, which is clearly allowed since it is less than fs, max.

(b) For ~P = 8.0 N downhill, we obtain (from the same equation) fs = 20 N, which is still allowed since
it is less than fs, max.

(c) But for ~P = 15 N downhill, we obtain (from the same equation) fs = 27 N, which is not allowed
since it is larger than fs, max. Thus, we conclude that it is the kinetic friction, not the static friction,
that is relevant in this case. We compute the result fk = (0.34)(43.5) = 15 N. Here, as in the other
parts of this problem, the friction is directed uphill.
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21. First, we check to see if the bodies start to move. We assume they remain at rest and compute the force
of (static) friction which holds them there, and compare its magnitude with the maximum value µsN .
The free-body diagrams are shown below. T is the magnitude of the tension force of the string, f is the

magnitude of the force of fric-
tion on body A, N is the mag-
nitude of the normal force of
the plane on body A, mA~g is
the force of gravity on body A
(with magnitude WA = 102 N),
and mB~g is the force of grav-
ity on body B (with magnitude
WB = 32 N). θ = 40◦ is the an-
gle of incline. We are not told
the direction of ~f but we assume
it is downhill. If we obtain a
negative result for f , then we
know the force is actually up the
plane.
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•B

mB~g

~T

(a) For A we take the +x to be uphill and +y to be in the direction of the normal force. The x and y
components of Newton’s second law become

T − f −WA sin θ = 0

N −WA cos θ = 0 .

Taking the positive direction to be downward for body B, Newton’s second law leads to

WB − T = 0 .

Solving these three equations leads to

f = WB −WA sin θ = 32− 102 sin40◦ = −34 N

(indicating that the force of friction is uphill) and to

N = WA cos θ = 102 cos40◦ = 78 N

which means that fs,max = µsN = (0.56)(78) = 44 N. Since the magnitude f of the force of friction
that holds the bodies motionless is less than fs,max the bodies remain at rest. The acceleration is
zero.

(b) Since A is moving up the incline, the force of friction is downhill with magnitude fk = µkN .
Newton’s second law, using the same coordinates as in part (a), leads to

T − fk −WA sin θ = mA a

N −WA cos θ = 0

WB − T = mB a

for the two bodies. We solve for the acceleration:

a =
WB −WA sin θ − µkWA cos θ

mB +mA

=
32 N− (102 N) sin 40◦ − (0.25)(102 N) cos40◦

(32 N + 102 N) /
(

9.8 m/s
2
)

= −3.9 m/s2 .
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The acceleration is down the plane, which is to say (since the initial velocity was uphill) that the
objects are slowing down. We note that m = W/g has been used to calculate the masses in the
calculation above.

(c) Now body A is initially moving down the plane, so the force of friction is uphill with magnitude
fk = µkN . The force equations become

T + fk −WA sin θ = mA a

N −WA cos θ = 0

WB − T = mB a

which we solve to obtain

a =
WB −WA sin θ + µkWA cos θ

mB +mA

=
32 N− (102 N) sin 40◦ + (0.25)(102 N) cos40◦

(32 N + 102 N) /
(

9.8 m/s
2
)

= −1.0 m/s2 .

The acceleration is again downhill the plane. In this case, the objects are speeding up.

22. The free-body diagrams are shown below. T is the magnitude of the tension force of the string, f is

the magnitude of the force of
friction on block A, N is the
magnitude of the normal force
of the plane on block A, mA~g
is the force of gravity on body
A (where mA = 10 kg), and
mB~g is the force of gravity on
block B. θ = 30◦ is the an-
gle of incline. For A we take
the +x to be uphill and +y to
be in the direction of the nor-
mal force; the positive direction
is chosen downward for block B.
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•B

mB~g

~T

Since A is moving down the incline, the force of friction is uphill with magnitude fk = µkN (where
µk = 0.20). Newton’s second law leads to

T − fk +mAg sin θ = mA a = 0

N −mAg cos θ = 0

mBg − T = mB a = 0

for the two bodies (where a = 0 is a consequence of the velocity being constant). We solve these for the
mass of block B.

mB = mA (sin θ − µk cos θ) = 3.3 kg .

23. The free-body diagrams for the two blocks are shown below. T is the magnitude of the tension force of
the string, ~NA is the normal force on block A (the leading block), ~NB is the the normal force on block

B, ~fA is kinetic friction force on block A, ~fB is kinetic friction force on block B. Also, mA is the mass
of block A (where mA = WA/g and WA = 3.6 N), and mB is the mass of block B (where mB = WB/g
and WB = 7.2 N). The angle of the incline is θ = 30◦.
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mB~g

~T

~fB

~NB

θ

B

For each block we take +x downhill (which is toward the lower-left in these diagrams) and +y in the
direction of the normal force. Applying Newton’s second law to the x and y directions of first block A
and next block B, we arrive at four equations:

WA sin θ − fA − T = mA a

NA −WA cos θ = 0

WB sin θ − fB + T = mB a

NB −WB cos θ = 0 .

which, when combined with Eq. 6-2 (fA = µk ANA where µk A = 0.10 and fB = µk BNB where µk B =
0.20), fully describe the dynamics of the system so long as the blocks have the same acceleration and
T > 0.

(a) These equations lead to an acceleration equal to

a = g

(

sin θ −
(

µk AWA + µk BWB

WA +WB

)

cos θ

)

= 3.5 m/s
2
.

(b) We solve the above equations for the tension and obtain

T =

(

WA WB

WA +WB

)

(µk B − µk A) cos θ = 0.21 N .

Simply returning the value for a found in part (a) into one of the above equations is certainly fine,
and probably easier than solving for T algebraically as we have done, but the algebraic form does
illustrate the µk B − µk A factor which aids in the understanding of the next part.

(c) Reversing the blocks is equivalent to switching the labels (so A is now the block of weight 7.2 N and
µk A is now the 0.20 value). We see from our algebraic result in part (b) that this gives a negative
value for T , which is impossible. We conclude that the above set of four equations are not valid in
this circumstance (specifically, a for one block is not equal to a for the other block). The blocks
move independently of each other.

24. Treating the two boxes as a single system of total mass 1.0 + 3.0 = 4.0 kg, subject to a total (leftward)
friction of magnitude 2.0 + 4.0 = 6.0 N, we apply Newton’s second law (with +x rightward):

F − ftotal = mtotal a

12.0− 6.0 = (4.0)a

which yields the acceleration a = 1.5 m/s2. We have treated F as if it were known to the nearest tenth
of a Newton so that our acceleration is “good” to two significant figures. Turning our attention to the
larger box (the Wheaties box of mass 3.0 kg) we apply Newton’s second law to find the contact force F ′

exerted by the smaller box on it.

F ′ − fW = mW a

F ′ − 4.0 = (3.0)(1.5)

This yields the contact force F ′ = 8.5 N.
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25. The free-body diagrams for the two blocks, treated individually, are shown below (first m and then M).

F ′ is the contact force between the two blocks, and the static friction force ~fs is at its maximum value
(so Eq. 6-1 leads to fs = fs,max = µsF

′ where µs = 0.38).
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~N

M~g

~F ′

Treating the two blocks together as a single system (sliding across a frictionless floor), we apply Newton’s
second law (with +x rightward) to find an expression for the acceleration.

F = mtotal a =⇒ a =
F

m+M

This is equivalent to having analyzed the two blocks individually and then combined their equations.
Now, when we analyze the small block individually, we apply Newton’s second law to the x and y axes,
substitute in the above expression for a, and use Eq. 6-1.

F − F ′ = ma =⇒ F ′ = F −m
(

F

m+M

)

fs −mg = 0 =⇒ µsF
′ −mg = 0

These expressions are combined (to eliminate F ′) and we arrive at

F =
mg

µs

(

1− m
m+M

)

which we find to be F = 4.9× 102 N.

26. The free-body diagrams for the two boxes are shown below. T is the magnitude of the force in the rod
(when T > 0 the rod is said to be in tension and when T < 0 the rod is under compression), ~N2 is the

normal force on box 2 (the uncle box), ~N1 is the the normal force on the aunt box (box 1), ~f1 is kinetic

friction force on the aunt box, and ~f2 is kinetic friction force on the uncle box. Also, m1 = 1.65 kg is
the mass of the aunt box and m2 = 3.30 kg is the mass of the uncle box (which is a lot of ants!).
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m2~g

~T

~f2

~N2

θ

box 2

For each block we take +x downhill (which is toward the lower-right in these diagrams) and +y in the
direction of the normal force. Applying Newton’s second law to the x and y directions of first box 2 and
next box 1, we arrive at four equations:

m2g sin θ − f2 − T = m2 a

N2 −m2g cos θ = 0

m1g sin θ − f1 + T = m1 a

N1 −m1g cos θ = 0 .
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which, when combined with Eq. 6-2 (f1 = µ1N1 where µ1 = 0.226 and f2 = µ2N2 where µ2 = 0.113),
fully describe the dynamics of the system.

(a) We solve the above equations for the tension and obtain

T =

(

m2m1 g

m2 +m1

)

(µ1 − µ2) cos θ = 1.05 N .

(b) These equations lead to an acceleration equal to

a = g

(

sin θ −
(

µ2m2 + µ1m1

m2 +m1

)

cos θ

)

= 3.62 m/s
2
.

(c) Reversing the blocks is equivalent to switching the labels. We see from our algebraic result in
part (a) that this gives a negative value for T (equal in magnitude to the result we got before).
Thus, the situation is as it was before except that the rod is now in a state of compression.

27. The free-body diagrams for the slab and block are shown below. ~F is the 100 N force applied to the
block, ~Ns is the normal force of the floor on the slab, Nb is the magnitude of the normal force between
the slab and the block, ~f is the force of friction between the slab and the block, ms is the mass of the
slab, and mb is the mass of the block. For both objects, we take the +x direction to be to the left and
the +y direction to be up.
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~F

mb~g

~Nb

~f
•

block

Applying Newton’s second law for the x and y axes for (first) the slab and (second) the block results in
four equations:

f = msas

Ns −Nb −msg = 0

F − f = mbab

Nb −mbg = 0

from which we note that the maximum possible static friction magnitude would be

µsNb = µsmbg = (0.60)(10 kg)(9.8 m/s
2
) = 59 N .

We check to see if the block slides on the slab. Assuming it does not, then as = ab (which we denote
simply as a) and we solve for f :

f =
msF

ms +mb
=

(40 kg)(100 N)

40 kg + 10 kg
= 80 N

which is greater than fs,max so that we conclude the block is sliding across the slab (their accelerations
are different).

(a) Using f = µkNb the above equations yield

ab =
F − µkmbg

mb
=

100 N− (0.40)(10 kg)(9.8 m/s
2
)

10 kg
= 6.1 m/s

2
.

The result is positive which means (recalling our choice of +x direction) that it accelerates leftward.
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(b) We also obtain

as =
µkmbg

ms
=

(0.40)(10 kg)(9.8 m/s2)

40 kg
= 0.98 m/s2 .

As mentioned above, this means it accelerates to the left.

28. We may treat all 25 cars as a single object of mass m = 25×5.0×104 kg and (when the speed is 30 km/h
= 8.3 m/s) subject to a friction force equal to f = 25× 250× 8.3 = 5.2× 104 N.

(a) Along the level track, this object experiences a “forward” force T exerted by the locomotive, so
that Newton’s second law leads to

T − f = ma =⇒ T = 5.2× 104 +
(

1.25× 106
)

(0.20)

which yields T = 3.0× 105 N.

(b) The free-body diagram is shown below, with θ as the angle of the incline. The +x direction (which
is the only direction to which we will be applying Newton’s second law) is uphill (to the upper right
in our sketch).

Thus, we obtain

T − f −mg sin θ = ma

where we set a = 0 (im-
plied by the problem state-
ment) and solve for the an-
gle. We obtain θ = 1.2◦.
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m~g

~T

~f

~N

θ

29. Each side of the trough exerts a normal force on the crate. The first diagram shows the view looking
in toward a cross section. The net force is along the dashed line. Since each of the normal forces
makes an angle of 45◦ with the dashed line, the magnitude of the resultant normal force is given by
Nr = 2N cos 45◦ =

√
2N . The second diagram is the free-body diagram for the crate (from a “side”

view, similar to that shown in the first picture in Fig. 6-36). The force of gravity has magnitude mg,
where m is the mass of the crate, and the magnitude of the force of friction is denoted by f . We take
the +x direction to be down the incline and +y to be in the direction of ~Nr. Then the x component
of Newton’s second law is mg sin θ − f = ma and the y component is Nr − mg cos θ = 0. Since the
crate is moving, each side of the trough exerts a force of kinetic friction, so the total frictional force
has magnitude f = 2µkN = 2µkNr/

√
2 =

√
2µkNr. Combining this expression with Nr = mg cos θ

and substituting into the x component equation, we obtain mg sin θ −
√

2mg cos θ = ma. Therefore
a = g(sin θ −

√
2µk cos θ).
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30. Fig. 6-4 in the textbook shows a similar situation (using φ for the unknown angle) along with a free-body
diagram. We use the same coordinate system as in that figure.
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(a) Thus, Newton’s second law leads to

T cosφ− f = ma along x axis

T sinφ+N −mg = 0 along y axis

Setting a = 0 and f = fs,max = µsN , we solve for the mass of the box-and-sand (as a function of
angle):

m =
T

g

(

sinφ+
cosφ

µs

)

which we will solve with calculus techniques (to find the angle φm corresponding to the maximum
mass that can be pulled).

dm

dt
=
T

g

(

cosφm −
sinφm

µs

)

= 0

This leads to tanφm = µs which (for µs = 0.35) yields φm = 19◦.

(b) Plugging our value for φm into the equation we found for the mass of the box-and-sand yields
m = 340 kg. This corresponds to a weight of mg = 3.3× 103 N.

31. We denote the magnitude of the frictional force αv, where α = 70 N · s/m. We take the direction of the
boat’s motion to be positive. Newton’s second law gives

−αv = m
dv

dt
.

Thus,
∫ v

v0

dv

v
= − α

m

∫ t

0

dt

where v0 is the velocity at time zero and v is the velocity at time t. The integrals are evaluated with
the result

ln
v

v0
= −αt

m
.

We take v = v0/2 and solve for time:

t =
m

α
ln 2 =

1000 kg

70 N · s/m ln 2 = 9.9 s .

32. In the solution to exercise 4, we found that the force provided by the wind needed to equal F = 157 N
(where that last figure is not “significant”).

(a) Setting F = D (for Drag force) we use Eq. 6-14 to find the wind speed V along the ground (which
actually is relative to the moving stone, but we assume the stone is moving slowly enough that this
does not invalidate the result):

V =

√

2F

CρA
=

√

2(157)

(0.80)(1.21)(0.040)

which yields V = 90 m/s which converts to V = 3.2× 102 km/h.

(b) Doubling our previous result, we find the reported speed to be 6.5 × 102 km/h, which is not
reasonable for a terrestrial storm. (A category 5 hurricane has speeds on the order of 2.6×102 m/s.)

33. We use Eq. 6-14, D = 1
2CρAv

2, where ρ is the air density, A is the cross-sectional area of the missile, v is
the speed of the missile, and C is the drag coefficient. The area is given by A = πR2, where R = 0.265 m
is the radius of the missile. Thus

D =
1

2
(0.75)(1.2 kg/m3)π(0.265 m)2(250 m/s)2 = 6.2× 103 N .
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34. Using Eq. 6-16, we solve for the area

A =
2mg

C ρ v2
t

which illustrates the inverse proportionality between the area and the speed-squared. Thus, when we
set up a ratio of areas – of the slower case to the faster case – we obtain

Aslow

Afast
=

(

310 km/h

160 km/h

)2

= 3.75 .

35. For the passenger jet Dj = 1
2Cρ1Av

2
j , and for the prop-driven transport Dt = 1

2Cρ2Av
2
t , where ρ1 and

ρ2 represent the air density at 10 km and 5.0 km, respectively. Thus the ratio in question is

Dj

Dt
=
ρ1v

2
j

ρ2v2
t

=
(0.38 kg/m

3
)(1000 km/h)2

(0.67 kg/m
3
)(500 km/h)2

= 2.3 .

36. With v = 96.6 km/h = 26.8 m/s, Eq. 6-17 readily yields

a =
v2

R
=

26.82

7.6
= 94.7 m/s

2

which we express as a multiple of g:

a =

(

a

g

)

g =

(

94.7

9.8

)

g = 9.7g .

37. The magnitude of the acceleration of the car as it rounds the curve is given by v2/R, where v is the
speed of the car and R is the radius of the curve. Since the road is horizontal, only the frictional force
of the road on the tires makes this acceleration possible. The horizontal component of Newton’s second
law is f = mv2/R. If N is the normal force of the road on the car and m is the mass of the car, the
vertical component of Newton’s second law leads to N = mg. Thus, using Eq. 6-1, the maximum value
of static friction is fs,max = µsN = µsmg. If the car does not slip, f ≤ µsmg. This means

v2

R
≤ µsg =⇒ v ≤

√

µsRg .

Consequently, the maximum speed with which the car can round the curve without slipping is

vmax =
√

µsRg =
√

(0.60)(30.5)(9.8) = 13 m/s .

38. We will start by assuming that the normal force (on the car from the rail) points up. Note that gravity
points down, and the y axis is chosen positive upwards. Also, the direction to the center of the circle
(the direction of centripetal acceleration) is down. Thus, Newton’s second law leads to

N −mg = m

(

−v
2

r

)

.

(a) When v = 11 m/s, we obtain N = 3.7× 103 N. The fact that this answer is positive means that ~N
does indeed point upward as we had assumed.

(b) When v = 14 m/s, we obtain N = −1.3× 103 N. The fact that this answer is negative means that
~N points opposite to what we had assumed. Thus, the magnitude of ~N is 1.3 kN and its direction
is down.
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39. The magnitude of the acceleration of the cyclist as it rounds the curve is given by v2/R, where v is the
speed of the cyclist and R is the radius of the curve. Since the road is horizontal, only the frictional
force of the road on the tires makes this acceleration possible. The horizontal component of Newton’s
second law is f = mv2/R. If N is the normal force of the road on the bicycle and m is the mass of the
bicycle and rider, the vertical component of Newton’s second law leads to N = mg. Thus, using Eq. 6-1,
the maximum value of static friction is fs,max = µsN = µsmg. If the bicycle does not slip, f ≤ µsmg.
This means

v2

R
≤ µsg =⇒ R ≥ v2

µs g
.

Consequently, the minimum radius with which a cyclist moving at 29 km/h = 8.1 m/s can round the
curve without slipping is

Rmin =
v2

µs g
=

8.12

(0.32)(9.8)
= 21 m .

40. The situation is somewhat similar to that shown in the “loop-the-loop” example done in the textbook
(see Figure 6-10) except that, instead of a downward normal force, we are dealing with the force of the

boom ~FB on the car – which is capable of pointing any direction. We will assume it to be upward as we
apply Newton’s second law to the car (of total weight 5000 N):

FB −W = ma where m =
W

g
, and a = −v

2

r

Note that the centripetal acceleration is downward (our choice for negative direction) for a body at the
top of its circular trajectory.

(a) If r = 10 m and v = 5.0 m/s, we obtain FB = 3.7× 103 N = 3.7 kN (up).

(b) If r = 10 m and v = 12 m/s, we obtain FB = −2.3×103 N = -2.3 kN where the minus sign indicates

that ~FB points downward.

41. For the puck to remain at rest the magnitude of the tension force T of the cord must equal the gravita-
tional force Mg on the cylinder. The tension force supplies the centripetal force that keeps the puck in
its circular orbit, so T = mv2/r. Thus Mg = mv2/r. We solve for the speed: v =

√

Mgr/m.

42. The magnitude of the acceleration of the cyclist as it moves along the horizontal circular path is given
by v2/R, where v is the speed of the cyclist and R is the radius of the curve.

(a) The horizontal component of Newton’s second law is f = mv2/R, where f is the static friction
exerted horizontally by the ground on the tires. Thus,

f =
(85.0)(9.00)2

25.0
= 275 N .

(b) If N is the vertical force of the ground on the bicycle and m is the mass of the bicycle and rider,
the vertical component of Newton’s second law leads to N = mg = 833 N. The magnitude of the
force exerted by the ground on the bicycle is therefore

√

f2 +N2 =
√

2752 + 8332 = 877 N .

43. (a) At the top (the highest point in the circular motion) the seat pushes up on the student with a
force of magnitude N = 556 N. Earth pulls down with a force of magnitude W = 667 N. The
seat is pushing up with a force that is smaller than the student’s weight, and we say the student
experiences a decrease in his “apparent weight” at the highest point.

(b) When the student is at the highest point, the net force toward the center of the circular orbit is
W − Ft (note that we are choosing downward as the positive direction). According to Newton’s
second law, this must equal mv2/R, where v is the speed of the student and R is the radius of the
orbit. Thus

mv2/R = W −N = 667 N− 556 N = 111 N .
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(c) Now N is the magnitude of the upward force exerted by the seat when the student is at the lowest
point. The net force toward the center of the circle is Fb −W = mv2/R (note that we are now
choosing upward as the positive direction). The Ferris wheel is “steadily rotating” so the value
mv2/R is the same as in part (a). Thus,

N =
mv2

R
+W = 111 N + 667 N = 778 N .

(d) If the speed is doubled, mv2/R increases by a factor of 4, to 444 N. Therefore, at the highest point
we have W −N = mv2/R, which leads to

N = 667 N− 444 N = 223 N .

Similarly, the normal force at the lowest point is now found to be N = 667 + 444 ≈ 1.1 kN.

44. The free-body diagram (for the hand straps of mass m) is the view that a passenger might see if she was
looking forward and the streetcar was curving towards the right (so ~a points rightwards in the figure)
We note that |~a| = v2/R where v = 16 km/h = 4.4 m/s.

Applying Newton’s law to the axes of
the problem (+x is rightward and +y is
upward) we obtain

T sin θ = m
v2

R
T cos θ = mg .

We solve these equations for the angle:

θ = tan−1

(

v2

Rg

)

which yields θ = 12◦.
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45. The free-body diagram (for the airplane of mass m) is shown below. We note that ~Fℓ is the force of
aerodynamic lift and ~a points rightwards in the figure. We also note that |~a| = v2/R where v = 480 km/h
= 133 m/s.

Applying Newton’s law to the axes of the
problem (+x rightward and +y upward) we
obtain

~Fℓ sin θ = m
v2

R
~Fℓ cos θ = mg

where θ = 40◦. Eliminating mass from
these equations leads to

tan θ =
v2

gR

which yields R = v2/g tan θ = 2.2× 103 m.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

............................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

•

m~g

~Fℓ
θ

46. (a) The upward force exerted by the car on the passenger is equal to the downward force of gravity
(W = 500 N) on the passenger. So the net force does not have a vertical contribution; it only has
the contribution from the horizontal force (which is necessary for maintaining the circular motion).

Thus
∣

∣

∣

~Fnet

∣

∣

∣ = F = 210 N.
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(b) Using Eq. 6-18, we have

v =

√

FR

m
=

√

(210)(470)

51.0
= 44.0 m/s .

47. (a) The free-body diagram for the ball is shown below. ~Tu is the

tension exerted by the upper
string on the ball, ~Tℓ is the ten-
sion force of the lower string, and
m is the mass of the ball. Note
that the tension in the upper
string is greater than the tension
in the lower string. It must bal-
ance the downward pull of gravity
and the force of the lower string.
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~Tu

~Tℓ

m~g

θ

θx

y

(b) We take the +x direction to be leftward (toward the center of the circular orbit) and +y upward.
Since the magnitude of the acceleration is a = v2/R, the x component of Newton’s second law is

Tu cos θ + Tℓ cos θ =
mv2

R
,

where v is the speed of the ball and R is the radius of its orbit. The y component is

Tu sin θ − Tℓ sin θ −mg = 0 .

The second equation gives the tension in the lower string: Tℓ = Tu −mg/ sin θ. Since the triangle
is equilateral θ = 30◦. Thus

Tℓ = 35− (1.34)(9.8)

sin 30◦
= 8.74 N .

(c) The net force is leftward (“radially inward”) and has magnitude

Fnet = (Tu + Tℓ) cos θ = (35 + 8.74) cos 30◦ = 37.9 N .

(d) The radius of the path is [(1.70 m)/2)] tan30◦ = 1.47 m. Using Fnet = mv2/R, we find that the
speed of the ball is

v =

√

RFnet

m
=

√

(1.47 m)(37.9 N)

1.34 kg
= 6.45 m/s .

48. In the solution to exercise 4, we found that the force provided by the wind needed to equal F = µkmg.
In this situation, we have a much smaller value of µk (0.10) and a much larger mass (one hundred stones
and the layer of ice). The layer of ice has a mass of

mice =
(

917 kg/m
3
)

(400 m× 500 m× 0.0040 m)

which yields mice = 7.34× 105 kg. This added to the mass of the hundred stones (at 20 kg each) comes
to m = 7.36× 105 kg.

(a) Setting F = D (for Drag force) we use Eq. 6-14 to find the wind speed v along the ground (which
actually is relative to the moving stone, but we assume the stone is moving slowly enough that this
does not invalidate the result):

v =

√

µkmg

4CiceρAice
=

√

(0.10) (7.36× 105) (9.8)

4(0.002)(1.21)(400× 500)

which yields v = 19 m/s which converts to v = 69 km/h.
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(b) and (c) Doubling our previous result, we find the reported speed to be 139 km/h, which is a
reasonable for a storm winds. (A category 5 hurricane has speeds on the order of 2.6× 102 m/s.)

49. (a) The distance traveled by the coin in 3.14 s is 3(2πr) = 6π(0.050) = 0.94 m. Thus, its speed is
v = 0.94/3.14 = 0.30 m/s.

(b) The acceleration vector (at any instant) is horizontal and points from the coin towards the center
of the turntable. This centripetal acceleration is given by Eq. 6-17:

a =
v2

r
=

0.302

0.050
= 1.8 m/s2 .

(c) The only horizontal force acting on the coin is static friction fs and must be large enough to supply
the acceleration of part (b) for the m = 0.0020 kg coin. Using Newton’s second law,

fs = ma = (0.0020)(1.8) = 3.6× 10−3 N

which must point in the same direction as the acceleration (towards the center of the turntable).

(d) We note that the normal force exerted upward on the coin by the turntable must equal the coin’s
weight (since there is no vertical acceleration in the problem). We also note that if we repeat the
computations in parts (a) and (b) for r′ = 0.10 m, then we obtain v′ = 0.60 m/s and a′ = 3.6 m/s2.
Now, if friction is at its maximum at r = r′, then, by Eq. 6-1, we obtain

µs =
fs,max

mg
=
ma′

mg
= 0.37 .

50. (a) The angle made by the cord with the vertical axis is given by θ = cos−1(18/30) = 53◦. This means
the radius of the plane’s circular path is r = 30 sin θ = 24 m (we also could have arrived at this
using the Pythagorean theorem). The speed of the plane is

v =
4.4(2πr)

1 min
=

8.8π(24 m)

60 s

which yields v = 11 m/s. Eq. 6-17 then gives the acceleration (which at any instant is horizontally
directed from the plane to the center of its circular path)

a =
v2

r
=

112

24
= 5.1 m/s2 .

(b) The only horizontal force on the airplane is that component of tension, so Newton’s second law
gives

T sin θ =
mv2

r
=⇒ T =

(0.75)(11)2

24 sin 53◦

which yields T = 4.8 N.

(c) The net vertical force on the airplane is zero (since its only acceleration is horizontal), so

Flift = T cos θ +mg = 4.8 cos 53◦ + (0.75)(9.8) = 10 N .

51. (a) The centripetal force is given by Eq. 6-18:

F =
mv2

R
=

(1)(465)2

6.4× 106
= 0.034 N .

(b) Calling downward (towards the center of Earth) the positive direction, Newton’s second law leads
to

mg − T = ma

where mg = 9.80 N and ma = 0.034 N, calculated in part (a). Thus, the tension in the cord by
which the body hangs from the balance is T = 9.80− 0.03 = 9.77 N. Thus, this is the reading for a
standard kilogram mass, of the scale at the equator of the spinning Earth.
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52. There is no acceleration, so the (upward) static friction forces (there are four of them, one for each
thumb and one for each set of opposing fingers) equals the magnitude of the (downward) pull of gravity.
Using Eq. 6-1, we have

4µsN = mg = (79 kg)
(

9.8 m/s2
)

which, with µs = 0.70, yields N = 2.8× 102 N.

53. (a) From Table 6-1 and Eq. 6-16, we have

vt =

√

2Fg

CρA
=⇒ CρA = 2

mg

v2
t

where vt = 60 m/s. We estimate the pilot’s mass at about m = 70 kg. Now, we convert v =
1300(1000/3600)≈ 360 m/s and plug into Eq. 6-14:

D =
1

2
CρAv2 =

1

2

(

2
mg

v2
t

)

v2 = mg

(

v

vt

)2

which yields D = (690)(360/60)2 ≈ 2× 104 N.

(b) We assume the mass of the ejection seat is roughly equal to the mass of the pilot. Thus, Newton’s
second law (in the horizontal direction) applied to this system of mass 2m gives the magnitude of
acceleration:

|a| = D

2m
=
g

2

(

v

vt

)2

= 18g .

54. Although the object in question is a sphere, the area A in Eq. 6-16 is the cross sectional area presented
by the object as it moves through the air (the cross section is perpendicular to ~v). Thus, A is that of a
circle: A = πR2. We also note that 16 lb equates to an SI weight of 71 N. Thus,

vt =

√

2Fg

CρπR2
=⇒ R =

1

145

√

2(71)

(0.49)(1.2)π

which yields a diameter of 2R = 0.12 m.

55. In the following sketch, T and T ′ are the tensions in the left and right strings, respectively. Also,
m1 = M = 2.0 kg, m2 = 2M = 4.0 kg, and m3 = 2M = 4.0 kg. Since it does, in fact, slide (presumably
rightward), the type of friction that is acting upon m2 is kinetic friction.

6~T

?m1~g

6~T ′

?m3~g

-
~T ′

?m2~g

�
~T

6
~N2

�
~fk

We use the familiar axes with +x rightward and +y upward for each block. This has the consequence
that m1 and m2 accelerate with the same sign, but the acceleration of m3 has the opposite sign. We
take this into account as we apply Newton’s second law to the three blocks.

T −m1g = m1(+a)

T ′ − T − fk = m2(+a)

T ′ −m3g = m3(−a)
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Adding the first two equations, and subtracting the last, we obtain

(m3 −m1) g − fk = (m1 +m2 +m3) a

or (using M as in the problem statement)

Mg − fk = 5Ma .

With a = 1.5 m/s
2
, we find fk = 4.6 N.

56. (a) The component of the weight along the incline (with downhill understood as the positive direction)
is mg sin θ where m = 630 kg and θ = 10.2◦. With f = 62.0 N, Newton’s second law leads to

mg sin θ − f = ma

which yields a = 1.64 m/s
2
. Using Eq. 2-15, we have

80.0 m =
(

6.20
m

s

)

t+
1

2

(

1.64
m

s2

)

t2 .

This is solved using the quadratic formula. The positive root is t = 6.80 s.

(b) Running through the calculation of part (a) with f = 42.0 N instead of f = 62 N results in
t = 6.76 s.

57. We convert to SI units: v = 94(1000/3600) = 26 m/s. Eq. 6-18 yields

F =
mv2

R
=

(85)(26)2

220
= 263 N

for the horizontal force exerted on the passenger by the seat. But the seat also exerts an upward force
equal to mg = 833 N. The magnitude of force is therefore

√
2632 + 8332 = 874 N.

58. (a) Comparing the t = 2.0 s photo with the t = 0 photo, we see that the distance traveled by the box
is

d =
√

4.02 + 2.02 = 4.5 m .

Thus (from Table 2-1, with downhill positive) d = v0t + 1
2at

2, we obtain a = 2.2 m/s2; note that
the boxes are assumed to start from rest.

(b) For the axis along the incline surface, we have

mg sin θ − fk = ma .

We compute mass m from the weight m = 240/9.8 = 24 kg, and θ is figured from the absolute
value of the slope of the graph: θ = tan−1 2.5/5.0 = 27◦. Therefore, we find fk = 53 N.

59. (a) If the skier covers a distance L during time t with zero initial speed and a constant acceleration a,
then L = at2/2, which gives the acceleration a1 for the first (old) pair of skis:

a1 =
2L

t21
=

2(200 m)

(61 s)2
= 0.11 m/s2

and the acceleration a2 for the second (new) pair:

a2 =
2L

t22
=

2(200 m)

(42 s)2
= 0.23 m/s

2
.
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(b) The net force along the slope acting on the skier of mass m is

Fnet = mg sin θ − fk = mg(sin θ − µk cos θ) = ma

which we solve for µk1 for the first pair of skis:

µk1 = tan θ − a1

g cos θ
= tan 3.0◦ − 0.11

9.8 cos 3.0◦
= 0.041

and µk2 for the second pair:

µk2 = tan θ − a2

g cos θ
= tan 3.0◦ − 0.23

9.8 cos 3.0◦
= 0.029 .

60. (a) The box doesn’t move until t = 2.8 s, which is when the applied force ~F reaches a magnitude of
F = (1.8)(2.8) = 5.0 N, implying therefore that fs, max = 5.0 N. Analysis of the vertical forces on the
block leads to the observation that the normal force magnitude equals the weight N = mg = 15 N.
Thus, µs = fs, max/N = 0.34.

(b) We apply Newton’s second law to the horizontal x axis (positive in the direction of motion).

F − fk = ma =⇒ 1.8t− fk = (1.5)(1.2t− 2.4)

Thus, we find fk = 3.6 N. Therefore, µk = fk/N = 0.24.

61. In both cases (highest point and lowest point), the normal force (on the child from the seat) points up,
gravity points down, and the y axis is chosen positive upwards. At the high point, the direction to the
center of the circle (the direction of centripetal acceleration) is down, and at the low point that direction
is up.

(a) Newton’s second law (using Eq. 6-17 for the magnitude of the acceleration) leads to

N −mg = m

(

−v
2

R

)

.

With m = 26 kg, v = 5.5 m/s and R = 12 m, this yields N = 189 N which we round off to
N ≈ 190 N.

(b) Now, Newton’s second law leads to

N −mg = m

(

v2

r

)

which yields N = 320 N. As already mentioned, the direction of ~N is up in both cases.

62. The mass of the car is m = 10700/9.8 = 1.09 × 103 kg. We choose “inward” (horizontally towards the
center of the circular path) as the positive direction.

(a) With v = 13.4 m/s and R = 61 m, Newton’s second law (using Eq. 6-18) leads to

fs =
mv2

R
= 3.21× 103 N .

(b) Noting that N = mg in this situation, the maximum possible static friction is found to be

fs,max = µsmg = (0.35)(10700) = 3.75× 103 N

using Eq. 6-1. We see that the static friction found in part (a) is less than this, so the car rolls (no
skidding) and successfully negotiates the curve.
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63. (a) The distance traveled in one revolution is 2πR = 2π(4.6) = 29 m. The (constant) speed is conse-
quently v = 29/30 = 0.96 m/s.

(b) Newton’s second law (using Eq. 6-17 for the magnitude of the acceleration) leads to

fs = m

(

v2

R

)

= m(0.20)

in SI units. Noting that N = mg in this situation, the maximum possible static friction is fs,max =
µsmg using Eq. 6-1. Equating this with fs = m(0.20) we find the mass m cancels and we obtain
µs = 0.20/9.8 = 0.021.

64. At the top of the hill the vertical forces on the car are the upward normal force exerted by the ground
and the downward pull of gravity. Designating +y downward, we have

mg −N =
mv2

R

from Newton’s second law. To find the greatest speed without leaving the hill, we set N = 0 and solve
for v:

v =
√

gR =
√

(9.8)(250) = 49.5 m/s

which converts to 49.5(3600/1000) = 178 km/h.

65. For simplicity, we denote the 70◦ angle as θ and the magnitude of the push (80 N) as P . The vertical
forces on the block are the downward normal force exerted on it by the ceiling, the downward pull of
gravity (of magnitude mg) and the vertical component of ~P (which is upward with magnitude P sin θ).
Since there is no acceleration in the vertical direction, we must have

N = P sin θ −mg
in which case the leftward-pointed kinetic friction has magnitude

fk = µk (P sin θ −mg) .
Choosing +x rightward, Newton’s second law leads to

P cos θ − fk = ma =⇒ a =
P cos θ − µk (P sin θ −mg)

m

which yields a = 3.4 m/s2 when µk = 0.40 and m = 5.0 kg.

66. Probably the most appropriate picture in the textbook to represent the situation in this problem is in
the previous chapter: Fig. 5-9. We adopt the familiar axes with +x rightward and +y upward, and refer
to the 85 N horizontal push of the worker as P (and assume it to be rightward). Applying Newton’s
second law to the x axis and y axis, respectively, produces

P − fk = ma

N −mg = 0 .

Using v2 = v2
0 + 2a∆x we find a = 0.36 m/s

2
. Consequently, we obtain fk = 71 N and N = 392 N.

Therefore, µk = fk/N = 0.18.

67. In the figure below, m = 140/9.8 = 14.3 kg is the mass of the child. We use ~wx and ~wy as the components
of the gravitational pull of Earth on the block; their magnitudes are wx = mg sin θ and wy = mg cos θ.

���������������

A
A

A A
A

A���

A
AK ~N

��*
~fk

���~wx A
AAU~wy

θ = 25◦

m



160 CHAPTER 6.

(a) With the x axis directed up along the incline (so that a = −0.86 m/s2), Newton’s second law leads
to

fk − 140 sin25◦ = m (−0.86)

which yields fk = 47 N. We also apply Newton’s second law to the y axis (perpendicular to the
incline surface), where the acceleration-component is zero:

N − 140 cos 25◦ = 0 =⇒ N = 127 N .

Therefore, µk = fk/N = 0.37.

(b) Returning to our first equation in part (a), we see that if the downhill component of the weight force
were insufficient to overcome static friction, the child would not slide at all. Therefore, we require
140 sin25◦ > fs, max = µsN , which leads to tan 25◦ = 0.47 > µs. The minimum value of µs equals
µk and is more subtle; reference to §6-1 is recommended. If µk exceeded µs then when static friction
were overcome (as the incline is raised) then it should start to move – which is impossible if fk is
large enough to cause deceleration! The bounds on µs are therefore given by tan 25◦ > µs > µk.

68. (a) The intuitive conclusion, that the tension is greatest at the bottom of the swing, is certainly
supported by application of Newton’s second law there:

T −mg =
mv2

R
=⇒ T = m

(

g +
v2

R

)

where Eq. 6-18 has been used. Increasing the speed eventually leads to the tension at the bottom
of the circle reaching that breaking value of 40 N.

(b) Solving the above equation for the speed, we find

v =

√

R

(

T

m
− g
)

=

√

(0.91)

(

40

0.37
− 9.8

)

which yields v = 9.5 m/s.

69. (a) We denote the apparent weight of the crew member of mass m on the spaceship as Wa = 300 N,
his weight on Earth as We = mg = 600 N, and the radius of the spaceship as R = 500 m. Since
mv2

s/R = Wa, we get

vs =

√

WaR

m
=

√

(

Wa

We

)

gR

where we substituted m = We/g. Thus,

vs =

√

(

300 N

600 N

)

(9.8 m/s2) (500 m) = 49.5 m/s .

(b) For any object of mass m on the spaceship Wa = mv2/R ∝ v2, where v is the speed of the circular
motion of the object relative to the center of the circle. In the previous case v = vs = 49.5 m/s,
and in the present case v = 10 m/s + 49.5 m/s = 59.5 m/s ≡ v′. Thus the apparent weight of the
running crew member is

W ′
a = Wa

(

v′

v

)2

= (300 N)

(

59.5 m/s

49.5 m/s

)2

= 4.3× 102 N .

70. We refer the reader to Sample Problem 6-11, and use the result Eq. 6-29:

θ = tan−1

(

v2

gR

)
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with v = 60(1000/3600) = 17 m/s and R = 200 m. The banking angle is therefore θ = 8.1◦. Now we
consider a vehicle taking this banked curve at v′ = 40(1000/3600) = 11 m/s. Its (horizontal) acceleration
is a′ = v′ 2/R, which has components parallel the incline and perpendicular to it.

a‖ = a′ cos θ =
v′ 2 cos θ

R
and a⊥ = a′ sin θ =

v′ 2 sin θ

R

These enter Newton’s second law as follows (choosing downhill as the +x direction and away-from-incline
as +y):

mg sin θ − fs = ma‖ and N −mg cos θ = ma⊥

and we are led to
fs

N
=
mg sin θ −mv′ 2 cos θ/R

mg cos θ +mv′ 2 sin θ/R
.

We cancel the mass and plug in, obtaining fs/N = 0.078. The problem implies we should set fs = fs,max

so that, by Eq. 6-1, we have µs = 0.078.

71. (a) The force which provides the horizontal acceleration v2/R necessary for the circular motion of
radius R = 0.25 m is T sin θ, where T in the tension in the L = 1.2 m string and θ is the angle of
the string measured from vertical. The other component of tension must equal the bob’s weight so
that there is no vertical acceleration: T cos θ = mg. Combining these observations leads to

v2

R
= g tan θ where sin θ =

R

L

so that θ = sin−1(0.25/1.2) = 12◦ and v =
√
gR tan θ = 0.72 m/s. It should be mentioned that

Sample Problem 6-11 discusses the conical pendulum.

(b) Thus, a = v2/R = 2.1 m/s2.

(c) The tension is

T =
mg

cos θ
=

(0.050)(9.8)

cos 12◦
= 0.50 N .

72. (a) Our +x direction is horizontal and is chosen (as we also do with +y) so that the components of

the 100 N force ~F are non-negative. Thus, Fx = F cos θ = 100 N, which the textbook denotes Fh

in this problem.

(b) Since there is no vertical acceleration, application of Newton’s second law in the y direction gives

N + Fy = mg =⇒ N = mg − F sin θ

where m = 25 kg. This yields N = 245 N in this case (θ = 0◦).

(c) Now, Fx = Fh = F cos θ = 86.6 N for θ = 30◦.

(d) And N = mg − F sin θ = 195 N.

(e) We find Fx = Fh = F cos θ = 50 N for θ = 60◦.

(f) And N = mg − F sin θ = 158 N.

(g) The condition for the chair to slide is

Fx > fs,max = µsN where µs = 0.42 .

For θ = 0◦, we have

Fx = 100 N < fs,max = (0.42)(245) = 103 N

so the crate remains at rest.
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(h) For θ = 30.0◦, we find
Fx = 86.6 N > fs, max = (0.42)(195) = 81.9 N

so the crate slides.

(i) For θ = 60◦, we get
Fx = 50.0 N < fs, max = (0.42)(158) = 66.4 N

which means the crate must remain at rest.

73. We note that N = mg in this situation, so fk = µkmg = (0.32)(220) = 70.4 N and fs,max = µsmg =
(0.41)(220) = 90.2 N.

(a) The person needs to push at least as hard as the static friction maximum if he hopes to start it
moving. Denoting his force as P , this means a value of P slightly larger than 90.2 N is sufficient.
Rounding to two figures, we obtain P = 90 N.

(b) Constant velocity (zero acceleration) implies the push equals the kinetic friction, so P = 70 N.

(c) Applying Newton’s second law, we have

P − fk = ma =⇒ a =
µsmg − µkmg

m

which simplifies to a = g(µs − µk ) = 0.88 m/s2.

74. Except for replacing fs with fk, Fig. 6-5 in the textbook is appropriate. With that figure in mind, we
choose uphill as the +x direction. Applying Newton’s second law to the x axis, we have

fk −W sin θ = ma where m =
W

g
,

and where W = 40 N, a = +0.80 m/s2 and θ = 25◦. Thus, we find fk = 20 N. Along the y axis, we have

∑

~Fy = 0 =⇒ N = W cos θ

so that µk = fk/N = 0.56.

75. We use the familiar horizontal and vertical axes for x and y directions, with rightward and upward
positive, respectively. The rope is assumed massless so that the force exerted by the child ~F is identical
to the tension uniformly through the rope. The x and y components of ~F are F cos θ and F sin θ,
respectively. The static friction force points leftward.

(a) Newton’s Law applied to the y axis, where there is presumed to be no acceleration, leads to

N + F sin θ −mg = 0

which implies that the maximum static friction is µs(mg − F sin θ). If fs = fs, max is assumed,
then Newton’s second law applied to the x axis (which also has a = 0 even though it is “verging”
on moving) yields

F cos θ − fs = ma , or

F cos θ − µs(mg − F sin θ) = 0

which we solve, for θ = 42◦ and µs = 0.42, to obtain F = 74 N.

(b) Solving the above equation algebraically for F , with W denoting the weight, we obtain

F =
µsW

cos θ + µs sin θ
.
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(c) We minimize the above expression for F by working through the dF
dθ = 0 condition:

dF

dθ
=
µsW (sin θ − µs cos θ)

(cos θ + µs sin θ)
2 = 0

which leads to the result θ = tan−1 µs = 23◦.

(d) Plugging θ = 23◦ into the above result for F , with µs = 0.42 and W = 180 N, yields F = 70 N.

76. (a) We note that N = mg in this situation, so fs,max = µsmg = (0.52)(11)(9.8) = 56 N. Consequently,

the horizontal force ~F needed to initiate motion must be (at minimum) slightly more than 56 N.

(b) Analyzing vertical forces when ~F is at nonzero θ yields

F sin θ +N = mg =⇒ fs,max = µs (mg − F sin θ) .

Now, the horizontal component of ~F needed to initiate motion must be (at minimum) slightly more
than this, so

F cos θ = µs (mg − F sin θ) =⇒ F =
µsmg

cos θ + µs sin θ

which yields F = 59 N when θ = 60◦.

(c) We now set θ = −60◦ and obtain

F =
(0.52)(11)(9.8)

cos(−60◦) + (0.52) sin(−60◦)
= 1.1× 103 N .

77. The coordinate system we wish to use is shown in Fig. 5-18 in the textbook, so we resolve this horizontal
force into appropriate components.

������������������

A
A

A A
A

A���
-
~FA

AAU
Fy = F sin θ

����* Fx = F cos θ

θ = 37◦

(a) Applying Newton’s second law to the x (directed uphill) and y (directed away from the incline
surface) axes, we obtain

F cos θ − fk −mg sin θ = ma

N − F sin θ −mg cos θ = 0 .

Using fk = µkN , these equations lead to

a =
F

m
(cos θ − µk sin θ)− g (sin θ + µk cos θ)

which yields a = −2.1 m/s2 for µk = 0.30, F = 50 N and m = 5.0 kg.

(b) With v0 = +4.0 m/s and v = 0, Eq. 2-16 gives

∆x = − 4.02

2(−2.1)
= 3.9 m .
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(c) We expect µs ≥ µk; otherwise, an object started into motion would immediately start decelerating
(before it gained any speed)! In the minimal expectation case, where µs = 0.30, the maximum
possible (downhill) static friction is, using Eq. 6-1,

fs,max = µsN = µs (F sin θ +mg cos θ)

which turns out to be 21 N. But in order to have no acceleration along the x axis, we must have

fs = F cos θ −mg sin θ = 10 N

(the fact that this is positive reinforces our suspicion that ~fs points downhill). Since the fs needed
to remain at rest is less than fs,max then it stays at that location.

78. Since the problem is allowing for student creativity and research here, we only present a problem and
solution for part (a).

(a) We show below two blocks M and m, the first on a horizontal surface with µk = 0.25 and the
second on a frictionless incline. They are connected by a rope (not shown) in which the tension is
T . The goal is to find T given M = 2.0 kg and m = 3.0 kg. We assume fs is not relevant to this
computation.

@
@

@
@

@
@

@@

��

��
@

@
m@@I

~T

���
~Nm @@R mg sin 30◦��	
mg cos 30◦

6

~NM

-~T�
~fk

?
M~g

M

30◦

Solution: We apply Newton’s second law to each block’s x axis, which for M is positive rightward
and for m is positive downhill:

T − fk = Ma

mg sin 30◦ − T = ma

Adding the equations, we obtain the acceleration.

a =
mg sin 30◦ − fk

m+M

For fk = µkNM = µkMg, we obtain a = 1.96 m/s
2
. Returning this value to either of the above

equations, we find T = 8.8 N.

79. (First problem in Cluster 1)

Since the block remains stationary, then
∑ ~F = 0, and we have (along the horizontal x axis) fs = 25 N,

where ~fs points left.

80. (Second problem in Cluster 1)

To keep the block stationary, we require
∑ ~F = 0 (equilibrium of forces), which leads (along the horizon-

tal x axis) to fs = 50 N. Now, we take fs = fs, max = µsN and find that N must equal 50/0.4 = 125 N.
Equilibrium of forces along the y axis implies N −mg−F = 0, so that (with mg = 98 N) we must have
F = 27 N.
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81. (Third problem in Cluster 1)
A useful diagram (where some of these forces are analyzed) is Fig. 6-5 in the textbook. Using that figure
for this problem, W is the weight (equal to mg = 98 N), and θ = 25◦.

(a) The maximum static friction is given by Eq. 6-1:

fs, max = µsN = (0.60)W cos θ = 53 N .

(b) W sin θ = 41 N.

(c) If there is no motion, then
∑ ~F = 0 along the incline, so fs − W sin θ − F = 0 (if uphill is

positive). And if the system verges on motion, then fs = fs, max. Therefore, in that case we find
F = 53− 41 = 12 N.

(d) With the block sliding, with no applied force F , then Newton’s second law yields fk−W sin θ = ma

(if uphill is positive) where fk = µkN = (0.20)W cos θ = 18 N. We thus obtain a = −2.4 m/s2.

Therefore, the magnitude of ~a is 2.4 m/s
2

and the direction is downhill.

82. (Fourth problem in Cluster 1)
A useful diagram (where some of these forces are analyzed) is Fig. 6-5 in the textbook; however, since

the block is about to move uphill, one must imagine ~fs turned around (so that it points downhill). Using
that figure for this problem, W is the weight (equal to mg = 98 N), and θ = 25◦.

(a) If there is no motion, then
∑ ~F = 0 along the incline, so F − fs−W sin θ = 0 (if uphill is positive).

And if the system verges on motion, then fs = fs, max = µsW cos θ = 53 N. Therefore, in that case
we find F = 95 N.

(b) With the block sliding, and the applied force F still equal to the value found in part (a), then
Newton’s second law yields F − fk − W sin θ = ma (if uphill is positive) where fk = µkN =

(0.20)W cos θ = 18 N. We thus obtain a = 3.6 m/s
2
. Therefore, the magnitude of ~a is 3.6 m/s

2
and

the direction is uphill.

(c) With the block sliding uphill, but with no applied force F , then Newton’s second law yields −fk −
W sin θ = ma (if uphill is positive) where fk = 18 N. We thus obtain a = −5.9 m/s

2
. Therefore,

the magnitude of ~a is 5.9 m/s
2

and the direction is downhill. It is decelerating and will ultimately
come to a stop and remain at there at equilibrium.

83. (Fifth problem in Cluster 1)
A useful diagram (where these forces are analyzed) is Fig. 6-5 in the textbook. In that figure, W is the
weight (equal to mg = 98 N).

(a) Since there is no motion, then
∑

~F = 0 along the incline, so fs −W sin θ = 0 (if uphill is positive,

which is the direction assumed for ~fs). We therefore obtain fs = 25 N. Our result is positive, so it
indeed points uphill as we had assumed. One can check that this value of fs does not exceed the
maximum possible value fs, max (see next part).

(b) As in part (a), we have fs −W sin θ = 0, but since the system is on the verge of motion we also
have fs = fs, max = µsW cos θ. Therefore,

µsW cos θ −W sin θ = 0 =⇒ µs = tan θ

which leads to θs = tan−1 µs = 31◦ (this is often called “the angle of repose”).

(c) If the block slides with no acceleration then we have fk −W sin θ = 0 from Newton’s second law
applied along the incline surface. With fk = µkW cos θ we are led to θk = tan−1 µk as the condition
for this constant velocity sliding downhill. Since µk < µs then we see that θk < θs from part (b).

(d) We find θk = tan−1 µk = 11◦.
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Chapter 7

1. The kinetic energy is given by K = 1
2mv

2, where m is the mass and v is the speed of the electron. The
speed is therefore

v =

√

2K

m
=

√

2(6.7× 10−19 J)

9.11× 10−31 kg
= 1.2× 106 m/s .

2. (a) The change in kinetic energy for the meteorite would be

∆K = Kf −Ki = −Ki = −1

2
miv

2
i

= −1

2

(

4 × 106 kg
) (

15 × 103 m/s
)2

= −5× 1014 J

where the negative sign indicates that kinetic energy is lost.

(b) The energy loss in units of megatons of TNT would be

−∆K =
(

5 × 1014 J
)

(

1 megaton TNT

4.2 × 1015 J

)

= 0.1 megaton TNT .

(c) The number of bombs N that the meteorite impact would correspond to is found by noting that
megaton =1000 kilotons and setting up the ratio:

N =
0.1 × 1000 kiloton TNT

13 kiloton TNT
= 8 .

3. We convert to SI units (where necessary) and use K = 1
2mv

2.

(a) K = 1
2 (110)(8.1)2 = 3.6× 103 J.

(b) Since 1000 g=kg, we find

K =
1

2

(

4.2× 10−3 kg
)

(950 m/s)
2

= 1.9 × 103 J .

(c) We note that the conversion from knots to m/s can be obtained from the information in Appendix
D (knot= 1.688 ft/s where ft=0.3048 m), which is also where the ton→ kilogram conversion can be
found. Therefore,

K =
1

2

(

91400 tons)
907.2 kg

ton

)(

(32 knots)
0.515 m/s

knot

)2

= 1.1× 1010 J .

167
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4. We denote the mass of the father as m and his initial speed vi. The initial kinetic energy of the father is

Ki =
1

2
Kson

and his final kinetic energy (when his speed is vf = vi + 1.0 m/s) is

Kf = Kson .

We use these relations along with Eq. 7-1 in our solution.

(a) We see from the above that Ki = 1
2Kf which (with SI units understood) leads to

1

2
mv2

i =
1

2

(

1

2
m(vi + 1.0)2

)

.

The mass cancels and we find a second-degree equation for vi :

1

2
v2

i − vi −
1

2
= 0 .

The positive root (from the quadratic formula) yields vi = 2.4 m/s.

(b) From the first relation above (Ki = 1
2Kson ), we have

1

2
mv2

i =
1

2

(

1

2

(m

2

)

v2
son

)

and (after canceling m and one factor of 1/2) are led to vson = 2vi = 4.8 m/s.

5. (a) From Table 2-1, we have v2 = v2
0 + 2a∆x. Thus,

v =
√

v2
0 + 2a∆x =

√

(2.4× 107)
2

+ 2 (3.6× 1015) (0.035) = 2.9× 107 m/s .

(b) The initial kinetic energy is

Ki =
1

2
mv2

0 =
1

2

(

1.67× 10−27 kg
) (

2.4× 107 m/s
)2

= 4.8× 10−13 J .

The final kinetic energy is

Kf =
1

2
mv2 =

1

2

(

1.67× 10−27 kg
) (

2.9× 107 m/s
)2

= 6.9× 10−13 J .

The change in kinetic energy is ∆K = 6.9× 10−13 − 4.8× 10−13 = 2.1× 10−13 J.

6. Using Eq. 7-8 (and Eq. 3-23), we find the work done by the water on the ice block:

W = ~F · ~d
=

(

210 ı̂ − 150 ĵ
)

·
(

15 ı̂ − 12 ĵ
)

= (210)(15) + (−150)(−12)

= 5.0× 103 J .

7. (a) The force of the worker on the crate is constant, so the work it does is given byWF = ~F ·~d = Fd cosφ,

where ~F is the force, ~d is the displacement of the crate, and φ is the angle between the force and the
displacement. Here F = 210 N, d = 3.0 m, and φ = 20◦. Thus WF = (210 N)(3.0 m) cos 20◦ = 590 J.
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(b) The force of gravity is downward, perpendicular to the displacement of the crate. The angle between
this force and the displacement is 90◦ and cos 90◦ = 0, so the work done by the force of gravity is
zero.

(c) The normal force of the floor on the crate is also perpendicular to the displacement, so the work
done by this force is also zero.

(d) These are the only forces acting on the crate, so the total work done on it is 590 J.

8. Since this involves constant-acceleration motion, we can apply the equations of Table 2-1, such as x =
v0t+

1
2at

2 (where x0 = 0). We choose to analyze the third and fifth points, obtaining

0.2 m = v0(1.0 s) +
1

2
a (1.0 s)

2

0.8 m = v0(2.0 s) +
1

2
a (2.0 s)2

Simultaneous solution of the equations leads to v0 = 0 and a = 0.40 m/s
2
. We now have two ways to

finish the problem. One is to compute force from F = ma and then obtain the work from Eq. 7-7. The
other is to find ∆K as a way of computing W (in accordance with Eq. 7-10). In this latter approach,
we find the velocity at t = 2.0 s from v = v0 + at (so v = 0.80 m/s). Thus,

W = ∆K =
1

2
(1.0 kg)(0.80 m/s)2 = 0.32 J .

9. We choose +x as the direction of motion (so ~a and ~F are negative-valued).

(a) Newton’s second law readily yields ~F = (85 kg)(−2.0 m/s2) so that F = |~F | = 170 N.

(b) From Eq. 2-16 (with v = 0) we have

0 = v2
0 + 2a∆x =⇒ ∆x = − (37 m/s)2

2(−2.0 m/s
2
)

which gives ∆x = 3.4× 102 m. Alternatively, this can be worked using the work-energy theorem.

(c) Since ~F is opposite to the direction of motion (so the angle φ between ~F and ~d = ∆x is 180◦) then
Eq. 7-7 gives the work done as W = −F∆x = −5.8× 104 J.

(d) In this case, Newton’s second law yields ~F = (85 kg)(−4.0 m/s2) so that F = |~F | = 340 N.

(e) From Eq. 2-16, we now have

∆x = − (37 m/s)2

2(−4.0 m/s
2
)

= 1.7× 102 m .

(f) The force ~F is again opposite to the direction of motion (so the angle φ is again 180◦) so that
Eq. 7-7 leads to W = −F∆x = −5.8× 104 J. The fact that this agrees with the result of part (c)
provides insight into the concept of work.

10. We choose to work this using Eq. 7-10 (the work-kinetic energy theorem). To find the initial and final
kinetic energies, we need the speeds, so

v =
dx

dt
= 3.0− 8.0t+ 3.0t2

in SI units. Thus, the initial speed is vi = 3.0 m/s and the speed at t = 4 s is vf = 19 m/s. The change
in kinetic energy for the object of mass m = 3.0 kg is therefore

∆K =
1

2
m
(

v2
f − v2

i

)

= 528 J

which we round off to two figures and (using the work-kinetic energy theorem) conclude that the work
done is W = 5.3× 102 J.
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11. (a) The forces are constant, so the work done by any one of them is given by W = ~F · ~d, where ~d is the

displacement. Force ~F1 is in the direction of the displacement, so

W1 = F1d cosφ1 = (5.00 N)(3.00 m) cos0◦ = 15.0 J .

Force ~F2 makes an angle of 120◦ with the displacement, so

W2 = F2d cosφ2 = (9.00 N)(3.00 m) cos120◦ = −13.5 J .

Force ~F3 is perpendicular to the displacement, so W3 = F3d cosφ3 = 0 since cos 90◦ = 0. The net
work done by the three forces is

W = W1 +W2 +W3 = 15.0 J− 13.5 J + 0 = +1.5 J .

(b) If no other forces do work on the box, its kinetic energy increases by 1.5 J during the displacement.

12. By the work-kinetic energy theorem,

W = ∆K

=
1

2
mv2

f −
1

2
mv2

i

=
1

2
(2.0 kg)

(

(6.0 m/s)2 − (4.0 m/s)2
)

= 20 J .

We note that the directions of ~vf and ~vi play no role in the calculation.

13. The forces are all constant, so the total work done by them is given by W = Fnet ∆x, where Fnet is the
magnitude of the net force and ∆x is the magnitude of the displacement. We add the three vectors,
finding the x and y components of the net force:

Fnet x = −F1 − F2 sin 50◦ + F3 cos 35◦

= −3.00 N− (4.00 N) sin 35◦ + (10.0 N) cos 35◦

= 2.127 N

Fnet y = −F2 cos 50◦ + F3 sin 35◦

= −(4.00 N) cos 50◦ + (10.0 N) sin 35◦

= 3.165 N .

The magnitude of the net force is

Fnet =
√

F 2
net x + F 2

net y =
√

2.1272 + 3.1652 = 3.813 N .

The work done by the net force is

W = Fnet d = (3.813 N)(4.00 m) = 15.3 J

where we have used the fact that ~d ‖ ~Fnet (which follows from the fact that the canister started from rest
and moved horizontally under the action of horizontal forces – the resultant effect of which is expressed
by ~Fnet ).

14. In both cases, there is no acceleration, so the lifting force is equal to the weight of the object.

(a) Eq. 7-8 leads to W = ~F · ~d = (360 kN)(0.10 m) = 36 kJ.

(b) In this case, we find W = (4000 N)(0.050 m) = 200 J.
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15. There is no acceleration, so the lifting force is equal to the weight of the object. We note that the
person’s pull ~F is equal (in magnitude) to the tension in the cord.

(a) As indicated in the hint, tension contributes twice to the lifting of the canister: 2T = mg. Since,

|~F | = T , we find |~F | = 98 N.

(b) To rise 0.020 m, two segments of the cord (see Fig. 7-28) must shorten by that amount. Thus, the

amount of string pulled down at the left end (this is the magnitude of ~d, the downward displacement
of the hand) is d = 0.040 m.

(c) Since (at the left end) both ~F and ~d are downward, then Eq. 7-7 leads to W = ~F · ~d = (98)(0.040) =
3.9 J.

(d) Since the force of gravity ~Fg (with magnitude mg) is opposite to the displacement ~dc = 0.020 m

(up) of the canister, Eq. 7-7 leads to W = ~Fg · ~dc = −(196)(0.020) = −3.9 J. This is consistent with
Eq. 7-15 since there is no change in kinetic energy.

16. (a) The component of the force of gravity exerted on the ice block (of mass m) along the incline is
mg sin θ, where θ = sin−1(0.91/1.5) gives the angle of inclination for the inclined plane. Since

the ice block slides down with uniform velocity, the worker must exert a force ~F “uphill” with a
magnitude equal to mg sin θ. Consequently,

F = mg sin θ = (45 kg)
(

9.8 m/s
2
)

(

0.91 m

1.5 m

)

= 2.7× 102 N .

(b) Since the “downhill” displacement is opposite to ~F , the work done by the worker is

W1 = −
(

2.7× 102 N
)

(1.5 m) = −4.0× 102 J .

(c) Since the displacement has a vertically downward component of magnitude 0.91 m (in the same
direction as the force of gravity), we find the work done by gravity to be

W2 = (45 kg)
(

9.8 m/s
2
)

(0.91 m) = 4.0 × 102 J .

(d) Since ~N is perpendicular to the direction of motion of the block, and cos 90◦ = 0, work done by the
normal force is W3 = 0 by Eq. 7-7.

(e) The resultant force ~Fnet is zero since there is no acceleration. Thus, it’s work is zero, as can be
checked by adding the above results W1 +W2 +W3 = 0.

17. (a) We use ~F to denote the upward force exerted by the cable on the astronaut. The force of the cable
is upward and the force of gravity is mg downward. Furthermore, the acceleration of the astronaut
is g/10 upward. According to Newton’s second law, F −mg = mg/10, so F = 11mg/10. Since the

force ~F and the displacement ~d are in the same direction, the work done by ~F is

WF = Fd =
11mgd

10
=

11(72 kg)
(

9.8 m/s
2
)

(15 m)

10
= 1.164× 104 J

which (with respect to significant figures) should be quoted as 1.2× 104 J.

(b) The force of gravity has magnitude mg and is opposite in direction to the displacement. Thus,
using Eq. 7-7, the work done by gravity is

Wg = −mgd = −(72 kg)
(

9.8 m/s
2
)

(15 m) = −1.058× 104 J

which should be quoted as −1.1× 104 J.
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(c) The total work done is W = 1.164×104 J−1.058×104 J = 1.06×103 J. Since the astronaut started
from rest, the work-kinetic energy theorem tells us that this (which we round to 1.1× 103 J) is her
final kinetic energy.

(d) Since K = 1
2mv

2, her final speed is

v =

√

2K

m
=

√

2(1.06× 103 J)

72 kg
= 5.4 m/s .

18. We use d to denote the magnitude of the spelunker’s displacement during each stage. The mass of the
spelunker is m = 80.0 kg. The work done by the lifting force is denoted Wi where i = 1, 2, 3 for the
three stages. We apply the work-energy theorem, Eq. 17-15.

(a) For stage 1, W1 −mgd = ∆K1 = 1
2mv

2
1 , where v1 = 5.00 m/s. This gives

W1 = mgd+
1

2
mv2

1 = (80.0)(9.8)(10.0) +
1

2
(80.0)(5.00)2 = 8.84× 103 J .

(b) For stage 2, W2 −mgd = ∆K2 = 0, which leads to

W2 = mgd = (80.0 kg)
(

9.8 m/s2
)

(10.0 m) = 7.84× 103 J .

(c) For stage 3, W3 −mgd = ∆K3 = − 1
2mv

2
1 . We obtain

W3 = mgd− 1

2
mv2

1 = (80.0)(9.8)(10.0)− 1

2
(80.0)(5.00)2 = 6.84× 103 J .

19. (a) We use F to denote the magnitude of the force of the cord on the block. This force is upward,
opposite to the force of gravity (which has magnitude Mg). The acceleration is ~a = g/4 downward.
Taking the downward direction to be positive, then Newton’s second law yields

~Fnet = m~a =⇒ Mg − F = M
(g

4

)

so F = 3Mg/4. The displacement is downward, so the work done by the cord’s force is WF =
−Fd = −3Mgd/4, using Eq. 7-7.

(b) The force of gravity is in the same direction as the displacement, so it does work Wg = Mgd.

(c) The total work done on the block is −3Mgd/4 +Mgd = Mgd/4. Since the block starts from rest,
we use Eq. 7-15 to conclude that this (Mgd/4) is the block’s kinetic energy K at the moment it
has descended the distance d.

(d) Since K = 1
2Mv2, the speed is

v =

√

2K

M
=

√

2 (Mgd/4)

M
=

√

gd

2

at the moment the block has descended the distance d.

20. The spring constant is k = 100 N/m and the maximum elongation is xi = 5.00 m. Using Eq. 7-25 with
xf = 0, the work is found to be

W =
1

2
kx2

i =
1

2
(100)(5.00)2 = 1.25× 103 J .

21. (a) The spring constant is k = 1500 N/m and the elongation is x = 0.0076 m. Our +x direction is
rightward. Using Eq. 7-26, the work is found to be

W = −1

2
kx2 = −1

2
(1500)(0.0076)2 = −0.043 J .



173

(b) We use Eq. 7-25 with xi = x = 0.0076 m and xf = 2x = 0.0152 m to find the additional work:

W =
1

2
k
(

x2
i − x2

f

)

=
1

2
k
(

x2 − 4x2
)

= −3

2
kx2

= −3

2
(1500)(0.0076)2 = −0.13 J .

We note that this is greater (in magnitude) than the work done in the first interval (even though
the displacements have the same magnitude), due to the fact that the force is larger throughout
the second interval.

22. (a) The compression of the spring is d = 0.12 m. The work done by the force of gravity (acting on the
block) is, by Eq. 7-12,

W1 = mgd = (0.25 kg)
(

9.8 m/s
2
)

(0.12 m) = 0.29 J .

(b) The work done by the spring is, by Eq. 7-26,

W2 = −1

2
kd2 = −1

2
(250 N/m)(0.12 m)2 = −1.8 J .

(c) The speed vi of the block just before it hits the spring is found from the work-kinetic energy theorem
(Eq. 7-15).

∆K = 0− 1

2
mv2

i = W1 +W2

which yields

vi =

√

(−2)(W1 +W2)

m
=

√

(−2)(0.29− 1.8)

0.25
= 3.5 m/s .

(d) If we instead had v′i = 7 m/s, we reverse the above steps and solve for d′. Recalling the theorem
used in part (c), we have

0− 1

2
mv′ 2i = W ′

1 +W ′
2

= mgd′ − 1

2
kd′ 2

which (choosing the positive root) leads to

d′ =
mg +

√

m2g2 +mkv′ 2i

k

which yields d′ = 0.23 m. In order to obtain this, we have used more digits in our intermediate
results than are shown above (so vi =

√
12.048 = 3.471 m/s and v′i = 6.942 m/s).

23. (a) As the body moves along the x axis from xi = 3.0 m to xf = 4.0 m the work done by the force is

W =

∫ xf

xi

Fx dx

=

∫ xf

xi

−6xdx = −3(x2
f − x2

i )

= −3
(

4.02 − 3.02
)

= −21 J .
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According to the work-kinetic energy theorem, this gives the change in the kinetic energy:

W = ∆K =
1

2
m
(

v2
f − v2

i

)

where vi is the initial velocity (at xi) and vf is the final velocity (at xf ). The theorem yields

vf =

√

2W

m
+ v2

i =

√

2(−21)

2.0
+ 8.02 = 6.6 m/s .

(b) The velocity of the particle is vf = 5.0 m/s when it is at x = xf . The work-kinetic energy theorem
is used to solve for xf . The net work done on the particle is W = −3(x2

f − x2
i ), so the theorem

leads to

−3
(

x2
f − x2

i

)

=
1

2
m
(

v2
f − v2

i

)

.

Thus,

xf =

√

−m
6

(

v2
f − v2

i

)

+ x2
i

=

√

− 2.0 kg

6 N/m

(

(5.0 m/s)
2 − (8.0 m/s)

2
)

+ (3.0 m)2

= 4.7 m .

24. From Eq. 7-32, we see that the “area” in the graph is equivalent to the work done. Finding that area
(in terms of rectangular [length×width] and triangular [12base×height] areas) we obtain

W = W0<x<2 +W2<x<4 +W4<x<6 +W6<x<8

= 20 + 10 + 0− 5 = 25 J .

25. According to the graph the acceleration a varies linearly with the coordinate x. We may write a = αx,
where α is the slope of the graph. Numerically,

α =
20 m/s2

8.0 m
= 2.5 s−2 .

The force on the brick is in the positive x direction and, according to Newton’s second law, its magnitude
is given by F = a/m = (α/m)x. If xf is the final coordinate, the work done by the force is

W =

∫ xf

0

F dx =
α

m

∫ xf

0

xdx =
α

2m
x2

f =
2.5

2(10)
(8.0)2 = 800 J .

26. From Eq. 7-32, we see that the“area” in the graph is equivalent to the work done. We find the area
in terms of rectangular [length×width] and triangular [12base×height] areas and use the work-kinetic
energy theorem appropriately. The initial point is taken to be x = 0, where v0 = 4.0 m/s.

(a) With Ki = 1
2mv

2
0 = 16 J, we have

K3 −K0 = W0<x<1 +W1<x<2 +W2<x<3 = −4 J

so that K3 (the kinetic energy when x = 3.0 m) is found to equal 12 J.

(b) With SI units understood, we write W3<x<xf
as Fx∆x = (−4)(xf −3.0) and apply the work-kinetic

energy theorem:

Kxf
−K3 = W3<x<xf

Kxf
− 12 = (−4)(xf − 3.0)

so that the requirement Kxf
= 8 J leads to xf = 4.0 m.
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(c) As long as the work is positive, the kinetic energy grows. The graph shows this situation to hold
until x = 1.0 m. At that location, the kinetic energy is

K1 = K0 +W0<x<1

= 16 + 2 = 18 J .

27. (a) The graph shows F as a function of x assuming x0 is positive. The work is negative as the object

moves from x = 0 to x = x0 and
positive as it moves from x = x0

to x = 2x0. Since the area of a
triangle is 1

2 (base)(altitude), the
work done from x = 0 to x = x0

is − 1
2 (x0)(F0) and the work done

from x = x0 to x = 2x0 is 1
2 (2x0−

x0)(F0) = 1
2 (x0)(F0). The total

work is the sum, which is zero.
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0

(b) The integral for the work is

W =

∫ 2x0

0

F0

(

x

x0
− 1

)

dx = F0

(

x2

2x0
− x
)

∣

∣

∣

∣

∣

2x0

0

= 0 .

28. (a) Using the work-kinetic energy theorem

Kf = Ki +

∫ 2

0

(

2.5− x2
)

dx = 0 + (2.5)(2)− 1

3
(2)3

we obtain Kf = 2.3 J.

(b) For a variable end-point, we have Kf as a function of x, which could be differentiated to find the
extremum value, but we recognize that this is equivalent to solving F = 0 for x:

F = 0 =⇒ 2.5− x2 = 0

Thus, K is extremized at x =
√

2.5 and we compute

Kf = Ki +

∫

√
2.5

0

(

2.5− x2
)

dx = 0 + (2.5)(
√

2.5)− 1

3
(
√

2.5)3 .

Therefore, K = 2.6 J at x =
√

2.5 = 1.6 m. Recalling our answer for part (a), it is clear that this
extreme value is a maximum.

29. One approach is to assume a “path” from ~ri to ~rf and do the line-integral accordingly. Another approach
is to simply use Eq. 7-36, which we demonstrate:

W =

∫ xf

xi

Fx dx+

∫ yf

yi

Fy dy

=

∫ −4

2

(2x) dx+

∫ −3

3

(3) dy

with SI units understood. Thus, we obtain W = 12− 18 = −6 J.

30. Recognizing that the force in the cable must equal the total weight (since there is no acceleration), we
employ Eq. 7-47:

P = Fv cos θ = mg

(

∆x

∆t

)
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where we have used the fact that θ = 0◦ (both the force of the cable and the elevator’s motion are
upward). Thus,

P =
(

3.0× 103 kg
)

(

9.8 m/s
2
)

(

210 m

23 s

)

= 2.7× 105 W .

31. The power associated with force ~F is given by P = ~F · ~v, where ~v is the velocity of the object on which
the force acts. Thus,

P = ~F · ~v = Fv cosφ = (122 N)(5.0 m/s) cos 37◦ = 490 W .

32. (a) Using Eq.7-48 and Eq. 3-23, we obtain

P = ~F · ~v = (4.0 N)(−2.0 m/s) + (9.0 N)(4.0 m/s) = 28 W .

(b) We again use Eq.7-48 and Eq. 3-23, but with a one-component velocity: ~v = vĵ.

P = ~F · ~v
−12 W = (−2.0 N)v

which yields v = 6 m/s.

33. (a) The power is given by P = Fv and the work done by ~F from time t1 to time t2 is given by

W =

∫ t2

t1

P dt =

∫ t2

t1

Fv dt .

Since ~F is the net force, the magnitude of the acceleration is a = F/m, and, since the initial velocity
is v0 = 0, the velocity as a function of time is given by v = v0 + at = (F/m)t. Thus

W =

∫ t2

t1

(F 2/m)t dt =
1

2
(F 2/m)(t22 − t21) .

For t1 = 0 and t2 = 1.0 s,

W =
1

2

(

(5.0 N)2

15 kg

)

(1.0 s)2 = 0.83 J .

(b) For t1 = 1.0 s and t2 = 2.0 s,

W =
1

2

(

(5.0 N)2

15 kg

)

(

(2.0 s)2 − (1.0 s)2
)

= 2.5 J .

(c) For t1 = 2.0 s and t2 = 3.0 s,

W =
1

2

(

(5.0 N)2

15 kg

)

(

(3.0 s)2 − (2.0 s)2
)

= 4.2 J .

(d) Substituting v = (F/m)t into P = Fv we obtain P = F 2t/m for the power at any time t. At the
end of the third second

P =
(5.0 N)2(3.0 s)

15 kg
= 5.0 W .

34. (a) Since constant speed implies ∆K = 0, we require Wa = −Wg, by Eq. 7-15. Since Wg is the same
in both cases (same weight and same path), then Wa = 900 J just as it was in the first case.
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(b) Since the speed of 1.0 m/s is constant, then 8.0 meters is traveled in 8.0 seconds. Using Eq. 7-42,
and noting that average power is the power when the work is being done at a steady rate, we have

P =
W

∆t
=

900 J

8.0 s

which results in P = 113 W.

(c) Since the speed of 2.0 m/s is constant, 8.0 meters is traveled in 4.0 seconds. Using Eq. 7-42,
with average power replaced by power, we have

P =
W

∆t
=

900 J

4.0 s

from which we obtain P = 225 W.

35. The total work is the sum of the work done by gravity on the elevator, the work done by gravity on
the counterweight, and the work done by the motor on the system: WT = We + Wc + Ws. Since the
elevator moves at constant velocity, its kinetic energy does not change and according to the work-kinetic
energy theorem the total work done is zero. This means We +Wc +Ws = 0. The elevator moves upward
through 54 m, so the work done by gravity on it is

We = −megd = −(1200 kg)(9.8 m/s
2
)(54 m) = −6.35× 105 J .

The counterweight moves downward the same distance, so the work done by gravity on it is

Wc = mcgd = (950 kg)
(

9.8 m/s
2
)

(54 m) = 5.03× 105 J .

Since WT = 0, the work done by the motor on the system is

Ws = −We −Wc = 6.35× 105 J− 5.03× 105 J = 1.32× 105 J .

This work is done in a time interval of ∆t = 3.0 min = 180 s, so the power supplied by the motor to lift
the elevator is

P =
Ws

∆t
=

1.32× 105 J

180 s
= 7.4× 102 W .

36. (a) Since the force exerted by the spring on the mass is zero when the mass passes through the equilib-
rium position of the spring, the rate at which the spring is doing work on the mass at this instant
is also zero.

(b) The rate is given by P = ~F ·~v = −Fv, where the minus sign corresponds to the fact that ~F and ~v are
antiparallel to each other. The magnitude of the force is given by F = kx = (500 N/m)(0.10 m) =
50 N, while v is obtained from conservation of energy for the spring-mass system:

E = K + U = 10 J =
1

2
mv2 +

1

2
kx2 =

1

2
(0.30 kg)v2 +

1

2
(500 N/m)(0.10 m)2

which gives v = 7.1 m/s. Thus

P = −Fv = −(50 N)(7.1 m/s) = −3.5 × 102 W .

37. We write the force as F = αv, where v is the speed and α is a constant of proportionality. The power
required is P = Fv = αv2. Let P1 be the power required for speed v1 and P2 be the power required for
speed v2. Dividing P2 = αv2

2 by P1 = αv2
1 , we find

P2 =

(

v2
v1

)2

P1 .

Since P1 = 7.5 kW and v2 = 3v1,

P2 = (3)2(7.5 kW) = 68 kW .
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38. (a) The force ~F of the incline is a combination of normal and friction force which is serving to “cancel”

the tendency of the box to fall downward (due to its 19.6 N weight). Thus, ~F = mg upward. In

this part of the problem, the angle φ between the belt and ~F is 80◦. From Eq. 7-47, we have

P = Fv cosφ = (19.6)(0.50) cos80◦

which leads to P = 1.7 W.

(b) Now the angle between the belt and ~F is 90◦, so that P = 0.

(c) In this part, the angle between the belt and ~F is 100◦, so that P = (19.6)(0.50) cos100◦ = −1.7 W.

39. (a) In 10 min the cart moves

(

6.0
mi

h

)(

5280 ft/mi

60 min/h

)

(10 min) = 5280 ft

so that Eq. 7-7 yields

W = Fd cosφ = (40 lb)(5280 ft) cos 30◦ = 1.8× 105 ft·lb .

(b) The average power is given by Eq. 7-42, and the conversion to horsepower (hp) can be found on
the inside back cover. We note that 10 min is equivalent to 600 s.

Pavg =
1.8× 105 ft · lb

600 s
= 305 ft·lb/s

which (upon dividing by 550) converts to Pavg = 0.55 hp.

40. The acceleration is constant, so we may use the equations in Table 2-1. We choose the direction of
motion as +x and note that the displacement is the same as the distance traveled, in this problem. We
designate the force (assumed singular) along the x direction acting on the m = 2.0 kg object as F .

(a) With v0 = 0, Eq. 2-11 leads to a = v/t. And Eq. 2-17 gives ∆x = 1
2vt Newton’s second law yields

the force F = ma. Eq. 7-8, then, gives the work:

W = F∆x = m
(v

t

)

(

1

2
vt

)

=
1

2
mv2

as we expect from the work-kinetic energy theorem. With v = 10 m/s, this yields W = 100 J.

(b) Instantaneous power is defined in Eq. 7-48. With t = 3.0 s, we find

P = Fv = m
(v

t

)

v = 67 W .

(c) The velocity at t′ = 1.5 s is v′ = at′ = 5.0 m/s. Thus,

P ′ = Fv′ = 33 W .

41. The total weight is (100)(660) = 6.6 × 104 N, and the words “raises ... at constant speed” imply zero
acceleration, so the lift-force is equal to the total weight. Thus P = Fv = (6.6 × 104)(150/60) =
1.65× 105 W.

42. Using Eq. 7-32, we find

W =

∫ 1.25

0.25

e−4x2

dx = 0.21 J

where the result has been obtained numerically. Many modern calculators have that capability, as well
as most math software packages that a great many students have access to.
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43. (a) and (b) Hooke’s law and the work done by a spring is discussed in the chapter. We apply Work-
kinetic energy theorem, in the form of ∆K = Wa +Ws, to the points in Figure 7-48 at x = 1.0 m and
x = 2.0 m, respectively. The “applied” work Wa is that due to the constant force ~P .

4 = P (1.0)− 1

2
k(1.0)2

0 = P (2.0)− 1

2
k(2.0)2

Simultaneous solution leads to P = 8.0 N and k = 8.0 N/m.

44. Using Eq. 7-8, we find

W = ~F · ~d =
(

F cos θ ı̂ + F sin θ ĵ
)

·
(

x̂ı + yĵ
)

= Fx cos θ + Fy sin θ

where x = 2.0 m, y = −4.0 m, F = 10 N, and θ = 150◦. Thus, we obtain W = −37 J. Note that the
given mass value (2.0 kg) is not used in the computation.

45. (a) Estimating the initial speed from the slope of the graph near the origin is somewhat difficult, and it
may be simpler to determine it from the constant-acceleration equations from chapter 2: v = v0+at
and x = v0 + 1

2at
2, where x0 = 0 has been used. Applying these to the last point on the graph

(where the slope is apparently zero) or applying just the x equation to any two points on the graph,

leads to a pair of simultaneous equations from which a = −2 m/s
2

and v0 = 10 m/s can be found.
Then,

K0 =
1

2
mv2

0 = 2.5× 103 J = 2.5 kJ .

(b) The speed at t = 3.0 s is obtained by

v = v0 + at = 10 + (−2)(3) = 4 m/s

or by estimating the slope from the graph (not recommended). Then the work-kinetic energy
theorem yields

W = ∆K =
1

2
(50 kg)(4 m/s)2 − 2.5× 103 J = −2.1 kJ .

46. (a) Using Eq. 7-8 and SI units, we find

W = ~F · ~d =
(

2 ı̂− 4 ĵ
)

·
(

8̂ı + ĉj
)

= 16− 4c

which, if equal zero, implies c = 16/4 = 4 m.

(b) If W > 0 then 16 > 4c, which implies c < 4 m.

(c) If W < 0 then 16 < 4c, which implies c > 4 m.

47. With speed v = 11200 m/s, we find

K =
1

2
mv2 =

1

2

(

2.9× 105
)

(11200)2 = 1.8× 1013 J .

48. (a) Hooke’s law and the work done by a spring is discussed in the chapter. Taking absolute values, and
writing that law in terms of differences ∆F and ∆x, we analyze the first two pictures as follows:

|∆F | = k |∆x|
240 N− 110 N = k(60 mm− 40 mm)

which yields k = 6.5 N/mm. Designating the relaxed position (as read by that scale) as xo we look
again at the first picture:

110 N = k (40 mm− xo )

which (upon using the above result for k) yields xo = 23 mm.
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(b) Using the results from part (a) to analyze that last picture, we find

W = k (30 mm− xo ) = 45 N .

49. (a) To hold the crate at equilibrium in the final situation, ~F must have the same magnitude as the
horizontal component of the rope’s tension T sin θ, where θ is the angle between the rope (in the
final position) and vertical:

θ = sin−1

(

4.00

12.0

)

= 19.5◦ .

But the vertical component of the tension supports against the weight: T cos θ = mg. Thus, the
tension is T = (230)(9.8)/ cos19.5◦ = 2391 N and F = (2391) sin 19.5◦ = 797 N. An alternative
approach based on drawing a vector triangle (of forces) in the final situation provides a quick
solution.

(b) Since there is no change in kinetic energy, the net work on it is zero.

(c) The work done by gravity is Wg = ~Fg · ~d = −mgh, where h = L(1− cos θ) is the vertical component
of the displacement. With L = 12.0 m, we obtain Wg = −1547 J which should be rounded to three
figures: −1.55 kJ.

(d) The tension vector is everywhere perpendicular to the direction of motion, so its work is zero (since
cos 90◦ = 0).

(e) The implication of the previous three parts is that the work due to ~F is −Wg (so the net work
turns out to be zero). Thus, WF = −Wg = 1.55 kJ.

(f) Since ~F does not have constant magnitude, we cannot expect Eq. 7-8 to apply.

50. (a) In the work-kinetic energy theorem, we include both the work due to an applied force Wa and work
done by gravity Wg in order to find the latter quantity.

∆K = Wa +Wg =⇒ 30 = (100)(1.8) cos 180◦ +Wg

leading to Wg = 210 J.

(b) The value of Wg obtained in part (a) still applies since the weight and the path of the child remain
the same, so ∆K = Wg = 210 J.

51. Using Eq. 7-7, we have W = Fd cosφ = 1504 J. Then, by the work-kinetic energy theorem, we find the
kinetic energy Kf = Ki +W = 0 + 1504 J. The answer is therefore 1.5 kJ.

52. (a) Before the cord is cut, each spring (which might be described as being “in series” in this case)
is stretched by the force F = 100 N. Thus, each spring is stretched by x = 100/500 = 0.20 m in
the initial configuration. Since the relaxed length of each spring is 0.50 m, then the full length of
each spring in the initial configuration is 0.20 + 0.50 = 0.70 m. Therefore (including that 0.10 m
length of string) the distance from the box to the ceiling is 2(0.70) + 0.10 = 1.50 m, before the
string is cut. In the moments after the short string is cut, there is some “transient motion” that is
difficult to analyze, but after it has settled down again (in its new equilibrium position) the springs
(which now might be described as being “in parallel”) are sharing half the weight, so the force
stretching each one is F/2 = 50 N. This means the elongation of each is x/2 = 0.10 m. The total
distance (recalling that the longer cords are each of length 0.85 m) of the box to the ceiling is now
0.85 + 0.10 + 0.50 = 1.45 m. Thus, the box is closer to the ceiling now than it was before. It has
moved up.

(b) The distance moved up by the box is d = 1.50− 1.45 = 0.05 m.

(c) To avoid worrying about friction-related (dissipative) processes which are involved in making the
“transient motion” ultimately disappear, we consider that the person who cut the cord (and has
predicted the new equilibrium position) very carefully and gradually moves it up to that new
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position, in which case the work being done on the system is due to the person. In this variation of
the problem, it is easy to see that the work done by the person against gravity is −Wg = mgd = 5.0 J
(though this is not the full work done by the person, since Eq. 7-25 hasn’t been used). Returning
to the problem in its original form, we can say that the work done on the block in raising it the
distance d is 5.0 J, regardless of the agent doing the work (and in its original form, that agent is
the pair of springs, and this represents part of the full work they do).

53. (a) We set up the ratio

50 km

1 km
=

(

E

1 megaton

)1/3

and find E = 503 ≈ 1× 105 megatons of TNT.

(b) We note that 15 kilotons is equivalent to 0.015 megatons. Dividing the result from part (a) by
0.013 yields about ten million bombs.

54. (a) With SI units (and three significant figures) understood, the object’s displacement is

~d = ~df − ~di = −8 ı̂ + 6 ĵ + 2 k̂ .

Thus, Eq. 7-8 gives
W = ~F · ~d = (3)(−8) + (7)(6) + (7)(2) = 32.0 J .

(b) The average power is given by Eq. 7-42:

Pavg =
W

t
=

32

4
= 8.00 W .

(c) The distance from the coordinate origin to the initial position is di =
√

32 + (−2)2 + 52 = 6.16 m,

and the magnitude of the distance from the coordinate origin to the final position is df =
√

(−5)2 + 42 + 72 =
9.49 m. Their scalar (dot) product is

~di · ~df = (3)(−5) + (−2)(4) + (5)(7) = 12.0 m2 .

Thus, the angle between the two vectors is

φ = cos−1

(

~di · ~df

di df

)

= cos−1

(

12.0

(6.16)(9.49)

)

which yields φ = 78◦.
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Chapter 8

1. The potential energy stored by the spring is given by U = 1
2kx

2, where k is the spring constant and x
is the displacement of the end of the spring from its position when the spring is in equilibrium. Thus

k =
2U

x2
=

2(25 J)

(0.075 m)2
= 8.9× 103 N/m .

2. (a) Noting that the vertical displacement is 10.0 − 1.5 = 8.5 m downward (same direction as ~Fg ),
Eq. 7-12 yields

Wg = mgd cosφ = (2.00)(9.8)(8.5) cos0◦ = 167 J .

(b) One approach (which is fairly trivial) is to use Eq. 8-1, but we feel it is instructive to instead
calculate this as ∆U where U = mgy (with upwards understood to be the +y direction).

∆U = mgyf −mgyi = (2.00)(9.8)(1.5)− (2.00)(9.8)(10.0) = −167 J .

(c) In part (b) we used the fact that Ui = mgyi = 196 J.

(d) In part (b), we also used the fact Uf = mgyf = 29 J.

(e) The computation of Wg does not use the new information (that U = 100 J at the ground), so we
again obtain Wg = 167 J.

(f) As a result of Eq. 8-1, we must again find ∆U = −Wg = −167 J.

(g) With this new information (that U0 = 100 J where y = 0) we have Ui = mgyi + U0 = 296 J.

(h) With this new information (that U0 = 100 J where y = 0) we have Uf = mgyf + U0 = 129 J. We
can check part (f) by subtracting the new Ui from this result.

3. (a) The force of gravity is constant, so the work it does is given by W = ~F · ~d, where ~F is the force

and ~d is the displacement. The force is vertically downward and has magnitude mg, where m is
the mass of the flake, so this reduces to W = mgh, where h is the height from which the flake falls.
This is equal to the radius r of the bowl. Thus

W = mgr = (2.00× 10−3 kg)(9.8 m/s
2
)(22.0× 10−2 m) = 4.31× 10−3 J .

(b) The force of gravity is conservative, so the change in gravitational potential energy of the flake-Earth
system is the negative of the work done: ∆U = −W = −4.31× 10−3 J.

(c) The potential energy when the flake is at the top is greater than when it is at the bottom by |∆U |.
If U = 0 at the bottom, then U = +4.31× 10−3 J at the top.

(d) If U = 0 at the top, then U = −4.31× 10−3 J at the bottom.

(e) All the answers are proportional to the mass of the flake. If the mass is doubled, all answers are
doubled.

4. We use Eq. 7-12 for Wg and Eq. 8-9 for U .

183
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(a) The displacement between the initial point and A is horizontal, so φ = 90◦ and Wg = 0 (since
cos 90◦ = 0).

(b) The displacement between the initial point and B has a vertical component of h/2 downward (same

direction as ~Fg ), so we obtain Wg = ~Fg · ~d = mgh/2.

(c) The displacement between the initial point and C has a vertical component of h downward (same

direction as ~Fg ), so we obtain Wg = ~Fg · ~d = mgh.

(d) With the reference position at C, we obtain UB = mgh/2.

(e) Similarly, we find UA = mgh.

(f) All the answers are proportional to the mass of the object. If the mass is doubled, all answers are
doubled.

5. (a) The only force that does work on the ball is the force of gravity; the force of the rod is perpendicular
to the path of the ball and so does no work. In going from its initial position to the lowest point
on its path, the ball moves vertically through a distance equal to the length L of the rod, so the
work done by the force of gravity is W = mgL.

(b) In going from its initial position to the highest point on its path, the ball moves vertically through
a distance equal to L, but this time the displacement is upward, opposite the direction of the force
of gravity. The work done by the force of gravity is W = −mgL.

(c) The final position of the ball is at the same height as its initial position. The displacement is
horizontal, perpendicular to the force of gravity. The force of gravity does no work during this
displacement.

(d) The force of gravity is conservative. The change in the gravitational potential energy of the ball-
Earth system is the negative of the work done by gravity: ∆U = −mgL as the ball goes to the
lowest point

(e) Continuing this line of reasoning, we find ∆U = mgL as it goes to the highest point.

(f) Continuing this line of reasoning, we have ∆U = 0 as it goes to the point at the same height.

(g) The change in the gravitational potential energy depends only on the initial and final positions of
the ball, not on its speed anywhere. The change in the potential energy is the same since the initial
and final positions are the same.

6. We use Eq. 7-12 for Wg and Eq. 8-9 for U .

(a) The displacement between the initial point and Q has a vertical component of h − R downward

(same direction as ~Fg ), so (with h = 5R) we obtain Wg = ~Fg · ~d = 4mgR.

(b) The displacement between the initial point and the top of the loop has a vertical component of

h− 2R downward (same direction as ~Fg ), so (with h = 5R) we obtain Wg = ~Fg · ~d = 3mgR.

(c) With y = h = 5R, we find U = 5mgR at P .

(d) With y = R, we find U = mgR at Q.

(e) With y = 2R, we find U = 2mgR at the top of the loop.

(f) The new information (vi 6= 0) is not involved in any of the preceding computations; the above
results are unchanged.

7. (a) The force of gravity is constant, so the work it does is given by W = ~F · ~d, where ~F is the force

and ~d is the displacement. The force is vertically downward and has magnitude mg, where m is
the mass of the snowball. The expression for the work reduces to W = mgh, where h is the height
through which the snowball drops. Thus

W = mgh = (1.50 kg)(9.8 m/s
2
)(12.5 m) = 184 J .
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(b) The force of gravity is conservative, so the change in the potential energy of the snowball-Earth
system is the negative of the work it does: ∆U = −W = −184 J.

(c) The potential energy when it reaches the ground is less than the potential energy when it is fired
by |∆U |, so U = −184 J when the snowball hits the ground.

8. The main challenge for students in this type of problem seems to be working out the trigonometry in
order to obtain the height of the ball (relative to the low point of the swing) h = L−L cosθ (for angle θ
measured from vertical as shown in Fig. 8-29). Once this relation (which we will not derive here since we
have found this to be most easily illustrated at the blackboard) is established, then the principal results
of this problem follow from Eq. 7-12 (for Wg ) and Eq. 8-9 (for U).

(a) The vertical component of the displacement vector is downward with magnitude h, so we obtain

Wg = ~Fg · ~d = mgh = mgL (1− cos θ) .

(b) From Eq. 8-1, we have ∆U = −Wg = −mgL(1− cos θ).

(c) With y = h, Eq. 8-9 yields U = mgL(1− cos θ).

(d) As the angle increases, we intuitively see that the height h increases (and, less obviously, from the
mathematics, we see that cos θ decreases so that 1 − cos θ increases), so the answers to parts (a)
and (c) increase, and the absolute value of the answer to part (b) also increases.

9. (a) If Ki is the kinetic energy of the flake at the edge of the bowl, Kf is its kinetic energy at the
bottom, Ui is the gravitational potential energy of the flake-Earth system with the flake at the top,
and Uf is the gravitational potential energy with it at the bottom, then Kf +Uf = Ki +Ui. Taking
the potential energy to be zero at the bottom of the bowl, then the potential energy at the top is
Ui = mgr where r = 0.220 m is the radius of the bowl and m is the mass of the flake. Ki = 0 since
the flake starts from rest. Since the problem asks for the speed at the bottom, we write 1

2mv
2 for

Kf . Energy conservation leads to

mgr =
1

2
mv2 =⇒ v =

√

2gr =
√

2(9.8)(0.220) = 2.08 m/s .

(b) We note that the expression for the speed (v =
√

2gr) does not contain the mass of the flake. The
speed would be the same, 2.08 m/s, regardless of the mass of the flake.

(c) The final kinetic energy is given by Kf = Ki + Ui − Uf . Since Ki is greater than before, Kf is
greater. This means the final speed of the flake is greater.

10. We use Eq. 8-17, representing the conservation of mechanical energy (which neglects friction and other
dissipative effects).

(a) In the solution to exercise 2 (to which this problem refers), we found Ui = mgyi = 196 J and
Uf = mgyf = 29 J (assuming the reference position is at the ground). Since Ki = 0 in this case,
we have

Ki + Ui = Kf + Uf

0 + 196 = Kf + 29

which gives Kf = 167 J and thus leads to

v =

√

2Kf

m
=

√

2(167)

2.00
= 12.9 m/s .
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(b) If we proceed algebraically through the calculation in part (a), we find Kf = −∆U = mgh where
h = yi − yf and is positive-valued. Thus,

v =

√

2Kf

m
=
√

2gh

as we might also have derived from the equations of Table 2-1 (particularly Eq. 2-16). The fact
that the answer is independent of mass means that the answer to part (b) is identical to that of
part (a).

(c) If Ki 6= 0, then we find Kf = mgh+Ki (where Ki is necessarily positive-valued). This represents
a larger value for Kf than in the previous parts, and thus leads to a larger value for v.

11. We use Eq. 8-18, representing the conservation of mechanical energy (which neglects friction and other
dissipative effects).

(a) In the solution to exercise 5 (to which this problem refers), we found ∆U = mgL as it goes to the
highest point. Thus, we have

∆K + ∆U = 0

Ktop −K0 +mgL = 0

which, upon requiring Ktop = 0, gives K0 = mgL and thus leads to

v0 =

√

2K0

m
=
√

2gL .

(b) We also found in the solution to exercise 5 that the potential energy change is ∆U = −mgL in
going from the initial point to the lowest point (the bottom). Thus,

∆K + ∆U = 0

Kbottom −K0 −mgL = 0

which, with K0 = mgL, leads to Kbottom = 2mgL. Therefore,

vbottom =

√

2Kbottom

m
=
√

4gL

which simplifies to 2
√
gL.

(c) Since there is no change in height (going from initial point to the rightmost point), then ∆U = 0,
which implies ∆K = 0. Consequently, the speed is the same as what it was initially (

√
2gL).

(d) It is evident from the above manipulations that the results do not depend on mass. Thus, a different
mass for the ball must lead to the same results.

12. We use Eq. 8-17, representing the conservation of mechanical energy (which neglects friction and other
dissipative effects).

(a) In the solution to exercise 4, we found UA = mgh (with the reference position at C). Referring
again to Fig. 8-26, we see that this is the same as U0 which implies that KA = K0 and thus that
vA = v0.

(b) In the solution to exercise 4, we also found UB = mgh/2. In this case, we have

K0 + U0 = KB + UB

1

2
mv2

0 +mgh =
1

2
mv2

B +mg

(

h

2

)

which leads to vB =
√

v2
0 + gh.
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(c) Similarly, vC =
√

v2
0 + 2gh.

(d) To find the “final” height, we set Kf = 0. In this case, we have

K0 + U0 = Kf + Uf

1

2
mv2

0 +mgh = 0 +mghf

which leads to hf = h+ v2
0/2g.

(e) It is evident that the above results do not depend on mass. Thus, a different mass for the coaster
must lead to the same results.

13. We neglect any work done by friction. We work with SI units, so the speed is converted: v =
130(1000/3600) = 36.1 m/s.

(a) We use Eq. 8-17: Kf + Uf = Ki + Ui with Ui = 0, Uf = mgh and Kf = 0. Since Ki = 1
2mv

2,
where v is the initial speed of the truck, we obtain

1

2
mv2 = mgh =⇒ h =

v2

2g
=

36.12

2(9.8)
= 66.5 m .

If L is the length of the ramp, then L sin 15◦ = 66.5 m so that L = 66.5/ sin15◦ = 257 m. Therefore,
the ramp must be about 260 m long if friction is negligible.

(b) The answers do not depend on the mass of the truck. They remain the same if the mass is reduced.

(c) If the speed is decreased, h and L both decrease (note that h is proportional to the square of the
speed and that L is proportional to h).

14. We use Eq. 8-18, representing the conservation of mechanical energy. The reference position for com-
puting U is the lowest point of the swing; it is also regarded as the “final” position in our calculations.

(a) In the solution to problem 8 (to which this problem refers), we found U = mgL(1 − cos θ) at the
position shown in Fig. 8-29 (which we consider to be the initial position). Thus, we have

Ki + Ui = Kf + Uf

0 +mgL(1− cos θ) =
1

2
mv2 + 0

which leads to

v =

√

2mgL(1− cos θ)

m
=
√

2gL(1− cos θ) .

Plugging in L = 2.00 m and θ = 30.0◦ we find v = 2.29 m/s.

(b) It is evident that the result for v does not depend on mass. Thus, a different mass for the ball must
not change the result.

15. We use Eq. 8-18, representing the conservation of mechanical energy. We choose the reference position
for computing U to be at the ground below the cliff; it is also regarded as the “final” position in our
calculations.

(a) Using Eq. 8-9, the initial potential energy is Ui = mgh where h = 12.5 m and m = 1.50 kg. Thus,
we have

Ki + Ui = Kf + Uf

1

2
mv2

i +mgh =
1

2
mv2 + 0
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which leads to the speed of the snowball at the instant before striking the ground:

v =

√

2

m

(

1

2
mv2

i +mgh

)

=
√

v2
i + 2gh

where vi = 14.0 m/s is the magnitude of its initial velocity (not just one component of it). Thus
we find v = 21.0 m/s.

(b) As noted above, vi is the magnitude of its initial velocity and not just one component of it; therefore,
there is no dependence on launch angle. The answer is again 21.0 m/s.

(c) It is evident that the result for v in part (a) does not depend on mass. Thus, changing the mass of
the snowball does not change the result for v.

16. We convert to SI units and choose upward as the +y direction. Also, the relaxed position of the top
end of the spring is the origin, so the initial compression of the spring (defining an equilibrium situation
between the spring force and the force of gravity) is y0 = −0.100 m and the additional compression
brings it to the position y1 = −0.400 m.

(a) When the stone is in the equilibrium (a = 0) position, Newton’s second law becomes

~Fnet = ma

Fspring −mg = 0

−k(−0.100)− (8.00)(9.8) = 0

where Hooke’s law (Eq. 7-21) has been used. This leads to a spring constant equal to k = 784 N/m.

(b) With the additional compression (and release) the acceleration is no longer zero, and the stone will
start moving upwards, turning some of its elastic potential energy (stored in the spring) into kinetic
energy. The amount of elastic potential energy at the moment of release is, using Eq. 8-11,

U =
1

2
ky2

1 =
1

2
(784)(−0.400)2 = 62.7 J .

(c) Its maximum height y2 is beyond the point that the stone separates from the spring (entering free-
fall motion). As usual, it is characterized by having (momentarily) zero speed. If we choose the y1
position as the reference position in computing the gravitational potential energy, then

K1 + U1 = K2 + U2

0 +
1

2
ky2

1 = 0 +mgh

where h = y2 − y1 is the height above the release point. Thus, mgh (the gravitational potential
energy) is seen to be equal to the previous answer, 62.7 J, and we proceed with the solution in the
next part.

(d) We find h = ky2
1/2mg = 0.800 m, or 80.0 cm.

17. We take the reference point for gravitational potential energy at the position of the marble when the
spring is compressed.

(a) The gravitational potential energy when the marble is at the top of its motion is Ug = mgh, where
h = 20 m is the height of the highest point. Thus,

Ug =
(

5.0× 10−3 kg
)

(

9.8 m/s
2
)

(20 m) = 0.98 J .

(b) Since the kinetic energy is zero at the release point and at the highest point, then conservation of
mechanical energy implies ∆Ug +∆Us = 0, where ∆Us is the change in the spring’s elastic potential
energy. Therefore, ∆Us = −∆Ug = −0.98 J.
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(c) We take the spring potential energy to be zero when the spring is relaxed. Then, our result in the
previous part implies that its initial potential energy is Us = 0.98 J. This must be 1

2kx
2, where k

is the spring constant and x is the initial compression. Consequently,

k =
2Us

x2
=

2(0.98 J)

(0.080 m)2
= 3.1× 102 N/m = 3.1 N/cm .

18. We use Eq. 8-18, representing the conservation of mechanical energy (which neglects friction and other
dissipative effects). The reference position for computing U (and height h) is the lowest point of the
swing; it is also regarded as the “final” position in our calculations.

(a) Careful examination of the figure leads to the trigonometric relation h = L−L cos θ when the angle
is measured from vertical as shown. Thus, the gravitational potential energy is U = mgL(1−cos θ0)
at the position shown in Fig. 8-32 (the initial position). Thus, we have

K0 + U0 = Kf + Uf

1

2
mv2

0 +mgL(1− cos θ0) =
1

2
mv2 + 0

which leads to

v =

√

2

m

(

1

2
mv2

0 +mgL(1− cos θ0)

)

=
√

v2
0 + 2gL(1− cos θ0) .

(b) We look for the initial speed required to barely reach the horizontal position – described by vh = 0
and θ = 90◦ (or θ = −90◦, if one prefers, but since cos(−φ) = cosφ, the sign of the angle is not a
concern).

K0 + U0 = Kh + Uh

1

2
mv2

0 +mgL(1− cos θ0) = 0 +mgL

which leads to v0 =
√

2gL cosθ0.

(c) For the cord to remain straight, then the centripetal force (at the top) must be (at least) equal to
gravitational force:

mv2
t

r
= mg =⇒ mv2

t = mgL

where we recognize that r = L. We plug this into the expression for the kinetic energy (at the top,
where θ = 180◦).

K0 + U0 = Kt + Ut

1

2
mv2

0 +mgL(1− cos θ0) =
1

2
mv2

t +mg (1− cos 180◦)

1

2
mv2

0 +mgL(1− cos θ0) =
1

2
(mgL) +mg(2L)

which leads to v0 =
√

gL(3 + 2 cos θ0).

(d) The more initial potential energy there is, the less initial kinetic energy there needs to be, in order
to reach the positions described in parts (b) and (c). Increasing θ0 amounts to increasing U0, so we
see that a greater value of θ0 leads to smaller results for v0 in parts (b) and (c).

19. The reference point for the gravitational potential energy Ug (and height h) is at the block when the
spring is maximally compressed. When the block is moving to its highest point, it is first accelerated
by the spring; later, it separates from the spring and finally reaches a point where its speed vf is
(momentarily) zero. The x axis is along the incline, pointing uphill (so x0 for the initial compression is
negative-valued); its origin is at the relaxed position of the spring. We use SI units, so k = 1960 N/m
and x0 = −0.200 m.
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(a) The elastic potential energy is 1
2kx

2
0 = 39.2 J.

(b) Since initially Ug = 0, the change in Ug is the same as its final value mgh where m = 2.00 kg.
That this must equal the result in part (a) is made clear in the steps shown in the next part. Thus,
∆Ug = Ug = 39.2 J.

(c) The principle of mechanical energy conservation leads to

K0 + U0 = Kf + Uf

0 +
1

2
kx2

0 = 0 +mgh

which yields h = 2.00 m. The problem asks for the distance along the incline, so we have d =
h/ sin 30◦ = 4.00 m.

20. (a) At Q the block (which is in circular motion at that point) experiences a centripetal acceleration
v2/R leftward. We find v2 from energy conservation:

KP + UP = KQ + UQ

0 +mgh =
1

2
mv2 +mgR

Using the fact (mentioned in problem 6) that h = 5R, we find mv2 = 8mgR. Thus, the horizontal
component of the net force on the block at Q is mv2/R = 8mg and points left (in the same direction
as ~a).

(b) The downward component of the net force on the block at Q is the force of gravity mg downward.

(c) To barely make the top of the loop, the centripetal force there must equal the force of gravity:

mv2
t

R
= mg =⇒ mv2

t = mgR

This requires a different value of h than was used above.

KP + UP = Kt + Ut

0 +mgh =
1

2
mv2

t +mght

mgh =
1

2
(mgR) +mg(2R)

Consequently, h = 2.5R.

(d) The normal force N , for speeds vt greater than
√
gR (which are the only possibilities for non-zero

N – see the solution in the previous part), obeys

N =
mv2

t

R
−mg

from Newton’s second law. Since v2
t is related to h by energy conservation

KP + UP = Kt + Ut =⇒ gh =
1

2
v2

t + 2gR

then the normal force, as a function for h (so long as h ≥ 2.5R – see solution in previous part),
becomes

N =
2mg

R
h− 5mg .

Thus, the graph for h ≥ 2.5R consists of a straight line of positive slope 2mg/R (which can be set
to some convenient values for graphing purposes). For h ≤ 2.5R, the normal force is zero. In the
interest of saving space, we do not show the graph here.
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21. We refer to its starting point as A, the point where it first comes into contact with the spring as B,
and the point where the spring is compressed |x| = 0.055 m as C. Point C is our reference point for
computing gravitational potential energy. Elastic potential energy (of the spring) is zero when the spring
is relaxed. Information given in the second sentence allows us to compute the spring constant. From
Hooke’s law, we find

k =
F

x
=

270 N

0.02 m
= 1.35× 104 N/m .

(a) The distance between points A and B is ℓ, and we note that the total sliding distance ℓ + |x| is
related to the initial height h of the block (measured relative to C) by

h

ℓ+ |x| = sin θ

where the incline angle θ is 30◦. Mechanical energy conservation leads to

KA + UA = KC + UC

0 +mgh = 0 +
1

2
kx2

which yields

h =
kx2

2mg
=

(1.35× 104 N/m)(0.055 m)2

2(12 kg)
(

9.8 m/s2
) = 0.174 m .

Therefore,

ℓ+ |x| = h

sin 30◦
=

0.174 m

sin 30◦
= 0.35 m .

(b) From this result, we find ℓ = 0.35 − 0.055 = 0.29 m, which means ∆y = −ℓ sin θ = −0.15 m in
sliding from point A to point B. Thus, Eq. 8-18 gives

∆K + ∆U = 0
1

2
mv2

B +mg∆h = 0

which yields
vB =

√

−2g∆h =
√

−(9.8)(−0.15) = 1.7 m/s .

22. Since time does not directly enter into the energy formulations, we return to Chapter 4 (or Table 2-1 in
Chapter 2) to find the change of height during this t = 6 s flight.

∆y = v0yt−
1

2
gt2

This leads to ∆y = −32 m. Therefore ∆U = mg∆y = −318 ≈ −320 J.

23. (a) As the string reaches its lowest point, its original potential energy U = mgL (measured relative to
the lowest point) is converted into kinetic energy. Thus,

mgL =
1

2
mv2 =⇒ v =

√

2gL .

With L = 1.20 m we obtain v = 4.85 m/s.

(b) In this case, the total mechanical energy is shared between kinetic 1
2mv

2
b and potential mgyb. We

note that yb = 2r where r = L− d = 0.450 m. Energy conservation leads to

mgL =
1

2
mv2

b +mgyb

which yields
vb =

√

2gL− 2g(2r) = 2.42 m/s .
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24. From Chapter 4, we know the height h of the skier’s jump can be found from v2
y = 0 = v2

0 y − 2gh where
v0 y = v0 sin 28◦ is the upward component of the skier’s “launch velocity.” To find v0 we use energy
conservation.

(a) The skier starts at rest y = 20 m above the point of “launch” so energy conservation leads to

mgy =
1

2
mv2 =⇒ v =

√

2gy = 20 m/s

which becomes the initial speed v0 for the launch. Hence, the above equation relating h to v0 yields

h =
(v0 sin 28◦)2

2g
= 4.4 m .

(b) We see that all reference to mass cancels from the above computations, so a new value for the mass
will yield the same result as before.

25. We denote m as the mass of the block, h = 0.40 m as the height from which it dropped (measured from
the relaxed position of the spring), and x the compression of the spring (measured downward so that it
yields a positive value). Our reference point for the gravitational potential energy is the initial position
of the block. The block drops a total distance h + x, and the final gravitational potential energy is
−mg(h+ x). The spring potential energy is 1

2kx
2 in the final situation, and the kinetic energy is zero

both at the beginning and end. Since energy is conserved

Ki + Ui = Kf + Uf

0 = −mg(h+ x) +
1

2
kx2

which is a second degree equation in x. Using the quadratic formula, its solution is

x =
mg ±

√

(mg)2 + 2mghk

k
.

Now mg = 19.6 N, h = 0.40 m, and k = 1960 N/m, and we choose the positive root so that x > 0.

x =
19.6 +

√

19.62 + 2(19.6)(0.40)(1960)

1960
= 0.10 m .

26. To find out whether or not the vine breaks, it is sufficient to examine it at the moment Tarzan swings
through the lowest point, which is when the vine – if it didn’t break – would have the greatest tension.
Choosing upward positive, Newton’second law leads to

T −mg = m
v2

r

where r = 18 m and m = W/g = 688/9.8 = 70.2 kg. We find the v2 from energy conservation (where
the reference position for the potential energy is at the lowest point).

mgh =
1

2
mv2 =⇒ v2 = 2gh

where h = 3.2 m. Combining these results, we have

T = mg +m
2gh

r
= mg

(

1 +
2h

r

)

which yields 933 N. Thus, the vine does not break. And rounding to an appropriate number of significant
figures, we see the maximum tension is roughly 930 N.
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27. The distance the marble travels is determined by its initial speed (and the methods of Chapter 4), and
the initial speed is determined (using energy conservation) by the original compression of the spring. We
denote h as the height of the table, and x as the horizontal distance to the point where the marble lands.
Then x = v0t and h = 1

2gt
2 (since the vertical component of the marble’s “launch velocity” is zero).

From these we find x = v0
√

2h/g. We note from this that the distance to the landing point is directly
proportional to the initial speed. We denote v0 1 be the initial speed of the first shot and x1 = 1.93 m
be the horizontal distance to its landing point; similarly, v0 2 is the initial speed of the second shot and
x2 = 2.20 m is the horizontal distance to its landing spot. Then

v0 2

v0 1
=
x2

x1
=⇒ v0 2 =

x2

x1
v0 1 .

When the spring is compressed an amount ℓ, the elastic potential energy is 1
2kℓ

2. When the marble
leaves the spring its kinetic energy is 1

2mv
2
0 . Mechanical energy is conserved: 1

2mv
2
0 = 1

2kℓ
2, and we see

that the initial speed of the marble is directly proportional to the original compression of the spring. If
ℓ1 is the compression for the first shot and ℓ2 is the compression for the second, then v02 = (ℓ2/ℓ1)v01.
Relating this to the previous result, we obtain

ℓ2 =
x2

x1
ℓ1 =

(

2.20 m

1.93 m

)

(1.10 cm) = 1.25 cm .

28. We place the reference position for evaluating gravitational potential energy at the relaxed position of
the spring. We use x for the spring’s compression, measured positively downwards (so x > 0 means it is
compressed).

(a) With x = 0.190 m, Eq. 7-26 gives Ws = − 1
2kx

2 = −7.22 J for the work done by the spring force.
Using Newton’s third law, we conclude the work done on the spring is 7.22 J.

(b) As noted above, Ws = −7.22 J.

(c) Energy conservation leads to

Ki + Ui = Kf + Uf

mgh0 = −mgx+
1

2
kx2

which (with m = 0.700 kg) yields h0 = 0.862 m.

(d) With a new value for the height h′0 = 2h0 = 1.72 m, we solve for a new value of x using the
quadratic formula (taking its positive root so that x > 0).

mgh′0 = −mgx+
1

2
kx2 =⇒ x =

mg +
√

(mg)2 + 2mgkh′0
k

which yields x = 0.261 m.

29. We use conservation of mechanical energy: the mechanical energy must be the same at the top of the
swing as it is initially. Newton’s second law is used to find the speed, and hence the kinetic energy, at
the top. There the tension force T of the string and the force of gravity are both downward, toward
the center of the circle. We notice that the radius of the circle is r = L − d, so the law can be written
T +mg = mv2/(L − d), where v is the speed and m is the mass of the ball. When the ball passes the
highest point with the least possible speed, the tension is zero. Then

mg = m
v2

L− d =⇒ v =
√

g(L− d) .

We take the gravitational potential energy of the ball-Earth system to be zero when the ball is at the
bottom of its swing. Then the initial potential energy is mgL. The initial kinetic energy is zero since
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the ball starts from rest. The final potential energy, at the top of the swing, is 2mg(L− d) and the final
kinetic energy is 1

2mv
2 = 1

2mg(L− d) using the above result for v. Conservation of energy yields

mgL = 2mg(L− d) +
1

2
mg(L− d) =⇒ d = 3L/5 .

If d is greater than this value, so the highest point is lower, then the speed of the ball is greater as it
reaches that point and the ball passes the point. If d is less, the ball cannot go around. Thus the value
we found for d is a lower limit.

30. The connection between angle θ (measured from vertical – see Fig. 8-29) and height h (measured from the
lowest point, which is our choice of reference position in computing the gravitational potential energy)
is given by h = L(1− cos θ) where L is the length of the pendulum.

(a) We use energy conservation in the form of Eq. 8-17.

K1 + U1 = K2 + U2

0 +mgL (1− cos θ1) =
1

2
mv2

2 +mgL (1− cos θ2)

This leads to

v2 =
√

2gL (cos θ2 − cos θ1) = 1.4 m/s

since L = 1.4 m, θ1 = 30◦, and θ2 = 20◦.

(b) The maximum speed v3 is at the lowest point. Our formula for h gives h3 = 0 when θ3 = 0◦, as
expected.

K1 + U1 = K3 + U3

0 +mgL (1− cos θ1) =
1

2
mv2

3 + 0

This yields v3 = 1.9 m/s.

(c) We look for an angle θ4 such that the speed there is v4 = v3/3. To be as accurate as possible,
we proceed algebraically (substituting v2

3 = 2gL (1− cos θ1) at the appropriate place) and plug
numbers in at the end. Energy conservation leads to

K1 + U1 = K4 + U4

0 +mgL (1− cos θ1) =
1

2
mv2

4 +mgL (1− cos θ4)

mgL (1− cos θ1) =
1

2
m
v2
3

9
+mgL (1− cos θ4)

−gL cosθ1 =
1

2

2gL (1− cos θ1)

9
− gL cos θ4

where in the last step we have subtracted out mgL and then divided by m. Thus, we obtain

θ4 = cos−1

(

1

9
+

8

9
cos θ1

)

= 28.2◦

where we have quoted the answer to three significant figures since the problem gives θ1 to three
figures.

31. The connection between angle θ (measured from vertical – see Fig. 8-29) and height h (measured from
the lowest point, which is our choice of reference position in computing the gravitational potential energy
mgh) is given by h = L(1− cos θ) where L is the length of the pendulum.
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(a) Using this formula (or simply using intuition) we see the initial height is h1 = 2L, and of course
h2 = 0. We use energy conservation in the form of Eq. 8-17.

K1 + U1 = K2 + U2

0 +mg (2L) =
1

2
mv2 + 0

This leads to v = 2
√
gL.

(b) The ball is in circular motion with the center of the circle above it, so ~a = v2/r upward, where
r = L. Newton’s second law leads to

T −mg = m
v2

r
=⇒ T = m

(

g +
4gL

L

)

= 5mg .

(c) The pendulum is now started (with zero speed) at θi = 90◦ (that is, hi = L), and we look for an
angle θ such that T = mg. When the ball is moving through a point at angle θ, then Newton’s
second law applied to the axis along the rod yields

T −mg cos θ = m
v2

r

which (since r = L) implies v2 = gL(1 − cos θ) at the position we are looking for. Energy conser-
vation leads to

Ki + Ui = K + U

0 +mgL =
1

2
mv2 +mgL (1− cos θ)

gL =
1

2
(gL(1− cos θ)) + gL (1− cos θ)

where we have divided by mass in the last step. Simplifying, we obtain

θ = cos−1

(

1

3

)

= 70.5◦ .

32. All heights h are measured from the lower end of the incline (which is our reference position for computing
gravitational potential energy mgh). Our x axis is along the incline, with +x being uphill (so spring
compression corresponds to x > 0) and its origin being at the relaxed end of the spring. The 1.00 m
distance indicated in Fig. 8-40 will be referred to as ℓ, and the 37.0◦ angle will be referred to as θ.
Thus, the height that corresponds to the canister’s initial position (with spring compressed amount
x = 0.200 m) is given by h1 = (ℓ+ x) sin θ.

(a) Energy conservation leads to

K1 + U1 = K2 + U2

0 +mg(ℓ+ x) sin θ +
1

2
kx2 =

1

2
mv2

2 +mgℓ sin θ

which yields v2 =
√

2gx sin θ + kx2/m = 2.40 m/s using the data m = 2.00 kg and k = 170 N/m.

(b) In this case, energy conservation leads to

K1 + U1 = K3 + U3

0 +mg(ℓ+ x) sin θ +
1

2
kx2 =

1

2
mv2

3 + 0

which yields v3 =
√

2g(ℓ+ x) sin θ + kx2/m = 4.19 m/s.
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33. The work required is the change in the gravitational potential energy as a result of the chain being pulled
onto the table. Dividing the hanging chain into a large number of infinitesimal segments, each of length
dy, we note that the mass of a segment is (m/L) dy and the change in potential energy of a segment when
it is a distance |y| below the table top is dU = (m/L)g|y| dy = −(m/L)gy dy since y is negative-valued
(we have +y upward and the origin is at the tabletop). The total potential energy change is

∆U = −mg
L

∫ 0

−L/4

y dy =
1

2

mg

L
(L/4)2 = mgL/32 .

The work required to pull the chain onto the table is therefore W = ∆U = mgL/32.

34. If the description of the scenario seems confusing, reference to Figure 8-31 in the textbook is helpful. We
note that the block being unattached means that for y > 0.25 m, the elastic potential energy vanishes.
With k = 400 N/m, m = 40.0/9.8 = 4.08 kg and length in meters, the energy equation is

E =











1
2k
(

1
4

)2
y = 0

K +mgy + 1
2k
(

1
4 − y

)2
0 ≤ y ≤ 1

4
K +mgy 1

4 ≤ y

In this way, the kinetic energy K for each region is related to E – which by conservation of energy is
always equal to the value 12.5 J that it had at y = 0. We arrange our results in a table (with energies
in Joules) where it is clear that the sum of each column (of energies) is 12.5 J:

part (a) (b) (c) (d) (e) (f) (g)
position y 0 0.05 0.10 0.15 0.20 0.25 0.30

Ug 0 2.0 4.0 6.0 8.0 10.0 12.0
Ue 12.5 8.0 4.5 2.0 0.5 0 0
K 0 2.5 4.0 4.5 4.0 2.5 0.5

Finally (for part (h)), where y ≥ 0.25 m, we have K = E − mgy, so that K = 0 occurs when y =
(12.5 J)/(40 N) = 0.313 m.

35. The free-body diagram for the boy is shown below. ~N is the normal force of the ice on him and m is
his mass. The net inward force is mg cos θ − N and, according to Newton’s second law, this must be
equal to mv2/R, where v is the speed of the boy. At the point where the boy leaves the ice N = 0, so
g cos θ = v2/R. We wish to find his speed. If the gravitational potential energy is taken to be zero when
he is at the top of the ice mound, then his potential energy at the time shown is U = −mgR(1− cos θ).

He starts from rest and his kinetic energy at
the time shown is 1

2mv
2. Thus conservation

of energy gives 0 = 1
2mv

2−mgR(1− cos θ), or
v2 = 2gR(1−cosθ). We substitute this expres-
sion into the equation developed from the sec-
ond law to obtain g cos θ = 2g(1− cos θ). This
gives cos θ = 2/3. The height of the boy above
the bottom of the mound is R cos θ = 2R/3.
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36. We use Eq. 8-20 and various observations made in §8-5.

(a) The force at x = 2.0 m is

F = −dU
dx
≈ − (−17.5)− (−2.8)

4.0− 1.0
= 4.9 N

in the +x direction (but there is some uncertainty in reading the graph which makes the last digit
not very significant).
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(b) The total mechanical energy at x = 2.0 m is

E =
1

2
mv2 + U ≈ 1

2
(2.0)(−1.5)2 − 7.7 = −5.5

in SI units (Joules). Again, there is some uncertainty in reading the graph which makes the last
digit not very significant. At that level (−5.5 J) on the graph, we find two points where the potential
energy curve has that value – at x ≈ 1.5 m and x ≈ 13.5 m. Therefore, the particle remains in the
region 1.5 < x < 13.5 m.

(c) At x = 7.0 m, we read U ≈ −17.5 J. Thus, if its total energy (calculated in the previous part) is
E ≈ −5.5 J, then we find

1

2
mv2 = E − U ≈ 12 J =⇒ v =

√

2

m
(E − U) ≈ 3.5 m/s

where there is certainly room for disagreement on that last digit for the reasons cited above.

37. We use Eq. 8-20 and various observations made in §8-5.

(a) The force at the equilibrium position r = req is

F = −dU
dr

∣

∣

∣

∣

∣

r=req

= 0

−12A

r13eq

+
6B

r7eq
= 0

which leads to the result

req =

(

2A

B

)
1
6

= 1.12

(

A

B

)
1
6

.

(b) This defines a minimum in the potential energy curve (as can be verified either by a graph or by
taking another derivative and verifying that it is concave upward at this point), which means that
for values of r slightly smaller than req the slope of the curve is negative (so the force is positive,
repulsive).

(c) And for values of r slightly larger than req the slope of the curve must be positive (so the force is
negative, attractive).

38. (a) The energy at x = 5.0 m is E = K + U = 2.0− 5.7 = −3.7 J.

(b) A plot of the potential energy curve (SI units understood) and the energy E (the horizontal line)
is shown for 0 ≤ x ≤ 10 m.

–6

–5

–4

–3

–2

–1

0

0 2 4 6 8 10x
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(c) The problem asks for a graphical determination of the turning points, which are the points on the
curve corresponding to the total energy computed in part (a). The result for the smallest turning
point (determined, to be honest, by more careful means) is x = 1.29 m

(d) And the result for the largest turning point is x = 9.12 m.

(e) SinceK = E−U , then maximizingK involves finding the minimum of U . A graphical determination
suggests that this occurs at x = 4.0 m, which plugs into the expression E−U = −3.7−

(

−4xe−x/4
)

to give K = 2.16 J. Alternatively, one can measure from the graph from the minimum of the U
curve up to the level representing the total energy E and thereby obtain an estimate of K at that
point.

(f) As mentioned in the previous part, the minimum of the U curve occurs at x = 4.0 m.

(g) The force (understood to be in Newtons) follows from the potential energy, using Eq. 8-20 (and
Appendix E if students are unfamiliar with such derivatives).

F =
dU

dx
= (4− x) e−x/4

(h) This revisits the considerations of parts (d) and (e) (since we are returning to the minimum of
U(x)) – but now with the advantage of having the analytic result of part (g). We see that the
location which produces F = 0 is exactly x = 4 m.

39. (a) Using Eq. 7-8, we have

Wapplied = (8.0 N)(0.70 m) = 5.6 J .

(b) Using Eq. 8-29, the thermal energy generated is

∆Eth = fkd = (5.0 N)(0.70 m) = 3.5 J .

40. Since the speed is constant ∆K = 0 and Eq. 8-31 (an application of the energy conservation concept)
implies

Wapplied = ∆Eth = ∆Eth (cube) + ∆Eth (floor) .

Thus, if Wapplied = (15)(3.0) = 45 J, and we are told that ∆Eth (cube) = 20 J, then we conclude that
∆Eth (floor) = 25 J.

41. (a) The work done on the block by the force in the rope is, using Eq. 7-7,

W = Fd cos θ = (7.68 N)(4.06 m) cos15.0◦ = 30.1 J .

(b) Using f for the magnitude of the kinetic friction force, Eq. 8-29 reveals that the increase in thermal
energy is

∆Eth = fd = (7.42 N)(4.06 m) = 30.1 J .

(c) We can use Newton’s second law of motion to obtain the frictional and normal forces, then use
µk = f/N to obtain the coefficient of friction. Place the x axis along the path of the block and
the y axis normal to the floor. The x component of Newton’s second law is F cos θ − f = 0
and the y component is N + F sin θ − mg = 0, where m is the mass of the block, F is the
force exerted by the rope, and θ is the angle between that force and the horizontal. The first
equation gives f = F cos θ = (7.68) cos 15.0◦ = 7.42 N and the second gives N = mg − F sin θ =
(3.57)(9.8)− (7.68) sin 15.0◦ = 33.0 N. Thus

µk =
f

N
=

7.42 N

33.0 N
= 0.22 .
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42. Since the velocity is constant, ~a = 0 and the horizontal component of the worker’s push F cos θ (where
θ = 32◦) must equal the friction force magnitude fk = µkN . Also, the vertical forces must cancel,
implying

N = mg + F sin θ =⇒ F cos θ = µk (mg + F sin θ)

which is solved to find F = 71 N.

(a) The work done on the block by the worker is, using Eq. 7-7,

W = Fd cos θ = (71 N)(9.2 m) cos 32◦ = 5.6× 102 J .

(b) Since fk = µk (mg + F sin θ), we find

∆Eth = fkd = (60 N)(9.2 m) = 5.6× 102 J .

43. (a) We take the initial gravitational potential energy to be Ui = 0. Then the final gravitational potential
energy is Uf = −mgL, where L is the length of the tree. The change is

Uf − Ui = −mgL = −(25 kg)
(

9.8 m/s
2
)

(12 m) = −2.9× 103 J .

(b) The kinetic energy is

K =
1

2
mv2 =

1

2
(25 kg)(5.6 m/s)2 = 3.9× 102 J .

(c) The changes in the mechanical and thermal energies must sum to zero. The change in thermal
energy is ∆Eth = fL, where f is the magnitude of the average frictional force; therefore,

f = −∆K + ∆U

L
= −3.92× 102 J− 2.94× 103 J

12 m
= 210 N .

44. We use SI units so m = 0.030 kg and d = 0.12 m.

(a) Since there is no change in height (and we assume no changes in elastic potential energy), then
∆U = 0 and we have

∆Emech = ∆K = −1

2
mv2

0 = −3.8× 103 J

where v0 = 500 m/s and the final speed is zero.

(b) By Eq. 8-31 (with W = 0) we have ∆Eth = 3.8× 103 J, which implies

f =
∆Eth

d
= 3.1× 104 N

using Eq. 8-29 with fk replaced by f (effectively generalizing that equation to include a greater
variety of dissipative forces than just those obeying Eq. 6-2).

45. Equation 8-31 provides ∆Eth = −∆Emec for the energy “lost” in the sense of this problem. Thus,

∆Eth =
1

2
m
(

v2
i − v2

f

)

+mg (yi − yf)

=
1

2
(60)(242 − 222) + (60)(9.8)(14)

= 1.1× 104 J .

That the angle of 25◦ is nowhere used in this calculation is indicative of the fact that energy is a scalar
quantity.
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46. We use SI units so m = 0.075 kg. Equation 8-30 provides ∆Eth = −∆Emec for the energy “lost” in the
sense of this problem. Thus,

∆Eth =
1

2
m
(

v2
i − v2

f

)

+mg (yi − yf )

=
1

2
(0.075)(122 − 10.52) + (0.075)(9.8)(1.1− 2.1)

= 0.53 J .

47. We work this using the English units (with g = 32 ft/s), but for consistency we convert the weight to
pounds

mg = (9.0 oz)

(

1 lb

16 oz

)

= 0.56 lb

which implies m = 0.018 lb·s2/ft (which can be phrased as 0.018 slug as explained in Appendix D). And
we convert the initial speed to feet-per-second

vi = (81.8 mi/h)

(

5280 ft/mi

3600 s/h

)

= 120 ft/s

or a more “direct” conversion from Appendix D can be used. Equation 8-30 provides ∆Eth = −∆Emec

for the energy “lost” in the sense of this problem. Thus,

∆Eth =
1

2
m
(

v2
i − v2

f

)

+mg (yi − yf )

=
1

2
(0.018)(1202 − 1102) + 0

= 20 ft · lb .

48. (a) During one second, the decrease is potential energy is

−∆U = mg(−∆y) =
(

5.5× 106 kg
)

(

9.8 m/s
2
)

(50 m) = 2.7× 109 J

where +y is upward and ∆y = yf − yi .

(b) The information relating mass to volume is not needed in the computation. By Eq. 8-36 (and the
SI relation W = J/s), the result follows: (2.7× 109 J)/(1 s) = 2.7× 109 W.

(c) One year is equivalent to 24× 365.25 = 8766 h which we write as 8.77 kh. Thus, the energy supply
rate multiplied by the cost and by the time is

(

2.7× 109 W
)

(8.77 kh)

(

1 cent

1 kWh

)

= 2.4× 1010 cents

which equals $2.4× 108.

49. (a) The initial potential energy is

Ui = mgyi = (520 kg)
(

9.8 m/s
2
)

(300 m) = 1.53× 106 J

where +y is upward and y = 0 at the bottom (so that Uf = 0).

(b) Since fk = µkN = µkmg cos θ we have

∆Eth = fkd = µkmgd cos θ

from Eq. 8-29. Now, the hillside surface (of length d = 500 m) is treated as an hypotenuse of a
3-4-5 triangle, so cos θ = x/d where x = 400 m. Therefore,

∆Eth = µkmgd
x

d
= µkmgx = (0.25)(520)(9.8)(400) = 5.1× 105 J .
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(c) Using Eq. 8-31 (with W = 0) we find

Kf = Ki + Ui − Uf −∆Eth

= 0 + 1.53× 106 − 0− 5.1× 105

= 0 + 1.02× 106 J .

(d) From Kf = 1
2mv

2 we obtain v = 62.6 m/s.

50. Energy conservation, as expressed by Eq. 8-31 (with W = 0) leads to

∆Eth = Ki −Kf + Ui − Uf

fkd = 0− 0 +
1

2
kx2 − 0

µkmgd =
1

2
(200 N/m)(0.15 m)2

µk(2.0 kg)
(

9.8 m/s
2
)

(0.75 m) = 2.25 J

which yields µk = 0.15 as the coefficient of kinetic friction.

51. (a) The vertical forces acting on the block are the normal force, upward, and the force of gravity,
downward. Since the vertical component of the block’s acceleration is zero, Newton’s second law
requires N = mg, where m is the mass of the block. Thus f = µkN = µkmg. The increase in
thermal energy is given by ∆Eth = fd = µkmgd, where d is the distance the block moves before
coming to rest. Using Eq. 8-29, we have

∆Eth = (0.25)(3.5 kg)
(

9.8 m/s
2
)

(7.8 m) = 67 J .

(b) The block has its maximum kinetic energy Kmax just as it leaves the spring and enters the region
where friction acts. Therefore, the maximum kinetic energy equals the thermal energy generated
in bringing the block back to rest, 67 J.

(c) The energy that appears as kinetic energy is originally in the form of potential energy in the com-
pressed spring. Thus Kmax = Ui = 1

2kx
2, where k is the spring constant and x is the compression.

Thus,

x =

√

2Kmax

k
=

√

2(67 J)

640 N/m
= 0.46 m .

52. We use Eq. 8-29
∆Eth = fkd = (10 N)(5.0 m) = 50 J

and Eq. 7-8
W = Fd = (2.0 N)(5.0 m) = 10 J

and Eq. 8-31

W = ∆K + ∆U + ∆Eth

10 = 35 + ∆U + 50

which yields ∆U = −75 J. By Eq. 8-1, then, the work done by gravity is W = −∆U = 75 J.

53. (a) To stretch the spring an external force, equal in magnitude to the force of the spring but opposite
to its direction, is applied. Since a spring stretched in the positive x direction exerts a force in the
negative x direction, the applied force must be F = 52.8x+ 38.4x2, in the +x direction. The work
it does is

W =

∫ 1.00

0.50

(52.8x+ 38.4x2) dx =

[

52.8

2
x2 +

38.4

3
x3

]1.00

0.50

= 31.0 J .
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(b) The spring does 31.0 J of work and this must be the increase in the kinetic energy of the particle.
Its speed is then

v =

√

2K

m
=

√

2(31.0 J)

2.17 kg
= 5.35 m/s .

(c) The force is conservative since the work it does as the particle goes from any point x1 to any other
point x2 depends only on x1 and x2, not on details of the motion between x1 and x2.

54. We look for the distance along the incline d which is related to the height ascended by ∆h = d sin θ. By
a force analysis of the style done in Ch. 6, we find the normal force has magnitude N = mg cos θ which
means fk = µkmg cos θ. Thus, Eq. 8-31 (with W = 0) leads to

0 = Kf −Ki + ∆U + ∆Eth

= 0−Ki +mgd sin θ + µkmgd cos θ

which leads to

d =
Ki

mg(sin θ + µk cos θ)
=

128

(4.0)(9.8)(sin 30◦ + 0.30 cos30◦)
= 4.3 m .

55. (a) We take the gravitational potential energy of the skier-Earth system to be zero when the skier is
at the bottom of the peaks. The initial potential energy is Ui = mghi, where m is the mass of the
skier, and hi is the height of the higher peak. The final potential energy is Uf = mghf , where hf

is the height of the lower peak. The skier initially has a kinetic energy of Ki = 0, and the final
kinetic energy is Kf = 1

2mv
2, where v is the speed of the skier at the top of the lower peak. The

normal force of the slope on the skier does no work and friction is negligible, so mechanical energy
is conserved.

Ui +Ki = Uf +Kf

mghi = mghf +
1

2
mv2

Thus,

v =
√

2g (hi − hf ) =
√

2(9.8)(850− 750) = 44 m/s .

(b) We recall from analyzing objects sliding down inclined planes that the normal force of the slope on
the skier is given by N = mg cos θ, where θ is the angle of the slope from the horizontal, 30◦ for each
of the slopes shown. The magnitude of the force of friction is given by f = µkN = µkmg cos θ. The
thermal energy generated by the force of friction is fd = µkmgd cos θ, where d is the total distance
along the path. Since the skier gets to the top of the lower peak with no kinetic energy, the increase
in thermal energy is equal to the decrease in potential energy. That is, µkmgd cos θ = mg(hi−hf ).
Consequently,

µk =
(hi − hf )

d cos θ
=

(850− 750)

(3.2× 103) cos 30◦
= 0.036 .

56. (a) By a force analysis in the style of Chapter 6, we find the normal force N = mg cos θ (where
mg = 267 N) which means fk = µkmg cos θ. Thus, Eq. 8-29 yields

∆Eth = fkd = µkmgd cos θ = (0.10)(267)(6.1) cos20◦ = 1.5× 102 J .

(b) The potential energy change is ∆U = mg(−d sin θ) = (267)(−6.1 sin20◦) = −5.6×102 J. The initial
kinetic energy is

Ki =
1

2
mv2

i =
1

2

(

267 N

9.8 m/s
2

)

(0.457 m/s)2 = 2.8 J .
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Therefore, using Eq. 8-31 (with W = 0), the final kinetic energy is

Kf = Ki −∆U −∆Eth = 2.8−
(

−5.6× 102
)

− 1.5× 102 = 4.1× 102 J .

Consequently, the final speed is vf =
√

2Kf/m = 5.5 m/s

57. (a) With x = 0.075 m and k = 320 N/m, Eq. 7-26 yields Ws = − 1
2kx

2 = −0.90 J. For later reference,
this is equal to the negative of ∆U .

(b) Analyzing forces, we find N = mg which means fk = µkmg. With d = x, Eq. 8-29 yields

∆Eth = fkd = µkmgx = (0.25)(2.5)(9.8)(0.075) = 0.46 J .

(c) Eq. 8-31 (with W = 0) indicates that the initial kinetic energy is

Ki = ∆U + ∆Eth = 0.90 + 0.46 = 1.36 J

which leads to vi =
√

2Ki/m = 1.0 m/s.

58. This can be worked entirely by the methods of Chapters 2-6, but we will use energy methods in as many
steps as possible.

(a) By a force analysis in the style of Chapter 6, we find the normal force has magnitude N = mg cos θ
(where θ = 39◦) which means fk = µkmg cos θ where µk = 0.28. Thus, Eq. 8-29 yields ∆Eth =
fkd = µkmgd cos θ. Also, elementary trigonometry leads us to conclude that ∆U = −mgd sin θ
where d = 3.7 m. Since Ki = 0, Eq. 8-31 (with W = 0) indicates that the final kinetic energy is

Kf = −∆U −∆Eth = mgd (sin θ − µk cos θ)

which leads to the speed at the bottom of the ramp

v =

√

2Kf

m
=
√

2gd (sin θ − µk cos θ) = 5.5 m/s .

(b) This speed begins its horizontal motion, where fk = µkmg and ∆U = 0. It slides a distance d′

before it stops. According to Eq. 8-31 (with W = 0),

0 = ∆K + ∆U + ∆Eth

= 0− 1

2
mv2 + 0 + µkmgd

′

= −1

2
(2gd (sin θ − µk cos θ)) + µkgd

′

where we have divided by mass and substituted from part (a) in the last step. Therefore,

d′ =
d (sin θ − µk cos θ)

µk
= 5.4 m .

(c) We see from the algebraic form of the results, above, that the answers do not depend on mass. A
90 kg crate should have the same speed at the bottom and sliding distance across the floor, to the
extent that the friction relations in Ch. 6 are accurate. Interestingly, since g does not appear in the
relation for d′, the sliding distance would seem to be the same if the experiment were performed on
Mars!

59. Since the valley is frictionless, the only reason for the speed being less when it reaches the higher level is
the gain in potential energy ∆U = mgh where h = 1.1 m. Sliding along the rough surface of the higher
level, the block finally stops since its remaining kinetic energy has turned to thermal energy

∆Eth = fkd = µmgd
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where µ = 0.60. Thus, Eq. 8-31 (with W = 0) provides us with an equation to solve for the distance d:

Ki = ∆U + ∆Eth = mg (h+ µd)

where Ki = 1
2mv

2
i and vi = 6.0 m/s. Dividing by mass and rearranging, we obtain

d =
v2

i

2µg
− h

µ
= 1.2 m .

60. This can be worked entirely by the methods of Chapters 2-6, but we will use energy methods in as many
steps as possible.

(a) By a force analysis of the style done in Ch. 6, we find the normal force has magnitude N = mg cos θ
(where θ = 40◦) which means fk = µkmg cos θ where µk = 0.15. Thus, Eq. 8-29 yields ∆Eth =
fkd = µkmgd cos θ. Also, elementary trigonometry leads us to conclude that ∆U = mgd sin θ.
Eq. 8-31 (with W = 0 and Kf = 0) provides an equation for determining d:

Ki = ∆U + ∆Eth

1

2
mv2

i = mgd (sin θ + µk cos θ)

where vi = 1.4 m/s. Dividing by mass and rearranging, we obtain

d =
v2

i

2g (sin θ + µk cos θ)
= 0.13 m .

(b) Now that we know where on the incline it stops (d′ = 0.13 + 0.55 = 0.68 m from the bottom), we
can use Eq. 8-31 again (with W = 0 and now with Ki = 0,) to describe the final kinetic energy (at
the bottom):

Kf = −∆U −∆Eth

1

2
mv2 = mgd′ (sin θ − µk cos θ)

which – after dividing by the mass and rearranging – yields

v =
√

2gd′ (sin θ − µk cos θ) = 2.7 m/s .

(c) In part (a) it is clear that d increases if µk decreases – both mathematically (since it is a positive
term in the denominator) and intuitively (less friction – less energy “lost”). In part (b), there
are two terms in the expression for v which imply that it should increase if µk were smaller: the
increased value of d′ = d0 + d and that last factor sin θ− µk cos θ which indicates that less is being
subtracted from sin θ when µk is less (so the factor itself increases in value).

61. (a) The maximum height reached is h. The thermal energy generated by air resistance as the stone
rises to this height is ∆Eth = fh by Eq. 8-29. We use energy conservation in the form of Eq. 8-31
(with W = 0):

Kf + Uf + ∆Eth = Ki + Ui

and we take the potential energy to be zero at the throwing point (ground level). The initial kinetic
energy is Ki = 1

2mv
2
0 , the initial potential energy is Ui = 0, the final kinetic energy is Kf = 0, and

the final potential energy is Uf = wh. Thus wh+ fh = 1
2mv

2
0 , and we solve for the height:

h =
mv2

0

2(w + f)
=

wv2
0

2g(w + f)
=

v2
0

2g(1 + f/w)
.
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(b) We notice that the force of the air is downward on the trip up and upward on the trip down, since
it is opposite to the direction of motion. Over the entire trip the increase in thermal energy is
∆Eth = 2fh. The final kinetic energy is Kf = 1

2mv
2, where v is the speed of the stone just before

it hits the ground. The final potential energy is Uf = 0. Thus, using Eq. 8-31 (with W = 0), we
find

1

2
mv2 + 2fh =

1

2
mv2

0 .

We substitute the expression found for h to obtain

− 2fv2
0

2g(1 + f/w)
=

1

2
mv2 − 1

2
mv2

0

which leads to

v2 = v2
0 −

2fv2
0

mg(1 + f/w)
= v2

0 −
2fv2

0

w(1 + f/w)
= v2

0

(

1− 2f

w + f

)

= v2
0

w − f
w + f

where w was substituted for mg and some algebraic manipulations were carried out. Therefore,

v = v0

√

w − f
w + f

.

62. (a) The assumption is that the slope of the bottom of the slide is horizontal, like the ground. A
useful analogy is that of the pendulum of length R = 12 m that is pulled leftward to an angle
θ (corresponding to being at the top of the slide at height h = 4.0 m) and released so that the
pendulum swings to the lowest point (zero height) gaining speed v = 6.2 m/s. Exactly as we would
analyze the trigonometric relations in the pendulum problem, we find

h = R (1− cos θ) =⇒ θ = cos−1

(

1− h

R

)

= 48◦

or 0.84 radians. The slide, representing a circular arc of length s = Rθ, is therefore (12)(0.84) = 10 m
long.

(b) To find the magnitude f of the frictional force, we use Eq. 8-31 (with W = 0):

0 = ∆K + ∆U + ∆Eth

=
1

2
mv2 −mgh+ fs

so that (with m = 25 kg) we obtain f = 49 N.

(c) The assumption is no longer that the slope of the bottom of the slide is horizontal, but rather
that the slope of the top of the slide is vertical (and 12 m to the left of the center of curvature).
Returning to the pendulum analogy, this corresponds to releasing the pendulum from horizontal
(at θ1 = 90◦ measured from vertical) and taking a snapshot of its motion a few moments later when
it is at angle θ2 with speed v = 6.2 m/s. The difference in height between these two positions is
(just as we would figure for the pendulum of length R)

∆h = R (1− cos θ2)−R (1− cos θ1) = −R cos θ2

where we have used the fact that cos θ1 = 0. Thus, with ∆h = −4.0 m, we obtain θ2 = 70.5◦ which
means the arc subtends an angle of |∆θ| = 19.5◦ or 0.34 radians. Multiplying this by the radius
gives a slide length of s′ = 4.1 m.

(d) We again find the magnitude f ′ of the frictional force by using Eq. 8-31 (with W = 0):

0 = ∆K + ∆U + ∆Eth

=
1

2
mv2 −mgh+ f ′s′

so that we obtain f ′ = 1.2× 102 N.
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63. The initial and final kinetic energies are zero, and we set up energy conservation in the form of Eq. 8-
31 (with W = 0) according to our assumptions. Certainly, it can only come to a permanent stop
somewhere in the flat part, but the question is whether this occurs during its first pass through (going
rightward) or its second pass through (going leftward) or its third pass through (going rightward again),
and so on. If it occurs during its first pass through, then the thermal energy generated is ∆Eth = fkd
where d ≤ L and fk = µkmg. If it occurs during its second pass through, then the total thermal
energy is ∆Eth = µkmg(L + d) where we again use the symbol d for how far through the level area
it goes during that last pass (so 0 ≤ d ≤ L). Generalizing to the nth pass through, we see that
∆Eth = µkmg((n− 1)L+ d). In this way, Eq. 8-39 leads to

mgh = µkmg ((n− 1)L+ d)

which simplifies (when h = L/2 is inserted) to

d

L
= 1 +

1

2µk
− n .

The first two terms give 1 + 1/2µk = 3.5, so that the requirement 0 ≤ d/L ≤ 1 demands that n = 3. We
arrive at the conclusion that d/L = 1

2 and that this occurs on its third pass through the flat region.

64. We observe that the last line of the problem indicates that static friction is not to be considered a factor
in this problem. The friction force of magnitude f = 4400 N mentioned in the problem is kinetic friction
and (as mentioned) is constant (and directed upward), and the thermal energy change associated with it
is ∆Eth = fd (Eq. 8-29) where d = 3.7 m in part (a) (but will be replaced by x, the spring compression,
in part (b)).

(a) With W = 0 and the reference level for computing U = mgy set at the top of the (relaxed) spring,
Eq. 8-31 leads to

Ui = K + ∆Eth =⇒ v =

√

2d

(

g − f

m

)

which yields v = 7.4 m/s for m = 1800 kg.

(b) We again utilize Eq. 8-31 (with W = 0), now relating its kinetic energy at the moment it makes
contact with the spring to the system energy at the bottom-most point. Using the same reference
level for computing U = mgy as we did in part (a), we end up with gravitational potential energy
equal to mg(−x) at that bottom-most point, where the spring (with spring constant k = 1.5 ×
105 N/m) is fully compressed.

K = mg(−x) +
1

2
kx2 + fx

where K = 1
2mv

2 = 4.9 × 104 J using the speed found in part (a). Using the abbreviation
ξ = mg − f = 1.3× 104 N, the quadratic formula yields

x =
ξ ±

√

ξ2 + 2kK

k
= 0.90 m

where we have taken the positive root.

(c) We relate the energy at the bottom-most point to that of the highest point of rebound (a distance
d′ above the relaxed position of the spring). We assume d′ > x. We now use the bottom-most point
as the reference level for computing gravitational potential energy.

1

2
kx2 = mgd′ + fd′ =⇒ d′ =

kx2

2(mg + d)
= 2.8 m .
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(d) The non-conservative force (§8-1) is friction, and the energy term associated with it is the one that
keeps track of the total distance traveled (whereas the potential energy terms, coming as they do
from conservative forces, depend on positions – but not on the paths that led to them). We assume
the elevator comes to final rest at the equilibrium position of the spring, with the spring compressed
an amount deq given by

mg = kdeq =⇒ deq =
mg

k
= 0.12 m .

In this part, we use that final-rest point as the reference level for computing gravitational potential
energy, so the original U = mgy becomes mg(deq +d). In that final position, then, the gravitational
energy is zero and the spring energy is 1

2kd
2
eq . Thus, Eq. 8-31 becomes

mg (deq + d) =
1

2
kd2

eq + fdtotal

(1800)(9.8)(0.12 + 3.7) =
1

2

(

1.5× 105
)

(0.12)2 + (4400)dtotal

which yields dtotal = 15 m.

65. (a) Since the speed of the crate of mass m increases from 0 to 1.20 m/s relative to the factory ground,
the kinetic energy supplied to it is

K =
1

2
mv2 =

1

2
(300 kg)(1.20 m/s)2 = 216 J.

(b) The magnitude of the kinetic frictional force is

f = µN = µmg = (0.400)(300 kg)
(

9.8 m/s2
)

= 1.18× 103 N .

(c) and (d) The energy supplied by the motor is the work W it does on the system, and must be greater
than the kinetic energy gained by the crate computed in part (b). This is due to the fact that part
of the energy supplied by the motor is being used to compensate for the energy dissipated ∆Eth

while it was slipping. Let the distance the crate moved relative to the conveyor belt before it stops
slipping be d, then from Eq. 2-16 (v2 = 2ad = 2(f/m)d) we find

∆Eth = fd =
1

2
mv2 = K .

Thus, the total energy that must be supplied by the motor is

W = K + ∆Eth = 2K = (2)(216 J) = 432 J .

66. (a) The compression is “spring-like” so the maximum force relates to the distance x by Hooke’s law:

Fx = kx =⇒ x =
750

2.5× 105
= 0.0030 m .

(b) The work is what produces the “spring-like” potential energy associated with the compression.
Thus, using Eq. 8-11,

W =
1

2
kx2 =

1

2

(

2.5× 105
)

(0.0030)2 = 1.1 J .

(c) By Newton’s third law, the force

F exerted by the tooth is
equal and opposite to the
“spring-like” force exerted by
the licorice, so the graph of
F is a straight line of slope
k. We plot F (in Newtons)
versus x (in millimeters);
both are taken as positive.
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(d) As mentioned in part (b), the spring potential energy expression is relevant. Now, whether or not
we can ignore dissipative processes is a deeper question. In other words, it seems unlikely that – if
the tooth at any moment were to reverse its motion – that the licorice could “spring back” to its
original shape. Still, to the extent that U = 1

2kx
2 applies, the graph is a parabola (not shown here)

which has its vertex at the origin and is either concave upward or concave downward depending on
how one wishes to define the sign of F (the connection being F = −dU/dx).

(e) As a crude estimate, the area under the curve is roughly half the area of the entire plotting-area
(8000 N by 12 mm). This leads to an approximate work of 1

2 (8000)(0.012) ≈ 50 J. Estimates in the
range 40 ≤W ≤ 50 J are acceptable.

(f) Certainly dissipative effects dominate this process, and we cannot assign it a meaningful potential
energy.

67. (a) The drawings in the Figure (especially pictures (b) and (c)) show this geometric relationship very
clearly. But we can work out the details, if need be. If ℓ is the length we are to compute (that of
the still moving upper section) and ℓ′ is the length of the lower (motionless) section, then clearly
ℓ+ℓ′ = L. Also, (as is especially easy to see in picture (c)) x+ℓ must equal ℓ′. These two equations,
then, lead to the conclusion ℓ = 1

2 (L− x).
(b) The mass of the still moving upper section is

m = ρℓ =
ρ

2
(L− x) .

(c) The assumptions stated in the problem lead to

1

2
(ρL+mf ) v2

0 =
1

2

(ρ

2
(L− x) +mf

)

v2

which yields the speed of the still moving upper section:

v = v0

√

ρL+mf

ρ(L − x)/2 +mf
.

(d) As x approaches L, we obtain

vf = v0

√

ρL+mf

mf
= (6.0)

√

(1.3)(20) + 0.8

0.8

which yields vf = 35 m/s.

68. (a) The effect of a (sliding) friction is described in terms of energy dissipated as shown in Eq. 8-29. We
have

∆E = K +
1

2
k(0.08)2 − 1

2
k(0.10)2 = −fk(0.02)

where distances are in meters and energies are in Joules. With k = 4000 N/m and fk = 80 N, we
obtain K = 5.6 J.

(b) In this case, we have d = 0.10 m. Thus,

∆E = K + 0− 1

2
k(0.10)2 = −fk(0.10)

which leads to K = 12 J.

(c) We can approach this two ways. One way is to examine the dependence of energy on the variable
d:

∆E = K +
1

2
k (d0 − d)2 −

1

2
kd2

0 = −fkd
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where d0 = 0.10 m, and solving for K as a function of d:

K = −1

2
kd2 + (kd0) d− fkd .

In this first approach, we could work through the dK
dd = 0 condition (or with the special capabilities

of a graphing calculator) to obtain the answer Kmax = 1
2k (kd0 − fk)2. In the second (and perhaps

easier) approach, we note that K is maximum where v is maximum – which is where a = 0 =⇒
equilibrium of forces. Thus, the second approach simply solves for the equilibrium position

|Fspring| = fk =⇒ kx = 80 .

Thus, with k = 4000 N/m we obtain x = 0.02 m. But x = d0−d so this corresponds to d = 0.08 m.
Then the methods of part (a) lead to the answer Kmax = 12.8 ≈ 13 J.

69. Let the amount of stretch of the spring be x. For the object to be in equilibrium

kx−mg = 0 =⇒ x = mg/k .

Thus the gain in elastic potential energy for the spring is

∆Ue =
1

2
kx2 =

1

2
k
(mg

k

)2

=
m2g2

2k

while the loss in the gravitational potential energy of the system is

−∆Ug = mgx = mg
(mg

k

)

=
m2g2

k

which we see (by comparing with the previous expression) is equal to 2∆Ue . The reason why |∆Ug| 6= ∆Ue

is that, since the object is slowly lowered, an upward external force (e.g., due to the hand) must have
been exerted on the object during the lowering process, preventing it from accelerating downward. This
force does negative work on the object, reducing the total mechanical energy of the system.

70. (a) The rate of change of the gravitational potential energy is

dU

dt
= mg

dy

dt
= −mg|v| = −(68)(9.8)(59) = −3.9× 104 J/s .

Thus, the gravitational energy is being reduced at the rate of 3.9× 104 W.

(b) Since the velocity is constant, the rate of change of the kinetic energy is zero. Thus the rate at
which the mechanical energy is being dissipated is the same as that of the gravitational potential
energy (3.9× 104 W).

71. The power generation (assumed constant, so average power is the same as instantaneous power) is

P =
mgh

t
=

(3/4)
(

1200 m3
)

(

103 kg/m3
)

(

9.8 m/s2
)

(100 m)

1.0 s

which yields P = 8.8× 108 W.

72. The free-body diagram for the trunk is shown.

The x and y applications of
Newton’s second law provide
two equations:

F1 cos θ − fk −mg sin θ = ma

N − F1 sin θ −mg cos θ = 0 .
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(a) The trunk is moving up the incline at constant velocity, so a = 0. Using fk = µkN , we solve for
the push-force F1 and obtain

F1 =
mg(sin θ + µk cos θ)

cos θ − µk sin θ
.

The work done by the push-force ~F1 as the trunk is pushed through a distance ℓ up the inclined
plane is therefore

W1 = F1ℓ cos θ =
(mgℓ cos θ)(sin θ + µk cos θ)

cos θ − µk sin θ

=
(50 kg)(9.8 m/s2)(6.0 m)(cos 30◦) (sin 30◦ + (0.20) cos 30◦)

cos 30◦ − (0.20) sin 30◦

= 2.2× 103 J .

(b) The increase in the gravitational potential energy of the trunk is

∆U = mgℓ sin θ = (50 kg)
(

9.8 m/s2
)

(6.0 m) sin 30◦ = 1.5× 103 J .

Since the speed (and, therefore, the kinetic energy) of the trunk is unchanged, Eq. 8-31 leads to

W1 = ∆U + ∆Eth .

Thus, using more precise numbers than are shown above, the increase in thermal energy (generated
by the kinetic friction) is 2.24× 103 − 1.47× 103 = 7.7× 102 J. An alternate way to this result is
to use ∆Eth = fkℓ (Eq. 8-29).

73. The style of reasoning used here is presented in §8-5.

(a) The horizontal line representing E1 intersects the potential energy curve at a value of r ≈ 0.07 nm
and seems not to intersect the curve at larger r (though this is somewhat unclear since U(r) is
graphed only up to r = 0.4 nm). Thus, if m were propelled towards M from large r with energy
E1 it would “turn around” at 0.07 nm and head back in the direction from which it came.

(b) The line representing E2 has two intersections points r1 ≈ 0.16 nm and r2 ≈ 0.28 nm with the
U(r) plot. Thus, if m starts in the region r1 < r < r2 with energy E2 it will bounce back and forth
between these two points, presumably forever.

(c) At r = 0.3 nm, the potential energy is roughly U = −1.1× 10−19 J.

(d) With M >> m, the kinetic energy is essentially just that of m. Since E = 1 × 10−19 J, its kinetic
energy is K = E − U ≈ 2.1× 10−19 J.

(e) Since force is related to the slope of the curve, we must (crudely) estimate |F | ≈ 1 × 10−9 N at
this point. The sign of the slope is positive, so by Eq. 8-20, the force is negative-valued. This is
interpreted to mean that the atoms are attracted to each other.

(f) Recalling our remarks in the previous part, we see that the sign of F is positive (meaning it’s
repulsive) for r < 0.2 nm.

(g) And the sign of F is negative (attractive) for r > 0.2 nm.

(h) At r = 0.2 nm, the slope (hence, F ) vanishes.

74. We take her original elevation to be the y = 0 reference level and observe that the top of the hill must
consequently have yA = R(1− cos 20◦) = 1.2 m, where R is the radius of the hill. The mass of the skier
is 600/9.8 = 61 kg.

(a) Applying energy conservation, Eq. 8-17, we have

KB + UB = KA + UA =⇒ KB + 0 = KA +m .gyA
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Using KB = 1
2 (61 kg)(8.0 m/s)2, we obtain KA = 1.2×103 J. Thus, we find the speed at the hilltop

is v =
√

2K/m = 6.4 m/s. (Note: one might wish to check that the skier stays in contact with the

hill – which is indeed the case, here. For instance, at A we find v2/r ≈ 2 m/s
2

which is considerably
less than g.)

(b) With KA = 0, we have

KB + UB = KA + UA =⇒ KB + 0 = 0 +mgyA

which yields KB = 724 J, and the corresponding speed is v =
√

2K/m = 4.9 m/s.

(c) Expressed in terms of mass, we have

KB + UB = KA + UA =⇒
1

2
mv2

B +mgyB =
1

2
mv2

A +mgyA .

Thus, the mass m cancels, and we observe that solving for speed does not depend on the value of
mass (or weight).

75. The spring is relaxed at y = 0, so the elastic potential energy (Eq. 8-11) is Uel = 1
2ky

2. The total energy
is conserved, and is zero (determined by evaluating it at its initial position). We note that U is the same
as ∆U in these manipulations. Thus, we have

0 = K + Ug + Ue =⇒ K = −Ug − Ue

where Ug = mgy = (20 N)y with y in meters (so that the energies are in Joules). We arrange the results

in a table:

position y -0.05 -0.10 -0.15 -0.20
Ug -1.0 -2.0 -3.0 -4.0
Ue 0.25 1.0 2.25 4.0
K 0.75 1.0 0.75 0

76. From Eq. 8-6, we find (with SI units understood)

U(ξ) = −
∫ ξ

0

(

−3x− 5x2
)

dx =
3

2
ξ2 +

5

3
ξ3 .

(a) Using the above formula, we obtain U(2) ≈ 19 J.

(b) When its speed is v = 4 m/s, its mechanical energy is 1
2mv

2 + U(5). This must equal the energy
at the origin:

1

2
mv2 + U(5) =

1

2
mv2

o + U(0)

so that the speed at the origin is

vo =

√

v2 +
2

m
(U(5)− U(0)) .

Thus, with U(5) = 246 J, U(0) = 0 and m = 20 kg, we obtain vo = 6.4 m/s.

(c) Our original formula for U is changed to U(x) = −8+ 3
2x

2+ 5
3x

3 in this case. Therefore, U(2) = 11 J.
But we still have vo = 6.4 m/s since that calculation only depended on the difference of potential
energy values (specifically, U(5)− U(0)).

77. (a) At the top of its flight, the vertical component of the velocity vanishes, and the horizontal component
(neglecting air friction) is the same as it was when it was thrown. Thus,

Ktop =
1

2
mv2

x =
1

2
(0.050 kg) ((8.0 m/s) cos 30◦)2

which yields Ktop = 1.2 J.
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(b) We choose the point 3.0 m below the window as the reference level for computing the potential
energy. Thus, equating the mechanical energy when it was thrown to when it is at this reference
level, we have (with SI units understood)

mgy0 +K0 = K

m(9.8)(3.0) +
1

2
m(8.0)2 =

1

2
mv2

which yields (after canceling m and simplifying) v = 11 m/s.

(c) As mentioned, m cancels – and is therefore not relevant to that computation.

(d) The v in the kinetic energy formula is the magnitude of the velocity vector; it does not depend on
the direction.

78. From the slope of the graph, we find the spring constant

k =
∆F

∆x
= 0.10 N/cm = 10 N/m .

(a) Equating the potential energy of the compressed spring to the kinetic energy of the cork at the
moment of release, we have

1

2
kx2 =

1

2
mv2 =⇒ v = x

√

k

m

which yields v = 2.8 m/s for m = 0.0038 kg and x = 0.055 m.

(b) The new scenario involves some potential energy at the moment of release. With d = 0.015 m,
energy conservation becomes

1

2
kx2 =

1

2
mv2 +

1

2
kd2 =⇒ v =

√

k

m
(x2 − d2)

which yields v = 2.7 m/s.

79. We assume his initial kinetic energy (when he jumps) is negligible. Then, his initial gravitational potential
energy measured relative to where he momentarily stops is what becomes the elastic potential energy of
the stretched net (neglecting air friction). Thus,

Unet = Ugrav = mgh

where h = 11.0 + 1.5 = 12.5 m. Consequently, with m = 70 kg, we obtain Unet = 8.6× 103 J.

80. The work done by ~F is the negative of its potential energy change (see Eq. 8-6), so UB = UA−25 = 15 J.

81. (a) During the final d = 12 m of motion, we use

K1 + U1 = K2 + U2 + fkd =⇒ 1

2
mv2 + 0 = 0 + 0 + fkd

where v = 4.2 m/s. This gives fk = 0.31 N. Therefore, the thermal energy change is fkd = 3.7 J.

(b) Using fk = 0.31 N we obtain fkdtotal = 4.3 J for the thermal energy generated by friction; here,
dtotal = 14 m.

(c) During the initial d′ = 2 m of motion, we have

K0 + U0 +Wapp = K1 + U1 + fkd
′ =⇒ 0 + 0 +Wapp =

1

2
mv2 + 0 + fkd

′

which essentially combines Eq. 8-31 and Eq. 8-29. This leads to the result Wapp = 4.3 J, and –
reasonably enough – is the same as our answer in part (b).
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82. (a) This part is essentially a free-fall problem, which can be easily done with Chapter 2 methods.
Instead, choosing energy methods, we take y = 0 to be the ground level.

Ki + Ui = K + U =⇒ 0 +mgyi =
1

2
mv2 + 0

Therefore v =
√

2gyi = 9.2 m/s, where yi = 4.3 m.

(b) Eq. 8-29 provides ∆Eth = fkd for thermal energy generated by the kinetic friction force. We apply
Eq. 8-31:

Ki + Ui = K + U =⇒ 0 +mgyi =
1

2
mv2 + 0 + fkd

With d = yi, m = 70 kg and fk = 500 N, this yields v = 4.8 m/s.

83. We want to convert (at least in theory) the water that falls through h = 500 m into electrical energy.
The problem indicates that in one year, a volume of water equal to A∆z lands in the form of rain
on the country, where A = 8 × 1012 m2 and ∆z = 0.75 m. Multiplying this volume by the density
ρ = 1000 kg/m3 leads to

mtotal = ρA∆z = (1000)
(

8× 1012
)

(0.75) = 6× 1015 kg

for the mass of rainwater. One-third of this “falls” to the ocean, so it is m = 2×1015 kg that we want to
use in computing the gravitational potential energy mgh (which will turn into electrical energy during
the year). Since a year is equivalent to 3.2× 107 s, we obtain

Pavg =

(

2× 1015
)

(9.8)(500)

3.2× 107
= 3.1× 1011 W .

84. With the potential energy reference level set at the point of throwing, we have (with SI units understood)

∆E = mgh− 1

2
mv2

0 = m

(

(9.8)(8.1)− 1

2
(14)2

)

which yields ∆E = −12 J for m = 0.63 kg. This “loss” of mechanical energy is presumably due to air
friction.

85. We note that in one second, the block slides d = 1.34 m up the incline, which means its height increase
is h = d sin θ where

θ = tan−1

(

30

40

)

= 37◦ .

We also note that the force of kinetic friction in this inclined plane problem is fk = µkmg cos θ where
µk = 0.40 and m = 1400 kg. Thus, using Eq. 8-31 and Eq. 8-29, we find

W = mgh+ fkd = mgd (sin θ + µk cos θ)

or W = 1.69× 104 J for this one-second interval. Thus, the power associated with this is

P =
1.69× 104 J

1 s
= 1.69× 104 W .

86. We take the original height of the box to be the y = 0 reference level and observe that, in general, the
height of the box (when the box has moved a distance d downhill) is y = −d sin 40◦.

(a) Using the conservation of energy, we have

Ki + Ui = K + U =⇒ 0 + 0 =
1

2
mv2 +mgy +

1

2
kd2 .

Therefore, with d = 0.10 m, we obtain v = 0.81 m/s.
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(b) We look for a value of d 6= 0 such that K = 0.

Ki + Ui = K + U =⇒ 0 + 0 = 0 +mgy +
1

2
kd2

Thus, we obtain mgd sin 40◦ = 1
2kd

2 and find d = 0.21 m.

(c) The uphill force is caused by the spring (Hooke’s law) and has magnitude kd = 25.2 N. The
downhill force is the component of gravity mg sin 40◦ = 12.6 N. Thus, the net force on the box is
25.2− 12.6 = 12.6 N uphill, and the acceleration is uphill with magnitude 12.6/2 = 6.3 m/s

2
.

87. Equating the mechanical energy at his initial position (as he emerges from the canon, where we set the
reference level for computing potential energy) to his energy as he lands, we obtain

Ki = Kf + Uf

1

2
(60 kg)(16 m/s)2 = Kf + (60 kg)

(

9.8 m/s2
)

(3.9 m)

which leads to Kf = 5.4× 103 J.

88. (a) The initial kinetic energy is Ki = 1
2 (1.5)(20)2 = 300 J.

(b) At the point of maximum height, the vertical component of velocity vanishes but the horizontal
component remains what it was when it was “shot” (if we neglect air friction). Its kinetic energy
at that moment is

K =
1

2
(1.5) (20 cos 34◦)2 = 206 J .

Thus, ∆U = Ki −K = 300− 206 = 94 J.

(c) Since ∆U = mg∆y, we obtain

∆y =
94 J

(1.5 kg) (9.8 m/s2)
= 6.4 m .

89. We note that if the larger mass (M = 2 kg) falls d = 0.25 m, then the smaller mass (m = 1 kg) must
increase its height by h = d sin 30◦. Thus, by mechanical energy conservation, the kinetic energy of the
system is

Ktotal = Mgd−mgh = 3.7 J .

90. (a) At the point of maximum height, where y = 140 m, the vertical component of velocity vanishes but
the horizontal component remains what it was when it was launched (if we neglect air friction). Its
kinetic energy at that moment is

K =
1

2
(0.55 kg)v2

x .

Also, its potential energy (with the reference level chosen at the level of the cliff edge) at that
moment is U = mgy = 755 J. Thus, by mechanical energy conservation,

K = Ki − U = 1550− 755 =⇒ vx =

√

2(1550− 755)

0.55

which yields vx = 54 m/s.

(b) As mentioned vx = vi x so that the initial kinetic energy

Ki =
1

2
m
(

v 2
i x + v 2

i y

)

can be used to find vi y . We obtain vi y = 52 m/s.
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(c) Applying Eq. 2-16 to the vertical direction (with +y upward), we have

v2
y = v 2

i y − 2g∆y

652 = 522 − 2(9.8)∆y

which yields ∆y = −76 m. The minus sign tells us it is below its launch point.

91. (a) The initial kinetic energy is Ki = 1
2 (1.5)(3)2 = 6.75 J.

(b) The work of gravity is the negative of its change in potential energy. At the highest point, all of
Ki has converted into U (if we neglect air friction) so we conclude the work of gravity is −6.75 J.

(c) And we conclude that ∆U = 6.75 J.

(d) The potential energy there is Uf = Ui + ∆U = 6.75 J.

(e) If Uf = 0, then Ui = Uf −∆U = −6.75 J.

(f) Since mg∆y = ∆U , we obtain ∆y = 0.46 m.

92. (a) With energy in Joules and length in meters, we have

∆U = U(x)− U(0) = −
∫ x

0

(6x′ − 12) dx′ .

Therefore, with U(0) = 27 J, we obtain U(x) (written simply as U) by integrating and rearranging:

U = 27 + 12x− 3x2 .

(b) We can maximize the above function by working through the dU
dx = 0 condition, or we can treat

this as a force equilibrium situation – which is the approach we show.

F = 0 =⇒ 6xeq − 12 = 0

Thus, xeq = 2.0 m, and the above expression for the potential energy becomes U = 39 J.

(c) Using the quadratic formula or using the polynomial solver on an appropriate calculator, we
find the values of x for which U = 0 to be 5.6 m and −1.6 m.

93. Since the aim of this problem is to invite student creativity (and possibly some research), we “invent a
problem” (and give its solution) somewhat along the lines of part (b) (in fact, the student might consider
running our example “in reverse”). Consider a block of mass M that falls from rest a distance H to a
vertical spring of spring constant k. The spring compresses by xc in order to halt the block, but on the
rebound (due to the fact that the block is stuck on the end of the spring) the spring stretches (relative
to its original relaxed length) an amount xs before the block is momentarily at rest again. Take both
values of x to be positive. Find xc and xs and their difference.

Solution: The height to which the spring reaches when it is relaxed is our y = 0 reference level. We
relate the initial situation (when the block is dropped) to the situation of maximum compression using
energy conservation.

K0 + U0 = Kc + Uc =⇒ 0 +MgH = 0 +Mg(−xc) +
1

2
kx2

c

The positive root stemming from a quadratic formula solution for xc yields

xc =
Mg

k

(

1 +

√

1 +
2kH

Mg

)

.

Next, we relate the initial situation to the final situation (of maximal stretch) using energy conservation.

K0 + U0 = Ks + Us =⇒ 0 +MgH = 0 +Mgxs +
1

2
kx2

s
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The positive root stemming from a quadratic formula solution for xs yields

xs =
Mg

k

(

−1 +

√

1 +
2kH

Mg

)

.

Finally, we note that xc > xs with the difference being xc − xs = 2Mg/k.

94. (First problem in Cluster 1)
We take the bottom of the incline to be the y = 0 reference level. The incline angle is θ = 30◦. The
distance along the incline d (measured from the bottom) is related to height y by the relation y = d sin θ.

(a) Using the conservation of energy, we have

K0 + U0 = Ktop + Utop =⇒ 1

2
mv2

0 + 0 = 0 +mgy

with v0 = 5.0 m/s. This yields y = 1.3 m, from which we obtain d = 2.6 m.

(b) An analysis of forces in the manner of Chapter 6 reveals that the magnitude of the friction force is
fk = µkmg cos θ. Now, we write Eq. 8-31 as

K0 + U0 = Ktop + Utop + fkd

1

2
mv2

0 + 0 = 0 +mgy + fkd

1

2
mv2

0 = mgd sin θ + µkmgd cos θ

which – upon cancelling the mass and rearranging – provides the result for d:

d =
v2
0

2g (µk cos θ + sin θ)
= 1.5 m .

(c) The thermal energy generated by friction is fkd = µkmgd cos θ = 26 J.

(d) The slide back down, from the height y = 1.5 sin 30◦ is also described by Eq. 8-31. With ∆Eth

again equal to 26 J, we have

Ktop + Utop = Kbot + Ubot + fkd =⇒ 0 +mgy =
1

2
mv2

bot + 0 + 26

from which we find vbot = 2.1 m/s.

95. (Second problem in Cluster 1)
Converting to SI units, v0 = 8.3 m/s and v = 11.1 m/s. The incline angle is θ = 5.0◦. The height
difference between the car’s highest and lowest points is (50 m) sin θ = 4.4 m. We take the lowest point
(the car’s final reported location) to correspond to the y = 0 reference level.

(a) Using Eq. 8-31 and Eq. 8-29, we find

fkd = −∆K −∆U =⇒ fkd =
1

2
m
(

v2
0 − v2

)

+mgy0 .

Therefore, the mechanical energy reduction (due to friction) is fkd = 2.4× 104 J.

(b) With d = 50 m, we solve for fk and obtain 471 N, which can be rounded to 470 N.

96. (Third problem in Cluster 1)

(a) When there is no change in potential energy, Eq. 8-24 leads to

Wapp = ∆K =
1

2
m
(

v2 − v2
0

)

.

Therefore, ∆E = 6.0× 103 J.
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(b) From the above manipulation, we see Wapp = 6.0 × 103 J. Also, from Chapter 2, we know that
∆t = ∆v/a = 10 s. Thus, using Eq. 7-42,

Pavg =
W

∆t
=

6.0× 103

10
= 600 W .

(c) and (d) The constant applied force is ma = 30 N and clearly in the direction of motion, so Eq. 7-48
provides the results for instantaneous power

P = ~F · ~v =

{

300 W for v = 10 m/s
900 W for v = 30 m/s

We note that the average of these two values agrees with the result in part (b).

97. (Fourth problem in Cluster 1)
The distance traveled up the incline can be figured with Chapter 2 techniques: v2 = v2

0 + 2a∆x −→
∆x = 200 m. This corresponds to an increase in height equal to y = 200 sin θ = 17 m, where θ = 5.0◦.
We take its initial height to be y = 0.

(a) Eq. 8-24 leads to

Wapp = ∆E =
1

2
m
(

v2 − v2
0

)

+mgy .

Therefore, ∆E = 8.6× 103 J.

(b) From the above manipulation, we see Wapp = 8.6 × 103 J. Also, from Chapter 2, we know that
∆t = ∆v/a = 10 s. Thus, using Eq. 7-42,

Pavg =
W

∆t
=

8.6× 103

10
= 860 W

where the answer has been rounded off (from the 856 value that is provided by the calculator).

(c) and (d) Taking into account the component of gravity along the incline surface, the applied force
is ma+mg sin θ = 43 N and clearly in the direction of motion, so Eq. 7-48 provides the results for
instantaneous power

P = ~F · ~v =

{

430 W for v = 10 m/s
1300 W for v = 30 m/s

where these answers have been rounded off (from 428 and 1284, respectively). We note that the
average of these two values agrees with the result in part (b).
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Chapter 9

1. (a) We locate the coordinate origin at the center of Earth. Then the distance rcom of the center of
mass of the Earth-Moon system is given by

rcom =
mMrM

mM +mE

where mM is the mass of the Moon, mE is the mass of Earth, and rM is their separation. These
values are given in Appendix C. The numerical result is

rcom =
(7.36× 1022 kg)(3.82× 108 m)

7.36× 1022 kg + 5.98× 1024 kg
= 4.64× 106 m .

(b) The radius of Earth is RE = 6.37× 106 m, so rcom = 0.73RE.

2. We locate the coordinate origin at the center of the carbon atom, and we consider both atoms to be
“point particles.” We will use the non-SI units for mass found in Appendix F; since they will cancel they
will not prevent the answer from being in SI units.

rcom =
(15.9994 grams/mole)(1.131× 10−10 m)

12.01115 grams/mole+ 15.9994 grams/mole
= 6.46× 10−11 m .

3. Our notation is as follows: x1 = 0 and y1 = 0 are the coordinates of the m1 = 3.0 kg particle; x2 = 1.0 m
and y2 = 2.0 m are the coordinates of the m2 = 8.0 kg particle; and, x3 = 2.0 m and y3 = 1.0 m are the
coordinates of the m3 = 4.0 kg particle.

(a) The x coordinate of the center of mass is

xcom =
m1x1 +m2x2 +m3x3

m1 +m2 +m2

=
0 + (8.0 kg)(1.0 m) + (4.0 kg)(2.0 m)

3.0 kg + 8.0 kg + 4.0 kg
= 1.1 m .

(b) The y coordinate of the center of mass is

ycom =
m1y1 +m2y2 +m3y3

m1 +m2 +m3

=
0 + (8.0 kg)(2.0 m) + (4.0 kg)(1.0 m)

3.0 kg + 8.0 kg + 4.0 kg
= 1.3 m .

(c) As the mass of the topmost particle is increased, the center of mass shifts toward that particle. As
we approach the limit as the topmost particle is infinitely more massive than the others, the center
of mass becomes infinitesimally close to the position of that particle.

219
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4. We will refer to the arrangement as a “table.” We locate the coordinate origin at the center of the
tabletop and note that the center of mass of each “leg” is a distance L/2 below the top. With +x
rightward and +y upward, then the center of mass of the right leg is at (x, y) = (+L/2,−L/2) and the
center of mass of the left leg is at (x, y) = (−L/2,−L/2). Thus, the x coordinate of the (whole table)
center of mass is

xcom =
M (+L/2) +M (−L/2)

M +M + 3M
= 0

as expected. And the y coordinate of the (whole table) center of mass is

ycom =
M (−L/2) +M (−L/2)

M +M + 3M
= − L

5

so that the whole table center of mass is a small distance (0.2L) directly below the middle of the tabletop.

5. First, we imagine that the small square piece (of mass m) that was cut from the large plate is returned
to it so that the large plate is again a complete 6 m × 6 m square plate (which has its center of mass
at the origin). Then we “add” a square piece of “negative mass” (−m) at the appropriate location to
obtain what is shown in Fig. 9-24. If the mass of the whole plate is M , then the mass of the small square
piece cut from it is obtained from a simple ratio of areas:

m =

(

2.0 m

6.0 m

)2

M =⇒ M = 9m .

(a) The x coordinate of the small square piece is x = 2.0 m (the middle of that square “gap” in the
figure). Thus the x coordinate of the center of mass of the remaining piece is

xcom =
(−m)x

M + (−m)
=
−m(2.0 m)

9m−m = −0.25 m .

(b) Since the y coordinate of the small square piece is zero, we have ycom = 0.

6. We locate the coordinate origin at the lower left corner of the iron side of the composite slab. We orient
the x axis along the length of the slab (the 22.0-cm side); the y axis along the width of the slab (the
13.0-cm side); and, the z axis along the height of the slab (the 2.80-cm side). The coordinates for the
opposite corner on the aluminum side are then x = 22.0 cm, y = 13.0 cm, and z = 2.80 cm. By symmetry
ycom = 13.0 cm/2 = 6.50 cm and zcom = 2.80 cm/2 = 1.40 cm. We use Eq. 9-5 to find xcom:

xcom =
mixcom,i +maxcom,a

mi +ma
=
ρiVixcom,i + ρaVaxcm,a

ρiVi + ρaVa

=
(11.0 cm/2)

(

7.85 g/cm
3
)

+ 3(11.0 cm/2)
(

2.70 g/cm
3
)

7.85 g/cm
3

+ 2.70 g/cm
3 = 8.30 cm .

Therefore, the center of mass is at 11.0 cm− 8.3 cm = 2.7 cm from the midpoint of the slab.

7. By symmetry the center of mass is located on the axis of symmetry of the molecule. We denote the
distance between the nitrogen atom and the center of mass of NH3 as x. Then mNx = 3mH(d − x),
where d is the distance from the nitrogen atom to the plane containing the three hydrogen atoms:

d =
√

(10.14× 10−11 m)2 − (9.4× 10−11m)2 = 3.803× 10−11 m .

Thus,

x =
3mHd

mN + 3mH
=

3(1.00797)(3.803× 10−11m)

14.0067 + 3(1.00797)
= 6.8× 10−12 m

where Appendix F has been used to find the masses.
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8. The centers of mass (with centimeters understood) for each of the five sides are as follows:

(x1, y1, z1) = (0, 20, 20) for the side in the yz plane

(x2, y2, z2) = (20, 0, 20) for the side in the xz plane

(x3, y3, z3) = (20, 20, 0) for the side in the xy plane

(x4, y4, z4) = (40, 20, 20) for the remaining side parallel to side 1

(x5, y5, z5) = (20, 40, 20) for the remaining side parallel to side 2

Recognizing that all sides have the same mass m, we plug these into Eq. 9-5 to obtain the results (the
first two being expected based on the symmetry of the problem).

(a)

xcom =
mx1 +mx2 +mx3 +mx4 +mx5

5m
=

0 + 20 + 20 + 40 + 20

5
= 20 cm

(b)

ycom =
my1 +my2 +my3 +my4 +my5

5m
=

20 + 0 + 20 + 20 + 40

5
= 20 cm

(c)

zcom =
mz1 +mz2 +mz3 +mz4 +mz5

5m
=

20 + 20 + 0 + 20 + 20

5
= 16 cm

9. (a) Since the can is uniform, its center of mass is at its geometrical center, a distance H/2 above its
base. The center of mass of the soda alone is at its geometrical center, a distance x/2 above the
base of the can. When the can is full this is H/2. Thus the center of mass of the can and the soda
it contains is a distance

h =
M(H/2) +m(H/2)

M +m
=
H

2

above the base, on the cylinder axis.

(b) We now consider the can alone. The center of mass is H/2 above the base, on the cylinder axis.

(c) As x decreases the center of mass of the soda in the can at first drops, then rises to H/2 again.

(d) When the top surface of the soda is a distance x above the base of the can, the mass of the soda in
the can is mp = m(x/H), where m is the mass when the can is full (x = H). The center of mass
of the soda alone is a distance x/2 above the base of the can. Hence

h =
M(H/2) +mp(x/2)

M +mp
=
M(H/2) +m(x/H)(x/2)

M + (mx/H)
=

MH2 +mx2

2(MH +mx)
.

We find the lowest position of the center of mass of the can and soda by setting the derivative of h
with respect to x equal to 0 and solving for x. The derivative is

dh

dx
=

2mx

2(MH +mx)
− (MH2 +mx2)m

2(MH +mx)2
=
m2x2 + 2MmHx−MmH2

2(MH +mx)2
.

The solution to m2x2 + 2MmHx−MmH2 = 0 is

x =
MH

m

(

−1 +

√

1 +
m

M

)

.

The positive root is used since x must be positive. Next, we substitute the expression found for x
into h = (MH2 +mx2)/2(MH +mx). After some algebraic manipulation we obtain

h =
HM

m

(√

1 +
m

M
− 1

)

.
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10. Since the center of mass of the two-skater system does not move, both skaters will end up at the center
of mass of the system. Let the center of mass be a distance x from the 40-kg skater, then

(65 kg)(10 m− x) = (40 kg)x =⇒ x = 6.2 m .

Thus the 40-kg skater will move by 6.2 m.

11. Let mc be the mass of the Chrysler and vc be its velocity. Let mf be the mass of the Ford and vf be its
velocity. Then the velocity of the center of mass is

vcom =
mcvc +mfvf

mc +mf
=

(2400 kg)(80 km/h) + (1600 kg)(60 km/h)

2400 kg + 1600 kg
= 72 km/h .

We note that the two velocities are in the same direction, so the two terms in the numerator have the
same sign.

12. (a) Since the center of mass of the man-balloon system does not move, the balloon will move downward
with a certain speed u relative to the ground as the man climbs up the ladder. The speed of the
man relative to the ground is vg = v − u. Thus, the speed of the center of mass of the system is

vcom =
mvg −Mu

M +m
=
m(v − u)−Mu

M +m
= 0 .

This yields u = mv/(M +m).

(b) Now that there is no relative motion within the system, the speed of both the balloon and the man
is equal to vcom, which is zero. So the balloon will again be stationary.

13. We use the constant-acceleration equations of Table 2-1 (with +y downward and the origin at the release
point), Eq. 9-5 for ycom and Eq. 9-17 for ~vcom .

(a) The location of the first stone (of massm1) at t = 300×10−3 s is y1 = (1/2)gt2 = (1/2)(9.8)
(

300× 10−3
)2

=
0.44 m, and the location of the second stone (of mass m2 = 2m1) at t = 300 × 10−3 s is y2 =
(1/2)gt2 = (1/2)(9.8)(300× 10−3 − 100× 10−3)2 = 0.20 m. Thus, the center of mass is at

ycom =
m1y1 +m2y2
m1 +m2

=
m1(0.44 m) + 2m1(0.20 m)

m1 + 2m2
= 0.28 m .

(b) The speed of the first stone at time t is v1 = gt, while that of the second stone is v2 = g(t− 100×
10−3 s). Thus, the center-of-mass speed at t = 300× 10−3 s is

vcom =
m1v1 +m2v2
m1 +m2

=
m1(9.8)

(

300× 10−3
)

+ 2m1(9.8)
(

300× 10−3 − 100× 10−3
)

m1 + 2m1

= 2.3 m/s .

14. We use the constant-acceleration equations of Table 2-1 (with the origin at the traffic light), Eq. 9-5 for
xcom and Eq. 9-17 for ~vcom . At t = 3.0 s, the location of the automobile (of mass m1) is x1 = 1

2at
2 =

1
2 (4.0 m/s

2
)(3.0 s)2 = 18 m, while that of the truck (of mass m2) is x2 = vt = (8.0 m/s)(3.0 s) = 24 m.

The speed of the automobile then is v1 = at =
(

4.0 m/s
2
)

(3.0 s) = 12 m/s, while the speed of the truck

remains v2 = 8.0 m/s.

(a) The location of their center of mass is

xcom =
m1x1 +m2x2

m1 +m2
=

(1000 kg)(18 m) + (2000 kg)(24 m)

1000 kg + 2000 kg
= 22 m .
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(b) The speed of the center of mass is

vcom =
m1v1 +m2v2
m1 +m2

=
(1000 kg)(12 m/s) + (2000 kg)(8.0 m/s)

1000 kg + 2000 kg
= 9.3 m/s .

15. We need to find the coordinates of the point where the shell explodes and the velocity of the fragment
that does not fall straight down. The coordinate origin is at the firing point, the +x axis is rightward,
and the +y direction is upward. The y component of the velocity is given by v = v0 y − gt and this
is zero at time t = v0 y /g = (v0/g) sin θ0, where v0 is the initial speed and θ0 is the firing angle. The
coordinates of the highest point on the trajectory are

x = v0xt = v0t cos θ0 =
v2
0

g
sin θ0 cos θ0 =

(20 m/s)2

9.8 m/s
2 sin 60◦ cos 60◦ = 17.7 m

and

y = v0 y t−
1

2
gt2 =

1

2

v2
0

g
sin2 θ0 =

1

2

(20 m/s)2

9.8 m/s
2 sin2 60◦ = 15.3 m .

Since no horizontal forces act, the horizontal component of the momentum is conserved. Since one
fragment has a velocity of zero after the explosion, the momentum of the other equals the momentum
of the shell before the explosion. At the highest point the velocity of the shell is v0 cos θ0, in the
positive x direction. Let M be the mass of the shell and let V0 be the velocity of the fragment. Then
Mv0 cos θ0 = MV0/2, since the mass of the fragment is M/2. This means

V0 = 2v0 cos θ0 = 2(20 m/s) cos 60◦ = 20 m/s .

This information is used in the form of initial conditions for a projectile motion problem to determine
where the fragment lands. Resetting our clock, we now analyze a projectile launched horizontally at
time t = 0 with a speed of 20 m/s from a location having coordinates x0 = 17.7 m, y0 = 15.3 m. Its y
coordinate is given by y = y0 − 1

2gt
2, and when it lands this is zero. The time of landing is t =

√

2y0/g
and the x coordinate of the landing point is

x = x0 + V0t = x0 + V0

√

2y0
g

= 17.7 m + (20 m/s)

√

2(15.3 m)

9.8 m/s
2 = 53 m .

16. The implication in the problem regarding ~v0 is that the olive and the nut start at rest. Although we
could proceed by analyzing the forces on each object, we prefer to approach this using Eq. 9-14. The
total force on the nut-olive system is ~Fo + ~Fn = − ı̂+ ĵ with the unit newton understood. Thus, Eq. 9-14
becomes

− ı̂ + ĵ = M~acom

where M = 2.0 kg. Thus, ~acom = − 1
2 ı̂ + 1

2 ĵ in SI units. Each component is constant, so we apply the
equations discussed in Chapters 2 and 4.

∆~rcom =
1

2
~acom t

2 = −4.0 ı̂ + 4.0 ĵ

(in meters) when t = 4.0 s. It is perhaps instructive to work through this problem the long way

(separate analysis for the olive and the nut and then application of Eq. 9-5) since it helps to point out
the computational advantage of Eq. 9-14.

17. (a) We place the origin of a coordinate system at the center of the pulley, with the x axis horizontal and
to the right and with the y axis downward. The center of mass is halfway between the containers, at
x = 0 and y = ℓ, where ℓ is the vertical distance from the pulley center to either of the containers.
Since the diameter of the pulley is 50 mm, the center of mass is 25 mm from each container.
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(b) Suppose 20 g is transferred from the container on the left to the container on the right. The
container on the left has mass m1 = 480 g and is at x1 = −25 mm. The container on the right has
mass m2 = 520 g and is at x2 = +25 mm. The x coordinate of the center of mass is then

xcom =
m1x1 +m2x2

m1 +m2
=

(480 g)(−25 mm) + (520 g)(25 mm)

480 g + 520 g
= 1.0 mm .

The y coordinate is still ℓ. The center of mass is 26 mm from the lighter container, along the line
that joins the bodies.

(c) When they are released the heavier container moves downward and the lighter container moves
upward, so the center of mass, which must remain closer to the heavier container, moves downward.

(d) Because the containers are connected by the string, which runs over the pulley, their accelerations
have the same magnitude but are in opposite directions. If a is the acceleration of m2, then −a is
the acceleration of m1. The acceleration of the center of mass is

acom =
m1(−a) +m2a

m1 +m2
= a

m2 −m1

m1 +m2
.

We must resort to Newton’s second law to find the acceleration of each container. The force of
gravity m1g, down, and the tension force of the string T , up, act on the lighter container. The
second law for it is m1g − T = −m1a. The negative sign appears because a is the acceleration of
the heavier container. The same forces act on the heavier container and for it the second law is
m2g − T = m2a. The first equation gives T = m1g + m1a. This is substituted into the second
equation to obtain m2g −m1g −m1a = m2a, so a = (m2 −m1)g/(m1 +m2). Thus

acom =
g(m2 −m1)

2

(m1 +m2)2
=

(9.8 m/s
2
)(520 g− 480 g)2

(480 g + 520 g)2
= 1.6× 10−2 m/s

2
.

The acceleration is downward.

18. We denote the mass of Ricardo as MR and that of Carmelita as MC . Let the center of mass of the
two-person system (assumed to be closer to Ricardo) be a distance x from the middle of the canoe of
length L and mass m. Then MR(L/2− x) = mx+MC(L/2 + x). Now, after they switch positions, the
center of the canoe has moved a distance 2x from its initial position. Therefore, x = 40 cm/2 = 0.20 m,
which we substitute into the above equation to solve for MC :

MC =
MR(L/2− x)−mx

L/2 + x
=

(80)
(

3.0
2 − 0.20

)

− (30)(0.20)

(3.0/2) + 0.20
= 58 kg .

19. There is no net horizontal force on the dog-boat system, so their center of mass does not move. Therefore
by Eq. 9-16,

M∆xcom = 0 = mb∆xb +md∆xd

which implies

|∆xb| =
md

mb
|∆xd| .

Now we express the geometrical condition that relative to the boat the dog has moved a distance d = 2.4 m:

|∆xb|+ |∆xd| = d

which accounts for the fact that the dog moves one way and the boat moves the other. We substitute
for |∆xb| from above:

md

mb
|∆xd|+ |∆xd| = d

which leads to

|∆xd| =
d

1 + md

mb

=
2.4

1 + 4.5
18

= 1.92 m .

The dog is therefore 1.9 m closer to the shore than initially (where it was 6.1 m from it). Thus, it is now
4.2 m from the shore.
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20. We apply Eq. 9-22 (p = mv) and Eq. 7-1 (K = 1
2mv

2).

(a) The speed of the VW Beetle of mass m is

v =
p

m
=

(2650 kg)(16 km/h)

816 kg
= 52 km/h .

(b) In this case, the speed of the VW Beetle must be

v =

√

2K

m
=

√

2(2650 kg)(16 km/h)2/2

816 kg
= 29 km/h .

21. Using Eq. 9-22, the necessary speed v is

v =
p

m
=

(1600 kg)(1.2 km/h)

80 kg
= 24 km/h .

22. The magnitude of the ball’s momentum change is

∆p = |mvi −mvf | = (0.70 kg) |5.0 m/s− (−2.0 m/s)| = 4.9 kg·m/s .

23. (a) The change in kinetic energy is

∆K =
1

2
mv2

f −
1

2
mv2

i

=
1

2
(2100 kg)

(

(51 km/h)2 − (41 km/h)2
)

= 9.66× 104 kg·(km/h)2
(

(103 m/km)(1 h/3600 s)
)2

= 7.5× 104 J .

(b) The magnitude of the change in velocity is

|∆~v| =
√

(−vi)2 + (vf )2

=
√

(−41 km/h)2 + (51 km/h)2

= 65.4 km/h

so the magnitude of the change in momentum is

|∆~p| = m |∆~v| = (2100 kg)(65.4 km/h)

(

1000 m/km

3600 s/h

)

= 3.8× 104 kg·m/s .

(c) The vector ∆~p points at an angle θ south of east, where

θ = tan−1

(

vi

vf

)

= tan−1

(

41 km/h

51 km/h

)

= 39◦ .

24. (a) Since the force of impact on the ball is in the y direction, px is conserved: px i = mvi sin 30◦ =
px f = mvi sin θ. Thus θ = 30◦.

(b) The momentum change is

∆~p = mvi cos θ (− ĵ )−mvi cos θ (+ ĵ )

= −2(0.165 kg)(2.00 m/s)(cos 30◦) ĵ

= −0.572 ĵ kg·m/s .
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25. The velocity of the object is

~v =
d~r

dt
=

d

dt

(

(3500− 160t) ı̂ + 2700 ĵ + 300 k̂
)

= −160 ı̂ m/s .

(a) The linear momentum is

~p = m~v = (250)(−160 ı̂ ) = −4.0× 104 ı̂ kg·m/s .

(b) The object is moving west (our − ı̂ direction).

(c) Since the value of ~p does not change with time, the net force exerted on the object is zero, by
Eq. 9-23.

26. We use coordinates with +x horizontally toward the pitcher and +y upward. Angles are measured coun-
terclockwise from the +x axis. Mass, velocity and momentum units are SI. Thus, the initial momentum
can be written ~p0 = (4.5 6 215◦) in magnitude-angle notation.

(a) In magnitude-angle notation, the momentum change is (6.0 6 − 90◦)− (4.5 6 215◦) = (5.0 6 − 43◦)
(efficiently done with a vector capable calculator in polar mode). The magnitude of the momentum
change is therefore 5.0 kg·m/s.

(b) The momentum change is (6.0 6 0◦) − (4.5 6 215◦) = (10 6 15◦). Thus, the magnitude of the
momentum change is 10 kg·m/s.

27. No external forces with horizontal components act on the man-stone system and the vertical forces sum
to zero, so the total momentum of the system is conserved. Since the man and the stone are initially at
rest, the total momentum is zero both before and after the stone is kicked. Let ms be the mass of the
stone and vs be its velocity after it is kicked; let mm be the mass of the man and vm be his velocity after
he kicks the stone. Then msvs +mmvm = 0 → vm = −msvs/mm . We take the axis to be positive in
the direction of motion of the stone. Then

vm = − (0.068 kg)(4.0 m/s)

91 kg
= −3.0× 10−3 m/s .

The negative sign indicates that the man moves in the direction opposite to the direction of motion of
the stone.

28. The fact that they are connected by a spring is not used in the solution. We use Eq. 9-17 for ~vcom :

M~vcom = m1~v1 +m2~v2

0 = (1.0)(1.7) + (3.0)~v2

which yields |~v2| = 0.57 m/s. The direction of ~v2 is opposite that of ~v1 (that is, they are both headed
towards the center of mass, but from opposite directions).

29. No external forces with horizontal components act on the cart-man system and the vertical forces sum to
zero, so the total momentum of the system is conserved. Let mc be the mass of the cart, v be its initial
velocity, and vc be its final velocity (after the man jumps off). Let mm be the mass of the man. His
initial velocity is the same as that of the cart and his final velocity is zero. Conservation of momentum
yields (mm +mc)v = mcvc. Consequently, the final speed of the cart is

vc =
v(mm +mc)

mc
=

(2.3 m/s)(75 kg + 39 kg)

39 kg
= 6.7 m/s .

The cart speeds up by 6.7 − 2.3 = 4.4 m/s. In order to slow himself, the man gets the cart to push
backward on him by pushing forward on it, so the cart speeds up.
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30. We apply Eq. 9-17, with M =
∑

m = 1.3 kg,

M~vcom = mA~vA +mB~vB +mC~vC

(1.3) (−0.40 ı̂) = (0.50)~vA + (0.60) (0.20 ı̂) + (0.20) (0.30 ı̂)

which leads to ~vA = −1.4 ı̂ in SI units (m/s).

31. Our notation is as follows: the mass of the motor is M ; the mass of the module is m; the initial speed
of the system is v0 ; the relative speed between the motor and the module is vr ; and, the speed of
the module relative to the Earth is v after the separation. Conservation of linear momentum requires
(M +m)v0 = mv +M(v − vr). Therefore,

v = v0 +
Mvr

M +m
= 4300 km/h +

(4m)(82 km/h)

4m+m
= 4.4× 103 km/h .

32. Denoting the new speed of the car as v, then the new speed of the man relative to the ground is v− vrel .
Conservation of momentum requires

(

W

g
+
w

g

)

v0 =

(

W

g

)

v +

(

w

g

)

(v − vrel) .

Consequently, the change of velocity is

∆~v = v − v0 =
w vrel
W + w

.

33. We assume no external forces act on the system composed of the two parts of the last stage. Hence, the
total momentum of the system is conserved. Let mc be the mass of the rocket case and mp be the mass
of the payload. At first they are traveling together with velocity v. After the clamp is released mc has
velocity vc and mp has velocity vp. Conservation of momentum yields (mc +mp)v = mcvc +mpvp.

(a) After the clamp is released the payload, having the lesser mass, will be traveling at the greater speed.
We write vp = vc + vrel, where vrel is the relative velocity. When this expression is substituted into
the conservation of momentum condition, the result is

(mc +mp) v = mcvc +mpvc +mpvrel .

Therefore,

vc =
(mc +mp) v −mpvrel

mc +mp

=
(290.0 kg + 150.0 kg)(7600 m/s)− (150.0 kg)(910.0 m/s)

290.0 kg + 150.0 kg

= 7290 m/s .

(b) The final speed of the payload is vp = vc + vrel = 7290 m/s + 910.0 m/s = 8200 m/s.

(c) The total kinetic energy before the clamp is released is

Ki =
1

2
(mc +mp)v

2 =
1

2
(290.0 kg + 150.0 kg)(7600 m/s)2 = 1.271× 1010 J .

(d) The total kinetic energy after the clamp is released is

Kf =
1

2
mcv

2
c +

1

2
mpv

2
p

=
1

2
(290.0 kg)(7290 m/s)2 +

1

2
(150.0 kg)(8200 m/s)2

= 1.275× 1010 J .

The total kinetic energy increased slightly. Energy originally stored in the spring is converted to
kinetic energy of the rocket parts.
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34. Our +x direction is east and +y direction is north. The linear momenta for the two m = 2.0 kg parts
are then

~p1 = m~v1 = mv1 ĵ

where v1 = 3.0 m/s, and

~p2 = m~v2 = m(v2x ı̂ + v2y ĵ ) = mv2(cos θ ı̂ + sin θ ĵ )

where v2 = 5.0 m/s and θ = 30◦. The combined linear momentum of both parts is then

~P = ~p1 + ~p2

= mv1 ĵ +mv2

(

cos θ ı̂ + sin θ ĵ
)

= (mv2 cos θ) ı̂ + (mv1 +mv2 sin θ) ĵ

= (2.0 kg)(5.0 m/s)(cos 30◦)̂ı + (2.0 kg) (3.0 m/s + (5.0 m/s)(sin 30◦)) ĵ

=
(

8.66 ı̂ + 11 ĵ
)

kg·m/s .

From conservation of linear momentum we know that this is also the linear momentum of the whole kit
before it splits. Thus the speed of the 4.0-kg kit is

v =
P

M
=

√

P 2
x + P 2

y

M
=

√

(8.66 kg·m/s)2 + (11 kg·m/s)2

4.0 kg
= 3.5 m/s .

35. We establish a coordinate system with the origin at the position of initial nucleus of mass mm i (which
was stationary), with the electron momentum ~pe in the −x direction and the neutrino momentum ~pν in
the −y direction. We will use unit-vector notation, although the problem does not specifically request
it.

(a) We find the momentum ~pn r of the residual nucleus from momentum conservation.

~pn i = ~pe + ~pν + ~pn r

0 = −1.2× 10−22 ı̂− 6.4× 10−23 ĵ + ~pn r

Thus, ~pn r = 1.2× 10−22 ı̂ + 6.4× 10−23 ĵ in SI units (kg·m/s). Its magnitude is

|~pn r| =
√

(1.2× 10−22)
2

+ (6.4× 10−23)
2

= 1.4× 10−22 kg·m/s .

(b) The angle measured from the +x axis to ~pn r is

θ = tan−1

(

6.4× 10−23

1.2× 10−22

)

= 28◦ .

Therefore, the angle between ~pe (which is in the −x direction) and ~pn r is 180◦ − 28◦ ≈ 150◦.

(c) Measuring clockwise (but not using the “traditional” minus sign with that sense) we find the angle
between ~pn r and ~pν (which points in the −y direction) is 90◦ + 28◦ ≈ 120◦.

(d) Combining the two equations p = mv and K = 1
2mv

2, we obtain (with p = pn r and m = mn r )

K =
p2

2m
=

(

1.4× 10−22
)2

2 (5.8× 10−26)
= 1.6× 10−19 J .

36. This problem involves both mechanical energy conservation

Ui = K1 +K2
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where Ui = 60 J, and momentum conservation

0 = m1~v1 +m2~v2

where m2 = 2m1 . From the second equation, we find |~v1| = 2 |~v2| which in turn implies (since v1 = |~v1|
and likewise for v2)

K1 =
1

2
m1v

2
1 =

1

2

(

1

2
m2

)

(2v2)
2

= 2

(

1

2
m2v

2
2

)

= 2K2 .

(a) We substitute K1 = 2K2 into the energy conservation relation and find

Ui = 2K2 +K2 =⇒ K2 =
1

3
Ui = 20 J .

(b) And we obtain K1 = 2(20) = 40 J.

37. Our notation is as follows: the mass of the original body is M = 20.0 kg; its initial velocity is ~v0 = 200̂ı
in SI units (m/s); the mass of one fragment is m1 = 10.0 kg; ; its velocity is ~v1 = 100̂j in SI units; the
mass of the second fragment is m2 = 4.0 kg; ; its velocity is ~v2 = −500̂ı in SI units; and, the mass of the
third fragment is m3 = 6.00 kg.

(a) Conservation of linear momentum requires

M~v0 = m1~v1 +m2~v2 +m3~v3

which (using the above information) leads to

~v3 = 1000 ı̂− 167 ĵ

in SI units. The magnitude of ~v3 is v3 =
√

10002 + (−167)2 = 1.01 × 103 m/s. It points at
tan−1(−167/1000) = −9.48◦ (that is, at 9.5◦ measured clockwise from the +x axis).

(b) We are asked to calculate ∆K or
(

1

2
m1v

2
1 +

1

2
m2v

2
2 +

1

2
m3v

2
3

)

− 1

2
Mv2

0 = 3.23× 106 J .

38. Our notation (and, implicitly, our choice of coordinate system) is as follows: the mass of the original
body is m; its initial velocity is ~v0 = v ı̂ ; the mass of the less massive piece is m1; ; its velocity is ~v1 = 0;
and, the mass of the more massive piece is m2. We note that the conditions m2 = 3m1 (specified in the
problem) and m1 +m2 = m generally assumed in classical physics (before Einstein) lead us to conclude

m1 =
1

4
m and m2 =

3

4
m .

Conservation of linear momentum requires

m~v0 = m1~v1 +m2~v2

mv ı̂ = 0 +
3

4
m~v2

which leads to

~v2 =
4

3
v ı̂ .

The increase in the system’s kinetic energy is therefore

∆K =
1

2
m1v

2
1 +

1

2
m2v

2
2 −

1

2
mv2

0

= 0 +
1

2

(

3

4
m

)(

4

3
v

)2

− 1

2
mv2

=
1

6
mv2 .
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39. Our notation (and, implicitly, our choice of coordinate system) is as follows: the mass of one piece is
m1 = m; ; its velocity is ~v1 = −30 ı̂ in SI units (m/s); the mass of the second piece is m2 = m; ; its
velocity is ~v2 = −30 ĵ in SI units; and, the mass of the third piece is m3 = 3m. Conservation of linear
momentum requires

m~v0 = m1~v1 +m2~v2 +m3~v3

0 = m (−30 ı̂) +m
(

−30 ĵ
)

+ 3m~v3

which leads to

~v3 = 10 ı̂ + 10 ĵ

in SI units. Its magnitude is v3 = 10
√

2 ≈ 14 m/s and its angle is 45◦ counterclockwise from +x (in this
system where we have m1 flying off in the −x direction and m2 flying off in the −y direction).

40. One approach is to choose a moving coordinate system which travels the center of mass of the body, and
another is to do a little extra algebra analyzing it in the original coordinate system (in which the speed
of the m = 8.0 kg mass is v0 = 2 m/s, as given). Our solution is in terms of the latter approach since
we are assuming that this is the approach most students would take. Conservation of linear momentum
(along the direction of motion) requires

mv0 = m1v1 +m2v2

(8.0)(2.0) = (4.0)v1 + (4.0)v2

which leads to

v2 = 4− v1
in SI units (m/s). We require

∆K =

(

1

2
m1v

2
1 +

1

2
m2v

2
2

)

− 1

2
mv2

0

16 =

(

1

2
(4.0)v2

1 +
1

2
(4.0)v2

2

)

− 1

2
(8.0)(2.0)2

which simplifies to

v2
2 = 16− v2

1

in SI units. If we substitute for v2 from above, we find

(4− v1)2 = 16− v2
1

which simplifies to

2v2
1 − 8v1 = 0

and yields either v1 = 0 or v1 = 4 m/s. If v1 = 0 then v2 = 4 − v1 = 4 m/s, and if v1 = 4 then v2 = 0.
Stated more simply, one of the chunks has zero speed and the other has a velocity of 4.0 m/s (along the
original direction of motion).

41. We use Eq. 9-43. Then

vf = vi + vrel ln
Mi

Mf

= 105 m/s + (253 m/s) ln
6090 kg

6010 kg

= 108 m/s .
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42. (a) We use Eq. 9-42. The thrust is

Rvrel = Ma

=
(

4.0× 104 kg
)

(

2.0 m/s2
)

= 8.0× 104 N .

(b) Since vrel = 3000 m/s, we see from part (a) that R ≈ 27 kg/s.

43. (a) The thrust of the rocket is given by T = Rvrel, where R is the rate of fuel consumption and
vrel is the speed of the exhaust gas relative to the rocket. For this problem R = 480 kg/s and
vrel = 3.27× 103 m/s, so

T = (480 kg/s)(3.27× 103 m/s) = 1.57× 106 N .

(b) The mass of fuel ejected is given by Mfuel = R∆t, where ∆t is the time interval of the burn.
Thus, Mfuel = (480 kg/s)(250 s) = 1.20 × 105 kg. The mass of the rocket after the burn is Mf =
Mi −Mfuel = 2.55× 105 kg − 1.20× 105 kg = 1.35× 105 kg.

(c) Since the initial speed is zero, the final speed is given by

vf = vrel ln
Mi

Mf
=
(

3.27× 103
)

ln

(

2.55× 105

1.35× 105

)

= 2.08× 103 m/s .

44. We use Eq. 9-43 and simplify with vi = 0, vf = v, and vrel = u.

vf − vi = vrel ln
Mi

Mf
=⇒ Mi

Mf
= ev/u

(a) If v = u, we obtain Mi

Mf
= e1 ≈ 2.7 .

(b) If v = 2u, we obtain Mi

Mf
= e2 ≈ 7.4 .

45. We use Eq. 9-43 and simplify with vf − vi = ∆v, and vrel = u.

vf − vi = vrel ln
Mi

Mf
=⇒ Mf

Mi
= e−∆v/u

If ∆v = 2.2 m/s and u = 1000 m/s, we obtain
Mi−Mf

Mi
= 1− e−0.0022 ≈ 0.0022.

46. We convert mass rate to SI units: R = 540/60 = 9.00 kg/s. In the absence of the asked-for additional
force, the car would decelerate with a magnitude given by Eq. 9-42:

Rvrel = M |a|

so that if a = 0 is desired then the additional force must have a magnitude equal to Rvrel (so as to
cancel that effect).

F = Rvrel = (9.00)(3.20) = 28.8 N .

47. (a) We consider what must happen to the coal that lands on the faster barge during one minute
(∆t = 60 s). In that time, a total of m = 1000 kg of coal must experience a change of velocity

∆v = 20 km/h− 10 km/h = 10 km/h = 2.8 m/s

where rightwards is considered the positive direction. The rate of change in momentum for the coal
is therefore

∆~p

∆t
=
m∆~v

∆t
=

(1000)(2.8)

60
= 46 N

which, by Eq. 9-23, must equal the force exerted by the (faster) barge on the coal. The processes
(the shoveling, the barge motions) are constant, so there is no ambiguity in equating ∆p

∆t with dp
dt .
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(b) The problem states that the frictional forces acting on the barges does not depend on mass, so the
loss of mass from the slower barge does not affect its motion (so no extra force is required as a
result of the shoveling).

48. (a) The thrust is Rvrel where vrel = 1200 m/s. For this to equal the weight Mg where M = 6100 kg,
we must have R = (6100)(9.8)/1200 ≈ 50 kg/s.

(b) Using Eq. 9-42 with the additional effect due to gravity, we have

Rvrel −Mg = Ma

so that requiring a = 21 m/s2 leads to R = (6100)(9.8 + 21)/1200 = 1.6× 102 kg/s.

49. (a) We assume his mass is between m1 = 50 kg and m2 = 70 kg (corresponding to a weight between
110 lb and 154 lb). His increase in gravitational potential energy is therefore in the range

m1gh ≤ ∆U ≤ m2gh

2× 105 ≤ ∆U ≤ 3× 105

in SI units (J), where h = 443 m.

(b) The problem only asks for the amount of internal energy which converts into gravitational potential
energy, so this result is the same as in part (a). But if we were to consider his total internal energy
“output” (much of which converts to heat) we can expect that external climb is quite different from
taking the stairs.

50. (a) The (internal) energy the climber must convert to gravitational potential energy is

∆U = mgh = (90)(9.8)(8850) = 7.8× 106 J .

(b) The number of candy bars this corresponds to is

N =
7.8× 106 J

1.25× 106 J/bar
≈ 6 bars .

51. (a) The acceleration of the sprinter is (using Eq. 2-15)

a =
2∆x

t2
=

(2)(7.0 m)

(1.6 s)2
= 5.47 m/s

2
.

Consequently, the speed at t = 1.6 s is

v = at =
(

5.47 m/s
2
)

(1.6 s) = 8.8 m/s .

Alternatively, Eq. 2-17 could be used.

(b) The kinetic energy of the sprinter (of weight w and mass m = w/g) is

K =
1

2
mv2 =

1

2

(

w

g

)

v2 =
(670)(8.8)2

2(9.8)
= 2.6× 103 J .

(c) The average power is

Pavg =
∆K

∆t
=

2.6× 103 J

1.6 s
= 1.6× 103 W .

52. We use P = Fv (Eq. 7-48) to compute the force:

F =
P

v
=

92× 106 W

(32.5 knot)
(

1.852 km/h
knot

)(

1000m/km
3600 s/h

) = 5.5× 106 N .
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53. To swim at constant velocity the swimmer must push back against the water with a force of 110 N.
Relative to him the water is going at 0.22 m/s toward his rear, in the same direction as his force. Using
Eq. 7-48, his power output is obtained:

P = ~F ·~v = Fv = (110 N)(0.22 m/s) = 24 W .

54. The initial kinetic energy of the automobile of mass m moving at speed vi is Ki = 1
2mv

2
i , where

m = 16400/9.8 = 1673 kg. Using Eq. 8-29 and Eq. 8-31, this relates to the effect of friction force f in
stopping the auto over a distance d by

Ki = fd

where the road is assumed level (so ∆U = 0). Thus,

d =
Ki

f
=
mv2

i

2f
=

(1673 kg)
(

(113 km/h)
(

1000 m/km
3600 s/h

))2

2(8230 N)
= 100 m .

55. (a) By combining Newton’s second law F −mg = ma (where F is the force exerted up on her by the
floor) and Eq. 2-16 v2 = 2ad1 (where d1 = 0.90− 0.40 = 0.50 m is the distance her center of mass
moves while her feet are on the floor) it is straightforward to derive the equation

Klaunch = (F −mg)d1

where Klaunch = 1
2mv

2 is her kinetic energy as her feet leave the floor. We mention this method of
deriving that equation (which also follows from the work-kinetic energy theorem Eq. 7-10, or – suit-
ably interpreted – from energy conservation as expressed by Eq. 8-31) since the energy approaches
might seem paradoxical (one might sink into the quagmire of questions such as “how can the floor
possibly provide energy to the person?”); the Newton’s law approach leads to no such quandaries.
Next, her feet leave the floor and this kinetic energy is converted to gravitational potential energy.
Then mechanical energy conservation leads straightforwardly to

Klaunch = mgd2

where d2 = 1.20−0.90 = 0.30 m is the distance her center of mass rises from the time her feet leave
the floor to the time she reaches the top of her leap. Now we combine these two equations and
solve (F −mg)d1 = mgd2 for the force:

F =
mg(d1 + d2)

d1
=

(55 kg)(9.8 m/s
2
)(0.50 m + 0.30 m)

0.50 m
= 860 N .

(b) She has her maximum speed at the time her feet leave the floor (this is her “launch” speed).
Consequently, the equation derived above becomes

1

2
mv2 = (F −mg)d1

from which we obtain

v =

√

2(F −mg)d1

m

=

√

√

√

√

2
(

860 N− (55 kg)
(

9.8 m/s2
))

(0.50 m)

55 kg

= 2.4 m/s .
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56. (a) The kinetic energy K of the automobile of mass m at t = 30 s is

K =
1

2
mv2 =

1

2
(1500 kg)

(

(72 km/h)

(

1000 m/km

3600 s/h

))2

= 3.0× 105 J .

(b) The average power required is

Pavg =
∆K

∆t
=

3.0× 105 J

30 s
= 1.0× 104 W .

(c) We use Eq. 7-48 (P = Fv) for the instantaneous power delivered at t. Since the acceleration a
is constant, the power is P = Fv = mav = ma(at) = ma2t, using Eq. 2-11. By contrast, from

part (b), the average power is Pavg = mv2

2t which becomes 1
2ma

2t when v = at is again utilized.
Thus, the instantaneous power at the end of the interval is twice the average power during it:

P = 2Pavg = (2)
(

1.0× 104 W
)

= 2.0× 104 W .

57. (a) With P = 1.5 MW = 1.5 × 106 W (assumed constant) and t = 6.0 min = 360 s, the work-kinetic
energy theorem (along with Eq. 7-48) becomes

W = Pt = ∆K =
1

2
m
(

v2
f − v2

i

)

.

The mass of the locomotive is then

m =
2Pt

v2
f − v2

i

=
(2)(1.5× 106 W)(360 s)

(25 m/s)2 − (10 m/s)2
= 2.1× 106 kg .

(b) With t arbitrary, we use Pt = 1
2m
(

v2 − v2
i

)

to solve for the speed v = v(t) as a function of time
and obtain

v(t) =

√

v2
i +

2Pt

m
=

√

(10)2 +
(2)(1.5× 106)t

2.1× 106
=
√

100 + 1.5t

in SI units (v in m/s and t in s).

(c) Using Eq. 7-48, the force F (t) as a function of time is

F (t) =
P

v(t)
=

1.5× 106

√
100 + 1.5t

in SI units (F in N and t in s).

(d) The distance d the train moved is given by

d =

∫ t

0

v(t′) dt′ =

∫ 360

0

(

100 +
3

2
t

)
1
2

dt =
4

9

(

100 +
3

2
t

)
3
2

∣

∣

∣

∣

∣

360

0

which yields 6.7× 103 m.

58. We work this in SI units and convert to horsepower in the last step. Thus,

v = (80 km/h)

(

1000 m/km

3600 s/h

)

= 22.2 m/s .

The force FP needed to propel the car (of weight w and mass m = w/g) is found from Newton’s second
law:

Fnet = FP − F = ma =
wa

g
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where F = 300 + 1.8v2 in SI units. Therefore, the power required is

P = ~FP · ~v

=

(

F +
wa

g

)

v

=

(

300 + 1.8(22.2)2 +
(12000)(0.92)

9.8

)

(22.2)

= 5.14× 104 W

=
(

5.14× 104 W
)

(

1 hp

746 W

)

= 69 hp .

59. The third-to-last statement in the problem about the peeling-off rate of the top layer and the thickening
rate of the bottom layer is best interpreted, we feel, in the rest frame of the layer. Thus, imagining that
we are in a reference frame moving up at vt , then it is clear from the uniform nature of the described
peeling-off of the top and thickening of the bottom that in this moving reference frame the center of
mass of the layer must move downward with a speed 2vf (if the rates were denoted R and were different
then this would be Rbottom +Rtop ). Returning to the original reference frame, where we see the trapped
bubbles rising at vt, we find (with +y upward) the center of mass velocity is

vcom = vt − 2vf = −1.5 cm/s .

60. (a) Since the initial momentum is zero, then the final momenta must add (in the vector sense) to 0.
Therefore, with SI units understood, we have

~p3 = −~p1 − ~p2

= −m1~v1 −m2~v2

= −
(

16.7× 10−27
) (

6.00× 106 ı̂
)

−
(

8.35× 10−27
)

(

−8.00× 106 ĵ
)

= −1.00× 10−19 ı̂ + 0.67× 10−19 ĵ kg·m/s .

(b) Dividing by m3 = 11.7× 10−27 kg and using Pythagorean’s theorem we find the speed of the third
particle to be v3 = 1.03× 107 m/s. The total amount of kinetic energy is

1

2
m1v

2
1 +

1

2
m2v

2
2 +

1

2
m3v

2
3 = 1.19× 10−12 J .

61. By conservation of momentum, the final speed v of the sled satisfies

(2900 kg)(250 m/s) = (2900 kg + 920 kg)v

which gives v = 190 m/s.

62. We denote the mass of the car as M and that of the sumo wrestler as m. Let the initial velocity of the
sumo wrestler be v0 > 0 and the final velocity of the car be v. We apply the momentum conservation
law.

(a) From mv0 = (M +m)v we get

v =
mv0

M +m
=

(242 kg)(5.3 m/s)

2140 kg + 242 kg
= 0.54 m/s .

(b) Since vrel = v0 , we have

mv0 = Mv +m (v + vrel) = mv0 + (M +m)v

and obtain v = 0 for the final speed of the flatcar.
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(c) Now mv0 = Mv +m(v − vrel), which leads to

v =
m(v0 + vrel)

m+M
=

(242 kg)(5.3 m/s + 5.3 m/s)

242 kg + 2140 kg
= 1.1 m/s .

63. (a) We use coordinates with +x eastward and +y northward, and employ magnitude-angle notation
which is well suited for computations with vector-capable calculators. Positive angles are measured
counterclockwise from the +x axis (negative angles are clockwise). Length is in meters and time is
in seconds. The mass of each piece is designated m. Thus, the conservation of momentum becomes

~p0 = ~p1 + ~p2 + ~p3

~p0 = m(7.0 6 90◦) +m(4.0 6 210◦) +m(4.0 6 − 30◦)

~p0 = m(3.0 6 90◦)

which implies that the velocity of the package had magnitude |~p|/(3m) = 1.0 m/s and was directed
north.

(b) The center of mass proceeds at 1.0 m/s unaffected by the explosion. Its displacement during the
3.0 s interval is (1.0 m/s)(3.0 s) = 3.0 m. The displacement is directed north, in accordance with
its velocity.

64. The width ℓ of the pyramid measured at variable height z is seen to decrease from L at the base (where
z = 0) to zero at the top (where z = H). This is a linear decrease, so we must have

ℓ = L
(

1− z

H

)

.

If we imagine the pyramid layered into a large number N of horizontal (square) slabs (each of thickness
∆z) then the volume of each slab is V ′ = ℓ2∆z and the mass of each slab is m′ = ρV ′ = ρℓ2∆z. If we
make the continuum approximation (N →∞ while ∆z → dz) and substitute from above for ℓ, the mass
element becomes

dm = ρL2
(

1− z

H

)2

dz .

We note, for later use, that the total mass M is given by ρL2H/3 using the volume relation mentioned
in the problem, but this can also be derived by integrating the above expression for dm.

(a) Using Eq. 9-9 we find

zcom =
1

M

∫

z dm =
3

ρL2H

∫ H

0

zρL2
(

1− z

H

)2

dz

where ρ and L2 are constants (and, in fact, cancel) so we obtain

zcom =
3

H

∫ H

0

(

z − 2z2

H
+
z3

H

)

dz =
H

4
= 36.8 m .

(b) Although we could do the integral
∫

dU =
∫

gz dm to find the work done against gravity, it is easier
to use the conclusion drawn in the book that this should be equivalent to lifting a point mass M
to height zcom .

W = ∆U = Mgzcom =

(

ρL2H

3

)

g
H

4
= 1.7× 1012 J .

65. Although it is expected that the boat will have a slight downward recoil (of brief duration) from the
upward component of the father’s leap, the problem’s intent is to concentrate only on the horizontal
components, since – if the effects of friction are small – the boat can continue moving horizontally for a
significant time. Mass, velocity and momentum units are SI. We use coordinates with +x eastward and
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+y northward. Angles are positive if measured counterclockwise from the +x axis. Using magnitude-
angle notation, momentum conservation is expressed as

~p0 = ~pc + ~pf + ~pb

(0 6 0◦) = (80 6 0◦) + (90 6 − 90◦) + ~pb

where it must be stressed that the relevant component of the father’s momentum is ~pf = (75)(1.5) cos 37◦

south (represented as (90 6 − 90◦) in the expression above). Thus, we obtain ~pb = (120 6 132◦),
which implies that the boat’s (horizontal) velocity is |~p|/m = 120/100 = 1.2 m/s at an angle of 132◦

counterclockwise from east; this can also be expressed as 48◦ north of west.

66. (a) Ignoring air friction amounts to assuming that the ball has the same speed v when it returns to its
original height.

Ki = Kf =
1

2
mv2 =

1

2
(0.050 kg)(16 m/s)2 = 6.4 J .

(b) The momentum at the moment it is thrown (taking +y upward) is

|~pi| = |~pf | = mv = (0.050 kg)(16 m/s) = 0.80 kg·m/s .

The vector ~pi is θ = 30◦ above the horizontal, while ~pf is 30◦ below the horizontal (since the
vertical component is now downward). We note for later reference that the magnitude of the
change in momentum is

|∆~p| = |~pf − ~pi| = 2mv sin θ = 0.80 kg·m/s

and ∆~p points vertically downward.

(c) The time of flight for the ball is t = 2vi sin θ/g, thus

mgt = mg

(

2v sin θ

g

)

= 2mv sin θ = 2pi sin θ = 0.80 kg·m/s

which (recalling our result in part (b)) illustrates the relation |∆p| = Ft where F = mg.

67. Choosing downward as the +y direction and placing the coordinate origin at the top of the building, we
apply the equations from Table 2-1 to this two-block system:

y1 =
1

2
gt2 for 0 ≤ t ≤ 5

y2 =
1

2
g(t− 1)2 for 1 ≤ t ≤ 6

v1 = gt for 0 ≤ t ≤ 5

v2 = g(t− 1) for 1 ≤ t ≤ 6

with SI units understood.

(a) With m1 = 2.00 kg and m2 = 3.00 kg, Eq. 9-5 provides

ycom =
m1y1 +m2y2
m1 +m2

=
1

2
gt2 − 3

5
gt+

3

10
g

while they are both in free fall (1 ≤ t ≤ 5). But during the interval when m2 is “waiting” at the
top of the building, we have

ycom =
m1y1 +m2(0)

m1 +m2
=

1

5
gt2 for 0 ≤ t ≤ 1



238 CHAPTER 9.

and during the interval where m1 is sitting on the ground (at y = 1
2 (9.8)(5)2) we have

ycom =
m1

(

25g
2

)

+m2y2

m1 +m2
=

3

10
gt2 − 3

5
gt+

53

10
g

for 5 ≤ t ≤ 6. This behavior is plotted below, with ycom in meters and t in seconds.
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(b) We turn now to Eq. 9-17 which gives

vcom =
m1v1 +m2v2
m1 +m2

= gt− 3

5
g

while they are both in free fall (1 ≤ t ≤ 5). We note that we could have easily gotten this by taking
the derivative of the corresponding ycom expression in part (a). During the interval when m2 sits
on the top of the building, we have

vcom =
m1v1 +m2(0)

m1 +m2
=

2

5
gt for 0 ≤ t ≤ 1

and during the interval where m1 sits on the ground we have

vcom =
m1(0) +m2v2
m1 +m2

=
3

5
gt− 3

5
g

for 5 ≤ t ≤ 6. This behavior is plotted below, with vcom in m/s and t in s. The sudden drop at
t = 5 s is understandable, since m1 stops, but it should be noted that we are ignoring the dynamics
of how the ground decelerates that block – the effects of which might be to (slightly) smooth out
that transition.
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68. The velocity of the first particle (of mass m1 = 3.0 kg) is ~v1 = −6.0 ĵ m/s while that of the second one
(of mass m2 = 4.0 kg) is ~v2 = 7.0 ı̂ m/s. The center-of-mass velocity is then

~vcom =
m1~v1 +m2~v2
m1 +m2

=
(3.0)(−6.0 ĵ ) + (4.0)(7.0 ı̂ )

3.0 + 4.0
= −2.6 ı̂ + 4.0 ĵ

in SI units. The corresponding speed is

vcom =
√

v2
x + v2

y =
√

(−2.6)2 + (4.0)2 = 4.8 m/s .

69. We use Eq. 9-17, or – equivalently – we differentiate Eq. 9-5.

vcomx =
1

M
((1500 kg)(0 m/s) + (4000 kg)vtruck)

vcomy =
1

M
((1500 kg)vcar + (4000 kg)(0 m/s))

where M = 5500 kg. From vcomx = (11) cos 55◦ = 6.3 m/s and vcomy = (11) sin 55◦ = 9.0 m/s, we get
the following results for vtruck and vcar from the above formulas.

(a) vcar = 33 m/s.

(b) vtruck = 8.7 m/s.

70. (a) We use Eq. 7-48:

P = Fv =⇒ F =
16.0 kW

15.0 m/s
= 1.07 kN .

(b) We add to our previous result the downhill pull of gravity mg sin θ where θ = tan−1(8/100).

F ′ = 1.07× 103 + (1710)(9.8) sin 4.57◦ = 2.40× 103

in SI units (N). Therefore,

P ′ = F ′v = (2.40 kN))(15.0 m/s) = 36 kW .
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(c) For the engine to be off but the (downhill) velocity to remain constant, the downhill component of
gravity must equal the magnitude of the retarding forces:

mg sin θ = F .

Using F from part (a), we find θ = 3.65◦ which corresponds to tan θ = 0.0638 ≈ 6.4%.

71. Using Eq. 2-15 for both object j (the jelly jar) and object p (the peanut butter), with y = 0 designating
the base of the building in both cases, we have

yj = 40t− 1

2
gt2

yp − 50 = 0− 1

2
gt2

with SI units understood. Thus, using Eq. 9-5, the center of mass of this system is at

ycom =
1

3.0 kg
((1.0 kg)yj + (2.0 kg)yp) =

100

3
+

40

3
t− 1

2
gt2 .

(a) With t = 3.0 s, the above equation gives ycom = 29 m.

(b) We maximize ycom by working through the condition

dycom
dt

= 0 =
40

3
− gt .

Thus, we find t = 1.4 s, which produces ycom = 42 m as its highest value.

72. (a) We denote the mass of the car (and cannon) as M (excluding that of the cannonballs) and the mass
of all the cannonballs as m. For concreteness, we assume that before firing all the cannonballs are
at the front (left side of Fig. 9-52) of the car, which we choose to be the origin of the x axis; we
choose +x rightward. The coordinate of the center of mass of the car-cannonball system is

xcom =
(0)m+

(

L
2

)

M

M +m
=

LM

2(M +m)
.

After the firing, we assume all the cannonballs are at the other end of the car; the train will have
moved (in the negative x direction) by a distance d, at which time

xcom =

(

L
2 − d

)

M + (L− d)m
M +m

.

Equating the two expressions, we obtain d = mL
M+m < L. If m ≫ M , the distance d can be very

close to (but can never exceed) L. Thus dmax = L.

(b) After each impact, there is no relative motion in the system; thus, the final speed of the car is equal
to that of the center of mass of the system, which is zero.

73. Let the velocity of the shell (of mass ms) relative to the ground be ~vs, the recoiling velocity of the cannon
(of mass mc) be ~vc (pointed in our −x direction), and the velocity of the shell relative to the muzzle be
~v ′

s, where ~vs ′+ ~vc = ~vs . In component form, this becomes

v′s cos 39.0◦ − vc = vsx

v′s sin 39.0◦ = vsy

where vc = |~vc| . Conservation of linear momentum in the horizontal direction provides us with the
additional relation msvsx = mcvc. We solve these equations for the components of ~vs :

vsx =
mcv

′
s cos 39.0◦

ms +mc
=

(1400 kg)(556 m/s) cos 39.0◦

1400 kg + 70.0 kg
= 412 m/s

vsy = v′s sin 39.0◦ = (556 m/s)(sin 39.0◦) = 350 m/s .



241

(a) The speed of the shell relative to the Earth is then

vs =
√

v2
sx + v2

sy =
√

4122 + 3502 = 540 m/s .

(b) The angle (relative to a stationary observer) at which the shell is fired is given by

θ = tan−1

(

vsy

vsx

)

= tan−1

(

350

412

)

= 40.4◦ .

74. The value 0.368 comes from rounding off e−1. We will use e−1 in our solution. The speed of the rocket v
as a function of the instantaneous rocket mass M ′ is given by v = vrel ln(M/M ′) (Eq. 9-43 with vi = 0).
Thus, when M ′ = e−1M , the speed of the fuel as measured by observers in the initial reference frame
(defined when the rocket was at rest with M ′ = M) is

v fuel = v − vrel = vrel

(

ln
M

M ′ − 1

)

= v(ln

(

1

e−1

)

− 1) = 0 .

75. We use momentum conservation choosing +x forward and recognizing that the initial momentum is zero.
We analyze this from the point of view of an observer at rest on the ice.

(a) If v1 and 2 is the speed of the stones, then the speeds are related by v1 and 2 + vboat = vrel . Thus,
with m1 = 2m2 and M = 12m2, we obtain

0 = (m1 +m2) (−v1 and 2 ) +Mvboat

= (2m2 +m2) (−vrel + vboat ) + 12m2vboat

= −3m2vrel + 15m2vboat

which yields vboat = 1
5 vrel = 0.2000vrel.

(b) Using v1 + v′boat = vrel , we find – as a result of the first throw – the boat’s speed:

0 = m1 (−v1) + (M +m2) v
′
boat

= 2m2 (−vrel + v′boat ) + (12m2 +m2) v
′
boat

= −2m2vrel + 15m2v
′
boat

which yields v′boat = 2
15 vrel ≈ 0.133vrel. Then, using v2 + vboat = vrel , we consider the second

throw:

(M +m2) v
′
boat = m2 (−v2 ) +Mvboat

(12m2 +m2)

(

2

15
vrel

)

= m2 (−vrel + vboat ) + 12m2vboat

26

15
m2vrel = −m2vrel + 13m2vboat

which yields vboat = 41
195 vrel ≈ 0.2103vrel.

(c) Finally, using v2 + v′boat = vrel , we find – as a result of the first throw – the boat’s speed:

0 = m2 (−v2) + (M +m1) v
′
boat

= m2 (−vrel + v′boat ) + (12m2 + 2m2) v
′
boat

= −m2vrel + 15m2v
′
boat

which yields v′boat = 1
15 vrel ≈ 0.0673vrel. Then, using v1 + vboat = vrel , we consider the second

throw:

(M +m1) v
′
boat = m1 (−v1 ) +Mvboat

(12m2 + 2m2)

(

1

15
vrel

)

= 2m2 (−vrel + vboat ) + 12m2vboat

14

15
m2vrel = −2m2vrel + 14m2vboat
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which yields vboat = 22
105 vrel ≈ 0.2095vrel.

76. (a) It is clear from the problem that ~vair,plane = −180 ı̂ m/s where +ı̂ is the plane’s direction of motion
(relative to the ground).

(b) Let ∆Ma be the mass of air taken in and ejected and let ∆Mf be the mass of fuel ejected in time
∆t. From the viewpoint of ground-based observers, the initial velocity of the air is zero and its final
velocity is v − u, where u is the exhaust speed (labeled vrel in the textbook) and v is the velocity
of the plane. The initial velocity of the fuel is v and its final velocity is v − u. The velocity of the
plane changes from v to v + ∆v over this time interval. The change in the total momentum of the
plane-fuel-air system is ∆P = Mp∆v + ∆Mf (u) + ∆Ma(u− v) so the net external force is

∆P

∆t
= Mp

∆v

∆t
− u ∆Mf

∆t
+ (v − u) ∆Ma

∆t
.

We examine some of these terms individually. The v∆Ma/∆t term gives the magnitude of the
force on the plane due to air intake (most easily seen from the point of view of observers on the
plane) and is equal to (180)(70) = 1.3× 104 N.

(c) We interpret the question as asking for the force due to ejection of both the air and the combustion
products due to consuming the fuel. This corresponds then to the u∆Ma/∆t and u∆Mf/∆t terms
above, and is equal to (490)(70 + 2.9) = 3.6× 104 N.

(d) We require ∆P/∆t = 0 since this (the air, plane and fuel) forms an isolated system (Eq. 9-29).
Therefore, our equation above leads to

Mp
∆v

∆t
= u

∆Mf

∆t
+ (u− v) ∆Ma

∆t

with all the terms on the right hand side constituting the net thrust (compare Eq. 9-42). These are
the values (with appropriate signs) found in parts (b) and (c), so we obtain 3.6× 104− 1.3× 104 =
2.3× 104 N.

(e) Using Eq. 7-48, we multiply the net thrust by the plane speed and obtain
(

2.3× 104
)

(180) =
4.2× 106 W.

77. Using Eq. 9-5, we have

xcom = 0 =
1

M
((4.0 kg)(0 m) + (3.0 kg)(3.0 m) + (2.0 kg)x)

ycom = 0 =
1

M
((4.0 kg)(2.0 m) + (3.0 kg)(1.0 m) + (2.0 kg)y)

where M = 9.0 kg.

(a) Evaluating the above, we find x = −4.5 m.

(b) And we find y = −5.5 m.

78. (a) We use Eq. 9-5 to compute the center of mass coordinates.

xcom =
(4 kg)(0) + (3 kg)(7 m) + (5 kg)(3 m)

4 kg + 3 kg + 5 kg
= 3.00 m

ycom =
(4 kg)(0) + (3 kg)(3 m) + (5 kg)(2 m)

4 kg + 3 kg + 5 kg
= 1.58 m

(b) Using Eq. 9-17 and SI units, we obtain

~v =
(4 kg)

(

1.5 ı̂− 2.5 ĵ
)

+ (3 kg)(0) + (5 kg)
(

2.0 ı̂− 1.0 ĵ
)

4 kg + 3 kg + 5 kg

= 1.33 ı̂ − 1.25 ĵ m/s .
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(c) Multiplying the previous result by the total mass yields ~P = 16.0 ı̂ − 15.0 ĵ in SI units (kg·m/s).
This can also be gotten by adding up the individual momenta.

79. Although we do not show graphs here, we do jot down down an idea for each part.

(a) Find the center of mass of a rod in which the density is not uniform. If the rod extends along the x
axis from the origin to x = 5 m, then with mass-per-unit-length (as a function of x) equal to e−x

in SI units, use Eq. 9-9 to find xcom . A sketch of the solution is

xcom =
1

M

∫ 5

0

xe−xdx ≈ 37 m

where M was figured from
∫ 5

0 e
−xdx ≈ 1 kg.

(b) A firecracker is dropped from a height of 20 m. Halfway down it explodes into two identical pieces.
As a result of the explosion, one of the pieces is (momentarily) at rest. What is the speed of the
other piece immediately after the explosion? A sketch of the solution is

vfirecrack =
√

2g(10 m) = 14 m/s

and we use momentum conservation:

mvfirecrack =
m

2
vpiece =⇒ vpiece = 28 m/s .

(c) An 80 kg person is climbing a ladder at a steady rate of 25 cm/s. If we assume his total power
output P is three times his rate of gaining gravitational potential energy, then compute P . The

solution is

P = 3
∆U

∆t
= 3

mg∆y

∆t
≈ 590 J

where ∆t = 1 s and ∆y = 0.25 m.

(d) Unlike the ideal physics of point particles moving through a vacuum, a runner cannot continue at
a constant velocity effortlessly. If a runner’s total power output is 650 W while running at 5.8 m/s,
then what is the force retarding him (which includes several friction-related effects)? The solution

is

P = Fv = =⇒ F =
P

v
≈ 110 N .

80. (First problem in Cluster)

(a) The length of each of the tall sides is ℓ =
√

H2 + (B/2)2, so that the total length of the wire is

L = 2
√

H2 + (B/2)2 +B. If A is the cross-section area and ρ is the density, then the total mass of
the wire is M = ρAL and the mass of each of the tall sides is

mℓ = ρA
√

H2 + (B/2)2 = M

√

H2 + (B/2)2

2
√

H2 + (B/2)2 +B
.

It is clear by symmetry that xcom = B/2 for the system, but the value of ycom is not obvious. Note
that the base does not contribute to this computation:

ycom =
1

M

(

mℓ
H

2
+mℓ

H

2

)

which can be ‘simplified’ to the following form.

ycom =
H

2 + B√
H2+(B/2)2
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(b) The element of mass on the left-hand tall side is related to dℓ =
√

dx2 + dy2 and ultimately to the
individual coordinate elements (since dy = (2H/B)dx):

dmℓ = ρAdℓ =

{

ρA
√

1 + (2H/B)2 dx

ρA
√

(B/2H)2 + 1 dy

where ρA = mℓ/
√

H2 + (B/2)2 (see part (a)). Therefore, using Eq. 9-9, we have

xcom =
1

mℓ

∫ B/2

0

x
mℓ

√

H2 + (B/2)2

√

1 + (2H/B)2 dx

=

√

1 + (2H/B)2
√

H2 + (B/2)2

∫ B/2

0

xdx

=
2

B

√

(B/2)2 +H2

√

H2 + (B/2)2

(

B2

8
− 0

)

=
B

4
and

ycom =
1

mℓ

∫ H

0

y
mℓ

√

H2 + (B/2)2

√

(B/2H)2 + 1 dy

=

√

(B/2H)2 + 1
√

H2 + (B/2)2

∫ H

0

y dy

=
1

H

√

(B/2)2 +H2

√

H2 + (B/2)2

(

H2

2
− 0

)

=
H

2
.

81. (Second problem in Cluster)
It is clear by symmetry that xcom = B/2 for the system, but the value of ycom is not obvious. If the
thickness is ∆z and the density is ρ, then the relation between the mass element dm and a height element
dy is

dm = ρ∆zℓy dy =
M

A△
ℓy dy

where the area of the triangle is A△ = 1
2BH and the length of each horizontal “strip” at height y is

ℓy = B(1− y/H). Therefore, using Eq. 9-9, we have

ycom =
1

M

∫ H

0

y
M

A△
B
(

1− y

H

)

dy

=
B

1
2BH

∫ H

0

y
(

1− y

H

)

dy

=
2

H

(

H2

2
− H3

3H

)

=
H

3
.

82. (Third problem in Cluster)
It is clear by symmetry that xcom = B/2 for the system, but the value of ycom is not obvious. If the
cross-section area of the wire is A and the density is ρ, then in one quadrant the relation between the
mass element dm and height element dy is

dm = ρA
R

√

R2 − y2
dy =

M

ℓ∩

R
√

R2 − y2
dy
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where the length of the semicircle is ℓ∩ = πR. To include the contributions from both quadrants shown,
we multiply by 2, and Eq. 9-9 becomes

ycom =
2

M

∫ R

0

y
M

ℓ∩

R
√

R2 − y2
dy

=
2

π

∫ R

0

y
√

R2 − y2
dy

=
2

π

[

−
√

R2 − y2
]R

0

=
2R

π
.

83. (Fourth problem in Cluster)
It is clear by symmetry that xcom = B/2 for the system. The value of ycom is found as follows. If
the thickness is ∆z and the density is ρ, then the relation between the mass element dm and a height
element dy is

dm = ρ∆zℓy dy =
M

A
ℓy dy

where the area of the semicircle is A = 1
2πR

2 and the length of each horizontal “strip” at height y is

ℓy = 2
√

R2 − y2. Therefore, using Eq. 9-9, we find

ycom =
1

M

∫ R

0

y
M

A
2
√

R2 − y2 dy

=
2

1
2πR

2

∫ R

0

y
√

R2 − y2 dy

=
4

πR2

[

−1

3

(

R2 − y2
)3/2

]R

0

=
4R

3π
.
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Chapter 10

1. If Favg is the magnitude of the average force, then the magnitude of the impulse is J = Favg∆t, where
∆t is the time interval over which the force is exerted (see Eq. 10-8). This equals the magnitude of the
change in the momentum of the ball. Since the ball is initially at rest, J is equal to the magnitude of
the final momentum mv. When Favg∆t = mv is solved for the speed, the result is

v =
Favg∆t

m
=

(50 N)
(

10× 10−3 s
)

0.20 kg
= 2.5 m/s .

2. The magnitude of the average force is

∣

∣

∣

~Favg

∣

∣

∣ =
|∆~p|
m

=
m|∆~v|

∆t
=

(2300 kg)(15 m/s)

0.56 s
= 6.2× 104 N .

3. We take the final direction of motion to be the +ı̂ direction (when it is headed back to the pitcher) so
that ~vf = +60 ı̂ and ~vi = −40 ı̂ in SI units. Therefore, ∆~v = 60 − (−40) = 100 ı̂ m/s. The magnitude
of the average force is

∣

∣

∣

~Favg

∣

∣

∣ =
|∆~p|
∆t

=
m|∆~v|

∆t
=

(0.150 kg)(100 m/s)

5.0× 10−3 s
= 3.0× 103 N .

4. We estimate his mass in the neighborhood of 70 kg and compute the upward force F of the water from
Newton’s second law.

F −mg = ma

where we have chosen +y upward, so that a > 0 (the acceleration is upward since it represents a
deceleration of his downward motion through the water). His speed when he arrives at the surface of
the water is found either from Eq. 2-16 or from energy conservation:

v =
√

2gh

where h = 12 m, and since the deceleration a reduces the speed to zero over a distance d = 0.30 m we
also obtain v =

√
2ad. We use these observations in the following.

(a) Equating our two expressions for v leads to a = gh/d. Our force equation, then, leads to

F = mg +m

(

g
h

d

)

= mg

(

1 +
h

d

)

which yields F ≈ 2.8 × 104 kg. Since we are not at all certain of his mass, we express this as a
guessed-at range (in kN) 25 < F < 30.

(b) Since F ≫ mg, the impulse ~J due to the net force (while he is in contact with the water) is

overwhelmingly caused by the upward force of the water:
∫

F dt = ~J to a good approximation.
Thus, by Eq. 10-2,

∫

F dt = ~pf − ~pi = 0−m
(

−
√

2gh
)

247
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(the minus sign with the initial velocity is due to the fact that downward is the negative direction)
which yields (70)

√

2(9.8)(12) = 1.1× 103 kg·m/s. Expressing this as a range (in kN·s) we estimate
1.0 <

∫

F dt < 1.2.

5. We take the initial direction of motion to be positive and use Favg to denote the magnitude of the average
force, ∆t as the duration of the force, m as the mass of the ball, vi as the initial velocity of the ball, and
vf as the final velocity of the ball. The force is in the negative direction and the impulse-momentum
theorem (Eq. 10-4 with Eq. 10-8) yields −Favg∆t = mvf −mvi. Thus,

vf =
mvi − Favg∆t

m
=

(0.40 kg)(14 m/s)− (1200 N)(27× 10−3 s)

0.40 kg
= −67 m/s .

The final speed of the ball is 67 m/s. The negative sign indicates that the velocity is opposite to the
initial direction of travel.

6. We choose +y upward, which implies a > 0 (the acceleration is upward since it represents a deceleration
of his downward motion through the snow).

(a) The maximum deceleration amax of the paratrooper (of mass m and initial speed v = 56 m/s) is
found from Newton’s second law

Fsnow −mg = mamax

where we require Fsnow = 1.2× 105 N. Using Eq. 2-15 v2 = 2amaxd, we find the minimum depth of
snow for the man to survive:

d =
v2

2amax
=

mv2

2 (Fsnow −mg)
≈ (85 kg)(56 m/s)2

2(1.2× 105 N)
= 1.1 m .

(b) His short trip through the snow involves a change in momentum

~pf − ~pi = 0− (85 kg)(−56 m/s)

(the negative value of the initial velocity is due to the fact that downward is the negative direction)
which yields 4.8× 103 kg·m/s. By the impulse-momentum theorem, this equals the impulse due to
the net force Fsnow −mg, but since Fsnow ≫ mg we can approximate this as the impulse on him
just from the snow.

7. We choose +y upward, which means ~vi = −25 m/s and ~vf = +10 m/s. During the collision, we make
the reasonable approximation that the net force on the ball is equal to Favg – the average force exerted
by the floor up on the ball.

(a) Using the impulse momentum theorem (Eq. 10-4) we find

~J = m~vf −m~vi = (1.2)(10)− (1.2)(−25) = 42 kg·m/s .

(b) From Eq. 10-8, we obtain

~Favg =
~J

∆t
=

42

0.020
= 2.1× 103 N .

8. We choose the positive direction in the direction of rebound so that ~vf > 0 and ~vi < 0. Since they have
the same speed v, we write this as ~vf = v and ~vi = −v. Therefore, the change in momentum for each
bullet of mass m is ∆~p = m∆v = 2mv. Consequently, the total change in momentum for the 100 bullets
(each minute) ∆~P = 100∆~p = 200mv. The average force is then

~Favg =
∆~P

∆t
=

(200)(3× 10−3 kg)(500 m/s)

(1 min)(60 s/min)
≈ 5 N .
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9. (a) The initial momentum of the car is ~pi = m~vi = (1400 kg)(5.3 m/s) ĵ = (7400 kg ·m/s) ĵ and the final
momentum is ~pf = (7400 kg ·m/s) ı̂. The impulse on it equals the change in its momentum:

~J = ~pf − ~pi = (7400 N·s)(̂ı− ĵ) .

(b) The initial momentum of the car is ~pi = (7400 kg ·m/s) ı̂ and the final momentum is ~pf = 0. The
impulse acting on it is

~J = ~pf − ~pi = −7400 ı̂ N·s .

(c) The average force on the car is

~Favg =
∆~p

∆t
=

~J

∆t
=

(7400 kg ·m/s)(̂ı− ĵ)

4.6 s
= (1600 N)(̂ı− ĵ)

and its magnitude is Favg = (1600 N)
√

2 = 2300 N.

(d) The average force is

~Favg =
~J

∆t
=

(−7400 kg ·m/s) ı̂

350× 10−3 s
= (−2.1× 104 N) ı̂

and its magnitude is Favg = 2.1× 104 N.

(e) The average force is given above in unit vector notation. Its x and y components have equal
magnitudes. The x component is positive and the y component is negative, so the force is 45◦

below the positive x axis.

10. We use coordinates with +x rightward and +y upward, with the usual conventions for measuring the
angles (so that the initial angle becomes 180+35 = 215◦). Using SI units and magnitude-angle notation
(efficient to work with when using a vector capable calculator), the change in momentum is

~pf − ~pi = (3.0 6 90◦)− (3.6 6 215◦) = (5.9 6 60◦) .

This equals the impulse delivered to the ball (by the bat). Then, Eq. 10-8 leads to

Favg∆t = 5.9 =⇒ Favg =
5.9

2.0× 10−3
≈ 2.9× 103 N .

We note that this force is very much larger than the weight of the ball, which justifies our (implicit)
assumption that gravity played no significant role in the collision.

11. We take the magnitude of the force to be F = At, where A is a constant of proportionality. The condition
that F = 50 N when t = 4.0 s leads to A = (50 N)/(4.0 s) = 12.5 N/s. The magnitude of the impulse
exerted on the object is

J =

∫ 4.0

0

F dt =

∫ 4.0

0

At dt =
1

2
At2

∣

∣

∣

∣

∣

4.0

0

=
1

2
(12.5)(4.0)2 = 100 N·s .

This equals the magnitude of the change in the momentum of the object (by the impulse-momentum
theorem), and since the ball started from rest, we have J = mvf . Therefore, vf = J/m = (100 N ·
s)/(10 kg) = 10 m/s.

12. (a) The mass of each spherical hailstone of radius r = 0.5 cm and density ρ = 0.92 g/cm3 is

m = ρ

(

4πr3

3

)

= 0.48 g = 4.8× 10−4 kg .
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(b) If the final speed is zero, then Eq. 10-4 and Eq. 10-8 (with +y upward) lead to

~Favg∆t = −m~vi = −
(

4.8× 10−4
)

(−25) = 0.012

in SI units (N·s). This gives the impulse imparted to a single hailstone by the roof (and is equal
to the magnitude of the force on the roof by the hailstone, by Newton’s third law). An imagined
“cube” of falling air, ℓ = 1 m on each side (falling with the hail at v = 25 m/s), takes a time of

∆t =
ℓ

v
=

1 m

25 m/s
= 0.04 s

to fully “collapse” onto a square meter of roof top (delivering its load of 120 hailstones). We can
cover an area of 10 m× 20 m with 200 of these “collapsing cubes” of air. Therefore, in this time,
the total impulse is of magnitude

~Favg,total∆t = 200(120)(0.012 N·s)≈ 290 N·s

which leads to ~Favg,total = 290/0.04 = 7.2× 103 N.

13. (a) If m is the mass of a pellet and v is its velocity as it hits the wall, then its momentum is p = mv =
(2.0× 10−3 kg)(500 m/s) = 1.0 kg·m/s, toward the wall.

(b) The kinetic energy of a pellet is

K =
1

2
mv2 =

1

2

(

2.0× 10−3 kg
)

(500 m/s)2 = 2.5× 102 J .

(c) The force on the wall is given by the rate at which momentum is transferred from the pellets to
the wall. Since the pellets do not rebound, each pellet that hits transfers p = 1.0 kg·m/s. If ∆N
pellets hit in time ∆t, then the average rate at which momentum is transferred is

Favg =
p∆N

∆t
= (1.0 kg·m/s)

(

10 s−1
)

= 10 N .

The force on the wall is in the direction of the initial velocity of the pellets.

(d) If ∆t is the time interval for a pellet to be brought to rest by the wall, then the average force
exerted on the wall by a pellet is

Favg =
p

∆t
=

1.0 kg·m/s
0.6× 10−3 s

= 1.7× 103 N .

The force is in the direction of the initial velocity of the pellet.

(e) In part (d) the force is averaged over the time a pellet is in contact with the wall, while in part (c)
it is averaged over the time for many pellets to hit the wall. During the majority of this time, no
pellet is in contact with the wall, so the average force in part (c) is much less than the average force
in part (d).

14. We choose our positive direction in the direction of the rebound (so the ball’s initial velocity is negative-
valued). We evaluate the integral J =

∫

F dt by adding the appropriate areas (of a triangle, a rectangle,
and another triangle) shown in the graph (but with the t converted to seconds). With m = 0.058 kg and
v = 34 m/s, we apply the impulse-momentum theorem:

∫

Fwall dt = m~vf −m~vi

∫ 0.002

0

F dt+

∫ 0.004

0.002

F dt+

∫ 0.006

0.004

F dt = m(+v)−m(−v)

1

2
Fmax (0.002 s) + Fmax (0.002 s) +

1

2
Fmax (0.002 s) = 2mv

Fmax (0.004 s) = 2 (0.058 kg) (34 m/s)

which yields Fmax = 9.9× 102 N.
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15. We first consider the 1200 kg part. The impulse has magnitude J and is (by our choice of coordinates) in
the positive direction. Let m1 be the mass of the part and v1 be its velocity after the bolts are exploded.
We assume both parts are at rest before the explosion. Then J = m1v1, so

v1 =
J

m1
=

300 N·s
1200 kg

= 0.25 m/s .

The impulse on the 1800 kg part has the same magnitude but is in the opposite direction, so −J = m2v2,
where m2 is the mass and v2 is the velocity of the part. Therefore,

v2 = − J

m2
= − 300 N·s

1800 kg
= −0.167 m/s .

Consequently, the relative speed of the parts after the explosion is 0.25 m/s− (−0.167 m/s) = 0.417 m/s.

16. We choose our positive direction in the direction of the rebound (so the ball’s initial velocity is negative-
valued: ~vi = −5.2 m/s).

(a) The speed of the ball right after the collision is

vf =

√

2Kf

m

=

√

2
(

1
2Ki

)

m

=

√

1
2mv

2
i

m

=
vi√
2
≈ 3.7 m/s .

(b) With m = 0.15 kg, the impulse-momentum theorem (Eq. 10-4) yields

~J = m~vf −m~vi = (0.15)(3.7)− (0.15)(−5.2) = 1.3

in SI units (N·s).
(c) Eq. 10-8 leads to Favg = J/∆t = 1.3/0.0076 = 1.8× 102 N.

17. We choose +y in the direction of the rebound (directly away from the wall) and +x towards the right
in the figure (parallel to the wall; see Fig. 10-30). Using unit-vector notation, the the ball’s initial and
final velocities are

~vi = v cos θ ı̂ − v sin θ ĵ = 5.2 ı̂ − 3.0 ĵ

~vf = v cos θ ı̂ + v sin θ ĵ = 5.2 ı̂ + 3.0 ĵ

respectively (with SI units understood).

(a) With m = 0.30 kg, the impulse-momentum theorem (Eq. 10.4) yields

~J = m~vf −m~vi = 2(0.30)(3.0 ĵ)

so that the magnitude of the impulse delivered on the ball by the wall is 1.8 N·s and its direction
is directly away from the wall (which, in terms of Fig. 10-30, is “up”).

(b) Using Eq. 10-8, the force on the ball by the wall is ~J/∆t = 1.8̂j/0.010 = 180 ĵ N. By Newton’s third
law, the force on the wall by the ball is −180 ĵ N (that is, its magnitude is 180 N and its direction
is directly into the wall, or “down” in the view provided by Fig. 10-30).
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18. (a) Regardless of the direction of the thrust, the change in linear momentum of the space probe is given
by the impulse-momentum theorem (also using Eq. 10-8):

∆p = (3000 N)(65.0 s) = 1.95× 105 kg·m/s .

(b) The change in speed for the probe of mass m is

∆v =
∆p

m
=

1.95× 105 kg·m/s
2500 kg

= 78.0 m/s .

Let the initial and final speeds of the probe be vi and vf , respectively. Then, the change in its
kinetic energy is ∆K = 1

2m(v2
f − v2

i ). If the thrust is backward then vf = vi −∆v, and

∆K =
1

2
m
(

(vi −∆v)2 − v2
i

)

=
1

2
(2500 kg)

(

(300 m/s− 78.0 m/s)2 − (300 m/s)2
)

= −5.09× 107 J

If the thrust is forward then vf = vi + ∆v, and

∆K =
1

2
m
(

(vi + ∆v)2 − v2
i

)

=
1

2
(2500 kg)

(

(300 m/s + 78.0 m/s)2 − (300 m/s)2
)

= 6.61× 107 J .

If the thrust is sideways then vf =
√

(∆v)2 + v2
i , and

∆K =
1

2
m
(

(∆v)2 + v2
i − v2

i

)

=
1

2
(2500 kg)(78.0 m/s)2 = 7.61× 106 J .

19. (a) We take the force to be in the positive direction, at least for earlier times. Then the impulse is

J =

∫ 3.0×10−3

0

F dt

=

∫ 3.0×10−3

0

(

6.0× 106
)

t−
(

2.0× 109
)

t2 dt

=

[

1

2
(6.0× 106)t2 − 1

3
(2.0× 109)t3

]3.0×10−3

0

= 9.0 N·s .

(b) Since J = Favg ∆t, we find

Favg =
J

∆t
=

9.0 N·s
3.0× 10−3 s

= 3.0× 103 N .

(c) To find the time at which the maximum force occurs, we set the derivative of F with respect to
time equal to zero – and solve for t. The result is t = 1.5× 10−3 s. At that time the force is

Fmax = (6.0× 106)(1.5× 10−3)− (2.0× 109)(1.5× 10−3)2 = 4.5× 103 N .

(d) Since it starts from rest, the ball acquires momentum equal to the impulse from the kick. Let m
be the mass of the ball and v be its speed as it leaves the foot. Then,

v =
p

m
=
J

m
=

9.0 N · s
0.45 kg

= 20 m/s .
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20. (a) We choose +x along the initial direction of motion and apply momentum conservation:

mbullet~vi = mbullet~v1 +mblock~v2

(5.2 g)(672 m/s) = (5.2 g)(428 m/s) + (700 g)~v2

which yields v2 = 1.81 m/s.

(b) It is a consequence of momentum conservation that the velocity of the center of mass is unchanged
by the collision. We choose to evaluate it before the collision:

~vcom =
mbullet~vi

mbullet +mblock
=

(5.2 g)(672 m/s)

5.2 g + 700 g

which gives the result ~vcom = 4.96 m/s.

21. We examine the horizontal components of the momenta of the package and sled. Let ms be the mass of
the sled and vs be its initial velocity. Let mp be the mass of the package and let v be the final velocity
of the sled and package together. The horizontal component of the total momentum is conserved, so
msvs = (ms +mp)v and

v =
vsms

ms +mp
=

(9.0 m/s)(6.0 kg)

6.0 kg + 12 kg
= 3.0 m/s .

22. We refer to the discussion in the textbook (see Sample Problem 10-2, which uses the same notation
that we use here) for many of the important details in the reasoning. Here we only present the primary
computational step (using SI units):

v =
m+M

m

√

2gh =
2.010

0.010

√

2(9.8)(0.12) = 3.1× 102 m/s .

23. Let mm be the mass of the meteor and me be the mass of Earth. Let vm be the velocity of the meteor
just before the collision and let v be the velocity of Earth (with the meteor) just after the collision. The
momentum of the Earth-meteor system is conserved during the collision. Thus, in the reference frame
of Earth before the collision, mmvm = (mm +me)v, so

v =
vmmm

mm +me
=

(7200 m/s)(5× 1010 kg)

5.98× 1024 kg + 5× 1010 kg
= 6× 10−11 m/s .

We convert this as follows:
(

6× 10−11 m

s

)

(

1000 mm

m

)(

3.2× 107 s

y

)

= 2 mm/y .

24. (a) To relate the sliding distance to the speed V of the bullet-plus-block at the instant it has finished

embedding itself in the block, we can either use Eq. 2-16 and ~Fnet = m~a, or energy conservation
as expressed by Eq. 8-31 (with W = 0 and fk = µk(m+M)g using Eq. 6-2). We choose the latter
approach:

Kbullet plus block = ∆Eth

1

2
(m+M)V 2 = µk(m+M)gd

which yields V =
√

2µk gd = 2.7 m/s.

(b) For the collision itself, we use momentum conservation (with the direction of motion being positive).

mbulletvi = (m+M)V

(0.0045 kg)vi = (2.4045 kg)(2.7m/s)

which gives the result vi = 1.4× 103 m/s.
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25. (a) The magnitude of the deceleration of each of the cars is a = f/m = µkmg/m = µkg. If a car stops
in distance d, then its speed v just after impact is obtained from Eq. 2-16:

v2 = v2
0 + 2ad =⇒ v =

√
2ad =

√

2µkgd

since v0 = 0 (this could alternatively have been derived using Eq. 8-31). Thus,

vA =
√

2(0.13)(9.8)(8.2) = 4.6 m/s , and

(b) vB =
√

2(0.13)(9.8)(6.1) = 3.9 m/s.

(c) Let the speed of car B be v just before the impact. Conservation of linear momentum gives
mBv = mAvA +mBvB, or

v =
(mAvA +mBvB)

mB
=

(1100)(4.6) + (1400)(3.9)

1400
= 7.5 m/s .

The conservation of linear momentum during the impact depends on the fact that the only significant
force (during impact of duration ∆t) is the force of contact between the bodies. In this case, that
implies that the force of friction exerted by the road on the cars is neglected during the brief ∆t.
This neglect would introduce some error in the analysis. Related to this is the assumption we are
making that the transfer of momentum occurs at one location – that the cars do not slide appreciably
during ∆t – which is certainly an approximation (though probably a good one). Another source of
error is the application of the friction relation Eq. 6-2 for the sliding portion of the problem (after
the impact); friction is a complex force that Eq. 6-2 only partially describes.

26. We note that the “(a)” and “(b)” in Fig. 10-32 do not correspond to parts (a) and (b) (in fact, it’s
somewhat the reverse). Our +x direction is to the right (so all velocities are positive-valued).

(a) We apply momentum conservation to relate the situation just before the bullet strikes the second
block to the situation where the bullet is embedded within the block.

(0.0035 kg)v = (1.8035 kg)(1.4 m/s) =⇒ v = 721 m/s .

(b) We apply momentum conservation to relate the situation just before the bullet strikes the first
block to the instant it has passed through it (having speed v found in part (a)).

(0.0035 kg)v0 = (1.2 kg)(0.63 m/s) + (0.0035 kg)(721 m/s)

which yields v0 = 937 m/s.

27. (a) We want to calculate the force that the scale exerts on the marbles. This is the sum of the force
that holds the marbles already on the scale against the downward force of gravity and the force
that brings the falling marbles to rest. At the end of time t, the number of marbles on the scale
is Rt. At this moment, the gravitational force on them is Rtmg and the upward force of the scale
that holds them is F1 = Rtmg. Just before striking the scale, a marble that fell from height h has
speed v =

√
2gh and momentum p = m

√
2gh. To stop the falling marbles, the scale must exert an

upward force F2 = Rp = Rm
√

2gh. The total force of the scale on the marbles is

F = F1 + F2 = Rtmg +Rm
√

2gh = Rm
(

gt+
√

2gh
)

.

(b) For the given data (using SI units, so m = 0.0045 kg), we find

F = (100)(0.0045)
(

(9.8)(10.0) +
√

2(9.8)(7.60)
)

which yields F = 49.6 N. Assuming the scale is calibrated to read in terms of an equivalent mass,
its reading is F/g = 49.6/9.8 = 5.06 kg.
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28. We choose +x in the direction of (initial) motion of the blocks, which have masses m1 = 5 kg and
m2 = 10 kg. Where units are not shown in the following, SI units are to be understood.

(a) Momentum conservation leads to

m1~v1i +m2~v2i = m1~v1f +m2~v2f

(5)(3) + (10)(2) = 5~v1f + (10)(2.5)

which yields ~v1f = 2. Thus, the speed of the 5 kg block immediately after the collision is 2.0 m/s.

(b) We find the reduction in total kinetic energy:

Ki −Kf =
1

2
(5)(3)2 +

1

2
(10)(2)2 − 1

2
(5)(2)2 − 1

2
(10)(2.5)2

which gives the result 1.25 J. Rounding to two figures and recalling that ∆K = Kf −Ki then our
answer is ∆K = −1.3 J.

(c) In this new scenario where ~v2f = 4.0 m/s, momentum conservation leads to ~v1f = −1.0 m/s and
we obtain ∆K = +40 J.

(d) The creation of additional kinetic energy is possible if, say, some gunpowder were on the surface
where the impact occurred (initially stored chemical energy would then be contributing to the
result).

29. LetmF be the mass of the freight car and vF be its initial velocity. LetmC be the mass of the caboose and
v be the common final velocity of the two when they are coupled. Conservation of the total momentum
of the two-car system leads to mF vF = (mF + mC)v, so v = vFmF /(mF + mC). The initial kinetic
energy of the system is

Ki =
1

2
mF v

2
F

and the final kinetic energy is

Kf =
1

2
(mF +mC)v2 =

1

2
(mF +mC)

m2
F v

2
F

(mF +mC)2
=

1

2

m2
F v

2
F

(mF +mC)
.

Since 27% of the original kinetic energy is lost, we have Kf = 0.73Ki. Thus,

1

2

m2
F v

2
F

(mF +mC)
= (0.73)

(

1

2
mF v

2
F

)

.

Simplifying, we obtain mF /(mF +mC) = 0.73, which we use in solving for the mass of the caboose:

mC =
0.27

0.73
mF = 0.37mF = (0.37)

(

3.18× 104 kg
)

= 1.18× 104 kg .

30. We think of this as having two parts: the first is the collision itself – where the bullet passes through
the block so quickly that the block has not had time to move through any distance yet – and then the
subsequent “leap” of the block into the air (up to height h measured from its initial position). The first
part involves momentum conservation (with +y upward):

(0.01 kg)(1000 m/s) = (5.0 kg)~v + (0.01 kg)(400 m/s)

which yields ~v = 1.2 m/s. The second part involves either the free-fall equations from Ch. 2 (since we
are ignoring air friction) or simple energy conservation from Ch. 8. Choosing the latter approach, we
have

1

2
(5.0 kg)(1.2 m/s)2 = (5.0 kg)

(

9.8 m/s
2
)

h

which gives the result h = 0.073 m.
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31. (a) Let v be the final velocity of the ball-gun system. Since the total momentum of the system is
conserved mvi = (m+M)v. Therefore, v = mvi/(m+M).

(b) The initial kinetic energy is Ki = 1
2mv

2
i and the final kinetic energy is Kf = 1

2 (m + M)v2 =
1
2m

2v2
i /(m + M). The problem indicates ∆Eth = 0, so the difference Ki − Kf must equal the

energy Us stored in the spring:

Us =
1

2
mv2

i −
1

2

m2v2
i

(m+M)
=

1

2
mv2

i

(

1− m

m+M

)

=
1

2
mv2

i

M

m+M
.

Consequently, the fraction of the initial kinetic energy that becomes stored in the spring is Us/Ki =
M/(m+M).

32. For a picture of this one-dimensional example of an “explosion” involving two objects (m1 = 4.0 kg and
m2 = 6.0 kg), see Fig. 9-40 (but reverse the velocity arrows). Since the system was initially at rest,
momentum conservation leads to

0 = m2~v2 +m1~v1 =⇒ |~v1| =
m2

m1
|~v2|

which yields 6.0 m/s for the speed of the physics book. Mechanical energy conservation tells us that the
initial potential energy is

Ui = Kf total =
1

2
m1v

2
1 +

1

2
m2v

2
2

which gives the result Ui = 120 J.

33. As hinted in the problem statement, the velocity v of the system as a whole – when the spring reaches
the maximum compression xm – satisfies m1v1i +m2v2i = (m1 +m2)v. The change in kinetic energy of
the system is therefore

∆K =
1

2
(m1 +m2)v

2 − 1

2
m1v

2
1i −

1

2
m2v

2
2i

=
(m1v1i +m2v2i)

2

2 (m1 +m2)
− 1

2
m1v

2
1i −

1

2
m2v

2
2i

which yields ∆K = −35 J. (Although it is not necessary to do so, still it is worth noting that algebraic

manipulation of the above expression leads to |∆K| = 1
2

(

m1m2

m1+m2

)

v2
rel where vrel = v1−v2). Conservation

of energy then requires

1

2
kx2

m = −∆K =⇒ xm =

√

−2∆K

k
=

√

−2(−35)

1120

which gives the result xm = 0.25 m.

34. We think of this as having two parts: the first is the collision itself – where the blocks “join” so quickly
that the 1.0-kg block has not had time to move through any distance yet – and then the subsequent
motion of the 3.0 kg system as it compresses the spring to the maximum amount xm . The first part
involves momentum conservation (with +x rightward):

(2.0 kg)(4.0 m/s) = (3.0 kg)~v

which yields ~v = 2.7 m/s. The second part involves mechanical energy conservation:

1

2
(3.0 kg)(2.7 m/s)2 =

1

2
(200 N/m)x2

m

which gives the result xm = 0.33 m.
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35. (a) Let m1 be the mass of the block on the left, v1i be its initial velocity, and v1f be its final velocity.
Let m2 be the mass of the block on the right, v2i be its initial velocity, and v2f be its final velocity.
The momentum of the two-block system is conserved, so m1v1i +m2v2i = m1v1f +m2v2f and

v1f =
m1v1i +m2v2i −m2v2f

m1
=

(1.6)(5.5) + (2.4)(2.5)− (2.4)(4.9)

1.6

which yields v1f = 1.9 m/s. The block continues going to the right after the collision.

(b) To see if the collision is elastic, we compare the total kinetic energy before the collision with the
total kinetic energy after the collision. The total kinetic energy before is

Ki =
1

2
m1v

2
1i +

1

2
m2v

2
2i =

1

2
(1.6)(5.5)2 +

1

2
(2.4)(2.5)2 = 31.7 J .

The total kinetic energy after is

Kf =
1

2
m1v

2
1f +

1

2
m2v

2
2f =

1

2
(1.6)(1.9)2 +

1

2
(2.4)(4.9)2 = 31.7 J .

Since Ki = Kf the collision is found to be elastic.

(c) Now v2i = −2.5 m/s and

v1f =
m1v1i +m2v2i −m2v2f

m1
=

(1.6)(5.5) + (2.4)(−2.5)− (2.4)(4.9)

1.6

which yields v1f = −5.6 m/s. Thus, the velocity is opposite to the direction shown in Fig. 10-37.

36. We use m1 for the mass of the electron and m2 = 1840m1 for the mass of the hydrogen atom. Using
Eq. 10-31,

v2f =
2m1

m1 + 1840m1
v1i =

2

1841
v1i

we compute the final kinetic energy of the hydrogen atom:

K2f =
1

2
(1840m1)

(

2 v1i

1841

)2

=
(1840)(4)

18412

(

1

2
(1840m1)v

2
1i

)

so we find the fraction to be (1840)(4)/18412 ≈ 2.2× 10−3, or 0.22%.

37. (a) Let m1 be the mass of the cart that is originally moving, v1i be its velocity before the collision, and
v1f be its velocity after the collision. Let m2 be the mass of the cart that is originally at rest and
v2f be its velocity after the collision. Then, according to Eq. 10-30,

v1f =
m1 −m2

m1 +m2
v1i .

Using SI units (so m1 = 0.34 kg), we obtain

m2 =
v1i − v1f

v1i + v1f
m1 =

(

1.2− 0.66

1.2 + 0.66

)

(0.34) = 0.099 kg .

(b) The velocity of the second cart is given by Eq. 10-31:

v2f =
2m1

m1 +m2
v1i =

(

2(0.34)

0.34 + 0.099

)

(1.2) = 1.9 m/s .
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(c) The speed of the center of mass is

vcom =
m1v1i +m2v2i

m1 +m2
=

(0.34)(1.2) + 0

0.34 + 0.099
= 0.93 m/s .

Values for the initial velocities were used but the same result is obtained if values for the final
velocities are used.

38. No mechanical energy is “lost” in this encounter, so we analyze it with the elastic collision equations,
particularly Eq. 10-38. Thus,

v1f =
m1 −m2

m1 +m2
v1i +

2m2

m1 +m2
v2i ≈ −v1i + 2v2i

where we have made the (certainly reasonable) approximation that m2 ≫ m1 and simplified accordingly.
Thus, v1 f = −12 + 2(−13) = −38, resulting in a final speed (relative to the Sun) of 38 km/s.

39. We use m1 = 4 u for the mass of the alpha particle and m2 = 197 u for the mass of the gold nucleus in
Eq. 10-31:

v2f =
2(4)

4 + 197
v1i =

8

201
v1i

we compute the final kinetic energy of the gold nucleus (which must be the same as the kinetic energy
lost by the alpha particle – since this is an elastic collision)

K2f =
1

2
m2v

2
2f =

1

2
(197 u)

(

8 v1i

201

)2

.

We divide this by the initial alpha particle energy Ki = 1
2 (4 u)v2

1i to obtain

K2f

Ki
=

(197)(8)2

(4)(201)2
≈ 0.078

so we find the percentage is 7.8%.

40. First, we find the speed v of the ball of mass m1 right before the collision (just as it reaches its lowest
point of swing). Mechanical energy conservation (with h = 0.700 m) leads to

m1gh =
1

2
m1v

2 =⇒ v =
√

2gh = 3.7 m/s .

(a) We now treat the elastic collision (with SI units) using Eq. 10-30:

v1f =
m1 −m2

m1 +m2
v =

0.5− 2.5

0.5 + 2.5
(3.7) = −2.47

which means the final speed of the ball is 2.47 m/s.

(b) Finally, we use Eq. 10-31 to find the final speed of the block:

v2f =
2m1

m1 +m2
v =

2(0.5)

0.5 + 2.5
(3.7) = 1.23 m/s .

41. (a) Let m1 be the mass of the body that is originally moving, v1i be its velocity before the collision,
and v1f be its velocity after the collision. Let m2 be the mass of the body that is originally at rest
and v2f be its velocity after the collision. Then, according to Eq. 10–30,

v1f =
m1 −m2

m1 +m2
v1i .

We solve for m2 to obtain

m2 =
v1i − v1f

v1f + v1i
m1 .

We combine this with v1f = v1i/4 to obtain m2 = 3m1/5 = 3(2.0)/5 = 1.2 kg.
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(b) The speed of the center of mass is

vcom =
m1v1i +m2v2i

m1 +m2
=

(2.0)(4.0)

2.0 + 1.2
= 2.5 m/s .

42. We refer to the discussion in the textbook (Sample Problem 10-4, which uses the same notation that
we use here) for some important details in the reasoning. We choose rightward in Fig. 10-15 as our +x
direction. We use the notation ~v when we refer to velocities and v when we refer to speeds (which are
necessarily positive). Since the algebra is fairly involved, we find it convenient to introduce the notation
∆m = m2 −m1 (which, we note for later reference, is a positive-valued quantity).

(a) Since ~v1i = +
√

2gh1 where h1 = 9.0 cm, we have

~v1f =
m1 −m2

m1 +m2
v1i = − ∆m

m1 +m2

√

2gh1

which is to say that the speed of sphere 1 immediately after the collision is v1f = (∆m/(m1 +
m2))

√
2gh1 and that ~v1f points in the −x direction. This leads (by energy conservation m1gh1f =

1
2m1v

2
1f ) to

h1f =
v2
1f

2g
=

(

∆m

m1 +m2

)2

h1 .

With m1 = 50 g and m2 = 85 g, this becomes h1f ≈ 0.6 cm.

(b) Eq. 10-31 gives

v2f =
2m1

m1 +m2
v1i =

2m1

m1 +m2

√

2gh1

which leads (by energy conservation m2gh2f = 1
2m2v

2
2f ) to

h2f =
v2
2f

2g
=

(

2m1

m1 +m2

)2

h1 .

With m1 = 50 g and m2 = 85 g, this becomes h2f ≈ 4.9 cm.

(c) Fortunately, they hit again at the lowest point (as long as their amplitude of swing was “small” –
this is further discussed in Chapter 16). At the risk of using cumbersome notation, we refer to the
next set of heights as h1ff and h2ff . At the lowest point (before this second collision) sphere 1 has
velocity +

√

2gh1f (rightward in Fig. 10-15) and sphere 2 has velocity −
√

2gh1f (that is, it points
in the −x direction). Thus, the velocity of sphere 1 immediately after the second collision is, using
Eq. 10-38,

~v1ff =
m1 −m2

m1 +m2

√

2gh1f +
2m2

m1 +m2

(

−
√

2gh2f

)

=
−∆m

m1 +m2

(

∆m

m1 +m2

√

2gh1

)

− 2m2

m1 +m2

(

2m1

m1 +m2

√

2gh1

)

= − (∆m)2 + 4m1m2

(m1 +m2)
2

√

2gh1 .

This can be greatly simplified (by expanding (∆m)2 and (m1 +m2)
2
) to arrive at the conclusion

that the speed of sphere 1 immediately after the second collision is simply v1ff =
√

2gh1 and that
~v1ff points in the −x direction. Energy conservation (m1gh1ff = 1

2m1v
2
1ff ) leads to

h1ff =
v2
1ff

2g
= h1 = 9.0 cm .
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(d) One can reason (energy-wise) that h1 ff = 0 simply based on what we found in part (c). Still, it
might be useful to see how this shakes out of the algebra. Eq. 10-39 gives the velocity of sphere 2
immediately after the second collision:

v2 ff =
2m1

m1 +m2

√

2gh1 f +
m2 −m1

m1 +m2

(

−
√

2gh2 f

)

=
2m1

m1 +m2

(

∆m

m1 +m2

√

2gh1

)

+
∆m

m1 +m2

( −2m1

m1 +m2

√

2gh1

)

which vanishes since (2m1)(∆m) − (∆m)(2m1) = 0. Thus, the second sphere (after the second
collision) stays at the lowest point, which basically recreates the conditions at the start of the
problem (so all subsequent swings-and-impacts, neglecting friction, can be easily predicted – as
they are just replays of the first two collisions).

43. (a) Let m1 be the mass of one sphere, v1i be its velocity before the collision, and v1f be its velocity
after the collision. Let m2 be the mass of the other sphere, v2i be its velocity before the collision,
and v2f be its velocity after the collision. Then, according to Eq. 10–38,

v1f =
m1 −m2

m1 +m2
v1i +

2m2

m1 +m2
v2i .

Suppose sphere 1 is originally traveling in the positive direction and is at rest after the collision.
Sphere 2 is originally traveling in the negative direction. Replace v1i with v, v2i with −v, and v1f

with zero to obtain 0 = m1 − 3m2. Thus m2 = m1/3 = (300 g)/3 = 100 g.

(b) We use the velocities before the collision to compute the velocity of the center of mass:

vcom =
m1v1i +m2v2i

m1 +m2
=

(300 g)(2.0 m/s) + (100 g)(−2.0 m/s)

300 g + 100 g

which yields vcom = 1.0 m/s.

44. The velocities of m1 and m2 just after the collision with each other are given by Eq. 10-38 and Eq. 10-39
(setting v1i = 0).

v1f =
2m2

m1 +m2
v2i

v2f =
m2 −m1

m1 +m2
v2i

After bouncing off the wall, the velocity of m2 becomes −v2f (see a massive target in §10-5). In these
terms, the problem requires

v1f = −v2f

2m2

m1 +m2
v2i = − m2 −m1

m1 +m2
v2i

which simplifies to

2m2 = − (m2 −m1) =⇒ m2 =
m1

3
.

45. (a) We use conservation of mechanical energy to find the speed of either ball after it has fallen a
distance h. The initial kinetic energy is zero, the initial gravitational potential energy is Mgh,
the final kinetic energy is 1

2Mv2, and the final potential energy is zero. Thus Mgh = 1
2Mv2 and

v =
√

2gh. The collision of the ball of M with the floor is an elastic collision of a light object with
a stationary massive object. The velocity of the light object reverses direction without change in
magnitude. After the collision, the ball is traveling upward with a speed of

√
2gh. The ball of
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mass m is traveling downward with the same speed. We use Eq. 10-38 to find an expression for the
velocity of the ball of mass M after the collision:

vMf =
M −m
M +m

vMi +
2m

M +m
vmi

=
M −m
M +m

√

2gh− 2m

M +m

√

2gh

=
M − 3m

M +m

√

2gh .

For this to be zero, M = 3m.

(b) We use the same equation to find the velocity of the ball of mass m after the collision:

vmf = −m−M
M +m

√

2gh+
2M

M +m

√

2gh =
3M −m
M +m

√

2gh

which becomes (upon substitutingM = 3m) vmf = 2
√

2gh. We next use conservation of mechanical
energy to find the height h′ to which the ball rises. The initial kinetic energy is 1

2mv
2
mf , the initial

potential energy is zero, the final kinetic energy is zero, and the final potential energy is mgh′.
Thus

1

2
mv2

mf = mgh′ =⇒ h′ =
v2

mf

2g
= 4h

where 2
√

2gh is substituted for vmf .

46. (a) Conservation of linear momentum implies mA~vA +mB~vB = mA~v
′
A +mB~v

′
B . Since mA = mB =

m = 2.0 kg, the masses divide out and we obtain (in m/s)

~v ′
B = ~vA + ~vB − ~v ′

A

= (15̂ı + 30̂j) + (−10̂ı + 5̂j)− (−5̂ı + 20̂j)

= 10̂ı + 15̂j .

(b) The final and initial kinetic energies are

Kf =
1

2
mv′ 2A +

1

2
mv′ 2B =

1

2
(2.0)

(

(−5)2 + 202 + 102 + 152
)

= 8.0× 102 J

Ki =
1

2
mv2

A +
1

2
mv2

B =
1

2
(2.0)

(

152 + 302 + (−10)2 + 52
)

= 1.3× 103 J .

The change kinetic energy is then ∆K = −5.0× 102 J (that is, 500 J of the initial kinetic energy is
lost).

47. We orient our +x axis along the initial direction of motion, and specify angles in the “standard” way –
so θ = +64◦ for the alpha (α) particle (after collision) and φ = −51◦ for the oxygen nucleus (o) (which
is going into the fourth quadrant, in our scenario). We apply the conservation of linear momentum to
the x and y axes respectively.

mαvα = mαv
′
α cos θ +mov

′
o cosφ

0 = mαv
′
α sin θ +mov

′
o sinφ

We are given v′o = 1.2× 105 m/s, which leaves us two unknowns and two equations, which is sufficient
for solving.

(a) We solve for the final alpha particle speed using the y-momentum equation:

v′α = − mαv
′
α sin θ

mo sinφ
= − (16)

(

1.2× 105
)

sin (−51◦)

(4) sin (64◦)

which yields v′α = 4.15× 105 m/s.
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(b) Plugging our result from part (a) into the x-momentum equation produces the initial alpha particle
speed:

mαvα =
mαv

′
α cos θ +mov

′
o cosφ

mα

=
(4)
(

4.15× 105
)

cos (64◦) + (16)
(

1.2× 105
)

cos (−51◦)

4

= 4.84× 105 m/s .

48. We orient our +x axis along the initial direction of motion, and specify angles in the “standard” way –
so θ = +60◦ for the proton (1) which is assumed to scatter into the first quadrant and φ = −30◦ for the
target proton (2) which scatters into the fourth quadrant (recall that the problem has told us that this
is perpendicular to θ). We apply the conservation of linear momentum to the x and y axes respectively.

m1v1 = m1v
′
1 cos θ +m2v

′
2 cosφ

0 = m1v
′
1 sin θ +m2v

′
2 sinφ

We are given v1 = 500 m/s, which provides us with two unknowns and two equations, which is sufficient
for solving. Since m1 = m2 we can cancel the mass out of the equations entirely.

(a) Combining the above equations and solving for v′2 we obtain

v′2 =
v1 sin(θ)

sin (θ − φ)
=

500 sin(60◦)

sin(90◦)
= 433

in SI units (m/s). We used the identity sin(θ) cos(φ)− cos(θ) sin(φ) = sin (θ − φ) in simplifying our
final expression.

(b) In a similar manner, we find

v′1 =
v1 sin(φ)

sin (φ− θ) =
500 sin(−30◦)

sin(−90◦)
= 250 m/s .

49. (a) We use Fig. 10-16 of the text (which treats both angles are positive-valued, even though one
of them is in the fourth quadrant; this is why there is an explicit minus sign in Eq. 10-43 as
opposed to it being implicitly in the angle). We take the cue ball to be body 1 and the other
ball to be body 2. Conservation of the x component of the total momentum of the two-ball
system leads to mv1i = mv1f cos θ1 + mv2f cos θ2 and conservation of the y component leads to
0 = −mv1f sin θ1 +mv2f sin θ2. The masses are the same and cancel from the equations. We solve
the second equation for sin θ2:

sin θ2 =
v1f

v2f
sin θ1 =

(

3.50 m/s

2.00 m/s

)

sin 22.0◦ = 0.656 .

Consequently, the angle between the second ball and the initial direction of the first is θ2 = 41.0◦.

(b) We solve the first momentum conservation equation for the initial speed of the cue ball.

v1i = v1f cos θ1 + v2f cos θ2

= (3.50 m/s) cos 22.0◦ + (2.00 m/s) cos 41.0◦

= 4.75 m/s .

(c) With SI units understood, the initial kinetic energy is

Ki =
1

2
mv2

i =
1

2
m(4.75)2 = 11.3m
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and the final kinetic energy is

Kf =
1

2
mv2

1f +
1

2
mv2

2f =
1

2
m
(

(3.50)2 + (2.00)2
)

= 8.1m .

Kinetic energy is not conserved.

50. We orient our +x axis along the initial direction of motion, and specify angles in the “standard” way –
so θ = −90◦ for the particle B which is assumed to scatter “downward” and φ > 0 for particle A which
presumably goes into the first quadrant. We apply the conservation of linear momentum to the x and y
axes respectively.

mBvB = mBv
′
B cos θ +mAv

′
A cosφ

0 = mBv
′
B sin θ +mAv

′
A sinφ

(a) Setting vB = v and v′B = v/2, the y-momentum equation yields

mAv
′
A sinφ = mB

v

2

and the x-momentum equation yields

mAv
′
A cosφ = mB v .

Dividing these two equations, we find tanφ = 1
2 which yields φ = 27◦. If we choose to measure this

from the final direction of motion for B, then this becomes 90◦ + 27◦ = 117◦.

(b) We can formally solve for v′A (using the y-momentum equation and the fact that sinφ = 1/
√

5)

v′A =

√
5

2

mB

mA
v

but lacking numerical values for v and the mass ratio, we cannot fully determine the final speed
of A. Note: substituting cosφ = 2/

√
5, into the x-momentum equation leads to exactly this same

relation (that is, no new information is obtained which might help us determine an answer).

51. Suppose the objects enter the collision along lines that make the angles θ > 0 and φ > 0 with the x axis,
as shown in the diagram below. Both have the same mass m and the same initial speed v.

We suppose that after the colli-
sion the combined object moves
in the positive x direction with
speed V . Since the y component
of the total momentum of the
two-object system is conserved,
mv sin θ − mv sinφ = 0. This
means φ = θ. Since the x com-
ponent is conserved, 2mv cos θ =
2mV . We now use V = v/2 to
find that cos θ = 1/2. This means
θ = 60◦. The angle between the
initial velocities is 120◦.
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52. We orient our +x axis along the initial direction of motion, and specify angles in the “standard” way –
so θ = +60◦ for one ball (1) which is assumed to go into the first quadrant with speed v′1 = 1.1 m/s,
and φ < 0 for the other ball (2) which presumably goes into the fourth quadrant. The mass of each
ball is m, and the initial speed of one of the balls is v0 = 2.2 m/s. We apply the conservation of linear
momentum to the x and y axes respectively.

mv0 = mv′1 cos θ +mv′2 cosφ

0 = mv′1 sin θ +mv′2 sinφ
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The mass m cancels out of these equations, and we are left with two unknowns and two equations, which
is sufficient to solve.

(a) With SI units understood, the y-momentum equation can be rewritten as

v′2 sinφ = −v′1 sin 60◦ = −0.95

and the x-momentum equation yields

v′2 cosφ = v0 − v′1 cos 60◦ = 1.65

Dividing these two equations, we find tanφ = −0.577 which yields φ = −30◦. If we choose to
measure this as a positive-valued angle (as the textbook does in §10-6), then this becomes 30◦. We
plug φ = −30◦ into either equation and find v′2 ≈ 1.9 m/s.

(b) One can check to see if this an elastic collision by computing

2Ki

m
= v2

0 and
2Kf

m
= v′ 21 + v′ 22

and seeing if they are equal (they are), but one must be careful not to use rounded-off values. Thus,
it is useful to note that the answer in part (a) can be expressed “exactly” as v′2 = 1

2v0
√

3 (and
of course v′1 = 1

2v0 “exactly” – which makes it clear that these two kinetic energy expressions are
indeed equal).

53. The diagram below shows the situation as the incident ball (the left-most ball) makes contact with the
other two. It exerts an impulse of the same magnitude on each ball, along the line that joins the centers
of the

incident ball and the target
ball. The target balls leave
the collision along those lines,
while the incident ball leaves
the collision along the x axis.
The three dotted lines that
join the centers of the balls
in contact form an equilateral
triangle, so both of the an-
gles marked θ are 30◦. Let v0
be the velocity of the incident
ball before the collision and V
be its velocity afterward. The
two target balls leave the colli-
sion with the same speed. Let
v represent that speed. Each
ball has mass m.
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Since the x component of the total momentum of the three-ball system is conserved,

mv0 = mV + 2mv cos θ

and since the total kinetic energy is conserved,

1

2
mv2

0 =
1

2
mV 2 + 2

(

1

2
mv2

)

.

We know the directions in which the target balls leave the collision so we first eliminate V and solve for
v. The momentum equation gives V = v0 − 2v cos θ, so V 2 = v2

0 − 4v0v cos θ+ 4v2 cos2 θ and the energy
equation becomes v2

0 = v2
0 − 4v0v cos θ + 4v2 cos2 θ + 2v2. Therefore,

v =
2v0 cos θ

1 + 2 cos2 θ
=

2(10 m/s) cos 30◦

1 + 2 cos2 30◦
= 6.93 m/s .
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(a) The discussion and computation above determines the final velocity of ball 2 (as labeled in Fig. 10-
41) to be 6.9 m/s at 30◦ counterclockwise from the +x axis.

(b) Similarly, the final velocity of ball 3 is 6.9 m/s at 30◦ clockwise from the +x axis.

(c) Now we use the momentum equation to find the final velocity of ball 1:

V = v0 − 2v cos θ = 10 m/s− 2(6.93 m/s) cos 30◦ = −2.0 m/s .

The minus sign indicates that it bounces back in the −x direction.

54. The problem involves the completely inelastic collision of the two children followed by their completely
inelastic collision with the (already moving) man. Speeds are given but no angles, so we are free to orient
our −x axis along the direction of motion of the man before his collision with the children (so his angle
is 180◦). The magnitude of the man’s momentum before that collision is (75 kg)(2.0 m/s) = 150 kg·m/s.
Thus, with SI units understood, the second collision is described by momentum conservation:

~p+ (150 6 180◦) = 0

which yields the momentum of the stuck-together children ~p = (150 6 0◦) in magnitude-angle notation.
We now describe the first collision (of the two children) using momentum conservation:

~p1 + ~p2 = (150 6 0◦) or 150 ı̂

where the unit-vector notation has also been used, in case the magnitude-angle notation is less familiar.
Now, since m1 = m2 = 30 kg and |~p1| = |~p2| = 120 kg·m/s, we see that the y components of the
children’s initial velocities must be equal and opposite. Therefore, if child 1 has an initial velocity angle
θ then child 2 has an initial velocity angle −θ. The previous equation becomes

120 cos (θ) + 120 cos (−θ) = 150

which has the solution θ = 51◦. The angle between the children (initially) is therefore 2θ ≈ 103◦.

55. Let mn = 1.0 u be the mass of the neutron and md = 2.0 u be the mass of the deuteron. In our
manipulations we treat these masses as “exact”, so, for instance, we write mn/md = 1

2 in our simplifying
steps. We assume the neutron enters with a velocity ~vo pointing in the +x direction and leaves along
the positive y axis with speed vn. The deuteron goes into the fourth quadrant with velocity components
vdx > 0 and vdy < 0. Conservation of the x component of momentum leads to

mnvo = mdvdx =⇒ vdx =
1

2
vo

and conservation of the y component leads to

0 = mnvn +mdvfy =⇒ vdy = −1

2
vn .

Also, the collision is elastic, so kinetic energy “conservation” leads to

1

2
mnv

2
o =

1

2
mnv

2
n +

1

2
mdv

2
d

which we simplify by multiplying through with 2/mn and using v2
d = v2

dx + v2
dy

v2
o = v2

n +
md

mn

(

v2
dx + v2

dy

)

.

Now we substitute in the relations found from the momentum conditions:

v2
o = v2

n + 2

(

v2
o

4
+
v2

n

4

)

=⇒ vn = vo

√

1

3
.

Finally, we set up a ratio expressing the (relative) loss of kinetic energy (by the neutron).

Ko −Kn

Ko
= 1− v2

n

v2
o

= 1− 1

3
=

2

3
.
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56. (a) Choosing upward as the positive direction, the momentum change of the foot is

∆~p = 0−mfoot ~vi = −(0.003 kg)(−1.5m/s)

which yields an impulse of 4.50× 10−3 N·s.
(b) Using Eq. 10-8 and now treating downward as the positive direction, we have

~J = ~Favg∆t = mlizard g∆t = (0.090)(9.8)(0.6)

which yields ~J = 0.529 N·s.
(c) Considering the large difference between the answers for part (a) and part (b), we see that the slap

cannot account for the support; we infer, then, that the push does the job.

57. From mechanical energy conservation (or simply using Eq. 2-16 with ~a = g downward) we obtain

v =
√

2gh =
√

2(9.8)(1.5) = 5.4 m/s

for the speed just as the body makes contact with the ground.

(a) During the compression of the body, the center of mass must decelerate over a distance d = 0.30 m.
Choosing +y downward, the deceleration a is found using Eq. 2-16

0 = v2 + 2ad =⇒ a = − v
2

2d
= − 5.42

2(0.30)

which yields a = −49 m/s2. Thus, the magnitude of the net (vertical) force is m|a| = 49m in SI
units, which (since 49 = 5(9.8)) can be expressed as 5mg.

(b) During the deceleration process, the forces on the dinosaur are (in the vertical direction) ~N and m~g.
If we choose +y upward, and use the final result from part (a), we therefore have N −mg = 5mg,
or N = 6mg. In the horizontal direction, there is also a deceleration (from vo = 19 m/s to zero), in
this case due to kinetic friction fk = µkN = µk(6mg). Thus, the net force exerted by the ground
on the dinosaur is

Fground =
√

f2
k +N2 ≈ 7mg .

(c) We can applying Newton’s second law in the horizontal direction (with the sliding distance denoted
as ∆x) and then use Eq. 2-16, or we can apply the general notions of energy conservation. The
latter approach is shown:

1

2
mv2

o = µk(6mg)∆x =⇒ ∆x =
192

2(6)(0.6)(9.8)
≈ 5 m .

58. (a) As explained in the problem, the height of the nth domino is hn = 1.5n−1 in centimeters. Therefore,
h32 = 1.531 = 2.9× 105 cm = 2.9 km (!).

(b) When the center of the domino is directly over the corner, the height of the center-point is

hc =

√

(

h

2

)2

+

(

d

2

)2

=
d

2

√
101

where h = 10d has been used in that last step. While the domino is in its usual resting position,
the height of that point is only ho = h/2 which can be written as 5d. Since the answer is requested
to be in terms of U1 then

U1 = mg(5d) =⇒ d =
U1

5mg
.

Therefore, the energy needed to push over the domino is

∆U = mghc − U1 = mg

(

d

2

√
101

)

− U1 =
U1

10

√
101− U1

which yields approximately 0.005U1 ; the problem refers to this as ∆E1,in .



267

(c) The “loss” of potential energy equal to

mghc −mg
(

h

2
sin θ

)

becomes the kinetic energy (denoted ∆E1,out in the problem). Therefore, we obtain

∆E1,out = mg

(

d

2

√
101

)

−mg
(

10d

2
sin θ

)

which (using θ = 45◦) simplifies to 1.49mgd. Since d = U1/5mg this becomes roughly ∆E1,out =
0.30U1 .

(d) We see from part (b) that ∆En,in is directly proportional to mndn and consequently (since the
density is assumed the same for all of them and the volume of a domino is hdw where w is the
width) is proportional to wnhnd

2
n. The width also scales like the other quantities, so ∆En,in is

proportional to 1.54(n−1). Therefore, ∆E2,in = 1.54∆E1,in which implies ∆E2,in = 0.025U1 .

(e) Therefore,
∆E1,out

∆E2,in
=

0.30U1

0.025U1
= 12 .

59. (a) We choose +x to be away from the armor (pointing back towards the gun). The velocity is there
negative-valued and the acceleration is positive-valued. Using Eq. 2-11,

0 = ~v0 + ~at =⇒ ~a = −~v0
t

= − −300

40× 10−6
= 7.5× 106 m/s2 .

(b) Since the final momentum is zero, the momentum change is

∆~p = 0−m~v0 = −(0.0102 kg)(−300 m/s) = 3.1 kg·m/s .

(c) We compute Kf −Ki = 0− 1
2mv

2
0 and obtain − 1

2 (0.0102)(300)2 ≈ −460 J.

(d) If we assume uniform deceleration, Eq. 2-17 gives

∆x =
1

2
(~v0 + 0) t =

1

2
(−300)

(

40× 10−6
)

so that the distance is |∆x| = 0.0060 m.

(e) By the impulse-momentum theorem, the impulse of the armor on the bullet is ~J = ∆~p = 3.1 N·s.
By Newton’s third law, the impulse of the bullet on the armor must have that same magnitude.

(f) Using Eq. 10-8, we find the magnitude of the (average) force exerted by the bullet on the armor:

Favg =
J

t
=

3.1

40× 10−6
= 7.7× 104 N .

(g) From Newton’s second law, we find ap = Favg/M (where M = 65 kg) to be 1.2× 103 m/s2.

(h) Momentum conservation leads to V = mv0/M = 0.047 m/s. (This result can be gotten a number
of ways, given the information available at this point in the problem.)

(i) Shortening the distance means decreasing the stopping time (Eq. 2-17 shows this clearly) which
(recalling our calculation in part (a)) means the magnitude of the bullet’s deceleration increases. It
does not change the answer to part (b) (for the change in momentum), nor does it affect part (c) (the

change in kinetic energy). Since ~J is determined by ∆~p, part (e) is unchanged. But with t smaller,
J/t = Favg is larger, as is ap . Finally, vp is the same as before since momentum conservation
describes the input/output of the collision and not the inner dynamics of it.
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60. From mechanical energy conservation (or simply using Eq. 2-16 with ~a = g downward) we obtain

v =
√

2gh =
√

2(9.8)(6.0) = 10.8 m/s

for the speed just as the m = 3000-kg block makes contact with the pile. At the moment of “joining”,
they are a system of mass M = 3500 kg and speed V . With downward positive, momentum conservation
leads to

mv = MV =⇒ V =
(3000)(10.8)

3500
= 9.3 m/s .

Now this block-pile “object” must be rapidly decelerated over the small distance d = 0.030 m. Using
Eq. 2-16 and choosing +y downward, we have

0 = V 2 + 2ad =⇒ a = − 9.32

2(0.030)
= −1440

in SI units (m/s2). Thus, the net force during the decelerating process has magnitudeM |a| = 5.0×106 N.

61. Using Eq. 10-31 with m1 = 3.0 kg, v1i = 8.0 m/s and v2f = 6.0 m/s, then

v2f =
2m1

m1 +m2
v1i =⇒ m2 = m1

(

2v1i

v2f
− 1

)

leads to m2 = M = 5.0 kg.

62. In the momentum relationships, we could as easily work with weights as with masses, but because part (b)
of this problem asks for kinetic energy – we will find the masses at the outset: m1 = 280 × 103/9.8 =
2.86 × 104 kg and m2 = 210 × 103/9.8 = 2.14 × 104 kg. Both cars are moving in the +x direction:
v1i = 1.52 m/s and v2i = 0.914 m/s.

(a) If the collision is completely elastic, momentum conservation leads to a final speed of

V =
m1v1i +m2v2i

m1 +m2
= 1.26 m/s .

(b) We compute the total initial kinetic energy and subtract from it the final kinetic energy.

Ki −Kf =
1

2
m1v

2
1i +

1

2
m2v

2
2i −

1

2
(m1 +m2)V

2 = 2.25× 103 J .

(c) and (d) Using Eq. 10-38 and Eq. 10-39, we find

v2 f =
2m1

m1 +m2
v1 i +

m2 −m1

m1 +m2
v2 i = 1.61 m/s and

v1 f =
m1 −m2

m1 +m2
v1 i +

2m2

m1 +m2
v2 i = 1.00 m/s .

63. We choose coordinates with +x East and +y North, with the standard conventions for measuring the
angles. With SI units understood, we write the initial magnitude of the man’s momentum as (60)(6.0) =
360 and the final momentum of the two of them together as (98)(3.0) = 294. Using magnitude-angle
notation (quickly implemented using a vector capable calculator in polar mode), momentum conservation
becomes

~pman + ~pchild = ~ptogether

(360 6 90◦) + ~p = (294 6 35◦)

Therefore, the momentum of the 38 kg child before the collision is ~p = (308 6 − 38◦). Thus, the child’s
velocity has magnitude equal to 308/38 = 8.1 m/s and direction of 38◦ south of east.
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64. (a) We choose a coordinate system with +x downriver and +y in the initial direction of motion of the
second barge. The velocities in component forms are ~v1i = (6.2 m/s)̂ı and ~v2i = (4.3 m/s)̂j before
collision. After the collision, barge 2 has velocity

~v2f = (5.1 m/s)
(

(sin 18◦)̂ı + (cos 18◦)̂j
)

.

Writing ~v1f = v1f

(

(cos θ)̂ı + (sin θ)̂j
)

, with θ we express the component form of the conservation

of momentum:

m1v1i = m1v1f cos θ +m2v2f sin 18◦

m2v2i = m1v1f sin θ +m2v2f cos 18◦ .

Substituting v1i = 6.2 m/s, v2i = 4.3 m/s, and v2f = 5.1 m/s, we find: v1f = 3.4 m/s, θ = 17◦ (from
the point of view of someone on that barge, this deflection is toward the left).

(b) The loss of kinetic energy is

Ki −Kf =

(

1

2
m1v

2
1i +

1

2
m2v

2
2i

)

−
(

1

2
m1v

2
1f +

1

2
m2v

2
2f

)

which yields 9.5× 105 J.

65. Let the mass of each ball be m. Conservation of (kinetic) energy in elastic collisions requires that
Ki = Kf which leads to

1

2
mV 2 =

1

2
(16m)v2

which yields v = V/4.

66. The speed of each particle of mass m upon impact with the scale is found from mechanical energy
conservation (or simply using Eq. 2-16 with ~a = g downward): v =

√
2gh, where h = 3.5 m. With +y

upward, the change in momentum for the particle is therefore

∆~p = m∆~v = 2mv = 2m
√

2gh .

During a time interval ∆t, the number of collisions is N = R∆t where R = 42 s−1. Thus, using the
impulse-momentum theorem and Eq. 10-8, the average force is

~Favg =
N∆~p

∆t

= 2mR
√

2gh

= 2(0.110)(42)
√

2(9.8)(3.5)

= 77 N

which corresponds to a mass reading of 77/9.8 = 7.8 kg.

67. The momentum before the collision (with +x rightward) is

(6.0 kg)(8.0 m/s) + (4.0 kg)(2.0 m/s) = 56 kg·m/s .

(a) The total momentum at this instant is (6.0 kg)(6.4 m/s)+(4.0 kg)~v. Since this must equal the initial
total momentum (56, using SI units), then we find ~v = 4.4 m/s.

(b) The initial kinetic energy was

1

2
(6.0 kg)(8.0 m/s)2 +

1

2
(4.0 kg)(2.0 m/s)2 = 200 J .
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The kinetic energy at the instant described in part (a) is

1

2
(6.0 kg)(6.4 m/s)2 +

1

2
(4.0 kg)(4.4 m/s)2 = 162 J .

The “missing” 38 J is not dissipated since there is no friction; it is the energy stored in the spring
at this instant when it is compressed. Thus, Ue = 38 J.

68. This is a completely inelastic collision, followed by projectile motion. In the collision, we use momentum
conservation.

~pshoes = ~ptogether

(3.2 kg)(3.0 m/s) = (5.2 kg)~v

Therefore, ~v = 1.8 m/s toward the right as the combined system is projected from the edge of the table.
Next, we can use the projectile motion material from Ch. 4 or the energy techniques of Ch. 8; we choose
the latter.

Kedge + Uedge = Kfloor + Ufloor

1

2
(5.2 kg)(1.8 m/s)2 + (5.2 kg)(9.8 m/s

2
)(0.40 m) = Kfloor + 0

Therefore, the kinetic energy of the system right before hitting the floor is Kfloor = 29 J.

69. We use the impulse-momentum theorem ~J = ∆~p where ~J =
∫

~F dt. Integrating the given expression for

force from the moment it starts from rest up to a variable upper limit t, we have ~J =
(

16t− 1
3 t

3
)

ı̂ with
SI units understood.

(a) Since
(

16t− 1
3 t

3
)

ı̂ = m~v with m = 1.6, we obtain ~v = 24 ı̂ in meters-per-second, for t = 3.0 s.

(b) Setting
(

16t− 1
3 t

3
)

ı̂ = m~v equal to zero leads to t = 6.9 s as the positive root.

(c) We can work through the d~v
dt = 0 condition using our

(

16t− 1
3 t

3
)

ı̂ = m~v relation, or more simply
observe, from the outset, that this is equivalent to finding when the acceleration, hence the force,
is zero. We obtain t = 4.0 s as the positive root, which we plug into the

(

16t− 1
3 t

3
)

ı̂ = m~v relation
and find ~vmax = 27 ı̂ m/s.

70. (a) We use coordinates with +x rightward and +y upward, with the usual conventions for measuring the
angles (so that the final angle is written 90◦−40◦ = 50◦). With SI units understood, the magnitude
of the diver’s momentum before contact is (60.0)(3.00) = 180 and after contact is (60.0)(5.00) = 300.
Using magnitude-angle notation (quickly implemented using a vector capable calculator in polar
mode), the change in momentum is

(300 6 50◦)− (180 6 − 90◦) = (453 6 65◦) .

This equals the total impulse delivered to the diver (by the board and by gravity). If Fnet denotes
the magnitude of the average net force exerted on the diver, then we have

Fnet∆t = 453 =⇒ Fnet =
453

1.2
= 377 N .

(b) Since ~Fnet = (377 6 65◦) and the weight of the diver is (588 6 − 90), we obtain

(377 6 65◦)− (588 6 − 90◦) = (943 6 80◦) .

Therefore, the magnitude of the average force exerted by the board on the diver is 943 N.
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71. The magnitude of the impulse exerted by the gunner on the gun per minute is J = Favg∆t, where
Favg = 180 N and ∆t = 60 s. The impulse exerted on the gun by each bullet of mass m and speed v is
J ′ = mv. The maximum number of bullets N that he could fire per minute satisfies J = NJ ′. Thus

N =
J

J ′ =
Favg∆t

mv
=

(180)(60)

(50× 10−3)(1000)
= 216 .

72. (a) The magnitude of the force is

F =
∆p

∆t
=

9.0× 103 kg·m/s
12 s

= 750 N .

(b) Assuming this is one-dimensional motion (so that any acceleration implies a change in the magnitude
of the velocity), we find the speed increase to be

∆v =
∆p

m
=

9.0× 103 kg·m/s
1500 kg

= 6.0 m/s .

73. (a) The momentum conservation equation (for this completely inelastic collision) mA~vA + mB~vB =

(mA +mB)~V can be written in terms of weights by multiplying through by g:

wA~vA + wB~vB = (wA + wB)~V .

Our ı̂ direction is West and ĵ is South, so we have (with weights in kN and speeds in km/h)

~V =
(12.0) (64.4 ı̂) + (16.0)

(

96.6 ĵ
)

12.0 + 16.0

= 27.6 ı̂ + 55.2 ĵ

which implies that the final speed is 61.7 km/h.

(b) And the angle for the final velocity is tan−1(55.2/27.6) = 63.4◦ South of West.

74. We choose ı̂ East and ĵ North, and use SI units (kg for mass and m/s for speed). The initially moving
tin cookie has mass m1 = 2.0 and velocity ~vo = 8.0 ı̂ , and the initially stationary cookie tin has mass
m2 = 4.0.

(a) Momentum conservation leads to

m1~vo = m1~v1 +m2~v2

16 ı̂ = 8 cos(37◦) ı̂ + 8 sin(37◦) ĵ + (4.0)~v2

which leads to
~v2 = 2.4 ı̂ − 1.2 ĵ =⇒ ~v2 = (2.7 6 27◦)

where magnitude-angle notation is used. Thus, the speed of the cookie tin is 2.7 m/s.

(b) And its angle is tan−1(−1.2/2.4) = −27◦ which can be expressed as 27◦ south of east.

75. We choose ı̂ East and ĵ North, and use SI units. The ball initially moving eastward has mass m1 = 5.0 kg
and initial velocity ~v1i = 4.0 ı̂ m/s, and the ball initially moving westward has mass m2 = 4.0 kg and
velocity ~v2i = −3.0 ı̂ m/s. The final velocity of m1 is ~v1f = −1.2 ĵ.

(a) Momentum conservation leads to

m1~v1i +m2~v2i = m1~v1 +m2~v2

20 ı̂ − 12 ı̂ = −6 ĵ + 4~v2

which leads to
~v2 = 2.0 ı̂ + 1.5 ĵ =⇒ ~v2 = (2.5 6 37◦)

where magnitude-angle notation is used. Thus, the speed of the 4.0 kg ball just after the collision
is 2.5 m/s.
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(b) We compute the decrease in total kinetic energy:

Ki −Kf =
1

2
(5)(4)2 +

1

2
(4)(3)2 − 1

2
(5)(1.2)2 − 1

2
(4)(2.5)2

which gives the result 42 J.

76. Using mechanical energy conservation, we find the speed v of a pendulum at the bottom of its swing is
related to the height h it was released from (or that it swings up to) by v2 = 2gh. Thus, the conservation
of momentum at the instant they collide can be expressed as

m1

√

2gd = (m1 +m2)
√

2ghf .

Therefore, the “final” height of the system (which it swings to shortly after the collision) is

hf =

(

m1

m1 +m2

)2

d .

77. If we neglect the time required for the spring to decelerate the leftward moving gliderm2 and re-accelerate
it (rightward), then we are effectively assuming that glider bounces elastically off the wall (with the spring
playing no dynamic role). Thus, we assume the time t required for m2 to travel distance d+ x (to the
wall and then rightward to position x, assuming the origin is at the wall) is simply t = (d+ x)/v where
v = |v2f | is its speed resulting from the first elastic collision. This velocity is found from Eq. 10-31:

v2f =
2m1

m1 +m2
v1i =

2(590)

940
(−75)

which yields −94 cm/s. Thus, with d = 53 cm, we have the relation t = (53 + x)/94 with x in cm and t
in s. During that time, glider m1 has a displacement ∆x = x− d due its velocity v1f where

v1f =
m1 −m2

m1 +m2
v1i =

240

940
(−75)

which yields v1f = −19 cm/s. This provides another relation between t and x: t = (x − d)/v1f =
(53− x)/19. Equating these to relations, we obtain

53 + x

94
=

53− x
19

=⇒ x = 35 cm .

78. Eq. 10-31, for situations where m1 ≫ m2 , reduces simply to v2f ≈ 2v1i . Thus, the speed of the fly after
the collision is 2(2.1) = 4.2 m/s.

79. (a) We find the velocity ~v1f of the 1200 kg car after the collision (taking the direction of motion as
positive) using momentum conservation (with mass in kg and speed in km/h).

m1~v1i +m2~v2i = m1~v1f +m2~v2f

(1200)(70) + (900)(60) = (1200)~v1f + (900)(70)

This gives the result ~v1f = 62.5 km/h.

(b) We compute the reduction of total kinetic energy in the collision:

Q = Ki −Kf =
1

2
(1200)(70)2 +

1

2
(900)(60)2 − 1

2
(1200)(62.5)2 − 1

2
(900)(70)2

which gives the result 11250 in mixed units (kg·km2/h2). We set up the requested ratio (where
vo = 5 km/h):

Q
1
2m1v2

o

=
11250

15000
=

3

4
.
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80. We refer to the discussion in the textbook (see Sample Problem 10-2, which uses the same notation
that we use here) for many of the important details in the reasoning. Here we only present the primary
computational step (using SI units).

(a) The bullet’s initial kinetic energy is

1

2
mv2 =

1

2
m

(

m+M

m

√

2gh

)2

=
m+M

m
Uf

where Uf = (m+M)gh is the system’s final potential energy (equal to its total mechanical energy
since its speed is zero at height h). Thus,

Uf
1
2mv

2
=

m

m+M
=

0.008

7.008
= 0.00114 .

(b) The fraction m/(m+M) shown in part (a) has no v-dependence. The answer remains the same.

(c) As we found in part (a), the fraction is m/(m+M). The numerical value of h given in the problem
statement has not been used in this solution.

81. (a) Since ~Fnet = d~p
dt (Eq. 9-23), we read from value of Fx (see graph) that the rate of change of

momentum is 4.0 kg·m/s2 at t = 3.0 s.

(b) The impulse, which causes the change in momentum, is equivalent to the area under the curve
in this graph (see Eq. 10-3). We break the area into that of a triangle 1

2 (2.0 s)(4.0 N) plus that
of a rectangle (1.0 s)(4.0 N), which yields a total of 8.0 N·s. Since the car started from rest, its
momentum at t = 3.0 s must therefore be 8.0 kg·m/s.

82. We use J =
∫

Fdt = m∆v = mvf . The integral
∫

F dt is estimated from the area under the curve in
Fig. 10-61 as approximately 4 N·s. (If one doesn’t want to “count squares” one can assume the curve
to be a parabola, in which case F = ξ(t − 3.25)(t − 0.35) (with t in milliseconds) will fit it once the
parameter ξ is adjusted so that F = 2200 N when t is midway between 0.35 ms and 3.25 ms. Then the
integral can be done explicitly.) Thus, the final speed of the ball is

vf =
J

m
=

4 N·s
0.5 kg

= 8 m/s .

83. (a) The impulse on the ball is

~J = ∆~p = m~v − 0 = (46× 10−3 kg)(50 m/s)̂ı = (2.3 N·s)̂ı

where we choose ı̂ to be in the direction of the velocity ~v of the ball as it leaves the club (at 30◦

above horizontal – so it is like the x axis of an inclined plane problem).

(b) The impulse on the club is, by Newton’s third law, ~J ′ = − ~J = −(2.3 N ·s)̂ı. We note that it is
directed opposite to the direction of motion.

(c) Using Eq. 10-8, the average force on the ball is

~Favg =
~J

∆t
=

(2.3)̂ı

1.7× 10−3
= 1400 ı̂ N .

(d) The work done on the ball is

W = ∆K =
1

2
mv2 =

1

2
(46× 10−3)(50)2 = 58 J .
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84. We first note that when the the velocity of a projectile is simply reversed as a result of collision, its
change in momentum (in magnitude) is 2mv (where v is its speed). If this collision takes time ∆t, then
the average force involved is (using Eq. 10-8) Favg = 2mv/∆t. To relate this observation to the present
situation, we replace m with ∆m (representing just that amount of the water stream which is in contact
with the blade during ∆t, and since the impinging flow rate dm/dt is constant (and no water is lost or
“splattered away” in the process) then we conclude dm/dt = ∆m/∆t. Therefore,

Favg = 2v
dm

dt
.

85. One could reason as in §9-7 (with the thrust concept) or proceed with Eq. 10-8. Choosing the latter
approach, we note that (with the final momentum being zero) the average force is (in magnitude)

Favg = v
∆m

∆t

where ∆m is the portion of the water that is decelerated (by the wall) from speed v = 500 cm/s to zero
during time ∆t. If the impinging mass flow rate dm/dt is constant, then we conclude dm/dt = ∆m/∆t.
Thus, Favg = v dm/dt. We are given the volume flow rate dV/dt = 300 cm3/s, and we use the concept
of density to relate mass and volume: m = ρV where ρ = 1.0 g/cm3 for water (most students have seen
density in previous courses). Thus,

Favg = v
dm

dt
= ρ v

dV

dt
= (1.0)(500)(300)

which yields Favg = 1.5× 105 g·cm/s2 which we convert to SI, giving the result Favg = 1.5 N.

86. Although we do not present problems and solutions here, we share a few thoughts on the matter.

(a) This might be more like part (b) of problem 80, in which energy is “liberated” in the collision, but
this depends on what particular sort of pinball collision one has in mind.

(b) This is a good example of an inelastic (but not completely so) collision and might be similar to
part (a) of problem 80.

(c) This might be similar to problem 85, finding the average force on the car in the hailstorm. Instead
of having the hail be halted completely by the collision (as is done with the water in problem 85)
there should be some small rebound speed.

(d) An interesting comparison can be made here between the impact of fist with face with glove, and
without the glove. The increase in contact time with the glove certainly decreases the force of
impact.

(e) If baseball is chosen as one’s example, it might be of interest to refer to the article by Howard
Brody in the August 1990 issue of the American Journal of Physics, where he considers that the
bat may be viewed as a relatively free body in the batting process.

87. (First problem in Cluster 1)
Instead of using V for final speed in completely inelastic collisions (as is used in Eq. 10-18), we use v1f =
v2f , since that facilitates comparison of the results of parts (a) and (b). When we make comparisons,
we assume v1i > 0.

(a) When they stick together, we have

v1f = v2f =
m1

m1 +m2
v1i .
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(b) Eq. 10-30 and Eq. 10-31 provide the elastic collision results:

v1f =
m1 −m2

m1 +m2
v1i

v1f =
2m1

m1 +m2
v1i

from which it is evident that v1f elastic < v1f inelastic and v2f elastic > v2f inelastic .

88. (Second problem in Cluster 1)
We note that the problem has implicitly chosen the initial direction of motion (of m1) as the positive
direction. The questions to find ”greatest” and ”least” values are understood in terms of that axis
choice (greatest = largest positive value, and least = the negative value of greatest magnitude or the
smallest non-negative value). In addition to the assumptions mentioned in the problem, we also assume
that m1 cannot pass through m2 (like a bullet might be able to). We are only able to use momentum
conservation, since no assumptions about the total kinetic energy can be made.

m1 v1i = m1v1f +m2v2f

This (since m2 = 2.00m1) simplifies to

v1i = v1f + 2.00v2f .

(a) Using v1i = 10.0 m/s, we have

v2f = (5.00 m/s)− 0.500v1f .

(b) Ignoring physics considerations, our function is a line of infinite extent with negative slope.

v2f

v1f

1.0

2.0

3.0

4.0

5.0

6.0

7.0

−2.0−4.0 2.0 4.0 6.0 8.0 10.

HHHHHHHHHHHHHHHHHHHHHHHHHH

(c) The greatest possible value of v1f occurs in the completely inelastic case (reasons mentioned in
the next several parts) where (see solution to part (a) of previous problem) its value would be
(10.0)(1/3) ≈ 3.33 m/s.

(d) Clearly, this is also the value of v2f in this case.

(e) They stick together (completely inelastic collision).

(f) As mentioned above, we assume m1 does not pass through m2 and the problem states that there’s
no energy production so that K1f ≤ K1i which implies v1f ≤ v1i .

(g) The plot is shown below, in part (ℓ).

(h) With energy production not a possibility, then the “hardest rebound” m1 can suffer is in an elastic
collision, in which its final velocity (see part (b) of the previous problem) is (10.0)(1 − 2)/3 ≈
−3.33 m/s.
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(i) Eq. 10-31 gives the velocity of m2 as (10.0)(2/3) ≈ 6.67 m/s (see also part (b) of previous problem).

(j) As mentioned, this is an elastic collision (no “loss” of kinetic energy).

(k) The problem states that there’s no energy production so that K1i − K1f = K2f and any greater
value of |v2f | would violate this condition.

(l) The above graph is redrawn here, with the dark part representing the physically allowed region; the
small circles bounding the dark segment correspond to the values calculated in the previous parts
of this problem.
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89. (Third problem in Cluster 1)
We note that the problem has implicitly chosen the initial direction of motion (of m1) as the positive
direction. The questions to find ”greatest” and ”least” values are understood in terms of that axis
choice (greatest = largest positive value, and least = the negative value of greatest magnitude or the
smallest non-negative value). In addition to the assumptions mentioned in the problem, we also assume
that m1 cannot pass through m2 (like a bullet might be able to). We are only able to use momentum
conservation, since no assumptions about the total kinetic energy can be made.

m1 v1i = m1v1f +m2v2f

This (since m2 = 0.500m1) simplifies to

v1i = v1f + 0.500v2f .

(a) Using v1i = 10.0 m/s, we have
v2f = (20.0 m/s)− 2.00v1f .

(b) Ignoring physics considerations, our function is a line of infinite extent with negative slope.
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(c) The greatest possible value of v1f occurs in the completely inelastic case (reasons mentioned in
the next several parts) where (see solution to part (a) of previous problem) its value would be
(10.0)(2/3) ≈ 6.67 m/s.

(d) Clearly, this is also the value of v2f in this case.

(e) They stick together (completely inelastic collision).

(f) As mentioned above, we assume m1 does not pass through m2 and the problem states that there’s
no energy production so that K1f ≤ K1i which implies v1f ≤ v1i .

(g) The plot is shown below, in part (ℓ).

(h) With energy production not a possibility, then the “hardest rebound” m1 can suffer is in an elastic
collision, in which its final velocity (see part (b) of the previous problem) is (10.0)(2 − 1)/3 ≈
3.33 m/s.

(i) Eq. 10-31 gives the velocity of m2 as (10.0)(4/3) ≈ 13.3 m/s (see also part (b) of previous problem).

(j) As mentioned, this is an elastic collision (no “loss” of kinetic energy).

(k) The problem states that there’s no energy production so that K1i − K1f = K2f and any greater
value of |v2f | would violate this condition.

(l) The above graph is redrawn here, with the dark part representing the physically allowed region; the
small circles bounding the dark segment correspond to the values calculated in the previous parts
of this problem.
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90. (First problem in Cluster 2)
The setup for this cluster refers to Fig. 10-16 in the chapter that assumes both angles are positive
(at least, this is what is assumed in writing down Eq. 10-43) regardless of whether they are measured
clockwise or counterclockwise. In this solution, we adopt that same convention.

(a) We first examine conservation of the y components of momentum:

0 = −m1 v1f sin θ1 +m2 v2f sin θ2

0 = −m1(5.00 m/s) sin 30◦ + (2m1) v2f sin θ2

Next, we examine conservation of the x components of momentum.

m1 v1i = m1 v1f cos θ1 +m2 v2f cos θ2

m1(10.0 m/s) = m1(5.00 m/s) cos 30◦ + (2m1) v2f cos θ2

From the y equation, we obtain 1.25 = v2f sin θ2 with SI units understood; similarly, the x equation
yields 2.83 = v2f cos θ2. Squaring these two relations and adding them leads to

1.252 + 2.832 = v2
2f

(

sin2 θ2 + cos2 θ2
)
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and consequently to v2f =
√

1.252 + 2.832 = 3.10 m/s. Plugging back in to either the x or y
equation yields the angle θ2 = 23.8◦.

(b) We compute decrease in total kinetic energy:

Ki −Kf = 27.9m1

so that the collision is seen to be inelastic. We find that

27.9m1

1
2 m1 102 = 0.558 ,

or roughly 56%, of the initial energy has been “lost.”

91. (Second problem in Cluster 2)
As explained in the previous solution, we take both angles θ1 and θ2 to be positive-valued.

(a) We first examine conservation of the y components of momentum.

0 = −m1 v1f sin θ1 +m2 v2f sin θ2

0 = −m1v1f sin 30◦ + 2m1 v2f sin θ2

Next, we examine conservation of the x components of momentum.

m1 v1i = m1 v1f cos θ1 +m2 v2f cos θ2

m1(10.0 m/s) = m1v1f cos 30◦ + 2m1 v2f cos θ2

From the y equation, we obtain v1f = 4 v2f sin θ2; similarly, the x equation yields 20 − v1f

√
3 =

4v2f cos θ2 with SI units understood (also, cos 30◦ =
√

3/2 has been used). Squaring these two
relations and adding them leads to

v2
1f (1 + 3)− 40v1f

√
3 + 400 = 16 v2

2f

(

sin2 θ2 + cos2 θ2
)

and thus to v2
2f = v2

1f/4− 5v1f

√
3/2 + 25. We plug this into the condition of total kinetic energy

“conservation.”

Ki = Kf

1

2
m1 v

2
1i =

1

2
m1 v

2
1f +

1

2
m2 v

2
2f

1

2
m1

(

10
m

s

)2

=
1

2
m1v

2
1f +

1

2
(2m1)

(

v2
1f

4
− 5
√

3

2
v1f + 25

)

This leads to an equation of second degree (in the variable v1f ):

3

4
v2
1f −

5
√

3

2
v1f − 25 = 0

which has a positive root v1f = 5
3

√
3
(

1 +
√

5
)

≈ 9.34 m/s.

(b) We plug our result for v1f into the relation v2f =
√

v2
1f/4− 5v1f

√
3/2 + 25 derived above and

obtain v2f = 5
6

√
6
(√

5− 1
)

≈ 2.52 m/s.

(c) Plugging these values of v1f and v2f into, say, the v1f = 4 v2f sin θ2 relation, we find θ2 = 67.8◦.

92. (Second problem in Cluster 2)
As explained in the first solution in this cluster, we take both angles θ1 and θ2 to be positive-valued.
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(a) We first examine conservation of the y components of momentum.

0 = −m1 v1f sin θ1 +m2 v2f sin θ2

0 = −m1v1f sin 30◦ + 2m1 v2f sin θ2

Next, we examine conservation of the x components of momentum.

m1 v1i = m1 v1f cos θ1 +m2 v2f cos θ2

m1(10.0 m/s) = m1v1f cos 30◦ + 2m1 v2f cos θ2

From the y equation, we obtain v1f = 4 v2f sin θ2; similarly, the x equation yields 20 − v1f

√
3 =

4v2f cos θ2 with SI units understood (and the fact that cos 30◦ =
√

3/2 has been used). Squaring
these two relations and adding them leads to

v2
1f (1 + 3)− 40v1f

√
3 + 400 = 16 v2

2f

(

sin2 θ2 + cos2 θ2
)

and thus to
v2
2f = v2

1f/4− 5v1f

√
3/2 + 25 .

(b) The plot (v2f versus v1f ) is shown below. The units for both axes are meters/second.
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(c) Simply from the total kinetic energy requirement that Ki ≥ Kf we see immediately that v1f ≤
v1i = 10.0 m/s (where the upper bound represents the trivial case where it passes m2 by completely
with Ki = Kf ), and with the more stringent requirement that it does strike m2 and scatters at
θ1 = 30◦ we again find that it is bounded by the Ki = Kf case. The elastic collision scenario was
worked in the previous problem with the result v1f = 9.34 m/s.
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(d) And we also found the result v2f = 2.52 m/s.

(e) As mentioned, this is an elastic collision.

(f) A higher speed for v1f would require energy conversion into kinetic form (say, from an explosion)
since Ki < Kf would be the result.

(g) To save space, a separate graph for this part is not shown.

(h) Returning to the x and y equations derived in part (a), we divide them to obtain

v1f

20− v1f

√
3

=
4v2f sin θ2
4v2f cos θ2

= tan θ2

which leads to

θ2 = tan−1

(

v1f

20− v1f

√
3

)

.

(i) See part (k).

(j) The value for the elastic case was computed in the previous problem; we find θ2 = 67.8◦ when
v1f = 9.34 m/s.

(k) This corresponds to the upper righthand point of the curve shown below.
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(l) , (m), (n), and (o)
Now, unlike the notation used in the one-dimensional collisions, this v1f cannot be negative (it is the
magnitude of the velocity). This suggests that its smallest value is zero, but the requirement that
it scatter at θ1 = 30◦ might seem to conflict with this. However, if one considers the (smooth) limit
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of v1f → 0, we find there is nothing inconsistent with θ1 = 30◦ in setting v1f = 0. It is certainly
inelastic (but not completely so! A completely inelastic collision would be inconsistent with the
θ1 = 30◦ condition!); we find from v2f = 5.00 m/s (see the graph for part (b)) that Ki < Kf in
this case. Clearly, θ2 = 0◦ in this circumstance (see, e.g., the graph for part(i)).
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Chapter 11

1. (a) Eq. 11-6 leads to

ω =
d

dt

(

at+ bt3 − ct4
)

= a+ 3bt2 − 4ct3 .

(b) And Eq. 11-8 gives

α =
d

dt

(

a+ 3bt2 − 4ct3
)

= 6bt− 12ct2 .

2. (a) The second hand of the smoothly running watch turns through 2π radians during 60 s. Thus,

ω =
2π

60
= 0.105 rad/s .

(b) The minute hand of the smoothly running watch turns through 2π radians during 3600 s. Thus,

ω =
2π

3600
= 1.75× 10−3 rad/s .

(c) The hour hand of the smoothly running 12-hour watch turns through 2π radians during 43200 s.
Thus,

ω =
2π

43200
= 1.45× 10−4 rad/s .

3. (a) The time for one revolution is the circumference of the orbit divided by the speed v of the Sun:
T = 2πR/v, where R is the radius of the orbit. We convert the radius:

R =
(

2.3× 104 ly
) (

9.46× 1012 km/ly
)

= 2.18× 1017 km

where the ly ↔ km conversion can be found in Appendix D or figured “from basics” (knowing the
speed of light). Therefore, we obtain

T =
2π
(

2.18× 1017 km
)

250 km/s
= 5.5× 1015 s .

(b) The number of revolutions N is the total time t divided by the time T for one revolution; that is,
N = t/T . We convert the total time from years to seconds and obtain

N =

(

4.5× 109 y
) (

3.16× 107 s/y
)

5.5× 1015 s
= 26 .

4. If we make the units explicit, the function is

θ = (4.0 rad/s)t−
(

3.0 rad/s2
)

t2 +
(

1.0 rad/s3
)

t3

but generally we will proceed as shown in the problem – letting these units be understood. Also, in
our manipulations we will generally not display the coefficients with their proper number of significant
figures.

283



284 CHAPTER 11.

(a) Eq. 11-6 leads to

ω =
d

dt

(

4t− 3t2 + t3
)

= 4− 6t+ 3t2 .

Evaluating this at t = 2 s yields ω2 = 4.0 rad/s.

(b) Evaluating the expression in part (a) at t = 4 s gives ω4 = 28 rad/s.

(c) Consequently, Eq. 11-7 gives

αavg =
ω4 − ω2

4− 2
= 12 rad/s

2
.

(d) And Eq. 11-8 gives

α =
dω

dt
=
d

dt

(

4− 6t+ 3t2
)

= −6 + 6t .

Evaluating this at t = 2 s produces α2 = 6.0 rad/s2.

(e) Evaluating the expression in part (d) at t = 4 s yields α4 = 18 rad/s2. We note that our answer
for αavg does turn out to be the arithmetic average of α2 and α4 but point out that this will not
always be the case.

5. If we make the units explicit, the function is

θ = 2 rad +
(

4 rad/s
2
)

t2 +
(

2 rad/s
3
)

t3

but in some places we will proceed as indicated in the problem – by letting these units be understood.

(a) We evaluate the function θ at t = 0 to obtain θ0 = 2 rad.

(b) The angular velocity as a function of time is given by Eq. 11-6:

ω =
dθ

dt
=
(

8 rad/s
2
)

t+
(

6 rad/s
3
)

t2

which we evaluate at t = 0 to obtain ω0 = 0.

(c) For t = 4 s, the function found in the previous part is ω4 = (8)(4) + (6)(4)2 = 128 rad/s. If we
round this to two figures, we obtain ω4 ≈ 130 rad/s.

(d) The angular acceleration as a function of time is given by Eq. 11-8:

α =
dω

dt
= 8 rad/s

2
+
(

12 rad/s
3
)

t

which yields α2 = 8 + (12)(2) = 32 rad/s2 at t = 2 s.

(e) The angular acceleration, given by the function obtained in the previous part, depends on time; it
is not constant.

6. (a) To avoid touching the spokes, the arrow must go through the wheel in not more than

∆t =
1/8 rev

2.5 rev/s
= 0.050 s .

The minimum speed of the arrow is then

vmin =
20 cm

0.050 s
= 400 cm/s = 4.0 m/s .

(b) No – there is no dependence on radial position in the above computation.
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7. Applying Eq. 2-15 to the vertical axis (with +y downward) we obtain the free-fall time:

∆y = v0yt+
1

2
gt2 =⇒ t =

√

2(10)

9.8
= 1.4 s .

Thus, by Eq. 11-5, the magnitude of the average angular velocity is

ωavg =
(2.5)(2π)

1.4
= 11 rad/s .

8. (a) We assume the sense of rotation is positive. Applying Eq. 11-12, we obtain

ω = ω0 + αt =⇒ α =
3000− 1200

12/60
= 9000 rev/min

2
.

(b) And Eq. 11-15 gives

θ =
1

2
(ω0 + ω) t =

1

2
(1200 + 3000)

(

12

60

)

which yields θ = 420 rev.

9. We assume the sense of initial rotation is positive. Then, with ω0 > 0 and ω = 0 (since it stops at time
t), our angular acceleration is negative-valued.

(a) The angular acceleration is constant, so we can apply Eq. 11-12 (ω = ω0 + αt). To obtain the
requested units, we have t = 30/60 = 0.50 min. Thus,

α = −33.33 rev/min

0.50 min
= −66.7 rev/min

2
.

(b) We use Eq. 11-13:

θ = ω0t+
1

2
αt2 = (33.33)(0.50) +

1

2
(−66.7)(0.50)2 = 8.3 rev .

10. We assume the sense of initial rotation is positive. Then, with ω0 = +120 rad/s and ω = 0 (since it
stops at time t), our angular acceleration (“deceleration”) will be negative-valued: α = −4.0 rad/s2.

(a) We apply Eq. 11-12 to obtain t.

ω = ω0 + αt =⇒ t =
0− 120

−4.0
= 30 s .

(b) And Eq. 11-15 gives

θ =
1

2
(ω0 + ω) t =

1

2
(120 + 0) (30)

which yields θ = 1800 rad. Alternatively, Eq. 11-14 could be used if it is desired to only use the
given information (as opposed to using the result from part (a)) in obtaining θ. If using the result
of part (a) is acceptable, then any angular equation in Table 11-1 (except Eq. 11-12) can be used
to find θ.

11. We apply Eq. 11-12 twice, assuming the sense of rotation is positive. We have ω > 0 and α < 0. Since
the angular velocity at t = 1 min is ω1 = (0.90)(250) = 225 rev/min, we have

ω1 = ω0 + αt =⇒ α =
225− 250

1
= −25 rev/min

2
.

Next, between t = 1 min and t = 2 min we have the interval ∆t = 1 min. Consequently, the angular
velocity at t = 2 min is

ω2 = ω1 + α∆t = 225 + (−25)(1) = 200 rev/min .



286 CHAPTER 11.

12. We assume the sense of rotation is positive, which (since it starts from rest) means all quantities (angular
displacements, accelerations, etc.) are positive-valued.

(a) The angular acceleration satisfies Eq. 11-13:

25 rad =
1

2
α(5.0 s)2 =⇒ α = 2.0 rad/s

2
.

(b) The average angular velocity is given by Eq. 11-5:

ωavg =
∆θ

∆t
=

25 rad

5.0 s
= 5.0 rad/s .

(c) Using Eq. 11-12, the instantaneous angular velocity at t = 5.0 s is

ω =
(

2.0 rad/s2
)

(5.0 s) = 10 rad/s .

(d) According to Eq. 11-13, the angular displacement at t = 10 s is

θ = ω0 +
1

2
αt2 = 0 +

1

2
(2.0)(10)2 = 100 rad .

Thus, the displacement between t = 5 s and t = 10 s is ∆θ = 100− 25 = 75 rad.

13. We take t = 0 at the start of the interval and take the sense of rotation as positive. Then at the end of
the t = 4.0 s interval, the angular displacement is θ = ω0t + 1

2αt
2. We solve for the angular velocity at

the start of the interval:

ω0 =
θ − 1

2αt
2

t
=

120 rad− 1
2

(

3.0 rad/s
2
)

(4.0 s)2

4.0 s
= 24 rad/s .

We now use ω = ω0 + αt (Eq. 11-12) to find the time when the wheel is at rest:

t = −ω0

α
= − 24 rad/s

3.0 rad/s
2 = −8.0 s .

That is, the wheel started from rest 8.0 s before the start of the described 4.0 s interval.

14. The wheel starts turning from rest (ω0 = 0) at t = 0, and accelerates uniformly at α = 2.00 rad/s2.
Between t1 and t2 it turns through ∆θ = 90.0 rad, where t2 − t1 = ∆t = 3.00 s.

(a) We use Eq. 11-13 (with a slight change in notation) to describe the motion for t1 ≤ t ≤ t2 :

∆θ = ω1∆t+
1

2
α (∆t)

2
=⇒ ω1 =

∆θ

∆t
− α∆t

2

which we plug into Eq. 11-12, set up to describe the motion during 0 ≤ t ≤ t1 :

ω1 = ω0 + αt1
∆θ

∆t
− α∆t

2
= αt1

90.0

3.00
− (2.00)(3.00)

2
= (2.00)t1

yielding t1 = 13.5 s.

(b) Plugging into our expression for ω1 (in previous part) we obtain

ω1 =
∆θ

∆t
− α∆t

2
=

90.0

3.00
− (2.00)(3.00)

2
= 27.0 rad/s .
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15. The problem has (implicitly) specified the positive sense of rotation. The angular acceleration of magni-
tude 0.25 rad/s2 in the negative direction is assumed to be constant over a large time interval, including
negative values (for t).

(a) We specify θmax with the condition ω = 0 (this is when the wheel reverses from positive rotation
to rotation in the negative direction). We obtain θmax using Eq. 11-14:

θmax = − ω2
o

2α
= − 4.72

2(−0.25)
= 44 rad .

(b) We find values for t1 when the angular displacement (relative to its orientation at t = 0) is θ1 =
22 rad (or 22.09 rad if we wish to keep track of accurate values in all intermediate steps and only
round off on the final answers). Using Eq. 11-13 and the quadratic formula, we have

θ1 = ωot1 +
1

2
αt21 =⇒ t1 =

−ωo ±
√

ω2
o + 2θ1α

α

which yields the two roots 5.5 s and 32 s.

(c) We find values for t2 when the angular displacement (relative to its orientation at t = 0) is θ2 =
−10.5 rad. Using Eq. 11-13 and the quadratic formula, we have

θ2 = ωot2 +
1

2
αt22 =⇒ t2 =

−ωo ±
√

ω2
o + 2θ2α

α

which yields the two roots −2.1 s and 40 s.

(d) With radians and seconds understood, the graph of θ versus t is shown below (with the points found
in the previous parts indicated as small circles).

θ

–20

20

40

10 20 30 40
t

16. The wheel starts turning from rest (ω0 = 0) at t = 0, and accelerates uniformly at α > 0, which makes
our choice for positive sense of rotation. At t1 its angular velocity is ω1 = +10 rev/s, and at t2 its
angular velocity is ω2 = +15 rev/s. Between t1 and t2 it turns through ∆θ = 60 rev, where t2− t1 = ∆t.
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(a) We find α using Eq. 11-14:

ω2
2 = ω2

1 + 2α∆θ =⇒ α =
152 − 102

2(60)

which yields α = 1.04 rev/s2 which we round off to 1.0 rev/s2.

(b) We find ∆t using Eq. 11-15:

∆θ =
1

2
(ω1 + ω2)∆t =⇒ ∆t =

2(60)

10 + 15
= 4.8 s .

(c) We obtain t1 using Eq. 11-12:

ω1 = ω0 + αt1 =⇒ t1 =
10

1.04
= 9.6 s .

(d) Any equation in Table 11-1 involving θ can be used to find θ1 (the angular displacement during
0 ≤ t ≤ t1); we select Eq. 11-14.

ω2
1 = ω2

0 + 2αθ1 =⇒ θ1 =
102

2(1.04)
= 48 rev .

17. The wheel has angular velocity ω0 = +1.5 rad/s = +0.239 rev/s2 at t = 0, and has constant value of
angular acceleration α < 0, which indicates our choice for positive sense of rotation. At t1 its angular
displacement (relative to its orientation at t = 0) is θ1 = +20 rev, and at t2 its angular displacement is
θ2 = +40 rev and its angular velocity is ω2 = 0.

(a) We obtain t2 using Eq. 11-15:

θ2 =
1

2
(ω0 + ω2) t2 =⇒ t2 =

2(40)

0.239

which yields t2 = 335 s which we round off to t2 ≈ 340 s.

(b) Any equation in Table 11-1 involving α can be used to find the angular acceleration; we select
Eq. 11-16.

θ2 = ω2t2 −
1

2
αt22 =⇒ α = − 2(40)

3352

which yields α = −7.12× 10−4 rev/s2 which we convert to α = −4.5× 10−3 rad/s2.

(c) Using θ1 = ω0t1 + 1
2αt

2
1 (Eq. 11-13) and the quadratic formula, we have

t1 =
−ω0 ±

√

ω2
0 + 2θ1α

α
=
−0.239±

√

0.2392 + 2(20) (−7.12× 10−4)

−7.12× 10−4

which yields two positive roots: 98 s and 572 s. Since the question makes sense only if t1 < t2 we
conclude the correct result is t1 = 98 s.

18. The wheel starts turning from rest (ω0 = 0) at t = 0, and accelerates uniformly at α = +4.0 rad/s2,
which makes our choice for positive sense of rotation. At t1 its angular displacement (relative to its
orientation at t = 0) is θ1, and at t2 its angular velocity is θ2, where θ2 − θ1 = ∆θ = 80 rad. Also,
t2 − t1 = ∆t = 4.0 s.

(a) We find the angular velocity at t1 using Eq. 11-13 (set up to describe the interval t1 ≤ t ≤ t2 ).

∆θ = ω1∆t+
1

2
α (∆t)

2
=⇒ ω1 =

80− 1
2 (4.0)(4.0)2

4.0

which yields ω1 = 12 rad/s.
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(b) We obtain t1 using Eq. 11-12:

ω1 = ω0 + αt1 =⇒ t1 =
12

4.0
= 3.0 s .

19. The magnitude of the acceleration is given by a = ω2r (Eq. 11-23) where r is the distance from the
center of rotation and ω is the angular velocity. We convert the given angular velocity to rad/s:

ω =
(33.33 rev/min)(2π rad/rev)

60 s/min
= 3.49 rad/s .

Therefore,

a =
(

3.49 rad/s
2
)2

(0.15 m) = 1.8 m/s
2
.

The acceleration vector is toward the center of the record.

20. (a) We obtain

ω =
(33.33 rev/min)(2π rad/rev)

60 s/min
= 3.49 rad/s .

(b) Using Eq. 11-18, we have
v = rω = (15)(3.49) = 52 cm/s .

(c) Similarly, when r = 7.4 cm we find v = rω = 26 cm/s. The goal of this exercise to observe what is
and is not the same at different locations on a body in rotational motion (ω is the same, v is not),
as well as to emphasize the importance of radians when working with equations such as Eq. 11-18.

21. With v = 50(1000/3600) = 13.9 m/s, Eq. 11-18 leads to

ω =
v

r
=

13.9

110
= 0.13 rad/s .

22. (a) We obtain

ω =
(200 rev/min)(2π rad/rev)

60 s/min
= 20.9 rad/s .

(b) With r = 1.20/2 = 0.60 m, Eq. 11-18 leads to

v = rω = (0.60)(20.9) = 12.6 m/s .

(c) With t = 1 min, ω = 1000 rev/min and ωo = 200 rev/min, Eq. 11-12 gives

α =
ω − ωo

t
= 800 rev/min

2
.

(d) With the same values used in part (c), Eq. 11-15 becomes

θ =
1

2
(ωo + ω) t =

1

2
(200 + 1000) (1) = 600 rev .

23. (a) Using Eq. 11-6, the angular velocity at t = 5.0 s is

ω =
dθ

dt

∣

∣

∣

∣

t=5.0

=
d

dt

(

0.30t2
)

∣

∣

∣

∣

t=5.0

= 2(0.30)(5.0) = 3.0 rad/s .

(b) Eq. 11-18 gives the linear speed at t = 5.0 s:

v = ωr = (3.0 rad/s)(10 m) = 30 m/s .
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(c) The angular acceleration is, from Eq. 11-8,

α =
dω

dt
=
d

dt
(0.60t) = 0.60 rad/s2 .

Then, the tangential acceleration at t = 5.0 s is, using Eq. 11-22,

at = rα = (10 m)
(

0.60 rad/s
2
)

= 6.0 m/s
2
.

(d) The radial (centripetal) acceleration is given by Eq. 11-23:

ar = ω2r = (3.0 rad/s)2(10 m) = 90 m/s2 .

24. (a) Converting from hours to seconds, we find the angular velocity (assuming it is positive) from Eq. 11-
18:

ω =
v

r
=

(

2.90× 104 km/h
) (

1.00 h
3600 s

)

3.22× 103 km
= 2.50× 10−3 rad/s .

(b) The radial (or centripetal) acceleration is computed according to Eq. 11-23:

ar = ω2r =
(

2.50× 10−3 rad/s
)2 (

3.22× 106 m
)

= 20.2 m/s2 .

(c) Assuming the angular velocity is constant, then the angular acceleration and the tangential accel-
eration vanish, since

α =
dω

dt
= 0 and at = rα = 0 .

25. (a) In the time light takes to go from the wheel to the mirror and back again, the wheel turns through
an angle of θ = 2π/500 = 1.26× 10−2 rad. That time is

t =
2ℓ

c
=

2(500 m)

2.998× 108 m/s
= 3.34× 10−6 s

so the angular velocity of the wheel is

ω =
θ

t
=

1.26× 10−2 rad

3.34× 10−6 s
= 3.8× 103 rad/s .

(b) If r is the radius of the wheel, the linear speed of a point on its rim is

v = ωr =
(

3.8× 103 rad/s
)

(0.05 m) = 190 m/s .

26. (a) The angular acceleration is

α =
∆ω

∆t
=

0− 150 rev/min

(2.2 h)(60 min/1 h)
= −1.14 rev/min

2
.

(b) Using Eq. 11-13 with t = (2.2)(60) = 132 min, the number of revolutions is

θ = ω0t+
1

2
αt2

= (150 rev/min)(132 min) +
1

2

(

−1.14 rev/min2
)

(132 min)2

= 9.9× 103 rev .
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(c) With r = 500 mm, the tangential acceleration is

at = α r =
(

−1.14 rev/min
2
)

(

2π rad

1 rev

)(

1 min

60 s

)2

(500 mm)

which yields at = −0.99 mm/s2.

(d) With r = 0.50 m, the radial (or centripetal) acceleration is given by Eq. 11-23:

ar = ω2r =

(

(75 rev/min)

(

2π rad/rev

1 min/60 s

))2

(0.50 m)

which yields ar = 31 in SI units – and is seen to be much bigger than at . Consequently, the
magnitude of the acceleration is

|~a| =
√

a2
r + a2

t ≈ ar = 31 m/s
2
.

27. (a) Earth makes one rotation per day and 1 d is (24 h)(3600 s/h) = 8.64× 104 s, so the angular speed
of Earth is

ω =
2π rad

8.64× 104 s
= 7.27× 10−5 rad/s .

(b) We use v = ωr, where r is the radius of its orbit. A point on Earth at a latitude of 40◦ moves along
a circular path of radius r = R cos 40◦, where R is the radius of Earth (6.37 × 106 m). Therefore,
its speed is

v = ω (R cos 40◦) =
(

7.27× 10−5 rad/s
) (

6.37× 106 m
)

cos 40◦ = 355 m/s .

(c) At the equator (and all other points on Earth) the value of ω is the same (7.27× 10−5 rad/s).

(d) The latitude is 0◦ and the speed is

v = ωR =
(

7.27× 10−5 rad/s
) (

6.37× 106 m
)

= 463 m/s .

28. (a) The tangential acceleration, using Eq. 11-22, is

at = αr =
(

14.2 rad/s2
)

(2.83 cm) = 40.2 cm/s2 .

(b) In rad/s, the angular velocity is ω = (2760)(2π/60) = 289, so

ar = ω2r = (289 rad/s)2(0.0283 m) = 2.36× 103 m/s
2
.

(c) The angular displacement is, using Eq. 11-14,

θ =
ω2

2α
=

2892

2(14.2)
= 2.94× 103 rad .

Then, using Eq. 11-1, the distance traveled is

s = rθ = (0.0283 m)
(

2.94× 103 rad
)

= 83.2 m .

29. Since the belt does not slip, a point on the rim of wheel C has the same tangential acceleration as a
point on the rim of wheel A. This means that αArA = αCrC , where αA is the angular acceleration of
wheel A and αC is the angular acceleration of wheel C. Thus,

αC =

(

rA
rC

)

αA =

(

10 cm

25 cm

)

(1.6 rad/s
2
) = 0.64 rad/s

2
.

Since the angular speed of wheel C is given by ωC = αCt, the time for it to reach an angular speed of
ω = 100 rev/min = 10.5 rad/s starting from rest is

t =
ωC

αC
=

10.5 rad/s

0.64 rad/s
2 = 16 s .
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30. The function θ = ξeβt where ξ = 0.40 rad and β = 2 s−1 is describing the angular coordinate of a line
(which is marked in such a way that all points on it have the same value of angle at a given time) on

the object. Taking derivatives with respect to time leads to dθ
dt = ξ β eβt and d2θ

dt2 = ξ β2 eβt.

(a) Using Eq. 11-22, we have

at = αr =
d2θ

dt2
r = 6.4 cm/s

2
.

(b) Using Eq. 11-23, we have

ar = ω2r =

(

dθ

dt

)2

r = 2.6 cm/s2 .

31. (a) A complete revolution is an angular displacement of ∆θ = 2π rad, so the angular velocity in rad/s
is given by ω = ∆θ/T = 2π/T . The angular acceleration is given by

α =
dω

dt
= − 2π

T 2

dT

dt
.

For the pulsar described in the problem, we have

dT

dt
=

1.26× 10−5 s/y

3.16× 107 s/y
= 4.00× 10−13 .

Therefore,

α = −
(

2π

(0.033 s)2

)

(4.00× 10−13) = −2.3× 10−9 rad/s
2
.

The negative sign indicates that the angular acceleration is opposite the angular velocity and the
pulsar is slowing down.

(b) We solve ω = ω0 + αt for the time t when ω = 0:

t = −ω0

α
= − 2π

αT
= − 2π

(−2.3× 10−9 rad/s2)(0.033 s)
= 8.3× 1010 s .

This is about 2600 years.

(c) The pulsar was born 1992− 1054 = 938 years ago. This is equivalent to (938 y)(3.16× 107 s/y) =
2.96× 1010 s. Its angular velocity at that time was

ω = ω0 + αt =
2π

T
+ αt =

2π

0.033 s
+ (−2.3× 10−9 rad/s2)(−2.96× 1010 s) = 258 rad/s .

Its period was

T =
2π

ω
=

2π

258 rad/s
= 2.4× 10−2 s .

32. (a) The angular speed in rad/s is

ω =

(

33
1

3
rev/min

)(

2π rad/rev

60 s/min

)

= 3.49 rad/s .

Consequently, the radial (centripetal) acceleration is (using Eq. 11-23)

a = ω2r = (3.49 rad/s)2
(

6.0× 10−2 m
)

= 0.73 m/s2 .

(b) Using Ch. 6 methods, we have ma = fs ≤ fs, max = µsmg, which is used to obtain the (minimum
allowable) coefficient of friction:

µs, min =
a

g
=

0.73

9.8
= 0.075 .
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(c) The radial acceleration of the object is ar = ω2r, while the tangential acceleration is at = αr. Thus

|~a| =
√

a2
r + a2

t =
√

(ω2r)2 + (αr)2 = r
√

ω4 + α2 .

If the object is not to slip at any time, we require

fs,max = µsmg = mamax = mr
√

ω4
max + α2 .

Thus, since α = ω/t (from Eq. 11-12), we find

µs,min =
r
√

ω4
max + α2

g

=
r
√

ω4
max + (ωmax/t)2

g

=
(0.060)

√

3.494 + (3.49/0.25)2

9.8
= 0.11 .

33. The kinetic energy (in J) is given by K = 1
2Iω

2, where I is the rotational inertia (in kg·m2) and ω is
the angular velocity (in rad/s). We have

ω =
(602 rev/min)(2π rad/rev)

60 s/min
= 63.0 rad/s .

Consequently, the rotational inertia is

I =
2K

ω2
=

2(24400 J)

(63.0 rad/s)2
= 12.3 kg·m2 .

34. The translational kinetic energy of the molecule is

Kt =
1

2
mv2 =

1

2

(

5.30× 10−26
)

(500)2 = 6.63× 10−21 J .

With I = 1.94× 10−46 kg·m2, we employ Eq. 11-27:

Kr =
2

3
Kt

1

2
Iω2 =

2

3

(

6.63× 10−21
)

which leads to ω = 6.75× 1012 rad/s.

35. Since the rotational inertia of a cylinder is I = 1
2MR2 (Table 11-2(c)), its rotational kinetic energy is

K =
1

2
Iω2 =

1

4
MR2ω2 .

For the first cylinder, we have K = 1
4 (1.25)(0.25)2(235)2 = 1.1 × 103 J. For the second cylinder, we

obtain K = 1
4 (1.25)(0.75)2(235)2 = 9.7× 103 J.

36. (a) Using Table 11-2(c), the rotational inertia is

I =
1

2
mR2 =

1

2
(1210 kg)

(

1.21 m

2

)2

= 221 kg·m2 .
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(b) The rotational kinetic energy is, by Eq. 11-27,

K =
1

2
Iω2

=
1

2

(

2.21× 102 kg·m2
)

((1.52 rev/s)(2π rad/rev))
2

= 1.10× 104 J .

37. The particles are treated “point-like” in the sense that Eq. 11-26 yields their rotational inertia, and the
rotational inertia for the rods is figured using Table 11-2(e) and the parallel-axis theorem (Eq. 11-29).

(a) With subscript 1 standing for the rod nearest the axis and 4 for the particle farthest from it, we
have

I = I1 + I2 + I3 + I4

=

(

1

12
Md2 +M

(

1

2
d

)2
)

+md2 +

(

1

12
Md2 +M

(

3

2
d

)2
)

+m(2d)2

=
8

3
Md2 + 5md2 .

(b) Using Eq. 11-27, we have

K =
1

2
Iω2 =

(

4

3
Md2 +

5

2
md2

)

ω2 .

38. (a) The rotational inertia of the three blades (each of mass m and length L) is

I = 3

(

1

3
mL2

)

= mL2 = (240 kg)(5.2 m)2 = 6.49× 103 kg·m2 .

(b) The rotational kinetic energy is

K =
1

2
Iω2

=
1

2

(

6.49× 103 kg·m2
)

(

(350 rev/min)

(

2π rad/rev

60 s/min

))2

= 4.36× 106 J = 4.36 MJ .

39. We use the parallel axis theorem: I = Icom + Mh2, where Icom is the rotational inertia about the
center of mass (see Table 11-2(d)), M is the mass, and h is the distance between the center of mass
and the chosen rotation axis. The center of mass is at the center of the meter stick, which implies
h = 0.50 m− 0.20 m = 0.30 m. We find

Icom =
1

12
ML2 =

1

12
(0.56 kg)(1.0 m)2 = 4.67× 10−2 kg·m2 .

Consequently, the parallel axis theorem yields

I = 4.67× 10−2 kg·m2 + (0.56 kg)(0.30 m)2 = 9.7× 10−2 kg·m2 .

40. (a) We show the figure with its axis of rotation (the thin horizontal line).

r

r

r

r
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We note that each mass is r = 1.0 m from the axis. Therefore, using Eq. 11-26, we obtain

I =
∑

mir
2
i = 4(0.50 kg)(1.0 m)2 = 2 kg·m2 .

(b) In this case, the two masses nearest the axis are r = 1.0 m away from it, but the two furthest from

the axis are r =
√

1.02 + 2.02 m from it. Here, then, Eq. 11-26 leads to

I =
∑

mir
2
i = 2(0.50 kg)(1.0 m2) + 2(0.50 kg)(5.0 m2) = 6.0 kg·m2 .

(c) Now, two masses are on the axis (with r = 0) and the other two are a distance r =
√

1.02 + 1.02 m
away. Now we obtain I = 2.0 kg ·m2.

41. We use the parallel-axis theorem. According to Table 11-2(i), the rotational inertia of a uniform slab
about an axis through the center and perpendicular to the large faces is given by

Icom =
M

12
(a2 + b2) .

A parallel axis through the corner is a distance h =
√

(a/2)2 + (b/2)2 from the center. Therefore,

I = Icom +Mh2 =
M

12

(

a2 + b2
)

+
M

4

(

a2 + b2
)

=
M

3

(

a2 + b2
)

.

42. (a) We apply Eq. 11-26:

Ix =
4
∑

i=1

miy
2
i = 50(2.0)2 + (25)(4.0)2 + 25(−3.0)2 + 30(4.0)2 = 1.3× 103 g·cm2 .

(b) For rotation about the y axis we obtain

Iy =
4
∑

i=1

mix
2
i = 50(2.0)2 + (25)(0)2 + 25(3.0)2 + 30(2.0)2 = 5.5× 102 g·cm2 .

(c) And about the z axis, we find (using the fact that the distance from the z axis is
√

x2 + y2)

Iz =

4
∑

i=1

mi(x
2
i + y2

i ) = Ix + Iy = 1.3× 103 + 5.5× 102 = 1.9× 102 g·cm2 .

(d) Clearly, the answer to part (c) is A+B.

43. (a) According to Table 11-2, the rotational inertia formulas for the cylinder (radius R) and the hoop
(radius r) are given by

IC =
1

2
MR2 and IH = Mr2 .

Since the two bodies have the same mass, then they will have the same rotational inertia if R2/2 =
R2

H , or RH = R/
√

2.

(b) We require the rotational inertia to be written as I = Mk2, where M is the mass of the given body
and k is the radius of the “equivalent hoop.” It follows directly that k =

√

I/M .

44. (a) Using Table 11-2(c) and Eq. 11-27, the rotational kinetic energy is

K =
1

2
Iω2

=
1

2

(

1

2
MR2

)

ω2

=
1

4
(500 kg)(200π rad/s)2(1.0 m)2

= 4.9× 107 J .



296 CHAPTER 11.

(b) We solve P = K/t (where P is the average power) for the operating time t.

t =
K

P
=

4.9× 107 J

8.0× 103 W
= 6.2× 103 s

which we rewrite as t ≈ 100 min.

45. Two forces act on the ball, the force of the rod and the force of gravity. No torque about the pivot point
is associated with the force of the rod since that force is along the line from the pivot point to the ball.
As can be seen from the diagram,

the component of the
force of gravity that is
perpendicular to the rod
is mg sin θ. If ℓ is the
length of the rod, then
the torque associated
with this force has mag-
nitude τ = mgℓ sin θ =
(0.75)(9.8)(1.25) sin30◦ =
4.6 N · m. For the posi-
tion shown, the torque is
counterclockwise.
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.

.

.

.

.

.

.

.

.

.

.

•

m~g

θ

θ

θ

46. We compute the torques using τ = rF sinφ.

τa = (0.152 m)(111 N) sin30◦ = 8.4 N·m
τb = (0.152 m)(111 N) sin90◦ = 17 N·m
τc = (0.152 m)(111 N) sin180◦ = 0

47. (a) We take a torque that tends to cause a counterclockwise rotation from rest to be positive and a
torque tending to cause a clockwise rotation to be negative. Thus, a positive torque of magnitude
r1F1 sin θ1 is associated with ~F1 and a negative torque of magnitude r2F2 sin θ2 is associated with
~F2. The net torque is consequently

τ = r1F1 sin θ1 − r2F2 sin θ2 .

(b) Substituting the given values, we obtain

τ = (1.30 m)(4.20 N) sin75◦ − (2.15 m)(4.90 N) sin60◦ = −3.85 N·m .

48. The net torque is

τ = τA + τB + τC

= FArA sinφA − FBrB sinφB + FCrC sinφC

= (10)(8.0) sin 135◦ − (16)(4.0) sin 90◦ + (19)(3.0) sin 160◦

= 12 N·m .

49. (a) We use the kinematic equation ω = ω0 + αt, where ω0 is the initial angular velocity, ω is the final
angular velocity, α is the angular acceleration, and t is the time. This gives

α =
ω − ω0

t
=

6.20 rad/s

220× 10−3 s
= 28.2 rad/s2 .
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(b) If I is the rotational inertia of the diver, then the magnitude of the torque acting on her is

τ = Iα =
(

12.0 kg ·m2
)

(

28.2 rad/s
2
)

= 3.38× 102 N ·m .

50. The rotational inertia is found from Eq. 11-37.

I =
τ

α
=

32.0

25.0
= 1.28 kg·m2

51. (a) We use τ = Iα, where τ is the net torque acting on the shell, I is the rotational inertia of the shell,
and α is its angular acceleration. Therefore,

I =
τ

α
=

960 N ·m
6.20 rad/s

2 = 155 kg ·m2 .

(b) The rotational inertia of the shell is given by I = (2/3)MR2 (see Table 11-2 of the text). This
implies

M =
3I

2R2
=

3(155 kg ·m2)

2(1.90 m)2
= 64.4 kg .

52. According to the sign conventions used in the book, the magnitude of the net torque exerted on the
cylinder of mass m and radius R2 is

τnet = F1R2 − F2R2 − F3R1

= (6.0 N)(0.12 m)− (4.0 N)(0.12 m)− (2.0 N)(0.05 m)

= 71 N·m .

The resulting angular acceleration of the cylinder (with I = 1
2MR2 according to Table 11-2(c)) is

α =
τnet

I

=
71 N·m

1
2 (2.0 kg)(0.12 m)2

= 9.7 rad/s
2

and is counterclockwise (which is the positive sense of rotation).

53. We use τ = Fr = Iα, where α satisfies θ = 1
2αt

2 (Eq. 11-13). Here θ = 90◦ = π
2 rad and t = 30 s. The

force needed is consequently

F =
Iα

r
=
I
(

2θ/t2
)

r
=

(8.7× 104)
(

2(π/2)/302
)

2.4
= 1.3× 102 N .

54. With rightward positive for the block and clockwise negative for the wheel (as is conventional), then we
note that the tangential acceleration of the wheel is of opposite sign from the block’s acceleration (which
we simply denote as a); that is, at = −a. Applying Newton’s second law to the block leads to

P − T = ma where m = 2.0 kg .

Applying Newton’s second law (for rotation) to the wheel leads to

−TR = Iα where I = 0.050 kg ·m2 .

Noting that Rα = at = −a, we multiply this equation by R and obtain

−TR2 = −Ia =⇒ T = a
I

R2
.
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Adding this to the above equation (for the block) leads to

P =

(

m+
I

R2

)

a .

Thus, a = 0.92 m/s
2

and therefore α = −4.6 rad/s
2
, where the negative sign should not be mistaken for

a deceleration (it simply indicates the clockwise sense to the motion).

55. (a) We use constant acceleration kinematics. If down is taken to be positive and a is the acceleration
of the heavier block, then its coordinate is given by y = 1

2at
2, so

a =
2y

t2
=

2(0.750 m)

(5.00 s)2
= 6.00× 10−2 m/s

2
.

The lighter block has an acceleration of 6.00× 10−2 m/s
2

upward.

(b) Newton’s second law for the heavier block is mhg − Th = mha, where mh is its mass and Th is the
tension force on the block. Thus,

Th = mh(g − a) = (0.500 kg)
(

9.8 m/s2 − 6.00× 10−2 m/s2
)

= 4.87 N .

(c) Newton’s second law for the lighter block is mlg − Tl = −mla, where Tl is the tension force on the
block. Thus,

Tl = ml(g + a) = (0.460 kg)
(

9.8 m/s
2

+ 6.00× 10−2 m/s
2
)

= 4.54 N .

(d) Since the cord does not slip on the pulley, the tangential acceleration of a point on the rim of the
pulley must be the same as the acceleration of the blocks, so

α =
a

R
=

6.00× 10−2 m/s2

5.00× 10−2 m
= 1.20 rad/s

2
.

(e) The net torque acting on the pulley is τ = (Th − Tl)R. Equating this to Iα we solve for the
rotational inertia:

I =
(Th − Tl)R

α

=
(4.87 N− 4.54 N)(5.00× 10−2 m)

1.20 rad/s
2

= 1.38× 10−2 kg·m2 .

56. Since the force acts tangentially at r = 0.10 m, the angular acceleration (presumed positive) is

α =
τ

I
=
Fr

I
=

(

0.5t+ 0.3t2
)

(0.10)

1.0× 10−3
= 50t+ 30t2

in SI units (rad/s2).

(a) At t = 3 s, the above expression becomes α = 420 rad/s2.

(b) We integrate the above expression, noting that ωo = 0, to obtain the angular speed at t = 3 s:

ω =

∫ 3

0

αdt =
(

25t2 + 10t3
)

∣

∣

∣

∣

∣

3

0

= 5.0× 102 rad/s .



299

57. With counterclockwise positive, the angular acceleration α for both masses satisfies τ = mgL1−mgL2 =
Iα = (mL2

1 +mL2
2)α, by combining Eq. 11-37 with Eq. 11-32 and Eq. 11-26. Therefore, using SI units,

α =
g (L1 − L2)

L2
1 + L2

2

=
(9.8)(0.20− 0.80)

0.802 + 0.202
= −8.65 rad/s

2

where the negative sign indicates the system starts turning in the clockwise sense. The magnitude
of the acceleration vector involves no radial component (yet) since it is evaluated at t = 0 when the
instantaneous velocity is zero. Thus, for the two masses, we apply Eq. 11-22 and obtain the respective
answers for parts (a) and (b):

|~a1| = |α|L1 =
(

8.65 rad/s
2
)

(0.80 m) = 6.9 m/s
2

|~a2| = |α|L2

=
(

8.65 rad/s2
)

(0.20 m)

= 1.7 m/s
2
.

58. (a) The speed of v of the mass m after it has descended d = 50 cm is given by v2 = 2ad (Eq. 2-16)
where a is calculated as in Sample Problem 11-7 except that here we choose +y downward (so
a > 0). Thus, using g = 980 cm/s2, we have

v =
√

2ad =

√

2(2mg)d

M + 2m
=

√

4(50)(980)(50)

400 + 2(50)
= 1.4× 102 cm/s .

(b) The answer is still 1.4× 102 cm/s = 1.4 m/s, since it is independent of R.

59. With ω = (1800)(2π/60) = 188.5 rad/s, we apply Eq. 11-47:

P = τω =⇒ τ =
74600 W

188.5 rad/s

which yields τ = 396 N·m.

60. The initial angular speed is ω = (280)(2π/60) = 29.3 rad/s. We use Eq. 11-44 for the work and Eq. 7-42
for the average power.

(a) Since the rotational inertia is (Table 11-2(a)) I = (32)(1.2)2 = 46.1 kg·m2, the work done is

W = ∆K = 0− 1

2
Iω2 = −1

2
(46.1)(29.3)2

which yields |W | = 19.8× 103 J.

(b) The average power (in absolute value) is therefore

|P | = |W |
∆t

=
19.8× 103

15
= 1.32× 103 W .

61. (a) We apply Eq. 11-27:

K =
1

2
Iω2 =

1

2

(

1

3
mL2

)

ω2 =
1

6
mL2ω2 .

(b) Simple conservation of mechanical energy leads to K = mgh. Consequently, the center of mass
rises by

h =
K

mg
=
mL2ω2

6mg
=
L2ω2

6g
.
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62. (a) The angular speed ω associated with Earth’s spin is ω = 2π/T , where T = 86400 s (one day). Thus

ω =
2π

86400 s
= 7.27× 10−5 rad/s

and the angular acceleration α required to accelerate the Earth from rest to ω in one day is α = ω/T .
The torque needed is then

τ = Iα =
Iω

T
=

(

9.71× 1027
) (

7.27× 10−5
)

86400
= 8.17× 1028 N·m

where we used

I =
2

5
MR2 =

2

5

(

5.98× 1024
) (

6.37× 106
)2

for Earth’s rotational inertia.

(b) Using the values from part (a), the kinetic energy of the Earth associated with its rotation about
its own axis is K = 1

2Iω
2 = 2.57× 1029 J. This is how much energy would need to be supplied to

bring it (starting from rest) to the current angular speed.

(c) The associated power is

P =
K

T
=

2.57× 1029 J

86400 s
= 2.97× 1024 W .

63. We use ℓ to denote the length of the stick. Since its center of mass is ℓ/2 from either end, its initial
potential energy is 1

2mgℓ, where m is its mass. Its initial kinetic energy is zero. Its final potential energy
is zero, and its final kinetic energy is 1

2Iω
2, where I is its rotational inertia about an axis passing through

one end of the stick and ω is the angular velocity just before it hits the floor. Conservation of energy
yields

1

2
mgℓ =

1

2
Iω2 =⇒ ω =

√

mgℓ

I
.

The free end of the stick is a distance ℓ from the rotation axis, so its speed as it hits the floor is (from
Eq. 11-18)

v = ωℓ =

√

mgℓ3

I
.

Using Table 11-2 and the parallel-axis theorem, the rotational inertial is I = 1
3mℓ

2, so

v =
√

3gℓ =

√

3
(

9.8 m/s
2
)

(1.00 m) = 5.42 m/s .

64. (a) We use the parallel-axis theorem to find the rotational inertia:

I = Icom +Mh2 =
1

2
MR2 +Mh2

=
1

2
(20 kg)(0.10 m)2 + (20 kg)(0.50 m)2

= 0.15 kg·m2 .

(b) Conservation of energy requires that Mgh = 1
2Iω

2, where ω is the angular speed of the cylinder as
it passes through the lowest position. Therefore,

ω =

√

2Mgh

I
=

√

2(20)(9.8)(0.050)

0.15
= 11 rad/s .
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65. We use conservation of mechanical energy. The center of mass is at the midpoint of the cross bar of the
H and it drops by L/2, where L is the length of any one of the rods. The gravitational potential energy
decreases by MgL/2, where M is the mass of the body. The initial kinetic energy is zero and the final
kinetic energy may be written 1

2Iω
2, where I is the rotational inertia of the body and ω is its angular

velocity when it is vertical. Thus

0 = −MgL/2 +
1

2
Iω2 =⇒ ω =

√

MgL/I .

Since the rods are thin the one along the axis of rotation does not contribute to the rotational inertia.
All points on the other leg are the same distance from the axis of rotation, so that leg contributes
(M/3)L2, where M/3 is its mass. The cross bar is a rod that rotates around one end, so its contri-
bution is (M/3)L2/3 = ML2/9. The total rotational inertia is I = (ML2/3) + (ML2/9) = 4ML2/9.
Consequently, the angular velocity is

ω =

√

MgL

I
=

√

MgL

4ML2/9
=

√

9g

4L
.

66. From Table 11-2, the rotational inertia of the spherical shell is 2MR2/3, so the kinetic energy (after the
object has descended distance h) is

K =
1

2

(

2

3
MR2

)

ω 2
sphere +

1

2
Iω 2

pulley +
1

2
mv2 .

Since it started from rest, then this energy must be equal (in the absence of friction) to the potential
energy mgh with which the system started. We substitute v/r for the pulley’s angular speed and v/R
for that of the sphere and solve for v.

v =

√

mgh
1
2m+ 1

2
I
r2 + M

3

=

√

2gh

1 + (I/mr2) + (2M/3m)

67. (a) We use conservation of mechanical energy to find an expression for ω2 as a function of the angle
θ that the chimney makes with the vertical. The potential energy of the chimney is given by
U = Mgh, where M is its mass and h is the altitude of its center of mass above the ground. When
the chimney makes the angle θ with the vertical, h = (H/2) cos θ. Initially the potential energy is
Ui = Mg(H/2) and the kinetic energy is zero. The kinetic energy is 1

2Iω
2 when the chimney makes

the angle θ with the vertical, where I is its rotational inertia about its bottom edge. Conservation
of energy then leads to

MgH/2 = Mg(H/2) cos θ +
1

2
Iω2 =⇒ ω2 = (MgH/I)(1− cos θ) .

The rotational inertia of the chimney about its base is I = MH2/3 (found using Table 11-2(e) with
the parallel axis theorem). Thus

ω =

√

3g

H
(1− cos θ) .

(b) The radial component of the acceleration of the chimney top is given by ar = Hω2, so ar =
3g(1− cos θ).

(c) The tangential component of the acceleration of the chimney top is given by at = Hα, where α is
the angular acceleration. We are unable to use Table 11-1 since the acceleration is not uniform.
Hence, we differentiate ω2 = (3g/H)(1 − cos θ) with respect to time, replacing dω/dt with α, and
dθ/dt with ω, and obtain

dω2

dt
= 2ωα = (3g/H)ω sin θ =⇒ α = (3g/2H) sin θ .

Consequently, at = Hα = 3g
2 sin θ.
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(d) The angle θ at which at = g is the solution to 3g
2 sin θ = g. Thus, sin θ = 2/3 and we obtain

θ = 41.8◦.

68. (a) The longitudinal separation between Helsinki and the explosion site is ∆θ = 102◦−25◦ = 77◦. The
spin of the earth is constant at

ω =
1 rev

1 day
=

360◦

24 h

so that an angular displacement of ∆θ corresponds to a time interval of

∆t = (77◦)

(

24 h

360◦

)

= 5.1 h .

(b) Now ∆θ = 102◦ − (−20◦) = 122◦ so the required time shift would be

∆t = (122◦)

(

24 h

360◦

)

= 8.1 h .

69. Analyzing the forces tending to drag the M = 5124 kg stone down the oak beam, we find

F = Mg (sin θ + µs cos θ)

where µs = 0.22 (static friction is assumed to be at its maximum value) and the incline angle θ for the
oak beam is sin−1(3.9/10) = 23◦ (but the incline angle for the spruce log is the complement of that).
We note that the component of the weight of the workers (N of them) which is perpendicular to the
spruce log is Nmg cos(90◦ − θ) = Nmg sin θ, where m = 85 kg. The corresponding torque is therefore
Nmgℓ sin θ where ℓ = 4.5− 0.7 = 3.8 m (see figure). This must (at least) equal the magnitude of torque
due to F , so with r = 0.7 m, we have

Mgr (sin θ + µs cos θ) = Ngmℓ sin θ .

This expression yields N ≈ 17 for the number of workers.

70. (a) We apply Eq. 11-18, using the subscript J for the Jeep.

ω =
vJ

rJ
=

114 km/h

0.100 km

which yields 1140 rad/h or (dividing by 3600) 0.32 rad/s for the value of the angular speed ω.

(b) Since the cheetah has the same angular speed, we again apply Eq. 11-18, using the subscript c for
the cheetah.

vc = rcω = (92 m)(1140 rad/h)

which yields 1.05× 105 m/h or 105 km/h for the cheetah’s speed.

71. The Hint given in the problem would make the computation in part (a) very straightforward (without
doing the integration as we show here), but we present this further level of detail in case that hint is not
obvious or – simply – in case one wishes to see how the calculus supports our intuition.

(a) The (centripetal) force exerted on an infinitesimal portion of the blade with mass dm located a
distance r from the rotational axis is (Newton’s second law) dF = (dm)ω2r, where dm can be
written as (M/L)dr and the angular speed is ω = (320)(2π/60) = 33.5 rad/s. Thus for the entire
blade of mass M and length L the total force is given by

F =

∫

dF =

∫

ω2 r dm

=
M

L

∫ L

0

ω2 r dr
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=
Mω2r2

2L

∣

∣

∣

∣

L

0

=
Mω2L

2

=
(110 kg)(33.5 rad/s)2(7.80 m)

2

= 4.8× 105 N .

(b) About its center of mass, the blade has I = ML2/12 according to Table 11-2(e), and using the
parallel-axis theorem to “move” the axis of rotation to its end-point, we find the rotational inertia
becomes I = ML2/3. Using Eq. 11-37, the torque (assumed constant) is

τ = Iα

=

(

1

3
ML2

)(

∆ω

∆t

)

=
1

3
(110 kg)(7.8 m)2

(

33.5 rad/s

6.7 s

)

= 1.1× 104 N·m .

(c) Using Eq. 11-44, the work done is

W = ∆K =
1

2
Iω2 − 0

=
1

2

(

1

3
ML2

)

ω2

=
1

6
(110 kg)(7.80 m)2(33.5 rad/s)2

= 1.3× 106 J .

72. (a) Constant angular acceleration kinematics can be used to compute the angular acceleration α. If ω0

is the initial angular velocity and t is the time to come to rest, then

0 = ω0 + αt =⇒ α = − ω0

t

which yields −39/32 = −1.2 rev/s or (multiplying by 2π) −7.66 rad/s
2

for the value of α.

(b) We use τ = Iα, where τ is the torque and I is the rotational inertia. The contribution of the rod
to I is Mℓ2/12 (Table 11-2(e)), where M is its mass and ℓ is its length. The contribution of each
ball is m(ℓ/2)2, where m is the mass of a ball. The total rotational inertia is

I =
Mℓ2

12
+ 2

mℓ2

4
=

(6.40 kg)(1.20 m)2

12
+

(1.06 kg)(1.20 m)2

2

which yields I = 1.53 kg·m2. The torque, therefore, is

τ =
(

1.53 kg ·m2
)

(

−7.66 rad/s
2
)

= −11.7 N·m .

(c) Since the system comes to rest the mechanical energy that is converted to thermal energy is simply
the initial kinetic energy

Ki =
1

2
Iω2

0 =
1

2

(

1.53 kg ·m2
)

((2π)(39) rad/s)2 = 4.59× 104 J .

(d) We apply Eq. 11-13:

θ = ω0t+
1

2
αt2 = ((2π)(39) rad/s) (32.0 s) +

1

2

(

−7.66 rad/s2
)

(32.0 s)2

which yields 3920 rad or (dividing by 2π) 624 rev for the value of angular displacement θ.
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(e) Only the mechanical energy that is converted to thermal energy can still be computed without
additional information. It is 4.59× 104 J no matter how τ varies with time, as long as the system
comes to rest.

73. We assume the given rate of 1.2× 10−3 m/y is the linear speed of the top; it is also possible to interpret
it as just the horizontal component of the linear speed but the difference between these interpretations
is arguably negligible. Thus, Eq. 11-18 leads to

ω =
1.2× 10−3 m/y

55 m
= 2.18× 10−5 rad/y

which we convert (since there are about 3.16× 107 s in a year) to ω = 6.9× 10−13 rad/s.

74. The rotational inertia of the passengers is (to a good approximation) given by Eq. 11-26: I =
∑

mR2 =
NmR2 where N is the number of people and m is the (estimated) mass per person. We apply Eq. 11-44:

W =
1

2
Iω2 =

1

2
NmR2ω2 .

where R = 38 m and N = 36× 60 = 2160 persons. The rotation rate is constant so that ω = θ/t which
leads to ω = 2π/120 = 0.052 rad/s. The mass (in kg) of the average person is probably in the range
50 ≤ m ≤ 100, so the work should be in the range

1

2
(2160)(50)(38)2(0.052)2 ≤ W ≤ 1

2
(2160)(100)(38)2(0.052)2

2× 105 J ≤ W ≤ 4× 105 J .

75. (a) The axis of rotation is at the bottom right edge of the rod along the ground, a horizontal distance
of d3 + d2 + d1/2 from the middle of the table assembly (mass m = 90 kg). The linebacker’s center
of mass at that critical moment was a horizontal distance of d4 + d5 from the axis of rotation. For
the clockwise torque caused by the linebacker (mass M) to overcome the counterclockwise torque
of the table assembly, we require (using Eq. 11-33)

Mg (d4 + d5) > mg

(

d3 + d2 +
d1

2

)

.

With the values given in the problem, we do indeed find the inequality is satisfied.

(b) Replacing our inequality with an equality and solving for M , we obtain

M = m
d3 + d2 + 1

2d1

d4 + d5
= 114 kg .

76. We choose positive coordinate directions (different choices for each item) so that each is accelerating
positively, which will allow us to set a1 = a2 = Rα (for simplicity, we denote this as a). Thus, we
choose upward positive for m1, downward positive for m2 and (somewhat unconventionally) clockwise
for positive sense of disk rotation. Applying Newton’s second law to m1, m2 and (in the form of Eq. 11-
37) to M , respectively, we arrive at the following three equations.

T1 −m1g = m1a1

m2g − T2 = m2a2

T2R − T1R = Iα

(a) The rotational inertia of the disk is I = 1
2MR2 (Table 11-2(c)), so we divide the third equation

(above) by R, add them all, and use the earlier equality among accelerations – to obtain:

m2g −m1g =

(

m1 +m2 +
1

2
M

)

a

which yields a = 4
25 g = 1.6 m/s2.
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(b) Plugging back in to the first equation, we find T1 = 29
24m1g = 4.6 N (where it is important in this

step to have the mass in SI units: m1 = 0.40 kg).

(c) Similarly, with m2 = 0.60 kg, we find T2 = 5
6m2g = 4.9 N.

77. We employ energy methods in this solution; thus, considerations of positive versus negative sense (re-
garding the rotation of the wheel) are not relevant.

(a) The speed of the box is related to the angular speed of the wheel by v = Rω, so that

Kbox =
1

2
mboxv

2 =⇒ v =

√

2Kbox

mbox
= 1.41 m/s

implies that the angular speed is ω = 1.41/0.20 = 0.71 rad/s. Thus, the kinetic energy of rotation
is 1

2Iω
2 = 10.0 J.

(b) Since it was released from rest at what we will consider to be the reference position for gravitational
potential, then (with SI units understood) energy conservation requires

K0 + U0 = K + U

0 + 0 = (6.0 + 10.0) +mboxg(−h) .

Therefore, h = 16.0/58.8 = 0.27 m.

78. The distances from P to the particles are as follows:

r1 = a for m1 = 2M (lower left)

r2 =
√

b2 − a2 for m2 = M (top)

r3 = a for m1 = 2M (lower right)

The rotational inertia of the system about P is

I =

3
∑

i=1

mir
2
i =

(

3a2 + b2
)

M

which yields I = 0.208 kg·m2 for M = 0.40 kg, a = 0.30 m and b = 0.50 m. Applying Eq. 11-44, we find

W =
1

2
Iω2 =

1

2
(0.208)(5.0)2 = 2.6 J .

79. We choose positive coordinate directions (different choices for each item) so that each is accelerating
positively, which will allow us to set a2 = a1 = Rα (for simplicity, we denote this as a). Thus, we choose
rightward positive for m2 = M (the block on the table), downward positive for m1 = M (the block
at the end of the string) and (somewhat unconventionally) clockwise for positive sense of disk rotation.
This means that we interpret θ given in the problem as a positive-valued quantity. Applying Newton’s
second law to m1, m2 and (in the form of Eq. 11-37) to M , respectively, we arrive at the following three
equations (where we allow for the possibility of friction f2 acting on m2).

m1g − T1 = m1a1

T2 − f2 = m2a2

T1R − T2R = Iα

(a) From Eq. 11-13 (with ω0 = 0) we find

θ = ω0t+
1

2
αt2 =⇒ α =

2θ

t2
.
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(b) From the fact that a = Rα (noted above), we obtain a = 2Rθ/t2.

(c) From the first of the above equations, we find

T1 = m1 (g − a1) = M

(

g − 2Rθ

t2

)

.

(d) From the last of the above equations, we obtain the second tension:

T2 = T1 −
Iα

R
= M

(

g − 2Rθ

t2

)

− 2Iθ

Rt2

80. (a) With r = 0.780 m, the rotational inertia is

I = Mr2 = (1.30 kg)(0.780 m)2 = 0.791 kg·m2 .

(b) The torque that must be applied to counteract the effect of the drag is

τ = rf = (0.780 m)(2.30× 10−2 N) = 1.79× 10−2 N·m .

81. (a) The rotational inertia relative to the specified axis is

I =
∑

mir
2
i = (2M)L2 + (2M)L2 +M(2L)2

which is found to be I = 4.6 kg·m2. Then, with ω = 1.2 rad/s, we obtain the kinetic energy from
Eq. 11-27:

K =
1

2
Iω2 = 3.3 J .

(b) In this case the axis of rotation would appear as a standard y axis with origin at P . Each of the
2M balls are a distance of r = L cos 30◦ from that axis. Thus, the rotational inertia in this case is

I =
∑

mir
2
i = (2M)r2 + (2M)r2 +M(2L)2

which is found to be I = 4.0 kg·m2. Again, from Eq. 11-27 we obtain the kinetic energy

K =
1

2
Iω2 = 2.9 J .

82. We make use of Table 11-2(e) as well as the parallel-axis theorem, Eq. 11-27, where needed. We use ℓ
(as a subscript) to refer to the long rod and s to refer to the short rod.

(a) The rotational inertia is

I = Is + Iℓ =
1

12
msL

2
s +

1

3
mℓL

2
ℓ = 0.019 kg·m2 .

(b) We note that the center of the short rod is a distance of h = 0.25 m from the axis. The rotational
inertia is

I = Is + Iℓ =
1

12
msL

2
s +msh

2 +
1

12
mℓL

2
ℓ

which again yields I = 0.019 kg·m2.

83. This may be derived from Eq. 11-28 or (suitably interpreted) from Eq. 11-26. Since every element of the
hoop has the same radius r = R, the integration (or summation, if preferred) is trivial: I =

∫

r2 dm =
R2
∫

dm = MR2.
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84. (a) Using Eq. 11-15 with ω = 0, we have

θ =
ω0 + ω

2
t = 2.8 rad .

(b) One ingredient in this calculation is α = (0−3.5 rad/s)/(1.6 s) = −2.2 rad/s
2
, so that the tangential

acceleration is rα = 0.33 m/s
2
. Another ingredient is ω = ω0 +αt = 1.3 rad/s for t = 1.0 s, so that

the radial (centripetal) acceleration is ω2r = 0.26 m/s
2
. Thus, the magnitude of the acceleration is

|~a| =
√

0.332 + 0.262 = 0.42 m/s
2
.

85. (a) Using T = 1 yr = 3.16× 107 s for the time to make one full revolution (or 2π rad), we obtain

ω =
2π

T
=

2π

3.16× 107
= 2.0× 10−7 rad/s .

(b) The radius r of Earth’s orbit can be found in Appendix C or the inside front cover. Eq. 11-18 gives

v = αr = (2.0× 10−7 rad/s)(1.49× 1011 m) = 3.0× 104 m/s .

(c) The (radial, or centripetal) acceleration is

a = ω2r =
(

2.0× 10−7 rad/s
)2

(1.49× 1011 m) = 5.9× 10−3 m/s
2
.

The direction of ~a is toward the sun.

86. Using Eq. 11-12, we have

ω = ω0 + αt =⇒ α =
2.6− 8.0

3.0

which yields α = −1.8 rad/s2. Using this value in Eq. 11-14 leads to

ω2 = ω2
0 + 2αθ =⇒ θ =

02 − 8.02

2 (−1.8)
= 18 rad .

87. The motion consists of two stages. The first, the interval 0 ≤ t ≤ 20 s, consists of constant angular
acceleration given by

α =
5.0 rad/s

2.0 s
= 2.5 rad/s

2
.

The second stage, 20 < t ≤ 40 s, consists of constant angular velocity ω = ∆θ/∆t. Analyzing the first
stage, we find

θ1 =
1

2
αt2
∣

∣

∣

∣

t=20

= 500 rad

ω = αt

∣

∣

∣

∣

t=20

= 50 rad/s .

Analyzing the second stage, we obtain

θ2 = θ1 + ω∆t = 500 + (50)(20) = 1500 rad .

88. (a) Eq. 11-12 leads to α = −ωo/t = −25.0/20.0 = −1.25 rad/s
2
.

(b) Eq. 11-15 leads to θ = 1
2ωot = 1

2 (25.0)(20.0) = 250 rad.

(c) Dividing the previous result by 2π we obtain θ = 39.8 rev.
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89. (a) We integrate the angular acceleration (as a function of τ) with respect to τ to find the angular
velocity as a function of t > 0.

ω = ω0 +

∫ t

0

(

4aτ3 − 3bτ2
)

dτ = ω0 + at4 − bt3 .

(b) We integrate the angular velocity (as a function of τ) with respect to τ to find the angular position
as a function of t > 0.

θ = θ0 +

∫ t

0

(

4aτ3 − 3bτ2
)

dτ = θ0 + ω0t+
a

5
t5 − b

4
t4 .

90. (a) The particle at A has r = 0 with respect to the axis of rotation. The particle at B is r = L = 0.50 m
from the axis; similarly for the particle directly above A in the figure. The particle diagonally
opposite A is a distance r =

√
2L = 0.71 m from the axis. Therefore,

I =
∑

mir
2
i = 2mL2 +m

(√
2L
)2

= 0.20 kg·m2 .

(b) One imagines rotating the figure (about point A) clockwise by 90◦ and noting that the center of
mass has fallen a distance equal to L as a result. If we let our reference position for gravitational
potential be the height of the center of mass at the instant AB swings through vertical orientation,
then

K0 + U0 = K + U

0 + (4m)gh0 = K + 0 .

Since h0 = L = 0.50 m, we find K = 3.9 J. Then, using Eq. 11-27, we obtain

K =
1

2
IA ω

2 =⇒ ω = 6.3
rad

s
.

91. The center of mass is initially at height h = L
2 sin 40◦ when the system is released (where L = 2.0 m).

The corresponding potential energy Mgh (where M = 1.5 kg) becomes rotational kinetic energy 1
2Iω

2

as it passes the horizontal position (where I is the rotational inertia about the pin). Using Table 11-2(e)
and the parallel axis theorem, we find I = 1

12ML2 +M(L/2)2 = 1
3ML2. Therefore,

Mg
L

2
sin 40◦ =

1

2

(

1

3
ML2

)

ω2 =⇒ ω =

√

3g sin 40◦

L

which yields ω = 3.1 rad/s.

92. We choose ± directions such that the initial angular velocity is ω0 = −317 rad/s and the values for α,
τ and F are positive.

(a) Combining Eq. 11-12 with Eq. 11-37 and Table 11-2(f) (and using the fact that ω = 0) we arrive
at the expression

τ =

(

2

5
MR2

)

(

− ω0

t

)

= − 2

5

MR2ω0

t
.

With t = 15.5 s, R = 0.226 m and M = 1.65 kg, we obtain τ = 0.689 N·m.

(b) From Eq. 11-32, we find F = τ/R = 3.05 N.

(c) Using again the expression found in part (a), but this time with R = 0.854 m, we get τ = 9.84 N·m.

(d) Now, F = τ/R = 11.5 N.
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93. We choose positive coordinate directions so that each is accelerating positively, which will allow us to set
abox = Rα (for simplicity, we denote this as a). Thus, we choose downhill positive for the m = 2.0 kg
box and (as is conventional) counterclockwise for positive sense of wheel rotation. Applying Newton’s
second law to the box and (in the form of Eq. 11-37) to the wheel, respectively, we arrive at the following
two equations (using θ as the incline angle 20◦, not as the angular displacement of the wheel).

mg sin θ − T = ma

TR = Iα

Since the problem gives a = 2.0 m/s2, the first equation gives the tension T = m(g sin θ − a) = 2.7 N.
Plugging this and R = 0.20 m into the second equation (along with the fact that α = a/R) we find the
rotational inertia I = TR2/a = 0.054 kg·m2.

94. Eq. 11-32 leads to τ = mgr = (70)(9.8)(0.20) in SI units, which yields τ = 1.4× 102 N.

95. The disk centered on A has I = 1
2MR2 (Table 11-2(c)) about that point, but the rotational inertia of

the other disk is found using the parallel-axis theorem I = 1
2MR2 +M(2R)2 = 9

2MR2 about point A.
Adding these two results, we obtain

1

2
MR2 +

9

2
MR2 = 5MR2 = 5(4.0)(0.40)2

which yields 3.2 kg·m2.

96. (a) One particle is on the axis, so r = 0 for it. For each of the others, the distance from the axis is
r = (0.60 m) sin 60◦ = 0.52 m. Therefore, the rotational inertia is I =

∑

mir
2
i = 0.27 kg ·m2.

(b) The two particles that are nearest the axis are each a distance of r = 0.30 m from it. The particle
“opposite” from that side is a distance r = (0.60 m) sin 60◦ = 0.52 m from the axis. Thus, the
rotational inertia is I =

∑

mir
2
i = 0.22 kg ·m2.

(c) The distance from the axis for each of the particles is r = 1
2 (0.60 m) sin 60◦.Now, I = 3(0.50 kg)(0.26 m)2 =

0.10 kg·m2.

97. The parallel axis theorem gives I = Icom +Mh2 for the rotational inertia about any axis (parallel to the
axis used to compute Icom ). Let us assume that an axis has already been chosen through the center of
mass of the body such that Icom is as small as it possibly can be. Since Mh2 > for all nonzero values of
h, then I > Icom from the parallel axis theorem as long as h 6= 0. Thus, with h = 0 we get I = Icom and
therefore the smallest possible value of rotational inertia.

98. (a) The linear speed at t = 15.0 s is

v = att =
(

0.500 m/s
2
)

(15.0 s) = 7.50 m/s .

The radial (centripetal) acceleration at that moment is

ar =
v2

r
=

(7.50 m/s)2

30.0 m
= 1.875 m/s2 .

Thus, the net acceleration has magnitude:

a =
√

a2
t + a2

r =

√

(

0.500 m/s
2
)2

+
(

1.875 m/s
2
)2

= 1.94 m/s
2
.

(b) We note that ~at ‖ ~v. Therefore, the angle between ~v and ~a is

tan−1

(

ar

at

)

= tan−1

(

1.875

0.5

)

= 75.1◦

so that the vector is pointing more toward the center of the track than in the direction of motion.
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99. First, we convert the angular velocity: ω = (2000)(2π/60) = 209 rad/s. Also, we convert the plane’s
speed to SI units: (480)(1000/3600) = 133 m/s. We use Eq. 11-18 in part (a) and (implicitly) Eq. 4-39
in part (b).

(a) The speed of the tip as seen by the pilot is

vt = ωr = (209 rad/s)(1.5 m) = 314 m/s

which (since the radius is given to only two significant figures) we write as v = 3.1× 102 m/s.

(b) The plane’s velocity ~vp and the velocity of the tip ~vt (found in the plane’s frame of reference), in
any of the tip’s positions, must be perpendicular to each other. Thus, the speed as seen by an
observer on the ground is

v =
√

v2
p + v2

t =
√

(133 m/s)2 + (314 m/s)2 = 3.4× 102 m/s .

100. Using Eq. 11-7 and Eq. 11-18, the average angular acceleration is

αavg =
∆ω

∆t
=

∆v

r∆t
=

25− 12

(0.75/2)(6.2)
= 5.6 rad/s2 .

101. (a) Eq. 11-15 gives

90 rev =
1

2
(ω0 + 10 rev/s) (15 s)

which leads to ω0 = 2.0 rev/s.

(b) From Eq. 11-12, the angular acceleration is

α =
10 rev/s− 2.0 rev/s

15 s
= 0.53 rev/s

2
.

Using the equation again (with the same value for α) we seek a negative value of t (meaning an
earlier time than that when ω0 = 2.0 rev/s) such that ω = 0. Thus,

t = − ω0

α
= − 2.0 rev/s

0.53 rev/s2
= −3.8 s

which means that the wheel was at rest 3.8 s before the 15 s interval began.

102. (a) Using Eq. 11-1, the angular displacement is

θ =
5.6 m

8.0× 10−2 m
= 1.4× 102 rad .

(b) We use θ = 1
2αt

2 (Eq. 11-13) to obtain t:

t =

√

2θ

α
=

√

2(1.4× 102 rad)

1.5 rad/s
2 = 14 s .

103. The problem asks us to assume vcom and ω are constant. For consistency of units, we write

vcom = (85 mi/h)

(

5280 ft/mi

60 min/h

)

= 7480 ft/min .

Thus, with ∆x = 60 ft, the time of flight is t = ∆x/vcom = 60/7480 = 0.00802 min. During that time,
the angular displacement of a point on the ball’s surface is

θ = ωt = (1800 rev/min)(0.00802 min) ≈ 14 rev .



Chapter 12

1. The initial speed of the car is v = (80.0)(1000/3600) = 22.2 m/s. The tire radius is R = 0.750/2 =
0.375 m.

(a) The initial speed of the car is the initial speed of the center of mass of the tire, so Eq. 12-2 leads to

ω0 =
vcom0

R
=

22.2

0.375
= 59.3 rad/s .

(b) With θ = (30.0)(2π) = 188 rad and ω = 0, Eq. 11-14 leads to

ω2 = ω2
0 + 2αθ =⇒ |α| = 59.32

2(188)
= 9.31 rad/s2 .

(c) Eq. 12-1 gives Rθ = 70.7 m for the distance traveled.

2. We define the direction of motion of the car as the +x direction. The velocity of the car is a constant
~v = +(80)(1000/3600) = +22 m/s, and the radius of the wheel is r = 0.66/2 = 0.33 m.

(a) In the car’s reference frame (where the lady perceives herself to be at rest) the road is moving
towards the rear at ~vroad = −v = −22 m/s, and the motion of the tire is purely rotational. In this
frame, the center of the tire is “fixed” so vcenter = 0.

(b) This frame of reference is not accelerating, so “fixed” points within it have zero acceleration; thus,
acenter = 0.

(c) Since the tire’s motion is only rotational (not translational) in this frame, Eq. 11-18 gives ~vtop =
+v = +22 m/s.

(d) Not only is the motion purely rotational in this frame, but we also have ω = constant, which means
the only acceleration for points on the rim is radial (centripetal). Therefore, the magnitude of the
acceleration is

atop =
v2

r
=

222

0.33
= 1.5× 103 m/s2 .

(e) The bottom-most point of the tire is (momentarily) in firm contact with the road (not skidding)
and has the same velocity as the road: ~vbottom = −22 m/s. This also follows from Eq. 11-18.

(f) The magnitude of the acceleration is the same as in part (d): abottom = 1.5× 103 m/s2.

(g) Now we examine the situation in the road’s frame of reference (where the road is “fixed” and it is
the car that appears to be moving). The center of the tire undergoes purely translational motion
while points at the rim undergo a combination of translational and rotational motions. The velocity
of the center of the tire is ~v = +v = +22 m/s.

(h) The translational motion of the center is constant; it does not accelerate.
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(i) In part (c), we found ~vtop,car = +v and we use Eq. 4-39:

~vtop,ground = ~vtop,car + ~vcar,ground

= v + v

which yields 2v = +44 m/s. This is consistent with Fig. 12-3(c).

(j) Since we are transforming between constant-velocity frames of reference, the accelerations are un-
affected. The answer is as it was in part (d): 1.5× 103 m/s2.

(k) We can proceed as in part (i) or simply recall that the bottom-most point is in firm contact with
the (zero-velocity) road. Either way – the answer is zero.

(l) As explained in part (j), a = 1.5× 103 m/s2.

3. By Eq. 11-44, the work required to stop the hoop is the negative of the initial kinetic energy of the hoop.
The initial kinetic energy is K = 1

2Iω
2 + 1

2mv
2 (Eq. 12-5), where I = mR2 is its rotational inertia about

the center of mass, m = 140 kg, and v = 0.150 m/s is the speed of its center of mass. Eq. 12-2 relates
the angular speed to the speed of the center of mass: ω = v/R. Thus,

K =
1

2
mR2

(

v2

R2

)

+
1

2
mv2 = mv2 = (140)(0.150)2

which implies that the work required is −3.15 J.

4. The rotational kinetic energy is K = 1
2Iω

2, where I = mR2 is its rotational inertia about the center of
mass (Table 11-2(a)), m = 140 kg, and ω = vcom/R (Eq. 12-2). The asked-for ratio is

Ktransl

Krot
=

1
2mv

2
com

1
2 (mR2) (vcom/R)

2 = 1 .

5. Let M be the mass of the car (presumably including the mass of the wheels) and v be its speed. Let I
be the rotational inertia of one wheel and ω be the angular speed of each wheel. The kinetic energy of
rotation is

Krot = 4

(

1

2
Iω2

)

where the factor 4 appears because there are four wheels. The total kinetic energy is given by K =
1
2Mv2 + 4

(

1
2Iω

2
)

. The fraction of the total energy that is due to rotation is

fraction =
Krot

K
=

4Iω2

Mv2 + 4Iω2
.

For a uniform disk (relative to its center of mass) I = 1
2mR

2 (Table 11-2(c)). Since the wheels roll
without sliding ω = v/R (Eq. 12-2). Thus the numerator of our fraction is

4Iω2 = 4

(

1

2
mR2

)

( v

R

)2

= 2mv2

and the fraction itself becomes

fraction =
2mv2

Mv2 + 2mv2
=

2m

M + 2m
=

2(10)

1000
=

1

50
.

The wheel radius cancels from the equations and is not needed in the computation.
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6. Interpreting h as the height increase for the center of mass of the body, then (using Eq. 12-5) mechanical
energy conservation leads to

Ki = Uf

1

2
mv2

com +
1

2
Iω2 = mgh

1

2
mv2 +

1

2
I
( v

R

)2

= mg

(

3v2

4g

)

from which v cancels and we obtain I = 1
2mR

2 (solid cylinder – Table 11-2(c)).

7. Rather than reproduce the analysis in §12-3, we simply use the results from that section.

(a) We substitute I = 2
5MR2 (Table 11-2(f)) and a = −0.10g into Eq. 12-10:

−0.10g = − g sin θ

1 +
(

2
5MR2

)

/MR2
= − g sin θ

7/5

which yields θ = sin−1(0.14) = 8.0◦.

(b) The acceleration would be more. We can look at this in terms of forces or in terms of energy. In
terms of forces, the uphill static friction would then be absent so the downhill acceleration would
be due only to the downhill gravitational pull. In terms of energy, the rotational term in Eq. 12-5
would be absent so that the potential energy it started with would simply become 1

2mv
2 (without

it being “shared” with another term) resulting in a greater speed (and, because of Eq. 2-16, greater
acceleration).

8. We choose +x rightward (so ~F = 10 ı̂ in Newtons) and apply Eq. 9-14 and Eq. 11-37.

(a) Newton’s second law in the x direction leads to

F − fs = ma =⇒ fs = 10 N− (10 kg)(0.60 m/s2)

which yields fs = 4.0 N. As assumed in setting up the equation, ~fs points leftward.

(b) With R = 0.30 m, we find the magnitude of the angular acceleration to be |α| = |acom| /R =
2.0 rad/s2, from Eq. 12-6. The only force not directed towards (or away from) the center of mass is
~fs, and the torque it produces is clockwise:

|τ | = I |α|
(0.30 m)(4.0 N) = I

(

2.0 rad/s2
)

which yields the wheel’s rotational inertia about its center of mass: I = 0.60 kg·m2.

9. To find where the ball lands, we need to know its speed as it leaves the track (using conservation of
energy). Its initial kinetic energy is Ki = 0 and its initial potential energy is Ui = MgH . Its final kinetic
energy (as it leaves the track) is Kf = 1

2Mv2 + 1
2Iω

2 (Eq. 12-5) and its final potential energy is Mgh.
Here we use v to denote the speed of its center of mass and ω is its angular speed – at the moment it
leaves the track. Since (up to that moment) the ball rolls without sliding we can set ω = v/R. Using
I = 2

5MR2 (Table 11-2(f)), conservation of energy leads to

MgH =
1

2
Mv2 +

1

2
Iω2 +Mgh

=
1

2
Mv2 +

2

10
Mv2 +Mgh

=
7

10
Mv2 +Mgh .
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The mass M cancels from the equation, and we obtain

v =

√

10

7
g(H − h) =

√

10

7

(

9.8 m/s
2
)

(6.0 m− 2.0 m) = 7.48 m/s .

Now this becomes a projectile motion of the type examined in Chapter 4. We put the origin at the
position of the center of mass when the ball leaves the track (the “initial” position for this part of the
problem) and take +x rightward and +y downward. Then (since the initial velocity is purely horizontal)
the projectile motion equations become

x = vt and y = −1

2
gt2 .

Solving for x at the time when y = h, the second equation gives t =
√

2h/g. Then, substituting this
into the first equation, we find

x = v

√

2h

g
= (7.48)

√

2(2.0)

9.8
= 4.8 m .

10. (a) When the small sphere is released at the edge of the large “bowl” (the hemisphere of radius R), its
center of mass is at the same height at that edge, but when it is at the bottom of the “bowl” its
center of mass is a distance r above the the bottom surface of the hemisphere. Since the small sphere
descends by R − r, its loss in gravitational potential energy is mg(R − r), which, by conservation
of mechanical energy, is equal to its kinetic energy at the bottom of the track.

(b) Using Eq. 12-5 for K, the asked-for fraction becomes

Krot

K
=

1
2Iω

2

1
2Iω

2 + 1
2Mv2

com

=
1

1 +
(

M
I

) (

vcom

ω

)2 .

Substituting vcom = Rω (Eq. 12-2) and I = 2
5MR2 (Table 11-2(f)), we obtain

Krot

K
=

1

1 +
(

5
2R2

)

R2
=

2

7
.

(c) The small sphere is executing circular motion so that when it reaches the bottom, it experiences
a radial acceleration upward (in the direction of the normal force which the “bowl” exerts on it).
From Newton’s second law along the vertical axis, the normal force N satisfies N −mg = macom

where acom = v2
com/(R− r). Therefore,

N = mg +
mv2

com

R− r =
mg(R− r) +mv2

com

R− r .

But from part (a), mg(R− r) = K, and from Eq. 12-5, 1
2mv

2
com = K −Krot. Thus,

N =
K + 2 (K −Krot)

R− r = 3
K

R− r − 2
Krot

R− r .

We now plug in R − r = K/mg and use the result of part (b):

N = 3mg − 2mg

(

2

7

)

=
17

7
mg .

11. (a) We find its angular speed as it leaves the roof using conservation of energy. Its initial kinetic energy
is Ki = 0 and its initial potential energy is Ui = Mgh where h = 6.0 sin30◦ = 3.0 m (we are using
the edge of the roof as our reference level for computing U). Its final kinetic energy (as it leaves



315

the roof) is Kf = 1
2Mv2 + 1

2Iω
2 (Eq. 12-5). Here we use v to denote the speed of its center of mass

and ω is its angular speed – at the moment it leaves the roof. Since (up to that moment) the ball
rolls without sliding we can set v = Rω = v where R = 0.10 m. Using I = 1

2MR2 (Table 11-2(c)),
conservation of energy leads to

Mgh =
1

2
Mv2 +

1

2
Iω2

=
1

2
MR2ω2 +

1

4
MR2ω2

=
3

4
MR2ω2 .

The mass M cancels from the equation, and we obtain

ω =
1

R

√

4

3
gh =

1

0.10 m

√

4

3

(

9.8 m/s2
)

(3.0 m) = 63 rad/s .

(b) Now this becomes a projectile motion of the type examined in Chapter 4. We put the origin at
the position of the center of mass when the ball leaves the track (the “initial” position for this
part of the problem) and take +x leftward and +y downward. The result of part (a) implies
v0 = Rω = 6.3 m/s, and we see from the figure that (with these positive direction choices) its
components are

v0x = v0 cos 30◦ = 5.4 m/s and

v0y = v0 sin 30◦ = 3.1 m/s .

The projectile motion equations become

x = v0xt and y = v0yt+
1

2
gt2 .

We first find the time when y = 5.0 m from the second equation (using the quadratic formula,
choosing the positive root):

t =
−v0y +

√

v2
0y + 2gy

g
= 0.74 s .

Then we substitute this into the x equation and obtain

x = (5.4 m/s)(0.74 s) = 4.0 m .

12. Using the floor as the reference position for computing potential energy, mechanical energy conservation
leads to

Urelease = Ktop + Utop

mgh =
1

2
mv2

com +
1

2
Iω2 +mg(2R) .

Substituting I = 2
5mr

2 (Table 11-2(f)) and ω = vcom/r (Eq. 12-2), we obtain

mgh =
1

2
mv2

com +
1

2

(

2

5
mr2

)

(vcom
r

)2

+ 2mgR

gh =
7

10
v2
com + 2gR

where we have canceled out mass m in that last step.



316 CHAPTER 12.

(a) To be on the verge of losing contact with the loop (at the top) means the normal force is vanishingly
small. In this case, Newton’s second law along the vertical direction (+y downward) leads to

mg = mar =⇒ g =
v2
com

R − r
where we have used Eq. 11-23 for the radial (centripetal) acceleration (of the center of mass, which
at this moment is a distance R−r from the center of the loop). Plugging the result v2

com = g(R−r)
into the previous expression stemming from energy considerations gives

gh =
7

10
(g)(R − r) + 2gR

which leads to
h = 2.7R− 0.7r ≈ 2.7R .

(b) The energy considerations shown above (now with h = 6R) can be applied to point Q (which,
however, is only at a height of R) yielding the condition

g(6R) =
7

10
v2
com + gR

which gives us v2
com = 50gR/7. Recalling previous remarks about the radial acceleration, Newton’s

second law applied to the horizontal axis at Q (+x leftward) leads to

N = m
v2
com

R− r
= m

50gR

7(R− r)
which (for R≫ r) gives N ≈ 50mg/7.

13. From I = 2
3MR2 (Table 11-2(g)) we find

M =
3I

2R2
=

3(0.040)

2(0.15)2
= 2.7 kg .

It also follows from the rotational inertia expression that 1
2Iω

2 = 1
3MR2ω2. Furthermore, it rolls without

slipping, vcom = Rω, and we find

Krot

Kcom +Krot
=

1
3MR2ω2

1
2mR

2ω2 + 1
3MR2ω2

.

(a) Simplifying the above ratio, we find Krot/K = 0.4. Thus, 40% of the kinetic energy is rotational,
or Krot = (0.4)(20) = 8.0 J.

(b) From Krot = 1
3MR2ω2 = 8.0 J (and using the above result for M) we find

ω =
1

0.15 m

√

3(8.0 J)

2.7 kg
= 20 rad/s

which leads to vcom = (0.15)(20) = 3.0 m/s.

(c) We note that the inclined distance of 1.0 m corresponds to a height h = 1.0 sin 30◦ = 0.50 m.
Mechanical energy conservation leads to

Ki = Kf + Uf

20 J = Kf +Mgh

which yields (using the values of M and h found above) Kf = 6.9 J.



317

(d) We found in part (a) that 40% of this must be rotational, so

1

3
MR2ω2

f = (0.40)Kf =⇒ ωf =
1

0.15

√

3(0.40)(6.9)

2.7

which yields ωf = 12 rad/s and leads to

vcomf = Rωf = (0.15)(12) = 1.8 m/s .

14. (a) We choose clockwise as the negative rotational sense and rightwards as the positive translational
direction. Thus, since this is the moment when it begins to roll smoothly, Eq. 12-2 becomes

vcom = −Rω = (−0.11 m)ω .

This velocity is positive-valued (rightward) since ω is negative-valued (clockwise) as shown in
Fig. 12-34.

(b) The force of friction exerted on the ball of mass m is −µkmg (negative since it points left), and
setting this equal to macom leads to

acom = −µg = −(0.21)
(

9.8 m/s2
)

= −2.1 m/s
2

where the minus sign indicates that the center of mass acceleration points left, opposite to its
velocity, so that the ball is decelerating.

(c) Measured about the center of mass, the torque exerted on the ball due to the frictional force is given
by τ = −µmgR. Using Table 11-2(f) for the rotational inertia, the angular acceleration becomes
(using Eq. 11-37)

α =
τ

I
=
−µmgR
2mR2/5

=
−5µg

2R
=
−5(0.21)(9.8)

2(0.11)
= −47 rad/s

2

where the minus sign indicates that the angular acceleration is clockwise, the same direction as ω
(so its angular motion is “speeding up”).

(d) The center-of-mass of the sliding ball decelerates from vcom,0 to vcom during time t according to
Eq. 2-11:

vcom = vcom,0 − µgt .
During this time, the angular speed of the ball increases (in magnitude) from zero to |ω| according
to Eq. 11-12:

|ω| = |α| t =
5µgt

2R
=
vcom
R

where we have made use of our part (a) result in the last equality. We have two equations involving
vcom, so we eliminate that variable and find

t =
2vcom,0

7µg
=

2(8.5)

7(0.21)(9.8)
= 1.2 s .

(e) The skid length of the ball is (using Eq. 2-15)

∆x = vcom,0t−
1

2
(µg)t2 = (8.5)(1.2)− 1

2
(0.21)(9.8)(1.2)2 = 8.6 m .

(f) The center of mass velocity at the time found in part (d) is

vcom = vcom,0 − µgt = 8.5− (0.21)(9.8)(1.2) = 6.1 m/s .
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15. (a) The derivation of the acceleration is found in §12-4; Eq. 12-13 gives

acom = − g

1 + Icom/MR2
0

where the positive direction is upward. We use Icom = 950 g · cm2, M = 120 g, R0 = 0.32 cm and
g = 980 cm/s

2
and obtain

|acom| =
980

1 + (950)/(120)(0.32)2
= 12.5 cm/s

2
.

(b) Taking the coordinate origin at the initial position, Eq. 2-15 leads to ycom = 1
2acomt

2. Thus, we set
ycom = −120 cm, and find

t =

√

2ycom
acom

=

√

2(−120 cm)

−12.5 cm/s2
= 4.38 s .

(c) As it reaches the end of the string, its center of mass velocity is given by Eq. 2-11: vcom = acomt =

(−12.5 cm/s
2
)(4.38 s) = −54.8 cm/s, so its linear speed then is approximately 55 cm/s.

(d) The translational kinetic energy is 1
2mv

2
com = 1

2 (0.120 kg)(0.548 m/s)2 = 1.8× 10−2 J.

(e) The angular velocity is given by ω = −vcom/R0 and the rotational kinetic energy is

1

2
Icomω

2 =
1

2
Icom

v2
com

R2
0

=
1

2

(9.50× 10−5 kg ·m2)(0.548 m/s)2

(3.2× 10−3 m)
2

which yields Krot = 1.4 J.

(f) The angular speed is ω = |vcom| /R0 = (0.548 m/s)/(3.2× 10−3 m) = 1.7× 102 rad/s = 27 rev/s.

16. (a) The acceleration is given by Eq. 12-13:

acom = − g

1 + Icom/MR2
0

where upward is the positive translational direction. Taking the coordinate origin at the initial
position, Eq. 2-15 leads to

ycom = vcom,0 t+
1

2
acomt

2 = vcom,0 t−
1
2gt

2

1 + Icom/MR2
0

where ycom = −1.2 m and vcom,0 = −1.3 m/s. Substituting Icom = 0.000095 kg ·m2, M = 0.12 kg,

R0 = 0.0032 m and g = 9.8 m/s2, we use the quadratic formula and find

t =

(

1 + Icom
MR2

0

)(

vcom,0 ∓
√

v2
com,0 − 2gycom

1+Icom/MR2
0

)

g

=

(

1 + 0.000095
(0.12)(0.0032)2

)(

−1.3∓
√

1.32 − 2(9.8)(−1.2)
1+0.000095/(0.12)(0.0032)2

)

9.8
= −21.7 or 0.885

where we choose t = 0.89 s as the answer.

(b) We note that the initial potential energy is Ui = Mgh and h = 1.2 m (using the bottom as the
reference level for computing U). The initial kinetic energy is as shown in Eq. 12-5, where the
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initial angular and linear speeds are related by Eq. 12-2. Energy conservation leads to

Kf = Ki + Ui

=
1

2
mv2

com,0 +
1

2
I

(

vcom,0

R0

)2

+Mgh

=
1

2
(0.12)(1.3)2 +

1

2

(

9.5× 10−5
)

(

1.3

0.0032

)2

+ (0.12)(9.8)(1.2)

= 9.4 J .

(c) As it reaches the end of the string, its center of mass velocity is given by Eq. 2-11:

vcom = vcom,0 + acomt = vcom,0 −
gt

1 + Icom/MR2
0

.

Thus, we obtain

vcom = −1.3− (9.8)(0.885)

1 + 0.000095
(0.12)(0.0032)2

= −1.41 m/s

so its linear speed at that moment is approximately 1.4 m/s.

(d) The translational kinetic energy is 1
2mv

2
com = 1

2 (0.12)(1.41)2 = 0.12 J.

(e) The angular velocity at that moment is given by

ω = − vcom
R0

= − −1.41

0.0032
= 441

or approximately 440 rad/s.

(f) And the rotational kinetic energy is

1

2
Icomω

2 =
1

2

(

9.50× 10−5 kg ·m2
)

(441 rad/s)2 = 9.2 J .

17. One method is to show that ~r ·
(

~r × ~F
)

= ~F ·
(

~r × ~F
)

= 0, but we choose here a more pedestrian

approach: without loss of generality we take ~r and ~F to be in the xy plane – and will show that ~τ has
no x and y components (that it is parallel to the k̂ direction). We proceed as follows: in the general

expression ~r = x̂ı + yĵ + zk̂, we will set z = 0 to constrain ~r to the xy plane, and similarly for ~F . Using
Eq. 3-30, we find ~r × ~F is equal to

(yFz − zFy) ı̂ + (zFx − xFz) ĵ + (xFy − yFx) k̂

and once we set z = 0 and Fz = 0 we obtain

~τ = ~r × ~F = (xFy − yFx) k̂

which demonstrates that ~τ has no component in the xy plane.

18. If we write ~r = x̂ı + yĵ + zk̂, then (using Eq. 3-30) we find ~r × ~F is equal to

(yFz − zFy) ı̂ + (zFx − xFz) ĵ + (xFy − yFx) k̂ .

(a) In the above expression, we set (with SI units understood) x = −2, y = 0, z = 4, Fx = 6, Fy = 0

and Fz = 0. Then we obtain ~τ = ~r × ~F = 24 ĵ N·m.

(b) The values are just as in part (a) with the exception that now Fx = −6. We find ~τ = ~r × ~F =
−24 ĵ N·m.
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(c) In the above expression, we set x = −2, y = 0, z = 4, Fx = 0, Fy = 0 and Fz = 6. We get

~τ = ~r × ~F = 12 ĵ N·m.

(d) The values are just as in part (c) with the exception that now Fz = −6. We find ~τ = ~r × ~F =
−12 ĵ N·m.

19. If we write ~r = x̂ı + yĵ + zk̂, then (using Eq. 3-30) we find ~r × ~F is equal to

(yFz − zFy) ı̂ + (zFx − xFz) ĵ + (xFy − yFx) k̂ .

(a) In the above expression, we set (with SI units understood) x = 0, y = −4, z = 3, Fx = 2, Fy = 0 and

Fz = 0. Then we obtain ~τ = ~r× ~F =
(

6 ĵ + 8 k̂
)

N·m. This has magnitude
√

62 + 82 = 10 N·m and

is seen to be parallel to the yz plane. Its angle (measured counterclockwise from the +y direction)
is tan−1(8/6) = 53◦.

(b) In the above expression, we set x = 0, y = −4, z = 3, Fx = 0, Fy = 2 and Fz = 4. Then we obtain

~τ = ~r × ~F = −22 ı̂ N·m. This has magnitude 22 N·m and points in the −x direction.

20. We use the notation ~r ′ to indicate the vector pointing from the axis of rotation directly to the position
of the particle. If we write ~r ′ = x′ ı̂ + y′ ĵ + z ′ k̂, then (using Eq. 3-30) we find ~r ′ × ~F is equal to

(y′Fz − z′Fy) ı̂ + (z′Fx − x′Fz) ĵ + (x′Fy − y′Fx) k̂ .

(a) Here, ~r ′ = ~r. Dropping the primes in the above expression, we set (with SI units understood)

x = 0, y = 0.5, z = −2.0, Fx = 2, Fy = 0 and Fz = −3. Then we obtain ~τ = ~r × ~F =
(

−1.5 ı̂− 4 ĵ− k̂
)

N·m.

(b) Now ~r ′ = ~r−~ro where ~ro = 2 ı̂−3 k̂. Therefore, in the above expression, we set x′ = −2.0, y′ = 0.5,

z′ = 1.0, Fx = 2, Fy = 0 and Fz = −3. Thus, we obtain ~τ = ~r ′ × ~F =
(

−1.5 ı̂− 4 ĵ− k̂
)

N·m.

21. If we write ~r = x̂ı + yĵ + zk̂, then (using Eq. 3-30) we find ~r × ~F is equal to

(yFz − zFy) ı̂ + (zFx − xFz) ĵ + (xFy − yFx) k̂ .

(a) Plugging in, we find

~τ = ((3.0 m)(6.0 N)− (4.0 m)(−8.0 N)) k̂ = 50 k̂ N·m .

(b) We use Eq. 3-27, |~r × ~F | = rF sinφ, where φ is the angle between ~r and ~F . Now r =
√

x2 + y2 =

5.0 m and F =
√

F 2
x + F 2

y = 10 N. Thus rF = (5.0 m)(10 N) = 50 N ·m, the same as the magnitude

of the vector product calculated in part (a). This implies sinφ = 1 and φ = 90◦.

22. If we write ~r ′ = x′ ı̂ + y′ ĵ + z′ k̂, then (using Eq. 3-30) we find ~r ′ × ~F is equal to

(y′Fz − z′Fy) ı̂ + (z′Fx − x′Fz) ĵ + (x′Fy − y′Fx) k̂ .

(a) Here, ~r ′ = ~r where ~r = 3 ı̂ − 2 ĵ + 4 k̂, and ~F = ~F1 . Thus, dropping the primes in the above
expression, we set (with SI units understood) x = 3, y = −2, z = 4, Fx = 3, Fy = −4 and Fz = 5.

Then we obtain ~τ = ~r × ~F1 =
(

6.0 ı̂− 3.0 ĵ− 6.0 k̂
)

N·m.

(b) This is like part (a) but with ~F = ~F2 . We plug in Fx = −3, Fy = −4 and Fz = −5 and obtain

~τ = ~r × ~F2 =
(

26 ı̂ + 3.0 ĵ− 18 k̂
)

N·m.

(c) We can proceed in either of two ways. We can add (vectorially) the answers from parts (a) and (b),

or we can first add the two force vectors and then compute ~τ = ~r ×
(

~F1 + ~F2

)

(these total force

components are computed in the next part). The result is
(

32 ı̂− 24 k̂
)

N·m.
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(d) Now ~r ′ = ~r−~ro where ~ro = 3 ı̂+2 ĵ+4 k̂. Therefore, in the above expression, we set x′ = 0, y′ = −4,

z′ = 0, Fx = 3− 3 = 0, Fy = −4− 4 = −8 and Fz = 5− 5 = 0. We get ~τ = ~r ′ ×
(

~F1 + ~F2

)

= 0.

23. We could proceed formally by setting up an xyz coordinate system and using Eq. 3-30 for the vector
cross product, or we can approach this less formally in the style of Sample Problem 12-4 (which is our
choice). For the 3.1 kg particle, Eq. 12-21 yields

ℓ1 = r⊥ 1mv1 = (2.8)(3.1)(3.6) = 31.2 kg·m2/s .

Using the right-hand rule for vector products, we find this (~r1 × ~p1) is out of the page, perpendicular to
the plane of Fig. 12-35. And for the 6.5 kg particle, we find

ℓ2 = r⊥ 2mv2 = (1.5)(6.5)(2.2) = 21.4 kg·m2/s .

And we use the right-hand rule again, finding that this (~r2 × ~p2) is into the page. Consequently, the
two angular momentum vectors are in opposite directions, so their vector sum is the difference of their
magnitudes:

L = ℓ1 − ℓ2 = 9.8 kg·m2/s .

24. We note that the component of ~v perpendicular to ~r has magnitude v sinφ where φ = 30◦. A similar
observation applies to ~F .

(a) Eq. 12-20 leads to
ℓ = rmv⊥ = (3.0)(2.0)(4.0) sin 30◦ = 12 kg·m2/s .

Using the right-hand rule for vector products, we find ~r × ~p points out of the page, perpendicular
to the plane of Fig. 12-36.

(b) Eq. 11-31 (which is the same as Eq. 12-15) leads to

τ = rF sinφ = (3.0)(2.0) sin 30◦ = 3.0 N ·m .

Using the right-hand rule for vector products, we find ~r × ~F is also out of the page.

25. (a) We use ~ℓ = m~r×~v, where ~r is the position vector of the object, ~v is its velocity vector, and m is its
mass. Only the x and z components of the position and velocity vectors are nonzero, so Eq. 3-30
leads to ~r × ~v = (−xvz + zvx) ĵ. Therefore,

~ℓ = m (−xvz + zvx) ĵ

= (0.25 kg) (−(2.0 m)(5.0 m/s) + (−2.0 m)(−5.0 m/s)) ĵ

= 0 .

(b) If we write ~r = x̂ı + yĵ + zk̂, then (using Eq. 3-30) we find ~r × ~F is equal to

(yFz − zFy) ı̂ + (zFx − xFz) ĵ + (xFy − yFx) k̂ .

With x = 2.0, z = −2.0, Fy = 4.0 and all other components zero (and SI units understood) the

expression above yields ~τ = ~r × ~F =
(

8.0 ı̂ + 8.0 k̂
)

N·m.

26. If we write ~r ′ = x′ ı̂ + y′ ĵ + z′ k̂, then (using Eq. 3-30) we find ~r ′ × ~v is equal to

(y′vz − z′vy) ı̂ + (z′vx − x′vz) ĵ + (x′vy − y′vx) k̂ .

(a) Here, ~r ′ = ~r where ~r = 3 ı̂− 4 ĵ. Thus, dropping the primes in the above expression, we set (with
SI units understood) x = 3, y = −4, z = 0, vx = 30, vy = 60 and vz = 0. Then (with m = 2.0 kg)

we obtain ~ℓ = m (~r × ~v) = 600 k̂ kg·m2/s.
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(b) Now ~r ′ = ~r − ~ro where ~ro = −2 ı̂− 2 ĵ. Therefore, in the above expression, we set x′ = 5, y′ = −2,

z′ = 0, vx = 30, vy = 60 and vz = 0. We get ~ℓ = m (~r ′ × ~v) = 720 k̂ kg·m2/s.

27. (a) The diagram below shows the particles and their lines of motion. The origin is marked O and may
be anywhere. The angular momentum of particle 1 has magnitude ℓ1 = mvr1 sin θ1 = mv(d + h)

and it is into the page. The an-
gular momentum of particle 2 has
magnitude ℓ2 = mvr2 sin θ2 = mvh
and it is out of the page. The net
angular momentum has magnitude
L = mv(d + h) −mvh = mvd and
is into the page. This result is
independent of the location of the
origin.
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(b) As indicated above, the expression does not change.

(c) Suppose particle 2 is traveling to the right. Then L = mv(d+ h) +mvh = mv(d+ 2h). This result
depends on h, the distance from the origin to one of the lines of motion. If the origin is midway
between the lines of motion, then h = −d/2 and L = 0.

28. (a) With ~p = m~v = −16 ĵ kg · m/s, we take the vector cross product (using either Eq. 3-30 or, more
simply, Eq. 12-20 and the right-hand rule):

~ℓ = ~r × ~p = −32 k̂ kg·m2/s .

(b) Now the axis passes through the point ~R = 4.0 ĵ m, parallel with the z axis. With ~r ′ = ~r − ~R =
2.0 ı̂ m, we again take the cross product and arrive at the same result as before:

~ℓ′ = ~r ′ × ~p = −32 k̂ kg·m2/s .

(c) Torque is defined in Eq. 12-14: ~τ = ~r × ~F = 12 k̂ N·m.

(d) Using the notation from part (b),

~τ ′ = ~r ′ × ~F = 0 .

29. If we write (for the general case) ~r = x̂ı + yĵ + zk̂, then (using Eq. 3-30) we find ~r × ~v is equal to

(yvz − zvy) ı̂ + (zvx − xvz) ĵ + (xvy − yvx) k̂ .

(a) The angular momentum is given by the vector product ~ℓ = m~r × ~v, where ~r is the position vector
of the particle, ~v is its velocity, and m = 3.0 kg is its mass. Substituting (with SI units understood)
x = 3, y = 8, z = 0, vx = 5, vy = −6 and vz = 0 into the above expression, we obtain

~ℓ = (3.0) ((3)(−6)− (8.0)(5.0)) k̂ = −1.7× 102 k̂ kg·m2/s .

(b) The torque is given by Eq. 12-14, ~τ = ~r × ~F . We write ~r = x̂ı + yĵ and ~F = Fx ı̂ and obtain

~τ =
(

x ı̂ + y ĵ
)

× (Fx ı̂) = −yFx k̂

since ı̂× ı̂ = 0 and ĵ× ı̂ = −k̂. Thus, we find ~τ = −(8.0 m)(−7.0 N) k̂ = 56 k̂ N·m.

(c) According to Newton’s second law ~τ = d~ℓ/dt, so the rate of change of the angular momentum is
56 kg·m2/s2, in the positive z direction.
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30. The rate of change of the angular momentum is

d~ℓ

dt
= ~τ1 + ~τ2 = 2.0̂ı− 4.0̂j N·m .

Consequently, the vector d~ℓ/dt has a magnitude
√

2.02 + (−4.0)2 = 4.5 N ·m and is at an angle θ (in the
xy plane, or a plane parallel to it) measured from the positive x axis, where θ = tan−1

(−4.0
2.0

)

= −63◦,
the negative sign indicating that the angle is measured clockwise as viewed “from above” (by a person
on the +z axis).

31. We use a right-handed coordinate system with +k̂ directed out of the xy plane so as to be consistent with
counterclockwise rotation (and the right-hand rule). Thus, all the angular momenta being considered

are along the −k̂ direction; for example, in part (b) ~ℓ = −4.0t2 k̂ in SI units. We use Eq. 12-23.

(a) The angular momentum is constant so its derivative is zero. There is no torque in this instance.

(b) Taking the derivative with respect to time, we obtain the torque:

~τ =
d~ℓ

dt
= (−4.0 k̂)

dt2

dt
= −8.0t k̂

in SI units (N·m). This vector points in the −k̂ direction (causing the clockwise motion to speed
up) for all t > 0.

(c) With ~ℓ = −4.0
√
t k̂ in SI units, the torque is

~τ =
(

−4.0k̂
) d
√
t

dt
=
(

−4.0k̂
)

(

1

2
√
t

)

which yields ~τ = −2.0/
√
t k̂ in SI units. This vector points in the −k̂ direction (causing the clockwise

motion to speed up) for all t > 0 (and it is undefined for t < 0).

(d) Finally, we have

~τ =
(

−4.0k̂
) dt−2

dt
=
(

−4.0k̂
)

(−2

t3

)

which yields ~τ = 8.0/t3 k̂ in SI units. This vector points in the +k̂ direction (causing the initially
clockwise motion to slow down) for all t > 0.

32. Both ~r and ~v lie in the xy plane. The position vector ~r has an x component that is a function of time
(being the integral of the x component of velocity, which is itself time-dependent) and a y component
that is constant (y = −2.0 m). In the cross product ~r×~v, all that matters is the y component of ~r since
vx 6= 0 but vy = 0:

~r × ~v = −yvx k̂ .

(a) The angular momentum is ~ℓ = m (~r × ~v) where the mass is m = 2.0 kg in this case. With SI units
understood and using the above cross-product expression, we have

~ℓ = (2.0)
(

−(−2.0)
(

−6.0t2
))

k̂ = −24t2 k̂

in kg·m2/s. This implies the particle is moving clockwise (as observed by someone on the +z axis)
for t > 0.

(b) The torque is caused by the (net) force ~F = m~a where

~a =
d~v

dt
= −12t ı̂ m/s2 .
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The remark above that only the y component of ~r still applies, since ay = 0. We use ~τ = ~r × ~F =
m (~r × ~a) and obtain

~τ = (2.0) (−(−2.0)(−12t)) k̂ = −48t k̂

in N·m. The torque on the particle (as observed by someone on the +z axis) is clockwise, causing
the particle motion (which was clockwise to begin with) to increase.

(c) We replace ~r with ~r ′ (measured relative to the new reference point) and note (again) that only its
y component matters in these calculations. Thus, with y′ = −2.0− (−3.0) = 1.0 m, we find

~ℓ ′ = (2.0)
(

−(1.0)
(

−6.0t2
))

k̂ = 12t2 k̂

in kg·m2/s. The fact that this is positive implies that the particle is moving counterclockwise
relative to the new reference point.

(d) Using ~τ ′ = ~r ′ × ~F = m (~r ′ × ~a), we obtain

~τ = (2.0) (−(1.0) (−12t)) k̂ = 24t k̂

in N·m. The torque on the particle (as observed by someone on the +z axis) is counterclockwise,
relative to the new reference point.

33. (a) Since τ = dL/dt, the average torque acting during any interval ∆t is given by τavg = (Lf − Li) /∆t,
where Li is the initial angular momentum and Lf is the final angular momentum. Thus

τavg =
0.800 kg·m2/s− 3.00 kg·m2/s

1.50 s

which yields τavg = −1.467 ≈= −1.47 N·m. In this case the negative sign indicates that the
direction of the torque is opposite the direction of the initial angular momentum, implicitly taken
to be positive.

(b) The angle turned is θ = ω0t+
1
2αt

2. If the angular acceleration α is uniform, then so is the torque
and α = τ/I. Furthermore, ω0 = Li/I, and we obtain

θ =
Lit+

1
2τt

2

I

=
(3.00 kg·m2/s)(1.50 s) + 1

2 (−1.467 N·m)(1.50 s)2

0.140 kg·m2

= 20.4 rad .

(c) The work done on the wheel is

W = τθ = (−1.47 N·m)(20.4 rad) = −29.9 J

where more precise values are used in the calculation than what is shown here. An equally good
method for finding W is Eq. 11-44, which, if desired, can be rewritten as W = (L2

f − L2
i )/2I.

(d) The average power is the work done by the flywheel (the negative of the work done on the flywheel)
divided by the time interval:

Pavg = −W
∆t

= −−29.8 J

1.50 s
= 19.9 W .

34. (a) Eq. 11-27 gives α = τ/I and Eq. 11-12 leads to ω = αt = τt/I. Therefore, the angular momentum
at t = 0.033 s is

Iω = τt = (16 N ·m)(0.033 s) = 0.53 kg·m2/s

where this is essentially a derivation of the angular version of the impulse-momentum theorem.
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(b) We find

ω =
τt

I
=

(16)(0.033)

1.2× 10−3
= 440 rad

which we convert as follows: ω = (440)(60/2π) ≈ 4200 rev/min.

35. (a) A particle contributes mr2 to the rotational inertia. Here r is the distance from the origin O to the
particle. The total rotational inertia is

I = m(3d)2 +m(2d)2 +m(d)2 = 14md2 .

(b) The angular momentum of the middle particle is given by Lm = Imω, where Im = 4md2 is its
rotational inertia. Thus Lm = 4md2ω.

(c) The total angular momentum is Iω = 14md2ω.

36. We integrate Eq. 12-29 (for a single torque) over the time interval (where the angular speed at the
beginning is ωi and at the end is ωf )

∫

τ dt =

∫

dL

dt
dt = Lf − Li = I (ωf − ωi )

and if we use the calculus-based notion of the average of a function f

favg =
1

∆t

∫

f dt

then (using Eq. 12-16) we obtain

∫

τ dt = τavg∆t = FavgR∆t .

Inserting this into the top line proves the relationship shown in the problem.

37. Suppose cylinder 1 exerts a uniform force of magnitude F on cylinder 2, tangent to the cylinder’s surface
at the point of contact. The torque applied to cylinder 2 is τ2 = R2F and the angular acceleration of
that cylinder is α2 = τ2/I2 = R2F/I2. As a function of time its angular velocity is

ω2 = α2t =
R2Ft

I2
.

The forces of the cylinders on each other obey Newton’s third law, so the magnitude of the force of
cylinder 2 on cylinder 1 is also F . The torque exerted by cylinder 2 on cylinder 1 is τ1 = R1F and the
angular acceleration of cylinder 1 is α1 = τ1/I1 = R1F/I1. This torque slows the cylinder. As a function
of time, its angular velocity is ω1 = ω0 −R1Ft/I1. The force ceases and the cylinders continue rotating
with constant angular speeds when the speeds of points on their rims are the same (R1ω1 = R2ω2 ).
Thus,

R1ω0 −
R2

1Ft

I1
=
R2

2Ft

I2
.

When this equation is solved for the product of force and time, the result is

Ft =
R1I1I2

I1R2
2 + I2R2

1

ω0 .

Substituting this expression for Ft in the ω2 equation above, we obtain

ω2 =
R1R2I1

I1R2
2 + I2R2

1

ω0 .
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38. (a) For the hoop, we use Table 11-2(h) and the parallel-axis theorem to obtain

I1 = Icom +mh2 =
1

2
mR2 +mR2 =

3

2
mR2 .

Of the thin bars (in the form of a square), the member along the rotation axis has (approximately)
no rotational inertia about that axis (since it is thin), and the member farthest from it is very much
like it (by being parallel to it) except that it is displaced by a distance h; it has rotational inertia
given by the parallel axis theorem:

I2 = Icom +mh2 = 0 +mR2 = mR2 .

Now the two members of the square perpendicular to the axis have the same rotational inertia (that
is, I3 = I4). We find I3 using Table 11-2(e) and the parallel-axis theorem:

I3 = Icom +mh2 =
1

12
mR2 +m

(

R

2

)2

=
1

3
mR2 .

Therefore, the total rotational inertia is

I1 + I2 + I3 + I4 =
19

6
mR2 = 1.6 kg·m2 .

(b) The angular speed is constant:

ω =
∆θ

∆t
=

2π

2.5
= 2.5 rad/s .

Thus, L = Itotalω = 4.0 kg·m2/s.

39. (a) No external torques act on the system consisting of the man, bricks, and platform, so the total
angular momentum of the system is conserved. Let Ii be the initial rotational inertia of the system
and let If be the final rotational inertia. Then Iiωi = Ifωf and

ωf =

(

Ii
If

)

ωi

=

(

6.0 kg·m2

2.0 kg·m2

)

(1.2 rev/s)

= 3.6 rev/s .

(b) The initial kinetic energy is Ki = 1
2Iiω

2
i , the final kinetic energy is Kf = 1

2Ifω
2
f , and their ratio is

Kf

Ki
=
Ifω

2
f

Iiω2
i

=
(2.0 kg·m2)(3.6 rev/s)2

(6.0 kg·m2)(1.2 rev/s)2
= 3.0 .

(c) The man did work in decreasing the rotational inertia by pulling the bricks closer to his body. This
energy came from the man’s store of internal energy.

40. We use conservation of angular momentum: Imωm = Ipωp. The respective angles θm and θp by which
the motor and probe rotate are therefore related by

∫

Imωmdt = Imθm =

∫

Ipωpdt = Ipθp

which gives

θm =
Ipθp

Im
=

(

12 kg·m2
)

(30◦)

2.0× 10−3 kg·m2
= 180000◦ .

The number of revolutions for the rotor is then 1.8× 105/360 = 500 rev.
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41. (a) No external torques act on the system consisting of the two wheels, so its total angular momentum
is conserved. Let I1 be the rotational inertia of the wheel that is originally spinning (at ωi ) and I2
be the rotational inertia of the wheel that is initially at rest. Then I1ωi = (I1 + I2)ωf and

ωf =
I1

I1 + I2
ωi

where ωf is the common final angular velocity of the wheels. Substituting I2 = 2I1 and ωi =
800 rev/min, we obtain ωf = 267 rev/min.

(b) The initial kinetic energy is Ki = 1
2I1ω

2
i and the final kinetic energy is Kf = 1

2 (I1 + I2)ω
2
f . We

rewrite this as

Kf =
1

2
(I1 + 2I1)

(

I1ωi

I1 + 2I1

)2

=
1

6
Iω2

i .

Therefore, the fraction lost, (Ki −Kf)/Ki , is

1− Kf

Ki
= 1−

1
6Iω

2
i

1
2Iω

2
i

=
2

3
.

42. (a) We apply conservation of angular momentum: I1ω1 + I2ω2 = (I1 + I2)ω. The angular speed after
coupling is therefore

ω =
I1ω1 + I2ω2

I1 + I2
=

(

3.3 kg·m2
)

(450 rev/min) +
(

6.6 kg·m2
)

(900 rev/min)

3.3 kg·m2 + 6.6 kg·m2
= 750 rev/min .

(b) In this case, we obtain

ω =
I1ω1 + I2ω2

I1 + I2
=

(3.3)(450) + (6.6)(−900)

3.3 + 6.6
= −450 rev/min

where the minus sign indicates that ~ω is in the direction of the second disk’s initial angular velocity.

43. (a) In terms of the radius of gyration k, the rotational inertia of the merry-go-round is I = Mk2. We
obtain I = (180 kg)(0.910 m)2 = 149 kg·m2.

(b) An object moving along a straight line has angular momentum about any point that is not on the
line. The magnitude of the angular momentum of the child about the center of the merry-go-round
is given by Eq. 12-21, mvR, where R is the radius of the merry-go-round. Therefore,

∣

∣

∣

~Lchild

∣

∣

∣ = (44.0 kg)(3.00 m/s)(1.20 m) = 158 kg·m2/s .

(c) No external torques act on the system consisting of the child and the merry-go-round, so the total
angular momentum of the system is conserved. The initial angular momentum is given by mvR;
the final angular momentum is given by

(

I +mR2
)

ω, where ω is the final common angular velocity
of the merry-go-round and child. Thus mvR = (I +mR2)ω and

ω =
mvR

I +mR2
=

158 kg·m2/s

149 kg·m2 + (44.0 kg)(1.20 m)2
= 0.744 rad/s .

44. Angular momentum conservation Iiωi = Ifωf leads to

ωf

ωi
=
Ii
If
ωi = 3

which implies

Kf

Ki
=

1
2Ifω

2
f

1
2Iiω

2
i

=
If
Ii

(

ωf

ωi

)2

= 3 .
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45. No external torques act on the system consisting of the train and wheel, so the total angular momentum
of the system (which is initially zero) remains zero. Let I = MR2 be the rotational inertia of the wheel.

Its final angular momentum is = Iωk̂ = −MR2|ω|k̂, where k̂ is up in Fig. 12-40 and that last step (with
the minus sign) is done in recognition that the wheel’s clockwise rotation implies a negative value for
ω. The linear speed of a point on the track is ωR and the speed of the train (going counterclockwise in
Fig. 12-40 with speed v′ relative to an outside observer) is therefore v′ = v − |ω|R where v is its speed

relative to the tracks. Consequently, the angular momentum of the train is m(v−|ω|R)R k̂. Conservation
of angular momentum yields

0 = −MR2|ω| k̂ +m (v − |ω|R)R k̂ .

When this equation is solved for the angular speed, the result is

|ω| = mvR

(M +m)R2
=

mv

(M +m)R
.

46. We assume that from the moment of grabbing the stick onward, they maintain rigid postures so that the
system can be analyzed as a symmetrical rigid body with center of mass midway between the skaters.

(a) The total linear momentum is zero (the skaters have the same mass and equal-and-opposite ve-
locities). Thus, their center of mass (the middle of the 3.0 m long stick) remains fixed and they
execute circular motion (of radius r = 1.5 m) about it. Using Eq. 11-18, their angular velocity
(counterclockwise as seen in Fig. 12-41) is

ω =
v

r
=

1.4

1.5
= 0.93 rad/s .

(b) Their rotational inertia is that of two particles in circular motion at r = 1.5 m, so Eq. 11-26 yields

I =
∑

mr2 = 2(50)(1.5)2 = 225 kg·m2 .

Therefore, Eq. 11-27 leads to

K =
1

2
Iω2 =

1

2
(225)(0.93)2 = 98 J .

(c) Angular momentum is conserved in this process. If we label the angular velocity found in part (a)
ωi and the rotational inertia of part (b) as Ii , we have

Iiωi = (225)(0.93) = Ifωf .

The final rotational inertia is
∑

mr2f where rf = 0.5 m so If = 25 kg·m2. Using this value, the
above expression gives ωf = 8.4 rad/s.

(d) We find

Kf =
1

2
Ifω

2
f =

1

2
(25)(8.4)2 = 8.8× 102 J .

(e) We account for the large increase in kinetic energy (part (d) minus part (b)) by noting that the
skaters do a great deal of work (converting their internal energy into mechanical energy) as they
pull themselves closer – “fighting” what appears to them to be large “centrifugal forces” trying to
keep them apart.

47. So that we don’t get confused about ± signs, we write the angular speed of the lazy Susan as |ω| and
reserve the ω symbol for the angular velocity (which, using a common convention, is negative-valued
when the rotation is clockwise). When the roach “stops” we recognize that it comes to rest relative to
the lazy Susan (not relative to the ground).
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(a) Angular momentum conservation leads to

mvR+ Iω0 =
(

mR2 + I
)

ωf

which we can write (recalling our discussion about angular speed versus angular velocity) as

mvR− I |ω0| = −
(

mR2 + I
)

|ωf | .

We solve for the final angular speed of the system:

|ωf | =
mvR− I |ω0|
mR2 + I

.

(b) No, Kf 6= Ki and – if desired – we can solve for the difference:

Ki −Kf =
mI

2

v2 + ω2
0R

2 + 2Rv |ω0|
mR2 + I

which is clearly positive. Thus, some of the initial kinetic energy is “lost” – that is, transferred to
another form. And the culprit is the roach, who must find it difficult to stop (and “internalize”
that energy).

48. The initial angular momentum of the system is zero. The final angular momentum of the girl-plus-
merry-go-round is

(

I +MR2
)

ω which we will take to be positive. The final angular momentum we
associate with the thrown rock is negative: −mRv, where v is the speed (positive, by definition) of the
rock relative to the ground.

(a) Angular momentum conservation leads to

0 =
(

I +MR2
)

ω −mRv =⇒ ω =
mRv

I +MR2
.

(b) The girl’s linear speed is given by Eq. 11-18:

Rω =
mvR2

I +MR2
.

49. For simplicity, we assume the record is turning freely, without any work being done by its motor (and
without any friction at the bearings or at the stylus trying to slow it down). Before the collision,
the angular momentum of the system (presumed positive) is Iiωi where Ii = 5.0 × 10−4 kg·m2 and
ωi = 4.7 rad/s. The rotational inertia afterwards is If = Ii +mR2 where m = 0.020 kg and R = 0.10 m.
The mass of the record (0.10 kg), although given in the problem, is not used in the solution. Angular
momentum conservation leads to

Iiωi = Ifωf =⇒ ωf =
Iiωi

Ii +mR2
= 3.4 rad/s .

50. The axis of rotation is in the middle of the rod, r = 0.25 m from either end. By Eq. 12-19, the initial
angular momentum of the system (which is just that of the bullet, before impact) is rmv sinφ where
m = 0.003 kg and φ = 60◦. Relative to the axis, this is counterclockwise and thus (by the common
convention) positive. After the collision, the moment of inertia of the system is I = Irod +mr2 where
Irod = ML2/12 by Table 11-2(e), with M = 4.0 kg and L = 0.5 m. Angular momentum conservation
leads to

rmv sinφ =

(

1

12
ML2 +mr2

)

ω .

Thus, with ω = 10 rad/s, we obtain

v =

(

1
12 (4.0)(0.5)2 + (0.003)(0.25)2

)

(10)

(0.25)(0.003) sin 60◦
= 1.3× 103 m/s .



330 CHAPTER 12.

51. (a) If we consider a short time interval from just before the wad hits to just after it hits and sticks,
we may use the principle of conservation of angular momentum. The initial angular momentum
is the angular momentum of the falling putty wad. The wad initially moves along a line that is
d/2 distant from the axis of rotation, where d = 0.500 m is the length of the rod. The angular
momentum of the wad is mvd/2 where m = 0.0500 kg and v = 3.00 m/s are the mass and initial
speed of the wad. After the wad sticks, the rod has angular velocity ω and angular momentum Iω,
where I is the rotational inertia of the system consisting of the rod with the two balls and the wad
at its end. Conservation of angular momentum yields mvd/2 = Iω where I = (2M +m)(d/2)2 and
M = 2.00 kg is the mass of each of the balls. We solve mvd/2 = (2M +m)(d/2)2ω for the angular
speed:

ω =
2mv

(2M +m)d
=

2(0.0500)(3.00)

(2(2.00) + 0.0500)(0.500)
= 0.148 rad/s .

(b) The initial kinetic energy is Ki = 1
2mv

2, the final kinetic energy is Kf = 1
2Iω

2, and their ratio
is Kf/Ki = Iω2/mv2. When I = (2M + m)d2/4 and ω = 2mv/(2M +m)d are substituted, this
becomes

Kf

Ki
=

m

2M +m
=

0.0500

2(2.00) + 0.0500
= 0.0123 .

(c) As the rod rotates, the sum of its kinetic and potential energies is conserved. If one of the balls is
lowered a distance h, the other is raised the same distance and the sum of the potential energies
of the balls does not change. We need consider only the potential energy of the putty wad. It
moves through a 90◦ arc to reach the lowest point on its path, gaining kinetic energy and losing
gravitational potential energy as it goes. It then swings up through an angle θ, losing kinetic energy
and gaining potential energy, until it momentarily comes to rest. Take the lowest point on the path
to be the zero of potential energy. It starts a distance d/2 above this point, so its initial potential
energy is Ui = mgd/2. If it swings up to the angular position θ, as measured from its lowest
point, then its final height is (d/2)(1 − cos θ) above the lowest point and its final potential energy
is Uf = mg(d/2)(1 − cos θ). The initial kinetic energy is the sum of that of the balls and wad:
Ki = 1

2Iω
2 = 1

2 (2M +m)(d/2)2ω2. At its final position, we have Kf = 0. Conservation of energy
provides the relation:

mg
d

2
+

1

2
(2M +m)

(

d

2

)2

ω2 = mg
d

2
(1− cos θ) .

When this equation is solved for cos θ, the result is

cos θ = −1

2

(

2M +m

mg

)(

d

2

)

ω2

= −1

2

(

2(2.00 kg) + 0.0500 kg

(0.0500 kg)(9.8 m/s
2
)

)

(

0.500 m

2

)

(0.148 rad/s)2

= −0.0226 .

Consequently, the result for θ is 91.3◦. The total angle through which it has swung is 90◦ +91.3◦ =
181◦.

52. We denote the cockroach with subscript 1 and the disk with subscript 2.

(a) Initially the angular momentum of the system consisting of the cockroach and the disk is

Li = m1v1ir1i + I2ω2i = m1ω0R
2 +

1

2
m2ω0R

2 .

After the cockroach has completed its walk, its position (relative to the axis) is r1f = R/2 so the
final angular momentum of the system is

Lf = m1ωf

(

R

2

)2

+
1

2
m2ωfR

2 .



331

Then from Lf = Li we obtain

ωf

(

1

4
m1R

2 +
1

2
m2R

)

= ω0

(

m1R
2 +

1

2
m2R

2

)

.

Thus,

ωf − ω0 = ω0

(

m1R
2 +m2R

2/2

m1R2/4 +m2R2/2

)

− ω0

= ω0

(

m+ 10m/2

m/4 + 10m/2
− 1

)

= ω0(1.14− 1)

which yields ∆ω = 0.14ω0 . For later use, we note that ωf/ωi = 1.14.

(b) We substitute I = L/ω into K = 1
2Iω

2 and obtain K = 1
2Lω. Since we have Li = Lf , the the

kinetic energy ratio becomes
K

K0
=

1
2Lfωf

1
2Liωi

=
ωf

ωi
= 1.14 .

(c) The cockroach does positive work while walking toward the center of the disk, increasing the total
kinetic energy of the system.

53. If the polar cap melts, the resulting body of water will effectively increase the equatorial radius of the
Earth from Re to R′

e = Re + ∆R, thereby increasing the moment of inertia of the Earth and slowing its
rotation (by conservation of angular momentum), causing the duration T of a day to increase by ∆T .
We note that (in rad/s) ω = 2π/T so

ω′

ω
=

2π/T ′

2π/T
=

T

T ′

from which it follows that
∆ω

ω
=
ω′

ω
− 1 =

T

T ′ − 1 = − ∆T

T ′ .

We can approximate that last denominator as T so that we end up with the simple relationship |∆ω|/ω =
∆T/T . Now, conservation of angular momentum gives us

∆L = 0 = ∆(Iω) ≈ I(∆ω) + ω(∆I)

so that |∆ω|/ω = ∆I/I. Thus, using our expectation that rotational inertia is proportional to the
equatorial radius squared (supported by Table 11-2(f) for a perfect uniform sphere, but then this isn’t
a perfect uniform sphere) we have

∆T

T
=

∆I

I

=
∆(R2

e)

R2
e

≈ 2∆Re

Re

=
2(30 m)

6.37× 106 m

so with T = 86400 s we find (approximately) that ∆T = 0.8 s. The radius of the earth can be found in
Appendix C or on the inside front cover of the textbook.

54. The initial rotational inertia of the system is Ii = Idisk + Istudent where Idisk = 300 kg·m2 (which,
incidentally, does agree with Table 11-2(c)) and Istudent = mR2 where m = 60 kg and R = 2.0 m.
The rotational inertia when the student reaches r = 0.5 m is If = Idisk + mr2. Angular momentum
conservation leads to

Iiωi = Ifωf =⇒ ωf = ωi
Idisk +mR2

Idisk +mr2

which yields, for ωi = 1.5 rad/s, a final angular velocity of ωf = 2.6 rad/s.
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55. Their angular velocities, when they are stuck to each other, are equal, regardless of whether they share
the same central axis. The initial rotational inertia of the system is

I0 = Ibig disk + Ismall disk where Ibig disk =
1

2
MR2

using Table 11-2(c). Similarly, since the small disk is initially concentric with the big one, Ismall disk =
1
2mr

2. After it slides, the rotational inertia of the small disk is found from the parallel axis theorem
(using h = R− r). Thus, the new rotational inertia of the system is

I =
1

2
MR2 +

1

2
mr2 +m(R− r)2 .

(a) Angular momentum conservation, I0ω0 = Iω, leads to the new angular velocity:

ω = ω0

1
2MR2 + 1

2mr
2

1
2MR2 + 1

2mr
2 +m(R− r)2 .

Substituting M = 10m and R = 3r, this becomes ω = ω0(91/99). Thus, with ω0 = 20 rad/s, we
find ω = 18 rad/s.

(b) From the previous part, we know that

I0
I

=
91

99
and

ω

ω0
=

91

99
.

Plugging these into the ratio of kinetic energies, we have

1
2Iω

2

1
2I0ω

2
0

=
I

I0

(

ω

ω0

)2

=
99

91

(

91

99

)2

which yields K/K0 = 0.92.

56. This is a completely inelastic collision which we analyze using angular momentum conservation. Let m
and v0 be the mass and initial speed of the ball and R the radius of the merry-go-round. The initial
angular momentum is

~ℓ0 = ~r0 × ~p0 =⇒ ℓ0 = R (mv0) sin 53◦

where 53◦ is the angle between the radius vector pointing to the child and the direction of ~v0. Thus,
ℓ0 = 19 kg ·m2/s. Now, with SI units understood,

ℓ0 = Lf

19 = Iω

=
(

150 + (30)R2 + (1.0)R2
)

ω

so that ω = 0.070 rad/s.

57. (a) With r = 0.60 m, we obtain I = 0.060 + (0.501)r2 = 0.24 kg ·m2.

(b) Invoking angular momentum conservation, with SI units understood,

ℓ0 = Lf

mv0r = = Iω

(0.001)v0(0.60) = (0.24)(4.5)

which leads to v0 = 1.8× 103 m/s.



333

58. We make the unconventional choice of clockwise sense as positive, so that the angular velocities in this
problem are positive. With r = 0.60 m and I0 = 0.12 kg · m2, the rotational inertia of the putty-rod
system (after the collision) is I = I0 +(0.20)r2 = 0.19 kg ·m2. Invoking angular momentum conservation,
with SI units understood, we have

L0 = Lf

I0ω0 = Iω

(0.12)(2.4) = (0.19)ω

which yields ω = 1.5 rad/s.

59. We make the unconventional choice of clockwise sense as positive, so that the angular velocities (and
angles) in this problem are positive. Mechanical energy conservation applied to the particle (before
impact) leads to

mgh =
1

2
mv2 =⇒ v =

√

2gh

for its speed right before undergoing the completely inelastic collision with the rod. The collision is
described by angular momentum conservation:

mvd =
(

Irod +md2
)

ω

where Irod is found using Table 11-2(e) and the parallel axis theorem:

Irod =
1

12
Md2 +M

(

d

2

)2

=
1

3
Md2 .

Thus, we obtain the angular velocity of the system immediately after the collision:

ω =
md
√

2gh
1
3Md2 +md2

which means the system has kinetic energy 1
2 (Irod + md2)ω2 which will turn into potential energy in

the final position, where the block has reached a height H (relative to the lowest point) and the center
of mass of the stick has increased its height by H/2. From trigonometric considerations, we note that
H = d(1− cos θ), so we have

1

2

(

Irod +md2
)

ω2 = mgH +Mg
H

2
1

2

m2d2(2gh)
1
3Md2 +md2

=

(

m+
M

2

)

gd (1− cos θ)

from which we obtain

θ = cos−1

(

1− m2h
(

m+ 1
2M

) (

m+ 1
3M

)

)

.

60. (a) Since the motorcycle is going leftward across our field of view, then when its wheels are rolling they
must be going counterclockwise (which we take as the positive sense of rotation, which is the usual
convention).

(b) Just before the rear wheel spins up to ωwf it has the angular velocity necessary for rolling ωwR = v/R
where v = 32 m/s and R = 0.30 m. Since ωwf > ωwR the system would seem to have suddenly
acquired an increase in (positive) angular momentum – without the action of external torques!
Since this is not possible, then the other constituents of the system (the man and the motorcycle
body, which the problem just refers to as “the motorcycle”) must have acquired some (negative)
angular momentum. Thus, the motorcycle rotated clockwise.
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(c) Assuming the system’s (translational) projectile motion is symmetrical (as in Fig. 4-34 in the
textbook) then (with +y upward) it starts with v0y = v sin 15◦ and returns with vy = −v sin 15◦.
Substituting these into Eq. 2-11 (with a = −g) leads to

−v sin 15◦ = v sin 15◦ − gt =⇒ t =
2v sin 15◦

g
= 1.7 s .

(d) As noted in our solution of part (b), ωwR = v/R which yields the value ωwR = 32/0.30 =
106.7 rad/s. In keeping with the significant figures rules, we round this to 1.1× 102 rad/s.

(e) We have Lw = IwωwR = (0.40)(106.7) = 43 kg·m2/s.

(f) Recalling our discussion in part (b), we apply angular momentum conservation:

IwωwR = Iwωwf + Icωc =⇒ ωc = − Iw (ωwf − ωwR)

Ic

which yields ωc = −1.067 rad/s or |ωc| ≈ 1.1 rad/s.

(g) The problem states that the spin up occurs immediately – the moment this becomes a projectile
motion problem (for the center of mass). We assume the motorcycle turns at the (constant) rate
|ωc| for the duration of the motion. Using the more precise values from our previous results, we are
led to

θ = ωct = −1.80 rad

which we convert (multiplying by 180/π) to −103◦. Rounding off, we find |θ| ≈ 100◦.

61. (a) The derivation of the acceleration is found in §12-4; Eq. 12-13 gives

acom = − g

1 + Icom/MR2
0

where the positive direction is upward. We use Icom = 1
2MR2 where the radius is R = 0.32 m and

M = 116 kg is the total mass (thus including the fact that there are two disks) and obtain

a = − g

1 + 1
2MR2/MR2

0

=
g

1 + 1
2

(

R
R0

)2

which yields a = −g/51 upon plugging in R0 = R/10 = 0.032 m. Thus, the magnitude of the center
of mass acceleration is 0.19 m/s2 and the direction of that vector is down.

(b) As observed in §12-4, our result in part (a) applies to both the descending and the rising yoyo
motions.

(c) The external forces on the center of mass consist of the cord tension (upward) and the pull of
gravity (downward). Newton’s second law leads to

T −Mg = ma =⇒ T = M
(

g − g

51

)

which yields T = 1.1× 103 N.

(d) Our result in part (c) indicates that the tension is well below the ultimate limit for the cord.

(e) As we saw in our acceleration computation, all that mattered was the ratio R/R0 (and, of course,
g). So if it’s a scaled-up version, then such ratios are unchanged and we obtain the same result.

(f) Since the tension also depends on mass, then the larger yoyo will involve a larger cord tension.



335

62. We denote the wheel with subscript 1 and the whole system with subscript 2. We take clockwise as
the negative sense for rotation (as is the usual convention). Conservation of angular momentum gives
L = I1ω1 = I2ω2, where I1 = m1R

2
1. Thus

ω2 = ω1
I1
I2

= (−57.7 rad/s)

(

37 N/9.8 m/s
2
)

(0.35 m)2

2.1 kg·m2

which yields ω2 = −12.7 rad/s. The system therefore rotates clockwise (as seen from above) at the rate
of 12.7 rad/s.

63. We use L = Iω and K = 1
2Iω

2 and observe that the speed of points on the rim (corresponding to the
speed of points on the belt) of wheels A and B must be the same (so ωARA = ωBrB ).

(a) If LA = LB (call it L) then the ratio of rotational inertias is

IA
IB

=
L/ωA

L/ωB
=
ωA

ωB
=
RA

RB
=

1

3
.

(b) If we have KA = KB (call it K) then the ratio of rotational inertias becomes

IA
IB

=
2K/ω2

A

2K/ω2
B

=

(

ωB

ωA

)2

=

(

RA

RB

)2

=
1

9
.

64. Since we will be taking the vector cross product in the course of our calculations, below, we note first
that when the two vectors in a cross product ~A × ~B are in the xy plane, we have ~A = Ax ı̂ + Ay ĵ and
~B = Bx ı̂ +By ĵ, and Eq. 3-30 leads to

~A× ~B = (AxBy −AyBx) k̂ .

(a) We set up a coordinate system with its origin at the firing point, the positive x axis in the horizontal
direction of motion of the projectile and the positive y axis vertically upward. The projectile moves
in the xy plane, and if +x is to our right then the “rotation” sense will be clockwise. Thus, we
expect our answer to be negative. The position vector for the projectile (as a function of time) is
given by

~r = (v0xt)̂ı +

(

v0yt−
1

2
gt2
)

ĵ = (v0 cos θ0t)̂ı + (v0 sin θ0 − gt)̂j

and the velocity vector is

~v = vx ı̂ + vy ĵ = (v0 cos θ0) ı̂ + (v0 sin θ0 − gt)̂j .

Thus (using the above observation about the cross product of vectors in the xy plane) the angular
momentum of the projectile as a function of time is

~ℓ = m~r × ~v = −1

2
mv0 cos θ0gt

2k̂ .

(b) We take the derivative of our result in part (a): d~ℓ
dt = −v0mgt cos θ0k̂.

(c) Again using the above observation about the cross product of vectors in the xy plane, we find

~r × ~F =
(

(v0 cos θ0t)̂ı + ry ĵ
)

× (−mgĵ) = −v0mgt cos θ0 k̂

which is the same as the result in part (b).

(d) They are the same because d~ℓ/dt = τ = ~r × ~F .



336 CHAPTER 12.

65. The problem asks that we put the origin of coordinates at point O but compute all the angular momenta
and torques relative to point A. This requires some care in defining ~r (which occurs in the angular mo-
mentum and torque formulas). If ~rO locates the point (where the block is) in the prescribed coordinates,
and ~rOA = −1.2 ĵ points from O to A, then ~r = ~rO−~rOA gives the position of the block relative to point
A. SI units are used throughout this problem.

(a) Here, the momentum is ~p0 = m~v0 = 1.5 ı̂ and ~r0 = 1.2 ĵ, so that

~ℓ0 = ~r0 × ~p0 = −1.8 k̂ kg·m2/s .

(b) The horizontal component of momentum doesn’t change in projectile motion (without friction), and
its vertical component depends on how far its fallen. From either the free-fall equations of Ch. 2 or
the energy techniques of Ch. 8, we find the vertical momentum component after falling a distance
h to be −m√2gh. Thus, with m = 0.50 and h = 1.2, the momentum just before the block hits the
floor is ~p = 1.5 ı̂− 2.4 ĵ. Now, ~r = R ı̂ where R is figured from the projectile motion equations of

Ch. 4 to be R = v0
√

2h
g = 1.5 m. Consequently,

~ℓ = ~r × ~p = −3.6 k̂ kg·m2/s .

(c) and (d) The only force on the object is its weight m~g = −4.9 ĵ. Thus,

~τ0 = ~r0 × ~F = 0

~τ = ~r × ~F = −7.3 k̂ N·m .

66. Since we will be taking the vector cross product in the course of our calculations, below, we note first
that when the two vectors in a cross product ~A × ~B are in the xy plane, we have ~A = Ax ı̂ + Ay ĵ and
~B = Bx ı̂ +By ĵ, and Eq. 3-30 leads to

~A× ~B = (AxBy −AyBx) k̂ .

Now, we choose coordinates centered on point O, with +x rightwards and +y upwards. In unit-vector
notation, the initial position of the particle, then, is ~r0 = s ı̂ and its later position (halfway to the ground)
is ~r = s ı̂− 1

2h ĵ. Using either the free-fall equations of Ch. 2 or the energy techniques of Ch. 8, we find

the speed at its later position to be v =
√

2g|∆y| = √gh. Its momentum there is ~p = −M√gh ĵ. We
find the angular momentum using Eq. 12-18 and our observation, above, about the cross product of two
vectors in the xy plane.

~ℓ = ~r × ~p = −sM
√

gh k̂

Therefore, its magnitude is |~ℓ| = sM
√
gh.

67. We may approximate the planets and their motions as particles in circular orbits, and use Eq. 12-26

L =
9
∑

i=1

ℓi =
9
∑

i=1

mir
2
i ωi

to compute the total angular momentum. Since we assume the angular speed of each one is constant, we
have (in rad/s) ωi = 2π/Ti where Ti is the time for that planet to go around the Sun (this and related
information is found in Appendix C but there, the Ti are expressed in years and we’ll need to convert
with 3.156× 107 s/y, and the Mi are expressed as multiples of Mearth which we’ll convert by multiplying
by 5.98× 1024 kg).
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(a) Using SI units, we find (with i = 1 designating Mercury)

L =

9
∑

i=1

mir
2
i

(

2π

Ti

)

= 2π
3.34× 1023

7.61× 106

(

57.9× 109
)2

+ 2π
4.87× 1024

19.4× 107

(

108× 109
)2

+

2π
5.98× 1024

3.156× 107

(

150× 109
)2

+ 2π
6.40× 1023

5.93× 107

(

228× 109
)2

+

2π
1.9× 1027

3.76× 108

(

778× 109
)2

+ 2π
5.69× 1026

9.31× 108

(

1430× 109
)2

+

2π
8.67× 1025

2.65× 109

(

2870× 109
)2

+ 2π
1.03× 1026

5.21× 109

(

4500× 109
)2

+

2π
1.2× 1022

7.83× 109

(

5900× 109
)2

= 3.14× 1043 kg·m2/s .

(b) The fractional contribution of Jupiter is

ℓ5
L

=
2π 1.9×1027

3.76×108

(

778× 109
)2

3.14× 1043
= 0.61 .

68. If we write ~r = x̂ı + yĵ + zk̂, then (using Eq. 3-30) we find ~r × ~F is equal to

(yFz − zFy) ı̂ + (zFx − xFz) ĵ + (xFy − yFx) k̂ .

With (using SI units) x = 0, y = −4.0, z = 5.0, Fx = 0, Fy = −2.0 and Fz = 3.0 (these latter terms
being the individual forces that contribute to the net force), the expression above yields

~τ = ~r × ~F = −2.0 ı̂ N·m .

69. We make the unconventional choice of clockwise sense as positive, so that the angular acceleration are
positive (as is the linear acceleration of the center of mass, since we take rightwards as positive).

(a) We approach this in the manner of Eq. 12-3 (pure rotation about point P ) but use torques instead
of energy:

τ = IP α where IP =
1

2
MR2 +MR2

where the parallel-axis theorem and Table 11-2(c) has been used. The torque (relative to point P )
is due to the F = 12 N force and is τ = F (2R). In this way, we find

α =
(12)(0.20)

0.05 + 0.10
= 16 rad/s2 .

Hence, acom = Rα = 1.6 m/s
2
.

(b) As shown above, α = 16 rad/s2.

(c) Applying Newton’s second law in its linear form yields

(12 N)− f = Macom .

Therefore, f = −4.0 N. Contradicting what we assumed in setting up our force equation, the friction
force is found to point rightward (with magnitude 4.0 N).
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70. The speed of the center of mass of the car is v = (40)(1000/3600) = 11 m/s. The angular speed of the
wheels is given by Eq. 12-2: ω = v/R where the wheel radius R is not given (but will be seen to cancel
in these calculations).

(a) For one wheel of mass M = 32 kg, Eq. 11-27 gives (using Table 11-2(c))

Krot =
1

2
Iω2 =

1

2

(

1

2
MR2

)

( v

R

)2

=
1

4
Mv2

which yields Krot = 9.9× 102 J. The time given in the problem (10 s) is not used in the solution.

(b) Adding the above to the wheel’s translational kinetic energy, 1
2Mv2, leads to

Kwheel =
1

2
Mv2 +

1

4
Mv2 =

3

4
(32)(11)2 = 3.0× 103 J .

(c) With Mcar = 1700 kg and the fact that there are four wheels, we have

1

2
Mcarv

2 + 4

(

3

4
Mv2

)

= 1.2× 105 J .

71. Information relevant to this calculation can be found in Appendix C. We apply angular momentum
conservation using Table 11-2(f):

Iiωi = Ifωf =⇒ ωi

ωf
=
If
Ii

=
2
5MR2

f
2
5MR2

i

and we note that ω = 2π/T in rad/min if T is the period in minutes. Plugging this into to our expression
above (and simplifying) yields

Tf

Ti
=

(

Rf

Ri

)2

.

Substituting Ti = 25(24)(60) = 36000 min, Rf = 6.37× 106 m and Ri = 6.96× 108 m into this relation,
we obtain Tf = 3.0 min.

72. (a) We use Table 11-2(e) and the parallel-axis theorem to obtain the rod’s rotational inertia about an
axis through one end:

I = Icom +Mh2 =
1

12
ML2 +M

(

L

2

)2

=
1

3
ML2

where L = 6.00 m and M = 10.0/9.8 = 1.02 kg. Thus, I = 12.2 kg·m2.

(b) Using ω = (240)(2π/60) = 25.1 rad/s, Eq. 12-31 gives the magnitude of the angular momentum
as Iω = (12.2)(25.1) = 308 kg·m2/s. Since it is rotating clockwise as viewed from above, then the
right-hand rule indicates that its direction is down.

73. This problem involves the vector cross product of vectors lying in the xy plane. For such vectors, if we
write ~r ′ = x′ ı̂ + y′ ĵ, then (using Eq. 3-30) we find

~r ′ × ~v = (x′vy − y′vx) k̂ .

(a) Here, ~r ′ points in either the +ı̂ or the −ı̂ direction (since the particle moves along the x axis). It
has no y′ or z′ components, and neither does ~v, so it is clear from the above expression (or, more

simply, from the fact that ı̂× ı̂ = 0) that ~ℓ = m(~r ′ × ~v) = 0 in this case.

(b) The net force is in the −ı̂ direction (as one finds from differentiating the velocity expression, yielding

the acceleration), so, similar to what we found in part (a), we obtain τ = ~r ′ × ~F = 0.
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(c) Now, ~r ′ = ~r − ~ro where ~ro = 2.0 ı̂ + 5.0 ĵ (with SI units understood) and points from (2.0, 5.0, 0) to
the instantaneous position of the car (indicated by ~r which points in either the +x or −x directions,
or nowhere (if the car is passing through the origin)). Since ~r × ~v = 0 we have (plugging into our
general expression above)

~ℓ = m (~r ′ × ~v) = −m (~ro × ~v) = −(3.0)
(

(2.0)(0)− (5.0)
(

−2.0t3
))

k̂

which yields ~ℓ = −30t3 k̂ in SI units (kg·m2/s).

(d) The acceleration vector is given by ~a = d~v
dt = −6.0t2 ı̂ in SI units, and the net force on the car is

m~a. In a similar argument to that given in the previous part, we have

~τ = m (~r ′ × ~a) = −m (~ro × ~a) = −(3.0)
(

(2.0)(0)− (5.0)
(

−6.0t2
))

k̂

which yields ~τ = −90t2 k̂ in SI units (N·m).

(e) In this situation, ~r ′ = ~r − ~ro where ~ro = 2.0 ı̂− 5.0 ĵ (with SI units understood) and points from
(2.0,−5.0, 0) to the instantaneous position of the car (indicated by ~r which points in either the
+x or −x directions, or nowhere (if the car is passing through the origin)). Since ~r × ~v = 0 we have
(plugging into our general expression above)

~ℓ = m (~r ′ × ~v) = −m (~ro × ~v) = −(3.0)
(

(2.0)(0)− (−5.0)
(

−2.0t3
))

k̂

which yields ~ℓ = 30t3 k̂ in SI units (kg·m2/s).

(f) Again, the acceleration vector is given by ~a = −6.0t2 ı̂ in SI units, and the net force on the car is
m~a. In a similar argument to that given in the previous part, we have

~τ = m (~r ′ × ~a) = −m (~ro × ~a) = −(3.0)
(

(2.0)(0)− (−5.0)
(

−6.0t2
))

k̂

which yields ~τ = 90t2 k̂ in SI units (N·m).

74. This problem involves the vector cross product of vectors lying in the xy plane. For such vectors, if we
write ~r = x ı̂ + y ĵ, then (using Eq. 3-30) we find

~r × ~p = (∆xpy −∆ypx) k̂ .

The momentum components are px = p cos θ and py = p sin θ where p = 2.4 (SI units understood) and
θ = 115◦. The mass (0.80 kg) given in the problem is not used in the solution. Thus, with x = 2.0,
y = 3.0 and the momentum components described above, we obtain

~ℓ = ~r × ~p = 7.4 k̂ kg·m2/s .

75. Information relevant to this calculation can be found in Appendix C or on the inside front cover of the
textbook. The angular speed is constant so

ω =
2π

T
=

2π

86400
= 7.3× 10−5 rad/s .

Thus, with m = 84 kg and R = 6.37× 106 m, we find ℓ = mR2ω = 2.5× 1011 kg·m2/s.

76. With r⊥ = 1300 m, Eq. 12-21 gives

ℓ = r⊥mv = (1300)(1200)(80) = 1.2× 108 kg·m2/s .

77. The result follows immediately from Eq. 3-30. If what is desired to show here is basically a derivation
of Eq. 3-30, then (with the slight change to position and force notation) that is shown in some detail in
our solution to problem 32 of Chapter 3.
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78. (a) Using Eq. 2-16 for the translational (center-of-mass) motion, we find

v2 = v2
0 + 2a∆x =⇒ a = − v2

0

2∆x

which yields a = −4.11 for v0 = 43 and ∆x = 225 (SI units understood). The magnitude of the
linear acceleration of the center of mass is therefore 4.11 m/s2.

(b) With R = 0.250 m, Eq. 12-6 gives |α| = |a|/R = 16.4 rad/s2. If the wheel is going rightward, it is
rotating in a clockwise sense. Since it is slowing down, this angular acceleration is counterclockwise
(opposite to ω) so (with the usual convention that counterclockwise is positive) there is no need for
the absolute value signs for α.

(c) Eq. 12-8 applies with Rfs representing the magnitude of the frictional torque. Thus, Rfs = Iα =
(0.155)(16.4) = 2.55 N·m.

79. We note that its mass isM = 36/9.8 = 3.67 kg and its rotational inertia is Icom = 2
5MR2 (Table 11-2(f)).

(a) Using Eq. 12-2, Eq. 12-5 becomes

K =
1

2
Icomω

2 +
1

2
Mv2

com

=
1

2

(

2

5
MR2

)

(vcom
R

)2

+
1

2
Mv2

com

=
7

10
Mv2

com

which yields K = 61.7 J for vcom = 4.9 m/s.

(b) This kinetic energy turns into potential energy Mgh at some height h = d sin θ where the sphere
comes to rest. Therefore, we find the distance traveled up the θ = 30◦ incline from energy conser-
vation:

7

10
Mv2

com = Mgd sin θ =⇒ d =
7v2

com

10g sin θ
= 3.43 m .

(c) As shown in the previous part, M cancels in the calculation for d. Since the answer is independent
of mass, then, it is also independent of the sphere’s weight.

80. Although we will not be “working” this problem, we do – briefly – share a few thoughts about it.

(a) A figure in the textbook that may be referred to is Fig. 8-16. The idea, crudely stated, is to show
that although all bodies will return to the same height they’re released from (in the absence of
dissipative effects), the one with the least rotational inertia (say, a sphere) will get there the fastest
because its speed is greatest at every point inbetween.

(b) Several people might be pulling on ropes attached to a merry-go-round to set it into motion. The
ropes should be at different angles (measured relative to tangent lines at the appropriate points).
The idea is to calculate the net torque using Eq. 12-15 and then to find the angular acceleration
(using Eq. 11-37) of the merry-go-round.

(c) This might require particular care in the wording, especially regarding a clown “falling off.” If he
falls off in what might described as the “natural way” (simply letting go and pursuing a straight-line
trajectory tangent to the merry-go-round) then there is no change in the angular momentum. It’s
easier to see that there’d be a change in angular momentum in the case of a clown (initially at rest)
stepping onto the moving merry-go-round.

(d) This is an important astrophysical application of the angular momentum concept (angular momen-
tum is conserved in gravitational-dominated situations such as binary star systems). When the
masses of the stars are similar and the mass transfer is relatively steady, they are often known
as Algol binaries, and realistic numerical values can be found in many astronomy textbooks (and,
probably, on the Web).
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81. (First problem in Cluster 1)

(a) Applying Newton’s second law in its linear form yields

(200 N)− f = Mcart a .

Therefore, f = 200− (50.0)(3.00) = 50 N.

(b) The torque associated with the friction is τf = fR = (50)(0.200) = 10 N·m. (We make the
unconventional choice of the clockwise sense as positive, so that the frictional torque and this
angular acceleration are positive.)

(c) Applying the rotational form of Newton’s second law (relative to the axle) yields

τf = Iα where α =
a

R
= 15.0 rad/s2 .

Therefore, I = 0.667 kg·m2.

82. (Second problem in Cluster 1)

(a) If we interpret this “one-wheel cart” which has a wheel that is a “long cylinder” as simply the
cylinder itself, then an appropriate picture for this problem is Fig. 12-30 in the textbook. We make
the unconventional choice of clockwise sense as positive, so that the angular velocity in this problem
is positive; we choose downhill positive for the x axis (which is parallel to the incline surface) so
that acom = Rα holds. We can combine the rotational (about the center of mass) and linear forms
of Newton’s second law, or we can more simply adopt the view of pure rotation (see, for example,
Eq. 12-3) and examine torques about the bottom-most point P :

MgR sin θ = IP α = IP
acom

R

We have assumed that the center of mass of the cart-wheel system is at the center of the wheel
(the axle), although this is not stated in the problem. Now, θ = 30.0◦, R = 0.200 m, M = 50.0 kg,
and IP = 0.667 kg ·m2 +MR2 = 2.67 kg ·m2 (using the parallel-axis theorem and the result of the

previous problem). Thus, we find acom = 3.68 m/s
2
.

(b) If we apply the linear form of Newton’s law, we have
∑

Fx = Mg sin θ − fs, max = Macom

∑

Fy = N −Mg sin θ = 0

Solving for fs, max and N and dividing, we obtain

µs =
fs, max

N
= 0.14 .

83. (Third problem in Cluster 1)
An appropriate picture for this problem is Fig. 12-7 in the textbook. We make the unconventional choice
of clockwise sense as positive, so that the angular velocity in this problem is positive; we choose downhill

positive for the x axis (which is parallel to the incline surface) so that acom = Rα holds. For simplicity,
we refer to acom as a. We examine the rotational (about the center of mass) and linear forms of Newton’s
second law:

∑

τz = fsR = Iα = I
a

R
∑

Fx = Mg sin θ − fs = Ma
∑

Fy = N −Mg cos θ = 0
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Combining the first two of these equations, we obtain

fs =
Mg sin θ

1 + MR2

I

.

We now let fs = fs, max = µsN and combine this with the third equation above:

µsMg cos θ =
Mg sin θ

1 + MR2

I

=⇒ θ = tan−1

(

µs +
MR2µs

I

)

.

84. (Fourth problem in Cluster 1)

(a) We take the tangential acceleration of the bottom-most point on the (positively) accelerating disk
to equal Rα+ acom. This in turn must equal the (forward) acceleration of the truck atruck = a > 0.
Since the disk is rolling toward the back of the truck, acom < a which implies that α is positive. If
the forward direction is rightward, then this makes it consistent to choose counterclockwise as the
positive rotational sense, which is the usual convention. Thus,

∑

τ = Iα becomes

fsR = Iα where I =
1

2
MR2

and
∑

Fx = Macom becomes

fs = M (a−Rα) .

Combining these two equations, we find Rα = 2
3 a. From the previous discussion, we see acceleration

of the disk relative to the truck bed is acom−a = −Rα, so this has a magnitude of 2
3 and is directed

leftward.

(b) Returning to Rα + acom = a with our result that Rα = 2
3 a, we find acom = 1

3 a. This is positive,
hence rightward.

85. (First problem in Cluster 2)
The last line of the problem indicates our choice of positive directions: up for m2, down for m1 and
counterclockwise for the two-pulley device. This allows us to write R2α = a2 and R1α = a1 with all
terms positive. We apply Newton’s second law to the elements of this system:

T2 −m2g = m2a2 = m2R2α

m1g − T1 = m1a1 = m1R1α

T1R1 − T2R2 = Iα

Multiplying the first equation by R2, the second by R1 and adding the equations leads to

α =
m1gR1 −m2gR2

I +m1R2
1 +m2R2

2

.

(a) Therefore, again using R1α = a1, we obtain

a1 =
m1gR

2
1 −m2gR1R2

I +m1R2
1 +m2R2

2

.

(b) Once more, we use R2α = a2 and find

a2 =
m1gR1R2 −m2gR

2
2

I +m1R2
1 +m2R2

2

.
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86. (Second problem in Cluster 2)
This system is extensively discussed in §12-4. Rather than repeat those steps here, we refer to their
conclusion, Eq. 12-13.

(a) The magnitude of the result in Eq. 12-13 is

|a| = g
1

1 + I
MR2

.

(b) The relation a = acom = −Rα used in §12-3 must now be modified to read af − acom = Rα where
af is the acceleration of the finger. With this in mind, the linear and angular versions of Newton’s
second law become

T −Mg = Macom

TR = Iα where α =
af − acom

R

If we require acom = 0 then these equations yield

af = g
MR2

I
.

87. (Third problem in Cluster 2)
Our analysis of spool 2 is exactly as in the solution of part (b) of the previous problem, but with af

replaced with −as. The negative sign is due to the wording of the problem (which refers to a “downward
acceleration as”):

T −Mg = Ma1

TR1 = I1α1 = I1

(−as − a1

R1

)

In our analysis of spool 1, we pay close attention to signs: positive (downward) as corresponds to
clockwise (conventionally taken to be negative) rotation of spool 1; hence, R2α2 = −as. For spool 1, we
therefore have

∑

τz = −TR2 = I2α1 = I2

(−as

R2

)

.

(a) Simultaneous solution (certainly non-trivial) of these three equations yields

a1 = − g

1 +
1

MR2
1

I1
+
MR2

2

I2

.

The problem asks for the magnitude of this (which eliminates the negative sign).

(b) This amounts to eliminating the
MR2

2

I2
term in the expression for a1 .
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Chapter 13

1. From ~τ = ~r × ~F , we note that persons 1 through 4 exert torques pointing out of the page (relative to
the fulcrum), and persons 5 through 8 exert torques pointing into the page.

(a) Among persons 1 through 4, the largest magnitude of torque is (330 N)(3 m) = 990 N·m, due to the
weight of person 2.

(b) Among persons 5 through 8, the largest magnitude of torque is (330 N)(3 m) = 990 N·m, due to the
weight of person 7.

2. (a) If it were not leaning (the ideal case), its center of mass would be directly above the center of its
base – that is, 3.5 m from the edge. Thus, to move the center of mass from that ideal location to
a point directly over the bottom edge requires moving the center of the tower 3.5 m horizontally.
Measured at the top, this would correspond to a displacement of twice as much: 7.0 m. Now, the
top of the tower is already displaced (according to the problem) by 4.5 m, so what is needed to put
it on the verge of toppling is an additional shift of 7.0− 4.5 = 2.5 m.

(b) The angle measured from vertical is tan−1(7.0/55) = 7.3◦.

3. (a) The forces are balanced when they sum to zero: ~F1 + ~F2 + ~F3 = 0. This means

~F3 = −~F1 − ~F2 = −(10 N) ı̂ + (4 N) ĵ− (17 N) ı̂− (2 N) ĵ = (−27 N) ı̂ + (2 N) ĵ .

(b) If θ is the angle the vector makes with the x axis then

tan θ =
F3y

F3x
=

2 N

−27 N
= −0.741 .

The angle is either −4.2◦ or 176◦. The second solution yields a negative x component and a positive
y component and is therefore the correct solution.

4. The situation is somewhat similar to that depicted for problem 10 (see the figure that accompanies that

problem). By analyzing the forces at the “kink” where ~F is exerted, we find (since the acceleration is
zero) 2T sin θ = F , where θ is the angle (taken positive) between each segment of the string and its
“relaxed” position (when the two segments are colinear). Setting T = F therefore yields θ = 30◦. Since
α = 180◦ − 2θ is the angle between the two segments, then we find α = 120◦.

5. The object exerts a downward force of magnitude F = 3160 N at the midpoint of the rope, causing a
“kink” similar to that shown for problem 10 (see the figure that accompanies that problem). By analyzing

the forces at the “kink” where ~F is exerted, we find (since the acceleration is zero) 2T sin θ = F , where
θ is the angle (taken positive) between each segment of the string and its “relaxed” position (when the
two segments are colinear). In this problem, we have

θ = tan−1

(

0.35 m

1.72 m

)

= 11.5◦ .

Therefore, T = F/2 sin θ = 7.92× 103 N.

345
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6. Let ℓ1 = 1.5 m and ℓ2 = 5.0 − 1.5 = 3.5 m. We denote the tension in the cable closer to the window as
F1 and that in the other cable as F2 . The force of gravity on the scaffold itself (of magnitude msg) is
at its midpoint, ℓ3 = 2.5 m from either end.

(a) Taking torques about the end of the plank farthest from the window washer, we find

F1 =
mwgℓ2 +msgℓ3

ℓ1 + ℓ2
=

(80 kg)
(

9.8 m/s2
)

(3.5 m) + (60 kg)
(

9.8 m/s2
)

(2.5 m)

5.0 m
= 8.4× 102 N .

(b) Equilibrium of forces leads to

F1 + F2 = msg +mwg = (60 kg + 80 kg)
(

9.8 m/s2
)

= 1.4× 103 N

which (using our result from part (a)) yields F2 = 5.3× 102 N.

7.

Three forces act on the sphere: the
tension force ~T of the rope (acting
along the rope), the force of the wall
~N (acting horizontally away from the
wall), and the force of gravity m~g
(acting downward). Since the sphere
is in equilibrium they sum to zero.
Let θ be the angle between the rope
and the vertical. Then, the vertical
component of Newton’s second law
is T cos θ −mg = 0. The horizontal
component is N − T sin θ = 0.
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N

T

mg

r

θ

(a) We solve the first equation for the tension: T = mg/ cos θ. We substitute cos θ = L/
√
L2 + r2 to

obtain T = mg
√
L2 + r2/L.

(b) We solve the second equation for the normal force: N = T sin θ. Using sin θ = r/
√
L2 + r2, we

obtain

N =
Tr√
L2 + r2

=
mg
√
L2 + r2

L

r√
L2 + r2

=
mgr

L
.

8. Our notation is as follows: M = 1360 kg is the mass of the automobile; L = 3.05 m is the horizontal
distance between the axles; ℓ = 3.05− 1.78 = 1.27 m is the horizontal distance from the rear axle to the
center of mass; F1 is the force exerted on each front wheel; and, F2 is the force exerted on each back
wheel.

(a) Taking torques about the rear axle, we find

F1 =
Mgℓ

2L
=

(1360kg)
(

9.8m/s2
)

(1.27 m)

2(3.05 m)
= 2.77× 103 N .

(b) Equilibrium of forces leads to 2F1 + 2F2 = Mg, from which we obtain F2 = 3.89× 103 N.

9. We take the force of the left pedestal to be F1 at x = x1, where the x axis is along the diving board.
We take the force of the right pedestal to be F2 and denote its position as x = x2. W is the weight of
the diver, located at x = x3. The following two equations result from setting the sum of forces equal to
zero (with upwards positive), and the sum of torques (about x2 ) equal to zero:

F1 + F2 −W = 0

F1(x2 − x1) +W (x3 − x2) = 0
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(a) The second equation gives

F1 = −x3 − x2

x2 − x1
W = −

(

3.0 m

1.5 m

)

(580 N) = −1160 N .

The result is negative, indicating that this force is downward.

(b) The first equation gives

F2 = W − F1 = 580 N + 1160 N = 1740 N .

The result is positive, indicating that this force is upward.

(c) and (d) The force of the diving board on the left pedestal is upward (opposite to the force of the
pedestal on the diving board), so this pedestal is being stretched. The force of the diving board on
the right pedestal is downward, so this pedestal is being compressed.

10. The angle of each half of the rope, measured from the dashed line, is

θ = tan−1

(

0.3 m

9 m

)

= 1.9◦ .

Analyzing forces at the “kink” (where ~F is exerted) we find

T =
F

2 sin θ
=

550 N

2 sin 1.9◦
= 8.3× 103 N .

11.

The x axis is along the meter stick, with the origin
at the zero position on the scale. The forces acting
on it are shown on the diagram to the right. The
nickels are at x = x1 = 0.120 m, and m is their
total mass. The knife edge is at x = x2 = 0.455 m
and exerts force ~F . The mass of the meter stick is
M , and the force of gravity acts at the center of
the stick, x = x3 = 0.500 m. Since the meter stick

is in equilibrium, the sum of the torques about x2

must vanish: Mg(x3 − x2) − mg(x2 − x1) = 0.
Thus,
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.

.

.

.

.

x1

x2

x3

mg

F

Mg

M =
x2 − x1

x3 − x2
m =

(

0.455 m− 0.120 m

0.500 m− 0.455 m

)

(10.0 g) = 74 g .

12. The forces exerted horizontally by the obstruction and vertically (upward) by the floor are applied at
the bottom front corner C of the crate, as it verges on tipping. The center of the crate, which is where
we locate the gravity force of magnitude mg = 500 N, is a horizontal distance ℓ = 0.375 m from C. The
applied force of magnitude F = 350 N is a vertical distance h from C. Taking torques about C, we
obtain

h =
mgℓ

F
=

(500 N)(0.375 m)

350 N
= 0.536 m .

13. The forces on the ladder are shown in the diagram below.



348 CHAPTER 13.

F1 is the force of the window, horizontal because the
window is frictionless. F2 and F3 are components of the
force of the ground on the ladder. M is the mass of the
window cleaner and m is the mass of the ladder. The
force of gravity on the man acts at a point 3.0 m up the
ladder and the force of gravity on the ladder acts at the
center of the ladder. Let θ be the angle between the
ladder and the ground. We use cos θ = d/L or sin θ =√
L2 − d2/L to find θ = 60◦. Here L is the length of the

ladder (5.0 m) and d is the distance from the wall to the
foot of the ladder (2.5 m).
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•• F1

F2

F3

mg
Mg

θ

(a) Since the ladder is in equilibrium the sum of the torques about its foot (or any other point)
vanishes. Let ℓ be the distance from the foot of the ladder to the position of the window cleaner.
Then, Mgℓ cos θ +mg(L/2) cos θ − F1L sin θ = 0, and

F1 =
(Mℓ+mL/2)g cos θ

L sin θ

=
((75 kg)(3.0 m) + (10 kg)(2.5 m)) (9.8 m/s2) cos 60◦

(5.0 m) sin 60◦
= 2.8× 102 N .

This force is outward, away from the wall. The force of the ladder on the window has the same
magnitude but is in the opposite direction: it is approximately 280 N, inward.

(b) The sum of the horizontal forces and the sum of the vertical forces also vanish:

F1 − F3 = 0

F2 −Mg −mg = 0

The first of these equations gives F3 = F1 = 2.8× 102 N and the second gives

F2 = (M +m)g = (75 kg + 10 kg)(9.8 m/s
2
) = 8.3× 102 N

The magnitude of the force of the ground on the ladder is given by the square root of the sum of
the squares of its components:

F =
√

F 2
2 + F 2

3 =

√

(2.8× 102 N)
2
+ (8.3× 102 N)

2
= 8.8× 102 N .

The angle φ between the force and the horizontal is given by tanφ = F3/F2 = 830/280 = 2.94, so
φ = 71◦. The force points to the left and upward, 71◦ above the horizontal. We note that this force
is not directed along the ladder.

14. The (vertical) forces at points A, B and P are FA , FB and FP , respectively. We note that FP = W and
is upward. Equilibrium of forces and torques (about point B) lead to

FA + FB +W = 0

bW − aFA = 0

(a) From the second equation, we find FA = bW/a = (15/5)W = 3W .

(b) Using this result in the first equation above, we obtain FB = W − FA = −4W , pointing downward
(as indicated by the minus sign).

15. (a) The forces acting on bucket are the force of gravity, down, and the tension force of cable A, up.

Since the bucket is in equilibrium and its weight is WB = mBg = (817 kg)(9.8 m/s
2
) = 8.01×103 N,

the tension force of cable A is TA = 8.01× 103 N.
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(b) We use the coordinates axes defined in the diagram. Cable A makes an angle of 66◦ with the
negative y axis, cable B makes an angle of 27◦ with the positive y axis, and cable C is along the
x axis. The y components of the forces must sum to zero since the knot is in equilibrium. This
means TB cos 27◦ − TA cos 66◦ = 0 and

TB =
cos 66◦

cos 27◦
TA =

(

cos 66◦

cos 27◦

)

(8.01× 103 N) = 3.65× 103 N .

(c) The x components must also sum to zero. This means TC + TB sin 27◦ − TA sin 66◦ = 0 and

TC = TA sin 66◦ − TB sin 27◦ = (8.01× 103 N) sin 66◦ − (3.65× 103 N) sin 27◦ = 5.66× 103 N .

16. (a) Analyzing vertical forces where string 1 and string 2 meet, we find

T1 =
40 N

cos 35◦
= 49 N .

(b) Looking at the horizontal forces at that point leads to

T2 = T1 sin 35◦ = (49 N) sin 35◦ = 28 N .

(c) We denote the components of T3 as Tx (rightward) and Ty (upward). Analyzing horizontal forces
where string 2 and string 3 meet, we find Tx = T2 = 28 N. From the vertical forces there, we
conclude Ty = 50 N. Therefore,

T3 =
√

T 2
x + T 2

y = 57 N .

(d) The angle of string 3 (measured from vertical) is

θ = tan−1

(

Tx

Ty

)

= tan−1

(

28

50

)

= 29◦ .

17. The cable that goes around the lowest pulley is cable 1 and has tension T1 = F . That pulley is supported
by the cable 2 (so T2 = 2T1 = 2F ) and goes around the middle pulley. The middle pulley is supported
by cable 3 (so T3 = 2T2 = 4F ) and goes around the top pulley. The top pulley is supported by the
upper cable with tension T , so T = 2T3 = 8F . Three cables are supporting the block (which has mass
m = 6.40 kg):

T1 + T2 + T3 = mg =⇒ F =
mg

7
= 8.96 N .

Therefore, T = 8(8.96) = 71.7 N.

18. (a) All forces are vertical and all distances are measured along an axis inclined at 30◦. Thus, any
trigonometric factor cancels out and the application of torques about the contact point (referred to
in the problem) leads to

Ftripcep =
(15 kg)

(

9.8 m/s2
)

(35 cm)− (2.0 kg)
(

9.8 m/s2
)

(15 cm)

2.5 cm
= 1.9× 103 N .

(b) Equilibrium of forces (with upwards positive) leads to

Ftripcep + Fhumer + (15 kg)
(

9.8 m/s2
)

− (2.0 kg)
(

9.8 m/s2
)

= 0

and thus to Fhumer = −1.9× 103 N, with the minus sign implying that it points downward.

19. (a) Analyzing the horizontal forces (which add to zero) we find Fh = F3 = 5.0 N.

(b) Equilibrium of vertical forces leads to Fv = F1 + F2 = 30 N.
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(c) Computing torques about point O, we obtain

Fvd = F2b+ F3a =⇒ d =
(10)(3.0) + (5.0)(2.0)

30
= 1.3 m .

20. (a) The sign is attached in two places: at x1 = 1.00 m (measured rightward from the hinge) and
at x2 = 3.00 m. We assume the downward force due to the sign’s weight is equal at these two
attachment points: each being half the sign’s weight of mg. The angle where the cable comes into
contact (also at x2 ) is θ = tan−1(4/3) and the force exerted there is the tension T . Computing
torques about the hinge, we find

T =
1
2mgx1 + 1

2mgx2

x2 sin θ
=

1
2 (50.0)(9.8)(1.00) + 1

2 (50.0)(9.8)(3.00)

(3.00)(0.800)
= 408 N .

(b) Equilibrium of horizontal forces requires the (rightward) horizontal hinge force be Fx = T cos θ =
245 N.

(c) And equilibrium of vertical forces requires the (upward) vertical hinge force be Fy = mg−T sin θ =
163 N.

21.
We consider the wheel as it leaves the lower floor. The
floor no longer exerts a force on the wheel, and the only
forces acting are the force F applied horizontally at the
axle, the force of gravity mg acting vertically at the center
of the wheel, and the force of the step corner, shown as
the two components fh and fv. If the minimum force is
applied the wheel does not accelerate, so both the total
force and the total torque acting on it are zero.
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We calculate the torque around the step corner. The second
diagram indicates that the distance from the line of F to
the corner is r − h, where r is the radius of the wheel and
h is the height of the step. The distance from the line of
mg to the corner is

√

r2 + (r − h)2 =
√

2rh− h2. Thus

F (r − h)−mg
√

2rh− h2 = 0. The solution for F is

F =

√
2rh− h2

r − h mg .
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22. (a) The problem asks for the person’s pull (his force exerted on the rock) but since we are examining
forces and torques on the person, we solve for the reaction force N1 (exerted leftward on the hands
by the rock). At that point, there is also an upward force of static friction on his hands f1 which we
will take to be at its maximum value µ1N1 . We note that equilibrium of horizontal forces requires
N1 = N2 (the force exerted leftward on his feet); on this feet there is also an upward static friction
force of magnitude µ2N2 . Equilibrium of vertical forces gives

f1 + f2 −mg = 0 =⇒ N1 =
mg

µ1 + µ2
= 3.4× 102 N .

(b) Computing torques about the point where his feet come in contact with the rock, we find

mg(d+ w) − f1w −N1h = 0 =⇒ h =
mg(d+ w) − µ1N1w

N1
= 0.88 m .
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(c) Both intuitively and mathematically (since both coefficients are in the denominator) we see from
part (a) that N1 would increase in such a case. As for part (b), it helps to plug part (a) into part (b)
and simplify:

h = (d+ w)µ2 + dµ1

from which it becomes apparent that h should decrease if the coefficients decrease.

23. The beam is in equilibrium: the sum of the forces and the sum of the torques acting on it each vanish.
As we see in the figure, the beam makes an angle of 60◦ with the vertical and the wire makes an angle
of 30◦ with the vertical.

(a) We calculate the torques around the hinge. Their sum is TL sin 30◦−W (L/2) sin 60◦ = 0. Here W
is the force of gravity acting at the center of the beam, and T is the tension force of the wire. We
solve for the tension:

T =
W sin 60◦

2 sin 30◦
=

(222 N) sin 60◦

2 sin 30◦
= 192.3 N .

(b) Let Fh be the horizontal component of the force exerted by the hinge and take it to be positive
if the force is outward from the wall. Then, the vanishing of the horizontal component of the net
force on the beam yields Fh − T sin 30◦ = 0 or

Fh = T sin 30◦ = (192.3 N) sin30◦ = 96.1 N .

(c) Let Fv be the vertical component of the force exerted by the hinge and take it to be positive if
it is upward. Then, the vanishing of the vertical component of the net force on the beam yields
Fv + T cos 30◦ −W = 0 or

Fv = W − T cos 30◦ = 222 N− (192.3 N) cos30◦ = 65.5 N .

24. (a) The top brick’s center of mass cannot be further (to the right) with respect to the brick below it
(brick 2) than L/2; otherwise, its center of gravity is past any point of support and it will fall. So
a1 = L/2 in the maximum case.

(b) With brick 1 (the top brick) in the maximum situation, then the combined center of mass of brick 1
and brick 2 is halfway between the middle of brick 2 and its right edge. That point (the combined
com) must be supported, so in the maximum case, it is just above the right edge of brick 3. Thus,
a2 = L/4.

(c) Now the total center of mass of bricks 1, 2 and 3 is one-third of the way between the middle of
brick 3 and its right edge, as shown by this calculation:

xcom =
2m(0) +m(−L/2)

3m
= −L

6

where the origin is at the right edge of brick 3. This point is above the right edge of brick 4 in the
maximum case, so a3 = L/6.

(d) A similar calculation

x′com =
3m(0) +m(−L/2)

4m
= −L

8

shows that a4 = L/8.

(e) We find h =
∑4

i=1 ai = 25L/24.

25. (a) We note that the angle θ between the cable and the strut is 45◦− 30◦ = 15◦. The angle φ between
the strut and any vertical force (like the weights in the problem) is 90◦ − 45◦ = 45◦. Denoting
M = 225 kg and m = 45.0 kg, and ℓ as the length of the boom, we compute torques about the
hinge and find

T =
Mgℓ sinφ+mg

(

ℓ
2

)

sinφ

ℓ sin θ
.

The unknown length ℓ cancels out and we obtain T = 6.63× 103 N.
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(b) Since the cable is at 30◦ from horizontal, then horizontal equilibrium of forces requires that the
horizontal hinge force be

Fx = T cos 30◦ = 5.74× 103 N .

(c) And vertical equilibrium of forces gives the vertical hinge force component:

Fy = Mg +mg + T sin 30◦ = 5.96× 103 N .

26. (a) The problem states that each hinge supports half the door’s weight, so each vertical hinge force
component is Fy = mg/2 = 1.3× 102 N.

(b) Computing torques about the top hinge, we find the horizontal hinge force component (at the
bottom hinge) is

Fh =
(27 kg)

(

9.8 m/s2
) (

0.91 m
2

)

2.1 m− 2(0.30 m)
= 80 N .

Equilibrium of horizontal forces demands that the horizontal component of the top hinge force has
the same magnitude (though opposite direction).

27. The bar is in equilibrium, so the forces and the torques acting on it each sum to zero. Let Tl be the
tension force of the left-hand cord, Tr be the tension force of the right-hand cord, and m be the mass of
the bar. The equations for equilibrium are:

vertical force components Tl cos θ + Tr cosφ−mg = 0

horizontal force components −Tl sin θ + Tr sinφ = 0

torques mgx− TrL cosφ = 0 .

The origin was chosen to be at the left end of the bar for purposes of calculating the torque.

The unknown quantities are Tl, Tr, and x. We want to eliminate Tl and Tr, then solve for x. The second
equation yields Tl = Tr sinφ/ sin θ and when this is substituted into the first and solved for Tr the result
is Tr = mg sin θ/(sinφ cos θ+ cosφ sin θ). This expression is substituted into the third equation and the
result is solved for x:

x = L
sin θ cosφ

sinφ cos θ + cosφ sin θ
= L

sin θ cosφ

sin(θ + φ)
.

The last form was obtained using the trigonometric identity sin(A+B) = sinA cosB + cosA sinB. For
the special case of this problem θ + φ = 90◦ and sin(θ + φ) = 1. Thus,

x = L sin θ cosφ = (6.10 m) sin 36.9◦ cos 53.1◦ = 2.20 m .

28. (a) Computing torques about the hinge, we find the tension in the wire:

TL sin θ −Wx = 0 =⇒ T =
Wx

L sin θ
.

(b) The horizontal component of the tension is T cos θ, so equilibrium of horizontal forces requires that
the horizontal component of the hinge force is

Fx =

(

Wx

L sin θ

)

cos θ =
Wx

L tan θ
.

(c) The vertical component of the tension is T sin θ, so equilibrium of vertical forces requires that the
vertical component of the hinge force is

Fy = W −
(

Wx

L sin θ

)

sin θ = W
(

1− x

L

)

.
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29.

The diagram on the right shows the forces acting on the plank.
Since the roller is frictionless the force it exerts is normal to the
plank and makes the angle θ with the vertical. Its magnitude
is designated F . W is the force of gravity; this force acts at
the center of the plank, a distance L/2 from the point where
the plank touches the floor. N is the normal force of the floor
and f is the force of friction. The distance from the foot of
the plank to the wall is denoted by d. This quantity is not
given directly but it can be computed using d = h/ tan θ. The

equations of equilibrium are:
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horizontal force components F sin θ − f = 0

vertical force components F cos θ −W +N = 0

torques Nd− fh−W
(

d− L
2 cos θ

)

= 0 .

The point of contact between the plank and the roller was used as the origin for writing the torque
equation.

When θ = 70◦ the plank just begins to slip and f = µsN , where µs is the coefficient of static friction.
We want to use the equations of equilibrium to compute N and f for θ = 70◦, then use µs = f/N to
compute the coefficient of friction.

The second equation gives F = (W − N)/ cos θ and this is substituted into the first to obtain f =
(W −N) sin θ/ cos θ = (W −N) tan θ. This is substituted into the third equation and the result is solved
for N :

N =
d− (L/2) cos θ + h tan θ

d+ h tan θ
W .

Now replace d with h/ tan θ and multiply both numerator and denominator by tan θ. The result is

N =
h(1 + tan2 θ)− (L/2) sin θ

h(1 + tan2 θ)
W .

We use the trigonometric identity 1 + tan2 θ = 1/ cos2 θ and multiply both numerator and denominator
by cos2 θ to obtain

N = W

(

1− L

2h
cos2 θ sin θ

)

.

Now we use this expression for N in f = (W −N) tan θ to find the friction:

f =
WL

2h
sin2 θ cos θ .

We substitute these expressions for f and N into µs = f/N and obtain

µs =
L sin2 θ cos θ

2h− L sin θ cos2 θ
.

Evaluating this expression for θ = 70◦, we obtain

µs =
(6.1 m) sin2 70◦ cos 70◦

2(3.05 m)− (6.1 m) sin 70◦ cos2 70◦
= 0.34 .
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30. (a) Computing torques about point A, we find

TmaxL sin θ = Wxmax +Wb

(

L

2

)

.

We solve for the maximum distance:

xmax =
Tmax sin θ − Wb

2

W
L =

500 sin30◦ − 200
2

300
(3.0) = 1.5 m .

(b) Equilibrium of horizontal forces gives

Fx = Tmax cos θ = 433 N .

(c) And equilibrium of vertical forces gives

Fy = W +Wb − Tmax sin θ = 250 N .

31.
The diagrams to the right show the forces on the
two sides of the ladder, separated. FA and FE

are the forces of the floor on the two feet, T is
the tension force of the tie rod, W is the force of
the man (equal to his weight), Fh is the horizontal
component of the force exerted by one side of the
ladder on the other, and Fv is the vertical com-
ponent of that force. Note that the forces exerted
by the floor are normal to the floor since the floor
is frictionless. Also note that the force of the left
side on the right and the force of the right side
on the left are equal in magnitude and opposite in
direction.
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Since the ladder is in equilibrium, the vertical components of the forces on the left side of the ladder
must sum to zero: Fv + FA −W = 0. The horizontal components must sum to zero: T − Fh = 0. The
torques must also sum to zero. We take the origin to be at the hinge and let L be the length of a ladder
side. Then FAL cos θ −W (L/4) cos θ − T (L/2) sin θ = 0. Here we recognize that the man is one-fourth
the length of the ladder side from the top and the tie rod is at the midpoint of the side.

The analogous equations for the right side are FE−Fv = 0, Fh−T = 0, and FEL cos θ−T (L/2) sinθ = 0.

There are 5 different equations:

Fv + FA −W = 0 ,
T − Fh = 0

FAL cos θ −W (L/4) cos θ − T (L/2) sinθ = 0

FE − Fv = 0

FEL cos θ − T (L/2) sinθ = 0 .

The unknown quantities are FA, FE , Fv, Fh, and T .

(a) First we solve for T by systematically eliminating the other unknowns. The first equation gives
FA = W − Fv and the fourth gives Fv = FE . We use these to substitute into the remaining three
equations to obtain

T − Fh = 0

WL cos θ − FEL cos θ −W (L/4) cos θ − T (L/2) sin θ = 0

FEL cos θ − T (L/2) sin θ = 0 .



355

The last of these gives FE = T sin θ/2 cos θ = (T/2) tan θ. We substitute this expression into the
second equation and solve for T . The result is

T =
3W

4 tan θ
.

To find tan θ, we consider the right triangle formed by the upper half of one side of the ladder, half
the tie rod, and the vertical line from the hinge to the tie rod. The lower side of the triangle has
a length of 0.381 m, the hypotenuse has a length of 1.22 m, and the vertical side has a length of
√

(1.22 m)2 − (0.381 m)2 = 1.16 m. This means tan θ = (1.16 m)/(0.381 m) = 3.04. Thus,

T =
3(854 N)

4(3.04)
= 211 N .

(b) We now solve for FA. Since Fv = FE and FE = T sin θ/2 cos θ, Fv = 3W/8. We substitute this into
Fv + FA −W = 0 and solve for FA. We find

FA = W − Fv = W − 3W/8 = 5W/8 = 5(884 N)/8 = 534 N .

(c) We have already obtained an expression for FE : FE = 3W/8. Evaluating it, we get FE = 320 N.

32. The phrase “loosely bolted” means that there is no torque exerted by the bolt at that point (where A
connects with B). The force exerted on A at the hinge has x and y components Fx and Fy . The force
exerted on A at the bolt has components Gx and Gy and those exerted on B are simply −Gx and −Gy

by Newton’s third law. The force exerted on B at its hinge has components Hx and Hy . If a horizontal
force is positive, it points rightward, and if a vertical force is positive it points upward.

(a) We consider the combined A ∪ B system, which has a combined weight of Mg where M = 122 kg
and the line of action of that downward force of gravity is x = 1.20 m from the wall. The vertical
distance between the hinges is y = 1.80 m. We compute torques about the bottom hinge and find

Fx = −Mgx

y
= −797 N .

If we examine the forces on A alone and compute torques about the bolt, we instead find

Fy =
mAgx

ℓ
= 265 N

where mA = 54.0 kg and ℓ = 2.40 m (the length of beam A).

(b) Equilibrium of horizontal and vertical forces on beam A readily yields Gx = −Fx = 797 N and
Gy = mAg − Fy = 265 N.

(c) Considering again the combined A∪B system, equilibrium of horizontal and vertical forces readily
yields Hx = −Fx = 797 N and Hy = Mg − Fy = 931 N.

(d) As mentioned above, Newton’s third law (and the results from part (b)) immediately provide
−Gx = −797 N and −Gy = −265 N for the force components acting on B at the bolt.

33.
We examine the box when it is about to tip. Since it
will rotate about the lower right edge, that is where the
normal force of the floor is exerted. This force is labeled
N on the diagram to the right. The force of friction is
denoted by f , the applied force by F , and the force of
gravity by W . Note that the force of gravity is applied at
the center of the box. When the minimum force is applied
the box does not accelerate, so the sum of the horizontal
force components vanishes: F − f = 0, the sum of the
vertical force components vanishes: N −W = 0, and the
sum of the torques vanishes: FL −WL/2 = 0. Here L is
the length of a side of the box and the origin was chosen
to be at the lower right edge.
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356 CHAPTER 13.

(a) From the torque equation, we find

F =
W

2
=

890 N

2
= 445 N .

(b) The coefficient of static friction must be large enough that the box does not slip. The box is on
the verge of slipping if µs = f/N . According to the equations of equilibrium N = W = 890 N and
f = F = 445 N, so

µs =
445 N

890 N
= 0.50 .

(c) The box can be rolled with a smaller applied force if the force points upward as well as to the
right. Let θ be the angle the force makes with the horizontal. The torque equation then becomes
FL cos θ + FL sin θ −WL/2 = 0, with the solution

F =
W

2(cos θ + sin θ)
.
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We want cos θ + sin θ to have the largest possible
value. This occurs if θ = 45◦, a result we can prove
by setting the derivative of cos θ + sin θ equal to
zero and solving for θ. The minimum force needed
is

F =
W

4 cos 45◦
=

890 N

4 cos 45◦
= 315 N .

34. We locate the origin of the x axis at the edge of the table and choose rightwards positive. The criterion
(in part (a)) is that the center of mass of the block above another must be no further than the edge of
the one below; the criterion in part (b) is more subtle and is discussed below. Since the edge of the table
corresponds to x = 0 then the total center of mass of the blocks must be zero.

(a) We treat this as three items: one on the upper left (composed of two bricks, one directly on top of
the other) of mass 2m whose center is above the left edge of the bottom brick; a single brick at the
upper right of mass m which necessarily has its center over the right edge of the bottom brick (so
a1 = L/2 trivially); and, the bottom brick of mass m. The total center of mass is

(2m)(a2 − L) +ma2 +m(a2 − L/2)

4m
= 0

which leads to a2 = 5L/8. Consequently, h = a2 + a1 = 9L/8.

(b) We have four bricks (each of mass m) where the center of mass of the top and the center of mass of
the bottom one have the same value xcm = b2 − L/2. The middle layer consists of two bricks, and
we note that it is possible for each of their centers of mass to be beyond the respective edges of the
bottom one! This is due to the fact that the top brick is exerting downward forces (each equal to
half its weight) on the middle blocks – and in the extreme case, this may be thought of as a pair of
concentrated forces exerted at the innermost edges of the middle bricks. Also, in the extreme
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case, the support force (upward) exerted
on a middle block (by the bottom one)
may be thought of as a concentrated force
located at the edge of the bottom block
(which is the point about which we com-
pute torques, in the following). If (as indi-

cated in our sketch, where ~Ftop has mag-
nitude mg/2) we consider equilibrium of
torques on the rightmost brick, we obtain
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~Fbottom

mg

(

b1 −
1

2
L

)

=
mg

2
(L− b1)

which leads to b1 = 2L/3. Once we conclude from symmetry that b2 = L/2 then we also arrive at
h = b2 + b1 = 7L/6.

35.
The force diagram shown on the right depicts the situation
just before the crate tips, when the normal force acts at
the front edge. However, it may also be used to calculate
the angle for which the crate begins to slide. W is the
force of gravity on the crate, N is the normal force of the
plane on the crate, and f is the force of friction. We take
the x axis to be down the plane and the y axis to be in the
direction of the normal force. We assume the acceleration
is zero but the crate is on the verge of sliding.

.................................................................................................................................................................................................................................................................................................................................................................................................................

.

..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
.
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

......................

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.......................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

θ

W

f N

(a) The x and y components of Newton’s second law are

W sin θ − f = 0 and N −W cos θ = 0

respectively. The y equation gives N = W cos θ. Since the crate is about to slide f = µsN =
µsW cos θ, where µs is the coefficient of static friction. We substitute into the x equation and find

W sin θ − µsW cos θ = 0 =⇒ tan θ = µs .

This leads to θ = tan−1 µs = tan−1 0.60 = 31.0◦.

In developing an expression for the total torque about the center of mass when the crate is about
to tip, we find that the normal force and the force of friction act at the front edge. The torque
associated with the force of friction tends to turn the crate clockwise and has magnitude fh, where
h is the perpendicular distance from the bottom of the crate to the center of gravity. The torque
associated with the normal force tends to turn the crate counterclockwise and has magnitude Nℓ/2,
where ℓ is the length of a edge. Since the total torque vanishes, fh = Nℓ/2. When the crate is
about to tip, the acceleration of the center of gravity vanishes, so f = W sin θ and N = W cos θ.
Substituting these expressions into the torque equation, we obtain

θ = tan−1 ℓ

2h
= tan−1 1.2 m

2(0.90 m)
= 33.7◦ .

As θ is increased from zero the crate slides before it tips. It starts to slide when θ = 31.0◦.

(b) The analysis is the same. The crate begins to slide when θ = tan−1 µs = tan−1 0.70 = 35.0◦ and
begins to tip when θ = 33.7◦. Thus, it tips first as the angle is increased. Tipping begins at
θ = 33.7◦.
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36. (a) The Young’s modulus is given by

E =
stress

strain
= slope of the stress-strain curve

=
150× 106 N/m2

0.002
= 7.5× 1010 N/m2 .

(b) Since the linear range of the curve extends to about 2.9×108 N/m2, this is approximately the yield
strength for the material.

37. (a) The shear stress is given by F/A, where F is the magnitude of the force applied parallel to one face
of the aluminum rod and A is the cross-sectional area of the rod. In this case F is the weight of
the object hung on the end: F = mg, where m is the mass of the object. If r is the radius of the
rod then A = πr2. Thus, the shear stress is

F

A
=
mg

πr2
=

(1200 kg)(9.8 m/s2)

π(0.024 m)2
= 6.5× 106 N/m2 .

(b) The shear modulus G is given by

G =
F/A

∆x/L

where L is the protrusion of the rod and ∆x is its vertical deflection at its end. Thus,

∆x =
(F/A)L

G
=

(6.5× 106 N/m2)(0.053 m)

3.0× 1010 N/m2 = 1.1× 10−5 m .

38. (a) Since the brick is now horizontal and the cylinders were initially the same length ℓ, then both have
been compressed an equal amount ∆ℓ. Thus,

∆ℓ

ℓ
=

FA

AAEA
and

∆ℓ

ℓ
=

FB

ABEB

which leads to
FA

FB
=
AAEA

ABEB
=

(2AB) (2EB)

ABEB
= 4 .

When we combine this ratio with the equation FA + FB = W , we find FA = 4
5W .

(b) This also leads to the result FB = W/5.

(c) Computing torques about the center of mass, we find FAdA = FBdB which leads to

dA

dB
=
FB

FA
=

1

4
.

39. (a) Let FA and FB be the forces exerted by the wires on the log and let m be the mass of the log.
Since the log is in equilibrium FA + FB −mg = 0. Information given about the stretching of the
wires allows us to find a relationship between FA and FB . If wire A originally had a length LA and
stretches by ∆LA, then ∆LA = FALA/AE, where A is the cross-sectional area of the wire and E

is Young’s modulus for steel (200 × 109 N/m
2
). Similarly, ∆LB = FBLB/AE. If ℓ is the amount

by which B was originally longer than A then, since they have the same length after the log is
attached, ∆LA = ∆LB + ℓ. This means

FALA

AE
=
FBLB

AE
+ ℓ .

We solve for FB:

FB =
FALA

LB
− AEℓ

LB
.
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We substitute into FA + FB −mg = 0 and obtain

FA =
mgLB +AEℓ

LA + LB
.

The cross-sectional area of a wire is A = πr2 = π(1.20× 10−3 m)2 = 4.52× 10−6 m2. Both LA and
LB may be taken to be 2.50 m without loss of significance. Thus

FA =
(103 kg)(9.8 m/s2)(2.50 m) + (4.52× 10−6 m2)(200× 109 N/m

2
)(2.0× 10−3 m)

2.50 m + 2.50 m
= 866 N .

(b) From the condition FA + FB −mg = 0, we obtain

FB = mg − FA = (103 kg)(9.8 m/s
2
)− 866 N = 143 N .

(c) The net torque must also vanish. We place the origin on the surface of the log at a point directly
above the center of mass. The force of gravity does not exert a torque about this point. Then, the
torque equation becomes FAdA − FBdB = 0, which leads to

dA

dB
=
FB

FA
=

143 N

866 N
= 0.165 .

40. The flat roof (as seen from the air) has area A = 150 × 5.8 = 870 m2. The volume of material directly
above the tunnel (which is at depth d = 60 m) is therefore V = A× d = 870× 60 = 52200 m3. Since the
density is ρ = 2.8 g/cm3 = 2800 kg/m3, we find the mass of material supported by the steel columns to
be m = ρV = 1.46× 108 m3.

(a) The weight of the material supported by the columns is mg = 1.4× 109 N.

(b) The number of columns needed is

n =
1.43× 109 N

1
2 (400× 106 N/m2) (960× 10−4 m2)

= 75 .

41. When the log is on the verge of moving (just before its left edge begins to lift) we take the system to be
in equilibrium with the static friction at its maximum value fs,max = µsN . Thus, our force and torque
equations yield

F cos θ = fs,max horizontal forces

F sin θ +N = Mg vertical forces

FL sin θ = Mg
(

L
2

)

torques about rightmost edge

where L is the length of the log (and cancels out of that last equation).

(a) Solving the three equations simultaneously yields

θ = tan−1

(

1

µs

)

= 51◦

when µs = 0.8.

(b) And the tension is found to be

T =
Mg

2

√

1 + µ2 = 0.64Mg .
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42. (a) The volume occupied by the sand within r ≤ 1
2rm is that of a cylinder of height h′ plus a cone atop

that of height h. To find h, we consider

tan θ =
h

1
2rm

=⇒ h =
1.82 m

2
tan 33◦ = 0.59 m .

Therefore, since h′ = H − h, the volume V contained within that radius is

π
(rm

2

)2

(H − h) +
π

3

(rm
2

)2

h = π
(rm

2

)2
(

H − 2

3
h

)

which yields V = 6.78 m3.

(b) Since weight W is mg, and mass m is ρV , we have

W = ρV g =
(

1800 kg/m3
) (

6.78 m3
) (

9.8 m/s2
)

= 1.20× 105 N .

(c) Since the slope is (σm − σo)/rm and the y-intercept is σo we have

σ =

(

σm − σo

rm

)

r + σo for r ≤ rm

or (with numerical values, SI units assumed) σ ≈ 13r + 40000.

(d) The length of the circle is 2πr and it’s “thickness” is dr, so the infinitesimal area of the ring is
dA = 2πr dr.

(e) The force results from the product of stress and area (if both are well-defined). Thus, with SI units
understood,

dF = σ dA =

((

σm − σo

rm

)

r + σo

)

(2πr dr) ≈ 83r2dr + 2.5× 105rdr .

(f) We integrate our expression (using the precise numerical values) for dF and find

F =

∫ rm/2

0

(

82.855r2 + 251327r
)

dr =
82.855

3

(rm
2

)3

+
251327

2

(rm
2

)2

which yields F = 104083 ≈ 1.04× 105 N for rm = 1.82 m.

(g) The fractional reduction is

F −W
W

=
F

W
− 1 =

104083

1.20× 105
− 1 = −0.13 .

43. (a) If L (= 1500 cm) is the unstretched length of the rope and ∆L = 2.8 cm is the amount it stretches
then the strain is ∆L/L = (2.8 cm)/(1500 cm) = 1.9× 10−3.

(b) The stress is given by F/A where F is the stretching force applied to one end of the rope and A is
the cross-sectional area of the rope. Here F is the force of gravity on the rock climber. If m is the
mass of the rock climber then F = mg. If r is the radius of the rope then A = πr2. Thus the stress
is

F

A
=
mg

πr2
=

(95 kg)(9.8 m/s
2
)

π(4.8× 10−3 m)2
= 1.3× 107 N/m

2
.

(c) Young’s modulus is the stress divided by the strain: E = (1.3 × 107 N/m2)/(1.9 × 10−3) = 6.9 ×
109 N/m2.
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44. To support a load ofW = mg = (670)(9.8) = 6566 N, the steel cable must stretch an amount proportional
to its “free” length:

∆L =

(

W

AY

)

L where A = πr2

and r = 0.0125 m.

(a) If L = 12 m, then

∆L =

(

6566

π(0.0125)2 (2.0× 1011)

)

(12) = 8.0× 10−4 m .

(b) Similarly, when L = 350 m, we find ∆L = 0.023 m.

45. The force F exerted on the beam is F = 7900 N, as computed in the Sample Problem. Let F/A = Su /6,
then

A =
6F

Su
=

6(7900)

50× 106
= 9.5× 10−4 m2 .

Thus the thickness is
√
A =

√
9.5× 10−4 = 0.031 m.

46. We denote the tension in the upper left string (bc) as T ′ and the tension in the lower right string (ab)
as T . The supported weight is Mg = 19.6 N. The force equilibrium conditions lead to

T ′ cos 60◦ = T cos 20◦ horizontal forces

T ′ sin 60◦ = W + T sin 20◦ vertical forces .

(a) We solve the above simultaneous equations and find

T =
W

tan 60◦ cos 20◦ − sin 20◦
= 15 N .

(b) Also, we obtain T ′ = T cos 20◦/ cos 60◦ = 29 N.

47. We choose an axis through the top (where the ladder comes into contact with the wall), perpendicular to
the plane of the figure and take torques that would cause counterclockwise rotation as positive. Note that
the line of action of the applied force ~F intersects the wall at a height of 1

5 8.0 = 1.6 m; in other words,
the moment arm for the applied force (in terms of where we have chosen the axis) is r⊥ = 4

5 8.0 = 6.4 m.
The moment arm for the weight is half the horizontal distance from the wall to the base of the ladder;
this works out to be 1

2

√
102 − 82 = 3.0 m. Similarly, the moment arms for the x and y components of

the force at the ground (~Fg) are 8.0 m and 6.0 m, respectively. Thus, with lengths in meters, we have

∑

τz = F (6.4) +W (3.0) + Fgx(8.0)− Fgy(6.0) = 0 .

In addition, from balancing the vertical forces we find that W = Fgy (keeping in mind that the wall has
no friction). Therefore, the above equation can be written as

∑

τz = F (6.4) +W (3.0) + Fgx(8.0)−W (6.0) = 0 .

(a) With F = 50 N and W = 200 N, the above equation yields Fgx = 35 N. Thus, in unit vector
notation (with the unit Newton understood) we obtain

~Fg = 35 ı̂ + 200 ĵ .

(b) With F = 150 N and W = 200 N, the above equation yields Fgx = −45 N. Therefore, in unit vector
notation (with the unit Newton understood) we obtain

~Fg = −45 ı̂ + 200 ĵ .
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(c) Note that the phrase “start to move towards the wall” implies that the friction force is pointed away
from the wall (in the −ı̂ direction). Now, if f = −Fgx and N = Fgy = 200 N are related by the
(maximum) static friction relation (f = fs,max = µsN) with µs = 0.38, then we find Fgx = −76 N.
Returning this to the above equation, we obtain

F =
(200 N)(3.0 m) + (76 N)(8.0 m)

6.4 m
= 1.9× 102 N .

48. (a) Computing the torques about the hinge, we have

TL sin 40◦ = W
L

2
sin 50◦

where the length of the beam is L = 12 m and the tension is T = 400 N. Therefore, the weight is
W = 671 N.

(b) Equilibrium of horizontal and vertical forces yields, respectively,

Fhinge x = T = 400 N

Fhinge y = W ≈ 670 N

where the hinge force components are rightward (for x) and upward (for y).

49. We denote the mass of the slab as m, its density as ρ, and volume as V . The angle of inclination is
θ = 26◦.

(a) The component of the weight of the slab along the incline is

F1 = mg sin θ = ρV g sin θ

= (3.2× 103 kg/m
3
)(43 m)(2.5 m)(12 m)(9.8 m/s2) sin 26◦ = 1.77× 107 N .

(b) The static force of friction is

fs = µsN = µsmg cos θ = µsρV g cos θ

= (0.39)(3.2× 103 kg/m
3
)(43 m)(2.5 m)(12 m)(9.8 m/s2) cos 26◦ = 1.42× 107 N .

(c) The minimum force needed from the bolts to stabilize the slab is

F2 = F1 − fs = 1.77× 107 N− 1.42× 107 N = 3.5× 106 N .

If the minimum number of bolts needed is n, then F2/nA ≤ 3.6× 108 N/m2, or

n ≥ 3.5× 106 N

(3.6× 108N/m2)(6.4× 10−4 m2)
= 15.2 .

Thus 16 bolts are needed.

50. (a) Choosing an axis through the hinge, perpendicular to the plane of the figure and taking torques
that would cause counterclockwise rotation as positive, we require the net torque to vanish:

FL sin 90◦ − Th sin 65◦ = 0

where the length of the beam is L = 3.2 m and the height at which the cable attaches is h = 2.0 m.
Note that the weight of the beam does not enter this equation since its line of action is directed
towards the hinge. With F = 50 N, the above equation yields T = 88 N.
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(b) To find the components of ~Fp we balance the forces:

∑

Fx = 0 =⇒ Fpx = T cos 25◦ − F
∑

Fy = 0 =⇒ Fpy = T sin 25◦ +W

where W is the weight of the beam (60 N). Thus, we find that the hinge force components are
Fpx = 30 N rightward and Fpy = 97 N upward.

51. (a) For computing torques, we choose the axis to be at support 2 and consider torques which encourage
counterclockwise rotation to be positive. Let m = mass of gymnast and M = mass of beam. Thus,
equilibrium of torques leads to

Mg(1.96 m)−mg(0.54 m)− F1(3.92 m) = 0 .

Therefore, the upward force at support 1 is F1 = 1163 N (quoting more figures than are significant
– but with an eye toward using this result in the remaining calculation).

(b) Balancing forces in the vertical direction, we have

F1 + F2 −Mg −mg = 0

so that the upward force at support 2 is F2 = 1.74× 103 N.

52. The cube has side length l and volume V = l3. We use p = B∆V/V for the pressure p. We note that

∆V

V
=

∆l3

l3
=

(l + ∆l)3 − l3
l3

≈ 3l2∆l

l3
= 3

∆l

l
.

Thus, the pressure required is

p =
3B∆l

l
=

3
(

1.4× 1011 N/m2
)

(85.5 cm− 85.0 cm)

85.5 cm
= 2.4× 109 N/m

2
.

53. When it is about to move, we are still able to apply the equilibrium conditions, but (to obtain the

critical condition) we set static friction equal to its maximum value and picture the normal force ~N
as a concentrated force (upward) at the bottom corner of the cube, directly below the point O where

P is being applied. Thus, the line of action of ~N passes through point O and exerts no torque about
O (of course, a similar observation applied to the pull P ). Since N = mg in this problem, we have
fsmax = µmg applied a distance h away from O. And the line of action of force of gravity (of magnitude
mg), which is best pictured as a concentrated force at the center of the cube, is a distance L/2 away
from O. Therefore, equilibrium of torques about O produces

µmgh = mg

(

L

2

)

=⇒ µ =
L

2h

for the critical condition we have been considering. We now interpret this in terms of a range of values
for µ.

(a) For it to slide but not tip, a value of µ less than that derived above is needed, since then – static
friction will be exceeded for a smaller value of P , before the pull is strong enough to cause it to tip.
Thus, µ < L/2h is required.

(b) And for it to tip but not slide, we need µ greater than that derived above is needed, since now –
static friction will not be exceeded even for the value of P which makes the cube rotate about its
front lower corner. That is, we need to have µ > L/2h in this case.
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54. Adopting the usual convention that torques that would produce counterclockwise rotation are positive,
we have (with axis at the hinge)

∑

τz = 0 =⇒ TL sin 60◦ −Mg

(

L

2

)

= 0

where L = 5.0 m and M = 53 kg. Thus, T = 300 N. Now (with Fp for the force of the hinge)

∑

Fx = 0 =⇒ Fpx = −T cos θ = −150 N
∑

Fy = 0 =⇒ Fpy = Mg − T sin θ = 260 N

where θ = 60◦. Therefore (in newtons),

~Fp = −150 ı̂ + 260 ĵ .

55. Let the forces that compress stoppers A and B be FA and FB , respectively. Then equilibrium of torques
about the axle requires FR = rAFA + rBFB . If the stoppers are compressed by amounts |∆yA| and
|∆yB| respectively, when the rod rotates a (presumably small) angle θ (in radians), then

|∆yA| = rAθ and |∆yB| = rBθ .

Furthermore, if their “spring constants” k are identical, then k = |F/∆y| leads to the condition FA/rA =
FB/rB which provides us with enough information to solve.

(a) Simultaneous solution of the two conditions leads to

FA =
RrA

r2A + r2B
F .

(b) It also yields

FB =
RrB

r2A + r2B
F .

56. Setting up equilibrium of torques leads to a simple “level principle” ratio:

F⊥ = (40 N)
2.6 cm

12 cm
= 8.7 N .

57. Analyzing forces at the knot (particularly helpful is a graphical view of the vector right-triangle with
horizontal “side” equal to the static friction force fs and vertical “side” equal to the weight W5 of the
5.0-kg mass), we find fs = W5 tan θ where θ = 30◦. For fs to be at its maximum value, then it must
equal µsW10 where the weight of the 10 kg object is W10 = (10 kg)(9.8 m/s2). Therefore,

µsW10 = W5 tan θ =⇒ µs =
5

10
tan 30◦ = 0.29 .

58. (a) Setting up equilibrium of torques leads to a simple “level principle” ratio:

Fcatch = (11 kg)(9.8 m/s2)
(91/2− 10) cm

91 cm
= 42 N .

(b) Then, equilibrium of vertical forces provides

Fhinge = (11 kg)(9.8 m/s2)− Fcatch = 66 N .
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59. One arm of the balance has length ℓ1 and the other has length ℓ2 . The two cases described in the
problem are expressed (in terms of torque equilibrium) as

m1ℓ1 = mℓ2 and mℓ1 = m2ℓ2 .

We divide equations and solve for the unknown mass: m =
√
m1m2 .

60. Since all surfaces are frictionless, the contact force ~F exerted by the lower sphere on the upper one is
along that 45◦ line, and the forces exerted by walls and floors are “normal” (perpendicular to the wall
and floor surfaces, respectively). Equilibrium of forces on the top sphere lead to the two conditions

Nwall = F cos 45◦ and F sin 45◦ = mg .

And (using Newton’s third law) equilibrium of forces on the bottom sphere lead to the two conditions

N ′
wall = F cos 45◦ and N ′

floor = F sin 45◦ +mg .

(a) Solving the above equations, we find N ′
floor = 2mg.

(b) Also, we obtain N ′
wall = Nwall = mg.

(c) And we get F = mg/ sin 45◦ = mg
√

2.

61. (a) Setting up equilibrium of torques leads to

Ffar endL = (73 kg)(9.8 m/s2)
L

4
+ (2700 N)

L

2

which yields Ffar end = 1.5× 103 N.

(b) Then, equilibrium of vertical forces provides

Fnear end = (73)(9.8) + 2700− Ffar end = 1.9× 103 N .

62. Since GA exerts a leftward force T at the corner A, then (by equilibrium of horizontal forces at that
point) the force Fdiag in CA must be pulling with magnitude

Fdiag =
T

sin 45◦
= T
√

2 .

This analysis applies equally well to the force in DB. And these diagonal bars are pulling on the bottom
horizontal bar exactly as they do to the top bar, so the bottom bar is the “mirror image” of the top one
(it is also under tension T ). Since the figure is symmetrical (except for the presence of the turnbuckle)
under 90◦ rotations, we conclude that the side bars also are under tension T (a conclusion that also
follows from considering the vertical components of the pull exerted at the corners by the diagonal bars).

63. Where the crosspiece comes into contact with the beam, there is an upward force of 2F (where F is the
upward force exerted by each man). By equilibrium of vertical forces, W = 3F where W is the weight
of the beam. If the beam is uniform, its center of gravity is a distance L/2 from the man in front, so
that computing torques about the front end leads to

W
L

2
= 2F x = 2

(

W

3

)

x

which yields x = 3L/4 for the distance from the crosspiece to the front end. It is therefore a distance
L/4 from the rear end (the “free” end).
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Chapter 14

1. The magnitude of the force of one particle on the other is given by F = Gm1m2/r
2, where m1 and m2

are the masses, r is their separation, and G is the universal gravitational constant. We solve for r:

r =

√

Gm1m2

F
=

√

(6.67× 10−11 N·m2/kg
2
)(5.2 kg)(2.4 kg)

2.3× 10−12 N
= 19 m .

2. (a) The gravitational force exerted on the baby (denoted with subscript b) by the obstetrician (denoted
with subscript o) is given by

Fbo =
Gmomb

r2bo
=

(6.67× 10−11 N·m2/kg2)(70 kg)(3 kg)

(1 m)2
= 1× 10−8 N .

(b) The maximum (minimum) forces exerted by Jupiter on the baby occur when it is separated from
the Earth by the shortest (longest) distance rmin (rmax), respectively. Thus

Fmax
bJ =

GmJmb

r2min

=
(6.67× 10−11 N·m2/kg2)(2 × 1027 kg)(3 kg)

(6× 1011 m)2
= 1× 10−6 N .

(c) And we obtain

Fmin
bJ =

GmJmb

r2max

=
(6.67× 10−11 N·m2/kg2)(2× 1027 kg)(3kg)

(9× 1011 m)2
= 5× 10−7 N .

(d) No. The gravitational force exerted by Jupiter on the baby is greater than that by the obstetrician
by a factor of up to 1× 10−6 N/1× 10−8 N = 100.

3. We use F = Gmsmm/r
2, where ms is the mass of the satellite, mm is the mass of the meteor, and r

is the distance between their centers. The distance between centers is r = R + d = 15 m + 3 m = 18 m.
Here R is the radius of the satellite and d is the distance from its surface to the center of the meteor.
Thus,

F =
(6.67× 10−11 N·m2/kg2)(20 kg)(7.0 kg)

(18 m)2
= 2.9× 10−11 N .

4. We use subscripts s, e, and m for the Sun, Earth and Moon, respectively.

Fsm

Fem
=

Gmsmm

r2
sm

Gmemm

r2
em

=
ms

me

(

rem

rsm

)2

Plugging in the numerical values (say, from Appendix C) we find

1.99× 1030

5.98× 1024

(

3.82× 108

1.50× 1011

)2

= 2.16 .

367
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5. The gravitational force between the two parts is

F =
Gm(M −m)

r2
=
G

r2
(

mM −m2
)

which we differentiate with respect to m and set equal to zero:

dF

dm
= 0 =

G

r2
(M − 2m) =⇒ M = 2m

which leads to the result m/M = 1/2.

6. Let the distance from Earth to the spaceship be r. Rem = 3.82 × 108 m is the distance from Earth to
the moon. Thus,

Fm =
GMmm

(Rem − r)2
= FE =

GMem

r2
,

where m is the mass of the spaceship. Solving for r, we obtain

r =
Rem

√

Mm/Me + 1

=
3.82× 108 m

√

(7.36× 1022 kg)/(5.98× 1024 kg) + 1
= 3.44× 108 m .

7. At the point where the forces balance GMem/r
2
1 = GMsm/r

2
2, where Me is the mass of Earth, Ms is

the mass of the Sun, m is the mass of the space probe, r1 is the distance from the center of Earth to the
probe, and r2 is the distance from the center of the Sun to the probe. We substitute r2 = d− r1, where
d is the distance from the center of Earth to the center of the Sun, to find

Me

r21
=

Ms

(d− r1)2
.

Taking the positive square root of both sides, we solve for r1 . A little algebra yields

r1 =
d
√
Me√

Ms +
√
Me

=
(150× 109 m)

√

5.98× 1024 kg
√

1.99× 1030 kg +
√

5.98× 1024 kg
= 2.6× 108 m .

Values for Me, Ms, and d can be found in Appendix C.

8. Using F = GmM/r2, we find that the topmost mass pulls upward on the one at the origin with
1.9 × 10−8 N, and the rightmost mass pulls rightward on the one at the origin with 1.0 × 10−8 N.
Thus, the (x, y) components of the net force, which can be converted to polar components (here we use
magnitude-angle notation), are

~Fnet =
(

1.0× 10−8, 1.9× 10−8
)

=⇒
(

2.1× 10−8 6 61◦
)

.

The magnitude of the force is 2.1× 10−8 N.

9. The gravitational forces on m5 from the two 500-kg masses cancel each other. Contributions to the net
force on m5 come from the remaining two masses:

Fnet =
(6.67× 10−11 N·m2/kg2)(250 kg)(300 kg− 100 kg)

(
√

2× 10−2 m)2
= 0.017 N .

The force is directed along the diagonal between the 300 kg and 100 kg masses, towards the 300-kg mass.
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10. (a) The distance between any of the spheres at the corners and the sphere at the center is r =
ℓ/2 cos 30◦ = ℓ/

√
3 where ℓ is the length of one side of the equilateral triangle. The net (downward)

contribution caused by the two bottom-most spheres (each of mass m) to the total force on m4 has
magnitude

2Fy = 2

(

Gm4m

r2

)

sin 30◦ = 3
Gm4m

ℓ2
.

This must equal the magnitude of the pull from M , so

3
Gm4m

ℓ2
=

Gm4M

(ℓ/
√

3)2

which readily yields m = M .

(b) Since m4 cancels in that last step, then the amount of mass in the center sphere is not relevant to
the problem. The net force is still zero.

11. We use m1 for the 20 kg of the sphere at (x1, y1) = (0.5, 1.0) (SI units understood), m2 for the 40 kg
of the sphere at (x2, y2) = (−1.0,−1.0), and m3 for the 60 kg of the sphere at (x3, y3) = (0,−0.5). The
mass of the 20 kg object at the origin is simply denoted m. We note that r1 =

√
1.25, r2 =

√
2, and

r3 = 0.5 (again, with SI units understood). The force ~Fn that the nth sphere exerts on m has magnitude
Gmnm/r

2
n and is directed from the origin towards mn , so that it is conveniently written as

~Fn =
Gmnm

r2n

(

xn

rn
ı̂ +

yn

rn
ĵ

)

=
Gmnm

r3n

(

xn ı̂ + ynĵ
)

.

Consequently, the vector addition to obtain the net force on m becomes

~Fnet =

3
∑

n=1

~Fn

= Gm

((

3
∑

n=1

mnxn

r3n

)

ı̂ +

(

3
∑

n=1

mnyn

r3n

)

ĵ

)

= −9.3× 10−9 ı̂− 3.2× 10−7 ĵ

in SI units. Therefore, we find the net force magnitude is |~Fnet| = 3.2× 10−7 N.

12. We note that rA (the distance from the origin to sphere A, which is the same as the separation between A

and B) is 0.5, rC = 0.8, and rD = 0.4 (with SI units understood). The force ~Fk that the kth sphere exerts
on mB has magnitude GmkmB/r

2
k and is directed from the origin towards mk so that it is conveniently

written as

~Fk =
GmkmB

r2k

(

xk

rk
ı̂ +

yk

rk
ĵ

)

=
GmkmB

r3k

(

xk ı̂ + yk ĵ
)

.

Consequently, the vector addition (where k equals A,B and D) to obtain the net force on mB becomes

~Fnet =
∑

k

~Fk

= GmB

((

∑

k

mkxk

r3k

)

ı̂ +

(

∑

k

mkyk

r3k

)

ĵ

)

= 3.7× 10−5 ĵ N .

13. If the lead sphere were not hollowed the magnitude of the force it exerts on m would be F1 = GMm/d2.
Part of this force is due to material that is removed. We calculate the force exerted on m by a sphere
that just fills the cavity, at the position of the cavity, and subtract it from the force of the solid sphere.
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The cavity has a radius r = R/2. The material that fills it has the same density (mass to volume ratio)
as the solid sphere. That is Mc/r

3 = M/R3, where Mc is the mass that fills the cavity. The common
factor 4π/3 has been canceled. Thus,

Mc =

(

r3

R3

)

M =

(

R3

8R3

)

M =
M

8
.

The center of the cavity is d− r = d−R/2 from m, so the force it exerts on m is

F2 =
G(M/8)m

(d−R/2)2
.

The force of the hollowed sphere on m is

F = F1 − F2 = GMm

(

1

d2
− 1

8(d−R/2)2

)

=
GMm

d2

(

1− 1

8(1−R/2d)2
)

.

14. We follow the method shown in Sample Problem 14-3. Thus,

ag =
GME

r2
=⇒ dag = −2

GME

r3
dr

which implies that the change in weight is

Wtop −Wbottom ≈ m (dag) .

But since Wbottom = GmME/R
2 (where R is Earth’s mean radius), we have

mdag = −2
GmME

R3
dr = −2Wbottom

dr

R
= −2(530 N)

410 m

6.37× 106 m

which yields −0.068 N for the weight change (the minus sign indicating that it is a decrease in W ). We
are not including any effects due to the Earth’s rotation (as treated in Eq. 14-12).

15. The acceleration due to gravity is given by ag = GM/r2, where M is the mass of Earth and r is the
distance from Earth’s center. We substitute r = R + h, where R is the radius of Earth and h is the
altitude, to obtain ag = GM/(R + h)2. We solve for h and obtain h =

√

GM/ag − R. According to
Appendix C, R = 6.37× 106 m and M = 5.98× 1024 kg, so

h =

√

(6.67× 10−11 m3/s2 ·kg)(5.98× 1024 kg)

4.9 m/s
2 − 6.37× 106 m = 2.6× 106 m .

16. (a) The gravitational acceleration at the surface of the Moon is gmoon = 1.67 m/s2 (see Appendix C).
The ratio of weights (for a given mass) is the ratio of g-values, so Wmoon = (100 N)(1.67/9.8) = 17 N.

(b) For the force on that object caused by Earth’s gravity to equal 17 N, then the free-fall acceleration
at its location must be ag = 1.67 m/s2. Thus,

ag =
GME

r2
=⇒ r =

√

GME

ag
= 1.5× 107 m

so the object would need to be a distance of r/RE = 2.4 “radii” from Earth’s center.

17. If the angular velocity were any greater, loose objects on the surface would not go around with the planet
but would travel out into space.
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(a) The magnitude of the gravitational force exerted by the planet on an object of mass m at its surface
is given by F = GmM/R2, where M is the mass of the planet and R is its radius. According to
Newton’s second law this must equal mv2/R, where v is the speed of the object. Thus,

GM

R2
=
v2

R
.

Replacing M with (4π/3)ρR3 (where ρ is the density of the planet) and v with 2πR/T (where T is
the period of revolution), we find

4π

3
GρR =

4π2R

T 2
.

We solve for T and obtain

T =

√

3π

Gρ
.

(b) The density is 3.0× 103 kg/m
3
. We evaluate the equation for T :

T =

√

3π

(6.67× 10−11 m3/s2 ·kg)(3.0× 103 kg/m
3
)

= 6.86× 103 s = 1.9 h .

18. (a) The gravitational acceleration is

ag =
GM

R2
= 7.6 m/s2 .

(b) Note that the total mass is 5M . Thus,

ag =
G(5M)

(3R)2
= 4.2 m/s

2
.

19. (a) The forces acting on an object being weighed are the downward force of gravity and the upward
force of the spring balance. Let Fg be the magnitude of the force of Earth’s gravity and let W be
the magnitude of the force exerted by the spring balance. The reading on the balance gives the
value of W . The object is traveling around a circle of radius R and so has a centripetal acceleration.
Newton’s second law becomes Fg −W = mV 2/R, where V is the speed of the object as measured
in an inertial frame and m is the mass of the object. Now V = Rω ± v, where ω is the angular
velocity of Earth as it rotates and v is the speed of the ship relative to Earth. We note that the
first term gives the speed of a point fixed to the rotating Earth. The plus sign is used if the ship
is traveling in the same direction as the portion of Earth under it (west to east) and the negative
sign is used if the ship is traveling in the opposite direction (east to west).

Newton’s second law is now Fg −W = m(Rω ± v)2/R. When we expand the parentheses we may
neglect the term v2 since v is much smaller than Rω. Thus, Fg −W = m(R2ω2 ± 2Rωv)/R and
W = Fg −mRω2∓ 2mωv. When v = 0 the scale reading is W0 = Fg −mRω2, so W = W0∓ 2mωv.
We replace m with W0/g to obtain W = W0(1∓ 2ωv/g).

(b) The upper sign (−) is used if the ship is sailing eastward and the lower sign (+) is used if the ship
is sailing westward.

20. (a) Plugging Rh = 2GMh/c
2 into the indicated expression, we find

ag =
GMh

(1.001Rh)2
=

GMh

(1.001)2 (2GMh/c2)
2 =

c4

(2.002)2G

1

Mh

which yields ag =
(

3.02× 1043 kg·m/s2
)

/Mh .

(b) Since Mh is in the denominator of the above result, ag decreases as Mh increases.

(c) With Mh =
(

1.55× 1012
) (

1.99× 1030 kg
)

, we obtain ag = 9.8 m/s2.
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(d) This part refers specifically to the very large black hole treated in the previous part. With that
mass for M in Eq. 14-15, and r = 2.002GM/c2, we obtain

dag = −2
GM

(2.002GM/c2)3
dr = − 2c6

(2.002)3(GM)2
dr

where dr → 1.70 m as in the Sample Problem. This yields (in absolute value) an acceleration
difference of 7.3× 10−15 m/s2.

(e) The miniscule result of the previous part implies that, in this case, any effects due to the differences
of gravitational forces on the body are negligible.

21. From Eq. 14-13, we see the extreme case is when “g” becomes zero, and plugging in Eq. 14-14 leads to

0 =
GM

R2
−Rω2 =⇒ M =

R3ω2

G
.

Thus, with R = 20000 m and ω = 2π rad/s, we find M = 4.7× 1024 kg.

22. (a) What contributes to the GmM/r2 force on m is the (spherically distributed) mass M contained
within r (where r is measured from the center of M). At point A we see that M1 + M2 is at a
smaller radius than r = a and thus contributes to the force:

|Fon m| =
G (M1 +M2)m

a2
.

(b) In the case r = b, only M1 is contained within that radius, so the force on m becomes GM1m/b
2.

(c) If the particle is at C, then no other mass is at smaller radius and the gravitational force on it is
zero.

23. Using the fact that the volume of a sphere is 4πR3/3, we find the density of the sphere:

ρ =
Mtotal

4
3πR

3
=

1.0× 104 kg
4
3π(1.0 m)3

= 2.4× 103 kg/m3 .

When the particle of mass m (upon which the sphere, or parts of it, are exerting a gravitational force)
is at radius r (measured from the center of the sphere), then whatever mass M is at a radius less than
r must contribute to the magnitude of that force (GMm/r2).

(a) At r = 1.5 m, all of Mtotal is at a smaller radius and thus all contributes to the force:

|Fon m| =
GmMtotal

r2
= m

(

3.0× 10−7 N/kg
)

.

(b) At r = 0.50 m, the portion of the sphere at radius smaller than that is

M = ρ

(

4

3
πr3
)

= 1.3× 103 kg .

Thus, the force on m has magnitude GMm/r2 = m
(

3.3× 10−7 N/kg
)

.

(c) Pursuing the calculation of part (b) algebraically, we find

|Fon m| =
Gmρ

(

4
3πr

3
)

r2
= mr

(

6.7× 10−7 N

kg·m

)

.
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24. Since the volume of a sphere is 4πR3/3, the density is

ρ =
Mtotal

4
3πR

3
=

3Mtotal

4πR3
.

When we test for gravitational acceleration (caused by the sphere, or by parts of it) at radius r (measured
from the center of the sphere), the mass M which is at radius less than r is what contributes to the
reading (GM/r2). Since M = ρ(4πr3/3) for r ≤ R then we can write this result as

G
(

3Mtotal

4πR3

)

(

4πr3

3

)

r2
=
GMtotal r

R3

when we are considering points on or inside the sphere. Thus, the value ag referred to in the problem is
the case where r = R:

ag =
GMtotal

R2
,

and we solve for the case where the acceleration equals ag/3:

GMtotal

3R2
=
GMtotal r

R3
=⇒ r =

R

3
.

Now we treat the case of an external test point. For points with r > R the acceleration is GMtotal/r
2,

so the requirement that it equal ag/3 leads to

GMtotal

3R2
=
GMtotal

r2
=⇒ r = R

√
3 .

25. (a) The magnitude of the force on a particle with mass m at the surface of Earth is given by F =
GMm/R2, where M is the total mass of Earth and R is Earth’s radius. The acceleration due to
gravity is

ag =
F

m
=
GM

R2
=

(6.67× 10−11 m3/s2 ·kg)(5.98× 1024 kg)

(6.37× 106 m)2
= 9.83 m/s

2
.

(b) Now ag = GM/R2, where M is the total mass contained in the core and mantle together and
R is the outer radius of the mantle (6.345 × 106 m, according to Fig. 14–36). The total mass is
M = 1.93 × 1024 kg + 4.01 × 1024 kg = 5.94 × 1024 kg. The first term is the mass of the core and
the second is the mass of the mantle. Thus,

ag =
(6.67× 10−11 m3/s2 ·kg)(5.94× 1024 kg)

(6.345× 106 m)2
= 9.84 m/s2 .

(c) A point 25 km below the surface is at the mantle-crust interface and is on the surface of a sphere
with a radius of R = 6.345× 106 m. Since the mass is now assumed to be uniformly distributed the
mass within this sphere can be found by multiplying the mass per unit volume by the volume of
the sphere: M = (R3/R3

e)Me, where Me is the total mass of Earth and Re is the radius of Earth.
Thus,

M =

(

6.345× 106 m

6.37× 106 m

)3

(5.98× 1024 kg) = 5.91× 1024 kg .

The acceleration due to gravity is

ag =
GM

R2
=

(6.67× 10−11 m3/s2 ·kg)(5.91× 1024 kg)

(6.345× 106 m)2
= 9.79 m/s

2
.
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26. (a) The gravitational potential energy is

U = −GMm

r
= −

(

6.67× 10−11 m3/kg·s2
)

(5.2 kg)(2.4 kg)

19 m
= −4.4× 10−11 J .

(b) Since the change in potential energy is

∆U = −GMm

3r
−
(

−GMm

r

)

= −2

3
(−4.4× 10−11 J) = 2.9× 10−11 J ,

the work done by the gravitational force is W = −∆U = −2.9× 10−11 J.

(c) The work done by you is W ′ = ∆U = 2.9× 10−11 J.

27. (a) We note that rC (the distance from the origin to sphere C, which is the same as the separation
between C and B) is 0.8, rD = 0.4, and the separation between spheres C and D is rCD = 1.2
(with SI units understood). The total potential energy is therefore

−GMBMC

r2C
− GMBMD

r2D
− GMCMD

r2CD

= −1.3× 10−4 J

using the mass-values given in problem 12.

(b) Since any gravitational potential energy term (of the sort considered in this chapter) is necessarily
negative (−GmM/r2 where all variables are positive) then having another mass to include in the
computation can only lower the result (that is, make the result more negative).

(c) The observation in the previous part implies that the work I do in removing sphere A (to obtain
the case considered in part (a)) must lead to an increase in the system energy; thus, I do positive
work.

(d) To put sphere A back in, I do negative work, since I am causing the system energy to become more
negative.

28. The gravitational potential energy is

U = −Gm(M −m)

r
= −G

r

(

Mm−m2
)

which we differentiate with respect to m and set equal to zero (in order to minimize). Thus, we find
M − 2m = 0 which leads to the ratio m/M = 1/2 to obtain the least potential energy. (Note that a
second derivative of U with respect to m would lead to a positive result regardless of the value of m –
which means its graph is everywhere concave upward and thus its extremum is indeed a minimum).

29. (a) The density of a uniform sphere is given by ρ = 3M/4πR3, where M is its mass and R is its radius.
The ratio of the density of Mars to the density of Earth is

ρM

ρE
=
MM

ME

R3
E

R3
M

= 0.11

(

0.65× 104 km

3.45× 103 km

)3

= 0.74 .

(b) The value of ag at the surface of a planet is given by ag = GM/R2, so the value for Mars is

agM =
MM

ME

R2
E

R2
M

agE = 0.11

(

0.65× 104 km

3.45× 103 km

)2

(9.8 m/s
2
) = 3.8 m/s

2
.

(c) If v is the escape speed, then, for a particle of mass m

1
2mv

2 = G
mM

R
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and

v =

√

2GM

R
.

For Mars

v =

√

2(6.67× 10−11 m3/s
2 ·kg)(0.11)(5.98× 1024 kg)

3.45× 106 m
= 5.0× 103 m/s .

30. The amount of (kinetic) energy needed to escape is the same as the (absolute value of the) gravitational
potential energy at its original position. Thus, an object of mass m on a planet of mass M and radius
R needs K = GmM/R in order to (barely) escape.

(a) Setting up the ratio, we find
Km

KE
=
Mm

ME

RE

Rm
= 0.045

using the values found in Appendix C.

(b) Similarly, for the Jupiter escape energy (divided by that for Earth) we obtain

KJ

KE
=
MJ

ME

RE

RJ
= 28 .

31. (a) The work done by you in moving the sphere of mass m2 equals the change in the potential energy
of the three-sphere system. The initial potential energy is

Ui = −Gm1m2

d
− Gm1m3

L
− Gm2m3

L− d
and the final potential energy is

Uf = −Gm1m2

L− d −
Gm1m3

L
− Gm2m3

d
.

The work done is

W = Uf − Ui = Gm2

(

m1

(

1

d
− 1

L− d

)

+m3

(

1

L− d −
1

d

))

= (6.67× 10−11 m3/s2 ·kg)(0.10 kg)

[

(0.80 kg)

(

1

0.040 m
− 1

0.080 m

)

+(0.20 kg)

(

1

0.080 m
− 1

0.040 m

)

]

= +5.0× 10−11 J .

(b) The work done by the force of gravity is −(Uf − Ui) = −5.0× 10−11 J.

32. Energy conservation for this situation may be expressed as follows:

K1 + U1 = K2 + U2

K1 −
GmM

r1
= K2 −

GmM

r2

where M = 5.0× 1023 kg, r1 = R = 3.0× 106 m and m = 10 kg.

(a) If K1 = 5.0× 107 J and r2 = 4.0× 106 m, then the above equation leads to

K2 = K1 +GmM

(

1

r2
− 1

r1

)

= 2.2× 107 J .
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(b) In this case, we require K2 = 0 and r2 = 8.0× 106 m, and solve for K1 :

K1 = K2 +GmM

(

1

r1
− 1

r2

)

= 6.9× 107 J .

33. (a) We use the principle of conservation of energy. Initially the rocket is at Earth’s surface and the
potential energy is Ui = −GMm/Re = −mgRe, where M is the mass of Earth, m is the mass of the
rocket, and Re is the radius of Earth. The relationship g = GM/R2

e was used. The initial kinetic
energy is 1

2mv
2 = 2mgRe, where the substitution v = 2

√
gRe was made. If the rocket can escape

then conservation of energy must lead to a positive kinetic energy no matter how far from Earth it
gets. We take the final potential energy to be zero and let Kf be the final kinetic energy. Then,
Ui +Ki = Uf +Kf leads to Kf = Ui +Ki = −mgRe + 2mgRe = mgRe. The result is positive and
the rocket has enough kinetic energy to escape the gravitational pull of Earth.

(b) We write 1
2mv

2
f for the final kinetic energy. Then, 1

2mv
2
f = mgRe and vf =

√
2gRe.

34. Energy conservation for this situation may be expressed as follows:

K1 + U1 = K2 + U2

1

2
mv2

1 −
GmM

r1
=

1

2
mv2

2 −
GmM

r2

where M = 7.0× 1024 kg, r2 = R = 1.6× 106 m and r1 =∞ (which means that U1 = 0). We are told to
assume the meteor starts at rest, so v1 = 0. Thus, K1 + U1 = 0 and the above equation is rewritten as

1

2
mv2

2 =
GmM

r2
=⇒ v2 =

√

2GM

R
= 2.4× 104 m/s .

35. (a) We use the principle of conservation of energy. Initially the particle is at the surface of the asteroid
and has potential energy Ui = −GMm/R, where M is the mass of the asteroid, R is its radius,
and m is the mass of the particle being fired upward. The initial kinetic energy is 1

2mv
2. The

particle just escapes if its kinetic energy is zero when it is infinitely far from the asteroid. The final
potential and kinetic energies are both zero. Conservation of energy yields −GMm/R+ 1

2mv
2 = 0.

We replace GM/R with agR, where ag is the acceleration due to gravity at the surface. Then, the
energy equation becomes −agR+ 1

2v
2 = 0. We solve for v:

v =
√

2agR =

√

2(3.0 m/s
2
)(500× 103 m) = 1.7× 103 m/s .

(b) Initially the particle is at the surface; the potential energy is Ui = −GMm/R and the kinetic energy
is Ki = 1

2mv
2. Suppose the particle is a distance h above the surface when it momentarily comes

to rest. The final potential energy is Uf = −GMm/(R+ h) and the final kinetic energy is Kf = 0.
Conservation of energy yields

−GMm

R
+

1

2
mv2 = −GMm

R+ h
.

We replace GM with agR
2 and cancel m in the energy equation to obtain

−agR +
1

2
v2 = − agR

2

(R+ h)
.

The solution for h is

h =
2agR

2

2agR− v2
−R

=
2(3.0 m/s2)(500× 103 m)

2

2(3.0 m/s2)(500× 103 m)− (1000 m/s)2
− (500× 103 m)

= 2.5× 105 m .
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(c) Initially the particle is a distance h above the surface and is at rest. Its potential energy is Ui =
−GMm/(R+h) and its initial kinetic energy is Ki = 0. Just before it hits the asteroid its potential
energy is Uf = −GMm/R. Write 1

2mv
2
f for the final kinetic energy. Conservation of energy yields

−GMm

R+ h
= −GMm

R
+

1

2
mv2 .

We substitute agR
2 for GM and cancel m, obtaining

− agR
2

R+ h
= −agR+

1

2
v2 .

The solution for v is

v =

√

2agR−
2agR2

R+ h

=

√

2(3.0 m/s
2
)(500× 103 m)− 2(3.0 m/s2)(500× 103 m)2

500× 103 m + 1000× 103 m

= 1.4× 103 m/s .

36. (a) We note that height = R − REarth where REarth = 6.37 × 106 m. With M = 5.98 × 1024 kg,
R0 = 6.57× 106 m and R = 7.37× 106 m, we have

Ki + Ui = K + U =⇒ 1

2
m
(

3.7× 103
)2 − GmM

R0
= K − GmM

R

Solving, we find K = 3.8× 107 J.

(b) Again, we use energy conservation.

Ki + Ui = Kf + Uf =⇒ 1

2
m
(

3.7× 103
)2 − GmM

R0
= 0− GmM

Rf

Therefore, we find Rf = 7.40× 106 m. This corresponds to a distance of 1034.9 ≈ 1.03× 103 km
above the earth’s surface.

37. (a) The momentum of the two-star system is conserved, and since the stars have the same mass, their
speeds and kinetic energies are the same. We use the principle of conservation of energy. The
initial potential energy is Ui = −GM2/ri, where M is the mass of either star and ri is their initial
center-to-center separation. The initial kinetic energy is zero since the stars are at rest. The final
potential energy is Uf = −2GM2/ri since the final separation is ri/2. We write Mv2 for the final
kinetic energy of the system. This is the sum of two terms, each of which is 1

2Mv2. Conservation
of energy yields

−GM
2

ri
= −2GM2

ri
+Mv2 .

The solution for v is

v =

√

GM

ri
=

√

(6.67× 10−11 m3/s2 ·kg)(1030 kg)

1010 m
= 8.2× 104 m/s .

(b) Now the final separation of the centers is rf = 2R = 2 × 105 m, where R is the radius of either of
the stars. The final potential energy is given by Uf = −GM2/rf and the energy equation becomes
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−GM2/ri = −GM2/rf +Mv2. The solution for v is

v =

√

GM

(

1

rf
− 1

ri

)

=

√

(6.67× 10−11 m3/s2 ·kg)(1030 kg)

(

1

2× 105 m
− 1

1010 m

)

= 1.8× 107 m/s .

38. (a) The initial gravitational potential energy is

Ui = −GMAMB

ri
= −

(

6.67× 10−11
)

(20)(10)

0.80
= −1.67× 10−8 J .

(b) We use conservation of energy (with Ki = 0):

Ui = K + U

−1.67× 10−8 = K −
(

6.67× 10−11
)

(20)(10)

0.60

which yields K = 5.6×10−9 J. Note that the value of r is the difference between 0.80 m and 0.20 m.

39. Energy conservation for this situation may be expressed as follows:

K1 + U1 = K2 + U2

1

2
mv2

1 −
GmM

r1
=

1

2
mv2

2 −
GmM

r2

where M = 5.98 × 1024 kg, r1 = R = 6.37 × 106 m and v1 = 10000 m/s. Setting v2 = 0 to find the
maximum of its trajectory, we solve the above equation (noting that m cancels in the process) and
obtain r2 = 3.2× 107 m. This implies that its altitude is r2 −R = 2.5× 107 m.

40. Kepler’s law of periods, expressed as a ratio, is
(

aM

aE

)3

=

(

TM

TE

)2

=⇒ 1.523 =

(

TM

1 y

)2

where we have substituted the mean-distance (from Sun) ratio for the semimajor axis ratio. This yields
TM = 1.87 y. The value in Appendix C (1.88 y) is quite close, and the small apparent discrepancy is not
significant, since a more precise value for the semimajor axis ratio is aM/aE = 1.523 which does lead to
TM = 1.88 y using Kepler’s law. A question can be raised regarding the use of a ratio of mean distances
for the ratio of semimajor axes, but this requires a more lengthy discussion of what is meant by a “mean
distance” than is appropriate here.

41. The period T and orbit radius r are related by the law of periods: T 2 = (4π2/GM)r3, where M is the
mass of Mars. The period is 7 h 39 min, which is 2.754× 104 s. We solve for M :

M =
4π2r3

GT 2

=
4π2(9.4× 106 m)3

(6.67× 10−11 m3/s2 ·kg)(2.754× 104 s)2
= 6.5× 1023 kg .

42. With T = 27.3(86400) = 2.36× 106 s, Kepler’s law of periods becomes

T 2 =

(

4π2

GME

)

r3 =⇒ ME =
4π2

(

3.82× 108
)3

(6.67× 10−11) (2.36× 106)
2

which yields ME = 5.93× 1024 kg for the mass of Earth.
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43. Let N be the number of stars in the galaxy, M be the mass of the Sun, and r be the radius of the galaxy.
The total mass in the galaxy is NM and the magnitude of the gravitational force acting on the Sun is
F = GNM2/r2. The force points toward the galactic center. The magnitude of the Sun’s acceleration
is a = v2/R, where v is its speed. If T is the period of the Sun’s motion around the galactic center then
v = 2πR/T and a = 4π2R/T 2. Newton’s second law yields GNM2/R2 = 4π2MR/T 2. The solution for
N is

N =
4π2R3

GT 2M
.

The period is 2.5× 108 y, which is 7.88× 1015 s, so

N =
4π2(2.2× 1020 m)3

(6.67× 10−11 m3/s2 ·kg)(7.88× 1015 s)2(2.0× 1030 kg)
= 5.1× 1010 .

44. Kepler’s law of periods, expressed as a ratio, is

(

rs
rm

)3

=

(

Ts

Tm

)2

=⇒
(

1

2

)3

=

(

Ts

1 lunar month

)2

which yields Ts = 0.35 lunar month for the period of the satellite.

45. (a) If r is the radius of the orbit then the magnitude of the gravitational force acting on the satellite
is given by GMm/r2, where M is the mass of Earth and m is the mass of the satellite. The
magnitude of the acceleration of the satellite is given by v2/r, where v is its speed. Newton’s
second law yields GMm/r2 = mv2/r. Since the radius of Earth is 6.37× 106 m the orbit radius is
r = 6.37× 106 m + 160× 103 m = 6.53× 106 m. The solution for v is

v =

√

GM

r
=

√

(6.67× 10−11 m3/s2 ·kg)(5.98× 1024 kg)

6.53× 106 m
= 7.82× 103 m/s .

(b) Since the circumference of the circular orbit is 2πr, the period is

T =
2πr

v
=

2π(6.53× 106 m)

7.82× 103 m/s
= 5.25× 103 s .

This is equivalent to 87.4 min.

46. (a) The distance from the center of an ellipse to a focus is ae where a is the semimajor axis and e is
the eccentricity. Thus, the separation of the foci (in the case of Earth’s orbit) is

2ae = 2
(

1.50× 1011 m
)

(0.0167) = 5.01× 109 m .

(b) To express this in terms of solar radii (see Appendix C), we set up a ratio:

5.01× 109 m

6.96× 108 m
= 7.2 .

47. (a) The greatest distance between the satellite and Earth’s center (the apogee distance) is Ra = 6.37×
106 m + 360× 103 m = 6.73× 106 m. The least distance (perigee distance) is Rp = 6.37× 106 m +
180× 103 m = 6.55× 106 m. Here 6.37× 106 m is the radius of Earth. From Fig. 14-13, we see that
the semimajor axis is

a =
Ra +Rp

2
=

6.73× 106 m + 6.55× 106 m

2
= 6.64× 106 m .
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(b) The apogee and perigee distances are related to the eccentricity e by Ra = a(1+e) andRp = a(1−e).
Add to obtain Ra +Rp = 2a and a = (Ra +Rp)/2. Subtract to obtain Ra −Rp = 2ae. Thus,

e =
Ra −Rp

2a
=
Ra −Rp

Ra +Rp
=

6.73× 106 m− 6.55× 106 m

6.73× 106 m + 6.55× 106 m
= 0.0136 .

48. To “hover” above Earth (ME = 5.98 × 1024 kg) means that it has a period of 24 hours (86400 s). By
Kepler’s law of periods,

864002 =

(

4π2

GME

)

r3 =⇒ r = 4.225× 107 m .

Its altitude is therefore r −RE (where RE = 6.37× 106 m) which yields 3.59× 107 m.

49. (a) The period of the comet is 1420 years (and one month), which we convert to T = 4.48 × 1010 s.
Since the mass of the Sun is 1.99× 1030 kg, then Kepler’s law of periods gives

(

4.48× 1010
)2

=

(

4π2

(6.67× 10−11) (1.99× 1030)

)

a3 =⇒ a = 1.89× 1013 m .

(b) Since the distance from the focus (of an ellipse) to its center is ea and the distance from center to
the aphelion is a, then the comet is at a distance of

ea+ a = (0.11 + 1)
(

1.89× 1013 m
)

= 2.1× 1013 m

when it is farthest from the Sun. To express this in terms of Pluto’s orbital radius (found in
Appendix C), we set up a ratio:

(

2.1× 1013

5.9× 1012

)

RP = 3.6RP .

50. (a) The period is T = 27(3600) = 97200 s, and we are asked to assume that the orbit is circular (of
radius r = 100000 m). Kepler’s law of periods provides us with an approximation to the asteroid’s
mass:

(97200)2 =

(

4π2

GM

)

(100000)3 =⇒ M = 6.3× 1016 kg .

(b) Dividing the mass M by the given volume yields an average density equal to 6.3×1016/1.41×1013 =
4.4 × 103 kg/m3, which is about 20% less dense than Earth (the average density of Earth is given
in a Table in Chapter 15).

51. (a) If we take the logarithm of Kepler’s law of periods, we obtain

2 log (T ) = log (4π2/GM) + 3 log (a) =⇒ log (a) =
2

3
log (T )− 1

3
log (4π2/GM)

where we are ignoring an important subtlety about units (the arguments of logarithms cannot have
units, since they are transcendental functions). Although the problem can be continued in this way,
we prefer to set it up without units, which requires taking a ratio. If we divide Kepler’s law (applied
to the Jupiter-moon system, where M is mass of Jupiter) by the law applied to Earth orbiting the
Sun (of mass Mo ), we obtain

(T/TE)
2

=

(

Mo

M

)(

a

rE

)3

where TE = 365.25 days is Earth’s orbital period and rE = 1.50× 1011 m is its mean distance from
the Sun. In this case, it is perfectly legitimate to take logarithms and obtain

log
(rE
a

)

=
2

3
log

(

TE

T

)

+
1

3
log

(

Mo

M

)
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(written to make each term positive) which is the way we plot the data (log (rE /a) on the vertical
axis and log (TE /T ) on the horizontal axis).

1.8

2

2.2

2.4

2.6

log_r

1 1.2 1.4 1.6 1.8 2 2.2 2.4
log_T

(b) When we perform a least-squares fit to the data, we obtain log (rE /a) = 0.666 log (TE /T ) + 1.01,
which confirms the expectation of slope = 2/3 based on the above equation.

(c) And the 1.01 intercept corresponds to the term 1
3 log

(

Mo

M

)

which implies

Mo

M
= 103.03 =⇒ M =

Mo

1.07× 103
.

Plugging in Mo = 1.99 × 1030 kg (see Appendix C), we obtain M = 1.86 × 1027 kg for Jupiter’s
mass. This is reasonably consistent with the value 1.90× 1027 kg found in Appendix C.

52. From Kepler’s law of periods (where T = 2.4(3600) = 8640 s), we find the planet’s mass M :

(8640 s)2 =

(

4π2

GM

)

(

8.0× 106 m
)3

=⇒ M = 4.06× 1024 kg .

But we also know ag = GM/R2 = 8.0 m/s2 so that we are able to solve for the planet’s radius:

R =

√

GM

ag
= 5.8× 106 m .

53. We follow the approach shown in Sample Problem 14-7. In our system, we have m1 = m2 = M (the
mass of our Sun, 1.99× 1030 kg). From Eq. 14-37, we see that r = 2r1 in this system (so r1 is one-half
the Earth-to-Sun distance r). And Eq. 14-39 gives v = πr/T for the speed. Plugging these observations
into Eq. 14-35 leads to

Gm1m2

r2
= m1

(πr/T )2

r/2
=⇒ T =

√

2π2r3

GM
.

With r = 1.5 × 1011 m, we obtain T = 2.2 × 107 s. We can express this in terms of Earth-years, by
setting up a ratio:

T =

(

T

1 y

)

(1 y) =

(

2.2× 107 s

3.156× 107 s

)

(1 y) = 0.71 y .

54. The magnitude of the net gravitational force on one of the smaller stars (of mass m) is

GMm

r2
+
Gmm

(2r)2
=
Gm

r2

(

M +
m

4

)

.
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This supplies the centripetal force needed for the motion of the star:

Gm

r2

(

M +
m

4

)

= m
v2

r
where v =

2πr

T
.

Plugging in for speed v, we arrive at an equation for period T :

T =
2πr3/2

√

G(M +m/4)
.

55. Each star is attracted toward each of the other two by a force of magnitude GM2/L2, along the line that
joins the stars. The net force on each star has magnitude 2(GM2/L2) cos 30◦ and is directed toward the
center of the triangle. This is a centripetal force and keeps the stars on the same circular orbit if their
speeds are appropriate. If R is the radius of the orbit, Newton’s second law yields (GM2/L2) cos 30◦ =
Mv2/R.

The stars rotate about their center of mass (marked by ⊙ on
the diagram to the right) at the intersection of the perpendic-
ular bisectors of the triangle sides, and the radius of the orbit
is the distance from a star to the center of mass of the three-
star system. We take the coordinate system to be as shown in
the diagram, with its origin at the left-most star. The altitude
of an equilateral triangle is (

√
3/2)L, so the stars are located

at x = 0, y = 0; x = L, y = 0; and x = L/2, y =
√

3L/2. The
x coordinate of the center of mass is xc = (L+L/2)/3 = L/2
and the y coordinate is yc = (

√
3L/2)/3 = L/2

√
3. The dis-

tance from a star to the center of mass is R =
√

x2
c + y2

c =
√

(L2/4) + (L2/12) = L/
√

3.
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Once the substitution for R is made Newton’s second law becomes (2GM2/L2) cos 30◦ =
√

3Mv2/L.
This can be simplified somewhat by recognizing that cos 30◦ =

√
3/2, and we divide the equation by M .

Then, GM/L2 = v2/L and v =
√

GM/L.

56. (a) From Eq. 14-44, we see that the energy of each satellite is −GMEm/2r. The total energy of the
two satellites is twice that result; −GMEm/r.

(b) We note that the speed of the wreckage will be zero (immediately after the collision), so it has
no kinetic energy at that moment. Replacing m with 2m in the potential energy expression, we
therefore find the total energy of the wreckage at that instant is −2GMEm/r.

(c) An object with zero speed at that distance from Earth will simply fall towards the Earth, its
trajectory being toward the center of the planet.

57. (a) We use the law of periods: T 2 = (4π2/GM)r3, where M is the mass of the Sun (1.99 × 1030 kg)
and r is the radius of the orbit. The radius of the orbit is twice the radius of Earth’s orbit:
r = 2re = 2(150× 109 m) = 300× 109 m. Thus,

T =

√

4π2r3

GM

=

√

4π2(300× 109 m)3

(6.67× 10−11 m3/s2 ·kg)(1.99× 1030 kg)
= 8.96× 107 s .

Dividing by (365 d/y)(24 h/d)(60 min/h)(60 s/min), we obtain T = 2.8 y.

(b) The kinetic energy of any asteroid or planet in a circular orbit of radius r is given by K = GMm/2r,
where m is the mass of the asteroid or planet. We note that it is proportional to m and inversely
proportional to r. The ratio of the kinetic energy of the asteroid to the kinetic energy of Earth is
K/Ke = (m/me)(re/r). We substitute m = 2.0×10−4me and r = 2re to obtainK/Ke = 1.0×10−4.
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58. Although altitudes are given, it is the orbital radii which enter the equations. Thus, rA = 6370+6370 =
12740 km, and rB = 19110 + 6370 = 25480 km

(a) The ratio of potential energies is

UB

UA
=
−GmM

rB

−GmM
rA

=
rA
rB

=
1

2
.

(b) Using Eq. 14-42, the ratio of kinetic energies is

KB

KA
=

GmM
2rB

GmM
2rA

=
rA
rB

=
1

2
.

(c) From Eq. 14-44, it is clear that the satellite with the largest value of r has the smallest value of |E|
(since r is in the denominator). And since the values of E are negative, then the smallest value of
|E| corresponds to the largest energy E. Thus, satellite B has the largest energy, by an amount

∆E = EB − EA = − GmM
2

(

1

rB
− 1

rA

)

.

Being careful to convert the r values to meters, we obtain ∆E = 1.1× 108 J. The mass M of Earth
is found in Appendix C.

59. The total energy is given by E = −GMm/2a, where M is the mass of the central attracting body (the
Sun, for example), m is the mass of the object (a planet, for example), and a is the semimajor axis of
the orbit. If the object is a distance r from the central body the potential energy is U = −GMm/r.
We write 1

2mv
2 for the kinetic energy. Then, E = K + U becomes −GMm/2a = 1

2mv
2 −GMm/r. We

solve for v2. The result is

v2 = GM

(

2

r
− 1

a

)

.

60. (a) For r = Rp,

v2
p = GMs

(

2

Rp
− 1

a

)

=
(

6.67× 10−11 m3/s2 ·kg
) (

1.99× 1030 kg
)

(

2

8.9× 1010 m
− 1

2.7× 1012 m

)

vp = 5.4× 104 m/s .

(b) For r = Ra,

v2
a = GMs

(

2

Ra
− 1

a

)

=
(

6.67× 10−11 m3/s2 ·kg
) (

1.99× 1030 kg
)

(

2

5.3× 1012 m
− 1

2.7× 1012 m

)

va = 9.6× 102 m/s .

(c) We appeal to angular momentum conservation:

L = mvr = mvaRa = mvpRp = constant =⇒ va

vp
=
Rp

Ra
.
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61. The energy required to raise a satellite of mass m to an altitude h (at rest) is given by

E1 = ∆U = GMEm

(

1

RE
− 1

RE + h

)

,

and the energy required to put it in circular orbit once it is there is

E2 =
1

2
mv2

orb =
GMEm

2(RE + h)
.

Consequently, the energy difference is

∆E = E1 − E2 = GMEm

[

1

RE
− 3

2(RE + h)

]

.

(a) Since
1

RE
− 3

2(RE + h)
=

1

6370 km
− 3

2(6370 km + 1500 km)
< 0

the answer is no (E1 < E2).

(b) Since
1

RE
− 3

2(RE + h)
=

1

6370 km
− 3

2(6370 km + 3185 km)
= 0

we have E1 = E2.

(c) Since
1

RE
− 3

2(RE + h)
=

1

6370 km
− 3

2(6370 km + 4500 km)
> 0

the answer is yes (E1 > E2).

62. (a) The pellets will have the same speed v but opposite direction of motion, so the relative speed between
the pellets and satellite is 2v. Replacing v with 2v in Eq. 14-42 is equivalent to multiplying it by a
factor of 4. Thus,

Krel = 4

(

GMEm

2r

)

=
2
(

6.67× 10−11 m3/kg·s2
) (

5.98× 1024 kg
)

(0.0040 kg)

(6370 + 500)× 103 m
= 4.6× 105 J .

(b) We set up the ratio of kinetic energies:

Krel

Kbullet
=

4.6× 105 J
1
2 (0.0040kg)(950 m/s)2

= 2.6× 102 .

63. (a) The force acting on the satellite has magnitude GMm/r2, where M is the mass of Earth, m is the
mass of the satellite, and r is the radius of the orbit. The force points toward the center of the
orbit. Since the acceleration of the satellite is v2/r, where v is its speed, Newton’s second law yields
GMm/r2 = mv2/r and the speed is given by v =

√

GM/r. The radius of the orbit is the sum of
Earth’s radius and the altitude of the satellite: r = 6.37× 106 + 640× 103 = 7.01× 106 m. Thus,

v =

√

(6.67× 10−11 m3/s2 ·kg)(5.98× 1024 kg)

7.01× 106 m
= 7.54× 103 m/s .

(b) The period is T = 2πr/v = 2π(7.01× 106 m)/(7.54× 103 m/s) = 5.84× 103 s. This is 97 min.
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(c) If E0 is the initial energy then the energy after n orbits is E = E0−nC, where C = 1.4×105 J/orbit.
For a circular orbit the energy and orbit radius are related by E = −GMm/2r, so the radius after
n orbits is given by r = −GMm/2E.

The initial energy is

E0 = − (6.67× 10−11 m3/s2 ·kg)(5.98× 1024 kg)(220 kg)

2(7.01× 106 m)
= −6.26× 109 J ,

the energy after 1500 orbits is

E = E0 − nC = −6.26× 109 J− (1500 orbit)(1.4× 105 J/orbit) = −6.47× 109 J ,

and the orbit radius after 1500 orbits is

r = − (6.67× 10−11 m3/s2 ·kg)(5.98× 1024 kg)(220 kg)

2 (−6.47× 109 J)
= 6.78× 106 m .

The altitude is h = r−R = 6.78×106 m−6.37×106 m = 4.1×105 m. Here R is the radius of Earth.
This torque is internal to the satellite-Earth system, so the angular momentum of that system is
conserved.

(d) The speed is

v =

√

GM

r
=

√

(6.67× 10−11 m3/s2 ·kg)(5.98× 1024 kg)

6.78× 106 m
= 7.67× 103 m/s .

(e) The period is

T =
2πr

v
=

2π(6.78× 106 m)

7.67× 103 m/s
= 5.6× 103 s .

This is equivalent to 93 min.

(f) Let F be the magnitude of the average force and s be the distance traveled by the satellite. Then,
the work done by the force is W = −Fs. This is the change in energy: −Fs = ∆E. Thus,
F = −∆E/s. We evaluate this expression for the first orbit. For a complete orbit s = 2πr =
2π(7.01× 106 m) = 4.40× 107 m, and ∆E = −1.4× 105 J. Thus,

F = −∆E

s
=

1.4× 105 J

4.40× 107 m
= 3.2× 10−3 N .

(g) The resistive force exerts a torque on the satellite, so its angular momentum is not conserved.

(h) The satellite-Earth system is essentially isolated, so its momentum is very nearly conserved.

64. We define the “effective gravity” in his environment as g = 220/60 = 3.67 m/s2. Thus, using equations
from Chapter 2 (and selecting downwards as the positive direction), we find the the “fall-time” to be

∆y = v0t+
1

2
at2 =⇒ t =

√

2(2.1)

3.67
= 1.1 s .

65. We estimate the planet to have radius r = 10 m. To estimate the mass m of the planet, we require its
density equal that of Earth (and use the fact that the volume of a sphere is 4πr3/3).

m

4πr3/3
=

ME

4πR3
E/3

=⇒ m = ME

(

r

RE

)3

which yields (with ME ≈ 6× 1024 kg and RE ≈ 6.4× 106 m) m = 2.3× 107 kg.



386 CHAPTER 14.

(a) With the above assumptions, the acceleration due to gravity is

ag =
Gm

r2
=

(

6.7× 10−11
) (

2.3× 107
)

102
= 1.5× 10−5 m/s2 .

(b) Eq. 14-27 gives the escape speed:

v =

√

2Gm

r
≈ 0.02 m/s .

66. From Eq. 14-41, we obtain v =
√

GM/r for the speed of an object in circular orbit (of radius r) around
a planet of mass M . In this case, M = 5.98 × 1024 kg and r = 700 + 6370 = 7070 km = 7.07 × 106 m.
The speed is found to be v = 7.51× 103 m/s. After multiplying by 3600 s/h and dividing by 1000 m/km
this becomes v = 2.7× 104 km/h.

(a) For a head-on collision, the relative speed of the two objects must be 2v = 5.4× 104 km/h.

(b) A perpendicular collision is possible if one satellite is, say, orbiting above the equator and the other
is following a longitudinal line. In this case, the relative speed is given by the Pythagorean theorem:√
v2 + v2 = 3.8× 104 km/h.

67. (a) It is possible to use v2 = v2
0 + 2a∆y as we did for free-fall problems in Chapter 2 because the

acceleration can be considered approximately constant over this interval. However, our approach
will not assume constant acceleration; we use energy conservation:

1

2
mv2

0 −
GMm

r0
=

1

2
mv2 − GMm

r
=⇒ v =

√

2GM(r0 − r)
r0 r

which yields v = 1.4× 106 m/s.

(b) We estimate the height of the apple to be h = 7 cm = 0.07 m. We may find the answer by evaluating
Eq. 14-10 at the surface (radius r in part (a)) and at radius r + h, being careful not to round off,
and then taking the difference of the two values, or we may take the differential of that equation –
setting dr equal to h. We illustrate the latter procedure:

|dag| =
∣

∣

∣

∣

−2
GM

r3
dr

∣

∣

∣

∣

≈ 2
GM

r3
h = 3× 106 m/s2 .

68. (a) We partition the full range into arcs of 3◦ each: 360◦/3◦ = 120. Thus, the maximum number of
geosynchronous satellites is 120.

(b) Kepler’s law of periods, applied to a satellite around Earth, gives

T 2 =

(

4π2

GME

)

r3

where T = 24 h = 86400 s for the geosynchronous case. Thus, we obtain r = 4.23× 107 m.

(c) Arclength s is related to angle of arc θ (in radians) by s = rθ. Thus, with theta = 3(π/180) =
0.052 rad, we find s = 2.2× 106 m.

(d) Points on the surface (which, of course, is not in orbit) are moving toward the east with a period of
24 h. If the satellite is found to be east of its expected position (above some point on the surface
for which it used to stay directly overhead), then its period must now be smaller than 24 h.

(e) From Kepler’s law of periods, it is evident that smaller T requires smaller r. The storm moved the
satellite towards Earth.
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69. (a) Their initial potential energy is −Gm2/Ri and they started from rest, so energy conservation leads
to

− Gm
2

Ri
= Ktotal −

Gm2

0.5Ri
=⇒ Ktotal =

Gm2

Ri
.

(b) The have equal mass, and this is being viewed in the center-of-mass frame, so their speeds are
identical and their kinetic energies are the same. Thus,

K =
1

2
Ktotal =

Gm2

2Ri
.

(c) With K = 1
2mv

2, we solve the above equation and find v =
√

Gm/Ri .

(d) Their relative speed is 2v = 2
√

Gm/Ri . This is the (instantaneous) rate at which the gap between
them is closing.

(e) The premise of this part is that we assume we are not moving (that is, that body A acquires no
kinetic energy in the process). Thus, Ktotal = KB and the logic of part (a) leads to KB = Gm2/Ri .

(f) And 1
2mv

2
B = KB yields vB =

√

2Gm/Ri .

(g) The answer to part (f) is incorrect, due to having ignored the accelerated motion of “our” frame
(that of body A). Our computations were therefore carried out in a noninertial frame of reference,
for which the energy equations of Chapter 8 are not directly applicable.

70. (a) The equation preceding Eq. 14-40 is adapted as follows:

m3
2

(m1 +m2)
2 =

v3T

2πG

where m1 = 0.9MSun is the estimated mass of the star. With v = 70 m/s and T = 1500 days (or
1500× 86400 = 1.3× 108 s), we find

m3
2

(0.9MSun +m2)
2 = 1.06× 1023 kg .

Since MSun ≈ 2× 1030 kg, we find m2 ≈ 7× 1027 kg. This solution may be reached in several ways
(see discussion in the Sample Problem). Dividing by the mass of Jupiter (see Appendix C), we
obtain m ≈ 3.7mJ .

(b) Since v = 2πr1/T is the speed of the star, we find

r1 =
vT

2π
=

(70 m/s)
(

1.3× 108 s
)

2π
= 1.4× 109 m

for the star’s orbital radius. If r is the distance between the star and the planet, then r2 = r − r1
is the orbital radius of the planet. And r can be figured from Eq. 14-37, which leads to

r2 = r1

(

m1 +m2

m2
− 1

)

= r1
m1

m2
= 3.7× 1011 m .

Dividing this by 1.5× 1011 m (Earth’s orbital radius, rE ) gives r2 = 2.5rE .

71. (a) From Ch. 2, we have v2 = v2
0 + 2a∆x, where a may be interpreted as an average acceleration in

cases where the acceleration is not uniform. With v0 = 0, v = 11000 m/s and ∆x = 220 m, we find
a = 2.75× 105 m/s2. Therefore,

a =

(

2.75× 105 m/s2

9.8 m/s2

)

g = 2.8× 104g

which is certainly enough to kill the passengers.
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(b) Again using v2 = v2
0 + 2a∆x, we find

a =
70002

2(3500)
= 7000 m/s2 = 714g .

(c) Energy conservation gives the craft’s speed v (in the absence of friction and other dissipative effects)
at altitude h = 700 km after being launched from R = 6.37 × 106 m (the surface of Earth) with
speed v0 = 7000 m/s. That altitude corresponds to a distance from Earth’s center of r = R + h =
7.07× 106 m.

1

2
mv2

0 −
GMm

R
=

1

2
mv2 − GMm

r
.

With M = 5.98 × 1024 kg (the mass of Earth) we find v = 6.05 × 103 m/s. But to orbit at that
radius requires (by Eq. 14-41) v′ =

√

GM/r = 7.51 × 103 m/s. The difference between these is
v′ − v = 1.46× 103 m/s, which presumably is accounted for by the action of the rocket engine.

72. We apply the work-energy theorem to the object in question. It starts from a point at the surface
of the Earth with zero initial speed and arrives at the center of the Earth with final speed vf . The
corresponding increase in its kinetic energy, 1

2mv
2
f , is equal to the work done on it by Earth’s gravity:

∫

F dr =
∫

(−Kr)dr (using the notation of that Sample Problem referred to in the problem statement).
Thus,

1

2
mv2

f =

∫ 0

R

F dr =

∫ 0

R

(−Kr) dr =
1

2
KR2

where R is the radius of Earth. Solving for the final speed, we obtain vf = R
√

K/m. We note that
the acceleration of gravity ag = g = 9.8 m/s2 on the surface of Earth is given by ag = GM/R2 =
G(4πR3/3)ρ/R2, where ρ is Earth’s average density. This permits us to write K/m = 4πGρ/3 = g/R.
Consequently,

vf = R

√

K

m
= R

√

g

R
=
√

gR

=
√

(9.8 m/s2) (6.37× 106 m) = 7.9× 103 m/s .

73. Equating Eq. 14-18 with Eq. 14-10, we find

ags − ag =
4πGρR

3
− 4πGρr

3
=

4πGρ(R− r)
3

which yields ags − ag = 4πGρD/3. Since 4πGρ/3 = ags/R this is equivalent to

ags − ag = ags
D

R
=⇒ ag = ags

(

1− D

R

)

.

74. Let v and V be the speeds of particles m and M , respectively. These are measured in the frame of
reference described in the problem (where the particles are seen as initially at rest). Now, momentum
conservation demands

mv = MV =⇒ v + V = v
(

1 +
m

M

)

where v+V is their relative speed (the instantaneous rate at which the gap between them is shrinking).
Energy conservation applied to the two-particle system leads to

Ki + Ui = K + U

0− GmM

r
=

1

2
mv2 +

1

2
MV 2 − GmM

d

−GmM
r

=
1

2
mv2

(

1 +
m

M

)

− GmM

d
.
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If we take the initial separation r to be large enough that GmM/r is approximately zero, then this yields
a solution for the speed of particle m:

v =

√

2GM

d
(

1 + m
M

) .

Therefore, the relative speed is

v + V =

√

2GM

d
(

1 + m
M

)

(

1 +
m

M

)

=

√

2G(M +m)

d
.

75. The initial distance from each fixed sphere to the ball is r0 =∞, which implies the initial gravitational
potential energy is zero. The distance from each fixed sphere to the ball when it is at x = 0.30 m is
r = 0.50 m, by the Pythagorean theorem.

(a) With M = 20 kg and m = 10 kg, energy conservation leads to

Ki + Ui = K + U =⇒ 0 + 0 = K − 2
GmM

r

which yields K = 2GmM/r = 5.3× 10−8 J.

(b) Since the y-component of each force will cancel, the force will be −2Fx = −2
(

GmM/r2
)

cos θ,
where θ = tan−1 4/3 = 53◦. Thus, the result (in Newtons – and using unit-vector notation) is
~Fnet = −6.4× 10−8 ı̂.

76. Energy conservation leads to

Ki + Ui = K + U =⇒ 1

2
m

(
√

GM

r

)2

− GmM

R
= 0− GmM

Rmax

Consequently, we find Rmax = 2R.

77. Consider that the leftmost rod is made of point-like particles (mass elements) of infinitesimal mass
dm = (M/L)dx. The force on each of these, adapting the result of Sample Problem 14-9, is

G(dm)M

x(L + x)
=
G(M/L)(dx)M

x(L + x)

where x is the distance from the leftmost edge of the rightmost rod to a particular mass element of the
leftmost rod. We take +x to be leftward in this calculation. The magnitude of the net gravitational
force exerted by the rightmost rod on the leftmost rod is therefore

∣

∣

∣

~Fnet

∣

∣

∣ =
GM2

L

∫ d+L

d

dx

x(L+ x)

and is the same (by Newton’s third law) as that exerted by the leftmost rod on the rightmost one. The
integral can be evaluated (though the problem does not require us to do this), and the result is

∣

∣

∣

~Fnet

∣

∣

∣ =
GM2

L2
ln

(

(d+ L)2

d(d + 2L)

)

.

78. See Appendix C. We note that, since v = 2πr/T , the centripetal acceleration may be written as a =
4π2r/T 2. To express the result in terms of g, we divide by 9.8 m/s2.

(a) The acceleration associated with Earth’s spin (T = 24 h = 86400 s) is

a = g
4π2

(

6.37× 106 m
)

(86400 s)2 (9.8 m/s2)
= 0.0034g .



390 CHAPTER 14.

(b) The acceleration associated with Earth’s motion around the Sun (T = 1 y = 3.156× 107 s) is

a = g
4π2

(

1.5× 1011 m
)

(3.156× 107 s)
2
(9.8 m/s2)

= 0.00061g .

(c) The acceleration associated with the Solar System’s motion around the galactic center (T = 2.5×
108 y = 7.9× 1015 s) is

a = g
4π2

(

2.2× 1020 m
)

(7.9× 1015 s)2 (9.8 m/s2)
= 1.4× 10−11g .

79. (a) We convert distances to meters, and use v =
√

GM/r for speed when the probe is in circular orbit
(this equation is readily obtained from Eq. 14-41). Our notations for the speeds are: vo for the
original speed of the probe when it is in a circular Venus-like orbit (of radius ro ); vp for the speed
when the rockets have fired and it is at the perihelion (rp = ro ) of its subsequent elliptical orbit;
and, vf for its final speed once it is in a circular Earth-like orbit (of radius rf which coincides with
the aphelion distance ra of the aforementioned ellipse). We find

vo =

√

GM

ro
=

√

(6.67× 10−11) (1.99× 1030)

1.08× 1011
= 3.51× 104 m/s .

With m = 6000 kg, the original energy is given by Eq. 14-44:

Eo = − GMm

2ro
= −3.69× 1012 J .

Once the rockets have fired, the probe starts on an elliptical path with semimajor axis

a =
rp + ra

2
=
ro + rf

2
= 1.29× 1011 m

where rf = 1.5× 1011 m. By Eq. 14-46, its energy is now

Eellipse = − GMm

2a
= −3.09× 1012 J .

The energy “boost” required when the probe is at ro is therefore Eellipse − Eo = 6.0 × 1011 J.
The speed of the probe at the moment it has received this boost is figured from the kinetic energy
(vp =

√

2K/m) where K = Eellipse − U . Thus,

vp =

√

2

m

(

− GMm

2a
+
GMm

rp

)

= 3.78× 104 m/s

which means the speed increase is vp − vo = 2.75 × 103 m/s. The orbit (if it were allowed to
complete one full revolution) is plotted below. The Sun is not shown; it is not exactly at the center
but rather 2.1 × 1010 m to the right of origin (if we are assuming the perihelion is the rightmost
point shown and the aphelion is the leftmost point shown).
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(b) When the probe reaches rf = ra it still has energy Eellipse but now has speed

va =
rpvp

ra
=

(

1.08× 1011
) (

3.78× 104
)

1.5× 1011
= 2.722× 104 m/s

as a result of angular momentum conservation (see discussion of Kepler’s law of areas), though this
could also be figured similarly to the way we found vp in the previous part. To be in circular motion
at that radius, the speed must be

vf =

√

GM

rf
= 2.975× 104 m/s .

Thus, the speed increase needed at this stage must be vf − va = 2.53 × 103 m/s. Thus, using
Eq. 14-44 again, the necessary energy increase here is

−GMm

2 rf
− Eellipse = 4.3× 1011 J .

80. (a) Taking the differential of F = GmM/r2 and approximating dF and dr as ∆W and −h, respectively,
we arrive at

∆W =
2GMmh

r3
=

2G
(

4πρr3/3
)

mh

r3

where in the last step we have used the definition of average density (ρ = M/V where Vsphere =
4πr3/3). The above expression is easily simplified to yield the desired expression.

(b) We divide the previous result by W = mg and obtain

∆W

W
=

8πGρh

3g
.

We replace the lefthand side with 1× 10−6 and set ρ = 5500 kg/m3, and obtain h = 3.2 m.

81. He knew that some force F must point toward the center of the orbit in order to hold the Moon in orbit
around Earth, and that the approximation of a circular orbit with constant speed means the acceleration
must be

a =
v2

r
=

(2πr/T )2

r
=

4π2r2

T 2 r
.

Plugging in T 2 = Cr3 (where C is some constant) this leads to

F = ma = m
4π2r2

Cr4
=

4π2m

C r2

which indicates a force inversely proportional to the square of r.



392 CHAPTER 14.

82. (a) Kepler’s law of periods is

T 2 =

(

4π2

GM

)

r3 .

Thus, with M = 6.0× 1030 kg and T = 300(86400) = 2.6× 107 s, we obtain r = 1.9× 1011 m.

(b) That its orbit is circular suggests that its speed is constant, so

v =
2πr

T
= 4.6× 104 m/s .

83. (a) Using Kepler’s law of periods, we obtain

T =

√

(

4π2

GM

)

r3 = 2.15× 104 s .

(b) The speed is constant (before she fires the thrusters), so vo = 2πr/T = 1.23× 104 m/s.

(c) A two percent reduction in the previous value gives v = 0.98vo = 1.20× 104 m/s.

(d) The kinetic energy is K = 1
2mv

2 = 2.17× 1011 J.

(e) The potential energy is U = −GmM/r = −4.53× 1011 J.

(f) Adding these two results gives E = K + U = −2.35× 1011 J.

(g) Using Eq. 14-46, we find the semimajor axis to be

a =
−GMm

2E
= 4.04× 107 m .

(h) Using Kepler’s law of periods for elliptical orbits (using a instead of r) we find the new period is

T ′ =

√

(

4π2

GM

)

a3 = 2.03× 104 s .

This is smaller than our result for part (a) by T − T ′ = 1.22× 103 s.

84. (a) With M = 2.0× 1030 kg and r = 10000 m, we find

ag =
GM

r2
= 1.3× 1012 m/s2 .

(b) Although a close answer may be gotten by using the constant acceleration equations of Chapter 2,
we show the more general approach (using energy conservation):

Ko + Uo = K + U

where Ko = 0, K = 1
2mv

2 and U given by Eq. 14-20. Thus, with ro = 10001 m, we find

v =

√

2GM

(

1

r
− 1

ro

)

= 1.6× 106 m/s .

85. It is clear from the given data that the m = 2.0 kg sphere cannot be along the line between mA and mB

(that is, it is “off-axis”). The magnitudes of the individual forces (acting on m, exerted by mA and mB

respectively) are

FA =
GmAm

r2A
= 2.7× 10−6 N and FB =

GmB m

r2B
= 3.6× 10−6 N
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where rA = 0.20 m and rB = 0.15 m. Letting d stand for the distance between mA and mB then we
note that d2 = r2A + r2B (that is, the line between mA and mB forms the hypotenuse of a right triangle
with m at the right-angle corner, as illustrated in the figure below).

+x

+y

mA

mB

m HHHHHHHHHHHHHHHHHHHHHHH

d

t

t

t

6

- ~FA

~FB

Choosing x and y axes as shown above, then (in Newtons) ~FA = 2.7 × 10−6 ı̂ and ~FB = 3.6 × 10−6 ĵ,
which makes the vector addition very straightforward: we find

Fnet =
√

F 2
A + F 2

B = 4.4× 10−6 N

and (as measured counterclockwise from the x axis) θ = 53◦. It is not difficult to check that the direction

of ~Fnet (given by θ) is along a line that is perpendicular to the segment d.

86. (a) We use Eq. 14-27:

vesc =

√

2GM

R
=

√

2 (6.67× 10−11) (1.99× 1030)

1.50× 1011
= 4.21× 104 m/s .

(b) Earth’s orbital speed is gotten by solving Eq. 14-41:

vorb =

√

GM

R
=

√

(6.67× 10−11) (1.99× 1030)

1.50× 1011
= 2.97× 104 m/s .

The difference is therefore vesc − vorb = 1.23× 104 m/s.

(c) To obtain the speed (relative to Earth) mentioned above, the object must be launched with initial
speed

v0 =

√

(1.23× 104)
2
+ 2

GME

RE
= 1.66× 104 m/s .

However, this is not precisely the same as the speed it would need to be launched at if it is desired
that the object be just able to escape the solar system. The computation needed for that is shown
below.
Including the Sun’s gravitational influence as well as that of Earth (and accounting for the fact
that Earth is moving around the Sun) the object at moment of launch has energy

K + UE + US =
1

2
m (vlaunch + vorb )

2 − GmME

RE
− GmMS

R

which must equate to zero for the object to (barely) escape the solar system. Consequently,

vlaunch =

√

2G

(

ME

RE
+
MS

R

)

−vorb =

√

2 (6.67× 10−11)

(

5.98× 1024

6.37× 106
+

1.99× 1030

1.50× 1011

)

−2.97×104

which yields vlaunch = 1.38× 104 m/s.
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87. (a) Converting T to seconds (by multiplying by 3.156× 107) we do a linear fit of T 2 versus a3 by the
method of least squares. We obtain (with SI units understood)

T 2 = −7.4× 1015 + 2.982× 10−19 a3 .

The coefficient of a3 should be 4π2/GM so that this result gives the mass of the Sun as

M =
4π2

(6.67× 10−11 m3/kg·s2) (2.982× 10−19 s2/m3)
= 1.98× 1030 kg .

(b) Since logT 2 = 2 logT and log a3 = 3 log a then the coefficient of loga in this next fit should be close
to 3/2, and indeed we find

logT = −9.264 + 1.50007 loga .

In order to compute the mass, we recall the property logAB = logA+ logB, which when applied
to Eq. 14-33 leads us to identify

−9.264 =
1

2
log

(

4π2

GM

)

=⇒ M = 1.996× 1030 ≈ 2.00× 1030 kg .

88. (a) We write the centripetal acceleration (which is the same for each, since they have identical mass)
as rω2 where ω is the unknown angular speed. Thus,

G(M)(M)

(2r)2
=
GM2

4r2
= Mrω2

which gives ω = 1
2

√

MG/r3 = 2.2× 10−7 rad/s.

(b) To barely escape means to have total energy equal to zero (see discussion prior to Eq. 14-27). If m
is the mass of the meteoroid, then

1

2
mv2 − GmM

r
− GmM

r
= 0 =⇒ v =

√

4GM

r
= 8.9× 104 m/s .

89. (a) Circular motion requires that the force in Newton’s second law provide the necessary centripetal
acceleration:

GmM

r2
= m

v2

r
which is identical to Eq. 14-39 in the textbook. Since the left-hand side of this equation is the
force given as 80 N, then we can solve for the combination mv2 by multiplying both sides by
r = 2.0× 107 m. Thus, mv2 =

(

2.0× 107
)

(80) = 1.6× 109 J. Therefore,

K =
1

2
mv2 =

1

2

(

1.6× 109
)

= 8.0× 108 J .

(b) Since the gravitational force is inversely proportional to the square of the radius, then

F ′

F
=
( r

r′

)2

.

Thus, F ′ = (80)(2/3)2 = 36 N.

90. (a) Because it is moving in a circular orbit, F/m must equal the centripetal acceleration:

80 N

50 kg
=
v2

r

But v = 2πr/T , where T = 21600 s, so we are led to

1.6 m/s
2

=
4π2

T 2
r

which yields r = 1.9× 107 m.
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(b) From the above calculation, we infer v2 = (1.6 m/s2)r which leads to v2 = 3.0× 107 m2/s2. Thus,
K = 1

2mv
2 = 7.6× 108 J.

(c) As discussed in §14-4, F/m also tells us the gravitational acceleration:

ag = 1.6 m/s
2

=
GM

r2

We therefore find M = 8.6× 1024 kg.

91. (a) The total energy is conserved, so there is no difference between its values at aphelion and perihelion.

(b) Since the change is small, we use differentials:

dU =

(

GMEMS

r2

)

dr ≈
(

(

6.67× 10−11
) (

1.99× 1030
) (

5.98× 1024
)

(1.5× 1011)
2

)

(

5× 109
)

which yields ∆U ≈ 1.8 × 1032 J. A more direct subtraction of the values of the potential energies
leads to the same result.

(c) and (d) From the previous two parts, we see that the variation in the kinetic energy ∆K must also
equal 1.8× 1032 J. So, with ∆K ≈ dK = mv dv, where v ≈ 2πR/T , we have

1.8× 1032 ≈
(

5.98× 1024
)

(

2π
(

1.5× 1011
)

3.156× 107

)

∆v

which yields a difference of ∆v ≈ 1 km/s in Earth’s speed (relative to the Sun) between aphelion
and perihelion.

92. (a) From Kepler’s law of periods, we see that T is proportional to r3/2.

(b) Eq. 14-42 shows that K is inversely proportional to r.

(c) and (d) From the previous part, knowing that K is proportional to v2, we find that v is proportional
to 1/

√
r. Thus, by Eq. 14-30, the angular momentum (which depends on the product rv) is

proportional to r/
√
r =
√
r.

93. The orbital speed is readily found from Eq. 14-41 to be vorb =
√

GM/r. Comparing this with the
expression for the escape velocity, Eq. 14-27, we immediately obtain the desired result.

94. (a) When testing for a gravitational force at r < b, none is registered. But at points within the shell
b ≤ r ≤ a, the force will increase according to how much mass M ′ of the shell is at smaller radius.
Specifically, for b ≤ r ≤ a, we find

F =
GmM ′

r2
=
GmM

(

r3−b3

a3−b3

)

r2
.

Once r = a is reached, the force takes the familiar form GmM/r2 and continues to have this form
for r > a. We have chosen m = 1 kg, M = 3 × 109 kg, b = 2 m and a = 3 m in order to produce
the following graph of F versus r (in SI units).
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0

0.01

0.02

F

1 2 3 4 5 6 7r

(b) Starting with the large r formula for force, we integrate and obtain the expected U = −GmM/r
(for r ≥ a). Integrating the force formula indicated above for b ≤ r ≤ a produces

U =
GmM

(

r3 + 2b3
)

2r (a3 − b3) + C

where C is an integration constant that we determine to be

C = − 3GmMa2

2a (a3 − b3)

so that this U and the large r formula for U agree at r = a. Finally, the r < a formula for U is
a constant (since the corresponding force vanishes), and we determine its value by evaluating the
previous U at r = b. The resulting graph is shown below.

–0.06

–0.04

U

0 1 2 3 4 5 6 7r



Chapter 15

1. The pressure increase is the applied force divided by the area: ∆p = F/A = F/πr2, where r is the radius
of the piston. Thus ∆p = (42 N)/π(0.011 m)2 = 1.1× 105 Pa. This is equivalent to 1.1 atm.

2. We note that the container is cylindrical, the important aspect of this being that it has a uniform cross-
section (as viewed from above); this allows us to relate the pressure at the bottom simply to the total
weight of the liquids. Using the fact that 1 L = 1000 cm3, we find the weight of the first liquid to be

W1 = m1g = ρ1V1g

= (2.6 g/cm
3
)(0.50 L)(1000 cm3/L)(980 cm/s

2
) = 1.27× 106 g·cm/s2 = 12.7 N .

In the last step, we have converted grams to kilograms and centimeters to meters. Similarly, for the
second and the third liquids, we have

W2 = m2g = ρ2V2g = (1.0 g/cm
3
)(0.25 L)(1000 cm3/L)(980 cm/s

2
) = 2.5 N

and

W3 = m3g = ρ3V3g = (0.80 g/cm
3
)(0.40 L)(1000 cm3/L)(980 cm/s

2
) = 3.1 N .

The total force on the bottom of the container is therefore F = W1 +W2 +W3 = 18 N.

3. The air inside pushes outward with a force given by piA, where pi is the pressure inside the room
and A is the area of the window. Similarly, the air on the outside pushes inward with a force given
by poA, where po is the pressure outside. The magnitude of the net force is F = (pi − po)A. Since
1 atm = 1.013× 105 Pa,

F = (1.0 atm− 0.96 atm)(1.013× 105 Pa/atm)(3.4 m)(2.1 m) = 2.9× 104 N .

4. Knowing the standard air pressure value in several units allows us to set up a variety of conversion
factors:

(a) P =
(

28 lb/in.2
)(

1.01×105 Pa
14.7 lb/in2

)

= 190 kPa .

(b) (120 mmHg)
(

1.01×105 Pa
760mmHg

)

= 15.9 kPa ,

(80 mmHg)
(

1.01×105 Pa
760 mmHg

)

= 10.6 kPa .

5. Let the volume of the expanded air sacs be Va and that of the fish with its air sacs collapsed be V . Then

ρfish =
mfish

V
= 1.08 g/cm3 and ρw =

mfish

V + Va
= 1.00 g/cm3 .

where ρw is the density of the water. This implies ρfishV = ρw(V + Va ) or (V + Va )/V = 1.08/1.00,
which gives Va/(V + Va) = 7.4%.

397
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6. The magnitude F of the force required to pull the lid off is F = (po − pi)A, where po is the pressure

outside the box, pi is the pressure inside, and A is the area of the lid. Recalling that 1 N/m
2

= 1 Pa, we
obtain

pi = po −
F

A
= 1.0× 105 Pa− 480 N

77× 10−4 m2
= 3.8× 104 Pa .

7. (a) The pressure difference results in forces applied as shown in the figure. We consider a team of
horses pulling to the right. To pull the sphere apart, the team must exert a force at least as great
as the horizontal component of the total force determined by “summing” (actually, integrating)
these force vectors.
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•
θ

r

R

We consider a force vector at angle θ. Its
leftward component is ∆p cos θdA, where
dA is the area element for where the force
is applied. We make use of the symmetry of
the problem and let dA be that of a ring of
constant θ on the surface. The radius of the
ring is r = R sin θ, where R is the radius of
the sphere. If the angular width of the ring
is dθ, in radians, then its width is Rdθ and
its area is dA = 2πR2 sin θ dθ. Thus the net
horizontal component of the force of the air
is given by

Fh = 2πR2 ∆p

∫ π/2

0

sin θ cos θ dθ

= πR2 ∆p sin2 θ
∣

∣

∣

π/2

0
= πR2 ∆p .

(b) We use 1 atm = 1.01 × 105 Pa to show that ∆p = 0.90 atm = 9.09 × 104 Pa. The sphere radius is
R = 0.30 m, so Fh = π(0.30 m)2(9.09× 104 Pa) = 2.6× 104 N.

(c) One team of horses could be used if one half of the sphere is attached to a sturdy wall. The force
of the wall on the sphere would balance the force of the horses.

8. We estimate the pressure difference (specifically due to hydrostatic effects) as follows:

∆p = ρgh = (1.06× 103 kg/m3)
(

9.8 m/s2
)

(1.83 m) = 1.90× 104 Pa .

9. The pump must work against the hydrostatic pressure exerted by the column of sewage (of density ρ
and height ℓ = 8.2 m− 2.1 m = 6.1 m). The (minimum) pressure difference that must be maintained by
the pump is ∆p = ρgℓ = (900 kg/m3)(9.8 m/s2)(6.1 m) = 5.4× 104 Pa.

10. From the Figure, we see that the minimum pressure for diamond to form at 1000◦C is pmin = 4.0 GPa.
This pressure occurs at a minimum depth of hmin given by pmin = ρghmin. Thus,

hmin =
pmin

ρg
=

4.0× 109 Pa
(

3.1× 103 kg/m
3
)(

9.8 m/s
2
) = 1.3× 105 m .

11. (a) We note that the pool has uniform cross-section (as viewed from above); this allows us to relate
the pressure at the bottom simply to the total weight of the liquid. Thus,

Fbottom = mg = ρgV =
(

1000 kg/m3
) (

9.8 m/s2
) (

540 m3
)

= 5.3× 106 N .
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(b) The average pressure due to the water (that is, averaged over depth h) is

pavg = ρg

(

h

2

)

where h = 2.5 m. Thus, the force on a short side (of area A = 9.0× 2.5 in SI units) is

Fshort side = ρg

(

h

2

)

A = 2.8× 105 N .

(c) The area of a long side is A′ = 24 × 2.5 in SI units. Therefore, the force exerted by the water
pressure on a long side is

Flong side = ρg

(

h

2

)

A′ = 7.4× 105 N .

(d) If the pool is above ground, then it is clear that the air pressure outside the walls “cancels” any
contribution of air pressure to the water pressure exerted by the liquid in the pool. If the pool is,
as is often the case, surrounded by soil, then the situation may be more subtle, but our expectation
is under normal circumstances the push from the soil certainly compensates for any atmospheric
contribution to the water pressure (due to a “liberal interpretation” of Pascal’s principle).

12. (a) The total weight is

W = ρghA =
(

1.00× 103 kg/m3
) (

9.8 m/s2
)

(200 m)
(

3000 m2
)

= 6.06× 109 N .

(b) The water pressure is

p = ρgh =
(

1.03× 103 kg/m3
) (

9.8 m/s2
)

(200 m)

(

1 atm

1.01× 105 Pa

)

= 20 atm

which is too much for anybody to endure without special equipment.

13. The pressure p at the depth d of the hatch cover is p0 + ρgd, where ρ is the density of ocean water and
p0 is atmospheric pressure. The downward force of the water on the hatch cover is (p0 +ρgd)A, where A
is the area of the cover. If the air in the submarine is at atmospheric pressure then it exerts an upward
force of p0A. The minimum force that must be applied by the crew to open the cover has magnitude
F = (p0 + ρgd)A− p0A = ρgdA = (1025 kg/m

3
)(9.8 m/s

2
)(100 m)(1.2 m)(0.60 m) = 7.2× 105 N.

14. Since the pressure (caused by liquid) at the bottom of the barrel is doubled due to the presence of the
narrow tube, so is the hydrostatic force. The ratio is therefore equal to 2.0. The difference between the
hydrostatic force and the weight is accounted for by the additional upward force exerted by water on
the top of the barrel due to the increased pressure introduced by the water in the tube.

15. When the levels are the same the height of the liquid is h = (h1 +h2)/2, where h1 and h2 are the original
heights. Suppose h1 is greater than h2. The final situation can then be achieved by taking liquid with
volume A(h1 − h) and mass ρA(h1 − h), in the first vessel, and lowering it a distance h− h2. The work
done by the force of gravity is W = ρA(h1 − h)g(h − h2). We substitute h = (h1 + h2)/2 to obtain
W = 1

4ρgA(h1 − h2)
2.

16. Letting pa = pb, we find ρcg(6.0 km + 32 km +D) + ρm(y −D) = ρcg(32 km) + ρm(y) and obtain

D =
(6.0 km)ρc

ρm − ρc
=

(6.0 km)
(

2.9 g/cm
3
)

3.3 g/cm
3 − 2.9 g/cm

3 = 44 km .
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17. We assume that the pressure is the same at all points that are the distance d = 20 km below the surface.
For points on the left side of Fig. 15-31, this pressure is given by p = p0 + ρogdo + ρcgdc + ρmgdm,
where p0 is atmospheric pressure, ρo and do are the density and depth of the ocean, ρc and dc are the
density and thickness of the crust, and ρm and dm are the density and thickness of the mantle (to a
depth of 20 km). For points on the right side of the figure p is given by p = p0 + ρcgd. We equate
the two expressions for p and note that g cancels to obtain ρcd = ρodo + ρcdc + ρmdm. We substitute
dm = d− do − dc to obtain

ρcd = ρodo + ρcdc + ρmd− ρmdo − ρmdc .

We solve for do:

do =
ρcdc − ρcd+ ρmd− ρmdc

ρm − ρo
=

(ρm − ρc) (d− dc)

ρm − ρo

=

(

3.3 g/cm3 − 2.8 g/cm3
)

(20 km− 12 km)

3.3 g/cm
3 − 1.0 g/cm

3 = 1.7 km .

18. (a) The force on face A of area AA is

FA = pAAA = ρwghAAA = 2ρwgd
3

= 2
(

1.0× 103 kg/m
3
)

(

9.8 m/s2
)

(5.0 m)3 = 2.5× 106 N .

(b) The force on face B is

FB = pavgBAB = ρwg

(

5d

2

)

d2 =
5

2
ρwgd

3

=
5

2

(

1.0× 103 kg/m
3
)

(

9.8 m/s2
)

(5.0 m)3 = 3.1× 106 N .

Note that these figures are due to the water pressure only. If you add the contribution from the
atmospheric pressure, then you need to add F ′ = (1.0 × 105 Pa)(5.0 m)2 = 2.5 × 106 N to each of
the figures above. The results would then be 5.0× 106 N and 5.6× 106 N, respectively.

19. (a) At depth y the gauge pressure of the water is p = ρgy, where ρ is the density of the water. We
consider a horizontal strip of width W at depth y, with (vertical) thickness dy, across the dam. Its
area is dA = W dy and the force it exerts on the dam is dF = p dA = ρgyW dy. The total force of
the water on the dam is

F =

∫ D

0

ρgyW dy =
1

2
ρgWD2 .

(b) Again we consider the strip of water at depth y. Its moment arm for the torque it exerts about O
is D − y so the torque it exerts is dτ = dF (D − y) = ρgyW (D − y)dy and the total torque of the
water is

τ =

∫ D

0

ρgyW (D − y) dy = ρgW

(

1

2
D3 − 1

3
D3

)

=
1

6
ρgWD3 .

(c) We write τ = rF , where r is the effective moment arm. Then,

r =
τ

F
=

1
6ρgWD3

1
2ρgWD2

=
D

3
.

20. The gauge pressure you can produce is

p = −ρgh = −

(

1000 kg/m
3
)

(

9.8 m/s2
)

(4.0× 10−2 m)

1.01× 105 Pa/atm
= −3.9× 10−3 atm

where the minus sign indicates that the pressure inside your lung is less than the outside pressure.



401

21. (a) We use the expression for the variation of pressure with height in an incompressible fluid: p2 =
p1−ρg(y2− y1). We take y1 to be at the surface of Earth, where the pressure is p1 = 1.01×105 Pa,
and y2 to be at the top of the atmosphere, where the pressure is p2 = 0. For this calculation, we
take the density to be uniformly 1.3 kg/m

3
. Then,

y2 − y1 =
p1

ρg
=

1.01× 105 Pa
(

1.3 kg/m3
)(

9.8 m/s2
) = 7.9× 103 m = 7.9 km .

(b) Let h be the height of the atmosphere. Now, since the density varies with altitude, we integrate

p2 = p1 −
∫ h

0

ρg dy .

Assuming ρ = ρ0(1−y/h), where ρ0 is the density at Earth’s surface and g = 9.8 m/s2 for 0 ≤ y ≤ h,
the integral becomes

p2 = p1 −
∫ h

0

ρ0g
(

1− y

h

)

dy = p1 −
1

2
ρ0gh .

Since p2 = 0, this implies

h =
2p1

ρ0g
=

2(1.01× 105 Pa)

(1.3 kg/m3)(9.8 m/s2)
= 16× 103 m = 16 km .

22. (a) According to Pascal’s principle F/A = f/a → F = (A/a)f .

(b) We obtain

f =
a

A
F =

(3.80 cm)2

(53.0 cm)2
(20.0× 103 N) = 103 N .

The ratio of the squares of diameters is equivalent to the ratio of the areas. We also note that the
area units cancel.

23. We assume the fluid in the press is incompressible. Then, the work done by the output force is the same
as the work done by the input force. If the large piston moves a distance D and the small piston moves
a distance d, then fd = FD and

D =
fd

F
=

(103 N)(0.85 m)

20.0× 103 N
= 4.4× 10−3 m = 4.4 mm .

24. (a) Archimedes’ principle makes it clear that a body, in order to float, displaces an amount of the liquid
which corresponds to the weight of the body. The problem (indirectly) tells us that the weight of
the boat is W = 35.6 kN. In salt water of density ρ′ = 1100 kg/m3, it must displace an amount of
liquid having weight equal to 35.6 kN.

(b) The displaced volume of salt water is equal to

V ′ =
W

ρ′g
=

35600

(1100)(9.8)
= 3.30 m3 .

In freshwater, it displaces a volume of V = W/ρg = 3.63 m3, where ρ = 1000 kg/m3. The difference
is V − V ′ = 0.33 m3.

25. (a) The anchor is completely submerged in water of density ρw . Its effective weight isWeff = W−ρwgV ,
where W is its actual weight (mg). Thus,

V =
W −Weff

ρwg
=

200 N
(

1000 kg/m3
)(

9.8 m/s2
) = 2.04× 10−2 m3 .
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(b) The mass of the anchor is m = ρV , where ρ is the density of iron (found in Table 15-1). Its weight
in air is

W = mg = ρV g =
(

7870 kg/m3
)

(

2.04× 10−2 m3
)

(

9.8 m/s2
)

= 1.6× 103 N .

26. (a) The pressure (including the contribution from the atmosphere) at a depth of htop = L/2 (corre-
sponding to the top of the block) is

ptop = patm + ρghtop = 1.01× 105 + (1030)(9.8)(0.300) = 1.04× 105 Pa

where the unit Pa (Pascal) is equivalent to N/m2. The force on the top surface (of area A = L2 =
0.36 m2) is Ftop = ptopA = 3.75× 104 N.

(b) The pressure at a depth of hbot = 3L/2 (that of the bottom of the block) is

pbot = patm + ρghbot = 1.01× 105 + (1030)(9.8)(0.900) = 1.10× 105 Pa

where we recall that the unit Pa (Pascal) is equivalent to N/m2. The force on the bottom surface
is Fbot = pbotA = 3.96× 104 N.

(c) Taking the difference Fbot − Ftop cancels the contribution from the atmosphere (including any
numerical uncertainties associated with that value) and leads to

Fbot − Ftop = ρg (hbot − htop)A = ρgL3 = 2180 N

which is to be expected on the basis of Archimedes’ principle. Two other forces act on the block:
an upward tension T and a downward pull of gravity mg. To remain stationary, the tension must
be

T = mg − (Fbot − Ftop ) = (450)(9.8)− 2180 = 2230 N .

(d) This has already been noted in the previous part: Fb = 2180 N, and T + Fb = mg.

27. (a) Let V be the volume of the block. Then, the submerged volume is Vs = 2V/3. Since the block
is floating, the weight of the displaced water is equal to the weight of the block, so ρwVs = ρbV ,
where ρw is the density of water, and ρb is the density of the block. We substitute Vs = 2V/3 to
obtain ρb = 2ρw/3 = 2(1000 kg/m3)/3 ≈ 670 kg/m3.

(b) If ρo is the density of the oil, then Archimedes’ principle yields ρoVs = ρbV . We substitute Vs =
0.90V to obtain ρo = ρb/0.90 = 740 kg/m3.

28. The weight of the additional cargo ∆W the blimp could carry is equal to the difference between the
weight of the helium and that of the hydrogen gas inside the blimp:

∆W = WHe −WH2
= (ρHe − ρH2

)gV

=
(

0.16 kg/m3 − 0.081 kg/m3
)

(

9.8 m/s2
) (

5000 m3
)

= 3.9× 103 N

which corresponds to about 400 kg of mass. The reason why helium is used is because it is safer (non-
flammable).

29. (a) The downward force of gravitymg is balanced by the upward buoyant force of the liquid: mg = ρgVs.
Here m is the mass of the sphere, ρ is the density of the liquid, and Vs is the submerged volume.
Thus m = ρVs. The submerged volume is half the total volume of the sphere, so Vs = 1

2 (4π/3)r3o,
where ro is the outer radius. Therefore,

m =
2π

3
ρr3o =

(

2π

3

)

(

800 kg/m3
)

(0.090 m)3 = 1.22 kg .
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(b) The density ρm of the material, assumed to be uniform, is given by ρm = m/V , where m is the
mass of the sphere and V is its volume. If ri is the inner radius, the volume is

V =
4π

3

(

r3o − r3i
)

=
4π

3

(

(0.090 m)3 − (0.080 m)3
)

= 9.09× 10−4 m3 .

The density is

ρm =
1.22 kg

9.09× 10−4 m3
= 1.3× 103 kg/m

3
.

30. Equilibrium of forces (on the floating body) is expressed as

Fb = mbodyg =⇒ ρliquidgVsubmerged = ρbodygVtotal

which leads to
Vsubmerged

Vtotal
=
ρbody

ρliquid
.

We are told (indirectly) that two-thirds of the body is below the surface, so the fraction above is 2/3.
Thus, with ρbody = 0.98 g/cm3, we find ρliquid ≈ 1.5 g/cm3 – certainly much more dense than normal
seawater (the Dead Sea is about seven times saltier than the ocean due to the high evaporation rate and
low rainfall in that region).

31. For our estimate of Vsubmerged we interpret “almost completely submerged” to mean

Vsubmerged ≈
4

3
πr3o where ro = 60 cm .

Thus, equilibrium of forces (on the iron sphere) leads to

Fb = mirong =⇒ ρwatergVsubmerged = ρirong

(

4

3
πr3o −

4

3
πr3i

)

where ri is the inner radius (half the inner diameter). Plugging in our estimate for Vsubmerged as well as
the densities of water (1.0 g/cm3) and iron (7.87 g/cm3), we obtain the inner diameter:

2ri = 2ro

(

1− 1

7.87

)1/3

= 57.3 cm .

32. (a) Since the lead is not displacing any water (of density ρw ), the lead’s volume is not contributing to
the buoyant force Fb . If the immersed volume of wood is Vi , then

Fb = ρwVig = 0.90ρwVwoodg = 0.90ρwg

(

mwood

ρwood

)

,

which, when floating, equals the weights of the wood and lead:

Fb = 0.90ρwg

(

mwood

ρwood

)

= (mwood +mlead)g .

Thus,

mlead = 0.90ρw

(

mwood

ρwood

)

−mwood

=
(0.90)(1000 kg/m3)(3.67 kg)

600 kg/m
3 − 3.67 kg = 1.84 kg ≈ 1.8 kg .
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(b) In this case, the volume V lead = m lead/ρ lead also contributes to Fb . Consequently,

Fb = 0.90ρwg

(

mwood

ρwood

)

+

(

ρw

ρ lead

)

m leadg = (mwood +m lead)g ,

which leads to

m lead =
0.90(ρw/ρwood)mwood −mwood

1− ρw/ρ lead

=
1.84 kg

1−
(

1.00× 103 kg/m
3
/1.13× 104 kg/m

3
) = 2.0 kg .

33. The volume Vcav of the cavities is the difference between the volume Vcast of the casting as a whole and
the volume Viron contained: Vcav = Vcast − Viron. The volume of the iron is given by Viron = W/gρiron,
where W is the weight of the casting and ρiron is the density of iron. The effective weight in water (of
density ρw ) is Weff = W − gρwVcast. Thus, Vcast = (W −Weff)/gρw and

Vcav =
W −Weff

gρw
− W

gρiron

=
6000 N− 4000 N

(9.8 m/s2)(1000 kg/m3)
− 6000 N

(9.8 m/s2)(7.87× 103 kg/m3)

= 0.126 m3 .

34. Let Fo be the buoyant force of air exerted on the object (of mass m and volume V ), and Fbrass be the
buoyant force on the brass weights (of total mass mbrass and volume Vbrass ). Then we have

Fo = ρairV g = ρair

(

mg

ρ

)

and

Fbrass = ρairVbrassg = ρair

(

mbrass

ρbrass

)

.

For the two arms of the balance to be in mechanical equilibrium, we require mg−Fo = mbrassg−Fbrass ,
or

mg −mg
(

ρair

ρ

)

= mbrassg −mbrassg

(

ρair

ρbrass

)

,

which leads to

mbrass =

(

1− ρair/ρ

1− ρair/ρbrass

)

m.

Therefore, the percent error in the measurement of m is

∆m

m
=

m−mbrass

m
= 1− 1− ρair/ρ

1− ρair/ρbrass
=
ρair(1/ρ− 1/ρbrass)

1− ρair/ρbrass

=
0.0012(1/ρ− 1/8.0)

1− 0.0012/8.0
≈ 0.0012

(

1

ρ
− 1

8.0

)

,

where ρ is in g/cm
3
. Stating this as a percent error, our result is 0.12% multiplied by

(

1
ρ − 1

8.0

)

.

35. (a) We assume that the top surface of the slab is at the surface of the water and that the automobile is
at the center of the ice surface. Let M be the mass of the automobile, ρi be the density of ice, and
ρw be the density of water. Suppose the ice slab has area A and thickness h. Since the volume of



405

ice is Ah, the downward force of gravity on the automobile and ice is (M + ρiAh)g. The buoyant
force of the water is ρwAhg, so the condition of equilibrium is (M + ρiAh)g − ρwAhg = 0 and

A =
M

(ρw − ρi)h
=

1100 kg

(998 kg/m3 − 917 kg/m3)(0.30 m)
= 45 m2 .

These density values are found in Table 15-1 of the text.

(b) It does matter where the car is placed since the ice tilts if the automobile is not at the center of its
surface.

36. The problem intends for the children to be completely above water. The total downward pull of gravity
on the system is

3(356 N) +NρwoodgV

where N is the (minimum) number of logs needed to keep them afloat and V is the volume of each
log: V = π(0.15 m)2(1.80 m) = 0.13 m3. The buoyant force is Fb = ρwatergVsubmerged where we require
Vsubmerged ≤ NV . The density of water is 1000 kg/m3. To obtain the minimum value of N we set
Vsubmerged = NV and then round our “answer” for N up to the nearest integer:

3(356 N) +NρwoodgV = ρwatergNV =⇒ N =
3(356 N)

gV (ρwater − ρwood)

which yields N = 4.28 → 5 logs.

37. (a) We assume the center of mass is closer to the right end of the rod, so the distance from the left
end to the center of mass is ℓ = 0.60 m. Four forces act on the rod: the upward force of the left
rope TL, the upward force of the right rope TR, the downward force of gravity mg, and the upward
buoyant force Fb . The force of gravity (effectively) acts at the center of mass, and the buoyant
force acts at the geometric center of the rod (which has length L = 0.80 m). Computing torques
about the left end of the rod, we find

TRL+ Fb

(

L

2

)

−mgℓ = 0 =⇒ TR =
mgℓ− FbL/2

L
.

Now, the buoyant force is equal to the weight of the displaced water (where the volume of displace-
ment is V = AL). Thus,

Fb = ρwgAL =
(

1000 kg/m3
)(

9.8 m/s2
)

(

6.0× 10−4 m2
)

(0.80 m) = 4.7 N .

Consequently, the tension in the right rope is

TR =
(1.6 kg)

(

9.8 m/s
2
)

(0.60 m)− (4.7 N)(0.40 m)

0.80 m
= 9.4 N .

(b) Newton’s second law (for the case of zero acceleration) leads to

TL +TR +FB −mg = 0 =⇒ TL = mg−FB−TR = (1.6 kg)
(

9.8 m/s
2
)

−4.69 N−9.4 N = 1.6 N .

38. (a) If the volume of the car below water is V1 then Fb = ρwV1g = Wcar, which leads to

V1 =
Wcar

ρwg
=

(1800 kg)
(

9.8 m/s2
)

(1000 kg/m3) (9.8 m/s2)
= 1.80 m3 .
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(b) We denote the total volume of the car as V and that of the water in it as V2 . Then

Fb = ρwV g = Wcar + ρwV2g

which gives

V2 = V − Wcar

ρwg

=
(

0.750 m3 + 5.00 m3 + 0.800 m3
)

− 1800 kg

1000 kg/m
3

= 4.75 m3 .

39. We use the equation of continuity. Let v1 be the speed of the water in the hose and v2 be its speed as
it leaves one of the holes. A1 = πR2 is the cross-sectional area of the hose. If there are N holes and A2

is the area of a single hole, then the equation of continuity becomes

v1A1 = v2 (NA2) =⇒ v2 =
A1

NA2
v1 =

R2

Nr2
v1

where R is the radius of the hose and r is the radius of a hole. Noting that R/r = D/d (the ratio of
diameters) we find

v2 =
D2

Nd2
v1 =

(1.9 cm)2

24(0.13 cm)2
(0.91 m/s) = 8.1 m/s .

40. We use the equation of continuity and denote the depth of the river as h. Then,

(8.2 m)(3.4 m)(2.3 m/s) + (6.8 m)(3.2m)(2.6 m/s) = h(10.5 m)(2.9 m/s)

which leads to h = 4.0 m.

41. Suppose that a mass ∆m of water is pumped in time ∆t. The pump increases the potential energy of
the water by ∆mgh, where h is the vertical distance through which it is lifted, and increases its kinetic
energy by 1

2∆mv2, where v is its final speed. The work it does is ∆W = ∆mgh+ 1
2∆mv2 and its power

is

P =
∆W

∆t
=

∆m

∆t

(

gh+
1

2
v2

)

.

Now the rate of mass flow is ∆m/∆t = ρwAv, where ρw is the density of water and A is the area of the
hose. The area of the hose is A = πr2 = π(0.010 m)2 = 3.14×10−4 m2 and ρwAv = (1000 kg/m3)(3.14×
10−4 m2)(5.0 m/s) = 1.57 kg/s. Thus,

P = ρAv

(

gh+
1

2
v2

)

= (1.57 kg/s)

(

(9.8 m/s
2
)(3.0 m) +

(5.0 m/s)2

2

)

= 66 W .

42. (a) The equation of continuity provides 26 + 19 + 11 = 56 L/min for the flow rate in the main (1.9 cm
diameter) pipe.

(b) Using v = R/A and A = πd2/4, we set up ratios:

v56
v26

=

56
π(1.9)2/4

26
π(1.3)2/4

≈ 1 .

43. (a) We use the equation of continuity: A1v1 = A2v2. Here A1 is the area of the pipe at the top and v1
is the speed of the water there; A2 is the area of the pipe at the bottom and v2 is the speed of the
water there. Thus v2 = (A1/A2)v1 =

(

(4.0 cm2)/(8.0 cm2)
)

(5.0 m/s) = 2.5 m/s.
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(b) We use the Bernoulli equation: p1 + 1
2ρv

2
1 + ρgh1 = p2 + 1

2ρv
2
2 + ρgh2, where ρ is the density of

water, h1 is its initial altitude, and h2 is its final altitude. Thus

p2 = p1 +
1

2
ρ(v2

1 − v2
2) + ρg(h1 − h2)

= 1.5× 105 Pa +
1

2
(1000 kg/m3)

(

(5.0 m/s)2 − (2.5 m/s)2
)

+ (1000 kg/m3)(9.8 m/s2)(10 m)

= 2.6× 105 Pa .

44. (a) We use Av = const. The speed of water is

v =
(25.0 cm)2 − (5.00 cm)2

(25.0 cm)2
(2.50 m/s) = 2.40 m/s .

(b) Since p+ 1
2ρv

2 = const., the pressure difference is

∆p =
1

2
ρ∆v2 =

1

2
(1000 kg/m3)[(2.50 m/s)2 − (2.40 m/s)2] = 245 Pa .

45. (a) The equation of continuity leads to

v2A2 = v1A1 =⇒ v2 = v1

(

r21
r22

)

which gives v2 = 3.9 m/s.

(b) With h = 7.6 m and p1 = 1.7× 105 Pa, Bernoulli’s equation reduces to

p2 = p1 − ρgh+
1

2
ρ
(

v2
1 − v2

2

)

= 8.8× 104 Pa .

46. We use Bernoulli’s equation:

p2 − pi = ρgh+
1

2
ρ
(

v2
1 − v2

2

)

where ρ = 1000 kg/m3, h = 180 m, v1 = 0.40 m/s and v2 = 9.5 m/s. Therefore, we find ∆p = 1.7×106 Pa,
or 1.7 MPa. The SI unit for pressure is the Pascal (Pa) and is equivalent to N/m2.

47. (a) We use the Bernoulli equation: p1 + 1
2ρv

2
1 + ρgh1 = p2 + 1

2ρv
2
2 + ρgh2, where h1 is the height of

the water in the tank, p1 is the pressure there, and v1 is the speed of the water there; h2 is the
altitude of the hole, p2 is the pressure there, and v2 is the speed of the water there. ρ is the density
of water. The pressure at the top of the tank and at the hole is atmospheric, so p1 = p2. Since the
tank is large we may neglect the water speed at the top; it is much smaller than the speed at the
hole. The Bernoulli equation then becomes ρgh1 = 1

2ρv
2
2 + ρgh2 and

v2 =
√

2g(h1 − h2) =
√

2(9.8 m/s2)(0.30 m) = 2.42 m/s .

The flow rate is A2v2 = (6.5× 10−4 m2)(2.42 m/s) = 1.6× 10−3 m3/s.

(b) We use the equation of continuity: A2v2 = A3v3, where A3 = 1
2A2 and v3 is the water speed where

the area of the stream is half its area at the hole. Thus v3 = (A2/A3 )v2 = 2v2 = 4.84 m/s. The
water is in free fall and we wish to know how far it has fallen when its speed is doubled to 4.84 m/s.
Since the pressure is the same throughout the fall, 1

2ρv
2
2 + ρgh2 = 1

2ρv
2
3 + ρgh3. Thus

h2 − h3 =
v2
3 − v2

2

2g
=

(4.84 m/s)2 − (2.42 m/s)2

2(9.8 m/s2)
= 0.90 m .
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48. The lift force follows from the pressure difference (large pressure on the bottom surface than on the top)
and the fact that the pressure difference is related to force through the relation ∆p = F/A where we are
asked to use L for F . From Bernoulli’s equation, we have

pu − pt =
1

2
ρv2

t −
1

2
ρv2

u + ρg∆z

where ∆z is the thickness of the wing. The last term makes a negligible contribution (we will return to
this point in a moment) and can be ignored. We then have

∆p =
1

2
ρ
(

v2
t − v2

u

)

=⇒ L =
1

2
ρA
(

v2
t − v2

u

)

as desired. The contribution of the “potential” term would have been ρgA∆z which we can estimate
as follows: let ρ ≈ 1 kg/m3, A ≈ 100 m2, and ∆z ≈ 1 m. Then ρgA∆z ≈ 1000 N which perhaps
corresponds to the weight of a couple of adults, and is at least an order of magnitude less than the
weight of an airplane with wings (the size of which are as estimated above) and equipment and crew.

49. We use the Bernoulli equation: pℓ + 1
2ρv

2
ℓ = pu + 1

2ρv
2
u, where pℓ is the pressure at the lower surface, pu

is the pressure at the upper surface, vℓ is the air speed at the lower surface, vu is the air speed at the
upper surface, and ρ is the density of air. The two tubes of flow are essentially at the same altitude. We
want to solve for vu such that pℓ − pu = 900 Pa. That is,

vu =

√

2(pℓ − pu)

ρ
+ v2

ℓ =

√

2(900 Pa)

1.30 kg/m
3 + (110 m/s)2 = 116 m/s .

50. (a) The speed v of the fluid flowing out of the hole satisfies 1
2ρv

2 = ρgh or v =
√

2gh. Thus, ρ1v1A1 =
ρ2v2A2, which leads to

ρ1

√

2ghA1 = ρ2

√

2ghA2 =⇒ ρ1

ρ2
=
A2

A1
= 2 .

(b) The ratio of volume flow is
R1

R2
=
v1A1

v2A2
=
A1

A2
=

1

2
.

(c) Letting R1/R2 = 1, we obtain v1/v2 = A2/A1 = 2 =
√

h1/h2. Thus h2 = h1/4.

51. (a) The volume of water (during 10 minutes) is

V = (v1t)A1 = (15 m/s)(10 min)(60 s/min)
(π

4

)

(0.03 m)2 = 6.4 m3 .

(b) The speed in the left section of pipe is

v2 = v1

(

A1

A2

)

= v1

(

d1

d2

)2

= (15 m/s)

(

3.0 cm

5.0 cm

)2

= 5.4 m/s .

(c) Since p1 + 1
2ρv

2
1 + ρgh1 = p2 + 1

2ρv
2
2 + ρgh2 and h1 = h2, p1 = p0 (= atmospheric pressure),

p2 = p0 +
1

2
ρ(v2

1 − v2
2)

= 1.01× 105 Pa +
1

2
(1.0× 103 kg/m3)[(15 m/s)2 − (5.4 m/s)2]

= 1.99× 105 Pa = 1.97 atm .

Thus the gauge pressure is 1.97 atm− 1.00 atm = 0.97 atm = 9.8× 104 Pa.
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52. (a) We denote a point at the top surface of the liquid A and a point at the opening B. Point A is a
vertical distance h = 0.50 m above B. Bernoulli’s equation yields pA = pB + 1

2ρv
2
B − ρgh. Noting

that pA = pB we obtain

vB =

√

2gh+
2

ρ
(pA − pB)

=

√

2(9.8 m/s
2
)(0.50 m) = 3.1 m/s .

(b)

vB =

√

2gh+
2

ρ
(pA − pB)

=

√

2(9.8 m/s2)(0.50 m) +
2(1.40 atm− 1.00 atm)

1.0× 103 kg/m
3 = 9.5 m/s .

53. (a) The friction force is

f = A∆p = ρwghA

=
(

1.0× 103 kg/m3
) (

9.8 m/s2
)

(6.0m)
(π

4

)

(0.040 m)2 = 74 N .

(b) The speed of water flowing out of the hole is v =
√

2gh. Thus, the volume of water flowing out of
the pipe in t = 3.0 h is

V = Avt =
πdvt

4

=
π2

4
(0.040 m)2

√

2 (9.8 m/s2) (6.0 m)(3.0 h)(3600 s/h)

= 1.5× 102 m3 .

54. (a) Since Sample Problem 15-9 deals with a similar situation, we use the final equation (labeled “An-
swer”) from it:

v =
√

2gh =⇒ v = vo for the projectile motion.

The stream of water emerges horizontally (θo = 0◦ in the notation of Chapter 4), and setting
y − yo = −(H − h) in Eq. 4-22, we obtain the “time-of-flight”

t =

√

−2(H − h)
−g =

√

2

g
(H − h) .

Using this in Eq. 4-21, where xo = 0 by choice of coordinate origin, we find

x = vot =
√

2gh

√

2

g
(H − h) = 2

√

h(H − h) .

(b) The result of part (a) (which, when squared, reads x2 = 4h(H − h)) is a quadratic equation for h
once x and H are specified. Two solutions for h are therefore mathematically possible, but are they
both physically possible? For instance, are both solutions positive and less than H? We employ
the quadratic formula:

h2 −Hh+
x2

4
= 0 =⇒ h =

H ±
√
H2 − x2

2
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which permits us to see that both roots are physically possible, so long as x < H . Labeling the
larger root h1 (where the plus sign is chosen) and the smaller root as h2 (where the minus sign is
chosen), then we note that their sum is simply

h1 + h2 =
H +

√
H2 − x2

2
+
H −

√
H2 − x2

2
= H .

Thus, one root is related to the other (generically labeled h′ and h) by h′ = H − h.
(c) We wish to maximize the function f = x2 = 4h(H − h). We differentiate with respect to h and set

equal to zero to obtain
df

dh
= 4H − 8h = 0 =⇒ h =

H

2

as the depth from which an emerging stream of water will travel the maximum horizontal distance.

55. (a) The continuity equation yields Av = aV , and Bernoulli’s equation yields ∆p+ 1
2ρv

2 = 1
2ρV

2, where
∆p = p1 − p2. The first equation gives V = (A/a)v. We use this to substitute for V in the second
equation, and obtain ∆p+ 1

2ρv
2 = 1

2ρ(A/a)
2v2. We solve for v. The result is

v =

√

√

√

√

√

2 ∆p

ρ

(

A2

a2 − 1

) =

√

2a2 ∆p

ρ(A2 − a2)
.

(b) We substitute values to obtain

v =

√

2(32× 10−4 m2)2(55× 103 Pa− 41× 103 Pa)

(1000 kg/m3)
(

(64× 10−4 m2)2 − (32× 10−4 m2)2
) = 3.06 m/s .

Consequently, the flow rate is

Av =
(

64× 10−4 m2
)

(3.06 m/s) = 2.0× 10−2 m3/s .

56. We use the result of part (a) in the previous problem.

(a) In this case, we have ∆p = p1 = 2.0 atm. Consequently,

v =

√

2∆p

ρ ((A/a)2 − 1)
=

√

4(1.01× 105 Pa)

(1000 kg/m3) ((5a/a)2 − 1)
= 4.1 m/s .

(b) And the equation of continuity yields V = (A/a)v = (5a/a)v = 5v = 21 m/s.

(c) The flow rate is given by

Av =
π

4

(

5.0× 10−4 m2
)

(4.1 m/s) = 8.0× 10−3 m3/s .

57. (a) Bernoulli’s equation gives pA = pB + 1
2ρairv

2. But ∆p = pA − pB = ρgh in order to balance the
pressure in the two arms of the U-tube. Thus ρgh = 1

2ρairv
2, or

v =

√

2ρgh

ρair
.

(b) The plane’s speed relative to the air is

v =

√

2ρgh

ρair
=

√

√

√

√

2
(

810 kg/m
3
)

(9.8 m/s2) (0.260 m)

1.03 kg/m
3 = 63.3 m/s .
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58. We use the formula for v obtained in the previous problem:

v =

√

2∆p

ρair
=

√

2(180 Pa)

0.031 kg/m3 = 1.1× 102 m/s .

59. (a) To avoid confusing weight with work, we write out the word instead of using the symbol W . Thus,

weight = mg =
(

1.85× 104 kg
) (

9.8 m/s2
)

≈ 1.8× 105 N .

(b) The buoyant force is Fb = ρwgVw where ρw = 1000 kg/m3 is the density of water and Vw is the
volume of water displaced by the dinosaur. If we use f for the fraction of the dinosaur’s total volume
V which is submerged, then Vw = fV . We can further relate V to the dinosaur’s mass using the
assumption that the density of the dinosaur is 90% that of water: V = m/(0.9ρw ). Therefore, the
apparent weight of the dinosaur is

weightapp = weight− ρwg

(

f
m

0.9ρw

)

= weight− gf m
0.9

.

If f = 0.50, this yields 81 kN for the apparent weight.

(c) If f = 0.80, our formula yields 20 kN for the apparent weight.

(d) If f = 0.90, we find the apparent weight is zero (it floats).

(e) Eq. 15-8 indicates that the water pressure at that depth is greater than standard air pressure (the
assumed pressure at the surface) by ρwgh = (1000)(9.8)(8) = 7.8×104 Pa. If we assume the pressure
of air in the dinosaur’s lungs is approximately standard air pressure, then this value represents the
pressure difference which the lung muscles would have to work against.

(f) Assuming the maximum pressure difference the muscles can work with is 8 kPa, then our previous
result (78 kPa) spells doom to the wading Diplodocus hypothesis.

60. The volume rate of flow is R = vA where A = πr2 and r = d/2. Solving for speed, we obtain

v =
R

A
=

R

π(d/2)2
=

4R

πd2
.

(a) With R = 7.0 × 10−3 m3/s and d = 14 × 10−3 m, our formula yields v = 45 m/s, which is about
13% of the speed of sound (which we establish by setting up a ratio: v/vs where vs = 343 m/s).

(b) With the contracted trachea (d = 5.2 × 10−3 m) we obtain v = 330 m/s, or 96% of the speed of
sound.

61. To be as general as possible, we denote the ratio of body density to water density as f (so that f =
ρ/ρw = 0.95 in this problem). Floating involves an equilibrium of vertical forces acting on the body
(Earth’s gravity pulls down and the buoyant force pushes up). Thus,

Fb = Fg =⇒ ρwgVw = ρgV

where V is the total volume of the body and Vw is the portion of it which is submerged.

(a) We rearrange the above equation to yield

Vw

V
=

ρ

ρw
= f

which means that 95% of the body is submerged and therefore 5% is above the water surface.
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(b) We replace ρw with 1.6ρw in the above equilibrium of forces relationship, and find

Vw

V
=

ρ

1.6ρw
=

f

1.6

which means that 59% of the body is submerged and thus 41% is above the quicksand surface.

(c) The answer to part (b) suggests that a person in that situation is able to breathe.

(d) The thixotropic property is warning that slow motions are best. Reasonable steps are: lay back on
the surface, slowly pull your legs free, and then roll to the shore.

62. (a) The volume rate of flow is related to speed by R = vA. Thus,

v1 =
R1

πr2stream
=

7.9 cm3/s

π(0.13 cm)2
= 148.8 cm/s = 1.5 m/s .

(b) The depth d of spreading water becomes smaller as r (the distance from the impact point) increases
due to the equation of continuity (and the assumption that the water speed remains equal to v1 in
this region). The water that has reached radius r (with perimeter 2πr) is crossing an area of 2πrd.
Thus, the equation of continuity gives

R1 = v12πrd =⇒ d =
R

2πrv1
.

(c) As noted above, d is a decreasing function of r.

(d) At r = rJ we apply the formula from part (b):

dJ =
R1

2πrJv1
=

7.9 cm3/s

2π(2.0 cm)(148.8 cm/s)
= 0.0042 cm .

(e) We are told “the depth just after the jump is 2.0 mm” which means d2 = 0.20 cm, and we are asked
to find v2 . We use the equation of continuity:

R1 = R2 =⇒ 2πrJ v1dJ = 2πr′J v2d2

where r′J is some very small amount greater than rJ (and for calculation purposes is taken to be
the same numerical value, 2.0 cm). This yields

v2 = v1

(

d1

d2

)

= (148.8 cm/s)

(

0.0042 cm

0.20 cm

)

= 3.1 cm/s .

(f) The kinetic energy per unit volume at r = rJ with v = v1 is

1

2
ρwv

2
1 =

1

2

(

1000 kg/m3
)

(1.488 m/s)2 = 1.1× 103 J/m3 .

(g) The kinetic energy per unit volume at r = r′J with v = v2 is

1

2
ρwv

2
2 =

1

2

(

1000 kg/m3
)

(0.031 m/s)2 = 0.49 J/m3 .

(h) The hydrostatic pressure change is due to the change in depth:

∆p = ρwg (d2 − d1) =
(

1000 kg/m3
) (

9.8 m/s2
)

(0.0020 m− 0.000042 m) = 19 Pa .

(i) Certainly, 1
2ρwv

2
1 +ρwgd1 +p1 is greater than 1

2ρwv
2
2 +ρwgd2 +p2 which is not unusual with “shock-

like” fluids structures such as this hydraulic jump. Not only does Bernoulli’s equation not apply
but the very concept of a streamline becomes difficult to define in this circumstance.
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63. (a) We rewrite the formula for work W (when the force is constant in a direction parallel to the
displacement d) in terms of pressure:

W = Fd =

(

F

A

)

(Ad) = pV

where V is the volume of the chocolate cylinder. On a per unit mass basis (utilizing the equation
for density ρ = m/V ) we have

W

m
= p

(

V

m

)

=
p

ρ
.

(b) If p = 5.5× 106 Pa and ρ = 1200 kg/m3, we obtain W/m = p/ρ = 4.6× 103 J/kg.

64. (a) When the model is suspended (in air) the reading is Fg (its true weight, neglecting any buoyant
effects caused by the air). When the model is submerged in water, the reading is lessened because
of the buoyant force: Fg − Fb . We denote the difference in readings as ∆m. Thus,

(Fg)− (Fg − Fb) = ∆mg

which leads to Fb = ∆mg. Since Fb = ρwgVm (the weight of water displaced by the model) we
obtain

Vm =
∆m

ρw
=

0.63776 kg

1000 kg/m3
= 6.3776× 10−4 m3 .

(b) The 1
20 scaling factor is discussed in the problem (and for purposes of significant figures is treated

as exact). The actual volume of the dinosaur is

Vdino = 203 Vm = 5.1021 m3 .

(c) Using ρ ≈ ρw = 1000 kg/m3, we find

ρ =
mdino

Vdino
=⇒ mdino =

(

1000 kg/m3
) (

5.1021 m3
)

which yields 5.1× 103 kg for the T. Rex mass.

(d) We estimate the mass range for college students as 50 ≤ m ≤ 115 kg. Dividing these values into
the previous result leads to ratios r in the range of roughly 100 ≥ r ≥ 45.

65. We apply Bernoulli’s equation to the central streamline:

p1 +
1

2
ρairv

2
1 = po +

1

2
ρairv

2
o =⇒ p1 − po =

1

2
ρair

(

v2
o − v2

1

)

where vo = 65 m/s, v1 = 2 m/s and the density of air is ρair = 1.2 kg/m3 (see Table 15-1). Thus, we
obtain p1 − po ≈ 2500 Pa.

66. The pressure (relative to standard air pressure) is given by Eq. 15-8:

ρgh =
(

1024 kg/m3
) (

9.8 m/s2
) (

6.0× 103 m
)

= 6.02× 107 Pa .

67. Recalling that 1 atm = 1.01× 105 atm, Eq. 15-8 leads to

ρgh =
(

1024 kg/m3
) (

9.8 m/s2
) (

10.9× 103 m
)

(

1 atm

1.01× 105 atm

)

≈ 1080 atm .
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68. (a) We consider a point D on the surface of the liquid in the container, in the same tube of flow with
points A, B and C. Applying Bernoulli’s equation to points D and C, we obtain

pD +
1

2
ρv2

D + ρghD = pC +
1

2
ρv2

C + ρghC

which leads to

vC =

√

2(pD − pC)

ρ
+ 2g(hD − hC) + v2

D ≈
√

2g (d+ h2)

where in the last step we set pD = pC = pair and vD/vC ≈ 0.

(b) We now consider points B and C:

pB +
1

2
ρv2

B + ρghB = pC +
1

2
ρv2

C + ρghC .

Since vB = vC by equation of continuity, and pC = pair, Bernoulli’s equation becomes

pB = pC + ρg(hC − hB) = pair − ρg(h1 + h2 + d) .

(c) Since pB ≥ 0, we must let pair − ρg(h1 + d+ h2) ≥ 0, which yields

h1 ≤ h1,max =
pair

ρ
− d− h2 ≤

pair

ρ
= 10.3 m .

69. An object of mass m = ρV floating in a liquid of density ρliquid is able to float if the downward pull of
gravity mg is equal to the upward buoyant force Fb = ρliquidgVsub where Vsub is the portion of the object
which is submerged. This readily leads to the relation:

ρ

ρliquid
=
Vsub

V

for the fraction of volume submerged of a floating object. When the liquid is water, as described in this
problem, this relation leads to

ρ

ρw
= 1

since the object “floats fully submerged” in water (thus, the object has the same density as water). We
assume the block maintains an “upright” orientation in each case (which is not necessarily realistic).

(a) For liquid A,
ρ

ρA
=

1

2

so that, in view of the fact that ρ = ρw, we obtain ρA/ρw = 2.

(b) For liquid B, noting that two-thirds above means one-third below,

ρ

ρB
=

1

3

so that ρB/ρw = 2.

(c) For liquid C, noting that one-fourth above means three-fourths below,

ρ

ρC
=

3

4

so that ρC/ρw = 4/3.
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70. In this case, Bernoulli’s equation, reduces to Eq. 15-10. Thus,

pg = ρg(−h) = −(1800)(9.8)(1.5) = −2.6× 104 Pa .

71. The downward force on the balloon is mg and the upward force is Fb = ρoutV g. Newton’s second law
(with m = ρinV ) leads to

ρoutV g − ρinV g = ρinV a =⇒
(

ρout

ρin
− 1

)

g = a .

The problem specifies ρout/ρin = 1.39 (the outside air is cooler and thus more dense than the hot air
inside the balloon). Thus, the upward acceleration is (1.39− 1)(9.8) = 3.8 m/s2.

72. We rewrite the formula for work W (when the force is constant in a direction parallel to the displacement
d) in terms of pressure:

W = Fd =

(

F

A

)

(Ad) = pV

where V is the volume of the water being forced through, and p is to be interpreted as the pressure
difference between the two ends of the pipe. Thus,

W =
(

1.01× 105 Pa
) (

1.4 m3
)

= 1.5× 105 J .

73. (a) Using Eq. 15-10, we have pg = ρgh = 1.21× 107 Pa.

(b) By definition, p = pg + patm = 1.22× 107 Pa.

(c) We interpret the question as asking for the total force compressing the sphere’s surface, and we
multiply the pressure by total area:

p
(

4πr2
)

= 3.82× 105 N .

(d) The (upward) buoyant force exerted on the sphere by the seawater is

Fb = ρwgV where V =
4

3
πr3 .

Therefore, Fb = 5.26 N.

(e) Newton’s second law applied to the sphere (of mass m = 7.0 kg) yields

Fb −mg = ma

which results in a = −9.04, which means the acceleration vector has a magnitude of 9.04 m/s
2

and
is directed downward.

74. Neglecting the buoyant force caused by air, then the 30 N value is interpreted as the true weight W of
the object. The buoyant force of the water on the object is therefore 30− 20 = 10 N, which means

Fb = ρwV g =⇒ V =
10N

(1000 kg/m3) (9.8 m/s2)
= 1.02× 10−3 m3

is the volume of the object. When the object is in the second liquid, the buoyant force is 30− 24 = 6 N,
which implies

ρ2 =
6 N

(9.8 m/s2) (1.02× 10−3 m3)
= 600 kg/m3 .
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75. The beaker is indicated by the subscript b. The volume of the glass of which the beaker walls and base
are made is Vb = mb/ρb . We consider the case where the beaker is slightly more than half full (which,
for calculation purposes, will be simply set equal to half-volume) and thus remains on the bottom of the
sink – as the water around it reaches its rim. At this point, the force of buoyancy exerted on it is given by
F = (Vb +V )ρwg, where V is the interior volume of the beaker. Thus F = (Vb +V )ρwg = ρwg(V/2)+mb,
which we solve for ρb :

ρb =
2mbρw

2mb − ρwV
=

2(390 g)(1.00 g/cm3)

2(390 g)−
(

1.00 g/cm
3
)

(500 cm3)
= 2.79 g/cm

3
.

76. If the mercury level in one arm of the tube is lowered by an amount x, it will rise by x in the other arm.
Thus, the net difference in mercury level between the two arms is 2x, causing a pressure difference of
∆p = 2ρHggx, which should be compensated for by the water pressure pw = ρwgh, where h = 11.2 cm.
In these units, ρw = 1 g/cm3 and ρHg = 13.6 g/cm3 (see Table 15-1). We obtain

x =
ρwgh

2ρHgg
=

(

1.00 g/cm3
)

(11.2 cm)

2 (13.6 g/cm3)
= 0.412 cm .

77. (a) Since the pressure (due to the water) increases linearly with depth, we use its average (multiplied
by the dam area) to compute the force exerts on the face of the dam, its average being simply half
the pressure value near the bottom (at depth d = 48 m). The maximum static friction will be µN
where the normal force N (exerted upward by the portion of the bedrock directly underneath the
concrete) is equal to the weight mg of the dam. Since m = ρcV with ρc being the density of the
concrete and V being the volume (thickness times width times height: ℓwh), we write N = ρcℓwhg.
Thus, the safety factor is

µρcℓwhg
1
2ρwgdAface

=
2µρcℓwh

ρwd(wd)
=

2µρcℓh

ρwd2

which (since ρw = 1 g/cm3) yields 2(.47)(3.2)(24)(71)/482 = 2.2.

(b) To compute the torque due to the water pressure, we will need to integrate Eq. 15-7 (multiplied by
(d−y) and the dam width w) as shown below. The countertorque due to the weight of the concrete
is the weight multiplied by half the thickness ℓ, since we take the center of mass of the dam is at
its geometric center and the axis of rotation at A. Thus, the safety factor relative to rotation is

mg ℓ
2

∫ d

o ρwgy(d− y)w dy
=
ρcℓwhg

ℓ
2

1
6ρwgwd3

=
3ρcℓ

2h

ρwd3

which yields 3(3.2)(24)2(71)/(48)3 = 3.55.

78. We use p = pair = ρgh to obtain

h =
pair

ρg
=

1.01× 105 Pa
(

1000 kg/m3
)(

9.8 m/s2
) = 10.3 m .

79. We consider the can with nearly its total volume submerged, and just the rim above water. For calculation
purposes, we take its submerged volume to be V = 1200 cm3. To float, the total downward force of gravity
(acting on the tin mass mt and the lead mass mℓ ) must be equal to the buoyant force upward:

(mt +mℓ) g = ρwV g =⇒ mℓ =
(

1 g/cm3
) (

1200 cm3
)

− 130 g

which yields 1070 g for the (maximum) mass of the lead (for which the can still floats). The given density
of lead is not used in the solution.
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80. The force f that is required to tether the airship of volume V and weight W is given by

f = Fb −W = ρairgV − ρgasgV

=
(

1.21 kg/m3 − 0.80 kg/m3
)(

9.8 m/s2
)

(

1.0× 106 m3
)

= 4.0× 106 N .

81. The weight of the air inside the balloon of volume V is W = ρgasV g, and the buoyant force exerted on
it is given by Fb = ρairV g. Thus, we have Fb = W +mg, where m is the mass of the payload. we have
ρairV g = ρgasV g +mg, which gives

V =
m

ρair − ρgas
=

40 kg + 15 kg

0.035 kg/m
3 − 0.0051 kg/m

3 = 1.8× 103 m3 .

82. (a) We consider a thin slab of water with bottom area A and infinitesimal thickness dh. We apply
Newton’s second law to the slab:

dFnet = (p+ dp)A− pA
= dp ·A− dm · g
= Adp− ρgAdh
= dm · a = ρaAdh

which gives
dp

dh
= ρ(g + a) .

Integrating over the range (0, h), we get

p =

∫ h

0

ρ(g + a)dh = ρh(g + a) .

(b) We reverse the direction of the acceleration, from that in part (a). This amounts to changing a to
−a. Thus,

p = ρ(g − a) .

(c) In a free fall, we use the above equation with a = g, which gives p = 0. The internal pressure p
in the water totally disappears, because there is no force of interaction among different portions of
the water in the bucket to make their acceleration different from g.

83. The absolute pressure is

p = p0 + ρgh

= 1.01× 105 N/m2 + (1.03× 103 kg/m3)(9.8 m/s2)(150 m) = 1.62× 106 Pa .

84. The area facing down (and up) is A = (0.050 m)(0.040 m) = 0.0020 m2. The submerged volume is
V = Ad where d = 0.015 m. In order to float, the downward pull of gravity mg must equal the upward
buoyant force exerted by the seawater of density ρ:

mg = ρV g =⇒ m = ρV = (1025)(0.0020)(0.015) = 0.031 kg .

85. Using Eq. 15-8, the maximum depth is

hmax =
∆p

ρg
=

(0.050)
(

1.01× 105 Pa
)

(1000 kg/m3) (9.8 m/s2)
= 0.52 m .
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86. Note that “surface area” refers to the total surface area of all six faces, so that the area of each (square)
face is 24/6 = 4 m2. From Archimedes’ principle and the requirement that the cube (of total volume V
and density ρ) floats, we find

ρV g = ρwVsubg =⇒ ρ

ρw
=
Vsub

V

for the fraction of volume submerged. The assumption that the cube floats upright, as described in this
problem, simplifies this relation to

ρ

ρw
=
hsub

h

where h is the length of one side, and ρw = 4ρ is given. With h =
√

4 = 2 m, we find hsub = h/4 = 0.50 m.

87. We equate the buoyant force Fb to the combined weight of the cork and sinker:

ρwVwg = ρcVcg + ρsVsg

With Vw = 1
2Vc and ρw = 1.00 g/cm3, we obtain

Vc =
2ρsVs

ρw − 2ρc
=

2(11.4)(0.4)

1− 2(0.2)
= 15.2 cm3 .

Using the formula for the volume of a sphere (Appendix E), we have

r =

(

3Vc

4π

)1/3

= 1.54 cm .

88. The equation of continuity is
Aivi = Afvf

where A = πr2. Therefore,

vf = vi

(

ri
rf

)2

= (0.09)

(

0.2

0.6

)2

.

Consequently, vf = 1.00× 10−2 m/s.

89. (a) This is similar to the situation treated in Sample Problem 15-8, and we refer to some of its steps
(and notation). Combining Eq. 15-35 and Eq. 15-36 in a manner very similar to that shown in the
textbook, we find

R = A1A2

√

2∆p

ρ (A2
1 −A2

2)
.

for the flow rate expressed in terms of the pressure difference and the cross-sectional areas. Note
that this reduces to Eq. 15-38 for the case A2 = A1/2 treated in the Sample Problem. Note that
∆p = p1 − p2 = −7.2 × 103 Pa and A2

1 − A2
2 = −8.66 × 10−3 m4, so that the square root is well

defined. Therefore, we obtain R = 0.0776 m3/s.

(b) The mass rate of flow is ρR = 68.9 kg/s.

90. (a) The equation of continuity is A1v1 = A2v2 where A1 = πr21 and A2 = πr22 = π (r1/2)
2
. Conse-

quently, we find v2 = 4v1.

(b) ∆
(

1
2ρv

2
)

is equal to
1

2
ρ
(

v2
2 − v2

1

)

=
1

2
ρ
(

16v2
1 − v2

1

)

=
15

2
ρv2

1 .



Chapter 16

1. (a) During simple harmonic motion, the speed is (momentarily) zero when the object is at a “turning
point” (that is, when x = +xm or x = −xm ). Consider that it starts at x = +xm and we are
told that t = 0.25 second elapses until the object reaches x = −xm . To execute a full cycle of
the motion (which takes a period T to complete), the object which started at x = +xm must
return to x = +xm (which, by symmetry, will occur 0.25 second after it was at x = −xm ). Thus,
T = 2t = 0.50 s.

(b) Frequency is simply the reciprocal of the period: f = 1/T = 2.0 Hz.

(c) The 36 cm distance between x = +xm and x = −xm is 2xm . Thus, xm = 36/2 = 18 cm.

2. (a) The problem describes the time taken to execute one cycle of the motion. The period is T = 0.75 s.

(b) Frequency is simply the reciprocal of the period: f = 1/T ≈ 1.3 Hz, where the SI unit abbreviation
Hz stands for Hertz, which means a cycle-per-second.

(c) Since 2π radians are equivalent to a cycle, the angular frequency ω (in radians-per-second) is related
to frequency f by ω = 2πf so that ω ≈ 8.4 rad/s.

3. (a) The motion repeats every 0.500 s so the period must be T = 0.500 s.

(b) The frequency is the reciprocal of the period: f = 1/T = 1/(0.500 s) = 2.00 Hz.

(c) The angular frequency ω is ω = 2πf = 2π(2.00 Hz) = 12.57 rad/s.

(d) The angular frequency is related to the spring constant k and the mass m by ω =
√

k/m. We solve
for k: k = mω2 = (0.500 kg)(12.57 rad/s)2 = 79.0 N/m.

(e) Let xm be the amplitude. The maximum speed is vm = ωxm = (12.57 rad/s)(0.350 m) = 4.40 m/s.

(f) The maximum force is exerted when the displacement is a maximum and its magnitude is given by
Fm = kxm = (79.0 N/m)(0.350 m) = 27.6 N.

4. The textbook notes (in the discussion immediately after Eq. 16-7) that the acceleration amplitude is
am = ω2xm , where ω is the angular frequency (ω = 2πf since there are 2π radians in one cycle).
Therefore, in this circumstance, we obtain

am = (2π(6.60 Hz))
2
(0.0220 m) = 37.8 m/s2 .

5. The magnitude of the maximum acceleration is given by am = ω2xm, where ω is the angular frequency
and xm is the amplitude. The angular frequency for which the maximum acceleration is g is given by
ω =

√

g/xm, and the corresponding frequency is given by

f =
ω

2π
=

1

2π

√

g

xm
=

1

2π

√

9.8 m/s
2

1.0× 10−6 m
= 500 Hz .

For frequencies greater than 500 Hz, the acceleration exceeds g for some part of the motion.

419
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6. (a) Hooke’s law readily yields k = (15 kg)(9.8 m/s2)/(0.12 m) = 1225 N/m. Rounding to three signifi-
cant figures, the spring constant is therefore 1.23 kN/m.

(b) We are told f = 2.00 Hz = 2.00 cycles/sec. Since a cycle is equivalent to 2π radians, we have
ω = 2π(2.00) = 4π rad/s (understood to be valid to three significant figures). Using Eq. 16-12, we
find

ω =

√

k

m
=⇒ m =

1225 N/m

(4π rad/s)2
= 7.76 kg .

Consequently, the weight of the package is mg = 76 N.

7. (a) The angular frequency ω is given by ω = 2πf = 2π/T , where f is the frequency and T is the
period. The relationship f = 1/T was used to obtain the last form. Thus ω = 2π/(1.00× 10−5 s) =
6.28× 105 rad/s.

(b) The maximum speed vm and maximum displacement xm are related by vm = ωxm, so

xm =
vm

ω
=

1.00× 103 m/s

6.28× 105 rad/s
= 1.59× 10−3 m .

8. (a) The acceleration amplitude is related to the maximum force by Newton’s second law: Fmax = mam .
The textbook notes (in the discussion immediately after Eq. 16-7) that the acceleration amplitude
is am = ω2xm , where ω is the angular frequency (ω = 2πf since there are 2π radians in one cycle).
The frequency is the reciprocal of the period: f = 1/T = 1/0.20 = 5.0 Hz, so the angular frequency
is ω = 10π (understood to be valid to two significant figures). Therefore,

Fmax = mω2xm = (0.12 kg)(10π rad/s)2(0.085 m) = 10 N .

(b) Using Eq. 16-12, we obtain

ω =

√

k

m
=⇒ k = (0.12 kg)(10π rad/s)2 = 1.2× 102 N/m .

9. (a) The amplitude is half the range of the displacement, or xm = 1.0 mm.

(b) The maximum speed vm is related to the amplitude xm by vm = ωxm, where ω is the angular
frequency. Since ω = 2πf , where f is the frequency,

vm = 2πfxm = 2π(120 Hz)
(

1.0× 10−3 m
)

= 0.75 m/s .

(c) The maximum acceleration is

am = ω2xm = (2πf)2xm = (2π(120 Hz))2
(

1.0× 10−3 m
)

= 570 m/s2 .

10. (a) The problem gives the frequency f = 440 Hz, where the SI unit abbreviation Hz stands for Hertz,
which means a cycle-per-second. The angular frequency ω is similar to frequency except that ω
is in radians-per-second. Recalling that 2π radians are equivalent to a cycle, we have ω = 2πf ≈
2800 rad/s.

(b) In the discussion immediately after Eq. 16-6, the book introduces the velocity amplitude vm = ωxm .
With xm = 0.00075 m and the above value for ω, this expression yields vm = 2.1 m/s.

(c) In the discussion immediately after Eq. 16-7, the book introduces the acceleration amplitude am =
ω2xm , which (if the more precise value ω = 2765 rad/s is used) yields am = 5.7 km/s.

11. (a) Since the problem gives the frequency f = 3.00 Hz, we have ω = 2πf = 6π rad/s (understood to
be valid to three significant figures). Each spring is considered to support one fourth of the mass
mcar so that Eq. 16-12 leads to

ω =

√

k
1
4 mcar

=⇒ k =

(

1

4
(1450 kg)

)

(6π rad/s)2 = 1.29× 105 N/m .
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(b) If the new mass being supported by the four springs is mtotal = 1450 + 5(73) = 1815 kg, then
Eq. 16-12 leads to

ωnew =

√

k
1
4 mtotal

=⇒ fnew =
1

2π

√

1.29× 105

1815/4
= 2.68 Hz .

12. (a) Making sure our calculator is in radians mode, we find

x = 6.0 cos
(

3π(2.0) +
π

3

)

= 3.0 m .

(b) Differentiating with respect to time and evaluating at t = 2.0 s, we find

v =
dx

dt
= −3π(6.0) sin

(

3π(2.0) +
π

3

)

= −49 m/s .

(c) Differentiating again, we obtain

a =
dv

dt
= −(3π)2(6.0) cos

(

3π(2.0) +
π

3

)

= −2.7× 102 m/s2 .

(d) In the second paragraph after Eq. 16-3, the textbook defines the phase of the motion. In this case
(with t = 2.0 s) the phase is 3π(2.0) + π

3 ≈ 20 rad.

(e) Comparing with Eq. 16-3, we see that ω = 3π rad/s. Therefore, f = ω/2π = 1.5 Hz.

(f) The period is the reciprocal of the frequency: T = 1/f ≈ 0.67 s.

13. We use vm = ωxm = 2πfxm , where the frequency is 180/(60 s) = 3.0 Hz and the amplitude is half the
stroke, or xm = 0.38 m. Thus, vm = 2π(3.0 Hz)(0.38 m) = 7.2 m/s.

14. (a) For a total mass of m+M , Eq. 16-12 becomes

ω =

√

k

m+M
=⇒ M =

k

ω2
−m .

Eq. 16-5 (ω = 2π/T ) is used to put this into its final form:

M =
k

(2π/T )2
−m =

(

k

4π2

)

T 2 −m .

(b) With T = 0.90149 s, k = 605.6 N/m and M = 0 in the above expression, we obtain m = 12.47 kg.

(c) With the same k and m, we plug T = 2.08832 s into the expression and obtain M = 54.43 kg.

15. From highest level to lowest level is twice the amplitude xm of the motion. The period is related to the
angular frequency by Eq. 16-5. Thus, xm = 1

2d and ω = 0.503 rad/h. The phase constant φ in Eq. 16-3
is zero since we start our clock when xo = xm (at the highest point). We solve for t when x is one-fourth
of the total distance from highest to lowest level, or (which is the same) half the distance from highest
level to middle level (where we locate the origin of coordinates). Thus, we seek t when the ocean surface
is at x = 1

2xm = 1
4d.

x = xm cos (ωt+ φ)

1

4
d =

(

1

2
d

)

cos (0.503t+ 0)

1

2
= cos(0.503t)

which has t = 2.08 h as the smallest positive root. The calculator is in radians mode during this
calculation.
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16. To be on the verge of slipping means that the force exerted on the smaller block (at the point of maximum
acceleration) is fmax = µsmg. The textbook notes (in the discussion immediately after Eq. 16-7) that
the acceleration amplitude is am = ω2xm , where ω is the angular frequency (ω =

√

k/(m+M) from
Eq. 16-12). Therefore, using Newton’s second law, we have

mam = µsmg =⇒ k

m+M
xm = µs g

which leads to xm = 0.22 m.

17. The maximum force that can be exerted by the surface must be less than µsN or else the block will not
follow the surface in its motion. Here, µs is the coefficient of static friction and N is the normal force
exerted by the surface on the block. Since the block does not accelerate vertically, we know that N = mg,
where m is the mass of the block. If the block follows the table and moves in simple harmonic motion,
the magnitude of the maximum force exerted on it is given by F = mam = mω2xm = m(2πf)2xm, where
am is the magnitude of the maximum acceleration, ω is the angular frequency, and f is the frequency.
The relationship ω = 2πf was used to obtain the last form. We substitute F = m(2πf)2xm and N = mg
into F < µsN to obtain m(2πf)2xm < µsmg. The largest amplitude for which the block does not slip is

xm =
µsg

(2πf)2
=

(0.50)(9.8 m/s
2
)

(2π × 2.0 Hz)2
= 0.031 m .

A larger amplitude requires a larger force at the end points of the motion. The surface cannot supply
the larger force and the block slips.

18. Both parts of this problem deal with the critical case when the maximum acceleration becomes equal to
that of free fall. The textbook notes (in the discussion immediately after Eq. 16-7) that the acceleration
amplitude is am = ω2xm , where ω is the angular frequency; this is the expression we set equal to
g = 9.8 m/s2.

(a) Using Eq. 16-5 and T = 1.0 s, we have

(

2π

T

)2

xm = g =⇒ xm =
gT 2

4π2
= 0.25 m .

(b) Since ω = 2πf , and xm = 0.050 m is given, we find

(

2πf)2
)

xm = g =⇒ f =
1

2π

√

g

xm
= 2.2 Hz .

19. (a) Eq. 16-8 leads to

a = −ω2x =⇒ ω =

√

−a
x

=

√

123

0.100

which yields ω = 35.07 rad/s. Therefore, f = ω/2π = 5.58 Hz.

(b) Eq. 16-12 provides a relation between ω (found in the previous part) and the mass:

ω =

√

k

m
=⇒ m =

400

35.072
= 0.325 kg .

(c) By energy conservation, 1
2kx

2
m (the energy of the system at a turning point) is equal to the sum of

kinetic and potential energies at the time t described in the problem.

1

2
kx2

m =
1

2
mv2 +

1

2
kx2 =⇒ xm =

m

k
v2 + x2 .

Consequently, xm =
√

(0.325/400)(13.6)2 + 0.12 = 0.400 m.
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20. Eq. 16-12 gives the angular velocity:

ω =

√

k

m
=

√

100

2.00
= 7.07 rad/s .

Energy methods (discussed in §16-4) provide one method of solution. Here, we use trigonometric tech-
niques based on Eq. 16-3 and Eq. 16-6.

(a) Dividing Eq. 16-6 by Eq. 16-3, we obtain

v

x
= −ω tan (ωt+ φ)

so that the phase (ωt+ φ) is found from

ωt+ φ = tan−1

(−v
ωx

)

= tan−1

( −3.415

(7.07)(0.129)

)

.

With the calculator in radians mode, this gives the phase equal to −1.31 rad. Plugging this back
into Eq. 16-3 leads to

0.129 m = xm cos(−1.31) =⇒ 0.500 m = xm .

(b) Since ωt + φ = −1.31 rad at t = 1.00 s. We can use the above value of ω to solve for the phase
constant φ. We obtain φ = −8.38 rad (though this, as well as the previous result, can have 2π or
4π (and so on) added to it without changing the physics of the situation). With this value of φ, we
find xo = xm cosφ = −0.251 m.

(c) And we obtain vo = −xmω sinφ = 3.06 m/s.

21. (a) The object oscillates about its equilibrium point, where the downward force of gravity is balanced
by the upward force of the spring. If ℓ is the elongation of the spring at equilibrium, then kℓ = mg,
where k is the spring constant and m is the mass of the object. Thus k/m = g/ℓ and f = ω/2π =
(1/2π)

√

k/m = (1/2π)
√

g/ℓ. Now the equilibrium point is halfway between the points where the
object is momentarily at rest. One of these points is where the spring is unstretched and the other
is the lowest point, 10 cm below. Thus ℓ = 5.0 cm = 0.050 m and

f =
1

2π

√

9.8 m/s
2

0.050 m
= 2.23 Hz .

(b) Use conservation of energy. We take the zero of gravitational potential energy to be at the initial
position of the object, where the spring is unstretched. Then both the initial potential and kinetic
energies are zero. We take the y axis to be positive in the downward direction and let y = 0.080 m.
The potential energy when the object is at this point is U = 1

2ky
2 −mgy. The energy equation

becomes 0 = 1
2ky

2 −mgy + 1
2mv

2. We solve for the speed.

v =

√

2gy − k

m
y2 =

√

2gy − g

ℓ
y2

=

√

√

√

√2(9.8 m/s2)(0.080 m)−
(

9.8 m/s
2

0.050 m

)

(0.080 m)2 = 0.56 m/s

(c) Let m be the original mass and ∆m be the additional mass. The new angular frequency is
ω′ =

√

k/(m+ ∆m). This should be half the original angular frequency, or 1
2

√

k/m. We solve
√

k/(m+ ∆m) = 1
2

√

k/m for m. Square both sides of the equation, then take the reciprocal to
obtain m+ ∆m = 4m. This gives m = ∆m/3 = (300 g)/3 = 100 g.
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(d) The equilibrium position is determined by the balancing of the gravitational and spring forces:
ky = (m + ∆m)g. Thus y = (m+ ∆m)g/k. We will need to find the value of the spring constant
k. Use k = mω2 = m(2πf)2. Then

y =
(m+ ∆m)g

m(2πf)2
=

(0.10 kg + 0.30 kg)
(

9.8 m/s
2
)

(0.10 kg)(2π × 2.24 Hz)2
= 0.20 m .

This is measured from the initial position.

22. They pass each other at time t, at x1 = x2 = 1
2xm where

x1 = xm cos (ωt+ φ1) and x2 = xm cos (ωt+ φ2) .

From this, we conclude that cos(ωt + φ1 ) = cos(ωt + φ2 ) = 1
2 , and therefore that the phases (the

arguments of the cosines) are either both equal to π/3 or one is π/3 while the other is −π/3. Also at
this instant, we have v1 = −v2 6= 0 where

v1 = −xmω sin (ωt+ φ1) and v2 = −xmω sin (ωt+ φ2) .

This leads to sin(ωt + φ1 ) = − sin(ωt + φ2 ). This leads us to conclude that the phases have opposite
sign. Thus, one phase is π/3 and the other phase is −π/3; the ωt term cancels if we take the phase
difference, which is seen to be π/3− (−π/3) = 2π/3.

23. (a) Let

x1 =
A

2
cos

(

2πt

T

)

be the coordinate as a function of time for particle 1 and

x2 =
A

2
cos

(

2πt

T
+
π

6

)

be the coordinate as a function of time for particle 2. Here T is the period. Note that since the
range of the motion is A, the amplitudes are both A/2. The arguments of the cosine functions are
in radians. Particle 1 is at one end of its path (x1 = A/2) when t = 0. Particle 2 is at A/2 when
2πt/T +π/6 = 0 or t = −T/12. That is, particle 1 lags particle 2 by one-twelfth a period. We want
the coordinates of the particles 0.50 s later; that is, at t = 0.50 s,

x1 =
A

2
cos

(

2π × 0.50 s

1.5 s

)

= −0.250A

and

x2 =
A

2
cos

(

2π × 0.50 s

1.5 s
+
π

6

)

= −0.433A .

Their separation at that time is x1 − x2 = −0.250A+ 0.433A = 0.183A.

(b) The velocities of the particles are given by

v1 =
dx1

dt
=
πA

T
sin

(

2πt

T

)

and

v2 =
dx2

dt
=
πA

T
sin

(

2πt

T
+
π

6

)

.

We evaluate these expressions for t = 0.50 s and find they are both negative-valued, indicating that
the particles are moving in the same direction.
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24. When displaced from equilibrium, the net force exerted by the springs is −2kx acting in a direction so
as to return the block to its equilibrium position (x = 0). Since the acceleration a = d2x/dt2, Newton’s
second law yields

m
d2x

dt2
= −2kx .

Substituting x = xm cos(ωt+ φ) and simplifying, we find

ω2 =
2k

m

where ω is in radians per unit time. Since there are 2π radians in a cycle, and frequency f measures
cycles per second, we obtain

f =
ω

2π
=

1

2π

√

2k

m
.

25. When displaced from equilibrium, the magnitude of the net force exerted by the springs is |k1x + k2x|
acting in a direction so as to return the block to its equilibrium position (x = 0). Since the acceleration
a = d2x/dt2, Newton’s second law yields

m
d2x

dt2
= −k1x− k2x .

Substituting x = xm cos(ωt+ φ) and simplifying, we find

ω2 =
k1 + k2

m

where ω is in radians per unit time. Since there are 2π radians in a cycle, and frequency f measures
cycles per second, we obtain

f =
ω

2π
=

1

2π

√

k1 + k2

m
.

The single springs each acting alone would produce simple harmonic motions of frequency

f1 =
1

2π

√

k1

m
and f2 =

1

2π

√

k2

m
,

respectively. Comparing these expressions, it is clear that f =
√

f2
1 + f2

2 .

26. (a) The textbook notes (in the discussion immediately after Eq. 16-7) that the acceleration amplitude
is am = ω2xm , where ω is the angular frequency (ω = 2πf since there are 2π radians in one cycle).
Therefore, in this circumstance, we obtain

am = (2π(1000 Hz))2 (0.00040 m) = 1.6× 104 m/s2 .

(b) Similarly, in the discussion after Eq. 16-6, we find vm = ωxm so that

vm = (2π(1000 Hz)) (0.00040 m) = 2.5 m/s .

(c) From Eq. 16-8, we have (in absolute value)

|a| = (2π(1000 Hz))2 (0.00020 m) = 7.9× 103 m/s2 .

(d) This can be approached with the energy methods of §16-4, but here we will use trigonometric
relations along with Eq. 16-3 and Eq. 16-6. Thus, allowing for both roots stemming from the
square root,

sin(ωt+ φ) = ±
√

1− cos2(ωt+ φ)

− v

ωxm
= ±

√

1− x2

x2
m

.
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Taking absolute values and simplifying, we obtain

|v| = 2πf
√

x2
m − x2 = 2π(1000)

√

0.000402 − 0.000202 = 2.2 m/s .

27. We wish to find the effective spring constant for the combination of springs shown in Fig. 16–31. We do
this by finding the magnitude F of the force exerted on the mass when the total elongation of the springs
is ∆x. Then keff = F/∆x. Suppose the left-hand spring is elongated by ∆xℓ and the right-hand spring is
elongated by ∆xr. The left-hand spring exerts a force of magnitude k∆xℓ on the right-hand spring and
the right-hand spring exerts a force of magnitude k∆xr on the left-hand spring. By Newton’s third law
these must be equal, so ∆xℓ = ∆xr . The two elongations must be the same and the total elongation is
twice the elongation of either spring: ∆x = 2∆xℓ. The left-hand spring exerts a force on the block and
its magnitude is F = k∆xℓ. Thus keff = k∆xℓ/2∆xr = k/2. The block behaves as if it were subject to
the force of a single spring, with spring constant k/2. To find the frequency of its motion replace keff in
f = (1/2π)

√

keff/m with k/2 to obtain

f =
1

2π

√

k

2m
.

28. (a) We interpret the problem as asking for the equilibrium position; that is, the block is gently lowered
until forces balance (as opposed to being suddenly released and allowed to oscillate). If the amount
the spring is stretched is x, then we examine force-components along the incline surface and find

kx = mg sin θ =⇒ x =
14.0 sin40.0◦

120
= 0.075 m

at equilibrium. The calculator is in degrees mode in the above calculation. The distance from the
top of the incline is therefore 0.450 + 0.75 = 0.525 m.

(b) Just as with a vertical spring, the effect of gravity (or one of its components) is simply to shift the
equilibrium position; it does not change the characteristics (such as the period) of simple harmonic
motion. Thus, Eq. 16-13 applies, and we obtain

T = 2π

√

14.0/9.8

120
= 0.686 s .

29. (a) First consider a single spring with spring constant k and unstretched length L. One end is attached
to a wall and the other is attached to an object. If it is elongated by ∆x the magnitude of the
force it exerts on the object is F = k∆x. Now consider it to be two springs, with spring constants
k1 and k2, arranged so spring 1 is attached to the object. If spring 1 is elongated by ∆x1 then
the magnitude of the force exerted on the object is F = k1 ∆x1. This must be the same as the
force of the single spring, so k∆x = k1 ∆x1. We must determine the relationship between ∆x
and ∆x1. The springs are uniform so equal unstretched lengths are elongated by the same amount
and the elongation of any portion of the spring is proportional to its unstretched length. This
means spring 1 is elongated by ∆x1 = CL1 and spring 2 is elongated by ∆x2 = CL2, where C is a
constant of proportionality. The total elongation is ∆x = ∆x1 + ∆x2 = C(L1 +L2) = CL2(n+ 1),
where L1 = nL2 was used to obtain the last form. Since L2 = L1/n, this can also be written
∆x = CL1(n+ 1)/n. We substitute ∆x1 = CL1 and ∆x = CL1(n+ 1)/n into k∆x = k1 ∆x1 and
solve for k1. The result is k1 = k(n+ 1)/n.

(b) Now suppose the object is placed at the other end of the composite spring, so spring 2 exerts a
force on it. Now k∆x = k2 ∆x2. We use ∆x2 = CL2 and ∆x = CL2(n+1), then solve for k2. The
result is k2 = k(n+ 1).

(c) To find the frequency when spring 1 is attached to mass m, we replace k in (1/2π)
√

k/m with
k(n+ 1)/n to obtain

f1 =
1

2π

√

(n+ 1)k

nm
=

√

n+ 1

n
f

where the substitution f = (1/2π)
√

k/m was made.
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(d) To find the frequency when spring 2 is attached to the mass, we replace k with k(n+ 1) to obtain

f2 =
1

2π

√

(n+ 1)k

m
=
√
n+ 1f

where the same substitution was made.

30. The magnitude of the downhill component of the gravitational force acting on each ore car is

wx = (10000 kg)
(

9.8 m/s2
)

sin θ

where θ = 30◦ (and it is important to have the calculator in degrees mode during this problem). We are
told that a downhill pull of 3wx causes the cable to stretch x = 0.15 m. Since the cable is expected to
obey Hooke’s law, its spring constant is

k =
3wx

x
= 9.8× 105 N/m .

(a) Noting that the oscillating mass is that of two of the cars, we apply Eq. 16-12 (divided by 2π).

f =
1

2π

√

9.8× 105 N/m

20000 kg
= 1.1 Hz .

(b) The difference between the equilibrium positions of the end of the cable when supporting two as
opposed to three cars is

∆x =
3wx − 2wx

k
= 0.050 m .

31. When the block is at the end of its path and is momentarily stopped, its displacement is equal to the
amplitude and all the energy is potential in nature. If the spring potential energy is taken to be zero
when the block is at its equilibrium position, then

E =
1

2
kx2

m =
1

2
(1.3× 102 N/m)(0.024 m)2 = 3.7× 10−2 J .

32. (a) The energy at the turning point is all potential energy: E = 1
2kx

2
m where E = 1.00 J and xm =

0.100 m. Thus,

k =
2E

x2
m

= 200 N/m .

(b) The energy as the block passes through the equilibrium position (with speed vm = 1.20 m/s)is
purely kinetic:

E =
1

2
mv2

m =⇒ m =
2E

v2
m

= 1.39 kg .

(c) Eq. 16-12 (divided by 2π) yields

f =
1

2π

√

k

m
= 1.91 Hz .

33. (a) Eq. 16-12 (divided by 2π) yields

f =
1

2π

√

k

m
=

1

2π

√

1000 N/m

5.00 kg
= 2.25 Hz .

(b) With xo = 0.500 m, we have Uo = 1
2kx

2
o = 125 J.

(c) With vo = 10.0 m/s, the initial kinetic energy is Ko = 1
2mv

2
o = 250 J.
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(d) Since the total energy E = Ko + Uo = 375 J is conserved, then consideration of the energy at the
turning point leads to

E =
1

2
kx2

m =⇒ xm =

√

2E

k
= 0.866 m .

34. (a) We require

1

2
kx2

m =
1

2
mv2

m =⇒ k = m

(

vm

xm

)2

where m = 0.130 kg, vm = 11200 m/s and xm = 1.50 m. This yields k = 7.25× 106 N/m.

(b) The force required to produce an elongation xm if the spring constant is k is kxm = 1.087× 107 N.
Dividing this among N persons, each one exerting a force of 220 N, requires N = 1.087×107/220 ≈
49400.

35. (a) The spring stretches until the magnitude of its upward force on the block equals the magnitude
of the downward force of gravity: ky = mg, where y = 0.096 m is the elongation of the spring at
equilibrium, k is the spring constant, and m = 1.3 kg is the mass of the block. Thus k = mg/y =
(1.3)(9.8)/0.096 = 133 N/m.

(b) The period is given by T = 1/f = 2π/ω = 2π
√

m/k = 2π
√

1.3/133 = 0.62 s.

(c) The frequency is f = 1/T = 1/0.62 s = 1.6 Hz.

(d) The block oscillates in simple harmonic motion about the equilibrium point determined by the
forces of the spring and gravity. It is started from rest 5.0 cm below the equilibrium point so the
amplitude is 5.0 cm.

(e) The block has maximum speed as it passes the equilibrium point. At the initial position, the block
is not moving but it has potential energy

Ui = −mgyi +
1

2
ky2

i = −(1.3)(9.8)(0.146) +
1

2
(133)(0.146)2 = −0.44 J .

When the block is at the equilibrium point, the elongation of the spring is y = 9.6 cm and the
potential energy is

Uf = −mgy +
1

2
ky2 = −(1.3)(9.8)(0.096) +

1

2
(133)(0.096)2 = −0.61 J .

We write the equation for conservation of energy as Ui = Uf + 1
2mv

2 and solve for v:

v =

√

2(Ui − Uf )

m
=

√

2(−0.44 J + 0.61 J)

1.3 kg
= 0.51 m/s .

36. The problem consists of two distinct parts: the completely inelastic collision (which is assumed to occur
instantaneously, the bullet embedding itself in the block before the block moves through significant
distance) followed by simple harmonic motion (of mass m+M attached to a spring of spring constant
k).

(a) Momentum conservation readily yields v′ = mv/(m+M).

(b) Since v′ occurs at the equilibrium position, then v′ = vm for the simple harmonic motion. The
relation vm = ωxm can be used to solve for xm , or we can pursue the alternate (though related)
approach of energy conservation. Here we choose the latter:

1

2
(m+M) (v′)

2
=

1

2
kx2

m

1

2
(m+M)

m2v2

(m+M)2
=

1

2
kx2

m
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which simplifies to

xm =
mv

√

k(m+M)
.

37. The total energy is given by E = 1
2kx

2
m, where k is the spring constant and xm is the amplitude. We

use the answer from part (b) to do part (a), so it is best to look at the solution for part (b) first.

(a) The fraction of the energy that is kinetic is

K

E
=
E − U
E

= 1− U

E
= 1− 1

4
=

3

4

where the result from part (b) has been used.

(b) When x = 1
2xm the potential energy is U = 1

2kx
2 = 1

8kx
2
m. The ratio is

U

E
=

1
8kx

2
m

1
2kx

2
m

=
1

4
.

(c) Since E = 1
2kx

2
m and U = 1

2kx
2, U/E = x2/x2

m. We solve x2/x2
m = 1/2 for x. We should get

x = xm/
√

2.

38. The textbook notes (in the discussion immediately after Eq. 16-7) that the acceleration amplitude is
am = ω2xm , where ω is the angular frequency and xm = 0.0020 m is the amplitude. Thus, am =
8000 m/s2 leads to ω = 2000 rad/s.

(a) Using Newton’s second law with m = 0.010 kg, we have

F = ma = m (−am cos (ωt+ φ)) = −(80 N) cos
(

2000t− π

3

)

where t is understood to be in seconds.

(b) Eq. 16-5 gives T = 2π/ω = 3.1× 10−3 s.

(c) The relation vm = ωxm can be used to solve for vm , or we can pursue the alternate (though related)
approach of energy conservation. Here we choose the latter. By Eq. 16-12, the spring constant is
k = ω2m = 40000 N/m. Then, energy conservation leads to

1

2
kx2

m =
1

2
mv2

m =⇒ vm = xm

√

k

m
= 4.0 m/s .

(d) The total energy is 1
2kx

2
m = 1

2mv
2
m = 0.080 J.

39. (a) Assume the bullet becomes embedded and moves with the block before the block moves a significant
distance. Then the momentum of the bullet-block system is conserved during the collision. Let m
be the mass of the bullet, M be the mass of the block, v0 be the initial speed of the bullet, and v
be the final speed of the block and bullet. Conservation of momentum yields mv0 = (m+M)v, so

v =
mv0

m+M
=

(0.050 kg)(150 m/s)

0.050 kg + 4.0 kg
= 1.85 m/s .

When the block is in its initial position the spring and gravitational forces balance, so the spring is
elongated by Mg/k. After the collision, however, the block oscillates with simple harmonic motion
about the point where the spring and gravitational forces balance with the bullet embedded. At
this point the spring is elongated a distance ℓ = (M +m)g/k, somewhat different from the initial
elongation. Mechanical energy is conserved during the oscillation. At the initial position, just
after the bullet is embedded, the kinetic energy is 1

2 (M +m)v2 and the elastic potential energy is
1
2k(Mg/k)2. We take the gravitational potential energy to be zero at this point. When the block
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and bullet reach the highest point in their motion the kinetic energy is zero. The block is then a
distance ym above the position where the spring and gravitational forces balance. Note that ym is
the amplitude of the motion. The spring is compressed by ym − ℓ, so the elastic potential energy
is 1

2k(ym − ℓ)2. The gravitational potential energy is (M + m)gym. Conservation of mechanical
energy yields

1

2
(M +m)v2 +

1

2
k

(

Mg

k

)2

=
1

2
k(ym − ℓ)2 + (M +m)gym .

We substitute ℓ = (M +m)g/k. Algebraic manipulation leads to

ym =

√

(m+M)v2

k
− mg2

k2
(2M +m)

=

√

(0.050 kg + 4.0 kg)(1.85 m/s)2

500 N/m
− (0.050 kg)(9.8 m/s2)2

(500 N/m)2
[2(4.0 kg) + 0.050 kg]

= 0.166 m .

(b) The original energy of the bullet is E0 = 1
2mv

2
0 = 1

2 (0.050 kg)(150 m/s)2 = 563 J. The kinetic
energy of the bullet-block system just after the collision is

E =
1

2
(m+M)v2 =

1

2
(0.050 kg + 4.0 kg)(1.85 m/s)2 = 6.94 J .

Since the block does not move significantly during the collision, the elastic and gravitational po-
tential energies do not change. Thus, E is the energy that is transferred. The ratio is E/E0 =
(6.94 J)/(563 J) = 0.0123 or 1.23%.

40. (a) The rotational inertia is I = 1
2MR2 = 1

2 (3.00 kg)(0.700 m)2 = 0.735 kg·m2.

(b) Using Eq. 16-22 (in absolute value), we find

κ =
τ

θ
=

0.0600 N·m
2.5 rad

= 0.024 N·m .

(c) Using Eq. 16-5, Eq. 16-23 leads to

ω =

√

κ

I
=

√

0.024 N·m
0.735 kg·m2

0.181 rad/s .

41. (a) We take the angular displacement of the wheel to be θ = θm cos(2πt/T ), where θm is the amplitude
and T is the period. We differentiate with respect to time to find the angular velocity: Ω =
−(2π/T )θm sin(2πt/T ). The symbol Ω is used for the angular velocity of the wheel so it is not
confused with the angular frequency. The maximum angular velocity is

Ωm =
2πθm

T
=

(2π)(π rad)

0.500 s
= 39.5 rad/s .

(b) When θ = π/2, then θ/θm = 1/2, cos(2πt/T ) = 1/2, and

sin(2πt/T ) =
√

1− cos2(2πt/T ) =
√

1− (1/2)2 =
√

3/2

where the trigonometric identity cos2θ + sin2θ = 1 is used. Thus,

Ω = −2π

T
θm sin

(

2πt

T

)

= −
(

2π

0.500 s

)

(π rad)

(√
3

2

)

= −34.2 rad/s .

During another portion of the cycle its angular speed is +34.2 rad/s when its angular displacement
is π/2 rad.
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(c) The angular acceleration is

α =
d2θ

dt2
= −

(

2π

T

)2

θm cos(2πt/T ) = −
(

2π

T

)2

θ .

When θ = π/4,

α = −
(

2π

0.500 s

)2
(π

4

)

= −124 rad/s2 .

42. (a) Eq. 16-28 gives

T = 2π

√

L

g
= 2π

√

17 m

9.8 m/s2
= 8.3 s .

(b) Plugging I = mL2 into Eq. 16-25, we see that the mass m cancels out. Thus, the characteristics
(such as the period) of the periodic motion do not depend on the mass.

43. The period of a simple pendulum is given by T = 2π
√

L/g, where L is its length. Thus,

L =
T 2g

4π2
=

(2.0 s)2(9.8 m/s2)

4π2
= 0.99 m .

44. From Eq. 16-28, we find the length of the pendulum when the period is T = 8.85 s:

L =
gT 2

4π2
.

The new length is L′ = L− d where d = 0.350 m. The new period is

T ′ = 2π

√

L′

g
= 2π

√

L

g
− d

g
= 2π

√

T 2

4π2
− d

g

which yields T ′ = 8.77 s.

45. We use Eq. 16-29 and the parallel-axis theorem I = Icm +mh2 where h = d, the unknown. For a meter
stick of mass m, the rotational inertia about its center of mass is Icm = mL2/12 where L = 1.0 m. Thus,
for T = 2.5 s, we obtain

T = 2π

√

mL2/12 +md2

mgd
= 2π

√

L2

12gd
+
d

g
.

Squaring both sides and solving for d leads to the quadratic formula:

d =
g (T/2π)

2 ±
√

d2 (T/2π)
4 − L2/3

2
.

Choosing the plus sign leads to an impossible value for d (d = 1.5 > L). If we choose the minus sign, we
obtain a physically meaningful result: d = 0.056 m.

46. We use Eq. 16-29 and the parallel-axis theorem I = Icm +mh2 where h = d. For a solid disk of mass m,
the rotational inertia about its center of mass is Icm = mR2/2. Therefore,

T = 2π

√

mR2/2 +md2

mgd
= 2π

√

R2 + 2d2

2gd
.
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47. (a) The period of the pendulum is given by T = 2π
√

I/mgd, where I is its rotational inertia, m is
its mass, and d is the distance from the center of mass to the pivot point. The rotational inertia
of a rod pivoted at its center is mL2/12 and, according to the parallel-axis theorem, its rotational
inertia when it is pivoted a distance d from the center is I = mL2/12 +md2. Thus

T = 2π

√

m(L2/12 + d2)

mgd
= 2π

√

L2 + 12d2

12gd
.

(b) (L2 + 12d2)/12gd, considered as a function of d, has a minimum at d = L/
√

12, so the period
increases as d decreases if d < L/

√
12 and decreases as d decreases if d > L/

√
12.

(c) L occurs only in the numerator of the expression for the period, so T increases as L increases.

(d) The period does not depend on the mass of the pendulum, so T does not change when m increases.

48. (a) We use Eq. 16-29 and the parallel-axis theorem I = Icm +mh2 where h = R = 0.125 m. For a solid
disk of mass m, the rotational inertia about its center of mass is Icm = mR2/2. Therefore,

T = 2π

√

mR2/2 +mR2

mgR
= 2π

√

3R

2g
= 0.869 s .

(b) We seek a value of r 6= R such that

2π

√

R2 + 2r2

2gr
= 2π

√

3R

2g

and are led to the quadratic formula:

r =
3R±

√

(3R)2 − 8R2

4
= R or

R

2
.

Thus, our result is r = 0.125/2 = 0.0625 m.

49. (a) A uniform disk pivoted at its center has a rotational inertia of 1
2MR2, where M is its mass and R

is its radius. The disk of this problem rotates about a point that is displaced from its center by
R + L, where L is the length of the rod, so, according to the parallel-axis theorem, its rotational
inertia is 1

2MR2 +M(L+R)2. The rod is pivoted at one end and has a rotational inertia of mL2/3,
where m is its mass. The total rotational inertia of the disk and rod is

I =
1

2
MR2 +M(L+R)2 +

1

3
mL2

=
1

2
(0.500 kg)(0.100 m)2 + (0.500 kg)(0.500 m + 0.100 m)2 +

1

3
(0.270 kg)(0.500 m)2

= 0.205 kg·m2 .

(b) We put the origin at the pivot. The center of mass of the disk is

ℓd = L+R = 0.500 m + 0.100 m = 0.600 m

away and the center of mass of the rod is ℓr = L/2 = (0.500 m)/2 = 0.250 m away, on the same
line. The distance from the pivot point to the center of mass of the disk-rod system is

d =
Mℓd +mℓr
M +m

=
(0.500 kg)(0.600 m) + (0.270 kg)(0.250 m)

0.500 kg + 0.270 kg
= 0.477 m .
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(c) The period of oscillation is

T = 2π

√

I

(M +m)gd
= 2π

√

0.205 kg·m2

(0.500 kg + 0.270 kg)(9.8 m/s2)(0.447 m)
= 1.50 s .

50. (a) Referring to Sample Problem 16-5, we see that the distance between P and C is h = 2
3L− 1

2L = 1
6L.

The parallel axis theorem (see Eq. 16-30) leads to

I =
1

12
mL2 +mh2 =

(

1

12
+

1

36

)

mL2 =
1

9
mL2 .

And Eq. 16-29 gives

T = 2π

√

I

mgh
= 2π

√

L2/9

gL/6
= 2π

√

2L

3g

which yields T = 1.64 s for L = 1.00 m.

(b) Comparing with Eq. 16-32, we note that this T is identical to that computed in Sample Problem 16-
5. As far as the characteristics of the periodic motion are concerned, the center of oscillation provides
a pivot which is equivalent to that chosen in the Sample Problem (pivot at the edge of the stick).

51. We require

T = 2π

√

Lo

g
= 2π

√

I

mgh

similar to the approach taken in part (b) of Sample Problem 16-5, but treating in our case a more
general possibility for I. Canceling 2π, squaring both sides, and canceling g leads directly to the result;
Lo = I/mh.

52. (a) This is similar to the situation treated in Sample Problem 16-5, except that O is no longer at the
end of the stick. Referring to the center of mass as C (assumed to be the geometric center of the
stick), we see that the distance between O and C is h = x. The parallel axis theorem (see Eq. 16-30)
leads to

I =
1

12
mL2 +mh2 = m

(

L2

12
+ x2

)

.

And Eq. 16-29 gives

T = 2π

√

I

mgh
= 2π

√

(

L2

12 + x2
)

gx
= 2π

√

(L2 + 12x2)

12gx
.

(b) Minimizing T by graphing (or special calculator functions) is straightforward, but the standard
calculus method (setting the derivative equal to zero and solving) is somewhat awkward. We
pursue the calculus method but choose to work with 12gT 2/2π instead of T (it should be clear that
12gT 2/2π is a minimum whenever T is a minimum).

d
(

12gT 2

2π

)

dx
= 0 =

d
(

L2

x + 12x
)

dx
= −L

2

x2
+ 12

which yields x = L/
√

12 as the value of x which should produce the smallest possible value of T .
Stated as a ratio, this means x/L = 0.289.

(c) With L = 1.00 m and x = 0.289 m, we obtain T = 1.53 s from the expression derived in part (a).
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53. If the torque exerted by the spring on the rod is proportional to the angle of rotation of the rod and
if the torque tends to pull the rod toward its equilibrium orientation, then the rod will oscillate in
simple harmonic motion. If τ = −Cθ, where τ is the torque, θ is the angle of rotation, and C is a
constant of proportionality, then the angular frequency of oscillation is ω =

√

C/I and the period is

T = 2π/ω = 2π
√

I/C, where I is the rotational inertia of the rod. The plan is to find the torque as a
function of θ and identify the constant C in terms of given quantities. This immediately gives the period
in terms of given quantities. Let ℓ0 be the distance from the pivot point to the wall. This is also the
equilibrium length of the spring. Suppose the rod turns through the angle θ, with the left end moving
away from the wall. This end is now (L/2) sin θ further from the wall and has moved (L/2)(1 − cos θ)
to the right. The length of the spring is now

√

(L/2)2(1 − cos θ)2 + [ℓ0 + (L/2) sin θ]2. If the angle θ
is small we may approximate cos θ with 1 and sin θ with θ in radians. Then the length of the spring
is given by ℓ0 + Lθ/2 and its elongation is ∆x = Lθ/2. The force it exerts on the rod has magnitude
F = k∆x = kLθ/2. Since θ is small we may approximate the torque exerted by the spring on the rod
by τ = −FL/2, where the pivot point was taken as the origin. Thus τ = −(kL2/4)θ. The constant of
proportionality C that relates the torque and angle of rotation is C = kL2/4. The rotational inertia for
a rod pivoted at its center is I = mL2/12, where m is its mass. See Table 11–2. Thus the period of
oscillation is

T = 2π

√

I

C
= 2π

√

mL2/12

kL2/4
= 2π

√

m

3k
.

54. Since the centripetal acceleration is horizontal and Earth’s gravitational ~g is downward, we can define
the magnitude of an “effective” gravitational acceleration using the Pythagorean theorem:

geff =

√

g2 +

(

v2

R

)2

.

Then, since frequency is the reciprocal of the period, Eq. 16-28 leads to

f =
1

2π

√

geff
L

=
1

2π

√

√

g2 + v4/R2

L
.

55. (a) The frequency for small amplitude oscillations is f = (1/2π)
√

g/L, where L is the length of the

pendulum. This gives f = (1/2π)
√

(9.80 m/s2)/(2.0 m) = 0.35 Hz.

(b) The forces acting on the pendulum are the tension force ~T of the rod and the force of gravity m~g.

Newton’s second law yields ~T + m~g = m~a, where m is the mass and ~a is the acceleration of the
pendulum. Let ~a = ~ae +~a′, where ~ae is the acceleration of the elevator and ~a′ is the acceleration of
the pendulum relative to the elevator. Newton’s second law can then be writtenm(~g−~ae)+~T = m~a′.
Relative to the elevator the motion is exactly the same as it would be in an inertial frame where
the acceleration due to gravity is ~g − ~ae. Since ~g and ~ae are along the same line and in opposite
directions we can find the frequency for small amplitude oscillations by replacing g with g + ae in
the expression f = (1/2π)

√

g/L. Thus

f =
1

2π

√

g + ae

L
=

1

2π

√

9.8 m/s
2

+ 2.0 m/s
2

2.0 m
= 0.39 Hz .

(c) Now the acceleration due to gravity and the acceleration of the elevator are in the same direction
and have the same magnitude. That is, ~g − ~ae = 0. To find the frequency for small amplitude
oscillations, replace g with zero in f = (1/2π)

√

g/L. The result is zero. The pendulum does not
oscillate.

56. For simple harmonic motion, Eq. 16-24 must reduce to

τ = −L (Fg sin θ) −→ −L (Fgθ)
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where θ is in radians. We take the percent difference (in absolute value)

∣

∣

∣

∣

(−LFg sin θ)− (−LFgθ)

−LFg sin θ

∣

∣

∣

∣

=

∣

∣

∣

∣

1− θ

sin θ

∣

∣

∣

∣

and set this equal to 0.010 (corresponding to 1.0%). In order to solve for θ (since this is not possible
“in closed form”), several approaches are available. Some calculators have built-in numerical routines
to facilitate this, and most math software packages have this capability. Alternatively, we could expand
sin θ ≈ θ − θ3/6 (valid for small θ) and thereby find an approximate solution (which, in turn, might
provide a seed value for a numerical search). Here we show the latter approach:

∣

∣

∣

∣

1− θ

θ − θ3/6

∣

∣

∣

∣

≈ 0.010 =⇒ 1

1− θ2/6 ≈ 1.010

which leads to θ ≈
√

6(0.01/1.01) = 0.24 rad = 14◦. A more accurate value (found numerically) for the
θ value which results in a 1.0% deviation is 13.986◦.

57. Careful consideration of how the angle θ relates to height h (measured from the lowest position) gives
h = R(1 − cos θ). The energy at the amplitude point is equal to the energy as it swings through the
lowest position:

mgh =
1

2
mv2

gR (1− cos θm) =
1

2
v2

where the mass has been canceled in the last step. The tension (acting upward on the bob when it
swings through the lowest position) is related to the bob’s weight mg and the centripetal acceleration
using Newton’s second law:

T −mg = m
v2

R
.

From the above, we substitute for v2:

T −mg = m
2gR (1− cos θm)

R
= 2mg (1− cos θm) .

(a) This provides an “exact” answer for the tension, but the problem directs us to examine the small
angle behavior: cos θ ≈ 1−θ2/2 (where θ is in radians). Solving for T and using this approximation,
we find

T ≈ mg + 2mg

(

θ2m
2

)

= mg
(

1 + θ2m
)

.

(b) At other values of θ (other than the lowest position, where θ = 0), Newton’s second law yields

T ′ −mg cos θ = m
v2

R
or T ′ −mg

(

1− θ2

2

)

≈ m v2

R
.

Making the same substitutions as before, we obtain

T ′ ≈ mg
(

1 + θ2m − θ2
)

which is clearly smaller than the result of part (a).

58. (a) The rotational inertia of a hoop is I = mR2, and the energy of the system becomes

E =
1

2
Iω2 +

1

2
kx2
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and θ is in radians. We note that rω = v (where v = dx
dt ). Thus, the energy becomes

E =
1

2

(

mR2

r2

)

v2 +
1

2
kx2

which looks like the energy of the simple harmonic oscillator discussed in §16-4 if we identify the
massm in that section with the term mR2/r2 appearing in this problem. Making this identification,
Eq. 16-12 yields

ω =

√

k

mR2/r2
=

r

R

√

k

m
.

(b) If r = R the result of part (a) reduces to ω =
√

k/m.

(c) And if r = 0 then ω = 0 (the spring exerts no restoring torque on the wheel so that it is not brought
back towards its equilibrium position).

59. Referring to the numbers in Sample Problem 16-7, we have m = 0.25 kg, b = 0.070 kg/s and T = 0.34 s.
Thus, when t = 20T , the damping factor becomes

e−bt/2m = e−(0.070)(20)(0.34)/2(0.25) = 0.39 .

60. Since the energy is proportional to the amplitude squared (see Eq. 16-21), we find the fractional change
(assumed small) is

E′ − E
E

≈ dE

E
=
dx2

m

x2
m

=
2xmdxm

x2
m

= 2
dxm

xm
.

Thus, if we approximate the fractional change in xm as dxm/xm , then the above calculation shows that
multiplying this by 2 should give the fractional energy change. Therefore, if xm decreases by 3%, then
E must decrease by 6%.

61. (a) We want to solve e−bt/2m = 1/3 for t. We take the natural logarithm of both sides to obtain
−bt/2m = ln(1/3). Therefore, t = −(2m/b) ln(1/3) = (2m/b) ln 3. Thus,

t =
2(1.50 kg)

0.230 kg/s
ln 3 = 14.3 s .

(b) The angular frequency is

ω′ =

√

k

m
− b2

4m2
=

√

8.00 N/m

1.50 kg
− (0.230 kg/s)2

4(1.50 kg)2
= 2.31 rad/s .

The period is T = 2π/ω′ = (2π)/(2.31 rad/s) = 2.72 s and the number of oscillations is t/T =
(14.3 s)/(2.72 s) = 5.27.

62. (a) From Hooke’s law, we have

k =
(500 kg)

(

9.8 m/s2
)

10 cm
= 490 N/cm .

(b) The amplitude decreasing by 50% during one period of the motion implies

e−bT/2m =
1

2
where T =

2π

ω′ .

Since the problem asks us to estimate, we let ω′ ≈ ω =
√

k/m. That is, we let

ω′ ≈
√

49000 N/m

500 kg
≈ 9.9 rad/s ,
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so that T ≈ 0.63 s. Taking the (natural) log of both sides of the above equation, and rearranging,
we find

b =
2m

T
ln 2 ≈ 2(500)

0.63
(0.69) = 1.1× 103 kg/s .

Note: if one worries about the ω′ ≈ ω approximation, it is quite possible (though messy) to use
Eq. 16-41 in its full form and solve for b. The result would be (quoting more figures than are
significant)

b =
2 ln 2

√
mk

√

(ln 2)
2

+ 4π2

= 1086 kg/s

which is in good agreement with the value gotten “the easy way” above.

63. (a) We set ω = ωd and find that the given expression reduces to xm = Fm/bω at resonance.

(b) In the discussion immediately after Eq. 16-6, the book introduces the velocity amplitude vm = ωxm .
Thus, at resonance, we have vm = ωFm/bω = Fm/b.

64. With M = 1000 kg and m = 82 kg, we adapt Eq. 16-12 to this situation by writing

ω =

√

k

M + 4m
where ω =

2π

T
.

If d = 4.0 m is the distance traveled (at constant car speed v) between impulses, then we may write
T = v/d, in which case the above equation may be solved for the spring constant:

2πv

d
=

√

k

M + 4m
=⇒ k = (M + 4m)

(

2πv

d

)2

.

Before the people got out, the equilibrium compression is xi = (M + 4m)g/k, and afterward it is
xf = Mg/k. Therefore, with v = 16000/3600 = 4.44 m/s, we find the rise of the car body on its
suspension is

xi − xf =
4mg

k
=

4mg

M + 4m

(

d

2πv

)2

= 0.050 m .

65. The rotational inertia for an axis through A is Icm +mh2
A and that for an axis through B is Icm +mh2

B.
Using Eq. 16-29, we require

2π

√

Icm +mh2
A

mghA
= 2π

√

Icm +mh2
B

mghB

which (after canceling 2π and squaring both sides) becomes

Icm +mh2
A

mghA
=
Icm +mh2

B

mghB
.

Cross-multiplying and rearranging, we obtain

Icm (hB − hA) = m
(

hAh
2
B − hBh

2
A

)

= mhAhB (hB − hA)

which simplifies to Icm = mhAhB . We plug this back into the first period formula above and obtain

T = 2π

√

mhAhB +mh2
A

mghA
= 2π

√

hB + hA

g
.

From the figure, we see that hB + hA = L, and (after squaring both sides) we can solve the above
equation for the gravitational acceleration:

g =

(

2π

T

)2

L =
4π2L

T 2
.
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66. (a) The net horizontal force is F since the batter is assumed to exert no horizontal force on the bat.
Thus, the horizontal acceleration (which applies as long as F acts on the bat) is a = F/m.

(b) The only torque on the system is that due to F , which is exerted at P , at a distance Lo− 1
2L from C.

Since Lo = 2L/3 (see Sample Problem 16-5), then the distance from C to P is 2
3L− 1

2L = 1
6L. Since

the net torque is equal to the rotational inertia (I = 1
12mL

2 about the center of mass) multiplied
by the angular acceleration, we obtain

α =
τ

I
=
F
(

1
6L
)

1
12mL

2
=

2F

mL
.

(c) The distance from C to O is r = L/2, so the contribution to the acceleration at O stemming from
the angular acceleration (in the counterclockwise direction of Fig. 16-11) is αr = 1

2αL (leftward in
that figure). Also, the contribution to the acceleration at O due to the result of part (a) is F/m
(rightward in that figure). Thus, if we choose rightward as positive, then the net acceleration of O
is

aO =
F

m
− 1

2
αL =

F

m
− 1

2

(

2F

mL

)

L = 0 .

(d) Point O stays relatively stationary in the batting process, and that might be possible due to a
force exerted by the batter or due to a finely tuned cancellation such as we have shown here. We
assumed that the batter exerted no force, and our first expectation is that the impulse delivered by
the impact would make all points on the bat go into motion, but for this particular choice of impact
point, we have seen that the point being held by the batter is naturally stationary and exerts no
force on the batter’s hands which would otherwise have to “fight” to keep a good hold of it.

67. Since ω = 2πf where f = 2.2 Hz, we find that the angular frequency is ω = 13.8 rad/s. Thus, with
x = 0.010 m, the acceleration amplitude is am = xmω

2 = 1.91 m/s2. We set up a ratio:

am =

(

am

g

)

g =

(

1.91

9.8

)

g = 0.19g .

68. We adjust the phase constant φ in Eq. 16-3 so that x = −xm when t = 0.

−xm = xm cosφ =⇒ φ = π rad .

We also note that ω = 2π/T = 5π rad/s.

(a) With this information, Eq. 16-3 becomes

x = 0.10 cos (5πt+ π)

where t is in seconds and x is in meters.

(b) By taking the derivative of the previous expression (or by plugging into Eq. 16-6) we have

v = −0.50π sin (5πt+ π)

with SI units again understood. Both of these expression can be simplified using standard trig
identities.

69. (a) We are told

e−bt/2m =
3

4
where t = 4T

where T = 2π/ω′ ≈ 2π
√

m/k (neglecting the second term in Eq. 16.41). Thus,

T ≈ 2π
√

(2.00 kg)/(10.0 N/m) = 2.81 s

and we find

b(4T )

2m
= ln

(

4

3

)

= 0.288 =⇒ b =
2(2.00)(0.288)

4(2.81)
= 0.102 kg/s .
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(b) Initially, the energy is Eo = 1
2kx

2
m o = 1

2 (10.0)(0.250)2 = 0.313 J. At t = 4T , E = 1
2k(

3
4xm o )2 =

0.176 J. Therefore, Eo − E = 0.137 J.

70. (a) Sample Problem 16-7 gives b = 0.070 kg/s, m = 0.25 kg and k = 85 N/m, and notes that b≪
√
km

which implies ω′ ≈ ω =
√

k/m (and, as will be important below, b/m≪ ω). Thus, from Eq. 16-40,
we find

v =
dx

dt
= xm

(−b
2m

)

e−bt/2m cos(ωt+ φ)− ωxme
−bt/2m sin(ωt+ φ)

where the first term is considered negligible (b/2m≪ ω) and we write

v ≈ −ωxme
−bt/2m sin(ωt+ φ) =⇒ vm = ωxme

−bt/2m .

Thus, the ratio of maximum values of forces is

Fm damp

Fm spring
=

bvm

kxme−bt/2m
≈ bω

k
=

b√
km

= 0.015 .

(b) The ratio of force amplitudes found in part (a) displays no time dependence, implying there is no
(or, since approximations were made, approximately no) change in the ratio as the system undergoes
further oscillations.

71. We take derivatives and let dg ≈ ∆g and dT ≈ ∆T . The derivative of Eq. 16-28 is

dT

dg
= 2π

(

1

2

) −L/g2

√

L/g

which (after dividing the left side by T and the right side by 2π
√

L/g) can be written

∆T

T
= − 1

2

∆g

g

where both sides have also been multiplied by dg → ∆g. To make the units consistent, we write

∆T

T
=

2.5 min

1 day
=

2.5 min

1440 min
= 0.00174 .

Therefore, with g = 9.81 m/s2, we obtain

0.00174 = − 1

2

∆g

9.81 m/s2
=⇒ ∆g = −0.034 m/s2

which yields g′ = g + ∆g = 9.78 m/s2.

72. The speed of the submarine going eastward is

veast = vequator + vsub

where vsub = 16000/3600 = 4.44 m/s. The term vequator is the speed that any point at the equator (at
radius R = 6.37 × 106 m) would have in order to keep up with the spinning earth. With T = 1 day =
86400 s, we note that vequator = Rω = R2π/T = 463 m/s and is much larger than vsub . Similarly, when
it travels westward, its speed is

vwest = vequator − vsub .

The effective gravity ge (or apparent gravity) combines the gravitational pull of the earth g (which
cancels when we take the difference) and the effect of the centripetal acceleration v2/R. Considering the
two motions of the submarine, the difference is therefore

∆ge = g′e − ge =
v2
east

R
− v2

west

R

=
1

R

(

(vequator + vsub)
2 − (vequator − vsub)

2
)

=
4vequatorvsub

R
=

8πvsub

T
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where in the last step we have used vequator = R2π/T . Consequently, we find

∆ge

g
=

8πvsub

gT
=

8π(4.44)

(9.8)(86400)
= 1.3× 10−4 .

The problem asks for ∆g/g for either travel direction, and since our computation examines eastward
travel as opposed to westward travel, then we infer that either-way travel versus no-travel should be half
of our result. Thus, the answer to the problem is 1

2 (1.3× 10−4 ) = 6.6× 10−5.

73. (a) The graph makes it clear that the period is T = 0.20 s.

(b) Eq. 16-13 states

T = 2π

√

m

k
.

Thus, using the result from part (a) with k = 200 N/m, we obtain m = 0.203 ≈ 0.20 kg.

(c) The graph indicates that the speed is (momentarily) zero at t = 0, which implies that the block
is at x0 = ±xm. From the graph we also note that the slope of the velocity curve (hence, the
acceleration) is positive at t = 0, which implies (from ma = −kx) that the value of x is negative.
Therefore, with xm = 0.20 m, we obtain x0 = −0.20 m.

(d) We note from the graph that v = 0 at t = 0.10 s, which implied a = ±am = ±ω2xm. Since
acceleration is the instantaneous slope of the velocity graph, then (looking again at the graph) we

choose the negative sign. Recalling ω2 = k/m we obtain a = −197 ≈ −200 m/s2.

(e) The graph shows vm = 6.28 m/s, so

Km =
1

2
mv2

m = 4.0 J .

74. (a) The Hooke’s law force (of magnitude (100)(0.30) = 30 N) is directed upward and the weight (20 N)
is downward. Thus, the net force is 10 N upward.

(b) The equilibrium position is where the upward Hooke’s law force balances the weight, which cor-
responds to the spring being stretched (from unstretched length) by 20 N/100 N/m = 0.20 m.
Thus, relative to the equilibrium position, the block (at the instant described in part (a)) is at
what one might call the bottom turning point (since v = 0) at x = −xm where the amplitude is
xm = 0.30− 0.20 = 0.10 m.

(c) Using Eq. 16-13 with m = W/g ≈ 2.0 kg, we have

T = 2π

√

m

k
= 0.90 s .

(d) The maximum kinetic energy is equal to the maximum potential energy 1
2kx

2
m. Thus,

Km = Um =
1

2
(100 N/m)(0.10 m)2 = 0.50 J .

75. (a) Comparing with Eq. 16-3, we see ω = 10 rad/s in this problem. Thus, f = ω/2π = 1.6 Hz.

(b) Since vm = ωxm and xm = 10 cm (see Eq. 16-3), then vm = (10 rad/s)(10 cm) = 100 cm/s or
1.0 m/s.

(c) Since am = ω2xm then vm = (10 rad/s)2(10 cm) = 1000 cm/s2 or 10 m/s2.

(d) The acceleration extremes occur at the displacement extremes: x = ±xm or x = ±10 cm.

(e) Using Eq. 16-12, we find

ω =

√

k

m
=⇒ k = (0.10 kg)(10 rad/s)2 = 10 N/m .

Thus, Hooke’s law gives F = −kx = −10x in SI units.
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76. (a) We take the x axis along the tunnel, with x = 0 at the middle. At any instant during the train’s
motion, it is a distance r from the center of Earth, and we can think of this as a vector ~r pointing
from the train to the Earth’s center. We neglect any effects associated with the spinning of Earth
(which has mass M and radius R). Based on the theory of Ch. 14, we know that the magnitude of
gravitational force on the train of mass mo at any instant is

|Fg| =
GmoM

(

r3/R3
)

r2
=
GmoMr

R3
.

It is only the horizontal component of this force which leads to acceleration/deceleration of the
train, so a cos θ factor (with θ giving the angle of ~r measured from the x axis) must be included,
and we can relate cos θ = x/r and obtain

moa = Fx = − GmoMr

R3

x

r

where the minus sign is necessary because the force pulls towards the x = 0 position, so when the
train is, say, at a large negative value of x the force is in the positive x direction (towards the origin
of the x axis). The above expression simplifies to exactly the form (Eq. 16-8) required for simple
harmonic motion:

a = −ω2x where ω =

√

GM

R3
.

Since a full cycle of the motion would return the train to its starting point, then a half cycle is
required to travel from the departure city to the destination city. Therefore, ttravel = 1

2T .

(b) Since T = 2π/ω, we obtain

ttravel = π

√

R3

GM
= π

√

(6.37× 106)
3

(6.67× 10−11) (5.98× 1024)

which yields 2530 s or 42 min.

77. Using ∆m = 2.0 kg, T1 = 2.0 s and T2 = 3.0 s, we write

T1 = 2π

√

m

k
and T2 = 2π

√

m+ ∆m

k
.

Dividing one relation by the other, we obtain

T2

T1
=

√

m+ ∆m

m

which (after squaring both sides) simplifies to

m =
∆m

(

T2

T1

)2

− 1
= 1.6 kg .

78. (a) Hooke’s law readily yields (0.300 kg)(9.8 m/s2)/(0.0200 m) = 147 N/m.

(b) With m = 2.00 kg, the period is

T = 2π

√

m

k
= 0.733 s .

79. Since T = 0.500 s, we note that ω = 2π/T = 4π rad/s. We work with SI units, so m = 0.0500 kg and
vm = 0.150 m/s.



442 CHAPTER 16.

(a) Since ω =
√

k/m, the spring constant is

k = ω2m = (4π)2(0.0500) = 7.90 N/m .

(b) We use the relation vm = xmω and obtain

xm =
vm

ω
=

0.150

4π
= 0.0119 m .

(c) The frequency is f = ω/2π = 2.00 Hz (which is equivalent to f = 1/T ).

80. (a) Hooke’s law provides the spring constant: k = (20 N)/(0.20 m) = 100 N/m.

(b) The attached mass is m = (5.0 N)/(9.8 m/s2) = 0.51 kg. Consequently, Eq. 16-13 leads to

T = 2π

√

m

k
= 2π

√

0.51

100
= 0.45 s .

81. Since a mole of silver atoms has a mass of 0.108 kg, then the mass of one atom is

m =
0.108 kg

6.02× 1023
= 1.8× 10−25 kg .

Using Eq. 16-12 and the fact that f = ω/2π, we have

1× 1013 Hz =
1

2π

√

k

m
=⇒ k =

(

2π × 1013
)2 (

1.8× 10−25
)

≈ 7.1× 102 N/m .

82. (a) Hooke’s law provides the spring constant: k = (4.00 kg)(9.8 m/s2)/(0.160 m) = 245 N/m.

(b) The attached mass is m = 0.500 kg. Consequently, Eq. 16-13 leads to

T = 2π

√

m

k
= 2π

√

0.500

245
= 0.284 s .

83. (a) By Eq. 16-13, the mass of the block is

mb =
kT 2

0

4π2
= 2.43 kg .

Therefore, with mp = 0.50 kg, the new period is

T = 2π

√

mp +mb

k
= 0.44 s .

(b) The speed before the collision (since it is at its maximum, passing through equilibrium) is v0 = xmω0

where ω0 = 2π/T0; thus, v0 = 3.14 m/s. Using momentum conservation (along the horizontal
direction) we find the speed after the collision.

V = v0
mb

mp +mb
= 2.61 m/s .

The equilibrium position has not changed, so (for the new system of greater mass) this represents
the maximum speed value for the subsequent harmonic motion: V = x′mω where ω = 2π/T =
14.3 rad/s. Therefore, x′m = 0.18 m.

84. The period is the time for one oscillation: T = 180/72 = 2.5 s. Thus, by Eq. 16-28, we have

T = 2π

√

L

g
=⇒ g = L

(

2π

T

)2

= 9.47 m/s2 .



443

85. Using Eq. 16-12, we find ω =
√

k/m = 10 rad/s. We also use vm = xmω and am = xmω
2.

(a) The amplitude (meaning “displacement amplitude”) is xm = vm/ω = 3/10 = 0.30 m.

(b) The acceleration-amplitude is am = (0.30)(10)2 = 30 m/s2.

(c) One interpretation of this question is “what is the most negative value of the acceleration?” in
which case the answer is −am = −30 m/s2. Another interpretation is “what is the smallest value
of the absolute-value of the acceleration?” in which case the answer is zero.

(d) Since the period is T = 2π/ω = 0.628 s. Therefore, seven cycles of the motion requires t = 7T =
4.4 s.

86. We find that the spring constant is k = mg/h. Thus, Eq. 16-13 becomes

T = 2π

√

m

k
= 2π

√

m

(mg/h)
2π

√

h

g

which we recognize as the period formula for a simple pendulum of length h (see Eq. 16-28).

87. Using Eq. 16-28, we obtain

L = g

(

T

2π

)2

= (9.75)

(

1.50

2π

)2

= 0.556 m .

88. Using Eq. 16-29 and the parallel-axis formula for rotational inertia, we have

I = 2π

√

Icm +mh2

mgh
= 2π

√

L2

12gh
+
h

g

where we have used the fact (from Ch. 11) that Icm = mL2/12 for a uniform rod. We wish to minimize
by taking the derivative and setting equal to zero, but we observe that this is done more easily if we
consider I2 (the square of the above expression) instead of I. Thus,

dI2

dh
= 0 = 4π2

(

− L2

12gh2
+

1

g

)

which leads to

0 = − L2

12h2
+ 1 =⇒ h =

L√
12
≈ 0.29L .

89. To use Eq. 16-29 we need to locate the center of mass and we need to compute the rotational inertia
about A. The center of mass of the stick shown horizontal in the figure is at A, and the center of mass of
the other stick is 0.50 m below A. The two sticks are of equal mass so the center of mass of the system
is h = 1

2 (0.50) = 0.25 m below A, as shown in the figure. Now, the rotational inertia of the system is
the sum of the rotational inertia I1 of the stick shown horizontal in the figure and the rotational inertia
I2 of the stick shown vertical. Thus, we have

I = I1 + I2 =
1

12
ML2 +

1

3
ML2 =

5

12
ML2

where L = 1.00 m and M is the mass of a meter stick (which cancels in the next step). Now, with
m = 2M (the total mass), Eq. 16-29 yields

T = 2π

√

5
12ML2

2Mgh
= 2π

√

5L

6g

where h = L/4 was used. Thus, T = 1.83 s.
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90. The period formula, Eq. 16-29, requires knowing the distance h from the axis of rotation and the center of
mass of the system. We also need the rotational inertia I about the axis of rotation. From Figure 16-53,
we see h = L+R where R = 0.15 m. Using the parallel-axis theorem, we find

I =
1

2
MR2 +M (L+R)

2
where M = 1.0 kg .

Thus, Eq. 16-29, with T = 2.0 s, leads to

2.0 = 2π

√

1
2MR2 +M (L+R)

2

Mg (L+R)

which leads to L = 0.8315 m.

91. (a) From Eq. 16-12, T = 2π
√

m/k = 0.45 s.

(b) For a vertical spring, the distance between the unstretched length and the equilibrium length (with
a mass m attached) is mg/k, where in this problem mg = 10 N and k = 200 N/m (so that the
distance is 0.05 m). During simple harmonic motion, the convention is to establish x = 0 at the
equilibrium length (the middle level for the oscillation) and to write the total energy without any
gravity term; i.e.,

E = K + U where U =
1

2
kx2 .

Thus, as the block passes through the unstretched position, the energy is E = 2.0 + 1
2k(0.05)2 =

2.25 J. At its topmost and bottommost points of oscillation, the energy (using this convention) is
all elastic potential: 1

2kx
2
m. Therefore, by energy conservation,

2.25 =
1

2
kx2

m =⇒ xm = ±0.15 m .

This gives the amplitude of oscillation as 0.15 m, but how far are these points from the unstretched

position? We add (or subtract) the 0.05 m value found above and obtain 0.10 m for the top-most
position and 0.20 m for the bottom-most position.

(c) As noted in part (b), xm = ±0.15 m.

(d) The maximum kinetic energy equals the maximum potential energy (found in part (b)) and is equal
to 2.25 J.

92. (a) Eq. 16-21 leads to

E =
1

2
kx2

m =⇒ xm =

√

2E

k
=

√

2(4.0)

200
= 0.020 m .

(b) Since T = 2π
√

m/k = 2π
√

0.80/200 ≈ 0.4 s, then the block completes 10/0.4 = 25 cycles during
the specified interval.

(c) The maximum kinetic energy is the total energy, 4.0 J.

(d) This can be approached more than one way; we choose to use energy conservation:

E = K + U =⇒ 4.0 =
1

2
mv2 +

1

2
kx2 .

Therefore, when x = 0.15 m, we find v = 2.1 m/s.

93. (a) The rotational inertia of a uniform rod with pivot point at its end is I = mL2/12 +mL2 = 1
3ML2.

Therefore, Eq. 16-29 leads to

T = 2π

√

1
3ML2

Mg(L/2)
=⇒ L =

3gT 2

8π2

so that L = 0.84 m.
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(b) By energy conservation

Ebottom of swing = Eend of swing

Km = Um

where U = Mgℓ (1− cos θ) with ℓ being the distance from the axis of rotation to the center of mass.
If we use the small angle approximation (cos θ ≈ 1− 1

2θ
2 with θ in radians (Appendix E)), we obtain

Um = (0.5)(9.8)

(

L

2

)(

1

2
θ2m

)

where θm = 0.17 rad. Thus, Km = Um = 0.031 J. If we calculate (1− cos θ) straightforwardly
(without using the small angle approximation) then we obtain within 0.3% of the same answer.

94. From Eq. 16-23 (in absolute value) we find the torsion constant:

κ =
∣

∣

∣

τ

θ

∣

∣

∣ =
0.20

0.85
= 0.235

in SI units. With I = 2mR2/5 (the rotational inertia for a solid sphere – from Chapter 11), Eq. 16-23
leads to

T = 2π

√

2
5 mR2

κ
= 2π

√

2
5 (95)(0.15)2

0.235
= 12 s .

95. The time for one cycle is T = (50 s)/20 = 2.5 s. Thus, from Eq. 16-23, we find

I = κ

(

T

2π

)2

= (0.50)

(

2.5

2π

)2

= 0.079 kg·m2 .

96. The distance from the relaxed position of the bottom end of the spring to its equilibrium position when
the body is attached is given by Hooke’s law: ∆x = F/k = (0.20 kg)(9.8 m/s2)/(19 N/m) = 0.103 m.

(a) The body, once released, will not only fall through the ∆x distance but continue through the
equilibrium position to a “turning point” equally far on the other side. Thus, the total descent of
the body is 2∆x = 0.21 m.

(b) Since f = ω/2π, Eq. 16-12 leads to

f =
1

2π

√

k

m
= 1.6 Hz .

(c) The maximum distance from the equilibrium position is the amplitude: xm = ∆x = 0.10 m.

97. The rotational inertia of a uniform rod with pivot point at its end is I = mL2/12 + mL2 = 1
3ML2.

Therefore, Eq. 16-29 leads to

T0 = 2π

√

1
3ML2

Mg(L/2)
= 2π

√

2L

3g
.

If we replace L with L/2 (for the case where half has been cut off) then the new period is T = 2π
√

L/3g.
Since frequency is the reciprocal of the period, then T0/T = f/f0 which leads to

f

f0
=

2π
√

2L/3g

2π
√

L/3g
=⇒ f = f0

√
2 .

98. We note that for a horizontal spring, the relaxed position is the equilibrium position (in a regular simple
harmonic motion setting); thus, we infer that the given v = 5.2 m/s at x = 0 is the maximum value vm

(which equals ωxm where ω =
√

k/m = 20 rad/s).
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(a) Since ω = 2πf , we find f = 3.2 Hz.

(b) We have vm = 5.2 = (20)xm, which leads to xm = 0.26 m.

(c) With meters, seconds and radians understood,

x = 0.26 cos (20t+ φ)

v = −5.2 sin (20t+ φ)

The requirement that x = 0 at t = 0 implies (from the first equation above) that either φ = +π/2
or φ = −π/2. Only one of these choices meets the further requirement that v > 0 when t = 0; that
choice is φ = −π/2. Therefore,

x = 0.26 cos
(

20t− π

2

)

= 0.26 sin (20t) .

99. (a) The potential energy at the turning point is equal (in the absence of friction) to the total kinetic
energy (translational plus rotational) as it passes through the equilibrium position:

1

2
kx2

m =
1

2
Mv2

cm +
1

2
Icmω

2

=
1

2
Mv2

cm +
1

2

(

1

2
MR2

)

(vcm
R

)2

=
1

2
Mv2

cm +
1

4
Mv2

cm =
3

4
Mv2

cm .

which leads to Mv2
cm = 2kx2

m/3 = 0.125 J. The translational kinetic energy is therefore 1
2Mv2

cm =
kx2

m/3 = 0.0625 J.

(b) And the rotational kinetic energy is 1
4Mv2

cm = kx2
m/6 = 0.03125 J.

(c) In this part, we use vcm to denote the speed at any instant (and not just the maximum speed as
we had done in the previous parts). Since the energy is constant, then

dE

dt
= 0

d

dt

(

3

4
Mv2

cm

)

d

dt

(

1

2
kx2

)

= 0

3

2
Mvcmacm + kxvcm = 0

which leads to

acm = −
(

2k

3M

)

x .

Comparing with Eq. 16-8, we see that ω =
√

2k/3M for this system. Since ω = 2π/T , we obtain

the desired result: T = 2π
√

3M/2k.

100. Eq. 16-28 gives T = 2π
√

L/g. Replacing L by L/2 gives the new period T ′ = 2π
√

L/2g. The ratio is

T ′

T
=

2π
√

L/2g

2π
√

L/g
=

1√
2
.

Therefore, we conclude that T ′ = T/
√

2.

101. (a) We require U = 1
2E at some value of x. Using Eq. 16-21, this becomes

1

2
kx2 =

1

2

(

1

2
kx2

m

)

=⇒ x =
xm√

2
.

We compare the given expression x as a function of t with Eq. 16-3 and find xm = 5.0 m. Thus,
the value of x we seek is x = 5.0/

√
2 ≈ 3.5 m.
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(b) We solve the given expression (with x = 5.0/
√

2), making sure our calculator is in radians mode:

t =
π

4
+

3

π
cos−1

(

1√
2

)

= 1.54 s .

Since we are asked for the interval teq− t where teq specifies the instant the particle passes through
the equilibrium position, then we set x = 0 and find

teq =
π

4
+

3

π
cos−1(0) = 2.29 s .

Consequently, the time interval is teq − t = 0.75 s.

102. (a) From the graph, it is clear that xm = 0.30 m.

(b) With F = −kx, we see k is the (negative) slope of the graph – which is 75/0.30 = 250 N/m.
Plugging this into Eq. 16-13 yields

T = 2π

√

m

k
= 0.28 s .

(c) As discussed in §16-2, the maximum acceleration is

am = ω2xm =
k

m
xm = 150 m/s

2
.

Alternatively, we could arrive at this result using am =
(

2π
T

)2
xm.

(d) Also in §16-2 is vm = ωxm so that the maximum kinetic energy is

Km =
1

2
mv2

m =
1

2
mω2x2

m =
1

2
kx2

m

which yields 11.3 ≈ 11 J. We note that the above manipulation reproduces the notion of energy
conservation for this system (maximum kinetic energy being equal to the maximum potential en-
ergy).

103. Since the particle has zero speed (momentarily) at x 6= 0, then it must be at its turning point; thus,
xo = xm = 0.37 cm. It is straightforward to infer from this that the phase constant φ in Eq. 16-2 is
zero. Also, f = 0.25 Hz is given, so we have ω = 2πf = π/2 rad/s. The variable t is understood to take
values in seconds.

(a) The period is T = 1/f = 4.0 s.

(b) As noted above, ω = π
2 rad/s.

(c) The amplitude, as observed above, is 0.37 cm.

(d) Eq. 16-3 becomes x = (0.37) cos(πt/2) in centimeters.

(e) The derivative of x is v = −(0.37)(π/2) sin(πt/2) ≈ (−0.58) sin(πt/2) in centimeters-per-second.

(f) From the previous part, we conclude vm = 0.58 cm/s.

(g) The acceleration-amplitude is am = ω2xm = 0.91 cm/s2.

(h) Making sure our calculator is in radians mode, we find x = (0.37) cos(π(3.0)/2) = 0. It is important
to avoid rounding off the value of π in order to get precisely zero, here.

(i) With our calculator still in radians mode, we obtain v = −(0.58) sin(π(3.0)/2) = 0.58 cm/s.

104. (a) Since no torque is being applied to the system, the angular momentum is constant.
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(b) The maximum ω occurs when the maximum speed v occurs (as it passes through vertical: θ = 0).
The angular momentum of the “particle” may be written as mvr = mr2ω so that conservation of
momentum (applied to the θ = 0 position) leads to

mr2ωmax = mr20ω0,max =⇒ ωmax =
(r0
r

)2

ω0,max

which becomes (with r0 = 0.80 m and ω0,max = 1.30 rad/s) ωmax = 0.832/r2 in SI units.

(c) The maximum kinetic energy occurs at this same position: Kmax = 1
2mv

2
max which we write as

Kmax =
1

2
mr2ω2

max =
1

2
mr2

(

(r0
r

)2

ω0,max

)2

=
mr40ω

2
0,max

2 r2
.

(d) We note from the previous result that Kmax depends inversely on r2, so it decreases as r increases.

(e) Measuring height h from the low point of the swing, consideration of the geometry leads to the
relation h = r(1−cos θ). The maximum height is therefore related to the maximum angle (measured
from vertical) by

hmax = r (1− cos θmax )

which means the maximum potential energy (which must equal the same numerical value as the
maximum kinetic energy if we assume mechanical energy conservation) is

Umax = Kmax = mghmax = mgr (1− cos θmax ) .

(f) Combining the results of part (c) and part (e), we obtain

mr40ω
2
0,max

2 r2
= mgr (1− cos θmax ) =⇒ θmax = cos−1

(

1− r40ω
2
0,max

2gr3

)

which evaluates to be θmax = cos−1 (1− 0.0353/r3 ) in SI units.

(g) As can be seen in the graph below, the angle of the pendulum “turning point” decreases as the
pendulum lengthens (note that r is in meters).

2

4

6

8

10

12

14

16

18

20

max_angle_degrees

1 2 3 4 5
pendulum_length_r

(h) The original value of θmax is cos−1 (1− 0.0353/r30) where r0 = 0.80 m. This gives 21.4◦ as the
initial “turning point” angle. The question, then, asks us to solve for r in the case that θmax =
1
2 (21.4◦) = 10.7◦. We know to look for half the initial value (as opposed to one twice as big) because
the previous part shows θmax decreases with r. This value of the turning point angle occurs for

r =

(

0.0353

1− cos 10.7◦

)1/3

= 1.27 m .

(i) The angle θmax is measured from vertical, so the horizontal sweep involves sin θmax . From one
turning point to the opposite one covers a horizontal distance of ∆x = 2r sin θmax .



449

(j) Plugging in from part (f), we find

∆x = 2r sin

(

cos−1

(

1−
r40ω

2
0,max

2gr3

))

=
r20ω0,max

gr2

√

4gr3 − r40ω2
0,max

where that last equality is (depending on one’s viewpoint) a simplification and should not viewed
as a necessary step. With r0 = 0.80 m and ω0,max = 1.30 rad/s, we plot this expression (with r
and ∆x (the horizontal sweep) in meters) and see that it is a decreasing function.

0.25

0.3

0.35

0.4

0.45

0.5

0.55

horizontal_sweep

1 2 3 4 5
pendulum_length_r

(k) When r = r0 we find ∆x0 = 0.584 m. Any later value must be smaller (according to the above
graph), so we seek a value of r that gives half of ∆x0 (that is, ∆x = 0.292 m). If we numerically
solve the expression in the previous part for r in the range 0.8 m ≤ r ≤ 5 m, we obtain r = 3.31 m.

(l) Returning to part (b) with vmax = rωmax we obtain

vmax =

(

r20
r

)

ω0,max =
0.832 m2/s

r
.

(m) This result is again a decreasing function of r. We graph vmax versus r (with SI units understood)
below.
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0.8

1
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1 2 3 4 5
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(n) When r = r0 we find vmax = 1.04 m/s. Any later value must be smaller (according to the above
graph), so we seek a value of r that gives vmax = 0.520 m. This can be solved for algebraically:

r =
0.832

0.520
= 1.60 m .

(o) If we do not examine changes in perspective (the fact that the blade is getting closer to the observer),
then Poe’s description must be considered misleading. We have found that the angular swing, the
horizontal sweep and the maximum speed should decrease as r increases, which is contrary to the
description given in Poe’s story.
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Chapter 17

1. (a) The angular wave number is

k =
2π

λ
=

2π

1.80 m
= 3.49 m−1 .

(b) The speed of the wave is

v = λf =
λω

2π
=

(1.8 m)(110 rad/s)

2π
= 31.5 m/s .

2. (a) For visible light

fmin =
c

λmax
=

3.0× 108 m/s

700× 10−9 m
= 4.3× 1014 Hz

and

fmax =
c

λmin
=

3.0× 108 m/s

400× 10−9 m
= 7.5× 1014 Hz .

(b) For radio waves

λmin =
c

λmax
=

3.0× 108 m/s

300× 106 Hz
= 1.0 m

and

λmax =
c

λmin
=

3.0× 108 m/s

1.5× 106 Hz
= 2.0× 102 m .

(c) For X rays

fmin =
c

λmax
=

3.0× 108 m/s

5.0× 10−9 m
= 6.0× 1016 Hz

and

fmax =
c

λmin
=

3.0× 108 m/s

1.0× 10−11 m
= 3.0× 1019 Hz .

3. (a) The motion from maximum displacement to zero is one-fourth of a cycle so 0.170 s is one-fourth of
a period. The period is T = 4(0.170 s) = 0.680 s.

(b) The frequency is the reciprocal of the period:

f =
1

T
=

1

0.680 s
= 1.47 Hz .

(c) A sinusoidal wave travels one wavelength in one period:

v =
λ

T
=

1.40 m

0.680 s
= 2.06 m/s .

451
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4. Since the wave is traveling in the −x direction, the argument of the trig function is kx + ωt instead of
kx− ωt (as in Eq. 17-2).

y(x, t) = ym sin(kx+ ωt) = ym sin

[

2πf
(x

v
+ t
)

]

= (0.010 m) sin

[

2π(550 Hz)

(

x

330 m/s
+ t

)]

= 0.010 m sin[π(3.33x+ 1100t)]

where x is in meters and t is in seconds.

5. We substitute ω = kv into y = ym sin(kx− ωt) to obtain

y = ym sin(kx− kvt) = ym sink(x− vt) .

We put k = 2π/λ and ω = 2πf into y = ym sin(kx− ωt) and obtain

y = ym sin

(

2πx

λ
− 2πft

)

= ym sin 2π
(x

λ
− ft

)

.

When we substitute k = ω/v into y = ym sin(kx− ωt), we find

y = ym sin
(ωx

v
− ωt

)

= ym sinω
(x

v
− t
)

.

Finally, we substitute k = 2π/λ and ω = 2π/T into y = ym sin(kx− ωt) to get

y = ym sin

(

2πx

λ
− 2πt

T

)

= ym sin 2π

(

x

λ
− t

T

)

.

6. (a) The amplitude is ym = 6.0 cm.

(b) We find λ from 2π/λ = 0.020π: λ = 100 cm.

(c) Solving 2πf = ω = 4.0π, we obtainf = 2.0 Hz.

(d) The wavespeed is v = λf = (100 cm)(2.0 Hz) = 200 cm/s.

(e) The wave propagates in the negative x direction, since the argument of the trig function is kx+ωt
instead of kx− ωt (as in Eq. 17-2).

(f) The maximum transverse speed (found from the time derivative of y) is

umax = 2πfym =
(

4.0π s−1
)

(6.0 cm) = 75 cm/s .

(g) y(3.5 cm, 0.26 s) = (6.0 cm) sin[0.020π(3.5) + 4.0π(0.26)] = −2.0 cm.

7. (a) We write the expression for the displacement in the form y(x, t) = ym sin(kx−ωt). A negative sign
is used before the ωt term in the argument of the sine function because the wave is traveling in the
positive x direction. The angular wave number k is k = 2π/λ = 2π/(0.10 m) = 62.8 m−1 and the
angular frequency is ω = 2πf = 2π(400 Hz) = 2510 rad/s. Here λ is the wavelength and f is the
frequency. The amplitude is ym = 2.0 cm. Thus

y(x, t) = (2.0 cm) sin
((

62.8 m−1
)

x−
(

2510 s−1
)

t
)

.

(b) The (transverse) speed of a point on the cord is given by taking the derivative of y:

u(x, t) =
∂y

∂t
= −ωym cos(kx− ωt)

which leads to a maximum speed of um = ωym = (2510 rad/s)(0.020 m) = 50 m/s.
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(c) The speed of the wave is

v =
λ

T
=
ω

k
=

2510 rad/s

62.8 m−1
= 40 m/s .

8. (a) The figure in the book makes it clear that the period is T = 10 s and the amplitude is ym = 4.0 cm.
The phase constant φ is more subtly determined by that figure: what is shown is 4 sinωt, yet what
follows from Eq. 17-2 (without the phase constant) should be 4 sin(−ωt) at x = 0. Thus, we need
the phase constant φ = π since 4 sin(−ωt+ π) = 4 sin(ωt)). Therefore, we use Eq. 17-2 (modified
by the inclusion of φ) with k = 2π/λ = π/10 (in inverse centimeters) and ω = 2π/T = π/5 (in
inverse seconds). In the graph below we plot the equation for t = 0 over the range 0 ≤ x ≤ 20 cm,
making sure our calculator is in radians mode.
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(b) Since the frequency is f = 1/T = 0.10 s, the speed of the wave is v = fλ = 2.0 cm/s.

(c) Using the observations made in part (a), Eq. 17-2 becomes

y = 4.0 sin

(

πx

10
− πt

5
+ π

)

= −4.0 sin

(

πx

10
− πt

5

)

where y and x are in centimeters and t is in seconds.

(d) Taking the derivative of y with respect to t, we find

u =
∂y

∂t
= 4.0

(π

t

)

cos

(

πx

10
− πt

5

)

which (evaluated at (x, t) = (0, 5.0), making sure our calculator is in radians mode) yields u =
−2.5 cm/s.

9. Using v = fλ, we find the length of one cycle of the wave is λ = 350/500 = 0.700 m = 700 mm. From
f = 1/T , we find the time for one cycle of oscillation is T = 1/500 = 2.00× 10−3 s = 2.00 ms.

(a) A cycle is equivalent to 2π radians, so that π/3 rad corresponds to one-sixth of a cycle. The
corresponding length, therefore, is λ/6 = 700/6 = 117 mm.

(b) The interval 1.00 ms is half of T and thus corresponds to half of one cycle, or half of 2π rad. Thus,
the phase difference is (1/2)2π = π rad.

10. The volume of a cylinder of height ℓis V = πr2ℓ = πd2ℓ/4. The strings are long, narrow cylinders, one
of diameter d1 and the other of diameter d2 (and corresponding linear densities µ1 and µ2 ). The mass
is the (regular) density multiplied by the volume: m = ρV , so that the mass-per-unit length is

µ =
m

ℓ
=
ρπd2ℓ/4

ℓ
=
πρd2

4

and their ratio is
µ1

µ2
=
πρd2

1/4

πρd2
2/4

=

(

d1

d2

)2

.
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Therefore, the ratio of diameters is

d1

d2
=

√

µ1

µ2
=

√

3.0

0.29
= 3.2 .

11. The wave speed v is given by v =
√

τ/µ, where τ is the tension in the rope and µ is the linear
mass density of the rope. The linear mass density is the mass per unit length of rope: µ = m/L =
(0.0600 kg)/(2.00 m) = 0.0300 kg/m. Thus

v =

√

500 N

0.0300 kg/m
= 129 m/s .

12. From v =
√

τ/µ, we have

vnew

vold
=

√

τnew/µnew
√

τold/µold

=
√

2 .

13. (a) The wave speed is given by v = λ/T = ω/k, where λ is the wavelength, T is the period, ω is the
angular frequency (2π/T ), and k is the angular wave number (2π/λ). The displacement has the form
y = ym sin(kx+ ωt), so k = 2.0 m−1 and ω = 30 rad/s. Thus v = (30 rad/s)/(2.0 m−1) = 15 m/s.

(b) Since the wave speed is given by v =
√

τ/µ, where τ is the tension in the string and µ is the linear
mass density of the string, the tension is

τ = µv2 =
(

1.6× 10−4 kg/m
)

(15 m/s)2 = 0.036 N .

14. (a) Comparing with Eq. 17-2, we see that k = 20/m and ω = 600/s. Therefore, the speed of the wave
is (see Eq. 17-12) v = ω/k = 30 m/s.

(b) From Eq. 17-25, we find

µ =
τ

v2
=

15

302
= 0.017 kg/m = 17 g/m .

15. We write the string displacement in the form y = ym sin(kx + ωt). The plus sign is used since the
wave is traveling in the negative x direction. The frequency is f = 100 Hz, so the angular frequency is
ω = 2πf = 2π(100 Hz) = 628 rad/s. The wave speed is given by v =

√

τ/µ, where τ is the tension in

the string and µ is the linear mass density of the string, so the wavelength is λ = v/f =
√

τ/µ/f and
the angular wave number is

k =
2π

λ
= 2πf

√

µ

τ
= 2π(100 Hz)

√

0.50 kg/m

10 N
= 141 m−1 .

The amplitude is ym = 0.12 mm. Thus

y = (0.12 mm) sin
[

(141 m−1)x+ (628 s−1)t
]

.

16. Let the cross-sectional area of the wire be A and the density of steel be ρ. The tensile stress is given by
τ/A where τ is the tension in the wire. Also, µ = ρA. Thus,

vmax =

√

τmax

µ
=

√

τmax/A

ρ

=

√

7.0× 108 N/m
2

7800 kg/m
3 = 3.0× 102 m/s

which is indeed independent of the diameter of the wire.
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17. (a) We take the form of the displacement to be y(x, t) = ym sin(kx − ωt). The speed of a point on
the cord is u(x, t) = ∂y/∂t = −ωym cos(kx − ωt) and its maximum value is um = ωym. The wave
speed, on the other hand, is given by v = λ/T = ω/k. The ratio is

um

v
=
ωym

ω/k
= kym =

2πym

λ
.

(b) The ratio of the speeds depends only on the ratio of the amplitude to the wavelength. Different waves
on different cords have the same ratio of speeds if they have the same amplitude and wavelength,
regardless of the wave speeds , linear densities of the cords, and the tensions in the cords.

18. (a) The general expression for y(x, t) for the wave is y(x, t) = ym sin(kx − ωt), which, at x = 10 cm,
becomes y(x = 10 cm, t) = ym sin[k(10 cm − ωt)]. Comparing this with the expression given, we
find ω = 4.0 rad/s, or f = ω/2π = 0.64 Hz.

(b) Since k(10 cm) = 1.0, the wave number is k = 0.10/cm. Consequently, the wavelength is λ =
2π/k = 63 cm.

(c) Substituting the values of k and ω into the general expression for y(x, t), with centimeters and
seconds understood, we obtain

y(x, t) = 5.0 sin (0.10x− 4.0t) .

(d) Since v = ω/k =
√

τ/µ, the tension is

τ =
ω2µ

k2
=

(4.0 g/cm)
(

4.0 s−1
)2

(0.10 cm−1)2
= 6400 g·cm/s2 = 0.064 N .

19. (a) We read the amplitude from the graph. It is about 5.0 cm.

(b) We read the wavelength from the graph. The curve crosses y = 0 at about x = 15 cm and again
with the same slope at about x = 55 cm, so λ = 55 cm− 15 cm = 40 cm = 0.40 m.

(c) The wave speed is v =
√

τ/µ, where τ is the tension in the string and µ is the linear mass density
of the string. Thus,

v =

√

3.6 N

25× 10−3 kg/m
= 12 m/s .

(d) The frequency is f = v/λ = (12 m/s)/(0.40 m) = 30 Hz and the period is T = 1/f = 1/(30 Hz) =
0.033 s.

(e) The maximum string speed is um = ωym = 2πfym = 2π(30 Hz)(5.0 cm) = 940 cm/s = 9.4 m/s.

(f) The string displacement is assumed to have the form y(x, t) = ym sin(kx + ωt + φ). A plus sign
appears in the argument of the trigonometric function because the wave is moving in the negative
x direction. The amplitude is ym = 5.0× 10−2 m, the angular frequency is ω = 2πf = 2π(30 Hz) =
190 rad/s, and the angular wave number is k = 2π/λ = 2π/(0.40 m) = 16 m−1. According to the
graph, the displacement at x = 0 and t = 0 is 4.0 × 10−2 m. The formula for the displacement
gives y(0, 0) = ym sinφ. We wish to select φ so that 5.0× 10−2 sinφ = 4.0× 10−2. The solution is
either 0.93 rad or 2.21 rad. In the first case the function has a positive slope at x = 0 and matches
the graph. In the second case it has negative slope and does not match the graph. We select
φ = 0.93 rad. The expression for the displacement is

y(x, t) = (5.0× 10−2 m) sin
[

(16 m−1)x+ (190 s−1)t+ 0.93
]

.

20. (a) The tension in each string is given by τ = Mg/2. Thus, the wave speed in string 1 is

v1 =

√

τ

µ1
=

√

Mg

2µ1
=

√

(500 g) (9.8 m/s2)

2(3.00 g/m)
= 28.6 m/s .
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(b) And the wave speed in string 2 is

v2 =

√

Mg

2µ2
=

√

(500 g) (9.8 m/s2)

2(5.00 g/m)
= 22.1 m/s .

(c) Let v1 =
√

M1g/(2µ1) = v2 =
√

M2g/(2µ2) and M1 +M2 = M. We solve for M1 and obtain

M1 =
M

1 + µ2/µ1
=

500 g

1 + 5.00/3.00
= 187.5 g ≈ 188 g .

(d) And we solve for the second mass: M2 = M −M1 = 500 g− 187.5 g ≈ 313 g.

21. The pulses have the same speed v. Suppose one pulse starts from the left end of the wire at time t = 0.
Its coordinate at time t is x1 = vt. The other pulse starts from the right end, at x = L, where L is the
length of the wire, at time t = 30 ms. If this time is denoted by t0 then the coordinate of this wave at time
t is x2 = L−v(t− t0). They meet when x1 = x2, or, what is the same, when vt = L−v(t− t0). We solve
for the time they meet: t = (L+vt0)/2v and the coordinate of the meeting point is x = vt = (L+vt0)/2.
Now, we calculate the wave speed:

v =

√

τL

m
=

√

(250 N)(10.0 m)

0.100 kg
= 158 m/s .

Here τ is the tension in the wire and L/m is the linear mass density of the wire. The coordinate of the
meeting point is

x =
10.0 m + (158 m/s)(30× 10−3 s)

2
= 7.37 m .

This is the distance from the left end of the wire. The distance from the right end is L − x = 10 m−
7.37 m = 2.63 m.

22. (a) The wave speed is

v =

√

F

µ
=

√

k∆ℓ

m/(ℓ+ ∆ℓ)
=

√

k∆ℓ(ℓ+ ∆ℓ)

m
.

(b) The time required is

t =
2π(ℓ+ ∆ℓ)

v
=

2π(ℓ+ ∆ℓ)
√

k∆ℓ(ℓ+ ∆ℓ)/m
= 2π

√

m

k

√

1 +
ℓ

∆ℓ
.

Thus if ℓ/∆ℓ≫ 1, then t ∝
√

ℓ/∆ℓ ∝ 1/
√

∆ℓ; and if ℓ/∆ℓ≪ 1, then t ≃ 2π
√

m/k=const.

23. (a) The wave speed at any point on the rope is given by v =
√

τ/µ, where τ is the tension at that
point and µ is the linear mass density. Because the rope is hanging the tension varies from point
to point. Consider a point on the rope a distance y from the bottom end. The forces acting on it
are the weight of the rope below it, pulling down, and the tension, pulling up. Since the rope is in
equilibrium, these forces balance. The weight of the rope below is given by µgy, so the tension is
τ = µgy. The wave speed is v =

√

µgy/µ =
√
gy.

(b) The time dt for the wave to move past a length dy, a distance y from the bottom end, is dt =
dy/v = dy/

√
gy and the total time for the wave to move the entire length of the rope is

t =

∫ L

0

dy√
gy

= 2

√

y

g

∣

∣

∣

∣

∣

L

0

= 2

√

L

g
.
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24. Using Eq. 17-32 for the average power and Eq. 17-25 for the speed of the wave, we solve for f = ω/2π:

f =
1

2πym

√

2Pavg

µ
√

τ/µ

=
1

2π(7.7× 10−3 m)

√

2(85 W)
√

(36 N)(0.260 kg/2.7 m)
= 198 Hz .

25. (a) The displacement of the string is assumed to have the form y(x, t) = ym sin(kx−ωt). The velocity of
a point on the string is u(x, t) = ∂y/∂t = −ωym cos(kx−ωt) and its maximum value is um = ωym.
For this wave the frequency is f = 120 Hz and the angular frequency is ω = 2πf = 2π(120 Hz) =
754 rad/s. Since the bar moves through a distance of 1.00 cm, the amplitude is half of that, or
ym = 5.00× 10−3 m. The maximum speed is um = (754 rad/s)(5.00× 10−3 m) = 3.77 m/s.

(b) Consider the string at coordinate x and at time t and suppose it makes the angle θ with the x axis.
The tension is along the string and makes the same angle with the x axis. Its transverse component
is τtrans = τ sin θ. Now θ is given by tan θ = ∂y/∂x = kym cos(kx − ωt) and its maximum value is
given by tan θm = kym. We must calculate the angular wave number k. It is given by k = ω/v,
where v is the wave speed. The wave speed is given by v =

√

τ/µ, where τ is the tension in the
rope and µ is the linear mass density of the rope. Using the data given,

v =

√

90.0 N

0.120 kg/m
= 27.4 m/s

and

k =
754 rad/s

27.4 m/s
= 27.5 m−1 .

Thus
tan θm = (27.5 m−1)(5.00× 10−3 m) = 0.138

and θ = 7.83◦. The maximum value of the transverse component of the tension in the string is
τtrans = (90.0 N) sin7.83◦ = 12.3 N. We note that sin θ is nearly the same as tan θ because θ is
small. We can approximate the maximum value of the transverse component of the tension by
τkym.

(c) We consider the string at x. The transverse component of the tension pulling on it due to the
string to the left is −τ∂y/∂x = −τkym cos(kx − ωt) and it reaches its maximum value when
cos(kx − ωt) = −1. The wave speed is u = ∂y/∂t = −ωym cos(kx − ωt) and it also reaches its
maximum value when cos(kx − ωt) = −1. The two quantities reach their maximum values at
the same value of the phase. When cos(kx − ωt) = −1 the value of sin(kx − ωt) is zero and the
displacement of the string is y = 0.

(d) When the string at any point moves through a small displacement ∆y, the tension does work
∆W = τtrans ∆y. The rate at which it does work is

P =
∆W

∆t
= τtrans

∆y

∆t
= τtransu .

P has its maximum value when the transverse component τtrans of the tension and the string speed
u have their maximum values. Hence the maximum power is (12.3 N)(3.77 m/s) = 46.4 W.

(e) As shown above y = 0 when the transverse component of the tension and the string speed have
their maximum values.

(f) The power transferred is zero when the transverse component of the tension and the string speed
are zero.

(g) P = 0 when cos(kx − ωt) = 0 and sin(kx − ωt) = ±1 at that time. The string displacement is
y = ±ym = ±0.50 cm.
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26. (a) Let the phase difference be φ. Then from Eq. 17-39, 2ym cos(φ/2) = 1.50ym , which gives

φ = 2 cos−1

(

1.50ym

2ym

)

= 82.8◦ .

(b) Converting to radians, we have φ = 1.45 rad.

(c) In terms of wavelength (the length of each cycle, where each cycle corresponds to 2π rad), this is
equivalent to 1.45 rad/2π = 0.23 wavelength.

27. The displacement of the string is given by y = ym sin(kx−ωt)+ym sin(kx−ωt+φ) = 2ym cos(1
2φ) sin(kx−

ωt+ 1
2φ), where φ = π/2. The amplitude is A = 2ym cos(1

2φ) = 2ym cos(π/4) = 1.41ym.

28. We compare the resultant wave given with the standard expression (Eq. 17-39) to obtain k = 20 m−1 =
2π/λ, 2ym cos(1

2φ) = 3.0 mm, and 1
2φ = 0.820 rad.

(a) Therefore, λ = 2π/k = 0.31 m.

(b) The phase difference is φ = 1.64 rad.

(c) And the amplitude is ym = 2.2 mm.

29. The phasor diagram is shown below: y1m and y2m represent the original waves and ym represents the
resultant wave. The phasors corresponding to the two constituent waves make an angle of 90◦ with
each other, so the triangle is a right triangle. The Pythagorean theorem gives y2

m = y2
1m + y2

2m =
(3.0 cm)2 + (4.0 cm)2 = 25 cm2. Thus ym = 5.0 cm.
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y1m

y2m

ym

•

30. The phasor diagram is shown below. We use the cosine theorem:

y2
m = y2

m1 + y2
m2 − 2ym1ym2 cos θ = y2

m1 + y2
m2 + 2ym1ym2 cosφ .
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.....................

ym1

ym2ym

θ φ
•

We solve for cosφ:

cosφ =
y2

m − y2
m1 − y2

m2

2ym1ym2

=
(9.0 mm)2 − (5.0 mm)2 − (7.0 mm)2

2(5.0 mm)(7.0 mm)

= 0.10 .
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The phase constant is therefore φ = 84◦.

31. (a) The phasor diagram is shown to the right: y1, y2, and y3 represent the original waves and ym

represents the resultant wave. The horizontal component of the resultant is ymh = y1 − y3 =
y1 − y1/3 = 2y1/3. The vertical component is ymv = y2 = y1/2. The amplitude of the resultant is

ym =
√

y2
mh + y2

mv =

√

(

2y1
3

)2

+

(

y1
2

)2

=
5

6
y1 = 0.83y1 .
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•
y1

y2

y3

ym

(b) The phase constant for the resultant is

φ = tan−1 ymv

ymh
= tan−1

(

y1/2

2y1/3

)

= tan−1 3

4
= 0.644 rad = 37◦ .

(c) The resultant wave is

y =
5

6
y1 sin(kx− ωt+ 0.644 rad) .

The graph below shows the wave at time t = 0. As time goes on it moves to the right with speed
v = ω/k.
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32. Use Eq. 17-53 (for the resonant frequencies) and Eq. 17-25 (v =
√

τ/µ) to find fn :

fn =
nv

2L
=

n

2L

√

τ

µ

which gives f3 = (3/2L)
√

τi/µ.

(a) When τf = 4τi, we get the new frequency

f ′
3 =

3

2L

√

τf
µ

= 2f3 .
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(b) And we get the new wavelength

λ′3 =
v′

f ′
3

=
2L

3
= λ3 .

33. (a) Eq. 17-25 gives the speed of the wave:

v =

√

τ

µ
=

√

150 N

7.2× 10−3 kg/m
= 1.4× 102 m/s .

(b) From the Figure, we find the wavelength of the standing wave to be λ = (2/3)(90 cm) = 60 cm.

(c) The frequency is

f =
v

λ
=

1.4× 102 m/s

0.60 m
= 2.4× 102 Hz .

34. The string is flat each time the particles passes through its equilibrium position. A particle may travel
up to its positive amplitude point and back to equilibrium during this time. This describes half of one
complete cycle, so we conclude T = 2(0.50 s) = 1.0 s. Thus, f = 1/T = 1.0 Hz, and the wavelength is

λ =
v

f
=

10 cm/s

1.0 Hz
= 10 cm .

35. (a) The wave speed is given by v =
√

τ/µ, where τ is the tension in the string and µ is the linear mass
density of the string. Since the mass density is the mass per unit length, µ = M/L, where M is
the mass of the string and L is its length. Thus

v =

√

τL

M
=

√

(96.0 N)(8.40 m)

0.120 kg
= 82.0 m/s .

(b) The longest possible wavelength λ for a standing wave is related to the length of the string by
L = λ/2, so λ = 2L = 2(8.40 m) = 16.8 m.

(c) The frequency is f = v/λ = (82.0 m/s)/(16.8 m) = 4.88 Hz.

36. (a) The wave speed is given by

v =

√

τ

µ
=

√

7.00 N

2.00× 10−3 kg/1.25m
= 66.1 m/s .

(b) The wavelength of the wave with the lowest resonant frequency f1 is λ1 = 2L, where L = 125 cm.
Thus,

f1 =
v

λ1
=

66.1 m/s

2(1.25 m)
= 26.4 Hz .

37. Possible wavelengths are given by λ = 2L/n, where L is the length of the wire and n is an integer. The
corresponding frequencies are given by f = v/λ = nv/2L, where v is the wave speed. The wave speed
is given by v =

√

τ/µ =
√

τL/M , where τ is the tension in the wire, µ is the linear mass density of the
wire, and M is the mass of the wire. µ = M/L was used to obtain the last form. Thus

f =
n

2L

√

τL

M
=
n

2

√

τ

LM
=
n

2

√

250 N

(10.0 m)(0.100 kg)
= n(7.91 Hz) .

For n = 1, f = 7.91 Hz; for n = 2, f = 15.8 Hz; and for n = 3, f = 23.7 Hz.
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38. The nth resonant frequency of string A is

fn,A =
vA

2lA
n =

n

2L

√

τ

µ
,

while for string B it is

fn,B =
vB

2lB
n =

n

8L

√

τ

µ
=

1

4
fn,A .

Thus, we see f1,A = f4,B and f2,A = f8,B .

39. (a) The resonant wavelengths are given by λ = 2L/n, where L is the length of the string and n is an
integer, and the resonant frequencies are given by f = v/λ = nv/2L, where v is the wave speed.
Suppose the lower frequency is associated with the integer n. Then, since there are no resonant
frequencies between, the higher frequency is associated with n+1. That is, f1 = nv/2L is the lower
frequency and f2 = (n+ 1)v/2L is the higher. The ratio of the frequencies is

f2
f1

=
n+ 1

n
.

The solution for n is

n =
f1

f2 − f1
=

315 Hz

420 Hz− 315 Hz
= 3 .

The lowest possible resonant frequency is f = v/2L = f1/n = (315 Hz)/3 = 105 Hz.

(b) The longest possible wavelength is λ = 2L. If f is the lowest possible frequency then v = λf =
2Lf = 2(0.75 m)(105 Hz) = 158 m/s.

40. (a) We note that each pulse travels 1 cm during each ∆t = 5 ms interval. Thus, in these first two
pictures, their peaks are closer to each other by 2 cm, successively.

t = 10 mst = 5 ms

And the next pictures show the (momentary) complete cancellation of the visible pattern at t =
15 ms, and the pulses moving away from each other after that.

t = 25 mst = 20 ms

t = 15 ms
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(b) The particles of the string are moving rapidly as they pass (transversely) through their equilibrium
positions; the energy at t = 15 ms is purely kinetic.

41. (a) The amplitude of each of the traveling waves is half the maximum displacement of the string when
the standing wave is present, or 0.25 cm.

(b) Each traveling wave has an angular frequency of ω = 40π rad/s and an angular wave number of
k = π/3 cm−1. The wave speed is v = ω/k = (40π rad/s)/(π/3 cm−1) = 120 cm/s.

(c) The distance between nodes is half a wavelength: d = λ/2 = π/k = π/(π/3 cm−1) = 3.0 cm. Here
2π/k was substituted for λ.

(d) The string speed is given by u(x, t) = ∂y/∂t = −ωym sin(kx) sin(ωt). For the given coordinate and
time,

u = −(40π rad/s)(0.50 cm) sin
[(π

3
cm−1

)

(1.5 cm)
]

sin

[

(

40π s−1
)

(

9

8
s

)]

= 0 .

42. Repeating the steps of Eq. 17-34 −→ Eq. 17-40, but applying

cosα+ cosβ = 2 cos

(

α+ β

2

)

cos

(

α− β
2

)

(see Appendix E) instead of Eq. 17-37, we obtain

y′ = [0.10 cosπx] cos 4πt

with SI units understood.

(a) For non-negative x, the smallest value to produce cosπx = 0 is x = 1/2, so the answer is x = 0.50 m.

(b) Taking the derivative,

u′ =
dy′

dt
= [0.10 cosπx] (−4π sin 4πt)

We observe that the last factor is zero when t = 0, 1
4 ,

1
2 ,

3
4 , ... which leads to the answers t = 0,

t = 0.25 s, and t = 0.50 s.

43. (a) Since the standing wave has three loops, the string is three half-wavelengths long: L = 3λ/2, or
λ = 2L/3. If v is the wave speed, then the frequency is

f =
v

λ
=

3v

2L
=

3(100 m/s)

2(3.0 m)
= 50 Hz .

(b) The waves have the same amplitude, the same angular frequency, and the same angular wave
number, but they travel in opposite directions. We take them to be y1 = ym sin(kx − ωt) and
y2 = ym sin(kx + ωt). The amplitude ym is half the maximum displacement of the standing wave,
or 5.0 × 10−3 m. The angular frequency is the same as that of the standing wave, or ω = 2πf =
2π(50 Hz) = 314 rad/s. The angular wave number is k = 2π/λ = 2π/(2.0 m) = 3.14 m−1. Thus,

y1 = (5.0× 10−3 m) sin
[(

3.14 m−1
)

x−
(

314 s−1
)

t
]

and

y2 =
(

5.0× 10−3 m
)

sin
[(

3.14 m−1
)

x+
(

314 s−1
)

t
]

.

44. To oscillate in four loops means n = 4 in Eq. 17-52 (treating both ends of the string as effectively
“fixed’). Thus, λ = 2(0.90 m)/4 = 0.45 m. Therefore, the speed of the wave is v = fλ = 27 m/s. The
mass-per-unit-length is µ = m/L = (0.044 kg)/(0.90 m) = 0.049 kg/m. Thus, using Eq. 17-25, we obtain
the tension: τ = v2µ = (27)2(0.049) = 36 N.
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45. (a) Since the string has four loops its length must be two wavelengths. That is, λ = L/2, where λ is
the wavelength and L is the length of the string. The wavelength is related to the frequency f and
wave speed v by λ = v/f , so L/2 = v/f and L = 2v/f = 2(400 m/s)/(600 Hz) = 1.3 m.

(b) We write the expression for the string displacement in the form y = ym sin(kx) cos(ωt), where ym

is the maximum displacement, k is the angular wave number, and ω is the angular frequency. The
angular wave number is k = 2π/λ = 2πf/v = 2π(600 Hz)/(400 m/s) = 9.4 m−1 and the angular
frequency is ω = 2πf = 2π(600 Hz) = 3800 rad/s. ym is 2.0 mm. The displacement is given by

y(x, t) = (2.0 mm) sin[(9.4 m−1)x] cos
[

(3800 s−1)t
]

.

46. Since the rope is fixed at both ends, then the phrase “second-harmonic standing wave pattern” describes
the oscillation shown in Figure 17-21(b), where

λ = L and f =
v

L

(see Eq. 17-52 and Eq. 17-53).

(a) Comparing the given function with Eq. 17-47, we obtain k = π/2 and ω = 12π (SI units understood).
Since k = 2π/λ then

2π

λ
=
π

2
=⇒ λ = 4 m =⇒ L = 4 m .

(b) Since ω = 2πf then

2πf = 12π =⇒ f = 6 Hz =⇒ v = fλ = 24 m/s .

(c) Using Eq. 17-25, we have

v =

√

τ

µ

24 =

√

200

m/L

with leads to m = 1.4 kg.

(d) Now, “third-harmonic ... pattern” draws our attention to Figure 17-22(c), where

f =
3v

2L
=

3(24)

2(4)
= 9 Hz

so that T = 1/f = 0.11 s.

47. (a) The angular frequency is ω = 8.0π/2 = 4.0π rad/s, so the frequency is f = ω/2π = (4.0π rad/s)/2π =
2.0 Hz.

(b) The angular wave number is k = 2.0π/2 = 1.0πm−1, so the wavelength is λ = 2π/k = 2π/(1.0πm−1) =
2.0 m.

(c) The wave speed is
v = λf = (2.0 m)(2.0 Hz) = 4.0 m/s .

(d) We need to add two cosine functions. First convert them to sine functions using cosα = sin(α+π/2),
then apply Eq. 42. The steps are as follows:

cosα+ cosβ = sin
(

α+
π

2

)

+ sin
(

β +
π

2

)

= 2 sin

(

α+ β + π

2

)

cos

(

α− β
2

)

= 2 cos

(

α+ β

2

)

cos

(

α− β
2

)
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Letting α = kx and β = ωt, we find

ym cos(kx+ ωt) + ym cos(kx− ωt) = 2ym cos(kx) cos(ωt) .

Nodes occur where cos(kx) = 0 or kx = nπ + π/2, where n is an integer (including zero). Since
k = 1.0πm−1, this means x = (n+ 1

2 )(1.0 m). Nodes occur at x = 0.50 m, 1.5 m, 2.5 m, etc.

(e) The displacement is a maximum where cos(kx) = ±1. This means kx = nπ, where n is an integer.
Thus, x = n(1.0 m). Maxima occur at x = 0, 1.0 m, 2.0 m, 3.0 m, etc.

48. (a) The nodes are located from vanishing of the spatial factor sin 5πx = 0 for which the solutions are

5πx = 0, π, 2π, 3π, . . . =⇒ x = 0,
1

5
,
2

5
,
3

5
, . . .

so that the values of x lying in the allowed range are x = 0, x = 0.20 m, and x = 0.40 m.

(b) Every point (except at a node) is in simple harmonic motion of frequency f = ω/2π = 40π/2π =
20 Hz. Therefore, the period of oscillation is T = 1/f = 0.050 s.

(c) Comparing the given function with Eq. 17-45 through Eq. 17-47, we obtain

y1 = 0.020 sin(5πx− 40πt) and y2 = 0.020 sin(5πx+ 40πt)

for the two traveling waves. Thus, we infer from these that the speed is v = ω/k = 40π/5π =
8.0 m/s.

(d) And we see the amplitude is ym = 0.020 m.

(e) The derivative of the given function with respect to time is

u =
∂y

∂t
= − (0.040) (40π) sin(5πx) sin(40πt)

which vanishes (for all x) at times such sin(40πt) = 0. Thus,

40πt = 0, π, 2π, 3π, . . . =⇒ t = 0,
1

40
,

2

40
,

3

40
, . . .

so that the values of t lying in the allowed range are t = 0, t = 0.025 s, and t = 0.050 s.

49. We consider an infinitesimal segment of a string oscillating in a standing wave pattern. Its length is
dx and its mass is dm = µ dx, where µ is its linear mass density. If it is moving with speed u its
kinetic energy is dK = 1

2u
2 dm = 1

2µu
2 dx. If the segment is located at x its displacement at time t is

y = 2ym sin(kx) cos(ωt) and its velocity is u = ∂y/∂t = −2ωym sin(kx) sin(ωt), so its kinetic energy is

dK =

(

1

2

)

(

4µω2y2
m

)

sin2(kx) sin2(ωt) = 2µω2y2
m sin2(kx) sin2(ωt) .

Here ym is the amplitude of each of the traveling waves that combine to form the standing wave. The
infinitesimal segment has maximum kinetic energy when sin2(ωt) = 1 and the maximum kinetic energy
is given by the differential amount

dKm = 2µω2y2
m sin2(kx) .

Note that every portion of the string has its maximum kinetic energy at the same time although the
values of these maxima are different for different parts of the string. If the string is oscillating with n
loops, the length of string in any one loop is L/n and the kinetic energy of the loop is given by the
integral

Km = 2µω2y2
m

∫ L/n

0

sin2(kx) dx .
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We use the trigonometric identity sin2(kx) = 1
2 [1 + 2 cos(2kx)] to obtain

Km = µω2y2
m

∫ L/n

0

[1 + 2 cos(2kx)] dx = µω2y2
m

[

L

n
+

1

k
sin

2kL

n

]

.

For a standing wave of n loops the wavelength is λ = 2L/n and the angular wave number is k = 2π/λ =
nπ/L, so 2kL/n = 2π and sin(2kL/n) = 0, no matter what the value of n. Thus,

Km =
µω2y2

mL

n
.

To obtain the expression given in the problem statement, we first make the substitutions ω = 2πf and
L/n = λ/2, where f is the frequency and λ is the wavelength. This produces Km = 2π2µy2

mf
2λ. We

now substitute the wave speed v for fλ and obtain Km = 2π2µy2
mfv.

50. From the x = 0 plot (and the requirement of an antinode at x = 0), we infer a standing wave function
of the form

y = −(0.04) cos(kx) sin(ωt) where ω =
2π

T
= π rad/s

with length in meters and time in seconds. The parameter k is determined by the existence of the node
at x = 0.10 (presumably the first node that one encounters as one moves from the origin in the positive
x direction). This implies k(0.10) = π/2 so that k = 5π rad/m.

(a) With the parameters determined as discussed above and t = 0.50 s, we find

y = −0.04 cos(kx) sin(ωt) = 0.04 m at x = 0.20 m .

(b) The above equation yields zero at x = 0.30 m.

(c) We take the derivative with respect to time and obtain

u =
dy

dt
= −0.04ω cos(kx) cos(ωt) = 0 at t = 0.50 s

where x = 0.20 m.

(d) The above equation yields u = −0.126 m/s at t = 1.0 s.

(e) The sketch of this function at t = 0.50 s for 0 ≤ x ≤ 0.40 m is shown.
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51. (a) The frequency of the wave is the same for both sections of the wire. The wave speed and wavelength,
however, are both different in different sections. Suppose there are n1 loops in the aluminum section
of the wire. Then, L1 = n1λ1/2 = n1v1/2f , where λ1 is the wavelength and v1 is the wave speed in
that section. In this consideration, we have substituted λ1 = v1/f , where f is the frequency. Thus
f = n1v1/2L1. A similar expression holds for the steel section: f = n2v2/2L2. Since the frequency
is the same for the two sections, n1v1/L1 = n2v2/L2. Now the wave speed in the aluminum section
is given by v1 =

√

τ/µ1, where µ1 is the linear mass density of the aluminum wire. The mass of
aluminum in the wire is given by m1 = ρ1AL1, where ρ1 is the mass density (mass per unit volume)
for aluminum and A is the cross-sectional area of the wire. Thus µ1 = ρ1AL1/L1 = ρ1A and
v1 =

√

τ/ρ1A. A similar expression holds for the wave speed in the steel section: v2 =
√

τ/ρ2A.
We note that the cross-sectional area and the tension are the same for the two sections. The
equality of the frequencies for the two sections now leads to n1/L1

√
ρ1 = n2/L2

√
ρ2, where A has

been canceled from both sides. The ratio of the integers is

n2

n1
=
L2
√
ρ2

L1
√
ρ1

=
(0.866 m)

√

7.80× 103 kg/m
3

(0.600 m)

√

2.60× 103 kg/m
3

= 2.5 .

The smallest integers that have this ratio are n1 = 2 and n2 = 5. The frequency is f = n1v1/2L1 =
(n1/2L1)

√

τ/ρ1A. The tension is provided by the hanging block and is τ = mg, where m is the
mass of the block. Thus

f =
n1

2L1

√

mg

ρ1A
=

2

2(0.600 m)

√

(10.0 kg)(9.8 m/s
2
)

(2.60× 103 kg/m
3
)(1.00× 10−6 m2)

= 324 Hz .

(b) The standing wave pattern has two loops in the aluminum section and five loops in the steel section,
or seven loops in all. There are eight nodes, counting the end points.

52. (a) This distance is determined by the longitudinal speed:

dℓ = vℓt = (2000 m/s)
(

40× 10−6 s
)

= 8.0× 10−2 m .

(b) Assuming the acceleration is constant (justified by the near-straightness of the curve a = 300/40×
10−6 ) we find the stopping distance d:

v2 = v2
o + 2ad =⇒ d =

(300)2
(

40× 10−6
)

2(300)

which gives d = 6.0 × 10−3 m. This and the radius r form the legs of a right triangle (where r is
opposite from θ = 60◦). Therefore,

tan 60◦ =
r

d
=⇒ r = d tan 60◦ = 1.0× 10−2 m .

53. We refer to the points where the rope is attached as A and B, respectively. When A and B are not
displaced horizontal, the rope is in its initial state (neither stretched (under tension) nor slack). If they are
displaced away from each other, the rope is clearly stretched. When A and B are displaced in the same
direction, by amounts (in absolute value) |ξA| and |ξB|, then if |ξA| < |ξB | then the rope is stretched,
and if |ξA| > |ξB | the rope is slack. We must be careful about the case where one is displaced but the
other is not, as will be seen below.

(a) The standing wave solution for the shorter cable, appropriate for the initial condition ξ = 0 at
t = 0, and the boundary conditions ξ = 0 at x = 0 and x = L (the x axis runs vertically here),
is ξA = ξm sin(kAx) sin(ωAt). The angular frequency is ωA = 2π/TA , and the wave number is
kA = 2π/λA where λA = 2L (it begins oscillating in its fundamental mode) where the point of
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attachment is x = L/2. The displacement of what we are calling point A at time t = ηTA (where
η is a pure number) is

ξA = ξm sin

(

2π

2L

L

2

)

sin

(

2π

TA
ηTA

)

= ξm sin(2πη) .

The fundamental mode for the longer cable has wavelength λB = 2λA = 2(2L) = 4L, which implies
(by v = fλ and the fact that both cables support the same wave speed v) that fB = 1

2fA or
ωB = 1

2ωA . Thus, the displacement for point B is

ξB = ξm sin

(

2π

4L

L

2

)

sin

(

1

2

(

2π

TA

)

ηTA

)

=
ξm√

2
sin(πη) .

Running through the possibilities (η = 1
4 ,

1
2 ,

3
4 , 1,

5
4 ,

3
2 ,

7
4 , and 2) we find the rope is under tension

in the following cases. The first case is one we must be very careful in our reasoning, since A is not
displaced but B is displaced in the positive direction; we interpret that as the direction away from

A (rightwards in the figure) – thus making the rope stretch.

η =
1

2
ξA = 0 ξB =

ξm√
2
> 0

η =
3

4
ξA = −ξm < 0 ξB =

ξm
2
> 0

η =
7

4
ξA = −ξm < 0 ξB = −ξm

2
< 0

where in the last case they are both displaced leftward but A more so than B so that the rope is
indeed stretched.

(b) The values of η (where we have defined η = t/TA ) which reproduce the initial state are

η = 1 ξA = 0 ξB = 0 and

η = 2 ξA = 0 ξB = 0 .

(c) The values of η for which the rope is slack are given below. In the first case, both displacements
are to the right, but point A is farther to the right than B. In the second case, they are displaced
towards each other.

η =
1

4
ξA = xm > 0 ξB =

ξm√
2
> 0

η =
5

4
ξA = ξm > 0 ξB = −ξm

2
< 0

η =
3

2
ξA = 0 ξB = − ξm√

2
< 0

where in the third case B is displaced leftward toward the undisplaced point A.

(d) The first design works effectively to damp fundamental modes of vibration in the two cables (espe-
cially in the shorter one which would have an antinode at that point), whereas the second one only
damps the fundamental mode in the longer cable.

54. (a) The frequency is f = 1/T = 1/4 Hz, so v = fλ = 5.0 cm/s.

(b) We refer to the graph to see that the maximum transverse speed (which we will refer to as um) is
5.0 cm/s. Recalling from Ch. 12 the simple harmonic motion relation um = ymω = ym2πf , we have

5.0 = ym

(

2π
1

4

)

=⇒ ym = 3.2 cm .
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(c) As already noted, f = 0.25 Hz.

(d) Since k = 2π/λ, we have k = 10π rad/m. There must be a sign difference between the t and x
terms in the argument in order for the wave to travel to the right. The figure shows that at x = 0,
the transverse velocity function is 0.050 sin π

2 t. Therefore, the function u(x, t) is

u = 0.050 sin
(π

2
t− 10πx

)

with lengths in meters and time in seconds. Integrating this with respect to time yields

y = −2(0.050)

π
cos
(π

2
t− 10πx

)

+ C

where C is an integration constant (which we will assume to be zero). The sketch of this function
at t = 2.0 s for 0 ≤ x ≤ 0.20 m is shown.
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55. Using Eq. 17-37, we have

y′ =
[

0.60 cos
π

6

]

sin
(

5πx− 200πt+
π

6

)

with length in meters and time in seconds (see Eq. 17-42 for comparison).

(a) The amplitude is seen to be

0.60 cos
π

6
= 0.3

√
3 = 0.52 m .

(b) Since k = 5π and ω = 200π, then (using Eq. 17-11)

v =
ω

k
= 40 m/s .

(c) k = 2π/λ leads to λ = 0.40 m.

56. We orient one phasor along the x axis with length 4.0 mm and angle 0 and the other at 0.8π rad = 144◦

(in the second quadrant) with length 7.0 mm. Adding the components, we obtain

4.0 + 7.0 cos(144◦) = −1.66 mm along x axis

7.0 sin(144◦) = 4.11 mm along y axis .
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(a) The amplitude of the resultant wave is consequently

√

(−1.66)2 + 4.112 = 4.4 mm .

(b) And the phase constant (an angle, measured counterclockwise from the +x axis) is

180◦ + tan−1

(

4.11

−1.66

)

= 112◦ .

57. (a) Centimeters are to be understood as the length unit and seconds as the time unit. Making sure our
(graphing) calculator is in radians mode, we find
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2

y
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x

(b) The previous graph is at t = 0, and this next one is at t = 0.050 s.

–2
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2

y
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x

And the final one, shown below, is at t = 0.010 s.
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(c) These graphs (as well as the discussion in the textbook) make it clear that the wave is traveling in
the −x direction.

58. We use Eq. 17-2, Eq. 17-5, Eq. 17-9, Eq. 17-12, and take the derivative to obtain the transverse speed u.

(a) The amplitude is ym = 2.0 mm.

(b) Since ω = 600 rad/s, the frequency is found to be f = 600/2π ≈ 95 Hz.

(c) Since k = 20 rad/m, the velocity of the wave is v = ω/k = 600/20 = 30 m/s in the +x direction.

(d) The wavelength is λ = 2π/k ≈ 0.31 m, or 31 cm.

(e) We obtain

u =
dy

dt
= −ωym cos(kx− ωt) =⇒ um = ωym

so that the maximum transverse speed is um = (600)(2.0) = 1200 mm/s, or 1.2 m/s.

59. (a) Recalling the discussion in §17-5, we see that the speed of the wave given by a function with
argument x− 5t (where x is in centimeters and t is in seconds) must be 5 cm/s.

(b) In part (c), we show several “snapshots” of the wave: the one on the left is as shown in Figure
17-47 (at t = 0), the middle one is at t = 1.0 s, and the rightmost one is at t = 2.0 s. It is clear
that the wave is traveling to the right (the +x direction).

(c) The third picture in the sequence below shows the pulse at 2 s. The horizontal scale (and, presum-
ably, the vertical one also) is in centimeters.
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(d) The leading edge of the pulse reaches x = 10 cm at t = (10 − 4)/5 = 1.2 s. The particle (say,
of the string that carries the pulse) at that location reaches a maximum displacement h = 2 cm
at t = (10 − 3)/5 = 1.4 s. Finally, the the trailing edge of the pulse departs from x = 10 cm at
t = (10−1)/5 = 1.8 s. Thus, we find for h(t) at x = 10 cm (with the horizontal axis, t, in seconds):
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60. We use P = 1
2µvω

2y2
m ∝ vf2 ∝ √τf2.

(a) If the tension is quadrupled, then

P2 = P1

√

τ2
τ1

= P1

√

4τ1
τ1

= 2P1 .

(b) If the frequency is halved, then

P2 = P1

(

f2
f1

)2

= P1

(

f1/2

f1

)2

=
1

4
P1 .

61. We use v =
√

τ/µ ∝ √τ to obtain

τ2 = τ1

(

v2
v1

)2

= (120 N)

(

180 m/s

170 m/s

)2

= 135 N .

62. (a) The wave speed is

v =

√

τ

µ
=

√

120 N

8.70× 10−3 kg/1.50 m
= 144 m/s .

(b) For the one-loop standing wave we have λ1 = 2L = 2(1.50 m) = 3.00 m. For the two-loop standing
wave λ2 = L = 1.50 m.

(c) The frequency for the one-loop wave is f1 = v/λ1 = (144 m/s)/(3.00 m) = 48.0 Hz and that for the
two-loop wave is f2 = v/λ2 = (144 m/s)/(1.50 m) = 96.0 Hz.

63. (a) At x = 2.3 m and t = 0.16 s the displacement is

y(x, t) = 0.15 sin[(0.79)(2.3)− 13(0.16)] m = −0.039 m .

(b) The wave we are looking for must be traveling in −x direction with the same speed and frequency.
Thus, its general form is y′(x, t) = ym sin(0.79x+ 13t+ φ), where ym is its amplitude and φ is its
initial phase. In particular, if ym = 0.15 m, then there would be nodes (where the wave amplitude
is zero) in the string as a result.

(c) In the special case when ym = 0.15 m and φ = 0, the displacement of the standing wave at x = 2.3 m
and t = 0.16 s is

y(x, t) = −0.039 m + (0.15 m) sin[(0.79)(2.3) + 13(0.16)] = −0.14 m .

64. (a) Let the displacements of the wave at (y, t) be z(y, t). Then z(y, t) = zm sin(ky − ωt), where
zm = 3.0 mm, k = 60 cm−1, and ω = 2π/T = 2π/0.20 s = 10π s−1. Thus

z(y, t) = (3.0 mm) sin
[(

60 cm−1
)

y −
(

10π s−1
)

t
]

.
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(b) The maximum transverse speed is

um = ωzm = (2π/0.20 s)(3.0 mm) = 94 mm/s .

65. (a) Using Eq. 17-52 with L = 120 cm, we find

λ1 =
2L

1
= 240 λ2 =

2L

2
= 120 λ3 =

2L

3
= 80

with all values understood to be in centimeters.

(b) The three standing waves are shown below.

66. It is certainly possible to simplify (in the trigonometric sense) the expressions at x = 3 m (since k = 1/2
in inverse-meters), but there is no particular need to do so, if the goal is to plot the time-dependence of
the wave superposition at this value of x. Still, it is worth mentioning the end result of such simplification
if it provides some insight into the nature of the graph (shown below): y1 + y2 = (0.10 m) sin(40πt) with
t in seconds.
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67. By Eq. 17-53, the higher frequencies are integer multiples of the lowest (the fundamental). Therefore,
f2 = 2(440) = 880 Hz and f3 = 3(440) = 1320 Hz are the second and third harmonics, respectively.

68. (a) Using v = fλ, we obtain

f =
240 m/s

3.2 m
= 75 Hz .

(b) Since frequency is the reciprocal of the period, we find

T =
1

f
=

1

75 Hz
= 0.0133 s ≈ 13 ms .

69. (a) With length in centimeters and time in seconds, we have

u =
dy

dt
= −60π cos

(πx

8
− 4πt

)

.
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Thus, when x = 6 and t = 1
4 , we obtain

u = −60π cos
−π
4

=
−60π√

2
= −133

so that the speed there is 1.33 m/s.

(b) The numerical coefficient of the cosine in the expression for u is −60π. Thus, the maximum speed

is 1.88 m/s.

(c) Taking another derivative,

a =
du

dt
= −240π2 sin

(πx

8
− 4πt

)

so that when x = 6 and t = 1
4 we obtain a = −240π2 sin −π

4 which yields a = 16.7 m/s2.

(d) The numerical coefficient of the sine in the expression for a is −240π2. Thus, the maximum
acceleration is 23.7 m/s2.

70. (a) Recalling from Ch. 12 the simple harmonic motion relation um = ymω, we have

ω =
16

0.04
= 400 rad/s .

Since ω = 2πf , we obtain f = 64 Hz.

(b) Using v = fλ, we find λ = 80/64 = 1.26 m.

(c) Now, k = 2π/λ = 5 rad/m, so the function describing the wave becomes

y = 0.04 sin(5x− 400t+ φ)

where distances are in meters and time is in seconds. We adjust the phase constant φ to satisfy the
condition y = 0.04 at x = t = 0. Therefore, sinφ = 1, for which the “simplest” root is φ = π/2.
Consequently, the answer is

y = 0.04 sin
(

5x− 400t+
π

2

)

.

71. We orient one phasor along the x axis with length 3.0 mm and angle 0 and the other at 70◦ (in the first
quadrant) with length 5.0 mm. Adding the components, we obtain

3.0 + 5.0 cos(70◦) = 4.71 mm along x axis

5.0 sin(70◦) = 4.70 mm along y axis .

(a) Thus, amplitude of the resultant wave is
√

4.712 + 4.702 = 6.7 mm.

(b) And the angle (phase constant) is tan−1(4.70/4.71) = 45◦.

72. (a) The wave number for each wave is k = 25.1/m, which means λ = 2π/k = 250 mm. The angular
frequency is ω = 440/s; therefore, the period is T = 2π/ω = 14.3 ms. We plot the superposition of
the two waves y = y1 + y2 over the time interval 0 ≤ t ≤ 15 ms. The first two graphs below show
the oscillatory behavior at x = 0 (the graph on the left) and at x = λ/8 ≈ 31 mm. The time unit
is understood to be the millisecond and vertical axis (y) is in millimeters.
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The following three graphs show the oscillation at x = λ/4 ≈ 63 mm (graph on the left), at
x = 3λ/8 ≈ 94 mm (middle graph), and at x = λ/2 ≈ 125 mm.
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(b) If we think of wave y1 as being made of two smaller waves going in the same direction, a wave y1a

of amplitude 1.50 mm (the same as y2 ) and a wave y1b of amplitude 1.00 mm. It is made clear
in §17-11 that two equal-magnitude oppositely-moving waves form a standing wave pattern. Thus,
waves y1a and y2 form a standing wave, which leaves y1b as the remaining traveling wave. Since
the argument of y1b involves the subtraction kx− ωt, then y1b travels in the +x direction.

(c) If y2 (which travels in the −x direction, which for simplicity will be called “leftward”) had the
larger amplitude, then the system would consist of a standing wave plus a leftward moving wave.
A simple way to obtain such a situation would be to interchange the amplitudes of the given waves.

(d) Examining carefully the vertical axes, the graphs above certainly suggest that the largest amplitude
of oscillation is ymax = 4.0 mm and occurs at x = λ/4, and the smallest amplitude of oscillation is
ymin = 1.0 mm and occurs at x = 0 (and at x = λ/2).

(e) The largest and smallest amplitudes can be related to the amplitudes of y1 and y2 in a simple
way: ymax = y1m + y2m and ymin = y1m − y2m , where y1m = 2.5 mm and y2m = 1.5 mm are the
amplitudes of the original traveling waves.
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1. The rule: if you divide the time (in seconds) by 3, then you get (approximately) the straight-line distance
d. We note that the speed of sound we are to use is given at the beginning of the problem section in the
textbook, and that the speed of light is very much larger than the speed of sound. The proof of our rule
is as follows:

t = tsound − tlight ≈ tsound =
d

vsound
=

d

343 m/s
=

d

0.343 km/s
.

Cross-multiplying yields (approximately) (0.3 km/s)t = d which (since 1/3 ≈ 0.3) demonstrates why the
rule works fairly well.

2. We denote the speed of light c = 3.0 × 108 m/s. The time t1 it takes for you to hear the music is
t1 = D1/vs = (300 m)/(343 m/s) = 0.87 s. The time t2 it takes for a listener 5000 km away to hear the
music is t2 = D2/c = 5000 km/(3× 105 km/s) = 0.02 s. So the listener 5000 km away actually hears the
music first! The time difference is ∆t = t1 − t2 = 0.87 s− 0.02 s = 0.85 s.

3. (a) The time for the sound to travel from the kicker to a spectator is given by d/v, where d is the
distance and v is the speed of sound. The time for light to travel the same distance is given by d/c,
where c is the speed of light. The delay between seeing and hearing the kick is ∆t = (d/v)− (d/c).
The speed of light is so much greater than the speed of sound that the delay can be approximated
by ∆t = d/v. This means d = v∆t. The distance from the kicker to the first spectator is
d1 = v∆t1 = (343 m/s)(0.23 s) = 79 m. The distance from the kicker to the second spectator is
d2 = v∆t2 = (343 m/s)(0.12 s) = 41 m.

(b) Lines from the kicker to each spectator and from one spectator to the other form a right triangle
with the line joining the spectators as the hypotenuse, so the distance between the spectators is
D =

√

d2
1 + d2

2 =
√

(79 m)2 + (41 m)2 = 89 m.

4. The time it takes for a soldier in the rear end of the column to switch from the left to the right foot to
stride forward is t = 1 min/120 = 1/120 min = 0.5 s. This is also the time for the sound of the music to
reach from the musicians (who are in the front) to the rear end of the column. Thus the length of the
column is

l = vt = (343 m/s)(0.5 s) = 1.7× 102 m .

5. If d is the distance from the location of the earthquake to the seismograph and vs is the speed of the
S waves then the time for these waves to reach the seismograph is ts = d/vs. Similarly, the time for P
waves to reach the seismograph is tp = d/vp. The time delay is ∆t = (d/vs)− (d/vp) = d(vp − vs)/vsvp,
so

d =
vsvp ∆t

(vp − vs)
=

(4.5 km/s)(8.0 km/s)(3.0 min)(60 s/min)

8.0 km/s− 4.5 km/s
= 1900 km .

We note that values for the speeds were substituted as given, in km/s, but that the value for the time
delay was converted from minutes to seconds.
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6. (a) The time it takes for sound to travel in air is ta = L/v, while it takes tm = L/V for the sound to
travel in the metal. Thus

t = ta − tm =
L

v
− L

V
=
L(V − v)

V v
.

(b) Using the values indicated (see Table 18-1), we obtain

L =
t

1/v − 1/V
=

1.00 s

1/(343 m/s)− 1/(5941 m/s)
= 364 m .

7. Let tf be the time for the stone to fall to the water and ts be the time for the sound of the splash to
travel from the water to the top of the well. Then, the total time elapsed from dropping the stone to
hearing the splash is t = tf + ts. If d is the depth of the well, then the kinematics of free fall gives

d = 1
2gt

2
f , or tf =

√

2d/g. The sound travels at a constant speed vs, so d = vsts, or ts = d/vs. Thus the

total time is t =
√

2d/g+ d/vs. This equation is to be solved for d. Rewrite it as
√

2d/g = t− d/vs and
square both sides to obtain 2d/g = t2 − 2(t/vs)d+ (1/v2

s)d2. Now multiply by gv2
s and rearrange to get

gd2 − 2vs(gt+ vs)d+ gv2
st

2 = 0. This is a quadratic equation for d. Its solutions are

d =
2vs(gt+ vs)±

√

4v2
s(gt+ vs)2 − 4g2v2

st
2

2g
.

The physical solution must yield d = 0 for t = 0, so we take the solution with the negative sign in front
of the square root. Once values are substituted the result d = 40.7 m is obtained.

8. At f = 20 Hz,

λ =
v

f
=

343 m/s

20 Hz
= 17 m ,

and at f = 20 kHz,

λ =
v

f
=

343 m/s

20× 103 Hz
= 1.7× 10−2 m .

9. (a) Using λ = v/f , where v is the speed of sound in air and f is the frequency, we find

λ =
343 m/s

4.5× 106 Hz
= 7.62× 10−5 m .

(b) Now, λ = v/f , where v is the speed of sound in tissue. The frequency is the same for air and tissue.
Thus λ = (1500 m/s)/(4.5× 106 Hz) = 3.33× 10−4 m.

10. (a) Since λ = 24 cm, the wave speed is v = λf = (0.24m)(25 Hz) = 6.0 m/s.

(b) With x in centimeters and t in seconds, the equation for the wave is

y = A sin[2π(x/λ+ ft)] = (0.30 cm) sin
( π

12
x+ 50πt

)

.

11. (a) The amplitude of a sinusoidal wave is the numerical coefficient of the sine (or cosine) function:
pm = 1.50 Pa.

(b) From the theory presented in Ch. 17, we identify k = 0.9π and ω = 315π (in SI units), which leads
to f = ω/2π = 158 Hz.

(c) We also obtain λ = 2π/k = 2.22 m.

(d) The speed of the wave is v = ω/k = 350 m/s.
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12. It is useful to study Sample Problem 18-3 before working this problem. We label the two point sources 1
and 2 and assume they are on the x axis (a distance D = 2λ apart). When we refer to the circle of large
radius, we are assuming that a line drawn from source 1 to a point on the circle and a line drawn to it
from source 2 are approximately parallel (and thus both at angle θ measured from the y axis). In terms
of the theory developed in §18-4, we find that the phase difference at P (on the large circle of radius R)
for the two waves emitted from 1 and 2 is

∆φ ≈ 2π∆x

λ
=

2πD sin θ

λ
= 4π sin θ .

(a) For maximum signal, we set ∆φ = 2mπ (m = 0,±1,±2, . . .) to obtain sin θ = m/2. Thus we get a
total of 8 possible values of θ between 0 and 2π, given by θ = 0, sin−1(1/2) = 30◦, sin−1(1) = 90◦

and (using symmetry properties of the sine function) 150◦, 180◦, 210◦, 270◦, and 330◦.

(b) Since there must be a mininum in between two successive maxima, the total number of minima is
also eight.

13. Let L1 be the distance from the closer speaker to the listener. The distance from the other speaker to
the listener is L2 =

√

L2
1 + d2, where d is the distance between the speakers. The phase difference at

the listener is φ = 2π(L2 − L1)/λ, where λ is the wavelength.

(a) For a minimum in intensity at the listener, φ = (2n + 1)π, where n is an integer. Thus λ =
2(L2 − L1)/(2n+ 1). The frequency is

f =
v

λ
=

(2n+ 1)v

2
(

√

L2
1 + d2 − L1

) =
(2n+ 1)(343 m/s)

2
(

√

(3.75 m)2 + (2.00 m)2 − 3.75 m
) = (2n+ 1)(343 Hz) .

Now 20, 000/343 = 58.3, so 2n+ 1 must range from 0 to 57 for the frequency to be in the audible
range. This means n ranges from 1 to 28 and f = 1029, 1715, . . ., 19550 Hz.

(b) For a maximum in intensity at the listener, φ = 2nπ, where n is any positive integer. Thus

λ = (1/n)
(

√

L2
1 + d2 − L1

)

and

f =
v

λ
=

nv
√

L2
1 + d2 − L1

=
n(343 m/s)

√

(3.75 m)2 + (2.00 m)2 − 3.75 m
= n(686 Hz) .

Since 20, 000/686 = 29.2, n must be in the range from 1 to 29 for the frequency to be audible and
f = 686, 1372, . . ., 19890 Hz.

14. Let the separation between the point and the two sources (labeled 1 and 2) be x1 and x2, respectively.
Then the phase difference is

∆φ = φ1 − φ2 = 2π
(x1

λ
+ ft

)

− 2π
(x2

λ
+ ft

)

=
2π(x1 − x2)

λ

=
2π(4.40 m− 4.00 m)

(330 m/s)/540 Hz
= 4.12 rad .

15. (a) Building on the theory developed in §18− 4, we set ∆L/λ = 1
2 (odd numbers) in order to have

destructive interference. Since v = fλ, we can write this in terms of frequency:

f =
(odd number)v

2∆L
=







143 Hz for n = 1
429 Hz for n = 3
715 Hz for n = 5

where we have used v = 343 m/s (note the remarks made in the textbook at the beginning of the
exercises and problems section) and ∆L = 19.5− 18.3 = 1.2 m.
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(b) Now we set ∆L/λ = 1
2 (even numbers) – which can be written more simply as “(all integers)” – in

order to establish constructive interference. Thus,

f =
(integer)v

∆L
=







286 Hz for n = 1
572 Hz for n = 2
858 Hz for n = 3

.

16. At the location of the detector, the phase difference between the wave which traveled straight down the
tube and the other one which took the semi-circular detour is

∆φ = k∆d =
2π

λ
(πr − 2r) .

For r = rmin we have ∆φ = π, which is the smallest phase difference for a destructive interference to
occur. Thus

rmin =
λ

2(π − 2)
=

40.0 cm

2(π − 2)
= 17.5 cm .

17. The intensity is the rate of energy flow per unit area perpendicular to the flow. The rate at which energy
flows across every sphere centered at the source is the same, regardless of the sphere radius, and is the
same as the power output of the source. If P is the power output and I is the intensity a distance r
from the source, then P = IA = 4πr2I, where A (= 4πr2) is the surface area of a sphere of radius r.

Thus P = 4π(2.50 m)2(1.91× 10−4 W/m
2
) = 1.50× 10−2 W.

18. (a) Since intensity is power divided by area, and for an isotropic source the area may be written
A = 4πr2 (the area of a sphere), then we have

I =
P

A
=

1.0 W

4π(1.0 m)2
= 0.080 W/m2 .

(b) This calculation may be done exactly as shown in part (a) (but with r = 2.5 m instead of r = 1.0 m),
or it may be done by setting up a ratio. We illustrate the latter approach. Thus,

I ′

I
=
P/4π(r′)2

P/4πr2
=
( r

r′

)2

leads to I ′ = (0.080 W/m2)(1/2.5)2 = 0.013 W/m2.

19. The intensity is given by I = 1
2ρvω

2s2m, where ρ is the density of air, v is the speed of sound in air, ω is
the angular frequency, and sm is the displacement amplitude for the sound wave. Replace ω with 2πf
and solve for sm:

sm =

√

I

2π2ρvf2
=

√

1.00× 10−6 W/m
2

2π2(1.21 kg/m
3
)(343 m/s)(300 Hz)2

= 3.68× 10−8 m .

20. Sample Problem 18-5 shows that a decibel difference ∆β is directly related to an intensity ratio (which
we write as R = I ′/I). Thus,

∆β = 10 log(R) =⇒ R = 10∆β/10 = 100.1 = 1.26 .

21. (a) Let I1 be the original intensity and I2 be the final intensity. The original sound level is β1 =
(10 dB) log(I1/I0) and the final sound level is β2 = (10 dB) log(I2/I0), where I0 is the reference inten-
sity. Since β2 = β1 +30 dB, (10 dB) log(I2/I0) = (10 dB) log(I1/I0)+30 dB, or (10 dB) log(I2/I0)−
(10 dB) log(I1/I0) = 30 dB. Divide by 10 dB and use log(I2/I0)− log(I1/I0) = log(I2/I1) to obtain
log(I2/I1) = 3. Now use each side as an exponent of 10 and recognize that 10log(I2/I1) = I2/I1.
The result is I2/I1 = 103. The intensity is increased by a factor of 1000.
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(b) The pressure amplitude is proportional to the square root of the intensity so it is increased by a
factor of

√
1000 = 32.

22. (a) The intensity is given by I = P/4πr2 when the source is “point-like.” Therefore, at r = 3.00 m,

I =
1.00× 10−6 W

4π(3.00 m)2
= 8.84× 10−9 W/m2 .

(b) The sound level there is

β = 10 log

(

8.84× 10−9 W/m2

1.00× 10−12 W/m2

)

= 39.5 dB .

23. (a) The intensity is given by I = 1
2ρvω

2s2m, where ρ is the density of the medium, v is the speed of
sound, ω is the angular frequency, and sm is the displacement amplitude. The displacement and
pressure amplitudes are related by ∆pm = ρvωsm, so sm = ∆pm/ρvω and I = (∆pm)2/2ρv. For
waves of the same frequency the ratio of the intensity for propagation in water to the intensity for
propagation in air is

Iw
Ia

=

(

∆pmw

∆pma

)2
ρava

ρwvw
,

where the subscript a denotes air and the subscript w denotes water. Since Ia = Iw ,

∆pmw

∆pma
=

√

ρwvw

ρava
=

√

(0.998× 103 kg/m
3
)(1482 m/s)

(1.21 kg/m
3
)(343 m/s)

= 59.7 .

The speeds of sound are given in Table 18–1 and the densities are given in Table 15–1.

(b) Now, ∆pmw = ∆pma, so

Iw
Ia

=
ρava

ρwvw
=

(1.21 kg/m3)(343 m/s)

(0.998× 103 kg/m
3
)(1482 m/s)

= 2.81× 10−4 .

24. Since the power of the sound emitted from a section of the source with unit length is related to I by
P = IA = 2πrI(r), then we have I(r) = P/(2πr) ∝ r−1. And since sm ∝

√
I (by Eq. 18-27), then the

fact that I ∝ r−1 in this situation leads to sm ∝ r−1/2.

25. (a) We take the wave to be a plane wave and consider a region formed by the surface of a rectangular
solid, with two plane faces of area A perpendicular to the direction of travel and separated by a
distance d, along the direction of travel. The energy contained in this region is U = uAd. If the
wave speed is v then all the energy passes through one end of the region in time t = d/v. The
energy passing through per unit time is U/t = uAdv/d = uvA. The intensity is the energy passing
through per unit time, per unit area, or I = U/tA = uv.

(b) The power output P of the source equals the rate at which energy crosses the surface of any sphere
centered at the source. It is related to the intensity I a distance r away by P = AI = 4πr2I, where
A (= 4πr2) is the surface area of a sphere of radius r. Substitute I = uv to obtain P = 4πr2uv,
then solve for u:

u =
P

4πr2v
=

50, 000 W

4π(480× 103 m)2(3.00× 108 m/s)
= 5.76× 10−17 J/m

3
.

26. We use ∆β12 = β1 − β2 = (10 dB) log(I1/I2).

(a) Since ∆β12 = (10 dB) log(I1/I2) = 37 dB, we get I1/I2 = 1037dB/10 dB = 103.7 = 5.0× 103.

(b) Since ∆pm ∝ sm ∝
√
I, we have ∆pm 1/∆pm 2 =

√

I1/I2 =
√

5.0× 103 = 71.
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(c) The displacement amplitude ratio is sm 1/sm 2 =
√

I1/I2 = 71.

27. (a) Let P be the power output of the source. This is the rate at which energy crosses the surface of
any sphere centered at the source and is therefore equal to the product of the intensity I at the
sphere surface and the area of the sphere. For a sphere of radius r, P = 4πr2I and I = P/4πr2.
The intensity is proportional to the square of the displacement amplitude sm. If we write I =
Cs2m, where C is a constant of proportionality, then Cs2m = P/4πr2. Thus sm =

√

P/4πr2C =
(

√

P/4πC
)

(1/r). The displacement amplitude is proportional to the reciprocal of the distance

from the source. We take the wave to be sinusoidal. It travels radially outward from the source,
with points on a sphere of radius r in phase. If ω is the angular frequency and k is the angular
wave number then the time dependence is sin(kr − ωt). Letting b =

√

P/4πC, the displacement
wave is then given by

s(r, t) =

√

P

4πC

1

r
sin(kr − ωt) =

b

r
sin(kr − ωt) .

(b) Since s and r both have dimensions of length and the trigonometric function is dimensionless, the
dimensions of b must be length squared.

28. (a) The intensity is

I =
P

4πr2
=

30.0 W

(4π)(200 m)2
= 5.97× 10−5 W/m2 .

(b) Let A (= 0.750 cm2) be the cross-sectional area of the microphone. Then the power intercepted by
the microphone is

P ′ = IA = 0 =
(

6.0× 10−5 W/m2
) (

0.750 cm2
) (

10−4 m2/cm2
)

= 4.48× 10−9 W .

29. (a) When the right side of the instrument is pulled out a distance d the path length for sound waves
increases by 2d. Since the interference pattern changes from a minimum to the next maximum, this
distance must be half a wavelength of the sound. So 2d = λ/2, where λ is the wavelength. Thus
λ = 4d and, if v is the speed of sound, the frequency is f = v/λ = v/4d = (343 m/s)/4(0.0165 m) =
5.2× 103 Hz.

(b) The displacement amplitude is proportional to the square root of the intensity (see Eq. 18–27).
Write

√
I = Csm, where I is the intensity, sm is the displacement amplitude, and C is a constant

of proportionality. At the minimum, interference is destructive and the displacement amplitude is
the difference in the amplitudes of the individual waves: sm = sSAD − sSBD, where the subscripts
indicate the paths of the waves. At the maximum, the waves interfere constructively and the
displacement amplitude is the sum of the amplitudes of the individual waves: sm = sSAD + sSBD.
Solve

√
100 = C(sSAD − sSBD) and

√
900 = C(sSAD + sSBD) for sSAD and sSBD. Add the

equations to obtain sSAD = (
√

100 +
√

900)/2C = 20/C, then subtract them to obtain sSBD =
(
√

900−
√

100)/2C = 10/C. The ratio of the amplitudes is sSAD/sSBD = 2.

(c) Any energy losses, such as might be caused by frictional forces of the walls on the air in the tubes,
result in a decrease in the displacement amplitude. Those losses are greater on path B since it is
longer than path A.

30. (a) From Eq. 17-53, we have

f =
nv

2L
=

(1)(250 m/s)

2(0.150 m)
= 833 Hz .

(b) The frequency of the wave on the string is the same as the frequency of the sound wave it produces
during its vibration. Consequently, the wavelength in air is

λ =
vsound

f
=

348 m/s

833 Hz
= 0.418 m .
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31. At the beginning of the exercises and problems section in the textbook, we are told to assume vsound =
343 m/s unless told otherwise. The second harmonic of pipe A is found from Eq. 18-39 with n = 2 and
L = LA , and the third harmonic of pipe B is found from Eq. 18-41 with n = 3 and L = LB . Since these
frequencies are equal, we have

2vsound

2LA
=

3vsound

4LB
=⇒ LB =

3

4
LA .

(a) Since the fundamental frequency for pipe A is 300 Hz, we immediately know that the second
harmonic has f = 2(300) = 600 Hz. Using this, Eq. 18-39 gives LA = (2)(343)/2(600) = 0.572 m.

(b) The length of pipe B is LB = 3
4LA = 0.429 m.

32. The frequency is f = 686 Hz. At the beginning of the exercises and problems section in the textbook,
we are told to assume vsound = 343 m/s unless told otherwise. If L is the length of the air-column (so
that the water height is h = 1.00 m− L) then Eq. 18-41 leads to

L =
nv

4f
=⇒ h = 1.00− L =















0.875 m for n = 1
0.625 m for n = 3
0.375 m for n = 5
0.125 m for n = 7

.

33. (a) When the string (fixed at both ends) is vibrating at its lowest resonant frequency, exactly one-
half of a wavelength fits between the ends. Thus, λ = 2L. We obtain v = fλ = 2Lf =
2(0.220 m)(920 Hz) = 405 m/s.

(b) The wave speed is given by v =
√

τ/µ, where τ is the tension in the string and µ is the linear
mass density of the string. If M is the mass of the (uniform) string, then µ = M/L. Thus
τ = µv2 = (M/L)v2 =

[

(800× 10−6 kg)/(0.220 m)
]

(405 m/s)2 = 596 N.

(c) The wavelength is λ = 2L = 2(0.220 m) = 0.440 m.

(d) The frequency of the sound wave in air is the same as the frequency of oscillation of the string.
The wavelength is different because the wave speed is different. If va is the speed of sound in air
the wavelength in air is λa = va/f = (343 m/s)/(920 Hz) = 0.373 m.

34. (a) The fundamental frequency of a string can be increased (for instance, going from A up to C) by
shortening the length of the vibrating portion of the string. When the note C is played, the vibrating
length is (using Eq. 17-53)

f ′

f
=
nv/2L′

nv/2L
=⇒ L = (30 cm)

(

440 Hz

528 Hz

)

= 25 cm .

Thus, one should place his finger a distance of 30 cm− 25 cm = 5 cm from one end of the string.

(b) Since v = fλ, the ratio of wavelengths is the reciprocal of the frequency ratio, so that λA/λC =
528 Hz/440 Hz = 1.2.

(c) This has the same answer as part (b), due to the fact that the frequencies are the same on the
string and the air (transmitting a signal from one medium to another does not generally change its
frequency. Both wavelengths are larger (much larger) in the air than on the string, but their ratio
(due to v = fλ) remains the same.

35. (a) Since the pipe is open at both ends there are displacement antinodes at both ends and an integer
number of half-wavelengths fit into the length of the pipe. If L is the pipe length and λ is the
wavelength then λ = 2L/n, where n is an integer. If v is the speed of sound then the resonant
frequencies are given by f = v/λ = nv/2L. Now L = 0.457 m, so f = n(344 m/s)/2(0.457 m) =
376.4nHz. To find the resonant frequencies that lie between 1000 Hz and 2000 Hz, first set f =
1000 Hz and solve for n, then set f = 2000 Hz and again solve for n. You should get 2.66 and 5.32.
This means n = 3, 4, and 5 are the appropriate values of n. For n = 3, f = 3(376.4 Hz) = 1129 Hz;
for n = 4, f = 4(376.4 Hz) = 1526 Hz; and for n = 5, f = 5(376.4 Hz) = 1882 Hz.
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(b) For any integer value of n the displacement has n nodes and n + 1 antinodes, counting the ends.
The nodes (N) and antinodes (A) are marked on the diagrams below for the three resonances found
in part (a).

A N A N A N A

n = 3

A N A N A N A N A

n = 4

A N A N A N A N A N A

n = 5

36. (a) Using Eq. 17-53 with n = 1 (for the fundamental mode of vibration), we obtain

f ′

f
=

(1)v/2L′

(1)v/2L
=

L

L′

so that f ′ = rf (where r is a pure number) implies L′ = L/r. Thus, the amount if must be
shortened is l = ∆L = L− L′ = L(1− 1/r).

(b) With L = 80 cm and r = 1.2, this yields l = 13 cm.

(c) Since v = fλ, the ratio of wavelengths is the reciprocal of the ratio of frequencies: λ′/λ = f/f ′ =
1/1.2 = 5/6. This ratio applies to the wavelength ratio for the vibrating string and also for the
wavelength ratio for the emitted sound waves (due to the fact that the frequency of a signal is
generally not altered when transmitted from one medium to another).

37. The top of the water is a displacement node and the top of the well is a displacement antinode. At the
lowest resonant frequency exactly one-fourth of a wavelength fits into the depth of the well. If d is the
depth and λ is the wavelength then λ = 4d. The frequency is f = v/λ = v/4d, where v is the speed of
sound. The speed of sound is given by v =

√

B/ρ, where B is the bulk modulus and ρ is the density of

air in the well. Thus f = (1/4d)
√

B/ρ and

d =
1

4f

√

B

ρ
=

[

1

4(7.00 Hz)

]

√

1.33× 105 Pa

1.10 kg/m3 = 12.4 m .

38. (a) Using Eq. 18-39 with n = 1 (for the fundamental mode of vibration) and 343 m/s for the speed of
sound, we obtain

f =
(1)vsound

4Ltube
=

343 m/s

4(1.20 m)
= 71.5 Hz .

(b) For the wire (using Eq. 17-53) we have

f ′ =
nvwire

2Lwire
=

1

2Lwire

√

τ

µ

where µ = mwire/Lwire. Recognizing that f = f ′ (both the wire and the air in the tube vibrate at
the same frequency), we solve this for the tension τ :

τ = (2Lwiref)
2

(

mwire

Lwire

)

= 4f2mwireLwire = 4(71.5 Hz)2
(

9.60× 10−3 kg
)

(0.33 m) = 64.8 N .

39. (a) We expect the center of the star to be a displacement node. The star has spherical symmetry and
the waves are spherical. If matter at the center moved it would move equally in all directions and
this is not possible.

(b) We assume the oscillation is at the lowest resonance frequency. Then, exactly one-fourth of a
wavelength fits the star radius. If λ is the wavelength and R is the star radius then λ = 4R.
The frequency is f = v/λ = v/4R, where v is the speed of sound in the star. The period is
T = 1/f = 4R/v.



483

(c) The speed of sound is v =
√

B/ρ, where B is the bulk modulus and ρ is the density of stellar
material. The radius is R = 9.0× 10−3Rs, where Rs is the radius of the Sun (6.96× 108 m). Thus

T = 4R

√

ρ

B
= 4(9.0× 10−3)(6.96× 108 m)

√

1.0× 1010 kg/m
3

1.33× 1022 Pa
= 22 s .

40. We observe that “third lowest ... frequency” corresponds to harmonic number n = 3 for a pipe open at
both ends. Also, “second lowest ... frequency” corresponds to harmonic number n = 3 for a pipe closed
at one end.

(a) Since λ = 2L/n for pipe A, where L = 1.2 m, then λ = 0.80 m for this mode. The change from
node to antinode requires a distance of λ/4 so that every increment of 0.20 m along the x axis
involves a switch between node and antinode. Since the opening is a displacement antinode, then
the locations for displacement nodes are at x = 0.20 m, x = 0.60 m, and x = 1.0 m.

(b) The waves in both pipes have the same wavespeed (sound in air) and frequency, so the standing
waves in both pipes have the same wavelength (0.80 m). Therefore, using Eq. 18-38 for pipe B, we
find L = 3λ/4 = 0.60 m.

(c) Using v = 343 m/s, we find f3 = v/λ = 429 Hz. Now, we find the fundamental resonant frequency
by dividing by the harmonic number, f1 = f3/3 = 143 Hz.

41. The string is fixed at both ends so the resonant wavelengths are given by λ = 2L/n, where L is the length
of the string and n is an integer. The resonant frequencies are given by f = v/λ = nv/2L, where v is the
wave speed on the string. Now v =

√

τ/µ, where τ is the tension in the string and µ is the linear mass

density of the string. Thus f = (n/2L)
√

τ/µ. Suppose the lower frequency is associated with n = n1

and the higher frequency is associated with n = n1 + 1. There are no resonant frequencies between so
you know that the integers associated with the given frequencies differ by 1. Thus f1 = (n1/2L)

√

τ/µ
and

f2 =
n1 + 1

2L

√

τ

µ
=
n1

2L

√

τ

µ
+

1

2L

√

τ

µ
= f1 +

1

2L

√

τ

µ
.

This means f2 − f1 = (1/2L)
√

τ/µ and

τ = 4L2µ(f2 − f1)2
= 4(0.300 m)2(0.650× 10−3 kg/m)(1320 Hz− 880 Hz)2

= 45.3 N .

42. Let the period be T . Then the beat frequency is 1
T −440 Hz = 4.00 beats/s. Therefore, T = 2.25×10−3 s.

The string that is “too tightly stretched” has the higher tension and thus the higher (fundamental)
frequency.

43. Since the beat frequency equals the difference between the frequencies of the two tuning forks, the
frequency of the first fork is either 381 Hz or 387 Hz. When mass is added to this fork its frequency
decreases (recall, for example, that the frequency of a mass-spring oscillator is proportional to 1/

√
m).

Since the beat frequency also decreases the frequency of the first fork must be greater than the frequency
of the second. It must be 387 Hz.

44. (a) The number of different ways of picking up a pair of tuning forks out of a set of five is 5!/(2!3!) = 10.
For each of the pairs selected, there will be one beat frequency. If these frequencies are all different
from each other, we get the maximum possible number of 10.

(b) First, we note that the minimum number occurs when the frequencies of these forks, labeled 1
through 5, increase in equal increments: fn = f1 + n∆f , where n = 2, 3, 4, 5. Now, there are only
4 different beat frequencies: fbeat = n∆f , where n = 1, 2, 3, 4.
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45. Each wire is vibrating in its fundamental mode so the wavelength is twice the length of the wire (λ = 2L)
and the frequency is f = v/λ = (1/2L)

√

τ/µ, where v (=
√

τ/µ) is the wave speed for the wire, τ is
the tension in the wire, and µ is the linear mass density of the wire. Suppose the tension in one wire
is τ and the oscillation frequency of that wire is f1. The tension in the other wire is τ + ∆τ and its
frequency is f2. You want to calculate ∆τ/τ for f1 = 600 Hz and f2 = 606 Hz. Now, f1 = (1/2L)

√

τ/µ

and f2 = (1/2L)
√

(τ + ∆τ)/µ, so

f2/f1 =
√

(τ + ∆τ)/τ =
√

1 + (∆τ/τ) .

This leads to

∆τ/τ = (f2/f1)
2 − 1 = [(606 Hz)/(600 Hz)]2 − 1 = 0.020 .

46. The Doppler effect formula, Eq. 18-47, and its accompanying rule for choosing ± signs, are discussed in
§18-8. Using that notation, we have v = 343 m/s, vD = vS = 160000/3600 = 44.4 m/s, and f = 500 Hz.
Thus,

f ′ = (500)

(

343− 44.4

343− 44.4

)

= 500 Hz =⇒ ∆f = 0 .

47. The detector (the second plane) is moving toward the source (the first plane). This tends to increase the
frequency, so we use the plus sign in the numerator of Eq. 18-47. The source is moving away from the
detector. This tends to decrease the frequency, so we use the plus sign in the denominator of Eq. 18-47.
Thus

f ′ = f
v + vD

v + vS
= (16000 Hz)

(

343 m/s + 250 m/s

343 m/s + 200 m/s

)

= 17500 Hz .

48. The Doppler effect formula, Eq. 18-47, and its accompanying rule for choosing ± signs, are discussed in
§18-8. Using that notation, we have v = 343 m/s, vD = 2.44 m/s, f ′ = 1590 Hz and f = 1600 Hz. Thus,

f ′ = f

(

v + vD

v + vS

)

=⇒ vS =
f

f ′ (v + vD)− v = 4.61 m/s .

49. We use vS = rω (with r = 0.600 m and ω = 15.0 rad/s) for the linear speed during circular motion, and
Eq. 18-47 for the Doppler effect (where f = 540 Hz, and v = 343 m/s for the speed of sound).

f ′ = f

(

v + 0

v ± vS

)

=

{

526 Hz for + choice
555 Hz for − choice

50. We are combining two effects: the reception of a moving object (the truck of speed u = 45.0 m/s) of
waves emitted by a stationary object (the motion detector), and the subsequent emission of those waves
by the moving object (the truck) which are picked up by the stationary detector. This could be figured
in two steps, but is more compactly computed in one step as shown here:

ffinal = finitial

(

v + u

v − u

)

= (0.150 MHz)

(

343 m/s + 45 m/s

343 m/s− 45 m/s

)

= 0.195 MHz .

51. We denote the speed of the French submarine by u1 and that of the U.S. sub by u2 .

(a) The frequency as detected by the U.S. sub is

f ′
1 = f1

(

v + u2

v − u1

)

= (1000 Hz)

(

5470 + 70

5470− 50

)

= 1.02× 103 Hz .
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(b) If the French sub were stationary, the frequency of the reflected wave would be fr = f1(v+u2 )/(v−
u2 ). Since the French sub is moving towards the reflected signal with speed u1, then

f ′
r = fr

(

v + u1

v

)

= f1
(v + u1)(v + u2)

v(v − u2)

=
(1000 Hz)(5470 + 50)(5470 + 70)

(5470)(5470− 70)

= 1.04× 103 Hz .

52. We use Eq. 18-47 with f = 1200 Hz and v = 329 m/s.

(a) In this case, vD = 65.8 m/s and vS = 29.9 m/s, and we choose signs so that f ′ is larger than f :

f ′ = f

(

329 + 65.8

329− 29.9

)

= 1584 Hz .

(b) The wavelength is λ = v/f ′ = 0.208 m.

(c) The wave (of frequency f ′ ) “emitted” by the moving reflector (now treated as a “source,” so
vS = 65.8 m/s) is returned to the detector (now treated as a detector, so vD = 29.9 m/s) and
registered as a new frequency f ′′:

f ′′ = f ′
(

329 + 29.9

329− 65.8

)

= 2160 Hz .

(d) This has wavelength v/f ′′ = 0.152 m.

53. In this case, the intruder is moving away from the source with a speed u satisfying u/v ≪ 1. The
Doppler shift (with u = −0.950 m/s) leads to

fbeat = |fr − fs| ≈
2|u|
v
fs =

2(0.95 m/s)(28.0 kHz)

343 m/s
) = 155 Hz .

54. As a result of the Doppler effect, the frequency of the reflected sound as heard by the bat is

fr = f ′
(

v + ubat

v − ubat

)

= (39000 Hz)

(

v + v/40

v − v/40

)

= 41000 Hz .

55. (a) The expression for the Doppler shifted frequency is

f ′ = f
v ± vD

v ∓ vS
,

where f is the unshifted frequency, v is the speed of sound, vD is the speed of the detector (the
uncle), and vS is the speed of the source (the locomotive). All speeds are relative to the air. The
uncle is at rest with respect to the air, so vD = 0. The speed of the source is vS = 10 m/s. Since
the locomotive is moving away from the uncle the frequency decreases and we use the plus sign in
the denominator. Thus

f ′ = f
v

v + vS
= (500.0 Hz)

(

343 m/s

343 m/s + 10.00 m/s

)

= 485.8 Hz .

(b) The girl is now the detector. Relative to the air she is moving with speed vD = 10.00 m/s toward
the source. This tends to increase the frequency and we use the plus sign in the numerator. The
source is moving at vS = 10.00 m/s away from the girl. This tends to decrease the frequency and
we use the plus sign in the denominator. Thus (v + vD) = (v + vS) and f ′ = f = 500.0 Hz.



486 CHAPTER 18.

(c) Relative to the air the locomotive is moving at vS = 20.00 m/s away from the uncle. Use the plus
sign in the denominator. Relative to the air the uncle is moving at vD = 10.00 m/s toward the
locomotive. Use the plus sign in the numerator. Thus

f ′ = f
v + vD

v + vS
= (500.0 Hz)

(

343 m/s + 10.00 m/s

343 m/s + 20.00 m/s

)

= 486.2 Hz .

(d) Relative to the air the locomotive is moving at vS = 20.00 m/s away from the girl and the girl is
moving at vD = 20.00 m/s toward the locomotive. Use the plus signs in both the numerator and
the denominator. Thus (v + vD) = (v + vS) and f ′ = f = 500.0 Hz.

56. The Doppler shift formula, Eq. 18-47, is valid only when both uS and uD are measured with respect to
a stationary medium (i.e., no wind). To modify this formula in the presence of a wind, we switch to a
new reference frame in which there is no wind.

(a) When the wind is blowing from the source to the observer with a speed w, we have u′S = u′D = w in
the new reference frame that moves together with the wind. Since the observer is now approaching
the source while the source is backing off from the observer, we have, in the new reference frame,

f ′ = f

(

v + u′D
v + u′S

)

= f

(

v + w

v + w

)

= 2000 Hz .

In other words, there is no Doppler shift.

(b) In this case, all we need to do is to reverse the signs in front of both u′D and u′S. The result is that
there is still no Doppler shift:

f ′ = f

(

v − u′D
v − u′S

)

= f

(

v − w
v − w

)

= 2000 Hz .

In general, there will always be no Doppler shift as long as there is no relative motion between the
observer and the source, regardless of whether a wind is present or not.

57. We use Eq. 18-47 with f = 500 Hz and v = 343 m/s. We choose signs to produce f ′ > f .

(a) The frequency heard in still air is

f ′ = 500

(

343 + 30.5

343− 30.5

)

= 598 Hz .

(b) In a frame of reference where the air seems still, the velocity of the detector is 30.5− 30.5 = 0, and
that of the source is 2(30.5). Therefore,

f ′ = 500

(

343 + 0

343− 2(30.5)

)

= 608 Hz .

(c) We again pick a frame of reference where the air seems still. Now, the velocity of the source is
30.5− 30.5 = 0, and that of the detector is 2(30.5). Consequently,

f ′ = 500

(

343 + 2(30.5)

343− 0)

)

= 589 Hz .

58. The angle is sin−1(v/vs) = sin−1(343/685) = 30◦.

59. (a) The half angle θ of the Mach cone is given by sin θ = v/vS , where v is the speed of sound and vS

is the speed of the plane. Since vS = 1.5v, sin θ = v/1.5v = 1/1.5. This means θ = 42◦.
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(b) Let h be the altitude of the plane and suppose the Mach cone intersects Earth’s surface a distance
d behind the plane. The situation is shown on the diagram below, with P indicating the plane and
O indicating the observer. The cone angle is related to h and d by tan θ = h/d, so d = h/ tan θ.
The shock wave reaches O in the time the plane takes to fly the distance d: t = d/v = h/v tan θ =
(5000 m)/1.5(331 m/s) tan 42◦ = 11 s.

•

•

.......................................................................
...
...
..
..
..
..
..
..

......................

VS

................................................................................................................................................................................................................................................................................

P

O

h

d

θ

60. The altitude H and the horizontal distance x for the legs of a right triangle, so we have

H = x tan θ = vpt tan θ = 1.25vt sin θ

where v is the speed of sound, vp is the speed of the plane and

θ = sin−1

(

v

vp

)

= sin−1
( v

1.25v

)

= 53.1◦ .

Thus the altitude is

H = x tan θ = (1.25)(330 m/s)(60 s)(tan 53.1◦) = 3.30× 104 m .

61. We use β = 10 log(I/Io ) with Io = 1 × 10−12 W/m2 and I = P/4πr2 (an assumption we are asked to
make in the problem). We estimate r ≈ 0.3 m (distance from knuckle to ear) and find

P ≈ 4π(0.3 m)2
(

1× 10−12 W/m2
)

106.2 = 2× 10−6 W .

62. (a) Using Eq. 18-39 with v = 343 m/s and n = 1, we find f = nv/2L = 86 Hz for the fundamental
frequency in a nasal passage of length L = 2.0 m (subject to various assumptions about the nature
of the passage as a “bent tube open at both ends”).

(b) The sound would be perceptible as sound (as opposed to just a general vibration) of very low
frequency.

(c) Smaller L implies larger f by the formula cited above. Thus, the female’s sound is of higher pitch
(frequency).

63. (a) Since ω = 2πf , Eq. 18-15 leads to

∆pm = vρ(2πf)sm =⇒ sm =
1.13× 10−3 Pa

2π(1665 Hz)(343 m/s)(1.21 kg/m3)

which yields sm = 0.26 nm. The nano prefix represents 10−9. We use the speed of sound and air
density values given at the beginning of the exercises and problems section in the textbook.

(b) We can plug into Eq. 18-27 or into its equivalent form, rewritten in terms of the pressure amplitude:

I =
1

2

(∆pm)
2

ρv
=

1

2

(

1.13× 10−3 Pa
)2

(1.21 kg/m3) (343 m/s)
= 1.5 nW/m2 .

64. We use β = 10 log(I/Io ) with Io = 1 × 10−12 W/m2 and Eq. 18-27 with ω = 2πf = 2π(260 Hz),
v = 343 m/s and ρ = 1.21 kg/m3.

I = Io
(

108.5
)

=
1

2
ρv(2πf)2s2m =⇒ sm = 7.6× 10−7 m .
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65. The points and the least-squares fit is shown in the graph below. The graph has frequency in Hertz
along the vertical axis and 1/L in inverse meters along the horizontal axis. The function found by the
least squares fit procedure is f = 276(1/L) + 0.037. Assuming this fits either the model of an open
organ pipe (mathematically similar to a string fixed at both ends) or that of a pipe closed at one end,
as discussed in the textbook, then f = v/2L in the former case or f = v/4L in the latter. Thus, if the
least-squares slope of 276 fits the first model, then a value of v = 2(276) = 553 m/s is implied. In the
second model (the pipe with only one end open) we find v = 4(276) = 1106 m/s which is more “in the
ballpark” of the 1400 m/s value cited in the problem. This suggests that the acoustic resonance involved
in this situation is more closely related to the n = 1 case of Figure 18-15(b) than to Figure 18-14.
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66. The round-trip time is t = 2L/v where we estimate from the chart that the time between clicks is 3 ms.
Thus, with v = 1372 m/s, we find L = 1

2vt = 2.1 m.

67. (a) In regions where the speed is constant, it is equal to distance divided by time. Thus, we conclude
that the time difference is

∆t =

(

L− d
V

+
d

V −∆V

)

− L

V

where the first term is the travel time through bone and rock and the last term is the expected
travel time purely through rock. Solving for d and simplifying, we obtain

d = ∆t
V (V −∆V )

∆V
≈ ∆t

V 2

∆V
.

(b) If we estimate d ≈ 10 cm (as the lower limit of a range that goes up to a diameter of 20 cm), then
the above expression (with the numerical values given in the problem) leads to ∆t = 0.8µs (as the
lower limit of a range that goes up to a time difference of 1.6µs).

68. (a) Using m = 7.3 × 107 kg, the initial gravitational potential energy is U = mgy = 3.9 × 1011 J,
where h = 550 m. Assuming this converts primarily into kinetic energy during the fall, then K =
3.9×1011 J just before impact with the ground. Using instead the mass estimate m = 1.7×108 kg,
we arrive at K = 9.2× 1011 J.

(b) The process of converting this kinetic energy into other forms of energy (during the impact with
the ground) is assumed to take ∆t = 0.50 s (and in the average sense, we take the “power” P to
be wave-energy/∆t). With 20% of the energy going into creating a seismic wave, the intensity of
the body wave is estimated to be

I =
P

Ahemisphere
=

(0.20)K/∆t
1
2 (4πr2)

= 0.63 W/m2

using r = 200× 103 m and the smaller value for K from part (a). Using instead the larger estimate
for K, we obtain I = 1.5 W/m2.
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(c) The surface area of a cylinder of “height” d is 2πrd, so the intensity of the surface wave is

I =
P

Acylinder
=

(0.20)K/∆t

(2πrd)
= 25× 103 W/m2

using d = 5.0 m, r = 200 × 103 m and the smaller value for K from part (a). Using instead the
larger estimate for K, we obtain I = 58 kW/m2.

(d) Although several factors are involved in determining which seismic waves are most likely to be
detected, we observe that on the basis of the above findings we should expect the more intense
waves (the surface waves) to be more readily detected.

69. (a) The period is the reciprocal of the frequency: T = 1/f = 1/(90 Hz) = 1.1× 10−2 s.

(b) Using v = 343 m/s, we find λ = v/f = 3.8 m.

70. (a) The blood is moving towards the right (towards the detector), because the Doppler shift in frequency
is an increase: ∆f > 0.

(b) The reception of the ultrasound by the blood and the subsequent remitting of the signal by the
blood back toward the detector is a two step process which may be compactly written as

f + ∆f = f

(

v + vx

v − vx

)

where vx = vblood cos θ .

If we write the ratio of frequencies as R = (f + ∆f)/f , then the solution of the above equation for
the speed of the blood is

vblood =
(R− 1)v

(R + 1) cos θ
= 0.90 m/s

where v = 1540 m/s, θ = 20◦, and R = 1 + 5495/5× 106.

(c) We interpret the question as asking how ∆f (still taken to be positive, since the detector is in
the “forward” direction) changes as the detection angle θ changes. Since larger θ means smaller
horizontal component of velocity vx then we expect ∆f to decrease towards zero as θ is increased
towards 90◦.

71. (a) When the speed is constant, we have v = d/t where v = 343 m/s is assumed. Therefore, with
t = 1

2 (15 s) (the time for sound to travel to the far wall) we obtain d = (343)(15/2) which yields a
distance of 2.6 km!

(b) Just as the 1
2 factor in part (a) was 1/(n+ 1) for n = 1 reflection, so also can we write

d = (343 m/s)

(

15 s

n+ 1

)

=⇒ n =
(343)(15)

d
− 1

for multiple reflections (with d in meters). For d = 25.7 m, we find n = 199.

72. Any phase changes associated with the reflections themselves are rendered inconsequential by the fact
that there are an even number of reflections. The additional path length traveled by wave A consists of
the vertical legs in the zig-zag path: 2L. To be (minimally) out of phase means, therefore, that 2L = λ/2
(corresponding to a half-cycle, or 180◦, phase difference). Thus, L = λ/4.

73. The reception of the ultrasound by the structure (moving with speed u) and the subsequent remitting
of the signal by the structure back toward the detector is a two step process which may be compactly
written as

f + ∆f = f

(

v + u

v − u

)

=⇒ v =

(

2 + ξ

ξ

)

u

with ξ = ∆f/f and where we have assumed that the structure is moving toward the detector. If
u = 1.00× 10−3 m/s and ξ = 1.30× 10−6, we get v = 1.54× 103 m/s.
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74. (a) The wavelength of the sound wave is

λ =
v

f
=

343 m/s

1000 Hz
= 0.343 m .

(b) From ∆pm = v2ρksm = 2πvρfsm we find

sm =
∆pm

2πvρf
=

10.0 Pa

(2π)(343 m/s)(1.21 kg/m3)(1000 Hz)
= 3.83× 10−6 m .

(c) The velocity of the particle is the derivative of the sinusoidal wave function with respect to time.
Its maximum value is

vm = 2πfsm = (3.60× 10−6 m)(2π)(1000 Hz) = 2.41× 10−2 m/s.

(d) From Eq. 18-38, we obtain

L =
λ

2
=

0.343 m

2
= 0.172 m .

75. (a) With the detector stationary, we seek a value of source speed vS such that the frequency ratio
(heard/emitted) is r = (20 kHz)/(30 kHz) = 2/3. From the Doppler effect formula, we find

f ′ = f

(

v + 0

v + vS

)

=⇒ vS =

(

1− r
r

)

v .

If v = 343 m/s, we get vS = 171.5 m/s which converts to 617 km/h.

(b) If r = 20/22, we find vS = 34.3 m/s = 123 km/h.

76. Let the frequencies of sound heard by the person from the left and right forks be fl and fr , respectively.

(a) If the speeds of both forks are u, then fl,r = fv/(v ± u) and

fbeat = |fr − fl| = fv

(

1

v − u −
1

v + u

)

=
2fuv

v2 − u2

=
2(440 Hz)(30.0 m/s)(343 m/s)

(343 m/s)2 − (30.0 m/s)2

= 77.6 Hz .

(b) If the speed of the listener is u, then fl,r = f(v ± u)/v and

fbeat = |fl − fr| = 2f
(u

v

)

= 2(440 Hz)

(

30.0 m/s

343 m/s

)

= 77.0 Hz .

77. (a) Since the source is moving toward the wall, the frequency of the sound as received at the wall is

f ′ = f

(

v

v − vS

)

= (440 Hz)

(

343 m/s

343 m/s− 20.0 m/s

)

= 467 Hz .

(b) Since the person is moving with a speed u toward the reflected sound with frequency f ′, the
frequency registered at the source is

fr = f ′
(

v + u

v

)

= (467 Hz)

(

343 m/s + 20.0 m/s

343 m/s

)

= 494 Hz .
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78. (a) If the destroyer drifts with the current, then it will detect a signal with frequency f ′ given by

f ′ = f

(

v

v − u1

)

=
(1000 Hz)(5470 km/h)

5470 km/h− (75.0 km/h− 30.0 km/h)

= 1008.29 Hz .

Thus, ∆f = f ′ − f = 8.29 Hz.

(b) If the destroyer is stationary with respect to the ocean floor, then it is moving at u2 = 30.0 km/h
relative to the current. The detected frequency then becomes

f ′′ = f

(

v + u2

v − u1

)

=
(1000 Hz)(5470 km/h + 30.0 km/h)

5470 km/h− (75.0 km/h− 30.0 km/h)

= 1013.9 Hz .

Thus, ∆f = f ′′ − f = 13.9 Hz.

79. (a) With r = 10 m in Eq. 18-28, we have

I =
P

4πr2
=⇒ P = 10 W .

(b) Using that value of P in Eq. 18-28 with a new value for r, we obtain

I =
P

4π(5.0)2
= 0.032

W

m2
.

Alternatively, a ratio I ′/I = (r/r′)2 could have been used.

(c) Using Eq. 18-29 with I = 0.0080 W/m2, we have

β = 10 log
I

I0
= 99 dB

where I0 = 1× 10−12 W/m2.

80. (a) We proceed by dividing the (velocity) equation involving the new (fundamental) frequency f ′ by
the equation when the frequency f is 440 Hz to obtain

f ′λ

fλ
=

√

√

√

√

τ ′

µ
τ
µ

=⇒ f ′

f
=

√

τ ′

τ

where we are making an assumption that the mass-per-unit-length of the string does not change
significantly. Thus, with τ ′ = 1.2τ , we have f ′/440 =

√
1.2. Therefore, f ′ = 482 Hz.

(b) In this case, neither tension nor mass-per-unit-length change, so the wavespeed v is unchanged.
Hence,

f ′λ′ = fλ =⇒ f ′ (2L′) = f (2L)

where Eq. 18-38 with n = 1 has been used. Since L′ = 2
3 L, we obtain f ′ = 3

2 (440) = 660 Hz.

81. We find the difference in the two applications of the Doppler formula:

f2 − f1 = 37 = f

(

340 + 25

340− 15
− 340

340− 15

)

= f

(

25

340− 15

)

which leads to f = 481 ≈ 480 Hz.
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82. (a) If point P is infinitely far away, then the small distance d between the two sources is of no conse-
quence (they seem effectively to be the same distance away from P ). Thus, there is no perceived
phase difference.

(b) Since the sources oscillate in phase, then the situation described in part (a) produces constructive
interference.

(c) For finite values of x, the difference in source positions becomes significant. The path lengths for
waves to travel from S1 and S2 become is now different. We interpret the question as asking for
the behavior of the absolute value of the phase difference |∆φ|, in which case any change from zero
(the answer for part (a)) is certainly an increase.

(d) The path length difference for waves traveling from S1 and S2 is

∆ℓ =
√

d2 + x2 − x for x > 0 .

The phase difference in “cycles” (in absolute value) is therefore

|∆φ| = ∆ℓ

λ
=

√
d2 + x2 − x

λ
.

Thus, in terms of λ, the phase difference is identical to the path length difference: |∆φ| = ∆ℓ > 0.
Consider ∆ℓ = λ/2. Then

√
d2 + x2 = x + λ/2. Squaring both sides, rearranging, and solving, we

find

x =
d2

λ
− λ

4
.

In general, if ∆ℓ = ξλ for some multiplier ξ > 0, we find

x =
d2

2ξλ
− 1

2
ξλ .

Using d = 16 m and λ = 2.0 m, we insert ξ = 1
2 , 1,

3
2 , 2,

5
2 into this expression and find the respective

values (in meters) x = 128, 63, 41, 30, 23. Since whole cycle phase differences are equivalent (as far
as the wave superposition goes) to zero phase difference, then the ξ = 1, 2 cases give constructive
interference. A shift of a half-cycle brings “troughs” of one wave in superposition with “crests”
of the other, thereby canceling the waves; therefore, the ξ = 1

2 ,
3
2 ,

5
2 cases produce destructive

interference.

83. We use v =
√

B/ρ to find the bulk modulus B:

B = v2ρ =
(

5.4× 103 m/s
)2 (

2.7× 103 kg/m3
)

= 7.9× 1010 Pa .

84. Let ℓ be the length of the rod. Then the time of travel for sound in air (speed vs) will be ts = ℓ/vs. And
the time of travel for compressional waves in the rod (speed vr) will be tr = ℓ/vr. In these terms, the
problem tells us that

ts − tr = 0.12 s = ℓ

(

1

vs
− 1

vr

)

.

Thus, with vs = 343 m/s and vr = 15vs = 5145 m/s, we find ℓ = 44 m.

85. (a) The frequency at which λ = D is

f1 =
v

D
=

343 m/s

15.0× 10−2 m
= 2.29× 103 Hz ,

the frequency at which λ = 10D is f2 = 2.29 × 102 Hz, and the frequency at which λ = 0.1D is
f3 = 2.29× 104 Hz.
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(b) Now, D′ = 30.0 cm. The frequency at which λ = D′ is f ′
1 = v/D′ = (343 m/s)/(30.0 × 10−2 m) =

1.14× 103 Hz, the frequency at which λ = 10D′ is f ′
2 = 1.14× 102 Hz, and the frequency at which

λ = 0.1D′ is f ′
3 = 1.14× 104 Hz.

86. When φ = 0 it is clear that the superposition wave has amplitude 2∆pm . For the other cases, it is useful
to write

∆p1 + ∆p2 = ∆pm (sin(ωt) + sin(ωt− φ)) =

(

2∆pm cos
φ

2

)

sin

(

ωt− φ

2

)

.

The factor in front of the sine function gives the amplitude for all cases considered: φ = π
2 ,

π
3 ,

π
4 gives

∆pm

√
2,∆pm

√
3,∆pm

√

2 +
√

2, respectively.

87. The source being isotropic means Asphere = 4πr2 is used in the intensity definition I = P/A, which
further implies

I2
I1

=
P/4πr22
P/4πr21

=

(

r1
r2

)2

.

(a) With I1 = 9.60 × 10−4 W/m2, r1 = 6.10 m, and r2 = 30.0 m, we find I2 = 0.960(6.10/30.0)2 =
3.97× 10−5 W/m2.

(b) Using Eq. 18-27 with I1 = 9.60× 10−4 W/m2, ω = 2π(2000 Hz), v = 343 m/s and ρ = 1.21 kg/m3,
we obtain

sm =

√

2I

ρvω2
= 1.71× 10−7 m .

(c) Eq. 18-15 gives the pressure amplitude:

∆pm = ρvωsm = 0.893 Pa .

88. The source being a “point source” means Asphere = 4πr2 is used in the intensity definition I = P/A,
which further implies

I2
I1

=
P/4πr22
P/4πr21

=

(

r1
r2

)2

.

From the discussion in §18-5, we know that the intensity ratio between “barely audible” and the “painful
threshold” is 10−12 = I2 /I1 . Thus, with r2 = 10000 m, we find r1 = r2

√
10−12 = 0.01 m.

89. The density of oxygen gas is

ρ =
0.0320 kg

0.0224 m3
= 1.43 kg/m

3
.

From v =
√

B/ρ we find

B = v2ρ = (317 m/s)2
(

1.43 kg/m
3
)

= 1.44× 105 Pa .

90. The wavelength is

λ =
v

f
=

240 m/s

4.2× 109 Hz
= 5.7× 10−8 m = 57 nm .

91. Since they oscillate out of phase, then their waves will cancel (producing a node) at a point exactly
midway between them (the midpoint of the system, where we choose x = 0). We note that Figure 18-14,
and the n = 3 case of Figure 18-15(a) have this property (of a node at the midpoint). The distance ∆x
between nodes is λ/2, where λ = v/f and f = 300 Hz and v = 343 m/s. Thus, ∆x == v/2f = 0.572 m.
Therefore, nodes are found at the following positions:

x = ±∆x = ±0.57 m

x = ±2∆x = ±1.14 m

x = ±3∆x = ±1.72 m
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92. (a) Consider a string of pulses returning to the stage. A pulse which came back just before the previous
one has traveled an extra distance of 2w, taking an extra amount of time ∆t = 2w/v. The frequency
of the pulse is therefore

f =
1

∆t
=

v

2w
=

343 m/s

2(0.75 m)
= 2.3× 102 Hz .

(b) Since f ∝ 1/w, the frequency would be higher if w were smaller.

93. The source being isotropic means Asphere = 4πr2 is used in the intensity definition I = P/A. Since
intensity is proportional to the square of the amplitude (see Eq. 18-27), this further implies

I2
I1

=

(

sm2

sm1

)2

=
P/4πr22
P/4πr21

=

(

r1
r2

)2

or sm2 /sm1 = r1 /r2 .

(a) With I = P/4πr2 = (10 W)/4π(3.0 m)2 = 0.088 W/m2.

(b) Using the notation A instead of sm for the amplitude, we find

A4

A3
=

3.0 m

4.0 m
=⇒ A4 =

3

4
A3 .

94. We use I ∝ r−2 appropriate for an isotropic source. We have

Ir=d

Ir=D−d
=

(D − d)2
D2

=
1

2
,

where d = 50.0 m. We solve for D: D =
√

2d/(
√

2− 1) =
√

2(50.0 m)/(
√

2− 1) = 171 m.

95. Let the original tension be τ1 and the new tension be τ2. Then

λs2

λs1
=
vs/f2
vs/f1

=
f1
f2

=
v2/λ1

v2/λ2
=
v1
v2

=

√

τ1
τ2

=
1

2
.

Thus, τ2/τ1 = 4. That is, the tension must be increased by a factor of 4.

96. Since they are approaching each other, the sound produced (of emitted frequency f) by the flatcar-
trumpet received by an observer on the ground will be of higher pitch f ′. In these terms, we are told
f ′ − f = 4.0 Hz, and consequently that f ′/f = 444/440 = 1.0091. With vS designating the speed of the
flatcar and v = 343 m/s being the speed of sound, the Doppler equation leads to

f ′

f
=

v + 0

v − vS
=⇒ vS = (343)

1.0091− 1

1.0091
= 3.1 m/s .

97. The siren is between you and the cliff, moving away from you and towards the cliff. Both “detectors” (you
and the cliff) are stationary, so vD = 0 in Eq. 18-47 (and see the discussion in the textbook immediately
after that equation regarding the selection of ± signs). The source is the siren with vS = 10 m/s. The
problem asks us to use v = 330 m/s for the speed of sound.

(a) With f = 1000 Hz, the frequency fy you hear becomes

fy = f

(

v + 0

v + vS

)

= 970.6 ≈ 9.7× 102 Hz .
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(b) The frequency heard by an observer at the cliff (and thus the frequency of the sound reflected by
the cliff, ultimately reaching your ears at some distance from the cliff) is

fc = f

(

v + 0

v − vS

)

= 1031.3 ≈ 1.03× 102 Hz .

(c) The beat frequency is fc− fy = 61 beats/s (which, due to specific features of the human ear, is too
large to be perceptible).

98. (a) We observe that “third lowest ... frequency” corresponds to harmonic number n = 5 for such a
system. Using Eq. 18-41, we have

f =
nv

4L
=⇒ 750 =

5v

4(0.60)

so that v = 360 m/s.

(b) As noted, n = 5; therefore, f1 = 750/5 = 150 Hz.

99. (a) The problem asks for the source frequency f . We use Eq. 18-47 with great care (regarding its ±
sign conventions).

f ′ = f

(

340− 16

340− 40

)

Therefore, with f ′ = 950 Hz, we obtain f = 880 Hz.

(b) We now have

f ′ = f

(

340 + 16

340 + 40

)

so that with f = 880 Hz, we find f ′ = 824 Hz.

100. (a) Since the speed of sound is lower in air than in water, the speed of sound in the air-water mixture
is lower than in pure water (see Table 18-1). Frequency is proportional to the speed of sound (see
Eq. 18-39 and Eq. 18-41), so the decrease in speed is “heard” due to the accompanying decrease in
frequency.

(b) This follows from Eq. 18-3 and Eq. 18-2 (with ∆’s replaced by derivatives). Thus,

1

v2
=

ρ

B
=

ρ

V
∣

∣

∣

dp
dV

∣

∣

∣

=
ρ

V

∣

∣

∣

∣

dV

dp

∣

∣

∣

∣

.

(c) Returning to the ∆ notation, and letting the absolute values be “understood,” we write ∆V =
∆Vw + ∆Va as indicated in the problem. Subject to the approximations mentioned in the problem,
our equation becomes

1

v2
=
ρw

Vw

(

∆Vw

∆p
+

∆Va

∆p

)

=
ρw

Vw

∆Vw

∆p
+
ρw

ρa

Va

Vw

(

ρa

Va

∆Va

∆p

)

.

In a pure water system or a pure air system, we would have

1

v2
w

=
ρw

Vw

∆Vw

∆p
or

1

v2
a

=
ρa

Va

∆Va

∆p
.

Substituting these into the above equation, and using the notation r = Va/Vw , we arrive at

1

v2
=

1

v2
w

+
ρw

ρa

r

v2
a

=⇒ v =
1

√

1/v2
w + r(ρw /ρa )/v2

a

.
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(d) Dividing our result in the previous part by vw and using the fact that the wave speed is proportional
to the frequency, we find

v

vw
=
fshift

f
=

1

vw

√

1/v2
w + r(ρw /ρa )/v2

a

=
1

√

1 + r(ρw /ρa )(vw /va )2

which becomes the expression shown in the problem when we plug in ρw = 1000 kg/m3, ρa =
1.21 kg/m3, vw = 1482 m/s and va = 343 m/s, and round to three significant figures.

(e) The graph of fshift /f versus r is shown below.

0.2

0.4

0.6

0.8

1

frequency_ratio

0 0.001 0.002 0.003 0.004
volume_ratio

(f) From the graph (or more accurately by solving the equation itself) we find r = 5.2×10−4 corresponds
to fshift /f = 1/3.



Chapter 19

1. We take p3 to be 80 kPa for both thermometers. According to Fig. 19-6, the nitrogen thermometer gives
373.35 K for the boiling point of water. Use Eq. 19-5 to compute the pressure:

pN =
T

273.16 K
p3 =

(

373.35 K

273.16 K

)

(80 kPa) = 109.343 kPa .

The hydrogen thermometer gives 373.16 K for the boiling point of water and

pH =

(

373.16 K

273.16 K

)

(80 kPa) = 109.287 kPa .

The pressure in the nitrogen thermometer is higher than the pressure in the hydrogen thermometer by
0.056 kPa.

2. From Eq. 19-6, we see that the limiting value of the pressure ratio is the same as the absolute temperature
ratio: (373.15 K)/(273.16 K) = 1.366.

3. Let TL be the temperature and pL be the pressure in the left-hand thermometer. Similarly, let TR

be the temperature and pR be the pressure in the right-hand thermometer. According to the problem
statement, the pressure is the same in the two thermometers when they are both at the triple point of
water. We take this pressure to be p3. Writing Eq. 19-5 for each thermometer,

TL = (273.16 K)

(

pL

p3

)

and TR = (273.16 K)

(

pR

p3

)

,

we subtract the second equation from the first to obtain

TL − TR = (273.16 K)

(

pL − pR

p3

)

.

First, we take TL = 373.125 K (the boiling point of water) and TR = 273.16 K (the triple point of water).
Then, pL − pR = 120 torr. We solve

373.125 K− 273.16 K = (273.16 K)

(

120 torr

p3

)

for p3. The result is p3 = 328 torr. Now, we let TL = 273.16 K (the triple point of water) and TR be the
unknown temperature. The pressure difference is pL − pR = 90.0 torr. Solving

273.16 K− TR = (273.16 K)

(

90.0 torr

328 torr

)

for the unknown temperature, we obtain TR = 348 K.

497
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4. (a) Let the reading on the Celsius scale be x and the reading on the Fahrenheit scale be y. Then
y = 9

5x+ 32. If we require y = 2x, then we have

2x =
9

5
x+ 32 =⇒ x = (5)(32) = 160◦C

which yields y = 2x = 320◦F.

(b) In this case, we require y = 1
2x and find

1

2
x =

9

5
x+ 32 =⇒ x = − (10)(32)

13
≈ −24.6◦C

which yields y = x/2 = −12.3◦F.

5. (a) Fahrenheit and Celsius temperatures are related by TF = (9/5)TC + 32◦. TF is numerically equal
to TC if TF = (9/5)TF + 32◦. The solution to this equation is TF = −(5/4)(32◦) = −40◦F.

(b) Fahrenheit and Kelvin temperatures are related by TF = (9/5)TC + 32◦ = (9/5)(T − 273.15) +
32◦. The Fahrenheit temperature TF is numerically equal to the Kelvin temperature T if TF =
(9/5)(TF − 273.15) + 32◦. The solution to this equation is

TF =
5

4

(

9

5
× 273.15− 32◦

)

= 575◦F .

(c) Since TC = T − 273.15 the Kelvin and Celsius temperatures can never have the same numerical
value.

6. (a) Let the reading on the Celsius scale be x and the reading on the Fahrenheit scale be y. Then
y = 9

5x+ 32. For x = −71, this gives y = −96.

(b) The relationship between y and x may be inverted to yield x = 5
9 (y − 32). Thus, for y = 134 we

find x ≈ 56.7 on the Celsius scale.

7. (a) Changes in temperature take place by means of radiation, conduction, and convection. The constant
A can be reduced by placing the object in isolation, by surrounding it with a vacuum jacket, for
example. This reduces conduction and convection. Absorption of radiation can be reduced by
polishing the surface to a mirror finish. We note that A depends on the condition of the surface
and on the ability of the environment to conduct or convect energy to or from the object. A has
the dimensions of reciprocal time.

(b) We rearrange the equation to obtain

1

∆T

d∆T

dt
= −A .

Now, we integrate with respect to time and recognize that

∫

1

∆T

d∆T

dt
dt =

∫

1

∆T
d(∆T ) .

Thus,
∫ ∆T

∆T0

1

∆T
d(∆T ) = −

∫ t

0

Adt .

The integral on the right side yields −At and the integral on the left yields ln ∆T |∆T
∆T0

= ln(∆T )−
ln(∆T0) = ln(∆T/∆T0), so

ln
∆T

∆T0
= −At .
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We use each side as the exponent of e, the base of the natural logarithms, to obtain

∆T

∆T0
= e−At

or
∆T = ∆T0 e

−At .

8. From ∆T = ∆T0e
−At, we have ∆T/∆T0 = e−A1t1 (before insulation) and ∆T/∆T0 = e−A2t2 (after

insulation). Thus the ratio is given by A2/A1 = t1/t2 = 1/2.

9. We assume scale X is a linear scale in the sense that if its reading is x then it is related to a reading y
on the Kelvin scale by a linear relationship y = mx+ b. We determine the constants m and b by solving
the simultaneous equations:

373.15 = m(−53.5) + b

273.15 = m(−170) + b

which yield the solutions m = 100/(170− 53.5) = 0.858 and b = 419. With these values, we find x for
y = 340:

x =
y − b
m

=
340− 419

0.858
= −92.1◦X .

10. The change in length for the aluminum pole is

∆ℓ = ℓ0αAl∆T = (33 m)(23× 10−6/C◦)(15C◦) = 0.011 m .

11. When the temperature changes from T to T+∆T the diameter of the mirror changes from D to D+∆D,
where ∆D = αD∆T . Here α is the coefficient of linear expansion for Pyrex glass (3.2 × 10−6/C

◦
,

according to Table 19–2). The range of values for the diameters can be found by setting ∆T equal to
the temperature range. Thus ∆D = (3.2 × 10−6 /C

◦
)(200 in.)(60 C◦) = 3.84 × 10−2 in. Since 1 in. =

2.50 cm = 2.50× 104 µm, this is 960µm.

12. (a) The coefficient of linear expansion α for the alloy is

α = ∆L/L∆T =
10.015 cm− 10.000 cm

(10.01 cm)(100◦C− 20.000◦C)
= 1.88× 10−5/C◦ .

Thus, from 100◦C to 0◦C we have

∆L = Lα∆T = (10.015 cm)
(

1.88× 10−5/C◦) (0◦C− 100◦C) = −1.88× 10−2 cm .

The length at 0◦C is therefore L′ = L+ ∆L = 10.015 cm− 0.0188 cm = 9.996 cm.

(b) Let the temperature be Tx . Then from 20◦C to Tx we have

∆L = 10.009 cm− 10.000 cm = αL∆T = (1.88× 10−5/C◦)(10.000 cm)∆T ,

giving ∆T = 48 C◦. Thus, Tx = 20◦C + 48 C◦ = 68◦C.

13. The new diameter is

D = D0(1 + αAl∆T )

= (2.725 cm)[1 + (23× 10−6/C◦)(100.0◦C− 0.000◦C)] = 2.731 cm .

14. The volume at 30◦C is given by

V ′ = V (1 + β∆T ) = V (1 + 3α∆T )

= (50 cm3)[1 + 3(29× 10−6/C◦)(30◦C− 60◦C)] = 49.87 cm3 .

where we have used β = 3α.
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15. Since a volume is the product of three lengths, the change in volume due to a temperature change ∆T
is given by ∆V = 3αV ∆T , where V is the original volume and α is the coefficient of linear expansion.
See Eq. 19–11. Since V = (4π/3)R3, where R is the original radius of the sphere, then

∆V = 3α

(

4π

3
R3

)

∆T = (23× 10−6 /C
◦
)(4π)(10 cm)3(100 C◦) = 29 cm3 .

The value for the coefficient of linear expansion is found in Table 19-2.

16. The change in area for the plate is

∆A = (a+ ∆a)(b + ∆b)− ab ≈ a∆b+ b∆a = 2abα∆T = 2αA∆T .

17. If Vc is the original volume of the cup, αa is the coefficient of linear expansion of aluminum, and ∆T is
the temperature increase, then the change in the volume of the cup is ∆Vc = 3αaVc ∆T . See Eq. 19–11.
If β is the coefficient of volume expansion for glycerin then the change in the volume of glycerin is
∆Vg = βVc ∆T . Note that the original volume of glycerin is the same as the original volume of the cup.
The volume of glycerin that spills is

∆Vg −∆Vc = (β − 3αa)Vc ∆T

=
[(

5.1× 10−4 /C
◦)− 3

(

23× 10−6 /C
◦)] (

100 cm3
)

(6 C◦)

= 0.26 cm3 .

18. The change in length for the section of the steel ruler between its 20.05 cm mark and 20.11 cm mark is

∆Ls = Lsαs∆T = (20.11 cm)(11× 10−6/C◦)(270◦C− 20◦C) = 0.055 cm .

Thus, the actual change in length for the rod is ∆L = (20.11 cm−20.05 cm)+0.055 cm = 0.115 cm. The
coefficient of thermal expansion for the material of which the rod is made of is then

α =
∆L

∆T
=

0.115 cm

270◦C− 20◦C
= 23× 10−6/C◦ .

19. After the change in temperature the diameter of the steel rod is Ds = Ds0 +αsDs0 ∆T and the diameter
of the brass ring is Db = Db0 +αbDb0 ∆T , where Ds0 and Db0 are the original diameters, αs and αb are
the coefficients of linear expansion, and ∆T is the change in temperature. The rod just fits through the
ring if Ds = Db. This means Ds0 + αsDs0 ∆T = Db0 + αbDb0 ∆T . Therefore,

∆T =
Ds0 −Db0

αbDb0 − αsDs0

=
3.000 cm− 2.992 cm

(19× 10−6 /C
◦
)(2.992 cm)− (11× 10−6 /C

◦
)(3.000 cm)

= 335 C◦ .

The temperature is T = 25◦C + 335 C◦ = 360◦C.

20. (a) We use ρ = m/V and ∆ρ = ∆(m/V ) = m∆(1/V ) ≃ −m∆V/V 2 = −ρ(∆V/V ) = −3ρ(∆L/L).
The percent change in density is

∆ρ

ρ
= −3

∆L

L
= −3(0.23%) = −0.69% .

(b) Since α = ∆L/(L∆T ) = 0.23 × 10−2/(100◦C − 0.0◦C) = 23 × 10−6/C◦, the metal is aluminum
(using Table 19-2).

21. The change in volume of the liquid is given by ∆V = βV ∆T . If A is the cross-sectional area of the
tube and h is the height of the liquid, then V = Ah is the original volume and ∆V = A∆h is the
change in volume. Since the tube does not change the cross-sectional area of the liquid remains the
same. Therefore, A∆h = βAh∆T or ∆h = βh∆T .
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22. (a) Since A = πD2/4, we have the differential dA = 2(πD/4)dD. Dividing the latter relation by the
former, we obtain dA/A = 2 dD/D. In terms of ∆’s, this reads

∆A

A
= 2

∆D

D
for

∆D

D
≪ 1 .

We can think of the factor of 2 as being due to the fact that area is a two-dimensional quantity.
Therefore, the area increases by 2(0.18%) = 0.36%.

(b) Assuming that all dimension are allowed to freely expand, then the thickness increases by 0.18%.

(c) The volume (a three-dimensional quantity) increases by 3(0.18%) = 0.54%.

(d) The mass does not change.

(e) The coefficient of linear expansion is

α =
∆D

D∆T
=

0.18× 10−2

100◦C
= 18× 10−6/C◦ .

23. We note that if the pendulum shortens, its frequency of oscillation will increase, thereby causing it
to record more units of time (“ticks”) than have actually passed during an interval. Thus, as the
pendulum contracts (this problem involves cooling the brass wire), the pendulum will “run fast.” Since
the “direction” of the error has now been discussed, the remaining calculations are understood to be in
absolute value. The differential of the equation for the pendulum period in Chapter 16 is

dT =
1

2
(2π)

dL√
gL

which we divide by the period equation T = 2π
√

L/g (and replace differentials with |∆|’s) to obtain

|∆T |
T

=
1

2

|∆L|
L

=
1

2
α|∆T |

where we use Eq. 19-9 (in absolute value) in the last step. Thus, the (unitless) fractional change in
period is

|∆T |
T

=
1

2

(

19× 10−6/C◦) (20 C◦) = 1.9× 10−4

using Table 19-2. We can express this in “mixed units” fashion by recalling that there are 3600 s in an
hour. Thus, (3600 s/h)(1.9× 10−4 ) = 0.68 s/h.

24. We divide Eq. 19-9 by the time increment ∆t and equate it to the (constant) speed v = 100× 10−9 m/s.

v = αL0
∆T

∆t

where L0 = 0.0200 m and α = 23× 10−6/C◦. Thus, we obtain

∆T

∆t
= 0.217

C◦

s
= 0.217

K

s
.

25. Consider half the bar. Its original length is ℓ0 = L0/2 and its length after the temperature increase is
ℓ = ℓ0 + αℓ0 ∆T . The old position of the half-bar, its new position, and the distance x that one end
is displaced form a right triangle, with a hypotenuse of length ℓ, one side of length ℓ0, and the other
side of length x. The Pythagorean theorem yields x2 = ℓ2 − ℓ20 = ℓ20(1 + α∆T )2 − ℓ20. Since the change
in length is small we may approximate (1 + α∆T )2 by 1 + 2α∆T , where the small term (α∆T )2 was
neglected. Then,

x2 = ℓ20 + 2ℓ20α∆T − ℓ20 = 2ℓ20α∆T

and

x = ℓ0
√

2α∆T =
3.77 m

2

√

2(25× 10−6 /C◦)(32 C◦) = 7.5× 10−2 m .
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26. We use Q = cm∆T . The textbook notes that a nutritionist’s “Calorie” is equivalent to 1000 cal. The
mass m of the water that must be consumed is

m =
Q

c∆T
=

3500× 103 cal

(1 g/cal ·C◦)(37.0◦C− 0.0◦C)
= 94.6× 104 g ,

which is equivalent to 9.46 × 104 g/(1000 g/liter) = 94.6 liters of water. This is certainly too much to
drink in a single day!

27. (a) The specific heat is given by c = Q/m(Tf − Ti), where Q is the heat added, m is the mass of the
sample, Ti is the initial temperature, and Tf is the final temperature. Thus, recalling that a change
in Celsius degrees is equal to the corresponding change on the Kelvin scale,

c =
314 J

(30.0× 10−3 kg)(45.0◦C− 25.0◦C)
= 523 J/kg·K .

(b) The molar specific heat is given by

cm =
Q

N(Tf − Ti)
=

314 J

(0.600 mol)(45.0◦C− 25.0◦C)
= 26.2 J/mol·K .

(c) If N is the number of moles of the substance and M is the mass per mole, then m = NM , so

N =
m

M
=

30.0× 10−3 kg

50× 10−3 kg/mol
= 0.600 mol .

28. The amount of water m which is frozen is

m =
Q

LF
=

50.2 kJ

333 kJ/kg
= 0.151 kg = 151 g .

Therefore the amount of water which remains unfrozen is 260 g− 151 g = 109 g.

29. The melting point of silver is 1235 K, so the temperature of the silver must first be raised from 15.0◦C
(= 288 K) to 1235 K. This requires heat

Q = cm(Tf − Ti) = (236 J/kg ·K)(0.130 kg)(1235◦C− 288◦C) = 2.91× 104 J .

Now the silver at its melting point must be melted. If LF is the heat of fusion for silver this requires

Q = mLF = (0.130 kg)(105× 103 J/kg) = 1.36× 104 J .

The total heat required is 2.91× 104 J + 1.36× 104 J = 4.27× 104 J.

30. Recalling that a Watt is a Joule-per-second, the heat Q which is added to the room in 1 h is

Q = 4(100 W)(0.90)(1.00 h)

(

3600 s

1.00 h

)

= 1.30× 106 J .

31. The textbook notes that a nutritionist’s “Calorie” is equivalent to 1000 cal. The athlete’s rate of
dissipating energy is

P = 4000 Cal/day =
(4000× 103 cal)(4.18 J/cal)

(1 day)(86400 s/day)
= 194 W ,

which is 1.9 times as much as the power of a 100 W light bulb.
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32. The work the man has to do to climb to the top of Mt. Everest is given by W = mgy = (73)(9.8)(8840) =
6.3× 106 J. Thus, the amount of butter needed is

m =
(6.3× 106 J)

(

1.00 cal
4.186 J

)

6000 cal/g
≈ 250 g .

33. (a) The heat generated is the power output of the drill multiplied by the time: Q = Pt. We use
1 hp = 2545 Btu/h to convert the given value of the power to Btu/h and 1 min = (1/60) h to
convert the given value of the time to hours. Then,

Q =
(0.400 hp)(2545 Btu/h)(2.00 min)

60 min/h
= 33.9 Btu .

(b) We use 0.75Q = cm∆T to compute the rise in temperature. Here c is the specific heat of copper and
m is the mass of the copper block. Table 19-3 gives c = 386 J/kg·K. We use 1 J = 9.481×10−4 Btu
and 1 kg = 6.852× 10−2 slug (see Appendix D) to show that

c =
(386 J/kg·K)(9.481× 10−4 Btu/J)

6.852× 10−2 slug/kg
= 5.341 Btu/slug·K .

The mass of the block is its weight W divided by the gravitational acceleration (which is 32 ft/s2

in customary units, which uses “slugs” for mass):

m =
W

g
=

1.60 lb

32 ft/s
2 = 0.0500 slug .

Thus,

∆T =
0.750Q

cm
=

(0.750)(33.9 Btu)

(5.341 Btu/slug·K)(0.0500 slug)
= 95.3 K = 95.3 C◦ .

This is equivalent to (9/5)(95.3) = 172 F◦.

34. (a) The water (of mass m) releases energy in two steps, first by lowering its temperature from 20◦C
to 0◦C, and then by freezing into ice. Thus the total energy transferred from the water to the
surroundings is

Q = cwm∆T + LFm = (4190 J/kg·K)(125 kg)(20◦C) + (333 kJ/kg)(125 kg) = 5.2× 107 J .

(b) Before all the water freezes, the lowest temperature possible is 0◦C, below which the water must
have already turned into ice.

35. The massm = 0.100 kg of water, with specific heat c = 4190 J/kg·K, is raised from an initial temperature
Ti = 23◦C to its boiling point Tf = 100◦C. The heat input is given by Q = cm(Tf − Ti). This must be
the power output of the heater P multiplied by the time t; Q = Pt. Thus,

t =
Q

P
=
cm(Tf − Ti)

P
=

(4190 J/kg·K)(0.100 kg)(100◦C− 23◦C)

200 J/s
= 160 s .

36. (a) Using Eq. 19-17, the heat transferred to the water is

Qw = cwmw∆T + LVms

= (1 cal/g·C◦)(220 g)(100◦C− 20.0◦C) + (539 cal/g)(5.00 g)

= 20.3 kcal .

(b) The heat transferred to the bowl is

Qb = cbmb∆T = (0.0923 cal/g·C◦)(150 g)(100◦C− 20.0◦C) = 1.11 kcal .
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(c) If the original temperature of the cylinder be Ti , then Qw +Qb = ccmc(Ti − Tf ), which leads to

Ti =
Qw +Qb

ccmc
+ Tf =

20.3 kcal + 1.11 kcal

(0.0923 cal/g·C◦)(300 g)
+ 100◦C = 873◦C .

37. Mass m of water must be raised from an initial temperature Ti = 59◦F = 15◦C to a final temperature
Tf = 100◦C. If c is the specific heat of water then the energy required is Q = cm(Tf − Ti). Each shake
supplies energy mgh, where h is the distance moved during the downward stroke of the shake. If N
is the total number of shakes then Nmgh = Q. If t is the time taken to raise the water to its boiling
point then (N/t)mgh = Q/t. We note that N/t is the rate R of shaking (30 shakes/min). This leads to
Rmgh = Q/t. The distance h is 1.0 ft = 0.3048 m. Consequently,

t =
Q

Rmgh
=
cm(Tf − Ti)

Rmgh
=
c(Tf − Ti)

Rgh

=
(4190 J/kg·K)(100◦C− 15◦C)

(30 shakes/min)(9.8 m/s
2
)(0.3048 m)

= 3.97× 103 min = 2.8 days .

38. We note from Eq. 19-12 that 1 Btu = 252 cal. The heat relates to the power, and to the temperature
change, through Q = Pt = cm∆T . Therefore, the time t required is

t =
cm∆T

P
=

(1000 cal/kg·C◦)(40 gal)(1000 kg/264 gal)(100◦F− 70◦F)(5C◦/9F◦)

(2.0× 105 Btu/h)(252.0 cal/Btu)(1 h/60 min)

= 3.0 min .

The metric version proceeds similarly:

t =
cρV∆T

P
=

(4190 J/kg·C◦)(1000 kg/m3)(150 L)(1 m3/1000 L)(38◦C− 21◦C)

(59000 J/s)(60 s/1 min)

= 3.0 min .

39. To accomplish the phase change at 78◦C, Q = LV m = (879)(0.510) = 448.29 kJ must be removed. To
cool the liquid to −114◦C, Q = cm|∆T | = (2.43)(0.510)(192) = 237.95 kJ, must be removed. Finally, to
accomplish the phase change at −114◦C, Q = LF m = (109)(0.510) = 55.59 kJ must be removed. The
grand total of heat removed is therefore 448.29 + 237.95 + 55.59 = 742 kJ.

40. The deceleration a of the car is given by v2
f − v2

i = −v2
i = 2ad, or

a = − [(90 km/h)(103 m/km)(1 h/3600 s)]2

2(80 m)
= −3.9 m/s

2
.

The time t it takes for the car to stop is then

t =
vf − vi

a
= − (90 km/h)(103 m/km)(1 h/3600 s)

−3.9 m/s
2 = 6.4 s .

The average rate at which thermal energy is produced is then

P =
1
2mv

2
i

t
=

(1500 kg)[(90 km/h)(1000 m/km)(1 h/3600 s)]2

2(6.4 s)
= 7.3× 104 W .
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41. The heat needed is found by integrating the heat capacity:

Q =

∫ Tf

Ti

cmdT = m

∫ Tf

Ti

c dT

= (2.09)

∫ 15.0◦C

5.0◦C

(0.20 + 0.14T + 0.023T 2) dT

= (2.0)(0.20T + 0.070T 2 + 0.00767T 3)

∣

∣

∣

∣

15.0

5.0

(cal)

= 82 cal .

42. The power consumed by the system is

P =

(

1

20%

)

cm∆T

t

=

(

1

20%

)

(4.18 J/g·◦C)(200× 103 cm3)(1 g/cm
3
)(40◦C− 20◦C)

(1.0 h)(3600 s/h)

= 2.3× 104 W .

The area needed is then

A =
2.3× 104 W

700 W/m
2 = 33 m2 .

43. Let the mass of the steam be ms and that of the ice be mi. Then LFmc + cwmc(Tf − 0.0◦C) =
Lsms + cwms(100◦C− Tf), where Tf = 50◦C is the final temperature. We solve for ms:

ms =
LFmc + cwmc(Tf − 0.0◦C)

Ls + cw(100◦C− Tf )

=
(79.7 cal/g)(150 g) + (1 cal/g·◦C)(150 g)(50◦C− 0.0◦C)

539 cal/g + (1 cal/g·C◦)(100◦C− 50◦C)

= 33 g .

44. We compute with Celsius temperature, which poses no difficulty for the J/kg·K values of specific heat
capacity (see Table 19-3) since a change of Kelvin temperature is numerically equal to the corresponding
change on the Celsius scale. If the equilibrium temperature is Tf then the energy absorbed as heat
by the ice is QI = LFmI + cwmI(Tf − 0◦C), while the energy transferred as heat from the water is
Qw = cwmw(Tf − Ti). The system is insulated, so Qw +QI = 0, and we solve for Tf :

Tf =
cwmwTi − LFmI

(mI +mc) cw
.

(a) Now Ti = 90◦C so

Tf =
(4190 J/kg·C◦)(0.500 kg)(90◦C)−

(

333× 103 J/kg
)

(0.500 kg)

(0.500 kg + 0.500 kg)(4190 J/kg·C◦)
= 5.3◦C .

(b) If we were to use the formula above with Ti = 70◦C, we would get Tf < 0, which is impossible. In
fact, not all the ice has melted in this case (and the equilibrium temperature is 0◦C) The amount
of ice that melts is given by

m′
I =

cwmw (Ti − 0◦C)

LF
=

(4190 J/kg·C◦) (0.500 kg) (70 C◦)

333× 103 J/kg
= 0.440 kg .

Therefore, there amount of (solid) ice remaining is ∆mI = mI −m′
I = 500 g− 440 g = 60 g, and (as

mentioned) we have Tf = 0◦C (because the system is an ice-water mixture in thermal equilibrium).
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45. (a) We work in Celsius temperature, which poses no difficulty for the J/kg·K values of specific heat
capacity (see Table 19-3) since a change of Kelvin temperature is numerically equal to the corre-
sponding change on the Celsius scale. There are three possibilities:

• None of the ice melts and the water-ice system reaches thermal equilibrium at a temperature
that is at or below the melting point of ice.

• The system reaches thermal equilibrium at the melting point of ice, with some of the ice melted.

• All of the ice melts and the system reaches thermal equilibrium at a temperature at or above
the melting point of ice.

First, we suppose that no ice melts. The temperature of the water decreases from TWi = 25◦C to
some final temperature Tf and the temperature of the ice increases from TIi = −15◦C to Tf . If
mW is the mass of the water and cW is its specific heat then the water rejects heat

|Q| = cWmW (TWi − Tf) .

If mI is the mass of the ice and cI is its specific heat then the ice absorbs heat

Q = cImI(Tf − TIi) .

Since no energy is lost to the environment, these two heats (in absolute value) must be the same.
Consequently,

cWmW (TWi − Tf) = cImI (Tf − TIi) .

The solution for the equilibrium temperature is

Tf =
cWmWTWi + cImITIi

cWmW + cImI

=
(4190 J/kg·K)(0.200 kg)(25◦C) + (2220 J/kg·K)(0.100 kg)(−15◦C)

(4190 J/kg·K)(0.200 kg) + (2220 J/kg·K)(0.100 kg)

= 16.6◦C .

This is above the melting point of ice, which invalidates our assumption that no ice has melted.
That is, the calculation just completed does not take into account the melting of the ice and is
in error. Consequently, we start with a new assumption: that the water and ice reach thermal
equilibrium at Tf = 0◦C, with mass m (< mI) of the ice melted. The magnitude of the heat
rejected by the water is

|Q| = cWmWTWi ,

and the heat absorbed by the ice is

Q = cImI(0 − TIi) +mLF ,

where LF is the heat of fusion for water. The first term is the energy required to warm all the ice
from its initial temperature to 0◦C and the second term is the energy required to melt mass m of
the ice. The two heats are equal, so

cWmWTWi = −cImITIi +mLF .

This equation can be solved for the mass m of ice melted:

m =
cWmWTWi + cImITIi

LF

=
(4190 J/kg·K)(0.200 kg)(25◦C) + (2220 J/kg·K)(0.100 kg)(−15◦C)

333× 103 J/kg

= 5.3× 10−2 kg = 53 g .

Since the total mass of ice present initially was 100 g, there is enough ice to bring the water
temperature down to 0◦C. This is then the solution: the ice and water reach thermal equilibrium
at a temperature of 0◦C with 53 g of ice melted.
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(b) Now there is less than 53 g of ice present initially. All the ice melts and the final temperature is
above the melting point of ice. The heat rejected by the water is

|Q| = cWmW (TWi − Tf )

and the heat absorbed by the ice and the water it becomes when it melts is

Q = cImI(0− TIi) + cWmI(Tf − 0) +mILF .

The first term is the energy required to raise the temperature of the ice to 0◦C, the second term is
the energy required to raise the temperature of the melted ice from 0◦C to Tf , and the third term
is the energy required to melt all the ice. Since the two heats are equal,

cWmW (TWi − Tf ) = cImI(−TIi) + cWmITf +mILF .

The solution for Tf is

Tf =
cWmWTWi + cImITIi −mILF

cW (mW +mI)
.

Inserting the given values, we obtain Tf = 2.5◦C.

46. We denote the ice with subscript I and the coffee with c, respectively. Let the final temperature be Tf .
The heat absorbed by the ice is QI = λFmI +mIcw (Tf − 0◦C) , and the heat given away by the coffee
is |Qc| = mwcw (TI − Tf). Setting QI = |Qc|, we solve for Tf :

Tf =
mwcwTI − λFmI

(mI +mc)cw

=
(130 g) (4190 J/kg·C◦) (80.0◦C)−

(

333× 103 J/g
)

(12.0 g)

(12.0 g + 130 g) (4190 J/kg·C◦)

= 66.5◦C .

Note that we work in Celsius temperature, which poses no difficulty for the J/kg·K values of specific heat
capacity (see Table 19-3) since a change of Kelvin temperature is numerically equal to the corresponding
change on the Celsius scale. Therefore, the temperature of the coffee will cool by |∆T | = 80.0◦C −
66.5◦C = 13.5C◦.

47. If the ring diameter at 0.000◦C is Dr0 then its diameter when the ring and sphere are in thermal
equilibrium is

Dr = Dr0(1 + αcTf) ,

where Tf is the final temperature and αc is the coefficient of linear expansion for copper. Similarly, if
the sphere diameter at Ti (= 100.0◦C) is Ds0 then its diameter at the final temperature is

Ds = Ds0[1 + αa(Tf − Ti)] ,

where αa is the coefficient of linear expansion for aluminum. At equilibrium the two diameters are equal,
so

Dr0(1 + αcTf) = Ds0[1 + αa(Tf − Ti)] .

The solution for the final temperature is

Tf =
Dr0 −Ds0 +Ds0αaTi

Ds0αa −Dr0αc

=
2.54000 cm− 2.54508 cm + (2.54508 cm)

(

23× 10−6/C◦) (100◦C)

(2.54508 cm) (23× 10−6/C◦)− (2.54000 cm) (17× 10−6/C◦)

= 50.38◦C .
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The expansion coefficients are from Table 19-2 of the text. Since the initial temperature of the ring is
0◦C, the heat it absorbs is

Q = ccmrTf ,

where cc is the specific heat of copper and mr is the mass of the ring. The heat rejected up by the sphere
is

|Q| = cams (Ti − Tf )

where ca is the specific heat of aluminum and ms is the mass of the sphere. Since these two heats are
equal,

ccmrTf = cams (Ti − Tf) ,

we use specific heat capacities from the textbook to obtain

ms =
ccmrTf

ca (Ti − Tf)
=

(386 J/kg·K)(0.0200 kg)(50.38◦C)

(900 J/kg·K)(100◦C− 50.38◦C)
= 8.71× 10−3 kg .

48. (a) Since work is done on the system (perhaps to compress it) we write W = −200 J.

(b) Since heat leaves the system, we have Q = −70.0 cal = −293 J.

(c) The change in internal energy is ∆Eint = Q−W = −293 J− (−200 J) = −93 J.

49. One part of path A represents a constant pressure process. The volume changes from 1.0 m3 to 4.0 m3

while the pressure remains at 40 Pa. The work done is

WA = p∆V = (40 Pa)
(

4.0 m3 − 1.0 m3
)

= 120 J .

The other part of the path represents a constant volume process. No work is done during this process.
The total work done over the entire path is 120 J. To find the work done over path B we need to know
the pressure as a function of volume. Then, we can evaluate the integral W =

∫

p dV . According to the
graph, the pressure is a linear function of the volume, so we may write p = a + bV , where a and b are
constants. In order for the pressure to be 40 Pa when the volume is 1.0 m3 and 10 Pa when the volume is
4.00 m3 the values of the constants must be a = 50 Pa and b = −10 Pa/m

3
. Thus p = 50 Pa−(10 Pa/m

3
)V

and

WB =

∫ 4

1

p dV =

∫ 4

1

(50− 10V ) dV =
(

50V − 5V 2
)

∣

∣

∣

4

1

= 200 J− 50 J− 80 J + 5 J = 75 J .

One part of path C represents a constant pressure process in which the volume changes from 1.0 m3 to
4.0 m3 while p remains at 10 Pa. The work done is

WC = p∆V = (10 Pa)(4.0 m3 − 1.0 m3) = 30 J .

The other part of the process is at constant volume and no work is done. The total work is 30 J. We
note that the work is different for different paths.

50. (a) • During process A → B, the system is expanding, doing work on its environment, so W > 0,
and since ∆Eint > 0 is given then Q = W + ∆Eint must also be positive.

• During process B → C, the system is neither expanding nor contracting, so W = 0; therefore,
the sign of ∆Eint must be the same (by the first law of thermodynamics) as that of Q (which
is given as positive).

• During process C → A, the system is contracting (the environment is doing work on the
system), which implies W < 0. Also, ∆Eint < 0 because

∑

∆Eint = 0 (for the whole cycle)
and the other values of ∆Eint (for the other processes) were positive. Therefore, Q = W+∆Eint

must also be negative.
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(b) The area of a triangle is 1
2 (base)(height). Applying this to the figure, we find |Wnet| = 1

2 (2.0 m3)(20 Pa) =
20 J. Since process C → A involves larger negative work (it occurs at higher average pressure) than
the positive work done during process A → B, then the net work done during the cycle must be
negative. The answer is therefore Wnet = −20 J.

51. Over a cycle, the internal energy is the same at the beginning and end, so the heat Q absorbed equals
the work done: Q = W . Over the portion of the cycle from A to B the pressure p is a linear function of
the volume V and we may write

p =
10

3
Pa +

(

20

3
Pa/m

3

)

V ,

where the coefficients were chosen so that p = 10 Pa when V = 1.0 m3 and p = 30 Pa when V = 4.0 m3.
The work done by the gas during this portion of the cycle is

WAB =

∫ 4

1

p dV =

∫ 4

1

(
10

3
+

20

3
V ) dV =

(

10

3
V +

10

3
V 2

)

∣

∣

∣

4

1

=
40

3
+

160

3
− 10

3
− 10

3
= 60 J .

The BC portion of the cycle is at constant pressure and the work done by the gas is WBC = p∆V =
(30 Pa)(1.0 m3 − 4.0 m3) = −90 J. The CA portion of the cycle is at constant volume, so no work is
done. The total work done by the gas is W = WAB +WBC +WCA = 60 J− 90 J + 0 = −30 J and the
total heat absorbed is Q = W = −30 J. This means the gas loses 30 J of energy in the form of heat.

52. Since the process is a complete cycle (beginning and ending in the same thermodynamic state) the
change in the internal energy is zero and the heat absorbed by the gas is equal to the work done by the
gas: Q = W . In terms of the contributions of the individual parts of the cycle QAB +QBC +QCA = W
and QCA = W −QAB −QBC = +15.0 J− 20.0 J− 0 = −5.0 J. This means 5.0 J of energy leaves the gas
in the form of heat.

53. (a) The change in internal energy ∆Eint is the same for path iaf and path ibf . According to the first
law of thermodynamics, ∆Eint = Q −W , where Q is the heat absorbed and W is the work done
by the system. Along iaf ∆Eint = Q−W = 50 cal− 20 cal = 30 cal. Along ibf W = Q−∆Eint =
36 cal− 30 cal = 6 cal.

(b) Since the curved path is traversed from f to i the change in internal energy is −30 cal and Q =
∆Eint +W = −30 cal− 13 cal = −43 cal.

(c) Let ∆Eint = Eint, f − Eint, i. Then, Eint, f = ∆Eint + Eint, i = 30 cal + 10 cal = 40 cal.

(d) The work Wbf for the path bf is zero, so Qbf = Eint, f − Eint, b = 40 cal− 22 cal = 18 cal. For the
path ibf Q = 36 cal so Qib = Q−Qbf = 36 cal− 18 cal = 18 cal.

54. We use Pcond = kA(TH − TC )/L. The temperature TH at a depth of 35.0 km is

TH =
PcondL

kA
+ TC =

(54.0× 10−3 W/m
2
)(35.0× 103 m)

2.50 W/m·K + 10.0◦C = 766◦C .

55. We refer to the polyurethane foam with subscript p and silver with subscript s. We use Eq 19-32 to find
L = kR.

(a) From Table 19-6 we find kp = 0.024 W/m·K so

Lp = kpRp

= (0.024 W/m·K)(30 ft2 ·F◦ ·h/Btu)(1 m/3.281 ft)2(5C◦/9F◦)(3600 s/h)(1 Btu/1055 J)

= 0.13 m .
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(b) For silver ks = 428 W/m·K, so

Ls = ksRs =

(

ksRs

kpRp

)

Lp =

[

428(30)

0.024(30)

]

(0.13 m) = 2.3× 103 m .

56. (a) The rate of heat flow is

Pcond =
kA(TH − TC)

L
=

(0.040 W/m·K)(1.8 m2)(33◦C− 1.0◦C)

1.0× 10−2 m
= 2.3× 102 J/s .

(b) The new rate of heat flow is

P ′
cond =

k′Pcond

k
=

(0.60 W/m·K)(230 J/s)

0.040 W/m·K = 3.5× 103 J/s ,

which is about 15 times as fast as the original heat flow.

57. The rate of heat flow is given by

Pcond = kA
TH − TC

L
,

where k is the thermal conductivity of copper (401 W/m·K), A is the cross-sectional area (in a plane
perpendicular to the flow), L is the distance along the direction of flow between the points where the
temperature is TH and TC . Thus,

Pcond =
(401 W/m·K)(90.0× 10−4 m2)(125◦C− 10.0◦C)

0.250 m
= 1.66× 103 J/s .

The thermal conductivity is found in Table 19-6 of the text. Recall that a change in Kelvin temperature
is numerically equivalent to a change on the Celsius scale.

58. (a) We estimate the surface area of the average human body to be about 2 m2 and the skin temperature
to be about 300 K (somewhat less than the internal temperature of 310 K). Then from Eq. 19-37

Pr = σεAT 4 ≈
(

5.67× 10−8 W/m2 ·K4
)

(0.9)
(

2.0 m2
)

(300 K)4 = 8× 102 W .

(b) The energy lost is given by

∆E = Pr∆t = (8× 102 W)(30 s) = 2× 104 J .

59. (a) Recalling that a change in Kelvin temperature is numerically equivalent to a change on the Celsius
scale, we find that the rate of heat conduction is

Pcond =
kA(TH − TC)

L
=

(401 W/m·K)(4.8× 10−4 m2)(100 C◦)

1.2 m
= 16 J/s .

(b) Using Table 19-4, the rate at which ice melts is

∣

∣

∣

∣

dm

dt

∣

∣

∣

∣

=
Pcond

LF
=

16 J/s

333 J/g
= 0.048 g/s .

60. With arrangement (a), the rate of the heat flow is

Pconda = Pcond 1 + Pcond 2 =
Ak1

2L
(TH − TC) +

Ak2

2L
(TH − TC)

=
A

2L
ka(TH − TC)
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where ka = 4K1 + k2. With arrangement (b), we use Eq. 19-36 to find the rate of heat flow:

Pcond b =
2A (TH − TC)

(L/k1) + (L/k2)
=

A

2L
kb (TH − TC)

where kb = fk1k2/(k1 + k2). Since k1 6= k2, we see that (k1 − k2)
2 = (k1 + k2)

2 − 4k1k2 > 0, or

kb

ka
=

4k1 + k2

(k1 + k2)
2 < 0 .

Therefore, Pcond b < Pconda . That is, arrangement (b) would give the lower heat flow.

61. We use Pcond = kA∆T/L ∝ A/L. Comparing cases (a) and (b) in Figure 19-40, we have

Pcond b =

(

AbLa

AaLb

)

Pconda = 4Pconda .

Consequently, it would take 2.0 min/4 = 0.5 min for the same amount of heat to be conducted through
the rods welded as shown in Fig. 19-42(b).

62. We use Eqs. 19-38 through 19-40. Note that the surface area of the sphere is given by A = 4πr2, where
r = 0.500 m is the radius.

(a) The temperature of the sphere is T = 273.15 + 27.00 = 300.15 K. Thus

Pr = σεAT 4

=
(

5.67× 10−8 W/m2 ·K4
)

(0.850)(4π)(0.500 m)2(300.15 K)4

= 1.23× 103 W .

(b) Now, Tenv = 273.15 + 77.00 = 350.15 K so

Pa = σεAT 4
env

=
(

5.67× 10−8 W/m2 ·K4
)

(0.850)(4π)(0.500 m)2(350.15 K)4

= 2.28× 103 W .

(c) From Eq. 19-40, we have

Pn = Pa − Pr = 2.28× 103 W − 1.23× 103 W = 1.05× 103 W .

63. (a) We use

Pcond = kA
TH − TC

L

with the conductivity of glass given in Table 19-6 as 1.0 W/m·K. We choose to use the Celsius
scale for the temperature: a temperature difference of

TH − TC = 72◦F− (−20◦F) = 92 F◦

is equivalent to 5
9 (92) = 51.1 C◦. This, in turn, is equal to 51.1 K since a change in Kelvin

temperature is entirely equivalent to a Celsius change. Thus,

Pcond

A
= k

TH − TC

L
= (1.0 W/m·K)

(

51.1 C◦

3.0× 10−3 m

)

= 1.7× 104 W/m2 .
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(b) The energy now passes in succession through 3 layers, one of air and two of glass. The heat transfer
rate P is the same in each layer and is given by

Pcond =
A (TH − TC)
∑

L/k

where the sum in the denominator is over the layers. If Lg is the thickness of a glass layer, La is the
thickness of the air layer, kg is the thermal conductivity of glass, and ka is the thermal conductivity
of air, then the denominator is

∑ L

k
=

2Lg

kg
+
La

ka
=

2Lgka + Lakg

kakg
.

Therefore, the heat conducted per unit area occurs at the following rate:

Pcond

A
=

(TH − TC)kakg

2Lgka + Lakg

=
(51.1 C◦) (0.026 W/m·K)(1.0 W/m·K)

2(3.0× 10−3 m)(0.026 W/m·K) + (0.075 m)(1.0 W/m·K)

= 18 W/m2 .

64. We divide both sides of Eq. 19-32 by area A, which gives us the (uniform) rate of heat conduction per
unit area:

Pcond

A
= k1

TH − T1

L1
= k4

T − TC

L4

where TH = 30◦C, T1 = 25◦C and TC = −10◦C. We solve for the unknown T .

T = TC +
k1 L4

k4 L1
(TH − T1) = −4.2◦C .

65. Let h be the thickness of the slab and A be its area. Then, the rate of heat flow through the slab is

Pcond =
kA (TH − TC)

h

where k is the thermal conductivity of ice, TH is the temperature of the water (0◦C), and TC is the
temperature of the air above the ice (−10◦C). The heat leaving the water freezes it, the heat required
to freeze mass m of water being Q = LFm, where LF is the heat of fusion for water. Differentiate with
respect to time and recognize that dQ/dt = Pcond to obtain

Pcond = LF
dm

dt
.

Now, the mass of the ice is given by m = ρAh, where ρ is the density of ice and h is the thickness of the
ice slab, so dm/dt = ρA(dh/dt) and

Pcond = LFρA
dh

dt
.

We equate the two expressions for Pcond and solve for dh/dt:

dh

dt
=
k(TH − TC)

LFρh
.

Since 1 cal = 4.186 J and 1 cm = 1 × 10−2 m, the thermal conductivity of ice has the SI value k =
(0.0040 cal/s·cm·K)(4.186 J/cal)/(1×10−2 m/cm) = 1.674 W/m·K. The density of ice is ρ = 0.92 g/cm

3
=

0.92× 103 kg/m
3
. Thus,

dh

dt
=

(1.674 W/m·K)(0◦C + 10◦C)

(333× 103 J/kg)(0.92× 103 kg/m
3
)(0.050 m)

= 1.1× 10−6 m/s = 0.40 cm/h .
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66. We assume (although this should be viewed as a “controversial” assumption) that the top surface of the
ice is at TC = −5.0◦C. Less controversial are the assumptions that the bottom of the body of water is at
TH = 4.0◦C and the interface between the ice and the water is at TX = 0.0◦C. The primary mechanism
for the heat transfer through the total distance L = 1.4 m is assumed to be conduction, and we use
Eq. 19-34:

kwaterA (TH − TX)

L− Lice
=

kiceA (TX − TC)

Lice

(0.12)A (4.0◦ − 0.0◦)

1.4− Lice
=

(0.40)A (0.0◦ + 5.0◦)

Lice
.

We cancel the area A and solve for thickness of the ice layer: Lice = 1.1 m.

67. For a cylinder of height h, the surface area is Ac = 2πrh, and the area of a sphere is Ao = 4πR2. The
net radiative heat transfer is given by Eq. 19-40.

(a) We estimate the surface area A of the body as that of a cylinder of height 1.8 m and radius
r = 0.15 m plus that of a sphere of radius R = 0.10 m. Thus, we have A ≈ Ac + Ao = 1.8 m2.
The emissivity ε = 0.80 is given in the problem, and the Stefan-Boltzmann constant is found in
§19-11: σ = 5.67× 10−8 W/m2 ·K4. The “environment” temperature is Tenv = 303 K, and the skin
temperature is T = 5

9 (102− 32) + 273 = 312 K. Therefore,

Pnet = σεA
(

T 4
env − T 4

)

= −86 W .

The corresponding sign convention is discussed in the textbook immediately after Eq. 19-40. We
conclude that heat is being lost by the body at a rate of roughly 90 W.

(b) Half the body surface area is roughly A = 1.8/2 = 0.9 m2. Now, with Tenv = 248 K, we find

|Pnet| =
∣

∣σεA
(

T 4
env − T 4

)∣

∣ ≈ 230 W .

(c) Finally, with Tenv = 193 K (and still with A = 0.9 m2) we obtain |Pnet| = 330 W.

68. (a) The top surface area is that of a circle Ao = πr2. Since the problem directs us to denote this as
“a” then the radius is

r =

√

a

π
.

The side surface of a cylinder of height h is Ac = 2πrh. Therefore, the total radiating surface area
is

A = Ao +Ac = a+ 2π

(
√

a

π

)

h = a+ 2h
√
πa .

Consequently, Eq. 19-38 leads to

Pi = σεAT 4 = σεT 4
(

a+ 2h
√
πa
)

.

(b) Packing together N rigid cylinders as close as possible into a large cylinder-like arrangement can
involve some subtle mathematics, which we will avoid by simply assuming that (perhaps due to
the fact that these “cylinders” are certainly not rigid!) they somehow become a large-radius (R)
cylinder of height h. With the top surface area being Na, the large radius is

R =

√

Na

π
.

The side surface of the large-radius cylinder is Ac = 2πRh. Therefore, the total radiating surface
area is

A = Ao +Ac = Na+ 2π

(
√

Na

π

)

h = Na+ 2h
√
Nπa .



514 CHAPTER 19.

Consequently, Eq. 19-38 leads to

Ph = σεAT 4 = σεT 4
(

Na+ 2h
√
Nπa

)

.

(c) The graphs below shows Ph/NPi (vertical axis) versus the number of penguins N (horizontal axis).
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(d) This can be estimated from the graph, in which case we N ≈ 5, or algebraically solved for (in which
case N = 5.53 which should be rounded to 5 or 6).

(e) From the graph, we estimate N ≈ 10. If we algebraically solve for it, we get N = 10.4 which should
be rounded to 10 or 11.

(f) From the graph, we estimate N ≈ 26. If we algebraically solve for it, we get N = 26.2 which should
be rounded to 26.

(g) A graph over the appropriate range is not shown above (but would be straightforward to generate).
If we algebraically solve for it, we get N = 154.8 which should be rounded to 150 or 160.

(h) From the second graph above, we estimate N is slightly more than 1900. If we algebraically solve
for it, we get N = 1907.65 which should be rounded to 1900.

(i) The N →∞ limit of the ratio

Na+ 2h
√
πNa

N(a+ 2h
√
πa)

a+ 2h
√

πa/N

a+ 2h
√
πa

→ a

a+ 2h
√
πa

is 0.13. We note that this value depends on the ratio of h/
√
a.

69. We denote TH = 100◦C, TC = 0◦C, the temperature of the copper-aluminum junction by T1 and that
of the aluminum-brass junction by T2. Then,

Pcond =
kcA

L
(TH − T1) =

kaA

L
(T1 − T2) =

kbA

L
(T2 − Tc) .

We solve for T1 and T2 to obtain

T1 = TH +
TC − TH

1 + kc(ka + kb)/kakb

= 100◦C +
0.00◦C− 100◦C

1 + 401(235 + 109)/[(235)(109)]
= 84.3◦C

and

T2 = Tc +
TH − TC

1 + kb(kc + ka)/kcka

= 0.00◦C +
100◦C− 0.00◦C

1 + 109(235 + 401)/[(235)(401)]

= 57.6◦C .
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70. The heat conducted is

Q = Pcondt =
kAt∆T

L

=
(67 W/m·K)(π/4)(1.7 m)2(5.0 min)(60 s/min)(2.3 C◦)

5.2× 10−3 m

= 2.0× 107 J .

71. The problem asks for 0.5% of E, where E = Pt with t = 120 s and P given by Eq. 19-38. Therefore,
with A = 4πr2 = 5.0× 10−3 m2, we obtain

(0.005)Pt = (0.005)σεAT 4t = 8.6 J .

72. We denote the total mass M and the melted mass m. The problem tells us that Work/M = p/ρ, and
that all the work is assumed to contribute to the phase change Q = Lm where L = 150×103 J/kg. Thus,

p

ρ
M = Lm =⇒ m =

5.5× 106

1200

M

150× 103

which yields m = 0.0306M . Dividing this by 0.30M (the mass of the fats, which we are told is equal to
30% of the total mass), leads to a percentage 0.0306/0.30 = 10%.

73. The net work may be computed as a sum of works (for the individual processes involved) or as the “area”
(with appropriate ± sign) inside the figure (representing the cycle). In this solution, we take the former
approach (sum over the processes) and will need the following fact related to processes represented in
pV diagrams:

for straight line Work =
pi + pf

2
∆V

which is easily verified using the definition Eq. 19-25. The cycle represented by the “triangle” BC
consists of three processes:

• “tilted” straight line from (1.0 m3, 40 Pa) to (4.0 m3, 10 Pa), with

Work =
40 Pa + 10 Pa

2

(

4.0 m3 − 1.0 m3
)

= 75 J

• horizontal line from (4.0 m3, 10 Pa) to (1.0 m3, 10 Pa), with

Work = (10 Pa)
(

1.0 m3 − 4.0 m3
)

= −30 J

• vertical line from (1.0 m3, 10 Pa) to (1.0 m3, 40 Pa), with

Work =
10 Pa + 40 Pa

2

(

1.0 m3 − 1.0 m3
)

= 0

Thus, the total work during the BC cycle is 75 − 30 = 45 J. During the BA cycle, the “tilted” part
is the same as before, and the main difference is that the horizontal portion is at higher pressure, with
Work = (40 Pa)(−3.0 m3) = −120 J. Therefore, the total work during the BA cycle is 75− 120 = −45 J.

74. The work (the “area under the curve”) for process 1 is 4piVi, so that Ub−Ua = Q1−W1 = 6piVi by the
First Law of Thermodynamics.

(a) Path 2 involves more work than path 1 (note the triangle in the figure of area 1
2 (4Vi)(pi/2) = piVi).

With W2 = 4piVi + piVi = 5piVi, we obtain

Q2 = W2 + Ub − Ua = 5piVi + 6piVi = 11piVi .
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(b) Path 3 starts at a and ends at b so that ∆U = Ub − Ua = 6piVi .

75. We use Q = −λFmice = W + ∆Eint. In this case ∆Eint = 0. Since ∆T = 0 for the idea gas, then the
work done on the gas is

W ′ = −W = λFmi = (333 J/g)(100 g) = 33.3 kJ .

76. Consider the object of mass m1 falling through a distance h. The loss of its mechanical energy is
∆E = m1gh. This amount of energy is then used to heat up the temperature of water of mass m2:
∆E = m1gh = Q = m2c∆T . Thus, the maximum possible rise in water temperature is

∆T =
m1gh

m2c

=
(6.00 kg)

(

9.8 m/s2
)

(50.0 m)

(0.600 kg)
(

4190 J/kg·C◦)

= 1.17 C◦ .

77. The change in length of the rod is

∆L = Lα∆T = (20 cm)(11× 10−6/C◦)(50◦C− 30◦C) = 4.4× 10−3 cm .

78. The diameter of the brass disk in the dry ice is

D′ = D(1 + α∆T )

= (80.00 mm)
[

1 +
(

19× 10−6/C◦) (−57.00◦C− 43.00◦C)
]

= 79.85 mm .

79. The increase in the surface area of the brass cube (which has six faces), which had side length is L at
20◦, is

∆A = 6(L+ ∆L)2 − 6L2 ≈ 12L∆L = 12αbL
2∆T

= 12
(

19× 10−6/C◦) (30 cm)2(75◦C− 20◦C)

= 11 cm2 .

80. No, the doctor is probably using the Kelvin scale, in which case your temperature is 310− 273 = 37◦C.
This is equivalent to 9

5 (37) + 32 = 98.6◦F.

81. We use TC = TK − 273 = (5/9)[TF − 32]. The results are:

(a) T = 10000◦F;

(b) T = 37.0◦C;

(c) T = −57◦C;

(d) T = −297◦F;

(e) 28◦C = 82◦F (for example).

82. The heat needed is

Q = (10%)mLF

=

(

1

10

)

(200, 000 metric tons) (1000 kg/metric ton) (333 kJ/kg)

= 6.7× 1012 J .
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83. For isotropic materials, the coefficient of linear expansion α is related to that for volume expansion by
α = 1

3β (Eq. 19-11). The radius of Earth may be found in the Appendix. With these assumptions, the
radius of the Earth should have increased by approximately

∆RE = REα∆T

=
(

6.4× 103 km
)

(

1

3

)

(

3.0× 10−5/K
)

(3000 K− 300 K)

= 1.7× 103 km .

84. If the window is L1 high and L2 wide at the lower temperature and L1 + ∆L1 high and L2 + ∆L2 wide
at the higher temperature then its area changes from A1 = L1L2 to

A2 = (L1 + ∆L1)(L2 + ∆L2) ≈ L1L2 + L1 ∆L2 + L2 ∆L1

where the term ∆L1 ∆L2 has been omitted because it is much smaller than the other terms, if the
changes in the lengths are small. Consequently, the change in area is

∆A = A2 −A1 = L1 ∆L2 + L2 ∆L1 .

If ∆T is the change in temperature then ∆L1 = αL1 ∆T and ∆L2 = αL2 ∆T , where α is the coefficient
of linear expansion. Thus

∆A = α(L1L2 + L1L2)∆T = 2αL1L2 ∆T

= 2
(

9× 10−6/C◦) (30 cm)(20 cm)(30◦C)

= 0.32 cm2 .

85. (a) Recalling that a Watt is a Joule-per-second, and that a change in Celsius temperature is equivalent
(numerically) to a change in Kelvin temperature, we convert the value of k to SI units, using
Eq. 19-12.

(

2.9× 10−3 cal

cm·C◦ ·s

)(

4.186 J

1 cal

)(

100 cm

1 m

)

= 1.2
W

m·K .

(b) Now, a change in Celsius is equivalent to five-ninths of a Fahrenheit change, so

(

2.9× 10−3 cal

cm·C◦ ·s

)(

0.003969 Btu

1 cal

)(

5 C◦

9 F◦

)(

3600 s

1 h

)(

30.48 cm

1 ft

)

= 0.70
Btu

ft·F◦ ·h .

(c) Using Eq. 19-33, we obtain

R =
L

k
=

0.0064 m

1.2 W/m·K = 0.0053 m2 ·K/W .

86. Its initial volume is 53 = 125 cm3, and using Table 19-2, Eq. 19-10 and Eq. 19-11, we find

∆V =
(

125 m3
) (

3× 23× 10−6/C◦) (50 C◦) = 0.43 cm3 .

87. The cube has six faces, each of which has an area of
(

6.0× 10−6 m
)2

. Using Kelvin temperatures and
Eq. 19-40, we obtain

Pnet = σεA
(

T 4
env − T 4

)

=

(

5.67× 10−8 W

m2 ·K4

)

(0.75)
(

2.16× 10−10 m2
) (

(123.15 K)4 − (173.15 K)4
)

= −6.1× 10−9 W .
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88. We take absolute values of Eq. 19-9 and Eq. 13-25:

|∆L| = Lα|∆T | and

∣

∣

∣

∣

F

A

∣

∣

∣

∣

= E

∣

∣

∣

∣

∆L

L

∣

∣

∣

∣

.

The ultimate strength for steel is (F/A)rupture = Su = 400× 106 N/m
2

from Table 13-1. Combining the
above equations (eliminating the ratio ∆L/L), we find the rod will rupture if the temperature change
exceeds

|∆T | = Su

Eα
=

400× 106 N/m2

(

200× 109 N/m
2
)

(11× 10−6/C◦)
= 182◦C .

Since we are dealing with a temperature decrease, then, the temperature at which the rod will rupture
is T = 25.0◦C− 182◦C = −157◦C.

89. (a) At −40◦F the tuning fork is shorter and takes less time to execute a “tick.” The record of the
clock assumes every “tick” corresponds to some standard unit of time – the net effect being that
its time-record is “fast” or “ahead” of the correct time. We write the (absolute value of) relative
error as

∣

∣

∣

∣

tfork − tcorrect
tcorrect

∣

∣

∣

∣

=
Tfork

Tcorrect
− 1 .

Using Eq. 16-28, this becomes
∣

∣

∣

∣

∆t

tcorrect

∣

∣

∣

∣

=

√

L−40

L25
− 1 ,

where we have used the fact that the tuning fork would be accurate if the temperature were 25◦F.
Now, Eq. 19-9 tells us that L−40 = L25(1 + α∆T ), where ∆T = −65 F◦. Also, α = 5 × 10−7/C◦

according to Table 19-2, which we convert to α = 2.8×10−7/F◦ for the needed computations. Now,
the above equation becomes

∣

∣

∣

∣

∆t

tcorrect

∣

∣

∣

∣

=
√

1 + α∆T − 1 .

We can expand this with the binomial theorem (Appendix E) or compute it the “brute force” way;
in any case we find |∆t/tcorrect| = 9× 10−6. Since the clock, as mentioned above, is “fast” we say
the relative gain in time is 9 × 10−6. Note: a more elegant approach to this problem in terms of
differentials is as follows (with k some constant of proportionality).

tfork = k
√
L k = constant

dtfork =
1

2
kL−1/2 dL

dtfork =
α

2
tfork dT

dtfork
tfork

=
α

2
dT

At this point dT → ∆T and the previous results are obtained.

(b) This proceeds very similarly to part (a), but with the tuning fork longer – and thus ticking more
slowly, and with ∆T = 95 F◦. The result is a relative loss in time of magnitude 13× 10−6.

90. We require
∑

Q = 0 (which amounts to assuming the system is isolated). There are both temperature
changes (with Q = cm∆T ) and phase changes (Q = LF m). Masses are in kilograms and heat in
Joules, with temperatures measured on the Celsius scale. We refer to the ice (which melts and becomes
(liquid) water) as H2O to avoid confusion; note that it involves three terms. The ice has mass m
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and the tea has a 1.0 kg mass (the density of tea is taken to be the same as the density of water

ρw = 1000 kg/m
3

= 1.0 kg/L).

QH2O +Qtea = 0

(2220)m (10◦) + (333000)m+ (4190)m (10◦) + (4190)(1.0) (10◦ − 90◦) = 0

397100m− 335200 = 0

Therefore, m = 0.84 kg which amounts to forty-two 20 g ice cubes.

91. We have W =
∫

p dV (Eq. 19-24). Therefore,

W = a

∫

V 2 dV =
a

3

(

V 3
f − V 3

i

)

= 23 J .

92. (a) The length change of bar 1 is ∆L1 and that of bar 2 is ∆L2 . The total length change is given by

αL∆T = ∆L

= ∆L1 + ∆L2

= α1L1∆T + α2L2∆T

which leads to the desired expression after dividing through by ∆T and solving for α.

(b) Substituting L2 = L− L1 into the expression, we have

α =
α1L1 + α2 (L− L1)

L
=⇒ L1 = L

α− α2

α1 − α2
.

Therefore, if α1 = 19 × 10−6/C◦ (brass, from Table 19-2), α2 = 11 × 10−6/C◦ (steel, also from
Table 19-2), L = 52.4 cm and α = 13 × 10−6/C◦, we obtain L1 = 13.1 cm for the length of brass
and L2 = L− L1 = 39.3 cm for the steel.

93. (a) The surface are of the cylinder is given by A1 = 2πr21 + 2πr1h1 = 2π(2.5 × 10−2 m)2 + 2π(2.5 ×
10−2 m)(5.0 × 10−2 m) = 1.18 × 10−2 m2, its temperature is T1 = 273 + 30 = 303 K, and the
temperature of the environment is Tenv = 273 + 50 = 323 K. From Eq. 19-39 we have

P1 = σεA1(T
4
env − T 4)

= () (0.85)(1.18× 10−2 m2)
(

(323 K)4 − (303 K)4
)

= 1.39 W .

(b) Let the new height of the cylinder be h2. Since the volume V of the cylinder is fixed, we must have
V = πr21h1 = πr22h2. We solve for h2:

h2 =

(

r1
r2

)2

h1

=

(

2.5 cm

0.50 cm

)2

(5.0 cm)

= 125 cm = 1.25 m .

The corresponding new surface area A2 of the cylinder is

A2 = 2πr22 + 2πr2h2 = 2π(0.50× 10−2 m)2 + 2π(0.50× 10−2 m)(1.25 m) = 3.94× 10−2 m2 .

Consequently,
P2

P1
=
A2

A1
=

3.94× 10−2 m2

1.18× 10−2 m2
= 3.3 .
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94. We denote the density of the liquid as ρ, the rate of liquid flowing in the calorimeter as µ, the specific
heat of the liquid as c, the rate of heat flow as P , and the temperature change as ∆T . Consider a time
duration dt, during this time interval, the amount of liquid being heated is dm = µρdt. The energy
required for the heating is dQ = Pdt = c(dm)∆T = cµ∆Tdt. Thus,

c =
P

ρµ∆T
=

250 W

(8.0× 10−6 m3/s)(0.85× 103 kg/m3)(15◦C)
= 2.5× 103 J/kg·C◦

.

95. This follows from Eq. 19-35 by dividing numerator and denominator by the product k1k2 as shown below:

TX =
1

k1k2
(k1L2TC + k2L1TH)
1

k1k2
(k1L2 + k2L1)

=

L2

k2
TC + L1

k1
TH

L2

k2
+ L1

k1

=
R2TC +R1TH

R2 +R1

where the definition Eq. 19− 33 has also been used.

96. We note that there is no work done in process c→ b, since there is no change of volume. We also note that
the magnitude of work done in process b→ c is given, but not its sign (which we identify as negative as a
result of the discussion in §19-8). The total (or net) heat transfer is Qnet = (−40) + (−130) + (+400) =
230 J. By the First Law of Thermodynamics (or, equivalently, conservation of energy), we have

Qnet = Wnet

230 J = Wa → c + Wc → b + Wb → a

= Wa → c + 0 + (−80 J)

Therefore, Wa → c = 310 J.

97. (a) and (b) Regarding part (a), it is important to recognize that the problem is asking for the total work
done during the two-step “path”: a→ b followed by b → c. During the latter part of this “path” there
is no volume change and consequently no work done. Thus, the answer to part (b) is also the answer to
part (a). Since ∆U for process c → a is −160 J, then Uc − Ua = 160 J. Therefore, using the First Law
of Thermodynamics, we have

160 = Uc − Ub + Ub − Ua

= Qb → c − Wb → c + Qa → b − Wa → b

= 40 − 0 + 200 − Wa → b

Therefore, Wa → b = 80 J.

98. Let the initial water temperature be Twi and the initial thermometer temperature be Tti. Then, the
heat absorbed by the thermometer is equal (in magnitude) to the heat lost by the water:

ctmt (Tf − Tti) = cwmw (Twi − Tf) .

We solve for the initial temperature of the water:

Twi =
ctmt(Tf − Tti)

cwmw
+ Tf

=
(0.0550 kg)(0.837 kJ/kg·K)(44.4− 15.0)K

(4.18 kJ/kg·C◦)(0.300 kg)
+ 44.4◦C

= 45.5◦C .

99. (a) A change of five Celsius degrees is equivalent to a change of nine Fahrenheit degrees. Using Table 19-
2,

α =
(

23× 10−6/C◦)
(

5 C◦

9 F◦

)

= 13× 10−6/F◦ .
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(b) For ∆T = 55 F◦ and L = 6.0 m, we find ∆L = Lα∆T = 0.0042 m.

100. The initial volume V0 of the liquid is h0A0 where A0 is the initial cross-section area and h0 = 0.64 m.
Its final volume is V = hA where h− h0 is what we wish to compute. Now, the area expands according
to how the glass expands, which is we analyze as follows.

A = πr2

dA = 2πr dr

dA = 2πr (rα dT )

dA = 2αAdT

Therefore, the height is

h =
V

A
=

V0 (1 + βliquid∆T )

A0 (1 + 2αglass∆T )
.

Thus, with V0/A0 = h0 we obtain

h− h0 = h0

(

1 + βliquid∆T

1 + 2αglass∆T
− 1

)

= (0.64)

(

1 +
(

4× 10−5
)

(10◦)

1 + 2 (1× 10−5) (10◦)

)

= 1.3× 10−4 m .

101. The heat required to warm up to the melting point is Q = cm∆T = (2220)(15.0)(20.0) = 666 kJ, which
is less than the total 7000 kJ added to the sample. Therefore, 6334 kJ remain for melting the block and
warming the sample (now in the form of liquid water) further. Melting the block requires

Q = LFm = (333 kJ/kg)(15.0 kg) = 4995 kJ

which leaves 6334 − 4995 = 1339 kJ. The final temperature of the (liquid) water, which has c =
4190 J/kg·C◦

, is found from

Q = cm (Tf − 0◦C) =⇒ Tf =
1339× 103

(4190)(15.0)
= 21.3◦C .

102. Using Eq. 19-40 with T = 323 K and Tenv = 293 K, we find

Pnet = σεA
(

T 4
env − T 4

)

= −3.8× 10−7 W

where we have used the fact that the surface area of the cube is A = 6Aface = 6
(

2.0× 10−5 m
)2

=
2.4× 10−9 m2.

103. Let mw = 14 kg, mc = 3.6 kg, mm = 1.8 kg, Ti1 = 180◦C, Ti2 = 16.0◦C, and Tf = 18.0◦C. The specific
heat cm of the metal then satisfies

(mwcw +mccm) (Tf − Ti2) +mmcm (Tf − Ti1) = 0

which we solve for cm:

cm =
mwcw(Ti2 − Tf)

mc(Tf − Ti2) +mm(Tf − Ti1)

=
(14 kg)(4.18 kJ/kg·K)(16.0◦C− 18.0◦C)

(3.6 kg)(18.0◦C− 16.0◦C) + (1.8 kg)(18.0◦C− 180◦C)

= 0.41 kJ/kg·C◦
.
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104. The energy (which was originally in the form K = 1
2mv

2 ) dissipated as a result of friction melts a
portion of mass m. Therefore,

1

2
(50.0 kg)(5.38 m/s)2 = mLF

723 J = m(333 kJ/kg

which, for consistency of the energy units, is best written 723 J = m(333 J/g). This yields m = 2.17 g.

105. We demand
∑

Q = 0 as an expression of the fact that the system is isolated. Only temperature changes
(with Q = cm∆T ) are involved (no phase changes). Let masses be in kilograms, heat in Joules and
temperature on the Celsius scale.

Qcopper +Qwater = 0

(386)(3.00) (Tf − 70.0◦) + (4190)(4.00) (Tf − 10.0◦) = 0

Therefore, we find

Tf =
(386)(3.00) (70.0◦) + (4190)(4.00) (10.0◦)

(386)(3.00) + (4190)(4.00)
= 13.9◦C .

106. We use Q = cm∆T and m = ρV . The volume of water needed is

V =
m

ρ
=

Q

ρC∆T
=

(1.00× 106 kcal/day)(5 days)

(1.00× 103 kg/m
3
)(1.00 kcal/kg)(50.0◦C− 22.0◦C)

= 35.7 m3 .

107. (a) Let the number of weight lift repetitions be N . Then Nmgh = Q, or (using Eq. 19-12 and the
discussion preceding it)

N =
Q

mgh
=

(3500 Cal)(4186 J/Cal)

(80.0 kg) (9.8 m/s2) (1.00 m)
≈ 18700 .

(b) The time required is

t = (18700)(2.00 s)

(

1.00 h

3600 s

)

= 10.4 h .

108. We assume scales X and Y are linearly related in the sense that reading is x is related to reading y
by a linear relationship y = mx + b. We determine the constants m and b by solving the simultaneous
equations:

−70.00 = m(−125.0) + b

−30.00 = m(375.0) + b

which yield the solutions m = 40.00/500.0 = 8.000× 10−2 and b = −60.00. With these values, we find
x for y = 50.00:

x =
y − b
m

=
50.00 + 60.00

0.08000
= 1375◦X .

109. (a) The 8.0 cm thick layer of air in front of the glass conducts heat at a rate of

Pcond = kA
TH − TC

L
= (0.026)(0.36)

15

0.08
= 1.8 W

which must be the same as the heat conduction current through the glass if a steady-state heat
transfer situation is assumed.
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(b) For the glass pane,

Pcond = kA
TH − TC

L

1.8 = (1.0)(0.36)
TH − TC

0.005

which yields TH − TC = 0.024 C◦.

110. One method is to simply compute the change in length in each edge (x0 = 0.200 m and y0 = 0.300 m)
from Eq. 19-9 (∆x = 3.6× 10−5 m and ∆y = 5.4× 10−5 m) and then compute the area change:

A−A0 = (x0 + ∆x) (y0 + ∆y)− x0y0 = 2.16× 10−5 m2 .

Another (though related) method uses ∆A = 2αA0∆T (valid for ∆A/A ≪ 1) which can be derived by
taking the differential of A = xy and replacing d’s with ∆’s.
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Chapter 20

1. Each atom has a mass of m = M/NA, where M is the molar mass and NA is the Avogadro constant.
The molar mass of arsenic is 74.9 g/mol or 74.9× 10−3 kg/mol. 7.50 × 1024 arsenic atoms have a total
mass of (7.50× 1024)(74.9× 10−3 kg/mol)/(6.02× 1023 mol−1) = 0.933 kg.

2. (a) Eq. 20-3 yields n = Msam/M = 2.5/197 = 0.0127.

(b) The number of atoms is found from Eq. 20-2: N = nNA = (0.0127)(6.02× 1023 ) = 7.64× 1021.

3. The surface area of a sphere is 4πR2, and we find the radius of Earth in Appendix C (RE = 6.37×106 m =
6.37× 108 cm). Therefore, the number of square “patches” (with one centimeter side length) needed to
cover Earth is

A = 4π
(

6.37× 108
)2

= 5.1× 1018 .

The number of molecules that we want to distribute as evenly as possible among all those patches is
(using Eqs. 20-2, 20-3, with M = 18 g/mol)

N = NA
Msam

M
=
(

6.02× 1023
) 1.00 g

18 g/mol
= 3.3× 1022 .

Therefore, we have N/A = 6.56× 103 molecules in each patch. Note: students are encouraged to figure
M = 18 g/mol (for water) based on what they have learned in their chemistry courses, but it should be
mentioned that this can also be gleaned from Table 20-1.

4. The number of molecules in Msam = 1µg = 10−6 g of ink is (using Eqs. 20-2, 20-3, with M = 18 g/mol)

N = NA
Msam

M
=
(

6.02× 1023/mol
)

(

1× 10−6 g

18 g/mol

)

≈ 3× 1016 .

The number of creatures in our galaxy, with the assumption made in the problem, is about N ′ =
5× 109 × 1011 = 5× 1020. So the statement is wrong by a factor of about 20,000.

5. (a) We solve the ideal gas law pV = nRT for n:

n =
pV

RT
=

(100 Pa)(1.0× 10−6 m3)

(8.31 J/mol ·K)(220 K)
= 5.47× 10−8 mol .

(b) Using Eq. 20-2, the number of molecules N is

N = nNA =
(

5.47× 10−6 mol
) (

6.02× 1023 mol−1
)

= 3.29× 1016 molecules .

6. With V = 1.0× 10−6 m3, p = 1.01× 10−13 Pa, and T = 293 K, the ideal gas law gives

n =
pV

RT
=

(

1.01× 10−13
) (

1.0× 10−6
)

(8.31)(293)
= 4.1× 10−23 mole .

Consequently, Eq. 20-2 yields N = nNA = 25 molecules. We can express this as a ratio (with V now
written as 1 cm3) N/V = 25 molecules/cm3.

525
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7. (a) In solving pV = nRT for n, we first convert the temperature to the Kelvin scale: T = 40.0+273.15 =
313.15 K. And we convert the volume to SI units: 1000 cm3 = 1000× 10−6 m3. Now, according to
the ideal gas law,

n =
pV

RT
=

(1.01× 105 Pa)(1000× 10−6 m3)

(8.31 J/mol ·K)(313.15 K)
= 3.88× 10−2 mol .

(b) The ideal gas law pV = nRT leads to

T =
pV

nR
=

(1.06× 105 Pa)(1500× 10−6 m3)

(3.88× 10−2 mol)(8.31 J/mol·K)
= 493 K .

We note that the final temperature may be expressed in degrees Celsius as 220◦C.

8. Since (standard) air pressure is 101 kPa, then the initial (absolute) pressure of the air is pi = 266 kPa.
Setting up the gas law in ratio form (where ni = nf and thus cancels out – see Sample Problem 20-1),
we have

pfVf

piVi
=
Tf

Ti
=⇒ pf = (266 kPa)

(

1.64× 10−2 m3

1.67× 10−2 m3

)(

300 K

273 K

)

which yields pf = 287 kPa. Expressed as a gauge pressure, we subtract 101 kPa and obtain 186 kPa.

9. (a) With T = 283 K, we obtain

n =
pV

RT
=

(

100× 103 Pa
) (

2.50 m3
)

(

8.31 J
mol·K

)

(283 K)
= 106 mol .

(b) We can use the answer to part (a) with the new values of pressure and temperature, and solve
the ideal gas law for the new volume, or we could set up the gas law in ratio form as in Sample
Problem 20-1 (where ni = nf and thus cancels out):

pfVf

piVi
=
Tf

Ti
=⇒ Vf =

(

2.50 m3
)

(

100 kPa

300 kPa

)(

303 K

283 K

)

which yields a final volume of Vf = 0.892 m3.

10. We write T = 273 K and use Eq. 20-14:

W = (1.00 mol)

(

8.31
J

mol·K

)

(273 K) ln

(

16.8

22.4

)

which yields W = −653 J. Recalling the sign conventions for work stated in Chapter 19, this means an
external agent does 653 J of work on the ideal gas during this process.

11. Since the pressure is constant the work is given by W = p(V2 − V1). The initial volume is V1 =
(AT1 − BT 2

1 )/p, where T1 is the initial temperature. The final volume is V2 = (AT2 − BT 2
2 )/p. Thus

W = A(T2 − T1)−B(T 2
2 − T 2

1 ).

12. The pressure p1 due to the first gas is p1 = n1RT/V , and the pressure p2 due to the second gas is
p2 = n2RT/V . So the total pressure on the container wall is

p = p1 + p2 =
n1RT

V
+
n2RT

V
= (n1 + n2)

RT

V
.

The fraction of P due to the second gas is then

p2

p
=

n2RT/V

(n1 + n2)(RT/V )
=

n2

n1 + n2
=

0.5

2 + 0.5
=

1

5
.
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13. Suppose the gas expands from volume Vi to volume Vf during the isothermal portion of the process.
The work it does is

W =

∫ Vf

Vi

p dV = nRT

∫ Vf

Vi

dV

V
= nRT ln

Vf

Vi
,

where the ideal gas law pV = nRT was used to replace p with nRT/V . Now Vi = nRT/pi and
Vf = nRT/pf , so Vf/Vi = pi/pf . Also replace nRT with piVi to obtain

W = piVi ln
pi

pf
.

Since the initial gauge pressure is 1.03 × 105 Pa, pi = 1.03 × 105 Pa + 1.013 × 105 Pa = 2.04 × 105 Pa.
The final pressure is atmospheric pressure: pf = 1.013× 105 Pa. Thus

W = (2.04× 105 Pa)(0.14 m3) ln
2.04× 105 Pa

1.013× 105 Pa
= 2.00× 104 J .

During the constant pressure portion of the process the work done by the gas is W = pf (Vi − Vf ). The
gas starts in a state with pressure pf , so this is the pressure throughout this portion of the process. We
also note that the volume decreases from Vf to Vi. Now Vf = piVi/pf , so

W = pf

(

Vi −
piVi

pf

)

= (pf − pi)Vi

= (1.013× 105 Pa− 2.04× 105 Pa)(0.14 m3) = −1.44× 104 J .

The total work done by the gas over the entire process is W = 2.00× 104 J− 1.44× 104 J = 5.6× 103 J.

14. (a) At point a, we know enough information to compute n:

n =
pV

RT
=

(2500 Pa)
(

1.0 m3
)

(

8.31 J
mol·K

)

(200 K)
= 1.5 mol .

(b) We can use the answer to part (a) with the new values of pressure and volume, and solve the ideal
gas law for the new temperature, or we could set up the gas law as in Sample Problem 20-1 in
terms of ratios (note: na = nb and cancels out):

pbVb

paVa
=
Tb

Ta
=⇒ Tb = (200 K)

(

7.5 kPa

2.5 kPa

)(

3.0 m3

1.0 m3

)

which yields an absolute temperature at b of Tb = 1800 K.

(c) As in the previous part, we choose to approach this using the gas law in ratio form (see Sample
Problem 20-1):

pcVc

paVa
=
Tc

Ta
=⇒ Tc = (200 K)

(

2.5 kPa

2.5 kPa

)(

3.0 m3

1.0 m3

)

which yields an absolute temperature at c of Tc = 600 K.

(d) The net energy added to the gas (as heat) is equal to the net work that is done as it progresses
through the cycle (represented as a right triangle in the pV diagram shown in Fig. 20-19). This,
in turn, is related to ± “area” inside that triangle (with area = 1

2 (base)(height)), where we choose
the plus sign because the volume change at the largest pressure is an increase. Thus,

Qnet = Wnet =
1

2

(

2.0 m3
) (

5.0× 103 Pa
)

= 5000 J .
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15. We assume that the pressure of the air in the bubble is essentially the same as the pressure in the
surrounding water. If d is the depth of the lake and ρ is the density of water, then the pressure at the
bottom of the lake is p1 = p0 + ρgd, where p0 is atmospheric pressure. Since p1V1 = nRT1, the number
of moles of gas in the bubble is n = p1V1/RT1 = (p0 +ρgd)V1/RT1, where V1 is the volume of the bubble
at the bottom of the lake and T1 is the temperature there. At the surface of the lake the pressure is p0

and the volume of the bubble is V2 = nRT2/p0. We substitute for n to obtain

V2 =
T2

T1

p0 + ρgd

p0
V1

=

(

293 K

277 K

)

(

1.013× 105 Pa + (0.998× 103 kg/m
3
)(9.8 m/s2)(40 m)

1.013× 105 Pa

)

(20 cm3)

= 100 cm3 .

16. Consider the open end of the pipe. The balance of the pressures inside and outside the pipe requires
that p + ρw(L/2)g = p0 + ρwhg, where p0 is the atmospheric pressure, and p is the pressure of the air
inside the pipe, which satisfies p(L/2) = p0L, or p = 2p0 . We solve for h:

h =
p− p0

ρwg
+
L

2
=

1.01× 105 Pa

(1.00× 103 kg/m
3
)
(

9.8 m/s
2
) +

25.0 m

2
= 22.8 m .

17. When the valve is closed the number of moles of the gas in container A is nA = pAVA/RTA and that in
container B is nB = 4pBVA/RTB. The total number of moles in both containers is then

n = nA + nB =
VA

R

(

pA

TA
+

4pB

TB

)

= const.

After the valve is opened the pressure in container A is p′A = Rn′
ATA/VA and that in container B is

p′B = Rn′
BTB/4VA. Equating p′A and p′B , we obtain Rn′

ATA/VA = Rn′
BTB/4VA, or n′

B = (4TA/TB)n′
A .

Thus,

n = n′
A + n′

B = n′
A

(

1 +
4TA

TB

)

= nA + nB =
VA

R

(

pA

TA
+

4pB

TB

)

.

We solve the above equation for n′
A:

n′
A =

V

R

(pA/TA + 4pB/TB)

(1 + 4TA/TB)
.

Substituting this expression for n′
A into p′VA = n′

ARTA , we obtain the final pressure:

p′ =
n′

ARTA

VA
=
pA + 4pBTA/TB

1 + 4TA/TB
= 2.0× 105 Pa .

18. Appendix F gives M = 4.00 × 10−3 kg/mol (Table 20-1 gives this to fewer significant figures). Using
Eq. 20-22, we obtain

vrms =

√

3RT

M
=

√

3
(

8.31 J
mol·K

)

(1000 K)

4.00× 10−3 kg/mol
= 2.50× 103 m/s .

19. According to kinetic theory, the rms speed is

vrms =

√

3RT

M
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where T is the temperature and M is the molar mass. See Eq. 20-34. According to Table 20-1, the
molar mass of molecular hydrogen is 2.02 g/mol = 2.02× 10−3 kg/mol, so

vrms =

√

3 (8.31 J/mol·K) (2.7 K)

2.02× 10−3 kg/mol
= 180 m/s .

20. The molar mass of argon is 39.95 g/mol. Eq. 20-22 gives

vrms =

√

3RT

M
=

√

3
(

8.31 J
mol·K

)

(313 K)

39.95× 10−3 kg/mol
= 442 m/s .

21. First we rewrite Eq. 20-22 using Eq. 20-4 and Eq. 20-7:

vrms =

√

3RT

M
=

√

3 (kNA)T

(mNA)
=

√

3kT

M
.

The mass of the electron is given in the problem, and k = 1.38 × 10−23 J/K is given in the textbook.
With T = 2.00× 106 K, the above expression gives vrms = 9.53× 106 m/s. The pressure value given in
the problem is not used in the solution.

22. Table 20-1 gives M = 28.0 g/mol for Nitrogen. This value can be used in Eq. 20-22 with T in Kelvins
to obtain the results. A variation on this approach is to set up ratios, using the fact that Table 20-1
also gives the rms speed for nitrogen gas at 300 K (the value is 517 m/s). Here we illustrate the latter
approach, using v for vrms :

v2
v1

=

√

3RT2

M
√

3RT1

M

=

√

T2

T1
.

(a) With T2 = 20.0 + 273.15 ≈ 293 K, we obtain

v2 = (517 m/s)

√

293 K

300 K
= 511 m/s .

(b) In this case, we set v3 = 1
2v2 and solve v3/v2 =

√

T3/T2 for T3 :

T3 = T2

(

v3
v2

)2

= (293 K)

(

1

2

)2

= 73 K

which we write as 73− 273 = −200◦C.

(c) Now we have v4 = 2v2 and obtain

T4 = T2

(

v4
v2

)2

= (293 K)(4) = 1.17× 103 K

which is equivalent to 899◦.

23. In the reflection process, only the normal component of the momentum changes, so for one molecule
the change in momentum is 2mv cos θ, where m is the mass of the molecule, v is its speed, and θ is the
angle between its velocity and the normal to the wall. If N molecules collide with the wall, then the
change in their total momentum is 2Nmv cos θ, and if the total time taken for the collisions is ∆t, then
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the average rate of change of the total momentum is 2(N/∆t)mv cos θ. This is the average force exerted
by the N molecules on the wall, and the pressure is the average force per unit area:

p =
2

A

(

N

∆t

)

mv cos θ

=

(

2

2.0× 10−4 m2

)

(1.0× 1023 s−1)(3.3× 10−27 kg)(1.0× 103 m/s) cos 55◦

= 1.9× 103 Pa .

We note that the value given for the mass was converted to kg and the value given for the area was
converted to m2.

24. We can express the ideal gas law in terms of density using n = Msam/M :

pV =
MsamRT

M
=⇒ ρ =

pM

RT
.

We can also use this to write the rms speed formula in terms of density:

vrms =

√

3RT

M
=

√

3(pM/ρ)

M
=

√

3p

ρ
.

(a) We convert to SI units: ρ = 1.24 × 10−2 kg/m3 and p = 1.01 × 103 Pa. The rms speed is
√

3(1010)/0.0124 = 494 m/s.

(b) We find M from ρ = pM/RT with T = 273 K.

M =
ρRT

p
=

(

0.0124 kg/m3
) (

8.31 J
mol·K

)

(273 K)

1.01× 103 Pa

This yields M = 0.028 kg/mol, which converts to 28 g/mol.

25. The average translational kinetic energy is given by Kavg = 3
2kT , where k is the Boltzmann constant

(1.38× 10−23 J/K) and T is the temperature on the Kelvin scale. Thus

Kavg =
3

2
(1.38× 10−23 J/K)(1600 K) = 3.31× 10−20 J .

26. (a) Eq. 20-24 gives

Kavg =
3

2

(

1.38× 10−23 J

K

)

(273 K) = 5.65× 10−21 J .

(b) Similarly, for T = 373 K, the average translational kinetic energy is Kavg = 7.72× 10−21 J.

(c) The unit mole may be thought of as a (large) collection: 6.02 × 1023 molecules of ideal gas, in
this case. Each molecule has energy specified in part (a), so the large collection has a total kinetic
energy equal to

Kmole = NAKavg =
(

6.02× 1023
) (

5.65× 10−21 J
)

= 3.40× 103 J .

(d) Similarly, the result from part (b) leads to

Kmole =
(

6.02× 1023
) (

7.72× 10−21 J
)

= 4.65× 103 J .

27. (a) We use ǫ = LV /N , where LV is the heat of vaporization and N is the number of molecules per gram.
The molar mass of atomic hydrogen is 1 g/mol and the molar mass of atomic oxygen is 16 g/mol so
the molar mass of H2O is 1+1+16 = 18 g/mol. There areNA = 6.02×1023 molecules in a mole so the
number of molecules in a gram of water is (6.02×1023 mol−1)/(18 g/mol) = 3.34×1022 molecules/g.
Thus ǫ = (539 cal/g)/(3.34 × 1022/g) = 1.61× 10−20 cal. This is (1.61 × 10−20 cal)(4.186 J/cal) =
6.76× 10−20 J.
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(b) The average translational kinetic energy is

Kavg =
3

2
kT =

3

2
(1.38× 10−23 J/K) [(32.0 + 273.15)K] = 6.32× 10−21 J .

The ratio ǫ/Kavg is (6.76× 10−20 J)/(6.32× 10−21 J) = 10.7.

28. We express the ideal gas law in terms of density using ρ = Msam/V and n = Msam/M :

pV =
MsamRT

M
=⇒ p =

ρRT

M
.

29. They are not equivalent. Avogadro’s law does not tell how the pressure, volume, and temperature are
related, so you cannot use it, for example, to calculate the change in volume when the pressure increases
at constant temperature. The ideal gas law, however, implies Avogadro’s law. It yields N = nNA =
(pV/RT )NA = pV/kT , where k = R/NA was used. If the two gases have the same volume, the same
pressure, and the same temperature, then pV/kT is the same for them. This implies that N is also the
same.

30. We solve Eq. 20-25 for d:

d =

√

1

λπ
√

2 (N/V )
=

√

1

(0.80× 105 cm)π
√

2 (2.7× 1019/cm3)

which yields d = 3.2× 10−8 cm, or 0.32 nm.

31. (a) According to Eq. 20–25, the mean free path for molecules in a gas is given by

λ =
1√

2πd2N/V
,

where d is the diameter of a molecule and N is the number of molecules in volume V . Substitute
d = 2.0× 10−10 m and N/V = 1× 106 molecules/m

3
to obtain

λ =
1√

2π(2.0× 10−10 m)2(1× 106 m−3)
= 6× 1012 m .

(b) At this altitude most of the gas particles are in orbit around Earth and do not suffer randomizing
collisions. The mean free path has little physical significance.

32. Using v = fλ with v = 331 m/s (see Table 18-1) with Eq. 20-2 and Eq. 20-25 leads to

f =
v

(

1√
2 π d2(N/V )

) = (331 m/s)π
√

2
(

3.0× 10−10 m
)2
(

nNA

V

)

=

(

8.0× 107 m3

s·mol

)

( n

V

)

Using the ideal gas law, we substitute n/V = p/RT into the above expression and find

f =

(

8.0× 107 m3

s·mol

)

(

1.01× 105 Pa
(

8.31 J
mol·K

)

(273.15 K)

)

= 3.5× 109 Hz .

If we instead use v = 343 m/s (the “default value” for speed of sound in air, used repeatedly in Ch. 18),
then the answer is 3.7× 109 Hz.

33. We substitute d = 1.0× 10−2 m and N/V = 15/(1.0× 10−3 m3) = 15× 103 beans/m
3

into Eq. 20–25

λ =
1√

2πd2N/V

to obtain

λ =
1√

2π(1.0× 10−2 m)2(15× 103/m3)
= 0.15 m .

The conversion 1.00 L = 1.00× 10−3 m3 is used.
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34. (a) We set up a ratio using Eq. 20-25:

λAr

λN2

=
1/
(

π
√

2d2
Ar(N/V )

)

1/
(

π
√

2d2
N2

(N/V )
) =

(

dN2

dAr

)2

.

Therefore, we obtain

dAr

dN2

=

√

λN2

λAr
=

√

27.5

9.9
= 1.7 .

(b) Using Eq. 20-2 and the ideal gas law, we substitute N/V = NAn/V = NAp/RT into Eq. 20-25 and
find

λ =
RT

π
√

2d2pNA

.

Comparing (for the same species of molecule) at two different pressures and temperatures, this
leads to

λ2

λ1
=

(

T2

T1

)(

p1

p2

)

.

With λ1 = 9.9×10−6 cm, T1 = 293 K (the same as T2 in this part), p1 = 750 torr and p2 = 150 torr,
we find λ2 = 5.0× 10−5 cm.

(c) The ratio set up in part (b), using the same values for quantities with subscript 1, leads to λ2 =
7.9× 10−6 cm for T2 = 233 K and p2 = 750 torr.

35. (a) We use the ideal gas law pV = nRT = NkT , where p is the pressure, V is the volume, T is
the temperature, n is the number of moles, and N is the number of molecules. The substitutions
N = nNA and k = R/NA were made. Since 1 cm of mercury = 1333 Pa, the pressure is p =
(10−7)(1333) = 1.333× 10−4 Pa. Thus,

N

V
=

p

kT
=

1.333× 10−4 Pa

(1.38× 10−23 J/K)(295 K)

= 3.27× 1016 molecules/m
3

= 3.27× 1010 molecules/cm
3
.

(b) The molecular diameter is d = 2.00× 10−10 m, so, according to Eq. 20–25, the mean free path is

λ =
1√

2πd2N/V
=

1√
2π(2.00× 10−10 m)2(3.27× 1016 m−3)

= 172 m .

36. (a) The average speed is

vavg =

∑

nivi
∑

ni
=

2(1.0) + 4(2.0) + 6(3.0) + 8(4.0) + 2(5.0)

2 + 4 + 6 + 8 + 2
= 3.2 cm/s .

(b) From vrms =
√
∑

nivi
2/
∑

ni we get

vrms =

√

2(1.0)2 + 4(2.0)2 + 6(3.0)2 + 8(4.0)2 + 2(5.0)2

2 + 4 + 6 + 8 + 2
= 3.4 cm/s .

(c) There are eight particles at v = 4.0 cm/s, more than the number of particles at any other single
speed. So 4.0 cm/s is the most probable speed.

37. (a) The average speed is

v =

∑

v

N
,

where the sum is over the speeds of the particles and N is the number of particles. Thus

v =
(2.0 + 3.0 + 4.0 + 5.0 + 6.0 + 7.0 + 8.0 + 9.0 + 10.0 + 11.0) km/s

10
= 6.5 km/s .



533

(b) The rms speed is given by

vrms =

√

∑

v2

N
.

Now

∑

v2 = (2.0)2 + (3.0)2 + (4.0)2 + (5.0)2 + (6.0)2

+(7.0)2 + (8.0)2 + (9.0)2 + (10.0)2 + (11.0)2 = 505 km2/s2

so

vrms =

√

505 km2/s2

10
= 7.1 km/s .

38. (a) The average and rms speeds are as follows:

vavg =
1

N

N
∑

i=1

vi =
1

10
[4(200 m/s) + 2(500 m/s) + 4(600 m/s)] = 420 m/s ,

vrms =

√

√

√

√

1

N

N
∑

i=1

v2
i =

√

1

10
[4(200 m/s)2 + 2(500 m/s)2 + 4(600 m/s)2] = 458 m/s .

From these results, we see that vrms > vavg .

(b) One may check the validity of the inequality vrms ≥ vavg for any speed distribution. For example,
we consider a set of ten particles divided into two groups of five particles each, with the first group
of particles moving at speed v1 and the second group at v2 where both v1 and v2 are positive-valued
(by the definition of speed). In this case, vavg = (v1 + v2) /2 and

vrms =

√

v2
1 + v2

2

2
.

To show this must be greater than (or equal to) vavg we examine the difference in the squares of
the quantities:

v2
rms − v2

avg =
v2
1 + v2

2

2
− 1

4

(

v2
1 + v2

2 + 2v1v2
)

=
v2
1 + v2

2 − 2v1v2
4

=
1

4
(v1 − v2)2 ≥ 0

which demonstrates that vrms ≥ vavg in this situation.

(c) As one can infer from our manipulation in the previous part, we will obtain vrms = vavg if all speeds
are the same (if v1 = v2 in the previous part).

39. (a) The rms speed of molecules in a gas is given by vrms =
√

3RT/M , where T is the temperature
and M is the molar mass of the gas. See Eq. 20–34. The speed required for escape from Earth’s
gravitational pull is v =

√
2gre, where g is the acceleration due to gravity at Earth’s surface and

re (= 6.37× 106 m) is the radius of Earth. To derive this expression, take the zero of gravitational
potential energy to be at infinity. Then, the gravitational potential energy of a particle with mass
m at Earth’s surface is U = −GMm/r2e = −mgre, where g = GM/r2e was used. If v is the
speed of the particle, then its total energy is E = −mgre + 1

2mv
2. If the particle is just able to

travel far away, its kinetic energy must tend toward zero as its distance from Earth becomes large
without bound. This means E = 0 and v =

√
2gre. We equate the expressions for the speeds to
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obtain
√

3RT/M =
√

2gre. The solution for T is T = 2greM/3R. The molar mass of hydrogen is
2.02× 10−3 kg/mol, so for that gas

T =
2(9.8 m/s

2
)(6.37× 106 m)(2.02× 10−3 kg/mol)

3(8.31 J/mol ·K)
= 1.0× 104 K .

(b) The molar mass of oxygen is 32.0× 10−3 kg/mol, so for that gas

T =
2(9.8 m/s2)(6.37× 106 m)(32.0× 10−3 kg/mol)

3(8.31 J/mol ·K)
= 1.6× 105 K .

(c) Now, T = 2gmrmM/3R, where rm (= 1.74× 106 m) is the radius of the Moon and gm (= 0.16g) is
the acceleration due to gravity at the Moon’s surface. For hydrogen

T =
2(0.16)(9.8 m/s

2
)(1.74× 106 m)(2.02× 10−3 kg/mol)

3(8.31 J/mol ·K)
= 4.4× 102 K .

For oxygen

T =
2(0.16)(9.8 m/s

2
)(1.74× 106 m)(32.0× 10−3 kg/mol)

3(8.31 J/mol ·K)
= 7.0× 103 K .

(d) The temperature high in Earth’s atmosphere is great enough for a significant number of hydrogen
atoms in the tail of the Maxwellian distribution to escape. As a result the atmosphere is depleted
of hydrogen. On the other hand, very few oxygen atoms escape.

40. We divide Eq. 20-35 by Eq. 20-22:

vP

vrms
=

√

2RT2/M
√

3RT1/M
=

√

2T2

3T1

which leads to

T2

T1
=

3

2

(

vP

vrms

)2

=
3

2
if vP = vrms .

41. (a) The root-mean-square speed is given by vrms =
√

3RT/M . See Eq. 20–34. The molar mass of
hydrogen is 2.02× 10−3 kg/mol, so

vrms =

√

3(8.31 J/mol ·K)(4000 K)

2.02× 10−3 kg/mol
= 7.0× 103 m/s .

(b) When the surfaces of the spheres that represent an H2 molecule and an Ar atom are touching, the
distance between their centers is the sum of their radii: d = r1+r2 = 0.5×10−8 cm+1.5×10−8 cm =
2.0× 10−8 cm.

(c) The argon atoms are essentially at rest so in time t the hydrogen atom collides with all the argon
atoms in a cylinder of radius d and length vt, where v is its speed. That is, the number of collisions
is πd2vtN/V , where N/V is the concentration of argon atoms. The number of collisions per unit
time is

πd2vN

V
= π(2.0× 10−10 m)2(7.0× 103 m/s)(4.0× 1025 m−3) = 3.5× 1010 collisions/s .
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42. We divide Eq. 20-31 by Eq. 20-22:

vavg2

vrms1
=

√

8RT/πM2
√

3RT/M1

=

√

8M1

3πM2

which leads to
m1

m2
=
M1

M2
=

3π

8

(

vavg2

vrms1

)2

=
3π

2
if vavg2 = 2vrms1 .

43. (a) The distribution function gives the fraction of particles with speeds between v and v + dv, so its
integral over all speeds is unity:

∫

P (v) dv = 1. Evaluate the integral by calculating the area under
the curve in Fig. 20–22. The area of the triangular portion is half the product of the base and
altitude, or 1

2av0. The area of the rectangular portion is the product of the sides, or av0. Thus
∫

P (v) dv = 1
2av0 + av0 = 3

2av0, so 3
2av0 = 1 and a = 2/3v0.

(b) The number of particles with speeds between 1.5v0 and 2v0 is given by N
∫ 2v0

1.5v0
P (v) dv. The

integral is easy to evaluate since P (v) = a throughout the range of integration. Thus the number
of particles with speeds in the given range is Na(2.0v0−1.5v0) = 0.5Nav0 = N/3, where 2/3v0 was
substituted for a.

(c) The average speed is given by

vavg =

∫

vP (v) dv .

For the triangular portion of the distribution P (v) = av/v0 , and the contribution of this portion is

a

v0

∫ v0

0

v2 dv =
a

3v0
v3
0 =

av2
0

3
=

2

9
v0 ,

where 2/3v0 was substituted for a. P (v) = a in the rectangular portion, and the contribution of
this portion is

a

∫ 2v0

v0

v dv =
a

2
(4v2

0 − v2
0) =

3a

2
v2
0 = v0 .

Therefore,

vavg =
2

9
v0 + v0 = 1.22v0 .

(d) The mean-square speed is given by

v2
rms =

∫

v2P (v) dv .

The contribution of the triangular section is

a

v0

∫ v0

0

v3 dv =
a

4v0
v4
0 =

1

6
v2
0 .

The contribution of the rectangular portion is

a

∫ 2v0

v0

v2 dv =
a

3
(8v3

0 − v3
0) =

7a

3
v3
0 =

14

9
v2
0 .

Thus,

vrms =

√

1

6
v2
0 +

14

9
v2
0 = 1.31v0 .
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44. The internal energy is

E int =
3

2
nRT =

3

2
(1.0 mol)

(

8.31
J

mol·K

)

(273 K) = 3.4× 103 J .

45. According to the first law of thermodynamics, ∆Eint = Q−W . Since the process is isothermal ∆Eint = 0
(the internal energy of an ideal gas depends only on the temperature) and Q = W . The work done by
the gas as its volume expands from Vi to Vf at temperature T is

W =

∫ Vf

Vi

p dV = nRT

∫ Vf

Vi

dV

V
= nRT ln

Vf

Vi

where the ideal gas law pV = nRT was used to substitute for p. For 1 mole Q = W = RT ln(Vf /Vi ).

46. (a) According to the first law of thermodynamics Q = ∆E int + W. When the pressure is a constant
W = p∆V . So

∆E int = Q− p∆V

= 20.9 J−
(

1.01× 105 Pa
) (

100 cm3 − 50 cm3
)

(

1× 10−6 m3

1 cm3

)

= 15.9 J .

(b) The molar specific heat at constant pressure is

Cp =
Q

n∆T

=
Q

n
(

p∆V
nR

) =
R

p

Q

∆V

=

(

8.31 J
mol·K

)

(20.9 J)

(1.01× 105 Pa)(50× 10−6 m3)
= 34.4 J/mol·K .

(c) Using Eq. 20-49, CV = Cp −R = 26.1 J/mol·K.

47. When the temperature changes by ∆T the internal energy of the first gas changes by n1C1 ∆T , the
internal energy of the second gas changes by n2C2 ∆T , and the internal energy of the third gas changes
by n3C3 ∆T . The change in the internal energy of the composite gas is ∆Eint = (n1C1+n2C2+n3C3)∆T .
This must be (n1 + n2 + n3)C ∆T , where C is the molar specific heat of the mixture. Thus

C =
n1C1 + n2C2 + n3C3

n1 + n2 + n3
.

48. Two formulas (other than the first law of thermodynamics) will be of use to us. It is straightforward to
show, from Eq. 20-11, that for any process that is depicted as a straight line on the pV diagram – the
work is

Wstraight =

(

pi + pf

2

)

∆V

which includes, as special cases, W = p∆V for constant-pressure processes and W = 0 for constant-
volume processes. Further, Eq. 20-44 with Eq. 20-51 gives

Eint = n

(

f

2

)

RT =

(

f

2

)

pV

where we have used the ideal gas law in the last step. We emphasize that, in order to obtain work and
energy in Joules, pressure should be in Pascals (N/m2) and volume should be in cubic meters. The
degrees of freedom for a diatomic gas is f = 5.



537

(a) The internal energy change is

Eint c − Eint a =
5

2
(pcVc − paVa)

=
5

2

(

(2000 Pa)
(

4.0 m3
)

− (5000 Pa)
(

2.0 m3
))

= −5000 J .

(b) The work done during the process represented by the diagonal path is

Wdiag =

(

pa + pc

2

)

(Vc − Va) = (3500 Pa)
(

2.0 m3
)

which yields Wdiag = 7000 J. Consequently, the first law of thermodynamics gives

Qdiag = ∆Eint +Wdiag = −5000 + 7000 = 2000 J .

(c) The fact that ∆Eint only depends on the initial and final states, and not on the details of the “path”
between them, means we can write

∆Eint = Eint c − Eint a = −5000 J

for the indirect path, too. In this case, the work done consists of that done during the constant
pressure part (the horizontal line in the graph) plus that done during the constant volume part (the
vertical line):

Windirect = (5000 Pa)
(

2.0 m3
)

+ 0 = 10000 J .

Now, the first law of thermodynamics leads to

Qindirect = ∆Eint +Windirect = −5000 + 10000 = 5000 J .

49. Argon is a monatomic gas, so f = 3 in Eq. 20-51, which provides

CV =

(

3

2

)

R =

(

3

2

)(

8.31
J

mol ·K

)(

1 cal

4.186 J

)

= 2.98
cal

mol ·C◦

where we have converted Joules to calories (Eq. 19-12), and taken advantage of the fact that a Celsius
degree is equivalent to a unit change on the Kelvin scale. Since (for a given substance) M is effectively a
conversion factor between grams and moles, we see that cV (see units specified in the problem statement)
is related to CV by

CV = cV M where M = mNA

where m is the mass of a single atom (see Eq. 20-4).

(a) From the above discussion, we obtain

m =
M

NA
=
CV /cV
NA

=
2.98/0.075

6.02× 1023
= 6.6× 10−23 g .

(b) The molar mass is found to be M = CV /cV = 2.98/0.075 = 39.7 g/mol which should be rounded
to 40 since the given value of cV is specified to only two significant figures.

50. Referring to Table 20-3, Eq. 20-45 and Eq. 20-46, we have

∆Eint = nCV ∆T =
5

2
nR∆T

and Q = nCp∆T =
7

2
nR∆T .
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Dividing the equations, we obtain
∆Eint

Q
=

5

7
.

Thus, the given value Q = 70 J leads to

∆Eint = 50 J .

51. The fact that they rotate but do not oscillate means that the value of f given in Table 20-3 is relevant.
Thus, Eq. 20-46 leads to

Q = nCp∆T = n

(

7

2
R

)

(Tf − Ti) = nRTi

(

7

2

)(

Tf

Ti
− 1

)

where Ti = 273 K and n = 1 mol. The ratio of absolute temperatures is found from the gas law in ratio
form (see Sample Problem 20-1). With pf = pi we have

Tf

Ti
=
Vf

Vi
= 2 .

Therefore, the energy added as heat is

Q = (1 mol)

(

8.31
J

mol ·K

)

(273 K)

(

7

2

)

(2− 1) ≈ 8× 103 J .

52. (a) Using M = 32.0 g/mol from Table 20-1 and Eq. 20-3, we obtain

n =
Msam

M
=

12.0 g

32.0 g/mol
= 0.375 mol .

(b) This is a constant pressure process with a diatomic gas, so we use Eq. 20-46 and Table 20-3. We
note that a change of Kelvin temperature is numerically the same as a change of Celsius degrees.

Q = nCp∆T = n

(

7

2
R

)

∆T

= (0.375 mol)

(

7

2

)(

8.31
J

mol ·K

)

(100 K)

= 1.09× 103 J .

(c) We could compute a value of ∆Eint from Eq. 20-45 and divide by the result from part (b), or
perform this manipulation algebraically to show the generality of this answer (that is, many factors
will be seen to cancel). We illustrate the latter approach:

∆Eint

Q
=
n
(

5
2R
)

∆T

n
(

7
2R
)

∆T
=

5

7
≈ 0.714 .

53. (a) Since the process is at constant pressure energy transferred as heat to the gas is given by Q =
nCp ∆T , where n is the number of moles in the gas, Cp is the molar specific heat at constant
pressure, and ∆T is the increase in temperature. For a diatomic ideal gas Cp = 7

2R. Thus

Q =
7

2
nR∆T =

7

2
(4.00 mol)(8.31 J/mol ·K)(60.0 K) = 6.98× 103 J .

(b) The change in the internal energy is given by ∆Eint = nCV ∆T , where CV is the specific heat at
constant volume. For a diatomic ideal gas CV = 5

2R, so

∆Eint =
5

2
nR∆T =

5

2
(4.00 mol)(8.31 J/mol·K)(60.0 K) = 4.99× 103 J .
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(c) According to the first law of thermodynamics, ∆Eint = Q−W , so

W = Q−∆Eint = 6.98× 103 J− 4.99× 103 J = 1.99× 103 J .

(d) The change in the total translational kinetic energy is

∆K =
3

2
nR∆T =

3

2
(4.00 mol)(8.31 J/mol ·K)(60.0 K) = 2.99× 103 J .

54. (a) We use Eq. 20-54 with Vf/Vi = 1
2 for the gas (assumed to obey the ideal gas law).

piV
γ
i = pfV

γ
f =⇒ pf

pi
=

(

Vi

Vf

)γ

= 21.3

which yields pf = (2.46)(1.0 atm) = 2.5 atm. Similarly, Eq. 20-56 leads to

Tf = Ti

(

Vi

Vf

)γ−1

= (273 K)(1.23) = 336 K .

(b) We use the gas law in ratio form (see Sample Problem 20-1) and note that when p1 = p2 then the
ratio of volumes is equal to the ratio of (absolute) temperatures. Consequently, with the subscript 1
referring to the situation (of small volume, high pressure, and high temperature) the system is in
at the end of part (a), we obtain

V2

V1
=
T2

T1
=

273 K

336 K
= 0.81 .

The volume V1 is half the original volume of one liter, so

V2 = 0.81(0.50 L) = 0.41 L .

55. (a) Let pi, Vi, and Ti represent the pressure, volume, and temperature of the initial state of the gas.
Let pf , Vf , and Tf represent the pressure, volume, and temperature of the final state. Since the
process is adiabatic piV

γ
i = pfV

γ
f , so

pf =

(

Vi

Vf

)γ

pi =

(

4.3 L

0.76 L

)1.4

(1.2 atm) = 13.6 atm .

We note that since Vi and Vf have the same units, their units cancel and pf has the same units as
pi.

(b) The gas obeys the ideal gas law pV = nRT , so piVi/pfVf = Ti/Tf and

Tf =
pfVf

piVi
Ti =

[

(13.6 atm)(0.76 L)

(1.2 atm)(4.3 L)

]

(310 K) = 620 K .

56. The fact that they rotate but do not oscillate means that the value of f given in Table 20-3 is relevant.
In §20-11, it is noted that γ = Cp/CV so that we find γ = 7/5 in this case. In the state described in the
problem, the volume is

V =
nRT

p
=

(2.0 mol)
(

8.31 J
mol·K

)

(300 K)

1.01× 105 N/m2

which yields V = 0.049 m3. Consequently,

pV γ =
(

1.01× 105 N/m2
) (

0.049 m3
)1.4

= 1.5× 103 N·m2.2 .
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57. We use the first law of thermodynamics: ∆Eint = Q −W . The change in internal energy is ∆Eint =
nCV (T2 − T1), where CV is the molar heat capacity for a constant volume process. Since the process is
adiabatic Q = 0. Thus, W = −∆Eint = nCV (T1 − T2 ).

58. (a) Differentiating Eq. 20-53, we obtain

dp

dV
= (constant)

−γ
V γ+1

=⇒ B = −− V dp

dV
= (constant)

γ

V γ

which produces the desired result upon using Eq. 20-53 again ( p = (constant)/V γ ).

(b) Due to the fact that v =
√

B/ρ (from Chapter 18) and p = nRT/V = (Msam/M)RT/V (from this
chapter) with ρ = Msam/V (the definition of density) , the speed of sound in an ideal gas becomes

v =

√

γp

ρ
=

√

γ(Msam/M)RT/V

Msam/V
=

√

γRT

M
.

59. With p = 1.01 × 105 Pa and ρ = 1.29 kg/m3, we use the result of part (b) of the previous problem to
obtain

γ =
ρv2

p
=

(

1.29 kg/m3
)

(331 m/s)2

1.01× 105 Pa
= 1.40 .

60. (a) In the free expansion from state 0 to state 1 we have Q = W = 0, so ∆E int = 0, which means that
the temperature of the ideal gas has to remain unchanged. Thus the final pressure is

p1 =
p0V0

V1
=
p0V0

3V0
=

1

3
p0 .

(b) For the adiabatic process from state 1 to 2 we have p1V
γ
1 = p2V

γ
2 , i.e.,

1

3
p0(3V0)

γ = (3.00)
1
3 p0V

γ
0

which gives γ = 4/3. The gas is therefore polyatomic.

(c) From T = pV/nR we get
K̄2

K̄1
=
T2

T1
=
p2

p1
= (3.00)

1
3 = 1.44 .

61. In the following CV = 3
2R is the molar specific heat at constant volume, Cp = 5

2R is the molar specific
heat at constant pressure, ∆T is the temperature change, and n is the number of moles.

(a) The process 1→ 2 takes place at constant volume. The heat added is

Q = nCV ∆T =
3

2
nR∆T

=
3

2
(1.00 mol)(8.31 J/mol·K)(600 K− 300 K) = 3.74× 103 J .

Since the process takes place at constant volume the work W done by the gas is zero, and the first
law of thermodynamics tells us that the change in the internal energy is

∆Eint = Q = 3.74× 103 J .

The process 2→ 3 is adiabatic. The heat added is zero. The change in the internal energy is

∆Eint = nCV ∆T =
3

2
nR∆T

=
3

2
(1.00 mol)(8.31 J/mol ·K)(455 K− 600 K) = −1.81× 103 J .
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According to the first law of thermodynamics the work done by the gas is

W = Q−∆Eint = +1.81× 103 J .

The process 3→ 1 takes place at constant pressure. The heat added is

Q = nCp ∆T =
5

2
nR∆T

=
5

2
(1.00 mol)(8.31 J/mol ·K)(300 K− 455 K) = −3.22× 103 J .

The change in the internal energy is

∆Eint = nCV ∆T =
3

2
nR∆T

=
3

2
(1.00 mol)(8.31 J/mol ·K)(300 K− 455 K) = −1.93× 103 J .

According to the first law of thermodynamics the work done by the gas is

W = Q−∆Eint = −3.22× 103 J + 1.93× 103 J = −1.29× 103 J .

For the entire process the heat added is

Q = 3.74× 103 J + 0− 3.22× 103 J = 520 J ,

the change in the internal energy is

∆Eint = 3.74× 103 J− 1.81× 103 J− 1.93× 103 J = 0 ,

and the work done by the gas is

W = 0 + 1.81× 103 J− 1.29× 103 J = 520 J .

(b) We first find the initial volume. Use the ideal gas law p1V1 = nRT1 to obtain

V1 =
nRT1

p1
=

(1.00 mol)(8.31 J/mol ·K)(300 K)

(1.013× 105 Pa)
= 2.46× 10−2 m3 .

Since 1→ 2 is a constant volume process V2 = V1 = 2.46× 10−2 m3. The pressure for state 2 is

p2 =
nRT2

V2
=

(1.00 mol)(8.31 J/mol ·K)(600 K)

2.46× 10−2 m3
= 2.02× 105 Pa .

This is equivalent to 1.99 atm. Since 3→ 1 is a constant pressure process, the pressure for state 3
is the same as the pressure for state 1: p3 = p1 = 1.013× 105 Pa (1.00 atm). The volume for state
3 is

V3 =
nRT3

p3
=

(1.00 mol)(8.31 J/mol ·K)(455 K)

1.013× 105 Pa
= 3.73× 10−2 m3 .

62. We note that ∆K = n
(

3
2R
)

∆T according to the discussion in §20-5 and §20-9. Also, ∆Eint = nCV ∆T
can be used for each of these processes (since we are told this is an ideal gas). Finally, we note that
Eq. 20-49 leads to Cp = CV + R ≈ 8.0 cal/mol ·K after we convert Joules to calories in the ideal gas
constant value (Eq. 20-6): R ≈ 2.0 cal/mol·K. The first law of thermodynamics Q = ∆Eint +W applies
to each process.

• Constant volume process with ∆T = 50 K and n = 3.0 mol.
∆K = (3.0)

(

3
2 (2.0)

)

(50) = 450 cal
∆Eint = (3.0)(6.00)(50) = 900 cal
W = 0 for constant volume processes since the application of force (from the pressure) is not
associated with an displacements (see §7-2 and §7-3).
The first law gives Q = 900 + 0 = 900 cal.
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• Constant pressure process with ∆T = 50 K and n = 3.0 mol.
∆K = (3.0)

(

3
2 (2.0)

)

(50) = 450 cal.
∆Eint = (3.0)(6.00)(50) = 900 cal
W = p∆V for constant pressure processes, so (using the ideal gas law)W = nR∆T = (3.0)(2.0)(50) =
300 cal.
The first law gives Q = 900 + 300 = 1200 cal.

• Adiabiatic process with ∆T = 50 K and n = 3.0 mol.
∆K = (3.0)

(

3
2 (2.0)

)

(50) = 450 cal.
∆Eint = (3.0)(6.00)(50) = 900 cal
Q = 0 by definition of “adiabatic.”
The first law leads to W = Q− Eint = 0− 900 = −900 cal.

63. (a) We use piV
γ
i = pfV

γ
f to compute γ:

γ =
log(pi/pf )

log(Vf/Vi)
=

log(1.0 atm/1.0× 105 atm)

log(1.0× 103 L/1.0× 106 L)
=

5

3
.

Therefore the gas is monatomic.

(b) Using the gas law in ratio form (see Sample Problem 20-1), the final temperature is

Tf = Ti
pfVf

piVi
= (273 K)

(1.0× 105 atm)(1.0× 103 L)

(1.0 atm)(1.0× 106 L)
= 2.7× 104 K .

(c) The number of moles of gas present is

n =
piVi

RTi
=

(1.01× 105 Pa)
(

1.0× 103 cm3
)

(

8.31 J
mol·K

)

(273 K)
= 4.5× 104 mol .

(d) The total translational energy per mole before the compression is

Ki =
3

2
RTi =

3

2

(

8.31
J

mol ·K

)

(273 K) = 3.4× 103 J .

After the compression,

Kf =
3

2
RTf =

3

2

(

8.31
J

mol ·K

)

(

2.7× 104 K
)

= 3.4× 105 J .

(e) Since v2
rms ∝ T , we have

v2
rms,i

v2
rms,f

=
Ti

Tf
=

273 K

2.7× 104 K
= 0.01 .

64. (a) For the isothermal process the final temperature of the gas is Tf = Ti = 300 K. The final pressure
is

pf =
piVi

Vf
=

(32 atm)(1.0 L)

4.0 L
= 8.0 atm ,

and the work done is

W = nRTi ln

(

Vf

Vi

)

= piVi ln

(

Vf

Vi

)

= (32 atm)(1.01× 105 Pa/atm)(1.0× 10−3 m3) ln

(

4.0 L

1.0 L

)

= 4.4× 103 J .
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(b) For the adiabatic process piV
γ
i = pfV

γ
f . Thus,

pf = pf

(

Vi

Vf

)γ

= (32 atm)

(

1.0 L

4.0 L

)5/3

= 3.2 atm ,

Tf =
pfVfTi

piVi
=

(3.2 atm)(4.0 L)(300 K)

(32 atm)(1.0 L)
= 120 K , and

W = Q−∆E int = −∆E int = −3

2
nR∆T = −3

2
(pfVf − piVi)

= −3

2
[(3.2 atm)(4.0 L)− (32 atm)(1.0 L)](1.01× 105 Pa/atm)(10−3 m3/L)

= 2.9× 103 J .

(c) Now, γ = 1.4 so

pf = pi

(

Vi

Vf

)γ

= (32 atm)

(

1.0 L

4.0 L

)1.4

= 4.6 atm ,

Tf =
pfVfTi

piVi
=

(4.6 atm)(4.0 L)(300 K)

(32 atm)(1.0 L)
= 170 K , and

W = Q−∆E int = −5

2
nR∆T = −5

2
(pfVf − piVi)

= −5

2
[(4.6 atm)(4.0 L)− (32 atm)(1.0 L)](1.01× 105 Pa/atm)(10−3 m3/L)

= 3.4× 103 J .

65. We label the various states of the ideal gas as follows: it starts expanding adiabatically from state 1
until it reaches state 2, with V2 = 4 m3; then continues onto state 3 isothermally, with V3 = 10 m3; and
eventually getting compressed adiabatically to reach state 4, the final state. For the adiabatic process
1 → 2 p1V

γ
1 = p2V

γ
2 , for the isothermal process 2 → 3 p2V2 = p3V3, and finally for the adiabatic

process 3→ 4 p3V
γ
3 = p4V

γ
4 . These equations yield

p4 = p3

(

V3

V4

)γ

= p2

(

V2

V3

)(

V3

V4

)γ

= p1

(

V1

V2

)γ (
V2

V3

)(

V3

V4

)γ

.

We substitute this expression for p4 into the equation p1V1 = p4V4 (since T1 = T4) to obtain V1V3 = V2V4.
Solving for V4 we obtain

V4 =
V1V3

V2
=

(2 m3)(10 m3)

4 m3
= 5 m3 .

66. We use the result of exercise 58 to set up the ratio

v1
v2

=

√

γ1RT/M1
√

γ2RT/M2

=

√

M2

M1
if γ1 = γ2 .

That final condition (equality of the γ’s) is reasonable if we are comparing diatomic gas to diatomic gas,
or monatomic gas to monatomic gas. That is, all diatomic gases have γ = 1.4 (or very nearly so), and
all monatomic gases have γ ≈ 1.7.

67. (a) We use the result of exercise 58 to express γ in terms of the speed of sound v = fλ.

γ =
Mv2

RT
=
Mλ2f2

RT
.

The distance between nodes is half of a wavelength λ = 2 × 0.0677 m, and the molar mass in SI
units is M = 0.127 kg/mol. Consequently,

γ =
(0.127)(2× 0.0677)2(1400)2

(8.31)(400)
= 1.37 .



544 CHAPTER 20.

(b) Using Table 20-3, we find γ = 5/3 ≈ 1.7 for monatomic gases, γ = 7/5 = 1.4 for diatomic gases,
and γ = 4/3 ≈ 1.3 for polyatomic gases. Our result in part (a) suggests that iodine is a diatomic
gas.

68. We assume this to be an ideal gas, so that Cp = CV +R = 6.0R. Therefore, γ = Cp/CV = 1.2, and the
result of exercise 58 divided by Eq. 20-2 becomes

vs

vrms
=

√

γRT/M
√

3RT/M
=

√

γ

3
=
√

0.40 = 0.63 .

69. The initial data concerning the balloon is indicated by the subscript 1. As in Sample Problem 1, we use
the gas law in ratio form:

p1V1

p2V2
=
T1

T2
=⇒ V2 =

(

2.2 m3
)

(

760 torr

380 torr

)(

225 K

293 K

)

= 3.4 m3 .

70. (a) We use pV = nRT . The volume of the tank is

V =
nRT

p
=

(

300 g
17 g/mol

)

(

8.31 J
mol·K

)

(350 K)

1.35× 106 Pa

= 3.8× 10−2 m3 = 38 L .

(b) The number of moles of the remaining gas is

n′ =
p′V

RT ′ =
(8.7× 105 Pa)(3.8× 10−2 m3)

(

8.31 J
mol·K

)

(293 K)
= 13.5 mol .

The mass of the gas that leaked out is then ∆m = 300 g− (13.5 mol)(17 g/mol) = 71 g.

71. (a) Since an ideal gas is involved, then ∆Eint = 0 implies T1 = T0 (see Eq. 20-62). Consequently, the
ideal gas law leads to

p1 = p0

(

V0

V1

)

=
p0

5

for the pressure at the end of the sudden expansion. Now, the (slower) adiabatic process is described
by Eq. 20-54:

p2 = p1

(

V1

V2

)γ

= p1 (5γ)

as a result of the fact that V2 = V0 . Therefore,

p2 =
(p0

5

)

(5γ) =
(

5γ−1
)

p0

which is compared with the problem requirement that p2 = 50.4 p0 . Thus, we find that γ = 1.4 = 7
5 .

Since γ = Cp/CV , we see from Table 20-3 that this is a diatomic gas with rotation of the molecules.

(b) The direct connection between Eint andKavg is explained at the beginning of §20-8. Since ∆Eint = 0
in the free expansion, then K1 = K0 .

(c) In the (slower) adiabatic process, Eq. 20-56 indicates

T2 = T1

(

V1

V2

)γ−1

= 50.4 T0 =⇒ (Eint)2
(Eint)0

=
T2

T0
= 50.4 ≈ 1.9 .

Therefore, K2 = 1.9K0 .
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72. A molecule with speed vavg will (typically) suffer a collision after a time t = λ/vavg by definition of the
mean free path λ. Thus, we think of 1/t as the collision frequency f and use Eq. 20-25.

f =
vavg

λ
=

vavg
1

π
√

2d2N/V

= π
√

2d2vavg

(

N

V

)

.

73. From Table 20-3, CV = 3
2R = 12.5 J

mol·K for a monatomic gas such as helium. To obtain the desired result
cV we need to effectively “convert” mol→ kg , which can be done using the molar mass M expressed in
kilograms per mole. Although we could look up M for helium in Table 20-1 or Appendix F, the problem
gives us m so that we can use Eq. 20-4 to find M . That is,

M = mNA =
(

6.66× 10−27 kg
) (

6.02× 1023/mol
)

= 4.01× 10−3 kg

mol
.

Therefore, cV = CV /M = 3.11× 103 J/kg·K.

74. (a) When n = 1, V = Vm = RT/p, where Vm is the molar volume of the gas. So

Vm =
RT

p
=

(8.31 J/mol ·K)(273.15 K)

1.01× 105 Pa
= 22.5 L .

(b) We use vrms =
√

3RT/M. The ratio is given by

vrms,He

vrms,Ne
=

√

MNe

MHe
=

√

20 g

4.0 g
= 2.25 .

(c) We use λHe = (
√

2πd2N/V )−1, where the number of particles per unit volume is given by N/V =
NAn/V = NAp/RT = p/kT . So

λHe =
1√

2πd2(p/kT )
=

kT√
2πd2p

=
(1.38× 10−23 J/K)(273.15 K)

1.414π(1× 10−10 m)2(1.01× 105 Pa)
= 0.84µm .

(d) λNe = λHe = 0.84µm.

75. Since ∆Eint does not depend on the type of process,

(∆Eint)path 2 = (∆Eint)path 1 .

Also, since (for an ideal gas) it only depends on the temperature variable (so ∆Eint = 0 for isotherms),
then

(∆Eint)path 1 =
∑

(∆Eint)adiabat .

Finally, since Q = 0 for adiabatic processes, then (for path 1)

(∆Eint)adiabatic expansion = −W = −40 J and

(∆Eint)adiabatic compression = −W = −(−25) = 25 J .

Therefore,

(∆Eint)path 2 = −40 J + 25 J = −15 J .
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76. For convenience, the “int” subscript for the internal energy will be omitted in this solution. Recalling
Eq. 19-28, we note that

∑

cycle

E = 0

∆EA→B + ∆EB→C + ∆EC→D + ∆ED→E + ∆EE→A = 0 .

Since a gas is involved (assumed to be ideal), then the internal energy does not change when the
temperature does not change, so

∆EA→B = ∆ED→E = 0 .

Now, with ∆EE→A = 8.0 J given in the problem statement, we have

∆EB→C + ∆EC→D + 8.0 = 0 .

In an adiabatic process, ∆E = −W , which leads to

−5.0 + ∆EC→D + 8.0 = 0 ,

and we obtain ∆EC→D = −3.0 J.

77. We solve
√

3RT

Mhelium
=

√

3R(293 K)

Mhydrogen

for T . With the molar masses found in Table 20-1, we obtain

T = (293 K)

(

4.0

2.02

)

= 580 K

which is equivalent to 307◦C.

78. It is straightforward to show, from Eq. 20-11, that for any process that is depicted as a straight line on
the pV diagram, the work is

Wstraight =

(

pi + pf

2

)

∆V

which includes, as special cases, W = p∆V for constant-pressure processes and W = 0 for constant-
volume processes. Also, from the ideal gas law in ratio form (see Sample Problem 1), we find the final
temperature:

T2 = T1

(

p2

p1

)(

V2

V1

)

= 4T1 .

(a) With ∆V = V2 − V1 = 2V1 − V1 = V1 and p1 + p2 = p1 + 2p1 = 3p1 , we obtain

Wstraight =
3

2
(p1V1) =

3

2
nRT1

where the ideal gas law is used in that final step.

(b) With ∆T = T2 − T1 = 4T1 − T1 = 3T1 and CV = 3
2R, we find

∆Eint = n

(

3

2
R

)

(3T1) =
9

2
nRT1 .

(c) The energy added as heat is Q = ∆Eint +Wstraight = 6nRT1 .

(d) The molar specific heat for this process may be defined by

Cstraight =
Q

n∆T
=

6nRT1

n (3T1)
= 2R .
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79. (a) The ideal gas law leads to

V =
nRT

p
=

(1.00 mol)
(

8.31 J
mol·K

)

(273 K)

1.01× 105 Pa

which yields V = 0.0225 m3 = 22.5 L. If we use the standard pressure value given in Appendix D,
1 atm = 1.013× 105 Pa, then our answer rounds more properly to 22.4 L.

(b) From Eq. 20-2,we have N = 6.02× 1023 molecules in the volume found in part (a) (which may be
expressed as V = 2.24× 104 cm3), so that

N

V
=

6.02× 1023

2.24× 104 cm3
= 2.69× 1019 molecules/cm3 .

80. The gas law in ratio form (see Sample Problem 20-1) leads to

p2 = p1

(

V1

V2

)(

T2

T1

)

= (5.67 Pa)

(

4.00 m3

7.00 m3

)(

313 K

217 K

)

= 4.67 Pa .

81. It is recommended to look over §20-7 before doing this problem.

(a) We normalize the distribution function as follows:
∫ vo

0

P (v) dv = 1 =⇒ C =
3

v3
o

.

(b) The average speed is
∫ vo

0

v P (v) dv =

∫ vo

0

v

(

3v2

v3
o

)

dv =
3

4
vo .

(c) The rms speed is the square root of
∫ vo

0

v2 P (v) dv =

∫ vo

0

v2

(

3v2

v3
o

)

dv =
3

5
v2
o .

Therefore, vrms =
√

3/5 vo ≈ 0.775vo .

82. (a) From Table 20-3, CV = 5
2R and Cp = 7

2R. Thus, Eq. 20-46 yields

Q = nCp∆T = (3.00)

(

7

2
(8.31)

)

(40.0) = 3490 J .

(b) Eq. 20-45 leads to

∆Eint = nCV ∆T = (3.00)

(

5

2
(8.31)

)

(40.0) = 2493 ≈ 2490 J .

(c) From either W = Q−∆Eint or W = p∆T = nR∆T , we find W = 997 J.

(d) Eq. 20-24 is written in more convenient form (for this problem) in Eq. 20-38. Thus, we obtain

∆Ktrans = ∆(NKavg) = n

(

3

2
R

)

∆T ≈ 1500 J .

83. The average kinetic energy is related to the absolute temperature by

Kavg =
3

2
kT

4.0× 10−19 J =
3

2

(

1.38× 10−23 J/K
)

T

which yields T = 19.3× 103 K.
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84. Using the ideal gas law, one mole occupies a volume equal to

V =
nRT

p
=

(1)(8.31)(50)

1× 10−8
= 4.2× 1010 m3 .

Therefore, the number of molecules per unit volume is

N

V
=
nNA

V
=

(1)
(

6.02× 1023
)

4.2× 1010
= 1.4× 1013 molecules

m3
.

Using d = 20.0× 10−9 m, Eq. 20-25 yields

λ =
1√

2πd2
(

N
V

) = 39 m .

85. The mass of hot air is Mhot = nM by Eq. 20-3, where the number of moles contained within the envelope
is

n =
pV

RT
=

(

1.01× 105
) (

2.18× 103
)

(8.31)T
=

2.65× 107

T

with SI units understood. The magnitude of the gravitational force acting on the balloon is

Fg = (Menvelope +Mbasket +Mhot) g =

(

249 +M
2.65× 107

T

)

(9.8)

with SI units, again, understood (which implies M = 0.028). The problem requires that the buoyant
force (equal to the weight of the displaced air of density ρ = 1.21 kg/m3) is equal to 2700 N plus the
magnitude of the gravitational force. Therefore,

ρV g = 2700 +

(

249 + (0.028)
2.65× 107

T

)

(9.8) where V = 2.18× 103 .

Solving this for the temperature, we obtain

T =
(0.028)

(

2.65× 107
)

(1.21)(2.18×103)(9.8)−2700
9.8 − 249

= 351 K

which is equivalent to 78◦.

86. (a) The temperature is 10◦C→ T = 283 K. Then, with n = 3.5 mol and Vf/V0 = 3/4, we use Eq. 20-14:

W = nRT ln

(

Vf

V0

)

= −2369 J ≈ −2.4 kJ .

(b) The internal energy change ∆Eint vanishes (for an ideal gas) when ∆T = 0 so that the First Law
of Thermodynamics leads to Q = W = −2.4 kJ. The negative value implies that the heat transfer
is from the sample to its environment.

87. (a) Since n/V = p/RT , the number of molecules per unit volume is

N

V
=
nNA

V
= NA

( p

RT

)

(

6.02× 1023
) 1.01× 105 Pa
(

8.31 J
mol·K

)

(293 K)
= 2.5× 1025 molecules

m3
.

(b) Three-fourths of the 2.5×1025 value found in part (a) are nitrogen molecules with M = 28.0 g/mol
(using Table 20-1), and one-fourth of that value are oxygen molecules with M = 32.0 g/mol.
Consequently, we generalize the Msam = NM/NA expression for these two species of molecules and
write

3

4

(

2.5× 1025
) 28.0

6.02× 1023
+

1

4

(

2.5× 1025
) 32.0

6.02× 1023
= 1.2× 103 g .
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88. • Using a ruler, we find the diameter of the period D to be roughly 0.5 mm. Therefore, its area is
A = πD2/4 ≈ 2×10−7 m2. Meanwhile, we estimate the diameter d of an air molecule to be roughly
2 × 10−10 m (this is “in the ballpark” of the value used in Sample Problem 20-4). So the area an
air molecule covers is a = πd2/4 ≈ 3× 10−20 m2. Thus

A

a
≈ 2× 10−7

3× 10−20
≈ 1013 .

This tells us that rouhgly 1013 air molecules are needed to cover the period.

• Assume that every second there are N air molecules which collide with the period. If each one of
them bounces back elastically after the collision then the change in linear momentum per molecule
per collision is 2mvx, where m is the molecular mass and vx is the component of the molecular
velocity in the direction perpendicular to the surface of the paper containing the period. We take
vx to mean the average velocity x-component. Thus, the pressure exerted by the air molecules on
the period is

p =
2mNvx

A∆t
where ∆t = 1 s

and vx ≈ vrms/
√

3 (see the discussion immediately preceding Eq. 20-20). Also we have m = M/NA,
where M is the average molar mass of the air molecules. We solve for N :

N =

√
3pANA∆t

2Mvrms
=
pANA∆t

2
√
MRT

=
(1.01× 105 Pa)(2 × 10−7 m2)(6.02× 1023/mol)(1 s)

2
√

(0.028 kg/mol)
(

8.31 J
mol·K

)

(300 K)
≈ 7× 1020 .

89. (a) The work done in a constant-pressure process is W = p∆V . Therefore,

W =
(

25 N/m
2
)

(

1.8 m3 − 3.0 m3
)

= −30 J .

The sign conventions discussed in the textbook for Q indicate that we should write −75 J for the
energy which leaves the system in the form of heat. Therefore, the first law of thermodynamics
leads to

∆Eint = Q−W = (−75 J)− (−30 J) = −45 J .

(b) Since the pressure is constant (and the number of moles is presumed constant), the ideal gas law
in ratio form (see Sample Problem 20-1) leads to

T2 = T1

(

V2

V1

)

= (300 K)

(

1.8 m3

3.0 m3

)

= 180 K .

It should be noted that this is consistent with the gas being monatomic (that is, if one assumes
CV = 3

2R and uses Eq. 20-45, one arrives at this same value for the final temperature).

90. In a constant-pressure process, the work done is W = p∆V . Using the ideal gas law (assuming the
number of moles is constant) this becomes W = nR∆T . Therefore,

W = (3.00 mol)

(

8.31
J

mol ·K

)

(−75K) ≈ −1870 J .

Now, the First Law of Thermodynamics (Eq.19-24) yields

∆Eint = Q−W = (−4670)− (−1870) = −2800 J .
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91. Since no heat is transferred in an adiabatic process, then

Qtotal = Qisotherm = Wisotherm = nRT ln

(

3

12

)

where the First Law of Thermodynamics (with ∆Eint = 0 during the isothermal process) and Eq. 20-14
have been used. With n = 2.0 mol and T = 300 K, we obtain Q = −6912 J ≈ −6.9 kJ.

92. (a) We recall the sign convention for heat exchange developed in Chapter 19: the value of Q is positive
when the system absorbs heat and negative when it releases heat. Thus, in part (a) we have
Q = −300 kJ, which is used in Q = cliquidm∆T to produce ∆T = −18.75 C◦ so that the resulting
temperature is Ta = T0 + ∆T = 61.25◦C (“block P”).

(b) With Q = −400 kJ in Q = cliquidm∆T , we find ∆T = −25 C◦, yielding Tb = Ta + ∆T = 36.25◦C
(“block S”).

(c) With Q = −820 kJ in Q = cliquidm∆T , we find ∆T = −51.25 C◦, yielding Tc = Tb + ∆T =
−15.00◦C (“block X”).

(d) We adapt the change-of-state equation to the sign convention adopted for Q (so that the equation
is generally Q = ±Lm). With Q = −820 kJ in Q = −LF m

′, we find m′ = 1.67 kg, so that not
quite half the material has solidified (still in “block X” at −15.00◦C).

(e) As a result of part (d), there ism′′ = m−m′ = 4.00−1.67 = 2.33 kg of liquid material which remains
to solidify before the system may continue lowering temperature (as a solid). With Q = −670.0 kJ
in Q = −LF m

′′ + csolidm∆T , we find ∆T = −40 C◦, yielding Te = Td + ∆T = −55.00◦C (“block
BB”).

(f) Now the system is absorbing heat: with Q = 1240.0 kJ and ∆T ′ = 40 C◦ in Q = csolidm∆T ′ +
LF m+ cliquidm∆T , we find ∆T = 20 C◦, yielding Tf = Te + ∆T ′ + ∆T = 5.00◦C (“block V ”).

(g) With Q = 1280 kJ in Q = cliquidm∆T , we find ∆T = 80 C◦, yielding Tg = Tf + ∆T = 85.00◦C
(“block N”).

(h) With Q = 820.0 kJ and ∆T = 20 C◦ in Q = cliquidm∆T + LV m
′, we find m′ = 1.00 kg, so

one-fourth of the material has vaporized at Th = Tg + ∆T = 105.0◦C (“block L”).

(i) With Q = 1000 kJ in Q = LV m
′′, we find m′′ = 2.00 kg, so three-fourths of the material has now

vaporized at Ti = Th = 105.0◦C (“block L”).

(j) We are careful to interpret the given “Molar mass = 3.000” as that of the element (the single atoms),
so that for a diatomic gaseous configuration we must use 6.000 g/mol when converting between mass
m and moles n. Note that the temperature has not reached the point where rotational modes are
excited, so CV = (3/2)R. In the equation that follows, m′′′ is the mass (at the end of the preceding
step) remaining to vaporize (1.000 kg) and n = m/(6.000) = 666.7 mol. With Q = 583.1 kJ in
Q = LV m

′′′ + nCV ∆T , we find ∆T = 10 C◦, yielding Tj = Ti + ∆T = 115.0◦C (“block K”).

(k) With Q = 166.2 kJ in Q = nCV ∆T , we find ∆T = 20 C◦, yielding Tk = Tj +∆T = 135.0◦C (“block
I”).

(l) Note that the temperature is now in the range where rotational modes are excited, so CV = (5/2)R.
With Q = 277.0 kJ in Q = nCV ∆T , we find ∆T = 20 C◦, yielding Tl = Tk +∆T = 155.0◦C (“block
G”).

(m) With the temperature in the range where rotational modes are excited and expanding at constant
pressure, we have Cp = (7/2)R. With Q = 581.7 kJ in Q = nCp∆T , we find ∆T = 30 C◦, yielding
Tm = Tl + ∆T = 185.0◦ C (“block D”).

(n) Finally, we are in the temperature range where vibrational modes are excited (and expanding at
constant pressure), so that we have Cp = (9/2)R. With Q = 249.3 kJ in Q = nCp∆T , we find
∆T = 10 C◦, yielding Tn = Tm + ∆T = 195.0◦C (“block C”).
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1. An isothermal process is one in which Ti = Tf which implies ln(Tf/Ti) = 0. Therefore, with Vf/Vi = 2,
Eq. 21-4 leads to

∆S = nR ln

(

Vf

Vi

)

= (2.50 mol)

(

8.31
J

mol·K

)

ln(2) = 14.4 J/K .

2. From Eq. 21-2, we obtain

Q = T∆S = (405 K)(46.0 J/K) = 1.86× 104 J .

3. (a) Since the gas is ideal, its pressure p is given in terms of the number of moles n, the volume V , and
the temperature T by p = nRT/V . The work done by the gas during the isothermal expansion is

W =

∫ V2

V1

p dV = nRT

∫ V2

V1

dV

V
= nRT ln

V2

V1
.

We substitute V2 = 2V1 to obtain

W = nRT ln 2 = (4.00 mol)

(

8.31
J

mol·K

)

(400 K) ln2 = 9.22× 103 J .

(b) Since the expansion is isothermal, the change in entropy is given by ∆S =
∫

(1/T ) dQ = Q/T ,
where Q is the heat absorbed. According to the first law of thermodynamics, ∆Eint = Q −W .
Now the internal energy of an ideal gas depends only on the temperature and not on the pressure
and volume. Since the expansion is isothermal, ∆Eint = 0 and Q = W . Thus,

∆S =
W

T
=

9.22× 103 J

400 K
= 23.1 J/K .

(c) ∆S = 0 for all reversible adiabatic processes.

4. An isothermal process is one in which Ti = Tf which implies ln (Tf/Ti) = 0. Therefore, Eq. 21-4 leads
to

∆S = nR ln

(

Vf

Vi

)

=⇒ n =
22.0

(8.31) ln(3.4/1.3)
= 2.75 mol .

5. We use the following relation derived in Sample Problem 21-2:

∆S = mc ln

(

Tf

Ti

)

.

(a) The energy absorbed as heat is given by Eq. 19-14. Using Table 19-3, we find

Q = cm∆T =

(

386
J

kg·K

)

(2.00 kg)(75 K) = 5.79× 104 J

where we have used the fact that a change in Kelvin temperature is equivalent to a chance in Celsius
degrees.
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(b) With Tf = 373.15 K and Ti = 298.15 K, we obtain

∆S = (2.00 kg)

(

386
J

kg·K

)

ln

(

373.15

298.15

)

= 173 J/K .

6. (a) Isothermal means that the temperature remains constant during the process. ON a graph with
temperature plotted along the vertical axis, this means that the points representing that process
must lie on a horizontal line (all corresponding to a single value of T ). Therefore, process AE is
isothermal. This conclusion does not depend on the nature of the material (that is, AE is isothermal
irrespective of this substance being a monatomic ideal gas).

(b) Isobaric means that the pressure stays constant during the process. Knowing that this is an ideal
gas, and assuming (as usual) that n stays constant during the process, then the gas law in ratio
form (see Sample Problem 20-1) leads to

Tf

Ti
=
Vf

Vi
= 2 (see Figure 21-21) .

Consequently, we see that process AC is isobaric for this ideal gas. That it should be linear is
implied by the simple proportionality between T and V shown above.

(c) For a monatomic gas, γ = 5/3 (see the discussion in Chapter 20). Therefore,

Tf = Ti

(

Vi

Vf

)γ−1

= T0

(

1

2

)2/3

= 0.63T0

which implied process AF is adiabatic.

(d) Since ln(x) is positive for all x > 1, then Eq. 21-4 makes it clear that all processes (with the possible
exception of AF ) have ∆S > 0. We assume process AF to be reversibly adiabatic, in which case
Eq. 21-1 gives ∆S = 0 (since Q = 0 for the process, or any small portion of the process); in fact,
if AF represented (in some sense) an irreversible process which generated entropy, then we would
still end up with the overall conclusion that none of the processes shown are accompanied by an
entropy decrease.

7. (a) This may be considered a reversible process (as well as isothermal), so we use ∆S = Q/T where
Q = Lm with L = 333 J/g from Table 19-4. Consequently,

∆S =
(333 J/g)(12.0 g)

273 K
= 14.6 J/K .

(b) The situation is similar to that described in part (a), except with L = 2256 J/g, m = 5.00 g, and
T = 373 K. We therefore find ∆S = 30.2 J/K.

8. (a) It is possible to motivate, starting from Eq. 21-3, the notion that heat may be found from the integral
(or “area under the curve”) of a curve in a TS diagram, such as this one. Either from calculus,
or from geometry (area of a trapezoid), it is straightforward to find the result for a “straight-line”
path in the TS diagram:

Qstraight =

(

Ti + Tf

2

)

∆S

which could, in fact, be directly motivated from Eq. 21-3 (but it is important to bear in mind that
this is rigorously true only for a process which forms a straight line in a graph that plots T versus
S). This leads to (300 K)(15 J/K) = 4500 J for the energy absorbed as heat by the gas.

(b) Using Table 20-3 and Eq. 20-45, we find

∆Eint = n

(

3

2
R

)

∆T = (2.0 mol)

(

8.31
J

mol·K

)

(200 K− 400 K) = −5.0× 103 J .
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(c) By the first law of thermodynamics,

W = Q−∆Eint = 4.5 kJ− (−5.0 kJ) = 9.5 kJ .

9. (a) The energy that leaves the aluminum as heat has magnitude Q = maca(Tai − Tf), where ma is
the mass of the aluminum, ca is the specific heat of aluminum, Tai is the initial temperature of the
aluminum, and Tf is the final temperature of the aluminum-water system. The energy that enters
the water as heat has magnitude Q = mwcw(Tf − Twi), where mw is the mass of the water, cw is
the specific heat of water, and Twi is the initial temperature of the water. The two energies are the
same in magnitude since no energy is lost. Thus,

maca(Tai − Tf ) = mwcw(Tf − Twi) =⇒ Tf =
macaTai +mwcwTwi

maca +mwcw
.

The specific heat of aluminum is 900 J/kg·K and the specific heat of water is 4190 J/kg·K. Thus,

Tf =
(0.200 kg)(900 J/kg·K)(100◦C) + (0.0500 kg)(4190 J/kg·K)(20◦C)

(0.200 kg)(900 J/kg·K) + (0.0500 kg)(4190 J/kg·K)

= 57.0◦C or 330 K .

(b) Now temperatures must be given in Kelvins: Tai = 393 K, Twi = 293 K, and Tf = 330 K. For the
aluminum, dQ = maca dT and the change in entropy is

∆Sa =

∫

dQ

T
= maca

∫ Tf

Tai

dT

T
= maca ln

Tf

Tai

= (0.200 kg)(900 J/kg·K) ln

(

330 K

373 K

)

= −22.1 J/K .

(c) The entropy change for the water is

∆Sw =

∫

dQ

T
= mwcw

∫ Tf

Twi

dT

T
= mwcw ln

Tf

Twi

= (0.0500 kg)(4190 J/kg·K) ln

(

330 K

293 K

)

= +24.9 J/K .

(d) The change in the total entropy of the aluminum-water system is ∆S = ∆Sa +∆Sw = −22.1 J/K+
24.9 J/K = +2.8 J/K.

10. This problem is similar to Sample Problem 21-2. The only difference is that we need to find the mass m
of each of the blocks. Since the two blocks are identical the final temperature Tf is the average of the
initial temperatures:

Tf =
1

2
(Ti + Tf) =

1

2
(305.5 K + 294.5 K) = 300.0 K .

Thus from Q = mc∆T we find the mass m:

m =
Q

c∆T
=

215 J

(386 J/kg·K)(300.0 K− 294.5 K)
= 0.101 kg .

(a)

∆SL = mc ln

(

Tf

TiL

)

= (0.101 kg)(386 J/kg·K) ln

(

300.0 K

305.5 K

)

= −0.710 J/K .

(b) Since the temperature of the reservoir is virtually the same as that of the block, which gives up the
same amount of heat as the reservoir absorbs, the change in entropy ∆S′

L of the reservoir connected
to the left block is the opposite of that of the left block: ∆S′

L = −∆SL = +0.710 J/K.
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(c) The entropy change for block R is

∆SR = mc ln

(

Tf

TiR

)

= (0.101 kg)(386 J/kg·K) ln

(

300.0 K

294.5 K

)

= +0.723 J/K .

(d) Similar to the case in part (b) above, the change in entropy ∆S′
R of the reservoir connected to the

right block is given by ∆S′
R = −∆SR = −0.723 J/K.

(e) The change in entropy for the two-block system is ∆SL + ∆SR = −0.710 J/K + 0.723 J/K =
+0.013 J/K.

(f) The entropy change for the entire system is given by ∆S = ∆SL + ∆S′
L + ∆SR + ∆S′

R = ∆SL −
∆SL + ∆SR −∆SR = 0, which is expected of a reversible process.

11. From problem#10 we know that, if the process in Fig. 21-5 should happen in reverse, then the change
in entropy for the left block, which now absorbs energy, is ∆SL = +0.710 J/K; while for the right block
∆SR = −0.723 J/K. The net change in entropy of the two-block system would then be

∆S = ∆SL + ∆SR = +0.710 J/K− 0.723 J/K = −0.013 J/K < 0 .

This is a clear violation of the second law.

12. The connection between molar heat capacity and the degrees of freedom of a diatomic gas is given by
setting f = 5 in Eq. 20-51. Thus, CV = 5

2R, Cp = 7
2R, and γ = 7

5 . In addition to various equations from
Chapter 20, we also make use of Eq. 21-4 of this chapter. We note that we are asked to use the ideal
gas constant as R and not plug in its numerical value. We also recall that isothermal means constant-
temperature, so T2 = T1 for the 1 → 2 process. The statement (at the end of the problem) regarding
“per mole” may be taken to mean that n may be set identically equal to 1 wherever it appears.

(a) The gas law in ratio form (see Sample Problem 20-1) as well as the adiabatic relations Eq. 20-54
and Eq. 20-56 are used to obtain

p2 = p1

(

V1

V2

)

=
p1

3
,

p3 = p1

(

V1

V3

)γ

=
p1

31.4
,

T3 = T1

(

V1

V3

)γ−1

=
T1

30.4
.

(b) The energy and entropy contributions from all the processes are

• process 1→ 2
The internal energy change is ∆Eint = 0 since this is an ideal gas process without a temperature
change (see Eq. 20-45).
The work is given by Eq. 20-14: W = nRT1 ln (V2/V1) = RT1 ln 3 which is approximately
1.10RT1 .
The energy absorbed as heat is given by the first law of thermodynamics: Q = ∆Eint +W ≈
1.10RT1 .
The entropy change is ∆S = Q/T1 = 1.10R.

• process 2→ 3
The work is zero since there is no volume change.
The internal energy change is

∆Eint = nCV (T3 − T2) = (1)

(

5

2
R

)(

T1

30.4
− T1

)

≈ −0.889RT1 .
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This (−0.889RT1 ) is also the value for Q (by either the first law of thermodynamics or by the
definition of CV ).
For the entropy change, we obtain

∆S = nR ln

(

V3

V1

)

+ nCV ln

(

T3

T1

)

= (1)R ln(1) + (1)

(

5

2
R

)

ln

(

T1/3
0.4

T1

)

= 0 +
5

2
R ln

(

3−0.4
)

≈ −1.10R .

• process 3→ 1
By definition, Q = 0 in an adiabatic process, which also implies an absence of entropy change
(taking this to be a reversible process). The internal change must be the negative of the value
obtained for it in the previous process (since all the internal energy changes must add up to
zero, for an entire cycle, and its change is zero for process 1→ 2), so ∆Eint = +0.889RT1 . By
the first law of thermodynamics, then, W = Q−∆Eint = 0.889RT1 .

13. (a) We refer to the copper block as block 1 and the lead block as block 2. The equilibrium temperature
Tf satisfies m1c1(Tf − Ti,1) +m2c2(Tf − Ti,2) = 0, which we solve for Tf :

Tf =
m1c1Ti,1 +m2c2Ti,2

m1c1 +m2c2

=
(50 g)(386 J/kg·K)(400 K) + (100 g)(128 J/kg·K)(200 K)

(50 g)(386 J/kg·K) + (100 g)(128 J/kg·K)

= 320 K .

(b) Since the two-block system in thermally insulated from the environment, the change in internal
energy of the system is zero.

(c) The change in entropy is

∆S = ∆S1 + ∆S2 = m1c1 ln

(

Tf

Ti,1

)

+m2c2 ln

(

Tf

Ti,2

)

= (50 g)(386 J/kg·K) ln

(

320 K

400 K

)

+ (100 g)(128 J/kg·K) ln

(

320 K

200 K

)

= +1.72 J/K .

14. (a) The pV diagram depicting the two “paths” is shown:

(V,p)

(2V,2p)path II

path I

(b) “Path I” consists of an isothermal (constant T ) process in which the volume doubles, followed by a
constant-volume process. We consider the Q for each of these steps. We note that the connection
between molar heat capacity and the degrees of freedom of a monatomic gas is given by setting
f = 3 in Eq. 20-51. Thus, CV = 3

2R, Cp = 5
2R, and γ = 5

3 .
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• Isothermal: Since this is an ideal gas, Eq. 20-45 holds, which implies ∆Eint = 0 for this
process. Eq. 20-14 also applies, so that by the first law of thermodynamics, Q = 0 + W =
nRT lnVf/Vi = pV ln 2. The ideal gas law is used in the last step.

• Constant-volume: The gas law in ratio form (see Sample Problem 20-1) implies that the pressure
decreased by a factor of 2 during the isothermal portion, so that it needs to increase by a factor
of 4 in this portion of “path I.” That same ratio form now applied to this constant-volume
process, yielding 4 = Tf/Ti which is used in the following:

Q = nCV ∆T = n

(

3

2
R

)

(Tf − Ti)

=
3

2
nRTi

(

Tf

Ti
− 1

)

=
3

2
pV (4− 1) =

9

2
pV .

“Path II” consists of an isothermal (constant T ) process in which the volume halves, followed by a
isobaric (constant p) process. We again consider the Q for each of these steps.

• Isothermal: Here the gas law applied to the isothermal portion leads to a volume half as big as
the original. Since ln

(

1
2

)

= − ln 2, the reasoning used above leads to Q = −pV ln 2.

• Isobaric: To obtain a final volume twice as big as the original, then this portion of the “path”
needs to increase the volume by a factor of 4. Now, the gas law applied to this isobaric portion
leads to a temperature ratio Tf/Ti = 4. Thus,

Q = nCp∆T = n

(

5

2
R

)

(Tf − Ti)

=
5

2
nRTi

(

Tf

Ti
− 1

)

=
5

2
pV (4− 1) =

15

2
pV .

(c) Much of the reasoning has been given in part (b). Here and in the next part, we will be brief.

• Path I – Isothermal expansion: Eq. 20-14 gives W = nRT lnVf/Vi = pV ln 2.

• Path I – constant-volume part: W = 0.

• Path II – Isothermal compression: Eq. 20-14 gives W = nRT lnVf/Vi = pV ln 1/2 = −pV ln 2.

• Path II – isobaric: The initial value of the volume, for this part of the process, is Vi = 1
2V ,

and the final volume is Vf = 2V . The pressure maintained during this process is p′ = 2p. The
work is given by Eq. 20-16:

W = p′∆V = p′ (Vf − Vi) = (2p)

(

2V − 1

2
V

)

= 3pV .

(d) The change in internal energy between the very beginning and end of Path I is the same as that for
Path II. We can calculate it directly from Eq. 20-45 (in which case the computation is very similar
to one done in part (b)) or (indirectly) from the first law of thermodynamics. We illustrate the
indirect approach, using information relevant to Path I:

∆Eint = Qtotal1 −Wtotal1 =

(

pV ln 2 +
9

2
pV

)

− (pV ln 2 + 0) =
9

2
pV .

(e) The change in entropy energy between the very beginning (when the temperature is Ti) and the
end of Path I (when the temperature is Tf = 4Ti – as noted in part (b)) is the same as the entropy
change for Path II. We compute it using Eq. 21-4:

∆S = nR ln

(

2V

V

)

+ nCV ln

(

4T

T

)

= nR ln 2 + n

(

3

2
R

)

ln 22 = nR ln 2 + 3nR ln 2 = 4nR ln 2 .
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15. The ice warms to 0◦ C, then melts, and the resulting water warms to the temperature of the lake water,
which is 15◦ C. As the ice warms, the energy it receives as heat when the temperature changes by dT
is dQ = mcI dT , where m is the mass of the ice and cI is the specific heat of ice. If Ti (= 263 K) is the
initial temperature and Tf (= 273 K) is the final temperature, then the change in its entropy is

∆S =

∫

dQ

T
= mcI

∫ Tf

Ti

dT

T
= mcI ln

Tf

Ti

= (0.010 kg)(2220 J/kg·K) ln

(

273 K

263 K

)

= 0.828 J/K .

Melting is an isothermal process. The energy leaving the ice as heat is mLF , where LF is the heat of
fusion for ice. Thus, ∆S = Q/T = mLF /T = (0.010 kg)(333× 103 J/kg)/(273 K) = 12.20 J/K. For the
warming of the water from the melted ice, the change in entropy is

∆S = mcw ln
Tf

Ti
,

where cw is the specific heat of water (4190 J/kg ·K). Thus,

∆S = (0.010 kg)(4190 J/kg·K) ln

(

288 K

273 K

)

= 2.24 J/K .

The total change in entropy for the ice and the water it becomes is

∆S = 0.828 J/K + 12.20 J/K + 2.24 J/K = 15.27 J/K .

Since the temperature of the lake does not change significantly when the ice melts, the change in its
entropy is ∆S = Q/T , where Q is the energy it receives as heat (the negative of the energy it supplies
the ice) and T is its temperature. When the ice warms to 0◦ C,

Q = −mcI(Tf − Ti) = −(0.010 kg)(2220 J/kg·K)(10 K) = −222 J .

When the ice melts,

Q = −mLF = −(0.010 kg)(333× 103 J/kg) = −3.33× 103 J .

When the water from the ice warms,

Q = −mcw(Tf − Ti) = −(0.010 kg)(4190 J/kg·K)(15 K) = −629 J .

The total energy leaving the lake water is Q = −222 J− 3.33× 103J− 6.29× 102 J = −4.18× 103 J. The
change in entropy is

∆S =
−4.18× 103 J

288 K
= −14.51 J/K .

The change in the entropy of the ice-lake system is ∆S = (15.27− 14.51) J/K = 0.76 J/K.

16. In coming to equilibrium, the heat lost by the 100 cm3 of liquid water (of mass mw = 100 g and specific
heat capacity cw = 4190 J/kg·K) is absorbed by the ice (of mass mi which melts and reaches Tf > 0◦C).
We begin by finding the equilibrium temperature:

∑

Q = 0

Qwarm water cools +Qice warms to 0◦ +Qice melts +Qmelted ice warms = 0

cwmw (Tf − 20◦) + cimi (0◦ − (−10◦)) + LF mi + cwmi (Tf − 0◦) = 0

which yields, after using LF = 333000 J/kg and values cited in the problem, Tf = 12.24◦ which is
equivalent to Tf = 285.39 K. Sample Problem 20-2 shows that

∆Stemp change = mc ln

(

T2

T1

)
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for processes where ∆T = T2 − T1 , and Eq. 21-2 gives

∆Smelt =
LF m

To

for the phase change experienced by the ice (with To = 273.15 K). The total entropy change is (with T
in Kelvins)

∆Ssystem = mwcw ln

(

285.39

293.15

)

+mici ln

(

273.15

263.15

)

+micw ln

(

285.39

273.15

)

+
LF mi

273.15

= −11.24 + 0.66 + 1.47 + 9.75 = 0.64 J/K .

17. (a) The final mass of ice is (1773 g + 227 g)/2 = 1000 g. This means 773 g of water froze. Energy
in the form of heat left the system in the amount mLF , where m is the mass of the water that
froze and LF is the heat of fusion of water. The process is isothermal, so the change in entropy is
∆S = Q/T = −mLF/T = −(0.773 kg)(333× 103 J/kg)/(273 K) = −943 J/K.

(b) Now, 773 g of ice is melted. The change in entropy is

∆S =
Q

T
=
mLF

T
= +943 J/K .

(c) Yes, they are consistent with the second law of thermodynamics. Over the entire cycle, the change
in entropy of the water-ice system is zero even though part of the cycle is irreversible. However, the
system is not closed. To consider a closed system, we must include whatever exchanges energy with
the ice and water. Suppose it is a constant-temperature heat reservoir during the freezing portion
of the cycle and a Bunsen burner during the melting portion. During freezing the entropy of the
reservoir increases by 943 J/K. As far as the reservoir-water-ice system is concerned, the process is
adiabatic and reversible, so its total entropy does not change. The melting process is irreversible,
so the total entropy of the burner-water-ice system increases. The entropy of the burner either
increases or else decreases by less than 943 J/K.

18. (a) In an adiabatic process Q = 0. This can be done by placing the gas in a thermally insulated
container whose volume can be adjusted (say, by means of a movable piston). If the volume is
slowly increased from Vi to Vx, then the process is reversible. To realize the reversible, constant-
volume process from x to f , we would place the gas in a rigid container, which has a fixed volume
Vf and is in thermal contact with a heat reservoir. If we gradually increase the temperature of the
reservoir from Tx to Tf , the gas will undergo the desired reversible process from x to f .

(b) For the two states i and x we have piVi/Ti = pxVx/Tx and piV
γ
i = pxV

γ
x . We eliminate pi and px

from these equations to obtain

Tx

Ti
=

(

Vi

Vx

)γ−1

.

For monatomic ideal gases γ = 5/3 (see §20-8 and §20-11), so γ − 1 = 2/3. Also Vx = Vf .
Substituting these into the equation above, we obtain Tx = Ti(Vi/Vf )2/3.

(c) For an ideal gas undergoing an isothermal process, Eq. 20-45 implies ∆Eint = 0. And Eq. 20-14
gives W = nRT ln(Vf/Vi ) for such a process. Therefore, the first law of thermodynamics leads to

Qpath I = ∆Eint I +WI = nRTi ln

(

Vf

Vi

)

.

And for path II, we have

Qpath II = Qadiabat +Qconst vol = 0 + nCV ∆T .
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But CV = 3
2R (see Eq. 20-43), so we obtain

Qpath II =
3

2
nR (Tf − Tx) .

We see that Qpath I 6= Qpath II .

(d) Since the first part of path II is reversibly adiabatic, then the entropy changes only during the
second, constant-volume, part of the path:

∆S =

∫ Tf

Tx

nCV dT

T
= nCV ln

(

Tf

Tx

)

=
3

2
nR ln

(

Tf

Tx

)

.

Entropy is a function of “where you are” on the pV diagram, not “how you got there.” Since the
beginning and ending point of path I are the same as those of path II, then ∆S is the same for
both.

(e) Using the result in part (b) with Vi/Vf = 1
2 and Ti = 500 K, we find

Tx = (500 K)

(

1

2

)2/3

= 315 K .

For path I, Eq. 21-2 gives QI = (∆S)T where T = Ti = Tf and ∆S is the expression calculated in
the part (d). Thus,

QI =
3

2
nRTf ln

(

Tf

Tx

)

which can be alternatively derived from Eq. 20-14 and the first law of thermodynamics. With
n = 1 mol, Tf = Ti = 500 K, we find

QI =
3

2
(1)(8.31)(500) ln

(

500

315

)

= 2880 J .

For path II, Q = Qconstant volume = nCV ∆T and we obtain

QII = (1)

(

3

2
(8.31)

)

(500− 315) = 2306 J .

The issue of significant figures is problematic since the given “n = 1” could be interpreted various
ways (exact value, or just one figure?). From part (d),

∆S =
3

2
(1)(8.31) ln

(

500

315

)

= 5.76 J/K .

19. (a) Work is done only for the ab portion of the process. This portion is at constant pressure, so the
work done by the gas is

W =

∫ 4V0

V0

p0 dV = p0(4V0 − V0) = 3p0V0 .

(b) We use the first law: ∆Eint = Q−W . Since the process is at constant volume, the work done by
the gas is zero and Eint = Q. The energy Q absorbed by the gas as heat is Q = nCV ∆T , where
CV is the molar specific heat at constant volume and ∆T is the change in temperature. Since the
gas is a monatomic ideal gas, CV = 3

2R. Use the ideal gas law to find that the initial temperature
is Tb = pbVb/nR = 4p0V0/nR and that the final temperature is Tc = pcVc/nR = (2p0)(4V0)/nR =
8p0V0/nR. Thus,

Q =
3

2
nR

(

8p0V0

nR
− 4p0V0

nR

)

= 6p0V0 .
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The change in the internal energy is ∆Eint = 6p0V0. Since n = 1 mol, this can also be written
Q = 6RT0. Since the process is at constant volume, use dQ = nCV dT to obtain

∆S =

∫

dQ

T
= nCV

∫ Tc

Tb

dT

T
= nCV ln

Tc

Tb
.

Substituting CV = 3
2R and using the ideal gas law, we write

Tc

Tb
=
pcVc

pbVb
=

(2p0)(4V0)

p0(4V0)
= 2 .

Thus, ∆S = 3
2nR ln 2. Since n = 1, this is ∆S = 3

2R ln 2.

(c) For a complete cycle, ∆Eint = 0 and ∆S = 0.

20. (a) The final pressure is

pf = (5.00 kPa)e(Vi−Vf )/a = (5.00 kPa)e(1.00 m3−2.00m3)/1.00m3

= 1.84 kPa .

(b) We use the ratio form of the gas law (see Sample Problem 20-1) to find the final temperature of
the gas:

Tf = Ti

(

pfVf

piVi

)

= (600 K)
(1.84 kPa)(2.00 m3)

(5.00 kPa)(1.00 m3)
= 441 K .

For later purposes, we note that this result can be written “exactly” as Tf = Ti

(

2e−1
)

. In our
solution, we are avoiding using the “one mole” datum since it is not clear how precise it is.

(c) The work done by the gas is

W =

∫ f

i

p dV =

∫ Vf

Vi

(5.00 kPa)e(Vi−V )/a dV

= (5.00 kPa)eVi/a ·
[

− ae−V/a

]Vf

Vi

= (5.00 kPa)e1.00(1.00 m3)
(

e−1.00 − e−2.00
)

= 3.16 kJ .

(d) Consideration of a two-stage process as suggested in the hint, brings us simply to Eq. 21-4. Con-
sequently, with CV = 3

2R (see Eq. 20-43), we find

∆S = nR ln

(

Vf

Vi

)

+ n

(

3

2
R

)

ln

(

Tf

Ti

)

= nR

(

ln 2 +
3

2
ln
(

2e−1
)

)

=
piVi

Ti

(

ln 2 +
3

2
ln 2 +

3

2
ln e−1

)

=
(5000 Pa)(1.00 m3)

600 K

(

5

2
ln 2− 3

2

)

= 1.94 J/K .

21. The answers to this exercise do not depend on the engine being of the Carnot design. Any heat engine
that in-takes energy as heat (from, say, consuming fuel) equal to |QH| = 52 kJ and exhausts (or discards)
energy as heat equal to |QL| = 36 kJ will have these values of efficiency ε and net work W .
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(a) Eq. 21-10 gives

ε = 1−
∣

∣

∣

∣

QL

QH

∣

∣

∣

∣

= 0.31 = 31% .

(b) Eq. 21-6 gives

W = |QH| − |QL| = 16 J .

22. With TL = 290 k, we find

ε = 1− TL

TH
=⇒ TH =

TL

1− ε =
290 K

1− 0.40

which yields the (initial) temperature of the high-temperature reservoir: TH = 483 K. If we replace
ε = 0.40 in the above calculation with ε = 0.50, we obtain a (final) high temperature equal to T ′

H = 580 K.
The difference is

T ′
H − TH = 580 K− 483 K = 97 K .

23. (a) The efficiency is

ε =
TH − TL

TH
=

(235− 115)K

(235 + 273)K
= 0.236 = 23.6% .

We note that a temperature difference has the same value on the Kelvin and Celsius scales. Since the
temperatures in the equation must be in Kelvins, the temperature in the denominator is converted
to the Kelvin scale.

(b) Since the efficiency is given by ε = |W |/|QH|, the work done is given by

|W | = ε|QH| = 0.236(6.30× 104 J) = 1.49× 104 J .

24. Eq. 21-11 leads to

ε = 1− TL

TH
= 1− 373 K

7× 108 K
= 0.9999995

quoting more figures than are significant. As a percentage, this is ε = 99.99995%.

25. For an Carnot engine, the efficiency is related to the reservoir temperatures by Eq. 21-11. Therefore,

TH =
TH − TL

ε
=

75 K

0.22
= 341 K

which is equivalent to 68◦C. The temperature of the cold reservoir is TL = TH − 75 = 341 K− 75 K =
266 K.

26. (a) Eq. 21-11 leads to

ε = 1− TL

TH
= 1− 333 K

373 K
= 0.107 .

We recall that a Watt is Joule-per-second. Thus, the (net) work done by the cycle per unit time is
the given value 500 J/s. Therefore, by Eq. 21-9, we obtain the heat input per unit time:

ε =
W

|QH|
=⇒ 0.500 kJ/s

0.107
= 4.66 kJ/s .

(b) Considering Eq. 21-6 on a per unit time basis, we find 4.66− 0.500 = 4.16 kJ/s for the rate of heat
exhaust.

27. (a) Energy is added as heat during the portion of the process from a to b. This portion occurs at
constant volume (Vb), so Qin = nCV ∆T . The gas is a monatomic ideal gas, so CV = 3

2R and the
ideal gas law gives ∆T = (1/nR)(pbVb − paVa) = (1/nR)(pb− pa)Vb. Thus, Qin = 3

2 (pb − pa)Vb. Vb
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and pb are given. We need to find pa. Now pa is the same as pc and points c and b are connected
by an adiabatic process. Thus, pcV

γ
c = pbV

γ
b and

pa = pc =

(

Vb

Vc

)γ

pb =

(

1

8.00

)5/3

(1.013× 106 Pa) = 3.167× 104 Pa .

The energy added as heat is

Qin =
3

2
(1.013× 106 Pa− 3.167× 104 Pa)(1.00× 10−3 m3) = 1.47× 103 J .

(b) Energy leaves the gas as heat during the portion of the process from c to a. This is a constant
pressure process, so

Qout = nCp ∆T =
5

2
(paVa − pcVc) =

5

2
pa(Va − Vc)

=
5

2
(3.167× 104 Pa)(−7.00)(1.00× 10−3 m3) = −5.54× 102 J .

The substitutions Va − Vc = Va − 8.00Va = −7.00Va and Cp = 5
2R were made.

(c) For a complete cycle, the change in the internal energy is zero and W = Q = 1.47× 103 J− 5.54×
102 J = 9.18× 102 J.

(d) The efficiency is ε = W/Qin = (9.18× 102 J)/(1.47× 103 J) = 0.624.

28. During the adiabatic processes (the vertical lines in Fig. 21-9) there is no heat transfer, so we only
consider the isothermal processes (the horizontal lines). We can interpret Eq. 21-2, Q = T∆S, as
represent the “area” (with appropriate ± sign) under the horizontal lines. Since a→ b is in the positive
direction while c → d is in the negative direction, then there is a partial cancellation in the “areas”
under the two lines, and the net contribution is the rectangular area between them. This can be seen
explicitly as follows:

Qnet = TH (Sb − Sa) + TL (Sd − Sc) = (TH − TL) (Smax − Smin)

where we have used the fact that Sb = Sc = Smax and Sa = Sd = Smin .

29. (a) The net work done is the rectangular “area” enclosed in the pV diagram:

W = (V − V0) (p− p0) = (2V0 − V0) (2p0 − p0) = V0p0 .

Inserting the values stated in the problem, we obtain W = 2.27 kJ.

(b) We compute the energy added as heat during the “heat-intake” portions of the cycle using Eq. 20-39,
Eq. 20-43, and Eq. 20-46:

Qabc = nCV (Tb − Ta) + nCp (Tc − Tb)

= n

(

3

2
R

)

Ta

(

Tb

Ta
− 1

)

+ n

(

5

2
R

)

Ta

(

Tc

Ta
− Tb

Ta

)

= nRTa

(

3

2

(

Tb

Ta
− 1

)

+
5

2

(

Tc

Ta
− Tb

Ta

))

= p0V0

(

3

2
(2 − 1) +

5

2
(4 − 2)

)

=
13

2
p0V0

where, to obtain the last line, the gas law in ratio form has been used (see Sample Problem 20-1).
Therefore, since W = p0V0, we have Qabc = 13W/2 = 14.8 kJ.
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(c) The efficiency is given by Eq. 21-9:

ε =
W

|QH|
=

2

13
= 0.154 = 15.4% .

(d) A Carnot engine operating between Tc and Ta has efficiency equal to

ε = 1− Ta

Tc
= 1− 1

4
= 0.750 = 75.0%

where the gas law in ratio form has been used. This is greater than our result in part (c), as
expected from the second law of thermodynamics.

30. All terms are assumed to be positive. The total work done by the two-stage system is W1 +W2 . The
heat-intake (from, say, consuming fuel) of the system is Q1 so we have (by Eq. 21-9 and Eq. 21-6)

ε =
W1 +W2

Q1
=

(Q1 −Q2) + (Q2 −Q3)

Q1
= 1− Q3

Q1
.

Now, Eq. 21-8 leads to
Q1

T1
=
Q2

T2
=
Q3

T3

where we assume Q2 is absorbed by the second stage at temperature T2 . This implies the efficiency can
be written

ε = 1− T3

T1
=
T1 − T3

T1
.

31. (a) If TH is the temperature of the high-temperature reservoir and TL is the temperature of the low-
temperature reservoir, then the maximum efficiency of the engine is

ε =
TH − TL

TH
=

(800 + 40)K

(800 + 273) K
= 0.78 .

(b) The efficiency is defined by ε = |W |/|QH|, where W is the work done by the engine and QH is the
heat input. W is positive. Over a complete cycle, QH = W + |QL|, where QL is the heat output, so
ε = W/(W + |QL|) and |QL| = W [(1/ε)− 1]. Now ε = (TH− TL)/TH, where TH is the temperature
of the high-temperature heat reservoir and TL is the temperature of the low-temperature reservoir.
Thus,

1

ε
− 1 =

TL

TH − TL
and |QL| =

WTL

TH − TL
.

The heat output is used to melt ice at temperature Ti = −40◦C. The ice must be brought to
0◦C, then melted, so |QL| = mc(Tf − Ti) + mLF , where m is the mass of ice melted, Tf is the
melting temperature (0◦ C), c is the specific heat of ice, and LF is the heat of fusion of ice. Thus,
WTL/(TH − TL) = mc(Tf − Ti) +mLF . We differentiate with respect to time and replace dW/dt
with P , the power output of the engine, and obtain PTL/(TH − TL) = (dm/dt)[c(Tf − Ti) + LF ].
Thus,

dm

dt
=

(

PTL

TH − TL

)(

1

c(Tf − Ti) + LF

)

.

Now, P = 100× 106 W, TL = 0 + 273 = 273 K, TH = 800 + 273 = 1073 K, Ti = −40 + 273 = 233 K,
Tf = 0 + 273 = 273 K, c = 2220 J/kg·K, and LF = 333× 103 J/kg, so

dm

dt
=

[

(100× 106 J/s)(273 K)

1073 K− 273 K

] [

1

(2220 J/kg ·K)(273 K− 233 K) + 333× 103 J/kg

]

= 82 kg/s .

We note that the engine is now operated between 0◦C and 800◦C.
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32. (a) Using Eq. 20-54 for process D → A gives

pDV
γ
D = pAV

γ
A

p0

32
(8V0)

γ
= p0V

γ
0

which leads to

8γ = 32 =⇒ γ =
5

3

which (see §20-9 and §20-11) implies the gas is monatomic.

(b) The input heat is that absorbed during process A→ B:

QH = nCp∆T = n

(

5

2
R

)

TA

(

TB

TA
− 1

)

= nRTA

(

5

2

)

(2− 1) = p0V0

(

5

2

)

and the exhaust heat is that liberated during process C → D:

QL = nCp∆T = n

(

5

2
R

)

TD

(

1− TL

TD

)

= nRTD

(

5

2

)

(1− 2) = − 1

4
p0V0

(

5

2

)

where in the last step we have used the fact that TD = 1
4TA (from the gas law in ratio form – see

Sample Problem 20-1). Therefore, Eq. 21-10 leads to

ε = 1−
∣

∣

∣

∣

QL

QH

∣

∣

∣

∣

= 1− 1

4
= 0.75 = 75% .

33. (a) The pressure at 2 is p2 = 3p1, as given in the problem statement. The volume is V2 = V1 = nRT1/p1.
The temperature is

T2 =
p2V2

nR
=

3p1V1

nR
= 3T1 .

The process 4→ 1 is adiabatic, so p4V
γ
4 = p1V

γ
1 and

p4 =

(

V1

V4

)γ

p1 =
p1

4
γ ,

since V4 = 4V1. The temperature at 4 is

T4 =
p4V4

nR
=

(

p1

4
γ

)(

4nRT1

p1

)(

1

nR

)

=
T1

4
γ−1 .

The process 2 → 3 is adiabatic, so p2V
γ
2 = p3V

γ
3 and p3 = (V2/V3)

γp2. Substitute V3 = 4V1,
V2 = V1, and p2 = 3p1 to obtain

p3 =
3p1

4
γ .

The temperature is

T3 =
p3V3

nR
=

(

1

nR

)(

3p1

4
γ

)(

4nRT1

p1

)

=
3T1

4
γ−1 ,

where V3 = V4 = 4V1 = 4nRT/p1 is used.

(b) The efficiency of the cycle is ε = W/Q12, where W is the total work done by the gas during the
cycle and Q12 is the energy added as heat during the 1→ 2 portion of the cycle, the only portion
in which energy is added as heat. The work done during the portion of the cycle from 2 to 3 is
W23 =

∫

p dV . Substitute p = p2V
γ
2 /V

γ to obtain

W23 = p2V
γ
2

∫ V3

V2

V −γ dV =

(

p2V
γ
2

γ − 1

)

(

V 1−γ
2 − V 1−γ

3

)

.
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Substitute V2 = V1, V3 = 4V1, and p3 = 3p1 to obtain

W23 =

(

3p1V1

1− γ

)(

1− 1

4
γ−1

)

=

(

3nRT1

γ − 1

)(

1− 1

4
γ−1

)

.

Similarly, the work done during the portion of the cycle from 4 to 1 is

W41 =

(

p1V
γ
1

γ − 1

)

(

V 1−γ
4 − V 1−γ

1

)

= −
(

p1V1

γ − 1

)(

1− 1

4
γ−1

)

= −
(

nRT1

γ − 1

)(

1− 1

4
γ−1

)

.

No work is done during the 1 → 2 and 3 → 4 portions, so the total work done by the gas during
the cycle is

W = W23 +W41 =

(

2nRT1

γ − 1

)(

1− 1

4
γ−1

)

.

The energy added as heat is Q12 = nCV (T2 − T1) = nCV (3T1 − T1) = 2nCV T1, where CV is the
molar specific heat at constant volume. Now γ = Cp/CV = (CV + R)/CV = 1 + (R/CV ), so
CV = R/(γ − 1). Here Cp is the molar specific heat at constant pressure, which for an ideal gas is
Cp = CV +R. Thus, Q12 = 2nRT1/(γ − 1). The efficiency is

ε =
2nRT1

γ − 1

(

1− 1

4
γ−1

)

γ − 1

2nRT1
= 1− 1

4
γ−1 .

34. (a) We use Eq. 21-12,

K =
|QL|
|W | =

600

200
= 3 .

(b) Energy conservation for a refrigeration cycle requires |QL|+ |W | = |QH|, so that the result is 800 J.

35. A Carnot refrigerator working between a hot reservoir at temperature TH and a cold reservoir at tem-
perature TL has a coefficient of performance K that is given by K = TL/(TH− TL). For the refrigerator
of this problem, TH = 96◦ F = 309 K and TL = 70◦ F = 294 K, so K = (294 K)/(309 K− 294 K) = 19.6.
The coefficient of performance is the energy QL drawn from the cold reservoir as heat divided by the
work done: K = |QL|/|W |. Thus, |QL| = K|W | = (19.6)(1.0 J) = 20 J.

36. Eq. 21-8 still holds (particularly due to its use of absolute values), and energy conservation implies
|W |+QL = QH . Therefore, with TL = 268.15 K and TH = 290.15 K, we find

|QH| = |QL|
(

TH

TL

)

= (|QH| − |W |)
(

290.15

268.15

)

which (with |W | = 1.0 J) leads to

|QH| = |W |
(

1

1− 268.15
290.15

)

= 13 J .

37. The coefficient of performance for a refrigerator is given by K = |QL|/|W |, where QL is the energy
absorbed from the cold reservoir as heat and W is the work done during the refrigeration cycle, a
negative value. The first law of thermodynamics yields QH + QL −W = 0 for an integer number of
cycles. Here QH is the energy ejected to the hot reservoir as heat. Thus, QL = W −QH. QH is negative
and greater in magnitude than W , so |QL| = |QH| − |W |. Thus,

K =
|QH| − |W |
|W | .

The solution for |W | is |W | = |QH|/(K + 1). In one hour,

|W | = 7.54 MJ

3.8 + 1
= 1.57 MJ .

The rate at which work is done is (1.57× 106 J)/(3600 s) = 440 W.
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38. (a) Using Eq. 21-12 and Eq. 21-14, we obtain

|W | = |QL|
KC

= (1.0 J)

(

300 K− 280 K

280 K

)

= 0.071 J .

(b) A similar calculation (being sure to use absolute temperature) leads to 0.50 J in this case.

(c) with TL = 100 K, we obtain |W | = 2.0 J.

(d) Finally, with the low temperature reservoir at 50 K, an amount of work equal to |W | = 5.0 J is
required.

39. We are told K = 0.27KC where

KC =
TL

TH − TL
=

294 K

307 K− 294 K
= 23

where the Fahrenheit temperatures have been converted to Kelvins. Expressed on a per unit time basis,
Eq. 21-12 leads to

|W |
t

=

(

|QL|
t

)

K
=

4000 Btu/h

(0.27)(23)
= 643 Btu/h .

Appendix D indicates 1 But/h = 0.0003929 hp, so our result may be expressed as |W |/t = 0.25 hp.

40. The work done by the motor in t = 10.0 min is |W | = Pt = (200 W)(10.0 min)(60 s/min) = 1.20× 105 J.
The heat extracted is then

|QL| = K|W | = TL|W |
TH − TL

=
(270 K)

(

1.20× 105 J
)

300 K− 270 K
= 1.08× 106 J .

41. The efficiency of the engine is defined by ε = W/Q1 and is shown in the text to be ε = (T1 − T2)/T1,
so W/Q1 = (T1 − T2)/T1. The coefficient of performance of the refrigerator is defined by K = Q4/W
and is shown in the text to be K = T4/(T3 − T4), so Q4/W = T4/(T3 − T4). Now Q4 = Q3 −W , so
(Q3 −W )/W = T4/(T3 − T4). The work done by the engine is used to drive the refrigerator, so W is
the same for the two. Solve the engine equation for W and substitute the resulting expression into the
refrigerator equation. The engine equation yields W = (T1 − T2)Q1/T1 and the substitution yields

T4

T3 − T4
=
Q3

W
− 1 =

Q3T1

Q1(T1 − T2)
− 1 .

Solve for Q3/Q1:

Q3

Q1
=

(

T4

T3 − T4
+ 1

)(

T1 − T2

T1

)

=

(

T3

T3 − T4

)(

T1 − T2

T1

)

=
1− (T2/T1)

1− (T4/T3)
.

42. We need nine labels:

Label I for 8 molecules on side 1 and 0 on the side 2

Label II for 7 molecules on side 1 and 1 on the side 2

Label III for 6 molecules on side 1 and 2 on the side 2

Label IV for 5 molecules on side 1 and 3 on the side 2

Label V for 4 molecules on side 1 and 4 on the side 2

Label VI for 3 molecules on side 1 and 5 on the side 2

Label VII for 2 molecules on side 1 and 6 on the side 2

Label VIII for 1 molecules on side 1 and 7 on the side 2

Label IX for 0 molecules on side 1 and 8 on the side 2
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The multiplicity W is computing using Eq. 21-18. For example, the multiplicity for label IV is

W =
8!

(5!)(3!)
=

40320

(120)(6)
= 56

and the corresponding entropy is (using Eq. 21-19)

S = k lnW =
(

1.38× 10−23 J/K
)

ln(56) = 5.6× 10−23 J/K .

In this way, we generate the following table:

Label W S
I 1 0
II 8 2.9× 10−23 J/K
III 28 4.6× 10−23 J/K
IV 56 5.6× 10−23 J/K
V 70 5.9× 10−23 J/K
VI 56 5.6× 10−23 J/K
VII 28 4.6× 10−23 J/K
VIII 8 2.9× 10−23 J/K
IX 1 0

43. There are 2 possible choices for each molecules: it can either be in side 1 or in side 2 of the box. Since
there are a total of N independent molecules, the total number of available states of the N -particle
system is

Ntotal = 2× 2× 2× · · · × 2 = 2N .

For instance, in the solution of problem#42, above, there are a total of 28 = 256 states, as one can
readily verify. It is possible to check this with the textbook example, too, but it is important to realize
that there are three additional configurations beyond what are shown in Table 21-1: one with n1 = 0
and n2 = 6, another with n1 = 1 and n2 = 5, and so on. When all these are included, there are a total
of 26 = 64 microstates.

44. (a) We denote the configuration with n heads out of N trials as (n;N). We use Eq. 21-18:

W (25; 50) =
50!

(25!)(50− 25)!
= 1.26× 1014 .

(b) We use the result of problem#43: Ntotal = 250 = 1.13× 1015.

(c) The percentage of time in question is equal to the probability for the system to be in the central
configuration:

p(25; 50) =
W (25; 50)

250
=

1.26× 1014

1.13× 1015
= 11.1% .

(d) We use W (N/2, N) = N !/[(N/2)!]2, Ntotal = 2N and p(N/2;N) = W (N/2, N)/Ntotal. The results
are as follows: For N = 100, W (N/2, N) = 1.01×1029, Ntotal = 1.27×1030, and p(N/2;N) = 8.0%.

(e) Similarly, for N = 250, we obtain W (N/2, N) = 9.25× 1058, Ntotal = 1.61× 1060, and p(N/2;N) =
5.7%.

(f) As N increases the number of available microscopic states increase as 2N , so there are more states
to be occupied, leaving the probability less for the system to remain in its central configuration.

45. (a) Suppose there are nL molecules in the left third of the box, nC molecules in the center third, and
nR molecules in the right third. There are N ! arrangements of the N molecules, but nL! are simply
rearrangements of the nL molecules in the right third, nC ! are rearrangements of the nC molecules
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in the center third, and nR! are rearrangements of the nR molecules in the right third. These
rearrangements do not produce a new configuration. Thus, the multiplicity is

W =
N !

nL!nC !nR!
.

(b) If half the molecules are in the right half of the box and the other half are in the left half of the
box, then the multiplicity is

WB =
N !

(N/2)! (N/2)!
.

If one-third of the molecules are in each third of the box, then the multiplicity is

WA =
N !

(N/3)! (N/3)! (N/3)!
.

The ratio is
WA

WB
=

(N/2)! (N/2)!

(N/3)! (N/3)! (N/3)!
.

(c) For N = 100,
WA

WB
=

50! 50!

33! 33! 34!
= 4.16× 1016 .

46. The first law requires that QH = W +QL, while the second law requires that

ε =
W

QH
≤ 1− TL

TH
.

Thus, we see that the first law is violated in engine A; both laws are violated in B; the second law is
violated in C; and, neither of the laws is violated in D.

47. (a) We use ε = |W/QH| . The heat absorbed is

|QH| =
|W |
ε

=
8.2 kJ

0.25
= 33 kJ .

(b) The heat exhausted is then

|QL| = |QH| − |W | = 33 kJ− 8.2 kJ = 25 kJ .

(c) Now we have

|QH| =
|W |
ε

=
8.2 kJ

0.31
= 26 kJ

and |QC| = |QH| − |W | = 26 kJ− 8.2 kJ = 18 kJ .

48. We find the “percent error” in the use of Stirling’s approximation by computing

(N(lnN)−N)− ln(N !)

ln(N !)
=

(N(lnN)−N)

ln(N !)
− 1

which would be multiplied by 100% to be expressed as a percentage.

(a) For N = 50, the percent error is

50 ln(50)− 50

ln(50!)
− 1 =

145.6

ln(3.04× 1064)
− 1 =

145.6

148.5
− 1

which yields −1.9%, meaning Stirling’s approximation produces a value that is 1.9% lower than the
correct one.
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(b) For N = 100, this procedure gives the result −0.89%.

(c) And for N = 250, we obtain −0.32%.

(d) The trend is such that Stirling’s approximation becomes a better estimate of ln(N !) for larger values
of N .

49. (a) From problem#43, we have Ntotal = 2100 = 1.27× 1030 microstates.

(b) Using Eq. 21-18, we find

W

Ntotal
=

(

100!
(50!)(50!)

)

1.27× 1030
=

12611418068195524166851562157

158456325028528675187087900672

= 0.079589 ≈ 8.0% .

(c) Similarly, for n1 = 48 and n2 = 52 we obtain

W

Ntotal
=

(

100!
(48!)(52!)

)

1.27× 1030
=

23301639718762469237395420275

316912650057057350374175801344

= 0.073527 ≈ 7.4% .

(d) With n1 = 52 and n2 = 48, we obtain the same result as in part (c).

(e) For n1 = 40 and n2 = 60 we obtain

W

Ntotal
=

(

100!
(40!)(60!)

)

1.27× 1030
=

1718279268225351437658421215

158456325028528675187087900672

= 0.010844 ≈ 1.1% .

(f) Finally, for n1 = 30 and n2 = 70 we find

W

Ntotal
=

(

100!
(30!)(70!)

)

1.27× 1030
=

1835771238850684051497735

79228162514264337593543950336

= 0.00002317 ≈ 0.0023% .

50. (a) We use Eq. 21-14. For configuration A

WA =
N !

(N/2)!(N/2)!
=

50!

(25!)(25!)
= 1.26× 1014 .

(b) For configuration B

WB =
N !

(0.6N)!(0.4N)!
=

50!

[0.6(50)]![0.4(50)]!
= 4.71× 1013 .

(c) Since all microstates are equally probable,

f =
WB

WA
=

1265

3393
≈ 0.37 .

(d) We use these formulas for N = 100: WA = 1.01× 1029, WB = 1.37× 1028, and f ≈ 0.14.

(e) For N = 200 we have WA = 9.05× 1058, WB = 1.64× 1057, and f = 0.018.

(f) We see from the calculation above that f decreases as N increases, as expected.
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51. Since isothermal means constant temperature, then this would be a flat horizontal line on a T versus
S graph (with T being the vertical axis). Since this concerns an ideal gas (also see Figure 21-3) then
∆Eint = 0 (by Eq. 20-45), so this isothermal process would be a vertical line on an S versus Eint graph
(with Eint being the horizontal axis). When T = Ti Eq. 21-4 reduces to

S − Si = nR ln

(

V

Vi

)

which is shown in the graph below for n = 1 mol, V1 = 1 m3, and Si = 10 J/K (arbitrarily picked).

0

20

S

2 4 6 8 10V

52. The change in entropy for the ideal gas is found from Eq. 21-2, Eq. 20-14, and the first law of thermo-
dynamics (using the fact that ∆Eint = 0 for an ideal gas isothermal process).

∆S =
Q

T
=
W

T
=
nRT

T
ln

(

Vf

Vi

)

= nR ln 2 ,

which is independent of the temperature T of the reservoir. Thus the change in entropy of the reservoir,
∆S′ = −∆S = −nR ln 2, is also independent of T . Here we noticed that the net change in entropy for
the entire system (the ideal gas plus the reservoir) is ∆Stotal = ∆S + ∆S′ = 0 for a reversible process
so ∆S′ = −∆S.

53. (a) Starting from
∑

Q = 0 (for calorimetry problems) we can derive (when no phase changes are
involved)

Tf =
c1m1T1 + c2m2T2

c1m1 + c2m2
= 40.9◦C ,

which is equivalent to 314 K.

From Eq. 21-1, we have

∆Scopper =

∫ 314

353

cmdT

T
= (386)(0.6) ln

(

314

353

)

= −27.2 J/K .

(b) Also,

∆Swater =

∫ 314

283

cmdT

T
= (4190)(0.07) ln

(

314

283

)

= 30.4 J/K .

(c) The net result for the system is 30.3− 27.2 = 3.2 J/K. (Note: these calculations are fairly sensitive
to round-off errors. To arrive at this final answers, the value 273.15 was used to convert to Kelvins,
and all intermediate steps were retained to full calculator accuracy.)
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54. (a) Starting from
∑

Q = 0 (for calorimetry problems) we can derive (when no phase changes are
involved)

Tf =
c1m1T1 + c2m2T2

c1m1 + c2m2
= −44.2◦C ,

which is equivalent to 229 K.

(b) From Eq. 21-1, we have

∆Stungsten =

∫ 229

303

cmdT

T
= (134)(0.045) ln

(

229

303

)

= −1.69 J/K .

(c) Also,

∆Ssilver =

∫ 229

153

cmdT

T
= (236)(0.025) ln

(

229

153

)

= 2.37 J/K .

(d) The net result for the system is 2.37−1.69 = 0.68 J/K. (Note: these calculations are fairly sensitive
to round-off errors. To arrive at this final answers, the value 273.15 was used to convert to Kelvins,
and all intermediate steps were retained to full calculator accuracy.)

55. The Carnot efficiency (Eq. 21-11) depends linearly on TL so that we can take a derivative

ε = 1− TL

TH
=⇒ dε

dTL
= − 1

TH

and quickly get to the result. With dε→ ∆ε = 0.100 and TH = 400 K, we find dTL → ∆TL = −40 K.

56. (a) Processes 1 and 2 both require the input of heat, which is denoted QH. Noting that rotational
degrees of freedom are not involved, then, from the discussion in Chapter 20, CV = 3

2R, Cp = 5
2R,

and γ = 5
3 . We further note that since the working substance is an ideal gas, process 2 (being

isothermal) implies Q2 = W2 . Finally, we note that the volume ratio in process 2 is simply 8/3.
Therefore,

QH = Q1 +Q2 = nCV (T ′ − T ) + nRT ′ ln
8

3

which yields (for T = 300 K and T ′ = 800 K) the result QH = 25.5× 103 J.

(b) The net work is the net heat (Q1 + Q2 + Q3). We find Q3 from nCp (T − T ′) = −20.8 × 103 J.
Thus, W = 4.73× 103 J.

(c) Using Eq. 21-9, we find that the efficiency is

ε =
|W |
|QH|

=
4.73× 103

25.5× 103
= 0.185 .

57. The change in entropy in transferring a certain amount of heat Q from a heat reservoir at T1 to another
one at T2 is ∆S = ∆S1 + ∆S2 = Q(1/T2 − 1/T1).

(a) ∆S = (260 J)(1/100 K− 1/400 K) = 1.95 J.

(b) ∆S = (260 J)(1/200 K− 1/400 K) = 0.650 J.

(c) ∆S = (260 J)(1/300 K− 1/400 K) = 0.217 J.

(d) ∆S = (260 J)(1/360 K− 1/400 K) = 0.072 J.

(e) We see that as the temperature difference between the two reservoirs decreases, so does the change
in entropy.
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58. Since the volume of the monatomic ideal gas is kept constant it does not do any work in the heating
process. Therefore the heat Q it absorbs is equal to the change in its inertial energy: dQ = dE int =
3
2nRdT . Thus

∆S =

∫

dQ

T
=

∫ Tf

Ti

(3nR/2)dT

T
=

3

2
nR ln

(

Tf

Ti

)

=
3

2
(1.0 mol)

(

8.31
J

mol ·K

)

ln

(

400 K

300 K

)

= 3.59 J/K .

59. Now

dQ = nCpdT = n(CV +R)dT =

(

3

2
nR+ nR

)

dT =
5

2
nRdT ,

so we need to replace the factor 3/2 in the last problem by 5/2. The rest is the same. Thus the answer
now is

∆S =
5

2
nR ln

(

Tf

Ti

)

=
5

2
(1.00 mol)

(

8.31
J

mol ·K

)

ln

(

400 K

300 K

)

= 5.98 J/K .

60. (a) The ideal gas is diatomic, so f = 5 (see Table 20-3). Since this is an isobaric (constant pressure)
process, with no change in the number of moles, then the ideal gas in ratio form (see Sample
Problem 20-1) leads to

Vf

Vi
=
Tf

Ti
=

8

3
.

With CV = f
2R, Eq. 21-4 gives

∆Sgas = nR ln

(

8

3

)

+ n

(

5

2
R

)

ln

(

8

3

)

where n is the number of moles (25 mol), not to be confused with the number of reservoirs (also
denoted “n” in the later parts of this problem). Consequently, we obtain

∆Sgas =
7

2
(25 mol)

(

8.31
J

mol·K

)

ln

(

8

3

)

= 713 J/K .

Since Q = nCp∆T for this process, the entropy change of the reservoir (which transfers energy Q
to the gas, so it (the heat) is negative-valued in this context) is (using Eq. 21-2)

∆Sres =
−Q
T

= − n
(

7
2R
)

(800 K− 300 K)

800 K
= −454 J/K .

Therefore, ∆Ssystem = ∆Sgas + ∆Sres = 259 J/K.

(b) The change in entropy of the gas is the same regardless of the number of intermediate reservoirs,
so long as the beginning state and final state of the gas is unchanged. The difference (relative to
part (a)) is that the sum of these two reservoirs’ entropy changes is not equivalent to that of the
one reservoir in the previous part:

∆Sres1 + ∆Sres2 =
−Q1

T1
+
−Q2

T2

= − (25 mol)
(

7
2R
)

(550 K− 300 K)

550 K
− (25 mol)

(

7
2R
)

(800 K− 550 K)

800 K

= −(25 mol)

(

7

2
R

)

(250 K)

(

1

550 K
+

1

800 K

)

which yields −558 J/K for the total loss of entropy from the reservoirs. The entire system change
in entropy is therefore 713− 558 = 155 J/K.



573

(c) Towards the end of the calculation in part (b), a pattern emerges in the computation of the total
entropy loss from the original high-temperature reservoir plus the n intermediate reservoirs:

∆Sres total = −(25 mol)

(

7

2
R

)(

500 K

n+ 1

)

(

n+1
∑

reservoirs

1

T

)

where the temperature of a particular reservoir (the jth reservoir, where 1 ≤ j ≤ n + 1) is T =

300+
(

500
n+1

)

(in Kelvins). For n = 10, this leads to ∆Sres total = −680 J/K and therefore 713−680 =

33 J/K for the entire system (including the gas) entropy change.

(d) For n = 50, this leads to ∆Sres total = −705.82 J/K and therefore 713.19− 705.82 = 7.37 J/K for
the entire system (including the gas) entropy change.

(e) For n = 100, this leads to ∆Sres total = −709.45 J/K and therefore 713.19− 709.45 = 3.74 J/K for
the entire system (including the gas) entropy change.

61. (a) It is a reversible set of processes returning the system to its initial state; clearly, ∆Snet = 0.

(b) Process 1 is adiabatic and reversible (as opposed to, say, a free expansion) so that Eq. 21-1 applies
with dQ = 0 and yields ∆S1 = 0.

(c) Since the working substance is an ideal gas, then an isothermal process implies Q = W , which
further implies (regarding Eq. 21-1) dQ = p dV . Therefore,

∫

dQ

T
=

∫

p dV
(

pV
nR

) = nR

∫

dV

V

which leads to ∆S3 = nR ln 1
2 = −23.0 J/K.

(d) By part (a), ∆S1 + ∆S2 + ∆S3 = 0. Then, part (b) implies ∆S2 = −∆S3. Therefore, ∆S2 =
23.0 J/K.

62. A metric ton is 1000 kg, so that the heat generated by burning 380 metric tons during one hour is

(380000 kg)(28 MJ/kg) = 10.6× 106 MJ .

The work done in one hour is

W = (750 MJ/s)(3600 s) = 2.7× 106 MJ

where we use the fact that a Watt is a Joule-per-second. By Eq. 21-9, the efficiency is

ε =
2.7× 106 MJ

10.6× 106 MJ
= 0.253 = 25% .

63. We adapt the discussion of §21-7 to 3 and 5 particles (as opposed to the 6 particle situation treated in
that section).

(a) The least multiplicity configuration is when all the particles are in the same half of the box. In this
case, using Eq. 21-18, we have

W =
3!

3! 0!
= 1 .

(b) Similarly for box B, W = 5!/(5! 0!) = 1 in the “least” case.

(c) The most likely configuration in the 3 particle case is to have 2 on one side and 1 on the other.
Thus,

W =
3!

2! 1!
= 3 .
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(d) The most likely configuration in the 5 particle case is to have 3 on one side and 2 on the other.
Thus,

W =
5!

3! 2!
= 10 .

(e) We use Eq. 21-19 with our result in part (c) to obtain

S = k lnW =
(

1.38× 10−23
)

ln 3 = 1.5× 10−23 J/K .

(f) Similarly for the 5 particle case (using the result from part (d)), we find S = k ln 10 = 3.2 ×
10−23 J/K.

64. (a) The most obvious input-heat step is the constant-volume process. Since the gas is monatomic, we
know from Chapter 20 that CV = 3

2R. Therefore,

QV = nCV ∆T

= (1 mol)

(

3

2

)(

8.31
J

mol ·K

)

(600 K− 300 K)

= 3740 J .

Since the heat transfer during the isothermal step is positive, we may consider it also to be an
input-heat step. The isothermal Q is equal to the isothermal work (calculated in the next part)
because ∆Eint = 0 for an ideal gas isothermal process (see Eq. 20-45). Borrowing from the part (b)
computation, we have

Qisotherm = nRTH ln 2 = (1 mol)

(

8.31
J

mol ·K

)

(600 K) ln2 = 3456 J .

Therefore, QH = QV +Qisotherm = 7.2× 103 J.

(b) We consider the sum of works done during the processes (noting that no work is done during the
constant-volume step). Using Eq. 20-14 and Eq. 20-16, we have

W = nRTH ln

(

Vmax

Vmin

)

+ pmin (Vmin − Vmax)

where (by the gas law in ratio form, as illustrated in Sample Problem 20-1) the volume ratio is

Vmax

Vmin
=
TH

TL
=

600 K

300 K
= 2 .

Thus, the net work is

W = nRTH ln 2 + pminVmin

(

1− Vmax

Vmin

)

= nRTH ln 2 + nRTL(1 − 2)

= nR (TH ln 2− TL)

= (1 mol)

(

8.31
J

mol ·K

)

((600 K) ln2− (300 K))

= 9.6× 102 J .

(c) Eq. 21-9 gives

ε =
W

QH
= 0.134 ≈ 13% .
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65. First we show that
∫

dQ is path-dependent. To do this all we need is to show that
∫

dQ is different
for at least two separate paths, say path 1 and 2, as depicted in the figure below. We write

∫

dQ =
∫

pdV +
∫

nCV dT . The second term on the right,
∫

nCV dT , yields nCV ∆T upon integration and is
obviously path-independent. The first term,

∫

pdV , however, is different for the two paths. In fact
∫ f

i pdV along path 1 is greater than that along path 2, by the area of the shaded triangle enclosed by
the two paths. Therefore,

∫

dQ is indeed path-dependent.

f

2

2 a
i

1

V

p

Now we consider
∫

TdQ =
∫

pTdV +
∫

nCV TdT . Once again the second term on the right,
∫

nCV TdT ,
yields 1

2nCV ∆T 2 upon integration and is path-independent. The first term,
∫

pTdV , however, yields a
higher value along path 1 than path 2. To see that, note that

∫

2

pT dV =

∫

i→a

pT dV +

∫

a→f

pT dV =

∫

i→a

pT dV .

Now, if we compare the two integrals,
∫

1 pTdV and
∫

i→a pT dV , we realize that the average values of both
T and p along path 1 are greater than their respective corresponding values along the i→ a segment of
path 2. Hence, the integrand f(p, T ) = pT is always greater along path 1. Thus, the two integrals over
V , which have the same upper and lower limits, are not equal to each other:

∫

1

pT dV >

∫

i→a

pT dV =

∫

2

pT dV .

We see then that
∫

TdQ is greater along path 1 than path 2 and is therefore path-dependent. Similarly,
one can show that for

∫

dQ/T 2 =
∫

pdV/T 2 +
∫

nCV dT/T
2, the second term on the right is path-

independent, while for the first term

∫

pdV/T 2 = nR

∫

dV

TV
,

we have

nR

∫

2

dV

TV
= nR

∫

i→a

dV

TV
> nR

∫

1

dV

TV
,

since the average value of 1/T is greater along along the i → a segment of path 2 than on path 1.
Consequently,

∫

dQ/T 2 is less along path 1 than path 2 and is therefore path-dependent.

66. We consider a three-step reversible process as follows: the supercooled water drop (of mass m) starts
at state 1 (T1 = 268 K), moves on to state 2 (still in liquid form but at T2 = 273 K), freezes to
state 3 (T3 = T2), and then cools down to state 4 (in solid form, with T4 = T1). The change in
entropy for each of the stages is given as follows: ∆S12 = mcw ln(T2/T1), ∆S23 = −mLF/T2, and
∆S34 = mcI ln(T4/T3) = mcI ln(T1/T2) = −mcI ln(T2/T1). Thus the net entropy change for the water
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drop is

∆S = ∆S12 + ∆S23 + ∆S34 = m(cw − cI) ln

(

T2

T1

)

− mLF

T2

= (1.00 g)(4.19 J/g·K− 2.22 J/g·K) ln

(

273 K

268 K

)

− (1.00 g)(333 J/g)

273 K

= −1.18 J/K .

67. Eq. 21-8 gives
∣

∣

∣

∣

QH

QL

∣

∣

∣

∣

=
TH

TL
=

300 K

4.0 K
= 75 .

68. (a) Eq. 21-13 provides

KC =
|QL|

|QH| − |QL|
=⇒ |QH| = |QL|

(

1 +KC

KC

)

which yields |QH| = 49 kJ when KC = 5.7 and |QL| = 42 kJ.

(b) From §21-5 we obtain

|W | = |QH| − |QL| = 49.4 kJ− 42.0 kJ = 7.4 kJ

if we take the initial 42 kJ datum to be accurate to three figures. The given temperatures are not
used in the calculation; in fact, it is possible that the given room temperature value is not meant
to be the high temperature for the (reversed) Carnot cycle – since it does not lead to the given KC

using Eq. 21-14.

69. (a) Combining Eq. 21-9 with Eq. 21-11, we obtain

|W | = |QH|
(

1− TL

TH

)

= (500 J)

(

1− 260 K

320 K

)

= 94 J .

(b) Combining Eq. 21-12 with Eq. 21-14, we find

|W | = |QL|
(

TL

TH−TL

) =
1000 J

(

260 K
320K−260 K

) = 231 J .



Chapter 22

1. Eq. 22-1 gives Coulomb’s Law, F = k |q1||q2|
r2 , which we solve for the distance:

r =

√

k|q1||q2|
F

=

√

(8.99× 109 N·m2/C2) (26.0× 10−6 C) (47.0× 10−6 C)

5.70 N
= 1.39 m .

2. The magnitude of the mutual force of attraction at r = 0.120 m is

F = k
|q1||q2|
r2

=
(

8.99× 109
)

(

3.00× 10−6
) (

1.50× 10−6
)

0.1202
= 2.81 N .

3. (a) With a understood to mean the magnitude of acceleration, Newton’s second and third laws lead to

m2a2 = m1a1 =⇒ m2 =

(

6.3× 10−7 kg
) (

7.0 m/s2
)

9.0 m/s2
= 4.9 × 10−7 kg .

(b) The magnitude of the (only) force on particle 1 is

F = m1a1 = k
|q1||q2|
r2

=
(

8.99× 109
) |q|2

0.00322
.

Inserting the values for m1and a1 (see part (a)) we obtain |q| = 7.1× 10−11 C.

4. The fact that the spheres are identical allows us to conclude that when two spheres are in contact,
they share equal charge. Therefore, when a charged sphere (q) touches an uncharged one, they will
(fairly quickly) each attain half that charge (q/2). We start with spheres 1 and 2 each having charge
q and experiencing a mutual repulsive force F = kq2/r2. When the neutral sphere 3 touches sphere 1,
sphere 1’s charge decreases to q/2. Then sphere 3 (now carrying charge q/2) is brought into contact
with sphere 2, a total amount of q/2 + q becomes shared equally between them. Therefore, the charge
of sphere 3 is 3q/4 in the final situation. The repulsive force between spheres 1 and 2 is finally

F ′ = k

(

q
2

) (

3q
4

)

r2
=

3

8
k
q2

r2
=

3

8
F .

5. We put the origin of a coordinate system at the lower left corner of the square and take +x rightward
and +y upward. The force exerted by the charge +q on the charge +2q is

~F1 = k
q(2q)

a2
(−ĵ ) .

The force exerted by the charge −q on the +2q charge is directed along the diagonal of the square and
has magnitude

F2 = k
q(2q)

(a
√

2)2

577
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which becomes, upon finding its components (and using the fact that cos 45◦ = 1/
√

2),

~F2 = k
q(2q)

2
√

2 a2
ı̂ + k

q(2q)

2
√

2 a2
ĵ .

Finally, the force exerted by the charge −2q on +2q is

~F3 = k
(2q)(2q)

a2
ı̂ .

(a) Therefore, the horizontal component of the resultant force on +2q is

Fx = F1x + F2x + F3x = k
q2

a2

(

1√
2

+ 4

)

=
(

8.99× 109
)

(

1.0× 10−7
)2

0.0502

(

1√
2

+ 4

)

= 0.17 N .

(b) The vertical component of the net force is

Fy = F1y + F2y + F3y = k
q2

a2

(

−2 +
1√
2

)

= −0.046 N .

6. (a) The individual force magnitudes (acting on Q) are, by Eq. 22-1,

k
|q1|Q

(

−a− a
2

)2 = k
|q2|Q
(

a− a
2

)2

which leads to |q1| = 9 |q2|. Since Q is located between q1 and q2, we conclude q1 and q2 are
like-sign. Consequently, q1 = 9q2.

(b) Now we have

k
|q1|Q

(

−a− 3a
2

)2 = k
|q2|Q

(

a− 3a
2

)2

which yields |q1| = 25 |q2| . Now, Q is not located between q1 and q2, one of them must push and
the other must pull. Thus, they are unlike-sign, so q1 = −25q2.

7. We assume the spheres are far apart. Then the charge distribution on each of them is spherically
symmetric and Coulomb’s law can be used. Let q1 and q2 be the original charges. We choose the
coordinate system so the force on q2 is positive if it is repelled by q1. Then, the force on q2 is

Fa = − 1

4πε0

q1q2
r2

= −k q1q2
r2

where r = 0.500 m. The negative sign indicates that the spheres attract each other. After the wire is
connected, the spheres, being identical, acquire the same charge. Since charge is conserved, the total
charge is the same as it was originally. This means the charge on each sphere is (q1 + q2)/2. The force
is now one of repulsion and is given by

Fb =
1

4πε0

(

q1+q2

2

) (

q1+q2

2

)

r2
= k

(q1 + q2)
2

4r2
.

We solve the two force equations simultaneously for q1 and q2. The first gives the product

q1q2 = −r
2Fa

k
= − (0.500 m)2(0.108 N)

8.99× 109 N·m2/C2
= −3.00× 10−12 C2 ,
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and the second gives the sum

q1 + q2 = 2r

√

Fb

k
= 2(0.500 m)

√

0.0360 N

8.99× 109 N·m2/C2
= 2.00× 10−6 C

where we have taken the positive root (which amounts to assuming q1 + q2 ≥ 0). Thus, the product
result provides the relation

q2 =
−(3.00× 10−12 C2)

q1

which we substitute into the sum result, producing

q1 −
3.00× 10−12 C2

q1
= 2.00× 10−6 C .

Multiplying by q1 and rearranging, we obtain a quadratic equation

q21 − (2.00× 10−6 C)q1 − 3.00× 10−12 C2 = 0 .

The solutions are

q1 =
2.00× 10−6 C±

√

(−2.00× 10−6 C)2 − 4(−3.00× 10−12 C2)

2
.

If the positive sign is used, q1 = 3.00 × 10−6 C, and if the negative sign is used, q1 = −1.00 × 10−6 C.
Using q2 = (−3.00× 10−12)/q1 with q1 = 3.00× 10−6 C, we get q2 = −1.00× 10−6 C. If we instead work
with the q1 = −1.00 × 10−6 C root, then we find q2 = 3.00 × 10−6 C. Since the spheres are identical,
the solutions are essentially the same: one sphere originally had charge −1.00 × 10−6 C and the other
had charge +3.00 × 10−6 C. What if we had not made the assumption, above, that q1 + q2 ≥ 0? If
the signs of the charges were reversed (so q1 + q2 < 0), then the forces remain the same, so a charge of
+1.00× 10−6 C on one sphere and a charge of −3.00× 10−6 C on the other also satisfies the conditions
of the problem.

8. With rightwards positive, the net force on q3 is

k
q1q3
(2d)2

+ k
q2q3
d2

.

We note that each term exhibits the proper sign (positive for rightward, negative for leftward) for all
possible signs of the charges. For example, the first term (the force exerted on q3 by q1 ) is negative if
they are unlike charges, indicating that q3 is being pulled toward q1, and it is positive if they are like
charges (so q3 would be repelled from q1 ). Setting the net force equal to zero and canceling k, q3 and
d 2 leads to

q1
4

+ q2 = 0 =⇒ q1 = −4q2 .

9. (a) If the system of three charges is to be in equilibrium, the force on each charge must be zero. Let
the third charge be q0. It must lie between the other two or else the forces acting on it due to the
other charges would be in the same direction and q0 could not be in equilibrium. Suppose q0 is a
distance x from q, as shown on the diagram below. The force acting on q0 is then given by

F0 =
1

4πε0

(

qq0
x2
− 4qq0

(L− x)2
)

where the positive direction is rightward. We require F0 = 0 and solve for x. Canceling common
factors yields 1/x2 = 4/(L− x)2 and taking the square root yields 1/x = 2/(L− x). The solution
is x = L/3.
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• ••
q 4qq0

←− x −→←−− L− x −−→

The force on q is

Fq =
−1

4πε0

(

qq0
x2

+
4q2

L2

)

.

The signs are chosen so that a negative force value would cause q to move leftward. We require
Fq = 0 and solve for q0:

q0 = − 4qx2

L2
= − 4

9
q

where x = L/3 is used. We now examine the force on 4q:

F4q =
1

4πε0

(

4q2

L2
+

4qq0
(L− x)2

)

=
1

4πε0

(

4q2

L2
+

4(−4/9)q2

(4/9)L2

)

=
1

4πε0

(

4q2

L2
− 4q2

L2

)

which we see is zero. Thus, with q0 = −(4/9)q and x = L/3, all three charges are in equilibrium.

(b) If q0 moves toward q the force of attraction exerted by q is greater in magnitude than the force of
attraction exerted by 4q. This causes q0 to continue to move toward q and away from its initial
position. The equilibrium is unstable.

10. There is no equilibrium position for q3 between the two fixed charges, because it is being pulled by one
and pushed by the other (since q1 and q2 have different signs); in this region this means the two force
arrows on q3 are in the same direction and cannot cancel. It should also be clear that off-axis (with the
axis defined as that which passes through the two fixed charges) there are no equilibrium positions. On
the semi-infinite region of the axis which is nearest q2 and furthest from q1 an equilibrium position for
q3 cannot be found because |q1| < |q2| and the magnitude of force exerted by q2 is everywhere (in that
region) stronger than that exerted by q1 on q3 . Thus, we must look in the semi-infinite region of the
axis which is nearest q1 and furthest from q2 , where the net force on q3 has magnitude

∣

∣

∣

∣

k
|q1q3|
x2

− k |q2q3|
(d+ x)2

∣

∣

∣

∣

with d = 10 cm and x assumed positive. We set this equal to zero, as required by the problem, and
cancel k and q3 . Thus, we obtain

|q1|
x2
− |q2|

(d+ x)2
= 0 =⇒

(

d+ x

x

)2

=

∣

∣

∣

∣

q2
q1

∣

∣

∣

∣

= 3

which yields (after taking the square root)

d+ x

x
=
√

3 =⇒ x =
d√

3− 1
≈ 14 cm

for the distance between q3 and q1 , so x+ d (the distance between q2 and q3 ) is approximately 24 cm.

11. (a) The magnitudes of the gravitational and electrical forces must be the same:

1

4πε0

q2

r2
= G

mM

r2

where q is the charge on either body, r is the center-to-center separation of Earth and Moon, G is
the universal gravitational constant, M is the mass of Earth, and m is the mass of the Moon. We
solve for q:

q =
√

4πε0GmM .
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According to Appendix C of the text, M = 5.98 × 1024 kg, and m = 7.36 × 1022 kg, so (using
4πε0 = 1/k) the charge is

q =

√

(6.67× 10−11 N ·m2/kg
2
)(7.36× 1022 kg)(5.98× 1024 kg)

8.99× 109 N ·m2/C
2 = 5.7× 1013 C .

We note that the distance r cancels because both the electric and gravitational forces are propor-
tional to 1/r2.

(b) The charge on a hydrogen ion is e = 1.60× 10−19 C, so there must be

q

e
=

5.7× 1013 C

1.6× 10−19 C
= 3.6× 1032 ions .

Each ion has a mass of 1.67× 10−27 kg, so the total mass needed is

(3.6× 1032)(1.67× 10−27 kg) = 6.0× 105 kg .

12. (a) The distance between q1 and q2 is

r12 =
√

(x2 − x1)2 + (y2 − y1)2 =
√

(−0.020− 0.035)2 + (0.015− 0.005)2 = 0.0559 m .

The magnitude of the force exerted by q1 on q2 is

F21 = k
|q1q2|
r212

=

(

8.99× 109
) (

3.0× 10−6
) (

4.0× 10−6
)

0.05592
= 34.5 N .

The vector ~F21 is directed towards q1 and makes an angle θ with the +x axis, where

θ = tan−1

(

y2 − y1
x2 − x1

)

= tan−1

(

1.5− 0.5

−2.0− 3.5

)

= −10.3◦ .

(b) Let the third charge be located at (x3, y3), a distance r from q2. We note that q1, q2 and q3 must
be colinear; otherwise, an equilibrium position for any one of them would be impossible to find.
Furthermore, we cannot place q3 on the same side of q2 where we also find q1 , since in that region
both forces (exerted on q2 by q3 and q1 ) would be in the same direction (since q2 is attracted
to both of them). Thus, in terms of the angle found in part (a), we have x3 = x2 − r cos θ and
y3 = y2 − r sin θ (which means y3 > y2 since θ is negative). The magnitude of force exerted on q2
by q3 is F23 = k|q2q3|/r2, which must equal that of the force exerted on it by q1 (found in part (a)).
Therefore,

k
|q2q3|
r2

= k
|q1q2|
r212

=⇒ r = r12

√

q3
q1

= 0.0645 cm .

Consequently, x3 = x2−r cos θ = −2.0 cm−(6.45 cm) cos(−10.3◦) = −8.4 cm and y3 = y2−r sin θ =
1.5 cm− (6.45 cm) sin(−10.3◦) = 2.7 cm.

13. The magnitude of the force of either of the charges on the other is given by

F =
1

4πε0

q(Q− q)
r2

where r is the distance between the charges. We want the value of q that maximizes the function
f(q) = q(Q− q). Setting the derivative df/dq equal to zero leads to Q− 2q = 0, or q = Q/2.

14. (a) We choose the coordinate axes as shown in the diagram below. For ease of presentation (of the
computations below) we assume Q > 0 and q < 0 (although the final result does not depend on
this particular choice). The repulsive force between the diagonally opposite Q’s is along our (tilted)
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x axis. The attractive force between each pair of Q and q is along the sides (of length a). In our
drawing, the distance between the center to the corner is d, where d = a/

√
2, and the diagonal

itself is therefore of length 2d = a
√

2.
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Since the angle between each attractive force and the x axis is 45◦ (note: cos 45◦ = 1/
√

2), then the
net force on Q is

Fx =
1

4πε0

(

(Q)(Q)

(2d)2
− 2

(|q|) (Q)

a2
cos 45◦

)

=
1

4πε0

(

Q2

2a2
− 2
|q| ·Q
a2

1√
2

)

which (upon requiring Fx = 0) leads to |q| = Q/2
√

2 or q = − Q

2
√

2
.

(b) The net force on q, examined along the y axis is

Fy =
1

4πε0

(

q2

(2d)2
− 2

(|q|) (Q)

a2
sin 45◦

)

=
1

4πε0

(

q2

2a2
− 2
|q| ·Q
a2

1√
2

)

which (if we demand Fy = 0) leads to q = −2Q
√

2 which is inconsistent with the result of part (a).
Thus, we are unable to construct an equilibrium configuration with this geometry, where the only
forces acting are given by Eq. 22-1.

15. (a) A force diagram for one of the balls is shown below. The force of gravity m~g acts downward,

the electrical force ~Fe of the other ball acts to the left, and the tension in the thread acts along
the thread, at the angle θ to the vertical. The ball is in equilibrium, so its acceleration is zero.
The y component of Newton’s second law yields T cos θ − mg = 0 and the x component yields
T sin θ − Fe = 0. We solve the first equation for T and obtain T = mg/ cos θ. We substitute the
result into the second to obtain mg tan θ − Fe = 0.
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Examination of the geometry of Figure 22-19 leads to

tan θ =
x/2

√

L2 − (x/2)2
.

If L is much larger than x (which is the case if θ is very small), we may neglect x/2 in the
denominator and write tan θ ≈ x/2L. This is equivalent to approximating tan θ by sin θ. The
magnitude of the electrical force of one ball on the other is

Fe =
q2

4πε0x2

by Eq. 22-4. When these two expressions are used in the equation mg tan θ = Fe, we obtain

mgx

2L
≈ 1

4πε0

q2

x2
=⇒ x ≈

(

q2L

2πε0mg

)1/3

.

(b) We solve x3 = 2kq2L/mg) for the charge (using Eq. 22-5):

q =

√

mgx3

2kL
=

√

(0.010 kg)(9.8 m/s2)(0.050 m)3

2(8.99× 109 N·m2/C2)(1.20 m)
= ± 2.4× 10−8 C .

16. If one of them is discharged, there would no electrostatic repulsion between the two balls and they would
both come to the position θ = 0, making contact with each other. A redistribution of the remaining
charge would then occur, with each of the balls getting q/2. Then they would again be separated due
to electrostatic repulsion, which results in the new equilibrium separation

x′ =

[

(q/2)2L

2πε0mg

]1/3

=

(

1

4

)1/3

x =

(

1

4

)1/3

(5.0 cm) = 3.1 cm .

17. (a) Since the rod is in equilibrium, the net force acting on it is zero, and the net torque about any
point is also zero. We write an expression for the net torque about the bearing, equate it to zero,
and solve for x. The charge Q on the left exerts an upward force of magnitude (1/4πε0)(qQ/h

2),
at a distance L/2 from the bearing. We take the torque to be negative. The attached weight exerts
a downward force of magnitude W , at a distance x − L/2 from the bearing. This torque is also
negative. The charge Q on the right exerts an upward force of magnitude (1/4πε0)(2qQ/h

2), at a
distance L/2 from the bearing. This torque is positive. The equation for rotational equilibrium is

−1

4πε0

qQ

h2

L

2
−W

(

x− L

2

)

+
1

4πε0

2qQ

h2

L

2
= 0 .

The solution for x is

x =
L

2

(

1 +
1

4πε0

qQ

h2W

)

.

(b) If N is the magnitude of the upward force exerted by the bearing, then Newton’s second law (with
zero acceleration) gives

W − 1

4πε0

qQ

h2
− 1

4πε0

2qQ

h2
−N = 0 .

We solve for h so that N = 0. The result is

h =

√

1

4πε0

3qQ

W
.
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18. The magnitude of the force is

F = k
e2

r2
=

(

8.99× 109 N·m2

C2

)

(1.60× 10−19 C)2

(2.82× 10−10 m)2
= 2.89× 10−9 N .

19. The mass of an electron is m = 9.11 × 10−31 kg, so the number of electrons in a collection with total
mass M = 75.0 kg is

N =
M

m
=

75.0 kg

9.11× 10−31 kg
= 8.23× 1031 electrons .

The total charge of the collection is

q = −Ne = −(8.23× 1031)(1.60× 10−19 C) = −1.32× 1013 C .

20. There are two protons (each with charge q = +e) in each molecule, so

Q = NAq = (6.02× 1023)(2)(1.60× 10−19 C) = 1.9× 105 C = 0.19 MC .

21. (a) The magnitude of the force between the (positive) ions is given by

F =
(q)(q)

4πε0r2
= k

q2

r2

where q is the charge on either of them and r is the distance between them. We solve for the charge:

q = r

√

F

k
= (5.0× 10−10 m)

√

3.7× 10−9 N

8.99× 109 N·m2/C2
= 3.2× 10−19 C .

(b) Let N be the number of electrons missing from each ion. Then, Ne = q, or

N =
q

e
=

3.2× 10−19 C

1.6× 10−19 C
= 2 .

22. (a) Eq. 22-1 gives

F =

(

8.99× 109 N·m2/C2
)

(

1.00× 10−16 C
)2

(1.00× 10−2 m)
2 = 8.99× 10−19 N .

(b) If n is the number of excess electrons (of charge −e each) on each drop then

n = −q
e

= −−1.00× 10−16 C

1.60× 10−19 C
= 625 .

23. Eq. 22-11 (in absolute value) gives

n =
|q|
e

=
1.0× 10−7 C

1.6× 10−19 C
= 6.3× 1011 .

24. With F = meg, Eq. 22-1 leads to

r2 =
ke2

meg
=

(

8.99× 109 N·m2/C
2
)

(

1.60× 10−19 C
)2

(9.11× 10−31 kg) (9.8 m/s2)

which leads to r = 5.1 m. The second electron should be below the first one, so that the repulsive force
(acting on the first) is in the direction opposite to the pull of Earth’s gravity.
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25. The unit Ampere is discussed in §22-4. The proton flux is given as 1500 protons per square meter
per second, where each proton provides a charge of q = +e. The current through the spherical area
4πR2 = 4π(6.37× 106 m)2 = 5.1× 1014 m2 would be

i =
(

5.1× 1014 m2
)

(

1500
protons

s ·m2

)

(

1.6× 10−19 C/proton
)

= 0.122 A .

26. The volume of 250 cm3 corresponds to a mass of 250 g since the density of water is 1.0 g/cm3. This mass
corresponds to 250/18 = 14 moles since the molar mass of water is 18. There are ten protons (each with
charge q = +e) in each molecule of H2O, so

Q = 14NAq = 14(6.02× 1023)(10)(1.60× 10−19 C) = 1.3× 107 C = 13 MC .

27. (a) Every cesium ion at a corner of the cube exerts a force of the same magnitude on the chlorine ion at
the cube center. Each force is a force of attraction and is directed toward the cesium ion that exerts
it, along the body diagonal of the cube. We can pair every cesium ion with another, diametrically
positioned at the opposite corner of the cube. Since the two ions in such a pair exert forces that
have the same magnitude but are oppositely directed, the two forces sum to zero and, since every
cesium ion can be paired in this way, the total force on the chlorine ion is zero.

(b) Rather than remove a cesium ion, we superpose charge −e at the position of one cesium ion. This
neutralizes the ion, and as far as the electrical force on the chlorine ion is concerned, it is equivalent
to removing the ion. The forces of the eight cesium ions at the cube corners sum to zero, so the
only force on the chlorine ion is the force of the added charge.

The length of a body diagonal of a cube is
√

3a, where a is the length of a cube edge. Thus, the
distance from the center of the cube to a corner is d = (

√
3/2)a. The force has magnitude

F = k
e2

d 2
=

ke2

(3/4)a2
=

(8.99× 109 N·m2/C2)(1.60× 10−19 C)2

(3/4)(0.40× 10−9 m)2
= 1.9× 10−9 N .

Since both the added charge and the chlorine ion are negative, the force is one of repulsion. The
chlorine ion is pushed away from the site of the missing cesium ion.

28. If the relative difference between the proton and electron charges (in absolute value) were

qp − |qe|
e

= 0.0000010

then the actual difference would be

qp − |qe| = 1.6× 10−25 C .

Amplified by a factor of 29 × 3 × 1022 as indicated in the problem, this amounts to a deviation from
perfect neutrality of

∆q =
(

29× 3× 1022
) (

1.6× 10−25 C
)

= 0.14 C

in a copper penny. Two such pennies, at r = 1.0 m, would therefore experience a very large force.
Eq. 22-1 gives

F = k
(∆q)2

r2
= 1.7× 108 N .

29. None of the reactions given include a beta decay, so the number of protons, the number of neutrons,
and the number of electrons are each conserved. Atomic numbers (numbers of protons and numbers of
electrons) and molar masses (combined numbers of protons and neutrons) can be found in Appendix F
of the text.
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(a) 1H has 1 proton, 1 electron, and 0 neutrons and 9Be has 4 protons, 4 electrons, and 9 − 4 = 5
neutrons, so X has 1 + 4 = 5 protons, 1 + 4 = 5 electrons, and 0 + 5− 1 = 4 neutrons. One of the
neutrons is freed in the reaction. X must be boron with a molar mass of 5 + 4 = 9 g/mol: 9B.

(b) 12C has 6 protons, 6 electrons, and 12 − 6 = 6 neutrons and 1H has 1 proton, 1 electron, and 0
neutrons, so X has 6 + 1 = 7 protons, 6 + 1 = 7 electrons, and 6 + 0 = 6 neutrons. It must be
nitrogen with a molar mass of 7 + 6 = 13 g/mol: 13N.

(c) 15N has 7 protons, 7 electrons, and 15−7 = 8 neutrons; 1H has 1 proton, 1 electron, and 0 neutrons;
and 4He has 2 protons, 2 electrons, and 4 − 2 = 2 neutrons; so X has 7 + 1 − 2 = 6 protons, 6
electrons, and 8 + 0− 2 = 6 neutrons. It must be carbon with a molar mass of 6 + 6 = 12: 12C.

30. (a) The two charges are q = αQ (where α is a pure number presumably less than 1 and greater than
zero) and Q− q = (1 − α)Q. Thus, Eq. 22-4 gives

F =
1

4πε0

(αQ)((1 − α)Q)

d 2
=
Q2α(1 − α)

4πε0 d 2
.

(b) The graph below, of F versus α, has been scaled so that the maximum is 1. In actuality, the
maximum value of the force is Fmax = Q2/16πε0 d

2.

0

1

Force

1alpha

(c) It is clear that α = 1
2 gives the maximum value of F .

(d) Seeking the half-height points on the graph is difficult without grid lines or some of the special
tracing features found in a variety of modern calculators. It is not difficult to algebraically solve
for the half-height points (this involves the use of the quadratic formula). The results are

α1 =
1

2

(

1− 1√
2

)

≈ 0.15 and

α2 =
1

2

(

1 +
1√
2

)

≈ 0.85 .

31. (a) Eq. 22-11 (in absolute value) gives

n =
|q|
e

=
2.00× 10−6 C

1.60× 10−19 C
= 1.25× 1013 electrons .

(b) Since you have the excess electrons (and electrons are lighter and more mobile than protons) then
the electrons “leap” from you to the faucet instead of protons moving from the faucet to you (in
the process of neutralizing your body).

(c) Unlike charges attract, and the faucet (which is grounded and is able to gain or lose any number
of electrons due to its contact with Earth’s large reservoir of mobile charges) becomes positively
charged, especially in the region closest to your (negatively charged) hand, just before the spark.



587

(d) The cat is positively charged (before the spark), and by the reasoning given in part (b) the flow of
charge (electrons) is from the faucet to the cat.

(e) If we think of the nose as a conducting sphere, then the side of the sphere closest to the fur is of
one sign (of charge) and the side furthest from the fur is of the opposite sign (which, additionally,
is oppositely charged from your bare hand which had stroked the cat’s fur). The charges in your
hand and those of the furthest side of the “sphere” therefore attract each other, and when close
enough, manage to neutralize (due to the “jump” made by the electrons) in a painful spark.

32. (a) Using Coulomb’s law, we obtain

F =
q1q2

4πε0r2
=
kq2

r2
=

(

8.99× 109 N·m2

C2

)

(1.00 C)2

(1.00 m)2
= 8.99× 109 N .

(b) If r = 1000 m, then

F =
q1q2

4πε0r2
=
kq2

r2
=

(

8.99× 109 N·m2

C2

)

(1.00 C)2

(1.00× 103 m)2
= 8.99× 103 N .

33. The unit Ampere is discussed in §22-4. Using i for current, the charge transferred is

q = it =
(

2.5× 104 A
) (

20× 10−6 s
)

= 0.50 C .

34. Let the two charges be q1 and q2 . Then q1 + q2 = Q = 5.0× 10−5 C. We use Eq. 22-1:

1.0 N =

(

8.99× 109 N·m2

C2

)

q1q2

(2.0 m)2
.

We substitute q2 = Q− q1 and solve for q1 using the quadratic formula. The two roots obtained are the
values of q1 and q2 , since it does not matter which is which. We get 1.2× 10−5 C and 3.8× 10−5 C.

35. (a) Eq. 22-1 gives

F12 = k
q1q2
d 2

=

(

8.99× 109 N ·m2

C2

)

(

20.0× 10−6 C
)2

(1.50 m)2
= 1.60 N .

(b) A force diagram is shown as well as our choice of y axis (the dashed line).
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The y axis is meant to bisect the line between q2 and q3 in order to make use of the symmetry in
the problem (equilateral triangle of side length d, equal-magnitude charges q1 = q2 = q3 = q). We
see that the resultant force is along this symmetry axis, and we obtain

|Fy| = 2

(

k
q2

d 2

)

cos 30◦ = 2.77 N .

36. (a) Since qA = −2Q and qC = +8Q, Eq. 22-4 leads to

∣

∣

∣

~FAC

∣

∣

∣ =
|(−2Q)(+8Q)|

4πǫ0 d 2
=

4Q2

πǫ0 d 2
.

(b) After making contact with each other, both A and B have a charge of

(−2Q+ (−4Q)

2

)

= −3Q .

When B is grounded its charge is zero. After making contact with C, which has a charge of +8Q, B
acquires a charge of [0+(−8Q)]/2 = −4Q, which charge C has as well. Finally, we have QA = −3Q
and QB = QC = −4Q. Therefore,

∣

∣

∣

~FAC

∣

∣

∣ =
|(−3Q)(−4Q)|

4πǫ0 d 2
=

3Q2

πǫ0 d 2
.

(c) We also obtain
∣

∣

∣

~FBC

∣

∣

∣
=
|(−4Q)(−4Q)|

4πǫ0 d 2
=

4Q2

πǫ0 d 2
.

37. The net charge carried by John whose mass is m is roughly

q = (0.0001)
mNAZe

M

= (0.0001)
(90 kg)(6.02× 1023 molecules/mol)(18 electron proton pairs/molecule)

(

1.6× 10−19 C
)

0.018 kg/mol

= 8.7× 105 C ,

and the net charge carried by Mary is half of that. So the electrostatic force between them is estimated
to be

F ≈ k q(q/2)

d 2
=

(

8.99× 109 N ·m2

C2

)

(8.7× 105 C)2

2(30 m)2
≈ 4× 1018 N .

38. Letting kq2/r2 = mg, we get

r = q

√

k

mg
=
(

1.60× 10−19 C
)

√

8.99× 109 N·m2

C2

(1.67× 10−27 kg) (9.8 m/s2)
= 0.119 m .

39. Coulomb’s law gives

F =
|q| · |q|
4πε0r2

=
k(e/3)2

r2
=

(

8.99× 109 N·m2

C2

)

(1.60× 10−19 C)2

9(2.6× 10−15 m)2
= 3.8 N .

40. We are concerned with the charges in the nucleus (not the “orbiting” electrons, if there are any). The
nucleus of Helium has 2 protons and that of Thorium has 90.



589

(a) Eq. 22-1 gives

F = k
q2

r2
=

(

8.99× 109 N·m2

C2

)

(

2(1.60× 10−19 C)
) (

90(1.60× 10−19 C)
)

(9.0× 10−15 m)2
= 5.1× 102 N .

(b) Estimating the helium nucleus mass as that of 4 protons (actually, that of 2 protons and 2 neutrons,
but the neutrons have approximately the same mass), Newton’s second law leads to

a =
F

m
=

5.1× 102 N

4(1.67× 10−27 kg)
= 7.7× 1028 m/s2 .

41. Charge q1 = −80×10−6 C is at the origin, and charge q2 = +40×10−6 C is at x = 0.20 m. The force on
q3 = +20× 10−6 C is due to the attractive and repulsive forces from q1 and q2, respectively. In symbols,
~F3 net = ~F3 1 + ~F3 2, where

|~F3 1| = k
q3 |q1|
r23 1

and |~F3 2| = k
q3 q2
r23 2

.

(a) In this case r3 1 = 0.40 m and r3 2 = 0.20 m, with ~F3 1 directed towards −x and ~F3 2 directed in the

+x direction. Using the value of k in Eq. 22-5, we obtain ~F3 net = 89.9 ≈ 90 N in the +x direction.

(b) In this case r3 1 = 0.80 m and r3 2 = 0.60 m, with ~F3 1 directed towards −x and ~F3 2 towards +x.

Now we obtain ~F3 net = 2.5 N in the −x direction.

(c) Between the locations treated in parts (a) and (b), there must be one where ~F3 net = 0. Writing

r3 1 = x and r3 2 = x − 0.20 m, we equate |~F3 1| and |~F3 2|, and after canceling common factors,
arrive at

|q1|
x2

=
q2

(x− 0.2)
2 .

This can be further simplified to

(x− 0.2)
2

x2
=

q2
|q1|

=
1

2
.

Taking the (positive) square root and solving, we obtain x = 0.68 m. If one takes the negative root
and ‘solves’, one finds the location where the net force would be zero if q1 and q2 were of like sign
(which is not the case here).

42. (a) Charge Q1 = +80× 10−9 C is on the y axis at y = 0.003 m, and charge Q2 = +80× 10−9 C is on
the y axis at y = −0.003 m. The force on particle 3 (which has a charge of q = +18× 10−9 C) is

due to the vector sum of the repulsive forces from Q1 and Q2. In symbols, ~F3 1 + ~F3 2 = ~F3 net ,
where

|~F3 1| = k
q3 |q1|
r 2
3 1

and |~F3 2| = k
q3 q2
r 2
3 2

.

Using the Pythagorean theorem, we have r3 1 = r3 2 = 0.005 m. In magnitude-angle notation
(particularly convenient if one uses a vector capable calculator in polar mode), the indicated vector
addition becomes

(0.518 6 − 37◦) + (0.518 6 37◦) = (0.829 6 0◦) .

Therefore, the net force is 0.829 N in the +x direction.

(b) Switching the sign of Q2 amounts to reversing the direction of its force on q. Consequently, we have

(0.518 6 − 37◦) + (0.518 6 − 143◦) = (0.621 6 − 90◦) .

Therefore, the net force is 0.621 N in the −y direction.
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43. (a) For the net force to be in the +x direction, the y components of the individual forces must cancel.
The angle of the force exerted by the q1 = 40 µC charge on q = 20 µC is 45◦, and the angle of force
exerted on q by Q is at −θ where

θ = tan−1

(

2.0

3.0

)

= 33.7◦ .

Therefore, cancellation of y components requires

k
q1 q

(

0.02
√

2
)2 sin 45◦ = k

|Q| q
(√

0.032 + 0.022
)2 sin θ

from which we obtain |Q| = 82.9 µC. Charge Q is “pulling” on q, so (since q > 0) we conclude
Q = −82.9 µC.

(b) Now, we require that the x components cancel, and we note that in this case, the angle of force on
q exerted by Q is +θ (it is repulsive, and Q is positive-valued). Therefore,

k
q1 q

(

0.02
√

2
)2 cos 45◦ = k

Q q
(√

0.032 + 0.022
)2 cos θ

from which we obtain Q = 55.2 µC.

44. We are looking for a charge q which, when placed at the origin, experiences ~Fnet = 0, where

~Fnet = ~F1 + ~F2 + ~F3 .

The magnitude of these individual forces are given by Coulomb’s law, Eq. 22-1, and without loss of
generality we assume q > 0. The charges q1 (+6 µC), q2 (−4 µC), and q3 (unknown), are located on

the +x axis, so that we know ~F1 points towards −x, ~F2 points towards +x, and ~F3 points towards −x
if q3 > 0 and points towards +x if q3 < 0. Therefore, with r1 = 8 m, r2 = 16 m and r3 = 24 m, we have

0 = −k q1 q
r21

+ k
|q2| q
r22
− k q3 q

r23
.

Simplifying, this becomes

0 = − 6

82
+

4

162
− q3

242

where q3 is now understood to be in µC. Thus, we obtain q3 = −45 µC.

45. The magnitude of the net force on the q = 42× 10−6 C charge is

k
q1 q

0.282
+ k
|q2| q
0.442

where q1 = 30 × 10−9 C and |q2| = 40 × 10−9 C. This yields 0.22 N. Using Newton’s second law, we
obtain

m =
F

a
=

0.22 N

100× 103 m/s2
= 2.2× 10−6 kg .

46. The charge dq within a thin shell of thickness dr is ρAdr where A = 4πr2. Thus, with ρ = b/r, we have

q =

∫

dq = 4πb

∫ r2

r1

r dr = 2πb
(

r22 − r21
)

.

With b = 3.0µC/m2, r2 = 0.06 m and r1 = 0.04 m, we obtain q = 0.038 µC.
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47. The charge dq within a thin section of the rod (of thickness dx) is ρAdx where A = 4.00× 10−4 m2 and
ρ is the charge per unit volume. The number of (excess) electrons in the rod (of length L = 2.00 m) is
N = q/(−e) where e is given in Eq. 22-14.

(a) In the case where ρ = −4.00× 10−6 C/m3, we have

N =
q

−e =
ρA

−e

∫ L

0

dx =
|ρ|AL
e

which yields N = 2.00× 1010.

(b) With ρ = bx2 (b = −2.00× 10−6 C/m5) we obtain

N =
bA

−e

∫ L

0

x2 dx =
|b|AL3

3 e
= 1.33× 1010 .

48. When sphere C touches sphere A, they divide up their total charge (Q/2 plus Q) equally between them.
Thus, sphere A now has charge 3Q/4, and the magnitude of the force of attraction between A and B
becomes

F = k

(

3Q
4

)(

Q
4

)

d2
= 4.68× 10−19 N .

49. In experiment 1, sphere C first touches sphere A, and they divided up their total charge (Q/2 plus Q)
equally between them. Thus, sphere A and sphere C each acquired charge 3Q/4. Then, sphere C touches
B and those spheres split up their total charge (3Q/4 plus −Q/4) so that B ends up with charge equal
to Q/4. The force of repulsion between A and B is therefore

F1 = k

(

3Q
4

)(

Q
4

)

d2

at the end of experiment 1. Now, in experiment 2, sphere C first touches B which leaves each of them
with charge Q/8. When C next touches A, sphere A is left with charge 9Q/16. Consequently, the force
of repulsion between A and B is

F2 = k

(

9Q
16

)(

Q
8

)

d2

at the end of experiment 2. The ratio is

F2

F1
=

(

9
16

) (

1
8

)

(

3
4

) (

1
4

) = 0.375 .

50. Regarding the forces on q3 exerted by q1 and q2, one must “push” and the other must “pull” in order
that the net force is zero; hence, q1 and q2 have opposite signs. For individual forces to cancel, their
magnitudes must be equal:

k
|q1| |q3|
(3d)

2 = k
|q2| |q3|
(2d)

2

which simplifies to
|q1|
9

=
|q2|
4

.

Therefore, q1 = − 9
4q2.

51. The individual force magnitudes are found using Eq. 22-1, with SI units (so a = 0.02 m) and k as in
Eq. 22-5. We use magnitude-angle notation (convenient if ones uses a vector capable calculator in polar
mode), listing the forces due to +4.00q, +2.00q, and −2.00q charges:

(4.60× 10−24 6 180◦) + (2.30× 10−24 6 − 90◦) + (1.02× 10−24 6 − 145◦) = (6.16× 10−24 6 − 152◦)

Therefore, the net force has magnitude 6.16 × 10−24 N and is at an angle of −152◦ (or 208◦ measured
counterclockwise from the +x axis).
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Chapter 23

1. (a) We note that the electric field points leftward at both points. Using ~F = q0 ~E, and orienting our x
axis rightward (so ı̂ points right in the figure), we find

~F =
(

+1.6× 10−19 C
)

(

−40
N

C
ı̂

)

= −6.4× 10−18 N ı̂

which means the magnitude of the force on the proton is 6.4 × 10−18 N and its direction (−ı̂) is
leftward.

(b) As the discussion in §23-2 makes clear, the field strength is proportional to the “crowdedness” of
the field lines. It is seen that the lines are twice as crowded at A than at B, so we conclude that
EA = 2EB . Thus, EB = 20 N/C.

2. We note that the symbol q2 is used in the problem statement to mean the absolute value of the negative
charge which resides on the larger shell. The following sketch is for q1 = q2 .
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The following two sketches are for the cases q1 > q2 (left figure) and q1 < q2 (right figure).
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3. The diagram below is an edge view of the disk and shows the field lines above it. Near the disk, the
lines are perpendicular to the surface and since the disk is uniformly charged, the lines are uniformly
distributed over the surface. Far away from the disk, the lines are like those of a single point charge (the
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charge on the disk). Extended back to the disk (along the dotted lines of the diagram) they intersect at
the center of the disk.
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If the disk is positively charged, the lines are directed outward from the disk. If the disk is negatively
charged, they are directed inward toward the disk. A similar set of lines is associated with the region
below the disk.

4. We find the charge magnitude |q| from E = |q|/4πε0 r2:

q = 4πε0Er
2 =

(1.00 N/C)(1.00 m)2

8.99× 109 N·m2

C2

= 1.11× 10−10 C .

5. Since the magnitude of the electric field produced by a point charge q is given by E = |q|/4πε0r2, where
r is the distance from the charge to the point where the field has magnitude E, the magnitude of the
charge is

|q| = 4πε0r
2E =

(0.50 m)2(2.0 N/C)

8.99× 109 N·m2/C2
= 5.6× 10−11 C .

6. For concreteness, consider that charge 2 lies 0.15 m east of charge 1, and the point at which we are
asked to evaluate their net field is r = 0.075 m east of charge 1 and r = 0.075 m west of charge 2. The
values of charge are q1 = −q2 = 2.0× 10−7 C. The magnitudes and directions of the individual fields are
specified:

∣

∣

∣

~E1

∣

∣

∣
=

q1
4πε0 r2

= 3.2× 105 N/C and ~E1 points east

∣

∣

∣

~E2

∣

∣

∣
=
|q2|

4πε0 r2
= 3.2× 105 N/C and ~E2 points east

Since they point the same direction, the magnitude of the net field is the sum of their amplitudes,
∣

∣

∣

~Enet

∣

∣

∣ = 6.4× 105 N/C, and it points east (that is, towards the negative charge).

7. Since the charge is uniformly distributed throughout a sphere, the electric field at the surface is exactly
the same as it would be if the charge were all at the center. That is, the magnitude of the field is

E =
q

4πε0R2

where q is the magnitude of the total charge and R is the sphere radius. The magnitude of the total
charge is Ze, so

E =
Ze

4πε0R2
=

(8.99× 109 N ·m2/C2)(94)(1.60× 10−19 C)

(6.64× 10−15 m)2
= 3.07× 1021 N/C .

The field is normal to the surface and since the charge is positive, it points outward from the surface.

8. The individual magnitudes
∣

∣

∣

~E1

∣

∣

∣ and
∣

∣

∣

~E2

∣

∣

∣ are figured from Eq. 23-3, where the absolute value signs for

q are unnecessary since these charges are both positive. Whether we add the magnitudes or subtract
them depends on if ~E1 is in the same, or opposite, direction as ~E2 . At points to the left of q1 (along the
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−x axis) both fields point leftward, and at points right of q2 (at x > d) both fields point rightward; in

these regions the magnitude of the net field is the sum
∣

∣

∣

~E1

∣

∣

∣ +
∣

∣

∣

~E2

∣

∣

∣. In the region between the charges

(0 < x < d) ~E1 points rightward and ~E2 points leftward, so the net field in this range is ~Enet =
∣

∣

∣

~E1

∣

∣

∣−
∣

∣

∣

~E2

∣

∣

∣

in the ı̂ direction. Summarizing, we have

~Enet = ı̂
1

4πε0











− q1

x2 − q2

(d+|x|)2 for x < 0
q1

x2 − q2

(d−x)2 for 0 < x < d
q1

x2 + q2

(x−d)2 for d < x

.

We note that these can be written as a single expression applying to all three regions:

~Enet =
1

4πε0

(

q1x

|x|3 +
q2(x− d)
|x− d|3

)

ı̂ .

For −0.09 ≤ x ≤ 0.20 m with d = 0.10 m and charge values as specified in the problem, we find

–2e+07

2e+07

E

x

9. At points between the charges, the individual electric fields are in the same direction and do not cancel.
Charge q2 has a greater magnitude than charge q1, so a point of zero field must be closer to q1 than to
q2. It must be to the right of q1 on the diagram.

• • •
q2 q1

Pd

We put the origin at q2 and let x be the coordinate of P , the point where the field vanishes. Then, the
total electric field at P is given by

E =
1

4πε0

(

q2
x2
− q1

(x− d)2
)

where q1 and q2 are the magnitudes of the charges. If the field is to vanish,

q2
x2

=
q1

(x− d)2 .

We take the square root of both sides to obtain
√
q2/x =

√
q1/(x− d). The solution for x is

x =

( √
q2√

q2 −√q1

)

d
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=

( √
4.0q1√

4.0q1 −√q1

)

d

=

(

2.0

2.0− 1.0

)

d = 2.0d

= (2.0)(50 cm) = 100 cm .

The point is 50 cm to the right of q1.

10. The individual magnitudes
∣

∣

∣

~E1

∣

∣

∣ and
∣

∣

∣

~E2

∣

∣

∣ are figured from Eq. 23-3, where the absolute value signs for q2

are unnecessary since this charge is positive. Whether we add the magnitudes or subtract them depends
on if ~E1 is in the same, or opposite, direction as ~E2 . At points left of q1 (on the −x axis) the fields point

in opposite directions, but there is no possibility of cancellation (zero net field) since
∣

∣

∣

~E1

∣

∣

∣ is everywhere

bigger than
∣

∣

∣

~E2

∣

∣

∣ in this region. In the region between the charges (0 < x < d) both fields point leftward

and there is no possibility of cancellation. At points to the right of q2 (where x > d), ~E1 points leftward

and ~E2 points rightward so the net field in this range is

~Enet =
∣

∣

∣

~E2

∣

∣

∣
−
∣

∣

∣

~E1

∣

∣

∣
in the ı̂ direction.

Although |q1| > q2 there is the possibility of ~Enet = 0 since these points are closer to q2 than to q1 .
Thus, we look for the zero net field point in the x > d region:

∣

∣

∣

~E1

∣

∣

∣ =
∣

∣

∣

~E2

∣

∣

∣

1

4πε0

|q1|
x2

=
1

4πε0

q2
(x− d)2

which leads to
x− d
x

=

√

q2
|q1|

=

√

2

5
.

Thus, we obtain x = d

1−
√

2/5
≈ 2.7d. A sketch of the field lines is shown below.
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11. We place the origin of our coordinate system at point P and orient our y axis in the direction of the
q4 = −12q charge (passing through the q3 = +3q charge). The x axis is perpendicular to the y axis, and

thus passes through the identical q1 = q2 = +5q charges. The individual magnitudes
∣

∣

∣

~E1

∣

∣

∣
,
∣

∣

∣

~E2

∣

∣

∣
,
∣

∣

∣

~E3

∣

∣

∣
,

and
∣

∣

∣

~E4

∣

∣

∣ are figured from Eq. 23-3, where the absolute value signs for q1, q2, and q3 are unnecessary

since those charges are positive (assuming q > 0). We note that the contribution from q1 cancels that of

q2 (that is,
∣

∣

∣

~E1

∣

∣

∣ =
∣

∣

∣

~E2

∣

∣

∣), and the net field (if there is any) should be along the y axis, with magnitude

equal to

~Enet =
1

4πε0

( |q4|
(2d)2

− q3
d 2

)

ĵ =
1

4πε0

(

12q

4 d 2
− 3q

d 2

)

ĵ

which is seen to be zero. A rough sketch of the field lines is shown below:
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...........................................................................

12. By symmetry we see the contributions from the +q charges cancel each other, and we simply use Eq. 23-3
to compute magnitude of the field due to the +2q charge (this field points at 45◦, which is clear from
the figure in the textbook).

∣

∣

∣

~Enet

∣

∣

∣ =
1

4πε0

2q

r2

where r = a/
√

2. Thus, we obtain
∣

∣

∣

~Enet

∣

∣

∣ = q/πε0a
2.

13. We choose the coordinate axes as shown on the diagram below. At the center of the square, the electric
fields produced by the charges at the lower left and upper right corners are both along the x axis and
each points away from the center and toward the charge that produces it. Since each charge is a distance
d =
√

2a/2 = a/
√

2 away from the center, the net field due to these two charges is

Ex =
1

4πε0

(

2q

a2/2
− q

a2/2

)

=
1

4πε0

q

a2/2

=

(

8.99× 109 N·m2/C
2
)

(

1.0× 10−8 C
)

(0.050 m)2/2
= 7.19× 104 N/C .
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.............
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d

d

a

a

xy

−q

q −2q

2q

At the center of the square, the field produced by the charges at the upper left and lower right corners
are both along the y axis and each points away from the charge that produces it. The net field produced
at the center by these charges is

Ey =
1

4πε0

[

2q

a2/2
− q

a2/2

]

=
1

4πε0

q

a2/2
= 7.19× 104 N/C .

The magnitude of the field is

E =
√

E2
x + E2

y =
√

2(7.19× 104 N/C)2 = 1.02× 105 N/C

and the angle it makes with the x axis is

θ = tan−1 Ey

Ex
= tan−1(1) = 45◦ .

It is upward in the diagram, from the center of the square toward the center of the upper side.

14. Since both charges are positive (and aligned along the z axis) we have

∣

∣

∣

~Enet

∣

∣

∣ =
1

4πε0

[

q

(z − d/2)2
+

q

(z + d/2)2

]

.

For z ≫ d we have (z ± d/2)−2 ≈ z−2, so

∣

∣

∣

~Enet

∣

∣

∣
≈ 1

4πε0

( q

z2
+

q

z2

)

=
2q

4πε0z2
.

15. The magnitude of the dipole moment is given by p = qd, where q is the positive charge in the dipole and
d is the separation of the charges. For the dipole described in the problem, p = (1.60× 10−19 C)(4.30×
10−9 m) = 6.88× 10−28 C ·m. The dipole moment is a vector that points from the negative toward the
positive charge.

16. From the figure below it is clear that the net electric field at point P points in the −ĵ direction. Its
magnitude is

∣

∣

∣

~Enet

∣

∣

∣ = 2E1 sin θ = 2

[

k
q

(d/2)2 + r2

]

d/2
√

(d/2)2 + r2

= k
qd

[(d/2)2 + r2]3/2
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where we use k for 1/4πε0 for brevity. For r ≫ d, we write [(d/2)2 + r2]3/2 ≈ r3 so the expression above
reduces to

∣

∣

∣

~Enet

∣

∣

∣ ≈ k qd
r3

.

Since ~p = (qd)̂j,

~Enet ≈ −k
~p

r3
.

•

•

+q

−q

P

y

x

d/2

d/2

~Enet

.
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17. Think of the quadrupole as composed of two dipoles, each with dipole moment of magnitude p = qd.
The moments point in opposite directions and produce fields in opposite directions at points on the
quadrupole axis. Consider the point P on the axis, a distance z to the right of the quadrupole center and
take a rightward pointing field to be positive. Then, the field produced by the right dipole of the pair
is qd/2πε0(z − d/2)3 and the field produced by the left dipole is −qd/2πε0(z + d/2)3. Use the binomial
expansions (z − d/2)−3 ≈ z−3 − 3z−4(−d/2) and (z + d/2)−3 ≈ z−3 − 3z−4(d/2) to obtain

E =
qd

2πε0

[

1

z3
+

3d

2z4
− 1

z3
+

3d

2z4

]

=
6qd2

4πε0z4
.

Let Q = 2qd2. Then,

E =
3Q

4πε0z4
.

18. We use Eq. 23-3, assuming both charges are positive.

Eleft ring = Eright ring evaluated at P

q1R

4πε0 (R2 +R2)3/2
=

q2(2R)

4πε0 ((2R)2 +R2)3/2

Simplifying, we obtain

q1
q2

= 2

(

2

5

)3/2

≈ 0.51 .

19. The electric field at a point on the axis of a uniformly charged ring, a distance z from the ring center,
is given by

E =
qz

4πε0(z2 +R2)3/2

where q is the charge on the ring and R is the radius of the ring (see Eq. 23–16). For q positive, the field
points upward at points above the ring and downward at points below the ring. We take the positive
direction to be upward. Then, the force acting on an electron on the axis is

F = − eqz

4πε0(z2 +R2)3/2
.

For small amplitude oscillations z ≪ R and z can be neglected in the denominator. Thus,

F = − eqz

4πε0R3
.
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The force is a restoring force: it pulls the electron toward the equilibrium point z = 0. Furthermore, the
magnitude of the force is proportional to z, just as if the electron were attached to a spring with spring
constant k = eq/4πε0R

3. The electron moves in simple harmonic motion with an angular frequency
given by

ω =

√

k

m
=

√

eq

4πε0mR3

where m is the mass of the electron.

20. From symmetry, we see that the net field at P is twice the field caused by the upper semicircular charge
+q = λ · πR (and that it points downward). Adapting the steps leading to Eq. 23-21, we find

~Enet = 2
(

−ĵ
) λ

4πε0R

[

sin θ

]90◦

−90◦

= − q

ε0π2R2
ĵ .

21. Studying Sample Problem 23-3, we see that the field evaluated at the center of curvature due to a charged
distribution on a circular arc is given by

~E =
λ

4πε0r

[

sin θ

]θ/2

−θ/2

along the symmetry axis

where λ = q/rθ with θ in radians. In this problem, each charged quarter-circle produces a field of
magnitude

∣

∣

∣

~E
∣

∣

∣ =
|q|
rπ/2

1

4πε0r

[

sin θ

]π/4

−π/4

=
|q|

ε0π2r2
√

2
.

That produced by the positive quarter-circle points at −45◦, and that of the negative quarter-circle
points at +45◦. By symmetry, we conclude that their net field is horizontal (and rightward in the
textbook figure) with magnitude

Ex = 2

( |q|
ε0π2r2

√
2

)

cos 45◦ =
|q|

ε0π2r2
.

22. We find the maximum by differentiating Eq. 23-16 and setting the result equal to zero.

d

dz

(

qz

4πε0 (z2 +R2)
3/2

)

=
q

4πε0

R2 − 2z2

(z2 +R2)
5/2

= 0

which leads to z = R/
√

2.

23. (a) The linear charge density is the charge per unit length of rod. Since the charge is uniformly
distributed on the rod, λ = −q/L.

(b) We position the x axis along the rod with the origin at the left end of the rod, as shown in the
diagram. Let dx be an infinitesimal length of rod at x. The charge in this segment is dq = λdx.
The charge dq may be considered to be a point charge. The electric field it produces at point P
has only an x component and this component is given by

dEx =
1

4πε0

λdx

(L+ a− x)2 .

The total electric field produced at P by the whole rod is the integral

Ex =
λ

4πε0

∫ L

0

dx

(L+ a− x)2
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=
λ

4πε0

1

L+ a− x

∣

∣

∣

∣

∣

L

0

=
λ

4πε0

(

1

a
− 1

L+ a

)

=
λ

4πε0

L

a(L+ a)
.

When −q/L is substituted for λ the result is

Ex = − 1

4πε0

q

a(L+ a)
.

The negative sign indicates that the field is toward the rod.

dx

•

P

0 x L L + a

(c) If a is much larger than L, the quantity L + a in the denominator can be approximated by a and
the expression for the electric field becomes

Ex = − q

4πε0a2
.

This is the expression for the electric field of a point charge at the origin.

24. We assume q > 0. Using the notation λ = q/L we note that the (infinitesimal) charge on an element dx
of the rod contains charge dq = λdx. By symmetry, we conclude that all horizontal field components
(due to the dq’s) cancel and we need only “sum” (integrate) the vertical components. Symmetry also
allows us to integrate these contributions over only half the rod (0 ≤ x ≤ L/2) and then simply double

the result. In that regard we note that sin θ = y/r where r =
√

x2 + y2. Using Eq. 23-3 (with the 2 and
sin θ factors just discussed) we obtain

∣

∣

∣

~E
∣

∣

∣ = 2

∫ L/2

0

(

dq

4πε0r2

)

sin θ

=
2

4πε0

∫ L/2

0

(

λdx

x2 + y2

)

(

y
√

x2 + y2

)

=
λ y

2πε0

∫ L/2

0

dx

(x2 + y2)
3/2

=
(q/L)y

2πε0

[

x

y2
√

x2 + y2

]L/2

0

=
q

2πε0Ly

L/2
√

(L/2)2 + y2

=
q

2πε0 y

1
√

L2 + 4y2

where the integral may be evaluated by elementary means or looked up in Appendix E (item #19 in the
list of integrals).
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25. Consider an infinitesimal section of the rod of length dx, a distance x from the left end, as shown in the
diagram below. It contains charge dq = λdx and is a distance r from P . The magnitude of the field it
produces at P is given by

dE =
1

4πε0

λdx

r2
.

The x component is dEx = − 1

4πε0

λdx

r2
sin θ

and the y component is dEy = − 1

4πε0

λdx

r2
cos θ .

x

y
dqx

.
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.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

R r

θ

P•.............................................................................................................................
........
...............
.......d ~E

We use θ as the variable of integration and substitute r = R/ cos θ, x = R tan θ and dx = (R/ cos2 θ) dθ.
The limits of integration are 0 and π/2 rad. Thus,

Ex = − λ

4πε0R

∫ π/2

0

sin θ dθ =
λ

4πε0R
cos θ

∣

∣

π/2

0
= − λ

4πε0R

and

Ey = − λ

4πε0R

∫ π/2

0

cos θ dθ = − λ

4πε0R
sin θ

∣

∣

π/2

0
= − λ

4πε0R
.

We notice that Ex = Ey no matter what the value of R. Thus, ~E makes an angle of 45◦ with the rod
for all values of R.

26. From Eq. 23-26

E =
σ

2ε0

(

1− z√
z2 +R2

)

=
5.3× 10−6 C/m

2

2
(

8.85× 10−12 C2

N·m2

)

[

1− 12 cm
√

(12 cm)2 + (2.5 cm)2

]

= 6.3× 103 N/C .

27. At a point on the axis of a uniformly charged disk a distance z above the center of the disk, the magnitude
of the electric field is

E =
σ

2ε0

[

1− z√
z2 +R2

]

where R is the radius of the disk and σ is the surface charge density on the disk. See Eq. 23-26. The
magnitude of the field at the center of the disk (z = 0) is Ec = σ/2ε0. We want to solve for the value of
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z such that E/Ec = 1/2. This means

1− z√
z2 +R2

=
1

2
=⇒ z√

z2 +R2
=

1

2
.

Squaring both sides, then multiplying them by z2+R2, we obtain z2 = (z2/4)+(R2/4). Thus, z2 = R2/3
and z = R/

√
3.

28. Eq. 23-28 gives

~E =
~F

q
=

m~a

(−e) = −
(m

e

)

~a

using Newton’s second law. Therefore, with east being the ı̂ direction,

~E = −
(

9.11× 10−31 kg

1.60× 10−19 C

)

(

1.80× 109 m/s2 ı̂
)

= −0.0102 N/C ı̂

which means the field has a magnitude of 0.0102 N/C and is directed westward.

29. The magnitude of the force acting on the electron is F = eE, where E is the magnitude of the electric
field at its location. The acceleration of the electron is given by Newton’s second law:

a =
F

m
=
eE

m
=

(1.60× 10−19 C)(2.00× 104 N/C)

9.11× 10−31 kg
= 3.51× 1015 m/s

2
.

30. Vertical equilibrium of forces leads to the equality

q
∣

∣

∣

~E
∣

∣

∣ = mg =⇒
∣

∣

∣

~E
∣

∣

∣ =
mg

2e
.

Using the mass given in the problem, we obtain
∣

∣

∣

~E
∣

∣

∣
= 2.03 × 10−7 N/C. Since the force of gravity is

downward, then q ~E must point upward. Since q > 0 in this situation, this implies ~E must itself point
upward.

31. We combine Eq. 23-9 and Eq. 23-28 (in absolute values).

F = |q|E = |q|
(

p

2πε0z3

)

=
2ke p

z3

where we use Eq. 22-5 in the last step. Thus, we obtain

F =
2
(

8.99× 109 N·m2/C2
) (

1.60× 10−19 C
) (

3.6× 10−29 C·m
)

(25× 10−9 m)
3

which yields a force of magnitude 6.6 × 10−15 N. If the dipole is oriented such that ~p is in the +z
direction, then ~F points in the −z direction.

32. (a) Fe = Ee = (3.0× 106 N/C)(1.6× 10−19 C) = 4.8× 10−13 N.

(b) Fi = Eqion = Ee = 4.8× 10−13 N.

33. (a) The magnitude of the force on the particle is given by F = qE, where q is the magnitude of the
charge carried by the particle and E is the magnitude of the electric field at the location of the
particle. Thus,

E =
F

q
=

3.0× 10−6 N

2.0× 10−9 C
= 1.5× 103 N/C .

The force points downward and the charge is negative, so the field points upward.
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(b) The magnitude of the electrostatic force on a proton is

Fe = eE = (1.60× 10−19 C)(1.5× 103 N/C) = 2.4× 10−16 N .

A proton is positively charged, so the force is in the same direction as the field, upward.

(c) The magnitude of the gravitational force on the proton is

Fg = mg = (1.67× 10−27 kg)(9.8 m/s2) = 1.64× 10−26 N .

The force is downward.

(d) The ratio of the forces is
Fe

Fg
=

2.4× 10−16 N

1.64× 10−26 N
= 1.5× 1010 .

34. (a) Since ~E points down and we need an upward electric force (to cancel the downward pull of gravity),
then we require the charge of the sphere to be negative. The magnitude of the charge is found by
working with the absolute value of Eq. 23-28:

|q| = F

E
=
mg

E
=

4.4 N

150 N/C
= 0.029 C .

(b) The feasibility of this experiment may be studied by using Eq. 23-3 (using k for 1/4πε0 ).

E = k
|q|
r2

where ρsulfur

(

4

3
πr3
)

= msphere

Since the mass of the sphere is 4.4/9.8 ≈ 0.45 kg and the density of sulfur is about 2.1×103 kg/m3

(see Appendix F), then we obtain

r =

(

3msphere

4πρsulfur

)1/3

= 0.037 m =⇒ E = k
|q|
r2
≈ 2× 1011 N/C

which is much too large a field to maintain in air (see problem#32).

35. (a) The magnitude of the force acting on the proton is F = eE, where E is the magnitude of the electric
field. According to Newton’s second law, the acceleration of the proton is a = F/m = eE/m, where
m is the mass of the proton. Thus,

a =
(1.60× 10−19 C)(2.00× 104 N/C)

1.67× 10−27 kg
= 1.92× 1012 m/s

2
.

(b) We assume the proton starts from rest and use the kinematic equation v2 = v2
0 + 2ax (or else

x = 1
2at

2 and v = at) to show that

v =
√

2ax =
√

2(1.92× 1012 m/s2)(0.0100 m) = 1.96× 105 m/s .

36. (a) The initial direction of motion is taken to be the +x direction (this is also the direction of ~E). We

use v2
f − v2

i = 2a∆x with vf = 0 and ~a = ~F/m = −e ~E/me to solve for distance ∆x:

∆x =
−v2

i

2a
=
−mev

2
i

−2eE
=
−(9.11× 10−31 kg)(5.00× 106 m/s)2

−2(1.60× 10−19 C)(1.00× 103 N/C)
= 7.12× 10−2 m .

(b) Eq. 2-17 leads to

t =
∆x

vavg
=

2∆x

vi
=

2(7.12× 10−2 m)

5.00× 106 m/s
= 2.85× 10−8 s .
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(c) Using ∆v2 = 2a∆x with the new value of ∆x, we find

∆K

Ki
=

∆(1
2mev

2)
1
2mev2

i

=
∆v2

v2
i

=
2a∆x

v2
i

=
−2eE∆x

mev2
i

=
−2(1.60× 10−19 C)(1.00× 103 N/C)(8.00× 10−3 m)

(9.11× 10−31 kg)(5.00× 106 m/s)2
= −11.2% .

37. When the drop is in equilibrium, the force of gravity is balanced by the force of the electric field:
mg = qE, where m is the mass of the drop, q is the charge on the drop, and E is the magnitude of the
electric field. The mass of the drop is given by m = (4π/3)r3ρ, where r is its radius and ρ is its mass
density. Thus,

q =
mg

E
=

4πr3ρg

3E

=
4π(1.64× 10−6 m)3(851 kg/m3)(9.8 m/s2)

3(1.92× 105 N/C)
= 8.0× 10−19 C

and q/e = (8.0× 10−19 C)/(1.60× 10−19 C) = 5.

38. Our approach (based on Eq. 23-29) consists of several steps. The first is to find an approximate value of
e by taking differences between all the given data. The smallest difference is between the fifth and sixth
values: 18.08× 10−19 C − 16.48× 10−19 C = 1.60 × 10−19 C which we denote eapprox . The goal at this
point is to assign integers n using this approximate value of e:

datum 1
6.563× 10−19 C

eapprox
= 4.10 =⇒ n1 = 4

datum 2
8.204× 10−19 C

eapprox
= 5.13 =⇒ n2 = 5

datum 3
11.50× 10−19 C

eapprox
= 7.19 =⇒ n3 = 7

datum 4
13.13× 10−19 C

eapprox
= 8.21 =⇒ n4 = 8

datum 5
16.48× 10−19 C

eapprox
= 10.30 =⇒ n5 = 10

datum 6
18.08× 10−19 C

eapprox
= 11.30 =⇒ n6 = 11

datum 7
19.71× 10−19 C

eapprox
= 12.32 =⇒ n7 = 12

datum 8
22.89× 10−19 C

eapprox
= 14.31 =⇒ n8 = 14

datum 9
26.13× 10−19 C

eapprox
= 16.33 =⇒ n9 = 16

Next, we construct a new data set (e1, e2, e3 . . .) by dividing the given data by the respective exact
integers ni (for i = 1, 2, 3 . . .):

(e1, e2, e3 . . .) =

(

6.563× 10−19 C

n1
,
8.204× 10−19 C

n2
,
11.50× 10−19 C

n3
. . .

)

which gives (carrying a few more figures than are significant)
(

1.64075× 10−19 C, 1.6408× 10−19 C, 1.64286× 10−19 C . . .
)
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as the new data set (our experimental values for e). We compute the average and standard deviation of
this set, obtaining

eexptal = eavg ±∆e = (1.641 ± 0.004)× 10−19 C

which does not agree (to within one standard deviation) with the modern accepted value for e. The
lower bound on this spread is eavg −∆e = 1.637× 10−19 C which is still about 2% too high.

39. (a) We use ∆x = vavgt = vt/2:

v =
2∆x

t
=

2(2.0× 10−2 m)

1.5× 10−8 s
= 2.7× 106 m/s .

(b) We use ∆x = 1
2at

2 and E = F/e = ma/e:

E =
ma

e
=

2∆xm

et2
=

2(2.0× 10−2 m)(9.11× 10−31 kg)

(1.60× 10−19 C)(1.5× 10−8 s)2
= 1.0× 103 N/C .

40. We assume there are no forces or force-components along the x direction. We combine Eq. 23-28 with
Newton’s second law, then use Eq. 4-21 to determine time t followed by Eq. 4-23 to determine the final
velocity (with −g replaced by the ay of this problem); for these purposes, the velocity components given

in the problem statement are re-labeled as v0x and v0y respectively.

(a) We have ~a = q ~E
m = −

(

e
m

)

~E which leads to

~a = −
(

1.60× 10−19 C

9.11× 10−31 kg

)(

120
N

C

)

ĵ = −2.1× 1013 m/s2 ĵ .

(b) Since vx = v0x in this problem (that is, ax = 0), we obtain

t =
∆x

v0x
=

0.020 m

1.5× 105 m/s
= 1.3× 10−7 s

vy = v0y + ayt = 3.0× 103 m/s +
(

−2.1× 1013 m/s2
) (

1.3× 10−7 s
)

which leads to vy = −2.8× 106 m/s. Therefore, in unit vector notation (with SI units understood)
the final velocity is

~v = 1.5× 105 ı̂− 2.8× 106 ĵ .

41. We take the positive direction to be to the right in the figure. The acceleration of the proton is ap =
eE/mp and the acceleration of the electron is ae = −eE/me, where E is the magnitude of the electric
field, mp is the mass of the proton, and me is the mass of the electron. We take the origin to be at
the initial position of the proton. Then, the coordinate of the proton at time t is x = 1

2apt
2 and the

coordinate of the electron is x = L+ 1
2aet

2. They pass each other when their coordinates are the same,
or 1

2apt
2 = L+ 1

2aet
2. This means t2 = 2L/(ap − ae) and

x =
ap

ap − ae
L =

eE/mp

(eE/mp) + (eE/me)
L =

me

me +mp
L

=
9.11× 10−31 kg

9.11× 10−31 kg + 1.67× 10−27 kg
(0.050 m)

= 2.7× 10−5 m .

42. (a) Using Eq. 23-28, we find

~F = (8.00× 10−5 C)(3.00× 103 N/C)̂ı + (8.00× 10−5 C)(−600 N/C)̂j

= (0.240 N)̂ı− (0.0480 N)̂j .
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Therefore, the force has magnitude equal to

F =
√

(0.240 N)2 + (0.0480 N)2 = 0.245 N ,

and makes an angle θ (which, if negative, means clockwise) measured from the +x axis, where

θ = tan−1

(

Fy

Fx

)

= tan−1

(−0.0480 N

0.240 N

)

= −11.3◦ .

(b) With m = 0.0100 kg, the coordinates (x, y) at t = 3.00 s are found by combining Newton’s second
law with the kinematics equations of Chapters 2-4:

x =
1

2
axt

2 =
Fxt

2

2m
=

(0.240)(3.00)2

2(0.0100)
= 108 m ,

y =
1

2
ayt

2 =
Fyt

2

2m
=

(−0.0480)(3.00)2

2(0.0100)
= −21.6 m .

43. (a) The electric field is upward in the diagram and the charge is negative, so the force of the field on
it is downward. The magnitude of the acceleration is a = eE/m, where E is the magnitude of the
field and m is the mass of the electron. Its numerical value is

a =
(1.60× 10−19 C)(2.00× 103 N/C)

9.11× 10−31 kg
= 3.51× 1014 m/s

2
.

We put the origin of a coordinate system at the initial position of the electron. We take the x axis
to be horizontal and positive to the right; take the y axis to be vertical and positive toward the top
of the page. The kinematic equations are

x = v0t cos θ , y = v0t sin θ −
1

2
at2 , and vy = v0 sin θ − at .

First, we find the greatest y coordinate attained by the electron. If it is less than d, the electron
does not hit the upper plate. If it is greater than d, it will hit the upper plate if the corresponding x
coordinate is less than L. The greatest y coordinate occurs when vy = 0. This means v0 sin θ−at = 0
or t = (v0/a) sin θ and

ymax =
v2
0 sin2 θ

a
− 1

2
a
v2
0 sin2 θ

a2
=

1

2

v2
0 sin2 θ

a

=
(6.00× 106 m/s)2 sin2 45◦

2(3.51× 1014 m/s2)
= 2.56× 10−2 m .

Since this is greater than d = 2.00 cm, the electron might hit the upper plate.

(b) Now, we find the x coordinate of the position of the electron when y = d. Since

v0 sin θ = (6.00× 106 m/s) sin 45◦ = 4.24× 106 m/s

and
2ad = 2(3.51× 1014 m/s

2
)(0.0200 m) = 1.40× 1013 m2/s

2

the solution to d = v0t sin θ − 1
2at

2 is

t =
v0 sin θ −

√

v2
0 sin2 θ − 2ad

a

=
4.24× 106 m/s−

√

(4.24× 106 m/s)2 − 1.40× 1013 m2/s2

3.51× 1014 m/s
2

= 6.43× 10−9 s .
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The negative root was used because we want the earliest time for which y = d. The x coordinate is

x = v0t cos θ

= (6.00× 106 m/s)(6.43× 10−9 s) cos 45◦ = 2.72× 10−2 m .

This is less than L so the electron hits the upper plate at x = 2.72 cm.

44. (a) The magnitude of the dipole moment is

p = qd =
(

1.50× 10−9 C
) (

6.20× 10−6 m
)

= 9.30× 10−15 C·m .

(b) Following the solution to part (c) of Sample Problem 23-5, we find

U(180◦)− U(0) = 2pE = 2
(

9.30× 10−15
)

(1100) = 2.05× 10−11 J .

45. (a) Eq. 23-33 leads to τ = pE sin 0◦ = 0.

(b) With θ = 90◦, the equation gives

τ = pE =
(

2(1.6× 10−19 C)(0.78× 10−9 m)
) (

3.4× 106 N/C
)

= 8.5× 10−22 N·m .

(c) Now the equation gives τ = pE sin 180◦ = 0.

46. Following the solution to part (c) of Sample Problem 23-5, we find

W = U(θ0 + π)− U(θ0) = −pE (cos(θ0 + π)− cos(θ0)) = 2pE cos θ0 .

47. Eq. 23-35 (τ = −pE sin θ) captures the sense as well as the magnitude of the effect. That is, this is
a restoring torque, trying to bring the tilted dipole back to its aligned equilibrium position. If the
amplitude of the motion is small, we may replace sin θ with θ in radians. Thus, τ ≈ −pEθ. Since
this exhibits a simple negative proportionality to the angle of rotation, the dipole oscillates in simple
harmonic motion, like a torsional pendulum with torsion constant κ = pE. The angular frequency ω is
given by

ω2 =
κ

I
=
pE

I

where I is the rotational inertia of the dipole. The frequency of oscillation is

f =
ω

2π
=

1

2π

√

pE

I
.

48. (a) Using k = 1/4πε0, we estimate the field at r = 0.02 m using Eq. 23-3:

E = k
q

r2
=

(

8.99× 109 N ·m2

C2

)

45× 10−12 C

(0.02 m)2
≈ 1× 103 N/C .

(b) The field described by Eq. 23-3 is nonuniform.

(c) As the positively charged bee approaches the grain, a concentration of negative charge is induced on
the closest side of the grain, leading to a force of attraction which makes the grain jump to the bee.
Although in physical contact, it is not in electrical contact with the bee, or else it would acquire
a net positive charge causing it to be repelled from the bee. As the bee (with grain) approaches
the stigma, a concentration of negative charge is induced on the closest side of the stigma which
is presumably highly nonuniform. In some configurations, the field from the stigma (acting on the
positive side of the grain) will overcome the field from the bee acting on the negative side, and the
grain will jump to the stigma.
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49. We consider pairs of diametrically opposed charges. The net field due to just the charges in the one
o’clock (−q) and seven o’clock (−7q) positions is clearly equivalent to that of a single −6q charge sitting
at the seven o’clock position. Similarly, the net field due to just the charges in the six o’clock (−6q) and
twelve o’clock (−12q) positions is the same as that due to a single −6q charge sitting at the twelve o’clock
position. Continuing with this line of reasoning, we see that there are six equal-magnitude electric field
vectors pointing at the seven o’clock, eight o’clock . . . twelve o’clock positions. Thus, the resultant field
of all of these points, by symmetry, is directed toward the position midway between seven and twelve
o’clock. Therefore, ~Eresultant points towards the nine-thirty position.

50. (a) From Eq. 23-38 (and the facts that ı̂ · ı̂ = 1 and ĵ · ı̂ = 0), the potential energy is

U = −~p · ~E = −[(3.00̂ı + 4.00̂j)(1.24× 10−30 C·m)] · [(4000 N/C)̂ı]

= −1.49× 10−26 J .

(b) From Eq. 23-34 (and the facts that ı̂× ı̂ = 0 and ĵ× ı̂ = −k̂), the torque is

~τ = ~p× ~E = [(3.00̂ı + 4.00̂j)(1.24× 10−30 C·m)]× [(4000 N/C)̂ı]

= (−1.98× 10−26 N·m)k̂ .

(c) The work done is

W = ∆U = ∆(−~p · ~E) = (~pi − ~pf ) · ~E
= [(3.00̂ı + 4.00̂j)− (−4.00̂ı + 3.00̂j)](1.24× 10−30 C·m)] · [(4000 N/C)̂ı]

= 3.47× 10−26 J .

51. The point at which we are evaluating the net field is denoted by P . The contributions to the net field
caused by the two electrons nearest P (the two electrons on the side of the triangle shared by P ) are
seen to cancel, so that we only need to compute the field (using Eq. 23-3) caused by the electron at the
far corner, at a distance r = 0.17 m from P . Using 1/4πε0 = k, we obtain

∣

∣

∣

~Enet

∣

∣

∣ = k
e

r2
= 4.8× 10−8 N/C .

52. Let q1 denote the charge at y = d and q2 denote the charge at y = −d. The individual magnitudes
∣

∣

∣

~E1

∣

∣

∣ and
∣

∣

∣

~E2

∣

∣

∣ are figured from Eq. 23-3, where the absolute value signs for q are unnecessary since these

charges are both positive. The distance from q1 to a point on the x axis is the same as the distance from
q2 to a point on the x axis: r =

√
x2 + d2. By symmetry, the y component of the net field along the x

axis is zero. The x component of the net field, evaluated at points on the positive x axis, is

Ex = 2

(

1

4πε0

)(

q

x2 + d2

)(

x√
x2 + d2

)

where the last factor is cos θ = x/r with θ being the angle for each individual field as measured from the
x axis.

(a) If we simplify the above expression, and plug in x = αd, we obtain

Ex =
q

2πε0 d 2

(

α

(α2 + 1)3/2

)

.

(b) The graph of E = Ex versus α is shown below. For the purposes of graphing, we set d = 1 m and
q = 5.56× 10−11 C.
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(c) From the graph, we estimate Emax occurs at about α = 0.7. More accurate computation shows
that the maximum occurs at α = 1/

√
2.

(d) The graph suggests that “half-height” points occur at α ≈ 0.2 and α ≈ 1.9. Further numerical
exploration leads to the values: α = 0.2047 and α = 1.9864.

53. (a) We combine Eq. 23-28 (in absolute value) with Newton’s second law:

a =
|q|E
m

=

(

1.60× 10−19 C

9.11× 10−31 kg

)(

1.40× 106 N

C

)

= 2.46× 1017 m/s2 .

(b) With v = c
10 = 3.00× 107 m/s, we use Eq. 2-11 to find

t =
v − vo
a

=
3.00× 107

2.46× 1017
= 1.22× 10−10 s .

(c) Eq. 2-16 gives

∆x =
v2 − v2

o

2a
=

(

3.00× 107
)2

2 (2.46× 1017)
= 1.83× 10−3 m .

54. Studying Sample Problem 23-3, we see that the field evaluated at the center of curvature due to a charged
distribution on a circular arc is given by

~E =
λ

4πε0r

[

sin θ

]θ/2

−θ/2

along the symmetry axis

where λ = q/ℓ = q/rθ with θ in radians. Here ℓ is the length of the arc, given as ℓ = 4.0 m. Therefore,
θ = ℓ/r = 4.0/2.0 = 2.0 rad. Thus, with q = 20× 10−9 C, we obtain

∣

∣

∣

~E
∣

∣

∣ =
q

ℓ

1

4πε0r

[

sin θ

]1.0 rad

−1.0 rad

= 38 N/C .

55. A small section of the distribution has charge dq is λdx, where λ = 9.0× 10−9 C/m. Its contribution to
the field at xP = 4.0 m is

d ~E =
dq

4π ε0 (x− xP )2

pointing in the +x direction. Thus, we have

~E =

∫ 3.0m

0

λdx

4π ε0 (x− xP )
2 ı̂
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which becomes, using the substitution u = x− xP ,

~E =
λ

4π ε0

∫ −1.0 m

−4.0 m

du

u2
ı̂ =

λ

4π ε0

( −1

−1.0 m
− −1

−4.0 m

)

ı̂

which yields 61 N/C in the +x direction.

56. Let q1 = −4Q < 0 and q2 = +2Q > 0 (where we make the assumption that Q > 0). Also, let

d = 2.00 m, the distance that separates the charges. The individual magnitudes
∣

∣

∣

~E1

∣

∣

∣ and
∣

∣

∣

~E2

∣

∣

∣ are

figured from Eq. 23-3, where the absolute value signs for q2 are unnecessary since this charge is positive.
Whether we add the magnitudes or subtract them depends on if ~E1 is in the same, or opposite, direction
as ~E2 . At points left of q1 (on the −x axis) the fields point in opposite directions, but there is no

possibility of cancellation (zero net field) since
∣

∣

∣

~E1

∣

∣

∣
is everywhere bigger than

∣

∣

∣

~E2

∣

∣

∣
in this region. In

the region between the charges (0 < x < d) both fields point leftward and there is no possibility of

cancellation. At points to the right of q2 (where x > d), ~E1 points leftward and ~E2 points rightward so
the net field in this range is

~Enet =
∣

∣

∣

~E2

∣

∣

∣−
∣

∣

∣

~E1

∣

∣

∣ in the ı̂ direction.

Although |q1| > q2 there is the possibility of ~Enet = 0 since these points are closer to q2 than to q1 .
Thus, we look for the zero net field point in the x > d region:

∣

∣

∣

~E1

∣

∣

∣ =
∣

∣

∣

~E2

∣

∣

∣

1

4πε0

|q1|
x2

=
1

4πε0

q2
(x− d)2

which leads to
x− d
x

=

√

q2
|q1|

=

√

1

2
.

Therefore, x = d
√

2√
2−1

= 6.8 m specifies the position where ~Enet = 0.

57. We note that the contributions to the field from the pair of −2q charges exactly cancel, and we are left
with the (opposing) contributions from the 4q (at r = 2d) and −q (at r = d) charges. Therefore, using
k = 1/4πε0

| ~Enet| = k
4q

(2d)2
− k q

d2
= 0 .

The net field at P vanishes completely.

58. The field of each charge has magnitude

E = k
e

(0.020 m)2
= 3.6× 10−6 N/C .

The directions are indicated in standard format below. We use the magnitude-angle notation (convenient
if one is using a vector capable calculator in polar mode) and write (starting with the proton on the left

and moving around clockwise) the contributions to ~Enet as follows:

(E 6 − 20◦) + (E 6 130◦) + (E 6 − 100◦) + (E 6 − 150◦) + (E 6 0◦) .

This yields (3.93× 10−6 6 − 76.4◦), with the N/C unit understood.

59. Eq. 23-38 gives U = −~p · ~E = −pE cos θ. We note that θi = 110◦ and θf = 70◦. Therefore,

∆U = −pE (cos 70◦ − cos 110◦) = −3.3× 10−21 J .
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60. (a) Suppose the pendulum is at the angle θ with the vertical. The force diagram

is shown to the right. ~T is the tension in the thread, mg is the
magnitude of the force of gravity, and qE is the magnitude of the
electric force. The field points upward and the charge is positive,
so the force is upward. Taking the angle shown to be positive,
then the torque on the sphere about the point where the thread is
attached to the upper plate is τ = −(mg − qE)ℓ sin θ. If mg > qE
then the torque is a restoring torque; it tends to pull the pendulum
back to its equilibrium position.
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θ
q ~E

~T

m~g

If the amplitude of the oscillation is small, sin θ can be replaced by θ in radians and the torque
is τ = −(mg − qE)ℓθ. The torque is proportional to the angular displacement and the pendulum
moves in simple harmonic motion. Its angular frequency is ω =

√

(mg − qE)ℓ/I, where I is the
rotational inertia of the pendulum. Since I = mℓ2 for a simple pendulum,

ω =

√

(mg − qE)ℓ

mℓ2
=

√

g − qE/m
ℓ

and the period is

T =
2π

ω
= 2π

√

ℓ

g − qE/m .

If qE > mg the torque is not a restoring torque and the pendulum does not oscillate.

(b) The force of the electric field is now downward and the torque on the pendulum is τ = −(mg+qE)ℓθ
if the angular displacement is small. The period of oscillation is

T = 2π

√

ℓ

g + qE/m
.

61. (a) Using the density of water (ρ = 1000 kg/m3), the weight mg of the spherical drop (of radius
r = 6.0× 10−7 m) is

W = ρV g =
(

1000 kg/m3
)

(

4π

3
(6.0× 10−7 m)3

)

(

9.8 m/s2
)

= 8.87× 10−15 N .

(b) Vertical equilibrium of forces leads to mg = qE = neE, which we solve for n, the number of excess
electrons:

n =
mg

eE
=

8.87× 10−15 N

(1.60× 10−19 C)(462 N/C)
= 120 .

62. (a) Let E = σ/2ε0 = 3× 106 N/C. With σ = |q|/A, this leads to

|q| = πR2σ = 2πε0R
2E =

R2E

2k
=

(

2.5× 10−2 m
)2 (

3.0× 106 N/C
)

2
(

8.99× 109 N·m2

C2

) = 1.0× 10−7 C .

(b) Setting up a simple proportionality (with the areas), the number of atoms is estimated to be

N =
π(2.5× 10−2 m)2

0.015× 10−18 m2
= 1.3× 1017 .

(c) Therefore, the fraction is

q

Ne
=

1.0× 10−7 C

(1.3× 1017)(1.6× 10−19 C)
≈ 5× 10−6 .
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63. On the one hand, the conclusion (that Q = +1.0µC) is clear from symmetry. If a more in-depth
justification is desired, one should use Eq. 23-3 for the electric field magnitudes of the three charges
(each at the same distance r = a/

√
3 from C) and then find field components along suitably chosen

axes, requiring each component-sum to be zero. If the y axis is vertical, then (assuming Q > 0) the
component-sum along that axis leads to 2kq sin 30◦/r2 = kQ/r2 where q refers to either of the charges
at the bottom corners. This yields Q = 2q sin 30◦ = q and thus to the conclusion mentioned above.

64. From symmetry, the only two pairs of charges which

produce a non-vanishing field
~Enet are: pair 1, which is in the
middle of the two vertical sides
of the square (the +q, −2q pair);
and pair 2, the +5q, −5q pair.
We denote the electric fields
produced by each pair as ~E1 and
~E2, respectively. We set up a
coordinate system as shown to
the right, with the origin at the
center of the square. Now,

•

•

•

•
x

y

−q+q

5q

−5q

~E1

~E2

~Enet

..
..
..
..
..
..
.

..
..
..
..
..
..
.

..
..
..
..
..
..
.
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..
..
..
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.
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............................................................................. ...................................
.............
.............
.............
.............
.............
.............
.............
.............
.................................
......................

.................
.................
.................
.................
.................
.................
.................
.................
.................
.................
.......................
......................

E1 =
1

4πε0

(

q

d2
+

2q

d2

)

=
3q

4πε0d2
and E2 = k

[

5q

(
√

2d)2
+

5q

(
√

2d)2

]

=
5q

4πε0d2
.

Therefore, the components of ~Enet are given by

Ex = E1x + E2x = E1 + E2 cos 45◦

=
3q

4πε0d2
+

(

5q

4πε0d2

)

cos 45◦ = 6.536

(

q

4πε0d2

)

,

and

Ey = E1y + E2y = E2 sin 45◦ =

(

5q

4πε0d2

)

sin 45◦ = 3.536

(

q

4πε0d2

)

.

Thus, the magnitude of ~Enet is

E =
√

E2
x + E2

y =
√

(6.536)2 + (3.536)2
(

q

4πε0d2

)

=
7.43q

4πε0d2
,

and ~Enet makes an angle θ with the positive x axis, where

θ = tan−1

(

Ey

Ex

)

= tan−1

(

3.536

6.536

)

= 28.4◦ .

65. We denote the electron with subscript e
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and the proton with p. From the
figure to the right we see that

∣

∣

∣

~Ee

∣

∣

∣
=
∣

∣

∣

~Ep

∣

∣

∣
=

e

4πε0d 2

where d = 2.0× 10−6 m. We note
that the components along the
y axis cancel during the vector
summation. With k = 1/4πε0
and θ = 60◦, the magnitude of
the net electric field is obtained
as follows: • •

x

y

θ

θ

θ

electronproton

~Ep

~Ee

~Enet

.
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.
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.
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..................................................................................................................................................................
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.........
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.................................................................................................................................................................. ......................

∣

∣

∣

~Enet

∣

∣

∣ = Ex = 2Ee cos θ

= 2

(

e

4πε0d2

)

cos θ = 2k

[

e

d2

]

cos θ

= 2

(

8.99× 109 N ·m2

C2

)[

(1.6× 10−19 C)

(2.0× 10−6 m)2

]

cos 60◦

= 3.6× 102 N/C .

66. (a) Since the two charges in question are of the same sign, the point x = 2.0 mm should be located in
between them (so that the field vectors point in the opposite direction). Let the coordinate of the
second particle be x′ (x′ > 0). Then, the magnitude of the field due to the charge −q1 evaluated at
x is given by E = q1 /4πε0x

2, while that due to the second charge −4q1 is E′ = 4q1 /4πε0(x
′ − x)2.

We set the net field equal to zero:

~Enet = 0 =⇒ E = E′

so that
q1

4πε0x2
=

4q1
4πε0(x′ − x)2

.

Thus, we obtain x′ = 3x = 3(2.0 mm) = 6.0 mm.

(b) In this case, with the second charge now positive, the electric field vectors produced by both charges
are in the negative x direction, when evaluated at x = 2.0 mm. Therefore, the net field points in
the negative x direction.

67. The distance from Q to P is 5a, and the distance from q to P is 3a. Therefore, the magnitudes of the
individual electric fields are, using Eq. 23-3 (writing 1/4πε0 = k),

| ~EQ| =
k |Q|
25 a2

, | ~Eq| =
k |q|
9 a2

.

We note that ~Eq is along the y axis (directed towards ±y in accordance with the sign of q), and ~EQ

has x and y components, with ~EQ x = ± 4
5 | ~EQ| and ~EQ y = ± 3

5 | ~EQ| (signs corresponding to the sign of
Q). Consequently, we can write the addition of components in a simple way (basically, by dropping the
absolute values):

~Enetx =
4 kQ

125 a2

~Enet y =
3 kQ

125 a2
+

k q

9 a2
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(a) Equating ~Enet x and ~Enet y, it is straightforward to solve for the relation between Q and q. We
obtain Q = 125

9 q ≈ 14q.

(b) We set ~Enet y = 0 and find the necessary relation between Q and q. We obtain Q = − 125
27 q ≈ −4.6q.

68. (a) From the second measurement (at (2.0, 0)) we see that the charge must be somewhere on the x
axis. A line passing through (3.0, 3.0) with slope tan−1 3/4 will intersect the x axis at x = −1.0.
Thus, the location of the particle is specified by the coordinates (in cm): (−1.0, 0).

(b) Using k = 1/4πε0 , the field magnitude measured at (2.0, 0) (which is r = 0.030 m from the charge)
is

| ~E| = k
q

r2
= 100 N/C .

Therefore, q = 1.0× 10−11 C.
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Chapter 24

1. (a) The mass flux is wdρv = (3.22 m)(1.04 m)
(

1000 kg/m3
)

(0.207 m/s) = 693 kg/s.

(b) Since water flows only through area wd, the flux through the larger area is still 693 kg/s.

(c) Now the mass flux is (wd/2)ρv = (693 kg/s)/2 = 347 kg/s.

(d) Since the water flows through an area (wd/2), the flux is 347 kg/s.

(e) Now the flux is (wd cos θ)ρv = (693 kg/s)(cos 34◦) = 575 kg/s.

2. The vector area ~A and the electric field ~E are shown on the diagram below. The angle θ between them
is 180◦ − 35◦ = 145◦, so the electric flux through the area is

Φ = ~E · ~A = EA cos θ = (1800 N/C)(3.2× 10−3 m)2 cos 145◦ = −1.5× 10−2 N·m2/C .
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3. We use Φ = ~E · ~A, where ~A = A ĵ = (1.40 m)2 ĵ.

(a) Φ = (6.00 N/C)̂ı · (1.40 m)2̂j = 0.

(b) Φ = (−2.00 N/C)̂j · (1.40 m)2̂j = −3.92 N·m2/C.

(c) Φ = [(−3.00 N/C)̂ı + (4.00 N/C)k̂] · (1.40 m)2 ĵ = 0.

(d) The total flux of a uniform field through a closed surface is always zero.

4. We use the fact that electric flux relates to the enclosed charge: Φ = qenclosed/ε0.

(a) A surface which encloses the charges 2q and −2q, or all four charges.

(b) A surface which encloses the charges 2q and q.

(c) The maximum amount of negative charge we can enclose by any surface which encloses the charge
2q is −q, so it is impossible to get a flux of −2q/ε0.

5. We use Gauss’ law: ε0Φ = q, where Φ is the total flux through the cube surface and q is the net charge
inside the cube. Thus,

Φ =
q

ε0
=

1.8× 10−6 C

8.85× 10−12 C2/N·m2
= 2.0× 105 N·m2/C .
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6. The flux through the flat surface encircled by the rim is given by Φ = πa2E. Thus, the flux through the
netting is Φ′ = −Φ = −πa2E.

7. (a) Let A = (1.40 m)2. Then

Φ = (3.00y ĵ) · (−A ĵ)|y=0 + (3.00y ĵ) · (A ĵ)|y=1.40

= (3.00)(1.40)(1.40)2 = 8.23 N·m2/C .

(b) The electric field can be re-written as ~E = 3.00yĵ + ~E0, where ~E0 = −4.00̂ı + 6.00̂j is a constant
field which does not contribute to the net flux through the cube. Thus Φ is still 8.23 N·m2/C.

(c) The charge is given by

q = ε0Φ =

(

8.85× 10−12 C2

N·m2

)

(8.23 N·m2/C) = 7.29× 10−11 C

in each case.

8. (a) The total surface area bounding the bathroom is

A = 2 (2.5× 3.0) + 2 (3.0× 2.0) + 2 (2.0× 2.5) = 37 m2 .

The absolute value of the total electric flux, with the assumptions stated in the problem, is |Φ| =
|∑ ~E · ~A| = | ~E|A = (600)(37) = 22 × 103 N·m2/C. By Gauss’ law, we conclude that the enclosed
charge (in absolute value) is |qenc| = ε0 |Φ| = 2.0×10−7 C. Therefore, with volume V = 15 m3, and
recognizing that we are dealing with negative charges (see problem), we find the charge density is
qenc/V = −1.3× 10−8 C/m3.

(b) We find (|qenc|/e)/V = (2.0× 10−7/1.6× 10−19)/15 = 8.2× 1010 excess electrons per cubic meter.

9. Let A be the area of one face of the cube, Eu be the magnitude of the electric field at the upper face,
and Eℓ be the magnitude of the field at the lower face. Since the field is downward, the flux through the
upper face is negative and the flux through the lower face is positive. The flux through the other faces
is zero, so the total flux through the cube surface is Φ = A(Eℓ −Eu). The net charge inside the cube is
given by Gauss’ law:

q = ε0Φ = ε0A(Eℓ − Eu) = (8.85× 10−12 C2/N·m2)(100 m)2(100 N/C− 60.0 N/C)

= 3.54× 10−6 C = 3.54 µC .

10. There is no flux through the sides, so we have two “inward” contributions to the flux, one from the
top (of magnitude (34)(3.0)2) and one from the bottom (of magnitude (20)(3.0)2). With “inward” flux
conventionally negative, the result is Φ = −486 N·m2/C. Gauss’ law, then, leads to qenc = ε0 Φ =
−4.3× 10−9 C.

11. The total flux through any surface that completely surrounds the point charge is q/ε0. If we stack
identical cubes side by side and directly on top of each other, we will find that eight cubes meet at any
corner. Thus, one-eighth of the field lines emanating from the point charge pass through a cube with a
corner at the charge, and the total flux through the surface of such a cube is q/8ε0. Now the field lines
are radial, so at each of the three cube faces that meet at the charge, the lines are parallel to the face
and the flux through the face is zero. The fluxes through each of the other three faces are the same, so
the flux through each of them is one-third of the total. That is, the flux through each of these faces is
(1/3)(q/8ε0) = q/24ε0.

12. Using Eq. 24-11, the surface charge density is

σ = Eε0 =
(

2.3× 105 N/C
)

(

8.85× 10−12 C2

N·m2

)

= 2.0× 10−6 C/m2 .
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13. (a) The charge on the surface of the sphere is the product of the surface charge density σ and the
surface area of the sphere (which is 4πr2, where r is the radius). Thus,

q = 4πr2σ = 4π

(

1.2 m

2

)2
(

8.1× 10−6 C/m2
)

= 3.66× 10−5 C .

(b) We choose a Gaussian surface in the form of a sphere, concentric with the conducting sphere and
with a slightly larger radius. The flux is given by Gauss’ law:

Φ =
q

ε0
=

3.66× 10−5 C

8.85× 10−12 C2/N·m2
= 4.1× 106 N·m2/C .

14. (a) The area of a sphere may be written 4πR2 = πD2. Thus,

σ =
q

πD2
=

2.4× 10−6 C

π(1.3 m)2
= 4.5× 10−7 C/m

2
.

(b) Eq. 24-11 gives

E =
σ

εo
=

4.5× 10−7 C/m
2

8.85× 10−12 C2/N·m2
= 5.1× 104 N/C .

15. (a) Consider a Gaussian surface that is completely within the conductor and surrounds the cavity.
Since the electric field is zero everywhere on the surface, the net charge it encloses is zero. The net
charge is the sum of the charge q in the cavity and the charge qw on the cavity wall, so q + qw = 0
and qw = −q = −3.0× 10−6 C.

(b) The net charge Q of the conductor is the sum of the charge on the cavity wall and the charge qs
on the outer surface of the conductor, so Q = qw + qs and

qs = Q− qw = (10× 10−6 C)− (−3.0× 10−6 C) = +1.3× 10−5 C .

16. (a) The side surface area A for the drum of diameter D and length h is given by A = πDh. Thus

q = σA = σπDh = πε0EDh

= π

(

8.85× 10−12 C2

N·m2

)

(

2.3× 105 N/C
)

(0.12 m)(0.42 m)

= 3.2× 10−7 C .

(b) The new charge is

q′ = q

(

A′

A

)

= q

(

πD′h′

πDh

)

= (3.2× 10−7C)

[

(8.0 cm)(28 cm)

(12 cm)(42 cm)

]

= 1.4× 10−7 C .

17. The magnitude of the electric field produced by a uniformly charged infinite line is E = λ/2πε0r, where
λ is the linear charge density and r is the distance from the line to the point where the field is measured.
See Eq. 24-12. Thus,

λ = 2πε0Er = 2π(8.85× 10−12 C2/N ·m2)(4.5× 104 N/C)(2.0 m) = 5.0× 10−6 C/m .

18. We imagine a cylindrical Gaussian surface A of radius r and unit length concentric with the metal tube.
Then by symmetry

∮

A

~E · d ~A = 2πrE =
qenclosed

ε0
.
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(a) For r > R, qenclosed = λ, so E(r) = λ/2πrε0.

(b) For r < R, qenclosed = 0, so E = 0. The plot of E vs r is shown below. Here, the maximum value is

Emax =
λ

2πrε0
=

(2.0× 10−8 C/m)

2π(0.030 m) (8.85× 10−12 C2/N·m2)
= 1.2× 104 N/C .

0

10000

E

0.02 0.04 0.06r

19. We assume the charge density of both the conducting cylinder and the shell are uniform, and we neglect
fringing. Symmetry can be used to show that the electric field is radial, both between the cylinder and
the shell and outside the shell. It is zero, of course, inside the cylinder and inside the shell.

(a) We take the Gaussian surface to be a cylinder of length L, coaxial with the given cylinders and
of larger radius r than either of them. The flux through this surface is Φ = 2πrLE, where E is
the magnitude of the field at the Gaussian surface. We may ignore any flux through the ends.
Now, the charge enclosed by the Gaussian surface is q − 2q = −q. Consequently, Gauss’ law yields
2πrε0LE = −q, so

E = − q

2πε0Lr
.

The negative sign indicates that the field points inward.

(b) Next, we consider a cylindrical Gaussian surface whose radius places it within the shell itself. The
electric field is zero at all points on the surface since any field within a conducting material would
lead to current flow (and thus to a situation other than the electrostatic ones being considered
here), so the total electric flux through the Gaussian surface is zero and the net charge within it
is zero (by Gauss’ law). Since the central rod is known to have charge q, then the inner surface
of the shell must have charge −q. And since the shell is known to have total charge −2q, it must
therefore have charge −q on its outer surface.

(c) Finally, we consider a cylindrical Gaussian surface whose radius places it between the outside of
conducting rod and inside of the shell. Similarly to part (a), the flux through the Gaussian surface
is Φ = 2πrLE, where E is the field at this Gaussian surface, in the region between the rod and
the shell. The charge enclosed by the Gaussian surface is only the charge q on the rod. Therefore,
Gauss’ law yields

2πε0rLE = q =⇒ E =
q

2πε0Lr
.

The positive sign indicates that the field points outward.

20. We denote the radius of the thin cylinder as R = 0.015 m. Using Eq. 24-12, the net electric field for
r > R is given by

Enet = Ewire + Ecylinder =
−λ

2πε0r
+

λ′

2πε0r
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where −λ = −3.6 nC/m is the linear charge density of the wire and λ′ is the linear charge density of the
thin cylinder. We note that the surface and linear charge densities of the thin cylinder are related by

qcylinder = λ′L = σ(2πRL) =⇒ λ′ = σ(2πR) .

Now, Enet outside the cylinder will equal zero, provided that 2πRσ = λ, or

σ =
λ

2πR
=

3.6× 10−9 C/m

(2π)(0.015 m)
= 3.8× 10−8 C/m2 .

21. We denote the inner and outer cylinders with subscripts i and o, respectively.

(a) Since ri < r = 4.0 cm < ro,

E(r) =
λi

2πε0r
=

5.0× 10−6 C/m

2π (8.85× 10−12 C2/N·m2) (4.0× 10−2 m)
= 2.3× 106 N/C .

~E(r) points radially outward.

(b) Since r > ro,

E(r) =
λi + λo

2πε0r
=

5.0× 10−6 C/m− 7.0× 10−6 C/m

2π (8.85× 10−12 C2/N·m2) (8.0× 10−2 m)
= −4.5× 105 N/C ,

where the minus sign indicates that ~E(r) points radially inward.

22. To evaluate the field using Gauss’ law, we employ a cylindrical surface of area 2π r L where L is very large
(large enough that contributions from the ends of the cylinder become irrelevant to the calculation). The
volume within this surface is V = π r2L, or expressed more appropriate to our needs: dV = 2π r L dr.
The charge enclosed is, with A = 2.5× 10−6 C/m5,

qenc =

∫ r

0

Ar2 2π r L dr =
π

2
ALr4 .

By Gauss’ law, we find Φ = | ~E|(2πrL) = qenc/ε0; we thus obtain

∣

∣

∣

~E
∣

∣

∣ =
Ar3

4 ε0
.

(a) With r = 0.030 m, we find | ~E| = 1.9 N/C.

(b) Once outside the cylinder, Eq. 24-12 is obeyed. To find λ = q/L we must find the total charge q.
Therefore,

q

L
=

1

L

∫ 0.04

0

Ar2 2π r L dr = 1.0× 10−11 C/m .

And the result, for r = 0.050 m, is | ~E| = λ/2πε0 r = 3.6 N/C.

23. The electric field is radially outward from the central wire. We want to find its magnitude in the region
between the wire and the cylinder as a function of the distance r from the wire. Since the magnitude
of the field at the cylinder wall is known, we take the Gaussian surface to coincide with the wall. Thus,
the Gaussian surface is a cylinder with radius R and length L, coaxial with the wire. Only the charge
on the wire is actually enclosed by the Gaussian surface; we denote it by q. The area of the Gaussian
surface is 2πRL, and the flux through it is Φ = 2πRLE. We assume there is no flux through the ends
of the cylinder, so this Φ is the total flux. Gauss’ law yields q = 2πε0RLE. Thus,

q = 2π

(

8.85× 10−12 C2

N·m2

)

(0.014 m)(0.16 m)
(

2.9× 104 N/C
)

= 3.6× 10−9 C .
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24. (a) In Eq. 24-12, λ = q/L where q is the net charge enclosed by a cylindrical Gaussian surface of
radius r. The field is being measured outside the system (the charged rod coaxial with the neutral
cylinder) so that the net enclosed charge is only that which is on the rod. Consequently,

| ~E| = λ

2πε0 r
=

2.0× 10−9

2πε0 (0.15)
= 240 N/C .

(b) and (c) Since the field is zero inside the conductor (in an electrostatic configuration), then there
resides on the inner surface charge −q, and on the outer surface, charge +q (where q is the charge
on the rod at the center). Therefore, with ri = 0.05 m, the surface density of charge is

σinner =
−q

2πriL
= − λ

2πri
= −6.4× 10−9 C/m

2

for the inner surface. And, with ro = 0.10 m, the surface charge density of the outer surface is

σouter =
+q

2πroL
=

λ

2πro
= +3.2× 10−9 C/m

2
.

25. (a) The diagram below shows a cross section (or, perhaps more appropriately, “end view”) of the
charged cylinder (solid circle). Consider a Gaussian surface in the form of a cylinder with radius r
and length ℓ, coaxial with the charged cylinder. An “end view” of the Gaussian surface is shown
as a dotted circle. The charge enclosed by it is q = ρV = πr2ℓρ, where V = πr2ℓ is the volume of
the cylinder.
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If ρ is positive, the electric field lines are radially outward, normal to the Gaussian surface and dis-
tributed uniformly along it. Thus, the total flux through the Gaussian cylinder is Φ = EAcylinder =
E(2πrℓ). Now, Gauss’ law leads to

2πε0rℓE = πr2ℓρ =⇒ E =
ρr

2ε0
.

(b) Next, we consider a cylindrical Gaussian surface of radius r > R. If the external field Eext then the
flux is Φ = 2πrℓEext . The charge enclosed is the total charge in a section of the charged cylinder
with length ℓ. That is, q = πR2ℓρ. In this case, Gauss’ law yields

2πε0rℓEext = πR2ℓρ =⇒ Eext =
R2ρ

2ε0r
.

26. According to Eq. 24-13 the electric field due to either sheet of charge with surface charge density σ is
perpendicular to the plane of the sheet (pointing away from the sheet if the charge is positive) and has
magnitude E = σ/2ε0. Using the superposition principle, we conclude:

(a) E = σ/ε0, pointing up;

(b) E = 0;

(c) and, E = σ/ε0, pointing down.
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27. (a) To calculate the electric field at a point very close to the center of a large, uniformly charged
conducting plate, we may replace the finite plate with an infinite plate with the same area charge
density and take the magnitude of the field to be E = σ/ε0, where σ is the area charge density for
the surface just under the point. The charge is distributed uniformly over both sides of the original
plate, with half being on the side near the field point. Thus,

σ =
q

2A
=

6.0× 10−6 C

2(0.080 m)2
= 4.69× 10−4 C/m

2
.

The magnitude of the field is

E =
4.69× 10−4 C/m

2

8.85× 10−12 C2/N·m2
= 5.3× 107 N/C .

The field is normal to the plate and since the charge on the plate is positive, it points away from
the plate.

(b) At a point far away from the plate, the electric field is nearly that of a point particle with charge
equal to the total charge on the plate. The magnitude of the field is E = q/4πε0r

2 = kq/r2, where
r is the distance from the plate. Thus,

E =

(

8.99× 109 N·m2/C2
) (

6.0× 10−6 C
)

(30 m)2
= 60 N/C .

28. The charge distribution in this problem is equivalent to that of an infinite sheet of charge with surface
charge density σ plus a small circular pad of radius R located at the middle of the sheet with charge
density −σ. We denote the electric fields produced by the sheet and the pad with subscripts 1 and 2,
respectively. The net electric field ~E is then

~E = ~E1 + ~E2 =

(

σ

2ε0

)

k̂ +
(−σ)

2ε0

(

1− z√
z2 +R2

)

k̂

=
σz

2ε0
√
z2 +R2

k̂

where Eq. 23-26 is used for ~E2.

29. The forces acting on the ball are shown in the diagram below. The gravitational force has magnitude
mg, where m is the mass of the ball; the electrical force has magnitude qE, where q is the charge on
the ball and E is the magnitude of the electric field at the position of the ball; and, the tension in the
thread is denoted by T . The electric field produced by the plate is normal to the plate and points to the
right. Since the ball is positively charged, the electric force on it also points to the right. The tension in
the thread makes the angle θ (= 30◦) with the vertical.
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~T

q ~E

m~g

θ

Since the ball is in equilibrium the net force on it vanishes. The sum of the horizontal components
yields qE − T sin θ = 0 and the sum of the vertical components yields T cos θ−mg = 0. The expression
T = qE/ sin θ, from the first equation, is substituted into the second to obtain qE = mg tan θ. The
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electric field produced by a large uniform plane of charge is given by E = σ/2ε0, where σ is the surface
charge density. Thus,

qσ

2ε0
= mg tan θ

and

σ =
2ε0mg tan θ

q

=
2(8.85× 10−12 C2/N ·m2)(1.0× 10−6 kg)(9.8 m/s

2
) tan 30◦

2.0× 10−8 C

= 5.0× 10−9 C/m
2
.

30. Let ı̂ be a unit vector pointing to the left. We use Eq. 24-13.

(a) To the left of the plates: ~E = (σ/2ε0)̂ı (from the right plate)+(−σ/2ε0)̂ı (from the left one)= 0.

(b) To the right of the plates: ~E = (σ/2ε0)(−ı̂) (from the right plate)+(−σ/2ε0)(−ı̂) (from the left
one)= 0.

(c) Between the plates:

~E =

(

σ

2ε0

)

ı̂ +

(−σ
2ε0

)

(−ı̂) =

(

σ

ε0

)

ı̂

=

(

7.0× 10−22 C/m
2

8.85× 10−12 N·m2

C2

)

ı̂ =
(

7.9× 10−11 N/C
)

ı̂ .

31. The charge on the metal plate, which is negative, exerts a force of repulsion on the electron and stops
it. First find an expression for the acceleration of the electron, then use kinematics to find the stopping
distance. We take the initial direction of motion of the electron to be positive. Then, the electric field
is given by E = σ/ε0, where σ is the surface charge density on the plate. The force on the electron is
F = −eE = −eσ/ε0 and the acceleration is

a =
F

m
= − eσ

ε0m

where m is the mass of the electron. The force is constant, so we use constant acceleration kinematics.
If v0 is the initial velocity of the electron, v is the final velocity, and x is the distance traveled between
the initial and final positions, then v2 − v2

0 = 2ax. Set v = 0 and replace a with −eσ/ε0m, then solve
for x. We find

x = − v
2
0

2a
=
ε0mv

2
0

2eσ
.

Now 1
2mv

2
0 is the initial kinetic energy K0, so

x =
ε0K0

eσ
.

We convert the given value of K0 to Joules. Since 1.00 eV = 1.60 × 10−19 J, 100 eV = 1.60 × 10−17 J.
Thus,

x =
(8.85× 10−12 C2/N·m2)(1.60× 10−17 J)

(1.60× 10−19 C)(2.0× 10−6 C/m2)
= 4.4× 10−4 m .

32. We use the result of part (c) of problem 30 to obtain the surface charge density.

E = σ/ε0 =⇒ σ = ε0E =

(

8.85× 10−12 C2

N ·m2

)

(55 N/C) = 4.9× 10−10 C/m2 .
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33. (a) We use a Gaussian surface in the form of a box with rectangular sides. The cross section is shown
with dashed lines in the diagram below. It is centered at the central plane of the slab, so the left and
right faces are each a distance x from the central plane. We take the thickness of the rectangular
solid to be a, the same as its length, so the left and right faces are squares. The electric field is
normal to the left and right faces and is uniform over them. If ρ is positive, it points outward at
both faces: toward the left at the left face and toward the right at the right face. Furthermore, the
magnitude is the same at both faces. The electric flux through each of these faces is Ea2. The field
is parallel to the other faces of the Gaussian surface and the flux through them is zero. The total
flux through the Gaussian surface is Φ = 2Ea2.

←−−−−− d −−−−−→

x x

a

The volume enclosed by the Gaussian surface is 2a2x and the charge contained within it is q = 2a2xρ.
Gauss’ law yields 2ε0Ea

2 = 2a2xρ. We solve for the magnitude of the electric field:

E =
ρx

ε0
.

(b) We take a Gaussian surface of the same shape and orientation, but with x > d/2, so the left and
right faces are outside the slab. The total flux through the surface is again Φ = 2Ea2 but the
charge enclosed is now q = a2dρ. Gauss’ law yields 2ε0Ea

2 = a2dρ, so

E =
ρd

2ε0
.

34. (a) The flux is still −750 N·m2/C, since it depends only on the amount of charge enclosed.

(b) We use Φ = q/ε0 to obtain the charge q:

q = ε0Φ =

(

8.85× 10−12 C2

N ·m2

)

(

−750 N·m2/C
)

= −6.64× 10−10 C .

35. Charge is distributed uniformly over the surface of the sphere and the electric field it produces at points
outside the sphere is like the field of a point particle with charge equal to the net charge on the sphere.
That is, the magnitude of the field is given by E = q/4πε0r

2, where q is the magnitude of the charge on
the sphere and r is the distance from the center of the sphere to the point where the field is measured.
Thus,

q = 4πε0r
2E =

(0.15 m)2(3.0× 103 N/C)

8.99× 109 N ·m2/C2 = 7.5× 10−9 C .

The field points inward, toward the sphere center, so the charge is negative: −7.5× 10−9 C.

36. (a) Since r1 = 10.0 cm < r = 12.0 cm < r2 = 15.0 cm,

E(r) =
1

4πε0

q1
r2

=
(8.99× 109 N·m2/C2)(4.00× 10−8 C)

(0.120 m)2
= 2.50× 104 N/C .
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(b) Since r1 < r2 < r = 20.0 cm,

E(r) =
1

4πε0

q1 + q2
r2

=
(8.99× 109 N·m2/C2)(4.00 + 2.00)(1× 10−8 C)

(0.200 m)2

= 1.35× 104 N/C .

37. The field is radially outward and takes on equal magnitude-values over the surface of any sphere centered
at the atom’s center. We take the Gaussian surface to be such a sphere (of radius r). If E is the magnitude
of the field, then the total flux through the Gaussian sphere is Φ = 4πr2E. The charge enclosed by the
Gaussian surface is the positive charge at the center of the atom plus that portion of the negative charge
within the surface. Since the negative charge is uniformly distributed throughout the large sphere of
radius R, we can compute the charge inside the Gaussian sphere using a ratio of volumes. That is, the
negative charge inside is −Zer3/R3. Thus, the total charge enclosed is Ze−Zer3/R3 for r ≤ R. Gauss’
law now leads to

4πε0r
2E = Ze

(

1− r3

R3

)

=⇒ E =
Ze

4πε0

(

1

r2
− r

R3

)

.

38. We interpret the question as referring to the field just outside the sphere (that is, at locations roughly
equal to the radius r of the sphere). Since the area of a sphere is A = 4πr2 and the surface charge
density is σ = q/A (where we assume q is positive for brevity), then

E =
σ

ε0
=

1

ε0

( q

4πr2

)

=
1

4πε0

q

r2

which we recognize as the field of a point charge (see Eq. 23-3).

39. The proton is in uniform circular motion, with the electrical force of the sphere on the proton providing
the centripetal force. According to Newton’s second law, F = mv2/r, where F is the magnitude of the
force, v is the speed of the proton, and r is the radius of its orbit, essentially the same as the radius of
the sphere. The magnitude of the force on the proton is F = eq/4πε0r

2, where q is the magnitude of
the charge on the sphere. Thus,

1

4πε0

eq

r2
=
mv2

r

so

q =
4πε0mv

2r

e
=

(1.67× 10−27 kg)(3.00× 105 m/s)2(0.0100 m)

(8.99× 109 N ·m2/C
2
)(1.60× 10−19 C)

= 1.04× 10−9 C .

The force must be inward, toward the center of the sphere, and since the proton is positively charged,
the electric field must also be inward. The charge on the sphere is negative: q = −1.04× 10−9 C.

40. We imagine a spherical Gaussian surface of radius r centered at the point charge +q. From symmetry
consideration E is the same throughout the surface, so

∮

~E · d ~A = 4πr2E =
qencl

ε0
,

which gives

E(r) =
qencl

4πε0r2
,

where qencl is the net charge enclosed by the Gaussian surface.

(a) Now a < r < b, where E = 0. Thus qencl = 0, so the charge on the inner surface of the shell is
qi = −q.
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(b) The shell as a whole is electrically neutral, so the outer shell must carry a charge of qo = +q.

(c) For r < a qencl = +q, so

E

∣

∣

∣

∣

r<a

=
q

4πε0r2
.

(d) For b > r > a E = 0, since this region is inside the metallic part of the shell.

(e) For r > b qencl = +q, so

E

∣

∣

∣

∣

r<a

=
q

4πε0r2
.

The field lines are
sketched to the right.
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(f) The net charge of the central point charge-inner surface combination is zero. Thus the electric field
it produces is also zero.

(g) The outer shell has a spherically symmetric charge distribution with a net charge +q. Thus the
field it produces for r > b is E = q/(4πε0r

2).

(h) Yes. In fact there will be a distribution of induced charges on the outer shell, as a result of a flow
of positive charges toward the side of the surface that is closer to the negative point charge outside
the shell.

(i) No. The change in the charge distribution on the outer shell cancels the effect of the negative point
charge. The field lines are sketched below.
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(j) Yes, there is a force on the −q point charge, as expected from Eq. 22-4.

(k) The field lines around the first charge at the center of the spherical shell is unchanged. The
implication, then, is that there is still no net force on that charge.

(l) We assume there is some non-electrical force holding the spherical shell in place, which compensates
for the force of the −q point charge exerted on the outside surface charges on the shell. Newton’s
third law applies to this situation, as far as the −q point charge and the surface charges on the
sphere are concerned. There is no direct force between the central +q charge and the external −q
point charge, so we would not apply Newton’s third law to their interaction.
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41. (a) We integrate the volume charge density over the volume and require the result be equal to the total
charge:

∫

dx

∫

dy

∫

dz ρ = 4π

∫ R

0

dr r2 ρ = Q .

Substituting the expression ρ = ρsr/R and performing the integration leads to

4π
(ρs

R

)

(

R4

4

)

= Q =⇒ Q = πρsR
3 .

(b) At a certain point within the sphere, at some distance ro from the center, the field (see Eq. 24-8
through Eq. 24-10) is given by Gauss’ law:

E =
1

4πε0

qenc

r2o

where qenc is given by an integral similar to that worked in part (a):

qenc = 4π

∫ ro

0

dr r2 ρ = 4π
(ρs

R

)

(

r4o
4

)

.

Therefore,

E =
1

4πε0

πρsr
4
o

Rr2o

which (using the relation between ρs and Q derived in part (a)) becomes

E =
1

4πε0

π
(

Q
πR3

)

r2o

R

and simplifies to the desired result (shown in the problem statement) if we change notation ro → r.

42. (a) We note that the symbol “e” stands for the elementary charge in the manipulations below. From

−e =

∫ ∞

0

ρ(r)4πr2dr =

∫ ∞

0

A exp (−2r/a0) 4πr2 dr = πa3
0A

we get A = −e/πa3
0.

(b) The magnitude of the field is

E =
qencl

4πε0a2
0

=
1

4πε0a2
0

(

e+

∫ a0

0

ρ(r)4πr2dr

)

=
e

4πε0a2
0

(

1− 4

a3
0

∫ a0

0

exp(−2r/a0) r
2 dr

)

=
5 e exp(−2)

4πε0 a2
0

.

We note that ~E points radially outward.

43. At all points where there is an electric field, it is radially outward. For each part of the problem, use a
Gaussian surface in the form of a sphere that is concentric with the sphere of charge and passes through
the point where the electric field is to be found. The field is uniform on the surface, so

∮

~E · d ~A = 4πr2E

where r is the radius of the Gaussian surface.
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(a) Here r is less than a and the charge enclosed by the Gaussian surface is q(r/a)3. Gauss’ law yields

4πr2E =

(

q

ε0

)

( r

a

)3

=⇒ E =
qr

4πε0a3
.

(b) In this case, r is greater than a but less than b. The charge enclosed by the Gaussian surface is q,
so Gauss’ law leads to

4πr2E =
q

ε0
=⇒ E =

q

4πε0r2
.

(c) The shell is conducting, so the electric field inside it is zero.

(d) For r > c, the charge enclosed by the Gaussian surface is zero (charge q is inside the shell cavity
and charge −q is on the shell). Gauss’ law yields

4πr2E = 0 =⇒ E = 0 .

(e) Consider a Gaussian surface that lies completely within the conducting shell. Since the electric

field is everywhere zero on the surface,
∮

~E · d ~A = 0 and, according to Gauss’ law, the net charge
enclosed by the surface is zero. If Qi is the charge on the inner surface of the shell, then q+Qi = 0
and Qi = −q. Let Qo be the charge on the outer surface of the shell. Since the net charge on the
shell is −q, Qi +Qo = −q. This means Qo = −q −Qi = −q − (−q) = 0.

44. The field is zero for 0 ≤ r ≤ a as a result of Eq. 24-16. Since qenc (for a ≤ r ≤ b) is related to the volume
by

qenc = ρ

(

4πr3

3
− 4πa3

3

)

then

E =
1

4πε0

qenc

r2
=

ρ

4πε0r2

(

4πr3

3
− 4πa3

3

)

=
ρ

3ε0

r3 − a3

r2

for a ≤ r ≤ b. And for r ≥ b we have E = qtotal/4πε0r
2 or

E =
ρ

3ε0

b3 − a3

r2
r ≥ b .

This is plotted below for r in meters from 0 to 0.30 m. The peak value of the electric field, reached at
r = b = 0.20 m, is 6.6× 103 N/C.

0

2000

4000

6000

0.1 0.2 0.3r
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45. To find an expression for the electric field inside the shell in terms of A and the distance from the center
of the shell, select A so the field does not depend on the distance. We use a Gaussian surface in the form
of a sphere with radius rg, concentric with the spherical shell and within it (a < rg < b). Gauss’ law will
be used to find the magnitude of the electric field a distance rg from the shell center. The charge that
is both in the shell and within the Gaussian sphere is given by the integral qs =

∫

ρ dV over the portion
of the shell within the Gaussian surface. Since the charge distribution has spherical symmetry, we may
take dV to be the volume of a spherical shell with radius r and infinitesimal thickness dr: dV = 4πr2 dr.
Thus,

qs = 4π

∫ rg

a

ρr2 dr = 4π

∫ rg

a

A

r
r2 dr = 4πA

∫ rg

a

r dr = 2πA(r2g − a2) .

The total charge inside the Gaussian surface is q+ qs = q+ 2πA(r2g − a2). The electric field is radial, so
the flux through the Gaussian surface is Φ = 4πr2gE, where E is the magnitude of the field. Gauss’ law
yields

4πε0Er
2
g = q + 2πA(r2g − a2) .

We solve for E:

E =
1

4πε0

[

q

r2g
+ 2πA− 2πAa2

r2g

]

.

For the field to be uniform, the first and last terms in the brackets must cancel. They do if q−2πAa2 = 0
or A = q/2πa2.

46. (a) From Gauss’ law,

~E(~r) =
1

4πε0

qencl

r3
~r =

1

4πε0

(4πρr3/3)~r

r3
=

ρ~r

3ε0
.

(b) The charge distribution in this case is equivalent to that of a whole sphere of charge density ρ plus
a smaller sphere of charge density −ρ which fills the void. By superposition

~E(~r) =
ρ~r

3ε0
+

(−ρ)(~r − ~a)
3ε0

=
ρ~a

3ε0
.

47. We use

E(r) =
qencl

4πε0r2
=

1

4πε0r2

∫ r

0

ρ(r)4πr2 dr

to solve for ρ(r) :

ρ(r) =
ε0
r2

d

dr
[r2E(r)] =

ε0
r2

d

dr
(Kr6) = 6Kε0r

3 .

48. (a) We consider the radial field produced at points within a uniform cylindrical distribution of charge.
The volume enclosed by a Gaussian surface in this case is Lπr2. Thus, Gauss’ law leads to

E =
|qenc|

ε0Acylinder
=
|ρ|
(

Lπr2
)

ε0 (2πrL)
=
|ρ|r
2ε0

.

(b) We note from the above expression that the magnitude of the radial field grows with r.

(c) Since the charged powder is negative, the field points radially inward.

(d) The largest value of r which encloses charged material is rmax = R. Therefore, with |ρ| =
0.0011 C/m3 and R = 0.050 m, we obtain

Emax =
|ρ|R
2ε0

= 3.1× 106 N/C .

(e) According to condition 1 mentioned in the problem, the field is high enough to produce an electrical
discharge (at r = R).
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49. (a) At A, the only field contribution is from the +5.00Q particle in the hollow (this follows from
Gauss’ law – it is the only charge enclosed by a Gaussian spherical surface passing through point A,
concentric with the shell). Thus, using k for 1/4πε0, we have ~E = k(5Q)/(0.5)2 = 20kQ directed
radially outward.

(b) Point B is in the conducting material, where the field must be zero in any electrostatic situation.

(c) Point C is outside the sphere where the net charge at smaller values of radius is −3.00Q+ 5.00Q=

2.00Q. Therefore, we have ~E = k(2Q)/(2)2 = 1
2kQ directed radially outward.

50. Since the fields involved are uniform, the precise location of P are not relevant. Since the sheets are
oppositely charged (though not equally so), the field contributions are additive (since P is between
them). Using Eq. 24-13, we obtain

~E =
σ1

2ε0
+

3σ1

2ε0
=

2σ1

ε0
directed towards the negatively charged sheet.

51. (a) We imagine a Gaussian surface A which is just outside the inner surface of the spherical shell. Then
~E is zero everywhere on surface A. Thus

∮

A

~E · d ~A =
(Q′ +Q)

ε0
= 0 ,

where Q′ is the charge on the inner surface of the shell. This gives Q′ = −Q.
(b) Since ~E remains zero on surface A the result is unchanged.

(c) Now,
∮

A

~E · d ~A =
(Q′ + q +Q)

ε0
= 0 ,

so Q′ = −(Q+ q).

(d) Yes, since ~E remains zero on surface A regardless of where you place the sphere inside the shell.

52. We choose a coordinate system whose origin is at the center of the flat base, such that the base is in the
xy plane and the rest of the hemisphere is in the z > 0 half space.

(a) Φ = πR2(−k̂) · Ek̂ = −πR2E.

(b) Since the flux through the entire hemisphere is zero, the flux through the curved surface is ~Φc =
−Φbase = πR2E.

53. Let Φ0 = 103 N·m2/C. The net flux through the entire surface of the dice is given by

Φ =

6
∑

n=1

Φn =

6
∑

n=1

(−1)nnΦ0 = Φ0(−1 + 2− 3 + 4− 5 + 6) = 3Φ0 .

Thus, the net charge enclosed is

q = ε0Φ = 3ε0Φ0 = 3

(

8.85× 10−12 C2

N·m2

)

(

103 N·m2/C
)

= 2.66× 10−8 C .

54. We use Φ =
∫

~E · d ~A. We note that the side length of the cube is 3.0 m− 1.0 m = 2.0 m.

(a) On the top face of the cube y = 2.0 m and d ~A = (dA)̂j. So ~E = 4̂ı− 3((2.0)2 + 2)̂j = 4̂ı− 18̂j. Thus
the flux is

Φ =

∫

top

~E · d ~A =

∫

top

(4̂ı− 18̂j) · (dA)̂j

= −18

∫

top

dA = (−18)(2.0)2 N·m2/C = −72 N·m2/C .
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(b) On the bottom face of the cube y = 0 and d ~A = (dA)(−ĵ). So ~E = 4̂ı− 3(02 + 2)̂j = 4̂ı− 6̂j. Thus,
the flux is

Φ =

∫

bottom

~E · d ~A =

∫

bottom

(4̂ı− 6̂j) · (dA)(−ĵ)

= 6

∫

bottom

dA = 6(2.0)2 N·m2/C = +24 N·m2/C .

(c) On the left face of the cube d ~A = (dA)(−ı̂). So

Φ =

∫

left

~E · d ~A =

∫

left

(4̂ı +Ey ĵ) · (dA)(−ı̂)

= −4

∫

bottom

dA = −4(2.0)2 N·m2/C = −16 N·m2/C .

(d) On the back face of the cube d ~A = (dA)(−k̂). But since ~E has no z component ~E · d ~A = 0. Thus,
Φ = 0.

(e) We now have to add the flux through all six faces. One can easily verify that the flux through the
front face is zero, while that through the right face is the opposite of that through the left one, or
+16 N·m2/C. Thus the net flux through the cube is Φ = (−72 + 24− 16 + 0 + 0 + 16)N·m2/C =
−48 N·m2/C.

55. The net enclosed charge q is given by

q = ε0Φ =

(

8.85× 10−12 C2

N·m2

)

(

−48 N·m2/C
)

= −4.2× 10−10 C .

56. Since the fields involved are uniform, the precise location of P is not relevant; what is important is it is
above the three sheets, with the positively charged sheets contributing upward fields and the negatively
charged sheet contributing a downward field, which conveniently conforms to usual conventions (of
upward as positive and downward as negative). The net field is directed upward, and (from Eq. 24-13)
is magnitude is

∣

∣

∣

~E
∣

∣

∣ =
σ1

2ε0
+

σ2

2ε0
+

σ3

2ε0
=

1.0× 10−6

2× 8.85× 10−12
= 5.6× 104 N/C .

57. (a) Outside the sphere, we use Eq. 24-15 and obtain

~E =
1

4πε0

q

r2
= 1.5× 104 N/C outward .

(b) With q = +6.00× 10−12 C, Eq. 24-20 leads to ~E = 2.5× 104 N/C directed outward.

58. (a) and (b) There is no flux through the sides, so we have two contributions to the flux, one from
the x = 2 end (with Φ2 = +(2 + 2)(π(0.20)2) = 0.50 N·m2/C) and one from the x = 0 end (with
Φ0 = −(2)(π(0.20)2)). By Gauss’ law we have qenc = ε0 (Φ2 + Φ0) = 2.2× 10−12 C.

59. (a) The cube is totally within the spherical volume, so the charge enclosed is ρ Vcube = (500 ×
10−9)(0.040)3 = 3.2× 10−11 C. By Gauss’ law, we find Φ = qenc/ε0 = 3.6 N·m2/C.

(b) Now the sphere is totally contained within the cube (note that the radius of the sphere is less than
half the side-length of the cube). Thus, the total charge is qencρ Vsphere = 4.5× 10−10 C. By Gauss’
law, we find Φ = qenc/ε0 = 51 N·m2/C.

60. We use Φ = qenclosed/ε0 and the fact that the amount of positive (negative) charges on the left (right)
side of the conductor is q (−q). Thus, Φ1 = q/ε0, Φ2 = −q/ε0, Φ3 = q/ε0, Φ4 = (q − q)/ε0 = 0, and
Φ5 = (q + q − q)/ε0 = q/ε0.
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61. (a) For r < R, E = 0 (see Eq. 24-16).

(b) For r slightly greater than R,

ER =
1

4πε0

q

r2
≈ q

4πε0R2
=

(8.99× 109 N·m2/C2)(2.0× 10−7C)

(0.25 m)2

= 2.9× 104 N/C .

(c) For r > R,

E =
1

4πε0

q

r2
= ER

(

R

r

)2

= (2.9× 104 N/C)

(

0.25 m

3.0 m

)2

= 200 N/C .

62. The field due to a sheet of charge is given by Eq. 24-13. Both sheets are horizontal (parallel to the xy
plane), producing vertical fields (parallel to the z axis). At points above the z = 0 sheet (sheet A), its
field points upward (towards +z); at points above the z = 2.0 sheet (sheet B), its field does likewise.
However, below the z = 2.0 sheet, its field is oriented downward.

(a) The magnitude of the net field in the region between the sheets is

∣

∣

∣

~E
∣

∣

∣
=
σA

2ε0
− σB

2ε0
= 2.8× 102 N/C .

(b) The magnitude of the net field at points above both sheets is

∣

∣

∣

~E
∣

∣

∣ =
σA

2ε0
+
σB

2ε0
= 6.2× 102 N/C .

63. To exploit the symmetry of the situation, we imagine a closed Gaussian surface in the shape of a cube,
of edge length d, with the charge q situated at the inside center of the cube. The cube has six faces, and
we expect an equal amount of flux through each face. The total amount of flux is Φnet = q/ε0, and we
conclude that the flux through the square is one-sixth of that. Thus, Φ = q/6ε0.

64. (a) At x = 0.040 m, the net field has a rightward (+x) contribution (computed using Eq. 24-13) from
the charge lying between x = −0.050 m and x = 0.040 m, and a leftward (−x) contribution (again
computed using Eq. 24-13) from the charge in the region from x = 0.040 m to x = 0.050 m. Thus,
since σ = q/A = ρV/A = ρ∆x in this situation, we have

∣

∣

∣

~E
∣

∣

∣ =
ρ(0.090 m)

2ε0
− ρ(0.010 m)

2ε0
= 5.4 N/C .

(b) In this case, the field contributions from all layers of charge point rightward, and we obtain

∣

∣

∣

~E
∣

∣

∣ =
ρ(0.100 m)

2ε0
= 6.8 N/C .

65. (a) The direction of the electric field at P1 is away from q1 and its magnitude is

∣

∣

∣

~E
∣

∣

∣ =
q

4πε0r21
=

(8.99× 109 N·m2/C2)(1.0× 10−7C)

(0.015 m)2
= 4.0× 106 N/C .

(b) ~E = 0, since P2 is inside the metal.

66. We use Eqs. 24-15, 24-16 and the superposition principle.

(a) E = 0 in the region inside the shell.

(b) E = (1/4πε0)(qa/r
2).
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(c) E = (1/4πε0)(qa + qb)/r
2.

(d) Since E = 0 for r < a the charge on the inner surface of the inner shell is always zero. The charge
on the outer surface of the inner shell is therefore qa. Since E = 0 inside the metallic outer shell
the net charge enclosed in a Gaussian surface that lies in between the inner and outer surfaces of
the outer shell is zero. Thus the inner surface of the outer shell must carry a charge −qa, leaving
the charge on the outer surface of the outer shell to be qb + qa.

67. (a) We use meg = eE = eσ/ε0 to obtain the surface charge density.

σ =
megε0
e

=
(9.11× 10−31 kg)

(

9.8 m/s2
)

(

8.85× 10−12 C2

N·m2

)

1.60× 10−19 C
= 4.9× 10−22 C/m

2
.

(b) Downward (since the electric force exerted on the electron must be upward).

68. (a) In order to have net charge −10 µC when −14 µC is known to be on the outer surface, then
there must be +4 µC on the inner surface (since charges reside on the surfaces of a conductor in
electrostatic situations).

(b) In order to cancel the electric field inside the conducting material, the contribution from the +4 µC
on the inner surface must be canceled by that of the charged particle in the hollow. Thus, the
particle’s charge is −4 µC.
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1. (a) An Ampere is a Coulomb per second, so

84 A·h =

(

84
C·h
s

)

(

3600
s

h

)

= 3.0× 105 C .

(b) The change in potential energy is ∆U = q∆V = (3.0× 105 C)(12 V) = 3.6× 106 J.

2. The magnitude is ∆U = e∆V = 1.2× 109 eV = 1.2 GeV.

3. (a) When charge q moves through a potential difference ∆V , its potential energy changes by ∆U =
q∆V . In this case, ∆U = (30 C)(1.0× 109 V) = 3.0× 1010 J.

(b) We equate the final kinetic energy 1
2mv

2 of the automobile to the energy released by the lightning,
denoted by Ulightning .

v =

√

2Ulightning

m
=

√

2(3.0× 1010 J)

1000 kg
= 7.7× 103 m/s .

(c) We equate the energy required to melt mass m of ice to the energy released by the lightning:
∆U = mLF , where LF is the heat of fusion for ice. Thus,

m =
∆U

LF
=

3.0× 1010 J

3.33× 105 J/kg
= 9.0× 104 kg .

4. (a) VB − VA = ∆U/(−e) = (3.94× 10−19 J)/(−1.60× 10−19 C) = −2.46 V.

(b) VC − VA = VB − VA = −2.46 V.

(c) VC − VB = 0 (Since C and B are on the same equipotential line).

5. The electric field produced by an infinite sheet of charge has magnitude E = σ/2ε0, where σ is the
surface charge density. The field is normal to the sheet and is uniform. Place the origin of a coordinate
system at the sheet and take the x axis to be parallel to the field and positive in the direction of the
field. Then the electric potential is

V = Vs −
∫ x

0

E dx = Vs − Ex ,

where Vs is the potential at the sheet. The equipotential surfaces are surfaces of constant x; that is,
they are planes that are parallel to the plane of charge. If two surfaces are separated by ∆x then their
potentials differ in magnitude by ∆V = E∆x = (σ/2ε0)∆x. Thus,

∆x =
2ε0 ∆V

σ
=

2
(

8.85× 10−12 C2/N ·m2
)

(50 V)

0.10× 10−6 C/m
2 = 8.8× 10−3 m .

635



636 CHAPTER 25.

6. (a) E = F/e = (3.9× 10−15 N)/(1.60× 10−19 C) = 2.4× 104 N/C.

(b) ∆V = E∆s = (2.4× 104 N/C)(0.12 m) = 2.9× 103 V.

7. The potential difference between the wire and cylinder is given, not the linear charge density on the
wire. We use Gauss’ law to find an expression for the electric field a distance r from the center of the
wire, between the wire and the cylinder, in terms of the linear charge density. Then integrate with
respect to r to find an expression for the potential difference between the wire and cylinder in terms
of the linear charge density. We use this result to obtain an expression for the linear charge density in
terms of the potential difference and substitute the result into the equation for the electric field. This
will give the electric field in terms of the potential difference and will allow you to compute numerical
values for the field at the wire and at the cylinder. For the Gaussian surface use a cylinder of radius r
and length ℓ, concentric with the wire and cylinder. The electric field is normal to the rounded portion
of the cylinder’s surface and its magnitude is uniform over that surface. This means the electric flux
through the Gaussian surface is given by 2πrℓE, where E is the magnitude of the electric field. The
charge enclosed by the Gaussian surface is q = λℓ, where λ is the linear charge density on the wire.
Gauss’ law yields 2πε0rℓE = λℓ. Thus,

E =
λ

2πε0r
.

Since the field is radial, the difference in the potential Vc of the cylinder and the potential Vw of the wire
is

∆V = Vw − Vc = −
∫ rw

rc

E dr =

∫ rc

rw

λ

2πε0r
dr =

λ

2πε0
ln
rc
rw

,

where rw is the radius of the wire and rc is the radius of the cylinder. This means that

λ =
2πε0 ∆V

ln(rc/rw)

and

E =
λ

2πε0r
=

∆V

r ln(rc/rw)
.

(a) We substitute rc for r to obtain the field at the surface of the wire:

E =
∆V

rw ln(rc/rw)
=

850 V

(0.65× 10−6 m) ln [(1.0× 10−2 m)/(0.65× 10−6 m)]

= 1.36× 108 V/m .

(b) We substitute rc for r to find the field at the surface of the cylinder:

E =
∆V

rc ln(rc/rw)
=

850 V

(1.0× 10−2 m) ln [(1.0× 10−2 m)/(0.65× 10−6 m)]

= 8.82× 103 V/m .

8. (a) The potential as a function of r is

V (r) = V (0)−
∫ r

0

E(r) dr = 0−
∫ r

0

qr

4πε0R3
dr = − qr2

8πε0R3
.

(b) ∆V = V (0)− V (R) = q/8πε0R.

(c) Since ∆V = V (0)− V (R) > 0, the potential at the center of the sphere is higher.
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9. (a) We use Gauss’ law to find expressions for the electric field inside and outside the spherical charge
distribution. Since the field is radial the electric potential can be written as an integral of the field
along a sphere radius, extended to infinity. Since different expressions for the field apply in different
regions the integral must be split into two parts, one from infinity to the surface of the distribution
and one from the surface to a point inside. Outside the charge distribution the magnitude of the
field is E = q/4πε0r

2 and the potential is V = q/4πε0r, where r is the distance from the center
of the distribution. This is the same as the field and potential of a point charge at the center of
the spherical distribution. To find an expression for the magnitude of the field inside the charge
distribution, we use a Gaussian surface in the form of a sphere with radius r, concentric with the
distribution. The field is normal to the Gaussian surface and its magnitude is uniform over it, so
the electric flux through the surface is 4πr2E. The charge enclosed is qr3/R3. Gauss’ law becomes

4πε0r
2E =

qr3

R3
,

so
E =

qr

4πε0R3
.

If Vs is the potential at the surface of the distribution (r = R) then the potential at a point inside,
a distance r from the center, is

V = Vs −
∫ r

R

E dr = Vs −
q

4πε0R3

∫ r

R

r dr = Vs −
qr2

8πε0R3
+

q

8πε0R
.

The potential at the surface can be found by replacing r with R in the expression for the potential
at points outside the distribution. It is Vs = q/4πε0R. Thus,

V =
q

4πε0

[

1

R
− r2

2R3
+

1

2R

]

=
q

8πε0R3
(3R2 − r2) .

(b) In problem 8 the electric potential was taken to be zero at the center of the sphere. In this problem
it is zero at infinity. According to the expression derived in part (a) the potential at the center of
the sphere is Vc = 3q/8πε0R. Thus V − Vc = −qr2/8πε0R3. This is the result of problem 8.

(c) The potential difference is

∆V = Vs − Vc =
2q

8πε0R
− 3q

8πε0R
= − q

8πε0R
.

The expression obtained in problem 8 would give this same value.

(d) Only potential differences have physical significance, not the value of the potential at any particular
point. The same value can be added to the potential at every point without changing the electric
field, for example. Changing the reference point from the center of the distribution to infinity
changes the value of the potential at every point but it does not change any potential differences.

10. (a)

W =

∫ f

i

q0 ~E ·d~s =
q0σ

2ε0

∫ z

0

dz =
q0σz

2ε0
.

(b) Since V − V0 = −W/q0 = −σz/2ε0,
V = V0 −

σz

2ε0
.

11. (a) For r > r2 the field is like that of a point charge and

V =
1

4πε0

Q

r
,

where the zero of potential was taken to be at infinity.
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(b) To find the potential in the region r1 < r < r2, first use Gauss’s law to find an expression for the
electric field, then integrate along a radial path from r2 to r. The Gaussian surface is a sphere
of radius r, concentric with the shell. The field is radial and therefore normal to the surface. Its
magnitude is uniform over the surface, so the flux through the surface is Φ = 4πr2E. The volume
of the shell is (4π/3)(r32 − r31), so the charge density is

ρ =
3Q

4π(r32 − r31)
,

and the charge enclosed by the Gaussian surface is

q =

(

4π

3

)

(r3 − r31)ρ = Q

(

r3 − r31
r32 − r31

)

.

Gauss’ law yields

4πε0r
2E = Q

(

r3 − r31
r32 − r31

)

=⇒ E =
Q

4πε0

r3 − r31
r2(r32 − r31)

.

If Vs is the electric potential at the outer surface of the shell (r = r2) then the potential a distance
r from the center is given by

V = Vs −
∫ r

r2

E dr = Vs −
Q

4πε0

1

r32 − r31

∫ r

r2

(

r − r31
r2

)

dr

= Vs −
Q

4πε0

1

r32 − r31

(

r2

2
− r22

2
+
r31
r
− r31
r2

)

.

The potential at the outer surface is found by placing r = r2 in the expression found in part (a).
It is Vs = Q/4πε0r2. We make this substitution and collect terms to find

V =
Q

4πε0

1

r32 − r31

(

3r22
2
− r2

2
− r31

r

)

.

Since ρ = 3Q/4π(r32 − r31) this can also be written

V =
ρ

3ε0

(

3r22
2
− r2

2
− r31

r

)

.

(c) The electric field vanishes in the cavity, so the potential is everywhere the same inside and has the
same value as at a point on the inside surface of the shell. We put r = r1 in the result of part (b).
After collecting terms the result is

V =
Q

4πε0

3(r22 − r21)
2(r32 − r31)

,

or in terms of the charge density

V =
ρ

2ε0
(r22 − r21) .

(d) The solutions agree at r = r1 and at r = r2.

12. The charge is

q = 4πε0RV =
(10 m)(−1.0 V)

8.99× 109 N·m2

C2

= −1.1× 10−9 C .
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13. (a) The potential difference is

VA − VB =
q

4πε0rA
− q

4πε0rB

=
(

1.0× 10−6 C
)

(

8.99× 109 N·m2

C2

)(

1

2.0 m
− 1

1.0 m

)

= −4500 V .

(b) Since V (r) depends only on the magnitude of ~r, the result is unchanged.

14. In the sketches shown below, the lines with the arrows are field lines and those without are the equipo-
tentials (which become more circular the closer one gets to the individual charges) . In all pictures, q2
is on the left and q1 is on the right (which is reversed from the way it is shown in the textbook).

(a) • • q1
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(b) • • q1
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15. First, we observe that V (x) cannot be equal to zero for x > d. In fact V (x) is always negative for x > d.
Now we consider the two remaining regions on the x axis: x < 0 and 0 < x < d. For x < 0 the separation
between q1 and a point on the x axis whose coordinate is x is given by d1 = −x; while the corresponding
separation for q2 is d2 = d− x. We set

V (x) = k

(

q1
d1

+
q2
d2

)

=
q

4πε0

(

1

−x +
−3

d− x

)

= 0

to obtain x = −d/2. Similarly, for 0 < x < d we have d1 = x and d2 = d− x. Let

V (x) = k

(

q1
d1

+
q2
d2

)

=
q

4πε0

(

1

x
+
−3

d− x

)

= 0

and solve: x = d/4.

16. Since according to the problem statement there is a point in between the two charges on the x axis
where the net electric field is zero, the fields at that point due to q1 and q2 must be directed opposite
to each other. This means that q1 and q2 must have the same sign (i.e., either both are positive or
both negative). Thus, the potentials due to either of them must be of the same sign. Therefore, the net
electric potential cannot possibly be zero anywhere except at infinity.

17. (a) The electric potential V at the surface of the drop, the charge q on the drop, and the radius R of
the drop are related by V = q/4πε0R. Thus

R =
q

4πε0V
=

(8.99× 109 N ·m2/C
2
)(30× 10−12 C)

500 V
= 5.4× 10−4 m .



641

(b) After the drops combine the total volume is twice the volume of an original drop, so the radius R′

of the combined drop is given by (R′)3 = 2R3 and R′ = 21/3R. The charge is twice the charge of
original drop: q′ = 2q. Thus,

V ′ =
1

4πε0

q′

R′ =
1

4πε0

2q

21/3R
= 22/3V = 22/3(500 V) ≈ 790 V .

18. (a) The charge on the sphere is

q = 4πε0V R =
(200 V)(0.15 m)

8.99× 109 N·m2

C2

= 3.3× 10−9 C .

(b) The (uniform) surface charge density (charge divided by the area of the sphere) is

σ =
q

4πR2
=

3.3× 10−9 C

4π(0.15 m)2
= 1.2× 10−8 C/m

2
.

19. Assume the charge on Earth is distributed with spherical symmetry. If the electric potential is zero
at infinity then at the surface of Earth it is V = q/4πε0R, where q is the charge on Earth and R =
6.37× 106 m is the radius of Earth. The magnitude of the electric field at the surface is E = q/4πε0R

2,
so V = ER = (100 V/m)(6.37× 106 m) = 6.4× 108 V.

20. The net electric potential at point P is the sum of those due to the six charges:

VP =

6
∑

i=1

VPi =

6
∑

i=1

qi
4πε0ri

=
1

4πε0

[

5.0q
√

d2 + (d/2)2
+
−2.0q

d/2
+

−3.0q
√

d2 + (d/2)2

+
3.0q

√

d2 + (d/2)2
+
−2.0q

d/2
+

−5.0q
√

d2 + (d/2)2

]

=
−0.94q

4πε0d
.

21. A charge −5q is a distance 2d from P , a charge −5q is a distance d from P , and two charges +5q are
each a distance d from P , so the electric potential at P is

V =
q

4πε0

[

− 5

2d
− 5

d
+

5

d
+

5

d

]

=
5q

8πε0
.

The zero of the electric potential was taken to be at infinity.

22. We use Eq. 25-20:

V =
1

4πε0

p

r2
=

(

8.99× 109 N·m2

C2

)

(1.47× 3.34× 10−30 C·m)

(52.0× 10−9 m)2
= 1.63× 10−5 V .

23. A positive charge q is a distance r − d from P , another positive charge q is a distance r from P , and a
negative charge −q is a distance r + d from P . Sum the individual electric potentials created at P to
find the total:

V =
q

4πε0

[

1

r − d +
1

r
− 1

r + d

]

.

We use the binomial theorem to approximate 1/(r − d) for r much larger than d:

1

r − d = (r − d)−1 ≈ (r)−1 − (r)−2(−d) =
1

r
+

d

r2
.
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Similarly,
1

r + d
≈ 1

r
− d

r2
.

Only the first two terms of each expansion were retained. Thus,

V ≈ q

4πε0

[

1

r
+

d

r2
+

1

r
− 1

r
+

d

r2

]

=
q

4πε0

[

1

r
+

2d

r2

]

=
q

4πε0r

[

1 +
2d

r

]

.

24. (a) From Eq. 25-35

V = 2
λ

4πε0
ln

[

L/2 +
√

(L2/4) + d 2

d

]

.

(b) The potential at P is V = 0 due to superposition.

25. (a) All the charge is the same distance R from C, so the electric potential at C is

V =
1

4πε0

[

Q

R
− 6Q

R

]

= − 5Q

4πε0R
,

where the zero was taken to be at infinity.

(b) All the charge is the same distance from P . That distance is
√
R2 + z2, so the electric potential at

P is

V =
1

4πε0

[

Q√
R2 + z2

− 6Q√
R2 + z2

]

= − 5Q

4πε0
√
R2 + z2

.

26. The potential is

VP =
1

4πε0

∫

rod

dq

R
=

1

4πε0R

∫

rod

dq =
−Q

4πε0R
.

We note that the result is exactly what one would expect for a point-charge −Q at a distance R. This
“coincidence” is due, in part, to the fact that V is a scalar quantity.

27. The disk is uniformly charged. This means that when the full disk is present each quadrant contributes
equally to the electric potential at P , so the potential at P due to a single quadrant is one-fourth the
potential due to the entire disk. First find an expression for the potential at P due to the entire disk.
We consider a ring of charge with radius r and (infinitesimal) width dr. Its area is 2πr dr and it contains
charge dq = 2πσr dr. All the charge in it is a distance

√
r2 + z2 from P , so the potential it produces at

P is

dV =
1

4πε0

2πσr dr√
r2 + z2

=
σr dr

2ε0
√
r2 + z2

.

The total potential at P is

V =
σ

2ε0

∫ R

0

r dr√
r2 + z2

=
σ

2ε0

√

r2 + z2
∣

∣

∣

R

0
=

σ

2ε0

[
√

R2 + z2 − z
]

.

The potential Vsq at P due to a single quadrant is

Vsq =
V

4
=

σ

8ε0

[

√

R2 + z2 − z
]

.

28. Consider an infinitesimal segment of the rod, located between x and x+dx. It has length dx and contains
charge dq = λdx, where λ = Q/L is the linear charge density of the rod. Its distance from P1 is d+ x
and the potential it creates at P1 is

dV =
1

4πε0

dq

d+ x
=

1

4πε0

λdx

d+ x
.
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To find the total potential at P1, integrate over the rod:

V =
λ

4πε0

∫ L

0

dx

d+ x
=

λ

4πε0
ln(d+ x)

∣

∣

∣

L

0
=

Q

4πε0L
ln

(

1 +
L

d

)

.

29. Consider an infinitesimal segment of the rod, located between x and x+dx. It has length dx and contains
charge dq = λdx = cx dx. Its distance from P1 is d+ x and the potential it creates at P1 is

dV =
1

4πε0

dq

d+ x
=

1

4πε0

cx dx

d+ x
.

To find the total potential at P1, integrate over the rod:

V =
c

4πε0

∫ L

0

xdx

d+ x
=

c

4πε0
[x− d ln(x+ d)]

∣

∣

∣

∣

L

0

=
c

4πε0

[

L− d ln

(

1 +
L

d

)]

.

30. The magnitude of the electric field is given by

|E| =
∣

∣

∣

∣

− ∆V

∆x

∣

∣

∣

∣

=
2(5.0 V)

0.015 m
= 6.7× 102 V/m .

At any point in the region between the plates, ~E points away from the positively charged plate, directly
towards the negatively charged one.

31. We use Eq. 25-41:

Ex(x, y) = −∂V
∂x

= − ∂

∂x

(

(2.0 V/m
2
)x2 − (3.0 V/m

2
)y2
)

= −2(2.0 V/m
2
)x ;

Ey(x, y) = −∂V
∂y

= − ∂

∂y

(

(2.0 V/m
2
)x2 − (3.0 V/m

2
)y2
)

= 2(3.0 V/m
2
)y .

We evaluate at x = 3.0 m and y = 2.0 m to obtain the magnitude of ~E:

E =
√

E2
x + E2

y = 17 V/m .

~E makes an angle θ with the positive x axis, where

θ = tan−1

(

Ey

Ex

)

= 135◦ .

32. We use Eq. 25-41. This is an ordinary derivative since the potential is a function of only one variable.

~E = −
(

dV

dx

)

ı̂ = − d

dx
(1500x2)̂ı = (−3000x)̂ı

= (−3000 V/m
2
)(0.0130 m)̂ı = (−39 V/m)̂ı .

33. (a) The charge on every part of the ring is the same distance from any point P on the axis. This
distance is r =

√
z2 +R2, where R is the radius of the ring and z is the distance from the center of

the ring to P . The electric potential at P is

V =
1

4πε0

∫

dq

r
=

1

4πε0

∫

dq√
z2 +R2

=
1

4πε0

1√
z2 +R2

∫

dq =
1

4πε0

q√
z2 +R2

.



644 CHAPTER 25.

(b) The electric field is along the axis and its component is given by

E = −∂V
∂z

= − q

4πε0

∂

∂z
(z2 +R2)−1/2

=
q

4πε0

(

1

2

)

(z2 +R2)−3/2(2z) =
q

4πε0

z

(z2 +R2)3/2
.

This agrees with Eq. 23-16.

34. (a) Consider an infinitesimal segment of the rod from x to x+ dx. Its contribution to the potential at
point P2 is

dV =
1

4πε0

λ(x)dx
√

x2 + y2
=

1

4πε0

cx
√

x2 + y2
dx .

Thus,

V =

∫

rod

dVP =
c

4πε0

∫ L

0

x
√

x2 + y2
dx =

c

4πε0
(
√

L2 + y2 − y) .

(b) The y component of the field there is

Ey = −∂VP

∂y
= − c

4πε0

d

dy
(
√

L2 + y2 − y) =
c

4πε0

(

1− y
√

L2 + y2

)

.

(c) We obtained above the value of the potential at any point P strictly on the y-axis. In order to obtain
Ex(x, y) we need to first calculate V (x, y). That is, we must find the potential for an arbitrary point
located at (x, y). Then Ex(x, y) can be obtained from Ex(x, y) = −∂V (x, y)/∂x.

35. (a) According to the result of problem 28, the electric potential at a point with coordinate x is given
by

V =
Q

4πε0L
ln

(

x− L
x

)

.

We differentiate the potential with respect to x to find the x component of the electric field:

Ex = −∂V
∂x

= − Q

4πε0L

∂

∂x
ln

(

x− L
x

)

= − Q

4πε0L

x

x− L

(

1

x
− x− L

x2

)

= − Q

4πε0x(x − L)
.

At x = −d we obtain

Ex = − Q

4πε0d(d+ L)
.

(b) Consider two points an equal infinitesimal distance on either side of P1, along a line that is per-
pendicular to the x axis. The difference in the electric potential divided by their separation gives
the transverse component of the electric field. Since the two points are situated symmetrically with
respect to the rod, their potentials are the same and the potential difference is zero. Thus the
transverse component of the electric field is zero.

36. (a) We use Eq. 25-43 with q1 = q2 = −e and r = 2.00 nm:

U = k
q1q2
r

= k
e2

r
=

(

8.99× 109 N·m2

C2

)

(1.60× 10−19 C)2

2.00× 10−9 m
= 1.15× 10−19 J .

(b) Since U > 0 and U ∝ r−1 the potential energy U decreases as r increases.
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37. We choose the zero of electric potential to be at infinity. The initial electric potential energy Ui of the
system before the particles are brought together is therefore zero. After the system is set up the final
potential energy is

Uf =
q2

4πε0

(

−1

a
− 1

a
+

1√
2a
− 1

a
− 1

a
+

1√
2a

)

=
2q2

4πε0a

(

1√
2
− 2

)

= −0.21q2

ε0a
.

Thus the amount of work required to set up the system is given by W = ∆U = Uf−Ui = −0.21q2/(ε0a).

38. The electric potential energy is

U = k
∑

i6=j

qiqj
rij

=
1

4πε0d

(

q1q2 + q1q3 + q2q4 + q3q4 +
q1q4√

2
+
q2q3√

2

)

=

(

8.99× 109 N·m2

C2

)

1.3 m

[

(12)(−24) + (12)(31) + (−24)(17) + (31)(17)

+
(12)(17)√

2
+

(−24)(31)√
2

]

(10−19 C)2

= −1.2× 10−6 J .

39. (a) Let ℓ = 0.15 m be the length of the rectangle and w = 0.050 m be its width. Charge q1 is a distance
ℓ from point A and charge q2 is a distance w, so the electric potential at A is

VA =
1

4πε0

[q1
ℓ

+
q2
w

]

=
(

8.99× 109 N·m2/C2
)

[−5.0× 10−6 C

0.15 m
+

2.0× 10−6 C

0.050 m

]

= 6.0× 104 V .

(b) Charge q1 is a distance w from point b and charge q2 is a distance ℓ, so the electric potential at B
is

VB =
1

4πε0

[q1
w

+
q2
ℓ

]

=
(

8.99× 109 N·m2/C2
)

[−5.0× 10−6 C

0.050 m
+

2.0× 10−6 C

0.15 m

]

= −7.8× 105 V .

(c) Since the kinetic energy is zero at the beginning and end of the trip, the work done by an external
agent equals the change in the potential energy of the system. The potential energy is the product
of the charge q3 and the electric potential. If UA is the potential energy when q3 is at A and UB

is the potential energy when q3 is at B, then the work done in moving the charge from B to A is
W = UA − UB = q3(VA − VB) = (3.0× 10−6 C)(6.0× 104 V + 7.8× 105 V) = 2.5 J.

(d) The work done by the external agent is positive, so the energy of the three-charge system increases.

(e) and (f) The electrostatic force is conservative, so the work is the same no matter which path is
used.

40. The work required is

W = ∆U =
1

4πε0

[

(4q)(5q)

2d
+

(5q)(−2q)

d

]

= 0 .
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41. The particle with charge −q has both potential and kinetic energy, and both of these change when the
radius of the orbit is changed. We first find an expression for the total energy in terms of the orbit radius
r. Q provides the centripetal force required for −q to move in uniform circular motion. The magnitude
of the force is F = Qq/4πε0r

2. The acceleration of −q is v2/r, where v is its speed. Newton’s second
law yields

Qq

4πε0r2
=
mv2

r
=⇒ mv2 =

Qq

4πε0r
,

and the kinetic energy is K = 1
2mv

2 = Qq/8πε0r. The potential energy is U = −Qq/4πε0r, and the
total energy is

E = K + U =
Qq

8πε0r
− Qq

4πε0r
= − Qq

8πε0r
.

When the orbit radius is r1 the energy is E1 = −Qq/8πε0r1 and when it is r2 the energy is E2 =
−Qq/8πε0r2. The difference E2 − E1 is the work W done by an external agent to change the radius:

W = E2 − E1 = − Qq

8πε0

(

1

r2
− 1

r1

)

=
Qq

8πε0

(

1

r1
− 1

r2

)

.

42. (a) The potential is

V (r) =
1

4πε0

e

r

=

(

8.99× 109 N·m2

C2

)

(1.60× 10−19 C)

5.29× 10−11 m
= 27.2 V .

(b) The potential energy is U = −eV (r) = −27.2 eV.

(c) Since mev
2/r = −e2/4πε0r2,

K =
1

2
mv2 = −1

2

(

e2

4πε0r

)

= −1

2
V (r) =

27.2 eV

2
= 13.6 eV .

(d) The energy required is

∆E = 0− [V (r) +K] = 0− (−27.2 eV + 13.6 eV) = 13.6 eV .

43. We use the conservation of energy principle. The initial potential energy is Ui = q2/4πε0r1, the initial
kinetic energy is Ki = 0, the final potential energy is Uf = q2/4πε0r2, and the final kinetic energy is
Kf = 1

2mv
2, where v is the final speed of the particle. Conservation of energy yields

q2

4πε0r1
=

q2

4πε0r2
+

1

2
mv2 .

The solution for v is

v =

√

2q2

4πε0m

(

1

r1
− 1

r2

)

=

√

(8.99× 109N·m2 /C
2
)(2)(3.1× 10−6 C)2

20× 10−6 kg

(

1

0.90× 10−3 m
− 1

2.5× 10−3 m

)

= 2.5× 103 m/s .
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44. Let r = 1.5 m, x = 3.0 m, q1 = −9.0 nC, and q2 = −6.0 pC. The work done by an external agent is given
by

W = ∆U =
q1q2
4πε0

(

1

r
− 1√

r2 + x2

)

= (−9.0× 10−9 C)(−6.0× 10−12 C)

(

8.99× 109 N ·m2

C2

)

·
[

1

1.5 m
− 1
√

(1.5 m)2 + (3.0 m)2

]

= 1.8× 10−10 J .

45. (a) The potential energy is

U =
q2

4πε0d
=

(8.99× 109 N·m2/C2)(5.0× 10−6 C)2

1.00 m
= 0.225 J

relative to the potential energy at infinite separation.

(b) Each sphere repels the other with a force that has magnitude

F =
q2

4πε0d2
=

(8.99× 109 N·m2/C2)(5.0× 10−6 C)2

(1.00 m)2
= 0.225 N .

According to Newton’s second law the acceleration of each sphere is the force divided by the mass
of the sphere. Let mA and mB be the masses of the spheres. The acceleration of sphere A is

aA =
F

mA
=

0.225 N

5.0× 10−3 kg
= 45.0 m/s

2

and the acceleration of sphere B is

aB =
F

mB
=

0.225 N

10× 10−3 kg
= 22.5 m/s2 .

(c) Energy is conserved. The initial potential energy is U = 0.225 J, as calculated in part (a). The
initial kinetic energy is zero since the spheres start from rest. The final potential energy is zero
since the spheres are then far apart. The final kinetic energy is 1

2mAv
2
A + 1

2mBv
2
B, where vA and

vB are the final velocities. Thus,

U =
1

2
mAv

2
A +

1

2
mBv

2
B .

Momentum is also conserved, so
0 = mAvA +mBvB .

These equations may be solved simultaneously for vA and vB . Substituting vB = −(mA/mB)vA,
from the momentum equation into the energy equation, and collecting terms, we obtain U =
1
2 (mA/mB)(mA +mB)v2

A. Thus,

vA =

√

2UmB

mA(mA +mB)

=

√

2(0.225 J)(10× 10−3 kg)

(5.0× 10−3 kg)(5.0× 10−3 kg + 10× 10−3 kg)
= 7.75 m/s .

We thus obtain

vB = −mA

mB
vA = −

(

5.0× 10−3 kg

10× 10−3 kg

)

(7.75 m/s) = −3.87 m/s .
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46. The change in electric potential energy of the electron-shell system as the electron starts from its initial
position and just reaches the shell is ∆U = (−e)(−V ) = eV. Thus from ∆U = K = 1

2mev
2
i we find the

initial electron speed to be

vi =

√

2∆U

me
=

√

2eV

me
.

47. We use conservation of energy, taking the potential energy to be zero when the moving electron is far
away from the fixed electrons. The final potential energy is then Uf = 2e2/4πε0d, where d is half the
distance between the fixed electrons. The initial kinetic energy is Ki = 1

2mv
2, where m is the mass of an

electron and v is the initial speed of the moving electron. The final kinetic energy is zero. Thus Ki = Uf

or 1
2mv

2 = 2e2/4πε0d. Hence

v =

√

4e2

4πε0 dm
=

√

(8.99× 109 N ·m2/C
2
)(4)(1.60× 10−19 C)2

(0.010 m)(9.11× 10−31 kg)
= 3.2× 102 m/s .

48. The initial speed vi of the electron satisfies Ki = 1
2mev

2
i = e∆V , which gives

vi =

√

2e∆V

me
=

√

2(1.60× 10−19 J)(625 V)

9.11× 10−31 kg
= 1.48× 107 m/s .

49. Let the distance in question be r. The initial kinetic energy of the electron is Ki = 1
2mev

2
i , where

vi = 3.2× 105 m/s. As the speed doubles, K becomes 4Ki. Thus

∆U =
−e2

4πε0r
= −∆K = −(4Ki −Ki) = −3Ki = −3

2
mev

2
i ,

or

r =
2e2

3(4πε0)mev2
i

=
2(1.6× 10−19 C)2

(

8.99× 109 N·m2

C2

)

3(9.11× 10−19 kg)(3.2× 105 m/s)2

= 1.6× 10−9 m .

50. Since the electric potential throughout the entire conductor is a constant, the electric potential at its
center is also +400 V.

51. If the electric potential is zero at infinity, then the potential at the surface of the sphere is given by
V = q/4πε0r, where q is the charge on the sphere and r is its radius. Thus

q = 4πε0rV =
(0.15 m)(1500 V)

8.99× 109 N·m2/C2
= 2.5× 10−8 C .

52. (a) Since the two conductors are connected V1 and V2 must be the same.

(b) Let V1 = q1/4πε0R1 = V2 = q2/4πε0R2 and note that q1 + q2 = q and R2 = 2R1. We solve for q1
and q2: q1 = q/3, q2 = 2q/3.

(c) The ratio of surface charge densities is

σ1

σ2
=
q1/4πR

2
1

q2/4πR2
2

=

(

q1
q2

)(

R2

R1

)2

= 2 .

53. (a) The electric potential is the sum of the contributions of the individual spheres. Let q1 be the charge
on one, q2 be the charge on the other, and d be their separation. The point halfway between them
is the same distance d/2 (= 1.0 m) from the center of each sphere, so the potential at the halfway
point is

V =
q1 + q2
4πε0d/2

=
(8.99× 109 N ·m2/C2)(1.0× 10−8 C− 3.0× 10−8 C)

1.0 m
= −1.80× 102 V .
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(b) The distance from the center of one sphere to the surface of the other is d−R, where R is the radius
of either sphere. The potential of either one of the spheres is due to the charge on that sphere and
the charge on the other sphere. The potential at the surface of sphere 1 is

V1 =
1

4πε0

[

q1
R

+
q2

d−R

]

= (8.99× 109 N ·m2/C
2
)

[

1.0× 10−8 C

0.030 m
− 3.0× 10−8 C

2.0 m− 0.030 m

]

= 2.9× 103 V .

The potential at the surface of sphere 2 is

V2 =
1

4πε0

[

q1
d−R +

q2
R

]

= (8.99× 109 N ·m2/C2)

[

1.0× 10−8 C

2.0 m− 0.030 m
− 3.0× 10−8 C

0.030 m

]

= −8.9× 103 V .

54. (a) The magnitude of the electric field is

E =
σ

ε0
=

q

4πε0R2
=

(3.0× 10−8 C)
(

8.99× 109 N·m2

C2

)

(0.15 m)2
= 1.2× 104 N/C .

(b) V = RE = (0.15 m)(1.2× 104 N/C) = 1.8× 103 V.

(c) Let the distance be x. Then

∆V = V (x)− V =
q

4πε0

(

1

R + x
− 1

R

)

= −500 V ,

which gives

x =
R∆V

−V −∆V
=

(0.15 m)(−500 V)

−1800 V + 500 V
= 5.8× 10−2 m .

55. (a) The potential would be

Ve =
Qe

4πε0Re
=

4πR2
eσe

4πε0Re
= 4πReσek

= 4π(6.37× 106 m)(1.0 electron/m2)(−1.6× 10−19 C/ electron)

(

8.99× 109 N ·m2

C2

)

= −0.12 V .

(b) The electric field is

E =
σe

ε0
=
Ve

Re
= − 0.12 V

6.37× 106 m
= −1.8× 10−8 N/C ,

where the minus sign indicates that ~E is radially inward.

56. Since the charge distribution is spherically symmetric we may write

E(r) =
1

4πε0

qencl

r
,
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where qencl is the charge enclosed in a sphere of radius r centered at the origin. Also, Eq. 25-18 is

implemented in the form: V (r) − V (r′) =
∫ r′

r
E(r) dr. The results are as follows: For r > R2 > R1

V (r) =
q1 + q2
4πε0r

and E(r) =
q1 + q2
4πε0r2

.

For R2 > r > R1

V (r) =
1

4πε0

(

q1
r

+
q2
R2

)

and E(r) =
q1

4πε0r2
.

Finally, for R2 > R1 > r

V =
1

4πε0

(

q1
R1

+
q2
R2

)

and E = 0 .

0
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E
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V
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r

57. (a) We use Eq. 25-18 to find the potential:

Vwall − V = −
∫ R

r

E dr

0− V = −
∫ R

r

(

ρr

2ε0

)

−V = − ρ

4ε0

(

R2 − r2
)

.

Consequently, V = ρ
4ε0

(

R2 − r2
)

.

(b) The value at r = 0 is

Vcenter =
−1.1× 10−3 C/m3

4 (8.85× 10−12 C/V·m)

(

(0.05 m)2 − 0
)

= −7.8× 104 V .

58. We treat the system as a superposition of a disk of surface charge density σ and radius R and a smaller,
oppositely charged, disk of surface charge density −σ and radius r. For each of these, Eq 25-37 applies
(for z > 0)

V =
σ

2ε0

(

√

z2 +R2 − z
)

+
−σ
2ε0

(

√

z2 + r2 − z
)

.

This expression does vanish as r →∞, as the problem requires. Substituting r = R/5 and z = 2R and
simplifying, we obtain

V =
σR

ε0

(

5
√

5−
√

101

10

)

≈ σR

ε0
(0.113) .

59. We use q = 1.37× 105 C from Sample Problem 22-7 and k = 1/4πε0 to find the potential:

V =
q

4πε0Re
=

(1.37× 105 C)
(

8.99× 109 N·m2

C2

)

6.37× 106 m
= 1.93× 108 V .
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60. (a) The potential on the surface is

V =
q

4πε0R
=

(

4.0× 10−6 C
)

(

8.99× 109 N·m2

C2

)

0.10 m
= 3.6× 105 V .

(b) The field just outside the sphere would be

E =
q

4πε0R2
=
V

R
=

3.6× 105 V

0.10 m
= 3.6× 106 V/m ,

which would have exceeded 3.0 MV/m. So this situation cannot occur.

61. If the electric potential is zero at infinity then at the surface of a uniformly charged sphere it is V =
q/4πε0R, where q is the charge on the sphere and R is the sphere radius. Thus q = 4πε0RV and the
number of electrons is

N =
|q|
e

=
4πε0R|V |

e
=

(1.0× 10−6 m)(400V)

(8.99× 109 N·m2/C
2
)(1.60× 10−19 C)

= 2.8× 105 .

62. This can be approached more than one way, but the simplest is to observe that the net potential (using
Eq. 25-27) due to the +2q and −2q charges is zero at both the initial and final positions of the movable
charge (+5q). This implies that no work is necessary to effect its change of position, which, in turn,
implies there is no resulting change in potential energy of the configuration. Hence, the ratio is unity.

63. We imagine moving all the charges on the surface of the sphere to the center of the the sphere. Using
Gauss’ law, we see that this would not change the electric field outside the sphere. The magnitude of
the electric field E of the uniformly charged sphere as a function of r, the distance from the center of
the sphere, is thus given by E(r) = q/(4πε0r

2) for r > R. Here R is the radius of the sphere. Thus, the
potential V at the surface of the sphere (where r = R) is given by

V (R) = V

∣

∣

∣

∣

r=∞
+

∫ ∞

R

E(r) dr =

∫ R

∞

q

4πε0r2
dr =

q

4πε0R

=

(

8.99× 109 N·m2

C2

)

(

1.50× 108 C
)

0.160 m
= 8.43× 102 V .

64. We use Ex = −dV/dx, where dV/dx is the local slope of the V vs. x curve depicted in Fig. 25-54.
The results are: Ex(ab) = −6.0 V/m, Ex(bc) = 0, Ex(cd) = Ex(de) = 3.0 V/m, Ex(ef) = 15 V/m,
Ex(fg) = 0, Ex(gh) = −3.0 V/m. Since these values are constant during their respective time-intervals,
their graph consists of several disconnected line-segments (horizontal) and is not shown here in the
interest of saving space.

65. On the dipole axis θ = 0 or π, so | cos θ| = 1. Therefore, magnitude of the electric field is

|E(r)| =
∣

∣

∣

∣

− ∂V

∂r

∣

∣

∣

∣

=
p

4πε0

∣

∣

∣

∣

d

dr

(

1

r2

) ∣

∣

∣

∣

=
p

2πε0r3
.

66. (a) We denote the surface charge density of the disk as σ1 for 0 < r < R/2, and as σ2 for R/2 < r < R.
Thus the total charge on the disk is given by

q =

∫

disk

dq =

∫ R/2

0

2πσ1r dr +

∫ R

R/2

2πσ2r dr =
π

4
R2(σ1 + 3σ2)

=
π

4
(2.20× 10−2 m)2[1.50× 10−6 C/m2 + 3(8.00× 10−7 C/m2)]

= 1.48× 10−9 C .
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(b) We use Eq. 25-36:

V (z) =

∫

disk

dV = k

[ ∫ R/2

0

σ1(2πR
′)dR′

√
z2 +R′2 +

∫ R

R/2

σ2(2πR
′)dR′

√
z2 +R′2

]

=
σ1

2ε0

(
√

z2 +
R2

4
− z
)

+
σ2

2ε0

(

√

z2 +R2 −
√

z2 +
R2

4

)

.

Substituting the numerical values of σ1, σ2, R and z, we obtain V (z) = 7.95× 102 V.

67. From the previous chapter, we know that the radial field due to an infinite line-source is

E =
λ

2πε0r

which integrates, using Eq. 25-18, to obtain

Vi = Vf +
λ

2πε0

∫ rf

ri

dr

r
= Vf +

λ

2πε0
ln

(

rf
ri

)

.

The subscripts i and f are somewhat arbitrary designations, and we let Vi = V be the potential of some
point P at a distance ri = r from the wire and Vf = Vo be the potential along some reference axis (which
will be the z axis described in this problem) at a distance rf = a from the wire. In the “end-view”
presented below, the wires and the z axis appear as points as they intersect the xy plane. The potential
due to the wire on the left (intersecting the plane at x = −a) is

Vnegative wire = Vo +
(−λ)
2πε0

ln

(

a
√

(x + a)2 + y2

)

,

and the potential due to the wire on the right (intersecting the plane at x = +a) is

Vpositive wire = Vo +
(+λ)

2πε0
ln

(

a
√

(x− a)2 + y2

)

.

Since potential is a scalar quantity, the net potential at point P is the addition of V−λ and V+λ which
simplifies to

Vnet = 2Vo +
λ

2πε0

(

ln

(

a
√

(x− a)2 + y2

)

− ln

(

a
√

(x+ a)2 + y2

))

=
λ

4πε0
ln

(

(x+ a)2 + y2

(x− a)2 + y2

)

where we have set the potential along the z axis equal to zero (Vo = 0) in the last step (which we are
free to do). This is the expression used to obtain the equipotentials shown below. The center dot in the
figure is the intersection of the z axis with the xy plane, and the dots on either side are the intersections
of the wires with the plane.
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68. The potential difference is ∆V = E∆s = (1.92× 105 N/C)(0.0150 m) = 2.90× 103 V.

69. Since the charge distribution on the arc is equidistant from the point where V is evaluated, its contri-
bution is identical to that of a point charge at that distance. We assume V → 0 as r → ∞ and apply
Eq. 25-27:

V =
1

4πε0

+Q

R
+

1

4πε0

+4Q

2R
+

1

4πε0

−2Q

R

which simplifies to Q/4πε0R.

70. From the previous chapter, we know that the radial field due to an infinite line-source is

E =
λ

2πε0r

which integrates, using Eq. 25-18, to obtain

Vi = Vf +
λ

2πε0

∫ rf

ri

dr

r
= Vf +

λ

2πε0
ln

(

rf
ri

)

.

The subscripts i and f are somewhat arbitrary designations, and we let Vi = V be the potential of some
point P at a distance ri = r from the wire and Vf = Vo be the potential along some reference axis (which
intersects the plane of our figure, shown below, at the xy coordinate origin, placed midway between the
bottom two line charges – that is, the midpoint of the bottom side of the equilateral triangle) at a
distance rf = a from each of the bottom wires (and a distance a

√
3 from the topmost wire). Thus, each

side of the triangle is of length 2a. Skipping some steps, we arrive at an expression for the net potential
created by the three wires (where we have set Vo = 0):

Vnet =
λ

4πε0
ln

(

(x2 + (y − a
√

3)2)2

((x + a)2 + y2)((x− a)2 + y2)

)

which forms the basis of our contour plot shown below. On the same plot we have shown four electric
field lines, which have been sketched (as opposed to rigorously calculated) and are not meant to be as
accurate as the equipotentials. The ±2λ by the top wire in our figure should be −2λ (the ± typo is an
artifact of our plotting routine).
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y

x+λ+λ

±2λ

71. The charges are equidistant from the point where we are evaluating the potential – which is computed
using Eq. 25-27 (or its integral equivalent). Eq. 25-27 implicitly assumes V → 0 as r → ∞. Thus, we
have

V =
1

4πε0

+Q

R
+

1

4πε0

−2Q

R
+

1

4πε0

+3Q

R

which simplifies to Q/2πε0R.

72. The radius of the cylinder (0.020 m, the same as rB) is denoted R, and the field magnitude there
(160 N/C) is denoted EB. The electric field beyond the surface of the sphere follows Eq. 24-12, which
expresses inverse proportionality with r:

| ~E|
EB

=
R

r
for r ≥ R .

(a) Thus, if r = rC = 0.050 m, we obtain | ~E| = (160)(0.020)/(0.050) = 64 N/C.

(b) Integrating the above expression (where the variable to be integrated, r, is now denoted ̺) gives
the potential difference between VB and VC .

VB − VC =

∫ r

R

EB R

̺
d̺ = EB R ln

( r

R

)

= 2.9 V .

(c) The electric field throughout the conducting volume is zero, which implies that the potential there
is constant and equal to the value it has on the surface of the charged cylinder: VA − VB = 0.

73. The net potential (at point A or B) is computed using Eq. 25-27. Thus, using k for 1/4πε0, the difference
is

VB − VA =

(

kq

2d
+
k(−5q)

2d

)

−
(

kq

d
+
k(−5q)

5d

)

= −4kq

2d

which simplifies to −q/2πε0 in SI units (with d = 1 m).

74. Eq. 25-32 applies with dq = λdx = bx dx (along 0 ≤ x ≤ 0.20 m).
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(a) Here r = x > 0, so that

V =
1

4πε0

∫ 0.20

0

bx dx

x
=
b(0.20)

4πε0

which yields V = 36 V.

(b) Now r =
√
x2 + d2 where d = 0.15 m, so that

V =
1

4πε0

∫ 0.20

0

bx dx√
x2 + d2

=
b

4πε0

(

√

x2 + d2
)∣

∣

∣

0.20

0

which yields V = 18 V.

75. (a) Using Eq. 25-26, we calculate the radius r of the sphere representing the 30 V equipotential surface:

r =
q

4πε0V
= 4.5 m .

(b) If the potential were a linear function of r then it would have equally spaced equipotentials, but
since V ∝ 1/r they are spaced more and more widely apart as r increases.

76. We denote q = 25 × 10−9 C, y = 0.6 m, x = 0.8 m, with V = the net potential (assuming V → 0 as
r→∞). Then,

VA =
1

4πε0

q

y
+

1

4πε0

(−q)
x

VB =
1

4πε0

q

x
+

1

4πε0

(−q)
y

leads to

VB − VA =
2

4πε0

q

x
− 2

4πε0

q

y
=

q

2πε0

(

1

x
− 1

y

)

which yields ∆V = −187 ≈ −190 V.

77. (a) By Eq. 25-18, the change in potential is the negative of the “area” under the curve. Thus, using
the area-of-a-triangle formula, we have

V − 10 = −
∫ x =2

0

~E · d~s =
1

2
(2)(20)

which yields V = 30 V.

(b) For any region within 0 < x < 3 m, −
∫

~E · d~s is positive, but for any region for which x > 3 m it
is negative. Therefore, V = Vmax occurs at x = 3 m.

V − 10 = −
∫ x =3

0

~E · d~s =
1

2
(3)(20)

which yields Vmax = 40 V.

(c) In view of our result in part (b), we see that now (to find V = 0) we are looking for some X > 3 m
such that the “area” from x = 3 m to x = X is 40 V. Using the formula for a triangle (3 < x < 4)
and a rectangle (4 < x < X), we require

1

2
(1)(20) + (X − 4)(20) = 40 .

Therefore, X = 5.5 m.
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78. In the “inside” region between the plates, the individual fields (given by Eq. 24.13) are in the same
direction (−ı̂):

~Ein = −
(

50× 10−9

2ε0
+

25× 10−9

2ε0

)

ı̂ = −4.2× 103 ı̂

in SI units (N/C or V/m). And in the “outside” region where x > 0.5 m, the individual fields point in
opposite directions:

~Eout = −50× 10−9

2ε0
ı̂ +

25× 10−9

2ε0
ı̂ = −1.4× 103 ı̂ .

Therefore, by Eq. 25-18, we have

∆V = −
∫ 0.8

0

~E · d~s = −
∫ 0.5

0

| ~E|in dx−
∫ 0.8

0.5

| ~E|out dx

= −
(

4.2× 103
)

(0.5)−
(

1.4× 103
)

(0.3)

= 2.5× 103 V .

79. We connect A to the origin with a line along the y axis, along which there is no change of potential
(Eq. 25-18:

∫

~E · d~s = 0). Then, we connect the origin to B with a line along the x axis, along which
the change in potential is

∆V = −
∫ x =4

0

~E · d~s = −4.00

∫ 4

0

xdx = −4.00

(

42

2

)

which yields VB − VA = −32 V.

80. (a) The charges are equal and are the same distance from C. We use the Pythagorean theorem to find
the distance r =

√

(d/2)2 + (d/2)2 = d/
√

2. The electric potential at C is the sum of the potential
due to the individual charges but since they produce the same potential, it is twice that of either
one:

V =
2q

4πε0

√
2

d
=

2
√

2q

4πε0d

=
(8.99× 109 N·m2/C2)(2)

√
2(2.0× 10−6 C)

0.020 m
= 2.54× 106 V .

(b) As you move the charge into position from far away the potential energy changes from zero to qV ,
where V is the electric potential at the final location of the charge. The change in the potential
energy equals the work you must do to bring the charge in:

W = qV =
(

2.0× 10−6 C
) (

2.54× 106 V
)

= 5.1 J .

(c) The work calculated in part (b) represents the potential energy of the interactions between the
charge brought in from infinity and the other two charges. To find the total potential energy of the
three-charge system you must add the potential energy of the interaction between the fixed charges.
Their separation is d so this potential energy is q2/4πε0d. The total potential energy is

U = W +
q2

4πε0d

= 5.1 J +
(8.99× 109 N·m2/C2)(2.0× 10−6 C)2

0.020 m
= 6.9 J .



657

81. (a) Let the quark-quark separation be r. To “naturally” obtain the eV unit, we only plug in for one of
the e values involved in the computation:

Uup−up =
1

4πε0

(

2e
3

) (

2e
3

)

r
=

4ke

9r
e

=
4
(

8.99× 109 N·m2

C2

)

(

1.60× 10−19 C
)

9 (1.32× 10−15 m)
e

= 4.84× 105 eV = 0.484 MeV .

(b) The total consists of all pair-wise terms:

U =
1

4πε0

[

(

2e
3

) (

2e
3

)

r
+

(−e
3

) (

2e
3

)

r
+

(−e
3

) (

2e
3

)

r

]

= 0 .

82. (a) At the smallest center-to-center separation rmin the initial kinetic energyKi of the proton is entirely
converted to the electric potential energy between the proton and the nucleus. Thus,

Ki =
1

4πε0

eq lead

rmin
=

82e2

4πε0rmin
.

In solving for rmin using the eV unit, we note that a factor of e cancels in the middle line:

rmin =
82e2

4πε0Ki
= k

82e2

4.80× 106 eV

=

(

8.99× 109 N ·m2

C2

)

82(1.6× 10−19 C)

4.80× 106 V

= 2.5× 10−14 m = 25 fm .

It is worth recalling that a volt is a Newton·meter/Coulomb, in making sense of the above manip-
ulations.

(b) An alpha particle has 2 protons (as well as 2 neutrons). Therefore, using r′min for the new separation,
we find

Ki =
1

4πε0

qαq lead

r′min

= 2

(

82e2

4πε0r′min

)

=
82e2

4πε0rmin

which leads to r′min = 2rmin = 50 fm.

83. The potential energy of the two-charge system is

U =
1

4πε0

[

q1q2
√

(x1 − x2)2 + (y1 − y2)2

]

=

(

8.99× 109 N·m2

C2

)

(3.0× 10−6 C)(−4.0× 10−6 C)
√

(3.5 + 2.0)2 + (0.50− 1.5)2 cm

= −1.9 J .

Thus, −1.9 J of work is needed.

84. For a point on the axis of the ring the potential (assuming V → 0 as r→∞) is

V =
q

4πε0
√
z2 +R2

where q = 16× 10−6 C and R = 0.030 m. Therefore,

VB − VA =
q

4πε0

(

1
√

z2
B +R2

− 1

R

)

where zB = 0.040 m. The result is −1.92× 106 V.
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85. We apply Eq. 25-41:

Ex = −∂V
∂x

= −2yz2

Ey = −∂V
∂y

= −2xz2

Ez = −∂V
∂z

= −4xyz

which, at (x, y, z) = (3,−2, 4), gives (Ex, Ey, Ez) = (64,−96, 96) in SI units. The magnitude of the field
is therefore

∣

∣

∣

~E
∣

∣

∣ =
√

E2
x + E2

y + E2
z = 150 V/m = 150 N/C .

86. We note that for two points on a circle, separated by angle θ (in radians), the direct-line distance between
them is r = 2R sin(θ/2). Using this fact, distinguishing between the cases where N = odd and N = even,
and counting the pair-wise interactions very carefully, we arrive at the following results for the total
potential energies. We use k = 1/4πε0. For configuration 1 (where all N electrons are on the circle), we
have

U1,N=even =
Nke2

2R





N
2
−1
∑

j=1

1

sin(jθ/2)
+

1

2





U1,N=odd =
Nke2

2R





N−1
2
∑

j=1

1

sin(jθ/2)





where θ = 2π
N . For configuration 2, we find

U2,N=even =
(N − 1)ke2

2R





N
2
−1
∑

j=1

1

sin(jθ′/2)
+ 2





U2,N=odd =
(N − 1)ke2

2R





N−3
2
∑

j=1

1

sin(jθ′/2)
+

5

2





where θ′ = 2π
N−1 . The results are all of the form

U1 or 2 =
ke2

2R
× a pure number .

In our table, below, we have the results for those “pure numbers” as they depend on N and on which
configuration we are considering. The values listed in the U rows are the potential energies divided by
ke2/2R.

N 4 5 6 7 8 9 10 11 12 13 14 15
U1 3.83 6.88 10.96 16.13 22.44 29.92 38.62 48.58 59.81 72.35 86.22 101.5
U2 4.73 7.83 11.88 16.96 23.13 30.44 39.92 48.62 59.58 71.81 85.35 100.2

We see that the potential energy for configuration 2 is greater than that for configuration 1 for N < 12,
but for N ≥ 12 it is configuration 1 that has the greatest potential energy.

(a) Configuration 1 has the smallest U for 2 ≤ N ≤ 11, and configuration 2 has the smallest U for
12 ≤ N ≤ 15.

(b) N = 12 is the smallest value such that U2 < U1 .
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(c) For N = 12, configuration 2 consists of 11 electrons distributed at equal distances around the circle,
and one electron at the center. A specific electron e0 on the circle is R distance from the one in the
center, and is

r = 2R sin
( π

11

)

≈ 0.56R

distance away from its nearest neighbors on the circle (of which there are two – one on each side).
Beyond the nearest neighbors, the next nearest electron on the circle is

r = 2R sin

(

2π

11

)

≈ 1.1R

distance away from e0. Thus, we see that there are only two electrons closer to e0 than the one in
the center.

87. (First problem of Cluster)

(a) The field between the plates is uniform; we apply Eq. 25-42 to find the magnitude of the (horizontal)

field: | ~E| = ∆V/D (assuming ∆V > 0). This produces a horizontal acceleration from Eq. 23-1 and
Newton’s second law (applied along the x axis):

ax =
|~Fx|
m

=
q| ~E|
m

=
q∆V

mD

where q > 0 has been assumed; the problem indicates that the acceleration is rightward, which
constitutes our choice for the +x direction. If we choose upward as the +y direction then ay = −g,
and we apply the free-fall equations of Chapter 2 to the y motion while applying the constant (ax)
acceleration equations of Table 2-1 to the x motion. The displacement is defined by ∆x = +D/2
and ∆y = −d, and the initial velocity is zero. Simultaneous solution of

∆x = v0x t+
1

2
ax t

2 and

∆y = v0y t+
1

2
ay t

2 ,

leads to

d =
gD

2ax
=
gmD2

2q∆V
.

(b) We can continue along the same lines as in part (a) (using Table 2-1) to find v, or we can use
energy conservation – which we feel is more instructive. The gain in kinetic energy derives from
two potential energy changes: from gravity comes mgd and from electric potential energy comes
q| ~E|∆x = q∆V/2. Consequently,

1

2
mv2 = mgd+

1

2
q∆V

which (upon using the expression for d above) yields

v =

√

mg2D2

q∆V
+
q∆V

m
.

(c) and (d) Using SI units (so q = 1.0× 10−10 C, m = 1.0× 10−9 kg) we plug into our results to obtain
d = 0.049 m and v = 1.4 m/s.

88. (Second problem of Cluster)
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(a) We argue by symmetry that of the total potential energy in the initial configuration, a third converts
into the kinetic energy of each of the particles. And, because the total potential energy consists of
three equal contributions

U =
1

4πε0

q2

d

then any of the particle’s final kinetic energy is equal to this U . Therefore, using k for1/4πε0, we
obtain

v =

√

2U

m
= |q|

√

2k

md
.

(b) In this case, two of the U contributions to the total potential energy are converted into a single
kinetic term:

v =

√

2(2U)

m
= 2|q|

√

k

md
.

(c) Now it is clear that the one remaining U contribution is converted into a particle’s kinetic energy:

v =

√

2U

m
= |q|

√

2k

md
.

(d) This leaves no potential energy to convert into kinetic for the last particle that is released. It
maintains zero speed.

89. (Third problem of Cluster )

(a) By momentum conservation we see that their final speeds are the same. We use energy conservation
(where the “final” subscript refers to when they are infinitely far away from each other):

Ui = Kf

1

4πε0

2Q2

D
= 2

(

1

2
mv2

)

which (using k = 1/4πε0) yields

v = |Q|
√

2k

mD
.

(b) As noted above, this result is the same as that of part (a).

(c) We use energy conservation (where the “final” subscript refers to when their surfaces have made
contact):

Ui = Kf + Uf

1

4πε0

−2Q2

D
= 2

(

1

2
mv2

)

+
1

4πε0

−2Q2

2r

which (using k = 1/4πε0) yields

v = |Q|
√

k

mr
− 2k

mD
≈ |Q|

√

k

mr

since r≪ D.

(d) As before, the speeds of the particles are equal (by momentum conservation).

(e) and (f) The collision being elastic means no kinetic energy is lost (or gained), so they are able to
return to their original positions (climbing back up that potential “hill”) whereupon their potential
energy is again Ui and their kinetic energies (hence, speeds) are zero.
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90. (Fourth problem of Cluster)

(a) At its displaced position, its potential energy (using k = 1/4πε0) is

Ui = k
qQ

d− x0
+ k

qQ

d+ x0
=

2kqQd

d2 − x2
0

.

And at A, the potential energy is

UA = 2

(

k
qQ

d

)

.

Setting this difference equal to the kinetic energy of the particle (1
2mv

2) and solving for the speed
yields

v =

√

2 (Ui − UA)

m
= 2 x0

√

k q Q

md (d2 − x2
0)

.

(b) It is straightforward to consider small x0 (more precisely, x0/d ≪ 1) in the above expression (so
that d2 − x2

0 ≈ d2). The result is

v ≈ 2
x0

d

√

k q Q

md
.

(c) Plugging in the given values (converted to SI units) yields v ≈ 19 m/s.

(d) Using the Pythagorean theorem, we now have

Ui = 2k
−qQ

√

d2 + x2
0

.

Therefore, (with UA in this part equal to the negative of UA in the previous part)

v =

√

2 (Ui − UA)

m
= 2

√

√

√

√

k q Q

m

(

1

d
− 1
√

d2 + x2
0

)

.

To simplify, the binomial theorem (Appendix E) is employed:

1
√

d2 + x2
0

≈ 1

d

(

1− 1

2

x2
0

d2

)

which leads to

v ≈ x0

d

√

2k q Q

md
.
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Chapter 26

1. The minimum charge measurable is

qmin = CVmin = (50 pF)(0.15 V) = 7.5 pC .

2. (a) The capacitance of the system is

C =
q

∆V
=

70 pC

20 V
= 3.5 pF .

(b) The capacitance is independent of q; it is still 3.5 pF.

(c) The potential difference becomes

∆V =
q

C
=

200 pC

3.5 pF
= 57 V .

3. Charge flows until the potential difference across the capacitor is the same as the potential difference
across the battery. The charge on the capacitor is then q = CV , and this is the same as the total charge
that has passed through the battery. Thus, q = (25× 10−6 F)(120 V) = 3.0× 10−3 C.

4. We verify the units relationship as follows:

[ε0] =
F

m
=

C

V·m =
C

(N·m/C)m
=

C2

N·m2
.

5. (a) The capacitance of a parallel-plate capacitor is given by C = ε0A/d, where A is the area of each
plate and d is the plate separation. Since the plates are circular, the plate area is A = πR2, where
R is the radius of a plate. Thus,

C =
ε0πR

2

d
=

(8.85× 10−12 F/m)π(8.2 × 10−2 m)2

1.3× 10−3 m
= 1.4× 10−10 F = 140 pF .

(b) The charge on the positive plate is given by q = CV , where V is the potential difference across the
plates. Thus, q = (1.4× 10−10 F)(120 V) = 1.7× 10−8 C = 17 nC.

6. We use C = Aε0/d. Thus

d =
Aε0
C

=
(1.00 m2)

(

8.85× 10−12 C2

N·m2

)

1.00 F
= 8.85× 10−12 m .

Since d is much less than the size of an atom (∼ 10−10 m), this capacitor cannot be constructed.

663
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7. Assuming conservation of volume, we find the radius of the combined spheres, then use C = 4πε0R to
find the capacitance. When the drops combine, the volume is doubled. It is then V = 2(4π/3)R3. The
new radius R′ is given by

4π

3
(R′)3 = 2

4π

3
R3 ,

so
R′ = 21/3R .

The new capacitance is
C′ = 4πε0R

′ = 4πε02
1/3R = 5.04πε0 .

8. (a) We use Eq. 26-17:

C = 4πε0
ab

b − a =
(40.0 mm)(38.0 mm)

(

8.99× 109 N·m2

C2

)

(40.0 mm− 38.0 mm)
= 84.5 pF .

(b) Let the area required be A. Then C = ε0A/(b− a), or

A =
C(b − a)

ε0
=

(84.5 pF)(40.0 mm− 38.0 mm)
(

8.85× 10−12 C2

N·m2

) = 191 cm2 .

9. According to Eq. 26-17 the capacitance of a spherical capacitor is given by

C = 4πε0
ab

b− a ,

where a and b are the radii of the spheres. If a and b are nearly the same then 4πab is nearly the surface
area of either sphere. Replace 4πab with A and b− a with d to obtain

C ≈ ε0A

d
.

10. The equivalent capacitance is

Ceq = C3 +
C1C2

C1 + C2
= 4.00µF +

(10.0µF)(5.00µF)

10.0µF + 5.00µF
= 7.33µF .

11. The equivalent capacitance is given by Ceq = q/V , where q is the total charge on all the capacitors and
V is the potential difference across any one of them. For N identical capacitors in parallel, Ceq = NC,
where C is the capacitance of one of them. Thus, NC = q/V and

N =
q

V C
=

1.00 C

(110 V)(1.00× 10−6 F)
= 9090 .

12. The charge that passes through meter A is

q = CeqV = 3CV = 3(25.0µF)(4200 V) = 0.315 C .

13. The equivalent capacitance is

Ceq =
(C1 + C2)C3

C1 + C2 + C3
=

(10.0µF + 5.00µF)(4.00µF)

10.0µF + 5.00µF + 4.00µF
= 3.16µF .

14. (a) and (b) The original potential difference V1 across C1 is

V1 =
CeqV

C1 + C2
=

(3.16µF)(100 V)

10.0µF + 5.00µF
= 21.1 V .

Thus ∆V1 = 100 V− 21.1 V = 79 V and ∆q1 = C1∆V1 = (10.0µF)(79 V) = 7.9× 10−4 C.
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15. Let x be the separation of the plates in the lower capacitor. Then the plate separation in the upper
capacitor is a − b − x. The capacitance of the lower capacitor is Cℓ = ε0A/x and the capacitance of
the upper capacitor is Cu = ε0A/(a− b− x), where A is the plate area. Since the two capacitors are in
series, the equivalent capacitance is determined from

1

Ceq
=

1

Cℓ
+

1

Cu
=

x

ε0A
+
a− b− x
ε0A

=
a− b
ε0A

.

Thus, the equivalent capacitance is given by Ceq = ε0A/(a− b) and is independent of x.

16. (a) The potential difference across C1 is V1 = 10 V. Thus, q1 = C1V1 = (10µF)(10 V) = 1.0× 10−4 C.

(b) Let C = 10µF. We first consider the three-capacitor combination consisting of C2 and its two
closest neighbors, each of capacitance C. The equivalent capacitance of this combination is

Ceq = C +
C2C

C + C2
= 1.5C .

Also, the voltage drop across this combination is

V =
CV1

C + Ceq
=

CV1

C + 1.5C
=

2

5
V1 .

Since this voltage difference is divided equally between C2 and the one connected in series with it,
the voltage difference across C2 satisfies V2 = V/2 = V1/5. Thus

q2 = C2V2 = (10µF)

(

10 V

5

)

= 2.0× 10−5 V .

17. The charge initially on the charged capacitor is given by q = C1V0, where C1 = 100 pF is the capacitance
and V0 = 50 V is the initial potential difference. After the battery is disconnected and the second
capacitor wired in parallel to the first, the charge on the first capacitor is q1 = C1V , where v = 35 V is
the new potential difference. Since charge is conserved in the process, the charge on the second capacitor
is q2 = q − q1, where C2 is the capacitance of the second capacitor. Substituting C1V0 for q and C1V
for q1, we obtain q2 = C1(V0 −V ). The potential difference across the second capacitor is also V , so the
capacitance is

C2 =
q2
V

=
V0 − V
V

C1 =
50 V− 35 V

35 V
(100 pF) = 3 pF .

18. (a) First, the equivalent capacitance of the two 4.0µF capacitors connected in series is given by
4.0µF/2 = 2.0µF. This combination is then connected in parallel with two other 2.0-µF ca-
pacitors (one on each side), resulting in an equivalent capacitance C = 3(2.0µF) = 6.0µF. This
is now seen to be in series with another combination, which consists of the two 3.0-µF capacitors
connected in parallel (which are themselves equivalent to C′ = 2(3.0µF) = 6.0µF). Thus, the
equivalent capacitance of the circuit is

Ceq =
CC′

C + C′ =
(6.0µF)(6.0µF)

6.0µF + 6.0µF
= 3.0µF .

(b) Let V = 20 V be the potential difference supplied by the battery. Then q = CeqV = (3.0µF)(20 V) =
6.0× 10−5 C.

(c) The potential difference across C1 is given by

V1 =
CV

C + C′ =
(6.0µF)(20 V)

6.0µF + 6.0µF
= 10 V ,

and the charge carried by C1 is q1 = C1V1 = (3.0µF)(10 V) = 3.0× 10−5 C.
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(d) The potential difference across C2 is given by V2 = V − V1 = 20 V − 10 V = 10 V. Consequently,
the charge carried by C2 is q2 = C2V2 = (2.0µF)(10 V) = 2.0× 10−5 C.

(e) Since this voltage difference V2 is divided equally between C3 and the other 4.0-µF capacitors
connected in series with it, the voltage difference across C3 is given by V3 = V2/2 = 10 V/2 = 5.0 V.
Thus, q3 = C3V3 = (4.0µF)(5.0 V) = 2.0× 10−5 C.

19. (a) After the switches are closed, the potential differences across the capacitors are the same and the
two capacitors are in parallel. The potential difference from a to b is given by Vab = Q/Ceq, where
Q is the net charge on the combination and Ceq is the equivalent capacitance. The equivalent
capacitance is Ceq = C1 +C2 = 4.0×10−6 F. The total charge on the combination is the net charge
on either pair of connected plates. The charge on capacitor 1 is

q1 = C1V = (1.0× 10−6 F)(100 V) = 1.0× 10−4 C

and the charge on capacitor 2 is

q2 = C2V = (3.0× 10−6 F)(100 V) = 3.0× 10−4 C ,

so the net charge on the combination is 3.0× 10−4 C− 1.0× 10−4 C = 2.0× 10−4 C. The potential
difference is

Vab =
2.0× 10−4 C

4.0× 10−6 F
= 50 V .

(b) The charge on capacitor 1 is now q1 = C1Vab = (1.0× 10−6 F)(50 V) = 5.0× 10−5 C.

(c) The charge on capacitor 2 is now q2 = C2Vab = (3.0× 10−6 F)(50 V) = 1.5× 10−4 C.

20. (a) In this situation, capacitors 1 and 3 are in series, which means their charges are necessarily the
same:

q1 = q3 =
C1C3V

C1 + C3
=

(1.0µF)(3.0µF)(12 V)

1.0µF + 3.0µF
= 9.0µC .

Also, capacitors 2 and 4 are in series:

q2 = q4 =
C2C4V

C2 + C4
=

(2.0µF)(4.0µF)(12 V)

2.0µF + 4.0µF
= 16µC .

(b) With switch 2 also closed, the potential difference V1 across C1 must equal the potential difference
across C2 and is

V1 =
C3 + C4

C1 + C2 + C3 + C4
V =

(3.0µF + 4.0µF)(12 V)

1.0µF + 2.0µF + 3.0µF + 4.0µF
= 8.4 V .

Thus, q1 = C1V1 = (1.0µF)(8.4 V) = 8.4µC, q2 = C2V1 = (2.0µF)(8.4 V) = 17µC, q3 =
C3(V −V1) = (3.0µF)(12 V−8.4 V) = 11µC, and q4 = C4(V −V1) = (4.0µF)(12 V−8.4 V) = 14µC.

21. The charges on capacitors 2 and 3 are the same, so these capacitors may be replaced by an equivalent
capacitance determined from

1

Ceq
=

1

C2
+

1

C3
=
C2 + C3

C2C3
.

Thus, Ceq = C2C3/(C2 +C3). The charge on the equivalent capacitor is the same as the charge on either
of the two capacitors in the combination and the potential difference across the equivalent capacitor is
given by q2/Ceq. The potential difference across capacitor 1 is q1/C1, where q1 is the charge on this
capacitor. The potential difference across the combination of capacitors 2 and 3 must be the same as
the potential difference across capacitor 1, so q1/C1 = q2/Ceq. Now some of the charge originally on
capacitor 1 flows to the combination of 2 and 3. If q0 is the original charge, conservation of charge yields



667

q1 + q2 = q0 = C1V0, where V0 is the original potential difference across capacitor 1. Solving the two
equations

q1
C1

=
q2
Ceq

and q1 + q2 = C1V0

for q1 and q2, we find

q2 = C1V0 − q1 and q1 =
C2

1V0

Ceq + C1
=

C2
1V0

C2C3

C2 + C3
+ C1

=
C2

1 (C2 + C3)V0

C1C2 + C1C3 + C2C3
.

The charges on capacitors 2 and 3 are

q2 = q3 = C1V0 − q1 = C1V0 −
C2

1 (C2 + C3)V0

C1C2 + C1C3 + C2C3
=

C1C2C3V0

C1C2 + C1C3 + C2C3
.

22. Let V = 1.00 m3. Using Eq. 26-23, the energy stored is

U = uV =
1

2
ε0E

2V

=
1

2

(

8.85× 10−12 C2

N·m2

)

(150 V/m)2(1.00 m3)

= 9.96× 10−8 J .

23. The energy stored by a capacitor is given by U = 1
2CV

2, where V is the potential difference across its
plates. We convert the given value of the energy to Joules. Since a Joule is a watt·second, we multiply
by (103 W/kW)(3600 s/h) to obtain 10 kW · h = 3.6× 107 J. Thus,

C =
2U

V 2
=

2(3.6× 107 J)

(1000 V)2
= 72 F .

24. (a) The capacitance is

C =
ε0A

d
=

(

8.85× 10−12 C2

N·m2

)

(40× 10−4 m2)

1.0× 10−3 m
= 3.5× 10−11 F = 35 pF .

(b) q = CV = (35 pF)(600 V) = 2.1× 10−8 C = 21 nC.

(c) U = 1
2CV

2 = 1
2 (35 pF)(21 nC)2 = 6.3× 10−6 J = 6.3µJ.

(d) E = V/d = 600 V/1.0× 10−3 m = 6.0× 105 V/m.

(e) The energy density (energy per unit volume) is

u =
U

Ad
=

6.3× 10−6 J

(40× 10−4 m2)(1.0× 10−3 m)
= 1.6 J/m

3
.

25. The total energy is the sum of the energies stored in the individual capacitors. Since they are connected
in parallel, the potential difference V across the capacitors is the same and the total energy is

U =
1

2
(C1 + C2)V

2 =
1

2

(

2.0× 10−6 F + 4.0× 10−6 F
)

(300 V)2 = 0.27 J .

26. The total energy stored in the capacitor bank is

U =
1

2
CtotalV

2 =
1

2
(2000)(5.00× 10−6 F)(50000 V)2 = 1.3× 107 J .

Thus, the cost is
(1.3× 107 J)(3.0 cent/ kW·h)

3.6× 106 J/ kW·h = 10 cents .
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27. (a) In the first case U = q2/2C, and in the second case U = 2(q/2)2/2C = q2/4C. So the energy is now
4.0 J/2 = 2.0 J.

(b) It becomes the thermal energy generated in the wire connecting the capacitors during the dis-
charging process (although a small fraction of it is probably radiated away in the form of radio
waves).

28. (a) The potential difference across C1 (the same as across C2 ) is given by

V1 = V2 =
C3V

C1 + C2 + C3
=

(4.00µF)(100 V)

10.0µF + 5.00µF + 4.00µF
= 21.1 V .

Also, V3 = V − V1 = V − V2 = 100 V− 21.1 V = 78.9 V. Thus,

q1 = C1V1 = (10.0µF)(21.1 V) = 2.11× 10−4 C

q2 = C2V2 = (5.00µF)(21.1 V) = 1.05× 10−4 C

q3 = q1 + q2 = 2.11× 10−4 C + 1.05× 10−4 C = 3.16× 10−4 C .

(b) The potential differences were found in the course of solving for the charges in part (a).

(c) The stored energies are as follows:

U1 =
1

2
C1V

2
1 =

1

2
(10.0µF)(21.1 V)2 = 2.22× 10−3 J ,

U2 =
1

2
C2V

2
2 =

1

2
(5.00µF)(21.1 V)2 = 1.11× 10−3 J ,

U3 =
1

2
C3V

2
3 =

1

2
(4.00µF)(78.9 V)2 = 1.25× 10−2 J .

29. (a) Let q be the charge on the positive plate. Since the capacitance of a parallel-plate capacitor is given
by ε0A/d, the charge is q = CV = ε0AV/d. After the plates are pulled apart, their separation is
2d and the potential difference is V ′. Then q = ε0AV

′/2d and

V ′ =
2d

ε0A
q =

2d

ε0A

ε0A

d
V = 2V .

(b) The initial energy stored in the capacitor is

Ui =
1

2
CV 2 =

ε0AV
2

2d

and the final energy stored is

Uf =
1

2

ε0A

2d
(V ′)2 =

1

2

ε0A

2d
4V 2 =

ε0AV
2

d
.

This is twice the initial energy.

(c) The work done to pull the plates apart is the difference in the energy: W = Uf − Ui = ε0AV
2/2d.

30. (a) The charge in the Figure is

q3 = C3V = (4.00µF)(100 V) = 4.00× 10−4 mC ,

q1 = q2 =
C1C2V

C1 + C2
=

(10.0µF)(5.00µF)(100 V)

10.0µF + 5.00µF
= 3.33× 10−4 C .

(b) V1 = q1/C1 = 3.33 × 10−4 C/10.0µF = 33.3 V, V2 = V − V1 = 100 V − 33.3 V = 66.7 V, and
V3 = V = 100 V.
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(c) We use Ui = 1
2CiV

2
i , where i = 1, 2, 3. The answers are U1 = 5.6 mJ, U1 = 11 mJ, and U1 = 20 mJ.

31. We first need to find an expression for the energy stored in a cylinder of radius R and length L, whose
surface lies between the inner and outer cylinders of the capacitor (a < R < b). The energy density at
any point is given by u = 1

2ε0E
2, where E is the magnitude of the electric field at that point. If q is the

charge on the surface of the inner cylinder, then the magnitude of the electric field at a point a distance
r from the cylinder axis is given by

E =
q

2πε0Lr

(see Eq. 26-12), and the energy density at that point is given by

u =
1

2
ε0E

2 =
q2

8π2ε0L2r2
.

The energy in the cylinder is the volume integral

UR =

∫

u dV .

Now, dV = 2πrL dr, so

UR =

∫ R

a

q2

8π2ε0L2r2
2πrL dr =

q2

4πε0L

∫ R

a

dr

r
=

q2

4πε0L
ln
R

a
.

To find an expression for the total energy stored in the capacitor, we replace R with b:

Ub =
q2

4πε0L
ln
b

a
.

We want the ratio UR/Ub to be 1/2, so

ln
R

a
=

1

2
ln
b

a

or, since 1
2 ln(b/a) = ln(

√

b/a), ln(R/a) = ln(
√

b/a). This means R/a =
√

b/a or R =
√
ab.

32. We use E = q/4πε0R
2 = V/R. Thus

u =
1

2
ε0E

2 =
1

2
ε0

(

V

R

)2

=
1

2

(

8.85× 10−12 C2

N ·m2

)(

8000 V

0.050 m

)2

= 0.11 J/m3.

33. The charge is held constant while the plates are being separated, so we write the expression for the
stored energy as U = q2/2C, where q is the charge and C is the capacitance. The capacitance of a
parallel-plate capacitor is given by C = ε0A/x, where A is the plate area and x is the plate separation,
so

U =
q2x

2ε0A
.

If the plate separation increases by dx, the energy increases by dU = (q2/2ε0A) dx. Suppose the agent
pulling the plate apart exerts force F . Then the agent does work F dx and if the plates begin and end
at rest, this must equal the increase in stored energy. Thus,

F dx =

(

q2

2ε0A

)

dx

and

F =
q2

2ε0A
.

The net force on a plate is zero, so this must also be the magnitude of the force one plate exerts on the
other. The force can also be computed as the product of the charge q on one plate and the electric field
E1 due to the charge on the other plate. Recall that the field produced by a uniform plane surface of
charge is E1 = q/2ε0A. Thus, F = q2/2ε0A.
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34. If the original capacitance is given by C = ε0A/d, then the new capacitance is C′ = ε0κA/2d. Thus
C′/C = κ/2 or κ = 2C′/C = 2(2.6 pF/1.3 pF) = 4.0.

35. The capacitance with the dielectric in place is given by C = κC0, where C0 is the capacitance before the
dielectric is inserted. The energy stored is given by U = 1

2CV
2 = 1

2κC0V
2, so

κ =
2U

C0V 2
=

2(7.4× 10−6 J)

(7.4× 10−12 F)(652 V)2
= 4.7 .

According to Table 26-1, you should use Pyrex.

36. (a) We use C = ε0A/d to solve for d:

d =
ε0A

C
=

(

8.85× 10−12 C2

N·m2

)

(0.35 m2)

50× 10−12 F
= 6.2× 10−2 m .

(b) We use C ∝ κ. The new capacitance is C′ = C(κ/κair) = (50 pf)(5.6/1.0) = 280 pF.

37. The capacitance of a cylindrical capacitor is given by

C = κC0 =
2πκε0L

ln(b/a)
,

where C0 is the capacitance without the dielectric, κ is the dielectric constant, L is the length, a is the
inner radius, and b is the outer radius. The capacitance per unit length of the cable is

C

L
=

2πκε0
ln(b/a)

=
2π(2.6)(8.85× 10−12 F/m)

ln [(0.60 mm)/(0.10 mm)]
= 8.1× 10−11 F/m = 81 pF/m .

38. (a) We use Eq. 26-14:

C = 2πε0κ
L

ln(b/a)
=

(4.7)(0.15 m)

2
(

8.99× 109 N·m2

C2

)

ln(3.8 cm/3.6 cm)
= 0.73 nF .

(b) The breakdown potential is (14 kV/mm)(3.8 cm− 3.6 cm) = 28 kV.

39. The capacitance is given by C = κC0 = κε0A/d, where C0 is the capacitance without the dielectric, κ
is the dielectric constant, A is the plate area, and d is the plate separation. The electric field between
the plates is given by E = V/d, where V is the potential difference between the plates. Thus, d = V/E
and C = κε0AE/V . Thus,

A =
CV

κε0E
.

For the area to be a minimum, the electric field must be the greatest it can be without breakdown
occurring. That is,

A =
(7.0× 10−8 F)(4.0× 103 V)

2.8(8.85× 10−12 F/m)(18× 106 V/m)
= 0.63 m2 .

40. The capacitor can be viewed as two capacitors C1 and C2 in parallel, each with surface area A/2 and
plate separation d, filled with dielectric materials with dielectric constants κ1 and κ2, respectively. Thus

C = C1 + C2 =
ε0(A/2)κ1

d
+
ε0(A/2)κ2

d
=
ε0A

d

(

κ1 + κ2

2

)

.
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41. We assume there is charge q on one plate and charge −q on the other. The electric field in the lower
half of the region between the plates is

E1 =
q

κ1ε0A
,

where A is the plate area. The electric field in the upper half is

E2 =
q

κ2ε0A
.

Let d/2 be the thickness of each dielectric. Since the field is uniform in each region, the potential
difference between the plates is

V =
E1d

2
+
E2d

2
=

qd

2ε0A

[

1

κ1
+

1

κ2

]

=
qd

2ε0A

κ1 + κ2

κ1κ2
,

so

C =
q

V
=

2ε0A

d

κ1κ2

κ1 + κ2
.

This expression is exactly the same as the that for Ceq of two capacitors in series, one with dielectric
constant κ1 and the other with dielectric constant κ2. Each has plate area A and plate separation
d/2. Also we note that if κ1 = κ2, the expression reduces to C = κ1ε0A/d, the correct result for a
parallel-plate capacitor with plate area A, plate separation d, and dielectric constant κ1.

42. Let C1 = ε0(A/2)κ1/2d = ε0Aκ1/4d, C2 = ε0(A/2)κ2/d = ε0Aκ2/2d, and C3 = ε0Aκ3/2d. Note that
C2 and C3 are effectively connected in series, while C1 is effectively connected in parallel with the C2-C3

combination. Thus,

C = C1 +
C2C3

C2 + C3
=
ε0Aκ1

4d
+

(ε0A/d)(κ2/2)(κ3/2)

κ2/2 + κ3/2

=
ε0A

4d

(

κ1 +
2κ2κ3

κ2 + κ3

)

.

43. (a) The electric field in the region between the plates is given by E = V/d, where V is the potential
difference between the plates and d is the plate separation. The capacitance is given by C = κε0A/d,
where A is the plate area and κ is the dielectric constant, so d = κε0A/C and

E =
V C

κε0A
=

(50 V)(100× 10−12 F)

5.4(8.85× 10−12 F/m)(100× 10−4 m2)
= 1.0× 104 V/m .

(b) The free charge on the plates is qf = CV = (100× 10−12 F)(50 V) = 5.0× 10−9 C.

(c) The electric field is produced by both the free and induced charge. Since the field of a large uniform
layer of charge is q/2ε0A, the field between the plates is

E =
qf

2ε0A
+

qf
2ε0A

− qi
2ε0A

− qi
2ε0A

,

where the first term is due to the positive free charge on one plate, the second is due to the negative
free charge on the other plate, the third is due to the positive induced charge on one dielectric
surface, and the fourth is due to the negative induced charge on the other dielectric surface. Note
that the field due to the induced charge is opposite the field due to the free charge, so they tend to
cancel. The induced charge is therefore

qi = qf − ε0AE
= 5.0× 10−9 C− (8.85× 10−12 F/m)(100× 10−4 m2)(1.0× 104 V/m)

= 4.1× 10−9 C = 4.1 nC .
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44. (a) The electric field E1 in the free space between the two plates is E1 = q/ε0A while that inside the
slab is E2 = E1/κ = q/κε0A. Thus,

V0 = E1(d− b) + E2b =

(

q

ε0A

)(

d− b+
b

κ

)

,

and the capacitance is

C =
q

V0
=

ε0Aκ

κ(d− b) + b

=

(

8.85× 10−12 C2

N·m2

)

(115× 10−4 m2)(2.61)

(2.61)(0.0124 m− 0.00780 m) + (0.00780 m)

= 13.4 pF .

(b) q = CV = (13.4× 10−12 F)(85.5 V) = 1.15 nC.

(c) The magnitude of the electric field in the gap is

E1 =
q

ε0A
=

1.15× 10−9 C
(

8.85× 10−12 C2

N·m2

)

(115× 10−4 m2)
= 1.13× 104 N/C .

(d) Using Eq. 26-32, we obtain

E2 =
E1

κ
=

1.13× 104 N/C

2.61
= 4.33× 103 N/C .

45. (a) According to Eq. 26-17 the capacitance of an air-filled spherical capacitor is given by

C0 = 4πε0
ab

b− a .

When the dielectric is inserted between the plates the capacitance is greater by a factor of the
dielectric constant κ. Consequently, the new capacitance is

C = 4πκε0
ab

b− a .

(b) The charge on the positive plate is

q = CV = 4πκε0
ab

b− aV .

(c) Let the charge on the inner conductor to be −q. Immediately adjacent to it is the induced charge
q′. Since the electric field is less by a factor 1/κ than the field when no dielectric is present, then
−q + q′ = −q/κ. Thus,

q′ =
κ− 1

κ
q = 4π(κ− 1)ε0

ab

b− aV .

46. (a) We apply Gauss’s law with dielectric: q/ε0 = κEA, and solve for κ:

κ =
q

ε0EA
=

8.9× 10−7 C
(

8.85× 10−12 C2

N·m2

)

(1.4× 10−6 V/m)(100× 10−4 m2)
= 7.2 .

(b) The charge induced is

q′ = q

(

1− 1

κ

)

= (8.9× 10−7 C)

(

1− 1

7.2

)

= 7.7× 10−7 C .
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47. Assuming the charge on one plate is +q and the charge on the other plate is −q, we find an expression for
the electric field in each region, in terms of q, then use the result to find an expression for the potential
difference V between the plates. The capacitance is

C =
q

V
.

The electric field in the dielectric is Ed = q/κε0A, where κ is the dielectric constant and A is the plate
area. Outside the dielectric (but still between the capacitor plates) the field is E = q/ε0A. The field is
uniform in each region so the potential difference across the plates is

V = Edb + E(d− b) =
qb

κε0A
+
q(d− b)
ε0A

=
q

ε0A

b+ κ(d− b)
κ

.

The capacitance is

C =
q

V
=

κε0A

κ(d− b) + b
=

κε0A

κd− b(κ− 1)
.

The result does not depend on where the dielectric is located between the plates; it might be touching
one plate or it might have a vacuum gap on each side.

For the capacitor of Sample Problem 26-8, κ = 2.61, A = 115 cm2 = 115 × 10−4 m2, d = 1.24 cm =
1.24× 10−2 m, and b = 0.78 cm = 0.78× 10−2 m, so

C =
2.61(8.85× 10−12 F/m)(115× 10−4 m2)

2.61(1.24× 10−2 m)− (0.780× 10−2 m)(2.61− 1)

= 1.34× 10−11 F = 13.4 pF

in agreement with the result found in the sample problem. If b = 0 and κ = 1, then the expression
derived above yields C = ε0A/d, the correct expression for a parallel-plate capacitor with no dielectric.
If b = d, then the derived expression yields C = κε0A/d, the correct expression for a parallel-plate
capacitor completely filled with a dielectric.

48. (a) Eq. 26-22 yields

U =
1

2
CV 2 =

1

2

(

200× 10−12 F
) (

7.0× 103 V
)2

= 4.9× 10−3 J .

(b) Our result from part (a) is much less than the required 150 mJ, so such a spark should not have
set off an explosion.

49. (a) With the potential difference equal to 600 V, a capacitance of 2.5× 10−10 F can only store energy
equal to U = 1

2CV
2 = 4.5× 10−5 J.

(b) No, our result from part (a) is only about 20% of that needed to produce a spark.

(c) Considering the charge as a constant, then voltage should be inversely proportional to the capaci-
tance. Therefore, if the capacitance drops by a factor of ten, then we expect the voltage to increase
by that same factor: Vf = 6000 V.

(d) Now the energy stored is U ′ = 1
2CfV

2
f = 4.5 × 10−4 J, a factor of ten greater than the value we

obtained in part (a).

(e) Yes, this new value of energy is nearly double that needed for a spark.

50. (a) We calculate the charged surface area of the cylindrical volume as follows:

A = 2πrh+ πr2 = 2π(0.20 m)(0.10 m) + π(0.20 m)2 = 0.25 m2

where we note from the figure that although the bottom is charged, the top is not. Therefore,
the charge is q = σA = −0.50µC on the exterior surface, and consequently (according to the
assumptions in the problem) that same charge q is induced in the interior of the fluid.
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(b) By Eq. 26-21, the energy stored is

U =
q2

2C
=

(

5.0× 10−7 C
)2

2 (35× 10−12 F)
= 3.6× 10−3 J .

(c) Our result is within a factor of three of that needed to cause a spark. Our conclusion is that it will
probably not cause a spark; however, there is not enough of a safety factor to be sure.

51. (a) We know from Eq. 26-7 that the magnitude of the electric field is directly proportional to the surface
charge density:

E =
σ

ε0
=

15× 10−6 C/m2

8.85× 10−12 C2/N·m2
= 1.7× 106 V/m .

Regarding the units, it is worth noting that a Volt is equivalent to a N·m/C.

(b) Eq. 26-23 yields

u =
1

2
ε0E

2 = 13 J/m3 .

(c) The energy U is the energy-per-unit-volume multiplied by the (variable) volume of the region
between the layers of plastic food wrap. Since the distance between the layers is x, and we use A
for the area over which the (say, positive) charge is spread, then that volume is Ax. Thus,

U = uAx where u = 13 J/m3 .

(d) The magnitude of force is
∣

∣

∣

~F
∣

∣

∣
=
dU

dx
= uA .

(e) The force per unit area is
∣

∣

∣

~F
∣

∣

∣

A
= u = 13 N/m2 .

Regarding units, it is worth noting that a Joule is equivalent to a N·m, which explains how J/m3

may be set equal to N/m2 in the above manipulation. We note, too, that the pressure unit N/m2

is generally known as a Pascal (Pa).

(f) Combining our steps in parts (a) through (e), we have
∣

∣

∣

~F
∣

∣

∣

A
= u =

1

2
ε0E

2

6.0 N/m2 =
1

2
ε0

(

σ

ε0

)2

=
σ2

2ε0

which leads to σ =
√

2(8.85× 10−12 )(6.0) = 1.0× 10−5 C/m2.

52. (a) We do not employ energy conservation since, in reaching equilibrium, some energy is dissipated
either as heat or radio waves. Charge is conserved; therefore, if Q = C1Vbat = 40 µC, and q1 and
q2 are the charges on C1 and C2 after the switch is thrown to the right and equilibrium is reached,
then

Q = q1 + q2 .

Reducing the right portion of the circuit (the C3, C4 parallel pair which are in series with C2) we
have an equivalent capacitance of C′ = 8.0 µF which has charge q′ = q2 and potential difference
equal to that of C1. Thus,

V1 = V ′

q1
C1

=
q2
C′
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which yields 4q1 = q2. Therefore,
Q = q1 + 4q1

leads to q1 = 8.0 µC and consequently to q2 = 32µC.

(b) From Eq. 26-1, we have V2 = (32µC)(16µF) = 2.0 V.

53. Using Eq. 26-27, with σ = q/A, we have
∣

∣

∣

~E
∣

∣

∣
=

q

κε0A
= 200× 103 N/C

which yields q = 3.3× 10−7 C. Eq. 26-21 and Eq. 26-25 therefore lead to

U =
q2

2C
=

q2d

2κε0A
= 6.6× 10−5 J .

54. (a) The potential across capacitor 1 is 10 V, so the charge on it is

q1 = C1V1 = (10 µF)(10 V) = 100 µC .

(b) Reducing the right portion of the circuit produces an equivalence equal to 6.0µF, with 10 V across
it. Thus, a charge of 60µC is on it – and consequently also on the bottom right capacitor. The
bottom right capacitor has, as a result, a potential across it equal to

V =
q

C
=

60µC

10µF
= 6.0 V ,

which leaves 10− 6 = 4.0 V across the group of capacitors in the upper right portion of the circuit.
Inspection of the arrangement (and capacitance values) of that group reveals that this 4.0 V must
be equally divided by C2 and the capacitor directly below it (in series with it). Therefore, with
2.0 V across capacitor 2, we find

q2 = C2V2 = (10µF)(2.0 V) = 20µC .

55. (a) We use q = CV = ε0AV/d to solve for A:

A =
Cd

ε0
=

(10× 10−12 F)(1.0 × 10−3 m)
(

8.85× 10−12 C2

N·m2

) = 1.1× 10−3 m2 .

(b) Now,

C′ = C

(

d

d′

)

= (10 pF)

(

1.0 mm

0.9 mm

)

= 11 pF .

(c) The new potential difference is V ′ = q/C′ = CV/C′. Thus,

∆V = V ′ − V =
(10 pF)(12 V)

11 pF
− 12 V = 1.2 V .

In a microphone, mechanical pressure applied to the aluminum foil as a result of sound can cause
the capacitance of the foil to change, thereby inducing a variable ∆V in response to the sound
signal.

56. (a) Here D is not attached to anything, so that the 6C and 4C capacitors are in series (equivalent
to 2.4C). This is then in parallel with the 2C capacitor, which produces an equivalence of 4.4C.
Finally the 4.4C is in series with C and we obtain

Ceq =
(C) (4.4C)

C + 4.4C
= 0.82C = 41µF

where we have used the fact that C = 50µF.
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(b) Now, B is the point which is not attached to anything, so that the 6C and 2C capacitors are now
in series (equivalent to 1.5C), which is then in parallel with the 4C capacitor (and thus equivalent
to 5.5C). The 5.5C is then in series with the C capacitor; consequently,

Ceq =
(C) (5.5C)

C + 5.5C
= 0.85C = 42µF .

57. In the first case the two capacitors are effectively connected in series, so the output potential difference
is Vout = CVin/2C = Vin/2 = 50.0 V. In the second case the lower diode acts as a wire so Vout = 0.

58. For maximum capacitance the two groups of plates must face each other with maximum area. In this case
the whole capacitor consists of (n − 1) identical single capacitors connected in parallel. Each capacitor
has surface area A and plate separation d so its capacitance is given by C0 = ε0A/d. Thus, the total
capacitance of the combination is

C = (n− 1)C0 =
(n− 1)ε0A

d
.

59. The voltage across capacitor 1 is

V1 =
q1
C1

=
30µC

10µF
= 3.0 V .

Since V1 = V2, the total charge on capacitor 2 is

q2 = C2V2 = (20µF) (2 V) = 60 µC ,

which means a total of 90µC of charge is on the pair of capacitors C1 and C2. This implies there is a
total of 90µC of charge also on the C3 and C4 pair. Since C3 = C4, the charge divides equally between
them, so q3 = q4 = 45µC. Thus, the voltage across capacitor 3 is

V3 =
q3
C3

=
45µC

20µF
= 2.3 V .

Therefore, |VA − VB | = V1 + V3 = 5.3 V.

60. (a) The equivalent capacitance is

Ceq =
C1C2

C1 + C2
=

(6.00µF)(4.00µF)

6.00µF + 4.00µF
= 2.40µF .

(b) q = CeqV = (2.40µF)(200 V) = 4.80× 104 C.

(c) V1 = q/C1 = 4.80× 104 C/2.40µF = 120 V, and V2 = V − V1 = 200 V− 120 V = 80 V.

61. (a) Now Ceq = C1 + C2 = 6.00µF + 4.00µF = 10.0µF.

(b) q1 = C1V = (6.00µF)(200 V) = 1.20× 10−3 C, q2 = C2V = (4.00µF)(200 V) = 8.00× 10−4 C.

(c) V1 = V2 = 200 V.

62. We cannot expect simple energy conservation to hold since energy is presumably dissipated either as heat
in the hookup wires or as radio waves while the charge oscillates in the course of the system “settling
down” to its final state (of having 40 V across the parallel pair of capacitors C and 60 µF). We do expect
charge to be conserved. Thus, if Q is the charge originally stored on C and q1, q2 are the charges on the
parallel pair after “setting down,” then

Q = q1 + q2

C(100 V) = C(40 V) + (60µF) (40 V)

which leads to the solution C = 40µF.
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63. (a) Put five such capacitors in series. Then, the equivalent capacitance is 2.0µF/5 = 0.40µF. With
each capacitor taking a 200-V potential difference, the equivalent capacitor can withstand 1000 V.

(b) As one possibility, you can take three identical arrays of capacitors, each array being a five-capacitor
combination described in part (a) above, and hook up the arrays in parallel. The equivalent
capacitance is now Ceq = 3(0.40µF) = 1.2µF. With each capacitor taking a 200-V potential
difference the equivalent capacitor can withstand 1000 V.

64. (a) The energy per unit volume is

u =
1

2
ε0E

2 =
1

2
ε0

(

e

4πε0r2

)2

=
e2

32π2ε0r4
.

(b) From the expression above u ∝ r−4. So for r → 0 u →∞.

65. (a) They each store the same charge, so the maximum voltage is across the smallest capacitor. With
100 V across 10 µF, then the voltage across the 20µF capacitor is 50 V and the voltage across the
25µF capacitor is 40 V. Therefore, the voltage across the arrangement is 190 V.

(b) Using Eq. 26-21 or Eq. 26-22, we sum the energies on the capacitors and obtain Utotal = 0.095 J.

66. (a) Since the field is constant and the capacitors are in parallel (each with 600 V across them) with
identical distances (d = 0.00300 m) between the plates, then the field in A is equal to the field in
B:

∣

∣

∣

~E
∣

∣

∣
=
V

d
= 2.00× 105 V/m .

(b) See the note in part (a).

(c) For the air-filled capacitor, Eq. 26-4 leads to

σ =
q

A
= ε0

∣

∣

∣

~E
∣

∣

∣ = 1.77× 10−6 C/m
2
.

(d) For the dielectric-filled capacitor, we use Eq. 26-27:

σ = κε0

∣

∣

∣

~E
∣

∣

∣ = 4.60× 10−6 C/m2 .

(e) Although the discussion in the textbook (§26-8) is in terms of the charge being held fixed (while
a dielectric is inserted), it is readily adapted to this situation (where comparison is made of two
capacitors which have the same voltage and are identical except for the fact that one has a dielectric).
The fact that capacitor B has a relatively large charge but only produces the field that A produces
(with its smaller charge) is in line with the point being made (in the text) with Eq. 26-32 and in
the material that follows. Adapting Eq. 26-33 to this problem, we see that the difference in charge
densities between parts (c) and (d) is due, in part, to the (negative) layer of charge at the top
surface of the dielectric; consequently,

σ′ =
(

1.77× 10−6
)

−
(

4.60× 10−6
)

= −2.83× 10−6 C/m
2
.

67. (a) The equivalent capacitance is Ceq = C1C2/(C1 + C2). Thus the charge q on each capacitor is

q = CeqV =
C1C2V

C1 + C2
=

(2.0µF)(8.0µF)(300 V)

2.0µF + 8.0µF
= 4.8× 10−4 C .

The potential differences are: V1 = q/C1 = 4.8 × 10−4 C/2.0µF = 240 V, V2 = V − V1 = 300 V−
240 V = 60 V.
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(b) Now we have q′1/C1 = q′2/C2 = V ′ (V ′ being the new potential difference across each capacitor)
and q′1 + q′2 = 2q. We solve for q′1, q

′
2 and V :

q′1 =
2C1q

C1 + C2
=

2(2.0µF)(4.8× 10−4 C)

2.0µF + 8.0µF
= 1.9× 10−4 C ,

q′2 = 2q − q1 = 7.7× 10−4 C ,

V ′ =
q′1
C1

=
1.92× 10−4 C

2.0µF
= 96 V .

(c) In this circumstance, the capacitors will simply discharge themselves, leaving q1 = q2 = 0 and
V1 = V2 = 0.

68. We use U = 1
2CV

2. As V is increased by ∆V , the energy stored in the capacitor increases correspondingly
from U to U + ∆U : U + ∆U = 1

2C(V + ∆V )2. Thus, (1 + ∆V/V )2 = 1 + ∆U/U , or

∆V

V
=

√

1 +
∆U

U
− 1 =

√

1 + 10%− 1 = 4.9% .

69. (a) The voltage across C1 is 12 V, so the charge is

q1 = C1V1 = 24µC .

(b) We reduce the circuit, starting with C4 and C3 (in parallel) which are equivalent to 4µF. This is
then in series with C2, resulting in an equivalence equal to 4

3 µF which would have 12 V across it.
The charge on this 4

3 µF capacitor (and therefore on C2) is (4
3 µF)(12 V) = 16µC. Consequently,

the voltage across C2 is

V2 =
q2
C2

=
16µC

2µF
= 8 V .

This leaves 12− 8 = 4 V across C4 (similarly for C3).

70. (a) The energy stored is

U =
1

2
CV 2 =

1

2
(130× 10−12 F)(56.0 V)2 = 2.04× 10−7 J .

(b) No, because we don’t know the volume of the space inside the capacitor where the electric field is
present.

71. We reduce the circuit, starting with C1 and C2 (in series) which are equivalent to 4µF. This is then
parallel to C3 and results in a total of 8µF, which is now in series with C4 and can be further reduced.
However, the final step in the reduction is not necessary, as we observe that the 8µF equivalence from
the top 3 capacitors has the same capacitance as C4 and therefore the same voltage; since they are in
series, that voltage is then 12/2 = 6 V.

72. We use C = ε0κA/d ∝ κ/d. To maximize C we need to choose the material with the greatest value of
κ/d. It follows that the mica sheet should be chosen.

73. (a) After reducing the pair of 4µF capacitors to a series equivalence of 2µF, we have three 2 µF
capacitors in the upper right portion of the circuit all in parallel – and thus equivalent to 6µF.
In the lower right portion of the circuit are two 3µF capacitors in parallel, equivalent also to
6 µF. These two 6µF equivalent-capacitors are then in series, so that the full reduction leads to an
equivalence of 3.0µF.

(b) With 20 V across the result of part (a), we have a charge equal to q = CV = (3.0µF)(20 V) = 60µC.

74. (a) The length d is effectively shortened by b so C′ = ε0A/(d− b).
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(b) The energy before, divided by the energy after inserting the slab is

U

U ′ =
q2/2C

q2/2C′ =
C′

C
=
ε0A/(d− b)
ε0A/d

=
d

d− b .

(c) The work done is

W = ∆U = U ′ − U =
q2

2

(

1

C′ −
1

C

)

=
q2

2ε0A
(d− b − d) = − q2b

2ε0A
.

Since W < 0 the slab is sucked in.

75. (a) C′ = ε0A/(d− b), the same as part (a) in problem 74.

(b) Now,

U

U ′ =
1
2CV

2

1
2C

′V 2
=

C

C′ =
ε0A/d

ε0A/(d− b)
=
d− b
d

.

(c) The work done is

W = ∆U = U ′ − U =
1

2
(C′ − C)V 2 =

ε0A

2

(

1

d− b −
1

d

)

V 2 =
ε0AbV

2

2d(d− b) .

Since W > 0 the slab must be pushed in.

76. We do not employ energy conservation since, in reaching equilibrium, some energy is dissipated either
as heat or radio waves. Charge is conserved; therefore, if Q = 48µC, and q1 and q3 are the charges on
C1 and C3 after the switch is thrown to the right (and equilibrium is reached), then

Q = q1 + q3 .

We note that V1 and 2 = V3 because of the parallel arrangement, and V1 = 1
2V1 and 2 since they are

identical capacitors. This leads to

2V1 = V3

2
q1
C1

=
q3
C3

2q1 = q3

where the last step follows from multiplying both sides by 2.00µF. Therefore,

Q = q1 + (2q1)

which yields q1 = 16µC and q3 = 32µC.

77. (a) Since u = 1
2κε0E

2, we select the material with the greatest value of κE2
max, where Emax is its di-

electric strength. We therefore choose strontium titanate, with the corresponding minimum volume

Vmin =
U

Umax
=

2U

κε0E2
max

=
2(250 kJ)

(310)
(

8.85× 10−12 C2

N·m2

)

(8 kV/mm)2
= 2.85 m3 .

(b) We solve for κ′ from U = 1
2κ

′ε0E2
maxV ′

min:

κ′ =
2U

ε0V ′E2
max

=
2(250 kJ)

(

8.85× 10−12 C2

N·m2

)

(0.0870 m3)(8 kV/mm)2
= 1.01× 104 .
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78. (a) Initially, the capacitance is

C0 =
ε0A

d
=

(

8.85× 10−12 C2

N·m2

)

(0.12 m2)

1.2× 10−2 m
= 89 pF .

(b) Working through Sample Problem 26-6 algebraically, we find:

C =
ε0Aκ

κ(d− b) + b
=

(

8.85× 10−12 C2

N·m2

)

(0.12 m2)(4.8)

(4.8)(1.2− 0.40)(10−2 m) + (4.0× 10−3 m)
= 120 pF .

(c) Before the insertion, q = C0V (89 pF)(120 V) = 11 nC. Since the battery is disconnected, q will
remain the same after the insertion of the slab.

(d) E = q/ε0A = 11× 10−9 C/
(

8.85× 10−12 C2

N·m2

)

(

0.12 m2
)

= 10 kV/m.

(e) E′ = E/κ = (10 kV/m)/4.8 = 2.1 kV/m.

(f) V = E(d− b) + E′b = (10 kV/m)(0.012 m− 0.0040 m) + (2.1 kV/m)(0.40× 10−3 m) = 88 V.

(g) The work done is

Wext = ∆U =
q2

2

(

1

C
− 1

C0

)

=
(11× 10−9 C)2

2

(

1

89× 10−12 F
− 1

120× 10−12 F

)

= −1.7× 10−7 J .

79. (a) Since u = 1
2κε0E

2, Eslab = Eair/κslab, and U = uV (where V = volume), then the fraction of energy
stored in the air gaps is

Uair

Utotal
=

E2
airA(d− b)

E2
airA(d− b) + κslabE2

slabAb
=

1

1 + κslab(Eslab/Eair)2[b/(d− b)]

=
1

1 + (2.61)(1/2.61)2[0.780/(1.24− 0.780)]
= 0.606 .

(b) The fraction of energy stored in the slab is 1− 0.606 = 0.394.

80. (a) The equivalent capacitance of the three capacitors connected in parallel is Ceq = 3C = 3ε0A/d =
ε0A/(d/3). Thus, the required spacing is d/3.

(b) Now, Ceq = C/3 = ε0A/3d, so the spacing should be 3d.

81. We do not employ energy conservation since, in reaching equilibrium, some energy is dissipated either
as heat or radio waves. Charge is conserved; therefore, if Q = C1Vbat = 24µC, and q1 and q3 are the
charges on C1 and C3 after the switch is thrown to the right (and equilibrium is reached), then

Q = q1 + q3 .

We reduce the series pair C2 and C3 to C′ = 4/3 µF which has charge q′ = q3 and the same voltage that
we find across C1. Therefore,

V1 = V ′

q1
C1

=
q3
C′

which leads to q1 = 1.5q3. Hence,
Q = (1.5q3) + q3

leads to q3 = 9.6µC.
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82. (First problem of Cluster)

(a) We do not employ energy conservation since, in reaching equilibrium, some energy is dissipated
either as heat or radio waves. Charge is conserved; therefore, if Q = C1Vbat = 400µC, and q1 and
q2 are the charges on C1 and C2 after the switch S is closed (and equilibrium is reached), then

Q = q1 + q2 .

After switch S is closed, the capacitor voltages are equal, so that

V1 = V2
q1
C1

=
q2
C2

which yields 3
4q1 = q2. Therefore,

Q = q1 +

(

3

4
q1

)

which gives the result q1 = 229µC.

(b) The relation 3
4q1 = q2 gives the result q2 = 171µC.

(c) We apply Eq. 27-1: V1 = q1/C1 = 5.71 V.

(d) Similarly, V2 = q2/C2 = 5.71 V (which is equal to V1, of course – since that fact was used in the
solution to part (a)).

(e) When C1 had charge Q and was connected to the battery, the energy stored was 1
2C1V

2
bat =

2.00× 10−3 J. The energy stored after S is closed is 1
2C1V

2
1 + 1

2C2V
2
2 = 1.14× 10−3 J. The decrease

is therefore 8.6× 10−4 J.

83. (Second problem of Cluster)

(a) The change (from the previous problem) is that the initial charge (before switch S is closed) is
Q + Q′ where Q is as before but Q′ = C2(10 V) = 600µC. We assume the polarities of these
capacitor charges are the same. With this modification, we follow steps similar to those in the
previous solution:

Q+Q′ = q1 + q2

= q1 +

(

3

4
q1

)

which yields q1 = 571µC.

(b) The relation 3
4q1 = q2 gives the result q2 = 429µC.

(c) We apply Eq. 27-1: V1 = q1/C1 = 14.3 V.

(d) Similarly, V2 = q2/C2 = 14.3 V.

(e) The initial energy now includes 1
2C2(20 V)2 in addition to the 1

2C1V
2

bat computed in the previous
case. Thus, the total initial energy is 8.00×10−3 J. And the final stored energy is 1

2C1V
2
1 + 1

2C2V
2
2 =

7.14× 10−3 J. The decrease is therefore 8.6× 10−4 J, as it was in the previous problem.

84. (Third problem of Cluster)

(a) With the series pair C2 and C3 reduced to a single C′ = 10µF capacitor, this becomes very similar
to problem 82. Noting for later use that q′ = q2 = q3, and using notation similar to that used in
the solution to problem 82, we have

Q = q1 + q′
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where Q = C1Vbat = 400µC. Also, after switch S is closed,

V1 = V ′

q1
C1

=
q′

C′

which yields 1
4q1 = q′. Therefore,

Q = q1 +

(

1

4
q1

)

which gives the result q1 = 320µC.

(b) We use q2 = q3 = 1
4q1 to obtain the result 80µC.

(c) See part (b).

(d) (e) and (f) Eq. 26-1 yields

V =
q

C
=







8.0 V for C1

5.3 V for C2

2.7 V for C3

85. (Fourth problem of Cluster)

(a) With the parallel pair C2 and C3 reduced to a single C′ = 45µF capacitor, this becomes very
similar to problem 82. Using notation similar to that used in the solution to 82, we have

Q = q1 + q′

where Q = C1Vbat = 400µC. Also, after switch S is closed,

V1 = V ′

q1
C1

=
q′

C′

which yields 9
8q1 = q′. Therefore,

Q = q1 +

(

9

8
q1

)

which gives the result q1 = 188µC.

(b) We find the voltage across capacitor 1 from q1/C1 (see below) and (since the capacitors are in
parallel) use the fact that V1 = V2 = V3 with q = CV to obtain the charges: q2 = 71µC and
q3 = 141µC.

(c) See part (b).

(d) (e) and (f) The capacitors all have the same voltage. V = q1/C1 = 4.7 V.

86. (Fifth problem of Cluster)

(a) To begin with, the charge on capacitor 1 is Q1 = C1Vbat = 400µC, and the charge on capacitor 2
is Q2 = C2Vbat = 150µC. After the rearrangement and closing of the switch, the total charge in
the upper portion of the circuit is Q1 − Q2 = Q = 250µC. With notation similar to that in the
previous problems,

Q = q1 + q2

= C1V + C2V

which yields V = 4.55 V, which, in turn implies q1 = C1V = 182µC and q2 = C2V = 68µC.
To achieve this distribution (with +182µC on one upper plate and +68µC on the other upper
plate) from the arrangement right before closing the switch (with +400µC on one upper plate and
−150µC on the other upper plate), it is necessary for 218µC to flow through the switch.

(b) As shown above, V = 4.55 V = V1 = V2.



Chapter 27

1. (a) The charge that passes through any cross section is the product of the current and time. Since
4.0 min = (4.0 min)(60 s/min) = 240 s, q = it = (5.0 A)(240 s) = 1200 C.

(b) The number of electrons N is given by q = Ne, where e is the magnitude of the charge on an
electron. Thus N = q/e = (1200 C)/(1.60× 10−19 C) = 7.5× 1021.

2. We adapt the discussion in the text to a moving two-dimensional collection of charges. Using σ for the
charge per unit area and w for the belt width, we can see that the transport of charge is expressed in
the relationship i = σvw, which leads to

σ =
i

vw
=

100× 10−6 A

(30 m/s)(50× 10−2 m)
= 6.7× 10−6 C/m

2
.

3. Suppose the charge on the sphere increases by ∆q in time ∆t. Then, in that time its potential increases
by

∆V =
∆q

4πε0r
,

where r is the radius of the sphere. This means

∆q = 4πε0r∆V .

Now, ∆q = (iin − iout)∆t, where iin is the current entering the sphere and iout is the current leaving.
Thus,

∆t =
∆q

iin − iout
=

4πε0r∆V

iin − iout

=
(0.10 m)(1000 V)

(8.99× 109 F/m)(1.0000020 A− 1.0000000 A)
= 5.6× 10−3 s .

4. (a) The magnitude of the current density vector is

J =
i

A
=

i

πd2/4
=

4(1.2× 10−10 A)

π(2.5× 10−3 m)2
= 2.4× 10−5 A/m

2
.

(b) The drift speed of the current-carrying electrons is

vd =
J

ne
=

2.4× 10−5 A/m2

(8.47× 1028/m3) (1.60× 10−19 C)
= 1.8× 10−15 m/s .

5. (a) The magnitude of the current density is given by J = nqvd, where n is the number of particles per
unit volume, q is the charge on each particle, and vd is the drift speed of the particles. The particle

683
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concentration is n = 2.0× 108/cm3 = 2.0 × 1014 m−3, the charge is q = 2e = 2(1.60 × 10−19 C) =
3.20× 10−19 C, and the drift speed is 1.0× 105 m/s. Thus,

J = (2× 1014/m)(3.2× 10−19 C)(1.0× 105 m/s) = 6.4 A/m
2
.

Since the particles are positively charged the current density is in the same direction as their motion,
to the north.

(b) The current cannot be calculated unless the cross-sectional area of the beam is known. Then i = JA
can be used.

6. We express the magnitude of the current density vector in SI units by converting the diameter values
in mils to inches (by dividing by 1000) and then converting to meters (by multiplying by 0.0254) and
finally using

J =
i

A
=

i

πR2
=

4i

πD2
.

For example, the gauge 14 wire with D = 64 mil = 0.0016 m is found to have a (maximum safe) current
density of J = 7.2× 106 A/m2. In fact, this is the wire with the largest value of J allowed by the given
data. The values of J in SI units are plotted below as a function of their diameters in mils.

4e+06

5e+06

6e+06

7e+06

J

40 60 80 100 120 140 160 180 200
D(mils)

7. The cross-sectional area of wire is given by A = πr2, where r is its radius (half its thickness). The
magnitude of the current density vector is J = i/A = i/πr2, so

r =

√

i

πJ
=

√

0.50 A

π(440× 104 A/m
2
)

= 1.9× 10−4 m .

The diameter of the wire is therefore d = 2r = 2(1.9× 10−4 m) = 3.8× 10−4 m.

8. (a) Since 1 cm3 = 10−6 m3, the magnitude of the current density vector is

J = nev =

(

8.70

10−6 m3

)

(

1.60× 10−19 C
) (

470× 103 m/s
)

= 6.54× 10−7 A/m
2
.

(b) Although the total surface area of Earth is 4πR2
E (that of a sphere), the area to be used in a

computation of how many protons in an approximately unidirectional beam (the solar wind) will
be captured by Earth is its projected area. In other words, for the beam, the encounter is with a
“target” of circular area πR2

E . The rate of charge transport implied by the influx of protons is

i = AJ = πR2
EJ = π

(

6.37× 106 m
)2
(

6.54× 10−7 A/m2
)

= 8.34× 107 A .
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9. (a) The charge that strikes the surface in time ∆t is given by ∆q = i∆t, where i is the current. Since
each particle carries charge 2e, the number of particles that strike the surface is

N =
∆q

2e
=
i∆t

2e
=

(0.25× 10−6 A)(3.0 s)

2(1.6× 10−19 C)
= 2.3× 1012 .

(b) Now let N be the number of particles in a length L of the beam. They will all pass through the
beam cross section at one end in time t = L/v, where v is the particle speed. The current is the
charge that moves through the cross section per unit time. That is, i = 2eN/t = 2eNv/L. Thus
N = iL/2ev. To find the particle speed, we note the kinetic energy of a particle is

K = 20 MeV = (20× 106 eV)(1.60× 10−19 J/eV) = 3.2× 10−12 J .

Since K = 1
2mv

2, then the speed is v =
√

2K/m. The mass of an alpha particle is (very nearly) 4
times the mass of a proton, or m = 4(1.67× 10−27 kg) = 6.68× 10−27 kg, so

v =

√

2(3.2× 10−12 J)

6.68× 10−27 kg
= 3.1× 107 m/s

and

N =
iL

2ev
=

(0.25× 10−6)(20× 10−2 m)

2(1.60× 10−19 C)(3.1× 107 m/s)
= 5.0× 103 .

(c) We use conservation of energy, where the initial kinetic energy is zero and the final kinetic energy
is 20 MeV = 3.2× 10−12 J. We note, too, that the initial potential energy is Ui = qV = 2eV , and
the final potential energy is zero. Here V is the electric potential through which the particles are
accelerated. Consequently,

Kf = Ui = 2eV =⇒ V =
Kf

2e
=

3.2× 10−12 J

2(1.60× 10−19C)
= 10× 106 V .

10. (a) The current resulting from this non-uniform current density is

i =

∫

cylinder

J dA =

∫ R

0

J0

(

1− r

R

)

2πrdr =
1

3
πR2J0 =

1

3
AJ0 .

(b) In this case,

i =

∫

cylinder

J dA =
J0

R

∫ R

0

r · 2πrdr =
2

3
πR2J0 =

2

3
AJ0 .

The result is different from that in part (a) because the current density in part (b) is lower near the
center of the cylinder (where the area is smaller for the same radial interval) and higher outward,
resulting in a higher average current density over the cross section and consequently a greater
current than that in part (a).

11. We use vd = J/ne = i/Ane. Thus,

t =
L

vd
=

L

i/Ane
=
LAne

i

=
(0.85 m)(0.21× 10−4 m2)(8.47× 1028/m3)(1.60× 10−19 C)

300 A

= 8.1× 102 s = 13 min .

12. We find the conductivity of Nichrome (the reciprocal of its resistivity) as follows:

σ =
1

ρ
=

L

RA
=

L

(V/i)A
=

Li

V A
=

(1.0 m)(4.0 A)

(2.0 V)(1.0× 10−6 m2)
= 2.0× 106/Ω·m .
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13. The resistance of the wire is given by R = ρL/A, where ρ is the resistivity of the material, L is the
length of the wire, and A is its cross-sectional area. In this case,

A = πr2 = π(0.50× 10−3 m)2 = 7.85× 10−7 m2 .

Thus,

ρ =
RA

L
=

(50× 10−3 Ω)(7.85× 10−7 m2)

2.0 m
= 2.0× 10−8 Ω·m .

14. Since 100 cm = 1 m, then 104 cm2 = 1 m2. Thus,

R =
ρL

A
=

(3.00× 10−7 Ω·m)(10.0× 103 m)

56.0× 10−4 m2
= 0.536 Ω .

15. Since the potential difference V and current i are related by V = iR, where R is the resistance of the
electrician, the fatal voltage is V = (50× 10−3 A)(2000 Ω) = 100 V.

16. (a) i = V/R = 23.0 V/15.0× 10−3 Ω = 1.53× 103 A.

(b) The cross-sectional area is A = πr2 = 1
4πD

2. Thus, the magnitude of the current density vector is

J =
i

A
=

4i

πD2
=

4(1.53× 10−3 A)

π(6.00× 10−3 m)2
= 5.41× 107 A/m

2
.

(c) The resistivity is ρ = RA/L = (15.0× 10−3 Ω)(π)(6.00 × 10−3 m)2/[4(4.00 m)] = 10.6× 10−8 Ω·m.
The material is platinum.

17. The resistance of the coil is given by R = ρL/A, where L is the length of the wire, ρ is the resistivity
of copper, and A is the cross-sectional area of the wire. Since each turn of wire has length 2πr, where
r is the radius of the coil, then L = (250)2πr = (250)(2π)(0.12 m) = 188.5 m. If rw is the radius of the
wire itself, then its cross-sectional area is A = πr2w = π(0.65× 10−3 m)2 = 1.33× 10−6 m2. According to
Table 27-1, the resistivity of copper is 1.69× 10−8 Ω·m. Thus,

R =
ρL

A
=

(1.69× 10−8 Ω·m)(188.5 m)

1.33× 10−6 m2
= 2.4 Ω .

18. In Eq. 27-17, we let ρ = 2ρ0 where ρ0 is the resistivity at T0 = 20◦C:

ρ− ρ0 = 2ρ0 − ρ0 = ρ0α (T − T0) ,

and solve for the temperature T :

T = T0 +
1

α
= 20◦C +

1

4.3× 10−3/K
≈ 250◦C .

Since a change in Celsius is equivalent to a change on the Kelvin temperature scale, the value of α used
in this calculation is not inconsistent with the other units involved. It is worth nothing that this agrees
well with Fig. 27-10.

19. Since the mass and density of the material do not change, the volume remains the same. If L0 is the
original length, L is the new length, A0 is the original cross-sectional area, and A is the new cross-
sectional area, then L0A0 = LA and A = L0A0/L = L0A0/3L0 = A0/3. The new resistance is

R =
ρL

A
=
ρ3L0

A0/3
= 9

ρL0

A0
= 9R0 ,

where R0 is the original resistance. Thus, R = 9(6.0 Ω) = 54 Ω.
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20. The thickness (diameter) of the wire is denoted by D. We use R ∝ L/A (Eq. 27-16) and note that
A = 1

4πD
2 ∝ D2. The resistance of the second wire is given by

R2 = R

(

A1

A2

)(

L2

L1

)

= R

(

D1

D2

)2(
L2

L1

)

= R(2)2
(

1

2

)

= 2R .

21. The resistance of conductor A is given by

RA =
ρL

πr2A
,

where rA is the radius of the conductor. If ro is the outside diameter of conductor B and ri is its inside
diameter, then its cross-sectional area is π(r2o − r2i ), and its resistance is

RB =
ρL

π (r2o − r2i )
.

The ratio is
RA

RB
=
r2o − r2i
r2A

=
(1.0 mm)2 − (0.50 mm)2

(0.50 mm)2
= 3.0 .

22. (a) The current in each strand is i = 0.750 A/125 = 6.00× 10−3 A.

(b) The potential difference is V = iR = (6.00× 10−3 A)(2.65× 10−6 Ω) = 1.59× 10−8 V.

(c) The resistance is Rtotal = 2.65× 10−6 Ω/125 = 2.12× 10−8 Ω.

23. We use J = E/ρ, where E is the magnitude of the (uniform) electric field in the wire, J is the magnitude
of the current density, and ρ is the resistivity of the material. The electric field is given by E = V/L,
where V is the potential difference along the wire and L is the length of the wire. Thus J = V/Lρ and

ρ =
V

LJ
=

115 V

(10 m)
(

1.4× 104 A/m
2
) = 8.2× 10−4 Ω·m .

24. (a) i = V/R = 35.8 V/935 Ω = 3.83× 10−2 A.

(b) J = i/A = (3.83× 10−2 A)/(3.50× 10−4 m2) = 109 A/m
2
.

(c) vd = J/ne = (109 A/m
2
)/[(5.33× 1022/m3)(1.60× 10−19 C)] = 1.28× 10−2 m/s.

(d) E = V/L = 35.8 V/0.158 m = 227 V/m.

25. The resistance at operating temperature T is R = V/i = 2.9 V/0.30 A = 9.67 Ω. Thus, from R − R0 =
R0α(T − T0), we find

T = T0 +
1

α

(

R

R0
− 1

)

= 20◦C +

(

1

4.5× 10−3/K

)(

9.67 Ω

1.1 Ω
− 1

)

which yields approximately 1900◦C. Since a change in Celsius is equivalent to a change on the Kelvin
temperature scale, the value of α used in this calculation is not inconsistent with the other units involved.
Table 27-1 has been used.

26. We use J = σE = (n+ + n−)evd, which combines Eq. 27-13 and Eq. 27-7.

(a) The drift velocity is

vd =
σE

(n+ + n−)e
=

(2.70× 10−14/Ω·m)(120 V/m)

[(620 + 550)/cm3](1.60× 10−19 C)
= 1.73 cm/s .
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(b) J = σE = (2.70× 10−14/Ω·m)(120 V/m) = 3.24× 10−12 A/m2.

27. (a) Let ∆T be the change in temperature and κ be the coefficient of linear expansion for copper. Then
∆L = κL∆T and

∆L

L
= κ∆T = (1.7× 10−5/K)(1.0◦C) = 1.7× 10−5 .

This is equivalent to 0.0017%. Since a change in Celsius is equivalent to a change on the Kelvin
temperature scale, the value of κ used in this calculation is not inconsistent with the other units
involved. Incorporating a factor of 2 for the two-dimensional nature of A, the fractional change in
area is

∆A

A
= 2κ∆T = 2(1.7× 10−5/K)(1.0◦C) = 3.4× 10−5

which is 0.0034%. For small changes in the resistivity ρ, length L, and area A of a wire, the change
in the resistance is given by

∆R =
∂R

∂ρ
∆ρ+

∂R

∂L
∆L+

∂R

∂A
∆A .

Since R = ρL/A, ∂R/∂ρ = L/A = R/ρ, ∂R/∂L = ρ/A = R/L, and ∂R/∂A = −ρL/A2 =
−R/A. Furthermore, ∆ρ/ρ = α∆T , where α is the temperature coefficient of resistivity for copper
(4.3× 10−3/K = 4.3× 10−3/C◦, according to Table 27-1). Thus,

∆R

R
=

∆ρ

ρ
+

∆L

L
− ∆A

A

= (α+ κ− 2κ)∆T = (α− κ)∆T

= (4.3× 10−3/C◦ − 1.7× 10−5/C◦) (1.0 C◦) = 4.3× 10−3 .

This is 0.43%, which we note (for the purposes of the next part) is primarily determined by the
∆ρ/ρ term in the above calculation.

(b) The fractional change in resistivity is much larger than the fractional change in length and area.
Changes in length and area affect the resistance much less than changes in resistivity.

28. We use R ∝ L/A. The diameter of a 22-gauge wire is 1/4 that of a 10-gauge wire. Thus from R = ρL/A
we find the resistance of 25 ft of 22-gauge copper wire to be R = (1.00 Ω)(25 ft/1000 ft)(4)2 = 0.40 Ω.

29. (a) The current i is shown in Fig. 27-22 entering the truncated cone at the left end and leaving at the
right. This is our choice of positive x direction. We make the assumption that the current density
J at each value of x may be found by taking the ratio i/A where A = πr2 is the cone’s cross-section

area at that particular value of x. The direction of ~J is identical to that shown in the figure for i
(our +x direction). Using Eq. 27-11, we then find an expression for the electric field at each value
of x, and next find the potential difference V by integrating the field along the x axis, in accordance
with the ideas of Chapter 25. Finally, the resistance of the cone is given by R = V/i. Thus,

J =
i

πr2
=
E

ρ

where we must deduce how r depends on x in order to proceed. We note that the radius increases
linearly with x, so (with c1 and c2 to be determined later) we may write

r = c1 + c2 x .

Choosing the origin at the left end of the truncated cone, the coefficient c1 is chosen so that r = a
(when x = 0); therefore, c1 = a. Also, the coefficient c2 must be chosen so that (at the right end of
the truncated cone) we have r = b (when x = L); therefore, c2 = (b − a)/L. Our expression, then,
becomes

r = a+

(

b− a
L

)

x .
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Substituting this into our previous statement and solving for the field, we find

E =
iρ

π

(

a+
b− a
L

x

)−2

.

Consequently, the potential difference between the faces of the cone is

V = −
∫ L

0

E dx = − iρ
π

∫ L

0

(

a+
b− a
L

x

)−2

dx

=
iρ

π

L

b − a

(

a+
b − a
L

x

)−1
∣

∣

∣

∣

∣

L

0

=
iρ

π

L

b− a

(

1

a
− 1

b

)

=
iρ

π

L

b − a
b− a
ab

=
iρL

πab
.

The resistance is therefore

R =
V

i
=

ρL

πab
.

(b) If b = a, then R = ρL/πa2 = ρL/A, where A = πa2 is the cross-sectional area of the cylinder.

30. From Eq. 27-20, ρ ∝ τ−1 ∝ veff . The connection with veff is indicated in part (b) of Sample Problem 27-
5, which contains useful insight regarding the problem we are working now. According to Chapter 20,
veff ∝

√
T . Thus, we may conclude that ρ ∝

√
T .

31. The power dissipated is given by the product of the current and the potential difference:

P = iV = (7.0× 10−3 A)(80 × 103 V) = 560W .

32. Since P = iV , q = it = Pt/V = (7.0 W)(5.0 h)(3600 s/h)/9.0 V = 1.4× 104 C.

33. (a) Electrical energy is converted to heat at a rate given by

P =
V 2

R
,

where V is the potential difference across the heater and R is the resistance of the heater. Thus,

P =
(120 V)2

14 Ω
= 1.0× 103 W = 1.0 kW .

(b) The cost is given by
(1.0 kW)(5.0 h)(5.0 cents/kW·h) = 25 cents .

34. The resistance is R = P/i2 = (100 W)/(3.00 A)2 = 11.1 Ω.

35. The relation P = V 2/R implies P ∝ V 2. Consequently, the power dissipated in the second case is

P =

(

1.50 V

3.00 V

)2

(0.540 W) = 0.135 W .

36. (a) From P = V 2/R we find R = V 2/P = (120 V)2/500 W = 28.8 Ω.

(b) Since i = P/V , the rate of electron transport is

i

e
=

P

eV
=

500 W

(1.60× 10−19 C)(120 V)
= 2.60× 1019/s .
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37. (a) The power dissipated, the current in the heater, and the potential difference across the heater are
related by P = iV . Therefore,

i =
P

V
=

1250 W

115 V
= 10.9 A .

(b) Ohm’s law states V = iR, where R is the resistance of the heater. Thus,

R =
V

i
=

115 V

10.9 A
= 10.6 Ω .

(c) The thermal energy E generated by the heater in time t = 1.0 h = 3600 s is

E = Pt = (1250 W)(3600 s) = 4.5× 106 J .

38. (a) From P = V 2/R = AV 2/ρL, we solve for the length:

L =
AV 2

ρP
=

(2.60× 10−6 m2)(75.0 V)2

(5.00× 10−7 Ω·m)(5000 W)
= 5.85 m .

(b) Since L ∝ V 2 the new length should be

L′ = L

(

V ′

V

)2

= (5.85 m)

(

100 V

75.0 V

)2

= 10.4 m .

39. Let RH be the resistance at the higher temperature (800◦C) and let RL be the resistance at the lower
temperature (200◦C). Since the potential difference is the same for the two temperatures, the power
dissipated at the lower temperature is PL = V 2/RL, and the power dissipated at the higher temperature
is PH = V 2/RH , so PL = (RH/RL)PH . Now RL = RH + αRH ∆T , where ∆T is the temperature
difference TL − TH = −600 C◦ = −600 K. Thus,

PL =
RH

RH + αRH ∆T
PH =

PH

1 + α∆T
=

500 W

1 + (4.0× 10−4/K)(−600 K)
= 660 W .

40. (a) The monthly cost is (100 W)(24 h/day)(31 day/month)(6 cents/kW·h) = 446 cents = $4.46, assum-
ing a 31-day month.

(b) R = V 2/P = (120 V)2/100 W = 144 Ω.

(c) i = P/V = 100 W/120 V = 0.833 A.

41. (a) The charge q that flows past any cross section of the beam in time ∆t is given by q = i∆t, and the
number of electrons is N = q/e = (i/e)∆t. This is the number of electrons that are accelerated.
Thus

N =
(0.50 A)(0.10× 10−6 s)

1.60× 10−19 C
= 3.1× 1011 .

(b) Over a long time t the total charge is Q = nqt, where n is the number of pulses per unit time and
q is the charge in one pulse. The average current is given by iavg = Q/t = nq. Now q = i∆t =
(0.50 A)(0.10× 10−6 s) = 5.0× 10−8 C, so

iavg = (500/s)(5.0× 10−8 C) = 2.5× 10−5 A .

(c) The accelerating potential difference is V = K/e, where K is the final kinetic energy of an electron.
Since K = 50 MeV, the accelerating potential is V = 50 kV = 5.0×107 V. During a pulse the power
output is

P = iV = (0.50 A)(5.0× 107 V) = 2.5× 107 W .

This is the peak power. The average power is

Pavg = iavgV = (2.5× 10−5 A)(5.0 × 107 V) = 1.3× 103 W .
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42. (a) Since P = i2R = J2A2R, the current density is

J =
1

A

√

P

R
=

1

A

√

P

ρL/A
=

√

P

ρLA

=

√

1.0 W

π(3.5× 10−5 Ω·m)(2.0× 10−2 m)(5.0× 10−3 m)2
= 1.3× 105 A/m2 .

(b) From P = iV = JAV we get

V =
P

AJ
=

P

πr2J
=

1.0 W

π(5.0× 10−3 m)2(1.3× 105 A/m2)
= 9.4× 10−2 V .

43. (a) Using Table 27-1 and Eq. 27-10 (or Eq. 27-11), we have

∣

∣

∣

~E
∣

∣

∣ = ρ
∣

∣

∣

~J
∣

∣

∣ =
(

1.69× 10−8 Ω·m
)

(

2.0 A

2.0× 10−6 m2

)

= 1.7× 10−2 V/m .

(b) Using L = 4.0 m, the resistance is found from Eq. 27-16: R = ρL/A = 0.034 Ω. The rate of thermal
energy generation is found from Eq. 27-22: P = i2R = 0.14 W. Assuming a steady rate, the thermal
energy generated in 30 minutes is (0.14 J/s)(30× 60 s) = 2.4× 102 J.

44. (a) Current is the transport of charge; here it is being transported “in bulk” due to the volume rate
of flow of the powder. From Chapter 15, we recall that the volume rate of flow is the product of
the cross-sectional area (of the stream) and the (average) stream velocity. Thus, i = ρAv where ρ
is the charge per unit volume. If the cross-section is that of a circle, then i = ρπR2v.

(b) Recalling that a Coulomb per second is an Ampere, we obtain

i =
(

1.1× 10−3 C/m3
)

π(0.050 m)2(2.0 m/s) = 1.7× 10−5 A .

(c) The motion of charge is not in the same direction as the potential difference computed in problem 57
of Chapter 25. It might be useful to think of (by analogy) Eq. 7-48; there, the scalar (dot) product

in P = ~F · ~v makes it clear that P = 0 if ~F ⊥ ~v. This suggests that a radial potential difference
and an axial flow of charge will not together produce the needed transfer of energy (into the form
of a spark).

(d) With the assumption that there is (at least) a voltage equal to that computed in problem 57 of
Chapter 25, in the proper direction to enable the transference of energy (into a spark), then we use
our result from that problem in Eq. 27-21:

P = iV =
(

1.7× 10−5 A
) (

7.8× 104 V
)

= 1.3 W .

(e) Recalling that a Joule per second is a Watt, we obtain (1.3 W)(0.20 s) = 0.27 J for the energy that
can be transferred at the exit of the pipe.

(f) This result is greater than the 0.15 J needed for a spark, so we conclude that the spark was likely
to have occurred at the exit of the pipe, going into the silo.

45. (a) Since the area of a hemisphere is 2πr2 then the magnitude of the current density vector is

∣

∣

∣

~J
∣

∣

∣
=

i

A
=

I

2πr2
.

(b) Eq. 27-11 yields
∣

∣

∣

~E
∣

∣

∣ = ρ
∣

∣

∣

~J
∣

∣

∣ = ρI/2πr2.
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(c) Eq. 25-18 leads to

∆V = Vr − Vb = −
∫ r

b

~E · d~r = −
∫ r

b

(

ρI

2πr2

)

dr =
ρI

2π

(

1

r
− 1

b

)

.

(d) Using the given values, we obtain
∣

∣

∣

~J
∣

∣

∣ = 100
2π(10)2 = 0.16 A/m2.

(e) Also,
∣

∣

∣

~E
∣

∣

∣ = 16 V/m (or 16 N/C).

(f) With b = 0.010 m, the voltage is ∆V = −1.6× 105 V.

46. (a) Using Eq. 27-11 and Eq. 25-42, we obtain

∣

∣

∣

~JA

∣

∣

∣ =

∣

∣

∣

~EA

∣

∣

∣

ρ
=
|∆VA|
ρL

=
40× 10−6 V

(100 Ω·m)(20 m)
= 2.0× 10−8 A/m2 .

(b) Similarly, in region B we find

∣

∣

∣

~JB

∣

∣

∣ =
|∆VB |
ρL

=
60× 10−6 V

(100 Ω·m)(20 m)
= 3.0× 10−8 A/m2 .

(c) With w = 1.0 m and dA = 3.8 m (so that the cross-section area is dAw) we have (using Eq. 27-5)

iA =
∣

∣

∣

~JA

∣

∣

∣ dAw =
(

2.0× 10−8 A/m2
)

(1.0 m)(3.8 m) = 7.6× 10−8 A .

(d) Assuming iA = iB we obtain

dB =
iB

∣

∣

∣

~JB

∣

∣

∣w
=

7.6× 10−8 A

(3.0× 10−8 A/m2) (1.0 m)
= 2.5 m .

(e) We do not show the graph-and-figure here, but describe it briefly. To be meaningful (as a function
of x) we would plot V (x) measured relative to V (0) (the voltage at, say, the left edge of the figure,
which we are effectively setting equal to 0). From the problem statement, we note that V (x) would
grow linearly in region A, increasing by 40µV for each 20 m distance. Once we reach the transition
region (between A and B) we might assume a parabolic shape for V (x) as it changes from the
40µV-per-20 m slope to a 60µV-per-20 m slope (which becomes its constant slope once we are into
region B, where the function is again linear). The figure goes further than region B, so as we leave
region B, we might assume again a parabolic shape for the function as it tends back down toward
some lower slope value.

47. (a) It is useful to read the whole problem before considering the sketch here in part (a) (which we
do not show, but briefly describe). We find in part (d) and part (f), below, that JA > JB which
suggests that the streamlines should be closer together in region A than in B (at least for portions
of those regions which lie close to the pipe). Associated with this (see part (g)) the sketch of the
streamlines should reflect that fact that some of the conduction charge-carriers are entering the
pipe walls during the transition from region A to region B.

(b) Eq. 27-16 yields

ρpipe = R
A

L
= (6.0 Ω)

(

0.010 m2

1.0× 106 m

)

= 6.0× 10−8 Ω·m .

(c) If the resistance of 1000 km of pipe is 6.0 Ω then the resistance of L = 1.0 km of pipe is R = 6.0 mΩ.
Thus in region A, Ohm’s law leads to

ipipe =
Vab

R
=

8.0 mV

6.0 mΩ
= 1.3 A .
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(d) Using Eq. 27-11 and Eq. 25-42 (in absolute value), we find the magnitude of the current density
vector in region A:

∣

∣

∣

~Jground

∣

∣

∣ =
Vab

ρgroundL
=

0.0080 V

(500 Ω·m)(1000 m)
= 1.6× 10−8 A/m2 .

(e) Similarly, in region B we obtain

ipipe =
Vcd

R
=

9.5 mV

6.0 mΩ
= 1.6 A ,

(f) and
∣

∣

∣

~Jground

∣

∣

∣ =
Vcd

ρgroundL
=

0.0095 V

(1000 Ω·m)(1000 m)
= 9.5× 10−9 A/m2 .

(g) These results suggest that the pipe walls, in leaving region A and entering regionB, have “absorbed”
some of the current, leaving the current density in the nearby ground somewhat “depleted” of the
telluric flows.

(h) We assume the transition B → A is the reverse of that discussed in part (g). Here, some current
leaves the pipe walls and joins in the ground-supported telluric flows.

(i) There is no current here, because there is no potential difference along this section of pipe. The
reason Vgh = 0 is best seen using Eq. 27-11 and Eq. 25-18 (and remembering that the scalar dot
product gives zero for perpendicular vectors). The arrows shown in the figure for current actually

refer, in the technical sense, to the direction of ~J . We refer to this as the x direction. The pipe
section gh is oriented in what we will refer to as the y direction. Eq. 27-11 implies that ~J and
~E must be in the same direction (x). But a nonzero voltage difference here would require (by

Eq. 25-18)
∫

~E · d~s 6= 0. But since d~s = dy for this section of pipe, then ~E · d~s vanishes identically.

(j) Our discussion in part (j) serves also to motivate the fact that the current in section fg is less than
that in section ef by a factor of cos 45◦ = 1/

√
2. To see this, one may consider the component of

the electric field which would “drive” the current (in the sense of Eq. 27-11) along section fg; it
is less than the field responsible for the current in section ef by exactly the factor just mentioned.
Thus,

ifg = ief cos 45◦ =
1.0 A√

2
= 0.71 A .

(k) The answers to the previous parts indicate that current leaves the pipe at point f and

(l) at point g.

48. (a) We use Eq. 27-16. The new area is A′ = AL/L′ = A/2.

(b) The new resistance is R′ = R(A/A′)(L′/L) = 4R.

49. We use P = i2R = i2ρL/A, or L/A = P/i2ρ. So the new values of L and A satisfy
(

L

A

)

new

=

(

P

i2ρ

)

new

=
30

42

(

P

i2ρ

)

old

=
30

16

(

L

A

)

old

.

Consequently, (L/A)new = 1.875(L/A)old. Note, too, that (LA)new = (LA)old. We solve the above two
equations for Lnew and Anew:

Lnew =
√

1.875Lold = 1.369Lold

Anew =
√

1/1.875Aold = 0.730Aold .

50. (a) We denote the copper wire with subscript c and the aluminum wire with subscript a.

R = ρa
L

A
=

(2.75× 10−8 Ω·m)(1.3 m)

(5.2× 10−3 m)2
= 1.3× 10−3 Ω .
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(b) Let R = ρcL/(πd
2/4) and solve for the diameter d of the copper wire:

d =

√

4ρcL

πR
=

√

4(1.69× 10−8 Ω·m)(1.3 m)

π(1.3× 10−3 Ω)
= 4.6× 10−3 m .

51. We use Eq. 27-17: ρ− ρ0 = ρα(T − T0), and solve for T :

T = T0 +
1

α

(

ρ

ρ0
− 1

)

= 20◦C +
1

4.3× 10−3/K

(

58 Ω

50 Ω
− 1

)

= 57◦C .

We are assuming that ρ/ρ0 = R/R0.

52. Since values from the referred-to graph can only be crudely estimated, we do not present a graph here,
but rather indicate a few values. Since R = V/i then we see R = ∞ when i = 0 (which the graph
seems to show throughout the range −∞ < V < 2 V) and V 6= 0. For voltages values larger than 2 V,
the resistance changes rapidly according to the ratio V/i. For instance, R ≈ 3.1/0.002 = 1550 Ω when
V = 3.1 V, and R ≈ 3.8/0.006 = 633 Ω when V = 3.8 V

53. (a)

V = iR = iρ
L

A
=

(12 A)(1.69× 10−8 Ω·m)(4.0× 10−2 m)

π(5.2 × 10−3 m/2)2
= 3.8× 10−4 V .

(b) Since it moves in the direction of the electron drift which is against the direction of the current, its
tail is negative compared to its head.

(c) The time of travel relates to the drift speed:

t =
L

vd
=
lAne

i
=
πLd2ne

4i

=
π(1.0× 10−2 m)(5.2× 10−3 m)2(8.47× 1028/m3)(1.60× 10−19 C)

4(12 A)

= 238 s = 3 min 58 s .

54. Using Eq. 7-48 and Eq. 27-22, the rate of change of mechanical energy of the piston-Earth system, mgv,
must be equal to the rate at which heat is generated from the coil: mgv = i2R. Thus

v =
i2R

mg
=

(0.240 A)2(550 Ω)

(12 kg) (9.8 m/s2)
= 0.27 m/s .

55. Eq. 27-21 gives the rate of thermal energy production:

P = iV = (10 A)(120 V) = 1.2 kW .

Dividing this into the 180 kJ necessary to cook the three hot-dogs leads to the result t = 150 s.

56. We find the drift speed from Eq. 27-7:

vd =
| ~J |
ne

= 1.5× 10−4 m/s .

At this (average) rate, the time required to travel L = 5.0 m is

t =
L

vd
= 3.4× 104 s .

57. (a) i = (nh + ne)e = (2.25× 1015/s + 3.50× 1015/s)(1.60× 10−19 C) = 9.20× 10−4 A.
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(b) The magnitude of the current density vector is

∣

∣

∣

~J
∣

∣

∣ =
i

A
=

9.20× 10−4 A

π(0.165× 10−3 m)2
= 1.08× 104 A/m

2
.

58. (a) Since ρ = RA/L = πRd2/4L = π(1.09 × 10−3 Ω)(5.50 × 10−3 m)2/[4(1.60 m)] = 1.62× 10−8 Ω·m,
the material is silver.

(b) The resistance of the round disk is

R = ρ
L

A
=

4ρL

πd2
=

4(1.62× 10−8 Ω·m)(1.00× 10−3 m)

π(2.00× 10−2 m)2
= 5.16× 10−8 Ω .

59. The horsepower required is

P =
iV

0.80
=

(10 A)(12 V)

(0.80)(746 W/hp)
= 0.20 hp .

60. (a) The current is

i =
V

R
=

V

ρL/A
=
πV d2

4ρL

=
π(1.20 V)[(0.0400 in.)(2.54× 10−2 m/in.)]2

4(1.69× 10−8 Ω·m)(33.0 m)
= 1.74 A .

(b) The magnitude of the current density vector is

∣

∣

∣

~J
∣

∣

∣ =
i

A
=

4i

πd2
=

4(1.74 A)

π[(0.0400 in.)(2.54× 10−2 m/in.)]2
= 2.15× 106 A/m

2
.

(c) E = V/L = 1.20 V/33.0 m = 3.63× 10−2 V/m.

(d) P = V i = (1.20 V)(1.74 A) = 2.09 W.

61. We use R/L = ρ/A = 0.150 Ω/km.

(a) For copper J = i/A = (60.0 A)(0.150 Ω/km)/(1.69 × 10−8 Ω ·m) = 5.32 × 105 A/m
2
; and for

aluminum J = (60.0 A)(0.150 Ω/km)/(2.75× 10−8 Ω·m) = 3.27× 105 A/m2.

(b) We denote the mass densities as ρm. For copper (m/L)c = (ρmA)c = (8960 kg/m
3
) (1.69×10−8 Ω·

m)/(0.150 Ω/km) = 1.01 kg/m; and for aluminum (m/L)a = (ρmA)a = (2700 kg/m3)(2.75 ×
10−8 Ω·m)/(0.150 Ω/km) = 0.495 kg/m.

62. (a) We use P = V 2/R ∝ V 2, which gives ∆P ∝ ∆V 2 ≈ 2V∆V . The percentage change is roughly
∆P/P = 2∆V/V = 2(110− 115)/115 = −8.6%.

(b) A drop in V causes a drop in P , which in turn lowers the temperature of the resistor in the coil. At
a lower temperature R is also decreased. Since P ∝ R−1 a decrease in R will result in an increase
in P , which partially offsets the decrease in P due to the drop in V . Thus, the actual drop in P
will be smaller when the temperature dependency of the resistance is taken into consideration.

63. Using A = πr2 with r = 5× 10−4 m with Eq. 27-5 yields

| ~J | = i

A
= 2.5× 106 A/m2 .

Then, with | ~E| = 5.3 V/m, Eq. 27-10 leads to

ρ =
5.3 V/m

2.5× 106 A/m
2 = 2.1× 10−6 Ω·m .
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64. A least squares fit of the data gives R = 537
5 + 1111

1750T with T in degrees Celsius.

(a) At T = 20◦C, our expression gives R = 21017
175 ≈ 120 Ω.

(b) At T = 0◦C, our expression gives R = 537
5 ≈ 107 Ω.

(c) Defining αR by

αR =
R−R20

R20 (T − 20◦C)

then we are effectively requiring αRR20 to equal the 1111
1750 factor in our least squares fit. This implies

that αR = 1111/210170 = 0.00529/C◦ if R20 = 21017
175 ≈ 120 Ω is used as the reference.

(d) Now we define αR by

αR =
R−R0

R0 (T − 0◦C)
,

which means we require αRR0 to equal the 1111
1750 factor in our least squares fit. In this case,

αR = 1111/187950 = 0.00591/C◦ if R0 = 537
5 ≈ 107 Ω is used as the reference.

(e) Our least squares fit expression predicts R = 96473/350 ≈ 276 Ω at T = 265◦C.

65. The electric field points towards lower values of potential (see Eq. 25-40) so ~E is directed towards point
B (which we take to be the ı̂ direction in our calculation). Since the field is considered to be uniform
inside the wire, then its magnitude is, by Eq. 25-42,

| ~E| = |∆V |
L

=
50

200
= 0.25 V/m .

Using Eq. 27-11, with ρ = 1.7× 10−8 Ω·m, we obtain

~E = ρ ~J =⇒ ~J = 1.5× 107 ı̂

in SI units (A/m2).

66. Assuming ~J is directed along the wire (with no radial flow) we integrate, starting with Eq. 27-4,

i =

∫

∣

∣

∣

~J
∣

∣

∣ dA =

∫ R

R/2

kr 2πr dr =
2

3
kπ

(

R3 − R3

8

)

where k = 3.0× 108 and SI units understood. Therefore, if R = 0.00200 m, we obtain i = 4.40 A.

67. (First problem of Cluster)

(a) We are told that rB = 1
2rA and LB = 2LA. Thus, using Eq. 27-16,

RB = ρ
LB

πr2B
= ρ

2LA
1
4 πr

2
A

= 8RA = 64 Ω .

(b) The current-densities are assumed uniform.

JA

JB
=

i
πr2

A

i
πr2

B

=

i
πr2

A

i
1
4

πr2
A

=
1

4
.

68. (Second problem of Cluster)
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(a) We use Eq. 27-16 to compute the resistances in SI units:

RC = ρC
LC

πr2C
=
(

2× 10−6
) 1

π(0.0005)2
= 2.5 Ω

RD = ρD
LD

πr2D
=
(

1× 10−6
) 1

π(0.00025)2
= 5.1 Ω .

The voltages follow from Ohm’s law:

|V1 − V2| = VC = iRC = 5.1 V

|V2 − V3| = VD = iRD = 10 V .

(b) See solution for part (a).

(c) and (d) The power is calculated from Eq. 27-22:

P = i2R =

{

10 W for R = RC

20 W for R = RD

69. (Third problem of Cluster)

(a) We use Eq. 27-17 with ρ = 10
8 ρ0 (we are neglecting any thermal expansion of the material) and

T − T0 = 100 K in order to obtain α = 2.5× 10−3/K. Now with this value of α but T = 600 K (so
T − T0 = 300 K) we find ρ = 1.75ρ0 → R = 1.75(8.0 Ω) = 14 Ω.

(b) We are assuming the wires have unknown but equal length (not the lengths shown in Figure 27-33).
With αD = 5.0× 10−3/K, we find ρ = 2.5ρ0 for T − T0 = 300 K. With the same assumptions as in
part (a), this implies R = 2.5R0 where R0 = 16 Ω (that the resistance of D is twice that of C at
300 K is evident in part (a) of the previous solution. Therefore, R = 2.5(16 Ω) = 40 Ω for wire D
at T = 600 K.

70. (Fourth problem of Cluster)
From Eq. 27-23, we obtain the resistance at temperature T :

R =
V 2

P
=

122

10
= 14.4 Ω .

Thus, the ratio R/R0 with R0 representing the resistance at 300 K is 7.2, which we take to equal the
ratio of resistivities (ignoring any thermal expansion of the filament). Eq. 27-17, then, leads to

ρ

ρ0
= 7.2 = 1 + α (T − 300) .

Using Table 27-1 (α = 4.5× 10−3/K) we find T = 1.7× 103 K.
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Chapter 28

1. (a) The cost is (100 W·8.0 h/2.0 W· h)($0.80) = $320.

(b) The cost is (100 W·8.0 h/103 W·h)($0.06) = $0.048 = 4.8 cents.

2. The chemical energy of the battery is reduced by ∆E = qE , where q is the charge that passes through in
time ∆t = 6.0 min, and E is the emf of the battery. If i is the current, then q = i∆t and ∆E = iE∆t =
(5.0 A)(6.0 V)(6.0 min)(60 s/min) = 1.1×104 J. We note the conversion of time from minutes to seconds.

3. If P is the rate at which the battery delivers energy and ∆t is the time, then ∆E = P ∆t is the energy
delivered in time ∆t. If q is the charge that passes through the battery in time ∆t and E is the emf of
the battery, then ∆E = qE . Equating the two expressions for ∆E and solving for ∆t, we obtain

∆t =
qE
P

=
(120 A·h)(12 V)

100 W
= 14.4 h = 14 h 24 min .

4. (a) Since E1 > E2 the current flows counterclockwise.

(b) Battery 1, since the current flows through it from its negative terminal to the positive one.

(c) Point B, since the current flows from B to A.

5. (a) Let i be the current in the circuit and take it to be positive if it is to the left in R1. We use
Kirchhoff’s loop rule: E1 − iR2 − iR1 − E2 = 0. We solve for i:

i =
E1 − E2
R1 +R2

=
12 V− 6.0 V

4.0 Ω + 8.0 Ω
= 0.50 A .

A positive value is obtained, so the current is counterclockwise around the circuit.

(b) If i is the current in a resistor R, then the power dissipated by that resistor is given by P = i2R.
For R1, P1 = (0.50 A)2(4.0 Ω) = 1.0 W and for R2, P2 = (0.50 A)2(8.0 Ω) = 2.0 W.

(c) If i is the current in a battery with emf E , then the battery supplies energy at the rate P = iE
provided the current and emf are in the same direction. The battery absorbs energy at the rate
P = iE if the current and emf are in opposite directions. For E1, P1 = (0.50 A)(12 V) = 6.0 W and
for E2, P2 = (0.50 A)(6.0 V) = 3.0 W. In battery 1 the current is in the same direction as the emf.
Therefore, this battery supplies energy to the circuit; the battery is discharging. The current in
battery 2 is opposite the direction of the emf, so this battery absorbs energy from the circuit. It is
charging.

6. (a) The energy transferred is

U = Pt =
E2t

r +R
=

(2.0 V)2(2.0 min)(60 s/min)

1.0 Ω + 5.0 Ω
= 80 J .

(b) The amount of thermal energy generated is

U ′ = i2Rt =

( E
r +R

)2

Rt =

(

2.0 V

1.0 Ω + 5.0 Ω

)2

(5.0 Ω)(2.0 min)(60 s/min) = 67 J .

699
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(c) The difference between U and U ′, which is equal to 13 J, is the thermal energy that is generated in
the battery due to its internal resistance.

7. (a) The potential difference is V = E + ir = 12 V + (0.040 Ω)(50 A) = 14 V.

(b) P = i2r = (50 A)2(0.040 Ω) = 100 W.

(c) P ′ = iV = (50 A)(12 V) = 600 W.

(d) In this case V = E − ir = 12 V− (0.040 Ω)(50 A) = 10 V and P = i2r = 100 W.

8. (a) Below, we graph Eq. 28-4 (scaled by a factor of 100) for E = 2.0 V and r = 100 Ω over the range
0 ≤ R ≤ 500 Ω. We multiplied the SI output of Eq. 28-4 by 100 so that this graph would not be
vanishingly small with the other graph (see part (b)) when they are plotted together.

(b) In the same graph, we show VR = iR over the same range. The graph of current i is the one that
starts at 2 (which corresponds to 0.02 A in SI units) and the graph of voltage VR is the one that
starts at 0 (when R = 0). The value of VR are in SI units (not scaled by any factor).
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(c) In our final graph, we show the dependence of power P = iVR (dissipated in resistor R) as a function
of R. The units of the vertical axis are Watts. We note that it is maximum when R = r.
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9. (a) If i is the current and ∆V is the potential difference, then the power absorbed is given by P = i∆V .
Thus,

∆V =
P

i
=

50 W

1.0 A
= 50 V .

Since the energy of the charge decreases, point A is at a higher potential than point B; that is,
VA − VB = 50 V.

(b) The end-to-end potential difference is given by VA − VB = +iR+ E , where E is the emf of element
C and is taken to be positive if it is to the left in the diagram. Thus, E = VA − VB − iR =
50 V− (1.0 A)(2.0 Ω) = 48 V.

(c) A positive value was obtained for E , so it is toward the left. The negative terminal is at B.

10. The current in the circuit is i = (150 V−50 V)/(3.0 Ω+2.0 Ω) = 20 A. So from VQ+150 V−(2.0 Ω)i = VP ,
we get VQ = 100 V + (2.0 Ω)(20 A)− 150 V = −10 V.

11. From Va − E1 = Vc − ir1 − iR and i = (E1 − E2)/(R+ r1 + r2), we get

Va − Vc = E1 − i (r1 +R)

= E1 −
( E1 − E2
R+ r1 + r2

)

(r1 +R)

= 4.4 V−
(

4.4 V− 2.1 V

5.5 Ω + 1.8 Ω + 2.3 Ω

)

(2.3 Ω + 5.5 Ω)

= 2.5 V .

12. (a) We solve i = (E2 − E1)/(r1 + r2 +R) for R:

R =
E2 − E1

i
− r1 − r2 =

3.0 V− 2.0 V

1.0× 10−3 A
− 3.0 Ω− 3.0 Ω = 9.9× 102 Ω .

(b) P = i2R = (1.0× 10−3 A)2(9.9× 102 Ω) = 9.9× 10−4 W.

13. Let the emf be V . Then V = iR = i′(R+ R′), where i = 5.0 A, i′ = 4.0 A and R′ = 2.0 Ω. We solve for
R:

R =
i′R′

i− i′ =
(4)(2)

5− 4
= 8.0 Ω .

14. The internal resistance of the battery is r = (12 V− 11.4 V)/50 A = 0.012 Ω < 0.020 Ω, so the battery is
OK. The resistance of the cable is R = 3.0 V/50 A = 0.060 Ω > 0.040 Ω, so the cable is defective.

15. To be as general as possible, we refer to the individual emf’s as E1 and E2 and wait until the latter steps to
equate them (E1 = E2 = E). The batteries are placed in series in such a way that their voltages add; that
is, they do not “oppose” each other. The total resistance in the circuit is therefore Rtotal = R+ r1 + r2
(where the problem tells us r1 > r2), and the “net emf” in the circuit is E1 + E2. Since battery 1 has the
higher internal resistance, it is the one capable of having a zero terminal voltage, as the computation in
part (a) shows.

(a) The current in the circuit is

i =
E1 + E2

r1 + r2 +R
,

and the requirement of zero terminal voltage leads to

E1 = ir1 =⇒ R =
E2r1 − E1r2
E1

which reduces to R = r1 − r2 when we set E1 = E2.
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(b) As mentioned above, this occurs in battery 1.

16. (a) Let the emf of the solar cell be E and the output voltage be V . Thus,

V = E − ir = E −
(

V

R

)

r

for both cases. Numerically, we get 0.10 V = E−(0.10 V/500 Ω)r and 0.15 V = E−(0.15 V/1000 Ω)r.
We solve for E and r: E = 0.30 V, r = 1000 Ω.

(b) The efficiency is

V 2/R

Preceived
=

0.15 V

(1000 Ω)(5.0 cm2)(2.0× 10−3 W/cm2)
= 2.3× 10−3 .

17. (a) Using Eq. 28-4, we take the derivative of the power P = i2R with respect to R and set the result
equal to zero:

dP

dR
=

d

dR

( E2R

(R+ r)2

)

=
E2(r −R)

(R+ r)3
= 0

which clearly has the solution R = r.

(b) When R = r, the power dissipated in the external resistor equals

Pmax =
E2R

(R + r)2

∣

∣

∣

∣

R=r

=
E2

4r
.

18. Let the resistances of the two resistors be R1 and R2. Note that the smallest value of the possible Req

must be the result of connecting R1 and R2 in parallel, while the largest one must be that of connecting
them in series. Thus, R1R2/(R1 + R2) = 3.0 Ω and R1 + R2 = 16 Ω. So R1 and R2 must be 4.0 Ω and
12 Ω, respectively.

19. The potential difference across each resistor is V = 25.0 V. Since the resistors are identical, the current
in each one is i = V/R = (25.0 V)/(18.0 Ω) = 1.39 A. The total current through the battery is then
itotal = 4(1.39 A) = 5.56 A. One might alternatively use the idea of equivalent resistance; for four
identical resistors in parallel the equivalent resistance is given by

1

Req
=
∑ 1

R
=

4

R
.

When a potential difference of 25.0 V is applied to the equivalent resistor, the current through it is
the same as the total current through the four resistors in parallel. Thus itotal = V/Req = 4V/R =
4(25.0 V)/(18.0 Ω) = 5.56 A.

20. We note that two resistors in parallel, say R1 and R2, are equivalent to

Rparallel pair =
1

1
R1

+ 1
R2

=
R1R2

R1 +R2
.

This situation (Figure 28-27) consists of a parallel pair which are then in series with a single 2.50 Ω
resistor. Thus, the situation has an equivalent resistance of

Req = 2.50 Ω +
(4.00 Ω)(4.00 Ω)

4.00 Ω + 4.00 Ω
= 4.50 Ω .
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21. Let i1 be the current in R1 and take it to be positive if it is to the right. Let i2 be the current in R2

and take it to be positive if it is upward. When the loop rule is applied to the lower loop, the result is

E2 − i1R1 = 0 .

and when it is applied to the upper loop, the result is

E1 − E2 − E3 − i2R2 = 0 .

The first equation yields

i1 =
E2
R1

=
5.0 V

100 Ω
= 0.050 A .

The second yields

i2 =
E1 − E2 − E3

R2
=

6.0 V− 5.0 V− 4.0 V

50 Ω
= −0.060 A .

The negative sign indicates that the current in R2 is actually downward. If Vb is the potential at point
b, then the potential at point a is Va = Vb + E3 + E2, so Va − Vb = E3 + E2 = 4.0 V + 5.0 V = 9.0 V.

22. • S1, S2 and S3 all open: ia = 0.00 A.

• S1 closed, S2 and S3 open: ia = E/2R1 = 120 V/40.0 Ω = 3.00 A.

• S2 closed, S1 and S3 open: ia = E/(2R1 +R2) = 120 V/50.0 Ω = 2.40 A.

• S3 closed, S1 and S2 open: ia = E/(2R1 +R2) = 120 V/60.0 Ω = 2.00 A.

• S1 open, S2 and S3 closed: Req = R1 + R2 + R1(R1 + R2)/(2R1 + R2) = 20.0 Ω + 10.0 Ω +
(20.0 Ω)(30.0 Ω)/(50.0 Ω) = 42.0 Ω, so ia = E/Req = 120 V/42.0 Ω = 2.86 A.

• S2 open, S1 and S3 closed: Req = R1 + R1(R1 + 2R2)/(2R1 + 2R2) = 20.0 Ω + (20.0 Ω)×
(40.0 Ω)/(60.0 Ω) = 33.3 Ω, so ia = E/Req = 120 V/33.3 Ω = 3.60 A.

• S3 open, S1 and S2 closed: Req = R1+R1(R1+R2)/(2R1+R2) = 20.0 Ω+(20.0 Ω)× (30.0 Ω)/(50.0 Ω)
= 32.0 Ω, so ia = E/Req = 120 V/32.0 Ω = 3.75 A.

• S1, S2 and S3 all closed: Req = R1 + R1R
′/(R1 + R′) where R′ = R2 + R1(R1 + R2)/(2R1 +

R2) = 22.0 Ω, i.e., Req = 20.0 Ω + (20.0 Ω)(22.0 Ω)/(20.0 Ω + 22.0 Ω) = 30.5 Ω, so ia = E/Req =
120 V/30.5 Ω = 3.94 A.

23. (a) Let E be the emf of the battery. When the bulbs are connected in parallel, the potential difference
across them is the same and is also the same as the emf of the battery. The power dissipated by
bulb 1 is P1 = E2/R1, and the power dissipated by bulb 2 is P2 = E2/R2. Since R1 is greater than
R2, bulb 2 dissipates energy at a greater rate than bulb 1 and is the brighter of the two.

(b) When the bulbs are connected in series the current in them is the same. The power dissipated by
bulb 1 is now P1 = i2R1 and the power dissipated by bulb 2 is P2 = i2R2. Since R1 is greater than
R2 greater power is dissipated by bulb 1 than by bulb 2 and bulb 1 is the brighter of the two.

24. The currents i1, i2 and i3 are obtained from Eqs. 28-15 through 28-17:

i1 =
E1(R2 +R3)− E2R3

R1R2 +R2R3 +R1R3
=

(4.0 V)(10 Ω + 5.0 Ω)− (1.0 V)(5.0 Ω)

(10 Ω)(10 Ω) + (10 Ω)(5.0 Ω) + (10 Ω)(5.0 Ω)

= 0.275 A ,

i2 =
E1R3 − E2(R1 +R2)

R1R2 +R2R3 +R1R3
=

(4.0 V)(5.0 Ω)− (1.0 V)(10 Ω + 5.0 Ω)

(10 Ω)(10 Ω) + (10 Ω)(5.0 Ω) + (10 Ω)(5.0 Ω)

= 0.025 A ,

i3 = i2 − i1 = 0.025 A− 0.275 A = −0.250 A .

Vd − Vc can now be calculated by taking various paths. Two examples: from Vd − i2R2 = Vc we get
Vd− Vc = i2R2 = (0.0250 A)(10 Ω) = +0.25 V; from Vd + i3R3 + E2 = Vc we get Vd −Vc = −i3R3−E2 =
−(−0.250 A)(5.0 Ω)− 1.0 V = +0.25 V.
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25. Let r be the resistance of each of the narrow wires. Since they are in parallel the resistance R of the
composite is given by

1

R
=

9

r
,

or R = r/9. Now r = 4ρℓ/πd2 and R = 4ρℓ/πD2, where ρ is the resistivity of copper. A = πd2/4 was
used for the cross-sectional area of a single wire, and a similar expression was used for the cross-sectional
area of the thick wire. Since the single thick wire is to have the same resistance as the composite,

4ρℓ

πD2
=

4ρℓ

9πd2
=⇒ D = 3d .

26. (a) Req(FH) = (10.0 Ω)(10.0 Ω)(5.00 Ω)/[(10.0 Ω)(10.0 Ω)+ 2(10.0 Ω)(5.00 Ω)] = 2.50 Ω.

(b) Req(FG) = (5.00 Ω)R/(R+5.00 Ω), where R = 5.00 Ω+(5.00 Ω)(10.0 Ω)/(5.00Ω+10.0 Ω) = 8.33 Ω.
So Req(FG) = (5.00 Ω)(8.33 Ω)/(5.00 Ω + 8.33 Ω) = 3.13 Ω.

27. Let the resistors be divided into groups of n resistors each, with all the resistors in the same group
connected in series. Suppose there are m such groups that are connected in parallel with each other.
Let R be the resistance of any one of the resistors. Then the equivalent resistance of any group is nR,
and Req, the equivalent resistance of the whole array, satisfies

1

Req
=

m
∑

1

1

nR
=

m

nR
.

Since the problem requires Req = 10 Ω = R, we must select n = m. Next we make use of Eq. 28-13. We
note that the current is the same in every resistor and there are n ·m = n2 resistors, so the maximum
total power that can be dissipated is Ptotal = n2P , where P = 1.0 W is the maximum power that can
be dissipated by any one of the resistors. The problem demands Ptotal ≥ 5.0P , so n2 must be at least
as large as 5.0. Since n must be an integer, the smallest it can be is 3. The least number of resistors is
n2 = 9.

28. (a) R2, R3 and R4 are in parallel. By finding a common denominator and simplifying, the equation
1/R = 1/R2 + 1/R3 + 1/R4 gives an equivalent resistance of

R =
R2R3R4

R2R3 +R2R4 +R3R4
=

(50 Ω)(50 Ω)(75 Ω)

(50 Ω)(50 Ω) + (50 Ω)(75 Ω) + (50 Ω)(75 Ω)
= 19 Ω .

Thus, considering the series contribution of resistor R1, the equivalent resistance for the network is
Req = R1 +R = 100 Ω + 19 Ω = 1.2× 102 Ω.

(b) i1 = E/Req = 6.0 V/(1.1875 × 102 Ω) = 5.1 × 10−2 A; i2 = (E − V1)/R2 = (E − i1R1)/R2 =
[6.0 V − (5.05 × 10−2 A)(100 Ω)]/50 Ω = 1.9 × 10−2 A; i3 = (E − V1)/R3 = i2R2/R3 = (1.9 ×
10−2 A)(50 Ω/50 Ω) = 1.9×10−2 A; i4 = i1−i2−i3 = 5.0×10−2 A−2(1.895×10−2 A) = 1.2×10−2 A.

29. (a) The batteries are identical and, because they are connected in parallel, the potential differences
across them are the same. This means the currents in them are the same. Let i be the current in
either battery and take it to be positive to the left. According to the junction rule the current in
R is 2i and it is positive to the right. The loop rule applied to either loop containing a battery and
R yields

E − ir − 2iR = 0 =⇒ i =
E

r + 2R
.

The power dissipated in R is

P = (2i)2R =
4E2R

(r + 2R)2
.

We find the maximum by setting the derivative with respect to R equal to zero. The derivative is

dP

dR
=

4E2

(r + 2R)2
− 16E2R

(r + 2R)3
=

4E2(r − 2R)

(r + 2R)3
.

The derivative vanishes (and P is a maximum) if R = r/2.
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(b) We substitute R = r/2 into P = 4E2R/(r + 2R)2 to obtain

Pmax =
4E2(r/2)

[r + 2(r/2)]2
=
E2

2r
.

30. (a) By symmetry, when the two batteries are connected in parallel the current i going through either
one is the same. So from E = ir + (2i)R we get iR = 2i = 2E/(r + 2R). When connected in series
2E − iRr − iRr − iRR = 0, or iR = 2E/(2r +R).

(b) In series, since R > r.

(c) In parallel, since R < r.

31. (a) We first find the currents. Let i1 be the current in R1 and take it to be positive if it is upward.
Let i2 be the current in R2 and take it to be positive if it is to the left. Let i3 be the current in R3

and take it to be positive if it is to the right. The junction rule produces

i1 + i2 + i3 = 0 .

The loop rule applied to the left-hand loop produces

E1 − i3R3 + i1R1 = 0

and applied to the right-hand loop produces

E2 − i2R2 + i1R1 = 0 .

We substitute i1 = −i2 − i3, from the first equation, into the other two to obtain

E1 − i3R3 − i2R1 − i3R1 = 0

and
E2 − i2R2 − i2R1 − i3R1 = 0 .

The first of these yields

i3 =
E1 − i2R1

R1 +R3
.

Substituting this into the second equation and solving for i2, we obtain

i2 =
E2(R1 +R3)− E1R1

R1R2 +R1R3 +R2R3

=
(1.00 V)(5.00 Ω + 4.00 Ω)− (3.00 V)(5.00 Ω)

(5.00 Ω)(2.00 Ω) + (5.00 Ω)(4.00 Ω) + (2.00 Ω)(4.00 Ω)
= −0.158 A .

We substitute into the expression for i3 to obtain

i3 =
E1 − i2R1

R1 +R3
=

3.00 V− (−0.158 A)(5.00 Ω)

5.00 Ω + 4.00 Ω
= 0.421 A .

Finally,
i1 = −i2 − i3 = −(−0.158 A)− (0.421 A) = −0.263 A .

Note that the current in R1 is actually downward and the current inR2 is to the right. The current in
R3 is also to the right. The power dissipated in R1 is P1 = i21R1 = (−0.263 A)2(5.00 Ω) = 0.346 W.

(b) The power dissipated in R2 is P2 = i22R2 = (−0.158 A)2(2.00 Ω) = 0.0499 W.

(c) The power dissipated in R3 is P3 = i23R3 = (0.421 A)2(4.00 Ω) = 0.709 W.

(d) The power supplied by E1 is i3E1 = (0.421 A)(3.00 V) = 1.26 W.



706 CHAPTER 28.

(e) The power “supplied” by E2 is i2E2 = (−0.158 A)(1.00 V) = −0.158 W. The negative sign indicates
that E2 is actually absorbing energy from the circuit.

32. (a) We use P = E2/Req, where

Req = 7.00 Ω +
(12.0 Ω)(4.00 Ω)R

(12.0 Ω)(4.0 Ω) + (12.0 Ω)R+ (4.00 Ω)R
.

Put P = 60.0 W and E = 24.0 V and solve for R: R = 19.5 Ω.

(b) Since P ∝ Req, we must minimize Req, which means R = 0.

(c) Now we must maximize Req, or set R =∞.

(d) Since Req,max = 7.00 Ω + (12.0 Ω)(4.00 Ω)/(12.0 Ω + 4.00 Ω) = 10.0 Ω, Pmin = E2/Req,max =
(24.0 V)2/10.0 Ω = 57.6 W. Since Req, min = 7.00 Ω, Pmax = E2/Req,min = (24.0 V)2/7.00 Ω =
82.3 W.

33. (a) We note that the R1 resistors occur in series pairs, contributing net resistance 2R1 in each branch
where they appear. Since E2 = E3 and R2 = 2R1, from symmetry we know that the currents
through E2 and E3 are the same: i2 = i3 = i. Therefore, the current through E1 is i1 = 2i. Then
from Vb − Va = E2 − iR2 = E1 + (2R1)(2i) we get

i =
E2 − E1

4R1 +R2
=

4.0 V− 2.0 V

4(1.0 Ω) + 2.0 Ω
= 0.33 A .

Therefore, the current through E1 is i1 = 2i = 0.67 A, flowing downward. The current through E2
is 0.33 A, flowing upward; the same holds for E3.

(b) Va − Vb = −iR2 + E2 = −(0.333 A)(2.0 Ω) + 4.0 V = 3.3 V.

34. The voltage difference across R is VR = ER′/(R′ + 2.00 Ω), where R′ = (5.00 ΩR)/(5.00 Ω +R). Thus,

PR =
V 2

R

R
=

1

R

( ER′

R′ + 2.00 Ω

)2

=
1

R

( E
1 + 2.00 Ω/R′

)2

=
E2

R

[

1 +
(2.00 Ω)(5.00 Ω +R)

(5.00 Ω)R

]−2

≡ E2

f(R)

where we use the equivalence symbol ≡ to define the expression f(R). To maximize PR we need to
minimize the expression f(R). We set

df(R)

dR
= −4.00 Ω2

R2
+

49

25
= 0

to obtain R =
√

(4.00 Ω2)(25)/49 = 1.43 Ω.

35. (a) The copper wire and the aluminum sheath are connected in parallel, so the potential difference is
the same for them. Since the potential difference is the product of the current and the resistance,
iCRC = iARA, where iC is the current in the copper, iA is the current in the aluminum, RC is
the resistance of the copper, and RA is the resistance of the aluminum. The resistance of either
component is given by R = ρL/A, where ρ is the resistivity, L is the length, and A is the cross-
sectional area. The resistance of the copper wire is RC = ρCL/πa

2, and the resistance of the
aluminum sheath is RA = ρAL/π(b2 − a2). We substitute these expressions into iCRC = iARA,
and cancel the common factors L and π to obtain

iCρC

a2
=

iAρA

b2 − a2
.

We solve this equation simultaneously with i = iC + iA, where i is the total current. We find

iC =
r2CρCi

(r2A − r2C)ρC + r2CρA
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and

iA =
(r2A − r2C)ρCi

(r2A − r2C)ρC + r2CρA
.

The denominators are the same and each has the value

(b2 − a2)ρC + a2ρA =
[

(0.380× 10−3 m)2 − (0.250× 10−3 m)2
]

(1.69× 10−8 Ω·m)

+(0.250× 10−3 m)2(2.75× 10−8 Ω·m)

= 3.10× 10−15 Ω·m3 .

Thus,

iC =
(0.250× 10−3 m)2(2.75× 10−8Ω·m)(2.00 A)

3.10× 10−15 Ω·m3
= 1.11 A

and

iA =

[

(0.380× 10−3 m)2 − (0.250× 10−3 m)2
]

(1.69× 10−8 Ω·m)(2.00 A)

3.10× 10−15 Ω·m3

= 0.893 A .

(b) Consider the copper wire. If V is the potential difference, then the current is given by V = iCRC =
iCρCL/πa

2, so

L =
πa2V

iCρC
=

(π)(0.250× 10−3 m)2(12.0 V)

(1.11 A)(1.69× 10−8 Ω·m)
= 126 m .

36. (a) Since i = E/(r+Rext) and imax = E/r, we have Rext = R(imax/i− 1) where r = 1.50 V/1.00 mA =
1.50× 103 Ω. Thus, Rext = (1.5× 103 Ω)(1/0.10− 1) = 1.35× 104 Ω;

(b) Rext = (1.5× 103 Ω)(1/0.50− 1) = 1.50× 103 Ω;

(c) Rext = (1.5× 103 Ω)(1/0.90− 1) = 167 Ω.

(d) Since r = 20.0 Ω +R, R = 1.50× 103 Ω− 20.0 Ω = 1.48× 103 Ω.

37. (a) The current in R1 is given by

i1 =
E

R1 +R2R3/(R2 +R3)
=

5.0 V

2.0 Ω + (4.0 Ω)(6.0 Ω)/(4.0 Ω + 6.0 Ω)
= 1.14 A .

Thus

i3 =
E − V1

R3
=
E − i1R1

R3
=

5.0 V− (1.14 A)(2.0 Ω)

6.0 Ω
= 0.45 A .

(b) We simply interchange subscripts 1 and 3 in the equation above. Now

i3 =
E

R3 + (R2R1/(R2 +R1))

=
5.0 V

6.0 Ω + ((2.0 Ω)(4.0 Ω)/(2.0 Ω + 4.0 Ω))

= 0.6818 A

and

i1 =
5.0 V− (0.6818 A)(6.0 Ω)

2.0 Ω
= 0.45 A ,

the same as before.

38. (a) E = V + ir = 12 V + (10 A)(0.050 Ω) = 12.5 V.
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(b) Now E = V ′ + (imotor + 8.0 A)r, where V ′ = i′AR light = (8.0 A)(12 V/10 A) = 9.6 V. Therefore,

imotor =
E − V ′

r
− 8.0 A =

12.5 V− 9.6 V

0.050 Ω
− 8.0 A = 50 A .

39. The current in R2 is i. Let i1 be the current in R1 and take it to be downward. According to the
junction rule the current in the voltmeter is i − i1 and it is downward. We apply the loop rule to the
left-hand loop to obtain

E − iR2 − i1R1 − ir = 0 .

We apply the loop rule to the right-hand loop to obtain

i1R1 − (i− i1)RV = 0 .

The second equation yields

i =
R1 +RV

RV
i1 .

We substitute this into the first equation to obtain

E − (R2 + r)(R1 +RV )

RV
i1 +R1i1 = 0 .

This has the solution

i1 =
ERV

(R2 + r)(R1 +RV ) +R1RV
.

The reading on the voltmeter is

i1R1 =
ERV R1

(R2 + r)(R1 + RV ) +R1RV

=
(3.0 V)(5.0× 103 Ω)(250 Ω)

(300 Ω + 100 Ω)(250 Ω + 5.0× 103 Ω) + (250 Ω)(5.0× 103 Ω)
= 1.12 V .

The current in the absence of the voltmeter can be obtained by taking the limit as RV becomes infinitely
large. Then

i1R1 =
ER1

R1 +R2 + r
=

(3.0 V)(250 Ω)

250 Ω + 300 Ω + 100 Ω
= 1.15 V .

The fractional error is (1.12− 1.15)/(1.15) = −0.030, or −3.0%.

40. The currents in R and RV are i and i′− i, respectively. Since V = iR = (i′− i)RV we have, by dividing
both sides by V , 1 = (i′/V − i/V )RV = (1/R′ − 1/R)RV . Thus,

1

R
=

1

R′ −
1

RV
.

41. Let the current in the ammeter be i′. We have V = i′(R + RA), or R = V/i′ − RA = R′ − RA, where
R′ = V/i′ is the apparent reading of the resistance.

42. (a) In the first case

i′ =
E
Req

=
E

RA +R0 + RVR/(R+RV )

=
12.0 V

3.00 Ω + 100 Ω + (300 Ω)(85.0 Ω)/(300 Ω + 85.0 Ω)

= 7.09× 10−2 A ,
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and V = E − i′(RA + R0) = 12.0 V − (0.0709 A)(103.00 Ω) = 4.70 V. In the second case V =
ER′/(R′ +R0), where

R′ =
RV (R+RA)

RV +R+RA
=

(300 Ω)(300 Ω + 85.0 Ω)

300 Ω + 85.0 Ω + 3.00 Ω
= 68.0 Ω .

So V = (12.0 V)(68.0 Ω)/(68.0 Ω+100 Ω) = 4.86 V, and i′ = V (R+RA) = 4.86 V/(300 Ω+85.0 Ω) =
5.52× 10−2 A.

(b) In the first case R′ = V/i′ = 4.70 V/(7.09 × 10−2 A) = 66.3 Ω. In the second case R′ = V/i′ =
4.86 V/(5.52× 10−2 A) = 88.0 Ω.

43. Let i1 be the current in R1 and R2, and take it to be positive if it is toward point a in R1. Let i2
be the current in Rs and Rx, and take it to be positive if it is toward b in Rs. The loop rule yields
(R1 +R2)i1− (Rx +Rs)i2 = 0. Since points a and b are at the same potential, i1R1 = i2Rs. The second
equation gives i2 = i1R1/Rs, which is substituted into the first equation to obtain

(R1 +R2)i1 = (Rx +Rs)
R1

Rs
i1 =⇒ Rx =

R2Rs

R1
.

44. (a) We use q = q0e
−t/τ , or t = τ ln(q0/q), where τ = RC is the capacitive time constant. Thus,

t1/3 = τ ln[q0/(2q0/3)] = τ ln(3/2) = 0.41τ.

(b) t2/3 = τ ln[q0/(q0/3)] = τ ln 3 = 1.1τ.

45. During charging, the charge on the positive plate of the capacitor is given by

q = CE(1 − e−t/τ ) ,

where C is the capacitance, E is applied emf, and τ = RC is the capacitive time constant. The equilibrium
charge is qeq = CE . We require q = 0.99qeq = 0.99CE , so

0.99 = 1− e−t/τ .

Thus,
e−t/τ = 0.01 .

Taking the natural logarithm of both sides, we obtain t/τ = − ln 0.01 = 4.6 and t = 4.6τ .

46. (a) τ = RC = (1.40× 106 Ω)(1.80× 10−6 F) = 2.52 s.

(b) qo = EC = (12.0 V)(1.80µF) = 21.6µC.

(c) The time t satisfies q = q0(1 − e−t/RC), or

t = RC ln

(

q0
q0 − q

)

= (2.52 s) ln

(

21.6µC

21.6µC− 16.0µC

)

= 3.40 s .

47. (a) The voltage difference V across the capacitor varies with time as V (t) = E(1 − e−t/RC). At
t = 1.30µ s we have V (t) = 5.00 V, so 5.00 V = (12.0 V)(1 − e−1.30 µs/RC), which gives τ =
(1.30µ s)/ ln(12/7) = 2.41µs.

(b) C = τ/R = 2.41µs/15.0 kΩ = 161 pF.

48. The potential difference across the capacitor varies as a function of time t as V (t) = V0e
−t/RC . Using

V = V0/4 at t = 2.0 s, we find

R =
t

C ln(V0/V )
=

2.0 s

(2.0× 10−6 F) ln 4
= 7.2× 105 Ω .
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49. (a) The charge on the positive plate of the capacitor is given by

q = CE (1− e−t/τ ) ,

where E is the emf of the battery, C is the capacitance, and τ is the time constant. The value of τ
is τ = RC = (3.00 × 106 Ω)(1.00 × 10−6 F) = 3.00 s. At t = 1.00 s, t/τ = (1.00 s)/(3.00 s) = 0.333
and the rate at which the charge is increasing is

dq

dt
=
CE
τ
e−t/τ =

(1.00× 10−6)(4.00 V)

3.00 s
e−0.333 = 9.55× 10−7 C/s .

(b) The energy stored in the capacitor is given by

UC =
q2

2C
.

and its rate of change is
dUC

dt
=

q

C

dq

dt
.

Now
q = CE (1− e−t/τ ) = (1.00× 10−6)(4.00 V)(1− e−0.333) = 1.13× 10−6 C ,

so
dUC

dt
=

(

1.13× 10−6 C

1.00× 10−6 F

)

(9.55× 10−7 C/s) = 1.08× 10−6 W .

(c) The rate at which energy is being dissipated in the resistor is given by P = i2R. The current is
9.55× 10−7A, so

P = (9.55× 10−7A)2(3.00× 106 Ω) = 2.74× 10−6 W .

(d) The rate at which energy is delivered by the battery is

iE = (9.55× 10−7A)(4.00 V) = 3.82× 10−6 W .

The energy delivered by the battery is either stored in the capacitor or dissipated in the resistor.
Conservation of energy requires that iE = (q/C) (dq/dt)+ i2R. Except for some round-off error the
numerical results support the conservation principle.

50. (a) The charge q on the capacitor as a function of time is q(t) = (EC)(1 − e−t/RC), so the charging
current is i(t) = dq/dt = (E/R)e−t/RC . The energy supplied by the emf is then

U =

∫ ∞

0

Ei dt =
E2

R

∫ ∞

0

e−t/RCdt = CE2 = 2UC

where UC = 1
2CE2 is the energy stored in the capacitor.

(b) By directly integrating i2R we obtain

UR =

∫ ∞

0

i2Rdt =
E2

R

∫ ∞

0

e−2t/RC dt =
1

2
CE2 .

51. (a) The potential difference V across the plates of a capacitor is related to the charge q on the positive
plate by V = q/C, where C is capacitance. Since the charge on a discharging capacitor is given by
q = q0 e

−t/τ , this means V = V0 e
−t/τ where V0 is the initial potential difference. We solve for the

time constant τ by dividing by V0 and taking the natural logarithm:

τ = − t

ln (V/V0)
= − 10.0 s

ln [(1.00 V)/(100 V)]
= 2.17 s .
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(b) At t = 17.0 s, t/τ = (17.0 s)/(2.17 s) = 7.83, so

V = V0 e
−t/τ = (100 V) e−7.83 = 3.96× 10−2 V .

52. The time it takes for the voltage difference across the capacitor to reach VL is given by VL = E(1−e−t/RC).
We solve for R:

R =
t

C ln[E/(E − VL)]
=

0.500 s

(0.150× 10−6 F) ln[95.0 V/(95.0 V− 72.0 V)]
= 2.35× 106 Ω

where we used t = 0.500 s given (implicitly) in the problem.

53. (a) The initial energy stored in a capacitor is given by

UC =
q20
2C

,

where C is the capacitance and q0 is the initial charge on one plate. Thus

q0 =
√

2CUC =
√

2(1.0× 10−6 F)(0.50 J) = 1.0× 10−3 C .

(b) The charge as a function of time is given by q = q0 e
−t/τ , where τ is the capacitive time constant.

The current is the derivative of the charge

i = −dq
dt

=
q0
τ
e−t/τ ,

and the initial current is i0 = q0/τ . The time constant is τ = RC = (1.0 × 10−6 F)(1.0 × 106 Ω) =
1.0 s. Thus i0 = (1.0× 10−3 C)/(1.0 s) = 1.0× 10−3 A.

(c) We substitute q = q0 e
−t/τ into VC = q/C to obtain

VC =
q0
C
e−t/τ =

(

1.0× 10−3 C

1.0× 10−6 F

)

e−t/1.0 s = (1.0× 103 V) e−1.0t ,

where t is measured in seconds. We substitute i = (q0/τ) e
−t/τ into VR = iR to obtain

VR =
q0R

τ
e−t/τ =

(1.0× 10−3 C)(1.0× 106 Ω)

1.0 s
e−t/1.0 s = (1.0× 103 V) e−1.0t ,

where t is measured in seconds.

(d) We substitute i = (q0/τ) e
−t/τ into P = i2R to obtain

P =
q20R

τ2
e−2t/τ =

(1.0× 10−3 C)2(1.0× 106 Ω)

(1.0 s)2
e−2t/1.0 s = (1.0 W) e−2.0t ,

where t is again measured in seconds.

54. We use the result of problem 48: R = t/[C ln(V0/V )]. Then, for tmin = 10.0µs

Rmin =
10.0µs

(0.220µF) ln(5.00/0.800)
= 24.8 Ω.

For tmax = 6.00 ms,

Rmax =

(

6.00 ms

10.0µs

)

(24.8 Ω) = 1.49× 104 Ω ,

where in the last equation we used τ = RC.
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55. (a) At t = 0 the capacitor is completely uncharged and the current in the capacitor branch is as it
would be if the capacitor were replaced by a wire. Let i1 be the current in R1 and take it to be
positive if it is to the right. Let i2 be the current in R2 and take it to be positive if it is downward.
Let i3 be the current in R3 and take it to be positive if it is downward. The junction rule produces

i1 = i2 + i3 ,

the loop rule applied to the left-hand loop produces

E − i1R1 − i2R2 = 0 ,

and the loop rule applied to the right-hand loop produces

i2R2 − i3R3 = 0 .

Since the resistances are all the same we can simplify the mathematics by replacing R1, R2, and
R3 with R. The solution to the three simultaneous equations is

i1 =
2E
3R

=
2(1.2× 103 V)

3(0.73× 106 Ω)
= 1.1× 10−3 A

and

i2 = i3 =
E
3R

=
1.2× 103 V

3(0.73× 106 Ω)
= 5.5× 10−4 A .

At t =∞ the capacitor is fully charged and the current in the capacitor branch is 0. Thus, i1 = i2,
and the loop rule yields

E − i1R1 − i1R2 = 0 .

The solution is

i1 = i2 =
E
2R

=
1.2× 103 V

2(0.73× 106 Ω)
= 8.2× 10−4 A .

(b) We take the upper plate of the capacitor to be positive. This is consistent with current flowing into
that plate. The junction equation is i1 = i2 + i3 , and the loop equations are

E − i1R− i2R = 0 and − q

C
− i3R+ i2R = 0 .

We use the first equation to substitute for i1 in the second and obtain E − 2i2R − i3R = 0.
Thus i2 = (E − i3R)/2R. We substitute this expression into the third equation above to obtain
−(q/C)− (i3R) + (E/2)− (i3R/2) = 0. Now we replace i3 with dq/dt to obtain

3R

2

dq

dt
+
q

C
=
E
2
.

This is just like the equation for an RC series circuit, except that the time constant is τ = 3RC/2
and the impressed potential difference is E/2. The solution is

q =
CE
2

(

1− e−2t/3RC
)

.

The current in the capacitor branch is

i3 =
dq

dt
=
E
3R

e−2t/3RC .

The current in the center branch is

i2 =
E
2R
− i3

2
=
E
2R
− E

6R
e−2t/3RC

=
E
6R

(

3− e−2t/3RC
)
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and the potential difference across R2 is

V2 = i2R =
E
6

(

3− e−2t/3RC
)

.

This is shown in the following graph.
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(c) For t = 0, e−2t/3RC is 1 and VR = E/3 = (1.2 × 103 V)/3 = 400 V. For t = ∞, e−2t/3RC is 0 and
VR = E/2 = (1.2× 203 V)/2 = 600 V.

(d) After “a long time” means after several time constants. Then, the current in the capacitor branch
is very small and can be approximated by 0.

56. (a) We found in part (e) of problem 45 in Chapter 27 that the magnitude of the electric field is
E = 16 V/m. Taking this to be roughly constant over the small distance (ℓ = 0.50 m) involved
here, then we approximate the potential difference between the man’s feet as

∆V ≈ Eℓ = 8 V .

(b) The voltage found in part (a) drives a current i through the two feet (each represented by Rf =
300 Ω) and the torso (represented by Rt = 1000 Ω). Thus,

i =
∆V

2Rf +Rt
=

8 V

2(300 Ω) + 1000 Ω

which yields i ≈ 5 mA.

(c) Our value for i is far less than the stated 100 mA minimum required to put the heart into fibrillation.

57. (a) The four tires act as resistors in parallel, with an equivalent value given by

1

Req
=

4
∑

n=1

1

Rtire
=

4

Rtire
=⇒ Req =

Rtire

4
.

Using the stated values (C = 5.0× 10−10 F and 108 Ω < Rtire < 1011 Ω) we find the capacitive time
constant τ = ReqC in the range 0.012 s < τ < 13 s.

(b) Eq. 26-22 leads to

U0 =
1

2
CV 2 =

1

2

(

5.00× 10−10 F
) (

30.0× 103 V
)2

= 0.225 J .
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(c) As demonstrated in Sample Problem 28-5, the energy “decays” exponentially according to

U = U0e
−2t/τ .

Solving for the time which gives U = 0.050 J, we find

t =
τ

2
ln

(

U0

U

)

=
τ

2
ln

(

0.225

0.050

)

which yields, for the range of time constants found in part (a), values of t in the range 0.094 s <
t < 9.4 s. To obtain these particular values, we used 3-figure versions of the part (a) results
(0.0125 s < τ < 12.5 s).

(d) The lower range of resistance leads to the smaller times to discharge, which is the more desirable
situation. Based on this criterion, low resistance tires are favored.

(e) There are a variety of ways to safely and quickly ground a large charged object. A large metal
cable connected to, say, the (metal) building frame and held at the end of, say, a long lucite rod
might be used (to touch a part of the car that does not have much paint or grease on it) to make
the car safe to handle.

58. (a) In the process described in the problem, no charge is gained or lost. Thus, q = constant. Hence,

q = C1V1 = C2V2 =⇒ V2 = V1
C1

C2
= (200)

(

150

10

)

= 3000 V .

(b) Eq. 28-36, with τ = RC, describes not only the discharging of q but also of V . Thus,

V = V0e
−t/τ =⇒ t = RC ln

(

V0

V

)

=
(

300× 109 Ω
) (

10× 10−12 F
)

ln

(

3000

100

)

which yields t = 10 s. This is a longer time than most people are inclined to wait before going on
to their next task (such as handling the sensitive electronic equipment).

(c) We solve V = V0e
−t/RC for R with the new values V0 = 1400 V and t = 0.30 s. Thus,

R =
t

C ln(V0/V )
=

0.30 s

(10× 10−12 F) ln(1400/100)
= 1.1× 1010 Ω .

59. (a) Since Rtank = 140 Ω, i = 12 V/(10 Ω + 140 Ω) = 8.0× 10−2 A.

(b) Now, Rtank = (140 Ω + 20 Ω)/2 = 80 Ω, so i = 12 V/(10 Ω + 80 Ω) = 0.13 A.

(c) When full, Rtank = 20 Ω so i = 12 V/(10 Ω + 20 Ω) = 0.40 A.

60. (a) The magnitude of the current density vector is

JA = JB =
i

A
=

V

(R1 +R2)A
=

4 V

(R1 +R2)πD2

=
4(60.0 V)

π(0.127 Ω + 0.729 Ω)(2.60× 10−3 m)2

= 1.32× 107 A/m2 .

(b) VA = V R1/(R1 + R2) = (60.0 V)(0.127 Ω)/(0.127 Ω + 0.729 Ω) = 8.90 V, and VB = V − VA =
60.0 V− 8.9 V = 51.1 V.

(c) Calculate the resistivity from R = ρL/A for both materials: ρA = RAA/LA = πRAD
2/4LA =

π(0.127 Ω)(2.60× 10−3 m)2/[4(40.0 m)] = 1.69× 10−8 Ω·m. So A is made of copper. Similarly we
find ρB = 9.68× 10−8 Ω·m, so B is made of iron.
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61. We denote silicon with subscript s and iron with i. Let T0 = 20◦. If

R(T ) = Rs(T ) +Ri(T ) = Rs(T0)[1 + α(T − T0)] +Ri(T0)[1 + αi(T − T0)]

= (Rs(T )0αs +Ri(T0)αi) + (temperature independentterms)

is to be temperature-independent, we must require that Rs(T0)αs + Ri(T0)αi = 0. Also note that
Rs(T0) +Ri(T0) = R = 1000 Ω. We solve for Rs(T0) and Ri(T0) to obtain

Rs(T0) =
Rαi

αi − αs
=

(1000 Ω)(6.5× 10−3)

6.5× 10−3 + 70× 10−3
= 85.0 Ω ,

and Ri(T0) = 1000 Ω− 85.0 Ω = 915 Ω.

62. The potential difference across R2 is

V2 = iR2 =
E R2

R1 +R2 +R3
=

(12 V)(4.0 Ω)

3.0 Ω + 4.0 Ω + 5.0 Ω
= 4.0 V .

63. Since Req < R, the two resistors (R = 12.0 Ω and Rx) must be connected in parallel:

Req = 3.00 Ω =
RxR

R +Rx
=

Rx(12.0 Ω)

12.0 Ω +Rx
.

We solve for Rx: Rx = ReqR/(R−Req) = (3.00 Ω)(12.0 Ω)/(12.0 Ω− 3.00 Ω) = 4.00 Ω.

64. Consider the lowest branch with the two resistors R1 = 3.0 Ω and R2 = 5.0 Ω. The voltage difference
across the 5.0 Ω resistor is

V = i2R2 =
E R2

R1 +R2
=

(120 V)(5.0 Ω)

3.0 Ω + 5.0 Ω
= 7.5 V .

65. When all the batteries are connected in parallel, each supplies a current i; thus, iR = Ni. Then from
E = ir + iRR = ir +Nir, we get iR = NE/[(N + 1)r]. When all the batteries are connected in series,
ir = iR and Etotal = NE = Nirr + iRR = NiRr + iRr, so iR = NE/[(N + 1)r].

66. (a) They are in parallel and the portions of A and B between the load and their respective sliding
contacts have the same potential difference. It is clearly important not to “short” the system
(particularly if the load turns out to have very little resistance) by having the sliding contacts too
close to the load-ends of A and B to start with. Thus, we suggest putting the contacts roughly
in the middle of each. Since R1 > R2, larger currents generally go through B (depending on the
position of the sliding contact) than through A. Therefore, B is analogous to a “coarse” control,
as A is to a “fine control.” Hence, we recommend adjusting the current roughly with B, and then
making fine adjustments with A.

(b) Relatively large percentage changes in A cause only small percentage charges in the resistance of
the parallel combination, thus permitting fine adjustment; any change in A causes half as much
change in this combination.

67. When connected in series, the rate at which electric energy dissipates is Ps = E2/(R1 + R2). When
connected in parallel, the corresponding rate is Pp = E2(R1 + R2)/R1R2. Letting Pp/Ps = 5, we get
(R1 +R2)

2/R1R2 = 5, where R1 = 100 Ω. We solve for R2: R2 = 38 Ω or 260 Ω.

68. (a) Placing a wire (of resistance r) with current i running directly from point a to point b in Fig. 28-41
divides the top of the picture into a left and a right triangle. If we label the currents through each
resistor with the corresponding subscripts (for instance, is goes toward the lower right through Rs

and ix goes toward the upper right through Rx ), then the currents must be related as follows:

i0 = i1 + is and i1 = i+ i2

is + i = ix and i2 + ix = i0
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where the last relation is not independent of the previous three. The loop equations for the two
triangles and also for the bottom loop (containing the battery and point b) lead to

isRs − i1R1 − ir = 0

i2R2 − ixRx − ir = 0

E − i0R0 − isRs − ixRx = 0 .

We incorporate the current relations from above into these loop equations in order to obtain three
well-posed “simultaneous” equations, for three unknown currents (is, i1 and i):

isRs − i1R1 − ir = 0

i1R2 − isRx − i (r +Rx +R2) = 0

E − is (R0 +Rs +Rx)− i1R0 − iRx = 0

The problem statement further specifies R1 = R2 = R and R0 = 0, which causes our solution for i
to simplify significantly. It becomes

i =
E (Rs −Rx)

2rRs + 2RxRs +RsR+ 2rRx +RxR

which is equivalent to the result shown in the problem statement.

(b) Examining the numerator of our final result in part (a), we see that the condition for i = 0 is
Rs = Rx. Since R1 = R2 = R, this is equivalent to Rx = RsR2/R1, consistent with the result of
Problem 43.

69. The voltage across the rightmost resistors is V12 = (1.4 A)(8.0 Ω + 4.0 Ω) = 16.8 V, which is equal
to V16 (the voltage across the 16 Ω resistor, which has current equal to V16/(16 Ω) = 1.05 A). By
the junction rule, the current in the rightmost 2.0 Ω resistor is 1.05 + 1.4 = 2.45 A, so its voltage is
V2 = (2.0 Ω)(2.45 A) = 4.9 V. The loop rule tells us the voltage across the 2.0 Ω resistor (the one
going “downward” in the figure) is V ′

2 = V2 + V16 = 21.7 V (implying that the current through it is
i′2 = V ′

2/(2.0 Ω) = 10.85 A). The junction rule now gives the current in the leftmost 2.0 Ω resistor as
10.85 + 2.45 = 13.3 A, implying that the voltage across it is V ′′

2 = (13.3 A)(2.0 Ω) = 26.6 V. Therefore,
by the loop rule, E = V ′′

2 + V ′
2 = 48.3 V.

70. In the steady state situation, the capacitor voltage will equal the voltage across the 15 kΩ resistor:

V0 = (15 kΩ)

(

20 V

10 kΩ + 15 kΩ

)

= 12 V .

Now, multiplying Eq. 28-36 by the capacitance leads to V = V0e
−t/RC describing the voltage across

the capacitor (and across the R = 15 kΩ resistor) after the switch is opened (at t = 0). Thus, with
t = 0.00400 s, we obtain

V = (12)e−0.004/(15000)(0.4×10−6 ) = 6.16 V .

Therefore, using Ohm’s law, the current through the 15 kΩ resistor is 6.16/15000 = 4.11× 10−4 A.

71. (a) By symmetry, we see that i1 is half the current that goes through the battery. The battery current
is found by dividing E by the equivalent resistance of the circuit, which is easily found to be 6.0 Ω.
Thus,

i1 =
1

2
ibat =

1

2

12 V

6.0 Ω
= 1.0 A

and is clearly downward (in the figure).

(b) We use Eq. 28-14: P = ibatE = 24 W.
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72. The series pair of 2.0 Ω resistors on the right reduce to R′ = 4.0 Ω, and the parallel pair of identical
4.0 Ω resistors on the left reduce to R′′ = 2.0 Ω. The voltage across R′ must equal that across R′′; thus,

V ′ = V ′′

i′R′ = i′′R′′

i′ =
1

2
i′′

where in the last step we divide by R′ and simplify. This relation, plus the junction rule condition
6.0 A = i′ + i′′ leads to the solution i′′ = 4.0 A. It is clear by symmetry that i = 1

2 i
′′, so we conclude

i = 2.0 A.

73. (a) We reduce the parallel pair of identical 2.0 Ω resistors (on the right side) to R′ = 1.0 Ω, and we
reduce the series pair of identical 2.0 Ω resistors (on the upper left side) to R′′ = 4.0 Ω. With R
denoting the 2.0 Ω resistor at the bottom (between V2 and V1), we now have three resistors in series
which are equivalent to

R+R′ +R′′ = 7.0 Ω

across which the voltage is 7.0 V (by the loop rule, this is 12 V− 5.0 V), implying that the current
is 1.0 A (clockwise). Thus, the voltage across R′ is (1.0 A)(1.0 Ω) = 1.0 V, which means that
(examining the right side of the circuit) the voltage difference between ground and V1 is 12− 1 =
11 V. Noting the orientation of the battery, we conclude V1 = −11 V.

(b) The voltage across R′′ is (1.0 A)(4.0 Ω) = 4.0 V, which means that (examining the left side of the
circuit) the voltage difference between ground and V2 is 5.0 + 4.0 = 9.0 V. Noting the orientation
of the battery, we conclude V2 = −9.0 V. This can be verified by considering the voltage across R
and the value we obtained for V1.

74. (a) From symmetry we see that the current through the top set of batteries (i) is the same as the
current through the second set. This implies that the current through the R = 4.0 Ω resistor at
the bottom is iR = 2i. Thus, with r denoting the internal resistance of each battery (equal to
4.0 Ω) and E denoting the 20 V emf, we consider one loop equation (the outer loop), proceeding
counterclockwise:

3 (E − ir)− (2i)R = 0 .

This yields i = 3.0 A. Consequently, iR = 6.0 A.

(b) The terminal voltage of each battery is E − ir = 8.0 V.

(c) Using Eq. 28-14, we obtain P = iE = (3)(20) = 60 W.

(d) Using Eq. 27-22, we have P = i2r = 36 W.

75. (a) The work done by the battery relates to the potential energy change:

q∆V = eV = e(12 V) = 12 eV = (12 eV)(1.6× 10−19 J/eV) = 1.9× 10−18 J .

(b) P = iV = neV = (3.4× 1018/s)(1.6× 10−19 C)(12 V) = 6.5 W.

76. (a) We denote L = 10 km and α = 13 Ω/km. Measured from the east end we have R1 = 100 Ω =
2α(L− x) +R, and measured from the west end R2 = 200 Ω = 2αx+R. Thus,

x =
R2 −R1

4α
+
L

2
=

200 Ω− 100 Ω

4(13 Ω/km)
+

10 km

2
= 6.9 km .

(b) Also, we obtain

R =
R1 +R2

2
− αL =

100 Ω + 200 Ω

2
− (13 Ω/km)(10 km) = 20 Ω .
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77. (a) From P = V 2/R we find V =
√
PR =

√

(10 W)(0.10 Ω) = 1.0 V.

(b) From i = V/R = (E − V )/r we find

r = R

(E − V
V

)

= (0.10 Ω)

(

1.5 V− 1.0 V

1.0 V

)

= 0.050 Ω .

78. (a) The power delivered by the motor is P = (2.00 V)(0.500 m/s) = 1.00 W. From P = i2Rmotor and
E = i(r +Rmotor) we then find i2r − iE + P = 0 (which also follows directly from the conservation
of energy principle). We solve for i:

i =
E ±
√
E2 − 4rP

2r
=

2.00 V±
√

(2.00 V)2 − 4(0.500 Ω)(1.00 W)

2(0.500 Ω)
.

The answer is either 3.41 A or 0.586 A.

(b) We use V = E − ir = 2.00 V − i(0.500 Ω). We substitute the two values of i obtained in part (a)
into the above formula to get V = 0.293 V or 1.71 V.

(c) The power P delivered by the motor is the same for either solution. Since P = iV we may have a
lower i and higher V or, alternatively, a lower V and higher i. One can check that the two sets of
solutions for i and V above do yield the same power P = iV .

79. Let the power supplied be Ps and that dissipated be Pd. Since Pd = i2R and i = Ps/E , we have
Pd = P 2

s /E2R ∝ E−2. The ratio is then

Pd(E = 110, 000 V)

Pd(E = 110 V)
=

(

110 V

110, 000 V

)2

= 1.0× 10−6 .

80. (a) Req(AB) = 20.0 Ω/3 = 6.67 Ω (three 20.0 Ω resistors in parallel).

(b) Req(AC) = 20.0 Ω/3 = 6.67 Ω (three 20.0 Ω resistors in parallel).

(c) Req(BC) = 0 (as B and C are connected by a conducting wire).

81. The maximum power output is (120 V)(15 A) = 1800 W. Since 1800 W/500 W = 3.6, the maximum
number of 500 W lamps allowed is 3.

82. The part of R0 connected in parallel with R is given by R1 = R0x/L, where L = 10 cm. The voltage
difference across R is then VR = ER′/Req, where R′ = RR1/(R + R1) and Req = R0(1 − x/L) + R′.
Thus

PR =
V 2

R

R
=

1

R

( ERR1/(R+R1)

R0(1− x/L) + RR1/(R+R1)

)2

.

Algebraic manipulation then leads to

PR =
100R(Ex/R0)

2

(100R/R0 + 10x− x2)2

where x is measured in cm.

83. (a) Since P = E2/Req, the higher the power rating the smaller the value of Req. To achieve this, we can
let the low position connect to the larger resistance (R1), middle position connect to the smaller
resistance (R2), and the high position connect to both of them in parallel.

(b) For P = 100 W, Req = R1 = E2/P = (120 V)2/100 W = 144 Ω; for P = 300 W, Req = R1R2/(R1 +
R2) = (144 Ω)R2/(144 Ω +R2) = (120 V)2/300 W. We obtain R2 = 72 Ω.
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84. Note that there is no voltage drop across the ammeter. Thus, the currents in the bottom resistors are
the same, which we call i (so the current through the battery is 2i and the voltage drop across each of
the bottom resistors is iR). The resistor network can be reduced to an equivalence of

Req =
(2R)(R)

2R+R
+

(R)(R)

R+R
=

7

6
R

which means that we can determine the current through the battery (and also through each of the
bottom resistors):

2i =
E
Req

=⇒ i =
3E
7R

.

By the loop rule (going around the left loop, which includes the battery, resistor 2R and one of the
bottom resistors), we have

E − i2R(2R)− iR = 0 =⇒ i2R =
E − iR

2R
.

Substituting i = 3E/7R, this gives i2R = 2E/7R. The difference between i2R and i is the current through
the ammeter. Thus,

iammeter = i− i2R =
3E
7R
− 2E

7R
=
E
7R

.

85. The current in the ammeter is given by iA = E/(r+R1 +R2 +RA). The current in R1 and R2 without
the ammeter is i = E/(r +R1 +R2). The percent error is then

∆i

i
=

i− iA
i

= 1− r +R1 +R2

r +R1 +R2 +RA
=

RA

r +R1 +R2 +RA

=
0.10 Ω

2.0 Ω + 5.0 Ω + 4.0 Ω + 0.10 Ω
= 0.90% .

86. When S is open for a long time, the charge on C is qi = E2C. When S is closed for a long time, the
current i in R1 and R2 is i = (E2 − E1)/(R1 + R2) = (3.0 V − 1.0 V)/(0.20 Ω + 0.40 Ω) = 3.33 A. The
voltage difference V across the capacitor is then V = E2− iR2 = 3.0 V− (3.33 A)(0.40 Ω) = 1.67 V. Thus
the final charge on C is qf = V C. So the change in the charge on the capacitor is ∆q = qf − qi =
(V − E2)C = (1.67 V− 3.0 V)(10µF) = −13µC.

87. Requiring no current through the 10.0 Ω resistor means that 20.0 V will be across R (which has current
iR). The current through the 20.0 Ω resistor is also iR, so the loop rule leads to

50.0 V− 20.0 V− iR (20.0 Ω) = 0

which yields iR = 1.5 A. Therefore,

R =
20.0 V

iR
= 13.3 Ω .

88. (a) The capacitor is initially uncharged, which implies (by the loop rule) that there is zero voltage (at
t = 0) across the 10 kΩ resistor, and that 30 V is across the 20 kΩ resistor. Therefore, by Ohm’s
law, i10 = 0,

(b) and i20 = (30 V)/(20 kΩ) = 1.5× 10−3 A.

(c) As t → ∞ the current to the capacitor reduces to zero and the 20 kΩ and 10 kΩ resistors behave
more like a series pair (having the same current), equivalent to 30 kΩ. The current through them,
then, at long times, is i = (30 V)/(30 kΩ) = 1.0× 10−3 A.
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89. (a) The six resistors to the left of E1 = 16 V battery can be reduced to a single resistor R = 8.0 Ω,
through which the current must be iR = E1/R = 2.0 A. Now, by the loop rule, the current through
the 3.0 Ω and 1.0 Ω resistors at the upper right corner is

i′ =
16.0 V− 8.0 V

3.0 Ω + 1.0 Ω
= 2.0 A

in a direction that is “backward” relative to the E2 = 8.0 V battery. Thus, by the junction rule,

i1 = iR + i′ = 4.0 A

and is upward (that is, in the “forward” direction relative to E1).
(b) The current i2 derives from a succession of symmetric splittings of iR (reversing the procedure of

reducing those six resistors to find R in part (a)). We find

i2 =
1

2

(

1

2
iR

)

= 0.50 A

and is clearly downward.

(c) Using our conclusions from part (a) in Eq. 28-14, we obtain P = i1E1 = (4)(16) = 64 W supplied.

(d) Using results calculated in part (a) in Eq. 28-14, we obtain P = i′E2 = (2)(8) = 16 W absorbed.

90. We reduce the parallel pair of identical 4.0 Ω resistors to R′ = 2.0 Ω, which has current i = 2i1 going
through it. It is in series with a 2.0 Ω resistor, which leads to an equivalence of R = 4.0 Ω with current
i. We find a path (for use with the loop rule) that goes through this R, the 4.0 V battery, and the 20 V
battery, and proceed counterclockwise (assuming i goes rightward through R):

20 V + 4.0 V− iR = 0

which leads to i = 6.0 A. Consequently, i1 = 1
2 i = 3.0 A going rightward.

91. With the unit Ω understood, the equivalent resistance for this circuit is

Req =
20R+ 100

R + 10
.

Therefore, the power supplied by the battery (equal to the power dissipated in the resistors) is

P =
V 2

R
= V 2 R+ 10

20R+ 100

where V = 12 V. We attempt to extremize the expression by working through the dP/dR = 0 condition
and do not find a value of R that satisfies it. We note, then, that the function is a monotonically
decreasing function of R, with R = 0 giving the maximum possible value (since R < 0 values are not
being allowed). With the value R = 0, we obtain P = 14.4 W.

92. The resistor by the letter i is above three other resistors; together, these four resistors are equivalent to
a resistor R = 10 Ω (with current i). As if we were presented with a maze, we find a path through R
that passes through any number of batteries (10, it turns out) but no other resistors, which – as in any
good maze – winds “all over the place.” Some of the ten batteries are opposing each other (particularly
the ones along the outside), so that their net emf is only E = 40 V. The current through R is then
i = E/R = 4.0 A, and is directed upward in the figure.

93. (First problem of Cluster)

(a) R2 and R3 are in parallel; their equivalence is in series with R1. Therefore,

Req = R1 +
R2R3

R2 +R3
= 300 Ω .
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(b) The current through the battery is E/Req = 0.0200 A, which is also the current through R1. Hence,
the voltage across R1 is V1 = (0.0200 A)(100 Ω) = 2.00 V.

(c) From the loop rule,
E − V1 − i3R3 = 0

which yields i3 = 6.67× 10−3 A.

94. (Second problem of Cluster)

(a) The loop rule (proceeding counterclockwise around the right loop) leads to E2 − i1R1 = 0 (where
i1 was assumed downward). This yields i1 = 0.060 A (downward).

(b) The loop rule (counterclockwise around the left loop) gives

(+E1) + (+i1R1) + (−i3R3) = 0

where i3 has been assumed leftward. This yields i3 = 0.180 A (leftward).

(c) The junction rule tells us that the current through the 12 V battery is 0.180 + 0.060 = 0.240 A
upward.

95. (Third problem of Cluster)

(a) Using the junction rule (i1 = i2 + i3) we write two loop rule equations:

E1 − i2R2 − (i2 + i3)R1 = 0

E2 − i3R3 − (i2 + i3)R1 = 0 .

Solving, we find i2 = 0.0109 A (rightward, as was assumed in writing the equations as we did),
i3 = 0.0273 A (leftward), and i1 = i2 + i3 = 0.0382 A (downward).

(b) See the results in part (a).

(c) See the results in part (a).

(d) The voltage across R1 equals VA: (0.0382 A)(100 Ω) = +3.82 V.

96. (Fourth problem of Cluster)

(a) The symmetry of the problem allows us to use i2 as the current in both of the R2 resistors and i1 for
the R1 resistors. We see from the junction rule that i3 = i1 − i2. There are only two independent
loop rule equations:

E − i2R2 − i1R1 = 0

E − 2i1R1 − (i1 − i2)R3 = 0 .

where in the latter equation, a zigzag path through the bridge has been taken. Solving, we find
i1 = 0.002625 A , i2 = 0.00225 A and i3 = i1−i2 = 0.000375 A. Therefore, VA−VB = i1R1 = 5.25 V.

(b) It follows also that VB − VC = i3R3 = 1.50 V.

(c) We find VC − VD = i1R1 = 5.25 V.

(d) Finally, VA − VC = i2R2 = 6.75 V.
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Chapter 29

1. (a) We use Eq. 29-3: FB = |q|vB sinφ = (+3.2× 10−19 C)(550 m/s)(0.045 T)(sin 52◦) = 6.2× 10−18 N.

(b) a = FB/m = (6.2× 10−18 N)/(6.6× 10−27 kg) = 9.5× 108 m/s2.

(c) Since it is perpendicular to ~v, ~FB does not do any work on the particle. Thus from the work-energy
theorem both the kinetic energy and the speed of the particle remain unchanged.

2. (a) The largest value of force occurs if the velocity vector is perpendicular to the field. Using Eq. 29-3,

FB, max = |q|vB sin(90◦) = evB = (1.60×10−19 C)(7.20×106 m/s)(83.0×10−3 T) = 9.56×10−14 N .

The smallest value occurs if they are parallel: FB, min = |q|vB sin(0) = 0.

(b) By Newton’s second law, a = FB/me = |q|vB sin θ/me, so the angle θ between ~v and ~B is

θ = sin−1

(

mea

|q|vB

)

= sin−1

[

(9.11× 10−31 kg)(4.90× 1014 m/s2)

(1.60× 10−16 C)(7.20× 106 m/s)(83.0× 10−3 T)

]

= 0.267◦ .

3. (a) Eq. 29-3 leads to

v =
FB

eB sinφ
=

6.50× 10−17 N

(1.60× 10−19 C)(2.60× 10−3 T) sin 23.0◦
= 4.00× 105 m/s .

(b) The kinetic energy of the proton is

K =
1

2
mv2 =

1

2
(1.67× 10−27 kg)(4.00× 105 m/s)2 = 1.34× 10−16 J .

This is (1.34× 10−16 J)/(1.60× 10−19 J/eV) = 835 eV.

4. (a) The force on the electron is

~FB = q~v × ~B = q(vx ı̂ + vy ĵ)× (Bx ı̂ +By
~j)

= q(vxBy − vyBx)k̂

= (−1.6× 10−19 C)[(2.0× 106 m/s)(−0.15 T)− (3.0× 106 m/s)(0.030 T)]

= (6.2× 10−14 N) k̂ .

Thus, the magnitude of ~FB is 6.2× 1014 N, and ~FB points in the positive z direction.

(b) This amounts to repeating the above computation with a change in the sign in the charge. Thus,
~FB has the same magnitude but points in the negative z direction.

5. (a) The textbook uses “geomagnetic north” to refer to Earth’s magnetic pole lying in the northern
hemisphere. Thus, the electrons are traveling northward. The vertical component of the magnetic
field is downward. The right-hand rule indicates that ~v × ~B is to the west, but since the electron
is negatively charged (and ~F = q~v × ~B), the magnetic force on it is to the east.

723
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(b) We combine F = mea with F = evB sinφ. Here, B sinφ represents the downward component of
Earth’s field (given in the problem). Thus, a = evB/me. Now, the electron speed can be found
from its kinetic energy. Since K = 1

2mv
2,

v =

√

2K

me
=

√

2(12.0× 103 eV)(1.60× 10−19 J/eV)

9.11× 10−31 kg
= 6.49× 107 m/s .

Therefore,

a =
evB

me
=

(1.60× 10−19 C)(6.49× 107 m/s)(55.0× 10−6 T)

9.11× 10−31 kg
= 6.27× 1014 m/s

2
.

(c) We ignore any vertical deflection of the beam which might arise due to the horizontal component
of Earth’s field. Technically, then, the electron should follow a circular arc. However, the deflection
is so small that many of the technicalities of circular geometry may be ignored, and a calculation
along the lines of projectile motion analysis (see Chapter 4) provides an adequate approximation:

∆x = vt =⇒ t =
∆x

v
=

0.200 m

6.49× 107 m/s

which yields a time of t = 3.08× 10−9 s. Then, with our y axis oriented eastward,

∆y =
1

2
at2 =

1

2

(

6.27× 1014
) (

3.08× 10−9
)2

= 0.00298 m .

6. (a) The net force on the proton is given by

~F = ~FE + ~FB = q ~E + q~v × ~B

= (1.6× 10−19 C)[(4.0 V/m)k̂ + (2000 m/s)̂j× (−2.5 mT)̂ı]

= (1.4× 10−18 N) k̂ .

(b) In this case

~F = ~FE + ~FB = q ~E + q~v × ~B

= (1.6× 10−19 C)[(−4.0 V/m)k̂ + (2000 m/s)̂j× (−2.5 mT)̂ı]

= (1.6× 10−19 N) k̂ .

(c) In the final case,

~F = ~FE + ~FB = q ~E + q~v × ~B

= (1.6× 10−19 C)[(4.0 V/m)̂ı + (2000 m/s)̂j× (−2.5 mT)̂ı]

= (6.4× 10−19 N) ı̂ + (8.0× 10−19 N) k̂ .

The magnitude of the force is now

√

F 2
x + F 2

y + F 2
z =

√

(6.4× 10−19 N)2 + 0 + (8.0× 10−19 N)2 = 1.0× 10−18 N .

7. (a) Equating the magnitude of the electric force (F = eE) with that of the magnetic force (Eq. 29-3),
we obtain B = E/v sinφ. The field is smallest when the sinφ factor is at its largest value; that is,
when φ = 90◦. Now, we use K = 1

2mv
2 to find the speed:

v =

√

2K

me
=

√

2(2.5× 103 eV)(1.60× 10−19 J/eV)

9.11× 10−31 kg
= 2.96× 107 m/s .



725

Thus,

B =
E

v
=

10× 103V/m

2.96× 107 m/s
= 3.4× 10−4 T .

The magnetic field must be perpendicular to both the electric field and the velocity of the electron.

(b) A proton will pass undeflected if its velocity is the same as that of the electron. Both the electric
and magnetic forces reverse direction, but they still cancel.

8. (a) Letting ~F = q( ~E + ~v × ~B) = 0, we get vB sinφ = E. We note that (for given values of the fields)
this gives a minimum value for speed whenever the sinφ factor is at its maximum value (which is
1, corresponding to φ = 90◦). So vmin = E/B = (1.50× 103 V/m)/(0.400 T) = 3.75× 103 m/s.

(b) Having noted already that ~v ⊥ ~B, we now point out that ~v × ~B (which direction is given by the

right-hand rule) must be in the direction opposite to ~E. Thus, we can use the left hand to indicate
the arrangement of vectors: if one points the thumb, index finger, and middle finger on the left
hand so that all three are mutually perpendicular, then the thumb represents ~v, the index finger
indicates ~B, and the middle finger represents ~E.

9. Straight line motion will result from zero net force acting on the system; we ignore gravity. Thus,
~F = q( ~E + ~v × ~B) = 0. Note that ~v ⊥ ~B so |~v × ~B| = vB. Thus, obtaining the speed from the formula
for kinetic energy, we obtain

B =
E

v
=

E√
2meK

=
100 V/(20× 10−3 m)

√

2(9.11× 10−31 kg)(1.0× 103 V)(1.60× 10−19 C)

= 2.7× 10−4 T .

10. We apply ~F = q( ~E + ~v × ~B) = me~a to solve for ~E:

~E =
me~a

q
+ ~B × ~v

=
(9.11× 10−31 kg)(2.00× 1012 m/s

2
)̂ı

−1.60× 10−19 C
+ (400µT)̂ı× [(12.0 km/s)̂j + (15.0 km/s)k̂]

= (−11.4̂ı− 6.00̂j + 4.80k̂) V/m .

11. Since the total force given by ~F = e( ~E + ~v × ~B) vanishes, the electric field ~E must be perpendicular to

both the particle velocity ~v and the magnetic field ~B. The magnetic field is perpendicular to the velocity,
so ~v× ~B has magnitude vB and the magnitude of the electric field is given by E = vB. Since the particle
has charge e and is accelerated through a potential difference V , 1

2mv
2 = eV and v =

√

2eV/m. Thus,

E = B

√

2eV

m
= (1.2T)

√

2(1.60× 10−19 C)(10× 103 V)

(6.0 u)(1.661× 10−27 kg/u)
= 6.8× 105 V/m .

12. We use Eq. 29-12 to solve for V :

V =
iB

nle
=

(23 A)(0.65 T)

(8.47× 1028/m3)(150µm)(1.6× 10−19 C)
= 7.4× 10−6 V .

13. (a) In Chapter 27, the electric field (called EC in this problem) which “drives” the current through the
resistive material is given by Eq. 27-11, which (in magnitude) reads EC = ρJ . Combining this with
Eq. 27-7, we obtain

EC = ρnevd .

Now, regarding the Hall effect, we use Eq. 29-10 to write E = vdB. Dividing one equation by the
other, we get E/Ec = B/neρ.
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(b) Using the value of copper’s resistivity given in Chapter 27, we obtain

E

Ec
=

B

neρ
=

0.65 T

(8.47× 1028/m3)(1.60× 10−19 C)(1.69× 10−8 Ω·m)
= 2.84× 10−3 .

14. For a free charge q inside the metal strip with velocity ~v we have ~F = q( ~E + ~v × ~B). We set this force
equal to zero and use the relation between (uniform) electric field and potential difference. Thus,

v =
E

B
=
|Vx − Vy|/dxy

B
=

(3.90× 10−9 V)

(1.20× 10−3 T)(0.850× 10−2 m)
= 0.382 m/s .

15. From Eq. 29-16, we find

B =
mev

er
=

(9.11× 10−31 kg)(1.3× 106 m/s)

(1.60× 10−19 C)(0.35 m)
= 2.1× 10−5 T .

16. (a) The accelerating process may be seen as a conversion of potential energy eV into kinetic energy.
Since it starts from rest, 1

2mev
2 = eV and

v =

√

2eV

me
=

√

2(1.60× 10−19 C)(350 V)

9.11× 10−31 kg
= 1.11× 107 m/s .

(b) Eq. 29-16 gives

r =
mev

eB
=

(9.11× 10−31 kg)(1.11× 107 m/s)

(1.60× 10−19 C)(200× 10−3 T)
= 3.16× 10−4 m .

17. (a) From K = 1
2mev

2 we get

v =

√

2K

me
=

√

2(1.20× 103 eV)(1.60× 10−19 eV/J)

9.11× 10−31 kg
= 2.05× 107 m/s .

(b) From r = mev/qB we get

B =
mev

qr
=

(9.11× 10−31 kg)(2.05× 107 m/s)

(1.60× 10−19 C)(25.0× 10−2 m)
= 4.67× 10−4 T .

(c) The “orbital” frequency is

f =
v

2πr
=

2.07× 107 m/s

2π(25.0× 10−2 m)
= 1.31× 107 Hz .

(d) T = 1/f = (1.31× 107 Hz)−1 = 7.63× 10−8 s.

18. The period of revolution for the iodine ion is T = 2πr/v = 2πm/Bq, which gives

m =
BqT

2π
=

(45.0× 10−3 T)(1.60× 10−19 C)(1.29× 10−3 s)

(7)(2π)(1.66× 10−27 kg/u)
= 127 u .

19. (a) The frequency of revolution is

f =
Bq

2πme
=

(35.0× 10−6 T)(1.60× 10−19 C)

2π(9.11× 10−31 kg)
= 9.78× 105 Hz .
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(b) Using Eq. 29-16, we obtain

r =
mev

qB
=

√
2meK

qB
=

√

2(9.11× 10−31 kg)(100 eV)(1.60× 10−19 J/eV)

(1.60× 10−19 C)(35.0× 10−6 T)
= 0.964 m .

20. (a) Using Eq. 29-16, we obtain

v =
rqB

mα
=

2eB

4.00 u
=

2(4.50× 10−2 m)(1.60× 10−19 C)(1.20 T)

(4.00 u)(1.66× 10−27 kg/u)
= 2.60× 106 m/s .

(b) T = 2πr/v = 2π(4.50× 10−2 m)/(2.60× 106 m/s) = 1.09× 10−7 s.

(c) The kinetic energy of the alpha particle is

K =
1

2
mαv

2 =
(4.00 u)(1.66× 10−27 kg/u)(2.60× 106 m/s)2

2(1.60× 10−19 J/eV)
= 1.40× 105 eV .

(d) ∆V = K/q = 1.40× 105 eV/2e = 7.00× 104 V.

21. So that the magnetic field has an effect on the moving electrons, we need a non-negligible component of
~B to be perpendicular to ~v (the electron velocity). It is most efficient, therefore, to orient the magnetic
field so it is perpendicular to the plane of the page. The magnetic force on an electron has magnitude
FB = evB, and the acceleration of the electron has magnitude a = v2/r. Newton’s second law yields
evB = mev

2/r, so the radius of the circle is given by r = mev/eB in agreement with Eq. 29-16. The
kinetic energy of the electron is K = 1

2mev
2, so v =

√

2K/me. Thus,

r =
me

eB

√

2K

me
=

√

2meK

e2B2
.

This must be less than d, so
√

2meK

e2B2
≤ d

or

B ≥
√

2meK

e2d2
.

If the electrons are to travel as shown in Fig. 29-33, the magnetic field must be out of the page. Then
the magnetic force is toward the center of the circular path, as it must be (in order to make the circular
motion possible).

22. Let v‖ = v cos θ. The electron will proceed with a uniform speed v‖ in the direction of ~B while undergoing
uniform circular motion with frequency f in the direction perpendicular to B: f = eB/2πme. The
distance d is then

d = v‖T =
v‖
f

=
(v cos θ)2πme

eB

=
2π(1.5× 107 m/s)(9.11× 10−31 kg)(cos 10◦)

(1.60× 10−19 C)(1.0× 10−3 T)
= 0.53 m .

23. Referring to the solution of problem 19 part (b), we see that r =
√

2mK/qB implies K = (rqB)2/2m ∝
q2m−1. Thus,

(a) Kα = (qα/qp)
2(mp/mα)Kp = (2)2(1/4)Kp = Kp = 1.0 MeV;

(b) Kd = (qd/qp)
2(mp/md)Kp = (1)2(1/2)Kp = 1.0 MeV/2 = 0.50 MeV.
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24. Referring to the solution of problem 19 part (b), we see that r =
√

2mK/qB implies the proportionality:
r ∝
√
mK/qB. Thus,

rα =

√

mαKα

mpKp

qp
qα
rp =

√

4.0 u

1.0 u

erp
2e

= rp ;

rd =

√

mdKd

mpKp

qp
qd
rd =

√

2.0 u

1.0 u

erd
e

=
√

2rp .

25. (a) We solve for B from m = B2qx2/8V (see Sample Problem 29-3):

B =

√

8Vm

qx2
.

We evaluate this expression using x = 2.00 m:

B =

√

8(100× 103 V)(3.92× 10−25 kg)

(3.20× 10−19 C)(2.00 m)2
= 0.495 T .

(b) Let N be the number of ions that are separated by the machine per unit time. The current is
i = qN and the mass that is separated per unit time is M = mN , where m is the mass of a single
ion. M has the value

M =
100× 10−6 kg

3600 s
= 2.78× 10−8 kg/s .

Since N = M/m we have

i =
qM

m
=

(3.20× 10−19 C)(2.78× 10−8 kg/s)

3.92× 10−25 kg
= 2.27× 10−2 A .

(c) Each ion deposits energy qV in the cup, so the energy deposited in time ∆t is given by

E = NqV ∆t =
iqV

q
∆t = iV ∆t .

For ∆t = 1.0h,
E = (2.27× 10−2 A)(100× 103 V)(3600 s) = 8.17× 106 J .

To obtain the second expression, i/q is substituted for N .

26. The equation of motion for the proton is

~F = q~v × ~B = q(vx ı̂ + vy ĵ + vzk̂)×B ı̂ = qB(vz ĵ− vyk̂)

= mp~a = mp

[(

dvx

dt

)

ı̂ +

(

dvy

dt

)

ĵ +

(

dvz

dt

)

k̂

]

.

Thus,

dvx

dt
= 0

dvy

dt
= ωvz

dvz

dt
= −ωvy ,

where ω = eB/mp. The solution is vx = v0x, vy = v0y cosωt and vz = −v0y sinωt. In summary, we have

~v(t) = v0x ı̂ + v0y cos(ωt)̂j− v0y(sinωt)k̂.
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27. (a) If v is the speed of the positron then v sinφ is the component of its velocity in the plane that is
perpendicular to the magnetic field. Here φ is the angle between the velocity and the field (89◦).
Newton’s second law yields eBv sinφ = me(v sinφ)2/r, where r is the radius of the orbit. Thus
r = (mev/eB) sinφ. The period is given by

T =
2πr

v sinφ
=

2πme

eB
=

2π(9.11× 10−31 kg)

(1.60× 10−19 C)(0.10 T)
= 3.6× 10−10 s .

The equation for r is substituted to obtain the second expression for T .

(b) The pitch is the distance traveled along the line of the magnetic field in a time interval of one
period. Thus p = vT cosφ. We use the kinetic energy to find the speed: K = 1

2mev
2 means

v =

√

2K

me
=

√

2(2.0× 103 eV)(1.60× 10−19 J/eV)

9.11× 10−31 kg
= 2.651× 107 m/s .

Thus
p = (2.651× 107 m/s)(3.58× 10−10 s) cos 89◦ = 1.7× 10−4 m .

(c) The orbit radius is

R =
mev sinφ

eB
=

(9.11× 10−31 kg)
(

2.651× 107 m/s
)

sin 89◦

(1.60× 10−19 C) (0.10T)
= 1.5× 10−3 m .

28. We consider the point at which it enters the field-filled region, velocity vector pointing downward. The
field points out of the page so that ~v × ~B points leftward, which indeed seems to be the direction it is
“pushed”; therefore, q > 0 (it is a proton).

(a) Eq. 29-17 becomes

T =
2πmp

e | ~B|

2
(

130× 10−9
)

=
2π
(

1.67× 10−27
)

(1.60× 10−19) | ~B|

which yields | ~B| = 0.252 T.

(b) Doubling the kinetic energy implies multiplying the speed by
√

2. Since the period T does not
depend on speed, then it remains the same (even though the radius increases by a factor of

√
2).

Thus, t = T/2 = 130 ns, again.

29. (a) −q, from conservation of charges.

(b) Each of the two particles will move in the same circular path, initially going in the opposite direction.
After traveling half of the circular path they will collide. So the time is given by t = T/2 = πm/Bq
(where Eq. 29-17 has been used).

30. (a) Using Eq. 29-23 and Eq. 29-18, we find

fosc =
qB

2πmp
=

(1.60× 10−19 C)(1.2 T)

2π(1.67× 10−27 kg)
= 1.8× 107 Hz .

(b) From r = mpv/qB =
√

2mpK/qB we have

K =
(rqB)2

2mp
=

[(0.50 m)(1.60× 10−19 C)(1.2 T)]2

2(1.67× 10−27 kg)(1.60× 10−19 J/eV)
= 1.7× 107 eV .



730 CHAPTER 29.

31. We approximate the total distance by the number of revolutions times the circumference of the orbit
corresponding to the average energy. This should be a good approximation since the deuteron receives
the same energy each revolution and its period does not depend on its energy. The deuteron accelerates
twice in each cycle, and each time it receives an energy of qV = 80 × 103 eV. Since its final energy is
16.6 MeV, the number of revolutions it makes is

n =
16.6× 106 eV

2(80× 103 eV)
= 104 .

Its average energy during the accelerating process is 8.3 MeV. The radius of the orbit is given by
r = mv/qB, where v is the deuteron’s speed. Since this is given by v =

√

2K/m, the radius is

r =
m

qB

√

2K

m
=

1

qB

√
2Km .

For the average energy

r =

√

2(8.3× 106 eV)(1.60× 10−19 J/eV)(3.34× 10−27 kg)

(1.60× 10−19 C)(1.57 T)
= 0.375 m .

The total distance traveled is about n2πr = (104)(2π)(0.375) = 2.4× 102 m.

32. (a) Since K = 1
2mv

2 = 1
2m(2πRfosc)

2 ∝ m,

Kp =

(

mp

md

)

Kd =
1

2
Kd =

1

2
(17 MeV) = 8.5 MeV .

(b) We require a magnetic field of strength

Bp =
1

2
Bd =

1

2
(1.6 T) = 0.80 T .

(c) Since K ∝ B2/m,

K ′
p =

(

md

mp

)

Kd = 2Kd = 2(17 MeV) = 34 MeV .

(d) Since fosc = Bq/(2πm) ∝ m−1,

fosc, d =

(

md

mP

)

fosc, p = 2(12× 106 s−1) = 2.4× 107 Hz .

(e) Now,

Kα =

(

mα

md

)

Kd = 2Kd = 2(17 MeV) = 34 MeV ,

Bα =

(

mα

md

)(

qd
qα

)

Bd = 2

(

1

2

)

(1.6 T) = 1.6 T ,

K ′
α = Kα = 34 MeV (Since Bα = Bd = 1.6 T) ,

and

fosc, α =

(

qα
ad

)(

md

mα

)

fosc,d = 2

(

2

4

)

(

12× 106 s−1
)

= 1.2× 107 Hz .

33. The magnitude of the magnetic force on the wire is given by FB = iLB sinφ, where i is the current in
the wire, L is the length of the wire, B is the magnitude of the magnetic field, and φ is the angle between
the current and the field. In this case φ = 70◦. Thus,

FB = (5000 A)(100 m)(60.0× 10−6 T) sin 70◦ = 28.2 N .

We apply the right-hand rule to the vector product ~FB = i~L× ~B to show that the force is to the west.
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34. The magnetic force on the (straight) wire is

FB = iBL sin θ = (13.0 A)(1.50 T)(1.80 m)(sin35.0◦) = 20.1 N .

35. The magnetic force on the wire must be upward and have a magnitude equal to the gravitational force
mg on the wire. Applying the right-hand rule reveals that the current must be from left to right. Since
the field and the current are perpendicular to each other the magnitude of the magnetic force is given
by FB = iLB, where L is the length of the wire. Thus,

iLB = mg =⇒ i =
mg

LB
=

(0.0130 kg)(9.8 m/s
2
)

(0.620 m)(0.440 T)
= 0.467 A .

36. The magnetic force on the wire is

~FB = i~L× ~B = iL̂ı× (By ĵ +Bzk̂) = iL(−Bz ĵ +Byk̂)

= (0.50 A)(0.50 m)[−(0.010 T)̂j + (0.0030 T)k̂]

= (−2.5× 10−3̂j + 0.75× 10−3k̂) N .

37. The magnetic force must push horizontally on the rod to overcome the force of friction, but it can be
oriented so that it also pulls up on the rod and thereby reduces both the normal force and the force
of friction. The forces acting on the rod are: ~F , the force of the magnetic field; mg, the magnitude of
the (downward) force of gravity; ~N , the normal force exerted by the stationary rails upward on the rod;

and ~f , the (horizontal) force of friction. For definiteness, we assume the rod is on the verge of moving

eastward, which means that ~f points westward (and is equal to its maximum possible value µsN). Thus,
~F has an eastward component Fx and an upward component Fy , which can be related to the components
of the magnetic field once we assume a direction for the current in the rod. Thus, again for definiteness,
we assume the current flows northward. Then, by the righthand rule, a downward component (Bd) of ~B
will produce the eastward Fx, and a westward component (Bw) will produce the upward Fy . Specifically,

Fx = iLBd and Fy = iLBw .

Considering forces along a vertical axis, we find

N = mg − Fy = mg − iLBw

so that
f = fs,max = µs (mg − iLBw) .

It is on the verge of motion, so we set the horizontal acceleration to zero:

Fx − f = 0 =⇒ iLBd = µs (mg − iLBw) .

The angle of the field components is adjustable, and we can minimize with respect to it. Defining the
angle by Bw = B sin θ and Bd = B cos θ (which means θ is being measured from a vertical axis) and
writing the above expression in these terms, we obtain

iLB cos θ = µs (mg − iLB sin θ) =⇒ B =
µsmg

iL(cos θ + µs sin θ)

which we differentiate (with respect to θ) and set the result equal to zero. This provides a determination
of the angle:

θ = tan−1 (µs) = tan−1(0.60) = 31◦ .

Consequently,

Bmin =
0.60(1.0 kg)(9.8 m/s2)

(50 A)(1.0 m)(cos 31◦ + 0.60 sin31◦)
= 0.10 T .
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38. (a) From FB = iLB we get

i =
FB

LB
=

10× 103 N

(3.0 m)(10× 10−6 T)
= 3.3× 108 A .

(b) P = i2R = (3.3× 108 A)2(1.0 Ω) = 1.0× 1017 W.

(c) It is totally unrealistic because of the huge current and the accompanying high power loss.

39. The applied field has two components: Bx > 0 and Bz > 0. Considering each straight-segment of the
rectangular coil, we note that Eq. 29-26 produces a non-zero force only for the component of ~B which
is perpendicular to that segment; we also note that the equation is effectively multiplied by N = 20 due
to the fact that this is a 20-turn coil. Since we wish to compute the torque about the hinge line, we can
ignore the force acting on the straight-segment of the coil which lies along the y axis (forces acting at the
axis of rotation produce no torque about that axis). The top and bottom straight-segments experience
forces due to Eq. 29-26 (caused by the Bz component), but these forces are (by the right-hand rule) in
the ±y directions and are thus unable to produce a torque about the y axis. Consequently, the torque
derives completely from the force exerted on the straight-segment located at x = 0.050 m, which has
length L = 0.10 m and is shown in Figure 29-36 carrying current in the −y direction. Now, the Bz

component will produce a force on this straight-segment which points in the −x direction (back towards
the hinge) and thus will exert no torque about the hinge. However, the Bx component (which is equal to
B cos θ where B = 0.50 T and θ = 30◦) produces a force equal to NiLBx which points (by the right-hand
rule) in the +z direction. Since the action of this force is perpendicular to the plane of the coil, and is
located a distance x away from the hinge, then the torque has magnitude

τ = (NiLBx) (x) = NiLxB cos θ = (20)(0.10)(0.10)(0.050)(0.50) cos30◦ = 0.0043

in SI units (N·m). Since ~τ = ~r × ~F , the direction of the torque is −y. An alternative way to do this
problem is through the use of Eq. 29-37. We do not show those details here, but note that the magnetic
moment vector (a necessary part of Eq. 29-37) has magnitude

|~µ| = NiA = (20)(0.10 A)(0.0050 m2)

and points in the −z direction. At this point, Eq. 3-30 may be used to obtain the result for the torque
vector.

40. We establish coordinates such that the two sides of the right triangle meet at the origin, and the
ℓy = 50 cm side runs along the +y axis, while the ℓx = 120 cm side runs along the +x axis. The angle
made by the hypotenuse (of length 130 cm) is θ = tan−1(50/120) = 22.6◦, relative to the 120 cm side.
If one measures the angle counterclockwise from the +x direction, then the angle for the hypotenuse is
180◦−22.6◦ = +157◦. Since we are only asked to find the magnitudes of the forces, we have the freedom
to assume the current is flowing, say, counterclockwise in the triangular loop (as viewed by an observer

on the +z axis. We take ~B to be in the same direction as that of the current flow in the hypotenuse.
Then, with B = | ~B| = 0.0750 T,

Bx = −B cos θ = −0.0692 T and By = B sin θ = 0.0288 T .

(a) Eq. 29-26 produces zero force when ~L ‖ ~B so there is no force exerted on the hypotenuse. On the

50 cm side, the Bx component produces a force iℓyBxk̂, and there is no contribution from the By

component. Using SI units, the magnitude of the force on the ℓy side is therefore

(4.00 A)(0.500 m)(0.0692 T) = 0.138 N .

On the 120 cm side, the By component produces a force iℓxByk̂, and there is no contribution from
the Bx component. Using SI units, the magnitude of the force on the ℓx side is also

(4.00 A)(1.20 m)(0.0288 T) = 0.138 N .
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(b) The net force is

iℓyBxk̂ + iℓxByk̂ = 0 ,

keeping in mind that Bx < 0 due to our initial assumptions. If we had instead assumed ~B went the
opposite direction of the current flow in the hypotenuse, then Bx > 0 but By < 0 and a zero net
force would still be the result.

41. If N closed loops are formed from the wire of length L, the circumference of each loop is L/N , the radius
of each loop is R = L/2πN , and the area of each loop is A = πR2 = π(L/2πN)2 = L2/4πN2. For
maximum torque, we orient the plane of the loops parallel to the magnetic field, so the dipole moment
is perpendicular to the field. The magnitude of the torque is then

τ = NiAB = (Ni)

(

L2

4πN2

)

B =
iL2B

4πN
.

To maximize the torque, we take N to have the smallest possible value, 1. Then τ = iL2B/4π.

42. We replace the current loop of arbitrary shape with an assembly of small adjacent rectangular loops
filling the same area which was enclosed by the original loop (as nearly as possible). Each rectangular
loop carries a current i flowing in the same sense as the original loop. As the sizes of these rectangles
shrink to infinitesimally small values, the assembly gives a current distribution equivalent to that of the
original loop. The magnitude of the torque ∆~τ exerted by ~B on the nth rectangular loop of area ∆An

is given by ∆τn = NiB sin θ∆An. Thus, for the whole assembly

τ =
∑

n

∆τn = NiB
∑

n

∆An = NiAB sin θ .

43. Consider an infinitesimal segment of the loop, of length ds. The magnetic field is perpendicular to the
segment, so the magnetic force on it is has magnitude dF = iB ds. The horizontal component of the
force has magnitude dFh = (iB cos θ) ds and points inward toward the center of the loop. The vertical
component has magnitude dFv = (iB sin θ) ds and points upward. Now, we sum the forces on all the
segments of the loop. The horizontal component of the total force vanishes, since each segment of wire
can be paired with another, diametrically opposite, segment. The horizontal components of these forces
are both toward the center of the loop and thus in opposite directions. The vertical component of the
total force is

Fv = iB sin θ

∫

ds = (iB sin θ)2πa .

We note the i, B, and θ have the same value for every segment and so can be factored from the integral.

44. The total magnetic force on the loop L is

~FB = i

∮

L

(d~L× ~B) = i(

∮

L

d~L)× ~B = 0 .

We note that
∮

L d~L = 0. If ~B is not a constant, however, then the equality

∮

L

(d~L× ~B) = (

∮

L

d~L)× ~B

is not necessarily valid, so ~FB is not always zero.

45. (a) The current in the galvanometer should be 1.62 mA when the potential difference across the resistor-
galvanometer combination is 1.00 V. The potential difference across the galvanometer alone is
iRg = (1.62 × 10−3 A)(75.3 Ω) = 0.122 V, so the resistor must be in series with the galvanometer
and the potential difference across it must be 1.00 V− 0.122 V = 0.878V. The resistance should be
R = (0.878 V)/(1.62× 10−3 A) = 542 Ω.
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(b) The current in the galvanometer should be 1.62 mA when the total current in the resistor and
galvanometer combination is 50.0 mA. The resistor should be in parallel with the galvanometer,
and the current through it should be 50.0 mA−1.62 mA = 48.38 mA. The potential difference across
the resistor is the same as that across the galvanometer, 0.122 V, so the resistance should be R =
(0.122 V)/(48.38× 10−3 A) = 2.52 Ω.

46. We use τmax = |~µ× ~B|max = µB = iπa2B, and note that i = qf = qv/2πa. So

τmax =
( qv

2πa

)

πa2B =
1

2
qvaB .

47. We use Eq. 29-37 where ~µ is the magnetic dipole moment of the wire loop and ~B is the magnetic field,
as well as Newton’s second law. Since the plane of the loop is parallel to the incline the dipole moment
is normal to the incline. The forces acting on the cylinder are the force of gravity mg, acting downward
from the center of mass, the normal force of the incline N , acting perpendicularly to the incline through
the center of mass, and the force of friction f , acting up the incline at the point of contact. We take the
x axis to be positive down the incline. Then the x component of Newton’s second law for the center of
mass yields

mg sin θ − f = ma .

For purposes of calculating the torque, we take the axis of the cylinder to be the axis of rotation. The
magnetic field produces a torque with magnitude µB sin θ, and the force of friction produces a torque with
magnitude fr, where r is the radius of the cylinder. The first tends to produce an angular acceleration in
the counterclockwise direction, and the second tends to produce an angular acceleration in the clockwise
direction. Newton’s second law for rotation about the center of the cylinder, τ = Iα, gives

fr − µB sin θ = Iα .

Since we want the current that holds the cylinder in place, we set a = 0 and α = 0, and use one equation
to eliminate f from the other. The result is mgr = µB. The loop is rectangular with two sides of length
L and two of length 2r, so its area is A = 2rL and the dipole moment is µ = NiA = 2NirL. Thus,
mgr = 2NirLB and

i =
mg

2NLB
=

(0.250 kg)(9.8 m/s2)

2(10.0)(0.100 m)(0.500 T)
= 2.45 A .

48. From µ = NiA = iπr2 we get

i =
µ

πr2
=

8.00× 1022 J/T

π(3500× 103 m)2
= 2.08× 109 A .

49. (a) The magnitude of the magnetic dipole moment is given by µ = NiA, where N is the number of
turns, i is the current in each turn, and A is the area of a loop. In this case the loops are circular,
so A = πr2, where r is the radius of a turn. Thus

i =
µ

Nπr2
=

2.30 A·m2

(160)(π)(0.0190 m)2
= 12.7 A .

(b) The maximum torque occurs when the dipole moment is perpendicular to the field (or the plane of
the loop is parallel to the field). It is given by

τmax = µB =
(

2.30 A·m2
) (

35.0× 10−3 T
)

= 8.05× 10−2 N·m .

50. (a) µ = NAi = πr2i = π(0.150 m)2(2.60 A) = 0.184 A·m2.

(b) The torque is

τ = |~µ× ~B| = µB sin θ =
(

0.184 A·m2
)

(12.0 T) sin 41.0◦ = 1.45 N·m .
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51. (a) The area of the loop is A = 1
2 (30 cm)(40 cm) = 6.0× 102 cm2, so

µ = iA = (5.0 A)
(

6.0× 10−2 m2
)

= 0.30 A·m2 .

(b) The torque on the loop is

τ = µB sin θ =
(

0.30 A·m2
) (

80× 103 T
)

sin 90◦ = 2.4× 10−2 N·m .

52. (a) We use ~τ = ~µ× ~B, where ~µ points into the wall (since the current goes clockwise around the clock).

Since ~B points towards the one-hour (or “5-minute”) mark, and (by the properties of vector cross
products) ~τ must be perpendicular to it, then (using the right-hand rule) we find ~τ points at the
20-minute mark. So the time interval is 20 min.

(b) The torque is given by

τ =
∣

∣

∣~µ× ~B
∣

∣

∣ = µB sin 90◦

= NiAB = πNir2B

= 6π(2.0 A)(0.15 m)2(70× 10−3 T)

= 5.9× 10−2 N·m .

53. (a) The magnitude of the magnetic moment vector is

µ =
∑

n

inAn = πr21i1 + πr22i2 = π(7.00 A)[(0.300 m)2 + (0.200 m)2] = 2.86 A·m2 .

(b) Now,
µ = πr21i1 − πr22i2 = π(7.00 A)[(0.300 m)2 − (0.200 m)2] = 1.10 A·m2 .

54. Let a = 30.0 cm, b = 20.0 cm, and c = 10.0 cm. From the given hint, we write

~µ = ~µ1 + ~µ2 = iab(−k̂) + iac(̂j)

= ia(ĉj− bk̂)

= (5.00 A)(0.300 m)[(0.100 m)̂j− (0.200 m)k̂]

= (0.150̂j− 0.300k̂)A·m2.

Thus, using the Pythagorean theorem,

µ =
√

(0.150)2 + (0.300)2 = 0.335 A·m2 ,

and ~µ is in the yz plane at angle θ to the +y direction, where

θ = tan−1

(

µy

µx

)

= tan−1

(−0.300

0.150

)

= −63.4◦ .

55. The magnetic dipole moment is ~µ = µ(0.60 ı̂−0.80 ĵ), where µ = NiA = Niπr2 = 1(0.20A)π(0.080m)2 =
4.02× 10−4 A·m2. Here i is the current in the loop, N is the number of turns, A is the area of the loop,
and r is its radius.

(a) The torque is

~τ = ~µ× ~B = µ(0.60 ı̂− 0.80 ĵ)× (0.25 ı̂ + 0.30 k̂)

= µ
[

(0.60)(0.30)( ı̂× k̂)− (0.80)(0.25)( ĵ× ı̂)− (0.80)(0.30)( ĵ× k̂)
]

= µ[−0.18 ĵ + 0.20 k̂− 0.24 ı̂] .
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Here ı̂× k̂ = −ĵ, ĵ× ı̂ = −k̂, and ĵ × k̂ = ı̂ are used. We also use ı̂× ı̂ = 0. Now, we substitute the
value for µ to obtain

~τ =
(

−0.97× 10−4 ı̂− 7.2× 10−4 ĵ + 8.0× 10−4 k̂
)

N·m .

(b) The potential energy of the dipole is given by

U = −~µ· ~B = −µ(0.60 ı̂− 0.80 ĵ)·(0.25 ı̂ + 0.30 k̂)

= −µ(0.60)(0.25) = −0.15µ = −6.0× 10−4 J .

Here ı̂ ·̂ı = 1, ı̂·k̂ = 0, ĵ ·̂ı = 0, and ĵ·k̂ = 0 are used.

56. The unit vector associated with the current element (of magnitude dℓ) is −ĵ. The (infinitesimal) force
on this element is

d~F = i dℓ(−ĵ)× (0.3y ı̂ + 0.4yĵ)

with SI units (and 3 significant figures) understood.

(a) Since ĵ× ı̂ = −k̂ and ĵ× ĵ = 0, we obtain

d~F = 0.3iy dℓ k̂ =
(

6.00× 10−4 N/m2
)

y dℓ k̂ .

(b) We integrate the force element found in part (a), using the symbol ξ to stand for the coefficient
6.00× 10−4 N/m2, and obtain

~F =

∫

d~F = ξk̂

∫ 0.25

0

y dy = ξk̂

(

0.252

2

)

= 1.88× 10−5 N k̂ .

57. Since the velocity is constant, the net force on the proton vanishes. Using Eq. 29-2 and Eq. 23-28, we
obtain the requirement (Eq. 29-7) for the proton’s speed in terms of the crossed fields:

v =
E

B
=⇒ E = (50 m/s)(0.0020 T) = 0.10 V/m .

By the right-hand rule, the magnetic force points in the k̂ direction. To cancel this, the electric force
must be in the −k̂ direction. Since q > 0 for the proton, we conclude ~E = −0.10 V/mk̂.

58. (a) The kinetic energy gained is due to the potential energy decrease as the dipole swings from a
position specified by angle θ to that of being aligned (zero angle) with the field. Thus,

K = Ui − Uf = −µB cos θ − (−µB cos 0◦) .

Therefore, using SI units, the angle is

θ = cos−1

(

1− K

µB

)

= cos−1

(

1− 0.00080

(0.020)(0.052)

)

= 77◦ .

(b) Since we are making the assumption that no energy is dissipated in this process, then the dipole
will continue its rotation (similar to a pendulum) until it reaches an angle θ = 77◦ on the other
side of the alignment axis.

59. Using Eq. 29-2 and Eq. 3-30, we obtain

~F = q (vxBy − vyBx) k̂ = q (vx(3Bx )− vyBx) k̂

where we use the fact that By = 3Bx . Since the force (at the instant considered) is Fz k̂ where Fz =
6.4× 10−19 N, then we are led to the condition

q (3vx − vy)Bx = Fz =⇒ Bx =
Fz

q (3vx − vy)
.

Substituting Vx = 2.0 m/s, vy = 4.0 m/s and q = −1.6× 10−19 C, we obtain Bx = −2.0 T.
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60. The current is in the +ı̂ direction. Thus, the ı̂ component of ~B has no effect, and (with x in meters) we
evaluate

~F = (3.00 A)

∫ 1

0

(

−0.600 T/m
2
)

x2 dx
(

ı̂× ĵ
)

= −1.80k̂

(

13

3

)

A·T·m

= −0.600 N k̂ .

61. (a) We seek the electrostatic field established by the separation of charges (brought on by the magnetic
force). We use the ideas discussed in §29-4; especially, see SAMPLE PROBLEM 29-2. With Eq. 29-

10, we define the magnitude of the electric field as | ~E| = v| ~B| = (20)(0.03) = 0.6 V/m. Its direction

may be inferred from Figure 29-8; its direction is opposite to that defined by ~v × ~B. In summary,

~E = −0.600 V/m k̂

which insures that ~F = q( ~E + ~v × ~B) vanishes.

(b) Eq. 29-9 yields V = (0.6 V/m)(2 m) = 1.20 V.

62. With the ~B pointing “out of the page,” we evaluate the force (using the right-hand rule) at, say, the dot
shown on the left edge of the particle’s path, where its velocity is down. If the particle were positively
charged, then the force at the dot would be toward the left, which is at odds with the figure (showing it
being bent towards the right). Therefore, the particle is negatively charged; it is an electron.

(a) Using Eq. 29-3 (with angle φ equal to 90◦), we obtain

v =
|~F |
e | ~B|

= 4.99× 106 m/s .

(b) Using either Eq. 29-14 or Eq. 29-16, we find r = 0.00710 m.

(c) Using Eq. 29-17 (in either its first or last form) readily yields T = 8.93× 10−9 s.

63. (a) We are given ~B = Bx ı̂ = 6 × 10−5 ı̂ T, so that ~v × ~B = −vyBxk̂ where vy = 4× 104 m/s. We note

that the magnetic force on the electron is (−e)(−vyBxk̂) and therefore points in the +k̂ direction,
at the instant the electron enters the field-filled region. In these terms, Eq. 29-16 becomes

r =
me vy

eBx
= 0.0038 m .

(b) One revolution takes T = 2πr/vy = 0.60 µs, and during that time the “drift” of the electron in the
x direction (which is the pitch of the helix) is ∆x = vxT = 0.019 m where vx = 32× 103 m/s.

(c) Returning to our observation of force direction made in part (a), we consider how this is perceived
by an observer at some point on the −x axis. As the electron moves away from him, he sees it enter
the region with positive vy (which he might call “upward”) but “pushed” in the +z direction (to
his right). Hence, he describes the electron’s spiral as clockwise.

64. The force associated with the magnetic field must point in the ĵ direction in order to cancel the force of
gravity in the −ĵ direction. By the right-hand rule, ~B points in the −k̂ direction (since ı̂ × (−k̂) = ĵ).
Note that the charge is positive; also note that we need to assume By = 0. The magnitude |Bz | is given
by Eq. 29-3 (with φ = 90◦). Therefore, with m = 10× 10−3 kg, v = 2.0× 104 m/s and q = 80× 10−6 C,
we find

~B = Bzk̂ = −
(

mg

qv

)

k̂ = −0.061k̂

in SI units (Tesla).
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65. By the right-hand rule, we see that ~v × ~B points along −k̂. From Eq. 29-2 (~F = q~v × ~B), we find that

for the force to point along +k̂, we must have q < 0. Now, examining the magnitudes (in SI units) in
Eq. 29-3, we find

|~F | = |q| v | ~B| sinφ
0.48 = |q|(4000)(0.0050) sin35◦

which yields |q| = 0.040 C. In summary, then, q = −40 mC.

66. (a) Since K = qV we have Kp = Kd = 1
2Kα (as qα = 2Kd = 2Kp).

(b) and (c) Since r =
√

2mK/qB ∝
√
mK/q, we have

rd =

√

mdKd

mpKp

qprp
qd

=

√

(2.00 u)Kp

(1.00 u)Kp
rp = 10

√
2 cm = 14 cm ,

rα =

√

mαKα

mpKp

qprp
qα

=

√

(4.00 u)Kα

(1.00 u)(Kα/2)

erp
2e

= 10
√

2 cm = 14 cm .

67. (a) The radius of the cyclotron dees should be

r =
mpv

qB
=

(1.67× 10−27 kg)(3.00× 108 m/s)/10

(1.60× 10−19 C)(1.4 T)
= 0.22 m .

(b) The frequency should be

fosc =
v

2πr
=

3.00× 107 m/s

2π(0.22 m)
= 2.1× 107 Hz .

68. The magnetic force on the wire is FB = idB, pointing to the left. Thus v = at = (FB/m)t = idBt/m,
to the left (away from the generator).

69. (a) We use Eq. 29-10: vd = E/B = (10× 10−6 V/1.0× 10−2 m)/(1.5 T) = 6.7× 10−4 m/s.

(b) We rewrite Eq. 29-12 in terms of the electric field:

n =
Bi

V ℓe
=

Bi

(Ed)ℓe
=

Bi

EAe

which we use A = ℓd. In this experiment, A = (0.010 m)(10 × 10−6 m) = 1.0 × 10−7 m2. By
Eq. 29-10, vd equals the ratio of the fields (as noted in part (a)), so we are led to

n =
Bi

EAe
=

i

vdAe

=
3.0 A

(6.7× 10−4 m/s)(1.0× 10−7 m2)(1.6× 10−19 C)

= 2.8× 1029/m3 .

(c) Since a drawing of an inherently 3-D situation can be misleading, we describe it in terms of horizontal

north, south, east, west and vertical up and down directions. We assume ~B points up and the
conductor’s width of 0.010 m is along an east-west line. We take the current going northward. The
conduction electrons experience a westward magnetic force (by the right-hand rule), which results
in the west side of the conductor being negative and the east side being positive (with reference to
the Hall voltage which becomes established).
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70. The fact that the fields are uniform, with the feature that the charge moves in a straight line, implies
the speed is constant (if it were not, then the magnetic force would vary while the electric force could
not – causing it to deviate from straight-line motion). This is then the situation leading to Eq. 29-7,
and we find

| ~E| = v| ~B| = 500 V/m .

Its direction (so that ~F = q( ~E + ~v × ~B) vanishes) is downward (in “page” coordinates).

71. (a) We use Eq. 29-2 and Eq. 3-30:

~F = q~v × ~B

= (+e)
(

(vyBz − vzBy) ı̂ + (vzBx − vxBz) ĵ + (vxBy − vyBx) k̂
)

=
(

1.60× 10−19
)

(

((4)(0.008)− (−6)(−0.004)) ı̂ +

((−6)(0.002)− (−2)(0.008)) ĵ + ((−2)(−0.004)− (4)(0.002)) k̂
)

=
(

1.28× 10−21
)

ı̂ +
(

6.41× 10−22
)

ĵ

with SI units understood.

(b) By definition of the cross product, ~v ⊥ ~F . This is easily verified by taking the dot (scalar) product
of ~v with the result of part (a), yielding zero, provided care is taken not to introduce any round-off
error.

(c) There are several ways to proceed. It may be worthwhile to note, first, that if Bz were 6.00 mT
instead of 8.00 mT then the two vectors would be exactly antiparallel. Hence, the angle θ between
~B and ~v is presumably “close” to 180◦. Here, we use Eq. 3-20:

θ = cos−1 ~v · ~B
|~v| | ~B|

= cos−1 −68√
56
√

84
= 173◦ .

72. (a) From symmetry, we conclude that any x-component of force will vanish (evaluated over the entirety

of the bent wire as shown). By the right-hand rule, a field in the k̂ direction produces on each part
of the bent wire a y-component of force pointing in the −ĵ direction; each of these components has
magnitude

|Fy| = i ℓ | ~B| sin 30◦ = 8 N .

Therefore, the the force (in Newtons) on the wire shown in the figure is −16 ĵ.

(b) The force exerted on the left half of the bent wire points in the −k̂ direction, by the right-hand

rule, and the force exerted on the right half of the wire points in the +k̂ direction. It is clear that
the magnitude of each force is equal, so that the force (evaluated over the entirety of the bent wire
as shown) must necessarily vanish.

73. The contribution to the force by the magnetic field (~B = Bx ı̂ = −0.020̂ı T) is given by Eq. 29-2:

~FB = q~v × ~B

= q
(

(17000̂ı×Bx̂ı) +
(

−11000̂j×Bx ı̂
)

+
(

7000k̂×Bx̂ı
))

= q
(

−220k̂− 140̂j
)

in SI units. And the contribution to the force by the electric field ( ~E = Ey ĵ = 300̂j V/m) is given by

Eq. 23-1: ~FE = qEy ĵ. Using q = 5.0 × 10−6 C, the net force (with the unit newton understood) on the
particle is

~F = 0.0008̂j− 0.0011k̂ .
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74. Letting Bx = By = B1 and Bz = B2 and using Eq. 29-2 and Eq. 3-30, we obtain (with SI units
understood)

~F = q~v × ~B

4̂ı− 20̂j + 12k̂ = 2
(

(4B2 − 6B1) ı̂ + (6B1 − 2B2) ĵ + (2B1 − 4B1) k̂
)

.

Equating like components, we find B1 = −3 and B2 = −4. In summary (with the unit Tesla understood),
~B = −3.0̂ı− 3.0̂j− 4.0k̂.

75. (a) We use Eq. 29-16 to calculate r:

r =
mev

qB
=

(9.11× 10−31 kg)(0.10)(3.00× 108 m/s)

(1.60× 10−19 C)(0.50 T)
= 3.4× 10−4 m .

(b) The kinetic energy, computed using the formula from Chapter 7, is

K =
1

2
mev

2 =
(9.11× 10−31 kg)(3.0 × 107 m/s)2

2(1.6× 10−19 J/eV)
= 2.6× 103 eV .

76. (a) Fromm = B2qx2/8V we have ∆m = (B2q/8V )(2x∆x). Here x =
√

8Vm/B2q, which we substitute
into the expression for ∆m to obtain

∆m =

(

B2q

8V

)

2

√

8mV

B2q
∆x = B

√

mq

2V
∆x .

(b) The distance between the spots made on the photographic plate is

∆x =
∆m

B

√

2V

mq

=
(37 u− 35 u)(1.66× 10−27 kg/u)

0.50 T

√

2(7.3× 103 V)

(36 u)(1.66× 10−27 kg/u)(1.60× 10−19 C)

= 8.2× 10−3 m .

77. (a) Since ~B is uniform,

~FB =

∫

wire

id~L× ~B = i

(∫

wire

d~L

)

× ~B = i~Lab × ~B ,

where we note that
∫

wire d
~L = ~Lab, with ~Lab being the displacement vector from a to b.

(b) Now ~Lab = 0, so ~FB = i~Lab × ~B = 0.

78. We use d~FB = id~L× ~B, where d~L = dx̂ı and ~B = Bx ı̂ +By ĵ. Thus,

~FB =

∫

id~L× ~B

=

∫ xf

xi

i dx ı̂× (Bx ı̂ +By ĵ) = i

∫ xf

xi

By dxk̂

= (−5.0 A)

(∫ 3.0

1.0

(8.0x2 dx) (m·mT)

)

k̂

= −0.35 N k̂ .
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1. (a) The magnitude of the magnetic field due to the current in the wire, at a point a distance r from
the wire, is given by

B =
µ0i

2πr
.

With r = 20 ft = 6.10 m, we find

B =
(4π × 10−7 T·m/A)(100 A)

2π(6.10 m)
= 3.3× 10−6 T = 3.3µT .

(b) This is about one-sixth the magnitude of the Earth’s field. It will affect the compass reading.

2. The current i due to the electron flow is i = ne = (5.6× 1014/s)(1.6× 10−19 C) = 9.0× 10−5 A. Thus,

B =
µ0i

2πr
=

(4π × 10−7 )(9.0× 10−5 )

2π(1.5× 10−3 )
= 1.2× 10−8 T .

3. (a) The field due to the wire, at a point 8.0 cm from the wire, must be 39µT and must be directed due
south. Since B = µ0i/2πr,

i =
2πrB

µ0
=

2π(0.080 m)(39× 10−6 T)

4π × 10−7 T·m/A = 16 A .

(b) The current must be from west to east to produce a field which is directed southward at points
below it.

4. The points must be along a line parallel to the wire and a distance r from it, where r satisfies

Bwire =
µ0i

2πr
= Bext ,

or

r =
µ0i

2πBext
=

(1.26× 10−6 T·m/A)(100 A)

2π(5.0× 10−3 T)
= 4.0× 10−3 m .

5. We assume the current flows in the +x direction and the particle is at some distance d in the +y direction
(away from the wire). Then, the magnetic field at the location of the charge q is

~B =
µ0i

2πd
k̂ .

Thus,

~F = q~v × ~B =
µ0iq

2πd

(

~v × k̂
)

.
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(a) In this situation, ~v = v(−ĵ) (where v is the speed and is a positive value). Also, the problem
specifies q > 0. Thus,

~F =
µ0iqv

2πd

(

(−ĵ)× k̂
)

= −µ0iqv

2πd
(̂ı) ,

which tells us that ~Fq has a magnitude of µ0iqv/2πd and is in the direction opposite to that of the
current flow.

(b) Now the direction ~v is reversed, and we obtain ~F = +µ0iqv̂ı/2πd. The magnitude is identical to
that found in part (a), but the direction of the force is now in the same direction as that of the
current flow.

6. The straight segment of the wire produces no magnetic field at C (see the straight sections discussion
in Sample Problem 30-1). Also, the fields from the two semi-circular loops cancel at C (by symmetry).
Therefore, BC = 0.

7. Each of the semi-infinite straight wires contributes µ0i/4πR (Eq. 30-9) to the field at the center of the
circle (both contributions pointing “out of the page”). The current in the arc contributes a term given
by Eq. 30-11 pointing into the page, and this is able to produce zero total field at that location if

Barc = 2Bsemi infinite

µ0iφ

4πR
= 2

(

µ0i

4πR

)

which yields φ = 2 rad.

8. Recalling the straight sections discussion in Sample Problem 30-1, we see that the current in segments
AH and JD do not contribute to the field at point C. Using Eq. 30-11 (with φ = π) and the right-hand
rule, we find that the current in the semicircular arc HJ contributes µ0i/4R1 (into the page) to the field
at C. Also, arc DA contributes µ0i/4R2 (out of the page) to the field there. Thus, the net field at C is

~B =
µ0i

4

(

1

R1
− 1

R2

)

into the page .

9. Recalling the straight sections discussion in Sample Problem 30-1, we see that the current in the straight
segments colinear with P do not contribute to the field at that point. Using Eq. 30-11 (with φ = θ)
and the right-hand rule, we find that the current in the semicircular arc of radius b contributes µ0iθ/4πb
(out of the page) to the field at P . Also, the current in the large radius arc contributes µ0iθ/4πa (into
the page) to the field there. Thus, the net field at P is

~B =
µ0iθ

4π

(

1

b
− 1

a

)

out of the page .

10. (a) Recalling the straight sections discussion in Sample Problem 30-1, we see that the current in the
straight segments colinear with C do not contribute to the field at that point.

(b) Eq. 30-11 (with φ = π) indicates that the current in the semicircular arc contributes µ0i/4R to the
field at C. The right-hand rule shows that this field is into the page.

(c) The contributions from parts (a) and (b) sum to

~B =
µ0i

4R
into the page .

11. Our x axis is along the wire with the origin at the midpoint. The current flows in the positive x
direction. All segments of the wire produce magnetic fields at P1 that are out of the page. According to
the Biot-Savart law, the magnitude of the field any (infinitesimal) segment produces at P1 is given by

dB =
µ0i

4π

sin θ

r2
dx
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where θ (the angle between the segment and a line drawn from the segment to P1 ) and r (the length
of that line) are functions of x. Replacing r with

√
x2 +R2 and sin θ with R/r = R/

√
x2 +R2, we

integrate from x = −L/2 to x = L/2. The total field is

B =
µ0iR

4π

∫ L/2

−L/2

dx

(x2 +R2)3/2
=
µ0iR

4π

1

R2

x

(x2 +R2)1/2

∣

∣

∣

∣

∣

L/2

−L/2

=
µ0i

2πR

L√
L2 + 4R2

.

If L≫ R, then R2 in the denominator can be ignored and

B =
µ0i

2πR

is obtained. This is the field of a long straight wire. For points very close to a finite wire, the field is
quite similar to that of an infinitely long wire.

12. The center of a square is a distance R = a/2 from the nearest side (each side being of length L = a).
There are four sides contributing to the field at the center, so the result of problem 11 leads to

Bcenter = 4

(

µ0i

2π(a/2)

)

(

a
√

a2 + 4(a/2)2

)

=
2
√

2µ0i

πa
.

13. Our x axis is along the wire with the origin at the right endpoint, and the current is in the positive x
direction. All segments of the wire produce magnetic fields at P2 that are out of the page. According to
the Biot-Savart law, the magnitude of the field any (infinitesimal) segment produces at P2 is given by

dB =
µ0i

4π

sin θ

r2
dx

where θ (the angle between the segment and a line drawn from the segment to P2 ) and r (the length
of that line) are functions of x. Replacing r with

√
x2 +R2 and sin θ with R/r = R/

√
x2 +R2, we

integrate from x = −L to x = 0. The total field is

B =
µ0iR

4π

∫ 0

−L

dx

(x2 +R2)3/2
=
µ0iR

4π

1

R2

x

(x2 +R2)1/2

∣

∣

∣

∣

∣

0

−L

=
µ0i

4πR

L√
L2 +R2

.

14. We refer to the side of length L as the long side and that of length W as the short side. The center is
a distance W/2 from the midpoint of each long side, and is a distance L/2 from the midpoint of each
short side. There are two of each type of side, so the result of problem 11 leads to

B = 2
µ0i

2π(W/2)

L
√

L2 + 4(W/2)2
+ 2

µ0i

2π(L/2)

W
√

W 2 + 4(L/2)2
.

The final form of this expression, shown in the problem statement, derives from finding the common
denominator of the above result and adding them, while noting that

L2 +W 2

√
W 2 + L2

=
√

W 2 + L2 .

15. We imagine the square loop in the yz plane (with its center at the origin) and the evaluation point for
the field being along the x axis (as suggested by the notation in the problem). The origin is a distance
a/2 from each side of the square loop, so the distance from the evaluation point to each side of the square
is, by the Pythagorean theorem,

R =
√

(a/2)2 + x2 =
1

2

√

a2 + 4x2 .



744 CHAPTER 30.

Only the x components of the fields (contributed by each side) will contribute to the final result (other
components cancel in pairs), so a trigonometric factor of

a/2

R
=

a√
a2 + 4x2

multiplies the expression of the field given by the result of problem 11 (for each side of length L = a).
Since there are four sides, we find

B(x) = 4

(

µ0i

2πR

)(

a√
a2 + 4R2

)(

a√
a2 + 4x2

)

=
4µ0 i a

2

2π
(

1
2

) (√
a2 + 4x2

)2 √
a2 + 4(a/2)2 + 4x2

which simplifies to the desired result. It is straightforward to set x = 0 and see that this reduces to the
expression found in problem 12 (noting that 4√

2
= 2
√

2).

16. Our y axis is along the wire with the origin at the top endpoint, and the current is in the positive y
direction. All segments of the wire produce magnetic fields at P that are into the page. According to
the Biot-Savart law, the magnitude of the field any (infinitesimal) segment produces at P is given by

dB =
µ0i

4π

sin θ

r2
dy

where θ (the angle between the segment and a line drawn from the segment to P ) and r (the length of

that line) are functions of y. Replacing r with
√

y2 + a2 and sin θ with a/r = a/
√

y2 + a2, we integrate
from y = −a to y = 0. The total field is

B =
µ0ia

4π

∫ 0

−a

dy

(y2 + a2)3/2
=
µ0ia

4π

1

a2

y

(y2 + a2)1/2

∣

∣

∣

∣

∣

0

−a

=
µ0i

4πa

a√
a2 + a2

which simplifies to the desired result (noting that 1
4
√

2
=

√
2

8 ).

17. Using the result of problem 12 and Eq. 30-12, we wish to show that

2
√

2µ0i

πa
>
µ0i

2R
, or

4
√

2

πa
>

1

R
,

but to do this we must relate the parameters a and R. If both wires have the same length L then the
geometrical relationships 4a = L and 2πR = L provide the necessary connection:

4a = 2πR =⇒ a =
πR

2
.

Thus, our proof consists of the observation that

4
√

2

πa
=

8
√

2

π2R
>

1

R
,

as one can check numerically (that 8
√

2/π2 > 1).

18. Recalling the straight sections discussion in Sample Problem 30-1, we see that the current in the straight
segments colinear with P do not contribute to the field at that point. We use the result of problem 16
to evaluate the contributions to the field at P , noting that the nearest wire-segments (each of length
a) produce magnetism into the page at P and the further wire-segments (each of length 2a) produce
magnetism pointing out of the page at P . Thus, we find (into the page)

BP = 2

(√
2µ0i

8πa

)

− 2

(√
2µ0i

8π(2a)

)

=

√
2µ0i

8πa
.
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19. Consider a section of the ribbon of thickness dx located a distance x away from point P . The current it
carries is di = i dx/w, and its contribution to BP is

dBP =
µ0di

2πx
=
µ0idx

2πxw
.

Thus,

BP =

∫

dBP =
µ0i

2πw

∫ d+w

d

dx

x
=

µ0i

2πw
ln
(

1 +
w

d

)

,

and ~BP points upward.

20. The two small wire-segments, each of length a/4, shown in Fig. 30-39 nearest to point P , are labeled 1
and 8 in the figure below.
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7

Let ~e be a unit vector pointing into the page. We use the results of problems 13 and 16 to calculate BP1

through BP8:

BP1 = BP8 =

√
2µ0i

8π(a/4)
=

√
2µ0i

2πa
,

BP4 = BP5 =

√
2µ0i

8π(3a/4)
=

√
2µ0i

6πa
,

BP2 = BP7 =
µ0i

4π(a/4)
· 3a/4

[(3a/4)2 + (a/4)2]1/2
=

3µ0i√
10πa

,

and

BP3 = BP6 =
µ0i

4π(3a/4)
· a/4

[(a/4)2 + (3a/4)2]1/2
=

µ0i

3
√

10πa
.

Finally,

~BP =

8
∑

n=1

BPn~e

= 2
µ0i

πa

(√
2

2
+

√
2

6
+

3√
10

+
1

3
√

10

)

~e

=
2(4π × 10−7 T·m/A)(10 A)

π(8.0× 10−2 m)

(√
2

2
+

√
2

6
+

3√
10

+
1

3
√

10

)

~e

= (2.0× 10−4 T)~e ,

where ~e is a unit vector pointing into the page.
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21. (a) If the currents are parallel, the two fields are in opposite directions in the region between the wires.
Since the currents are the same, the total field is zero along the line that runs halfway between the
wires. There is no possible current for which the field does not vanish.

(b) If the currents are antiparallel, the fields are in the same direction in the region between the wires.
At a point halfway between they have the same magnitude, µ0i/2πr. Thus the total field at the
midpoint has magnitude B = µ0i/πr and

i =
πrB

µ0
=
π(0.040 m)(300× 10−6 T)

4π × 10−7 T·m/A = 30 A .

22. Since they carry current in the same direction, then (by the right-hand rule) the only region in which
their fields might cancel is between them. Thus, if the point at which we are evaluating their field is
r away from the wire carrying current i and is d − r away from the wire carrying current 3i, then the
canceling of their fields leads to

µ0i

2πr
=

µ0(3i)

2π(d− r) =⇒ r =
d

4
.

23. Using the right-hand rule, we see that the current i2 carried by wire 2 must be out of the page. Now,
BP1 = µ0i1/2πr1 where i1 = 6.5 A and r1 = 0.75 cm + 1.5 cm = 2.25 cm, and BP2 = µ0i2/2πr2 where
r2 = 1.5 cm. From BP1 = BP2 we get

i2 = i1

(

r2
r1

)

= (6.5 A)

(

1.5 cm

2.25 cm

)

= 4.3 A .

24. We label these wires 1 through 5, left to right, and use Eq. 30-15 (divided by length). Then,

~F1 =
µ0i

2

2π

(

1

d
+

1

2d
+

1

3d
+

1

4d

)

ĵ =
25µ0i

2

24πd
ĵ

=
(13)(4π × 10−7 T·m/A)(3.00 A)2(1.00 m)̂j

24π(8.00× 10−2 m)

= 4.69× 10−5 N/m ĵ ;

~F2 =
µ0i

2

2π

(

1

2d
+

1

3d

)

ĵ =
5µ0i

2

12πd
ĵ = 1.88× 10−5 N/m ĵ ;

F3 = 0 (because of symmetry); ~F4 = −~F2; and ~F5 = −~F1.

25. Each wire produces a field with magnitude given by B = µ0i/2πr, where r is the distance from the
corner of the square to the center. According to the Pythagorean theorem, the diagonal of the square
has length

√
2a, so r = a/

√
2 and B = µ0i/

√
2πa. The fields due to the wires at the upper left and lower

right corners both point toward the upper right corner of the square. The fields due to the wires at the
upper right and lower left corners both point toward the upper left corner. The horizontal components
cancel and the vertical components sum to

B total = 4
µ0i√
2πa

cos 45◦ =
2µ0i

πa

=
2(4π × 10−7 T·m/A)(20 A)

π(0.20 m)
= 8.0× 10−5 T .

In the calculation cos 45◦ was replaced with 1/
√

2. The total field points upward.
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26. Using Eq. 30-15, the force on, say, wire 1 (the wire at the upper left of the figure) is along the diagonal
(pointing towards wire 3 which is at the lower right). Only the forces (or their components) along the
diagonal direction contribute. With θ = 45◦, we find

F1 =
∣

∣

∣

~F12 + ~F13 + ~F14

∣

∣

∣

= 2F12 cos θ + F13

= 2

(

µ0i
2

2πa

)

cos 45◦ +
µ0i

2

2
√

2πa

= 0.338

(

µ0i
2

a

)

.

27. We use Eq. 30-15 and the superposition of forces: ~F4 = ~F14 + ~F24 + ~F34. With θ = 45◦, the situation is
as shown below:

y

x

1 2

34

~F41

~F42

~F43 θ
θ
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.
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6
� ���	

The components of ~F4 are given by

F4x = −F43 − F42 cos θ

= −µ0i
2

2πa
− µ0i

2 cos 45◦

2
√

2πa

= −3µ0i
2

4πa

and

F4y = F41 − F42 sin θ

=
µ0i

2

2πa
− µ0i

2 sin 45◦

2
√

2πa

=
µ0i

2

4πa
.

Thus,

F4 = (F 2
4x + F 2

4y)1/2 =

[

(

−3µ0i
2

4πa

)2

+

(

µ0i
2

4πa

)2
]1/2

=

√
10µ0i

2

4πa
,
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and ~F4 makes an angle φ with the positive x axis, where

φ = tan−1

(

F4y

F4x

)

= tan−1

(

−1

3

)

= 162◦ .

28. (a) Consider a segment of the projectile between y and y + dy. We use Eq. 30-14 to find the magnetic
force on the segment, and Eq. 30-9 for the magnetic field of each semi-infinite wire (the top rail
referred to as wire 1 and the bottom as wire 2). The current in rail 1 is in the +ı̂ direction, and
the current in the rail 2 is in the −ı̂ direction. The field (in the region between the wires) set up

by wire 1 is into the paper (the −k̂ direction) and that set up by wire 2 is also into the paper. The
force element (a function of y) acting on the segment of the projectile (in which the current flows
in the −ĵ direction) is given below. The coordinate origin is at the bottom of the projectile.

d~F = d~F1 + d~F2

= i dy(−ĵ)× ~B1 + dy(−ĵ)× ~B2

= i[B1 +B2] ı̂dy

= i

[

µ0i

4π(2R+ w − y) +
µ0i

4πy

]

ı̂dy .

Thus, the force on the projectile is

~F =

∫

d~F =
i2µ0

4π

∫ R+w

R

(

1

2R+ w − y +
1

y

)

dy ı̂ =
µ0i

2

2π
ln
(

1 +
w

R

)

ı̂ .

(b) Using the work-energy theorem, we have ∆K = 1
2mv

2
f = Wext =

∫

~F ·d~s = FL. Thus, the final
speed of the projectile is

vf =

(

2Wext

m

)1/2

=

[

2

m

µ0i
2

2π
ln
(

1 +
w

R

)

L

]1/2

=

[

2(4π × 10−7 T·m/A)(450× 103 A)2 ln(1 + 1.2 cm/6.7 cm)(4.0 m)

2π(10× 10−3 kg)

]1/2

= 2.3× 103 m/s .

29. The magnitudes of the forces on the sides of the rectangle which are parallel to the long straight wire
(with i1 = 30 A) are computed using Eq. 30-15, but the force on each of the sides lying perpendicular to
it (along our y axis, with the origin at the top wire and +y downward) would be figured by integrating
as follows:

F⊥ sides =

∫ a+b

a

i2µ0i1
2πy

dy .

Fortunately, these forces on the two perpendicular sides of length b cancel out. For the remaining two
(parallel) sides of length L, we obtain

F =
µ0i1i2L

2π

(

1

a
− 1

a+ d

)

=
µ0i1i2b

2πa(a+ b)

=
(4π × 10−7 T·m/A)(30 A)(20 A)(8.0 cm)(30× 10−2 m)

2π(1.0 cm + 8.0 cm)

= 3.2× 10−3 N ,

and ~F points toward the wire.
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30. A close look at the path reveals that only currents 1, 3, 6 and 7 are enclosed. Thus, noting the different
current directions described in the problem, we obtain

∮

~B · d~s = µ0(7i− 6i+ 3i+ i) = 5µ0i .

31. (a) Two of the currents are out of the page and one is into the page, so the net current enclosed by
the path is 2.0 A, out of the page. Since the path is traversed in the clockwise sense, a current into
the page is positive and a current out of the page is negative, as indicated by the right-hand rule
associated with Ampere’s law. Thus,

∮

~B · d~s = −µ0i = −(2.0 A)(4π × 10−7 T·m/A) = −2.5× 10−6 T·m .

(b) The net current enclosed by the path is zero (two currents are out of the page and two are into the

page), so
∮

~B · d~s = µ0ienc = 0.

32. We use Eq. 30-22 for the B-field inside the wire and Eq. 30-19 for that outside the wire. The plot is
shown below (with SI units understood).

0
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0.0004

0.0006

0.0008

0.001

B

0.01 0.02 0.03 0.04 0.05 0.06
r

33. We use Ampere’s law. For the dotted loop shown on the diagram i = 0. The integral
∫

~B ·d~s is zero
along the bottom, right, and top sides of the loop. Along the right side the field is zero, along the
top and bottom sides the field is perpendicular to d~s. If ℓ is the length of the left edge, then direct
integration yields

∮

~B ·d~s = Bℓ, where B is the magnitude of the field at the left side of the loop. Since
neither B nor ℓ is zero, Ampere’s law is contradicted. We conclude that the geometry shown for the
magnetic field lines is in error. The lines actually bulge outward and their density decreases gradually,
not discontinuously as suggested by the figure.

34. We use Ampere’s law:
∮

~B ·d~s = µ0i, where the integral is around a closed loop and i is the net current
through the loop. For path 1, the result is

∮

1

~B · d~s = µ0(−5.0 A + 3.0 A) = (−2.0 A)(4π × 10−7 T·m/A)

= −2.5× 10−6 T·m .

For path 2, we find
∮

2

~B · d~s = µ0(−5.0 A− 5.0 A− 3.0 A) = (−13.0 A)(4π × 10−7 T·m/A)

= −1.6× 10−5 T·m .
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35. For r < a,

B(r) =
µ0i enc

2πr
=

µ0

2πr

∫ r

0

J(r)2πr dr =
µ0

2π

∫ r

0

J0

( r

a

)

2πr dr =
µ0J0r

2

3a
.

36. (a) Replacing i/πR2 with J = 100 A/m2, in Eq. 30-22, we have

∣

∣

∣

~B
∣

∣

∣ =

(

µ0 J

2

)

r = 1.3× 10−7 T

where r = 0.0020 m.

(b) Similarly, writing i = JπR2 in Eq. 30-19 yields

∣

∣

∣

~B
∣

∣

∣ =
µ0 J R

2

2r
= 1.4× 10−7 T

where r = 0.0040 m.

37. (a) The the magnetic field at a point within the hole is the sum of the fields due to two current
distributions. The first is that of the solid cylinder obtained by filling the hole and has a current
density that is the same as that in the original cylinder (with the hole). The second is the solid
cylinder that fills the hole. It has a current density with the same magnitude as that of the original
cylinder but is in the opposite direction. If these two situations are superposed the total current in
the region of the hole is zero. Now, a solid cylinder carrying current i, uniformly distributed over
a cross section, produces a magnetic field with magnitude

B =
µ0ir

2πR2

a distance r from its axis, inside the cylinder. Here R is the radius of the cylinder. For the cylinder
of this problem the current density is

J =
i

A
=

i

π(a2 − b2) ,

where A = π(a2 − b2) is the cross-sectional area of the cylinder with the hole. The current in the
cylinder without the hole is

I1 = JA = πJa2 =
ia2

a2 − b2
and the magnetic field it produces at a point inside, a distance r1 from its axis, has magnitude

B1 =
µ0I1r1
2πa2

=
µ0ir1a

2

2πa2(a2 − b2) =
µ0ir1

2π(a2 − b2) .

The current in the cylinder that fills the hole is

I2 = πJb2 =
ib2

a2 − b2
and the field it produces at a point inside, a distance r2 from the its axis, has magnitude

B2 =
µ0I2r2
2πb2

=
µ0ir2b

2

2πb2(a2 − b2) =
µ0ir2

2π(a2 − b2) .

At the center of the hole, this field is zero and the field there is exactly the same as it would be if
the hole were filled. Place r1 = d in the expression for B1 and obtain

B =
µ0id

2π(a2 − b2)
for the field at the center of the hole. The field points upward in the diagram if the current is out
of the page.



751

(b) If b = 0 the formula for the field becomes

B =
µ0id

2πa2
.

This correctly gives the field of a solid cylinder carrying a uniform current i, at a point inside the
cylinder a distance d from the axis. If d = 0 the formula gives B = 0. This is correct for the field
on the axis of a cylindrical shell carrying a uniform current.

(c) Consider a rectangular path with two long sides (side 1 and 2, each with length L) and two short
sides (each of length less than b). If side 1 is directly along the axis of the hole, then side 2 would be
also parallel to it and also in the hole. To ensure that the short sides do not contribute significantly
to the integral in Ampere’s law, we might wish to make L very long (perhaps longer than the length

of the cylinder), or we might appeal to an argument regarding the angle between ~B and the short
sides (which is 90◦ at the axis of the hole). In any case, the integral in Ampere’s law reduces to

∮

rectangle

~B · d~s = µ0ienclosed

∫

side 1

~B · d~s+

∫

side 2

~B · d~s = µ0iin hole

(Bside 1 −Bside 2)L = 0

where Bside 1 is the field along the axis found in part (a). This shows that the field at off-axis points
(where Bside 2 is evaluated) is the same as the field at the center of the hole; therefore, the field in
the hole is uniform.

38. The field at the center of the pipe (point C) is due to the wire alone, with a magnitude of

BC =
µ0iwire

2π(3R)
=
µ0iwire

6πR
.

For the wire we have BP, wire > BC, wire. Thus, for BP = BC = BC, wire, iwire must be into the page:

BP = BP, wire −BP, pipe =
µ0iwire

2πR
− µ0i

2π(2R)
.

Setting BC = −BP we obtain iwire = 3i/8 .

39. The “current per unit x-length” may be viewed as current density multiplied by the thickness ∆y of the
sheet; thus, λ = J∆y. Ampere’s law may be (and often is) expressed in terms of the current density
vector as follows:

∮

~B · d~s = µ0

∫

~J · d ~A

where the area integral is over the region enclosed by the path relevant to the line integral (and ~J is in the
+z direction, out of the paper). With J uniform throughout the sheet, then it clear that the right-hand
side of this version of Ampere’s law should reduce, in this problem, to µ0JA = µ0J∆y∆x = µ0λ∆x.

(a) Figure 30-52 certainly has the horizontal components of ~B drawn correctly at points P and P ′ (as
reference to Fig. 30-4 will confirm [consider the current elements nearest each of those points]), so the

question becomes: is it possible for ~B to have vertical components in the figure? Our focus is on
point P . Fig. 30-4 suggests that the current element just to the right of the nearest one (the one
directly under point P ) will contribute a downward component, but by the same reasoning the
current element just to the left of the nearest one should contribute an upward component to the
field at P . The current elements are all equivalent, as is reflected in the horizontal-translational
symmetry built into this problem; therefore, all vertical components should cancel in pairs. The
field at P must be purely horizontal, as drawn.
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(b) The path used in evaluating
∮

~B · d~s is rectangular, of horizontal length ∆x (the horizontal sides
passing through points P and P ′ respectively) and vertical size δy > ∆y. The vertical sides have

no contribution to the integral since ~B is purely horizontal (so the scalar dot product produces zero
for those sides), and the horizontal sides contribute two equal terms, as shown below. Ampere’s
law yields

2B∆x = µ0λ∆x =⇒ B =
1

2
µ0λ .

40. It is possible (though tedious) to use Eq. 30-28 and evaluate the contributions (with the intent to sum
them) of all 1200 loops to the field at, say, the center of the solenoid. This would make use of all the
information given in the problem statement, but this is not the method that the student is expected to
use here. Instead, Eq. 30-25 for the ideal solenoid (which does not make use of the coil radius) is the
preferred method:

B = µ0in = µ0i

(

N

ℓ

)

where i = 3.60 A, ℓ = 0.950 m and N = 1200. This yields B = 0.00571 T.

41. It is possible (though tedious) to use Eq. 30-28 and evaluate the contributions (with the intent to sum
them) of all 200 loops to the field at, say, the center of the solenoid. This would make use of all the
information given in the problem statement, but this is not the method that the student is expected to
use here. Instead, Eq. 30-25 for the ideal solenoid (which does not make use of the coil diameter) is the
preferred method:

B = µ0in = µ0i

(

N

ℓ

)

where i = 0.30 A, ℓ = 0.25 m and N = 200. This yields B = 0.0030 T.

42. We find N , the number of turns of the solenoid, from B = µ0in = µ0iN/ℓ: N = Bℓ/µ0i. Thus, the total
length of wire used in making the solenoid is

2πrN =
2πrBℓ

µ0i
=

2π(2.60× 10−2 m)(23.0× 10−3 T)(1.30 m)

2(4π × 10−7 T·m/A)(18.0 A)
= 108 m .

43. (a) We use Eq. 30-26. The inner radius is r = 15.0 cm, so the field there is

B =
µ0iN

2πr
=

(4π × 10−7 T ·m/A)(0.800 A)(500)

2π(0.150 m)
= 5.33× 10−4 T .

(b) The outer radius is r = 20.0 cm. The field there is

B =
µ0iN

2πr
=

(4π × 10−7 T ·m/A)(0.800 A)(500)

2π(0.200m)
= 4.00× 10−4 T .

44. (a) The ideal solenoid is long enough (and we are evaluating the field at a point far enough inside)
such that the open ends of the solenoid are “out of sight” and the situation displays a horizontal-
translational symmetry (assuming the axis of the cylindrical shape of the solenoid is horizontal). A
view of a “slice” of, say, the bottom of the solenoid would therefore appear similar to that shown
in Fig. 30-52, where point P is in the interior of the solenoid and point P ′ is outside the coil. Now,
Fig. 30-52 differs in at least one respect from our “slice” view of the solenoid in that the field at
P ′ would be zero instead of what is shown in that figure. The field vanishes there because the
top of the solenoid (similar to that shown in Fig. 30-52, in “slice” view, but with the currents and
field directions reversed) would contribute an equal and opposite field to any exterior point, thus
canceling it. For interior points, the top and bottom “slices” each contribute 1

2µ0λ (in the same
direction) [this is shown in the solution to problem 39] and thus produce an interior field equal to
B = µ0λ.
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(b) Applying Ampere’s law to a rectangular path which passes through points P (interior) and P ′

(exterior) similar to that described in the solution to part (b) of problem 39, we are not surprised
to find

∮

~B · d~s =
(

~BP − ~BP ′

)

·̂ı∆x = µ0λ∆x

just as we found in part (b) of problem 39 (except that we are now taking the +x direction in the
same direction as the field at P , to avoid confusion with signs). The difference with the previous

solution is that in 39,
(

~BP − ~BP ′

)

· ı̂ was equal to B − (−B) = 2B, whereas in this case we have

B − 0 = B. Although the value of B is different in the two problems, we see that the change
(

~BP − ~BP ′

)

·̂ı is the same: µ0λ.

45. Consider a circle of radius r, inside the toroid and concentric with it (like either of the loops drawn in
Fig. 30-20). The current that passes through the region between this circle and another larger radius
circle (well outside the toroid) is Ni, where N is the number of turns and i is the current (note that
this region includes a “slice” of the outer rim of the toroid). The current per unit length (of the circle)
is λ = Ni/2πr, and µ0λ is therefore µ0Ni/2πr, the magnitude of the magnetic field at the circle (call
it B1 ). Since the field outside a toroid (call it B2 ) is zero, the above result is also the change in the
magnitude of the field encountered as you move from the circle to the outside (say, to the larger radius
circle mentioned above). The equality is not really surprising in light of Ampere’s law, particularly if

the path used in
∮

~B · d~s is made to connect the circle in the toroid and the larger radius circle (or
portions of each of them, of lengths ∆s1 and ∆s2 ). The connecting paths (each of size ∆r) between

the circles can be made perpendicular to the magnetic field lines (so that ~B · ~s = 0). In fact, we can

keep the connecting paths roughly perpendicular to ~B and manage to have ∆s1 ≈ ∆s2 if our Amperian
loop is very small (especially if ∆r is much smaller than the outer radius of the toroid). Simplifying our
notation, the current through the loop is therefore ∆sλ, so Ampere’s law yields (B1 −B2)∆s = µ0∆sλ
and B2−B1 = µ0λ. What this demonstrates is that the change of the magnetic field is µ0λ when moving
from one point to another (in a direction perpendicular to the field) across a current sheet (as the term is
used in problem 39); this principle is useful in any discussion of boundary conditions in electrodynamics
applications.

46. The orbital radius for the electron is

r =
mv

eB
=

mv

eµ0ni

which we solve for i:

i =
mv

eµ0nr

=
(9.11× 10−31 kg)(0.0460)(3.00× 108 m/s)

(1.60× 10−19 C)(4π × 10−7 T ·m/A)(100/0.0100 m)(2.30× 10−2 m)

= 0.272 A .

47. (a) We denote the ~B-fields at point P on the axis due to the solenoid and the wire as ~Bs and ~Bw,

respectively. Since ~Bs is along the axis of the solenoid and ~Bw is perpendicular to it, ~Bs ⊥ ~Bw,
respectively. For the net field ~B to be at 45◦ with the axis we then must have Bs = Bw. Thus,

Bs = µ0isn = Bw =
µ0iw
2πd

,

which gives the separation d to point P on the axis:

d =
iw

2πisn
=

6.00 A

2π(20.0× 10−3 A)(10 turns/cm)
= 4.77 cm .
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(b) The magnetic field strength is

B =
√

2Bs

=
√

2(4π × 10−7 T·m/A)(20.0× 10−3 A)(10 turns/0.0100 m)

= 3.55× 10−5 T .

48. (a) We set z = 0 in Eq. 30-28 (which is equivalent using to Eq. 30-12 multiplied by the number of
loops). Thus, B(0) ∝ i/R. Since case b has two loops,

Bb

Ba
=

2i/Rb

i/Ra
=

2Ra

Rb
= 4 .

(b) The ratio of their magnetic dipole moments is

µb

µa
=

2iAb

iAa
=

2R2
b

R2
a

= 2

(

1

2

)2

=
1

2
.

49. The magnitude of the magnetic dipole moment is given by µ = NiA, where N is the number of turns, i
is the current, and A is the area. We use A = πR2, where R is the radius. Thus,

µ = (200)(0.30 A)π(0.050m)2 = 0.47 A·m2 .

50. We use Eq. 30-28 and note that the contributions to ~BP from the two coils are the same. Thus,

BP =
2µ0iR

2N

2[R2 + (R/2)2]3/2
=

8µ0Ni

5
√

5R
.

~BP is in the positive x direction.

51. (a) The magnitude of the magnetic dipole moment is given by µ = NiA, where N is the number of
turns, i is the current, and A is the area. We use A = πR2, where R is the radius. Thus,

µ = NiπR2 = (300)(4.0 A)π(0.025 m)2 = 2.4 A·m2 .

(b) The magnetic field on the axis of a magnetic dipole, a distance z away, is given by Eq. 30-29:

B =
µ0

2π

µ

z3
.

We solve for z:

z =
(µ0

2π

µ

B

)1/3

=

(

(4π × 10−7 T·m/A)(2.36 A·m2)

2π(5.0× 10−6 T)

)1/3

= 46 cm .

52. (a) For x≫ a, the result of problem 15 reduces to

B(x) ≈ 4µ0ia
2

π(4x2)(4x2)1/2
=
µ0(ia

2)

4πx3
,

which is indeed the field of a magnetic dipole (see Eq. 30-29).

(b) The magnitude of the magnetic dipole moment is µ = ia2, by comparison between Eq. 30-29 and
the result above.
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53. Since the origin is midway between the coils, and the axis is chosen to be x (as opposed to the z used in
Eq. 30-28), then the net field of the two coils is

B =
µ0NiR

2

2

(

1
√

R2 + (R/2− x)2
+

1
√

R2 + (R/2 + x)2

)

where i = 50 A, N = 300 and R = 0.050 m. The graph of this function (using SI units) is shown below.

0.26

0.265

0.27

B
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x

54. (a) By imagining that each of the segments bg and cf (which are shown in the figure as having no cur-
rent) actually has a pair of currents, where both currents are of the same magnitude (i) but opposite
direction (so that the pair effectively cancels in the final sum), one can justify the superposition.

(b) The dipole moment of path abcdefgha is

~µ = ~µbcfgb + ~µabgha + ~µcdefc = (ia2)(̂j− ı̂ + ı̂) = ia2 ĵ

= (6.0 A)(0.10 m)2̂j = 6.0× 10−2 A·m2 ĵ .

(c) Since both points are far from the cube we can use the dipole approximation. For (x, y, z) =
(0, 5.0 m, 0)

~B(0, 5.0 m, 0) ≈ µ0

2π

~µ

y3

=
(1.26× 10−6 T·m/A)(6.0× 10−2 m2 · A)̂j

2π(5.0 m)3

= 9.6× 10−11 T ĵ .

For (x, y, z) = (5.0 m, 0, 0), note that the line joining the end point of interest and the location of
the dipole is perpendicular to the axis of the dipole. You can check easily that if an electric dipole
is used, the field would be E ≈ (1/4πε0)(p/x

3), which is half of the magnitude of E for a point on
the y axis the same distance from the dipole. By analogy, in our case B is also half the value or
B(0, 5.0 m, 0), i.e.,

B(5.0 m, 0, 0) =
1

2
B(0, 5.0 m, 0) =

1

2
(9.6× 10−11 T) = 4.8× 10−11 T .

Just like the electric dipole case, ~B(5.0 m, 0, 0) points in the negative y direction.
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55. (a) The magnitude of the magnetic field on the axis of a circular loop, a distance z from the loop center,
is given by Eq. 30-28:

B =
Nµ0iR

2

2(R2 + z2)3/2
,

where R is the radius of the loop, N is the number of turns, and i is the current. Both of the loops
in the problem have the same radius, the same number of turns, and carry the same current. The
currents are in the same sense, and the fields they produce are in the same direction in the region
between them. We place the origin at the center of the left-hand loop and let x be the coordinate
of a point on the axis between the loops. To calculate the field of the left-hand loop, we set z = x
in the equation above. The chosen point on the axis is a distance s − x from the center of the
right-hand loop. To calculate the field it produces, we put z = s − x in the equation above. The
total field at the point is therefore

B =
Nµ0iR

2

2

[

1

(R2 + x2)3/2
+

1

(R2 + x2 − 2sx+ s2)3/2

]

.

Its derivative with respect to x is

dB

dx
= −Nµ0iR

2

2

[

3x

(R2 + x2)5/2
+

3(x− s)
(R2 + x2 − 2sx+ s2)5/2

]

.

When this is evaluated for x = s/2 (the midpoint between the loops) the result is

dB

dx

∣

∣

∣

∣

∣

s/2

= −Nµ0iR
2

2

[

3s/2

(R2 + s2/4)5/2
− 3s/2

(R2 + s2/4− s2 + s2)5/2

]

= 0

independently of the value of s.

(b) The second derivative is

d2B

dx2
=

Nµ0iR
2

2

[

− 3

(R2 + x2)5/2
+

15x2

(R2 + x2)7/2

− 3

(R2 + x2 − 2sx+ s2)5/2
+

15(x− s)2
(R2 + x2 − 2sx+ s2)7/2

]

.

At x = s/2,

d2B

dx2

∣

∣

∣

∣

∣

s/2

=
Nµ0iR

2

2

[

− 6

(R2 + s2/4)5/2
+

30s2/4

(R2 + s2/4)7/2

]

=
Nµ0R

2

2

[−6(R2 + s2/4) + 30s2/4

(R2 + s2/4)7/2

]

= 3Nµ0iR
2 s2 −R2

(R2 + s2/4)7/2
.

Clearly, this is zero if s = R.

56. (a) By the right-hand rule, ~B points into the paper at P (see Fig. 30-6(c)). To find the magnitude
of the field, we use Eq. 30-11 for each semicircle (φ = π rad), and use superposition to obtain the
result:

B =
µ0iπ

4πa
+
µ0iπ

4πb
=
µ0i

4

(

1

a
+

1

b

)

.

(b) The direction of ~µ is the same as the ~B found in part (a): into the paper. The enclosed area is
A = (πa2 + πb2)/2 which means the magnetic dipole moment has magnitude

|~µ| = π i

2

(

a2 + b2
)

.
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57. (a) We denote the large loop and small coil with subscripts 1 and 2, respectively.

B1 =
µ0i1
2R1

=
(4π × 10−7 T ·m/A)(15 A)

2(0.12 m)
= 7.9× 10−5 T .

(b) The torque has magnitude equal to

τ =
∣

∣

∣~µ2 × ~B1

∣

∣

∣ = µ2B1 sin 90◦

= N2i2A2B1 = πN2i2r
2
2B1

= π(50)(1.3 A)(0.82× 10−2 m)2(7.9× 10−5 T) = 1.1× 10−6 N·m .

58. (a) The contribution to BC from the (infinite) straight segment of the wire is

BC1 =
µ0i

2πR
.

The contribution from the circular loop is

BC2 =
µ0i

2R
.

Thus,

BC = BC1 +BC2 =
µ0i

2R

(

1 +
1

π

)

.

~BC points out of the page.

(b) Now ~BC1 ⊥ ~BC2 so

BC =
√

B2
C1 +B2

C2 =
µ0i

2R

√

1 +
1

π2
,

and ~BC points at an angle (relative to the plane of the paper) equal to

tan−1

(

BC1

BC2

)

= tan−1

(

1

π

)

= 18◦ .

59. (a) For the circular path L of radius r concentric with the conductor

∮

L

~B · d~s = 2πrB = µ0i enc = µ0 i
π(r2 − b2)
π(a2 − b2) .

Thus,

B =
µ0i

2π(a2 − b2)

(

r2 − b2
r

)

.

(b) At r = a, the magnetic field strength is

µ0i

2π(a2 − b2)

(

a2 − b2
a

)

=
µ0i

2πa
.

At r = b, B ∝ r2 − b2 = 0. Finally, for b = 0

B =
µ0i

2πa2

r2

r
=
µ0ir

2πa2

which agrees with Eq. 30-22.
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(c) The field is zero for r < b and is equal to Eq. 30-19 for r > a, so this along with the result of part (a)
provides a determination of B over the full range of values. The graph (with SI units understood)
is shown below.

0
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0.0004

0.0006

0.0008

0.001

B

0.01 0.02 0.03 0.04 0.05 0.06
r

60. (a) Eq. 30-22 applies for r < c. Our sign choice is such that i is positive in the smaller cylinder and
negative in the larger one.

B =
µ0ir

2πc2
for r ≤ c .

(b) Eq. 30-19 applies in the region between the conductors.

B =
µ0i

2πr
for c ≤ r ≤ b .

(c) Within the larger conductor we have a superposition of the field due to the current in the inner
conductor (still obeying Eq. 30-19) plus the field due to the (negative) current in the that part of
the outer conductor at radius less than r (see part (a) of problem 59 for more details). The result
is

B =
µ0i

2πr
− µ0i

2πr

(

r2 − b2
a2 − b2

)

for b < r ≤ a .

If desired, this expression can be simplified to read

B =
µ0i

2πr

(

a2 − r2
a2 − b2

)

.

(d) Outside the coaxial cable, the net current enclosed is zero. So B = 0 for r ≥ a.

(e) We test these expressions for one case. If a → ∞ and b → ∞ (such that a > b) then we have the
situation described on page 696 of the textbook.

(f) Using SI units, the graph of the field is shown below:
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61. (a) We find the field by superposing the results of two semi-infinite wires (Eq. 30-9) and a semicircular

arc (Eq. 30-11 with φ = π rad). The direction of ~B is out of the page, as can be checked by referring

to Fig. 30-6(c). The magnitude of ~B at point a is therefore

Ba = 2

(

µ0i

4πR

)

+
µ0iπ

4πR
=
µ0i

2R

(

1

π
+

1

2

)

.

With i = 10 A and R = 0.0050 m, we obtain Ba = 1.0 × 10−3 T. The direction of this field is out
of the page, as Fig. 30-6(c) makes clear.

(b) The last remark in the problem statement implies that treating b as a point midway between two
infinite wires is a good approximation. Thus, using Eq. 30-6,

Bb = 2

(

µ0i

2πR

)

= 8.0× 10−4 T .

This field, too, points out of the page.

62. We use B(x, y, z) = (µ0/4π)i∆~s× ~r/r3, where ∆~s = ∆ŝj and ~r = x̂ı + yĵ + z~k. Thus,

~B(x, y, z) =
(µ0

4π

) i∆ŝj× (x~i+ yĵ + z~k)

(x2 + y2 + z2)3/2
=

µ0i∆s (z ı̂− xk̂)

4π(x2 + ys + z2)3/2
.

(a) The field on the z axis (at z = 5.0 m) is

~B(0, 0, 5.0 m) =
(4π × 10−7 T ·m/A)(2.0 A)(3.0× 10−2 m)(5.0 m)̂ı

4π (02 + 02 + (5.0 m)2)
3/2

= 2.4× 10−10 T ı̂ .

(b) ~B(0, 6.0 m, 0), since x = z = 0.

(c) The field in the xy plane, at (x, y) = (7, 7), is

~B(7.0 m, 7.0 m, 0) =
(4π × 10−7 T ·m/A)(2.0 A)(3.0× 10−2 m)(−7.0 m)k̂

4π ((7.0 m)2 + (7.0 m)2 + 02)
3/2

= 4.3× 10−11 T k̂ .
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(d) The field in the xy plane, at (x, y) = (−3,−4), is

~B(−3.0 m, −4.0 m, 0) =
(4π × 10−7 T ·m/A)(2.0 A)(3.0× 10−2 m)(3.0 m)k̂

4π ((−3.0 m)2 + (−4.0 m)2 + 02)
3/2

= 1.4× 10−10 T k̂ .

63. (a) Eq. 30-19 applies for each wire, with r =
√

R2 + (d/2)2 (by the Pythagorean theorem). The vertical
components of the fields cancel, and the two (identical) horizontal components add to yield the final
result

B = 2

(

µ0i

2πr

)(

d/2

r

)

=
µ0id

2π (R2 + (d/2)2)

where (d/2)/r is a trigonometric factor to select the horizontal component. It is clear that this is
equivalent to the expression in the problem statement.

(b) Using the right-hand rule, we find both horizontal components point rightward.

64. (a) The difference between this and Sample Problem 6 is that the current in wire 2 is reversed form
what is shown in Fig. 30-59(a). Thus, we replace i → −i in the expression for B2(x) and add the
fields:

B1(x) +B2(x) =
µ0i

2π(d+ x)
+

µ0(−i)
2π(d− x) = − µ0ix

π (d2 − x2)

which is equivalent to the desired result.

(b) As remarked in that Sample Problem, this expression does not apply within the wires themselves.
If we assume the wires have nearly zero thickness, then the expression applies over nearly all of the
range −0.02 < x < 0.02 (with SI units understood). To be definite about this issue, we have picked
a small wire radius (.005 m) and graphed the field over the range −.0195 ≤ x ≤ 0.0195.

–0.004

–0.002

0

0.002

0.004

B_

–0.015 –0.01–0.005 0.005 0.01 0.015
x

65. (a) All wires carry parallel currents and attract each other; thus, the “top” wire is pulled downward
by the other two:

|~F | = µ0 L(5.0 A)(3.2 A)

2π(0.10 m)
+
µ0 L(5.0 A)(5.0 A)

2π(0.20 m)

where L = 3.0 m. Thus, |~F | = 1.7× 10−4 N.

(b) Now, the “top” wire is pushed upward by the center wire and pulled downward by the bottom wire:

|~F | = µ0 L(5.0 A)(3.2 A)

2π(0.10 m)
− µ0 L(5.0 A)(5.0 A)

2π(0.20 m)

so that |~F | = 2.1× 10−5 N.
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66. With cylindrical symmetry, we have, external to the conductors,

| ~B| = µ0 ienc

2π r

which produces ienc = 25 mA from the given information. Therefore, the thin wire must carry 5 mA in
a direction opposite to the 30 mA carried by the thin conducting surface.

67. The area enclosed by the loop L is A = 1
2 (4d)(3d) = 6d2. Thus

∮

c

~B · d~s = µ0i = µ0jA

= (4π × 10−7 T ·m/A)(15 A/m
2
)(6)(0.20 m)2 = 4.5× 10−6 T·m .

68. We refer to the center of the circle (where we are evaluating ~B) as C. Recalling the straight sections

discussion in Sample Problem 30-1, we see that the current in the straight segments which are colinear
with C do not contribute to the field there. Eq. 30-11 (with φ = π/2 rad) and the right-hand rule
indicates that the currents in the two arcs contribute

µ0i(π/2)

4πR
− µ0i(π/2)

4πR
= 0

to the field at C. Thus, the non-zero contributions come from those straight-segments which are not
colinear with C. There are two of these “semi-infinite” segments, one a vertical distance R above C and
the other a horizontal distance R to the left of C. Both contribute fields pointing out of the page (see
Fig. 30-6(c)). Since the magnitudes of the two contributions (governed by Eq. 30-9) add, then the result
is

B = 2

(

µ0i

4πR

)

=
µ0i

2πR

exactly what one would expect from a single infinite straight wire (see Eq. 30-6). For such a wire to
produce such a field (out of the page) with a leftward current requires that the point of evaluating the
field be below the wire (again, see Fig. 30-6(c)).

69. Since the radius is R = 0.0013 m, then the i = 50 A produces

B =
µ0i

2πR
= 0.0077 T

at the edge of the wire. The three equations, Eq. 30-6, Eq. 30-19 and Eq. 30-22, agree at this point.

70. We note that the distance from each wire to P is r = d/
√

2 = 0.071 m. In both parts, the current is
i = 100 A.

(a) With the currents parallel, application of the right-hand rule (to determine each of their contribu-
tions to the field at P ) reveals that the vertical components cancel and the horizontal components
add – yielding the result:

B = 2

(

µ0i

2πr

)

cos 45◦ = 4.0× 10−4 T .

and directed leftward in the figure.

(b) Now, with the currents antiparallel, application of the right-hand rule shows that the horizontal
components cancel and the vertical components add. Thus,

B = 2

(

µ0i

2πr

)

sin 45◦ = 4.0× 10−4 T .

and directed upward in the figure.
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71. (a) As illustrated in Sample Problem 30-1, the radial segments do not contribute to ~BP and the arc-

segments contribute according to Eq. 30-11 (with angle in radians). If k̂ designates the direction
“out of the page” then

~B =
µ0(0.40 A)(π rad)

4π(0.050 m)
k̂− µ0(0.80 A)

(

2π
3 rad

)

4π(0.040 m)
k̂

which yields ~B = −1.7× 10−6 k̂ T.

(b) Now we have

~B = −µ0(0.40 A)(π rad)

4π(0.050 m)
k̂− µ0(0.80 A)

(

2π
3 rad

)

4π(0.040 m)
k̂

which yields ~B = −6.7× 10−6 k̂ T.

72. (a) We designate the wire along y = rA = 0.100 m wire A and the wire along y = rB = 0.050 m wire
B. Using Eq. 30-6, we have

~Bnet = ~BA + ~BB

= − µ0 iA
2π rA

k̂− µ0 iB
2π rB

k̂

which yields ~Bnet = 52.0× 10−6k̂ T.

(b) This will occur for some value rB < y < rA such that

µ0 iA
2π (rA − y)

=
µ0 iB

2π (y − rB)
.

Solving, we find y = 13/160 ≈ 0.081 m.

(c) We eliminate the y < rB possibility due to wire B carrying the larger current. We expect a solution
in the region y > rA where

µ0 iA
2π (y − rA)

=
µ0 iB

2π (y − rB)
.

Solving, we find y = 7/40 ≈ 0.018 m.

73. (a) The field in this region is entirely due to the long wire (with, presumably, negligible thickness).
Using Eq. 30-19,

| ~B| = µ0 iw
2πr

= 4.8× 10−3 T

where iw = 24 A and r = 0.0010 m.

(b) Now the field consists of two contributions (which are antiparallel) – from the wire (Eq. 30-19) and
from a portion of the conductor (Eq. 30-22 modified for annular area):

| ~B| =
µ0 iw
2πr

− µ0 ienc

2πr

=
µ0 iw
2πr

− µ0 ic
2πr

(

πr2 − πR2
i

πR2
o − πR2

i

)

where r = 0.0030 m, Ri = 0.0020 m, Ro = 0.0040 m and ic = 24 A. Thus, we find | ~B| = 9.3×10−4 T.

(c) Now, in the external region, the individual fields from the two conductors cancel completely (since

ic = iw): ~B = 0.
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74. In this case L = 2πr is roughly the length of the toroid so

B = µ0i0

(

N

2πr

)

= µ0ni0 .

This result is expected, since from the perspective of a point inside the toroid the portion of the toroid
in the vicinity of the point resembles part of a long solenoid.

75. We take the current (i = 50 A) to flow in the +x direction, and the electron to be at a point P
which is r = 0.050 m above the wire (where “up” is the +y direction). Thus, the field produced
by the current points in the +z direction at P . Then, combining Eq. 30-6 with Eq. 29-2, we obtain
~Fe = (−eµ0i/2πr)(~v × k̂).

(a) The electron is moving down: ~v = −v ĵ (where v = 1.0× 107 m/s is the speed) so

~Fe =
−eµ0iv

2πr
(−ı̂) = 3.2× 10−16 N ı̂ .

(b) In this case, the electron in the same direction as the current: ~v = v ı̂ so

~Fe =
−eµ0iv

2πr

(

−ĵ
)

= 3.2× 10−16 N ĵ .

(c) Now, ~v = ±vk̂ so ~Fe ∝ k̂× k̂ = 0.

76. Eq. 30-6 gives

i =
2πRB

µ0
=

2π(0.880 m)(7.30× 10−6 T)

4π × 10−7 T ·m/A = 32.1 A .

77. For x > 20 mm, the field due i2 is downward and thus subtracts from B1 and is entirely consistent with
the given expression for B2 (note that it becomes negative when x > d). Similarly, for x < −20 mm, the
field due to i1 is downward and subtracts from B2 (which is positive and points upward for all x < d).
This again is consistent with the expression for B1 which is seen to become negative for x less than −d
(that is, x negative and |x| > |d|). We conclude that the given expressions are valid over the whole of the
x axis, and their answer (Eq. 30-33) holds for all x (other than at the locations of the wires themselves,
where it becomes problematic, as discussed in the Sample Problem).

78. By the right-hand rule, the magnetic field ~B1(evaluated at a) produced by wire 1 (the wire at bottom
left) is at φ = 150◦ (measured counterclockwise from the +x axis, in the xy plane), and the field produced

by wire 2 (the wire at bottom right) is at φ = 210◦. By symmetry ( ~B1 = ~B2) we observe that only the
x-components survive, yielding

~B1 + ~B2 = 2
µ0 i

2π ℓ
cos 150◦ ı̂ = −3.46× 10−5 ı̂ T

where i = 10 A, ℓ = 0.10 m, and Eq. 30-6 has been used. To cancel this, wire b must carry current into
the page (that is, the −k̂ direction) of value

ib =
(

3.46× 10−5
) 2π r

µ0
= 15 A

where r =
√

3 ℓ/2 = 0.087 m and and Eq. 30-6 has again been used.

79. Using Eq. 30-22 and Eq. 30-19, we have

| ~B1| =

(

µ0 i

2πR2

)

r1

| ~B2| =
µ0 i

2π r2
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where r1 = 0.0040 m, | ~B1| = 2.8× 10−4 T, r2 = 0.010 m and | ~B2| = 2.0× 10−4 T. Point 2 is known to

be external to the wire since | ~B2| < | ~B1|. From the second equation, we find i = 10 A. Plugging this
into the first equation yields R = 5.3× 10−3 m.

80. Using a magnifying glass, we see that all but i2 are directed into the page. Wire 3 is therefore attracted
to all but wire 2. Letting d = 0.50 m, we find the net force (per meter length) using Eq. 30-15, with
positive indicated a rightward force:

|~F |
ℓ

=
µ0 i3
2π

(

− i1
2d

+
i2
d

+
i4
d

+
i5
2d

)

which yields |~F |/ℓ = 8.0× 10−7 N/m.



Chapter 31

1. The magnetic field is normal to the plane of the loop and is uniform over the loop. Thus at any instant
the magnetic flux through the loop is given by ΦB = AB = πr2B, where A = πr2 is the area of the
loop. According to Faraday’s law the magnitude of the emf in the loop is

E =
dΦB

dt
= πr2

dB

dt
= π(0.055 m)2(0.16 T/s) = 1.5× 10−3 V .

2. The induced emf is

E = −dΦB

dt
= −d(BA)

dt
= −AdB

dt

= −A d

dt
(µ0in) = −Aµ0n

d

dt
(i0 sinωt)

= −Aµ0ni0ω cosωt .

3. (a)

|E| =
∣

∣

∣

∣

dΦB

dt

∣

∣

∣

∣

=
d

dt
(6.0t2 + 7.0t) = 12t+ 7.0 = 12(2.0) + 7.0 = 31 mV .

(b) Appealing to Lenz’s law (especially Fig. 31-5(a)) we see that the current flow in the loop is clockwise.
Thus, the current is from right to left through R.

4. (a) We use E = −dΦB/dt = −πr2dB/dt. For 0 < t < 2.0 s:

E = −πr2 dB
dt

= −π(0.12 m)2
(

0.5 T

2.0 s

)

= −1.1× 10−2 V .

(b) 2.0 s < t < 4.0 s : E ∝ dB/dt = 0.

(c) 4.0 s < t < 6.0 s :

E = −πr2 dB
dt

= −π(0.12 m)2
( −0.5 T

6.0 s− 4.0 s

)

= 1.1× 10−2 V .

5. (a) Table 27-1 gives the resistivity of copper. Thus,

R = ρ
L

A
= (1.68× 10−8 Ω·m)

[

π(0.10 m)

π(2.5× 10−3)2/4

]

= 1.1× 10−3 Ω .

(b) We use i = |E|/R = |dΦB/dt|/R = (πr2/R)|dB/dt|. Thus

∣

∣

∣

∣

dB

dt

∣

∣

∣

∣

=
iR

πr2
=

(10 A)(1.1× 10−3 Ω)

π(0.05 m)2
= 1.4 T/s .

765
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6. (a) Following Sample Problem 31-1, we have

ΦB = µ0inA where A =
πd 2

4

with i = 3t+ t2 (SI units and 2 significant figures understood). The magnitude of the induced emf
is therefore

E = N
dΦB

dt
≈ 0.0012(3 + 2t)

where we have used the values specified in Sample Problem 31-1 for all quantities except the current.
The plot is shown below.

0.005

0.01

V

0 1 2 3 4
t

(b) Using Ohm’s law, the induced current is

i
∣

∣

t=2.0 s
=
E
∣

∣

t=2.0 s

R
=

0.0087 V

0.15 Ω
= 0.058 A .

7. The primary difference between this and the situation described in Sample Problem 31-1 is in the quantity
A. The area through which there is magnetic flux is not the area of the short coil, in this case, but is the
area of the solenoid (there is no field outside an ideal solenoid). Actually, because of the current (which
we calculate here) in the short coil, there is a very small amount of field outside the solenoid (caused
by that current) – but it may be disregarded in this calculation. The values are as indicated in Sample
Problem 31-1 except that A = πD2/4 (where D = 0.032 m) and N = 120 for the short coil. Thus, we
find ΦB,i = 3.3 × 10−5 Wb, and the magnitude of the induced emf is 0.16 V. Ohm’s law then yields
0.16 V/5.3 Ω = 0.030 A.

8. Using Faraday’s law, the induced emf is

E = −dΦB

dt
= −d(BA)

dt
= −BdA

dt
= −Bd(πr

2)

dt
= −2πrB

dr

dt
= −2π(0.12 m)(0.800 T)(−0.750 m/s) = 0.452 V .

9. (a) In the region of the smaller loop the magnetic field produced by the larger loop may be taken to be
uniform and equal to its value at the center of the smaller loop, on the axis. Eq. 30-29, with z = x
(taken to be much greater than R), gives

~B =
µ0iR

2

2x3
ı̂
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where the +x direction is upward in Fig. 31-36. The magnetic flux through the smaller loop is, to
a good approximation, the product of this field and the area (πr2) of the smaller loop:

ΦB =
πµ0ir

2R2

2x3
.

(b) The emf is given by Faraday’s law:

E = −dΦB

dt
= −

(

πµ0ir
2R2

2

)

d

dt

(

1

x3

)

= −
(

πµ0ir
2R2

2

) (

− 3

x4

dx

dt

)

=
3πµ0ir

2R2v

2x4
.

(c) As the smaller loop moves upward, the flux through it decreases, and we have situation like that
shown in Fig. 31-5(b). The induced current will be directed so as to produce a magnetic field that
is upward through the smaller loop, in the same direction as the field of the larger loop. It will be
counterclockwise as viewed from above, in the same direction as the current in the larger loop.

10. The flux ΦB = BA cos θ does not change as the loop is rotated. Faraday’s law only leads to a nonzero
induced emf when the flux is changing, so the result in this instance is 0.

11. (a) Ohm’s law combines with Faraday’s law to give i = −N
R

dΦB

dt where R is the resistance of the coil.
In this case, N = 1 (it is a single loop), and we integrate to find the charge:

∫ t

0

i dt = − 1

R

∫ t

0

dΦB

dt
dt

q(t) = − 1

R
(ΦB(t)− ΦB(0))

which is equivalent to the expression shown in the problem statement. We have used little more
than the fundamental theorem of calculus; no particular assumptions have been made about how
the integrations should be performed. The result is independent of the way ~B has changed.

(b) If the current is identically zero for over the whole range 0→ t then certainly the left-hand side of
our computation, above, gives zero. But the same result can come from the current being in one
direction for, say, 0→ t

2 and then in the opposite direction for t
2 → t in such a way that

∫ t

0
i dt = 0.

So a vanishing integral does not necessarily mean the integrand itself is identically zero.

12. (a) Eq. 30-12 gives the field at the center of the large loop with R = 1.00 m and current i(t). This is
approximately the field throughout the area (A = 2.00×10−4 m2) enclosed by the small loop. Thus,
with B = µ0i/2R and i(t) = i0+kt (where i0 = 200 A and k = (−200 A−200 A)/1.00 s = −400 A/s),
we find

B
∣

∣

t=0
=

µ0i0
2R

=
(4π × 10−7 H/m)(200 A)

2(1.00 m)
= 1.26× 10−4 T ,

B
∣

∣

t=0.500 s
=

(4π × 10−7 H/m)[200 A− (400 A/s)(0.500 s)]

2(1.00 m)
= 0 ,

B|t=1.00 s =
(4π × 10−7 H/m)[200 A− (400 A/s)(1.00 s)]

2(1.00 m)
= −1.26× 10−4 T .

(b) Let the area of the small loop be a. Then ΦB = Ba, and Faraday’s law yields

E = −dΦB

dt
= −d(Ba)

dt
= −adB

dt
= −a

(

∆B

∆t

)

= −(2.00× 10−4 m2)

(−1.26× 10−4 T− 1.26× 10−4 T

1.00 s

)

= 5.04× 10−8 V .
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13. From the result of the problem 11,

q(t) =
1

R
[ΦB(0)− ΦB(t)] =

A

R
[B(0)−B(t)]

=
1.20× 10−3 m2

13.0 Ω
[1.60 T− (−1.60 T)] = 2.95× 10−2 C .

14. We note that 1 gauss = 10−4 T. Adapting the result of the problem 11,

q(t) =
N

R
[BA cos 20◦ − (−BA cos 20◦ )] =

2NBA cos 20◦

R

=
2(1000)(0.590× 10−4 T)π(0.100 m)2(cos 20◦)

85.0 Ω + 140 Ω
= 1.55× 10−5 C .

Note that the axis of the coil is at 20◦, not 70◦, from the magnetic field of the Earth.

15. (a) Let L be the length of a side of the square circuit. Then the magnetic flux through the circuit is
ΦB = L2B/2, and the induced emf is

Ei = −dΦB

dt
= −L

2

2

dB

dt
.

Now B = 0.042− 0.870t and dB/dt = −0.870 T/s. Thus,

Ei =
(2.00 m)2

2
(0.870 T/s) = 1.74 V .

The magnetic field is out of the page and decreasing so the induced emf is counterclockwise around
the circuit, in the same direction as the emf of the battery. The total emf is E+Ei = 20.0 V+1.74 V =
21.7 V.

(b) The current is in the sense of the total emf (counterclockwise).

16. (a) Since ~B = B ı̂ uniformly, then only the area “projected” onto the yz plane will contribute to the
flux (due to the scalar [dot] product). This “projected” area corresponds to one-fourth of a circle.
Thus, the magnetic flux ΦB through the loop is

ΦB =

∫

~B ·d ~A =
1

4
πr2B .

Thus,

|E| =

∣

∣

∣

∣

dΦB

dt

∣

∣

∣

∣

=

∣

∣

∣

∣

d

dt

(

1

4
πr2B

)∣

∣

∣

∣

=
πr2

4

∣

∣

∣

∣

dB

dt

∣

∣

∣

∣

=
1

4
π(0.10 m)2(3.0× 10−3 T/s) = 2.4× 10−5 V .

(b) We have a situation analogous to that shown in Fig. 31-5(a). Thus, the current in segment bc flows
from c to b (following Lenz’s law).

17. (a) It should be emphasized that the result, given in terms of sin(2πft), could as easily be given in
terms of cos(2πft) or even cos(2πft+ φ) where φ is a phase constant as discussed in Chapter 16.
The angular position θ of the rotating coil is measured from some reference line (or plane), and
which line one chooses will affect whether the magnetic flux should be written as BA cos θ, BA sin θ
or BA cos(θ + φ). Here our choice is such that ΦB = BA cos θ. Since the coil is rotating steadily,
θ increases linearly with time. Thus, θ = ωt (equivalent to θ = 2πft) if θ is understood to be in
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radians (and ω would be the angular velocity). Since the area of the rectangular coil is A = ab,
Faraday’s law leads to

E = −N d(BA cos θ)

dt
= −NBAd cos(2πft)

dt
= NBab2πf sin(2πft)

which is the desired result, shown in the problem statement. The second way this is written
(E0 sin(2πft)) is meant to emphasize that the voltage output is sinusoidal (in its time dependence)
and has an amplitude of E0 = 2πfNabB.

(b) We solve E0 = 150 V = 2πfNabB when f = 60.0 rev/s and B = 0.500 T. The three unknowns are
N, a, and b which occur in a product; thus, we obtain Nab = 0.796 m2. This means, for instance,
that if we wanted the coil to have a square shape and consist of 50 turns, then the side length of
the square would be a = b = 0.126 m.

18. (a) The rotational frequency (in revolutions per second) is identical to the time-dependent voltage
frequency (in cycles per second, or Hertz). This conclusion should not be considered obvious, and
the calculation shown in part (b) should serve to reinforce it.

(b) First, we define angle relative to the plane of Fig. 31-41, such that the semicircular wire is in the
θ = 0 position and a quarter of a period (of revolution) later it will be in the θ = π/2 position
(where its midpoint will reach a distance of a above the plane of the figure). At the moment it is
in the θ = π/2 position, the area enclosed by the “circuit” will appear to us (as we look down at
the figure) to that of a simple rectangle (call this area A0 which is the area it will again appear to
enclose when the wire is in the θ = 3π/2 position). Since the area of the semicircle is πa2/2 then
the area (as it appears to us) enclosed by the circuit, as a function of our angle θ, is

A = A0 +
πa2

2
cos θ

where (since θ is increasing at a steady rate) the angle depends linearly on time, which we can write
either as θ = ωt or θ = 2πft if we take t = 0 to be a moment when the arc is in the θ = 0 position.
Since ~B is uniform (in space) and constant (in time), Faraday’s law leads to

E = −dΦB

dt
= −BdA

dt
= −B

d
(

A0 + πa2

2 cos θ
)

dt
= −Bπa

2

2

d cos(2πft)

dt

which yields E = Bπ2a2f sin(2πft). This (due to the sinusoidal dependence) reinforces the conclu-
sion in part (a) and also (due to the factors in front of the sine) provides the voltage amplitude:
Emax = Bπ2a2f .

19. First we write ΦB = BA cos θ. We note that the angular position θ of the rotating coil is measured from
some reference line or plane, and we are implicitly making such a choice by writing the magnetic flux
as BA cos θ (as opposed to, say, BA sin θ). Since the coil is rotating steadily, θ increases linearly with
time. Thus, θ = ωt if θ is understood to be in radians (here, ω = 2πf is the angular velocity of the
coil in radians per second, and f = 1000 rev/min ≈ 16.7 rev/s is the frequency). Since the area of the
rectangular coil is A = 0.500× 0.300 = 0.150 m2, Faraday’s law leads to

E = −N d(BA cos θ)

dt
= −NBAd cos(2πft)

dt
= NBA2πf sin(2πft)

which means it has a voltage amplitude of

Emax = 2πfNAB = 2π(16.7 rev/s)(100 turns)(0.15 m2)(3.5 T) = 5.50× 103 V .

20. The field (due to the current in the straight wire) is out-of-the-page in the upper half of the circle and
is into the page in the lower half of the circle, producing zero net flux, at any time. There is no induced
current in the circle.
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21. Consider a (thin) strip of area of height dy and width ℓ = 0.020 m. The strip is located at some 0 < y < ℓ.
The element of flux through the strip is

dΦB = B dA = (4t2y)(ℓ dy)

where SI units (and 2 significant figures) are understood. To find the total flux through the square loop,
we integrate:

ΦB =

∫

dΦB =

∫ ℓ

0

(

4t2yℓ
)

dy = 2t2ℓ3 .

Thus, Faraday’s law yields

|E| =
∣

∣

∣

∣

dΦB

dt

∣

∣

∣

∣

= 4tℓ3 .

At t = 2.5 s, we find the magnitude of the induced emf is 8.0 × 10−5 V. Its “direction” (or “sense”) is
clockwise, by Lenz’s law.

22. (a) First, we observe that a large portion of the figure contributes flux which “cancels out.” The field
(due to the current in the long straight wire) through the part of the rectangle above the wire is
out of the page (by the right-hand rule) and below the wire it is into the page. Thus, since the
height of the part above the wire is b− a, then a strip below the wire (where the strip borders the
long wire, and extends a distance b− a away from it) has exactly the equal-but-opposite flux which
cancels the contribution from the part above the wire. Thus, we obtain the non-zero contributions
to the flux:

ΦB =

∫

B dA =

∫ a

b−a

(

µ0i

2πr

)

(b dr) =
µ0ib

2π
ln

(

a

b− a

)

.

Faraday’s law, then, (with SI units and 3 significant figures understood) leads to

E = −dΦB

dt
= − d

dt

[

µ0ib

2π
ln

(

a

b− a

)]

= −µ0b

2π
ln

(

a

b− a

)

di

dt
= −µ0b

2π
ln

(

a

b− a

)

d

dt

(

9

2
t2 − 10t

)

=
−µ0b(9t− 10)

2π
ln

(

a

b− a

)

.

With a = 0.120 m and b = 0.160 m, then, at t = 3.00 s, the magnitude of the emf induced in the
rectangular loop is

|E| =
(

4π × 10−7
)

(0.16)(9(3)− 10)

2π
ln

(

0.12

0.16− 0.12

)

= 5.98× 10−7 V .

(b) We note that di
dt > 0 at t = 3 s. The situation is roughly analogous to that shown in Fig. 31-5(c).

From Lenz’s law, then, the induced emf (hence, the induced current) in the loop is counterclockwise.

23. (a) We refer to the (very large) wire length as L and seek to compute the flux per meter: ΦB/L.
Using the right-hand rule discussed in Chapter 30, we see that the net field in the region between
the axes of antiparallel currents is the addition of the magnitudes of their individual fields, as
given by Eq. 30-19 and Eq. 30-22. There is an evident reflection symmetry in the problem, where
the plane of symmetry is midway between the two wires (at what we will call x = ℓ/2, where
ℓ = 20 mm = 0.020 m); the net field at any point 0 < x < ℓ/2 is the same at its “mirror image”
point ℓ − x. The central axis of one of the wires passes through the origin, and that of the other
passes through x = ℓ. We make use of the symmetry by integrating over 0 < x < ℓ/2 and then
multiplying by 2:

ΦB = 2

∫ ℓ/2

0

B dA = 2

∫ d/2

0

B (Ldx) + 2

∫ ℓ/2

d/2

B (Ldx)
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where d = 0.0025 m is the diameter of each wire. We will use R = d/2, and r instead of x in the
following steps. Thus, using the equations from Ch. 30 referred to above, we find

ΦB

L
= 2

∫ R

0

(

µ0i

2πR2
r +

µ0i

2π(ℓ− r)

)

dr + 2

∫ ℓ/2

R

(

µ0i

2πr
+

µ0i

2π(ℓ− r)

)

dr

=
µ0i

2π

(

1− 2 ln

(

ℓ−R
ℓ

))

+
µ0i

π
ln

(

ℓ−R
R

)

= 0.23× 10−5 T·m + 1.08× 10−5 T·m

which yields ΦB/L = 1.3× 10−5 T·m or 1.3× 10−5 Wb/m.

(b) The flux (per meter) existing within the regions of space occupied by one or the other wires was
computed above to be 0.23× 10−5 T·m. Thus,

0.23× 10−5 T·m
1.3× 10−5 T·m = 0.17 = 17% .

(c) What was described in part (a) as a symmetry plane at x = ℓ/2 is now (in the case of parallel
currents) a plane of vanishing field (the fields subtract from each other in the region between them,
as the right-hand rule shows). The flux in the 0 < x < ℓ/2 region is now of opposite sign of the flux
in the ℓ/2 < x < ℓ region which causes the total flux (or, in this case, flux per meter) to be zero.

24. (a) We assume the flux is entirely due to the field generated by the long straight wire (which is given
by Eq. 30-19). We integrate according to Eq. 31-3, not worrying about the possibility of an overall
minus sign since we are asked to find the absolute value of the flux.

|ΦB| =
∫ r+b/2

r−b/2

(

µ0i

2πr

)

(a dr) =
µ0ia

2π
ln

(

r + b
2

r − b
2

)

.

(b) Implementing Faraday’s law involves taking a derivative of the flux in part (a), and recognizing that
dr
dt = v. The magnitude of the induced emf divided by the loop resistance then gives the induced
current:

iloop =

∣

∣

∣

∣

E
R

∣

∣

∣

∣

= −µ0ia

2πR

∣

∣

∣

∣

∣

d

dt
ln

(

r + b
2

r − b
2

)∣

∣

∣

∣

∣

=
µ0iabv

2πR (r2 − (b/2)2)
.

25. Thermal energy is generated at the rate P = E2/R (see Eq. 27-23). Using Eq. 27-16, the resistance is
given by R = ρL/A, where the resistivity is 1.69 × 10−8 Ω ·m (by Table 27-1) and A = πd2/4 is the
cross-sectional area of the wire (d = 0.00100 m is the wire thickness). The area enclosed by the loop is

Aloop = πr2loop = π

(

L

2π

)2

since the length of the wire (L = 0.500 m) is the circumference of the loop. This enclosed area is used in
Faraday’s law (where we ignore minus signs in the interest of finding the magnitudes of the quantities):

E =
dΦB

dt
= Aloop

dB

dt
=
L2

4π

dB

dt

where the rate of change of the field is dB/dt = 0.0100 T/s. Consequently, we obtain

P =

(

L2

4π
dB
dt

)2

4ρL/πd2
=
d2L3

64πρ

(

dB

dt

)2

= 3.68× 10−6 W .



772 CHAPTER 31.

26. Noting that |∆B| = B, we find the thermal energy is

Pthermal∆t =
E2∆t

R
=

1

R

(

−dΦB

dt

)2

∆t =
1

R

(

−A∆B

∆t

)2

∆t =
A2B2

R∆t
.

27. (a) Eq. 31-10 leads to

E = BLv = (0.350 T)(0.250 m)(0.550 m/s) = 0.0481 V .

(b) By Ohm’s law, the induced current is i = 0.0481 V/18.0 Ω = 0.00267 A. By Lenz’s law, the current
is clockwise in Fig. 31-46.

(c) Eq. 27-22 leads to P = i2R = 0.000129 W.

28. Noting that Fnet = BiL−mg = 0, we solve for the current:

i =
mg

BL
=
|E|
R

=
1

R

∣

∣

∣

∣

dΦB

dt

∣

∣

∣

∣

=
B

R

∣

∣

∣

∣

dA

dt

∣

∣

∣

∣

=
BvtL

R
,

which yields vt = mgR/B2L2.

29. (a) By Lenz’s law, the induced emf is clockwise. In the rod itself, we would say the emf is directed up
the page. Eq. 31-10 leads to

E = BLv = (1.2 T)(0.10 m)(5.0 m/s) = 0.60 V .

(b) By Ohm’s law, the (clockwise) induced current is i = 0.60 V/0.40 Ω = 1.5 A.

(c) Eq. 27-22 leads to P = i2R = 0.90 W.

(d) From Eq. 29-2, we find that the force on the rod associated with the uniform magnetic field is
directed rightward and has magnitude

F = iLB = (1.5 A)(0.10 m)(1.2 T) = 0.18 N .

To keep the rod moving at constant velocity, therefore, a leftward force (due to some external agent)
having that same magnitude must be continuously supplied to the rod.

(e) Using Eq. 7-48, we find the power associated with the force being exerted by the external agent:
P = Fv = (0.18 N)(5.0 m/s) = 0.90 W, which is the same as our result from part (c).

30. (a) The “height” of the triangular area enclosed by the rails and bar is the same as the distance traveled
in time v: d = vt, where v = 5.20 m/s. We also note that the “base” of that triangle (the distance
between the intersection points of the bar with the rails) is 2d. Thus, the area of the triangle is

A =
1

2
(base)(height) =

1

2
(2vt)(vt) = v2t2 .

Since the field is a uniform B = 0.350 T, then the magnitude of the flux (in SI units) is ΦB = BA =
(0.350)(5.20)2t2 = 9.46t2. At t = 3.00 s, we obtain ΦB = 85.2 Wb.

(b) The magnitude of the emf is the (absolute value of) Faraday’s law:

E =
dΦB

dt
= 9.46

dt2

dt
= 18.9t

in SI units. At t = 3.00 s, this yields E = 56.8 V.

(c) Our calculation in part (b) shows that n = 1.
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31. (a) Letting x be the distance from the right end of the rails to the rod, we find an expression for the
magnetic flux through the area enclosed by the rod and rails. By Eq. 30-19, the field is B = µ0i/2πr,
where r is the distance from the long straight wire. We consider an infinitesimal horizontal strip of
length x and width dr, parallel to the wire and a distance r from it; it has area A = xdr and the
flux dΦB = (µ0ix/2πr)dr. By Eq. 31-3, the total flux through the area enclosed by the rod and
rails is

ΦB =
µ0ix

2π

∫ a+L

a

dr

r
=
µ0ix

2π
ln

(

a+ L

a

)

.

According to Faraday’s law the emf induced in the loop is

E =
dΦB

dt
=
µ0i

2π

dx

dt
ln

(

a+ L

a

)

=
µ0iv

2π
ln

(

a+ L

a

)

=
(4π × 10−7T·m/A)(100A)(5.00 m/s)

2π
ln

(

1.00 cm + 10.0 cm

1.00 cm

)

= 2.40× 10−4 V .

(b) By Ohm’s law, the induced current is iℓ = E/R = (2.40×10−4 V)/(0.400 Ω) = 6.00×10−4 A. Since
the flux is increasing the magnetic field produced by the induced current must be into the page in
the region enclosed by the rod and rails. This means the current is clockwise.

(c) Thermal energy is being generated at the rate P = i2ℓR = (6.00×10−4A)2(0.400 Ω) = 1.44×10−7W.

(d) Since the rod moves with constant velocity, the net force on it is zero. The force of the external
agent must have the same magnitude as the magnetic force and must be in the opposite direction.
The magnitude of the magnetic force on an infinitesimal segment of the rod, with length dr at a
distance r from the long straight wire, is dFB = iℓB dr = (µ0iℓi/2πr) dr. We integrate to find the
magnitude of the total magnetic force on the rod:

FB =
µ0iℓi

2π

∫ a+L

a

dr

r
=
µ0iℓi

2π
ln

(

a+ L

a

)

=
(4π × 10−7T·m/A)(6.00× 10−4 A)(100A)

2π
ln

(

1.00 cm + 10.0 cm

1.00 cm

)

= 2.87× 10−8 N .

Since the field is out of the page and the current in the rod is upward in the diagram, the force
associated with the magnetic field is toward the right. The external agent must therefore apply a
force of 2.87× 10−8 N, to the left.

(e) By Eq. 7-48, the external agent does work at the rate P = Fv = (2.87 × 10−8 N)(5.00 m/s) =
1.44 × 10−7 W. This is the same as the rate at which thermal energy is generated in the rod. All
the energy supplied by the agent is converted to thermal energy.

32.

∮

1

~E ·d~s = −d
~ΦB1

dt
=

d

dt
(B1A1) = A1

dB1

dt
= πr21

dB1

dt

= π(0.200 m)2(−8.50× 10−3 T/s) = −1.07× 10−3 V

∮

2

~E ·d~s = −d
~ΦB2

dt
= πr22

dB2

dt

= π(0.300 m)2(−8.50× 10−3 T/s) = −2.40× 10−3 V
∮

3

~E ·d~s =

∮

1

~E ·d~s−
∮

2

~E ·d~s = −1.07× 10−3 V − (−2.4× 10−3 V) = 1.33× 10−3 V
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33. (a) The point at which we are evaluating the field is inside the solenoid, so Eq. 31-27 applies. The
magnitude of the induced electric field is

E =
1

2

dB

dt
r =

1

2
(6.5× 10−3 T/s)(0.0220 m) = 7.15× 10−5 V/m .

(b) Now point at which we are evaluating the field is outside the solenoid and Eq. 31-29 applies. The
magnitude of the induced field is

E =
1

2

dB

dt

R2

r
=

1

2
(6.5× 10−3 T/s)

(0.0600 m)2

(0.0820 m)
= 1.43× 10−4 V/m .

34. The magnetic field B can be expressed as

B(t) = B0 +B1 sin(ωt+ φ0) ,

where B0 = (30.0 T + 29.6 T)/2 = 29.8 T and B1 = (30.0 T− 29.6 T)/2 = 0.200 T. Then from Eq. 31-27

E =
1

2

(

dB

dt

)

r =
r

2

d

dt
[B0 +B1 sin(ωt+ φ0)] =

1

2
B1ωr cos(ωt+ φ0) .

We note that ω = 2πf and that the factor in front of the cosine is the maximum value of the field.
Consequently,

Emax =
1

2
B1(2πf)r =

1

2
(0.200 T)(2π)(15 Hz)(1.6× 10−2 m) = 0.15 V/m .

35. We use Faraday’s law in the form
∮

~E ·d~s = −(dΦB/dt), integrating along the dotted path shown in the
Figure. At all points on the upper and lower sides the electric field is either perpendicular to the side or
else it vanishes. We assume it vanishes at all points on the right side (outside the capacitor). On the left

side it is parallel to the side and has constant magnitude. Thus, direct integration yields
∮

~E ·d~s = EL,
where L is the length of the left side of the rectangle. The magnetic field is zero and remains zero, so
dΦB/dt = 0. Faraday’s law leads to a contradiction: EL = 0, but neither E nor L is zero. Therefore,
there must be an electric field along the right side of the rectangle.

36. (a) We interpret the question as asking for N multiplied by the flux through one turn:

Φturns = NΦB = NBA = NB(πr2) = (30.0)(2.60× 10−3 T)(π)(0.100 m)2 = 2.45× 10−3 Wb .

(b) Eq. 31-35 leads to

L =
NΦB

i
=

2.45× 10−3 Wb

3.80 A
= 6.45× 10−4 H .

37. Since NΦB = Li, we obtain

ΦB =
Li

N
=

(8.0× 10−3 H)(5.0× 10−3 A)

400
= 1.0× 10−7 Wb .

38. (a) We imagine dividing the one-turn solenoid into N small circular loops placed along the width W of
the copper strip. Each loop carries a current ∆i = i/N . Then the magnetic field inside the solenoid
is B = µ0n∆i = µ0(N/W )(i/N) = µ0i/W.

(b) Eq. 31-35 leads to

L =
ΦB

i
=
πR2B

i
=
πR2(µ0i/W )

i
=
πµ0R

2

W
.
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39. We refer to the (very large) wire length as ℓ and seek to compute the flux per meter: ΦB/ℓ. Using
the right-hand rule discussed in Chapter 30, we see that the net field in the region between the axes of
antiparallel currents is the addition of the magnitudes of their individual fields, as given by Eq. 30-19
and Eq. 30-22. There is an evident reflection symmetry in the problem, where the plane of symmetry
is midway between the two wires (at x = d/2); the net field at any point 0 < x < d/2 is the same at
its “mirror image” point d− x. The central axis of one of the wires passes through the origin, and that
of the other passes through x = d. We make use of the symmetry by integrating over 0 < x < d/2 and
then multiplying by 2:

ΦB = 2

∫ d/2

0

B dA = 2

∫ a

0

B (ℓ dx) + 2

∫ d/2

a

B (ℓ dx)

where d = 0.0025 m is diameter of each wire. We will r instead of x in the following steps. Thus, using
the equations from Ch. 30 referred to above, we find

ΦB

ℓ
= 2

∫ a

0

(

µ0i

2πa2
r +

µ0i

2π(d− r)

)

dr + 2

∫ d/2

a

(

µ0i

2πr
+

µ0i

2π(d− r)

)

dr

=
µ0i

2π

(

1− 2 ln

(

d− a
d

))

+
µ0i

π
ln

(

d− a
a

)

where the first term is the flux within the wires and will be neglected (as the problem suggests). Thus,
the flux is approximately ΦB ≈ µ0iℓ/π ln((d − a)/a). Now, we use Eq. 31-35 (with N = 1) to obtain
the inductance:

L =
ΦB

i
=
µ0ℓ

π
ln

(

d− a
a

)

.

40. (a) Speaking anthropomorphically, the coil wants to fight the changes – so if it wants to push current
rightward (when the current is already going rightward) then i must be in the process of decreasing.

(b) From Eq. 31-37 (in absolute value) we get

L =

∣

∣

∣

∣

E
di/dt

∣

∣

∣

∣

=
17 V

2.5 kA/s
= 6.8× 10−4 H .

41. Since E = −L(di/dt), we may obtain the desired induced emf by setting

di

dt
= −E

L
= −60 V

12 H
= −5.0 A/s .

We might, for example, uniformly reduce the current from 2.0 A to zero in 40 ms.

42. During periods of time when the current is varying linearly with time, Eq. 31-37 (in absolute values)
becomes |E| = L

∣

∣

∆i
∆t

∣

∣. For simplicity, we omit the absolute value signs in the following.

(a) For 0 < t < 2 ms

E = L
∆i

∆t
=

(4.6 H)(7.0 A− 0)

2.0× 10−3 s
= 1.6× 104 V .

(b) For 2 ms < t < 5 ms

E = L
∆i

∆t
=

(4.6 H)(5.0 A− 7.0 A)

(5.0− 2.0)10−3 s
= 3.1× 103 V .

(c) For 5 ms < t < 6 ms

E = L
∆i

∆t
=

(4.6 H)(0− 5.0 A)

(6.0− 5.0)10−3 s
= 2.3× 104 V .
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43. (a) Voltage is proportional to inductance (by Eq. 31-37) just as, for resistors, it is proportional to
resistance. Since the (independent) voltages for series elements add (V1 + V2 ), then inductances in
series must add just as was the case for resistances.

(b) To ensure the independence of the voltage values, it is important that the inductors not be too
close together (the related topic of mutual inductance is treated in §31-12). The requirement is
that magnetic field lines from one inductor should not have significant significant presence in any
other.

(c) Just as with resistors, Leq =
∑N

n=1 Ln .

44. (a) Voltage is proportional to inductance (by Eq. 31-37) just as, for resistors, it is proportional to
resistance. Now, the (independent) voltages for parallel elements are equal (V1 = V2 ), and the
currents (which are generally functions of time) add (i1(t) + i2(t) = i(t)). This leads to the Eq. 28-
21 for resistors. We note that this condition on the currents implies

di1(t)

dt
+
di2(t)

dt
=
di(t)

dt
.

Thus, although the inductance equation Eq. 31-37 involves the rate of change of current, as opposed
to current itself, the conditions that led to the parallel resistor formula also applies to inductors.
Therefore,

1

Leq
=

1

L1
+

1

L2
.

(b) To ensure the independence of the voltage values, it is important that the inductors not be too close
together (the related topic of mutual inductance is treated in §31-12). The requirement is that the
field of one inductor not have significant influence (or “coupling”) in the next.

(c) Just as with resistors, 1
Leq

=
∑N

n=1
1

Ln
.

45. Starting with zero current at t = 0 (the moment the switch is closed) the current in the circuit increases
according to

i =
E
R

(

1− e−t/τL

)

,

where τL = L/R is the inductive time constant and E is the battery emf. To calculate the time at which
i = 0.9990E/R, we solve for t:

0.9990
E
R

=
E
R

(

1− e−t/τL

)

=⇒ ln(0.0010) = −(t/τ) =⇒ t = 6.91τL .

46. The steady state value of the current is also its maximum value, E/R, which we denote as im . We are
told that i = im/3 at t0 = 5.00 s. Eq. 31-43 becomes i = im(1 − e−t0/τL), which leads to

τL = − t0
ln(1− i/im)

= − 5.00 s

ln(1− 1/3)
= 12.3 s .

47. The current in the circuit is given by i = i0e
−t/τL , where i0 is the current at time t = 0 and τL is the

inductive time constant (L/R) . We solve for τL. Dividing by i0 and taking the natural logarithm of
both sides, we obtain

ln

(

i

i0

)

= − t

τL
.

This yields

τL = − t

ln(i/i0)
= − 1.0 s

ln((10× 10−3 A)/(1.0 A))
= 0.217 s .

Therefore, R = L/τL = 10 H/0.217 s = 46 Ω.
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48. (a) Immediately after the switch is closed E − EL = iR. But i = 0 at this instant, so EL = E .
(b) EL(t) = Ee−t/τL = Ee−2.0τL/τL = Ee−2.0 = 0.135E .
(c) From EL(t) = Ee−t/τL we obtain

t

τL
= ln

( E
EL

)

= ln 2 =⇒ t = τL ln 2 = 0.693τL .

49. (a) If the battery is switched into the circuit at t = 0, then the current at a later time t is given by

i =
E
R

(

1− e−t/τL

)

,

where τL = L/R. Our goal is to find the time at which i = 0.800E/R. This means

0.800 = 1− e−t/τL =⇒ e−t/τL = 0.200 .

Taking the natural logarithm of both sides, we obtain −(t/τL) = ln(0.200) = −1.609. Thus

t = 1.609τL =
1.609L

R
=

1.609(6.30× 10−6 H)

1.20× 103 Ω
= 8.45× 10−9 s .

(b) At t = 1.0τL the current in the circuit is

i =
E
R

(

1− e−1.0
)

=

(

14.0 V

1.20× 103 Ω

)

(

1− e−1.0
)

= 7.37× 10−3 A .

50. Applying the loop theorem

E − L
(

di

dt

)

= iR ,

we solve for the (time-dependent) emf, with SI units understood:

E = L
di

dt
+ iR = L

d

dt
(3.0 + 5.0t) + (3.0 + 5.0t)R

= (6.0)(5.0) + (3.0 + 5.0t)(4.0)

= (42 + 20t)

in volts if t is in seconds.

51. Taking the time derivative of both sides of Eq. 31-43, we obtain

di

dt
=

d

dt

[ E
R

(

1− e−Rt/τL

)

]

=
E
L
e−RT/L

=

(

45.0 V

50.0× 10−3 H

)

e−(180Ω)(1.20×10−3 s)/50.0×10−3 H = 12.0 A/s .

52. (a) Our notation is as follows: h is the height of the toroid, a its inner radius, and b its outer radius.
Since it has a square cross section, h = b− a = 0.12 m− 0.10 m = 0.02 m.. We derive the flux using
Eq. 30-26 and the self-inductance using Eq. 31-35:

ΦB =

∫ b

a

B dA =

∫ b

a

(

µ0Ni

2πr

)

h dr =
µ0Nih

2π
ln

(

b

a

)

and L = NΦB/i = (µ0N
2h/2π) ln(b/a). We note that the formulas for ΦB and L can also be found

in the Supplement for the chapter, in Sample Problem 31-11. Now, since the inner circumference
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of the toroid is l = 2πa = 2π(10 cm) ≈ 62.8 cm, the number of turns of the toroid is roughly
N ≈ 62.8 cm/1.0 mm = 628. Thus

L =
µ0N

2h

2π
ln

(

b

a

)

≈
(

4π × 10−7 H/m
)

(628)2(0.02 m)

2π
ln

(

12

10

)

= 2.9× 10−4 H .

(b) Noting that the perimeter of a square is four times its sides, the total length ℓ of the wire is
ℓ = (628)4(2.0 cm) = 50 m, the resistance of the wire is R = (50 m)(0.02 Ω/m) = 1.0 Ω. Thus

τL =
L

R
=

2.9× 10−4 H

1.0 Ω
= 2.9× 10−4 s .

53. (a) The inductor prevents a fast build-up of the current through it, so immediately after the switch is
closed, the current in the inductor is zero. It follows that

i1 = i2 =
E

R1 +R2
=

100 V

10.0 Ω + 20.0 Ω
= 3.33 A .

(b) After a suitably long time, the current reaches steady state. Then, the emf across the inductor is
zero, and we may imagine it replaced by a wire. The current in R3 is i1 − i2. Kirchhoff’s loop rule
gives

E − i1R1 − i2R2 = 0 and E − i1R1 − (i1 − i2)R3 = 0 .

We solve these simultaneously for i1 and i2. The results are

i1 =
E (R2 +R3)

R1R2 +R1R3 +R2R3

=
(100 V)(20.0 Ω + 30.0 Ω)

(10.0 Ω)(20.0 Ω) + (10.0 Ω)(30.0 Ω) + (20.0 Ω)(30.0 Ω)

= 4.55 A ,

and

i2 =
ER3

R1R2 +R1R3 +R2R3

=
(100 V)(30.0 Ω)

(10.0 Ω)(20.0 Ω) + (10.0 Ω)(30.0 Ω) + (20.0 Ω)(30.0 Ω)

= 2.73 A .

(c) The left-hand branch is now broken. We take the current (immediately) as zero in that branch
when the switch is opened (that is, i1 = 0). The current in R3 changes less rapidly because there
is an inductor in its branch. In fact, immediately after the switch is opened it has the same value
that it had before the switch was opened. That value is 4.55 A− 2.73 A = 1.82 A. The current in
R2 is the same as that in R3 (1.82 A).

(d) There are no longer any sources of emf in the circuit, so all currents eventually drop to zero.

54. (a) When switch S is just closed (case I), V1 = E and i1 = E/R1 = 10 V/5.0 Ω = 2.0 A. After a long
time (case II) we still have V1 = E , so i1 = 2.0 A.

(b) Case I: since now EL = E , i2 = 0; case II: since now EL = 0, i2 = E/R2 = 10 V/10 Ω = 1.0 A.

(c) Case I: i = i1 + i2 = 2.0 A + 0 = 2.0 A; case II: i = i1 + i2 = 2.0 A + 1.0 A = 3.0 A.
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(d) Case I: since EL = E , V2 = E − EL = 0; case II: since EL = 0, V2 = E − EL = E = 10 V.

(e) Case I: EL = E = 10 V; case II: EL = 0.

(f) Case I: di2/dt = EL/L = E/L = 10 V/5.0 H = 2.0 A/s; case II: di2/dt = EL/L = 0.

55. (a) We assume i is from left to right through the closed switch. We let i1 be the current in the resistor
and take it to be downward. Let i2 be the current in the inductor, also assumed downward. The
junction rule gives i = i1+i2 and the loop rule gives i1R−L(di2/dt) = 0. According to the junction
rule, (di1/dt) = −(di2/dt). We substitute into the loop equation to obtain

L
di1
dt

+ i1R = 0 .

This equation is similar to Eq. 31-48, and its solution is the function given as Eq. 31-49:

i1 = i0e
−Rt/L ,

where i0 is the current through the resistor at t = 0, just after the switch is closed. Now just after
the switch is closed, the inductor prevents the rapid build-up of current in its branch, so at that
moment i2 = 0 and i1 = i. Thus i0 = i, so

i1 = ie−Rt/L and i2 = i− i1 = i
(

1− e−Rt/L
)

.

(b) When i2 = i1,

e−Rt/L = 1− e−Rt/L =⇒ e−Rt/L =
1

2
.

Taking the natural logarithm of both sides (and using ln(1/2) = − ln 2) we obtain

(

Rt

L

)

= ln 2 =⇒ t =
L

R
ln 2 .

56. Let UB(t) = 1
2Li

2(t). We require the energy at time t to be half of its final value: U(t) = 1
2UB(t →

∞) = 1
4Li

2
f . This gives i(t) = if/

√
2. But i(t) = if (1− e−t/τL ), so

1− e−t/τL =
1√
2

=⇒ t = −τL ln

(

1− 1√
2

)

= 1.23τL .

57. From Eq. 31-51 and Eq. 31-43, the rate at which the energy is being stored in the inductor is

dUB

dt
=

d
(

1
2Li

2
)

dt
= L i

di

dt

= L

( E
R

(

1− e−t/τL

)

)( E
R

1

τL
e−t/τL

)

=
E2

R

(

1− e−t/τL

)

e−t/τL

where τL = L/R has been used. From Eq. 27-22 and Eq. 31-43, the rate at which the resistor is
generating thermal energy is

Pthermal = i2R =
E2

R2

(

1− e−t/τL

)2

R =
E2

R

(

1− e−t/τL

)2

.

We equate this to dUB/dt, and solve for the time:

E2

R

(

1− e−t/τL

)2

=
E2

R

(

1− e−t/τL

)

e−t/τL =⇒ t = τL ln 2 = (37.0 ms) ln 2 = 25.6 ms .
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58. (a) From Eq. 31-51 and Eq. 31-43, the rate at which the energy is being stored in the inductor is

dUB

dt
=

d
(

1
2Li

2
)

dt
= L i

di

dt

= L

( E
R

(

1− e−t/τL

)

)( E
R

1

τL
e−t/τL

)

=
E2

R

(

1− e−t/τL

)

e−t/τL .

Now, τL = L/R = 2.0 H/10 Ω = 0.20 s and E = 100 V, so the above expression yields dUB/dt =
2.4× 102 W when t = 0.10 s.

(b) From Eq. 27-22 and Eq. 31-43, the rate at which the resistor is generating thermal energy is

P thermal = i2R =
E2

R2

(

1− e−t/τL

)2

R =
E2

R

(

1− e−t/τL

)2

.

At t = 0.10 s, this yields P thermal = 1.5× 102 W.

(c) By energy conservation, the rate of energy being supplied to the circuit by the battery is

Pbattery = Pthermal +
dUB

dt
= 3.9× 102 W .

We note that this could result could alternatively have been found from Eq. 28-14 (with Eq. 31-43).

59. (a) If the battery is applied at time t = 0 the current is given by

i =
E
R

(

1− e−t/τL

)

,

where E is the emf of the battery, R is the resistance, and τL is the inductive time constant (L/R).
This leads to

e−t/τL = 1− iR

E =⇒ − t

τL
= ln

(

1− iR

E

)

.

Since

ln

(

1− iR

E

)

= ln

[

1− (2.00× 10−3 A)(10.0× 103 Ω)

50.0 V

]

= −0.5108 ,

the inductive time constant is τL = t/0.5108 = (5.00 × 10−3 s)/0.5108 = 9.79 × 10−3 s and the
inductance is

L = τLR = (9.79× 10−3 s)(10.0× 103 Ω) = 97.9 H .

(b) The energy stored in the coil is

UB =
1

2
Li2 =

1

2
(97.9 H)(2.00× 10−3 A)2 = 1.96× 10−4 J .

60. (a) The energy delivered by the battery is the integral of Eq. 28-14 (where we use Eq. 31-43 for the
current):

∫ t

0

Pbattery dt =

∫ t

0

E2

R

(

1− e−Rt/L
)

dt =
E2

R

[

t+
L

R

(

e−Rt/L − 1
)

]

=
(10.0 V)2

6.70 Ω

[

2.00 s +
(5.50 H)

(

e−(6.70Ω)(2.00 s)/5.50H − 1
)

6.70 Ω

]

= 18.7 J .
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(b) The energy stored in the magnetic field is given by Eq. 31-51:

UB =
1

2
Li2(t) =

1

2
L

( E
R

)2

(1− e−Rt/L)2

=
1

2
(5.50 H)

(

10.0 V

6.70 Ω

)2 [

1− e−(6.70Ω)(2.00 s)/5.50 H

]2

= 5.10 J .

(c) The difference of the previous two results gives the amount “lost” in the resistor: 18.7 J− 5.10 J =
13.6 J.

61. Suppose that the switch had been in position a for a long time so that the current had reached the
steady-state value i0. The energy stored in the inductor is UB = 1

2Li
2
0. Now, the switch is thrown to

position b at time t = 0. Thereafter the current is given by

i = i0e
−t/τL ,

where τL is the inductive time constant, given by τL = L/R. The rate at which thermal energy is
generated in the resistor is given by

P = i2R = i20Re
−2t/τL .

Over a long time period the energy dissipated is

∫ ∞

0

P dt = i20R

∫ ∞

0

e−2t/τL dt = −1

2
i20RτLe

−2t/τL

∣

∣

∣

∣

∞

0

=
1

2
i20RτL .

Upon substitution of τL = L/R this becomes 1
2Li

2
0, the same as the total energy originally stored in the

inductor.

62. The magnetic energy stored in the toroid is given by UB = 1
2Li

2, where L is its inductance and i is the
current. By Eq. 31-56, the energy is also given by UB = uBV , where uB is the average energy density
and V is the volume. Thus

i =

√

2uBV
L

=

√

√

√

√

2
(

70.0 J/m
3
)

(0.0200 m3)

90.0× 10−3 H
= 5.58 A .

63. (a) At any point the magnetic energy density is given by uB = B2/2µ0, where B is the magnitude
of the magnetic field at that point. Inside a solenoid B = µ0ni, where n, for the solenoid of this
problem, is (950 turns)/(0.850 m) = 1.118× 103 m−1. The magnetic energy density is

uB =
1

2
µ0n

2i2 =
1

2

(

4π × 10−7 T·m/A
) (

1.118× 103 m−1
)2

(6.60 A)2 = 34.2 J/m
3
.

(b) Since the magnetic field is uniform inside an ideal solenoid, the total energy stored in the field is
UB = uBV , where V is the volume of the solenoid. V is calculated as the product of the cross-
sectional area and the length. Thus

UB = (34.2 J/m
3
)(17.0× 10−4 m2)(0.850 m) = 4.94× 10−2 J .

64. We use 1 ly = 9.46× 1015 m, and use the symbol V for volume.

UB = VuB =
VB2

2µ0
=

(9.46× 1015 m)3(1× 10−10 T)2

2 (4π × 10−7 H/m)
= 3× 1036 J .
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65. We set uE = 1
2ε0E

2 = uB = 1
2B

2/µ0 and solve for the magnitude of the electric field:

E =
B√
ε0µ0

=
0.50 T

√

(8.85× 10−12 F/m) (4π × 10−7 H/m)
= 1.5× 108 V/m .

66. (a) The magnitude of the magnetic field at the center of the loop, using Eq. 30-11, is

B =
µ0i

2R
=

(

4π × 10−7 H/m
)

(100 A)

2(50× 10−3 m)
= 1.3× 10−3 T .

(b) The energy per unit volume in the immediate vicinity of the center of the loop is

uB =
B2

2µ0
=

(1.3× 10−3 T)2

2 (4π × 10−7 H/m)
= 0.63 J/m3 .

67. (a) The energy per unit volume associated with the magnetic field is

uB =
B2

2µ0
=

1

2µ0

(

µ0i

2R

)2

=
µ0i

2

8R2
=

(

4π × 10−7 H/m
)

(10 A)2

8(2.5× 10−3 m/2)2
= 1.0 J/m3 .

(b) The electric energy density is

uE =
1

2
ε0E

2 =
ǫ0
2

(ρJ)
2

=
ε0
2

(

iR

ℓ

)2

=
1

2
(8.85× 10−12 F/m)

[

(10 A)(3.3 Ω/103 m)
]2

= 4.8× 10−15 J/m
3
.

Here we used J = i/A and R = ρℓ/A to obtain ρJ = iR/ℓ.

68. (a) The flux in coil 1 is
L1i1
N1

=
(25 mH)(6.0 mA)

100
= 1.5 µWb ,

and the magnitude of the self-induced emf is

L1
di1
dt

= (25 mH)(4.0 A/s) = 100 mV .

(b) In coil 2, we find

Φ21 =
Mi1
N2

=
(3.0 mH)(6.0 mA)

200
= 90 nWb ,

E21 = M
di1
dt

= (3.0 mH)(4.0 A/s) = 12 mV .

69. (a) Eq. 31-67 yields

M =
E1

|di2/dt|
=

25.0 mV

15.0 A/s
= 1.67 mH .

(b) Eq. 31-62 leads to
N2Φ21 = Mi1 = (1.67 mH)(3.60 A) = 6.00 mWb .

70. We use E2 = −M di1/dt ≈M |∆i/∆t| to find M :

M =

∣

∣

∣

∣

E
∆i1/∆t

∣

∣

∣

∣

=
30× 103 V

6.0 A/(2.5× 10−3 s)
= 13 H .
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71. (a) We assume the current is changing at (nonzero) rate di/dt and calculate the total emf across both
coils. First consider the coil 1. The magnetic field due to the current in that coil points to the right.
The magnetic field due to the current in coil 2 also points to the right. When the current increases,
both fields increase and both changes in flux contribute emf’s in the same direction. Thus, the
induced emf’s are

E1 = − (L1 +M)
di

dt
and E2 = − (L2 +M)

di

dt
.

Therefore, the total emf across both coils is

E = E1 + E2 = − (L1 + L2 + 2M)
di

dt

which is exactly the emf that would be produced if the coils were replaced by a single coil with
inductance Leq = L1 + L2 + 2M .

(b) We imagine reversing the leads of coil 2 so the current enters at the back of coil rather than the
front (as pictured in the diagram). Then the field produced by coil 2 at the site of coil 1 is opposite
to the field produced by coil 1 itself. The fluxes have opposite signs. An increasing current in coil 1
tends to increase the flux in that coil, but an increasing current in coil 2 tends to decrease it. The
emf across coil 1 is

E1 = − (L1 −M)
di

dt
.

Similarly, the emf across coil 2 is

E2 = − (L2 −M)
di

dt
.

The total emf across both coils is

E = − (L1 + L2 − 2M)
di

dt
.

This the same as the emf that would be produced by a single coil with inductance Leq = L1 +L2−
2M .

72. The coil-solenoid mutual inductance is

M = Mcs =
NΦcs

is
=
N(µ0isnπR

2)

is
= µ0πR

2nN .

As long as the magnetic field of the solenoid is entirely contained within the cross-section of the coil we
have Φsc = BsAs = BsπR

2, regardless of the shape, size, or possible lack of close-packing of the coil.

73. Letting the current in solenoid 1 be i, we calculate the flux linkage in solenoid 2. The mutual inductance,
then, is this flux linkage divided by i. The magnetic field inside solenoid 1 is parallel to the axis and has
uniform magnitude B = µ0in1, where n1 is the number of turns per unit length of the solenoid. The
cross-sectional area of the solenoid is πR2

1. Since ~B is normal to the cross section, the flux here is

Φ = AB = πR2
1µ0n1i .

Since the magnetic field is zero outside the solenoid, this is also the flux through a cross section of
solenoid 2. The number of turns in a length ℓ of solenoid 2 is N2 = n2ℓ, and the flux linkage is

N2Φ = n2ℓπR
2
1µ0n1i .

The mutual inductance is

M =
N2Φ

i
= πR2

1ℓµ0n1n2 .

M does not depend on R2 because there is no magnetic field in the region between the solenoids.
Changing R2 does not change the flux through solenoid 2, but changing R1 does.
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74. We use the expression for the flux ΦB over the toroid cross-section derived in our solution to problem 52
obtain the coil-toroid mutual inductance:

Mct =
NcΦct

it
=
Nc

it

µ0itNth

2π
ln

(

b

a

)

=
µ0N1N2h

2π
ln

(

b

a

)

where Nt = N1 and Nc = N2. We note that the formula for ΦB can also be found in the Supplement
for the chapter, in Sample Problem 31-11.

75. (a) The flux over the loop cross section due to the current i in the wire is given by

Φ =

∫ a+b

a

Bwirel dr =

∫ a+b

a

µ0il

2πr
dr =

µ0il

2π
ln

(

1 +
b

a

)

.

Thus,

M =
NΦ

i
=
Nµ0l

2π
ln

(

1 +
b

a

)

.

(b) From the formula for M obtained above

M =
(100)

(

4π × 10−7 H/m
)

(0.30 m)

2π
ln

(

1 +
8.0

1.0

)

= 1.3× 10−5 H .

76. For t < 0, no current goes through L2, so i2 = 0 and i1 = E/R. As the switch is opened there will be a
very brief sparking across the gap. i1 drops while i2 increases, both very quickly. The loop rule can be
written as

E − i1R− L1
di1
dt
− i2R− L2

di2
dt

= 0 ,

where the initial value of i1 at t = 0 is given by E/R and that of i2 at t = 0 is 0. We consider the situation
shortly after t = 0. Since the sparking is very brief, we can reasonably assume that both i1 and i2 get
equalized quickly, before they can change appreciably from their respective initial values. Here, the loop
rule requires that L1(di1/dt), which is large and negative, must roughly cancel L2(di2/dt), which is large
and positive:

L1
di1
dt
≈ −L2

di2
dt

.

Let the common value reached by i1 and i2 be i, then

di1
dt
≈ ∆i1

∆t
=
i− E/R

∆t

and
di2
dt
≈ ∆i2

∆t
=
i− 0

∆t
.

The equations above yield

L1

(

i− E
R

)

= −L2(i− 0) =⇒ i =
EL1

L2R1 + L1R2
=

L1

L1 + L2

E
R
.

77. (a) i0 = E/R = 100 V/10 Ω = 10 A.

(b) UB = 1
2Li

2
0 = 1

2 (2.0 H)(10 A)2 = 100 J.

78. We write i = i0e
−t/τL and note that i = 10% i0. We solve for t:

t = τL ln

(

i0
i

)

=
L

R
ln

(

i0
i

)

=
2.00 H

3.00 Ω
ln

(

i0
0.100 i0

)

= 1.54 s .
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79. (a) The energy density at any point is given by uB = B2/2µ0, where B is the magnitude of the magnetic
field. The magnitude of the field inside a toroid, a distance r from the center, is given by Eq. 30-26:
B = µ0iN/2πr, where N is the number of turns and i is the current. Thus

uB =
1

2µ0

(

µ0iN

2πr

)2

=
µ0i

2N2

8π2r2
.

(b) We evaluate the integral UB =
∫

uB dV over the volume of the toroid. A circular strip with radius
r, height h, and thickness dr has volume dV = 2πrh dr, so

UB =
µ0i

2N2

8π2
2πh

∫ b

a

dr

r
=
µ0i

2N2h

4π
ln

(

b

a

)

.

Substituting in the given values, we find

UB =
(4π × 10−7T·m/A)(0.500A)2(1250)2(13× 10−3 m)

4π
ln

(

95 mm

52 mm

)

= 3.06× 10−4 J .

(c) The inductance is given in Sample Problem 31-11:

L =
µ0N

2h

2π
ln

(

b

a

)

so the energy is given by

UB =
1

2
Li2 =

µ0N
2i2h

4π
ln

(

b

a

)

.

This the exactly the same as the expression found in part (b) and yields the same numerical result.

80. If the solenoid is long and thin, then when it is bent into a toroid (b−a)/a is much less than 1. Therefore,

Ltoroid =
µ0N

2h

2π
ln

(

b

a

)

=
µ0N

2h

2π
ln

(

1 +
b− a
b

)

≈ µ0N
2h(b − a)
2πb

.

Since A = h(b − a) is the cross-sectional area and l = 2πb is the length of the toroid, we may rewrite
this expression for the toroid self-inductance as

Ltoroid

l
≈ µ0N

2A

l2
= µ0n

2A ,

which indeed reduces to that of a long solenoid. Note that the approximation ln(1 + x) ≈ x is used for
very small |x|.

81. Using Eq. 31-43

i =
E
R

(

1− e−t/τL

)

where τL = 2.0 ns, we find

t = τL ln

(

1

1− iR
E

)

≈ 1.0 ns .

82. We note that n = 100 turns/cm = 10000 turns/m. The induced emf is

E = −dΦB

dt
= −d(BA)

dt
= −A d

dt
(µ0ni) = −µ0nπr

2 di

dt

= −(4π × 10−7 T·m/A)(10000 turn/m)(π)(25 × 10−3 m)2
(

0.50 A− 1.0 A

10× 10−3 s

)

= 1.2× 10−3 V .

Note that since ~B only appears inside the solenoid, the area A is be the cross-sectional area of the
solenoid, not the (larger) loop.
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83. With τL = L/R = 0.0010 s, we find the current at t = 0.0020 s from Eq. 31-43:

i =
E
R

(

1− e−t/τL

)

= 0.86 A .

Consequently, the energy stored, from Eq. 31-51, is

UB =
1

2
Li2 = 3.7× 10−3 J .

84. (a) The magnitude of the average induced emf is

Eavg =

∣

∣

∣

∣

−dΦB

dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∆ΦB

∆t

∣

∣

∣

∣

=
BAi

t
=

(2.0 T)(0.20 m)2

0.20 s
= −0.40 V .

(b) The average induced current is

iavg =
Eavg

R
=

0.40 V

20× 10−3 Ω
= 20 A .

85. (a) As the switch closes at t = 0, the current being zero in the inductor serves as an initial condition
for the building-up of current in the circuit. Thus, at t = 0 any current through the battery is also
that through the 20 Ω and 10 Ω resistors. Hence,

i =
E

30 Ω
= 0.40 A

which results in a voltage drop across the 10 Ω resistor equal to (0.40)(10) = 4.0 V. The inductor
must have this same voltage across it |EL|, and we use (the absolute value of) Eq. 31-37:

di

dt
=
|EL|
L

=
4.0

0.010
= 400 A/s .

(b) Applying the loop rule to the outer loop, we have

E − (0.50 A)(20 Ω)− |EL| = 0 .

Therefore, |EL| = 2.0 V, and Eq. 31-37 leads to

di

dt
=
|EL|
L

=
2.0

0.010
= 200 A/s .

(c) As t → ∞, the inductor has EL = 0 (since the current is no longer changing). Thus, the loop rule
(for the outer loop) leads to

E − i (20 Ω)− |EL| = 0 =⇒ i = 0.60 A .

86. (a) L = Φ/i = 26× 10−3 Wb/5.5 A = 4.7× 10−3 H.

(b) We use Eq. 31-43 to solve for t:

t = −τL ln

(

1− iR

E

)

= −L
R

ln

(

1− iR

E

)

= −4.7× 10−3 H

0.75 Ω
ln

[

1− (2.5 A)(0.75 Ω)

6.0 V

]

= 2.4× 10−3 s .

87. (a) We use UB = 1
2Li

2 to solve for the self-inductance:

L =
2UB

i2
=

2(25.0× 10−3 J)

(60.0× 10−3 A)2
= 13.9 H .
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(b) Since UB ∝ i2, for UB to increase by a factor of 4, i must increase by a factor of 2. Therefore, i
should be increased to 2(60.0 mA) = 120 mA.

88. (a) The self-inductance per meter is

L

ℓ
= µ0n

2A =
(

4π × 10−7 H/m
)

(100 turns/cm)2(π)(1.6 cm)2 = 0.10 H/m .

(b) The induced emf per meter is

E
ℓ

=
L

ℓ

di

dt
= (0.10 H/m)(13 A/s) = 1.3 V/m .

89. (a) The energy needed is

UE = uEV =
1

2
ǫ0E

2V =
1

2
(8.85× 10−12 F/m)(100 kV/m)2(10 cm)3 = 4.4× 10−5 J .

(b) The energy needed is

UB = uBV =
1

2µ0
B2V =

(1.0 T)2

2 (4π × 10−7 H/m)
(10 cm)3 = 4.0× 102 J .

(c) Obviously, since UB > UE greater amounts of energy can be stored in the magnetic field.

90. The induced electric field E as a function of r is given by E(r) = (r/2)(dB/dt). So

ac = aa =
eE

m
=

er

2m

(

dB

dt

)

=
(1.60× 10−19 C)(5.0× 10−2 m)(10× 10−3 T/s)

2(9.11× 10−27 kg)
= 4.4× 107 m/s

2
.

With regard to the directions, ~aa points to the right and ~ac points to the left. At point b we have
ab ∝ rb = 0.

91. Using Eq. 31-43, we find

i =
E
R

(

1− e−t/τL

)

=⇒ τL =
t

ln
(

1
1− iR

E

) = 22.4 s .

Thus, from Eq. 31-44 (the definition of the time constant), we obtain L = (22.4 s)(2.0 Ω) = 45 H.

92. (a) As the switch closes at t = 0, the current being zero in the inductors serves as an initial condition
for the building-up of current in the circuit. Thus, the current through any element of this circuit
is also zero at that instant. Consequently, the loop rule requires the emf (EL1) of the L1 = 0.30 H
inductor to cancel that of the battery. We now apply (the absolute value of) Eq. 31-37

di

dt
=
|EL1|
L1

=
6.0

0.30
= 20 A/s .

(b) What is being asked for is essentially the current in the battery when the emf’s of the inductors
vanish (as t→∞). Applying the loop rule to the outer loop, with R1 = 8.0 Ω, we have

E − i R1 − |EL1| − |EL2| = 0 =⇒ i =
6.0 V

R1
= 0.75 A .
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93. The magnetic flux is

ΦB = ~B · ~A = BA cos 57◦ =
(

4.2× 10−6 T
) (

2.5 m2
)

cos 57◦ = 5.7× 10−5 Wb .

94. From the given information, we find

dB

dt
=

0.030 T

0.015 s
= 2.0 T/s .

Thus, with N = 1 and cos 30◦ =
√

3/2 , and using Faraday’s law with Ohm’s law, we have

i =
|E|
R

=
Nπr2

R

√
3

2

dB

dt
= 0.021 A .

95. Before the fuse blows, the current through the resistor remains zero. We apply the loop theorem to the
battery-fuse-inductor loop: E − Ldi/dt = 0. So i = Et/L. As the fuse blows at t = t0, i = i0 = 3.0 A.
Thus,

t0 =
i0L

E =
(3.0 A)(5.0 H)

10 V
= 1.5 s .

We do not show the graph here; qualitatively, it would be similar to Fig. 31-14.

96. We write (as functions of time) VL(t) = Ee−t/τl . Considering the first two data points, (VL1, t1) and
(VL2, t2), satisfying VLi = Ee−ti/τL (i = 1, 2), we have VL1/VL2 = Ee−(t1−t2)/τL , which gives

τL =
t1 − t2

ln(V2/V1)
=

1.0 ms− 2.0 ms

ln(13.8/18.2)
= 3.6 ms .

Therefore, E = VL1e
t1/τL = (18.2 V)e1.0ms/3.6 ms = 24 V. One can easily check that the values of τL and

E are consistent with the rest of the data points.

97. (a) The energy density is

uB =
B2

e

2µ0
=

(50× 10−6 T)2

2 (4π × 10−7 H/m)
= 1.0× 10−3 J/m

3
.

(b) The volume of the shell of thickness h is V ≈ 4πR2
eh, where Re is the radius of the Earth. So

UB ≈ VuB ≈ 4π(6.4× 106 m)2(16× 103 m)(1.0× 10−3 J/m3) = 8.4× 1015 J .

98. (a) N = 2.0 m/2.5 mm = 800.

(b) L/l = µ0n
2A =

(

4π × 10−7 H/m
)

(800/2.0 m)2(π)(0.040 m)2/4 = 2.5× 10−4 H.

99. The self-inductance and resistance of the coil may be treated as a “pure” inductor in series with a “pure”
resistor, in which case the situation described in the problem is equivalent to that analyzed in §31-9 with
solution Eq. 31-43. The derivative of that solution is

di

dt
=
E

R τL
e−t/τL =

E
L
e−t/τL .

With τL = 0.28 ms (by Eq. 31-44), L = 0.050 H and E = 45 V, we obtain di/dt = 12 A/s when
t = 1.2 ms.

100. (a) We apply Newton’s second law to the rod

m
dv

dt
= iBL ,

and integrate to obtain

v =
iBLt

m
.

The velocity ~v points away from the generator G.
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(b) When the current i in the rod becomes zero, the rod will no longer be accelerated by a force
F = iBL and will therefore reach a constant terminal velocity. This occurs when |Einduced| = E .
Specifically,

|Einduced| =
∣

∣

∣

∣

dΦB

dt

∣

∣

∣

∣

=

∣

∣

∣

∣

d(BA)

dt

∣

∣

∣

∣

= B

∣

∣

∣

∣

dA

dt

∣

∣

∣

∣

= BvL = E .

Thus, ~v = E/BL, leftward.

(c) In case (a) electric energy is supplied by the generator and is transferred into the kinetic energy
of the rod. In the case considered now the battery initially supplies electric energy to the rod,
causing its kinetic energy to increase to a maximum value of 1

2mv
2 = 1

2 (E/BL)2. Afterwards, there
is no further energy transfer from the battery to the rod, and the kinetic energy of the rod remains
constant.

101. (a) At t = 0.50 s and t = 1.5 s, the magnetic field is decreasing at a rate of 3/2 mT/s, leading to

i =
|E|
R

=
A |dB/dt|

R
=

(3.0)(3/2)

9.0
= 0.50 mA

with a counterclockwise sense (by Lenz’s law).

(b) See the results of part (a).

(c) and (d) For t > 2.0 s, there is no change in flux and therefore no induced current.

102. The magnetic flux is

ΦB = BA =

(

µ0i0N

2πr

)

A

=

(

4π × 10−7 H/m
)

(0.800 A)(500)(5.00× 10−2 m)2

2π(0.150 m + 0.0500 m/2)

= 1.15× 10−6 Wb .

103. (a) As the switch closes at t = 0, the current being zero in the inductor serves as an initial condition
for the building-up of current in the circuit. Thus, at t = 0 the current through the battery is also
zero.

(b) With no current anywhere in the circuit at t = 0, the loop rule requires the emf of the inductor EL
to cancel that of the battery (E = 40 V). Thus, the absolute value of Eq. 31-37 yields

di

dt
=
|EL|
L

=
40

0.050
= 800 A/s .

(c) This circuit becomes equivalent to that analyzed in §31-9 when we replace the parallel set of 20000 Ω
resistors with R = 10000 Ω. Now, with τL = L/R = 5× 10−6 s, we have t/τL = 3/5, and we apply
Eq. 31-43:

i =
E
R

(

1− e−3/5
)

≈ 1.8× 10−3 A .

(d) The rate of change of the current is figured from the loop rule (and Eq. 31-37):

E − i R− |EL| = 0 .

Using the values from part (c), we obtain |EL| ≈ 22 V. Then,

di

dt
=
|EL|
L

=
22

0.050
≈ 440 A/s .
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(e) and (f) As t→∞, the circuit reaches a steady state condition, so that di/dt = 0 and EL = 0. The
loop rule then leads to

E − i R− |EL| = 0 =⇒ i =
40

10000
= 4.0× 10−3 A .

104. The magnetic flux ΦB through the loop is given by ΦB = 2B(πr2/2)(cos 45◦) = πr2B/
√

2. Thus

E = −dΦB

dt
= − d

dt

(

πr2B√
2

)

= −πr
2

√
2

(

∆B

∆t

)

= −π(3.7× 10−2 m)2√
2

(

0− 76× 10−3 T

4.5× 10−3 s

)

= 5.1× 10−2 V .

The direction of the induced current is clockwise when viewed along the direction of ~B.

105. The area enclosed by any turn of the coil is πr2 where r = 0.15 m, and the coil has N = 50 turns. Thus,
the magnitude of the induced emf, using Eq. 31-7, is

|E| = Nπr2
∣

∣

∣

∣

dB

dt

∣

∣

∣

∣

=
(

3.53 m2
)

∣

∣

∣

∣

dB

dt

∣

∣

∣

∣

where
∣

∣

dB
dt

∣

∣ = (0.0126 T/s)| cosωt|. Thus, using Ohm’s law, we have

i =
|E|
R

=
(3.53)(0.0126)

4.0
| cosωt| .

When t = 0.020 s, this yields i = 0.011 A.

106. (First problem of Cluster)
Combining Ohm’s and Faraday’s laws, the current magnitude is

i =
|E|
R

=
BLv

R

for this “one-loop” circuit, where the version of Faraday’s law expressed in Eq. 31-10 (often called

“motional emf”) has been used. Here, B = | ~B| = 0.200 T, L = 0.300 m and v = 12.0 m/s. Reasoning
with Lenz’s law, the sense of the induced current is counterclockwise (to produce field in its interior out
of the page, “fighting” the increasing inward pointed flux due to the applied field).

(a) With R = 5.00 Ω, this yields i = 0.144 A.

(b) With R = 7.00 Ω, we obtain i = 0.103 A.

107. (Second problem of Cluster)

(a) With L = 0.50 m and R = 5.00 Ω, we combine Ohm’s and Faraday’s laws, so that the current
magnitude is

i =
|E|
R

=
BLv

R
= 0.240 A .

The direction is counterclockwise, as explained in the solution to the previous problem.

(b) The area in the loop is A = 1
2 (L0 + L)x where x = vt and L0 = 0.300 m. But the value of L

depends on the distance from the resistor x:

L = 30 cm +

(

20 cm

1 m

)

x

= L0 + 0.200(vt)
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where x = vt has been used. Therefore, the area becomes

A = L0 vt+ 0.100 v2t2 .

The induced emf is, from Faraday’s law,

E =
dΦ

dt
= B

dA

dt
= B

(

L0 v + 2(0.100)v2t
)

and the induced current is

i =
E
R

= 0.144 + 1.152t

in SI units and is counterclockwise (for reasons given in previous solution).

108. (Third problem of Cluster)

(a) , (b) and (c) The area enclosed by the loop is that of a rectangle with one side (x) expanding. With
B0 = 0.200 T and ξ = 0.050 T/s (the rate of field increase), we have

Φ = BA = (B0 + ξt) (Lx)

= B0Lvt+ ξLvt2

where x = vt has been used. Thus, from Faraday’s and Ohm’s laws, the induced current is

i =
E
R

=
B0Lv

R
+ 2

ξLv

R
t

and is counterclockwise (to produce field in the loop’s interior pointing out of the page, “fighting”
the increasing inward pointed flux due to the applied field). Therefore, the current at t = 0 is
B0Lv/R = 0.144 A. And its value at t = 1.00 s is (B0 + 2ξ)Lv/R = 0.216 A.



792 CHAPTER 31.



Chapter 32

1. (a) Since the field lines of a bar magnet point towards its South pole, then the ~B arrows in one’s sketch
should point generally towards the left and also towards the central axis.

(b) The sign of ~B ·d ~A for every d ~A on the side of the paper cylinder is negative.

(c) No, because Gauss’ law for magnetism applies to an enclosed surface only. In fact, if we include

the top and bottom of the cylinder to form an enclosed surface S then
∮

s
~B · d ~A = 0 will be valid,

as the flux through the open end of the cylinder near the magnet is positive.

2. We use
∑6

n=1 ΦBn = 0 to obtain

ΦB6 = −
5
∑

n=1

ΦBn = −(−1 Wb + 2 Wb− 3 Wb + 4 Wb− 5 Wb) = +3 Wb .

3. We use Gauss’ law for magnetism:
∮

~B·d ~A = 0. Now,
∮

~B·d ~A = Φ1 +Φ2 +ΦC , where Φ1 is the magnetic
flux through the first end mentioned, Φ2 is the magnetic flux through the second end mentioned, and
ΦC is the magnetic flux through the curved surface. Over the first end the magnetic field is inward, so
the flux is Φ1 = −25.0µWb. Over the second end the magnetic field is uniform, normal to the surface,
and outward, so the flux is Φ2 = AB = πr2B, where A is the area of the end and r is the radius of the
cylinder. It value is

Φ2 = π(0.120 m)2(1.60× 10−3 T) = +7.24× 10−5 Wb = +72.4µWb .

Since the three fluxes must sum to zero,

ΦC = −Φ1 − Φ2 = 25.0µWb− 72.4µWb = −47.4µWb .

The minus sign indicates that the flux is inward through the curved surface.

4. The flux through Arizona is

Φ = −BrA = −(43× 10−6 T)(295, 000 km2)(103 m/km)2 = −1.3× 107 Wb ,

inward. By Gauss’ law this is equal to the negative value of the flux Φ′ through the rest of the surface
of the Earth. So Φ′ = 1.3× 107 Wb, outward.

5. The horizontal component of the Earth’s magnetic field is given by Bh = B cosφi, where B is the
magnitude of the field and φi is the inclination angle. Thus

B =
Bh

cosφi
=

16µT

cos 73◦
= 55µT .

793
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6. (a) The Pythagorean theorem leads to

B =
√

B2
h +B2

v =

√

( µ0µ

4πr3
cosλm

)2

+
( µ0µ

2πr3
sinλm

)2

=
µ0µ

4πr3

√

cos2 λm + 4 sin2 λm =
µ0µ

4πr3

√

1 + 3 sin2 λm ,

where cos2 λm + sin2 λm = 1 was used.

(b) We use Eq. 3-6:

tanφi =
Bv

Bh
=

(µ0µ/2πr
3) sinλm

(µ0µ/4πr3) cosλm
= 2 tanλm .

7. (a) At the magnetic equator (λm = 0), the field is

B =
µ0µ

4πr3
=

(

4π × 10−7 T·m/A
)

(8.00× 1022 A·m2)

4π(6.37× 106 m)3
= 3.10× 10−5 T ,

and φi = tan−1(2 tanλm) = tan−1(0) = 0.

(b) At λm = 60◦, we find

B =
µ0µ

4πr3

√

1 + 3 sin2 λm = (3.10× 10−5)
√

1 + 3 sin2 60◦ = 5.6× 10−5 T ,

and φi = tan−1(2 tan 60◦) = 74◦.

(c) At the north magnetic pole (λm = 90.0◦), we obtain

B =
µ0µ

4πr3

√

1 + 3 sin2 λm = (3.1× 10−5)
√

1 + 3(1.00)2 = 6.20× 10−5 T ,

and φi = tan−1(2 tan 90◦) = 90◦.

8. (a) At a distance r from the center of the Earth, the magnitude of the magnetic field is given by

B =
µ0µ

4πr3

√

1 + 3 sin2 λm ,

where µ is the Earth’s dipole moment and λm is the magnetic latitude. The ratio of the field
magnitudes for two different distances at the same latitude is

B2

B1
=
r31
r32

.

With B1 being the value at the surface and B2 being half of B1 , we set r1 equal to the radius Re

of the Earth and r2 equal to Re + h, where h is altitude at which B is half its value at the surface.
Thus,

1

2
=

R3
e

(Re + h)3
.

Taking the cube root of both sides and solving for h, we get

h =
(

21/3 − 1
)

Re =
(

21/3 − 1
)

(6370 km) = 1660 km .

(b) We use the expression for B obtained in problem 6, part (a). For maximum B, we set sinλm = 1.
Also, r = 6370 km− 2900 km = 3470 km. Thus,

Bmax =
µ0µ

4πr3

√

1 + 3 sin2 λm

=

(

4π × 10−7 T·m/A
)

(8.00× 1022 A·m2)

4π(3.47× 106 m)3

√

1 + 3(1)2 = 3.83× 10−4 T .
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(c) The angle between the magnetic axis and the rotational axis of the Earth is 11.5◦, so λm =
90.0◦ − 11.5◦ = 78.5◦ at Earth’s geographic north pole. Also r = Re = 6370 km. Thus,

B =
µ0µ

4πR3
E

√

1 + 3 sin2 λm

=

(

4π × 10−7 T·m/A
)

(8.0× 1022 J/T)
√

1 + 3 sin2 78.5◦

4π(6.37× 106 m)3
= 6.11× 10−5 T ,

and, using the result of part (b) of problem 6,

φi = tan−1(2 tan 78.5◦) = 84.2◦ .

A plausible explanation to the discrepancy between the calculated and measured values of the
Earth’s magnetic field is that the formulas we obtained in problem 6 are based on dipole approx-
imation, which does not accurately represent the Earth’s actual magnetic field distribution on or
near its surface. (Incidentally, the dipole approximation becomes more reliable when we calculate
the Earth’s magnetic field far from its center.)

9. We use Eq. 32-11: µorb,z = −mlµB.

(a) For ml = 1, µorb,z = −(1)
(

9.27× 10−24 J/T
)

= −9.27× 10−24 J/T.

(b) For ml = −2, µorb,z = −(−2)
(

9.27× 10−24 J/T
)

= 1.85× 10−23 J/T.

10. We use Eq. 32-7 to obtain ∆U = −∆(µs,zB) = −B∆µs,z, where µs,z = ±eh/4πme = ±µB (see Eqs. 32-4
and 32-5). Thus,

∆U = −B[µB − (−µB)] = 2µBB = 2
(

9.27× 10−24 J/T
)

(0.25 T) = 4.6× 10−24 J .

11. (a) Since ml = 0, Lorb,z = mlh/2π = 0.

(b) Since ml = 0, µorb,z = −mlµB = 0.

(c) Since ml = 0, then from Eq. 32-12, U = −µorb,zBext = −mlµBBext = 0.

(d) Regardless of the value of ml, we find for the spin part

U = −µs,zB = ±µBB = ±
(

9.27× 10−24 J/T
)

(35 mT) = ±3.2× 10−25 J .

(e) Now ml = −3, so

Lorb,z =
mlh

2π
=

(−3)
(

6.63× 10−27 J·s
)

2π
= −3.16× 10−34 J·s

and

µorb,z = −mlµB = −(−3)
(

9.27× 10−24 J/T
)

= 2.78× 10−23 J/T .

The potential energy associated with the electron’s orbital magnetic moment is now

U = −µorb,zBext = −(2.78× 10−23 J/T)(35× 10−3 T) = −9.73× 10−25 J ;

while the potential energy associated with the electron spin, being independent of ml, remains the
same: ±3.2× 10−25 J.

12. (a) A sketch of the field lines (due to the presence of the bar magnet) in the vicinity of the loop is
shown below:
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(b) The primary conclusion of §32-6 is two-fold: ~µ is opposite to ~B, and the effect of ~F is to move the

material towards regions of smaller | ~B| values. The direction of the magnetic moment vector (of
our loop) is toward the left in our sketch.

(c) See our comments in part (b). Since the size of | ~B| relates to the “crowdedness” of the field lines,

we see that ~F is towards the right in our sketch.

13. An electric field with circular field lines is induced as the magnetic field is turned on. Suppose the
magnetic field increases linearly from zero to B in time t. According to Eq. 31-27, the magnitude of the
electric field at the orbit is given by

E =
( r

2

) dB

dt
=
(r

2

) B

t
,

where r is the radius of the orbit. The induced electric field is tangent to the orbit and changes the
speed of the electron, the change in speed being given by

∆v = at =
eE

me
t =

(

e

me

)

(r

2

)

(

B

t

)

t =
erB

2me
.

The average current associated with the circulating electron is i = ev/2πr and the dipole moment is

µ = Ai =
(

πr2
)

( ev

2πr

)

=
1

2
evr .

The change in the dipole moment is

∆µ =
1

2
er∆v =

1

2
er

(

erB

2me

)

=
e2r2B

4me
.

14. Reviewing Sample Problem 32-1 before doing this exercise is helpful. Let

K =
3

2
kT =

∣

∣

∣~µ· ~B − (−~µ· ~B)
∣

∣

∣ = 2µB

which leads to

T =
4µB

3k
=

4(1.0× 10−23 J/T)(0.50 T)

3(1.38× 10−23 J/K)
= 0.48 K .

15. The magnetization is the dipole moment per unit volume, so the dipole moment is given by µ = MV ,
where M is the magnetization and V is the volume of the cylinder (V = πr2L, where r is the radius of
the cylinder and L is its length). Thus,

µ = Mπr2L = (5.30× 103 A/m)π(0.500× 10−2 m)2(5.00× 10−2 m) = 2.08× 10−2 J/T .
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16. (a) A sketch of the field lines (due to the presence of the bar magnet) in the vicinity of the loop is
shown below:

~B

south
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(b) The textbook, in §32-7, makes it clear that ~µ is in the same direction as ~B, and the effect of ~F is

to move the material towards regions of larger | ~B| values. The direction of the magnetic moment
vector (of our loop) is toward the right in our sketch.

(c) See our comments in part (b). Since the size of | ~B| relates to the “crowdedness” of the field lines,

we see that ~F is towards the left in our sketch.

17. For the measurements carried out, the largest ratio of the magnetic field to the temperature is (0.50 T)/(10 K) =
0.050 T/K. Look at Fig. 32-9 to see if this is in the region where the magnetization is a linear function
of the ratio. It is quite close to the origin, so we conclude that the magnetization obeys Curie’s law.

18. (a) From Fig. 32-9 we estimate a slope of B/T = 0.50 T/K when M/Mmax = 50%. So B = 0.50 T =
(0.50 T/K)(300 K) = 150 T.

(b) Similarly, now B/T ≈ 2 so B = (2)(300) = 600 T.

(c) Except for very short times and in very small volumes, these values are not attainable in the lab.

19. (a) A charge e traveling with uniform speed v around a circular path of radius r takes time T = 2πr/v
to complete one orbit, so the average current is

i =
e

T
=

ev

2πr
.

The magnitude of the dipole moment is this multiplied by the area of the orbit:

µ =
ev

2πr
πr2 =

evr

2
.

Since the magnetic force of with magnitude evB is centripetal, Newton’s law yields evB = mev
2/r,

so

r =
mev

eB
.

Thus,

µ =
1

2
(ev)

(mev

eB

)

=

(

1

B

)(

1

2
mev

2

)

=
Ke

B
.

The magnetic force −e~v × ~B must point toward the center of the circular path. If the magnetic
field is directed into the page, for example, the electron will travel clockwise around the circle.
Since the electron is negative, the current is in the opposite direction, counterclockwise and, by
the right-hand rule for dipole moments, the dipole moment is out of the page. That is, the dipole
moment is directed opposite to the magnetic field vector.
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(b) We note that the charge canceled in the derivation of µ = Ke/B. Thus, the relation µ = Ki/B holds
for a positive ion. If the magnetic field is directed into the page, the ion travels counterclockwise
around a circular orbit and the current is in the same direction. Therefore, the dipole moment is
again out of the page, opposite to the magnetic field.

(c) The magnetization is given by M = µene + µini, where µe is the dipole moment of an electron, ne

is the electron concentration, µi is the dipole moment of an ion, and ni is the ion concentration.
Since ne = ni, we may write n for both concentrations. We substitute µe = Ke/B and µi = Ki/B
to obtain

M =
n

B
(Ke +Ki) =

5.3× 1021 m−3

1.2 T

(

6.2× 10−20 J + 7.6× 10−21 J
)

= 310 A/m .

20. The Curie temperature for iron is 770◦C. If x is the depth at which the temperature has this value, then
10◦C + (30◦C/km)x = 770◦C. Therefore,

x =
770◦C− 10◦C

30◦C/km
= 25 km .

21. (a) The field of a dipole along its axis is given by Eq. 30-29:

B =
µ0

2π

µ

z3
,

where µ is the dipole moment and z is the distance from the dipole. Thus,

B =
(4π × 10−7 T·m/A)(1.5× 10−23 J/T)

2π(10× 10−9 m)
= 3.0× 10−6 T .

(b) The energy of a magnetic dipole ~µ in a magnetic field ~B is given by U = −~µ · ~B = −µB cosφ, where
φ is the angle between the dipole moment and the field. The energy required to turn it end-for-end
(from φ = 0◦ to φ = 180◦) is

∆U = 2µB = 2(1.5× 10−23 J/T)(3.0× 10−6 T) = 9.0× 10−29 J = 5.6× 10−10 eV .

The mean kinetic energy of translation at room temperature is about 0.04 eV. Thus, if dipole-dipole
interactions were responsible for aligning dipoles, collisions would easily randomize the directions
of the moments and they would not remain aligned.

22. (a) The number of iron atoms in the iron bar is

N =

(

7.9 g/cm
3
)

(5.0 cm)
(

1.0 cm2
)

(55.847 g/mol) / (6.022× 1023/mol)
= 4.3× 1023 .

Thus the dipole moment of the iron bar is

µ =
(

2.1× 10−23 J/T
) (

4.3× 1023
)

= 8.9 A·m2 .

(b) τ = µB sin 90◦ = (8.9 A·m2)(1.57 T) = 13 N·m.
23. The saturation magnetization corresponds to complete alignment of all atomic dipoles and is given by

Msat = µn, where n is the number of atoms per unit volume and µ is the magnetic dipole moment of an
atom. The number of nickel atoms per unit volume is n = ρ/m, where ρ is the density of nickel. The
mass of a single nickel atom is calculated using m = M/NA, where M is the atomic mass of nickel and
NA is Avogadro’s constant. Thus,

n =
ρNA

M
=

(8.90 g/cm
3
)(6.02× 1023 atoms/mol)

58.71 g/mol

= 9.126× 1022 atoms/cm3 = 9.126× 1028 atoms/m3 .
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The dipole moment of a single atom of nickel is

µ =
Msat

n
=

4.70× 105 A/m

9.126× 1028 m3
= 5.15× 10−24 A·m2 .

24. From the way the wire is wound it is clear that P2 is the magnetic north pole while P1 is the south pole.

(a) The deflection will be toward P1 (away from the magnetic north pole).

(b) As the electromagnet is turned on, the magnetic flux ΦB through the aluminum changes abruptly,
causing a strong induced current which produces a magnetic field opposite to that of the electro-
magnet. As a result, the aluminum sample will be pushed toward P1, away from the magnetic north
pole of the bar magnet. As ΦB reaches a constant value, however, the induced current disappears
and the aluminum sample, being paramagnetic, will move slightly toward P2, the magnetic north
pole of the electromagnet.

(c) A magnetic north pole will now be induced on the side of the sample closer to P1, and a magnetic
south pole will appear on the other side. If the magnitude of the field of the electromagnet is larger
near P1 , then the sample will move toward P1.

25. (a) If the magnetization of the sphere is saturated, the total dipole moment is µtotal = Nµ, where N
is the number of iron atoms in the sphere and µ is the dipole moment of an iron atom. We wish
to find the radius of an iron sphere with N iron atoms. The mass of such a sphere is Nm, where
m is the mass of an iron atom. It is also given by 4πρR3/3, where ρ is the density of iron and R is
the radius of the sphere. Thus Nm = 4πρR3/3 and

N =
4πρR3

3m
.

We substitute this into µtotal = Nµ to obtain

µtotal =
4πρR3µ

3m
.

We solve for R and obtain

R =

(

3mµtotal

4πρµ

)1/3

.

The mass of an iron atom is

m = 56 u = (56 u)(1.66× 10−27 kg/u) = 9.30× 10−26 kg .

Therefore,

R =

[

3(9.30× 10−26 kg)(8.0 × 1022 J/T)

4π(14× 103 kg/m
3
)(2.1× 10−23 J/T)

]1/3

= 1.8× 105 m .

(b) The volume of the sphere is

Vs =
4π

3
R3 =

4π

3
(1.82× 105 m)3 = 2.53× 1016 m3

and the volume of the Earth is

Ve =
4π

3
(6.37× 106 m)3 = 1.08× 1021 m3 ,

so the fraction of the Earth’s volume that is occupied by the sphere is

2.53× 1016 m3

1.08× 1021 m3
= 2.3× 10−5 .
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26. Let R be the radius of a capacitor plate and r be the distance from axis of the capacitor. For points
with r ≤ R, the magnitude of the magnetic field is given by

B =
µ0ε0r

2

dE

dt
,

and for r ≥ R, it is

B =
µ0ε0R

2

2r

dE

dt
.

The maximum magnetic field occurs at points for which r = R, and its value is given by either of the
formulas above:

Bmax =
µ0ε0R

2

dE

dt
.

There are two values of r for which B = Bmax/2: one less than R and one greater. To find the one that
is less than R, we solve

µ0ε0r

2

dE

dt
=
µ0ε0R

4

dE

dt

for r. The result is r = R/2 = (55.0 mm)/2 = 27.5 mm. To find the one that is greater than R, we solve

µ0ε0R
2

2r

dE

dt
=
µ0ε0R

4

dE

dt

for r. The result is r = 2R = 2(55.0 mm) = 110 mm.

27. We use the result of part (b) in Sample Problem 32-3:

B =
µ0ε0R

2

2r

dE

dt
(for r ≥ R)

to solve for dE/dt:

dE

dt
=

2Br

µ0ε0R2

=
2(2.0× 10−7 T )(6.0× 10−3 m)

(4π × 10−7 T·m/A)
(

8.85× 10−12 C2

N·m2

)

(3.0× 10−3 m)2
= 2.4× 1013 V

m·s .

28. (a) Noting that the magnitude of the electric field (assumed uniform) is given by E = V/d (where
d = 5.0 mm), we use the result of part (a) in Sample Problem 32-3

B =
µ0ε0r

2

dE

dt
=
µ0ε0r

2d

dV

dt
(for r ≤ R) .

We also use the fact that the time derivative of sin(ωt) (where ω = 2πf = 2π(60) ≈ 377/s in this
problem) is ω cos(ωt). Thus, we find the magnetic field as a function of r (for r ≤ R; note that this
neglects “fringing” and related effects at the edges):

B =
µ0ε0r

2d
Vmaxω cos(ωt) =⇒ Bmax =

µ0ε0rVmaxω

2d

where Vmax = 150 V. This grows with r until reaching its highest value at r = R = 30 mm:

Bmax

∣

∣

∣

∣

r=R

=
µ0ε0RVmaxω

2d

=

(

4π × 10−7 H/m
) (

8.85× 10−12 F/m
) (

30× 10−3 m
)

(150 V)(377/s)

2(5.0× 10−3 m)

= 1.9× 10−12 T .
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(b) For r ≤ 0.03 m, we use the Bmax = µ0ε0rVmaxω
2d expression found in part (a) (note the B ∝ r depen-

dence), and for r ≥ 0.03 m we perform a similar calculation starting with the result of part (b)in
Sample Problem 32-3:

Bmax =

(

µ0ε0R
2

2r

dE

dt

)

max

=

(

µ0ε0R
2

2rd

dV

dt

)

max

=

(

µ0ε0R
2

2rd
Vmaxω cos(ωt)

)

max

=
µ0ε0R

2Vmaxω

2rd
(for r ≥ R)

(note the B ∝ r−1 dependence – See also Eqs. 32-40 and 32-41). The plot (with SI units understood)
is shown below.
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29. The displacement current is given by

id = ε0A
dE

dt
,

where A is the area of a plate and E is the magnitude of the electric field between the plates. The field
between the plates is uniform, so E = V/d, where V is the potential difference across the plates and d
is the plate separation. Thus

id =
ε0A

d

dV

dt
.

Now, ε0A/d is the capacitance C of a parallel-plate capacitor (not filled with a dielectric), so

id = C
dV

dt
.

30. Let the area plate be A and the plate separation be d. We use Eq. 32-34:

id = ε0
dΦE

dt
= ε0

d

dt
(AE) = ε0A

d

dt

(

V

d

)

=
ε0A

d

(

dV

dt

)

,

or
dV

dt
=

idd

ε0A
=
id
C

=
1.5 A

2.0× 10−6 F
= 7.5× 105 V/s .

Therefore, we need to change the voltage difference across the capacitor at the rate of 7.5× 105 V/s.
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31. Consider an area A, normal to a uniform electric field ~E. The displacement current density is uniform
and normal to the area. Its magnitude is given by Jd = id/A. For this situation

id = ε0A
dE

dt
,

so

Jd =
1

A
ε0A

dE

dt
= ε0

dE

dt
.

32. We use Eq. 32-38:

id = ε0A
dE

dt
.

Note that, in this situation, A is the area over which a changing electric field is present. In this case
r > R, so A = πR2. Thus,

dE

dt
=

id
ε0A

=
id

ε0πR2
=

2.0 A

π
(

8.85× 10−12 C2

N·m2

)

(0.10 m)2
= 7.2× 1012 V

m·s .

33. (a) We use
∮

~B ·d~s = µ0Ienclosed to find

B =
µ0Ienclosed

2πr
=
µ0(Jdπr

2)

2πr
=

1

2
µ0Jdr

=
1

2
(1.26× 10−6 H/m)(20 A/m

2
)(50× 10−3 m) = 6.3× 10−7 T .

(b) From

id = Jdπr
2 = ε0

dΦE

dt
= ε0πr

2 dE

dt

we get

dE

dt
=
Jd

ε0
=

20 A/m
2

8.85× 10−12 F/m
= 2.3× 1012 V

m·s .

34. (a) From Eq. 32-34,

id = ε0
dΦE

dt
= ε0A

dE

dt
= ε0A

d

dt

[

(4.0× 105)− (6.0× 104t)
]

= −ε0A(6.0× 104 V/m·s)

= −
(

8.85× 10−12 C2

N ·m2

)

(4.0× 10−2 m2)(6.0× 104 V/m·s)

= −2.1× 10−8 A .

(b) If one draws a counterclockwise circular loop s around the plates, then according to Eq. 32-42

∮

s

~B · d~s = µ0id < 0 ,

which means that ~B ·d~s < 0. Thus ~B must be clockwise.

35. (a) In region a of the graph,

|id| = ε0

∣

∣

∣

∣

dΦE

dt

∣

∣

∣

∣

= ε0A

∣

∣

∣

∣

dE

dt

∣

∣

∣

∣

= (8.85× 10−12 F/m)(1.6 m2)

∣

∣

∣

∣

4.5× 105 N/C− 6.0× 105 N/C

4.0× 10−6 s

∣

∣

∣

∣

= 0.71 A.
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(b) id ∝ dE/dt = 0.

(c) In region c of the graph,

|id| = ε0A

∣

∣

∣

∣

dE

dt

∣

∣

∣

∣

= (8.85× 10−12 F/m)(1.6 m2)

∣

∣

∣

∣

−4.0× 105 N/C

15× 10−6 s− 10× 10−6 s

∣

∣

∣

∣

= 1.1 A .

36. Using Eq. 32-38, we have

d
∣

∣

∣

~E
∣

∣

∣

dt
=

id
ε0A

= 7.2× 1012

where A = π(0.10)2 (fringing is being neglected in §32-10) and SI units are understood.

37. (a) At any instant the displacement current id in the gap between the plates equals the conduction
current i in the wires. Thus id = i = 2.0 A.

(b) The rate of change of the electric field is

dE

dt
=

1

ε0A

(

ε0
dΦE

dt

)

=
id
ε0A

=
2.0 A

(8.85× 10−12 F/m)(1.0 m)2
= 2.3× 1011 V

m·s .

(c) The displacement current through the indicated path is

i′d = id ×
(

area enclosed by the path

area of each plate

)

= (2.0 A)

(

0.50 m

1.0 m

)2

= 0.50 A .

(d) The integral of the field around the indicated path is
∮

~B ·d~s = µ0i
′
d = (1.26× 10−6 H/m)(0.50 A) = 6.3× 10−7 T·m .

38. (a) Since i = id (Eq. 32-39) then the portion of displacement current enclosed is

id,enc = i
π
(

R
3

)2

πR2
= i

1

9
= 1.33 A .

(b) We see from Sample Problems 32-3 and 32-4 that the maximum field is at r = R and that (in the
interior) the field is simply proportional to r. Therefore,

B

Bmax
=

3.00 mT

12.0 mT
=

r

R

which yields r = R/4 as a solution. We now look for a solution in the exterior region, where the
field is inversely proportional to r (by Eq. 32-41):

B

Bmax
=

3.00 mT

12.0 mT
=
R

r

which yields r = 4R as a solution.

39. (a) Using Eq. 27-10, we find

E = ρJ =
ρi

A
=

(1.62× 10−8 Ω·m)(100 A)

5.00× 10−6 m2
= 0.324 V/m .

(b) The displacement current is

id = ε0
dΦE

dt
= ε0A

dE

dt
= ε0A

d

dt

(

ρi

A

)

= ε0ρ
di

dt

= (8.85× 10−12 F)(1.62× 10−8 Ω)(2000 A/s) = 2.87× 10−16 A .
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(c) The ratio of fields is

B( due to id)

B( due to i)
=
µ0id/2πr

µ0i/2πr
=
id
i

=
2.87× 10−16 A

100 A
= 2.87× 10−18 .

40. (a) From Sample Problem 32-3 we know that B ∝ r for r ≤ R and B ∝ r−1 for r ≥ R. So the
maximum value of B occurs at r = R, and there are two possible values of r at which the magnetic
field is 75% of Bmax. We denote these two values as r1 and r2, where r1 < R and r2 > R. Then
0.75Bmax/Bmax = r1/R, or r1 = 0.75R; and 0.75Bmax/Bmax = (r2/R)−1, or r2 = R/0.75 = 1.3R.

(b) From Eqs. 32-39 and 32-41,

Bmax =
µ0id
2πR

=
µ0i

2πR
=

(

4π × 10−7 T·m/A
)

(6.0 A)

2π(0.040 m)
= 3.0× 10−5 T .

41. (a) At any instant the displacement current id in the gap between the plates equals the conduction
current i in the wires. Thus imax = id max = 7.60µA.

(b) Since id = ε0 (dΦE/dt),
(

dΦE

dt

)

max

=
id max

ε0
=

7.60× 10−6 A

8.85× 10−12 F/m
= 8.59× 105V·m/s .

(c) According to problem 29,

id = C
dV

dt
=
ε0A

d

dV

dt
.

Now the potential difference across the capacitor is the same in magnitude as the emf of the
generator, so V = Em sinωt and dV/dt = ωEm cosωt. Thus,

id =
ε0AωEm

d
cosωt

and

id max =
ε0AωEm

d
.

This means

d =
ε0AωEm
id max

=
(8.85× 10−12 F/m)π(0.180m)2(130 rad/s)(220V)

7.60× 10−6 A

= 3.39× 10−3 m ,

where A = πR2 was used.

(d) We use the Ampere-Maxwell law in the form
∮

~B · d~s = µ0Id, where the path of integration is a
circle of radius r between the plates and parallel to them. Id is the displacement current through
the area bounded by the path of integration. Since the displacement current density is uniform
between the plates Id = (r2/R2)id, where id is the total displacement current between the plates

and R is the plate radius. The field lines are circles centered on the axis of the plates, so ~B is
parallel to d~s. The field has constant magnitude around the circular path, so

∮

~B ·d~s = 2πrB.
Thus,

2πrB = µ0

(

r2

R2

)

id

and

B =
µ0idr

2πR2
.

The maximum magnetic field is given by

Bmax =
µ0id max r

2πR2
=

(4π × 10−7T·m/A)(7.6× 10−6 A)(0.110m)

2π(0.180m)2
= 5.16× 10−12 T .
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42. From Gauss’ law for magnetism, the flux through S1 is equal to that through S2, the portion of the xz
plane that lies within the cylinder. Here the normal direction of S2 is +y. Therefore,

ΦB(S1) = ΦB(S2) =

∫ r

−r

B(x)Ldx

= 2

∫ r

−r

Bleft(x)Ldx

= 2

∫ r

−r

µ0i

2π

1

2r − xL dx =
µ0iL

π
ln 3 .

43. (a) Again from Fig. 32-9, for M/Mmax = 50% we have B/T = 0.50. So T = B/0.50 = 2/0.50 = 4 K.

(b) Now B/T = 2.0, so T = 2/2.0 = 1 K.

44. (a) For a given value of l, ml varies from −l to +l. Thus, in our case l = 3, and the number of different
ml’s is 2l+ 1 = 2(3) + 1 = 7. Thus, since Lorb,z ∝ ml, there are a total of seven different values of
Lorb,z.

(b) Similarly, since µorb,z ∝ ml, there are also a total of seven different values of µorb,z.

(c) Since Lorb,z = mlh/2π, the greatest allowed value of Lorb,z is given by |ml|maxh/2π = 3h/2π; while
the least allowed value is given by |ml|minh/2π = 0.

(d) Similar to part (c), since µorb,z = −mlµB, the greatest allowed value of µorb,z is given by |ml|maxµB =
3eh/4πme; while the least allowed value is given by |ml|minµB = 0.

(e) From Eqs. 32-3 and 32-9 the z component of the net angular momentum of the electron is given by

Lnet,z = Lorb,z + Ls,z =
mlh

2π
+
msh

2π
.

For the maximum value of Lnet,z let ml = [ml]max = 3 and ms = 1
2 . Thus

[Lnet,z]max =

(

3 +
1

2

)

h

2π
=

3.5h

2π
.

(f) Since the maximum value of Lnet,z is given by [mJ ]maxh/2π with [mJ ]max = 3.5 (see the last part
above), the number of allowed values for the z component of Lnet,z is given by 2[mJ ]max + 1 =
2(3.5) + 1 = 8.

45. (a) We use the result of part (a) in Sample Problem 32-3:

B =
µ0ε0r

2

dE

dt
(for r ≤ R) ,

where r = 0.80R and

dE

dt
=

d

dt

(

V

d

)

=
1

d

d

dt

(

V0e
−t/τ

)

= −V0

τd
e−t/τ .

Here V0 = 100 V. Thus

B(t) =
(µ0ε0r

2

)

(

−V0

τd
e−t/τ

)

= −µ0ε0V0r

2τd
e−t/τ

= −
(

4π × 10−7 T·m/A
)

(

8.85× 10−12 C2

N·m2

)

(100 V)(0.80)(16 mm)

2(12× 10−3 s)(5.0 mm)
e−t/12ms

= −(1.2× 10−13 T) e−t/12 ms .

The minus sign here is insignificant.
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(b) At time t = 3τ , B(t) = −(1.2× 10−13 T)e−3τ/τ = −5.9× 10−15 T.

46. The given value 7.0 mW should be 7.0 mWb. From Eq. 32-1, we have

(ΦB)in = (ΦB)out

= 0.0070 Wb + (0.40 T)(πr2)

= 9.2× 10−3 Wb .

Thus, the magnetic flux at the sides is inward with absolute-value equal to 9.2 mWb.

47. The definition of displacement current is Eq. 32-34, and the formula of greatest convenience here is
Eq. 32-41:

id =
2π r B

µ0
=

2π(0.0300 m)
(

2.00× 10−6 T
)

4π × 10−7 T ·m/A = 0.30 A .

48. Ignoring points where the determination of the slope is problematic, we find the interval of largest
∆| ~E|/∆t is 6µs < t < 7µs. During that time, we have, from Eq. 32-38,

id = ε0A
∆| ~E|
∆t

= ε0
(

2.0 m2
) (

2.0× 106 V/m
)

which yields id = 3.5× 10−5 A.

49. (a) We use the notation P (µ) for the probability of a dipole being parallel to ~B, and P (−µ) for the
probability of a dipole being antiparallel to the field. The magnetization may be thought of as a
“weighted average” in terms of these probabilities:

M =
NµP (µ)−NµP (−µ)

P (µ) + P (−µ)
=
Nµ

(

eµB/KT − e−µB/KT
)

eµB/KT + e−µB/KT
= Nµ tanh

(

µB

kT

)

.

(b) For µB ≪ kT (that is, µB/kT ≪ 1) we have e±µB/kT ≈ 1± µB/kT , so

M = Nµ tanh

(

µB

kT

)

≈ Nµ[(1 + µB/kT )− (1− µB/kT )]

(1 + µB/kT ) + (1− µB/kT )
=
Nµ2B

kT
.

(c) For µB ≫ kT we have tanh(µB/kT ) ≈ 1, so

M = Nµ tanh

(

µB

kT

)

≈ Nµ .

(d) One can easily plot the tanh function using, for instance, a graphical calculator. One can then note
the resemblance between such a plot and Fig. 32-9. By adjusting the parameters used in one’s plot,
the curve in Fig. 32-9 can reliably be fit with a tanh function.

50. (a) From Eq. 22-3,

E =
e

4πε0r2
=

(1.60× 10−19 C)(8.99× 109 N·m2/C2)

(5.2× 10−11 m)2
= 5.3× 1011 N/C .

(b) We use Eq. 30-28:

B =
µ0

2π

µp

r3
=

(

4π × 10−7 T·m/A
)

(1.4× 10−26 J/T)

2π(5.2× 10−11 m)3
= 2.0× 10−2 T .

(c) From Eq. 32-10,

µorb

µp
=
eh/4πme

µp
=
µB

µp
=

9.27× 10−24 J/T

1.4× 10−26 J/T
= 6.6× 102 .
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51. The interacting potential energy between the magnetic dipole of the compass and the Earth’s magnetic
field is U = −~µ· ~Be = −µBe cos θ, where θ is the angle between ~µ and ~Be. For small angle θ

U(θ) = −µBe cos θ ≈ −µBe

(

1− θ2

2

)

=
1

2
κθ2 − µBe

where κ = µBe. Conservation of energy for the compass then gives

1

2
I

(

dθ

dt

)2

+
1

2
κθ2 = const. .

This is to be compared with the following expression for the mechanical energy of a spring-mass system:

1

2
m

(

dx

dt

)2

+
1

2
kx2 = const. ,

which yields ω =
√

k/m. So by analogy, in our case

ω =

√

κ

I
=

√

µBe

I
=

√

µBe

ml2/12
,

which leads to

µ =
ml2ω2

12Be
=

(0.050 kg)(4.0× 10−2 m)2(45 rad/s)2

12(16× 10−6 T)
= 8.4× 102 J/T .

52. Let the area of each circular plate be A and that of the central circular section be a, then

A

a
=

πR2

π(R/2)2
= 4 .

Thus, from Eqs. 32-38 and 32-39 the total discharge current is given by i = id = 4(2.0 A) = 8.0 A.

53. (a) Using Eq. 32-11, we find µorb,z = −3µB = −2.78× 10−23 J/T (that these are acceptable units for
magnetic moment is seen from Eq. 32-12 or Eq. 32-7; they are equivalent to A·m2).

(b) Similarly, for mℓ = −4 we obtain µorb,z = 3.71× 10−23 J/T.

54. (a) Since the field is decreasing, the displacement current (by Eq. 32-38) is downward, which produces
(by the right-hand rule) a clockwise sense for the induced magnetic field.

(b) See the solution for part (a).

(c) and (d) We write ~E = Ez k̂ = (E0 − ξt)k̂ where ξ = 60000(V/m)/s. From Eq. 32-36 (treated in
absolute value)

id = ε0A

∣

∣

∣

∣

dEz

dt

∣

∣

∣

∣

= ε0Aξ

which yields id = 2.1× 10−8 A for all values of t.

55. (a) From µ = iA = iπR2
e we get

i =
µ

πR2
e

=
8.0× 1022 J/T

π(6.37× 106 m)2
= 6.3× 108 A .

(b) Yes, because far away from the Earth the fields of both the Earth itself and the current loop are
dipole fields. If these two dipoles cancel each other out, then the net field will be zero.
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(c) No, because the field of the current loop is not that of a magnetic dipole in the region close to the
loop.

56. (a) The period of rotation is T = 2π/ω and in this time all the charge passes any fixed point near the
ring. The average current is i = q/T = qω/2π and the magnitude of the magnetic dipole moment
is

µ = iA =
qω

2π
πr2 =

1

2
qωr2 .

(b) We curl the fingers of our right hand in the direction of rotation. Since the charge is positive, the
thumb points in the direction of the dipole moment. It is the same as the direction of the angular
momentum vector of the ring.

57. (a) The potential energy of the atom in association with the presence an external magnetic field ~Bext

is given by Eqs. 32-11 and 32-12:

U = −µorb · ~Bext = −µorb,zBext = −mlµBBext .

For level E1 there is no change in energy as a result of the introduction of ~Bext, so U ∝ ml = 0,
meaning that ml = 0 for this level. For level E2 the single level splits into a triplet (i.e., three

separate ones) in the presence of ~Bext, meaning that there are three different values of ml. The
middle one in the triplet is unshifted from the original value of E2 so its ml must be equal to 0.

(b) The other two in the triplet then correspond to ml = −1 and m1 = +1, respectively.

(c) For any pair of adjacent levels in the triplet |∆ml| = 1. Thus, the spacing is given by

∆U = |∆(−mlµBB)| = |∆ml|µBB = µBB

=
(

9.27× 10−24 J/T
)

(0.50 T) = 4.6× 10−24 J

which is equivalent to 2.9× 10−5 eV.

58. (a) The magnitude of the toroidal field is given by B0 = µ0nip, where n is the number of turns per
unit length of toroid and ip is the current required to produce the field (in the absence of the
ferromagnetic material). We use the average radius (ravg = 5.5cm) to calculate n:

n =
N

2πravg
=

400 turns

2π(5.5× 10−2 m)
= 1.16× 103 turns/m .

Thus,

ip =
B0

µ0n
=

0.20× 10−3 T

(4π × 10−7 T·m/A)(1.16× 103/m)
= 0.14 A .

(b) If Φ is the magnetic flux through the secondary coil, then the magnitude of the emf induced in that
coil is E = N(dΦ/dt) and the current in the secondary is is = E/R, where R is the resistance of the
coil. Thus

is =

(

N

R

)

dΦ

dt
.

The charge that passes through the secondary when the primary current is turned on is

q =

∫

is dt =
N

R

∫

dΦ

dt
dt =

N

R

∫ Φ

0

dΦ =
NΦ

R
.

The magnetic field through the secondary coil has magnitude B = B0 + BM = 801B0, where BM

is the field of the magnetic dipoles in the magnetic material. The total field is perpendicular to the
plane of the secondary coil, so the magnetic flux is Φ = AB, where A is the area of the Rowland
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ring (the field is inside the ring, not in the region between the ring and coil). If r is the radius of
the ring’s cross section, then A = πr2. Thus

Φ = 801πr2B0 .

The radius r is (6.0 cm− 5.0 cm)/2 = 0.50 cm and

Φ = 801π(0.50× 10−2 m)2(0.20× 10−3 T) = 1.26× 10−5 Wb .

Consequently,

q =
50(1.26× 10−5 Wb)

8.0 Ω
= 7.9× 10−5 C .

59. Combining Eq. 32-7 with Eq. 32-2 and Eq. Eq. 32-3, we obtain

∆U = 2µB B

where µB is the Bohr magneton (evaluated in Eq. 32-5). Thus, with ∆U = 6.0 × 10−25 J, we find

B = | ~B| = 0.032 T.

60. (a) Using Eq. 32-37 but noting that the capacitor is being discharged, we have

d| ~E|
dt

= − i

ε0A
= −8.8× 1015

where A = (0.0080)2 and SI units are understood.

(b) Assuming a perfectly uniform field, even so near to an edge (which is consistent with the fact that
fringing is neglected in §32-10), we follow part (a) of Sample Problem 32-4 and relate the (absolute
value of the) line integral to the portion of displacement current enclosed.

∣

∣

∣

∣

∮

~B · d~s
∣

∣

∣

∣

= µ0 id,enc

= µ0
W H

L2
i

= 5.9× 10−7 Wb/m .
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Chapter 33

1. We find the capacitance from U = 1
2Q

2/C:

C =
Q2

2U
=

(1.60× 10−6 C)2

2(140× 10−6 J)
= 9.14× 10−9 F .

2. According to U = 1
2LI

2 = 1
2Q

2/C, the current amplitude is

I =
Q√
LC

=
3.00× 10−6 C

√

(1.10× 10−3 H)(4.00× 10−6 F)
= 4.52× 10−2 A .

3. (a) All the energy in the circuit resides in the capacitor when it has its maximum charge. The current
is then zero. If Q is the maximum charge on the capacitor, then the total energy is

U =
Q2

2C
=

(2.90× 10−6 C)2

2(3.60× 10−6 F)
= 1.17× 10−6 J .

(b) When the capacitor is fully discharged, the current is a maximum and all the energy resides in the
inductor. If I is the maximum current, then U = LI2/2 leads to

I =

√

2U

L
=

√

2(1.168× 10−6 J)

75× 10−3 H
= 5.58× 10−3 A .

4. (a) The period is T = 4(1.50µs) = 6.00µs.

(b) The frequency is the reciprocal of the period:

f =
1

T
=

1

6.00µs
= 1.67× 105 Hz .

(c) The magnetic energy does not depend on the direction of the current (since UB ∝ i2), so this will
occur after one-half of a period, or 3.00µs.

5. (a) We recall the fact that the period is the reciprocal of the frequency. It is helpful to refer also to
Fig. 33-1. The values of t when plate A will again have maximum positive charge are multiples of
the period:

tA = nT =
n

f
=

n

2.00× 103 Hz
= n(5.00µs) ,

where n = 1, 2, 3, 4, · · · .
(b) We note that it takes t = 1

2T for the charge on the other plate to reach its maximum positive
value for the first time (compare steps a and e in Fig. 33-1). This is when plate A acquires its most
negative charge. From that time onward, this situation will repeat once every period. Consequently,

t =
1

2
T + nT =

1

2
(2n+ 1)T =

(2n+ 1)

2f
=

(2n+ 1)

2(2× 103 Hz)
= (2n+ 1)(2.50µs) ,

where n = 0, 1, 2, 3, 4, · · · .

811
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(c) At t = 1
4T , the current and the magnetic field in the inductor reach maximum values for the first

time (compare steps a and c in Fig. 33-1). Later this will repeat every half-period (compare steps
c and g in Fig. 33-1). Therefore,

tL =
T

4
+
nT

2
= (1 + 2n)

T

4
= (2n+ 1)(1.25µs) ,

where n = 0, 1, 2, 3, 4, · · · .

6. (a) The angular frequency is

ω =

√

k

m
=

√

F/x

m
=

√

8.0 N

(2.0× 10−3 m)(0.50 kg)
= 89 rad/s .

(b) The period is 1/f and f = ω/2π. Therefore,

T =
2π

ω
=

2π

89 rad/s
= 7.0× 10−2 s .

(c) From ω = (LC)−1/2, we obtain

C =
1

ω2L
=

1

(89 rad/s)2(5.0 H)
= 2.5× 10−5 F .

7. (a) The mass m corresponds to the inductance, so m = 1.25 kg.

(b) The spring constant k corresponds to the reciprocal of the capacitance. Since the total energy is
given by U = Q2/2C, where Q is the maximum charge on the capacitor and C is the capacitance,

C =
Q2

2U
=

(

175× 10−6 C
)2

2(5.70× 10−6 J)
= 2.69× 10−3 F

and

k =
1

2.69× 10−3 m/N
= 372 N/m .

(c) The maximum displacement corresponds to the maximum charge, so xmax = 175× 10−6 m.

(d) The maximum speed vmax corresponds to the maximum current. The maximum current is

I = Qω =
Q√
LC

=
175× 10−6 C

√

(1.25 H)(2.69× 10−3 F)
= 3.02× 10−3 A .

Consequently, vmax = 3.02× 10−3 m/s.

8. We find the inductance from f = ω/2π = (2π
√
LC)−1.

L =
1

4π2f2C
=

1

4π2(10× 103 Hz)2(6.7× 10−6 F)
= 3.8× 10−5 H .

9. The time required is t = T/4, where the period is given by T = 2π/ω = 2π
√
LC. Consequently,

t =
T

4
=

2π
√
LC

4
=

2π
√

(0.050 H)(4.0× 10−6 F)

4
= 7.0× 10−4 s .
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10. We apply the loop rule to the entire circuit:

Etotal = EL1
+ EC1

+ ER1
+ · · ·

=
∑

j

(

ELj + ECj + ERj

)

=
∑

j

(

Lj
di

dt
+

q

Cj
+ iRj

)

= L
di

dt
+
q

C
+ iR where L =

∑

j

Lj ,
1

C
=
∑

j

1

Cj
, R =

∑

j

Rj

where we require Etotal = 0. This is equivalent to the simple LRC circuit shown in Fig. 33-22(b).

11. (a) Q = CVmax = (1.0× 10−9 F)(3.0 V) = 3.0× 10−9 C.

(b) From U = 1
2LI

2 = 1
2Q

2/C we get

I =
Q√
LC

=
3.0× 10−9 C

√

(3.0× 10−3 H)(1.0 × 10−9 F)
= 1.7× 10−3 A .

(c) When the current is at a maximum, the magnetic field is at maximum:

UB,max =
1

2
LI2 =

1

2
(3.0× 10−3 H)(1.7× 10−3 A)2 = 4.5× 10−9 J .

12. (a) We use U = 1
2LI

2 = 1
2Q

2/C to solve for L:

L =
1

C

(

Q

I

)2

=
1

C

(

CVmax

I

)2

= C

(

Vmax

I

)2

= (4.00× 10−6 F)

(

1.50 V

50.0× 10−3 A

)2

= 3.60× 10−3 H .

(b) Since f = ω/2π, the frequency is

f =
1

2π
√
LC

=
1

2π
√

(3.60× 10−3 H)(4.00× 10−6 F)
= 1.33× 103 Hz .

(c) Referring to Fig. 33-1, we see that the required time is one-fourth of a period (where the period is
the reciprocal of the frequency). Consequently,

t =
1

4
T =

1

4f
=

1

4(1.33× 103 Hz)
= 1.88× 10−4 s .

13. (a) After the switch is thrown to position b the circuit is an LC circuit. The angular frequency of
oscillation is ω = 1/

√
LC. Consequently,

f =
ω

2π
=

1

2π
√
LC

=
1

2π
√

(54.0× 10−3 H)(6.20× 10−6 F)
= 275 Hz .
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(b) When the switch is thrown, the capacitor is charged to V = 34.0 V and the current is zero. Thus,
the maximum charge on the capacitor is Q = V C = (34.0 V)(6.20× 10−6 F) = 2.11× 10−4 C. The
current amplitude is

I = ωQ = 2πfQ = 2π(275 Hz)(2.11× 10−4 C) = 0.365 A .

14. The capacitors C1 and C2 can be used in four different ways: (1) C1 only; (2) C2 only; (3) C1 and C2

in parallel; and (4) C1 and C2 in series. The corresponding oscillation frequencies are:

f1 =
1

2π
√
LC1

=
1

2π
√

(1.0× 10−2 H)(5.0× 10−6 F)
= 7.1× 102 Hz

f2 =
1

2π
√
LC2

=
1

2π
√

(1.0× 10−2 H)(2.0× 10−6 F)
= 1.1× 103 Hz

f3 =
1

2π
√

L(C1 + C2)
=

1

2π
√

(1.0× 10−2 H)(2.0 × 10−6 F + 5.0× 10−6 F)
= 6.0× 102 Hz

f4 =
1

2π
√

LC1C2/(C1 + C2)
=

1

2π

√

2.0× 10−6 F + 5.0× 10−6 F

(1.0× 10−2 H)(2.0× 10−6 F)(5.0× 10−6 F)

= 1.3× 103 Hz

15. (a) Since the frequency of oscillation f is related to the inductance L and capacitance C by f =
1/2π

√
LC, the smaller value of C gives the larger value of f . Consequently, fmax = 1/2π

√
LCmin,

fmin = 1/2π
√
LCmax, and

fmax

fmin
=

√
Cmax√
Cmin

=

√
365 pF√
10 pF

= 6.0 .

(b) An additional capacitance C is chosen so the ratio of the frequencies is

r =
1.60 MHz

0.54 MHz
= 2.96 .

Since the additional capacitor is in parallel with the tuning capacitor, its capacitance adds to that
of the tuning capacitor. If C is in picofarads, then

√
C + 365 pF√
C + 10 pF

= 2.96 .

The solution for C is

C =
(365 pF)− (2.96)2(10 pF)

(2.96)2 − 1
= 36 pF .

We solve f = 1/2π
√
LC for L. For the minimum frequency C = 365 pF + 36 pF = 401 pF and

f = 0.54 MHz. Thus

L =
1

(2π)2Cf2
=

1

(2π)2(401× 10−12 F)(0.54× 106 Hz)2
= 2.2× 10−4 H .

16. (a) Since the percentage of energy stored in the electric field of the capacitor is (1− 75.0%) = 25.0%,
then

UE

U
=

q2/2C

Q2/2C
= 25.0%

which leads to q =
√

0.250Q = 0.500Q.
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(b) From
UB

U
=
Li2/2

LI2/2
= 75.0% ,

we find i =
√

0.750 I = 0.866I.

17. (a) The total energy U is the sum of the energies in the inductor and capacitor:

U = UE + UB =
q2

2C
+
i2L

2

=
(3.80× 10−6 C)2

2(7.80× 10−6 F)
+

(9.20× 10−3 A)2(25.0× 10−3 H)

2
= 1.98× 10−6 J .

(b) We solve U = Q2/2C for the maximum charge:

Q =
√

2CU =
√

2(7.80× 10−6 F)(1.98× 10−6 J) = 5.56× 10−6 C .

(c) From U = I2L/2, we find the maximum current:

I =

√

2U

L
=

√

2(1.98× 10−6 J)

25.0× 10−3 H
= 1.26× 10−2 A .

(d) If q0 is the charge on the capacitor at time t = 0, then q0 = Q cosφ and

φ = cos−1

(

q

Q

)

= cos−1

(

3.80× 10−6 C

5.56× 10−6 C

)

= ±46.9◦ .

For φ = +46.9◦ the charge on the capacitor is decreasing, for φ = −46.9◦ it is increasing. To check
this, we calculate the derivative of q with respect to time, evaluated for t = 0. We obtain −ωQ sinφ,
which we wish to be positive. Since sin(+46.9◦) is positive and sin(−46.9◦) is negative, the correct
value for increasing charge is φ = −46.9◦.

(e) Now we want the derivative to be negative and sinφ to be positive. Thus, we take φ = +46.9◦.

18. The linear relationship between θ (the knob angle in degrees) and frequency f is

f = f0

(

1 +
θ

180◦

)

=⇒ θ = 180◦
(

f

f0
− 1

)

where f0 = 2× 105 Hz. Since f = ω/2π = 1/2π
√
LC, we are able to solve for C in terms of θ:

C =
1

4π2Lf2
0

(

1 + θ
180◦

)2 =
81

400000π2(180◦ + θ)2

with SI units understood. After multiplying by 1012 (to convert to picofarads), this is plotted, below.

200

400

600

picofarads

20 40 60 80 100 120 140 160 180
angle_degrees
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19. (a) The charge (as a function of time) is given by q = Q sinωt, where Q is the maximum charge on the
capacitor and ω is the angular frequency of oscillation. A sine function was chosen so that q = 0
at time t = 0. The current (as a function of time) is

i =
dq

dt
= ωQ cosωt ,

and at t = 0, it is I = ωQ. Since ω = 1/
√
LC,

Q = I
√
LC = (2.00 A)

√

(3.00× 10−3 H)(2.70× 10−6 F) = 1.80× 10−4 C .

(b) The energy stored in the capacitor is given by

UE =
q2

2C
=
Q2 sin2 ωt

2C

and its rate of change is
dUE

dt
=
Q2ω sinωt cosωt

C
.

We use the trigonometric identity cosωt sinωt = 1
2 sin(2ωt) to write this as

dUE

dt
=
ωQ2

2C
sin(2ωt) .

The greatest rate of change occurs when sin(2ωt) = 1 or 2ωt = π/2 rad. This means

t =
π

4ω
=

πT

4(2π)
=
T

8

where T is the period of oscillation. The relationship ω = 2π/T was used.

(c) Substituting ω = 2π/T and sin(2ωt) = 1 into dUE/dt = (ωQ2/2C) sin(2ωt), we obtain

(

dUE

dt

)

max

=
2πQ2

2TC
=
πQ2

TC
.

Now T = 2π
√
LC = 2π

√

(3.00× 10−3 H)(2.70× 10−6 F) = 5.655× 10−4 s, so

(

dUE

dt

)

max

=
π(1.80× 10−4 C)2

(5.655× 10−4 s)(2.70× 10−6 F)
= 66.7 W .

We note that this is a positive result, indicating that the energy in the capacitor is indeed increasing
at t = T/8.

20. For the first circuit ω = (L1C1)
−1/2, and for the second one ω = (L2C2)

−1/2. When the two circuits are
connected in series, the new frequency is

ω′ =
1

√

LeqCeq

=
1

√

(L1 + L2)C1C2/(C1 + C2)
=

1
√

(L1C1C2 + L2C2C1)/(C1 + C2)

=
1√
L1C1

1
√

(C1 + C2)/(C1 + C2)
= ω ,

where we use ω−1 =
√
L1C1 =

√
L2C2.
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21. (a) We compare this expression for the current with i = I sin(ωt+φ0). Setting (ωt+φ) = 2500t+0.680 =
π/2, we obtain t = 3.56× 10−4 s.

(b) Since ω = 2500 rad/s = (LC)−1/2,

L =
1

ω2C
=

1

(2500 rad/s)2(64.0× 10−6 F)
= 2.50× 10−3 H .

(c) The energy is

U =
1

2
LI2 =

1

2
(2.50× 10−3 H)(1.60 A)2 = 3.20× 10−3 J .

22. (a) The figure implies that the the instantaneous current through the leftmost inductor is the same
as that through the rightmost one, which means there is no current through the middle inductor
(at any instant). Applying the loop rule to the outer loop (including the rightmost and leftmost
inductors), with the current suitably related to the rate of change of charge, we find

2L
d2q

dt2
+

2

C
q = 0 =⇒ ω =

1
√

(2L)(C/2)
=

1√
LC

.

(b) In this case, we see that the middle inductor must have current 2i(t) flowing downward, and
application of the loop rule to, say, the left loop leads to

L
d2q

dt2
+ L

(

2
d2q

dt2

)

+
1

C
q = 0 =⇒ ω =

1
√

(3L)(C)
=

1√
3LC

.

23. The energy needed to charge the 100µF capacitor to 300 V is

1

2
C2V

2 =
1

2
(100× 10−6 F)(300 V)2 = 4.50 J .

The energy initially in the 900µF capacitor is

1

2
C1V

2 =
1

2
(900× 10−6 F)(100 V)2 = 4.50 J .

All the energy originally in the 900µF capacitor must be transferred to the 100µF capacitor. The plan
is to store it temporarily in the inductor. We do this by leaving switch S1 open and closing switch S2.
We wait until the 900µF capacitor is completely discharged and the current in the circuit is at maximum
(this occurs at t = T1/4, one quarter of the relevant period). Since

T1 = 2π
√

LC1 = 2π
√

(10.0 H)(900× 10−6 F) = 0.596 s ,

we wait until t = (0.596 s)/4 = 0.149 s. Now, we close switch S1 while simultaneously opening switch
S2. Next, we wait for one-fourth of the T2 period to elapse and open switch S1. The 100µF capacitor
then has maximum charge, and all the energy resides in it. Since

T2 = 2π
√

LC2 = 2π
√

(10.0 H)(100× 10−6 F) = 0.199 s ,

we must keep S1 closed for (0.199 s)/4 = 0.0497 s. It is helpful to refer to Figure 23-1 to appreciate the
emphasis on “quarter-periods” in this solution.

24. (a) Since T = 2π/ω = 2π
√
LC, we may rewrite the power on the exponential factor as

−πR
√

C

L

t

T
= −πR

√

C

L

t

2π
√
LC

= −Rt
2L

.

Thus e−Rt/2L = e−πR
√

C/L(t/T ).
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(b) Since −πR
√

C/L(t/T ) must be unitless (as is t/T ), R
√

C/L must also be unitless. Thus, the SI

unit of
√

C/L must be Ω−1. In other words, the SI unit for
√

L/C is Ω.

(c) Since the amplitude of oscillation reduces by a factor of e−πR
√

C/L(T/T ) = e−πR
√

C/L after each
cycle, the condition is equivalent to πR

√

C/L≪ 1, or R≪
√

L/C.

25. Since ω ≈ ω′, we may write T = 2π/ω as the period and ω = 1/
√
LC as the angular frequency. The

time required for 50 cycles (with 3 significant figures understood) is

t = 50T = 50

(

2π

ω

)

= 50
(

2π
√
LC
)

= 50
(

2π
√

(220× 10−3 H) (12.0× 10−6 F)
)

= 0.5104 s .

The maximum charge on the capacitor decays according to

qmax = Qe−Rt/2L

(this is called the exponentially decaying amplitude in §33-5), where Q is the charge at time t = 0 (if we
take φ = 0 in Eq. 33-25). Dividing by Q and taking the natural logarithm of both sides, we obtain

ln

(

qmax

Q

)

= − Rt

2L

which leads to

R = −2L

t
ln

(

qmax

Q

)

= −2(220× 10−3 H)

0.5104 s
ln(0.99) = 8.66× 10−3 Ω .

26. The charge q after N cycles is obtained by substituting t = NT = 2πN/ω′ into Eq. 33-25:

q = Qe−Rt/2L cos(ω′t+ φ) = Qe−RNT/2L cos(ω′(2πN/ω′) + φ)

= Qe−RN(2π
√

L/C)/2L cos(2πN + φ)

= Qe−NπR
√

C/L cos(φ).

We note that the initial charge (setting N = 0 in the above expression) is q0 = Q cosφ, where q0 =
6.2µC is given (with 3 significant figures understood). Consequently, we write the above result as

qN = q0e
−NπR

√
C/L and obtain

q5 = (6.2µC)e−5π(7.2Ω)
√

0.0000032F/12 H = 5.85µC

q10 = (6.2µC)e−10π(7.2Ω)
√

0.0000032F/12 H = 5.52µC

q100 = (6.2µC)e−100π(7.2Ω)
√

0.0000032 F/12H = 1.93µC .

27. The assumption stated at the end of the problem is equivalent to setting φ = 0 in Eq. 33-25. Since the
maximum energy in the capacitor (each cycle) is given by q2max/2C, where qmax is the maximum charge
(during a given cycle), then we seek the time for which

q2max

2C
=

1

2

Q2

2C
=⇒ qmax =

Q√
2
.

Now qmax (referred to as the exponentially decaying amplitude in §33-5) is related to Q (and the other
parameters of the circuit) by

qmax = Qe−Rt/2L =⇒ ln

(

qmax

Q

)

= −Rt
2L

.
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Setting qmax = Q/
√

2, we solve for t:

t = −2L

R
ln

(

qmax

Q

)

= −2L

R
ln

(

1√
2

)

=
L

R
ln 2 .

The identities ln(1/
√

2) = − ln
√

2 = − 1
2 ln 2 were used to obtain the final form of the result.

28. (a) In Eq. 33-25, we set q = 0 and t = 0 to obtain 0 = Q cosφ. This gives φ = ±π/2 (assuming
Q 6= 0). It should be noted that other roots are possible (for instance, cos(3π/2) = 0) but the ±π/2
choices for the phase constant are in some sense the “simplest.” We choose φ = −π/2 to make the
manipulation of signs in the expressions below easier to follow. To simplify the work in part (b),
we note that cos(ω′t− π/2) = sin(ω′t).

(b) First, we calculate the time-dependent current i(t) from Eq. 33-25:

i(t) =
dq

dt
=

d

dt

(

Qe−Rt/2L sin(ω′t)
)

= − QR
2L

e−Rt/2L sin(ω′t) +Qω′e−Rt/2L cos(ω′t)

= Qe−Rt/2L

(

−R sin(ω′t)

2L
+ ω′ cos(ω′t)

)

,

which we evaluate at t = 0: i(0) = Qω′. If we denote i(0) = I as suggested in the problem, then
Q = I/ω′. Returning this to Eq. 33-25 leads to

q = Qe−Rt/2L cos(ω′t+ φ) =

(

I

ω′

)

e−Rt/2L cos
(

ω′t− π

2

)

= Ie−Rt/2L sin(ω′t)

ω′

which answers the question if we interpret “current amplitude” as I. If one, instead, interprets
an (exponentially decaying) “current amplitude” to be more appropriately defined as imax =
i(t)/ cos(· · ·) (that is, the current after dividing out its oscillatory behavior), then another step
is needed in the i(t) manipulations, above. Using the identity x cosα− y sinα = r cos(α+β) where

r =
√

x2 + y2 and tanβ = y/x, we can write the current as

i(t) = Qe−Rt/2L

(

−R sin(ω′t)

2L
+ ω′ cos(ω′t)

)

= Q

√

ω′ 2 +

(

R

2L

)2

e−Rt/2L cos(ω′t+ θ)

where θ = tan−1(R/2Lω′). Thus, the current amplitude defined in this second way becomes (using
Eq. 33-26 for ω′)

imax = Q

√

ω′ 2 +

(

R

2L

)2

e−Rt/2L = Qωe−Rt/2L .

In terms of imax the expression for charge becomes

q = Qe−Rt/2L sin(ω′t) =

(

imax

ω

)

sin(ω′t)

which is remarkably similar to our previous “result” in terms of I, except for the fact that ω′ in
the denominator has now been replaced with ω (and, of course, the exponential has been absorbed
into the definition of imax ).

29. Let t be a time at which the capacitor is fully charged in some cycle and let qmax 1 be the charge on the
capacitor then. The energy in the capacitor at that time is

U(t) =
q2max 1

2C
=
Q2

2C
e−Rt/L
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where
qmax 1 = Qe−Rt/2L

(see the discussion of the exponentially decaying amplitude in §33-5). One period later the charge on the
fully charged capacitor is

qmax 2 = Qe−R(t+T )/2L where T =
2π

ω′ ,

and the energy is

U(t+ T ) =
q2max 2

2C
=
Q2

2C
e−R(t+T )/L .

The fractional loss in energy is

|∆U |
U

=
U(t)− U(t+ T )

U(t)
=
e−Rt/L − e−R(t+T )/L

e−Rt/L
= 1− e−RT/L .

Assuming that RT/L is very small compared to 1 (which would be the case if the resistance is small),
we expand the exponential (see Appendix E). The first few terms are:

e−RT/L ≈ 1− RT

L
+
R2T 2

2L2
+ · · · .

If we approximate ω ≈ ω′, then we can write T as 2π/ω. As a result, we obtain

|∆U |
U

≈ 1−
(

1− RT

L
+ · · ·

)

≈ RT

L
=

2πR

ωL
.

30. (a) We use I = E/Xc = ωdCE :

I = ωdCEm = 2πfdCEm = 2π(1.00× 103 Hz)(1.50× 10−6 F)(30.0 V) = 0.283 A .

(b) I = 2π(8.00× 103 Hz)(1.50× 10−6 F)(30.0 V) = 2.26 A.

31. (a) The current amplitude I is given by I = VL/XL, where XL = ωdL = 2πfdL. Since the circuit
contains only the inductor and a sinusoidal generator, VL = Em . Therefore,

I =
VL

XL
=
Em

2πfdL
=

30.0 V

2π(1.00× 103 Hz)(50.0× 10−3 H)
= 0.0955 A .

(b) The frequency is now eight times larger than in part (a), so the inductive reactance XL is eight
times larger and the current is one-eighth as much. The current is now (0.0955 A)/8 = 0.0119 A.

32. (a) and (b) Regardless of the frequency of the generator, the current through the resistor is

I =
Em
R

=
30.0 V

50 Ω
= 0.60 A .

33. (a) The inductive reactance for angular frequency ωd is given byXL = ωdL, and the capacitive reactance
is given by XC = 1/ωdC. The two reactances are equal if ωdL = 1/ωdC, or ωd = 1/

√
LC. The

frequency is

fd =
ωd

2π
=

1

2π
√
LC

=
1

2π
√

(6.0× 10−3 H)(10× 10−6 F)
= 650 Hz .

(b) The inductive reactance is XL = ωdL = 2πfdL = 2π(650 Hz)(6.0× 10−3 H) = 24 Ω. The capacitive
reactance has the same value at this frequency.
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(c) The natural frequency for free LC oscillations is f = ω/2π = 1/2π
√
LC, the same as we found in

part (a).

34. (a) The circuit consists of one generator across one inductor; therefore, Em = VL . The current ampli-
tude is

I =
Em
XL

=
Em
ωdL

=
25.0 V

(377 rad/s)(12.7 H)
= 5.22× 10−3 A .

(b) When the current is at a maximum, its derivative is zero. Thus, Eq. 31-37 gives EL = 0 at that
instant. Stated another way, since E(t) and i(t) have a 90◦ phase difference, then E(t) must be zero
when i(t) = I. The fact that φ = 90◦ = π/2 rad is used in part (c).

(c) Consider Eq. 32-28 with E = − 1
2Em . In order to satisfy this equation, we require sin(ωdt) = −1/2.

Now we note that the problem states that E is increasing in magnitude, which (since it is already
negative) means that it is becoming more negative. Thus, differentiating Eq. 32-28 with respect to
time (and demanding the result be negative) we must also require cos(ωdt) < 0. These conditions
imply that ωt must equal (2nπ − 5π/6) [n = integer]. Consequently, Eq. 33-29 yields (for all values
of n)

i = I sin

(

2nπ − 5π

6
− π

2

)

=
(

5.22× 10−3 A
)

(√
3

2

)

= 4.51× 10−3 A .

35. (a) The generator emf is a maximum when sin(ωdt−π/4) = 1 or ωdt−π/4 = (π/2)±2nπ [n = integer].
The first time this occurs after t = 0 is when ωdt− π/4 = π/2 (that is, n = 0). Therefore,

t =
3π

4ωd
=

3π

4(350 rad/s)
= 6.73× 10−3 s .

(b) The current is a maximum when sin(ωdt − 3π/4) = 1, or ωdt − 3π/4 = (π/2)± 2nπ [n = integer].
The first time this occurs after t = 0 is when ωdt− 3π/4 = π/2 (as in part (a), n = 0). Therefore,

t =
5π

4ωd
=

5π

4(350 rad/s)
= 1.12× 10−2 s .

(c) The current lags the emf by +π
2 rad, so the circuit element must be an inductor.

(d) The current amplitude I is related to the voltage amplitude VL by VL = IXL, where XL is the
inductive reactance, given byXL = ωdL. Furthermore, since there is only one element in the circuit,
the amplitude of the potential difference across the element must be the same as the amplitude of
the generator emf: VL = Em . Thus, Em = IωdL and

L =
Em
Iωd

=
30.0 V

(620× 10−3 A)(350 rad/s)
= 0.138 H .

36. (a) The circuit consists of one generator across one capacitor; therefore, Em = VC . Consequently, the
current amplitude is

I =
Em
XC

= ωCEm = (377 rad/s)(4.15× 10−6 F)(25.0 V) = 3.91× 10−2 A .

(b) When the current is at a maximum, the charge on the capacitor is changing at its largest rate. This
happens not when it is fully charged (±qmax ), but rather as it passes through the (momentary)
states of being uncharged (q = 0). Since q = CV , then the voltage across the capacitor (and at the
generator, by the loop rule) is zero when the current is at a maximum. Stated more precisely, the
time-dependent emf E(t) and current i(t) have a φ = −90◦ phase relation, implying E(t) = 0 when
i(t) = I. The fact that φ = −90◦ = −π/2 rad is used in part (c).
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(c) Consider Eq. 32-28 with E = − 1
2Em . In order to satisfy this equation, we require sin(ωdt) = −1/2.

Now we note that the problem states that E is increasing in magnitude, which (since it is already
negative) means that it is becoming more negative. Thus, differentiating Eq. 32-28 with respect to
time (and demanding the result be negative) we must also require cos(ωdt) < 0. These conditions
imply that ωt must equal (2nπ − 5π/6) [n = integer]. Consequently, Eq. 33-29 yields (for all values
of n)

i = I sin

(

2nπ − 5π

6
+
π

2

)

=
(

3.91× 10−3 A
)

(

−
√

3

2

)

= −3.38× 10−2 A .

37. (a) Now XC = 0, while R = 160 Ω and XL = 86.7 Ω remain unchanged. Therefore, the impedance is

Z =
√

R2 +X2
L =

√

(160 Ω)2 + (86.7 Ω)2 = 182 Ω .

The current amplitude is now found to be

I =
Em
Z

=
36.0 V

182 Ω
= 0.198 A .

The phase angle is, from Eq. 33-65,

φ = tan−1

(

XL −XC

R

)

= tan−1

(

86.7 Ω− 0

160 Ω

)

= 28.5◦ .

(b) We first find the voltage amplitudes across the circuit elements:

VR = IR = (0.198 A)(160 Ω) ≈ 32 V

VL = IXL = (0.216 A)(86.7 Ω) ≈ 17 V

This is an inductive circuit, so Em leads I. The phasor diagram is drawn to scale below.
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.

.

.

.

.

.
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.

.

.

.

.

.

.

VR

Em

VL

φ

38. (a) Now XL = 0, while R = 160 Ω and XC = 177 Ω remain as shown in the Sample Problem. Therefore,
the impedance, current amplitude and phase angle are

Z =
√

R2 +X2
C =

√

(160 Ω)2 + (177 Ω)2 = 239 Ω ,

I =
Em
Z

=
36.0 V

239 Ω
= 0.151 A ,

φ = tan−1

(

XL −XC

R

)

= tan−1

(

0− 177 Ω

160 Ω

)

= −47.9◦ .
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(b) We first find the voltage amplitudes across the circuit elements:

VR = IR = (0.151 A)(160 Ω) ≈ 24 V

VC = IXC = (0.151 A)(177 Ω) ≈ 27 V

The circuit is capacitive, so I leads Em . The phasor diagram is drawn to scale below.
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39. (a) The capacitive reactance is

XC =
1

ωdC
=

1

2πfdC
=

1

2π(60.0 Hz)(70.0× 10−6 F)
= 37.9 Ω .

The inductive reactance 86.7 Ω is unchanged. The new impedance is

Z =
√

R2 + (XL −XC)2 =
√

(160 Ω)2 + (37.9 Ω− 86.7 Ω)2 = 167 Ω .

The current amplitude is

I =
Em
Z

=
36.0 V

167 Ω
= 0.216 A .

The phase angle is

φ = tan−1

(

XL −XC

R

)

= tan−1

(

86.7 Ω− 37.9 Ω

160 Ω

)

= 17.0◦ .

(b) We first find the voltage amplitudes across the circuit elements:

VR = IR = (0.216 A)(160 Ω) = 34.6 V

VL = IXL = (0.216 A)(86.7 Ω) = 18.7 V

VC = IXC = (0.216 A)(37.9 Ω) = 8.19 V

Note that XL > XC , so that Em leads I. The phasor diagram is drawn to scale below.
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40. (a) The resonance frequency f0 of the circuit is about (1.50 kHz + 1.30 kHz)/2 = 1.40 kHz. Thus, from
2πf0 = (LC)−1/2 we get

L =
1

4π2f2
0C

=
1

4π2(1.40× 103 Hz)2(5.50× 10−6 F)
= 2.35× 10−3 H .

(b) From the resonance curves shown in the textbook, we see that as R increases the resonance curve
gets more spread out, so the two frequencies at which the amplitude is at half-maximum level will
move away from each other.

41. The amplitude of the voltage across the inductor in an RLC series circuit is given by VL = IXL = IωdL.
At resonance, the driving angular frequency equals the natural angular frequency: ωd = ω = 1/

√
LC.

For the given circuit

XL =
L√
LC

=
1.0 H

√

(1.0 H)(1.0× 10−6 F)
= 1000 Ω .

At resonance the capacitive reactance has this same value, and the impedance reduces simply: Z = R.
Consequently,

I =
Em
Z

∣

∣

∣

∣

resonance

=
Em
R

=
10 V

10 Ω
= 1.0 A .

The voltage amplitude across the inductor is therefore

VL = IXL = (1.0 A)(1000 Ω) = 1000 V

which is much larger than the amplitude of the generator emf.

42. (a) We note that we obtain the maximum value in Eq. 33-28 when we set

t =
π

2ωd
=

1

4f
=

1

4(60)
= 0.00417 s

or 4.17 ms. The result is Em sin(π/2) = Em sin(90◦) = 36.0 V. We note, for reference in the
subsequent parts, that at t = 4.17 ms, the current is

i = I sin(ωdt− φ) = I sin(90◦ − (−29.4◦)) = (0.196 A) cos(29.4◦) = 0.171 A

using Eq. 33-29 and the results of the Sample Problem.

(b) At t = 4.17 ms, Ohm’s law directly gives

vR = iR = (I cos(29.4◦))R(0.171 A)(160 Ω) = 27.3 V .

(c) The capacitor voltage phasor is 90◦ less than that of the current. Thus, at t = 4.17 ms, we obtain

vC = I sin(90◦ − (−29.4◦)− 90◦)XC = IXC sin(29.4◦) = (0.196 A)(177 Ω) sin(29.4◦) = 17.0 V .

(d) The inductor voltage phasor is 90◦ more than that of the current. Therefore, at t = 4.17 ms, we
find

vL = I sin(90◦− (−29.4◦) + 90◦)XL = −IXL sin(29.4◦) = −(0.196 A)(86.7 Ω) sin(29.4◦) = −8.3 V .

(e) Our results for parts (b), (c) and (d) add to give 36.0 V, the same as the answer for part (a).

43. The resistance of the coil is related to the reactances and the phase constant by Eq. 33-65. Thus,

XL −XC

R
=
ωdL− 1/ωdC

R
= tanφ ,
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which we solve for R:

R =
1

tanφ

(

ωdL−
1

ωdC

)

=
1

tan 75◦

[

(2π)(930 Hz)(8.8× 10−2 H)− 1

(2π)(930 Hz)(0.94× 10−6 F)

]

= 89 Ω .

44. (a) The capacitive reactance is

XC =
1

2πfC
=

1

2π(400 Hz)(24.0× 10−6 F)
= 16.6 Ω .

(b) The impedance is

Z =
√

R2 + (XL −XC)2 =
√

R2 + (2πfL−XC)2

=
√

(220 Ω)2 + [2π(400 Hz)(150× 10−3 H)− 16.6 Ω]2 = 422 Ω .

(c) The current amplitude is

I =
Em
Z

=
220 V

422 Ω
= 0.521 A .

(d) Now XC ∝ C−1
eq . Thus, XC increases as Ceq decreases.

(e) Now Ceq = C/2, and the new impedance is

Z =
√

(220 Ω)2 + [2π(400 Hz)(150× 10−3 H)− 2(16.6 Ω)]2 = 408 Ω < 422 Ω .

Therefore, the impedance decreases.

(f) Since I ∝ Z−1, it increases.

45. (a) For a given amplitude (E)m of the generator emf, the current amplitude is given by

I =
(E)m

Z
=

(E)m
√

R2 + (ωdL− 1/ωdC)2
.

We find the maximum by setting the derivative with respect to ωd equal to zero:

dI

dωd
= −(E)m

[

R2 + (ωdL− 1/ωdC)2
]−3/2

[

ωdL−
1

ωdC

] [

L+
1

ω2
dC

]

.

The only factor that can equal zero is ωdL − (1/ωdC); it does so for ωd = 1/
√
LC = ω. For this

circuit,

ωd =
1√
LC

=
1

√

(1.00 H)(20.0× 10−6 F)
= 224 rad/s .

(b) When ωd = ω, the impedance is Z = R, and the current amplitude is

I =
(E)m

R
=

30.0 V

5.00 Ω
= 6.00 A .

(c) We want to find the (positive) values of ωd for which I = (E)m

2R :

(E)m
√

R2 + (ωdL− 1/ωdC)2
=

(E)m

2R
.
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This may be rearranged to yield
(

ωdL−
1

ωdC

)2

= 3R2 .

Taking the square root of both sides (acknowledging the two ± roots) and multiplying by ωdC, we
obtain

ω2
d (LC)± ωd

(√
3CR

)

− 1 = 0 .

Using the quadratic formula, we find the smallest positive solution

ω2 =
−
√

3CR +
√

3C2R2 + 4LC

2LC

=
−
√

3(20.0× 10−6 F)(5.00 Ω)

2(1.00 H)(20.0× 10−6 F)

+

√

3(20.0× 10−6 F)2(5.00 Ω)2 + 4(1.00 H)(20.0× 10−6 F)

2(1.00 H)(20.0× 10−6 F)

= 219 rad/s ,

and the largest positive solution

ω1 =
+
√

3CR+
√

3C2R2 + 4LC

2LC

=
+
√

3(20.0× 10−6 F)(5.00 Ω)

2(1.00 H)(20.0× 10−6 F)

+

√

3(20.0× 10−6 F)2(5.00 Ω)2 + 4(1.00 H)(20.0× 10−6 F)

2(1.00 H)(20.0× 10−6 F)

= 228 rad/s .

(d) The fractional width is
ω1 − ω2

ω0
=

228 rad/s− 219 rad/s

224 rad/s
= 0.04 .

46. Four possibilities exist: (1) C1 = 4.00µF is used alone; (2) C2 = 6.00µF is used alone; (3) C1 and C2 are
connected in series; and (4) C1 and C2 are connected in parallel. The corresponding resonant frequencies
are

f1 =
1

2π
√
LC1

=
1

2π
√

(2.00× 10−3 H)(4.00× 10−6 F)
= 1.78× 103 Hz

f2 =
1

2π
√
LC2

=
1

2π
√

(2.00× 10−3 H)(6.00× 10−6 F)
= 1.45× 103 Hz

f3 =
1

2π
√

LC1C2/(C1 + C2)
= 2.30× 103 Hz

f4 =
1

2π
√

L(C1 + C2)
= 1.13× 103 Hz .

47. We use the expressions found in Problem 45:

ω1 =
+
√

3CR +
√

3C2R2 + 4LC

2LC

ω2 =
−
√

3CR +
√

3C2R2 + 4LC

2LC
.
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We also use Eq. 33-4. Thus,

∆ωd

ω
=
ω1 − ω2

ω
=

2
√

3CR
√
LC

2LC
= R

√

3C

L
.

For the data of Problem 45,

∆ωd

ω
= (5.00 Ω)

√

3(20.0× 10−6 F)

1.00 H
= 3.87× 10−2 .

This is in agreement with the result of Problem 45. The method of Problem 45, however, gives only one
significant figure since two numbers close in value are subtracted (ω1−ω2). Here the subtraction is done
algebraically, and three significant figures are obtained.

48. (a) Since Leq = L1 + L2 and Ceq = C1 + C2 + C3 for the circuit, the resonant frequency is

ω =
1

2π
√

LeqCeq

=
1

2π
√

(L1 + L2)(C1 + C2 + C3)

=
1

2π
√

(1.70× 10−3 H + 2.30× 10−3 H)(4.00× 10−6 F + 2.50× 10−6 F + 3.50× 10−6 F)

= 796 Hz .

(b) The resonant frequency does not depend on R so it will not change as R increases.

(c) Since ω ∝ (L1 + L2)
−1/2, it will decrease as L1 increases.

(d) Since ω ∝ C−1/2
eq and Ceq decreases as C3 is removed, ω will increase.

49. The average power dissipated in resistance R when the current is alternating is given by Pavg = I2
rmsR,

where Irms is the root-mean-square current. Since Irms = I/
√

2, where I is the current amplitude, this
can be written Pavg = I2R/2. The power dissipated in the same resistor when the current id is direct is
given by P = i2dR. Setting the two powers equal to each other and solving, we obtain

id =
I√
2

=
2.60 A√

2
= 1.84 A .

50. Since the impedance of the voltmeter is large, it will not affect the impedance of the circuit when
connected in parallel with the circuit. So the reading will be 100 V in all three cases.

51. The amplitude (peak) value is

Vmax =
√

2Vrms =
√

2(100 V) = 141 V .

52. (a) We refer to problem 34, part (c). The power delivered by the generator at this instant is P =
E(t)i(t) = Em sin(2nπ − π/6)I sin(π/3) = −EmI sin(π/6) sin(π/3). This is less than zero, so it is
taking energy from the rest of the circuit.

(b) We refer to problem 36, part (c). The power delivered by the generator at this instant is P =
E(t)i(t) = Em sin(2nπ − π/6)I sin(−2π/3) = EmI sin(π/6) sin(2π/3). Since this is positive, it is
supplying energy to the rest of the system.

53. We use Pavg = I2
rmsR = 1

2I
2R.

• Pavg = 0, since R = 0.

• Pavg = 1
2I

2R = 1
2 (0.600 A)2(50 Ω) = 9.0 W.

• Pavg = 1
2I

2R = 1
2 (0.198 A)2(160 Ω) = 3.14 W.

• Pavg = 1
2I

2R = 1
2 (0.151 A)2(160 Ω) = 1.82 W.



828 CHAPTER 33.

54. We start with Eq. 33-76:

Pavg = ErmsIrms cosφ = Erms

(Erms

Z

)(

R

Z

)

=
E2
rmsR

Z2
.

For a purely resistive circuit, Z = R, and this result reduces to Eq. 27-23 (with V replaced with Erms ).
This is also the case for a series RLC circuit at resonance. The average rate for dissipating energy is, of
course, zero if R = 0, as would be the case for a purely inductive circuit.

55. (a) Using Eq. 33-61, the impedance is

Z =
√

(12.0 Ω)2 + (1.30 Ω− 0)2 = 12.1 Ω .

(b) We use the result of problem 54:

Pavg =
E2
rmsR

Z2
=

(120 V)2(12.0 Ω)

(12.1 Ω)2
= 1.18× 103 W .

56. The current in the circuit satisfies i(t) = I sin(ωdt− φ), where

I =
Em
Z

=
Em

√

R2 + (ωdL− 1/ωdC)2

=
45.0 V

√

(16.0 Ω)2 + {(3000 rad/s)(9.20 mH)− 1/[(3000 rad/s)(31.2µF)]}2

= 1.93 A

and

φ = tan−1

(

XL −XC

R

)

= tan−1

(

ωdL− 1/ωdC

R

)

= tan−1

[

(3000 rad/s)(9.20 mH)

16.0 Ω
− 1

(3000 rad/s)(16.0 Ω)(31.2µF)

]

= 46.5◦ .

(a) The power supplied by the generator is

Pg = i(t)E(t) = I sin(ωdt− φ)Em sinωdt

= (1.93 A)(45.0 V) sin[(3000 rad/s)(0.442 ms)] sin[(3000 rad/s)(0.442 ms)− 46.5◦]

= 41.4 W .

(b) The rate at which the energy in the capacitor changes is

Pc = − d

dt

(

q2

2C

)

= −i q
C

= −iVc

= −I sin(ωdt− φ)

(

I

ωdC

)

cos(ωdt− φ) = − I2

2ωdC
sin[2(ωdt− φ)]

= − (1.93 A)2

2(3000 rad/s)(31.2× 10−6 F)
sin[2(3000 rad/s)(0.442 ms)− 2(46.5◦)]

= −17.0 W .
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(c) The rate at which the energy in the inductor changes is

Pi =
d

dt

(

1

2
Li2
)

= Li
di

dt
= LI sin(ωdt− φ)

d

dt
[I sin(ωdt− φ)]

=
1

2
ωdLI

2 sin[2(ωdt− φ)]

=
1

2
(3000 rad/s)(1.93 A)2(9.20 mH) sin[2(3000 rad/s)(0.442 ms)− 2(46.5◦)]

= 44.1 W .

(d) The rate at which energy is being dissipated by the resistor is

Pr = i2R = I2R sin2(ωdt− φ)

= (1.93 A)2(16.0 Ω) sin2 [(3000 rad/s)(0.442 ms)− 46.5◦]

= 14.4 W .

(e) The negative result for Pi means that energy is being taken away from the inductor at this particular
time.

(f) Pi + Pr + Pc = 44.1W− 17.0 W + 14.4 W = 41.5 W = Pg.

57. (a) The power factor is cosφ, where φ is the phase constant defined by the expression i = I sin(ωt−φ).
Thus, φ = −42.0◦ and cosφ = cos(−42.0◦) = 0.743.

(b) Since φ < 0, ωt− φ > ωt. The current leads the emf.

(c) The phase constant is related to the reactance difference by tanφ = (XL − XC)/R. We have
tanφ = tan(−42.0◦) = −0.900, a negative number. Therefore, XL−XC is negative, which leads to
XC > XL. The circuit in the box is predominantly capacitive.

(d) If the circuit were in resonance XL would be the same as XC , tanφ would be zero, and φ would be
zero. Since φ is not zero, we conclude the circuit is not in resonance.

(e) Since tanφ is negative and finite, neither the capacitive reactance nor the resistance are zero. This
means the box must contain a capacitor and a resistor. The inductive reactance may be zero, so
there need not be an inductor. If there is an inductor its reactance must be less than that of the
capacitor at the operating frequency.

(f) The average power is

Pavg =
1

2
EmI cosφ =

1

2
(75.0 V)(1.20 A)(0.743) = 33.4 W .

(g) The answers above depend on the frequency only through the phase constant φ, which is given. If
values were given for R, L and C then the value of the frequency would also be needed to compute
the power factor.

58. This circuit contains no reactances, so Erms = IrmsRtotal . Using Eq. 33-71, we find the average dissipated
power in resistor R is

PR = I2
rmsR =

( Em
r +R

)2

R .

In order to maximize PR we set the derivative equal to zero:

dPR

dR
=
E2

m[(r +R)2 − 2(r +R)R]

(r +R)4
=
E2
m(r −R)

(r + R)3
= 0 =⇒ R = r
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59. We use the result of problem 54:

Pavg =
(E)2mR

2Z2
=

(E)2mR

2 [R2 + (ωdL− 1/ωdC)2]
.

We use the expression Z =
√

R2 + (ωdL− 1/ωdC)2 for the impedance in terms of the angular frequency.

(a) Considered as a function of C, Pavg has its largest value when the factor R2 + (ωdL− 1/ωdC)2 has
the smallest possible value. This occurs for ωdL = 1/ωdC, or

C =
1

ω2
dL

=
1

(2π)2(60.0 Hz)2(60.0× 10−3 H)
= 1.17× 10−4 F .

The circuit is then at resonance.

(b) In this case, we want Z2 to be as large as possible. The impedance becomes large without bound
as C becomes very small. Thus, the smallest average power occurs for C = 0 (which is not very
different from a simple open switch).

(c) When ωdL = 1/ωdC, the expression for the average power becomes

Pavg =
(E)2m
2R

,

so the maximum average power is in the resonant case and is equal to

Pavg =
(30.0 V)2

2(5.00 Ω)
= 90.0 W .

On the other hand, the minimum average power is Pavg = 0 (as it would be for an open switch).

(d) At maximum power, the reactances are equal: XL = XC . The phase angle φ in this case may be
found from

tanφ =
XL −XC

R
= 0 ,

which implies φ = 0. On the other hand, at minimum power XC ∝ 1/C is infinite, which leads us
to set tanφ = −∞. In this case, we conclude that φ = −90◦.

(e) At maximum power, the power factor is cosφ = cos 0◦ = 1, and at minimum power, it is cosφ =
cos(−90◦) = 0.

60. (a) The power consumed by the light bulb is P = I2R/2. So we must let Pmax/Pmin = (I/Imin)
2 = 5,

or
(

I

Imin

)2

=

( Em/Zmin

Em/Zmax

)2

=

(

Zmax

Zmin

)2

=

(

√

R2 + (ωLmax)2

R

)2

= 5 .

We solve for Lmax:

Lmax =
2R

ω
=

2(120 V)2/1000 W

2π(60.0 Hz)
= 7.64× 10−2 H .

(b) Now we must let
(

Rmax +Rbulb

Rbulb

)2

= 5 ,

or

Rmax = (
√

5− 1)Rbulb = (
√

5− 1)
(120 V)2

1000 W
= 17.8 Ω .

This is not done because the resistors would consume, rather than temporarily store, electromag-
netic energy.
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61. (a) The rms current is

Irms =
Erms

Z
=

Erms
√

R2 + (2πfL− 1/2πfC)2

=
75.0 V

√

(15.0 Ω)2 + {2π(550 Hz)(25.0 mH)− 1/[2π(550 Hz)(4.70µF)]}2

= 2.59 A .

(b) The various rms voltages are:

Vab = IrmsR = (2.59 A)(15.0 Ω) = 38.8 V

Vbc = IrmsXC =
Irms

2πfC
=

2.59 A

2π(550 Hz)(4.70µF)
= 159 V

Vcd = IrmsXL = 2πIrmsfL = 2π(2.59 A)(550 Hz)(25.0 mH) = 224 V

Vbd = |Vbc − Vcd| = |159.5 V− 223.7 V| = 64.2 V

Vad =
√

V 2
ab + V 2

bd =
√

(38.8 V)2 + (64.2 V)2 = 75.0 V

(c) For L and C, the rate is zero since they do not dissipate energy. For R,

PR =
V 2

ab

R
=

(38.8 V)2

15.0 Ω
= 100 W .

62. We use Eq. 33-79 to find

Vs = Vp

(

Ns

Np

)

= (100 V)

(

500

50

)

= 1.00× 103 V .

63. (a) The stepped-down voltage is

Vs = Vp

(

Ns

Np

)

= (120 V)

(

10

500

)

= 2.4 V .

(b) By Ohm’s law, the current in the secondary is

Is =
Vs

Rs
=

2.4 V

15 Ω
= 0.16 A .

We find the primary current from Eq. 33-80:

Ip = Is

(

Ns

Np

)

= (0.16 A)

(

10

500

)

= 3.2× 10−3 A .

64. Step up:

• We use T1T2 as primary and T1T3 as secondary coil: V13/V12 = (800 + 200)/200 = 5.00.

• We use T1T2 as primary and T2T3 as secondary coil: V23/V13 = 800/200 = 4.00.

• We use T2T3 as primary and T1T3 as secondary coil: V13/V23 = (800 + 200)/800 = 1.25.

Step down: By exchanging the primary and secondary coils in each of the three cases above we get the
following possible ratios:

• 1/5.00 = 0.200

• 1/4.00 = 0.250
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• 1/1.25 = 0.800

65. The amplifier is connected across the primary windings of a transformer and the resistor R is connected
across the secondary windings. If Is is the rms current in the secondary coil then the average power
delivered to R is Pavg = I2

sR. Using Is = (Np/Ns)Ip, we obtain

Pavg =

(

IpNp

Ns

)2

R .

Next, we find the current in the primary circuit. This is effectively a circuit consisting of a generator
and two resistors in series. One resistance is that of the amplifier (r), and the other is the equivalent
resistance Req of the secondary circuit. Therefore,

Ip =
Erms

r +Req
=

Erms

r + (Np/Ns)2R

where Eq. 33-82 is used for Req. Consequently,

Pavg =
E2(Np/Ns)

2R

[r + (Np/Ns)2R]
2 .

Now, we wish to find the value of Np/Ns such that Pavg is a maximum. For brevity, let x = (Np/Ns)
2.

Then

Pavg =
E2Rx

(r + xR)2
,

and the derivative with respect to x is

dPavg

dx
=
E2R(r − xR)

(r + xR)3
.

This is zero for x = r/R = (1000 Ω)/(10 Ω) = 100. We note that for small x, Pavg increases linearly with
x, and for large x it decreases in proportion to 1/x. Thus x = r/R is indeed a maximum, not a minimum.
Recalling x = (Np/Ns)

2, we conclude that the maximum power is achieved for Np/Ns =
√
x = 10. The

diagram below is a schematic of a transformer with a ten to one turns ratio. An actual transformer
would have many more turns in both the primary and secondary coils.
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66. The effective resistance Reff satisfies I2
rmsReff = Pmechanical, or

Reff =
Pmechanical

I2
rms

=
(0.100 hp)(746 W/hp)

(0.650 A)2
= 177 Ω .

This is not the same as the resistance R of its coils, but just the effective resistance for power transfer
from electrical to mechanical form. In fact I2

rmsR would not give Pmechanical but rather the rate of energy
loss due to thermal dissipation.
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67. The rms current in the motor is

Irms =
Erms

Z
=

Erms
√

R2 +X2
L

=
420 V

√

(45.0 Ω)2 + (32.0 Ω)2
= 7.61 A .

68. We use nT/2 to represent the integer number of half-periods specified in the problem. Note that
T = 2π/ω. We use the calculus-based definition of an average of a function:

[

sin2(ωt− φ)
]

avg
=

1

nT/2

∫ nT
2

0

sin2(ωt− φ) dt

=
2

nT

∫ nT
2

0

1− cos(2ωt− 2φ)

2
dt

=
2

nT

[

t

2
− 1

4ω
sin(2ωt− 2φ)

]∣

∣

∣

∣

nT
2

0

=
1

2
− 1

2nTω

[

sin(nωT − 2φ) + sin 2φ

]

.

Since nωT = nω(2π/ω) = 2nπ, we have sin(nωT − 2φ) = sin(2nπ − 2φ) = − sin 2φ so [sin(nωT − 2φ) +
sin 2φ] = 0. Thus,

[

sin2(ωt− φ)
]

avg
=

1

2
.

69. (a) The energy stored in the capacitor is given by UE = q2/2C. Since q is a periodic function of t with
period T , so must be UE . Consequently, UE will not be changed over one complete cycle. Actually,
UE has period T/2, which does not alter our conclusion.

(b) Similarly, the energy stored in the inductor is UB = 1
2 i

2L. Since i is a periodic function of t with
period T , so must be UB.

(c) The energy supplied by the generator is

PavgT = (IrmsErms cosφ)T =

(

1

2
T

)

EmI cosφ

where we substitute Irms = I/
√

2 and Erms = Em/
√

2.

(d) The energy dissipated by the resistor is

Pavg,resistor T = (IrmsVR)T = Irms(IrmsR)T =

(

1

2
T

)

I2R .

(e) Since EmI cosφ = EmI(VR/Em) = EmI(IR/Em) = I2R, the two quantities are indeed the same.

70. (a) The rms current in the cable is Irms = P/Vt = 250 × 103 W/(80 × 103 V) = 3.125 A. The rms
voltage drop is then ∆V = IrmsR = (3.125 A)(2)(0.30 Ω) = 1.9 V, and the rate of energy dissipation
is Pd = I2

rmsR = (3.125 A)(2)(0.60 Ω) = 5.9 W.

(b) Now Irms = 250 × 103 W/(8.0 × 103 V) = 31.25 A, so ∆V = (31.25 A)(0.60 Ω) = 19 V and Pd =
(3.125 A)2(0.60 Ω) = 5.9× 102 W.

(c) Now Irms = 250× 103 W/(0.80 × 103 V) = 312.5 A, so ∆V = (312.5 A)(0.60 Ω) = 1.9 × 102 V and
Pd = (312.5 A)2(0.60 Ω) = 5.9 × 104 W. Both the rate of energy dissipation and the voltage drop
increase as Vt decreases. Therefore, to minimize these effects the best choice among the three Vt’s
above is Vt = 80 kV.

71. (a) The impedance is

Z =
Em
I

=
125 V

3.20 A
= 39.1 Ω .
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(b) From VR = IR = Em cosφ, we get

R =
Em cosφ

I
=

(125 V) cos(0.982 rad)

3.20 A
= 21.7 Ω .

(c) Since XL−XC ∝ sinφ = sin(−0.982 rad), we conclude that XL < XC . The circuit is predominantly
capacitive.

72. (a) The phase constant is given by

φ = tan−1

(

VL − VC

R

)

= tan−1

(

VL − VL/2.00

VL/2.00

)

= tan−1(1.00) = 45.0◦ .

(b) We solve R from Em cosφ = IR:

R =
Em cosφ

I
=

(30.0 V)(cos 45◦)

300× 10−3 A
= 70.7 Ω .

73. (a) We solve L from Eq. 33-4, using the fact that ω = 2πf :

L =
1

4π2f2C
=

1

4π2(10.4× 103 Hz)2(340× 10−6 F)
= 6.89× 10−7 H .

(b) The total energy may be figured from the inductor (when the current is at maximum):

U =
1

2
LI2 =

1

2
(6.89× 10−7 H)(7.20× 10−3 A)2 = 1.79× 10−11 J .

(c) We solve for Q from U = 1
2Q

2/C:

Q =
√

2CU =
√

2(340× 10−6 F)(1.79× 10−11 J) = 1.10× 10−7 C .

74. (a) Let ωt− π/4 = π/2 to obtain t = 3π/4ω = 3π/[4(350 rad/s)] = 6.73× 10−3 s.

(b) Let ωt+ π/4 = π/2 to obtain t = π/4ω = π/[4(350 rad/s)] = 2.24× 10−3 s.

(c) Since i leads E in phase by π/2, the element must be a capacitor.

(d) We solve C from XC = (ωC)−1 = Em/I:

C =
I

Emω
=

6.20× 10−3 A

(30.0 V)(350 rad/s)
= 5.90× 10−5 F .

75. From the problem statement 2πf0 = (LC)−1/2 = 6000 Hz, Z =
√

R2 + (2πf1L− 1/2πf1C)2 = 1000 Ω
where f1 = 8000 Hz, and cosφ = R/Z = cos 45◦. We solve these equations for the unknowns.

(a) R = Z cosφ = (1000 Ω) cos45◦ = 707 Ω

(b) The self-inductance is

L =

√
Z2 −R2

2π(f1 − f2
0/f1)

=

√

(1000 Ω)2 − (707 Ω)2

2π[8000 Hz− (6000 Hz)2/8000 Hz]
= 3.22× 10−2 H .

(c) The capacitance is

C =
1

4π2f2
0L

=
1

4π2(6000 Hz)2(3.22× 10−2 H)
= 2.19× 10−8 F .



835

76. (a) From Eq. 33-65, we have

φ = tan−1

(

VL − VC

VR

)

= tan−1

(

VL − (VL/1.50)

(VL/2.00)

)

which becomes tan−1 2/3 = 33.7◦ or 0.588 rad.

(b) Since φ > 0, it is inductive (XL > XC).

(c) We have VR = IR = 9.98 V, so that VL = 2.00VR = 20.0 V and VC = VL/1.50 = 13.3 V. Therefore,
from Eq. 33-60,

Em =

√

V 2
R + (VL − VC)

2

we find Em = 12.0 V.

77. (a) With f understood to be in Hertz, the capacitive reactance is XC =
[

(2π)(45× 10−6 F)f
]−1

.

(b) The resistance, reactance and impedance are plotted over the range 10 ≤ f ≤ 70 Hz. The horizontal
line is R, and the curve that crosses that line is XC . SI units are understood.
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400
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(c) From the graph, we estimate the crossing point to be at about 18 Hz. More careful considerations
lead to f = 17.7 Hz as the frequency where XC = R.

78. (a) The voltage amplitude for the source is Vs = 100 V = IZ = I
√

R2 +X2
C , from which we can

determine the current at each frequency (the explicit dependence of XC on frequency is stated in
the solution to part (a) of problem 77). This leads to the voltage amplitude across the resistor
VR = IR and the voltage amplitude across the capacitor

VC = IXC =

(

Vs
√

R2 +X2
C

)

XC where XC =
1

2πCf

using the values R = 200 Ω and C = 45× 10−6 F given in problem 77. We show, below, the graphs
of Vs, VR and VC over the range 0 < f < 100 Hz. The falling curve is VC and the rising curve is
VR .
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(b) The graph indicates that VC and VR are equal at roughly 18 Hz. More careful considerations lead
to f = 17.7 Hz as the frequency for which VC = VR .

79. When switch S1 is closed and the others are open, the inductor is essentially out of the circuit and what
remains is an RC circuit. The time constant is τC = RC. When switch S2 is closed and the others
are open, the capacitor is essentially out of the circuit. In this case, what we have is an LR circuit
with time constant τL = L/R. Finally, when switch S3 is closed and the others are open, the resistor is
essentially out of the circuit and what remains is an LC circuit that oscillates with period T = 2π

√
LC.

Substituting L = RτL and C = τC/R, we obtain T = 2π
√
τCτL.

80. (a) From Eq. 33-25,

dq

dt
=

d

dt

[

Qe−Rt/2L cos(ω′t+ φ)
]

= −RQ
2L

e−Rt/2L cos(ω′t+ φ)− ω′Qe−Rt/2L sin(ω′t+ φ)

and

d2q

dt2
=

(

R

2L

)

e−Rt/2L

[(

RQ

2L

)

cos(ω′t+ φ) − ω′Q sin(ω′t+ φ)

]

+ e−Rt/2L

[

RQω′

2L
sin(ω′t+ φ)− ω′2Q cos(ω′t+ φ)

]

.

Substituting these expressions, and Eq. 33-25 itself, into Eq. 33-24, we obtain

Qe−Rt/2L

[

− ω′2L−
(

R

2L

)2

+
1

c

]

cos(ω′t+ φ) = 0 .

Since this equation is valid at any time t, we must have

−ω′2L−
(

R

2L

)2

+
1

C
= 0 =⇒ ω′ =

√

1

LC
−
(

R

2L

)2

=

√

ω2 −
(

R

2L

)2

.

(b) The fractional shift in frequency is

∆f

f
=

∆ω

ω
=

ω − ω′

ω
= 1−

√

(1/LC)− (R/2L)2
√

1/LC
= 1−

√

1− R2C

4L

= 1−
√

1− (100 Ω)2(7.30× 10−6 F)

4(4.40 H)
= 0.00210 = 0.210% .
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81. (a) We find L from XL = ωL = 2πfL:

f =
XL

2πL
=

1.30× 103Ω

2π(45.0× 10−3 H)
= 4.60× 103 Hz .

(b) The capacitance is found from XC = (ωC)−1 = (2πfC)−1:

C =
1

2πfXC
=

1

2π(4.60× 103 Hz)(1.30× 103 Ω)
= 2.66× 10−8 F .

(c) Noting that XL ∝ f and XC ∝ f−1, we conclude that when f is doubled, XL doubles and XC

reduces by half. Thus, XL = 2(1.30×103 Ω) = 2.60×103 Ω and XC = 1.30×103 Ω/2 = 6.50×102 Ω.

82. (a) We consider the following combinations: ∆V12 = V1 − V2, ∆V13 = V1 − V3, and ∆V23 = V2 − V3.
For ∆V12,

∆V12 = A sin(ωdt)−A sin(ωdt− 120◦) = 2A sin

(

120◦

2

)

cos

(

2ωdt− 120◦

2

)

=
√

3A cos(ωdt− 60◦)

where we use sinα− sinβ = 2 sin[(α− β)/2] cos[(α+ β)/2] and sin 60◦ =
√

3/2. Similarly,

∆V13 = A sin(ωdt)−A sin(ωdt−240◦) = 2A sin

(

240◦

2

)

cos

(

2ωdt− 240◦

2

)

=
√

3A cos(ωdt−120◦)

and

∆V23 = A sin(ωdt−120◦)−A sin(ωdt−240◦) = 2A sin

(

120◦

2

)

cos

(

2ωdt− 360◦

2

)

=
√

3A cos(ωdt−180◦) .

All three expressions are sinusoidal functions of t with angular frequency ωd .

(b) We note that each of the above expressions has an amplitude of
√

3A.

83. When the switch is open, we have a series LRC circuit involving just the one capacitor near the upper
right corner. Eq. 33-65 leads to

ωdL− 1
ωdC

R
= tanφo = tan(−20◦) = − tan 20◦ .

Now, when the switch is in position 1, the equivalent capacitance in the circuit is 2C. In this case, we
have

ωdL− 1
2ωdC

R
= tanφ1 = tan 10.0◦ .

Finally, with the switch in position 2, the circuit is simply an LC circuit with current amplitude

I2 =
Em
ZLC

=
Em

√

(

ωdL− 1
ωdC

)2
=

Em
1

ωdC − ωdL

where we use the fact that 1
ωdC > ωdL in simplifying the square root (this fact is evident from the

description of the first situation, when the switch was open). We solve for L, R and C from the three
equations above:

R =
−Em

I2 tanφo
=

120 V

(2.00 A) tan 20.0◦
= 165 Ω

C =
I2

2ωdEm
(

1− tan φ1

tan φo

) =
2.00 A

2(2π)(60.0 Hz)(120 V)
(

1 + tan 10.0◦

tan 20.0◦

) = 1.49× 10−5 F

L =
Em
ωdI2

(

1− 2
tanφ1

tanφo

)

=
120 V

2π(60.0 Hz)(2.00 A)

(

1 + 2
tan 10.0◦

tan 20.0◦

)

0.313 H
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84. (a) Using XC = 1/ωC and VC = ICXC , we find

ω =
IC
CVC

= 5.77× 105 rad/s .

This value is used in the subsequent parts. The period is T = 2π/ω = 1.09× 10−5 s.

(b) Adapting Eq. 26-22 to the notation of this chapter,

UE,max =
1

2
CV 2

C = 4.5× 10−9 J .

(c) The discussion in §33-4 shows that UE,max = UB,max.

(d) We return to Eq. 31-37 (though other, equivalent, approaches could be explored):

di

dt
=
−EL
L

By the loop rule, EL is at its most negative value when the capacitor voltage is at its most positive
(VC). Using this plus the frequency relationship between L and C (Eq. 33-4) leads to

∣

∣

∣

∣

di

dt

∣

∣

∣

∣

max

= ω2CVC = 998 A/s .

(e) Differentiating Eq. 31-51, we have
dUB

dt
= Li

di

dt
.

As in the previous part, we use L = 1/ω2C. We also use a simple sinusoidal form for the current,
i = I sinωt:

dUB

dt
=

1

ω2C
I2 ω sinωt cosωt

where this I is equivalent to the IC used in part (a). Using a well-known trig identity, we obtain

(

dUB

dt

)

max

=
I2

2ω2C
(sin 2ωt)max =

I2

2ω2C

which yields a (maximum) time rate of change (for UB) equal to 2.60× 10−3 J/s.

85. (a) At any time, the total energy U in the circuit is the sum of the energy UE in the capacitor
and the energy UB in the inductor. When UE = 0.500UB (at time t), then UB = 2.00UE and
U = UE + UB = 3.00UE. Now, UE is given by q2/2C, where q is the charge on the capacitor at
time t. The total energy U is given by Q2/2C, where Q is the maximum charge on the capacitor.
Thus, Q2/2C = 3.00q2/2C or q = Q/

√
3.00 = 0.577Q.

(b) If the capacitor is fully charged at time t = 0, then the time-dependent charge on the capacitor is
given by q = Q cosωt. This implies that the condition q = 0.577Q is satisfied when cosωt = 0.557,
or ωt = 0.955 rad. Since ω = 2π/T (where T is the period of oscillation), t = 0.955T/2π = 0.152T .

86. (a) Eqs. 33-4 and 33-14 lead to

Q =
I

ω
= I
√
LC = 1.27× 10−6 C .

(b) We choose the phase constant in Eq. 33-12 to be φ = −π/2, so that i0 = I in Eq. 33-15). Thus,
the energy in the capacitor is

UE =
q2

2C
=
Q2

2C
(sinωt)

2
.
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Differentiating and using the fact that 2 sin θ cos θ = sin 2θ, we obtain

dUE

dt
=
Q2

2C
ω sin 2ωt .

We find the maximum value occurs whenever sin 2ωt = 1, which leads (with n = odd integer) to

t =
1

2ω

nπ

2
=
nπ

4ω
=
nπ

4

√
LC = 8.31× 10−5 s, 2.49× 10−4 s, . . . .

(c) Returning to the above expression for dUE/dt with the requirement that sin 2ωt = 1, we obtain

(

dUE

dt

)

max

=
Q2

2C
ω =

(

I
√
LC
)2

2C

1√
LC

=
I2

2

√

L

C
= 5.44× 10−3 J/s .

87. (a) We observe that ω = 6597 rad/s, and, consequently, XL = 594 Ω and XC = 303 Ω. Since XL > XC ,
the phase angle is positive: φ = +60◦.

(b) From Eq. 33-65, we obtain

R =
XL −XC

tanφ
= 168 Ω .

(c) Since we are already on the “high side” of resonance, increasing f will only decrease the current
further, but decreasing f brings us closer to resonance and, consequently, large values of I.

(d) Increasing L increases XL, but we already have XL > XC . Thus, if we wish to move closer to
resonance (where XL must equal XC), we need to decrease the value of L.

(e) To change the present condition of XC < XL to something closer to XC = XL (resonance, large
current), we can increase XC . Since XC depends inversely on C, this means decreasing C.

88. (a) We observe that ωd = 12566 rad/s. Consequently, XL = 754 Ω and XC = 199 Ω. Hence, Eq. 33-65
gives

φ = tan−1

(

XL −XC

R

)

= 1.22 rad .

(b) We find the current amplitude from Eq. 33-60:

I =
Em

√

R2 + (XL −XC)2
= 0.288 A .

89. From Eq. 33-60, we have
(

220 V

3.00 A

)2

= R2 +X2
L =⇒ XL = 69.3 Ω .

90. (a) We observe that ω = 7540 rad/s, and, consequently, XL = 377 Ω and XC = 15.3 Ω. Therefore,
Eq. 33-64 leads to

Irms =
112 V

√

(35 Ω)2 + (377 Ω− 15 Ω)2
= 0.308 A .

(b) (c) (d) (e) (f) and (g) For the individual elements, we have:

VR,rms = IrmsR = 10.8 V

VC,rms = IrmsXC = 4.73 V

VL,rms = IrmsXL = 116 V

The capacitor and inductor are not dissipative elements; the only power dissipated (by definition)
is in the resistor. If a coil, perhaps referred to as an inductor in building a circuit, is found to have
an internal resistance, then the coil (for purposes of analysis) is taken to be an inductor plus a
resistor. The power dissipated in the resistive element is Pavg = (0.308 A)2(35 Ω) = 3.33 W.
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91. From Eq. 33-4, with ω = 2πf = 4.49× 103 rad/s, we obtain

L =
1

ω2C
= 7.08× 10−3 H .

92. (a) From Eq. 33-4, with ω = 2πf , we have

f =
1

2π
√
LC

= 7.08× 10−3 H .

(b) The maximum current in the oscillator is

imax = IC =
VC

XC
= ωCvmax = 4.00× 10−3 A .

(c) Using Eq. 31-51, we find the maximum magnetic energy:

UB,max =
1

2
Li 2max = 1.6× 10−8 J .

(d) Adapting Eq. 31-37 to the notation of this chapter,

vmax = L

∣

∣

∣

∣

di

dt

∣

∣

∣

∣

max

which yields a (maximum) time rate of change (for i) equal to 2000 A/s.



Chapter 34

1. The time for light to travel a distance d in free space is t = d/c, where c is the speed of light (3.00 ×
108 m/s).

(a) We take d to be 150 km = 150× 103 m. Then,

t =
d

c
=

150× 103 m

3.00× 108 m/s
= 5.00× 10−4 s .

(b) At full moon, the Moon and Sun are on opposite sides of Earth, so the distance traveled by the
light is d = (1.5× 108 km) + 2(3.8× 105 km) = 1.51× 108 km = 1.51× 1011 m. The time taken by
light to travel this distance is

t =
d

c
=

1.51× 1011 m

3.00× 108 m/s
= 500 s = 8.4 min .

(c) We take d to be 2(1.3× 109 km) = 2.6× 1012 m. Then,

t =
d

c
=

2.6× 1012 m

3.00× 108 m/s
= 8.7× 103 s = 2.4 h .

(d) We take d to be 6500 ly and the speed of light to be 1.00 ly/y. Then,

t =
d

c
=

6500 ly

1.00 ly/y
= 6500 y .

The explosion took place in the year 1054− 6500 = −5446 or 5446 BCE.

2. (a)

f =
c

λ
=

3.0× 108 m/s

(1.0× 105)(6.4× 106 m)
= 4.7× 10−3 Hz .

(b)

T =
1

f
=

1

4.7× 10−3 Hz
= 212 s = 3 min 32 s .

3. (a) From Fig. 34-2 we find the wavelengths in question to be about 515 nm and 610 nm.

(b) Again from Fig. 34-2 the wavelength is about 555 nm. Therefore,

f =
c

λ
=

3.00× 108 m/s

555 nm
= 5.41× 1014 Hz ,

and the period is (5.41× 1014 Hz)−1 = 1.85× 10−15 s.

841



842 CHAPTER 34.

4. Since ∆λ≪ λ, we find ∆f is equal to

∣

∣

∣

∣

∆
( c

λ

)

∣

∣

∣

∣

≈ c∆λ

λ2
=

(3.0× 108 m/s)(0.0100× 10−9 m)

(632.8× 10−9 m)2
= 7.49× 109 Hz .

5. (a) Suppose that at time t1, the moon is starting a revolution (on the verge of going behind Jupiter,
say) and that at this instant, the distance between Jupiter and Earth is ℓ1. The time of the start
of the revolution as seen on Earth is t∗1 = t1 + ℓ1/c. Suppose the moon starts the next revolution
at time t2 and at that instant, the Earth-Jupiter distance is ℓ2. The start of the revolution as seen
on Earth is t∗2 = t2 + ℓ2/c. Now, the actual period of the moon is given by T = t2 − t1 and the
period as measured on Earth is

T ∗ = t∗2 − t∗1 = t2 − t1 +
ℓ2
c
− ℓ1

c
= T +

ℓ2 − ℓ1
c

.

The period as measured on Earth is longer than the actual period. This is due to the fact that
Earth moves during a revolution, and light takes a finite time to travel from Jupiter to Earth. For
the situation depicted in Fig. 34-38, light emitted at the end of a revolution travels a longer distance
to get to Earth than light emitted at the beginning. Suppose the position of Earth is given by the
angle θ, measured from x. Let R be the radius of Earth’s orbit and d be the distance from the
Sun to Jupiter. The law of cosines, applied to the triangle with the Sun, Earth, and Jupiter at the
vertices, yields ℓ2 = d2 +R2 − 2dR cos θ. This expression can be used to calculate ℓ1 and ℓ2. Since
Earth does not move very far during one revolution of the moon, we may approximate ℓ2 − ℓ1 by
(dℓ/dt)T and T ∗ by T + (dℓ/dt)(T/c). Now

dℓ

dt
=

2Rd sin θ√
d2 +R2 − 2dR cos θ

dθ

dt
=

2vd sin θ√
d2 +R2 − 2dR cos θ

,

where v = R (dθ/dt) is the speed of Earth in its orbit. For θ = 0, (dℓ/dt) = 0 and T ∗ = T . Since
Earth is then moving perpendicularly to the line from the Sun to Jupiter, its distance from the
planet does not change appreciably during one revolution of the moon. On the other hand, when
θ = 90◦, dℓ/dt = vd/

√
d2 +R2 and

T ∗ = T

(

1 +
vd

c
√
d2 +R2

)

.

The Earth is now moving parallel to the line from the Sun to Jupiter, and its distance from the
planet changes during a revolution of the moon.

(b) Our notation is as follows: t is the actual time for the moon to make N revolutions, and t∗ is the
time for N revolutions to be observed on Earth. Then,

t∗ = t+
ℓ2 − ℓ1
c

,

where ℓ1 is the Earth-Jupiter distance at the beginning of the interval and ℓ2 is the Earth-Jupiter
distance at the end. Suppose Earth is at position x at the beginning of the interval, and at y at
the end. Then, ℓ1 = d−R and ℓ2 =

√
d2 +R2. Thus,

t∗ = t+

√
d2 +R2 − (d−R)

c
.

A value can be found for t by measuring the observed period of revolution when Earth is at x and
multiplying by N . We note that the observed period is the true period when Earth is at x. The
time interval as Earth moves from x to y is t∗. The difference is

t∗ − t =

√
d2 +R2 − (d−R)

c
.
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If the radii of the orbits of Jupiter and Earth are known, the value for t∗− t can be used to compute
c. Since Jupiter is much further from the Sun than Earth,

√
d2 +R2 may be approximated by d

and t∗ − t may be approximated by R/c. In this approximation, only the radius of Earth’s orbit
need be known.

6. The emitted wavelength is

λ =
c

f
= 2πc

√
LC

= 2π(2.998× 108 m/s)
√

(0.253× 10−6 H)(25.0× 10−12 F) = 4.74 m .

7. If f is the frequency and λ is the wavelength of an electromagnetic wave, then fλ = c. The frequency
is the same as the frequency of oscillation of the current in the LC circuit of the generator. That is,
f = 1/2π

√
LC, where C is the capacitance and L is the inductance. Thus

λ

2π
√
LC

= c .

The solution for L is

L =
λ2

4π2Cc2
=

(550× 10−9 m)2

4π2(17× 10−12 F)(2.998× 108 m/s)2
= 5.00× 10−21 H .

This is exceedingly small.

8. The amplitude of the magnetic field in the wave is

Bm =
Em

c
=

3.20× 10−4 V/m

2.998× 108 m/s
= 1.07× 10−12 T .

9. Since the ~E-wave oscillates in the z direction and travels in the x direction, we have Bx = Bz = 0. With
SI units understood, we find

By = Bm cos
[

π × 1015
(

t− x

c

)]

=
2.0 cos[1015π(t− x/c)]

3.0× 108

= (6.7× 10−9) cos
[

1015π
(

t− x

c

)]

10. Using ~S = (1/µ0) ~E× ~B, we see that (on the right hand) letting the thumb be in the ~E direction and the

index finger be in the ~B direction means that the middle finger (held perpendicular to the other two,
making a “triad” of the thumb and two fingers) points in the direction of wave propagation (the direction

of ~S). Holding the right hand in this manner can facilitate checking the directions in the Figures. A

more algebraic approach is to note that ĵ× k̂ = ı̂. This is especially useful for checking Figures 34-6 and
34-7.

11. If P is the power and ∆t is the time interval of one pulse, then the energy in a pulse is

E = P ∆t = (100× 1012 W)(1.0 × 10−9 s) = 1.0× 105 J .

12. The intensity of the signal at Proxima Centauri is

I =
P

4πr2
=

1.0× 106 W

4π[(4.3 ly)(9.46× 1015 m/ly)]2
= 4.8× 10−29 W/m

2
.
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13. The region illuminated on the Moon is a circle with radius R = rθ/2, where r is the Earth-Moon distance
(3.82× 108 m) and θ is the full-angle beam divergence in radians. The area A illuminated is

A = πR2 =
πr2θ2

4
=
π(3.82× 108 m)2(0.880× 10−6 rad)2

4
= 8.88× 104 m2 .

14. The intensity is the average of the Poynting vector:

I = Savg =
cB2

m

2µ0
=

(3.0× 108 m/s)(1.0× 10−4 T)2

2(1.26× 10−6 H/m)2
= 1.2× 106 W/m

2
.

15. (a) The amplitude of the magnetic field in the wave is

Bm =
Em

c
=

5.00 V/m

2.998× 108 m/s
= 1.67× 10−8 T .

(b) The intensity is the average of the Poynting vector:

I = Savg =
E2

m

2µ0c
=

(5.00 V/m)2

2(4π × 10−7 T·m/A)(2.998× 108 m/s)
= 3.31× 10−2 W/m2 .

16. We use I = E2
m/2µ0c to calculate Em:

Em =
√

2µ0Ic =

√

2(4π × 10−7 T·m/A)(1.40× 103 W/m2)(2.998× 108 m/s)

= 1.03× 103 V/m .

The magnetic field amplitude is therefore

Bm =
Em

c
=

1.03× 104 V/m

2.998× 108 m/s
= 3.43× 10−6 T .

17. (a) The magnetic field amplitude of the wave is

Bm =
Em

c
=

2.0 V/m

2.998× 108 m/s
= 6.7× 10−9 T .

(b) The intensity is

I =
E2

m

2µ0c
=

(2.0 V/m)2

2(4π × 10−7 T·m/A)(2.998× 108 m/s)
= 5.3× 10−3 W/m

2
.

(c) The power of the source is

P = 4πr2Iavg = 4π(10 m)2(5.3× 10−3 W/m
2
) = 6.7 W .

18. (a) The power received is

Pr = (1.0× 10−12 W)
π[(1000 ft)(0.3048 m/ft)]2/4

4π(6.37× 106 m)2
= 1.4× 10−22 W .

(b) The power of the source would be

P = 4πr2I = 4π[(2.2× 104 ly)(9.46× 1015 m/ly)]2
[

1.0× 10−12 W

4π(6.37× 106 m)2

]

= 1.1× 1015 W .
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19. (a) The average rate of energy flow per unit area, or intensity, is related to the electric field amplitude
Em by I = E2

m/2µ0c, so

Em =
√

2µ0cI =

√

2(4π × 10−7 H/m)(2.998× 108 m/s)(10× 10−6 W/m
2
)

= 8.7× 10−2 V/m .

(b) The amplitude of the magnetic field is given by

Bm =
Em

c
=

8.7× 10−2 V/m

2.998× 108 m/s
= 2.9× 10−10 T .

(c) At a distance r from the transmitter, the intensity is I = P/4πr2, where P is the power of the
transmitter. Thus

P = 4πr2I = 4π(10× 103 m)2(10× 10−6 W/m
2
) = 1.3× 104 W .

20. The radiation pressure is

pr =
I

c
=

10 W/m2

2.998× 108 m/s
= 3.3× 10−8 Pa .

21. The plasma completely reflects all the energy incident on it, so the radiation pressure is given by pr =
2I/c, where I is the intensity. The intensity is I = P/A, where P is the power and A is the area
intercepted by the radiation. Thus

pr =
2P

Ac
=

2(1.5× 109 W)

(1.00× 10−6 m2)(2.998× 108 m/s)
= 1.0× 107 Pa = 10 MPa .

22. (a) The radiation pressure produces a force equal to

Fr = pr(πR
2
e) =

(

I

c

)

(πR2
e)

=
π(1.4× 103 W/m2)(6.37× 106 m)2

2.998× 108 m/s
= 6.0× 108 N .

(b) The gravitational pull of the Sun on Earth is

Fgrav =
GMsMe

d2
es

=
(6.67× 10−11 N·m2/kg2)(2.0× 1030 kg)(5.98× 1024 kg)

(1.5× 1011 m)2

= 3.6× 1022 N ,

which is much greater than Fr.

23. Since the surface is perfectly absorbing, the radiation pressure is given by pr = I/c, where I is the
intensity. Since the bulb radiates uniformly in all directions, the intensity a distance r from it is given
by I = P/4πr2, where P is the power of the bulb. Thus

pr =
P

4πr2c
=

500 W

4π(1.5 m)2(2.998× 108 m/s)
= 5.9× 10−8 Pa .
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24. (a) We note that the cross section area of the beam is πd2/4, where d is the diameter of the spot
(d = 2.00λ). The beam intensity is

I =
P

πd2/4
=

5.00× 10−3 W

π[(2.00)(633× 10−9 m)]2/4
= 3.97× 109 W/m

2
.

(b) The radiation pressure is

pr =
I

c
=

3.97× 109 W/m
2

2.998× 108 m/s
= 13.2 Pa .

(c) In computing the corresponding force, we can use the power and intensity to eliminate the area
(mentioned in part (a)). We obtain

Fr =

(

πd2

4

)

pr =

(

P

I

)

pr =
(5.00× 10−3 W)(13.2 Pa)

3.97× 109 W/m
2 = 1.67× 10−11 N .

(d) The acceleration of the sphere is

a =
Fr

m
=

Fr

ρ(πd3/6)
=

6(1.67× 10−11 N)

π(5.00× 103 kg/m
3
)[(2.00)(633× 10−9 m)]3

= 3.14× 103 m/s
2
.

25. (a) Since c = λf , where λ is the wavelength and f is the frequency of the wave,

f =
c

λ
=

2.998× 108 m/s

3.0 m
= 1.0× 108 Hz .

(b) The magnetic field amplitude is

Bm =
Em

c
=

300 V/m

2.998× 108 m/s
= 1.00× 10−6 T .

~B must be in the positive z direction when ~E is in the positive y direction in order for ~E× ~B to be
in the positive x direction (the direction of propagation).

(c) The angular wave number is

k =
2π

λ
=

2π

3.0 m
= 2.1 rad/m .

The angular frequency is

ω = 2πf = 2π(1.0× 108 Hz) = 6.3× 108 rad/s .

(d) The intensity of the wave is

I =
E2

m

2µ0c
=

(300 V/m)2

2(4π × 10−7 H/m)(2.998× 108 m/s)
= 119 W/m

2
.

(e) Since the sheet is perfectly absorbing, the rate per unit area with which momentum is delivered to
it is I/c, so

dp

dt
=
IA

c
=

(119 W/m
2
)(2.0 m2)

2.998× 108 m/s
= 8.0× 10−7 N .

The radiation pressure is

pr =
dp/dt

A
=

8.0× 10−7 N

2.0 m2
= 4.0× 10−7 Pa .



847

26. The mass of the cylinder is m = ρ(πd2
1/4)H , where d1 is the diameter of the cylinder. Since it is in

equilibrium

Fnet = mg − Fr =
πHd2

1gρ

4
−
(

πd2
1

4

)(

2I

c

)

= 0 .

We solve for H :

H =
2I

gcρ
=

(

2P

πd2/4

)

1

gcρ

=
8(4.60 W)

π(2.60× 10−3 m)2(9.8 m/s
2
)(3.0× 108 m/s)(1.20× 103 kg/m

3
)

= 4.91× 10−7 m .

27. Let f be the fraction of the incident beam intensity that is reflected. The fraction absorbed is 1 − f .
The reflected portion exerts a radiation pressure of

pr =
2fI0
c

and the absorbed portion exerts a radiation pressure of

pa =
(1− f)I0

c
,

where I0 is the incident intensity. The factor 2 enters the first expression because the momentum of the
reflected portion is reversed. The total radiation pressure is the sum of the two contributions:

ptotal = pr + pa =
2fI0 + (1 − f)I0

c
=

(1 + f)I0
c

.

To relate the intensity and energy density, we consider a tube with length ℓ and cross-sectional area
A, lying with its axis along the propagation direction of an electromagnetic wave. The electromagnetic
energy inside is U = uAℓ, where u is the energy density. All this energy passes through the end in time
t = ℓ/c, so the intensity is

I =
U

At
=
uAℓc

Aℓ
= uc .

Thus u = I/c. The intensity and energy density are positive, regardless of the propagation direction. For
the partially reflected and partially absorbed wave, the intensity just outside the surface is I = I0+fI0 =
(1 + f)I0, where the first term is associated with the incident beam and the second is associated with
the reflected beam. Consequently, the energy density is

u =
I

c
=

(1 + f)I0
c

,

the same as radiation pressure.

28. We imagine the bullets (of mass m and speed v each) which will strike a surface of area A of the plane
within time t to t + ∆t to be contained in a cylindrical volume at time t. Since the number of bullets
contained in the cylinder is N = n(Av∆t) and each bullet changes its momentum by ∆pb = mv, the
rate of change of the total momentum for the bullets that strike the area is

F =
∆Ptotal

∆t
= N

pb

∆t
=

(Av∆t)nmv

∆t
= Anmv2

where n is the number density of the bullets (bullets per unit volume). The pressure is then

pr =
F

A
= nmv2 = 2nK ,

where K = 1
2mv

2. Note that nK is the kinetic energy density. Also note that the relation between
energy and momentum for a bullet is quite different from the relation between those quantities for an
electromagnetic wave.
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29. If the beam carries energy U away from the spaceship, then it also carries momentum p = U/c away.
Since the total momentum of the spaceship and light is conserved, this is the magnitude of the momentum
acquired by the spaceship. If P is the power of the laser, then the energy carried away in time t is U = Pt.
We note that there are 86400 seconds in a day. Thus, p = Pt/c and, if m is mass of the spaceship, its
speed is

v =
p

m
=
Pt

mc
=

(10× 103 W)(86400 s)

(1.5× 103 kg)(2.998× 108 m/s)
= 1.9× 10−3 m/s .

30. We require Fgrav = Fr or

G
mMs

d2
es

=
2IA

c
,

and solve for the area A:

A =
cGmMs

2Id2
es

=
(6.67× 10−11 N·m2/kg2)(1500 kg)(1.99× 1030 kg)(2.998× 108 m/s)

2(1.40× 103 W/m2)(1.50× 1011 m)2

= 9.5× 105 m2 = 0.95 km2 .

31. (a) Let r be the radius and ρ be the density of the particle. Since its volume is (4π/3)r3, its mass is
m = (4π/3)ρr3. Let R be the distance from the Sun to the particle and let M be the mass of the
Sun. Then, the gravitational force of attraction of the Sun on the particle has magnitude

Fg =
GMm

R2
=

4πGMρr3

3R2
.

If P is the power output of the Sun, then at the position of the particle, the radiation intensity is
I = P/4πR2, and since the particle is perfectly absorbing, the radiation pressure on it is

pr =
I

c
=

P

4πR2c
.

All of the radiation that passes through a circle of radius r and area A = πr2, perpendicular to the
direction of propagation, is absorbed by the particle, so the force of the radiation on the particle
has magnitude

Fr = prA =
πPr2

4πR2c
=

Pr2

4R2c
.

The force is radially outward from the Sun. Notice that both the force of gravity and the force
of the radiation are inversely proportional to R2. If one of these forces is larger than the other at
some distance from the Sun, then that force is larger at all distances. The two forces depend on
the particle radius r differently: Fg is proportional to r3 and Fr is proportional to r2. We expect
a small radius particle to be blown away by the radiation pressure and a large radius particle with
the same density to be pulled inward toward the Sun. The critical value for the radius is the value
for which the two forces are equal. Equating the expressions for Fg and Fr, we solve for r:

r =
3P

16πGMρc
.

(b) According to Appendix C, M = 1.99× 1030 kg and P = 3.90× 1026 W. Thus,

r =
3(3.90× 1026 W)

16π(6.67× 10−11 N ·m2/kg
2
)(1.99× 1030 kg)(1.0× 103 kg/m

3
)(3.00× 108 m/s)

= 5.8× 10−7 m .

32. (a) The discussion in §17-5 regarding the argument of the sine function (kx + ωt) makes it clear that

the wave is traveling in the negative y direction. Thus, ~S points in the −ĵ direction.



849

(b) Since ~E × ~B ∝ ~S and ~B points in the ı̂ direction, then we may conclude that ~E points in the −k̂

direction (recall that k̂× ı̂ = ĵ). Therefore, Ex = Ey = 0 and Ez = −cB sin(kx+ ωt).

(c) Since Ex = Ey = 0, the wave is polarized along the z axis.

33. (a) Since the incident light is unpolarized, half the intensity is transmitted and half is absorbed. Thus

the transmitted intensity is I = 5.0 mW/m2. The intensity and the electric field amplitude are
related by I = E2

m/2µ0c, so

Em =
√

2µ0cI =

√

2(4π × 10−7 H/m)(3.00× 108 m/s)(5.0× 10−3 W/m
2
)

= 1.9 V/m .

(b) The radiation pressure is pr = Ia/c, where Ia is the absorbed intensity. Thus

pr =
5.0× 10−3 W/m

2

3.00× 108 m/s
= 1.7× 10−11 Pa .

34. After passing through the first polarizer the initial intensity I0 reduces by a factor of 1/2. After passing
through the second one it is further reduced by a factor of cos2(π − θ1 − θ2) = cos2(θ1 + θ2). Finally,
after passing through the third one it is again reduced by a factor of cos2(π − θ2 − θ3) = cos2(θ2 + θ3).
Therefore,

If
I0

=
1

2
cos2(θ1 + θ2) cos2(θ2 + θ3)

=
1

2
cos2(50◦ + 50◦) cos2(50◦ + 50◦) = 4.5× 10−4 .

35. Let I0 be the intensity of the unpolarized light that is incident on the first polarizing sheet. The
transmitted intensity is I1 = 1

2I0, and the direction of polarization of the transmitted light is θ1 = 40◦

counterclockwise from the y axis in the diagram. The polarizing direction of the second sheet is θ2 = 20◦

clockwise from the y axis, so the angle between the direction of polarization that is incident on that
sheet and the polarizing direction of the sheet is 40◦ + 20◦ = 60◦. The transmitted intensity is

I2 = I1 cos2 60◦ =
1

2
I0 cos2 60◦ ,

and the direction of polarization of the transmitted light is 20◦ clockwise from the y axis. The polarizing
direction of the third sheet is θ3 = 40◦ counterclockwise from the y axis. Consequently, the angle between
the direction of polarization of the light incident on that sheet and the polarizing direction of the sheet
is 20◦ + 40◦ = 60◦. The transmitted intensity is

I3 = I2 cos2 60◦ =
1

2
I0 cos4 60◦ = 3.1× 10−2 .

Thus, 3.1% of the light’s initial intensity is transmitted.

36. As the unpolarized beam of intensity I0 passes the first polarizer, its intensity is reduced to 1
2I0. After

passing through the second polarizer, for which the direction of polarization is at an angle θ from that
of the first one, the intensity is I = 1

2I0 cos2 θ = 1
3I0. Thus, cos2 θ = 2/3, which leads to θ = 35◦.

37. The angle between the direction of polarization of the light incident on the first polarizing sheet and
the polarizing direction of that sheet is θ1 = 70◦. If I0 is the intensity of the incident light, then the
intensity of the light transmitted through the first sheet is

I1 = I0 cos2 θ1 = (43 W/m
2
) cos2 70◦ = 5.03 W/m

2
.

The direction of polarization of the transmitted light makes an angle of 70◦ with the vertical and an
angle of θ2 = 20◦ with the horizontal. θ2 is the angle it makes with the polarizing direction of the second
polarizing sheet. Consequently, the transmitted intensity is

I2 = I1 cos2 θ2 = (5.03 W/m
2
) cos2 20◦ = 4.4 W/m

2
.
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38. In this case, we replace I0 cos2 70◦ by 1
2I0 as the intensity of the light after passing through the first

polarizer. Therefore,

If =
1

2
I0 cos2(90◦ − 70◦) =

1

2
(43 W/m2)(cos2 20◦) = 19 W/m2 .

39. Let I0 be the intensity of the incident beam and f be the fraction that is polarized. Thus, the intensity
of the polarized portion is fI0. After transmission, this portion contributes fI0 cos2 θ to the intensity
of the transmitted beam. Here θ is the angle between the direction of polarization of the radiation
and the polarizing direction of the filter. The intensity of the unpolarized portion of the incident beam
is (1 − f)I0 and after transmission, this portion contributes (1 − f)I0/2 to the transmitted intensity.
Consequently, the transmitted intensity is

I = fI0 cos2 θ +
1

2
(1− f)I0 .

As the filter is rotated, cos2 θ varies from a minimum of 0 to a maximum of 1, so the transmitted intensity
varies from a minimum of

Imin =
1

2
(1− f)I0

to a maximum of

Imax = fI0 +
1

2
(1− f)I0 =

1

2
(1 + f)I0 .

The ratio of Imax to Imin is
Imax

Imin
=

1 + f

1− f .

Setting the ratio equal to 5.0 and solving for f , we get f = 0.67.

40. (a) The fraction of light which is transmitted by the glasses is

If
I0

=
E2

f

E2
0

=
E2

v

E2
v + E2

h

=
E2

v

E2
v + (2.3Ev)2

= 0.16 .

(b) Since now the horizontal component of ~E will pass through the glasses,

If
I0

=
E2

h

E2
v + E2

h

=
(2.3Ev)

2

E2
v + (2.3Ev)2

= 0.84 .

41. (a) The rotation cannot be done with a single sheet. If a sheet is placed with its polarizing direction at
an angle of 90◦ to the direction of polarization of the incident radiation, no radiation is transmitted.
It can be done with two sheets. We place the first sheet with its polarizing direction at some angle
θ, between 0 and 90◦, to the direction of polarization of the incident radiation. Place the second
sheet with its polarizing direction at 90◦ to the polarization direction of the incident radiation. The
transmitted radiation is then polarized at 90◦ to the incident polarization direction. The intensity
is I0 cos2 θ cos2(90◦ − θ) = I0 cos2 θ sin2 θ, where I0 is the incident radiation. If θ is not 0 or 90◦,
the transmitted intensity is not zero.

(b) Consider n sheets, with the polarizing direction of the first sheet making an angle of θ = 90◦/n
relative to the direction of polarization of the incident radiation. The polarizing direction of each
successive sheet is rotated 90◦/n in the same sense from the polarizing direction of the previous
sheet. The transmitted radiation is polarized, with its direction of polarization making an angle of
90◦ with the direction of polarization of the incident radiation. The intensity is I = I0 cos2n(90◦/n).
We want the smallest integer value of n for which this is greater than 0.60I0. We start with n = 2
and calculate cos2n(90◦/n). If the result is greater than 0.60, we have obtained the solution. If it
is less, increase n by 1 and try again. We repeat this process, increasing n by 1 each time, until we
have a value for which cos2n(90◦/n) is greater than 0.60. The first one will be n = 5.
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42. The angle of incidence for the light ray on mirror B is 90◦ − θ. So the outgoing ray r′ makes an angle
90◦−(90◦−θ) = θ with the vertical direction, and is antiparallel to the incoming one. The angle between
i and r′ is therefore 180◦.

43. The law of refraction states

n1 sin θ1 = n2 sin θ2 .

We take medium 1 to be the vacuum, with n1 = 1 and θ1 = 32.0◦. Medium 2 is the glass, with θ2 = 21.0◦.
We solve for n2:

n2 = n1
sin θ1
sin θ2

= (1.00)

(

sin 32.0◦

sin 21.0◦

)

= 1.48 .

44. (a) The law of refraction requires that sin θ1/ sin θ2 = nwater = const. We can check that this is indeed
valid for any given pair of θ1 and θ2. For example sin 10◦/ sin 8◦ = 1.3, and sin 20◦/ sin 15◦30′ = 1.3,
etc.

(b) nwater = 1.3, as shown in part (a).

45. Note that the normal to the refracting surface is vertical in the diagram. The angle of refraction is
θ2 = 90◦ and the angle of incidence is given by tan θ1 = w/h, where h is the height of the tank and w is
its width. Thus

θ1 = tan−1
(w

h

)

= tan−1

(

1.10 m

0.850 m

)

= 52.31◦ .

The law of refraction yields

n1 = n2
sin θ2
sin θ1

= (1.00)

(

sin 90◦

sin 52.31◦

)

= 1.26 ,

where the index of refraction of air was taken to be unity.

46. (a) Approximating n = 1 for air, we have

n1 sin θ1 = (1) sin θ5 =⇒ 56.9◦ = θ5

and with the more accurate value for nair in Table 34-1, we obtain 56.8◦.

(b) Eq. 34-44 leads to

n1 sin θ1 = n2 sin θ2 = n3 sin θ3 = n4 sin θ4

so that

θ4 = sin−1

(

n1

n4
sin θ1

)

= 35.3◦ .

47. Consider a ray that grazes the top of the pole, as shown in the diagram below. Here θ1 = 35◦, ℓ1 = 0.50 m,
and ℓ2 = 1.50 m. The length of the shadow is x + L. x is given by x = ℓ1 tan θ1 = (0.50 m) tan 35◦ =
0.35 m. According to the law of refraction, n2 sin θ2 = n1 sin θ1. We take n1 = 1 and n2 = 1.33 (from
Table 34–1). Then,

θ2 = sin−1

(

sin θ1
n2

)

= sin−1

(

sin 35.0◦

1.33

)

= 25.55◦ .

L is given by

L = ℓ2 tan θ2 = (1.50 m) tan 25.55◦ = 0.72 m .

The length of the shadow is 0.35 m + 0.72 m = 1.07 m.
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48. We use the law of refraction (assuming nair = 1) and the law of sines to determine the paths of various
light rays. The index of refraction for fused quartz can be found in Fig. 34-19. We estimate nblue =
1.463, ny g = 1.459, and nred = 1.456. The light rays as they leave the prism (from the right side of the
prism shown below) are very close together; on the scale we used below, the individual rays are difficult
to resolve. Measured from the surface of the prism (at the face from which they emerge from the prism)
their angles are θblue = 28.51◦, θy g = 28.95◦, and θred = 29.29◦. The angle between the incident rays (on
the left side of the picture) and the dashed line (the axis normal to the left face of the prism) is 35◦.
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49. Let θ be the angle of incidence and θ2 be the angle of refraction at the left face of the plate. Let n be the
index of refraction of the glass. Then, the law of refraction yields sin θ = n sin θ2. The angle of incidence
at the right face is also θ2. If θ3 is the angle of emergence there, then n sin θ2 = sin θ3. Thus sin θ3 = sin θ
and θ3 = θ. The emerging ray is parallel to the incident ray. We wish to derive an expression for x in
terms of θ. If D is the length of the ray in the glass, then D cos θ2 = t and D = t/ cos θ2. The angle α
in the diagram equals θ − θ2 and x = D sinα = D sin(θ − θ2). Thus

x =
t sin(θ − θ2)

cos θ2
.

If all the angles θ, θ2, θ3, and θ − θ2 are small and measured in radians, then sin θ ≈ θ, sin θ2 ≈ θ2,
sin(θ − θ2) ≈ θ − θ2, and cos θ2 ≈ 1. Thus x ≈ t(θ − θ2). The law of refraction applied to the point of
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incidence at the left face of the plate is now θ ≈ nθ2, so θ2 ≈ θ/n and

x ≈ t
(

θ − θ

n

)

=
(n− 1)tθ

n
.

←−−−−−− t −−−−−−→
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50. (a) An incident ray which is normal to the water surface is not refracted, so the angle at which it
strikes the first mirror is θ1 = 45◦. According to the law of reflection, the angle of reflection is also
45◦. This means the ray is horizontal as it leaves the first mirror, and the angle of incidence at
the second mirror is θ2 = 45◦. Since the angle of reflection at the second mirror is also 45◦ the ray
leaves that mirror normal again to the water surface. There is no refraction at the water surface,
and the emerging ray is parallel to the incident ray.

(b) We imagine that the incident ray makes an angle θ1 with the normal to the water surface. The
angle of refraction θ2 is found from sin θ1 = n sin θ2, where n is the index of refraction of the
water. The normal to the water surface and the normal to the first mirror make an angle of 45◦.
If the normal to the water surface is continued downward until it meets the normal to the first
mirror, the triangle formed has an interior angle of 180◦ − 45◦ = 135◦ at the vertex formed by
the normal. Since the interior angles of a triangle must sum to 180◦, the angle of incidence at
the first mirror satisfies θ3 + θ2 + 135◦ = 180◦, so θ3 = 45◦ − θ2. Using the law of reflection, the
angle of reflection at the first mirror is also 45◦ − θ2. We note that the triangle formed by the ray
and the normals to the two mirrors is a right triangle. Consequently, θ3 + θ4 + 90◦ = 180◦ and
θ4 = 90◦ − θ3 = 90◦ − 45◦ + θ2 = 45◦ + θ2. The angle of reflection at the second mirror is also
45◦ + θ2. Now, we continue the normal to the water surface downward from the exit point of the
ray to the second mirror. It makes an angle of 45◦ with the mirror. Consider the triangle formed
by the second mirror, the ray, and the normal to the water surface. The angle at the intersection
of the normal and the mirror is 180◦ − 45◦ = 135◦. The angle at the intersection of the ray and
the mirror is 90◦ − θ4 = 90◦ − (45◦ + θ2) = 45◦ − θ2. The angle at the intersection of the ray and
the water surface is θ5. These three angles must sum to 180◦, so 135◦ + 45◦− θ2 + θ5 = 180◦. This
means θ5 = θ2. Finally, we use the law of refraction to find θ6:

sin θ6 = n sin θ5 =⇒ sin θ6 = n sin θ2 ,

since θ5 = θ2. Finally, since sin θ1 = n sin θ2, we conclude that sin θ6 = sin θ1 and θ6 = θ1. The
exiting ray is parallel to the incident ray.

51. We label the light ray’s point of entry A, the vertex of the prism B, and the light ray’s exit point C.
Also, the point in Fig. 34-49 where ψ is defined (at the point of intersection of the extrapolations of the
incident and emergent rays) is denoted D. The angle indicated by ADC is the supplement of ψ, so we
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denote it ψs = 180◦ − ψ. The angle of refraction in the glass is θ2 = 1
n sin θ. The angles between the

interior ray and the nearby surfaces is the complement of θ2, so we denote it θ2c = 90◦ − θ2. Now, the
angles in the triangle ABC must add to 180◦:

180◦ = 2θ2c + φ =⇒ θ2 =
φ

2
.

Also, the angles in the triangle ADC must add to 180◦:

180◦ = 2 (θ − θ2) + ψs =⇒ θ = 90◦ + θ2 −
1

2
ψs

which simplifies to θ = θ2 + 1
2ψ. Combining this with our previous result, we find θ = 1

2 (φ + ψ). Thus,
the law of refraction yields

n =
sin(θ)

sin(θ2)
=

sin
(

1
2 (φ+ ψ

)

sin
(

1
2 φ
) .

52. The critical angle is

θc = sin−1

(

1

n

)

= sin−1

(

1

1.8

)

= 34◦ .

53. Let θ1 = 45◦ be the angle of incidence at the first surface and θ2 be the angle of refraction there. Let θ3
be the angle of incidence at the second surface. The condition for total internal reflection at the second
surface is n sin θ3 ≥ 1. We want to find the smallest value of the index of refraction n for which this
inequality holds. The law of refraction, applied to the first surface, yields n sin θ2 = sin θ1. Consideration
of the triangle formed by the surface of the slab and the ray in the slab tells us that θ3 = 90◦−θ2. Thus,
the condition for total internal reflection becomes 1 ≤ n sin(90◦− θ2) = n cos θ2. Squaring this equation
and using sin2 θ2 + cos2 θ2 = 1, we obtain 1 ≤ n2(1 − sin2 θ2). Substituting sin θ2 = (1/n) sin θ1 now
leads to

1 ≤ n2

(

1− sin2 θ1
n2

)

= n2 − sin2 θ1 .

The largest value of n for which this equation is true is the value for which 1 = n2 − sin2 θ1. We solve
for n:

n =

√

1 + sin2 θ1 =
√

1 + sin2 45◦ = 1.22 .

54. Reference to Fig. 34-24 may help in the visualization of why there appears to be a “circle of light”
(consider revolving that picture about a vertical axis). The depth and the radius of that circle (which
is from point a to point f in that figure) is related to the tangent of the angle of incidence. Thus, the
diameter D of the circle in question is

D = 2h tan θc = 2h tan

[

sin−1

(

1

nw

)]

= 2(80.0 cm) tan

[

sin−1

(

1

1.33

)]

= 182 cm .

55. (a) No refraction occurs at the surface ab, so the angle of incidence at surface ac is 90◦ − φ. For total
internal reflection at the second surface, ng sin(90◦ − φ) must be greater than na. Here ng is the
index of refraction for the glass and na is the index of refraction for air. Since sin(90◦−φ) = cosφ, we
want the largest value of φ for which ng cosφ ≥ na. Recall that cosφ decreases as φ increases from
zero. When φ has the largest value for which total internal reflection occurs, then ng cosφ = na, or

φ = cos−1

(

na

ng

)

= cos−1

(

1

1.52

)

= 48.9◦ .

The index of refraction for air is taken to be unity.
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(b) We now replace the air with water. If nw = 1.33 is the index of refraction for water, then the largest
value of φ for which total internal reflection occurs is

φ = cos−1

(

nw

ng

)

= cos−1

(

1.33

1.52

)

= 29.0◦ .

56. (a) (b) and (c) The index of refraction n for fused quartz is slightly higher on the bluish side of the
visible light spectrum (with shorter wavelength). We estimate n = 1.463 for blue and n = 1.456 for
red. Since sin θc = 1/n, the critical angle is slightly smaller for blue than it is for red: θc = 43.12◦

for blue and θc = 43.38◦ for red. Thus, at an angle of incidence of, say, θ = 43.29◦, the refracted
beam would be depleted of blue (and would appear to an outside observer as reddish), and the
reflected beam would consequently appear to be bluish (to someone able to observe that beam, the
operational details of which are not discussed here).

57. (a) The diagram below shows a cross section, through the center of the cube and parallel to a face. L
is the length of a cube edge and S labels the spot. A portion of a ray from the source to a cube
face is also shown. Light leaving the source at a small angle θ is refracted at the face and leaves the
cube; light leaving at a sufficiently large angle is totally reflected. The light that passes through
the cube face forms a circle, the radius r being associated with the critical angle for total internal
reflection. If θc is that angle, then

sin θc =
1

n

where n is the index of refraction for the glass. As the diagram shows, the radius of the circle is
given by r = (L/2) tan θc. Now,

tan θc =
sin θc

cos θc
=

sin θc
√

1− sin2 θc

=
1/n

√

1− (1/n)2
=

1√
n2 − 1

and the radius of the circle is

r =
L

2
√
n2 − 1

=
10 mm

2
√

(1.5)2 − 1
= 4.47 mm .

If an opaque circular disk with this radius is pasted at the center of each cube face, the spot will
not be seen (provided internally reflected light can be ignored).

•
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(b) There must be six opaque disks, one for each face. The total area covered by disks is 6πr2 and the
total surface area of the cube is 6L2. The fraction of the surface area that must be covered by disks
is

f =
6πr2

6L2
=
πr2

L2
=
π(4.47 mm)2

(10 mm)2
= 0.63 .

58. (a) We refer to the entry point for the original incident ray as point A (which we take to be on the left
side of the prism, as in Fig. 34-49), the prism vertex as point B, and the point where the interior
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ray strikes the right surface of the prism as point C. The angle between line AB and the interior ray
is β (the complement of the angle of refraction at the first surface), and the angle between the line
BC and the interior ray is α (the complement of its angle of incidence when it strikes the second
surface). When the incident ray is at the minimum angle for which light is able to exit the prism,
the light exits along the second face. That is, the angle of refraction at the second face is 90◦, and
the angle of incidence there for the interior ray is the critical angle for total internal reflection. Let
θ1 be the angle of incidence for the original incident ray and θ2 be the angle of refraction at the
first face, and let θ3 be the angle of incidence at the second face. The law of refraction, applied
to point C, yields n sin θ3 = 1, so sin θ3 = 1/n = 1/1.60 = 0.625 and θ3 = 38.68◦. The interior
angles of the triangle ABC must sum to 180◦, so α + β = 120◦. Now, α = 90◦ − θ3 = 51.32◦, so
β = 120◦ − 51.32◦ = 69.68◦. Thus, θ2 = 90◦ − β = 21.32◦. The law of refraction, applied to point
A, yields sin θ1 = n sin θ2 = 1.60 sin21.32◦ = 0.5817. Thus θ1 = 35.6◦.

(b) We apply the law of refraction to point C. Since the angle of refraction there is the same as the
angle of incidence at A, n sin θ3 = sin θ1. Now, α + β = 120◦, α = 90◦ − θ3, and β = 90◦ − θ2, as
before. This means θ2 + θ3 = 60◦. Thus, the law of refraction leads to

sin θ1 = n sin(60◦ − θ2) =⇒ sin θ1 = n sin 60◦ cos θ2 − n cos 60◦ sin θ2

where the trigonometric identity sin(A−B) = sinA cosB− cosA sinB is used. Next, we apply the
law of refraction to point A:

sin θ1 = n sin θ2 =⇒ sin θ2 = (1/n) sin θ1

which yields cos θ2 =
√

1− sin2 θ2 =
√

1− (1/n2) sin2 θ1. Thus,

sin θ1 = n sin 60◦
√

1− (1/n)2 sin2 θ1 − cos 60◦ sin θ1

or

(1 + cos 60◦) sin θ1 = sin 60◦
√

n2 − sin2 θ1 .

Squaring both sides and solving for sin θ1, we obtain

sin θ1 =
n sin 60◦

√

(1 + cos 60◦)2 + sin2 60◦
=

1.60 sin60◦
√

(1 + cos 60◦)2 + sin2 60◦
= 0.80

and θ1 = 53.1◦.

59. (a) A ray diagram is shown below. Let θ1 be the angle of incidence and θ2 be the angle of refraction
at the first surface. Let θ3 be the angle of incidence at the second surface. The angle of refraction
there is θ4 = 90◦. The law of refraction, applied to the second surface, yields n sin θ3 = sin θ4 = 1.
As shown in the diagram, the normals to the surfaces at P and Q are perpendicular to each other.
The interior angles of the triangle formed by the ray and the two normals must sum to 180◦, so

θ3 = 90◦−θ2 and sin θ3 = sin(90◦−θ2) = cos θ2 =
√

1− sin2 θ2. According to the law of refraction,

applied at Q, n
√

1− sin2 θ2 = 1. The law of refraction, applied to point P , yields sin θ1 = n sin θ2,
so sin θ2 = (sin θ1)/n and

n

√

1− sin2 θ1
n2

= 1 .

Squaring both sides and solving for n, we get

n =

√

1 + sin2 θ1 .



857

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..


.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.......

.............

.............

.............

.............

.............

.............

.............

.............

.....

90◦

...
...
...
...
....
...
...
...
...
...
...
...
...
...
...
...
...
...............................................................................................................................................................................................................................................................................................................................................................................................................

...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
.......................

.............
.....
....

......................................................
..
..
..
..
..
...
...
...
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

θ1

θ2

θ3
θ4

90◦
P

Q

(b) The greatest possible value of sin2 θ1 is 1, so the greatest possible value of n is nmax =
√

2 = 1.41.

(c) For a given value of n, if the angle of incidence at the first surface is greater than θ1, the angle
of refraction there is greater than θ2 and the angle of incidence at the second face is less than θ3
(= 90◦ − θ2). That is, it is less than the critical angle for total internal reflection, so light leaves
the second surface and emerges into the air.

(d) If the angle of incidence at the first surface is less than θ1, the angle of refraction there is less than
θ2 and the angle of incidence at the second surface is greater than θ3. This is greater than the
critical angle for total internal reflection, so all the light is reflected at Q.

60. (a) We use Eq. 34-49: θB = tan−1 nw = tan−1(1.33) = 53.1◦.

(b) Yes, since nw depends on the wavelength of the light.

61. The angle of incidence θB for which reflected light is fully polarized is given by Eq. 34–48 of the text. If
n1 is the index of refraction for the medium of incidence and n2 is the index of refraction for the second
medium, then θB = tan−1 (n2/n1) = tan−1 (1.53/1.33) = 63.8◦.

62. From Fig. 34-19 we find nmax = 1.470 for λ = 400 nm and nmin = 1.456 for λ = 700 nm. The correspond-
ing Brewster’s angles are θB,max = tan−1 nmax = tan−1(1.470) = 55.77◦ and θB,min = tan−1(1.456) =
55.52◦.

63. (a) The Sun is far enough away that we approximate its rays as “parallel” in this Figure. That is, if
the sunray makes angle θ from horizontal when the bird is in one position, then it makes the same
angle θ when the bird is any other position. Therefore, its shadow on the ground moves as the bird
moves: at 15 m/s.

(b) If the bird is in a position, a distance x > 0 from the wall, such that its shadow is on the wall at
a distance 0 ≥ y ≥ h from the top of the wall, then it is clear from the Figure that tanθ = y/x.
Thus,

dy

dt
=
dx

dt
tan θ = (−15 m/s) tan 30◦ = −8.7 m/s ,

which means that the distance y (which was measured as a positive number downward from the
top of the wall) is shrinking at the rate of 8.7 m/s.

(c) Since tan θ grows as 0 ≤ θ < 90◦ increases, then a larger value of |dy/dt| implies a larger value of
θ. The Sun is higher in the sky when the hawk glides by.

(d) With |dy/dt| = 45 m/s, we find

vhawk =

∣

∣

∣

∣

dx

dt

∣

∣

∣

∣

=

∣

∣

∣

dy
dt

∣

∣

∣

tan θ

so that we obtain θ = 72◦ if we assume vhawk = 15 m/s.

64. (a) The 63.00 ns arrival times are consistent with the top of the tomb being 31.50 ns (pulse travel time)
away from the surface. Since the pulses travel at 10.0 cm/ns in the soil, this travel time corresponds
to a distance equal to 315 cm = 3.15 m.
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(b) We are told that the locations in Fig. 34-54 are 2.0 m apart. Return pulses are registered at stations
2 through 7, but the returns from stations 2 and 7 are not “robust.” The tomb’s horizontal length
is therefore at least 9 m long, and very probably less than 12 m in length.

(c) As demonstrated in part (a), we divide the travel times by 2 to infer depth. Thus, at station 3:
the top of the tomb is 31.50 ns (pulse travel time in soil) from the surface; the top stone slab is
1.885 ns thick (pulse travel time in stone); the interior of the tomb is 8.00 ns high (pulse travel time
in air); and the bottom stone slab is 1.885 ns thick (pulse travel time in stone). Since the pulse
travels at 30 cm/s in the air, the interior of the tomb under station 3 (at the west end of the tomb)
is 240 cm = 2.40 m high. At the east end (under, say, station 5), the corresponding time difference
is

74.77 ns− 66.77 ns

2
= 4.00 ns

which corresponds to an interior height equal to (4.00 ns)(30 cm/s) = 120 cm/s = 1.20 m.

65. Since the layers are parallel, the angle of refraction regarding the first surface is the same as the angle
of incidence regarding the second surface (as is suggested by the notation in Fig. 34-55). We recall that
as part of the derivation of Eq. 34-49 (Brewster’s angle), the textbook shows that the refracted angle is
the complement of the incident angle:

θ2 = (θ1)c = 90◦ − θ1 .

We apply Eq. 34-49 to both refractions, setting up a product:

(

n2

n1

)(

n3

n2

)

= (tan θB 1→2) (tan θB 2→3)

n3

n1
= (tan θ1) (tan θ2) .

Now, since θ2 is the complement of θ1 we have

tan θ2 = tan(θ1)c =
1

tan θ1
.

Therefore, the product of tangents cancel and we obtain n3/n1 = 1. Consequently, the third medium is
air: n3 = 1.0.

66. In air, light travels at roughly c = 3.0× 108 m/s. Therefore, for t = 1.0 ns, we have a distance of

d = ct =
(

3.0× 108 m/s
) (

1.0× 10−9 s
)

= 0.30 m .

67. (a) The first contribution to the overall deviation is at the first refraction: δθ1 = θi − θr. The next
contribution to the overall deviation is the reflection. Noting that the angle between the ray right
before reflection and the axis normal to the back surface of the sphere is equal to θr, and recalling
the law of reflection, we conclude that the angle by which the ray turns (comparing the direction
of propagation before and after the reflection) is δθ2 = 180◦ − 2θr. The final contribution is the
refraction suffered by the ray upon leaving the sphere: δθ3 = θi − θr again. Therefore,

θ dev = δθ1 + δθ2 + δθ3 = 180◦ + 2θi − 4θr .

(b) We substitute θr = sin−1( 1
n sin θi) into the expression derived in part (a), using the two given values

for n. The higher curve is for the blue light.
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(c) We can expand the graph and try to estimate the minimum, or search for it with a more sophisticated
numerical procedure. We find that the θ dev minimum for red light is 137.63◦, and this occurs at
θi = 59.52◦.

(d) For blue light, we find that the θ dev minimum is 139.35◦, and this occurs at θi = 59.52◦.

(e) The difference in θ dev in the previous two parts is 1.72◦.

68. (a) The first contribution to the overall deviation is at the first refraction: δθ1 = θi − θr. The next
contribution(s) to the overall deviation is (are) the reflection(s). Noting that the angle between
the ray right before reflection and the axis normal to the back surface of the sphere is equal to θr,
and recalling the law of reflection, we conclude that the angle by which the ray turns (comparing
the direction of propagation before and after [each] reflection) is δθr = 180◦ − 2θr. Thus, for k
reflections, we have δθ2 = kθr to account for these contributions. The final contribution is the
refraction suffered by the ray upon leaving the sphere: δθ3 = θi − θr again. Therefore,

θ dev = δθ1 + δθ2 + δθ3 = 2 (θi − θr) + k (180◦ − 2θr) = k (180◦) + 2θi − 2(k + 1)θr .

(b) For k = 2 and n = 1.331 (given in problem 67), we search for the second-order rainbow angle
numerically. We find that the θ dev minimum for red light is 230.37◦, and this occurs at θi = 71.90◦.

(c) Similarly, we find that the second-order θ dev minimum for blue light (for which n = 1.343) is
233.48◦, and this occurs at θi = 71.52◦.

(d) The difference in θ dev in the previous two parts is 3.11◦.

(e) Setting k = 3, we search for the third-order rainbow angle numerically. We find that the θ dev

minimum for red light is 317.53◦, and this occurs at θi = 76.88◦.

(f) Similarly, we find that the third-order θ dev minimum for blue light is 321.89◦, and this occurs at
θi = 76.62◦.

(g) The difference in θ dev in the previous two parts is 4.37◦.

69. Reference to Fig. 34-24 may help in the visualization of why there appears to be a “circle of light”
(consider revolving that picture about a vertical axis). The depth and the radius of that circle (which is
from point a to point f in that figure) is related to the tangent of the angle of incidence. The diameter
of the circle in question is given by d = 2h tan θc. For water n = 1.33, so Eq. 34-47 gives sin θc = 1/1.33,
or θc = 48.75◦. Thus,

d = 2h tan θc = 2(2.00 m)(tan 48.75◦) = 4.56 m .

70. We apply Eq. 34-42 (twice) to obtain

I = I0 cos2 θ1 cos2 θ2

where θ1 = 20◦ and θ2 = (20◦ + θ). Since I/I0 = 0.200, we find cos θ2 =
√

0.2265 which leads to θ2 = 62◦

and consequently to θ = 42◦.
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71. (a) The electric field amplitude is Em =
√

2Erms = 70.7 V/m, so that the magnetic field amplitude

is Bm = 2.36 × 10−7 T by Eq. 34-5. Since the direction of propagation, ~E, and ~B are mutually
perpendicular, we infer that the only non-zero component of ~B is Bx, and note that the direction
of propagation being along the −z axis means the spatial and temporal parts of the wave function
argument are of like sign (see §17-5). Also, from λ = 250 nm, we find that f = c/λ = 1.20×1015 Hz,
which leads to ω = 2πf = 7.53× 1015 rad/s. Also, we note that k = 2π/λ = 2.51× 107 m−1. Thus,
assuming some “initial condition” (that, say the field is zero, with its derivative positive, at z = 0
when t = 0), we have

Bx = 2.36× 10−7 sin
((

2.51× 107
)

z +
(

7.53× 1015
)

t
)

in SI units.

(b) The exposed area of the triangular chip is A =
√

3 ℓ2/8, where ℓ = 2.00× 10−6 m. The intensity of
the wave is

I =
1

cµ0
E 2

rms = 6.64 W/m
2
.

Thus, Eq. 34-33 leads to

F =
2IA

c
= 3.83× 10−20 N .

72. We follow Sample Problem 34-2 in computing the sunlight intensity at the sail’s location.

I =
PS

4πr2
=

3.9× 1026 W

4π (3.0× 1011 m)2
= 345 W/m2

With A = (2.0 m)2, we use Eq. 34-33 to obtain the radiation force:

F =
2IA

c
= 9.2× 10−6 N .

73. (a) Eq. 34-5 gives E = cB, which relates the field values at any instant – and so relates rms values to
rms values, and amplitude values to amplitude values, as the case may be. Thus, Erms = cBrms =
16.8 V/m. Multiplying by

√
2 yields the electric field amplitude Em = 23.7 V/m.

(b) We use Eq. 34-26:

I =
1

µ0 c
E 2

rms = 0.748 W/m2 .

74. Consider two wavelengths, λ1 and λ2, whose corresponding frequencies are f1 and f2. Then λ1 = C/f1
and λ2 = C/f2. If λ1/λ2 = 10, then

λ1

λ2
=
C/f1
C/f2

=
f2
f1

= 10 .

The spaces are the same on both scales.

75. We take the derivative with respect to x of both sides of Eq. 34-11:

∂

∂x

(

∂E

∂x

)

=
∂2E

∂x2
=

∂

∂x

(

−∂B
∂t

)

= − ∂
2B

∂x∂t
.

Now we differentiate both sides of Eq. 34-18 with respect to t:

∂

∂t

(

−∂B
∂x

)

= − ∂
2B

∂x∂t
=

∂

∂t

(

ε0µ0
∂E

∂t

)

= ε0µ0
∂2E

∂t2
.
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Substituting ∂2E/∂x2 = −∂2B/∂x∂t from the first equation above into the second one, we get

ε0µ0
∂2E

∂t2
=
∂2E

∂x2
,

or
∂2E

∂t2
=

1

ε0µ0

∂2E

∂x2
= c2

∂2E

∂x2
.

Similarly, we differentiate both sides of Eq. 34-11 with respect to t

∂2E

∂x∂t
= −∂

2B

∂t2
,

and differentiate both sides of Eq. 34-18 with respect to x

−∂
2B

∂x2
= ε0µ0

∂2E

∂x∂t
.

Combining these two equations, we get

∂2B

∂t2
=

1

ε0µ0

∂2B

∂x2
= c2

∂2B

∂x2
.

76. The energy density of an electromagnetic wave is given by u = uE + uB. From the discussion in §34-4,
uE = uB = 1

2ε0E
2, so u = 2uE = ε0E

2. Upon averaging over time this becomes

uavg = ε0E2 = ε0E
2
rms .

Combining this equation with Eq. 34-26 in the textbook, we obtain

I =
1

cµ0
E2

rms =
1

cµ0

uavg

ε0
=
c2uavg

c
= cuavg

where c2 = 1/ε0µ0 is used.

77. (a) Assuming complete absorption, the radiation pressure is

pr =
I

c
=

1.4× 103 W/m
2

3.0× 108 m/s
= 4.7× 10−6 N/m

2
.

(b) We compare values by setting up a ratio:

pr

p0
=

4.7× 10−6 N/m
2

1.0× 105 N/m
2 = 4.7× 10−11 .

78. (a) Suppose there are a total of N transparent layers (N = 5 in our case). We label these layers from
left to right with indices 1, 2, . . . , N . Let the index of refraction of the air be n0. We denote the
initial angle of incidence of the light ray upon the air-layer boundary as θi and the angle of the
emerging light ray as θf . We note that, since all the boundaries are parallel to each other, the angle
of incidence θj at the boundary between the j-th and the (j + 1)-th layers is the same as the angle
between the transmitted light ray and the normal in the j-th layer. Thus, for the first boundary
(the one between the air and the first layer)

n1

n0
=

sin θi

sin θ1
,
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for the second boundary
n2

n1
=

sin θ1
sin θ2

,

and so on. Finally, for the last boundary

n0

nN
=

sin θN

sin θf
.

Multiplying these equations, we obtain
(

n1

n0

)(

n2

n1

)(

n3

n2

)

· · ·
(

n0

nN

)

=

(

sin θi

sin θ1

)(

sin θ1
sin θ2

)(

sin θ2
sin θ3

)

· · ·
(

sin θN

sin θf

)

.

We see that the L.H.S. of the equation above can be reduced to n0/n0 while the R.H.S. is equal to
sin θi/ sin θf . Equating these two expressions, we find

sin θf =

(

n0

n0

)

sin θi = sin θi ,

which gives θi = θf . So for the two light rays in the problem statement, the angle of the emerging
light rays are both the same as their respective incident angles. Thus, θf = 0 for ray a and θf = 20◦

for ray b.

(b) In this case, all we need to do is to change the value of n0 from 1.0 (for air) to 1.5 (for glass).
This does not change the result above. Note that the result of this problem is fairly general. It is
independent of the number of layers and the thickness and index of refraction of each layer.

79. We use the result of the problem 51 to solve for ψ. Note that φ = 60.0◦ in our case. Thus, from

n =
sin 1

2 (ψ + φ)

sin 1
2φ

,

we get

sin
1

2
(ψ + φ) = n sin

1

2
φ = (1.31) sin

(

60.0◦

2

)

= 0.655 ,

which gives 1
2 (ψ + φ) = sin−1(0.655) = 40.9◦. Thus, ψ = 2(40.9◦)− φ = 2(40.9◦)− 60.0◦ = 21.8◦.

80. (a) The light that passes through the surface of the lake is within a cone of apex angle 2θc making a
“circle of light” there; reference to Fig. 34-24 may help in visualizing this (consider revolving that
picture about a vertical axis). Since the source is point-like, its energy spreads out with perfect
spherical symmetry, until reaching the surface and other boundaries of the lake. The problem asks
us to assume there are no partial reflections at the surface, only the total reflections outside the
“circle of light.” Thus, of the full sphere of light (of area As = 4πR2) emitted by the source, only
a fraction of it – coinciding with the cone of apex angle 2θc – enters the air above. If we label the
area of that portion of the sphere which reaches the air above as A, then the fraction of the total
energy emitted that passes through the surface is

frac =
A

4πR2
where R =

h

cos θc

is the distance from the point-source to the edge of the “circle of light.” Now, the area A of the
spherical cap of height H bounded by that circle is

A = 2πRH = 2πR(R− h)

may be looked up in a number of references, or can be derived from A = 2πR2
∫ θc

0
sin θ dθ. Conse-

quently,

frac =
2πR(R− h)

4πR2
=

1

2

(

1− h

R

)

=
1

2
(1− cos θc) .
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The critical angle is given by sin θc = 1/n, which implies cos θc =
√

1− sin2 θc =
√

1− 1/n2. When
this expression is substituted into our result above, we obtain

frac =
1

2

(

1−
√

1− 1

n2

)

.

(b) For n = 1.33,

frac =
1

2

(

1−
√

1− 1

(1.33)2

)

= 0.170 .

81. We apply Eq. 34-40 (once) and Eq. 34-42 (twice) to obtain

I =
1

2
I0 cos2 θ1 cos2 θ2 .

With θ1 = 60◦ − 20◦ = 40◦ and θ2 = 40◦ + 30◦ = 70◦, this yields I/I0 = 0.034.

82. (a) From kc = ω where k = 1.00 × 106 m−1, we obtain ω = 3.00 × 1014 rad/s. The magnetic field

amplitude is, from Eq. 34-5, B = (5.00 V/m)/c = 1.67 × 10−8 T. From the fact that −k̂ (the

direction of propagation), ~E = Ey ĵ, and ~B are mutually perpendicular, we conclude that the only

non-zero component of ~B is Bx, so that we have (in SI units)

Bx = 1.67× 10−8 sin
((

1.00× 106
)

z +
(

3.00× 1014
)

t
)

.

(b) The wavelength is λ = 2π/k = 6.28× 10−6 m.

(c) The period is T = 2π/ω = 2.09× 10−14 s.

(d) The intensity is

I =
1

cµ0

(

5.00 V/m√
2

)2

= 0.0332 W/m2 .

(e) As noted in part (a), the only nonzero component of ~B is Bx. The magnetic field oscillates along
the x axis.

(f) The wavelength found in part (b) places this in the infrared portion of the spectrum.

83. We write m = ρV where V = 4πR3/3 is the volume. Plugging this into F = ma and then into Eq. 34-32
(with A = πR2, assuming the light is in the form of plane waves), we find

ρ
4πR3

3
a =

IπR2

c
.

This simplifies to

a =
3I

4ρcR

which yields a = 1.5× 10−9 m/s2.

84. Since intensity is power divided by area (and the area is spherical in the isotropic case), then the intensity
at a distance of r = 20 m from the source is

I =
P

4πr2
= 0.040 W/m

2
.

as illustrated in Sample Problem 34-2. Now, in Eq. 34-32 for a totally absorbing area A, we note that
the exposed area of the small sphere is that on a flat circle A = π(0.020 m)2 = 0.0013 m2. Therefore,

F =
IA

c
=

(0.040)(0.0013)

3× 108
= 1.7× 10−13 N .
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85. Eq. 34-5 gives B = E/c, which relates the field values at any instant – and so relates rms values to
rms values, and amplitude values to amplitude values, as the case may be. Thus, the rms value of the
magnetic field is 0.2/3 × 108 = 6.7 × 10−10 T, which (upon multiplication by

√
2) yields an amplitude

value of magnetic field equal to 9.4× 10−10 T.

86. (a) From Eq. 34-1,
∂2E

∂t2
=

∂2

∂t2
[Em sin(kx− ωt)] = −ω2Em sin(kx− ωt) ,

and

c2
∂2E

∂x2
= c2

∂2

∂x2
[Em sin(kx− ωt)] = −k2c2 sin(kx− ωt) = −ω2Em sin(kx− ωt) .

Consequently,
∂2E

∂t2
= c2

∂2E

∂x2

is satisfied. Analogously, one can show that Eq. 34-2 satisfies

∂2B

∂t2
= c2

∂2B

∂x2
.

(b) From E = Emf(kx± ωt),

∂2E

∂t2
= Em

∂2f(kx± ωt)
∂t2

= ω2Em
d2f

du2

∣

∣

∣

∣

u=kx±ωt

and

c2
∂2E

∂x2
= c2Em

∂2f(kx± ωt)
∂t2

= c2Emk
2 d

2f

du2

∣

∣

∣

∣

u=kx±ωt

.

Since ω = ck the right-hand sides of these two equations are equal. Therefore,

∂2E

∂t2
= c2

∂2E

∂x2
.

Changing E to B and repeating the derivation above shows that B = Bmf(kx± ωt) satisfies

∂2B

∂t2
= c2

∂2B

∂x2
.

87. ~E × ~B = µ0
~S, where ~E = E k̂ and ~S = S(−ĵ). One can verify easily that since k̂× (−ı̂) = −ĵ, ~B has to

be in the negative x direction. Also,

B =
E

c
=

100 V/m

3.0× 108 m/s
= 3.3× 10−7 T .

88. (a) At r = 40 m, the intensity is

I =
P

πd2/4
=

P

π(θr)2/4

=
4(3.0× 10−3 W)

π[(0.17× 10−3 rad)(40 m)]2

= 83 W/m
2
.

(b) P ′ = 4πr2I = 4π(40 m)2(83 W/m2) = 1.7× 106 W.
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89. Using Eqs. 34-40 and 34-42, we obtain

Ifinal

I0
=

(

1
2I0
) (

cos2 45◦
) (

cos2 45◦
)

I0
=

1

8
.

90. We use the result obtained in problem 51:

n =
sin 1

2 (φ+ ψ)

sin 1
2φ

=
sin
[

1
2 (60.0◦ + 30.0◦)

]

sin
[

1
2 (60.0◦)

] = 1.41 .

91. (a) and (b) At the Brewster angle, θincident + θrefracted = θB + 32.0◦ = 90.0◦, so θB = 58.0◦ and
nglass = tan θB = tan 58.0◦ = 1.60.

92. (a) In the notation of this problem, Eq. 34-47 becomes

θc = sin−1 n3

n2

which yields n3 = 1.39 for θc = φ = 60◦.

(b) Applying Eq. 34-44 law to the interface between material 1 and material 2, we have

n2 sin 30◦ = n1 sin θ

which yields θ = 28.1◦.

(c) Decreasing θ will increase φ and thus cause the ray to strike the interface (between materials 2 and
3) at an angle larger than θc. Therefore, no transmission of light into material 3 can occur.

93. We apply Eq. 34-40 (once) and Eq. 34-42 (twice) to obtain

I =
1

2
I0 cos2 θ1 cos2 θ2 .

With θ1 = 110◦ and θ2 = 50◦, this yields I/I0 = 0.024.

94. (a) The wave is traveling in the −y direction (see §17-5 for the significance of the relative sign between
the spatial and temporal arguments of the wave function).

(b) Figure 34-5 may help in visualizing this. The direction of propagation (along the y axis) is perpen-

dicular to ~B (presumably along the x axis, since the problem gives Bx and no other component)

and both are perpendicular to ~E (which determines the axis of polarization). Thus, the wave is
z-polarized.

(c) Since the magnetic field amplitude is Bm = 4.00 µT, then (by Eq. 34-5) Em = 1199 V/m. Dividing
by
√

2 yields Erms = 848 V/m. Then, Eq. 34-26 gives

I =
1

cµ0
E 2

rms = 1.91× 103 W/m
2
.

(d) Since kc = ω (equivalent to c = fλ), we have

k =
2.00× 1015

c
= 6.67× 106 m−1 .

Summarizing the information gathered so far, we have (with SI units understood)

Ez = 1199 sin
((

6.67× 106
)

y +
(

2.00× 1015
)

t
)

.

(e) and (f) Since λ = 2π/k = 942 nm, we see that this is infrared light.
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95. From Eq. 34-26, we have Erms =
√
µ0 c I = 1941 V/m, which implies (using Eq. 34-5) that Brms =

1941/c = 6.47× 10−6 T. Multiplying by
√

2 yields the magnetic field amplitude Bm = 9.16× 10−6 T.

96. (a) The frequency is

f =
c

λ
=

3.0× 108 m/s

0.067× 10−15 m
= 4.5× 1024 Hz .

(b) In this case, the (very long) wavelength is

λ =
c

f
=

3.0× 108 m/s

30 Hz
= 1.0× 107 m

which is about 1.6 Earth radii.

97. The fraction is
πR2

e

4πd2
es

=
1

4

(

6.37× 106 m

1.50× 1011 m

)2

= 4.51× 10−10 .

98. (a) When examining Fig. 34-73, it is important to note that the angle (measured from the central axis)
for the light ray in air, θ, is not the angle for the ray in the glass core, which we denote θ′. The law
of refraction leads to

sin θ′ =
1

n1
sin θ assuming nair = 1 .

The angle of incidence for the light ray striking the coating is the complement of θ′, which we
denote as θ′comp and recall that

sin θ′comp = cos θ′ =
√

1− sin2 θ′ .

In the critical case, θ′comp must equal θc specified by Eq. 34-47. Therefore,

n2

n1
= sin θ′comp =

√

1− sin2 θ′ =

√

1−
(

1

n1
sin θ

)2

which leads to the result: sin θ =
√

n2
1 − n2

2.

(b) With n1 = 1.58 and n2 = 1.53, we obtain

θ = sin−1
(

1.582 − 1.532
)

= 23.2◦ .

99. (a) In our solution here, we assume the reader has looked at our solution for problem 98. A light ray
traveling directly along the central axis reaches the end in time

t direct =
L

v1
=
n1L

c
.

For the ray taking the critical zig-zag path, only its velocity component along the core axis direction
contributes to reaching the other end of the fiber. That component is v1 cos θ′, so the time of travel
for this ray is

tzig zag =
L

v1 cos θ′
=

n1L

c

√

1−
(

1
n1

sin θ
)2

using results from the previous solution. Plugging in sin θ =
√

n2
1 − n2

2 and simplifying, we obtain

tzig zag =
n1L

c(n2/n1)
=
n2

1L

n2c
.

The difference tzig zag − t direct readily yields the result shown in the problem statement.
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(b) With n1 = 1.58, n2 = 1.53 and L = 300 m, we obtain ∆t = 52 ns.

100. (a) The condition (in Eq. 34-44) required in the critical angle calculation is θ3 = 90◦. Thus (with
θ2 = θc, which we don’t compute here),

n1 sin θ1 = n2 sin θ2 = n3 sin θ3

leads to θ1 = θ = sin−1 n3/n1 = 54.3◦.

(b) Reducing θ leads to a reduction of θ2 so that it becomes less than the critical angle; therefore, there
will be some transmission of light into material 3.

101. (a) We note that the complement of the angle of refraction (in material 2) is the critical angle. Thus,

n1 sin θ = n2 cos θc = n2

√

1−
(

n3

n2

)2

=
√

n2
2 − n2

3

leads to θ = 51.1◦.

(b) Reducing θ leads to an increase of the angle with which the light strikes the interface between mate-
rials 2 and 3, so it becomes greater than the critical angle. Therefore, there will be no transmission
of light into material 3.
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Chapter 35

1. The image is 10 cm behind the mirror and you are 30 cm in front of the mirror. You must focus your
eyes for a distance of 10 cm + 30 cm = 40 cm.

2. The bird is a distance d2 in front of the mirror; the plane of its image is that same distance d2 behind
the mirror. The lateral distance between you and the bird is d3 = 5.00 m. We denote the distance from
the camera to the mirror as d1, and we construct a right triangle out of d3 and the distance between the
camera and the image plane (d1 + d2). Thus, the focus distance is

d =
√

(d1 + d2)2 + d2
3

=
√

(4.30 m + 3.30 m)2 + (5.00 m)2

= 9.10 m .

3. (a) There are three images. Two are formed by single reflections from each of the mirrors and the third
is formed by successive reflections from both mirrors.

(b) The positions of the images are shown on the two diagrams below. The diagram on the left below
shows the image I1, formed by reflections from the left-hand mirror. It is the same distance behind
the mirror as the object O is in front, and lies on the line perpendicular to the mirror and through
the object. Image I2 is formed by light that is reflected from both mirrors. We may consider I2
to be the image of I1 formed by the right-hand mirror, extended. I2 is the same distance behind
the line of the right-hand mirror as I1 is in front and it is on the line that is perpendicular to the
line of the mirror. The diagram on the right, below, shows image I3, formed by reflections from the
right-hand mirror. It is the same distance behind the mirror as the object is in front, and lies on
the line perpendicular to the mirror and through the object. As the diagram shows, light that is
first reflected from the right-hand mirror and then from the left-hand mirror forms an image at I2.
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4. In each case there is an object and its “first” image in the mirror closest to it (this image is the same
distance behind the mirror as the object is in front of it and might be referred to as the object’s “twin”).
The rest of the “figuring” consists of drawing perpendiculars from these (or imagining doing so) to the
mirror-planes and constructing further images.

(a) For θ = 45◦, we have two images in the second mirror caused by the object and its “first” image,
and from these one can construct two new images I and I ′ behind the first mirror plane. Extending
the second mirror plane, we can find two further images of I and I ′ which are on equal sides of
the extension of the first mirror plane. This circumstance implies there are no further images,
since these final images are each other’s “twins.” We show this construction in the figure below.
Summarizing, we find 1 + 2 + 2 + 2 = 7 images in this case.
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(b) For θ = 60◦, we have two images in the second mirror caused by the object and its “first” image, and
from these one can construct two new images I and I ′ behind the first mirror plane. The images I
and I ′ are each other’s “twins” in the sense that they are each other’s reflections about the extension
of the second mirror plane; there are no further images. Summarizing, we find 1+2+2 = 5 images
in this case.

(c) For θ = 120◦, we have two images I ′1 and I2 behind the extension of the second mirror plane,
caused by the object and its “first” image (which we refer to here as I1). No further images can be
constructed from I ′1 and I2, since the method indicated above would place any further possibilities
in front of the mirrors. This construction has the disadvantage of deemphasizing the actual ray-
tracing, and thus any dependence on where the observer of these images is actually placing his or
her eyes. It turns out in this case that the number of images that can be seen ranges from 1 to 3,
depending on the locations of both the object and the observer. As an example, if the observer’s
eye is collinear with I1 and I ′1, then the observer can only see one image (I1 and not the one behind
it). Another observer, close to the second mirror would probably be able to see only I1 and I2.
However, if that observer moves further back from the vertex of the two mirrors he or she should
also be able to see the third image, I ′1, which is essentially the “twin” image formed from I1 relative
to the extension of the second mirror plane.

5. Consider a single ray from the source to the mirror and let θ be the angle of incidence. The angle of
reflection is also θ and the reflected ray makes an angle of 2θ with the incident ray. Now we rotate the
mirror through the angle α so that the angle of incidence increases to θ + α. The reflected ray now
makes an angle of 2(θ + α) with the incident ray. The reflected ray has been rotated through an angle
of 2α. If the mirror is rotated so the angle of incidence is decreased by α, then the reflected ray makes
an angle of 2(θ − α) with the incident ray. Again it has been rotated through 2α. The diagrams below
show the situation for α = 45◦. The ray from the object to the mirror is the same in both cases and the
reflected rays are 90◦ apart.
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•

O

I

θ + α

θ + α

6. When S is barely able to see B the light rays from B must reflect to S off the edge of the mirror. The
angle of reflection in this case is 45◦, since a line drawn from S to the mirror’s edge makes a 45◦ angle
relative to the wall. By the law of reflection, we find

x

d/2
= tan 45◦ =⇒ x =

d

2
=

3.0 m

2
= 1.5 m .

7. The intensity of light from a point source varies as the inverse of the square of the distance from the
source. Before the mirror is in place, the intensity at the center of the screen is given by I0 = A/d2,
where A is a constant of proportionality. After the mirror is in place, the light that goes directly to the
screen contributes intensity I0, as before. Reflected light also reaches the screen. This light appears to
come from the image of the source, a distance d behind the mirror and a distance 3d from the screen.
Its contribution to the intensity at the center of the screen is

Ir =
A

(3d)2
=

A

9d2
=
I0
9
.

The total intensity at the center of the screen is

I = I0 + Ir = I0 +
I0
9

=
10

9
I0 .

The ratio of the new intensity to the original intensity is I/I0 = 10/9.

8. We apply the law of refraction, assuming all angles are in radians:

sin θ

sin θ′
=

nw

nair
,

which in our case reduces to θ′ ≈ θ/nw (since both θ and θ′ are small, and nair ≈ 1). We refer to our
figure, below. The object O is a vertical distance h1 above the water, and the water surface is a vertical
distance h2 above the mirror. We are looking for a distance d (treated as a positive number) below the
mirror where the image I of the object is formed. In the triangle OAB

|AB| = h1 tan θ ≈ h1θ ,

and in the triangle CBD

|BC| = 2h2 tan θ′ ≈ 2h2θ
′ ≈ 2h2θ

nw
.

Finally, in the triangle ACI, we have |AI| = d+ h2. Therefore,

d = |AI| − h2 =
|AC|
tan θ

− h2

≈ |AB|+ |BC|
θ

− h2

=

(

h1

θ
+

2h2θ

nw

)

1

θ
− h2 = h1 +

2h2

nw
− h2

= 250 cm +
2(200 cm)

1.33
− 200 cm = 351 cm .
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9. We use Eqs. 35-3 and 35-4, and note that m = −i/p. Thus,

1

p
− 1

pm
=

1

f
=

2

r
.

We solve for p:

p =
r

2

(

1− 1

m

)

=
35.0 cm

2

(

1− 1

2.50

)

= 10.5 cm .

10. (a) f = +20 cm (positive, because the mirror is concave); r = 2f = 2(+20 cm) = +40 cm; i =
(1/f − 1/p)−1 = (1/20 cm− 1/10 cm)−1 = −20 cm; m = −i/p = −(−20 cm/10 cm) = +2.0. The
image is virtual and upright. The ray diagram would be similar to Fig. 35-8(a) in the textbook.

(b) The fact that the magnification is 1 and the image is virtual means that the mirror is flat (plane).
Flat mirrors (and flat “lenses” such as a window pane) have f = ∞ (or f = −∞ since the sign
does not matter in this extreme case), and consequently r =∞ (or r = −∞) by Eq. 35-3. Eq. 35-4
readily yields i = −10 cm. The magnification being positive implies the image is upright; the answer
is “no” (it’s not inverted). The ray diagram would be similar to Fig. 35-6(a) in the textbook.

(c) Since f > 0, the mirror is concave. Using Eq. 35-3, we obtain r = 2f = +40 cm. Eq. 35-4 readily
yields i = +60 cm. Substituting this (and the given object distance) into Eq. 35-6 gives m = −2.0.
Since i > 0, the answer is “yes” (the image is real). Since m < 0, our answer is “yes” (the image is
inverted). The ray diagram would be similar to Fig. 35-8(c) in the textbook.

(d) Since m < 0, the image is inverted. With that in mind, we examine the various possibilities in
Figs. 35-6, 35-8 and 35-9, and note that an inverted image (for reflections from a single mirror)
can only occur if the mirror is concave (and if p > f). Next, we find i from Eq. 35-6 (which
yields i = 30 cm) and then use this value (and Eq. 35-4) to compute the focal length; we obtain
f = +20 cm. Then, Eq. 35-3 gives r = +40 cm. As already noted, i = +30 cm. Yes, the image is
real (since i > 0). Yes, the image is inverted (as already noted). The ray diagram would be similar
to Figs. 35-9(a) and (b) in the textbook.
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(e) Since r < 0 then (by Eq. 35-3) f < 0, which means the mirror is convex. The focal length is
f = r/2 = −20 cm. Eq. 35-4 leads to p = +20 cm, and Eq. 35-6 gives m = +0.50. No, the image
is virtual. No, the image is upright. The ray diagram would be similar to Figs. 35-9(c) and (d) in
the textbook.

(f) Since 0 < m < 1, the image is upright but smaller than the object. With that in mind, we examine
the various possibilities in Figs. 35-6, 35-8 and 35-9, and note that such an image (for reflections
from a single mirror) can only occur if the mirror is convex. Thus, we must put a minus sign in
front of the “20” value given for f . Eq. 35-3 then gives r = −40 cm. To solve for i and p we must
set up Eq. 35-4 and Eq. 35-6 as a simultaneous set and solve for the two unknowns. The results
are i = −18 cm and p = +180 cm. No, the image is virtual (since i < 0). No, the image is upright
(as already noted). The ray diagram would be similar to Figs. 35-9(c) and (d) in the textbook.

(g) Knowing the mirror is convex means we must put a minus sign in front of the “40” value given for
r. Then, Eq. 35-3 yields f = r/2 = −20 cm. The fact that the mirror is convex also means that
we need to insert a minus sign in front of the “4.0” value given for i, since the image in this case
must be virtual (see Figs. 35-6, 35-8 and 35-9). Eq. 35-4 leads to p = +5.0 cm, and Eq. 35-6 gives
m = +0.8. No, the image is virtual. No, the image is upright. The ray diagram would be similar
to Figs. 35-9(c) and (d) in the textbook.

(h) Since the image is inverted, we can scan Figs. 35-6, 35-8 and 35-9 in the textbook and find that
the mirror must be concave. This also implies that we must put a minus sign in front of the “0.50”
value given for m. To solve for f , we first find i = +12 cm from Eq. 35-6 and plug into Eq. 35-4;
the result is f = +8 cm. Thus, r = 2f = +16 cm. Yes, the image is real (since i > 0). The ray
diagram would be similar to Figs. 35-9(a) and (b) in the textbook.

11. (a) Suppose one end of the object is a distance p from the mirror and the other end is a distance p+L.
The position i1 of the image of the first end is given by

1

p
+

1

i1
=

1

f

where f is the focal length of the mirror. Thus,

i1 =
fp

p− f .

The image of the other end is located at

i2 =
f(p+ L)

p+ L− f ,

so the length of the image is

L′ = i1 − i2 =
fp

p− f −
f(p+ L)

p+ L− f =
f2L

(p− f)(p+ L− f)
.

Since the object is short compared to p− f , we may neglect the L in the denominator and write

L′ = L

(

f

p− f

)2

.

(b) The lateral magnification is m = −i/p and since i = fp/(p−f), this can be written m = −f/(p−f).
The longitudinal magnification is

m′ =
L′

L
=

(

f

p− f

)2

= m2 .
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12. (a) From Eqs. 35-3 and 35-4, we obtain i = pf/(p− f) = pr/(2p− r). Differentiating both sides with
respect to time and using vO = −dp/dt, we find

vI =
di

dt
=

d

dt

(

pr

2p− r

)

=
−rvO(2p− r) + 2vOpr

(2p− r)2 =

(

r

2p− r

)2

vO .

(b) If p = 30 cm, we obtain

vI =

[

15 cm

2(30 cm)− 15 cm

]2

(5.0 cm/s) = 0.56 cm/s .

(c) If p = 8.0 cm, we obtain

vI =

[

15 cm

2(8.0 cm)− 15 cm

]2

(5.0 cm/s) = 1.1× 103 cm/s .

(d) If p = 1.0 cm, we obtain

vI =

[

15 cm

2(1.0 cm)− 15 cm

]2

(5.0 cm/s) = 6.7 cm/s .

13. (a) We use Eq. 35-8 and note that n1 = nair = 1.00, n2 = n, p =∞, and i = 2r:

1.00

∞ +
n

2r
=
n− 1

r
.

We solve for the unknown index: n = 2.00.

(b) Now i = r so Eq. 35-8 becomes
n

r
=
n− 1

r
,

which is not valid unless n→∞ or r →∞. It is impossible to focus at the center of the sphere.

14. We remark that the sign convention for r (for these refracting surfaces) is the opposite of what was used
for mirrors. This point is discussed in §35-5.

(a) We use Eq. 35-8:

i = n2

(

n2 − n1

r
− n1

p

)−1

= 1.5

(

1.5− 1.0

30 cm
− 1.0

10 cm

)−1

= −18 cm .

The image is virtual and upright. The ray diagram would be similar to Fig. 35-10(c) in the textbook.

(b) We manipulate Eq. 35-8 to find r:

r = (n2 − n1)

(

n1

p
+
n2

i

)−1

= (1.5− 1.0)

(

1.0

10
+

1.5

−13

)−1

= −32.5 cm

which should be rounded to two significant figures. The image is virtual and upright. The ray
diagram would be similar to Fig. 35-10(e) in the textbook, but with the object and the image
placed closer to the surface.

(c) We manipulate Eq. 35-8 to find p:

p =
n1

n2−n1

r − n2

i

=
1.0

1.5−1.0
30 − 1.5

600

= 71 cm .

The image is real and inverted. The ray diagram would be similar to Fig. 35-10(a) in the textbook.
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(d) We manipulate Eq. 35-8 to separate the indices:

n2

(

1

r
− 1

i

)

=

(

n1

p
+
n1

r

)

n2

(

1

−20
− 1

−20

)

=

(

1.0

20
+

1.0

−20

)

n2(0) = 0

which is identically satisfied for any choice of n2. The ray diagram would be similar to Fig. 35-10(d)
in the textbook, but with C, O and I together at the same point. The image is virtual and upright.

(e) We manipulate Eq. 35-8 to find r:

r = (n2 − n1)

(

n1

p
+
n2

i

)−1

= (1.0− 1.5)

(

1.5

10
+

1.0

−6.0

)−1

= 30 cm .

The image is virtual and upright. The ray diagram would be similar to Fig. 35-10(f) in the textbook,
but with the object and the image located closer to the surface.

(f) We manipulate Eq. 35-8 to find p:

p =
n1

n2−n1

r − n2

i

=
1.5

1.0−1.5
−30 − 1.0

−7.5

= 10 cm .

The image is virtual and upright. The ray diagram would be similar to Fig. 35-10(d) in the textbook.

(g) We manipulate Eq. 35-8 to find the image distance:

i = n2

(

n2 − n1

r
− n1

p

)−1

= 1.0

(

1.0− 1.5

30 cm
− 1.5

70 cm

)−1

= −26 cm .

The image is virtual and upright. The ray diagram would be similar to Fig. 35-10(f) in the textbook.

(h) We manipulate Eq. 35-8 to separate the indices:

n2

(

1

r
− 1

i

)

=

(

n1

p
+
n1

r

)

n2

(

1

−30
− 1

600

)

=

(

1.5

100
+

1.5

−30

)

n2(−0.035) = −0.035

which implies n2 = 1.0. The ray diagram would be similar to Fig. 35-10(b) in the textbook, but
with C, O and I together at the same point. The image is real and inverted.

15. The water is medium 1, so n1 = nw which we simply write as n. The air is medium 2, for which n2 ≈ 1.
We refer points where the light rays strike the water surface as A (on the left side of Fig. 35-32) and B
(on the right side of the picture). The point midway between A and B (the center point in the picture) is
C. The penny P is directly below C, and the location of the “apparent” or Virtual penny is V . We note
that the angle 6 CV B (the same as 6 CV A) is equal to θ2, and the angle 6 CPB (the same as 6 CPA) is
equal to θ1. The triangles CV B and CPB share a common side, the horizontal distance from C to B
(which we refer to as x). Therefore,

tan θ2 =
x

da
and tan θ1 =

x

d
.

Using the small angle approximation (so a ratio of tangents is nearly equal to a ratio of sines) and the
law of refraction, we obtain

tan θ2
tan θ1

≈ sin θ2
sin θ1



876 CHAPTER 35.

x
da

x
d

≈ n1

n2

d

da
≈ n

which yields the desired relation: da = d/n.

16. First, we note that – relative to the water – the index of refraction of the carbon tetrachloride should be
thought of as n = 1.46/1.33 = 1.1 (this notation is chosen to be consistent with problem 15). Now, if the
observer were in the water, directly above the 40 mm deep carbon tetrachloride layer, then the apparent
depth of the penny as measured below the surface of the carbon tetrachloride is da = 40 mm/1.1 =
36.4 mm. This “apparent penny” serves as an “object” for the rays propagating upward through the
20 mm layer of water, where this “object” should be thought of as being 20 mm + 36.4 mm = 56.4 mm
from the top surface. Using the result of problem 15 again, we find the perceived location of the penny,
for a person at the normal viewing position above the water, to be 56.4 mm/1.33 = 42 mm below the
water surface.

17. We solve Eq. 35-9 for the image distance i: i = pf/(p− f). The lens is diverging, so its focal length is
f = −30 cm. The object distance is p = 20 cm. Thus,

i =
(20 cm)(−30 cm)

(20 cm)− (−30 cm)
= −12 cm .

The negative sign indicates that the image is virtual and is on the same side of the lens as the object.
The ray diagram, drawn to scale, is shown on the right.
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18. Let the diameter of the Sun be ds and that of the image be di. Then, Eq. 35-5 leads to

di = |m|ds =

(

i

p

)

ds ≈
(

f

p

)

ds

=
(20.0× 10−2 m)(2)(6.96× 108 m)

1.50× 1011 m

= 1.86× 10−3 m = 1.86 mm .

19. We use the lens maker’s equation, Eq. 35–10:

1

f
= (n− 1)

(

1

r1
− 1

r2

)

where f is the focal length, n is the index of refraction, r1 is the radius of curvature of the first surface
encountered by the light and r2 is the radius of curvature of the second surface. Since one surface has
twice the radius of the other and since one surface is convex to the incoming light while the other is
concave, set r2 = −2r1 to obtain

1

f
= (n− 1)

(

1

r1
+

1

2r1

)

=
3(n− 1)

2r1
.
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We solve for r1:

r1 =
3(n− 1)f

2
=

3(1.5− 1)(60 mm)

2
= 45 mm .

The radii are 45 mm and 90 mm.

20. (a) We use Eq. 35-10:

f =

[

(n− 1)

(

1

r1
− 1

r2

)]−1

=

[

(1.5− 1)

(

1

∞ −
1

−20 cm

)]−1

= +40 cm .

(b) From Eq. 35-9,

i =

(

1

f
− 1

p

)−1

=

(

1

40 cm
− 1

40 cm

)−1

=∞ .

21. For a thin lens, (1/p) + (1/i) = (1/f), where p is the object distance, i is the image distance, and f is
the focal length. We solve for i:

i =
fp

p− f .

Let p = f + x, where x is positive if the object is outside the focal point and negative if it is inside.
Then,

i =
f(f + x)

x
.

Now let i = f + x′, where x′ is positive if the image is outside the focal point and negative if it is inside.
Then,

x′ = i− f =
f(f + x)

x
− f =

f2

x

and xx′ = f2.

22. We solve Eq. 35-9 for the image distance:

i =

(

1

f
− 1

p

)−1

=
fp

p− f .

The height of the image is thus

hi = mhp =

(

i

p

)

hp =
fhp

p− f =
(75 mm)(1.80 m)

27 m− 0.075 m
= 5.0 mm .

23. Using Eq. 35-9 and noting that p+ i = d = 44 cm, we obtain p2 − dp+ df = 0. Therefore,

p =
1

2
(d±

√

d2 − 4df) = 22 cm± 1

2

√

(44 cm)2 − 4(44 cm)(11 cm) = 22 cm .

24. (a) Since this is a converging lens (“C”) then f > 0, so we should put a plus sign in front of the “10”
value given for the focal length. There is not enough information to determine r1 and r2. Eq. 35-9
gives

i =
1

1
f − 1

p

=
1

1
10 − 1

20

= +20 cm .

There is insufficient information for the determination of n. From Eq. 35-6, m = −20/20 = −1.0.
The image is real (since i > 0) and inverted (since m < 0). The ray diagram would be similar to
Fig. 35-14(a) in the textbook.
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(b) Since f > 0, this is a converging lens (“C”). There is not enough information to determine r1 and
r2. Eq. 35-9 gives

i =
1

1
f − 1

p

=
1

1
10 − 1

5

= −10 cm .

There is insufficient information for the determination of n. From Eq. 35-6, m = −(−10)/5 = +2.0.
The image is virtual (since i < 0) and upright (since m > 0). The ray diagram would be similar to
Fig. 35-14(b) in the textbook.

(c) We are told the magnification is positive and greater than 1. Scanning the single-lens-image figures
in the textbook (Figs. 35-13, 35-14 and 35-16), we see that such a magnification (which implies an
upright image larger than the object) is only possible if the lens is of the converging (“C”) type
(and if p < f). Thus, we should put a plus sign in front of the “10” value given for the focal length.
Eq. 35-9 gives

i =
1

1
f − 1

p

=
1

1
10 − 1

5

= −10 cm ,

which implies the image is virtual. There is insufficient information for the determinations of n, r1
and r2. The ray diagram would be similar to Fig. 35-14(b) in the textbook.

(d) We are told the magnification is less than 1, and we note that p < |f |). Scanning Figs. 35-13, 35-14
and 35-16, we see that such a magnification (which implies an image smaller than the object) and
object position (being fairly close to the lens) are simultaneously possible only if the lens is of the
diverging (“D”) type. Thus, we should put a minus sign in front of the “10” value given for the
focal length. Eq. 35-9 gives

i =
1

1
f − 1

p

=
1

1
−10 − 1

5

= −3.3 cm ,

which implies the image is virtual (and upright). There is insufficient information for the determi-
nations of n, r1 and r2. The ray diagram would be similar to Fig. 35-14(c) in the textbook.

(e) Eq. 35-10 yields f = 1
n−1 (1/r1 − 1/r2)

−1 = +30 cm. Since f > 0, this must be a converging (“C”)
lens. From Eq. 35-9, we obtain

i =
1

1
f − 1

p

=
1

1
30 − 1

10

= −15 cm .

Eq. 35-6 yields m = −(−15)/10 = +1.5. Therefore, the image is virtual (i < 0) and upright
(m > 0). The ray diagram would be similar to Fig. 35-14(b) in the textbook.

(f) Eq. 35-10 yields f = 1
n−1 (1/r1 − 1/r2)

−1 = −30 cm. Since f < 0, this must be a diverging (“D”)
lens. From Eq. 35-9, we obtain

i =
1

1
f − 1

p

=
1

1
−30 − 1

10

= −7.5 cm .

Eq. 35-6 yields m = −(−7.5)/10 = +0.75. Therefore, the image is virtual (i < 0) and upright
(m > 0). The ray diagram would be similar to Fig. 35-14(c) in the textbook.

(g) Eq. 35-10 yields f = 1
n−1 (1/r1 − 1/r2)

−1 = −120 cm. Since f < 0, this must be a diverging (“D”)
lens. From Eq. 35-9, we obtain

i =
1

1
f − 1

p

=
1

1
−120 − 1

10

= −9.2 cm .

Eq. 35-6 yields m = −(−9.2)/10 = +0.92. Therefore, the image is virtual (i < 0) and upright
(m > 0). The ray diagram would be similar to Fig. 35-14(c) in the textbook.
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(h) We are told the absolute value of the magnification is 0.5 and that the image was upright. Thus,
m = +0.5. Using Eq. 35-6 and the given value of p, we find i = −5.0 cm; it is a virtual image.
Eq. 35-9 then yields the focal length: f = −10 cm. Therefore, the lens is of the diverging (“D”)
type. The ray diagram would be similar to Fig. 35-14(c) in the textbook. There is insufficient
information for the determinations of n, r1 and r2.

(i) Using Eq. 35-6 (which implies the image is inverted) and the given value of p, we find i = −mp =
+5.0 cm; it is a real image. Eq. 35-9 then yields the focal length: f = +3.3 cm. Therefore, the lens
is of the converging (“C”) type. The ray diagram would be similar to Fig. 35-14(a) in the textbook.
There is insufficient information for the determinations of n, r1 and r2.

25. For an object in front of a thin lens, the object distance p and the image distance i are related by
(1/p)+(1/i) = (1/f), where f is the focal length of the lens. For the situation described by the problem,
all quantities are positive, so the distance x between the object and image is x = p + i. We substitute
i = x− p into the thin lens equation and solve for x:

x =
p2

p− f .

To find the minimum value of x, we set dx/dp = 0 and solve for p. Since

dx

dp
=
p(p− 2f)

(p− f)2
,

the result is p = 2f . The minimum distance is

xmin =
p2

p− f =
(2f)2

2f − f = 4f .

This is a minimum, rather than a maximum, since the image distance i becomes large without bound
as the object approaches the focal point.

26. (a) (b) (c) and (d) Our first step is to form the image from the first lens. With p1 = 10 cm and
f1 = −15 cm, Eq. 35-9 leads to

1

p1
+

1

i1
=

1

f1
=⇒ i1 = −6 cm .

The corresponding magnification is m1 = −i1/p1 = 0.6. This image serves the role of “object” for
the second lens, with p2 = 12 + 6 = 18 cm, and f2 = 12 cm. Now, Eq. 35-9 leads to

1

p2
+

1

i2
=

1

f2
=⇒ i2 = 36 cm

with a corresponding magnification of m2 = −i2/p2 = −2, resulting in a net magnification of
m = m1m2 = −1.2. The fact that m is positive means that the orientation of the final image is
inverted with respect to the (original) object. The height of the final image is (in absolute value)
(1.2)(1.0 cm) = 1.2 cm. The fact that i2 is positive means that the final image is real.

27. Without the diverging lens (lens 2), the real image formed by the converging lens (lens 1) is located at
a distance

i1 =

(

1

f1
− 1

p1

)−1

=

(

1

20 cm
− 1

40 cm

)−1

= 40 cm

to the right of lens 1. This image now serves as an object for lens 2, with p2 = −(40 cm−10 cm) = −30 cm.
So

i2 =

(

1

f2
− 1

p2

)−1

=

(

1

−15 cm
− 1

−30 cm

)−1

= −30 cm .

Thus, the image formed by lens 2 is located 30 cm to the left of lens 2. It is virtual (since i2 < 0). The
magnification is m = (−i1/p1) × (−i2/p2) = +1, so the image has the same size and orientation as the
object.
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28. (a) For the image formed by the first lens

i1 =

(

1

f1
− 1

p1

)−1

=

(

1

10 cm
− 1

20 cm

)−1

= 20 cm .

For the subsequent image formed by the second lens p2 = 30 cm− 20 cm = 10 cm, so

i2 =

(

1

f2
− 1

p2

)−1

=

(

1

12.5 cm
− 1

10 cm

)−1

= −50 cm .

Thus, the final image is 50 cm to the left of the second lens, which means that it coincides with the
object. The magnification is

m =

(

i1
p1

)(

i2
p2

)

=

(

20 cm

20 cm

)(−50 cm

10 cm

)

= −5.0 ,

which means that the final image is five times larger than the original object.

(b) The ray diagram would be very similar to Fig. 35-17 in the textbook, except that the final image
would be directly underneath the original object.

(c) and (d) It is virtual and inverted.

29. We place an object far away from the composite lens and find the image distance i. Since the image is
at a focal point, i = f , where f equals the effective focal length of the composite. The final image is
produced by two lenses, with the image of the first lens being the object for the second. For the first
lens, (1/p1) + (1/i1) = (1/f1), where f1 is the focal length of this lens and i1 is the image distance
for the image it forms. Since p1 = ∞, i1 = f1. The thin lens equation, applied to the second lens, is
(1/p2) + (1/i2) = (1/f2), where p2 is the object distance, i2 is the image distance, and f2 is the focal
length. If the thicknesses of the lenses can be ignored, the object distance for the second lens is p2 = −i1.
The negative sign must be used since the image formed by the first lens is beyond the second lens if i1
is positive. This means the object for the second lens is virtual and the object distance is negative. If
i1 is negative, the image formed by the first lens is in front of the second lens and p2 is positive. In the
thin lens equation, we replace p2 with −f1 and i2 with f to obtain

− 1

f1
+

1

f
=

1

f2

or
1

f
=

1

f1
+

1

f2
=
f1 + f2
f1f2

.

Thus,

f =
f1f2
f1 + f2

.

30. (a) A convex (converging) lens, since a real image is formed.

(b) Since i = d− p and i/p = 1/2,

p =
2d

3
=

2(40.0 cm)

3
= 26.7 cm .

(c) The focal length is

f =

(

1

i
+

1

p

)−1

=

(

1

d/3
+

1

2d/3

)−1

=
2d

9
=

2(40.0 cm)

9
= 8.89 cm .
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31. (a) If the object distance is x, then the image distance is D − x and the thin lens equation becomes

1

x
+

1

D − x =
1

f
.

We multiply each term in the equation by fx(D− x) and obtain x2 −Dx+Df = 0. Solving for x,
we find that the two object distances for which images are formed on the screen are

x1 =
D −

√

D(D − 4f)

2
and x2 =

D +
√

D(D − 4f)

2
.

The distance between the two object positions is

d = x2 − x1 =
√

D(D − 4f) .

(b) The ratio of the image sizes is the same as the ratio of the lateral magnifications. If the object is
at p = x1, the magnitude of the lateral magnification is

|m1| =
i1
p1

=
D − x1

x1
.

Now x1 = 1
2 (D − d), where d =

√

D(D − f), so

|m1| =
D − (D − d)/2

(D − d)/2 =
D + d

D − d .

Similarly, when the object is at x2, the magnitude of the lateral magnification is

|m2| =
I2
p2

=
D − x2

x2
=
D − (D + d)/2

(D + d)/2
=
D − d
D + d

.

The ratio of the magnifications is

m2

m1
=

(D − d)/(D + d)

(D + d)/(D − d) =

(

D − d
D + d

)2

.

32. The minimum diameter of the eyepiece is given by

dey =
dob

mθ
=

75 mm

36
= 2.1 mm .

33. (a) If L is the distance between the lenses, then according to Fig. 35-17, the tube length is s =
L− fob − fey = 25.0 cm− 4.00 cm− 8.00 cm = 13.0 cm.

(b) We solve (1/p) + (1/i) = (1/fob) for p. The image distance is i = fob + s = 4.00 cm + 13.0 cm =
17.0 cm, so

p =
ifob
i− fob

=
(17.0 cm)(4.00 cm)

17.0 cm− 4.00 cm
= 5.23 cm .

(c) The magnification of the objective is

m = − i
p

= −17.0 cm

5.23 cm
= −3.25 .

(d) The angular magnification of the eyepiece is

mθ =
25 cm

fey
=

25 cm

8.00 cm
= 3.13 .
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(e) The overall magnification of the microscope is

M = mmθ = (−3.25)(3.13) = −10.2 .

34. (a) Without the magnifier, θ = h/Pn (see Fig. 35-16). With the magnifier, letting p = Pn and i =
−|i| = −Pn, we obtain

1

p
=

1

f
− 1

i
=

1

f
+

1

|i| =
1

f
+

1

Pn
.

Consequently,

mθ =
θ′

θ
=

h/p

h/Pn
=

1/f + 1/Pn

1/Pn
= 1 +

Pn

f
= 1 +

25 cm

f
.

(b) Now i = −|i| → −∞, so 1/p+ 1/i = 1/p = 1/f and

mθ =
θ′

θ
=

h/p

h/Pn
=

1/f

1/Pn
=
Pn

f
=

25 cm

f
.

(c) For f = 10 cm,

mθ = 1 +
25 cm

10 cm
= 3.5 (case (a)) and

25 cm

10 cm
= 2.5 (case (b)) .

35. (a) When the eye is relaxed, its lens focuses far-away objects on the retina, a distance i behind the
lens. We set p =∞ in the thin lens equation to obtain 1/i = 1/f , where f is the focal length of the
relaxed effective lens. Thus, i = f = 2.50 cm. When the eye focuses on closer objects, the image
distance i remains the same but the object distance and focal length change. If p is the new object
distance and f ′ is the new focal length, then

1

p
+

1

i
=

1

f ′ .

We substitute i = f and solve for f ′:

f ′ =
pf

f + p
=

(40.0 cm)(2.50 cm)

40.0 cm + 2.50 cm
= 2.35 cm .

(b) Consider the lensmaker’s equation

1

f
= (n− 1)

(

1

r1
− 1

r2

)

where r1 and r2 are the radii of curvature of the two surfaces of the lens and n is the index of
refraction of the lens material. For the lens pictured in Fig. 35-34, r1 and r2 have about the same
magnitude, r1 is positive, and r2 is negative. Since the focal length decreases, the combination
(1/r1) − (1/r2) must increase. This can be accomplished by decreasing the magnitudes of both
radii.

36. Refer to Fig. 35-17. For the intermediate image p = 10 mm and i = (fob+s+fey)−fey = 300 m−50 mm =
250 mm, so

1

fob
=

1

i
+

1

p
=

1

250 mm
+

1

10 mm
=⇒ fob = 9.62 mm ,

and s = (fob + s+ fey)− fob − fey = 300 mm− 9.62 mm− 50 mm = 240 mm. Then from Eq. 35-14,

M = − s

fob

25 cm

fey
= −

(

240 mm

9.62 mm

)(

150 mm

50 mm

)

= −125 .
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37. (a) Now, the lens-film distance is

i =

(

1

f
− 1

p

)−1

=

(

1

5.0 cm
− 1

100 cm

)−1

= 5.3 cm .

(b) The change in the lens-film distance is 5.3 cm− 5.0 cm = 0.30 cm.

38. We combine Eq. 35-4 and Eq. 35-6 and arrive at

m = −pf/(p− f)

p
=

1

1− r where r =
p

f

We emphasize that this r (for ratio) is not the radius of curvature. The magnification as a function of r
is graphed below:

–4

–2

0

2

4

m

0.20.40.60.8 1 1.21.41.61.8 2 2.22.42.62.8 3
r

39. (a) The discussion in the textbook of the refracting telescope (a subsection of §35-7) applies to the
Newtonian arrangement if we replace the objective lens of Fig. 35-18 with an objective mirror (with
the light incident on it from the right). This might suggest that the incident light would be blocked
by the person’s head in Fig. 35-18, which is why Newton added the mirrorM ′ in his design (to move
the head and eyepiece out of the way of the incoming light). The beauty of the idea of characterizing
both lenses and mirrors by focal lengths is that it is easy, in a case like this, to simply carry over
the results of the objective-lens telescope to the objective-mirror telescope, so long as we replace a
positive f device with another positive f device. Thus, the converging lens serving as the objective
of Fig. 35-18 must be replaced (as Newton has done in Fig. 35-44) with a concave mirror. With
this change of language, the discussion in the textbook leading up to Eq. 35-15 applies equally as
well to the Newtonian telescope: mθ = −fob/fey.

(b) A meter stick (held perpendicular to the line of sight) at a distance of 2000 m subtends an angle of

θstick ≈
1 m

2000 m
= 0.0005 rad .

Multiplying this by the mirror focal length gives (16.8 m)(0.0005) = 8.4 mm for the size of the
image.

(c) With r = 10 m, Eq. 35-3 gives fob = 5 m. Plugging this into (the absolute value of) Eq. 35-15
leads to fey = 5/200 = 2.5 cm.
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40. (a) The “object” for the mirror which results in that box-image is equally in front of the mirror (4 cm).
This object is actually the first image formed by the system (produced by the first transmission
through the lens); in those terms, it corresponds to i1 = 10 − 4 = 6 cm. Thus, with f1 = 2 cm,
Eq. 35-9 leads to

1

p1
+

1

i1
=

1

f1
=⇒ p1 = 3.00 cm .

(b) The previously mentioned box-image (4 cm behind the mirror) serves as an “object” (at p3 = 14 cm)
for the return trip of light through the lens (f3 = f1 = 2 cm). This time, Eq. 35-9 leads to

1

p3
+

1

i3
=

1

f3
=⇒ i3 = 2.33 cm .

41. (a) In this casem > +1 and we know we are dealing with a converging lens (producing a virtual image),
so that our result for focal length should be positive. Since |p + i| = 20 cm and i = −2p, we find
p = 20 cm and i = −40 cm. Substituting these into Eq. 35-9,

1

p
+

1

i
=

1

f

leads to f = +40 cm, which is positive as we expected.

(b) In this case 0 < m < 1 and we know we are dealing with a diverging lens (producing a virtual
image), so that our result for focal length should be negative. Since |p+ i| = 20 cm and i = −p/2,
we find p = 40 cm and i = −20 cm. Substituting these into Eq. 35-9 leads to f = −40 cm, which
is negative as we expected.

42. (a) The first image is figured using Eq. 35-8, with n1 = 1 (using the rounded-off value for air) and
n2 = 8/5.

1

p
+

8

5i
=

1.6− 1

r

For a “flat lens” r = ∞, so we obtain i = −8p/5 = −64/5 (with the unit cm understood) for that
object at p = 10 cm. Relative to the second surface, this image is at a distance of 3 + 64/5 = 79/5.
This serves as an object in order to find the final image, using Eq. 35-8 again (and r = ∞) but
with n1 = 8/5 and n2 = 4/3.

8

5p′
+

4

3i′
= 0

which produces (for p′ = 79/5) i′ = −5p/6 = −79/6 ≈ −13.2. This means the observer appears
13.2 + 6.8 = 20 cm from the fish.

(b) It is straightforward to “reverse” the above reasoning, the result being that the final fish-image is
7.0 cm to the right of the air-wall interface, and thus 15 cm from the observer.

43. (a) (b) and (c) Since m = +0.250, we have i = −0.25p which indicates that the image is virtual (as
well as being diminished in size). We conclude from this that the mirror is convex and that f < 0;
in fact, f = −2.00 cm. Substituting i = −p/4 into Eq. 35-4 produces

1

p
− 4

p
= −3

p
=

1

f

Therefore, we find p = 6.00 cm and i = −1.50 cm.

44. (a) A parallel ray of light focuses at the focal point behind the lens. In the case of farsightedness we
need to bring the focal point closer. That is, we need to reduce the focal length. From problem 29,
we know that we need to use a converging lens of certain focal length f1 > 0 which, when combined
with the eye of focal length f2, gives f = f1f2/(f1 + f2) < f2. Similarly, we see that in the case of
nearsightness we need to do a similar computation but with a diverging (f1 < 0) lens.
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(b) In this case, the unaided eyes are able to accommodate rays of light coming from distant (and
medium-range) sources, but not from close ones. The person (not wearing glasses) is able to see far
(not near), so the person is farsighted.

(c) The bifocal glasses can provide suitable corrections for different types of visual defects that prove a
hindrance in different situations, such as reading (difficult for the farsighted individual) and viewing
a distant object (difficult for a nearsighted individual).

45. (a) We use Eq. 35-10, with the conventions for signs discussed in §35-5 and §35-6.

(b) For the bi-convex (or double convex) case, we have

f =

[

(n− 1)

(

1

r1
− 1

r2

)]−1

=

[

(1.5− 1)

(

1

40 cm
− 1

−40 cm

)]−1

= 40 cm .

Since f > 0 the lens forms a real image of the Sun.

(c) For the planar convex lens, we find

f =

[

(1.5− 1)

(

1

∞ −
1

−40 cm

)]−1

= 80 cm ,

and the image formed is real (since f > 0).

(d) Now

f =

[

(1.5− 1)

(

1

40 cm
− 1

60 cm

)]−1

= 240 cm ,

and the image formed is real (since f > 0).

(e) For the bi-concave lens, the focal length is

f =

[

(1.5− 1)

(

1

−40 cm
− 1

40 cm

)]−1

= −40 cm ,

and the image formed is virtual (since f < 0).

(f) In this case,

f =

[

(1.5− 1)

(

1

∞ −
1

40 cm

)]−1

= −80 cm ,

and the image formed is virtual (since f < 0).

(g) Now

f =

[

(1.5− 1)

(

1

60 cm
− 1

40 cm

)]−1

= −240 cm ,

and the image formed is virtual (since f < 0).

46. Of course, the shortest possible path between A and B is the straight line path which does not go to the
mirror at all. In this problem, we are concerned with only those paths which do strike the mirror. The
problem statement suggests that we turn our attention to the mirror-image point of A (call it A′) and
requests that we construct a proof without calculus. We can see that the length of any line segment AP
drawn from A to the mirror (at point P on the mirror surface) is the same as the length of its “mirror
segment” A′P drawn from A′ to that point P . Thus, the total length of the light path from A to P
to B is the same as the total length of segments drawn from A′ to P to B. Now, we dismissed (in the
first sentence of this solution) the possibility of a straight line path directly from A to B because it does
not strike the mirror. However, we can construct a straight line path from A′ to B which does intersect
the mirror surface! Any other pair of segments (A′P and PB) would give greater total length than
the straight path (with A′P and PB collinear), so if the straight path A′B obeys the law of reflection,
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then we have our proof. Now, since A′P is the mirror-twin of AP , then they both approach the mirror
surface with the same angle α (one from the front side and the other from the back side). And since
A′P is collinear with PB, then PB also makes the same angle α with respect to the mirror surface (by
vertex angles). If AP and PB are each α degrees away from the front of the mirror, then they are each
θ degrees (where θ is the complement of α) measured from the normal axis. Thus, the law of reflection
is consistent with the concept of the shortest light path.

47. (a) (b) and (c) Our first step is to form the image from the first lens. With p1 = 4 cm and f1 = −4 cm,
Eq. 35-9 leads to

1

p1
+

1

i1
=

1

f1
=⇒ i1 = −2 cm .

The corresponding magnification is m1 = −i1/p1 = 1/2. This image serves the role of “object” for
the second lens, with p2 = 10 + 2 = 12 cm, and f2 = −4 cm. Now, Eq. 35-9 leads to

1

p2
+

1

i2
=

1

f2
=⇒ i2 = −3.00 cm

with a corresponding magnification of m2 = −i2/p2 = 1/4, resulting in a net magnification of
m = m1m2 = 1/8. The fact that m is positive means that the orientation of the final image is the
same as the (original) object. The fact that i2 is negative means that the final image is virtual.

48. (a) (b) (c) and (d) Our first step is to form the image from the first lens. With p1 = 3 cm and
f1 = +4 cm, Eq. 35-9 leads to

1

p1
+

1

i1
=

1

f1
=⇒ i1 = −12 cm .

The corresponding magnification is m1 = −i1/p1 = 4. This image serves the role of “object” for
the second lens, with p2 = 8 + 12 = 20 cm, and f2 = −4 cm. Now, Eq. 35-9 leads to

1

p2
+

1

i2
=

1

f2
=⇒ i2 = −3.33 cm

with a corresponding magnification of m2 = −i2/p2 = 1/6, resulting in a net magnification of
m = m1m2 = 2/3. The fact that m is positive means that the orientation of the final image is the
same as the (original) object. The fact that i2 is negative means that the final image is virtual (and
therefore to the left of the second lens).

49. Since 0 < m < 1, we conclude the lens is of the diverging type (so f = −40 cm). Thus, substituting
i = −3p/10 into Eq. 35-9 produces

1

p
− 10

3p
= − 7

3p
=

1

f
.

Therefore, we find p = 93.3 cm and i = −28.0 cm.

50. (a) We use Eq. 35-8 (and Fig. 35-10(b) is useful), with n1 = 1 (using the rounded-off value for air) and
n2 = 1.5 .

1

p
+

1.5

i
=

1.5− 1

r

Using the sign convention for r stated in the paragraph following Eq. 35-8 (so that r = +6.0 cm),
we obtain i = −90 cm for objects at p = 10 cm. Thus, the object and image are 80 cm apart.

(b) The image distance i is negative with increasing magnitude as p increases from very small values
to some value p0 at which point i→ −∞. Since 1/(−∞) = 0, the above equation yields

1

p0
=

1.5− 1

r
=⇒ p0 = 2r.

Thus, the range for producing virtual images is 0 < p ≤ 12 cm.
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51. (a) Since m = +0.200, we have i = −0.2p which indicates that the image is virtual (as well as being
diminished in size). We conclude from this that the mirror is convex (and that f = −40.0 cm).

(b) Substituting i = −p/5 into Eq. 35-4 produces

1

p
− 5

p
= −4

p
=

1

f
.

Therefore, we find p = 160 cm.

52. (a) First, the lens forms a real image of the object located at a distance

i1 =

(

1

f1
− 1

p1

)−1

=

(

1

f1
− 1

2f1

)−1

= 2f1

to the right of the lens, or at p2 = 2(f1 + f2) − 2f1 = 2f2 in front of the mirror. The subsequent
image formed by the mirror is located at a distance

i2 =

(

1

f2
− 1

p2

)−1

=

(

1

f2
− 1

2f2

)−1

= 2f2

to the left of the mirror, or at p′1 = 2(f1 + f2)− 2f2 = 2f1 to the right of the lens. The final image
formed by the lens is that at a distance i′1 to the left of the lens, where

i′1 =

(

1

f1
− 1

p′1

)−1

=

(

1

f1
− 1

2f1

)−1

= 2f1 .

This turns out to be the same as the location of the original object. The final image is real and
inverted. The lateral magnification is

m =

(

− i1
p1

)(

− i2
p2

)(

− i
′
1

p′1

)

=

(

−2f1
2f1

)(

−2f2
2f2

)(

−2f1
2f1

)

= −1.0 .

(b) The ray diagram is shown below. We set the ratio f2/f1 = 1/2 for the purposes of this sketch. The
intermediate images are not shown explicitly, but they are both located on the plane indicated by
the dashed line.
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.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

53. From Eq. 35-10, if

f ∝
(

1

r1
− 1

r2

)−1

=
r1r2
r2 − r1

is positive (that is, if r2 > r1), then the lens is converging. Otherwise it is diverging.

(a) Converging, since r2 →∞ and r1 is finite (so r2 > r1).

(b) Diverging, since r1 →∞ and r2 is finite (so r2 < r1).

(c) Converging, since r2 > r1.



888 CHAPTER 35.

(d) Diverging, since r2 < r1.

54. We refer to Fig. 35-2 in the textbook. Consider the two light rays, r and r′, which are closest to and on
either side of the normal ray (the ray that reverses when it reflects). Each of these rays has an angle of
incidence equal to θ when they reach the mirror. Consider that these two rays reach the top and bottom
edges of the pupil after they have reflected. If ray r strikes the mirror at point A and ray r′ strikes the
mirror at B, the distance between A and B (call it x) is

x = 2do tan θ

where do is the distance from the mirror to the object. We can construct a right triangle starting with
the image point of the object (a distance do behind the mirror; see I in Fig. 35-2). One side of the
triangle follows the extended normal axis (which would reach from I to the middle of the pupil), and the
hypotenuse is along the extension of ray r (after reflection). The distance from the pupil to I is dey +do,
and the small angle in this triangle is again θ. Thus,

tan θ =
R

dey + do

where R is the pupil radius (2.5 mm). Combining these relations, we find

x = 2do
R

dey + do
= 2(100 mm)

2.5 mm

300 mm + 100 mm

which yields x = 1.67 mm. Now, x serves as the diameter of a circular area A on the mirror, in which
all rays that reflect will reach the eye. Therefore,

A =
1

4
πx2 =

π

4
(1.67 mm)2 = 2.2 mm2 .

55. The sphere (of radius 0.35 m) is a convex mirror with focal length f = −0.175 m. We adopt the
approximation that the rays are close enough to the central axis for Eq. 35-4 to be applicable. We also
take the “1.0 m in front of ... [the] sphere” to mean p = 1.0 m (measured from the front surface as
opposed to being measured from the center-point of the sphere).

(a) The equation 1/p+ 1/i = 1/f yields i = −0.15 m, which means the image is 15 cm from the front
surface, appearing to be inside the sphere.

(b) and (c) The lateral magnification is m = −i/p which yields m = 0.15. Therefore, the image
distance is (0.15)(2.0 m) = 0.30 m; that this is a positive value implies the image is erect (upright).

56. (a) The mirror has focal length f = 12 cm. With m = +3, we have i = −3p. We substitute this into
Eq. 35-4:

1

p
+

1

i
=

1

f
1

p
+

1

−3p
=

1

12
2

3p
=

1

12

with the unit cm understood. Consequently, we find p = 2(12)/3 = 8.0 cm.

(b) With m = −3, we have i = +3p, which we substitute into Eq. 35-4:

1

p
+

1

i
=

1

f
1

p
+

1

3p
=

1

12
4

3p
=

1

12
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with the unit cm understood. Consequently, we find p = 4(12)/3 = 16 cm.

(c) With m = −1/3, we have i = p/3. Thus, Eq. 35-4 leads to

1

p
+

1

i
=

1

f
1

p
+

3

p
=

1

12
4

p
=

1

12

with the unit cm understood. Consequently, we find p = 4(12) = 48 cm.

57. Since m = −2 and p = 4 cm, then i = 8 cm (and is real). Eq. 35-9 is

1

p
+

1

i
=

1

f

and leads to f = 2.67 cm (which is positive, as it must be for a converging lens).

58. We use Eq. 35-8 (and Fig. 35-10(d) is useful), with n1 = 1.6 and n2 = 1 (using the rounded-off value for
air).

1.6

p
+

1

i
=

1− 1.6

r

Using the sign convention for r stated in the paragraph following Eq. 35-8 (so that r = −5.0 cm), we
obtain i = −2.4 cm for objects at p = 3.0 cm. Returning to Fig. 35-52 (and noting the location of the
observer), we conclude that the tabletop seems 7.4 cm away.

59. The fact that it is inverted implies m < 0. Therefore, with m = −1/2, we have i = p/2, which we
substitute into Eq. 35-4:

1

p
+

1

i
=

1

f
1

p
+

2

p
=

1

f
3

30.0
=

1

f

with the unit cm understood. Consequently, we find f = 30/3 = 10.0 cm. The fact that f > 0 implies
the mirror is concave.

60. (a) Suppose that the lens is placed to the left of the mirror. The image formed by the converging lens
is located at a distance

i =

(

1

f
− 1

p

)−1

=

(

1

0.50 m
− 1

1.0 m

)−1

= 1.0 m

to the right of the lens, or 2.0 m− 1.0 m = 1.0 m in front of the mirror. The image formed by the
mirror for this real image is then at 1.0 m to the right of the the mirror, or 2.0 m + 1.0 m = 3.0 m
to the right of the lens. This image then results in another image formed by the lens, located at a
distance

i′ =

(

1

f
− 1

p′

)−1

=

(

1

0.50 m
− 1

3.0 m

)−1

= 6.0 m

to the left of the lens (that is, 2.6 cm from the mirror).

(b) The final image is real since i′ > 0.
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(c) It also has the same orientation as the object, as one can verify by drawing a ray diagram or finding
the product of the magnifications (see the next part, which shows m > 0).

(d) The lateral magnification is

m =

(

− i
p

)(

− i
′

p′

)

=

(

−1.0 m

1.0 m

)(

−0.60 m

3.0 m

)

= +0.20 .

61. (a) Parallel rays are bent by positive-f lenses to their focal points F1 , and rays that come from the
focal point positions F2 in front of positive-f lenses are made to emerge parallel. The key, then,
to this type of beam expander is to have the rear focal point F1 of the first lens coincide with
the front focal point F2 of the second lens. Since the triangles that meet at the coincident focal
point are similar (they share the same angle; they are vertex angles), then W2/f2 = W1/f1 follows
immediately.

(b) The previous argument can be adapted to the first lens in the expanding pair being of the diverging
type, by ensuring that the front focal point of the first lens coincides with the front focal point of the
second lens. The distance between the lenses in this case is f2 − |f1| (where we assume f2 > |f1|),
which we can write as f2 + f1 just as in part (a).

62. The area is proportional to W 2, so the result of problem 61 plus the definition of intensity (power P
divided by area) leads to

I2
I1

=
P/W 2

2

P/W 2
1

=
W 2

1

W 2
2

=
f2
1

f2
2

.

63. (a) Virtual, since the image is formed by plane mirrors.

(b) Same. One can easily verify this by locating, for example, the images of two points, one at the head
of the penguin and the other at its feet.

(c) Same, since the image formed by any plane mirror retains the original shape and size of an object.

(d) The image of the penguin formed by the top mirror is located a distance D above the top mirror,
or L +D above the bottom one. Therefore, the final image of the penguin, formed by the bottom
mirror, is a distance L+D from the bottom mirror.

64. In the closest mirror, the “first” image I1 is 10 cm behind the mirror and therefore 20 cm from the
object O. There are images from both O and I1 in the more distant mirror: an image I2 which is 30 cm
behind that mirror (since O is 30 cm in front of it), and an image I3 which is 50 cm behind the mirror
(since I1 is 50 cm in front of it). We note that I2 is 60 cm from O, and I3 is 80 cm from O. Returning to
the closer mirror, we find images of I2 and I3, as follows: an image I4 which is 70 cm behind the mirror
(since I2 is 70 cm in front of it) and an image I5 which is 90 cm behind the mirror (since I3 is 90 cm in
front of it). The distances (measured from O) for I4 and I5 are 80 cm and 100 cm, respectively.



Chapter 36

1. (a) The frequency of yellow sodium light is

f =
c

λ
=

2.998× 108 m/s

589× 10−9 m
= 5.09× 1014 Hz .

(b) When traveling through the glass, its wavelength is

λn =
λ

n
=

589 nm

1.52
= 388 nm .

(c) The light speed when traveling through the glass is

v = fλn = (5.09× 1014 Hz)(388× 10−9 m) = 1.97× 108 m/s .

2. Comparing the light speeds in sapphire and diamond, we obtain

∆v = vs − vd = c

(

1

ns
− 1

nd

)

= (2.998× 108 m/s)

(

1

1.77
− 1

2.42

)

= 4.55× 107 m/s .

3. The index of refraction is found from Eq. 36-3:

n =
c

v
=

2.998× 108 m/s

1.92× 108 m/s
= 1.56 .

4. The index of refraction of fused quartz at λ = 550 nm is about 1.459, obtained from Fig. 34-19. Thus,
from Eq. 36-3, we find

v =
c

n
=

2.998× 108 m/s

1.459
= 2.06× 108 m/s .

5. Applying the law of refraction, we obtain sin θ/ sin 30◦ = vs/vd. Consequently,

θ = sin−1

(

vs sin 30◦

vd

)

= sin−1

[

(3.0 m/s) sin 30◦

4.0 m/s

]

= 22◦ .

The angle of incidence is gradually reduced due to refraction, such as shown in the calculation above
(from 30◦ to 22◦). Eventually after many refractions, θ will be virtually zero. This is why most waves
come in normal to a shore.

6. (a) The time t2 it takes for pulse 2 to travel through the plastic is

t2 =
L

c/1.55
+

L

c/1.70
+

L

c/1.60
+

L

c/1.45
=

6.30L

c
.

891
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Similarly for pulse 1:

t1 =
2L

c/1.59
+

L

c/1.65
+

L

c/1.50
=

6.33L

c
.

Thus, pulse 2 travels through the plastic in less time.

(b) The time difference (as a multiple of L/c) is

∆t = t2 − t1 =
6.33L

c
− 6.30L

c
=

0.03L

c
.

7. (a) We take the phases of both waves to be zero at the front surfaces of the layers. The phase of the
first wave at the back surface of the glass is given by φ1 = k1L − ωt, where k1 (= 2π/λ1) is the
angular wave number and λ1 is the wavelength in glass. Similarly, the phase of the second wave at
the back surface of the plastic is given by φ2 = k2L − ωt, where k2 (= 2π/λ2) is the angular wave
number and λ2 is the wavelength in plastic. The angular frequencies are the same since the waves
have the same wavelength in air and the frequency of a wave does not change when the wave enters
another medium. The phase difference is

φ1 − φ2 = (k1 − k2)L = 2π

(

1

λ1
− 1

λ2

)

L .

Now, λ1 = λair/n1, where λair is the wavelength in air and n1 is the index of refraction of the glass.
Similarly, λ2 = λair/n2, where n2 is the index of refraction of the plastic. This means that the
phase difference is φ1 − φ2 = (2π/λair)(n1 − n2)L. The value of L that makes this 5.65 rad is

L =
(φ1 − φ2)λair

2π(n1 − n2)
=

5.65(400× 10−9 m)

2π(1.60− 1.50)
= 3.60× 10−6 m .

(b) 5.65 rad is less than 2π rad = 6.28 rad, the phase difference for completely constructive interference,
and greater than π rad (= 3.14 rad), the phase difference for completely destructive interference. The
interference is, therefore, intermediate, neither completely constructive nor completely destructive.
It is, however, closer to completely constructive than to completely destructive.

8. (a) Eq. 36-11 (in absolute value) yields

L

λ
|n2 − n1| =

(8.50× 10−6 m)

500× 10−9 m
(1.60− 1.50) = 1.70 .

(b) Similarly,
L

λ
|n2 − n1| =

(8.50× 10−6 m)

500× 10−9 m
(1.72− 1.62) = 1.70 .

(c) In this case, we obtain

L

λ
|n2 − n1| =

(3.25× 10−6 m)

500× 10−9 m
(1.79− 1.59) = 1.30 .

(d) Since their phase differences were identical, the brightness should be the same for (a) and (b). Now,
the phase difference in (c) differs from an integer by 0.30, which is also true for (a) and (b). Thus,
their effective phase differences are equal, and the brightness in case (c) should be the same as that
in (a) and (b).

9. (a) We choose a horizontal x axis with its origin at the left edge of the plastic. Between x = 0 and
x = L2 the phase difference is that given by Eq. 36-11 (with L in that equation replaced with L2).
Between x = L2 and x = L1 the phase difference is given by an expression similar to Eq. 36-11
but with L replaced with L1 − L2 and n2 replaced with 1 (since the top ray in Fig. 36-28 is now
traveling through air, which has index of refraction approximately equal to 1). Thus, combining
these phase differences and letting all lengths be in µm (so λ = 0.600), we have

L2

λ
(n2 − n1) +

L1 − L2

λ
(1− n1) =

3.50

0.600
(1.60− 1.40) +

4.00− 3.50

0.600
(1− 1.40) = 0.833 .
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(b) Since the answer in part (a) is closer to an integer than to a half-integer, then the interference is
more nearly constructive than destructive.

10. (a) We wish to set Eq. 36-11 equal to 1
2 , since a half-wavelength phase difference is equivalent to a

π radians difference. Thus,

Lmin =
λ

2 (n2 − n1)
=

620 nm

2(1.65− 1.45)
= 1550 nm = 1.55 µm .

(b) Since a phase difference of 3
2 (wavelengths) is effectively the same as what we required in part (a),

then

L =
3λ

2 (n2 − n1)
= 3Lmin = 3(1.55µm) = 4.65 µm .

11. (a) We use Eq. 36-14 with m = 3:

θ = sin−1

(

mλ

d

)

= sin−1

[

2(550× 10−9 m)

7.70× 10−6 m

]

= 0.216 rad .

(b) θ = (0.216)(180◦/π) = 12.4◦.

12. Here we refer to phase difference in radians (as opposed to wavelengths or degrees). For the first dark
fringe φ1 = ±π, and for the second one φ2 = ±3π, etc. For the mth one φm = ±(2m+ 1)π.

13. The condition for a maximum in the two-slit interference pattern is d sin θ = mλ, where d is the slit
separation, λ is the wavelength, m is an integer, and θ is the angle made by the interfering rays with
the forward direction. If θ is small, sin θ may be approximated by θ in radians. Then, θ = mλ/d, and
the angular separation of adjacent maxima, one associated with the integer m and the other associated
with the integer m+ 1, is given by ∆θ = λ/d. The separation on a screen a distance D away is given by
∆y = D∆θ = λD/d. Thus,

∆y =
(500× 10−9 m)(5.40 m)

1.20× 10−3 m
= 2.25× 10−3 m = 2.25 mm .

14. (a) For the maximum adjacent to the central one, we set m = 1 in Eq. 36-14 and obtain

θ1 = sin−1

(

mλ

d

) ∣

∣

∣

∣

m=1

= sin−1

[

(1)(λ)

100λ

]

= 0.010 rad .

(b) Since y1 = D tan θ1 (see Fig. 36-8(a)), we obtain y1 = (500 mm) tan(0.010 rad) = 5.0 mm. The
separation is ∆y = y1 − y0 = y1 − 0 = 5.0 mm.

15. The angular positions of the maxima of a two-slit interference pattern are given by d sin θ = mλ, where
d is the slit separation, λ is the wavelength, and m is an integer. If θ is small, sin θ may be approximated
by θ in radians. Then, θ = mλ/d to good approximation. The angular separation of two adjacent
maxima is ∆θ = λ/d. Let λ′ be the wavelength for which the angular separation is 10.0% greater. Then,
1.10λ/d = λ′/d or λ′ = 1.10λ = 1.10(589 nm) = 648 nm.

16. In Sample Problem 36-2, an experimentally useful relation is derived: ∆y = λD/d. Dividing both sides
by D, this becomes ∆θ = λ/d with θ in radians. In the steps that follow, however, we will end up with
an expression where degrees may be directly used. Thus, in the present case,

∆θn =
λn

d
=

λ

nd
=

∆θ

n
=

0.20◦

1.33
= 0.15◦ .
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17. Interference maxima occur at angles θ such that d sin θ = mλ, where m is an integer. Since d = 2.0 m
and λ = 0.50 m, this means that sin θ = 0.25m. We want all values of m (positive and negative) for
which |0.25m| ≤ 1. These are −4, −3, −2, −1, 0, +1, +2, +3, and +4. For each of these except −4 and
+4, there are two different values for θ. A single value of θ (−90◦) is associated with m = −4 and a
single value (+90◦) is associated with m = +4. There are sixteen different angles in all and, therefore,
sixteen maxima.

18. Initially, source A leads source B by 90◦, which is equivalent to 1/4 wavelength. However, source A also
lags behind source B since rA is longer than rB by 100 m, which is 100 m/400 m = 1/4 wavelength. So
the net phase difference between A and B at the detector is zero.

19. The maxima of a two-slit interference pattern are at angles θ given by d sin θ = mλ, where d is the slit
separation, λ is the wavelength, and m is an integer. If θ is small, sin θ may be replaced by θ in radians.
Then, dθ = mλ. The angular separation of two maxima associated with different wavelengths but the
same value of m is ∆θ = (m/d)(λ2 − λ1), and their separation on a screen a distance D away is

∆y = D tan ∆θ ≈ D∆θ =

[

mD

d

]

(λ2 − λ1)

=

[

3(1.0 m)

5.0× 10−3 m

]

(600× 10−9 m− 480× 10−9 m) = 7.2× 10−5 m .

The small angle approximation tan ∆θ ≈ ∆θ (in radians) is made.

20. Let the distance in question be x. The path difference (between rays originating from S1 and S2 and
arriving at points on the x > 0 axis) is

√

d2 + x2 − x =

(

m+
1

2

)

λ ,

where we are requiring destructive interference (half-integer wavelength phase differences) and m =
0, 1, 2, · · · . After some algebraic steps, we solve for the distance in terms of m:

x =
d2

(2m+ 1)λ
− (2m+ 1)λ

4
.

To obtain the largest value of x, we set m = 0:

x0 =
d2

λ
− λ

4
=

(3.00λ)2

λ
− λ

4
= 8.75λ .

21. Consider the two waves, one from each slit, that produce the seventh bright fringe in the absence of the
mica. They are in phase at the slits and travel different distances to the seventh bright fringe, where
they have a phase difference of 2πm = 14π. Now a piece of mica with thickness x is placed in front of
one of the slits, and an additional phase difference between the waves develops. Specifically, their phases
at the slits differ by

2πx

λm
− 2πx

λ
=

2πx

λ
(n− 1)

where λm is the wavelength in the mica and n is the index of refraction of the mica. The relationship
λm = λ/n is used to substitute for λm. Since the waves are now in phase at the screen,

2πx

λ
(n− 1) = 14π

or

x =
7λ

n− 1
=

7(550× 10−9 m)

1.58− 1
= 6.64× 10−6 m .
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22. (a) We use ∆y = Dλ/d (see Sample Problem 36-2). Because of the placement of the mirror in the
problem D = 2(20.0 m) = 40.0 m, which we express in millimeters in the calculation below:

d =
Dλ

∆y
=

(4.00× 104 mm)(632.8× 10−6 mm)

100 mm
= 0.253 mm .

(b) In this case the interference pattern will be shifted. At the location of the original central maximum,
the effective phase difference is now 1

2 wavelength, so there is now a minimum instead of a maximum.

23. The phasor diagram is shown below. Here E1 = 1.00, E2 = 2.00, and φ = 60◦. The resultant amplitude
Em is given by the trigonometric law of cosines:

E2
m = E2

1 + E2
2 − 2E1E2 cos(180◦ − φ) .

Thus,

Em =
√

(1.00)2 + (2.00)2 − 2(1.00)(2.00) cos120◦ = 2.65 .
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φ

24. In adding these with the phasor method (as opposed to, say, trig identities), we may set t = 0 (see
Sample Problem 36-3) and add them as vectors:

yh = 10 cos 0◦ + 8.0 cos 30◦ = 16.9

yv = 10 sin 0◦ + 8.0 sin 30◦ = 4.0

so that

yR =
√

y2
h + y2

v = 17.4

β = tan−1

(

yv

yh

)

= 13.3◦ .

Thus, y = y1 + y2 = yR sin(ωt+ β) = 17.4 sin(ωt+ 13.3◦).

25. In adding these with the phasor method (as opposed to, say, trig identities), we may set t = 0 (see
Sample Problem 36-3) and add them as vectors:

yh = 10 cos 0◦ + 15 cos 30◦ + 5.0 cos(−45◦) = 26.5

yv = 10 sin 0◦ + 15 sin 30◦ + 5.0 sin(−45◦) = 4.0

so that

yR =
√

y2
h + y2

v = 26.8

β = tan−1

(

yv

yh

)

= 8.5◦ .

Thus, y = y1 + y2 + y3 = yR sin(ωt+ β) = 26.8 sin(ωt+ 8.5◦).
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26. Fig. 36-9 in the textbook is plotted versus the phase difference (in radians), whereas this problem requests
that we plot the intensity versus the physical angle θ (defined in Fig. 36-8). The values given in the
problem imply dλ = 1000. Combining this with Eq. 36-22 and Eq. 36-21, we solve for the (normalized)
intensity:

I

4I0
= cos2 (1000π sin θ) .

This is plotted over 0 ≤ θ ≤ 0.0040 rad:

0

0.2

0.4

0.6

0.8

1

0.001 0.002 0.003 0.004
theta

27. (a) To get to the detector, the wave from S1 travels a distance x and the wave from S2 travels a distance√
d2 + x2. The phase difference (in terms of wavelengths) between the two waves is

√

d2 + x2 − x = mλ m = 0, 1, 2, . . .

where we are requiring constructive interference. The solution is

x =
d2 −m2λ2

2mλ
.

The largest value of m that produces a positive value for x is m = 3. This corresponds to the
maximum that is nearest S1, at

x =
(4.00 m)2 − 9(1.00 m)2

(2)(3)(1.00 m)
= 1.17 m .

For the next maximum, m = 2 and x = 3.00 m. For the third maximum, m = 1 and x = 7.50 m.

(b) Minima in intensity occur where the phase difference is π rad; the intensity at a minimum, however,
is not zero because the amplitudes of the waves are different. Although the amplitudes are the
same at the sources, the waves travel different distances to get to the points of minimum intensity
and each amplitude decreases in inverse proportion to the distance traveled.

28. Setting I = 2I0 in Eq. 36-21 and solving for the smallest (in absolute value) two roots for φ/2, we find

φ = 2 cos−1

(

1√
2

)

= ±π
2

rad .

Now, for small θ in radians, Eq. 36-22 becomes φ = 2πdθ/λ. This leads to two corresponding angle
values:

θ = ± λ

4d
.
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The difference between these two values is ∆θ = λ
4d −

(

− λ
4d

)

= λ
2d .

29. We take the electric field of one wave, at the screen, to be

E1 = E0 sin(ωt)

and the electric field of the other to be

E2 = 2E0 sin(ωt+ φ) ,

where the phase difference is given by

φ =

(

2πd

λ

)

sin θ .
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.

E0

2E0

E
φ

α

ωt

Here d is the center-to-center slit separation and λ is the wavelength. The resultant wave can be written
E = E1 + E2 = E sin(ωt + α), where α is a phase constant. The phasor diagram is shown above. The
resultant amplitude E is given by the trigonometric law of cosines:

E2 = E2
0 + (2E0)

2 − 4E2
0 cos(180◦ − φ) = E2

0 (5 + 4 cosφ) .

The intensity is given by I = I0(5 + 4 cosφ), where I0 is the intensity that would be produced by
the first wave if the second were not present. Since cosφ = 2 cos2(φ/2) − 1, this may also be written
I = I0

[

1 + 8 cos2(φ/2)
]

.

30. The fact that wave W2 reflects two additional times has no substantive effect on the calculations, since
two reflections amount to a 2(λ/2) = λ phase difference, which is effectively not a phase difference at
all. The substantive difference between W2 and W1 is the extra distance 2L traveled by W2.

(a) For waveW2 to be a half-wavelength “behind” waveW1, we require 2L = λ/2, or L = λ/4 = 155 nm
using the wavelength value given in the problem.

(b) Destructive interference will again appear if W2 is 3
2λ “behind” the other wave. In this case,

2L′ = 3λ/2, and the difference is

L′ − L =
3λ

4
− λ

4
=
λ

2
= 310 nm .

31. The wave reflected from the front surface suffers a phase change of π rad since it is incident in air on a
medium of higher index of refraction. The phase of the wave reflected from the back surface does not
change on reflection since the medium beyond the soap film is air and has a lower index of refraction
than the film. If L is the thickness of the film, this wave travels a distance 2L farther than the wave
reflected from the front surface. The phase difference of the two waves is 2L(2π/λf) − π, where λf is
the wavelength in the film. If λ is the wavelength in vacuum and n is the index of refraction of the soap
film, then λf = λ/n and the phase difference is

2nL

(

2π

λ

)

− π = 2(1.33)(1.21× 10−6 m)

(

2π

585× 10−9 m

)

− π = 10π rad .

Since the phase difference is an even multiple of π, the interference is completely constructive.
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32. In contrast to the initial conditions of problem 30, we now consider waves W2 and W1 with an initial
effective phase difference (in wavelengths) equal to 1

2 , and seek positions of the sliver which cause the
wave to constructively interfere (which corresponds to an integer-valued phase difference in wavelengths).
Thus, the extra distance 2L traveled by W2 must amount to 1

2λ,
3
2λ, and so on. We may write this

requirement succinctly as

L =
2m+ 1

4
λ where m = 0, 1, 2, . . . .

33. For constructive interference, we use Eq. 36-34: 2n2L = (m+ 1/2)λ. For the two smallest values of L,
let m = 0 and 1:

L0 =
λ/2

2n2
=

624 nm

4(1.33)
= 117 nm = 0.117µm

L1 =
(1 + 1/2)λ

2n2
=

3λ

2n2
= 3L0 = 3(0.1173µm) = 0.352µm .

34. We use the formula obtained in Sample Problem 36-5:

Lmin =
λ

4n2
=

λ

4(1.25)
= 0.200λ .

35. Light reflected from the front surface of the coating suffers a phase change of π rad while light reflected
from the back surface does not change phase. If L is the thickness of the coating, light reflected from the
back surface travels a distance 2L farther than light reflected from the front surface. The difference in
phase of the two waves is 2L(2π/λc)−π, where λc is the wavelength in the coating. If λ is the wavelength
in vacuum, then λc = λ/n, where n is the index of refraction of the coating. Thus, the phase difference
is 2nL(2π/λ)− π. For fully constructive interference, this should be a multiple of 2π. We solve

2nL

(

2π

λ

)

− π = 2mπ

for L. Here m is an integer. The solution is

L =
(2m+ 1)λ

4n
.

To find the smallest coating thickness, we take m = 0. Then,

L =
λ

4n
=

560× 10−9 m

4(2.00)
= 7.00× 10−8 m .

36. Let the thicknesses (which appear in Fig. 36-31 as different heights h) of the structure be h = kL, where
k is a pure number. In section (b), for example, k = 2. Using Eq. 36-34, the condition for constructive
interference becomes

2h = 2(kL) =
(m+ 1/2)λ

n2
where m = 0, 1, 2, . . .

which leads to

k =
(m+ 1/2)λ

2n2L
=

(m+ 1/2)(600 nm)

2(1.50)(4.00× 103 nm)
=

2m+ 1

40
,

or 40k−1 = 2m. This means that 40k−1 would have to be an even integer. One can check that none of
the given values of k (1, 2, 1

2 , 3, 1
10 ) will satisfy this condition. Therefore, none of the sections provides

the right thickness for constructive interference.
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37. For complete destructive interference, we want the waves reflected from the front and back of the coating
to differ in phase by an odd multiple of π rad. Each wave is incident on a medium of higher index of
refraction from a medium of lower index, so both suffer phase changes of π rad on reflection. If L is
the thickness of the coating, the wave reflected from the back surface travels a distance 2L farther than
the wave reflected from the front. The phase difference is 2L(2π/λc), where λc is the wavelength in the
coating. If n is the index of refraction of the coating, λc = λ/n, where λ is the wavelength in vacuum,
and the phase difference is 2nL(2π/λ). We solve

2nL

(

2π

λ

)

= (2m+ 1)π

for L. Here m is an integer. The result is

L =
(2m+ 1)λ

4n
.

To find the least thickness for which destructive interference occurs, we take m = 0. Then,

L =
λ

4n
=

600× 10−9 m

4(1.25)
= 1.2× 10−7 m .

38. Eqs. 36-14 and 36-16 treat the interference of reflections, and here we are concerned with interference of
the transmitted light. Maxima in the reflections should, reasonably enough, correspond to minima in the
transmissions, and vice versa. So we might expect to apply those equations to this case if we switch the
designations “maxima” and “minima,” if we are careful with the phase shifts that occur at the points of
reflection (which depend on the relative values of n). Now, if the expression 2L = mλ/n2 is to give the
condition for constructive interference for the transmitted light, then the situation should be similar to
that which led in the textbook to Eqs. 36-14 and 36-16; namely, the thin film should be surrounded by
two higher-index or two lower-index media. Such is the case for Fig. 36-32(a) and Fig. 36-32(c), but not
for the others.

39. The situation is analogous to that treated in Sample Problem 36-5, in the sense that the incident light
is in a low index medium, the thin film has somewhat higher n = n2, and the last layer has the highest
refractive index. To see very little or no reflection, according to the Sample Problem, the condition

2L =

(

m+
1

2

)

λ

n2
where m = 0, 1, 2, . . .

must hold. The value of L which corresponds to no reflection corresponds, reasonably enough, to the
value which gives maximum transmission of light (into the highest index medium – which in this problem
is the water).

(a) If 2L =
(

m+ 1
2

)

λ
n2

(Eq. 36-34) gives zero reflection in this type of system, then we might reasonably
expect that its counterpart, Eq. 36-35, gives maximum reflection here. A more careful analysis such
as that given in §36-7 bears this out. We disregard the m = 0 value (corresponding to L = 0) since
there is some oil on the water. Thus, for m = 1, 2, . . . maximum reflection occurs for wavelengths

λ =
2n2L

m
=

2(1.20)(460 nm)

m
= 1104 nm , 552 nm , 368 nm . . .

We note that only the 552 nm wavelength falls within the visible light range.

(b) As remarked above, maximum transmission into the water occurs for wavelengths given by

2L =

(

m+
1

2

)

λ

n2
=⇒ λ =

4n2L

2m+ 1

which yields λ = 2208 nm , 736 nm , 442 nm . . . for the different values of m. We note that only
the 442 nm wavelength (blue) is in the visible range, though we might expect some red contribution
since the 736 nm is very close to the visible range.
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40. The situation is analogous to that treated in Sample Problem 36-5, in the sense that the incident light
is in a low index medium, the thin film of oil has somewhat higher n = n2, and the last layer (the
glass plate) has the highest refractive index. To see very little or no reflection, according to the Sample
Problem, the condition

2L =

(

m+
1

2

)

λ

n2
where m = 0, 1, 2, . . .

must hold. With λ = 500 nm and n2 = 1.30, the possible answers for L are

L = 96 nm , 288 nm , 481 nm , 673 nm , 865 nm , . . .

And, with λ = 700 nm and the same value of n2, the possible answers for L are

L = 135 nm , 404 nm , 673 nm , 942 nm , . . .

The lowest number these lists have in common is L = 673 nm.

41. Light reflected from the upper oil surface (in contact with air) changes phase by π rad. Light reflected
from the lower surface (in contact with glass) changes phase by π rad if the index of refraction of the
oil is less than that of the glass and does not change phase if the index of refraction of the oil is greater
than that of the glass.

• First, suppose the index of refraction of the oil is greater than the index of refraction of the glass.
The condition for fully destructive interference is 2nod = mλ, where d is the thickness of the oil
film, no is the index of refraction of the oil, λ is the wavelength in vacuum, and m is an integer. For
the shorter wavelength, 2nod = m1λ1 and for the longer, 2nod = m2λ2. Since λ1 is less than λ2,
m1 is greater than m2, and since fully destructive interference does not occur for any wavelengths
between, m1 = m2 + 1. Solving (m2 + 1)λ1 = m2λ2 for m2, we obtain

m2 =
λ1

λ2 − λ1
=

500 nm

700 nm− 500 nm
= 2.50 .

Since m2 must be an integer, the oil cannot have an index of refraction that is greater than that of
the glass.

• Now suppose the index of refraction of the oil is less than that of the glass. The condition for fully
destructive interference is then 2nod = (2m+1)λ. For the shorter wavelength, 2mod = (2m1+1)λ1,
and for the longer, 2nod = (2m2 + 1)λ2. Again, m1 = m2 + 1, so (2m2 + 3)λ1 = (2m2 + 1)λ2. This
means the value of m2 is

m2 =
3λ1 − λ2

2(λ2 − λ1)
=

3(500 nm)− 700 nm

2(700 nm− 500 nm)
= 2.00 .

This is an integer. Thus, the index of refraction of the oil is less than that of the glass.

42. We solve Eq. 36-34 with n2 = 1.33 and λ = 600 nm for m = 1, 2, 3, . . . :

L = 113 nm , 338 nm , 564 nm , 789 nm , . . .

And, we similarly solve Eq. 36-35 with the same n2 and λ = 450 nm:

L = 0 , 169 nm , 338 nm , 508 nm , 677 nm , . . .

The lowest number these lists have in common is L = 338 nm.

43. Consider the interference of waves reflected from the top and bottom surfaces of the air film. The wave
reflected from the upper surface does not change phase on reflection but the wave reflected from the
bottom surface changes phase by π rad. At a place where the thickness of the air film is L, the condition
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for fully constructive interference is 2L = (m+ 1
2 )λ, where λ (= 683 nm) is the wavelength and m is an

integer. This is satisfied for m = 140:

L =
(m+ 1

2 )λ

2
=

(140.5)(683× 10−9 m)

2
= 4.80× 10−5 m = 0.048 mm .

At the thin end of the air film, there is a bright fringe. It is associated with m = 0. There are, therefore,
140 bright fringes in all.

44. (a) At the left end, the plates touch, so L = 0 there, which is clearly consistent with Eq. 36-35 (the
destructive interference or “dark fringe” equation) for m = 0.

(b) Eq. 36-35 shows a simple proportionality between L and λ. So as we slowly increase L (from zero
– its value in part (a)), the smallest nonzero value of L for which the equation (which specifies
destructive interference) is satisfied occurs for the lowest possible value of λ. Wavelengths for blue
light are the shortest of the visible portion of the spectrum.

45. Assume the wedge-shaped film is in air, so the wave reflected from one surface undergoes a phase change
of π rad while the wave reflected from the other surface does not. At a place where the film thickness is
L, the condition for fully constructive interference is 2nL = (m+ 1

2 )λ, where n is the index of refraction
of the film, λ is the wavelength in vacuum, and m is an integer. The ends of the film are bright.
Suppose the end where the film is narrow has thickness L1 and the bright fringe there corresponds
to m = m1. Suppose the end where the film is thick has thickness L2 and the bright fringe there
corresponds to m = m2. Since there are ten bright fringes, m2 = m1 + 9. Subtract 2nL1 = (m1 + 1

2 )λ
from 2nL2 = (m1 + 9 + 1

2 )λ to obtain 2n∆L = 9λ, where ∆L = L2 − L1 is the change in the film
thickness over its length. Thus,

∆L =
9λ

2n
=

9(630× 10−9 m)

2(1.50)
= 1.89× 10−6 m .

46. The situation is analogous to that treated in Sample Problem 36-5, in the sense that the incident light
is in a low index medium, the thin film of acetone has somewhat higher n = n2, and the last layer (the
glass plate) has the highest refractive index. To see very little or no reflection, according to the Sample
Problem, the condition

2L =

(

m+
1

2

)

λ

n2
where m = 0, 1, 2, . . .

must hold. This is the same as Eq. 36-34 which was developed for the opposite situation (constructive
interference) regarding a thin film surrounded on both sides by air (a very different context than the
one in this problem). By analogy, we expect Eq. 36-35 to apply in this problem to reflection maxima. A
more careful analysis such as that given in §36-7 bears this out. Thus, using Eq. 36-35 with n2 = 1.25
and λ = 700 nm yields

L = 0 , 280 nm , 560 nm , 840 nm , 1120 nm , . . .

for the first several m values. And the equation shown above (equivalent to Eq. 36-34) gives, with
λ = 600 nm,

L = 120 nm , 360 nm , 600 nm , 840 nm , 1080 nm , . . .

for the first several m values. The lowest number these lists have in common is L = 840 nm.

47. We use Eq. 36-34:

L16 =

(

16 +
1

2

)

λ

2n2

L6 =

(

6 +
1

2

)

λ

2n2
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The difference between these, using the fact that n2 = nair = 1.0, is

L16 − L6 = (10)
480 nm

2(1.0)
= 2400 nm .

48. We apply Eq. 36-25 to both scenarios: m = 4001 and n2 = nair, and m = 4000 and n2 = nvacuum =
1.00000:

2L = (4001)
λ

nair
and 2L = (4000)

λ

1.00000
.

Since the 2L factor is the same in both cases, we set the right hand sides of these expressions equal to
each other and cancel the wavelength. Finally, we obtain

nair = (1.00000)
4001

4000
= 1.00025 .

We remark that this same result can be obtained starting with Eq. 36-41 (which is developed in the
textbook for a somewhat different situation) and using Eq. 36-40 to eliminate the 2L/λ term.

49. Consider the interference pattern formed by waves reflected from the upper and lower surfaces of the
air wedge. The wave reflected from the lower surface undergoes a π rad phase change while the wave
reflected from the upper surface does not. At a place where the thickness of the wedge is d, the condition
for a maximum in intensity is 2d = (m + 1

2 )λ, where λ is the wavelength in air and m is an integer.

Thus, d = (2m+ 1)λ/4. As the geometry of Fig. 36-34 shows, d = R−
√
R2 − r2, where R is the radius

of curvature of the lens and r is the radius of a Newton’s ring. Thus, (2m + 1)λ/4 = R −
√
R2 − r2.

First, we rearrange the terms so the equation becomes

√

R2 − r2 = R− (2m+ 1)λ

4
.

Next, we square both sides, rearrange to solve for r2, then take the square root. We get

r =

√

(2m+ 1)Rλ

2
− (2m+ 1)2λ2

16
.

If R is much larger than a wavelength, the first term dominates the second and

r =

√

(2m+ 1)Rλ

2
.

50. (a) We find m from the last formula obtained in problem 49:

m =
r2

Rλ
− 1

2
=

(10× 10−3 m)2

(5.0 m)(589× 10−9 m)
− 1

2

which (rounding down) yields m = 33. Since the first bright fringe corresponds to m = 0, m = 33
corresponds to the thirty-fourth bright fringe.

(b) We now replace λ by λn = λ/nw. Thus,

mn =
r2

Rλn
− 1

2
=
nwr

2

Rλ
− 1

2
=

(1.33)(10× 10−3 m)2

(5.0 m)(589× 10−9 m)
− 1

2
= 45 .

This corresponds to the forty-sixth bright fringe (see remark at the end of our solution in part (a)).

51. We solve for m using the formula r =
√

(2m+ 1)Rλ/2 obtained in problem 49 and find m = r2/Rλ−1/2.
Now, when m is changed to m + 20, r becomes r′, so m + 20 = r′2/Rλ − 1/2. Taking the difference
between the two equations above, we eliminate m and find

R =
r′2 − r2

20λ
=

(0.368 cm)2 − (0.162 cm)2

20(546× 10−7 cm)
= 100 cm .
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52. (a) The binomial theorem (Appendix E) allows us to write

√

k(1 + x) =
√
k

(

1 +
x

2
+
x2

8
+

3x3

48
+ · · ·

)

≈
√
k +

x

2

√
k

for x≪ 1. Thus, the end result from the solution of problem 49 yields

rm =

√

Rλm

(

1 +
1

2m

)

≈
√
Rλm+

1

4m

√
Rλm

and

rm+1 =

√

Rλm

(

1 +
3

2m

)

≈
√
Rλm+

3

4m

√
Rλm

for very large values of m. Subtracting these, we obtain

∆r =
3

4m

√
Rλm− 1

4m

√
Rλm =

1

2

√

Rλ

m
.

(b) We take the differential of the area: dA = d(πr2) = 2πr dr, and replace dr with ∆r in anticipation
of using the result from part (a). Thus, the area between adjacent rings for large values of m is

2πrm(∆r) ≈ 2π

(√
Rλm+

1

4m

√
Rλm

)

(

1

2

√

Rλ

m

)

≈ 2π
(√

Rλm
)

(

1

2

√

Rλ

m

)

which simplifies to the desired result (πλR).

53. The wave that goes directly to the receiver travels a distance L1 and the reflected wave travels a distance
L2. Since the index of refraction of water is greater than that of air this last wave suffers a phase change
on reflection of half a wavelength. To obtain constructive interference at the receiver, the difference
L2 − L1 must be an odd multiple of a half wavelength. Consider the diagram below. The right triangle
on the left, formed by the vertical line from the water to the transmitter T, the ray incident on the
water, and the water line, gives Da = a/ tan θ. The right triangle on the right, formed by the vertical
line from the water to the receiver R, the reflected ray, and the water line leads to Db = x/ tan θ. Since
Da +Db = D,

tan θ =
a+ x

D
.

←−−−− Da −−−−→←−− Db −−→

↑
|
|
|
|
a
|
|
|
|
↓

↑
|
|
x
|
|
↓
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L2a

L2b

θ θ

•
T

R
•

We use the identity sin2 θ = tan2 θ/(1 + tan2 θ) to show that sin θ = (a + x)/
√

D2 + (a+ x)2. This
means

L2a =
a

sin θ
=
a
√

D2 + (a+ x)2

a+ x
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and

L2b =
x

sin θ
=
x
√

D2 + (a+ x)2

a+ x
.

Therefore,

L2 = L2a + L2b =
(a+ x)

√

D2 + (a+ x)2

a+ x
=
√

D2 + (a+ x)2 .

Using the binomial theorem, with D2 large and a2 + x2 small, we approximate this expression: L2 ≈
D+(a+x)2/2D. The distance traveled by the direct wave is L1 =

√

D2 + (a− x)2. Using the binomial
theorem, we approximate this expression: L1 ≈ D + (a− x)2/2D. Thus,

L2 − L1 ≈ D +
a2 + 2ax+ x2

2D
−D − a2 − 2ax+ x2

2D
=

2ax

D
.

Setting this equal to (m+ 1
2 )λ, where m is zero or a positive integer, we find x = (m+ 1

2 )(D/2a)λ.

54. According to Eq. 36-41, the number of fringes shifted (∆N) due to the insertion of the film of thickness
L is ∆N = (2L/λ)(n− 1). Therefore,

L =
λ∆N

2(n− 1)
=

(589 nm)(7.0)

2(1.40− 1)
= 5.2µm .

55. A shift of one fringe corresponds to a change in the optical path length of one wavelength. When the
mirror moves a distance d the path length changes by 2d since the light traverses the mirror arm twice.
Let N be the number of fringes shifted. Then, 2d = Nλ and

λ =
2d

N
=

2(0.233× 10−3 m)

792
= 5.88× 10−7 m = 588 nm .

56. We denote the two wavelengths as λ and λ′, respectively. We apply Eq. 36-40 to both wavelengths and
take the difference:

N ′ −N =
2L

λ′
− 2L

λ
= 2L

(

1

λ′
− 1

λ

)

.

We now require N ′ −N = 1 and solve for L:

L =
1

2

(

1

λ
− 1

λ′

)−1

=
1

2

(

1

589.10 nm
− 1

589.59 nm

)−1

= 3.54× 105 nm = 354µm .

57. Let φ1 be the phase difference of the waves in the two arms when the tube has air in it, and let φ2 be
the phase difference when the tube is evacuated. These are different because the wavelength in air is
different from the wavelength in vacuum. If λ is the wavelength in vacuum, then the wavelength in air
is λ/n, where n is the index of refraction of air. This means

φ1 − φ2 = 2L

[

2πn

λ
− 2π

λ

]

=
4π(n− 1)L

λ

where L is the length of the tube. The factor 2 arises because the light traverses the tube twice, once on
the way to a mirror and once after reflection from the mirror. Each shift by one fringe corresponds to a
change in phase of 2π rad, so if the interference pattern shifts by N fringes as the tube is evacuated,

4π(n− 1)L

λ
= 2Nπ

and

n = 1 +
Nλ

2L
= 1 +

60(500× 10−9 m)

2(5.0× 10−2 m)
= 1.00030 .
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58. Let the position of the mirror measured from the point at which d1 = d2 be x. We assume the beam-
splitting mechanism is such that the two waves interfere constructively for x = 0 (with some beam-
splitters, this would not be the case). We can adapt Eq. 36-22 to this situation by incorporating a factor
of 2 (since the interferometer utilizes directly reflected light in contrast to the double-slit experiment) and
eliminating the sin θ factor. Thus, the phase difference between the two light paths is ∆φ = 2(2πx/λ) =
4πx/λ. Then from Eq. 36-21 (writing 4I0 as Im) we find

I = Im cos2
(

∆φ

2

)

= Im cos2
(

2πx

λ

)

.

59. (a) To get to the detector, the wave from S1 travels a distance x and the wave from S2 travels a distance√
d2 + x2. The phase difference (in terms of wavelengths) between the two waves is

√

d2 + x2 − x = mλ m = 0, 1, 2, . . .

where we are requiring constructive interference. The solution is

x =
d2 −m2λ2

2mλ
.

We see that setting m = 0 in this expression produces x =∞; hence, the phase difference between
the waves when P is very far away is 0.

(b) The result of part (a) implies that the waves constructively interfere at P .

(c) As is particularly evident from our results in part (d), the phase difference increases as x decreases.

(d) We can use our formula from part (a) for the 0.5λ, 1.50λ, etc differences by allowing m in our
formula to take on half-integer values. The half- integer values, though, correspond to destructive
interference. Using the values λ = 0.500µm and d = 2.00µm, we find x = 7.88µm for m = 1

2 ,
x = 3.75µm for m = 1, x = 2.29µm for m = 3

2 , x = 1.50µm for m = 2, and x = 0.975µm for
m = 5

2 .

60. (a) In a reference frame fixed on Earth, the ether travels leftward with speed v. Thus, the speed of the
light beam in this reference frame is c− v as the beam travels rightward from M to M1 , and c+ v
as it travels back from M1 to M . The total time for the round trip is therefore given by

t1 =
d1

c− v +
d1

c+ v
=

2cd1

c2 − v2
.

(b) In a reference frame fixed on the ether, the mirrors travel rightward with speed v, while the speed
of the light beam remains c. Thus, in this reference frame, the total distance the beam has to travel
is given by

d2
′ = 2

√

d2
2 +

[

v

(

t2
2

)]2

[see Fig. 36-37(h)-(j)]. Thus,

t2 =
d2

′

c
=

2

c

√

d2
2 +

[

v

(

t2
2

)]2

,

which we solve for t2:

t2 =
2d2√
c2 − v2

.
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(c) We use the binomial expansion (Appendix E)

(1 + x)n = 1 + nx+ · · · ≈ 1 + nx (|x| ≪ 1) .

In our case let x = v/c≪ 1, then

L1 =
2c2d1

c2 − v2
= 2d1

[

1−
(v

c

)2
]−1

≈ 2d1

[

1 +
(v

c

)2
]

,

and

L2 =
2cd2√
c2 − v2

= 2d2

[

1−
(v

c

)2
]−1/2

≈ 2d2

[

1 +
1

2

(v

c

)2
]

.

Thus, if d1 = d2 = d then

∆L = L1 − L2 ≈ 2d

[

1 +
(v

c

)2
]

− 2d

[

1 +
1

2

(v

c

)2
]

=
dv2

c2
.

(d) In terms of the wavelength, the phase difference is given by

∆L

λ
=
dv2

λc2
.

(e) We now must reverse the indices 1 and 2, so the new phase difference is

−∆L

λ
= −dv

2

λc2
.

The shift in phase difference between these two cases is

shift =

(

∆L

λ

)

−
(

−∆L

λ

)

=
2dv2

λc2
.

(f) Assume that v is about the same as the orbital speed of the Earth, so that v ≈ 29.8 km/s (see
Appendix C). Thus,

shift =
2dv2

λc2
=

2(10 m)(29.8× 103 m/s)2

(500× 10−9 m)(2.998× 108 m/s)2
= 0.40 .

61. (a) Every time one more destructive (constructive) fringe appears the increase in thickness of the air
gap is λ/2. Now that there are 6 more destructive fringes in addition to the one at point A, the
thickness at B is tB = 6(λ/2) = 3(600 nm) = 1.80µm.

(b) We must now replace λ by λ′ = λ/nw. Since tB is unchanged tB = N(λ′/2) = N(λ/2nw), or

N =
2tBnw

λ
=

2(3λ)nw

λ
= 6nw = 6(1.33) = 8 .

62. We adapt Eq. 36-21 to the non-reflective coating on a glass lens: I = Imax cos2(φ/2), where φ =
(2π/λ)(2n2L) +π. At λ = 450 nm

I

Imax
= cos2

(

φ

2

)

= cos2
(

2πn2L

λ
+
π

2

)

= cos2
[

2π(1.38)(99.6 nm)

450 nm
+
π

2

]

= 0.883 ,

and at λ = 650 nm
I

Imax
= cos2

[

2π(1.38)(99.6 nm)

650 nm
+
π

2

]

= 0.942 .
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63. For the fifth maximum y5 = D sin θ5 = D(5λ/d), and for the seventh minimum y′7 = D sin θ′7 = D[(6 +
1/2)λ/d]. Thus,

∆y = y′7 − y5 = D

[

(6 + 1/2)λ

d

]

−D
(

5λ

d

)

=
3λD

2d

=
3(546× 10−9 m)(20× 10−2 m)

2(0.10× 10−3 m)

= 1.6× 10−3 m = 1.6 mm .

64. Let the m = 10 bright fringe on the screen be a distance y from the central maximum. Then from
Fig. 36-8(a)

r1 − r2 =
√

(y + d/2)2 +D2 −
√

(y − d/2)2 +D2 = 10λ ,

from which we may solve for y. To the order of (d/D)2 we find

y = y0 +
y(y2 + d2/4)

2D2
,

where y0 = 10Dλ/d. Thus, we find the percent error as follows:

y0(y
2
0 + d2/4)

2y0D2
=

1

2

(

10λ

D

)2

+
1

8

(

d

D

)2

=
1

2

(

5.89µm

2000µm

)2

+
1

8

(

2.0 mm

40 mm

)2

which yields 0.03%.

65. vmin = c/n = (2.998× 108 m/s)/1.54 = 1.95× 108 m/s.

66. With phasor techniques, this amounts to a vector addition problem ~R = ~A+ ~B+ ~C where (in magnitude-

angle notation) ~A = (10 6 0◦), ~B = (5 6 45◦), and ~C = (5 6 −45◦), where the magnitudes are understood
to be in µV/m. We obtain the resultant (especially efficient on a vector capable calculator in polar mode):

~R = (10 6 0◦) + (5 6 45◦) + (5 6 − 45◦) = (17.1 6 0◦)

which leads to

ER = (17.1 µV/m) sin (ωt)

where ω = 2.0× 1014 rad/s.

67. (a) and (b) Dividing Eq. 36-12 by the wavelength, we obtain

N =
∆L

λ
=
d

λ
sin θ = 39.6

wavelengths. This is close to a half-integer value (destructive interference), so that the correct
response is “intermediate illumination but closer to darkness.”

68. To explore one quadrant of the circle, we look for angles where Eq. 36-14 is satisfied.

θ = sin−1 mλ

d
for m = 0, 1, 2...

where mλ/d cannot exceed unity. For m = 1...7 we have solutions that are “mirrored” in every other
quadrant; so there are 4× 7 = 28 of these. The solutions at m = 0 and m = 8 are “special” in that they
have twins (at 180◦ and 270◦, respectively) and their multiplicity is 2, not 4. Thus, we have 28+2(2) = 32
points of maxima.
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69. In this case the path traveled by ray no. 2 is longer than that of ray no. 1 by 2L/ cosθr, instead of 2L.
Here sin θi/ sin θr = n2, or θr = sin−1(sin θi/n2). So if we replace 2L by 2L/ cos θr in Eqs. 36-34 and
36-35, we obtain

2n2L

cos θr
=

(

m+
1

2

)

λ m = 0, 1, 2, · · ·

for the maxima, and
2n2L

cosθr
= mλ m = 0, 1, 2, · · ·

for the minima.

70. (a) and (b) Straightforward application of Eq. 36-3 and v = ∆x/∆t yields the result: pistol 1 with
a time equal to 42.03× 10−12 s; pistol 2 with a time equal to 42.3 × 10−12 s; pistol 3 with a time
equal to 43.2 × 10−12 s; and, pistol 4 with a time equal to 41.96× 10−12 s. We see that the blast
from pistol 1 arrives first.

71. We use Eq. 36-34 for constructive interference: 2n2L = (m+ 1/2)λ, or

λ =
2n2L

m+ 1/2
=

2(1.50)(410 nm)

m+ 1/2
=

1230 nm

m+ 1/2
,

where m = 0, 1, 2, · · ·. The only value of m which, when substituted into the equation above, would
yield a wavelength which falls within the visible light range is m = 1. Therefore,

λ =
1230 nm

1 + 1/2
= 492 nm .

72. For the first maximumm = 0 and for the tenth onem = 9. The separation is ∆y = (Dλ/d)∆m = 9Dλ/d.
We solve for the wavelength:

λ =
d∆y

9D
=

(0.15× 10−3 m)(18 × 10−3 m)

9(50× 10−2 m)
= 6.0× 10−7 m = 600 nm .

73. In the case of a distant screen the angle θ is close to zero so sin θ ≈ θ. Thus from Eq. 36-14,

∆θ ≈ ∆sin θ = ∆

(

mλ

d

)

=
λ

d
∆m =

λ

d
,

or d ≈ λ/∆θ = 589× 10−9 m/0.018 rad = 3.3× 10−5 m = 33µm.

74. Using the relations of §36-7, we find that the (vertical) change between the center of one dark band and
the next is

∆y = λ2 = 2.5× 10−4 mm .

Thus, with the (horizontal) separation of dark bands given by ∆x = 1.2 mm, we have

θ ≈ tan θ =
∆y

∆x
= 2.08× 10−4 rad .

Converting this angle into degrees, we arrive at θ = 0.012◦.

75. (a) A path length difference of λ/2 produces the first dark band, of 3λ/2 produces the second dark
band, and so on. Therefore, the fourth dark band corresponds to a path length difference of
7λ/2 = 1750 nm.

(b) In the small angle approximation (which we assume holds here), the fringes are equally spaced,
so that if ∆y denotes the distance from one maximum to the next, then the distance from the
middle of the pattern to the fourth dark band must be 16.8 mm = 3.5∆y. Therefore, we obtain
∆y = 16.8/3.5 = 4.8 mm.
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76. (a) With λ = 0.5µm, Eq. 36-14 leads to

θ = sin−1 (3)(0.5µm)

2.00µm
= 48.6◦ .

(b) Decreasing the frequency means increasing the wavelength – which implies y increases. Qualita-
tively, this is easily seen with Eq. 36-17. One should exercise caution in appealing to Eq. 36-17 here,
due to the fact the small angle approximation is not justified in this problem. The new wavelength
is 0.5/0.9 = 0.556µm, which produces a new angle of

θ = sin−1 (3)(0.556µm)

2.00µm
= 56.4◦ .

Using y = D tan θ for the old and new angles, and subtracting, we find

∆y = D (tan 56.4◦ − tan 48.6◦) = 1.49 m .

77. (a) Following Sample Problem 36-1, we have

N2 −N1 =
L

λ
(n2 − n1) = 1.87

which represents a meaningful difference of 0.87 wavelength.

(b) The result in part (a) is closer to 1 wavelength (constructive interference) than it is to 1
2 wavelength

(destructive interference) so the latter choice applies.

(c) This would insert a ± 1
2 wavelength into the previous result – resulting in a meaningful difference

(between the two rays) equal to 0.87 − 0.50 = 0.37 wavelength, which is closer to the destructive
interference condition. Thus, there is intermediate illumination but closer to darkness.

78. (a) Straightforward application of Eq. 36-3 and v = ∆x/∆t yields the result: film 1 with a traversal
time equal to 4.0× 10−15 s.

(b) Use of Eq. 36-9 leads to the number of wavelengths:

N =
L1n1 + L2n2 + L3n3

λ
= 7.5 .

79. (a) In this case, we are dealing with the situation that leads in the textbook to Eq. 36-35 for minima
in reflected light from a thin film. The smallest non-zero answer, then, is for m = 1: L = λ/2n2.

(b) Now, we are dealing with a situation exactly like that treated in Sample Problem 36-5, where the
relation L = λ/4n2 is derived.

(c) The indices bear the same relation here as in part (b), but we are looking now for the “opposite”
result (maximum reflection instead of maximum transmission). We adapt the treatment in Sample
Problem 36-5 by requiring 2L = mλ/n2 instead of (m+ 1

2 )λ/2. The smallest nonzero result in this
case is for m = 1: L = λ/2n2.

80. (a) Since n2 > n3, this case has no π-phase shift, and the condition for constructive interference is
mλ = 2Ln2. We solve for L:

L =
mλ

2n2
=
m(525 nm)

2(1.55)
= (169 nm)m .

For the minimum value of L, let m = 1 to obtain Lmin = 169 nm.
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(b) The light of wavelength λ (other than 525 nm) that would also be preferentially transmitted satisfies
m′λ = 2n2L, or

λ =
2n2L

m′ =
2(1.55)(169 nm)

m′ =
525 nm

m′ .

Here m′ = 2, 3, 4, . . . (note that m′ = 1 corresponds to the λ = 525 nm light, so it should not be
included here). Since the minimum value of m′ is 2, one can easily verify that no m′ will give a
value of λ which falls into the visible light range. So no other parts of the visible spectrum will be
preferentially transmitted. They are, in fact, reflected.

(c) For a sharp reduction of transmission let

λ =
2n2L

m′ + 1/2
=

525 nm

m′ + 1/2
,

where m′ = 0, 1, 2, 3, · · ·. In the visible light range m′ = 1 and λ = 350 nm. This corresponds to
the blue-violet light.

81. We adapt the result of problem 21. Now, the phase difference in radians is

2πt

λ
(n2 − n1) = 2mπ .

The problem implies m = 5, so the thickness is

t =
mλ

n2 − n1
=

5(480 nm)

1.7− 1.4
= 8.0× 103 nm = 8.0µm .

82. In Sample Problem 36-2, the relation ∆y = λD/d is derived. Thus, to prevent ∆y from changing, then
(since ∆y ∝ D/d) we need to double D if d is doubled.

83. (a) In this case, the film has a smaller index material on one side (air) and a larger index material on
the other (glass), and we are dealing (in part (a)) with strongly transmitted light, so the condition
is given by Eq. 36-35 (which would give dark reflection in this scenario)

L =
λ

2n2

(

m+
1

2

)

= 110 nm

for n2 = 1.25 and m = 0.

(b) Now, we are dealing with strongly reflected light, so the condition is given by Eq. 36-34 (which
would give no transmission in this scenario)

L =
mλ

2n2
= 220 nm

for n2 = 1.25 and m = 1 (the m = 0 option is excluded in the problem statement).

84. We infer from Sample Problem 36-2, that (with angle in radians)

∆θ =
λ

d

for adjacent fringes. With the wavelength change (λ′ = λ/n by Eq. 36-8), this equation becomes

∆θ′ =
λ′

d
.

Dividing one equation by the other, the requirement of radians can now be relaxed and we obtain

∆θ′

∆θ
=
λ′

λ
=

1

n
.

Therefore, with n = 1.33 and ∆θ = 0.30◦, we find ∆θ′ = 0.23◦.
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85. Using Eq. 36-16 with the small-angle approximation (illustrated in Sample Problem 36-2), we arrive at

y =

(

m+ 1
2

)

λD

d

for the position of the (m+ 1)th dark band (a simple way to get this is by averaging the expressions in
Eq. 36-17 and Eq. 36-18). Thus, with m = 1, y = 0.012 m and d = 800λ, we find D = 6.4 m.

86. (a) The path length difference between Rays 1 and 2 is 7d − 2d = 5d. For this to correspond to a
half-wavelength requires 5d = λ/2, so that d = 50.0 nm.

(b) The above requirement becomes 5d = λ/2n in the presence of the solution, with n = 1.38. Therefore,
d = 36.2 nm.

87. (a) The path length difference is 0.5µm = 500 nm, which is represents 500/400 = 1.25 wavelengths
– that is, a meaningful difference of 0.25 wavelengths. In angular measure, this corresponds to a
phase difference of (0.25)2π = π/2 radians.

(b) When a difference of index of refraction is involved, the approach used in Eq. 36-9 is quite useful.
In this approach, we count the wavelengths between S1 and the origin

N1 =
Ln

λ
+
L′n′

λ

where n = 1 (rounding off the index of air), L = 5.0µm, n′ = 1.5 and L′ = 1.5µm. This
yields N1 = 18.125 wavelengths. The number of wavelengths between S2 and the origin is (with
L2 = 6.0µm) given by

N2 =
L2n

λ
= 15.000 .

Thus, N1 − N2 = 3.125 wavelengths, which gives us a meaningful difference of 0.125 wavelength
and which “converts” to a phase of π/4 radian.
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Chapter 37

1. The condition for a minimum of a single-slit diffraction pattern is

a sin θ = mλ

where a is the slit width, λ is the wavelength, and m is an integer. The angle θ is measured from the
forward direction, so for the situation described in the problem, it is 0.60◦ for m = 1. Thus

a =
mλ

sin θ
=

633× 10−9 m

sin 0.60◦
= 6.04× 10−5 m .

2. (a) θ = sin−1(1.50 cm/2.00 m) = 0.430◦.

(b) For the mth diffraction minimum a sin θ = mλ. We solve for the slit width:

a =
mλ

sin θ
=

2(441 nm)

sin 0.430◦
= 0.118 mm .

3. (a) The condition for a minimum in a single-slit diffraction pattern is given by a sin θ = mλ, where a
is the slit width, λ is the wavelength, and m is an integer. For λ = λa and m = 1, the angle θ is
the same as for λ = λb and m = 2. Thus λa = 2λb.

(b) Let ma be the integer associated with a minimum in the pattern produced by light with wavelength
λa, and let mb be the integer associated with a minimum in the pattern produced by light with
wavelength λb. A minimum in one pattern coincides with a minimum in the other if they occur at
the same angle. This means maλa = mbλb. Since λa = 2λb, the minima coincide if 2ma = mb.
Consequently, every other minimum of the λb pattern coincides with a minimum of the λa pattern.

4. (a) We use Eq. 37-3 to calculate the separation between the first (m1 = 1) and fifth (m2 = 5) minima:

∆y = D∆sin θ = D∆

(

mλ

a

)

=
Dλ

a
∆m =

Dλ

a
(m2 −m1) .

Solving for the slit width, we obtain

a =
Dλ(m2 −m1)

∆y
=

(400 mm)(550× 10−6 mm)(5 − 1)

0.35 mm
= 2.5 mm .

(b) For m = 1,

sin θ =
mλ

a
=

(1)(550× 10−6 mm)

2.5 mm
= 2.2× 10−4 .

The angle is θ = sin−1(2.2× 10−4) = 2.2× 10−4 rad.

5. (a) A plane wave is incident on the lens so it is brought to focus in the focal plane of the lens, a distance
of 70 cm from the lens.

913
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(b) Waves leaving the lens at an angle θ to the forward direction interfere to produce an intensity
minimum if a sin θ = mλ, where a is the slit width, λ is the wavelength, and m is an integer. The
distance on the screen from the center of the pattern to the minimum is given by y = D tan θ,
where D is the distance from the lens to the screen. For the conditions of this problem,

sin θ =
mλ

a
=

(1)(590× 10−9 m)

0.40× 10−3 m
= 1.475× 10−3 .

This means θ = 1.475× 10−3 rad and y = (70× 10−2 m) tan(1.475× 10−3 rad) = 1.03× 10−3 m.

6. Let the first minimum be a distance y from the central axis which is perpendicular to the speaker. Then
sin θ = y/(D2 + y2)1/2 = mλ/a = λ/a (for m = 1). Therefore,

y =
D

√

(a/λ)2 − 1
=

D
√

(af/vs)2 − 1

=
100 m

√

[(0.300 m)(3000 Hz)/(343 m/s)]2 − 1
= 41.2 m .

7. The condition for a minimum of intensity in a single-slit diffraction pattern is a sin θ = mλ, where a
is the slit width, λ is the wavelength, and m is an integer. To find the angular position of the first
minimum to one side of the central maximum, we set m = 1:

θ1 = sin−1

(

λ

a

)

= sin−1

(

589× 10−9 m

1.00× 10−3 m

)

= 5.89× 10−4 rad .

If D is the distance from the slit to the screen, the distance on the screen from the center of the pattern
to the minimum is

y1 = D tan θ1 = (3.00 m) tan(5.89× 10−4 rad) = 1.767× 10−3 m .

To find the second minimum, we set m = 2:

θ2 = sin−1

(

2(589× 10−9 m)

1.00× 10−3 m

)

= 1.178× 10−3 rad .

The distance from the center of the pattern to this second minimum is y2 = D tan θ2 = (3.00 m) tan(1.178×
10−3 rad) = 3.534×10−3 m. The separation of the two minima is ∆y = y2−y1 = 3.534 mm−1.767 mm =
1.77 mm.

8. We note that nm = 10−9 m = 10−6 mm. From Eq. 37-4,

∆φ =

(

2π

λ

)

(∆x sin θ) =

(

2π

589× 10−6 mm

)(

0.10 mm

2

)

sin 30◦ = 266.7 rad .

This is equivalent to 266.7− 84π = 2.8 rad = 160◦.

9. We imagine dividing the original slit into N strips and represent the light from each strip, when it
reaches the screen, by a phasor. Then, at the central maximum in the diffraction pattern, we would add
the N phasors, all in the same direction and each with the same amplitude. We would find that the
intensity there is proportional to N2. If we double the slit width, we need 2N phasors if they are each to
have the amplitude of the phasors we used for the narrow slit. The intensity at the central maximum is
proportional to (2N)2 and is, therefore, four times the intensity for the narrow slit. The energy reaching
the screen per unit time, however, is only twice the energy reaching it per unit time when the narrow
slit is in place. The energy is simply redistributed. For example, the central peak is now half as wide
and the integral of the intensity over the peak is only twice the analogous integral for the narrow slit.

10. (a) θ = sin−1(0.011 cm/3.5 m) = 0.18◦.
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(b) We use Eq. 37-6:

α =
(πa

λ

)

sin θ =
π(0.025 mm)sin 0.18◦

538× 10−6 mm
= 0.46 rad .

(c) Making sure our calculator is in radian mode, Eq. 37-5 yields

I(θ)

Im
=

(

sinα

α

)2

= 0.93 .

11. (a) The intensity for a single-slit diffraction pattern is given by

I = Im
sin2 α

α2

where α = (πa/λ) sin θ, a is the slit width and λ is the wavelength. The angle θ is measured from
the forward direction. We require I = Im/2, so

sin2 α =
1

2
α2 .

(b) We evaluate sin2 α and α2/2 for α = 1.39 rad and compare the results. To be sure that 1.39 rad is
closer to the correct value for α than any other value with three significant digits, we could also try
1.385 rad and 1.395 rad.

(c) Since α = (πa/λ) sin θ,

θ = sin−1

(

αλ

πa

)

.

Now α/π = 1.39/π = 0.442, so

θ = sin−1

(

0.442λ

a

)

.

The angular separation of the two points of half intensity, one on either side of the center of the
diffraction pattern, is

∆θ = 2θ = 2 sin−1

(

0.442λ

a

)

.

(d) For a/λ = 1.0,
∆θ = 2 sin−1(0.442/1.0) = 0.916 rad = 52.5◦ ,

for a/λ = 5.0,
∆θ = 2 sin−1(0.442/5.0) = 0.177 rad = 10.1◦ ,

and for a/λ = 10,
∆θ = 2 sin−1(0.442/10) = 0.0884 rad = 5.06◦ .

12. Consider Huygens’ explanation of diffraction phenomena. When A is in place only the Huygens’ wavelets
that pass through the hole get to point P . Suppose they produce a resultant electric field EA. When B
is in place, the light that was blocked by A gets to P and the light that passed through the hole in A
is blocked. Suppose the electric field at P is now ~EB . The sum ~EA + ~EB is the resultant of all waves
that get to P when neither A nor B are present. Since P is in the geometric shadow, this is zero. Thus
~EA = − ~EB, and since the intensity is proportional to the square of the electric field, the intensity at P
is the same when A is present as when B is present.

13. (a) The intensity for a single-slit diffraction pattern is given by

I = Im
sin2 α

α2
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where α is described in the text (see Eq. 37-6). To locate the extrema, we set the derivative of I
with respect to α equal to zero and solve for α. The derivative is

dI

dα
= 2Im

sinα

α3
(α cosα− sinα) .

The derivative vanishes if α 6= 0 but sinα = 0. This yields α = mπ, where m is a nonzero
integer. These are the intensity minima: I = 0 for α = mπ. The derivative also vanishes for
α cosα− sinα = 0. This condition can be written tanα = α. These implicitly locate the maxima.

(b) The values of α that satisfy tanα = α can be found by trial and error on a pocket calculator or
computer. Each of them is slightly less than one of the values (m+ 1

2 )π rad, so we start with these
values. The first few are 0, 4.4934, 7.7252, 10.9041, 14.0662, and 17.2207. They can also be found
graphically. As in the diagram below, we plot y = tanα and y = α on the same graph. The
intersections of the line with the tanα curves are the solutions. The first two solutions listed above
are shown on the diagram.
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.

y = tanα

y = tanα

y = α

(c) We write α = (m + 1
2 )π for the maxima. For the central maximum, α = 0 and m = − 1

2 . For the
next, α = 4.4934 and m = 0.930. For the next, α = 7.7252 and m = 1.959.

14. We use Eq. 37-12 with θ = 2.5◦/2 = 1.25◦. Thus,

d =
1.22λ

sin θ
=

1.22(550 nm)

sin 1.25◦
= 31µm .

15. (a) We use the Rayleigh criteria. Thus, the angular separation (in radians) of the sources must be
at least θR = 1.22λ/d, where λ is the wavelength and d is the diameter of the aperture. For the
headlights of this problem,

θR =
1.22(550× 10−9 m)

5.0× 10−3 m
= 1.34× 10−4 rad .

(b) If L is the distance from the headlights to the eye when the headlights are just resolvable and D
is the separation of the headlights, then D = LθR, where the small angle approximation is made.
This is valid for θR in radians. Thus,

L =
D

θR
=

1.4 m

1.34× 10−4 rad
= 1.0× 104 m = 10 km .

16. (a) We use Eq. 37-14:

θR = 1.22
λ

d
=

(1.22)(540× 10−6 mm)

5.0 mm
= 1.3× 10−4 rad .
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(b) The linear separation is D = LθR = (160× 103 m)(1.3× 10−4 rad) = 21 m.

17. Using the notation of Sample Problem 37-6 (which is in the textbook supplement), the minimum sepa-
ration is

D = LθR = L

(

1.22
λ

d

)

=
(

3.82× 108 m
) (1.22)(550× 10−9 m)

5.1 m
= 50 m .

18. Using the notation of Sample Problem 37-6 (which is in the textbook supplement), the maximum distance
is

L =
D

θR
=

D

1.22λ/d
=

(5.0× 10−3 m)(4.0× 10−3 m)

1.22(550× 10−9 m)
= 30 m .

19. (a) We use the Rayleigh criteria. If L is the distance from the observer to the objects, then the smallest
separation D they can have and still be resolvable is D = LθR, where θR is measured in radians.
The small angle approximation is made. Thus,

D =
1.22Lλ

d
=

1.22(8.0× 1010 m)(550× 10−9 m)

5.0× 10−3 m
= 1.1× 107 m = 1.1× 104 km .

This distance is greater than the diameter of Mars; therefore, one part of the planet’s surface cannot
be resolved from another part.

(b) Now d = 5.1 m and

D =
1.22(8.0× 1010 m)(550× 10−9 m)

5.1 m
= 1.1× 104 m = 11 km .

20. Using the notation of Sample Problem 37-6 (which is in the textbook supplement), the minimum sepa-
ration is

D = LθR = L

(

1.22λ

d

)

=
(6.2× 103 m)(1.22)(1.6× 10−2 m)

2.3 m
= 53 m .

21. Eq. 37-14 gives θR = 1.22λ/d, where in our case θR ≈ D/L, with D = 60µm being the size of the object
your eyes must resolve, and L being the maximum viewing distance in question. If d = 3.00 mm =
3000µm is the diameter of your pupil, then

L =
Dd

1.22λ
=

(60µm)(3000µm)

1.22(0.55µm)
= 2.7× 105 µm = 27 cm .

22. Since we are considering the diameter of the central diffraction maximum, then we are working with twice

the Rayleigh angle. Using notation similar to that in Sample Problem 37-6 (which is in the textbook
supplement), we have 2(1.22λ/d) = D/L. Therefore,

d = 2
1.22λL

D
= 2

(1.22)(500× 10−9 m)(3.54× 105 m)

9.1 m
= 0.047 m .

23. (a) The first minimum in the diffraction pattern is at an angular position θ, measured from the center
of the pattern, such that sin θ = 1.22λ/d, where λ is the wavelength and d is the diameter of the
antenna. If f is the frequency, then the wavelength is

λ =
c

f
=

3.00× 108 m/s

220× 109 Hz
= 1.36× 10−3 m .

Thus

θ = sin−1

(

1.22λ

d

)

= sin−1

(

1.22(1.36× 10−3 m)

55.0× 10−2 m

)

= 3.02× 10−3 rad .

The angular width of the central maximum is twice this, or 6.04× 10−3 rad (0.346◦).
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(b) Now λ = 1.6 cm and d = 2.3 m, so

θ = sin−1

(

1.22(1.6× 10−2 m)

2.3 m

)

= 8.5× 10−3 rad .

The angular width of the central maximum is 1.7× 10−2 rad (0.97◦).

24. (a) Since θ = 1.22λ/d, the larger the wavelength the larger the radius of the first minimum (and second
maximum, etc). Therefore, the white pattern is outlined by red lights (with longer wavelength than
blue lights).

(b) The diameter of a water drop is

d =
1.22λ

θ
≈ 1.22(7× 10−7 m)

1.5(0.50◦)(π/180◦)/2
= 1.3× 10−4 m .

25. (a) Using Eq. 37-14, the angular separation is

θR =
1.22λ

d
=

(1.22)(550× 10−9 m)

0.76 m
= 8.8× 10−7 rad .

(b) Using the notation of Sample Problem 37-6 (which is in the textbook supplement), the distance
between the stars is

D = LθR =
(10 ly)(9.46× 1012 km/ly)(0.18)π

(3600)(180)
= 8.4× 107 km .

(c) The diameter of the first dark ring is

d = 2θRL =
2(0.18)(π)(14 m)

(3600)(180)
= 2.5× 10−5 m = 0.025 mm .

26. We denote the Earth-Moon separation as L. The energy of the beam of light which is projected onto the
moon is concentrated in a circular spot of diameter d1, where d1/L = 2θR = 2(1.22λ/d0), with d0 the
diameter of the mirror on Earth. The fraction of energy picked up by the reflector of diameter d2 on the
Moon is then η′ = (d2/d1)

2. This reflected light, upon reaching the Earth, has a circular cross section
of diameter d3 satisfying d3/L = 2θR = 2(1.22λ/d2). The fraction of the reflected energy that is picked
up by the telescope is then η′′ = (d0/d3)

2. Consequently, the fraction of the original energy picked up
by the detector is

η = η′η′′ =

(

d0

d3

)2 (
d2

d1

)2

=

[

d0d2

(2.44λdem/d0)(2.44λdem/d2)

]2

=

(

d0d2

2.44λdem

)4

=

[

(2.6 m)(0.10 m)

2.44(0.69× 10−6 m)(3.82× 108 m)

]4

≈ 4× 10−13 .

27. Bright interference fringes occur at angles θ given by d sin θ = mλ, where m is an integer. For the slits
of this problem, d = 11a/2, so a sin θ = 2mλ/11 (see Sample Problem 37-4). The first minimum of the
diffraction pattern occurs at the angle θ1 given by a sin θ1 = λ, and the second occurs at the angle θ2
given by a sin θ2 = 2λ, where a is the slit width. We should count the values of m for which θ1 < θ < θ2,
or, equivalently, the values of m for which sin θ1 < sin θ < sin θ2. This means 1 < (2m/11) < 2. The
values are m = 6, 7, 8, 9, and 10. There are five bright fringes in all.

28. In a manner similar to that discussed in Sample Problem 37-4, we find the number is 2(d/a) − 1 =
2(2a/a)− 1 = 3.
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29. (a) In a manner similar to that discussed in Sample Problem 37-4, we find the ratio should be d/a = 4.
Our reasoning is, briefly, as follows: we let the location of the fourth bright fringe coincide with the
first minimum of diffraction pattern, and then set sin θ = 4λ/d = λ/a (so d = 4a).

(b) Any bright fringe which happens to be at the same location with a diffraction minimum will vanish.
Thus, if we let sin θ = m1λ/d = m2λ/a = m1λ/4a = m2λ/a, or m1 = 4m2 where m2 = 1, 2, 3, · · · .
The fringes missing are the 4th, 8th, 12th, and so on. Hence, every fourth fringe is missing.

30. The angular location of the mth bright fringe is given by d sin θ = mλ, so the linear separation between
two adjacent fringes is

∆y = ∆(D sin θ) = ∆

(

Dmλ

d

)

=
Dλ

d
∆m =

Dλ

d
.

31. (a) The angular positions θ of the bright interference fringes are given by d sin θ = mλ, where d is the
slit separation, λ is the wavelength, and m is an integer. The first diffraction minimum occurs at
the angle θ1 given by a sin θ1 = λ, where a is the slit width. The diffraction peak extends from −θ1
to +θ1, so we should count the number of values of m for which −θ1 < θ < +θ1, or, equivalently,
the number of values of m for which − sin θ1 < sin θ < + sin θ1. This means −1/a < m/d < 1/a or
−d/a < m < +d/a. Now d/a = (0.150 × 10−3 m)/(30.0 × 10−6 m) = 5.00, so the values of m are
m = −4, −3, −2, −1, 0, +1, +2, +3, and +4. There are nine fringes.

(b) The intensity at the screen is given by

I = Im
(

cos2 β
)

(

sinα

α

)2

where α = (πa/λ) sin θ, β = (πd/λ) sin θ, and Im is the intensity at the center of the pattern.
For the third bright interference fringe, d sin θ = 3λ, so β = 3π rad and cos2 β = 1. Similarly,
α = 3πa/d = 3π/5.00 = 0.600π rad and

(

sinα

α

)2

=

(

sin 0.600π

0.600π

)2

= 0.255 .

The intensity ratio is I/Im = 0.255.

32. (a) The first minimum of the diffraction pattern is at 5.00◦, so

a =
λ

sin θ
=

0.440µm

sin 5.00◦
= 5.05µm .

(b) Since the fourth bright fringe is missing, d = 4a = 4(5.05µm) = 20.2µm.

(c) For the m = 1 bright fringe,

α =
πa sin θ

λ
=
π(5.05µm) sin 1.25◦

0.440µm
= 0.787 rad .

Consequently, the intensity of the m = 1 fringe is

I = Im

(

sinα

α

)
2

= (7.0 mW/cm
2
)

(

sin 0.787 rad

0.787

)2

= 5.7 mW/cm
2
,

which agrees with Fig. 37-36. Similarly for m = 2, the intensity is I = 2.9 mW/cm
2
, also in

agreement with Fig. 37-36.

33. (a) d = 20.0 mm/6000 = 0.00333 mm = 3.33µm.
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(b) Let d sin θ = mλ (m = 0,±1,±2, · · ·). We find θ = 0 for m = 0, and

θ = sin−1(±λ/d) = sin−1

(

±0.589µm

3.30µm

)

= ±10.2◦

for m = ±1. Similarly, we find ±20.7◦ for m = ±2, ±32.2◦ for m = ±3, ±45◦ for m = ±4, and
±62.2◦ for m = ±5. Since |m|λ/d > 1 for |m| ≥ 6, these are all the maxima.

34. The angular location of the mth order diffraction maximum is given by mλ = d sin θ. To be able to
observe the fifth-order maximum, we must let sin θ|m=5 = 5λ/d < 1, or

λ <
d

5
=

1.00 nm/315

5
= 635 nm .

Therefore, all wavelengths shorter than 635 nm can be used.

35. The ruling separation is d = 1/(400 mm−1) = 2.5 × 10−3 mm. Diffraction lines occur at angles θ such
that d sin θ = mλ, where λ is the wavelength and m is an integer. Notice that for a given order, the
line associated with a long wavelength is produced at a greater angle than the line associated with a
shorter wavelength. We take λ to be the longest wavelength in the visible spectrum (700 nm) and find
the greatest integer value of m such that θ is less than 90◦. That is, find the greatest integer value of m
for which mλ < d. Since d/λ = (2.5 × 10−6 m)/(700× 10−9 m) = 3.57, that value is m = 3. There are
three complete orders on each side of the m = 0 order. The second and third orders overlap.

36. We use Eq. 37-22 for diffraction maxima: d sin θ = mλ. In our case, since the angle between the m = 1
and m = −1 maxima is 26◦, the angle θ corresponding to m = 1 is θ = 26◦/2 = 13◦. We solve for the
grating spacing:

d =
mλ

sin θ
=

(1)(550 nm)

sin 13◦
= 2.4µm .

37. (a) Maxima of a diffraction grating pattern occur at angles θ given by d sin θ = mλ, where d is the slit
separation, λ is the wavelength, and m is an integer. The two lines are adjacent, so their order
numbers differ by unity. Let m be the order number for the line with sin θ = 0.2 and m+ 1 be the
order number for the line with sin θ = 0.3. Then, 0.2d = mλ and 0.3d = (m+1)λ. We subtract the
first equation from the second to obtain 0.1d = λ, or d = λ/0.1 = (600×10−9 m)/0.1 = 6.0×10−6 m.

(b) Minima of the single-slit diffraction pattern occur at angles θ given by a sin θ = mλ, where a is
the slit width. Since the fourth-order interference maximum is missing, it must fall at one of these
angles. If a is the smallest slit width for which this order is missing, the angle must be given by
a sin θ = λ. It is also given by d sin θ = 4λ, so a = d/4 = (6.0× 10−6 m)/4 = 1.5× 10−6 m.

(c) First, we set θ = 90◦ and find the largest value of m for which mλ < d sin θ. This is the highest
order that is diffracted toward the screen. The condition is the same as m < d/λ and since
d/λ = (6.0× 10−6 m)/(600× 10−9 m) = 10.0, the highest order seen is the m = 9 order. The fourth
and eighth orders are missing, so the observable orders are m = 0, 1, 2, 3, 5, 6, 7, and 9.

38. (a) For the maximum with the greatest value of m (= M) we have Mλ = a sin θ < d, so M < d/λ =
900 nm/600 nm = 1.5, or M = 1. Thus three maxima can be seen, with m = 0, ±1.

(b) From Eq. 37-25

∆θhw =
λ

Nd cos θ
=

d sin θ

Nd cos θ
=

tan θ

N
=

1

N
tan

[

sin−1

(

λ

d

)]

=
1

1000
tan

[

sin−1

(

600 nm

900 nm

)]

= 0.051◦ .
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39. The angular positions of the first-order diffraction lines are given by d sin θ = λ. Let λ1 be the shorter
wavelength (430 nm) and θ be the angular position of the line associated with it. Let λ2 be the longer
wavelength (680 nm), and let θ+∆θ be the angular position of the line associated with it. Here ∆θ = 20◦.
Then, d sin θ = λ1 and d sin(θ + ∆θ) = λ2. We write sin(θ + ∆θ) as sin θ cos∆θ + cos θ sin∆θ, then use
the equation for the first line to replace sin θ with λ1/d, and cos θ with

√

1− λ2
1/d

2. After multiplying
by d, we obtain

λ1 cos∆θ +
√

d2 − λ2
1 sin∆θ = λ2 .

Solving for d, we find

d =

√

(λ2 − λ1 cos∆θ)2 + (λ1 sin ∆θ)2

sin2 ∆θ

=

√

[(680 nm)− (430 nm) cos 20◦]2 + [(430 nm) sin 20◦]2

sin2 20◦

= 914 nm = 9.14× 10−4 mm .

There are 1/d = 1/(9.14× 10−4 mm) = 1090 rulings per mm.

40. We use Eq. 37-22. For m = ±1

λ =
d sin θ

m
=

(1.73µm) sin(±17.6◦)

±1
= 523 nm ,

and for m = ±2

λ =
(1.73µm) sin(±37.3◦)

±2
= 524 nm .

Similarly, we may compute the values of λ corresponding to the angles for m = ±3 . The average value
of these λ′s is 523 nm.

41. Consider two of the rays shown in Fig. 37-37, one just above the other. The extra distance traveled by
the lower one may be found by drawing perpendiculars from where the top ray changes direction (point
P ) to the incident and diffracted paths of the lower one. Where these perpendiculars intersect the lower
ray’s paths are here referred to as points A and C. Where the bottom ray changes direction is point
B. We note that angle 6 APB is the same as ψ, and angle BPC is the same as θ (see Fig. 37-37). The
difference in path lengths between the two adjacent light rays is ∆x = |AB| + |BC| = d sinψ + d sin θ.
The condition for bright fringes to occur is therefore

∆x = d (sinψ + sin θ) = mλ

where m = 0, 1, 2, · · ·. If we set ψ = 0 then this reduces to Eq. 37-22.

42. Referring to problem 41, we note that the angular deviation of a diffracted ray (the angle between the
forward extrapolation of the incident ray and its diffracted ray) is ψ + θ. For m = 1, this becomes

ψ + θ = ψ + sin−1

(

λ

d
− sinψ

)

where the ratio λ/d = 0.40 using the values given in the problem statement. The graph of this is shown
below (with radians used along both axes).
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43. The derivation is similar to that used to obtain Eq. 37-24. At the first minimum beyond the mth principal
maximum, two waves from adjacent slits have a phase difference of ∆φ = 2πm + (2π/N), where N is
the number of slits. This implies a difference in path length of ∆L = (∆φ/2π)λ = mλ + (λ/N).
If θm is the angular position of the mth maximum, then the difference in path length is also given
by ∆L = d sin(θm + ∆θ). Thus d sin(θm + ∆θ) = mλ + (λ/N). We use the trigonometric identity
sin(θm + ∆θ) = sin θm cos∆θ + cos θm sin ∆θ. Since ∆θ is small, we may approximate sin∆θ by ∆θ
in radians and cos∆θ by unity. Thus d sin θm + d∆θ cos θm = mλ + (λ/N). We use the condition
d sin θm = mλ to obtain d∆θ cos θm = λ/N and

∆θ =
λ

Nd cos θm
.

44. At the point on the screen where we find the inner edge of the hole, we have tan θ = 5.0 cm/30 cm,
which gives θ = 9.46◦. We note that d for the grating is equal to 1.0 mm/350 = 1.0× 106 nm/350. From
mλ = d sin θ, we find

m =
d sin θ

λ
=

(

1.0×106 nm
350

)

(0.1644)

λ
=

470 nm

λ
.

Since for white light λ > 400 nm, the only integer m allowed here is m = 1. Thus, at one edge of the
hole, λ = 470 nm. However, at the other edge, we have tan θ′ = 6.0 cm/30 cm, which gives θ′ = 11.31◦.
This leads to

λ′ = d sin θ′ =

(

1.0× 106 nm

350

)

sin 11.31◦ = 560 nm .

Consequently, the range of wavelength is from 470 to 560 nm.

45. Since the slit width is much less than the wavelength of the light, the central peak of the single-slit
diffraction pattern is spread across the screen and the diffraction envelope can be ignored. Consider
three waves, one from each slit. Since the slits are evenly spaced, the phase difference for waves from
the first and second slits is the same as the phase difference for waves from the second and third slits.
The electric fields of the waves at the screen can be written E1 = E0 sin(ωt), E2 = E0 sin(ωt+ φ), and
E3 = E0 sin(ωt + 2φ), where φ = (2πd/λ) sin θ. Here d is the separation of adjacent slits and λ is the
wavelength. The phasor diagram is shown below. It yields

E = E0 cosφ+ E0 + E0 cosφ = E0(1 + 2 cosφ)

for the amplitude of the resultant wave. Since the intensity of a wave is proportional to the square of
the electric field, we may write I = AE2

0(1 + 2 cosφ)2, where A is a constant of proportionality. If Im is
the intensity at the center of the pattern, for which φ = 0, then Im = 9AE2

0 . We take A to be Im/9E
2
0

and obtain

I =
Im
9

(1 + 2 cosφ)
2

=
Im
9

(

1 + 4 cosφ+ 4 cos2 φ
)

.
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46. Letting R = λ/∆λ = Nm, we solve for N :

N =
λ

m∆λ
=

(589.6 nm + 589.0 nm)/2

2(589.6 nm− 589.0 nm)
= 491 .

47. If a grating just resolves two wavelengths whose average is λavg and whose separation is ∆λ, then its
resolving power is defined by R = λavg/∆λ. The text shows this is Nm, where N is the number of
rulings in the grating and m is the order of the lines. Thus λavg/∆λ = Nm and

N =
λavg

m∆λ
=

656.3 nm

(1)(0.18 nm)
= 3650 rulings .

48. (a) We find ∆λ from R = λ/∆λ = Nm:

∆λ =
λ

Nm
=

500 nm

(600/mm)(5.0 mm)(3)
= 0.056 nm = 56 pm .

(b) Since sin θ = mmaxλ/d < 1,

mmax <
d

λ
=

1

(600/mm)(500× 10−6 mm)
= 3.3 .

Therefore, mmax = 3. No higher orders of maxima can be seen.

49. The dispersion of a grating is given by D = dθ/dλ, where θ is the angular position of a line associated
with wavelength λ. The angular position and wavelength are related by d sin θ = mλ, where d is the
slit separation (which we made boldfaced in order not to confuse it with the d used in the derivative,
below) and m is an integer. We differentiate this expression with respect to θ to obtain

dθ

dλ
d cos θ = m ,

or

D =
dθ

dλ
=

m

d cos θ
.

Now m = (d/λ) sin θ, so

D =
d sin θ

dλ cos θ
=

tan θ

λ
.

50. (a) From d sin θ = mλ we find

d =
mλavg

sin θ
=

3(589.3 nm)

sin 10◦
= 1.0× 104 nm = 10µm .
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(b) The total width of the ruling is

L = Nd =

(

R

m

)

d =
λavgd

m∆λ
=

(589.3 nm)(10µm)

3(589.59 nm− 589.00 nm)
= 3.3× 103µm = 3.3 mm .

51. (a) Since the resolving power of a grating is given by R = λ/∆λ and by Nm, the range of wavelengths
that can just be resolved in order m is ∆λ = λ/Nm. Here N is the number of rulings in the grating
and λ is the average wavelength. The frequency f is related to the wavelength by fλ = c, where c
is the speed of light. This means f ∆λ+ λ∆f = 0, so

∆λ = −λ
f

∆f = −λ
2

c
∆f

where f = c/λ is used. The negative sign means that an increase in frequency corresponds to a
decrease in wavelength. We may interpret ∆f as the range of frequencies that can be resolved and
take it to be positive. Then,

λ2

c
∆f =

λ

Nm

and

∆f =
c

Nmλ
.

(b) The difference in travel time for waves traveling along the two extreme rays is ∆t = ∆L/c, where ∆L
is the difference in path length. The waves originate at slits that are separated by (N − 1)d, where
d is the slit separation and N is the number of slits, so the path difference is ∆L = (N − 1)d sin θ
and the time difference is

∆t =
(N − 1)d sin θ

c
.

If N is large, this may be approximated by ∆t = (Nd/c) sin θ. The lens does not affect the travel
time.

(c) Substituting the expressions we derived for ∆t and ∆f , we obtain

∆f ∆t =
( c

Nmλ

)

(

Nd sin θ

c

)

=
d sin θ

mλ
= 1 .

The condition d sin θ = mλ for a diffraction line is used to obtain the last result.

52. (a) From the expression for the half-width ∆θhw (given by Eq. 37-25) and that for the resolving power
R (given by Eq. 37-29), we find the product of ∆θhw and R to be

∆θhwR =

(

λ

Nd cos θ

)

Nm =
mλ

d cos θ
=
d sin θ

d cos θ
= tan θ ,

where we used mλ = d sin θ (see Eq. 37-22).

(b) For first order m = 1, so the corresponding angle θ1 satisfies d sin θ1 = mλ = λ. Thus the product
in question is given by

tan θ1 =
sin θ1
cos θ1

=
sin θ1

√

1− sin2 θ1

=
1

√

(1/ sin θ1)2 − 1
=

1
√

(d/λ)2 − 1

=
1

√

(900 nm/600 nm)2 − 1
= 0.89 .
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53. Bragg’s law gives the condition for a diffraction maximum:

2d sin θ = mλ

where d is the spacing of the crystal planes and λ is the wavelength. The angle θ is measured from the
surfaces of the planes. For a second-order reflection m = 2, so

d =
mλ

2 sin θ
=

2(0.12× 10−9 m)

2 sin 28◦
= 2.56× 10−10 m = 256 pm .

54. We use Eq. 37-31. From the peak on the left at angle 0.75◦ (estimated from Fig. 37-38), we have

λ1 = 2d sin θ1 = 2(0.94 nm) sin(0.75◦) = 0.025 nm = 25 pm .

This estimation should be viewed as reliable to within ±2 pm. We now consider the next peak:

λ2 = 2d sin θ2 = 2(0.94 nm) sin 1.15◦ = 0.038 nm = 38 pm .

One can check that the third peak from the left is the second-order one for λ1.

55. The x ray wavelength is λ = 2d sin θ = 2(39.8 pm) sin 30.0◦ = 39.8 pm.

56. (a) For the first beam 2d sin θ1 = λA and for the second one 2d sin θ2 = 3λB. The values of d and λA

can then be determined:

d =
3λB

2 sin θ2
=

3(97 pm)

2 sin 60◦
= 1.7× 102 pm .

(b)

λA = 2d sin θ1 = 2(1.7× 102 pm)(sin 23◦) = 1.3× 102 pm .

57. There are two unknowns, the x-ray wavelength λ and the plane separation d, so data for scattering at
two angles from the same planes should suffice. The observations obey Bragg’s law, so

2d sin θ1 = m1λ

and

2d sin θ2 = m2λ .

However, these cannot be solved for the unknowns. For example, we can use the first equation to
eliminate λ from the second. We obtain

m2 sin θ1 = m1 sin θ2 ,

an equation that does not contain either of the unknowns.

58. The angle of incidence on the reflection planes is θ = 63.8◦−45.0◦ = 18.8◦, and the plane-plane separation
is d = a0/

√
2. Thus, using 2d sin θ = λ, we get

a0 =
√

2d =

√
2λ

2 sin θ
=

0.260 nm√
2 sin 18.8◦

= 0.570 nm .

59. (a) The sets of planes with the next five smaller interplanar spacings (after a0) are shown in the diagram
below.
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.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

In terms of a0, the spacings are:

(i) : a0/
√

2 = 0.7071a0

(ii) : a0/
√

5 = 0.4472a0

(iii) : a0/
√

10 = 0.3162a0

(iv) : a0/
√

13 = 0.2774a0

(v) : a0/
√

17 = 0.2425a0

(b) Since a crystal plane passes through lattice points, its slope can be written as the ratio of two
integers. Consider a set of planes with slope m/n, as shown in the diagram below. The first
and last planes shown pass through adjacent lattice points along a horizontal line and there are
m − 1 planes between. If h is the separation of the first and last planes, then the interplanar
spacing is d = h/m. If the planes make the angle θ with the horizontal, then the normal to the
planes (shown dotted) makes the angle φ = 90◦ − θ. The distance h is given by h = a0 cosφ
and the interplanar spacing is d = h/m = (a0/m) cosφ. Since tan θ = m/n, tanφ = n/m and
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cosφ = 1/
√

1 + tan2 φ = m/
√
n2 +m2. Thus,

d =
h

m
=
a0 cosφ

m
=

a0√
n2 +m2
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60. The wavelengths satisfymλ = 2d sin θ = 2(275 pm)(sin 45◦) = 389 pm. In the range of wavelengths given,
the allowed values of m are m = 3, 4, with the corresponding wavelengths being 389 pm/3 = 130 pm and
389 pm/4 = 97.2 pm, respectively.

61. We want the reflections to obey the Bragg condition 2d sin θ = mλ, where θ is the angle between the
incoming rays and the reflecting planes, λ is the wavelength, and m is an integer. We solve for θ:

θ = sin−1

(

mλ

2d

)

= sin−1

(

(0.125× 10−9 m)m

2(0.252× 10−9 m)

)

= 0.2480m .

For m = 1 this gives θ = 14.4◦. The crystal should be turned 45◦ − 14.4◦ = 30.6◦ clockwise. For
m = 2 it gives θ = 29.7◦. The crystal should be turned 45◦ − 29.7◦ = 15.3◦ clockwise. For m = 3 it
gives θ = 48.1◦. The crystal should be turned 48.1◦ − 45◦ = 3.1◦ counterclockwise. For m = 4 it gives
θ = 82.8◦. The crystal should be turned 82.8◦ − 45◦ = 37.8◦ counterclockwise. There are no intensity
maxima for m > 4 as one can verify by noting that mλ/2d is greater than 1 for m greater than 4.

62. (a) Eq. 37-3 and Eq. 37-12 imply smaller angles for diffraction for smaller wavelengths. This suggests
that diffraction effects in general would decrease.

(b) Using Eq. 37-3 with m = 1 and solving for 2θ (the angular width of the central diffraction maxi-
mum), we find

2θ = 2 sin−1

(

λ

a

)

= 2 sin−1

(

0.50 m

5.0 m

)

= 11◦ .

(c) A similar calculation yields 0.23◦ for λ = 0.010 m.

63. (a) Using the notation of Sample Problem 37-6 (which is in the textbook supplement), the minimum
separation is

D = LθR = L

(

1.22λ

d

)

=
(400× 103 m)(1.22)(550× 10−9 m)

(0.005 m)
≈ 50 m .

(b) The Rayleigh criterion suggests that the astronaut will not be able to discern the Great Wall (see
the result of part (a)).

(c) The signs of intelligent life would probably be, at most, ambiguous on the sunlit half of the planet.
However, while passing over the half of the planet on the opposite side from the Sun, the astronaut
would be able to notice the effects of artificial lighting.
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64. Consider two light rays crossing each other at the middle of the lens (see Fig. 37-42(c)). The rays come
from opposite sides of the circular dot of diameter D, a distance L from the eyes, so we are using the
same notation found in Sample Problem 37-6 (which is in the textbook supplement). Those two rays
reach the retina a distance L′ behind the lens, striking two points there which are a distance D′ apart.
Therefore,

D

L
=
D′

L′

where D = 2 mm and L′ = 20 mm. If we estimate L ≈ 450 mm, we find D′ ≈ 0.09 mm. Turning our
attention to Fig. 37-42(d), we see

θ = tan−1

( 1
2D

′

x

)

which we wish to set equal to the angle in Eq. 37-12. We could use the small angle approximation
sin θ ≈ tan θ to relate these directly, or we could be “exact” – as we show below:

If tanφ =
b

a
, then sinφ =

b√
a2 + b2

.

Therefore, this “exact” use of Eq. 37-12 leads to

1.22
λ

d
= sin θ =

1
2D

′
√

x2 + (D′/2)2

where λ = 550× 10−6 mm and 1 mm ≤ x ≤ 15 mm. Using the value of D′ found above, this leads to a
range of d values: 0.015 mm ≤ d ≤ 0.23 mm.

65. Using the same notation found in Sample Problem 37-6,

D

L
= θR = 1.22

λ

d

where we will assume a “typical” wavelength for visible light: λ ≈ 550× 10−9 m.

(a) With L = 400× 103 m and D = 0.85 m, the above relation leads to d = 0.32 m.

(b) Now with D = 0.10 m, the above relation leads to d = 2.7 m.

(c) The military satellites do not use Hubble Telescope-sized apertures. A great deal of very sophisti-
cated optical filtering and digital signal processing techniques go into the final product, for which
there is not space for us to describe here.

66. Assuming all N = 2000 lines are uniformly illuminated, we have

λav

∆λ
= Nm

from Eq. 37-28 and Eq. 37-29. With λav = 600 nm and m = 2, we find ∆λ = 0.15 nm.

67. The central diffraction envelope spans the range −θ1 < θ < +θ1 where

θ1 = sin−1 λ

a
.

The maxima in the double-slit pattern are located at

θm = sin−1 mλ

d
,

so that our range specification becomes

− sin−1 λ

a
< sin−1 mλ

d
< + sin−1 λ

a
,
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which we change (since sine is a monotonically increasing function in the fourth and first quadrants,
where all these angles lie) to

−λ
a

<
mλ

d
< +

λ

a
.

Rewriting this as −d/a < m < +d/a, we find −6 < m < +6, or, since m is an integer, −5 ≤ m ≤ +5.
Thus, we find eleven values of m that satisfy this requirement.

68. Employing Eq. 37-3, we find (with m = 3 and all lengths in µm)

θ = sin−1 mλ

a
= sin−1 (3)(0.5)

2

which yields θ = 48.6◦. Now, we use the experimental geometry (tan θ = y/D where y locates the
minimum relative to the middle of the pattern) to find

y = D tan θ = 2.27 m .

69. (a) From R = λ/∆λ = Nm we find

N =
λ

m∆λ
=

(415.496 nm + 415.487 nm)/2

2(415.96 nm− 415.487 nm)
= 23100 .

(b) We note that d = (4.0× 107 nm)/23100 = 1732 nm. The maxima are found at

θ = sin−1

(

mλ

d

)

= sin−1

[

(2)(415.5 nm)

1732 nm

]

= 28.7◦ .

70. We use Eq. 37-31. For smallest value of θ, we let m = 1. Thus,

θmin = sin−1

(

mλ

2d

)

= sin−1

[

(1)(30 pm)

2(0.30× 103 pm)

]

= 2.9◦ .

71. (a) We use Eq. 37-12:

θ = sin−1

(

1.22λ

d

)

= sin−1

[

1.22(vs/f)

d

]

= sin−1

[

(1.22)(1450 m/s)

(25× 103 Hz)(0.60 m)

]

= 6.8◦ .

(b) Now f = 1.0× 103 Hz so

1.22λ

d
=

(1.22)(1450 m/s)

(1.0× 103 Hz)(0.60 m)
= 2.9 > 1 .

Since sin θ cannot exceed 1 there is no minimum.

72. From Eq. 37-3,
a

λ
=

m

sin θ
=

1

sin 45.0◦
= 1.41 .

73. (a) Use of Eq. 37-22 for the limit-wavelengths (λ1 = 700 nm and λ2 = 550 nm) leads to the condition

m1λ1 ≥ m2λ2

for m1 + 1 = m2 (the low end of a high-order spectrum is what is overlapping with the high end of
the next-lower-order spectrum). Assuming equality in the above equation, we can solve for “m1”
(realizing it might not be an integer) and obtain m1 ≈ 4 where we have rounded up. It is the fourth
order spectrum that is the lowest-order spectrum to overlap with the next higher spectrum.
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(b) The problem specifies d = 1/200 using the mm unit, and we note there are no refraction angles
greater than 90◦. We concentrate on the largest wavelength λ = 700 nm = 7× 10−4 mm and solve
Eq. 37-22 for “mmax” (realizing it might not be an integer):

mmax =
d sin 90◦

λ
=

1

(200) (7× 10−4)
≈ 7

where we have rounded down. There are no values of m (for the appearance of the full spectrum)
greater than m = 7.

74. The central diffraction envelope spans the range −θ1 < θ < +θ1 where

θ1 = sin−1 λ

a
.

The maxima in the double-slit pattern are at

θm = sin−1 mλ

d
,

so that our range specification becomes

− sin−1 λ

a
< sin−1 mλ

d
< + sin−1 λ

a
,

which we change (since sine is a monotonically increasing function in the fourth and first quadrants,
where all these angles lie) to

−λ
a

<
mλ

d
< +

λ

a
.

Rewriting this as −d/a < m < +d/a we arrive at the result mmax < d/a ≤ mmax + 1 . Due to the
symmetry of the pattern, the multiplicity of the m values is 2mmax + 1 = 17 so that mmax = 8, and the
result becomes

8 <
d

a
≤ 9

where these numbers are as accurate as the experiment allows (that is, “9” means “9.000” if our mea-
surements are that good).

75. As a slit is narrowed, the pattern spreads outward, so the question about “minimum width” suggests
that we are looking at the lowest possible values of m (the label for the minimum produced by light
λ = 600 nm) and m′ (the label for the minimum produced by light λ′ = 500 nm). Since the angles are
the same, then Eq. 37-3 leads to

mλ = m′λ′

which leads to the choices m = 5 and m′ = 6. We find the slit width from Eq. 37-3:

a =
mλ

sin θ
≈ mλ

θ

which yields a = 3.0 mm.

76. (a) We note that d = (76 × 106 nm)/40000 = 1900 nm. For the first order maxima λ = d sin θ, which
leads to

θ = sin−1

(

λ

d

)

= sin−1

(

589 nm

1900 nm

)

= 18◦ .

Now, substituting m = d sin θ/λ into Eq. 37-27 leads to D = tan θ/λ = tan 18◦/589 nm = 5.5 ×
10−4 rad/nm = 0.032◦/nm. Similarly for m = 2 and m = 3, we have θ = 38◦ and 68◦, and the
corresponding values of dispersion are 0.076◦/nm and 0.24◦/nm, respectively.

(b) R = Nm = 40000m = 40000 (for m = 1); 80000 (for m = 2); and, 120, 000 (for m = 3).
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77. Letting d sin θ = (L/N) sin θ = mλ, we get

λ =
(L/N) sin θ

m
=

(1.0× 107 nm)(sin 30◦)

(1)(10000)
= 500 nm .

78. (a) Using the notation of Sample Problem 37-6,

L =
D

1.22λ/d
=

2(50× 10−6 m)(1.5× 10−3 m)

1.22(650× 10−9 m)
= 0.19 m .

(b) The wavelength of the blue light is shorter so Lmax ∝ λ−1 will be larger.

79. From y = mλD/a we get

∆y = ∆

(

mλD

a

)

=
λD

a
∆m =

(632.8 nm)(2.60)

1.37 mm
[10− (−10)] = 24.0 mm .

80. For λ = 0.10 nm, we have scattering for order m, and for λ′ = 0.075 nm, we have scattering for order
m′. From Eq. 37-31, we see that we must require

mλ = m′λ′

which suggests (looking for the smallest integer solutions) that m = 3 and m′ = 4. Returning with this
result and with d = 0.25 nm to Eq. 37-31, we obtain

θ = sin−1 mλ

2d
= 37◦ .

Studying Figure 37-26, we conclude that the angle between incident and scattered beams is 180◦− 2θ =
106◦.

81. (a) We express all lengths in mm, and since 1/d = 180, we write Eq. 37-22 as

θ = sin−1

(

1

d
mλ

)

= sin−1 (180)(2)λ

where λ1 = 4× 10−4 and λ2 = 5× 10−4 (in mm). Thus, ∆θ = θ2 − θ1 = 2.1◦.

(b) Use of Eq. 37-22 for each wavelength leads to the condition

m1λ1 = m2λ2

for which the smallest possible choices are m1 = 5 and m2 = 4. Returning to Eq. 37-22, then, we
find

θ = sin−1

(

1

d
m1λ1

)

= 21◦ .

(c) There are no refraction angles greater than 90◦, so we can solve for “mmax” (realizing it might not
be an integer):

mmax =
d sin 90◦

λ2
= 11

where we have rounded down. There are no values of m (for light of wavelength λ2) greater than
m = 11.

82. Following Sample Problem 37-6, we use Eq. 37-35:

L =
Dd

1.22λ
= 164 m .
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83. (a) Employing Eq. 37-3 with the small angle approximation (sin θ ≈ tan θ = y/D where y locates the
minimum relative to the middle of the pattern), we find (with m = 1 and all lengths in mm)

D =
ya

mλ
=

(0.9)(0.4)

4.5× 10−4
= 800

which places the screen 80 cm away from the slit.

(b) The above equation gives for the value of y (for m = 3)

y =
(3)λD

a
= 2.7 mm .

Subtracting this from the first minimum position y = 0.9 mm, we find the result ∆y = 1.8 mm.

84. (a) We require that sin θ = mλ1,2/d ≤ sin 30◦, where m = 1, 2 and λ1 = 500 nm. This gives

d ≥ 2λs

sin 30◦
=

2(600 nm)

sin 30◦
= 2400 nm .

For a grating of given total width L we have N = L/d ∝ d−1, so we need to minimize d to maximize
R = mN ∝ d−1. Thus we choose d = 2400 nm.

(b) Let the third-order maximum for λ2 = 600 nm be the first minimum for the single-slit diffraction
profile. This requires that d sin θ = 3λ2 = a sin θ, or a = d/3 = 2400 nm/3 = 800 nm.

(c) Letting sin θ = mmaxλ2/d ≤ 1, we obtain

mmax ≤
d

λ2
=

2400 nm

800 nm
= 3 .

Since the third order is missing the only maxima present are the ones with m = 0, 1 and 2.

85. (a) Letting d sin θ = mλ, we solve for λ:

λ =
d sin θ

m
=

(1.0 mm/200)(sin 30◦)

m
=

2500 nm

m

where m = 1, 2, 3 · · ·. In the visible light range m can assume the following values: m1 = 4, m2 = 5
and m3 = 6. The corresponding wavelengths are λ1 = 2500 nm/4 = 625 nm, λ2 = 2500 nm/5 =
500 nm, and λ3 = 2500 nm/6 = 416 nm.

(b) The colors are orange (for λ1 = 625 nm), blue-green (for λ2 = 500 nm), and violet (for λ3 = 416 nm).

86. Using the notation of Sample Problem 37-6,

L =
D

θR
=

D

1.22λ/d
=

(5.0× 10−2 m)(4.0× 10−3 m)

1.22(0.10× 10−9 m)
= 1.6× 106 m = 1600 km .

87. The condition for a minimum in a single-slit diffraction pattern is given by Eq. 37-3, which we solve for
the wavelength:

λ =
a sin θ

m
=

(0.022 mm) sin 1.8◦

1
= 6.9× 10−4 mm = 690 nm .



Chapter 38

1. (a) The time an electron with a horizontal component of velocity v takes to travel a horizontal distance
L is

t =
L

v
=

20× 10−2 m

(0.992)(2.998× 108 m/s)
= 6.72× 10−10 s .

(b) During this time, it falls a vertical distance

y =
1

2
gt2 =

1

2
(9.8 m/s2)(6.72× 10−10 s)2 = 2.2× 10−18 m .

This distance is much less than the radius of a proton. We can conclude that for particles traveling
near the speed of light in a laboratory, Earth may be considered an approximately inertial frame.

2. (a) The speed parameter β is v/c. Thus,

β =
(3 cm/y)(0.01 m/cm)(1 y/3.15× 107 s)

3.0× 108 m/s
= 3× 10−18 .

(b) For the highway speed limit, we find

β =
(90 km/h)(1000 m/km)(1 h/3600 s)

3.0× 108 m/s
= 8.3× 10−8 .

(c) Mach 2.5 corresponds to

β =
(1200 km/h)(1000 m/km)(1 h/3600 s)

3.0× 108 m/s
= 1.1× 10−6 .

(d) We refer to Table 14-2:

β =
(11.2 km/s)(1000 m/km)

3.0× 108 m/s
= 3.7× 10−5 .

(e) For the quasar recession speed, we obtain

β =
(3.0× 104 km/s)(1000 m/km)

3.0× 108 m/s
= 0.10 .

3. From the time dilation equation ∆t = γ∆t0 (where ∆t0 is the proper time interval, γ = 1/
√

1− β2, and
β = v/c), we obtain

β =

√

1−
(

∆t0
∆t

)2

.
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The proper time interval is measured by a clock at rest relative to the muon. Specifically, ∆t0 =
2.2µs. We are also told that Earth observers (measuring the decays of moving muons) find ∆t = 16µs.
Therefore,

β =

√

1−
(

2.2µs

16µs

)2

= 0.9905 .

The muon speed is v = βc = 0.9905(2.998× 108 m/s) = 2.97× 108 m/s.

4. (a) We find β from γ = 1/
√

1− β2:

β =

√

1− 1

γ2
=

√

1− 1

(1.01)2
= 0.140371 ≈ 0.140 .

(b) Similarly, β =
√

1− (10.0)−2 = 0.994987 ≈ 0.9950.

(c) In this case, β =
√

1− (100)−2 = 0.999 950.

(d) This last case might prove problematic for some calculators. The result is β =
√

1− (1000)−2 =
0.999 999 50. The discussion in Sample Problem 38-7 dealing with large γ values may prove helpful
for those whose calculators do not yield this answer.

5. In the laboratory, it travels a distance d = 0.00105 m = vt, where v = 0.992c and t is the time measured
on the laboratory clocks. We can use Eq. 38-7 to relate t to the proper lifetime of the particle t0:

t =
t0

√

1− (v/c)2
=⇒ t0 = t

√

1−
(v

c

)2

=
d

0.992c

√

1− 0.9922

which yields t0 = 4.46× 10−13 s.

6. (a) The round-trip (discounting the time needed to “turn around”) should be one year according to
the clock you are carrying (this is your proper time interval ∆t0) and 1000 years according to the
clocks on Earth which measure ∆t. We solve Eq. 38-7 for v and then plug in:

v = c

√

1−
(

∆t0
∆t

)2

= (299792458 m/s)

√

1−
(

1 y

1000 y

)2

= 299792308 m/s

which may also be expressed as v = c
√

1− (1000)−2 = 0.999 999 50c. The discussion in Sample
Problem 38-7 dealing with these sorts of values may prove helpful for those whose calculators do
not yield this answer.

(b) The equations do not show a dependence on acceleration (or on the direction of the velocity vector),
which suggests that a circular journey (with its constant magnitude centripetal acceleration) would
give the same result (if the speed is the same) as the one described in the problem. A more careful
argument can be given to support this, but it should be admitted that this is a fairly subtle question
which has occasionally precipitated debates among professional physicists.

7. The length L of the rod, as measured in a frame in which it is moving with speed v parallel to its
length, is related to its rest length L0 by L = L0/γ, where γ = 1/

√

1− β2 and β = v/c. Since
γ must be greater than 1, L is less than L0. For this problem, L0 = 1.70 m and β = 0.630, so
L = (1.70 m)

√

1− (0.630)2 = 1.32 m.
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8. The contracted length of the tube would be

L = L0

√

1− β2 = (3.00 m)
√

1− 0.9999872 = 0.0153 m .

9. Only the “component” of the length in the x direction contracts, so its y component stays

ℓ′y = ℓy = ℓ sin 30◦ = 0.5000 m

while its x component becomes

ℓ′x = ℓx
√

1− β2 = ℓ cos 30◦
√

1− 0.902 = 0.3775 m .

Therefore, using the Pythagorean theorem, the length measured from S′ is

ℓ′ =

√

(ℓ′x)
2

+
(

ℓ′y
)2

= 0.626 m .

10. (a) We solve Eq. 38-13 for v and then plug in:

v = c

√

1−
(

L

L0

)2

= (299792458 m/s)

√

1−
(

1

2

)2

= 259627884 m/s

which may also be expressed as v = 0.8660254c.

(b) The Lorentz factor in this case is γ = 1√
1−(v/c)2

= 2 “exactly.”

11. (a) The rest length L0 = 130 m of the spaceship and its length L as measured by the timing station
are related by Eq. 38-13. Therefore, L = (130 m)

√

1− (0.740)2 = 87.4 m.

(b) The time interval for the passage of the spaceship is

∆t =
L

v
=

87.4 m

(0.740)(3.00× 108 m/s)
= 3.94× 10−7 s .

12. (a) According solely to the principles of Special Relativity, yes. If the person moves fast enough,
then the time dilation argument will allow for his proper travel time to be much less than that
measured from the Earth. Stated differently, length contraction can make that travel distance seem
much shorter to the traveler than to our Earth-based estimations. This does not include important
considerations such as fuel requirements, stresses to the human body (due to the accelerations,
primarily), and so on.

(b) Let d = 23000 ly = 23000 c y, which would give the distance in meters if we included a conversion
factor for years → seconds. With ∆t0 = 30 y and ∆t = d/v (see Eq. 38-10), we wish to solve for v
from Eq. 38-7. Our first step is as follows:

∆t =
∆t0

√

1− (v/c)2

d

v
=

∆t0
√

1− (v/c)2

23000 c y

v
=

30 y
√

1− (v/c)2
,
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at which point we can cancel the unit year and manipulate the equation to solve for the speed.
After a couple of algebraic steps, we obtain

v =
c

√

1 +
(

30
23000

)2

=
299792458 m/s√
1 + 0.000017013

= 299792203 m/s

which may also be expressed as v = 0.999 999 15c. The discussion in Sample Problem 38-7 dealing
with these sorts of values may prove helpful for those whose calculators do not yield this answer.

13. (a) The speed of the traveler is v = 0.99c, which may be equivalently expressed as 0.99 ly/y. Let
d be the distance traveled. Then, the time for the trip as measured in the frame of Earth is
∆t = d/v = (26 ly)/(0.99 ly/y) = 26.3 y.

(b) The signal, presumed to be a radio wave, travels with speed c and so takes 26.0 y to reach Earth.
The total time elapsed, in the frame of Earth, is 26.3 y + 26.0 y = 52.3 y.

(c) The proper time interval is measured by a clock in the spaceship, so ∆t0 = ∆t/γ. Now γ =

1/
√

1− β2 = 1/
√

1− (0.99)2 = 7.09. Thus, ∆t0 = (26.3 y)/(7.09) = 3.7 y.

14. The “coincidence” of x = x′ = 0 at t = t′ = 0 is important for Eq. 38-20 to apply without additional
terms. In part (a), we apply these equations directly with v = +0.400c = 1.199×108 m/s, and in part (b)
we simply change v → −v and recalculate the primed values.

(a) The position coordinate measured in the S′ frame is

x′ = γ(x− vt) =
x− vt
√

1− β2

=
3.00× 108 m− (1.199× 108 m/s)(2.50 s)

√

1− (0.400)2

= 2.7× 105 m/s ≈ 0 ,

where we conclude that the numerical result (2.7 × 105 or 2.3 × 105 depending on how precise a
value of v is used) is not meaningful (in the significant figures sense) and should be set equal to
zero (that is, it is “consistent with zero” in view of the statistical uncertainties involved). The time
coordinate measured in the S′ frame is

t′ = γ
(

t− vx

c2

)

=
t− βx

c
√

1− β2

=
2.50 s− (0.400)(3.00×103 m)

2.998×108 m/s
√

1− (0.400)2

= 2.29 s .

(b) Now, we obtain

x′ =
x+ vt
√

1− β2
=

3.00× 108 m + (1.199× 108 m/s)(2.50 s)
√

1− (0.400)2
= 6.54× 108 m ,

and

t′ = γ
(

t+
vx

c2

)

=
2.50 s + (0.400)(3.00×108 m)

2.998×108 m/s
√

1− (0.400)2
= 3.16 s .
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15. The proper time is not measured by clocks in either frame S or frame S′ since a single clock at rest in
either frame cannot be present at the origin and at the event. The full Lorentz transformation must be
used:

x′ = γ(x− vt) and t′ = γ(t− βx/c)

where β = v/c = 0.950 and γ = 1/
√

1− β2 = 1/
√

1− (0.950)2 = 3.20256. Thus,

x′ = (3.20256)
(

100× 103 m− (0.950)(2.998× 108 m/s)(200× 10−6 s)
)

= 1.38× 105 m = 138 km

and

t′ = (3.20256)

[

200× 10−6 s− (0.950)(100× 103 m)

2.998× 108 m/s

]

= −3.74× 10−4 s = −374µs .

16. The “coincidence” of x = x′ = 0 at t = t′ = 0 is important for Eq. 38-20 to apply without additional
terms. We label the event coordinates with subscripts: (x1, t1) = (0, 0) and (x2, t2) = (3000, 4.0× 10−6)
with SI units understood. Of course, we expect (x′1, t

′
1) = (0, 0), and this may be verified using Eq. 38-20.

We now compute (x′2, t
′
2), assuming v = +0.60c = +1.799×108 m/s (the sign of v is not made clear in the

problem statement, but the Figure referred to, Fig. 38-9, shows the motion in the positive x direction).

x′2 =
x− vt
√

1− β2
=

3000−
(

1.799× 108
) (

4.0× 10−6
)

√

1− (0.60)2
= 2.85× 103

t′2 =
t− βx/c
√

1− β2
=

4.0× 10−6 − (0.60)(3000)/(2.998× 108 )
√

1− (0.60)2
= −2.5× 10−6

The two events in frame S occur in the order: first 1, then 2. However, in frame S′ where t′2 < 0, they
occur in the reverse order: first 2, then 1. We note that the distances x2 − x1 and x′2 − x′1 are larger
than how far light can travel during the respective times (c(t2 − t1) = 1.2 km and c|t′2− t′1| ≈ 750 m), so
that no inconsistencies arise as a result of the order reversal (that is, no signal from event 1 could arrive
at event 2 or vice versa).

17. (a) We take the flashbulbs to be at rest in frame S, and let frame S′ be the rest frame of the second
observer. Clocks in neither frame measure the proper time interval between the flashes, so the full
Lorentz transformation (Eq. 38-20) must be used. Let ts be the time and xs be the coordinate of
the small flash, as measured in frame S. Then, the time of the small flash, as measured in frame
S′, is

t′s = γ

(

ts −
βxs

c

)

where β = v/c = 0.250 and γ = 1/
√

1− β2 = 1/
√

1− (0.250)2 = 1.0328. Similarly, let tb be the
time and xb be the coordinate of the big flash, as measured in frame S. Then, the time of the big
flash, as measured in frame S′, is

t′b = γ

(

tb −
βxb

c

)

.

Subtracting the second Lorentz transformation equation from the first and recognizing that ts = tb
(since the flashes are simultaneous in S), we find

∆t′ = −γβ(xs − xb)

c
= − (1.0328)(0.250)(30× 103 m)

3.00× 108 m/s
= −2.58× 10−5 s

where ∆t′ = t′s − t′b.
(b) Since ∆t′ is negative, t′b is greater than t′s. The small flash occurs first in S′.
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18. (a) In frame S, our coordinates are such that x1 = +1200 m for the big flash, and x2 = 1200− 720 =
480 m for the small flash (which occurred later). Thus, ∆x = x2 − x1 = −720 m. If we set ∆x′ = 0
in Eq. 38-24, we find

0 = γ (∆x− v∆t) = γ
(

−720 m− v(5.00× 10−6 s)
)

which yields v = −1.44× 108 m/s. Therefore, frame S′ must be moving in the −x direction with a
speed of 0.480c.

(b) Eq. 38-27 leads to

∆t′ = γ

(

∆t− v∆x

c2

)

= γ

(

5.00× 10−6 s− (−1.44× 108 m/s)(−720 m)

(2.998× 108 m/s)2

)

which turns out to be positive (regardless of the specific value of γ). Thus, the order of the flashes
is the same in the S′ frame as it is in the S frame (where ∆t is also positive). Thus, the big flash
occurs first, and the small flash occurs later.

(c) Finishing the computation begun in part (b), we obtain

∆t′ =
5.00× 10−6 s− (−1.44×108 m/s)(−720m)

(2.998×108 m/s)2√
1− 0.4802

= 4.39× 10−6 s .

19. (a) The Lorentz factor is

γ =
1

√

1− β2
=

1
√

1− (0.600)2
= 1.25 .

(b) In the unprimed frame, the time for the clock to travel from the origin to x = 180 m is

t =
x

v
=

180 m

(0.600)(3.00× 108 m/s)
= 1.00× 10−6 s .

The proper time interval between the two events (at the origin and at x = 180 m) is measured by
the clock itself. The reading on the clock at the beginning of the interval is zero, so the reading at
the end is

t′ =
t

γ
=

1.00× 10−6 s

1.25
= 8.00× 10−7 s .

20. We refer to the solution of problem 18. We wish to adjust ∆t so that

∆x′ = 0 = γ (−720 m− v∆t)

in the limiting case of |v| → c. Thus,

∆t =
720 m

2.998× 108 m/s
= 2.40× 10−6 s .

21. We assume S′ is moving in the +x direction. With u′ = +0.40c and v = +0.60c, Eq. 38-28 yields

u =
u′ + v

1 + u′v/c2
=

0.40c+ 0.60c

1 + (0.40c)(+0.60c)/c2
= 0.81c .

22. (a) We use Eq. 38-28:

v =
v′ + u

1 + uv′/c2
=

0.47c+ 0.62c

1 + (0.47)(0.62)
= 0.84c ,

in the direction of increasing x (since v > 0). The classical theory predicts that v = 0.47c+0.62c=
1.1c > c.
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(b) Now v′ = −0.47c so

v =
v′ + u

1 + uv′/c2
=
−0.47c+ 0.62c

1 + (−0.47)(0.62)
= 0.21c ,

again in the direction of increasing x. By contrast, the classical prediction is v = 0.62c− 0.47c =
0.15c.

23. (a) One thing Einstein’s relativity has in common with the more familiar (Galilean) relativity is the
reciprocity of relative velocity. If Joe sees Fred moving at 20 m/s eastward away from him (Joe),
then Fred should see Joe moving at 20 m/s westward away from him (Fred). Similarly, if we see
Galaxy A moving away from us at 0.35c then an observer in Galaxy A should see our galaxy move
away from him at 0.35c.

(b) We take the positive axis to be in the direction of motion of Galaxy A, as seen by us. Using the
notation of Eq. 38-28, the problem indicates v = +0.35c (velocity of Galaxy A relative to Earth)
and u = −0.35c (velocity of Galaxy B relative to Earth). We solve for the velocity of B relative to
A:

u′ =
u− v

1− uv/c2 =
(−0.35c)− 0.35c

1− (−0.35)(0.35)
= −0.62c

or u′ = −1.87× 108 m/s.

24. Using the notation of Eq. 38-28 and taking “away” (from us) as the positive direction, the problem
indicates v = +0.4c and u = +0.8c (with 3 significant figures understood). We solve for the velocity of
Q2 relative to Q1:

u′ =
u− v

1− uv/c2 =
0.8c− 0.4c

1− (0.8)(0.4)
= 0.588c

or u′ = 1.76× 108 m/s in a direction away from Earth.

25. Using the notation of Eq. 38-28 and taking the micrometeorite motion as the positive direction, the
problem indicates v = −0.82c (spaceship velocity) and u = +0.82c (micrometeorite velocity). We solve
for the velocity of the micrometeorite relative to the spaceship:

u′ =
u− v

1− uv/c2 =
0.82c− (−0.82c)

1− (0.82)(−0.82)
= 0.98c

or 2.94× 108 m/s. Using Eq. 38-10, we conclude that observers on the ship measure a transit time for
the micrometeorite (as it passes along the length of the ship) equal to

∆t =
d

u′
=

350 m

2.94× 108 m/s
= 1.2× 10−6 s .

26. (a) In the messenger’s rest system (called Sm), the velocity of the armada is

v′ =
v − vm

1− vvm/c2
=

0.80c− 0.95c

1− (0.80c)(0.95c)/c2
= −0.625c .

The length of the armada as measured in Sm is

L1 =
L0

γv′

= (1.0 ly)
√

1− (−0.625)2 = 0.781 ly .

Thus, the length of the trip is

t′ =
L′

|v′| =
0.781 ly

0.625c
= 1.25 y .
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(b) In the armada’s rest frame (called Sa), the velocity of the messenger is

v′ =
v − va

1− vva/c2
=

0.95c− 0.80c

1− (0.95c)(0.80c)/c2
= 0.625c .

Now, the length of the trip is

t′ =
L0

v′
=

1.0 ly

0.625c
= 1.6 y .

(c) Measured in system S, the length of the armada is

L =
L0

γ
= 1.0 ly

√

1− (0.80)2 = 0.60 ly ,

so the length of the trip is

t =
L

vm − va
=

0.60 ly

0.95c− 0.80c
= 4.0 y .

27. The spaceship is moving away from Earth, so the frequency received is given directly by Eq. 38-30. Thus,

f = f0

√

1− β
1 + β

= (100 MHz)

√

1− 0.9000

1 + 0.9000
= 22.9 MHz .

28. (a) Eq. 38-33 leads to

v =
∆λ

λ
c =

12 nm

513 nm

(

2.998× 108 m/s
)

= 7.0× 106 m/s .

(b) The line is shifted to a larger wavelength, which means shorter frequency. Recalling Eq. 38-30 and
the discussion that follows it, this means galaxy NGC is moving away from Earth.

29. Eq. 38-33 leads to a recessional speed of

v =
∆λ

λ
c = (0.004)

(

3.0× 108 m/s
)

= 1× 106 m/s .

30. We obtain

v =
∆λ

λ
c =

(

620− 540

620

)

c = 0.13c = 3.9× 106 m/s .

31. The frequency received is given by

f = f0

√

1− β
1 + β

c

λ
=

c

λ0

√

1− 0.20

1 + 0.20

which implies

λ = (450 nm)

√

1 + 0.20

1− 0.20
= 550 nm .

This is in the yellow-green portion of the visible spectrum.

32. (a) The work-kinetic energy theorem applies as well to Einsteinian physics as to Newtonian; the only
difference is the specific formula for kinetic energy. Thus, we use W = ∆K = mec

2(γ − 1) (Eq. 38-
49) and mec

2 = 511 keV = 0.511 MeV (Table 38-3), and obtain

W = mec
2

(

1
√

1− β2
− 1

)

= (511 keV)

[

1
√

1− (0.50)2
− 1

]

= 79 keV .
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(b)

W = (0.511 MeV)

(

1
√

1− (0.990)2
− 1

)

= 3.11 MeV .

(c)

W = (0.511 MeV)

(

1
√

1− (0.9990)2
− 1

)

= 10.9 MeV .

33. (a) Using K = mec
2(γ − 1) (Eq. 38-49) and mec

2 = 511 keV = 0.511 MeV (Table 38-3), we obtain

γ =
K

mec2
+ 1 =

1.00 keV

511 keV
+ 1 = 1.00196 .

Therefore, the speed parameter is

β =

√

1− 1

γ2
=

√

1− 1

1.001962
= 0.0625 .

(b) We could first find β and then find γ, as illustrated here: With K = 1.00 MeV, we find

β =

√

1−
(

1.00 MeV

0.511 MeV
+ 1

)−2

= 0.941

and γ = 1/
√

1− β2 = 2.96.

(c) Finally, K = 1000 MeV, so

β =

√

1−
(

1000 MeV

0.511 MeV
+ 1

)−2

= 0.999 999 87

and γ = 1000 MeV/0.511 MeV + 1 = 1.96 × 103. The discussion in Sample Problem 38-7 dealing
with these sorts of values may prove helpful for those whose calculators do not yield these answers.

34. From Eq. 38-49, γ = (K/mc2) + 1, and from Eq. 38-8, the speed parameter is β =
√

1− (1/γ)2.

(a) Table 38-3 gives mec
2 = 511 keV = 0.511 MeV, so the Lorentz factor is

γ =
10.0 MeV

0.511 MeV
+ 1 = 20.57 ,

and the speed parameter is

β =

√

1− 1

(20.57)2
= 0.9988 .

(b) Table 38-3 gives mpc
2 = 938 MeV, so the Lorentz factor is γ = 1 + 10.0 MeV/938 MeV = 1.01, and

the speed parameter is

β =

√

1− 1

1.012
= 0.145 .

(c) If we refer to the data shown in problem 36, we find mα = 4.0026 u, which (using Eq. 38-43) implies
mαc

2 = 3728 MeV. This leads to γ = 10/3728 + 1 = 1.0027. And, being careful not to do any
unnecessary rounding off in the intermediate steps, we find β = 0.073. We remark that the mass
value used in our solution is not exactly the alpha particle mass (it’s the helium-4 atomic mass),
but this slight difference does not introduce significant error in this computation.
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35. From Eq. 38-49, γ = (K/mc2) + 1, and from Eq. 38-8, the speed parameter is β =
√

1− (1/γ)2. Table
38-3 gives mec

2 = 511 keV = 0.511 MeV, so the Lorentz factor is

γ =
100 MeV

0.511 MeV
+ 1 = 197 ,

and the speed parameter is

β =

√

1− 1

(197)2
= 0.999987 .

Thus, the speed of the electron is 0.999987c, or 99.9987% of the speed of light. The discussion in Sample
Problem 38-7 dealing with these sorts of values may prove helpful for those whose calculators do not
yield this answer.

36. The mass change is

∆M = (4.002603 u + 15.994915 u)− (1.007825 u + 18.998405 u) = −0.008712 u .

Using Eq. 38-47 and Eq. 38-43, this leads to

Q = −∆M c2 = −(−0.008712 u)(931.5 MeV/u) = 8.12 MeV .

37. Since the rest energy E0 and the mass m of the quasar are related by E0 = mc2, the rate P of energy
radiation and the rate of mass loss are related by P = dE0/dt = (dm/dt)c2. Thus,

dm

dt
=
P

c2
=

1× 1041 W

(2.998× 108 m/s)2
= 1.11× 1024 kg/s .

Since a solar mass is 2.0× 1030 kg and a year is 3.156× 107 s,

dm

dt
= (1.11× 1024 kg/s)

(

3.156× 107 s/y

2.0× 1030 kg/smu

)

≈ 18 smu/y .

38. (a) The work-kinetic energy theorem applies as well to Einsteinian physics as to Newtonian; the only
difference is the specific formula for kinetic energy. Thus, we use W = ∆K where K = mec

2(γ− 1)
(Eq. 38-49), and mec

2 = 511 keV = 0.511 MeV (Table 38-3). Noting that ∆K = mec
2(γf − γi ), we

obtain

W = mec
2





1
√

1− β2
f

− 1
√

1− β2
i



 = (511 keV)

(

1
√

1− (0.19)2
− 1
√

1− (0.18)2

)

= 0.996 keV .

(b) Similarly,

W = (511 keV)

(

1
√

1− (0.99)2
− 1
√

1− (0.98)2

)

= 1055 keV .

We see the dramatic increase in difficulty in trying to accelerate a particle when its initial speed is
very close to the speed of light.

39. (a) We set Eq. 38-38 equal to mc, as required by the problem, and solve for the speed. Thus,

mv
√

1− v2/c2
= mc

leads to v = c/
√

2 = 0.707c.
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(b) Substituting v =
√

2c into the definition of γ, we obtain

γ =
1

√

1− v2/c2
=

1
√

1− (1/2)
=
√

2 ≈ 1.41 .

(c) The kinetic energy is

K = (γ − 1)mc2 = (
√

2− 1)mc2 = 0.414mc2 .

40. (a) We set Eq. 38-49 equal to 2mc2, as required by the problem, and solve for the speed. Thus,

mc2





1
√

1−
(

v
c

)2
− 1



 = 2mc2

leads to v = 2
√

2
3 c ≈ 0.943c.

(b) We now set Eq. 38-45 equal to 2mc2 and solve for the speed. In this case,

mc2
√

1−
(

v
c

)2
= 2mc2

leads to v =
√

3
2 c ≈ 0.866c.

41. We set Eq. 38-52 equal to (3mc2)2, as required by the problem, and solve for the speed. Thus,

(pc)2 + (mc2 )2 = 9(mc2 )2

leads to p = mc
√

8.

42. (a) Squaring Eq. 38-44 gives

E2 =
(

mc2
)2

+ 2mc2K +K2

which we set equal to Eq. 38-52. Thus,

(

mc2
)2

+ 2mc2K +K2 = (pc)2 +
(

mc2
)2

=⇒ m =
(pc)2 −K2

2Kc2
.

(b) At low speeds, the pre-Einsteinian expressions p = mv and K = 1
2mv

2 apply. We note that pc≫ K
at low speeds since c≫ v in this regime. Thus,

m→ (mvc)2 −
(

1
2mv

2
)2

2
(

1
2mv

2
)

c2
≈ (mvc)2

2
(

1
2mv

2
)

c2
= m .

(c) Here, pc = 121 MeV, so

m =
1212 − 552

2(55)c2
= 105.6 MeV/c2 .

Now, the mass of the electron (see Table 38-3) is me = 0.511 MeV/c2, so our result is roughly 207
times bigger than an electron mass.

43. The energy equivalent of one tablet is mc2 = (320 × 10−6 kg)(3.00 × 108 m/s)2 = 2.88 × 1013 J. This
provides the same energy as (2.88 × 1013 J)/(3.65 × 107 J/L) = 7.89 × 105 L of gasoline. The distance
the car can go is d = (7.89× 105 L)(12.75 km/L) = 1.01× 107 km. This is roughly 250 times larger than
the circumference of Earth (see Appendix C).
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44. (a) The proper lifetime ∆t0 is 2.20µs, and the lifetime measured by clocks in the laboratory (through
which the muon is moving at high speed) is ∆t = 6.90µs. We use Eq. 38-7 to solve for the speed:

v = c

√

1−
(

∆t0
∆t

)2

= 0.9478c

or v = 2.84× 108 m/s.

(b) From the answer to part (a), we find γ = 3.136. Thus, with mµc
2 = 207mec

2 = 105.8 MeV (see
Table 38-3), Eq. 38-49 yields

K = mµc
2(γ − 1) = 226 MeV .

(c) We write mµc = 105.8 MeV/c and apply Eq. 38-38:

p = γmµv = γmµcβ = (3.136)(105.8 MeV/c)(0.9478) = 314 MeV/c

which can also be expressed in SI units (p = 1.7× 10−19 kg·m/s).
45. The distance traveled by the pion in the frame of Earth is (using Eq. 38-12) d = v∆t. The proper lifetime

∆t0 is related to ∆t by the time-dilation formula: ∆t = γ∆t0. To use this equation, we must first find
the Lorentz factor γ (using Eq. 38-45). Since the total energy of the pion is given by E = 1.35×105 MeV
and its mc2 value is 139.6 MeV, then

γ =
E

mc2
=

1.35× 105 MeV

139.6 MeV
= 967.05 .

Therefore, the lifetime of the moving pion as measured by Earth observers is

∆t = γ∆t0 = (967.1)(35.0× 10−9 s) = 3.385× 10−5 s ,

and the distance it travels is

d ≈ c∆t = (2.998× 108 m/s)(3.385× 10−5 s) = 1.015× 104 m = 10.15 km

where we have approximated its speed as c (note: its speed can be found by solving Eq. 38-8, which
gives v = 0.9999995c; this more precise value for v would not significantly alter our final result). Thus,
the altitude at which the pion decays is 120 km− 10.15 km = 110 km.

46. The q in the denominator is to be interpreted as |q| (so that the orbital radius r is a positive number).
We interpret the given 10.0 MeV to be the kinetic energy of the electron. In order to make use of the mc2

value for the electron given in Table 38-3 (511 keV = 0.511 MeV) we write the classical kinetic energy
formula as

Kclassical =
1

2
mv2 =

1

2

(

mc2
)

(

v2

c2

)

=
1

2

(

mc2
)

β2 .

(a) If Kclassical = 10.0 MeV, then

β =

√

2Kclassical

mc2
=

√

2(10.0 MeV)

0.511 MeV
= 6.256 ,

which, of course, is impossible (see the Ultimate Speed subsection of §38-2). If we use this value
anyway, then the classical orbital radius formula yields

r =
mv

|q|B =
mβc

eB

=

(

9.11× 10−31 kg
)

(6.256)
(

2.998× 108 m/s
)

(1.6× 10−19 C) (2.20 T)

= 4.85× 10−3 m .

If, however, we use the correct value for β (calculated in the next part) then the classical radius
formula would give about 0.77 mm.
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(b) Before using the relativistically correct orbital radius formula, we must compute β in a relativisti-
cally correct way:

K = mc2 (γ − 1) =⇒ γ =
10.0 MeV

0.511 MeV
+ 1 = 20.57

which implies (from Eq. 38-8)

β =

√

1− 1

γ2
= 0.99882 .

Therefore,

r =
γmv

|q|B =
γmβc

eB

=
(20.57)

(

9.11× 10−31 kg
)

(0.99882)
(

2.998× 108 m/s
)

(1.6× 10−19 C) (2.20 T)

= 1.59× 10−2 m .

(c) The period is

T =
2πr

βc
=

2π(0.0159 m)

(0.99882) (2.998× 108 m/s)
= 3.34× 10−10 s .

Whereas the purely classical result gives a period which is independent of speed, this is no longer
true in the relativistic case (due to the γ factor in the equation).

47. The radius r of the path is given in problem 46 as r = γmvqB. Thus,

m =
qBr

√

1− β2

v

=
2(1.60× 10−19 C)(1.00 T)(6.28 m)

√

1− (0.710)2

(0.710)(3.00× 108 m/s)

= 6.64× 10−27 kg .

Since 1.00 u = 1.66×10−27 kg, the mass is m = 4.00 u. The nuclear particle contains four nucleons. Since
there must be two protons to provide the charge 2e, the nuclear particle is a helium nucleus (usually
referred to as an alpha particle) with two protons and two neutrons.

48. We interpret the given 10 GeV = 10000 MeV to be the kinetic energy of the proton. Using Table 38-3
and Eq. 38-49, we find

γ =
K

mpc2
+ 1 =

10000 MeV

938 MeV
+ 1 = 11.66 ,

and (from Eq. 38-8)

β =

√

1− 1

γ2
= 0.9963 .

Therefore, using the equation introduced in problem 46, we obtain

r =
γmv

qB
=
γmpβc

eB

=
(11.66)

(

1.67× 10−27 kg
)

(0.9963)
(

2.998× 108 m/s
)

(1.6× 10−19 C) (55× 10−6 T)

= 6.6× 105 m .

49. We interpret the given 2.50 MeV = 2500 keV to be the kinetic energy of the electron. Using Table 38-3
and Eq. 38-49, we find

γ =
K

mec2
+ 1 =

2500 keV

511 keV
+ 1 = 5.892 ,
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and (from Eq. 38-8)

β =

√

1− 1

γ2
= 0.9855 .

Therefore, using the equation introduced in problem 46 (with “q” interpreted as |q|), we obtain

B =
γ me v

|q| r =
γmeβc

er

=
(5.892)

(

9.11× 10−31 kg
)

(0.9855)
(

2.998× 108 m/s
)

(1.6× 10−19 C) (0.030 m)

= 0.33 T .

50. (a) Using Table 38-3 and Eq. 38-49 (or, to be more precise, the value given at the end of the problem
statement), we find

γ =
K

mpc2
+ 1 =

500× 103 MeV

938.3 MeV
+ 1 = 533.88 .

(b) From Eq. 38-8, we obtain

β =

√

1− 1

γ2
= 0.99999825 .

The discussion in Sample Problem 38-7 dealing with large γ values may prove helpful for those
whose calculators do not yield this answer.

(c) To make use of the precisempc
2 value given here, we rewrite the expression introduced in problem 46

(as applied to the proton) as follows:

r =
γmv

qB
=
γ
(

mc2
) (

v
c2

)

eB
=
γ
(

mc2
)

β

ecB
.

Therefore, the magnitude of the magnetic field is

B =
γ
(

mc2
)

β

ecr

=
(533.88)(938.3 MeV)(0.99999825)

ec(750 m)

=
667.92× 106 V/m

c

where we note the cancellation of the “e” in MeV with the e in the denominator. After substituting
c = 2.998× 108 m/s, we obtain B = 2.23 T.

51. (a) Before looking at our solution to part (a) (which uses momentum conservation), it might be ad-
visable to look at our solution (and accompanying remarks) for part (b) (where a very different
approach is used). Since momentum is a vector, its conservation involves two equations (along the
original direction of alpha particle motion, the x direction, as well as along the final proton direction
of motion, the y direction). The problem states that all speeds are much less than the speed of light,
which allows us to use the classical formulas for kinetic energy and momentum (K = 1

2mv
2 and

~p = m~v, respectively). Along the x and y axes, momentum conservation gives (for the components
of ~voxy ):

mαvα = moxyvoxy,x =⇒ voxy,x =
mα

moxy
vα ≈

4

17
vα

0 = moxyvoxy,y +mpvp =⇒ voxy,y = − mp

moxy
vp ≈ −

1

17
vp .
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To complete these determinations, we need values (inferred from the kinetic energies given in the
problem) for the initial speed of the alpha particle (vα) and the final speed of the proton (vp). One
way to do this is to rewrite the classical kinetic energy expression as K = 1

2 (mc2)β2 and solve for
β (using Table 38-3 and/or Eq. 38-43). Thus, for the proton, we obtain

βp =

√

2Kp

mpc2
=

√

2(4.44 MeV)

938 MeV
= 0.0973 .

This is almost 10% the speed of light, so one might worry that the relativistic expression (Eq. 38-49)
should be used. If one does so, one finds βp = 0.969, which is reasonably close to our previous result
based on the classical formula. For the alpha particle, we write mαc

2 = (4.0026 u)(931.5 MeV/u) =
3728 MeV (which is actually an overestimate due to the use of the “atomic mass” value in our
calculation, but this does not cause significant error in our result), and obtain

βα =

√

2Kα

mαc2
=

√

2(7.70 MeV)

3728 MeV
= 0.064 .

Returning to our oxygen nucleus velocity components, we are now able to conclude:

voxy,x ≈
4

17
vα =⇒ βoxy,x ≈

4

17
βα =

4

17
(0.064) = 0.015

|voxy,y| ≈
1

17
vp =⇒ βoxy,y ≈

1

17
βp =

1

17
(0.097) = 0.0057

Consequently, with moxyc
2 ≈ (17 u)(931.5 MeV/u) = 1.58× 104 MeV, we obtain

Koxy =
1

2

(

moxyc
2
) (

β2
oxy,x + β2

oxy,y

)

=
1

2

(

1.58× 104 MeV
) (

0.0152 + 0.00572
)

≈ 2.0 MeV .

(b) Using Eq. 38-47 and Eq. 38-43,

Q = −(1.007825 u + 16.99914 u− 4.00260 u− 14.00307 u)c2 = −(0.001295 u)(931.5 MeV/u)

which yields Q = −1.206 MeV. Incidentally, this provides an alternate way to obtain the answer
(and a more accurate one at that!) to part (a). Eq. 38-46 leads to

Koxy = Kα +Q−Kp = 7.70 MeV− 1.206 MeV− 4.44 MeV = 2.05 MeV .

This approach to finding Koxy avoids the many computational steps and approximations made in
part (a).

52. (a) From the length contraction equation, the length L′
c of the car according to Garageman is

L′
c =

Lc

γ
= Lc

√

1− β2 = (30.5 m)
√

1− (0.9980)2 = 1.93 m .

(b) Since the xg axis is fixed to the garage xg2 = Lg = 6.00 m. As for tg2, note from Fig. 38-21(b) that,
at tg = tg1 = 0 the coordinate of the front bumper of the limo in the xg frame is L′

c, meaning that
the front of the limo is still a distance Lg − L′

c from the back door of the garage. Since the limo
travels at a speed v, the time it takes for the front of the limo to reach the back door of the garage
is given by

∆tg = tg2 − tg1 =
Lg − L′

c

v
=

6.00 m− 1.93 m

0.9980(2.998× 108 m/s)
= 1.36× 10−8 s .

Thus tg2 = tg1 + ∆tg = 0 + 1.36× 10−8 s = 1.36× 10−8 s.
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(c) The limo is inside the garage between times tg1 and tg2, so the time duration is tg2 − tg1 =
1.36× 10−8 s.

(d) Again from Eq. 38-13, the length L′
g of the garage according to Carman is

L′
g =

Lg

γ
= Lg

√

1− β2 = (6.00 m)
√

1− (0.9980)2 = 0.379 m .

(e) Again, since the xc axis is fixed to the limo xc2 = Lc = 30.5 m. Now, from the two diagrams
described in part (h) below, we know that at tc = tc2 (when event 2 takes place), the distance
between the rear bumper of the limo and the back door of the garage is given by Lc − L′

g . Since
the garage travels at a speed v, the front door of the garage will reach the rear bumper of the limo
a time ∆tc later, where ∆tc satisfies

∆tc = tc1 − tc2 =
Lc − L′

g

v
=

30.5 m− 0.379 m

0.9980(2.998× 108 m/s)
= 1.01× 10−7 s .

Thus tc2 = tc1 −∆tc = 0− 1.01× 10−7 s = −1.01× 10−7 s.

(f) From Carman’s point of view, the answer is clearly no.

(g) Event 2 occurs first according to Carman, since tc2 < tc1.

(h) We describe the essential features of the two pictures. For event 2, the front of the limo coincides
with the back door, and the garage itself seems very short (perhaps failing to reach as far as the
front window of the limo). For event 1, the rear of the car coincides with the front door and the
front of the limo has traveled a significant distance beyond the back door. In this picture, as in the
other, the garage seems very short compared to the limo.

(i) Both Carman and Garageman are correct in their respective reference frames. But, in a sense,
Carman should lose the bet since he dropped his physics course before reaching the Theory of
Special Relativity!

53. (a) The spatial separation between the two bursts is vt. We project this length onto the direction
perpendicular to the light rays headed to Earth and obtain Dapp = vt sin θ.

(b) Burst 1 is emitted a time t ahead of burst 2. Also, burst 1 has to travel an extra distance L
more than burst 2 before reaching the Earth, where L = vt cos θ (see Fig. 38-22); this requires an
additional time t′ = L/c. Thus, the apparent time is given by

Tapp = t− t′ = t− vt cos θ

c
= t

[

1−
(v

c

)

cos θ

]

.

(c) We obtain

Vapp =
Dapp

Tapp
=

[

(v/c) sin θ

1− (v/c) cos θ

]

c =

[

(0.980) sin 30.0◦

1− (0.980) cos 30.0◦

]

c = 3.24 c .

54. (a) The strategy is to find the γ factor from E = 14.24 × 10−9 J and mpc
2 = 1.5033 × 10−10 J and

from that find the contracted length. From the energy relation (Eq. 38-45), we obtain

γ =
E

mc2
= 94.73 .

Consequently, Eq. 38-13 yields

L =
L0

γ
= 0.222 cm = 2.22× 10−3 m .
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(b) and (c) From the γ factor, we find the speed:

v = c

√

1−
(

1

γ

)2

= 0.99994c .

Therefore, the trip (according to the proton) took ∆t0 = 2.22 × 10−3/0.99994c = 7.40 × 10−12 s.
Finally, the time dilation formula (Eq. 38-7) leads to

∆t = γ∆t0 = 7.01× 10−10 s

which can be checked using ∆t = L0/v in our frame of reference.

55. Since it has two protons, its kinetic energy is 600 MeV. With the given value mc2 = 3727 MeV, we use
Eq. 38-37:

pc =
√

K2 + 2Kmc2 =
√

6002 + 2(600)(3727)

which yields p = 2198 MeV/c.

56. For the purposes of using Eq. 38-28, we choose our frame to be the primed frame and note that, as a
consequence, v = −0.800c ı̂ for the velocity of us relative to Bullwinkle.

u =
u′ + v

1 + u′v/c2
=

0.990ĉı− 0.800ĉı

1− (0.990)(0.800)
= 0.913c ı̂ .

57. (a) We compute

γ =
1

√

1− (0.9990)2
= 22.4

Now, the length contraction formula (Eq. 38-13) yields

L =
2.50 m

γ
= 0.112 m .

(b) (c) and (d) We assume our spacetime coordinate origins coincide and use the Lorentz transforma-
tions (Eq. 38-20, but with primes and non-primes swapped, and v → −v). Lengths are in meters
and time is in nanoseconds (so that c = 0.2998 in these units).

xα = γ (4.0 + (0.9990c)(40)) = 357

tα = γ
(

40 + (0.9990c)(4.0)/c2
)

= 1193

xβ = γ (−4.0 + (0.9990c)(80)) = 446

tβ = γ
(

80 + (0.9990c)(−4.0)/c2
)

= 1491

Thus, our reckoning of the distance between events is xβ − xα = 89.0 m. We note that event alpha
took place first (smallest value of t) and that the time-separation is tα − tβ = 298 ns.

58. Using Eq. 38-10,

v =
d

t
=

6.0 ly

2.0 y + 6.0 y
=

(6.0c)(1.0 y)

2.0 y + 6.0 y
= 0.75c.

59. To illustrate the technique, we derive Eq. 1′ from Eqs. 1 and 2 (in Table 38-2). We multiply Eq. 2 by
speed v and subtract it from Eq. 1:

∆x− v∆t = γ (∆x′ + v∆t′)− vγ
(

∆t′ +
v∆x′

c2

)

= γ∆x′
(

1− v2

c2

)

We note that γ
(

1− v2/c2
)

= 1/γ (using Eq. 38-8), so that if we multiply the above equation by γ we
obtain Eq. 1′:

γ (∆x− v∆t) = γ

(

γ∆x′
(

1− v2

c2

))

= ∆x′
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60. (a) vr = 2v = 2(27000 km/h) = 54000 km/h.

(b) We can express c in these units by multiplying by 3.6: c = 1.08× 109 km/h. The correct formula
for vr is vr = 2v/(1 + v2/c2), so the fractional error is

1− 1

1 + v2/c2
= 1− 1

1 + [(27000 km/h)/(1.08× 109 km/h)]2
= 6.3× 10−10 .

The discussion in Sample Problem 38-7 dealing with numerical considerations may prove helpful
for those whose calculators do not yield this answer.

61. (a) We assume the electron starts from rest. The classical formula for kinetic energy is Eq. 38-48, so
if v = c then this (for an electron) would be 1

2mc
2 = 1

2 (511 keV) = 255.5 keV (using Table 38-3).
Setting this equal to the potential energy loss (which is responsible for its acceleration), we find
(using Eq. 25-7)

V =
255.5 keV

|q| =
255 keV

e
= 255.5 kV .

(b) Setting this amount of potential energy loss (|∆U | = 255.5 keV) equal to the correct relativistic
kinetic energy, we obtain (using Eq. 38-49)

mc2

(

1
√

1− (v/c)2
− 1

)

= |∆U | =⇒ v = c

√

1 +

(

1

1−∆U/mc2

)2

which yields v = 0.745c = 2.23× 108 m/s.

62. (a) ∆E = ∆mc2 = (3.0 kg)(0.0010)(2.998× 108 m/s)2 = 2.7× 1014 J.

(b) The mass of TNT is

mTNT =
(2.7× 1014 J)(0.227 kg/mol)

3.4× 106 J
= 1.8× 107 kg .

(c) The fraction of mass converted in the TNT case is

∆mTNT

mTNT
=

(3.0 kg)(0.0010)

1.8× 107 kg
= 1.6× 10−9 ,

Therefore, the fraction is 0.0010/1.6× 10−9 = 6.0× 106.

63. (a) Eq. 38-33 yields

v =
∆λ

λ
c =

(

462− 434

434

)

c = 0.065c

or v = 1.93× 107 m/s.

(b) Since it is shifted “towards the red” (towards longer wavelengths) then the galaxy is moving away
from us (receding).

64. When β = 0.9860, we have γ = 5.9972, and when β = 0.9850, we have γ = 5.7953. Thus, ∆γ = 0.202
and the change in kinetic energy (equal to the work) becomes (using Eq. 38-49)

W = ∆K = mc2∆γ = 189 MeV

where mc2 = 938 MeV has been used (see Table 38-3).
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65. Using mp = 1.672623× 10−27 kg in Eq. 38-45 yields

γ =
E

mpc2
=

14.242× 10−9 J

1.50328× 10−10 J
= 94.740 .

Solving for the speed , we obtain

v = c

√

1−
(

1

γ

)2

= 0.99994c .

66. (a) According to ship observers, the duration of proton flight is ∆t′ = (760 m)/0.980c = 2.59 µs
(assuming it travels the entire length of the ship).

(b) To transform to our point of view, we use Eq. 2 in Table 38-2. Thus, with ∆x′ = −750 m, we have

∆t = γ
(

∆t′ + (0.950c)∆x′/c2
)

= 0.57 µs .

(c) and (d) For the ship observers, firing the proton from back to front makes no difference, and
∆t′ = 2.59 µs as before. For us, the fact that now ∆x′ = +750 m is a significant change.

∆t = γ
(

∆t′ + (0.950c)∆x′/c2
)

= 16.0 µs .

67. (a) Our lab-based measurement of its lifetime is figured simply from t = L/v = 7.99× 10−13 s. Use of
the time-dilation relation (Eq. 38-7) leads to

∆t0 =
(

7.99× 10−13 s
)
√

1− (0.960)2 = 2.24× 10−13 s .

(b) The length contraction formula can be used, or we can use the simple speed-distance relation (from
the point of view of the particle, who watches the lab and all its meter sticks rushing past him at
0.960c until he expires): L = v∆t0 = 6.44× 10−5 m.

68. Using Appendix C, we find that the contraction is

|∆L| = L0 − L = L0

(

1− 1

γ

)

= L0(1−
√

1− β2)

= 2(6.370× 106 m)



1−
√

1−
(

3.0× 104 m/s

2.998× 108 m/s

)2




= 0.064 m .

The discussion in Sample Problem 38-7 dealing with numerical considerations may prove helpful for
those whose calculators do not yield this answer.

69. The speed of the spaceship after the first increment is v1 = 0.5c. After the second one, it becomes

v2 =
v′ + v1

1 + v′v1/c2
=

0.50c+ 0.50c

1 + (0.50c)2/c2
= 0.80c ,

and after the third one, the speed is

v3 =
v′ + v2

1 + v′v2/c2
=

0.50c+ 0.50c

1 + (0.50c)(0.80c)/c2
= 0.929c .

Continuing with this process, we get v4 = 0.976c, v5 = 0.992c, v6 = 0.997c and v7 = 0.999c. Thus, seven
increments are needed.
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70. We use the transverse Doppler shift formula, Eq. 38-34: f = f0
√

1− β2 , or

1

λ
=

1

λ0

√

1− β2 .

We solve for λ− λ0:

λ− λ0 = λ0

(

1
√

1− β2
− 1

)

= (589.00 mm)

[

1
√

1− (0.100)2
− 1

]

= +2.97 nm .

71. The mean lifetime of a pion measured by observers on the Earth is ∆t = γ∆t0, so the distance it can
travel (using Eq. 38-12) is

d = v∆t = γv∆t0 =
(0.99)(2.998× 108 m/s)(26× 10−9 s)

√

1− (0.99)2
= 55 m .

72. (a) For a proton (using Table 38-3), our results are:

E = γmpc
2 =

938 MeV
√

1− (0.990)2
= 6.65 GeV

K = E −mpc
2 = 6.65 GeV− 938 MeV = 5.71 GeV

p = γmpv = γ(mpc
2 )β/c =

(938 MeV)(0.990)/c
√

1− (0.990)2
= 6.59 GeV/c

(b) For an electron:

E = γmec
2 =

0.511 MeV
√

1− (0.990)2
= 3.62 MeV

K = E −mec
2 = 3.625 MeV− 0.511 MeV = 3.11 MeV

p = γmev = γ(mec
2 )β/c =

(0.511 MeV)(0.990)/c
√

1− (0.990)2
= 3.59 MeV/c

73. The strategy is to find the speed from E = 1533 MeV and mc2 = 0.511 MeV (see Table 38-3) and from
that find the time. From the energy relation (Eq. 38-45), we obtain

v = c

√

1−
(

mc2

E

)2

= 0.99999994c ≈ c

so that we conclude it took the electron 26 y to reach us. In order to transform to its own “clock” it’s
useful to compute γ directly from Eq. 38-45:

γ =
E

mc2
= 3000

though if one is careful one can also get this result from γ = 1/
√

1− (v/c)2 . Then, Eq. 38-7 leads to

∆t0 =
26 y

γ
= 0.0087 y

so that the electron “concludes” the distance he traveled is 0.0087 light-years (stated differently, the
Earth, which is rushing towards him at very nearly the speed of light, seemed to start its journey from
a distance of 0.0087 light-years away).



953

74. (a) Using Eq. 38-7, we expect the dilated time intervals to be

τ = γτ0 =
τ0

√

1− (v/c)2
.

(b) We rewrite Eq. 38-30 using the fact that period is the reciprocal of frequency (fR = τ−1
R and

f0 = τ−1
0 ):

τR =
1

fR
=

(

f0

√

1− β
1 + β

)−1

= τ0

√

1 + β

1− β = τ0

√

c+ v

c− v .

(c) The Doppler shift combines two physical effects: the time dilation of the moving source and the
travel-time differences involved in periodic emission (like a sine wave or a series of pulses) from a
traveling source to a “stationary” receiver). To isolate the purely time-dilation effect, it’s useful to
consider “local” measurements (say, comparing the readings on a moving clock to those of two of
your clocks, spaced some distance apart, such that the moving clock and each of your clocks can
make a close-comparison of readings at the moment of passage).

75. We use the relative velocity formula (Eq. 38-28) with the primed measurements being those of the scout
ship. We note that v = −0.900c since the velocity of the scout ship relative to the cruiser is opposite to
that of the cruiser relative to the scout ship.

u =
u′ + v

1 + u′v/c2
=

0.980c− 0.900c

1− (0.980)(0.900)
= 0.678c .

76. We solve the time dilation equation for the time elapsed (as measured by Earth observers):

∆t =
∆t0

√

1− (0.9990)2

where ∆t0 = 120 y. This yields ∆t = 2684 y.

77. (a) The relative contraction is

|∆L|
L0

=
L0(1− γ−1)

L0
= 1−

√

1− β2

≈ 1−
(

1− 1

2
β2

)

=
1

2
β2

=
1

2

(

630 m/s

3.00× 108 m/s

)2

= 2.21× 10−12 .

(b) Letting |∆t−∆t0| = ∆t0(γ − 1) = τ = 1.00µs, we solve for ∆t0:

∆t0 =
τ

γ − 1
=

τ

(1− β2)−1/2 − 1
≈ τ

1 + 1
2β

2 − 1
=

2τ

β2

=
2(1.00× 10−6 s)(1 d/86400 s)

[(630 m/s)/(2.998× 108 m/s)]2

= 5.25 d .

78. Let the reference frame be S in which the particle (approaching the South Pole) is at rest, and let the
frame that is fixed on Earth be S′. Then v = 0.60c and u′ = 0.80c (calling “downwards” [in the sense of
Fig. 38-31] positive). The relative speed is now the speed of the other particle as measured in S:

u =
u′ + v

1 + u′v/c2
=

0.80c+ 0.60c

1 + (0.80c)(0.60c)/c2
= 0.95c .
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79. We refer to the particle in the first sentence of the problem statement as particle 2. Since the total
momentum of the two particles is zero in S′, it must be that the velocities of these two particles are
equal in magnitude and opposite in direction in S′. Letting the velocity of the S′ frame be v relative to
S, then the particle which is at rest in S must have a velocity of u′1 = −v as measured in S′, while the
velocity of the other particle is given by solving Eq. 38-28 for u′:

u′2 =
u2 − v

1− u2v/c2
=

(

c
2

)

− v
1−

(

c
2

) (

v
c2

) .

Letting u′2 = −u′1 = v, we obtain

(

c
2

)

− v
1−

(

c
2

) (

v
c2

) = v =⇒ v = c(2±
√

3) ≈ 0.27c

where the quadratic formula has been used (with the smaller of the two roots chosen so that v ≤ c).

80. From Eq. 28-37, we have

Q = −∆Mc2 = − (3(4.00151 u)− 11.99671 u)c2 = −(0.00782 u)(931.5 MeV/u) = −7.28 MeV .

Thus, it takes a minimum of 7.28 MeV supplied to the system to cause this reaction. We note that the
masses given in this problem are strictly for the nuclei involved; they are not the “atomic” masses which
are quoted in several of the other problems in this chapter.

81. We use Eq. 38-51 with mc2 = 0.511 MeV (see Table 38-3):

pc =
√

K2 + 2Kmc2 =
√

(2.00)2 + 2(2.00)(0.511)

This readily yields p = 2.46 MeV/c.



Chapter 39

1. Eq. 39-3 gives h = 4.14 × 10−15 eV·s, but the metric prefix which stands for 10−15 is femto (f). Thus,
h = 4.14 eV·fs.

2. Let E = 1240 eV·nm/λmin = 0.6 eV to get λ = 2.1× 103 nm = 2.1µm. It is in the infrared region.

3. The energy of a photon is given by E = hf , where h is the Planck constant and f is the frequency.
The wavelength λ is related to the frequency by λf = c, so E = hc/λ. Since h = 6.626× 10−34 J·s and
c = 2.998× 108 m/s,

hc =
(6.626× 10−34 J·s)(2.998× 108 m/s)

(1.602× 10−19 J/eV)(10−9 m/nm)
= 1240 eV·nm .

Thus,

E =
1240 eV·nm

λ
.

4. From the result of problem 3,

E =
hc

λ
=

1240 eV·nm

589 nm
= 2.11 eV .

5. Let R be the rate of photon emission (number of photons emitted per unit time) of the Sun and let
E be the energy of a single photon. Then the power output of the Sun is given by P = RE. Now
E = hf = hc/λ, where h is the Planck constant, f is the frequency of the light emitted, and λ is the
wavelength. Thus P = Rhc/λ and

R =
λP

hc
=

(550 nm)(3.9× 1026 W)

(6.63× 10−34 J·s)(2.998× 108 m/s)
= 1.0× 1045 photons/s .

6. We denote the diameter of the laser beam as d. The cross-sectional area of the beam is A = πd2/4.
From the formula obtained in problem 5, the rate is given by

R

A
=

λP

hc(πd2/4)

=
4(633 nm)(5.0× 10−3 W)

π(6.63× 10−34 J·s)(2.998× 108 m/s)(3.5× 10−3 m)2

= 1.7× 1021 photons

m2 · s .

7. Using the result of problem 3,

E =
hc

λ
=

1240 eV·nm

21× 107 nm
= 5.9× 10−6 eV = 5.9µeV .
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8. Let
1

2
mev

2 = Ephoton =
hc

λ

and solve for v:

v =

√

2hc

λme
=

√

2hc

λmec2
c2 = c

√

2hc

λ(mec2)

= (2.998× 108 m/s)

√

2(1240 eV·nm)

(590 nm)(511× 103 eV)
= 8.6× 105 m/s .

Since v ≪ c, the non-relativistic formula K = 1
2mv

2 may be used. The result of problem 3 and the mec
2

value of Table 38-3 are used in our calculation.

9. Since λ = (1, 650, 763.73)−1 m = 6.0578021× 10−7 m = 605.78021 nm, the energy is (using the result of
problem 3)

E =
hc

λ
=

1240 eV·nm

605.78021 nm
= 2.047 eV .

10. Following Sample Problem 39-1, we have

P =
Rhc

λ
=

(100/s)
(

6.63× 10−34 J·s
) (

2.998× 108 m/s
)

550× 10−9 m
= 3.6× 10−17 W .

11. The total energy emitted by the bulb isE = 0.93Pt, where P = 60 W and t = 730 h = (730 h)(3600 s/h) =
2.628 × 106 s. The energy of each photon emitted is Eph = hc/λ. Therefore, the number of photons
emitted is

N =
E

Eph
=

0.93Pt

hc/λ
=

(0.93)(60 W)(2.628× 106 s)

(6.63× 10−34 J·s) (2.998× 108 m/s) /(630× 10−9 m)
= 4.7× 1026 .

12. The rate at which photons are emitted from the argon laser source is given by R = P/Eph, where
P = 1.5 W is the power of the laser beam and Eph = hc/λ is the energy of each photon of wavelength λ.
Since α = 84% of the energy of the laser beam falls within the central disk, the rate of photon absorption
of the central disk is

R′ = αR =
αP

hc/λ
=

(0.84)(1.5 W)

(6.63× 10−34 J·s) (2.998× 108 m/s) /(515× 10−9 m)

= 3.3× 1018 photons/s .

13. (a) Let R be the rate of photon emission (number of photons emitted per unit time) and let E be
the energy of a single photon. Then, the power output of a lamp is given by P = RE if all the
power goes into photon production. Now, E = hf = hc/λ, where h is the Planck constant, f is the
frequency of the light emitted, and λ is the wavelength. Thus P = Rhc/λ and R = λP/hc. The
lamp emitting light with the longer wavelength (the 700 nm lamp) emits more photons per unit
time. The energy of each photon is less, so it must emit photons at a greater rate.

(b) Let R be the rate of photon production for the 700 nm lamp. Then,

R =
λP

hc
=

(700 nm)(400 J/s)

(1.60× 10−19 J/eV)(1240 eV·nm)
= 1.41× 1021 photon/s .

The result hc = 1240 eV·nm developed in Exercise 3 is used.

14. (a) The rate at which solar energy strikes the panel is

P = (1.39 kW/m
2
)(2.60 m2) = 3.61 kW .
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(b) The rate at which solar photons are absorbed by the panel is

R =
P

Eph
=

3.61× 103 W

(6.63× 10−34 J·s) (2.998× 108 m/s) /(550× 10−9 m)
= 1.00× 1022/s .

(c) The time in question is given by

t =
NA

R
=

6.02× 1023

1.00× 1022/s
= 60.2 s .

15. (a) We assume all the power results in photon production at the wavelength λ = 589 nm. Let R be the
rate of photon production and E be the energy of a single photon. Then, P = RE = Rhc/λ, where
E = hf and f = c/λ are used. Here h is the Planck constant, f is the frequency of the emitted
light, and λ is its wavelength. Thus,

R =
λP

hc
=

(589× 10−9 m)(100 W)

(6.63× 10−34 J·s)(3.00× 108 m/s)
= 2.96× 1020 photon/s .

(b) Let I be the photon flux a distance r from the source. Since photons are emitted uniformly in all
directions, R = 4πr2I and

r =

√

R

4πI
=

√

2.96× 1020 photon/s

4π(1.00× 104 photon/m
2 · s)

= 4.85× 107 m .

(c) The photon flux is

I =
R

4πr2
=

2.96× 1020 photon/s

4π(2.00 m)2
= 5.89× 1018 photon

m2 · s .

16. (a) Since Eph = h/λ = 1240 eV · nm/680 nm = 1.82 eV < Φ = 2.28 eV, there is no photoelectric
emission. The result of problem 3 is used in our calculation.

(b) The cutoff wavelength is the longest wavelength of photons which will cause photoelectric emission.
In sodium, this is given by Eph = hc/λmax = Φ, or λmax = hc/Φ = (1240 eV·nm)/2.28 eV = 544 nm.
This corresponds to the color green.

17. The energy of the most energetic photon in the visible light range (with wavelength of about 400 nm) is
about E = (1240 eV·nm/400 nm) = 3.1 eV (using the result of problem 3). Consequently, barium and
lithium can be used, since their work functions are both lower than 3.1 eV.

18. (a) For λ = 565 nm

hf =
hc

λ
=

1240 eV·nm

565 nm
= 2.20 eV .

Since Φpotassium > hf > Φcesium, the photoelectric effect can occur in cesium but not in potassium
at this wavelength. The result of problem 3 is used in our calculation.

(b) Now λ = 518 nm so

hf =
hc

λ
=

1240 eV·nm

518 m
= 2.40 eV .

This is greater than both Φcesium and Φpotassium, so the photoelectric effect can now occur for both
metals.

19. The energy of an incident photon is E = hf = hc/λ, where h is the Planck constant, f is the frequency of
the electromagnetic radiation, and λ is its wavelength. The kinetic energy of the most energetic electron
emitted is Km = E −Φ = (hc/λ)−Φ, where Φ is the work function for sodium. The stopping potential
V0 is related to the maximum kinetic energy by eV0 = Km, so eV0 = (hc/λ)− Φ and

λ =
hc

eV0 + Φ
=

1240 eV · nm

5.0 eV + 2.2 eV
= 170 nm .

Here eV0 = 5.0 eV and hc = 1240 eV·nm are used. See problem 3.
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20. We use Eq. 39-5 to find the maximum kinetic energy of the ejected electrons:

Kmax = hf − Φ = (4.14× 10−15 eV·s)(3.0× 1015 Hz)− 2.3 eV = 10 eV .

21. The speed v of the electron satisfies Kmax = 1
2mev

2 = 1
2 (mec

2)(v/c)2 = Ephoton − Φ. Using Table 38-3,
we find

v = c

√

2(Ephoton − Φ)

mec2
= (2.998× 108 m/s)

√

2(5.80 eV− 4.50 eV)

511× 103 eV
= 6.76× 105 m/s .

22. (a) We use Eq. 39-6:

Vstop =
hf − Φ

e
=
hc/λ− Φ

e
=

(1240 eV·nm/400 nm)− 1.8 eV

e
= 1.3 V .

(b) We use the formula obtained in the solution of problem 21:

v =

√

2(Ephoton − Φ)

me
=

√

2eVstop

me
= c

√

2eVstop

mec2

= (2.998× 108 m/s)

√

2e(1.3 V)

511× 103 eV

= 6.8× 105 m/s .

23. (a) The kinetic energy Km of the fastest electron emitted is given by Km = hf − Φ = (hc/λ) − Φ,
where Φ is the work function of aluminum, f is the frequency of the incident radiation, and λ is its
wavelength. The relationship f = c/λ was used to obtain the second form. Thus,

Km =
1240 eV · nm

200 nm
− 4.20 eV = 2.00 eV

where the result of Exercise 3 is used.

(b) The slowest electron just breaks free of the surface and so has zero kinetic energy.

(c) The stopping potential V0 is given by Km = eV0, so V0 = Km/e = (2.00 eV)/e = 2.00 V.

(d) The value of the cutoff wavelength is such that Km = 0. Thus hc/λ = Φ or λ = hc/Φ =
(1240 eV·nm)/(4.2 eV) = 295 nm. If the wavelength is longer, the photon energy is less and a
photon does not have sufficient energy to knock even the most energetic electron out of the alu-
minum sample.

24. We use Eq. 39-6 and the result of problem 3:

Kmax = Ephoton − Φ =
hc

λ
− hc

λmax
=

1240 eV·nm

254 nm
− 1240 eV·nm

325 nm
= 1.07 eV .

25. To find the longest possible wavelength λmax (corresponding to the lowest possible energy) of a photon
which can produce a photoelectric effect in platinum, we set Kmax = 0 in Eq. 39-5 and use hf = hc/λ.
Thus hc/λmax = Φ. We solve for λmax:

λmax =
hc

Φ
=

1240 eV·nm

5.32 eV
= 233 nm .

26. (a) For the first and second case (labeled 1 and 2) we have eV01 = hc/λ1 − Φ and eV02 = hc/λ2 − Φ,
from which h and Φ can be determined. Thus,

h =
e(V1 − V2)

c(λ−1
1 − λ−1

2 )
=

1.85 eV− 0.820 eV

(3.00× 1017 nm/s)[(300 nm)−1 − (400 nm)−1]

= 4.12× 10−15 eV·s .
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(b) The work function is

Φ =
3(V2λ2 − V1λ1)

λ1 − λ2
=

(0.820 eV)(400 nm)− (1.85 eV)(300 nm)

300 nm− 400 nm
= 2.27 eV .

(c) Let Φ = hc/λmax to obtain

λmax =
hc

Φ
=

1240 eV·nm

2.27 eV
= 545 nm .

27. (a) We use the photoelectric effect equation (Eq. 39-5) in the form hc/λ = Φ+Km. The work function
depends only on the material and the condition of the surface, and not on the wavelength of the
incident light. Let λ1 be the first wavelength described and λ2 be the second. Let Km1 = 0.710 eV
be the maximum kinetic energy of electrons ejected by light with the first wavelength, and Km2 =
1.43 eV be the maximum kinetic energy of electrons ejected by light with the second wavelength.
Then,

hc

λ1
= Φ +Km1 and

hc

λ2
= Φ +Km2 .

The first equation yields Φ = (hc/λ1)−Km1. When this is used to substitute for Φ in the second
equation, the result is (hc/λ2) = (hc/λ1)−Km1 +Km2. The solution for λ2 is

λ2 =
hcλ1

hc+ λ1(Km2 −Km1)

=
(1240 eV·nm)(491 nm)

1240 eV·nm + (491 nm)(1.43 eV− 0.710 eV)

= 382 nm .

Here hc = 1240 eV·nm, calculated in Exercise 3, is used.

(b) The first equation displayed above yields

Φ =
hc

λ1
−Km1 =

1240 eV·nm

491 nm
− 0.710 eV = 1.82 eV .

28. (a) We calculate frequencies from the wavelengths (expressed in SI units) using Eq. 39-1. Our plot of
the points and the line which gives the least squares fit to the data is shown below. The vertical
axis is in volts and the horizontal axis, when multiplied by 1014, gives the frequencies in Hertz.
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From our least squares fit procedure, we determine the slope to be 4.14 × 10−15 V·s, which is in
very good agreement with the value given in Eq. 39-3 (once it has been multiplied by e).

(b) Our least squares fit procedure can also determine the y-intercept for that line. The y-intercept is
the negative of the photoelectric work function. In this way, we find Φ = 2.31 eV.

29. Using the result of problem 3, the number of photons emitted from the laser per unit time is

R =
P

Eph
=

2.00× 10−3 W

(1240 eV·nm/600 nm)(1.60× 10−19 J/eV)
= 6.05× 1015/s ,

of which (1.0× 10−16)(6.05× 1015/s) = 0.605/s actually cause photoelectric emissions. Thus the current
is i = (0.605/s)(1.60× 10−19 C) = 9.68× 10−20 A.

30. (a) Find the speed v of the electron from r = mev/eB: v = rBe/me. Thus

Kmax =
1

2
mev

2 =
1

2
me

(

rBe

me

)2

=
(rB)2e2

2me

=
(1.88× 10−4 T·m)2(1.60× 10−19 C)2

2(9.11× 10−31 kg)(1.60× 10−19 J/eV)

= 3.10 keV .

(b) Using the result of problem 3, the work done is

W = Ephoton −Kmax =
1240 eV·nm

71× 10−3 nm
− 3.10 keV = 14 keV .

31. (a) When a photon scatters from an electron initially at rest, the change in wavelength is given by
∆λ = (h/mc)(1 − cosφ), where m is the mass of an electron and φ is the scattering angle. Now,
h/mc = 2.43×10−12 m = 2.43 pm, so ∆λ = (2.43 pm)(1−cos 30◦) = 0.326 pm. The final wavelength
is λ′ = λ+ ∆λ = 2.4 pm + 0.326 pm = 2.73 pm.

(b) Now, ∆λ = (2.43 pm)(1− cos 120◦) = 3.645 pm and λ′ = 2.4 pm + 3.645 pm = 6.05 pm.

32. (a) The rest energy of an electron is given by E = mec
2. Thus the momentum of the photon in question

is given by

p =
E

c
=
mec

2

c
= mec

= (9.11× 10−31 kg)(2.998× 108 m/s)

= 2.73× 10−22 kg·m/s .

We may also express the momentum in terms of MeV/c: p = mec
2/c = 0.511 MeV/c.

(b) From Eq. 39-7,

λ =
h

p
=

6.63× 10−34 J·s
2.73× 10−22 kg·m/s = 2.43× 10−12 m = 2.43 pm .

(c) Using Eq. 39-1,

f =
c

λ
=

2.998× 108 m/s

2.43× 10−12 m
= 1.24× 1020 Hz .

33. (a) The x-ray frequency is

f =
c

λ
=

2.998× 108 m/s

35.0× 10−12 m
= 8.57× 1018 Hz .
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(b) The x-ray photon energy is

E = hf = (4.14× 10−15 eV·s)(8.57× 1018 Hz) = 3.55× 104 eV .

(c) From Eq. 39-7,

p =
h

λ
=

6.63× 10−34 J·s
35.0× 10−12 m

= 1.89× 10−23 kg·m/s .

34. (a) Eq. 39-11 yields

∆λ =
h

mec
(1 − cosφ) = (2.43 pm)(1 − cos 180◦) = +4.86 pm .

(b) Using the result of problem 3, the change in photon energy is

∆E =
hc

λ′
− hc

λ
= (1240 eV·nm)

(

1

0.01 nm + 4.86 pm
− 1

0.01 nm

)

= −41 keV .

(c) From conservation of energy, ∆K = −∆E = 41 keV.

(d) The electron will move straight ahead after the collision, since it has acquired some of the forward
linear momentum from the photon.

35. With no loss of generality, we assume the electron is initially at rest (which simply means we are analyzing
the collision from its initial rest frame). If the photon gave all its momentum and energy to the (free)
electron, then the momentum and the kinetic energy of the electron would become

p =
hf

c
and K = hf ,

respectively. Plugging these expressions into Eq. 38-51 (with m referring to the mass of the electron)
leads to

(pc)2 = K2 + 2Kmc2

(hf)2 = (hf)2 + 2hfmc2

which is clearly impossible, since the last term (2hfmc2) is not zero. We have shown that considering
total momentum and energy absorption of a photon by a free electron leads to an inconsistency in the
mathematics, and thus cannot be expected to happen in nature.

36. (a) Using the result of problem 3, we find

λ =
hc

E
=

1240 nm·eV
0.511 MeV

= 2.43× 10−3 nm = 2.43 pm .

(b) Now, Eq. 39-11 leads to

λ′ = λ+ ∆λ = λ+
h

mec
(1− cosφ)

= 2.43 pm + (2.43 pm)(1− cos 90.0◦) = 4.86 pm .

(c) The scattered photons have energy equal to

E′ = E

(

λ

λ′

)

= (0.511 MeV)

(

2.43 pm

4.86 pm

)

= 0.255 MeV .
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37. (a) Since the mass of an electron is m = 9.109× 10−31 kg, its Compton wavelength is

λC =
h

mc
=

6.626× 10−34 J·s
(9.109× 10−31 kg)(2.998× 108 m/s)

= 2.426× 10−12 m = 2.43 pm .

(b) Since the mass of a proton is m = 1.673× 10−27 kg, its Compton wavelength is

λC =
6.626× 10−34 J·s

(1.673× 10−27 kg)(2.998× 108 m/s)
= 1.321× 10−15 m = 1.32 fm .

(c) We use the formula developed in Exercise 3: E = (1240 eV·nm)/λ, where E is the energy and λ
is the wavelength. Thus for the electron, E = (1240 eV·nm)/(2.426× 10−3 nm) = 5.11× 105 eV =
0.511 MeV.

(d) For the proton, E = (1240 eV·nm)/(1.321× 10−6 nm) = 9.39× 108 eV = 939 MeV.

38. The (1− cosφ) factor in Eq. 39-11 is largest when φ = 180◦. Thus, using Table 38-3, we obtain

∆λmax =
hc

mpc2
(1− cos 180◦) =

1240 MeV·fm
938 MeV

(1 − (−1)) = 2.6 fm

where we have extended the result of problem 3 somewhat by noting that hc = 1240 eV·nm can equiva-
lently be written as 1240 MeV·fm.

39. If E is the original energy of the photon and E′ is the energy after scattering, then the fractional energy
loss is

frac =
E − E′

E
.

Sample Problem 39-4 shows that this is

frac =
∆λ

λ+ ∆λ
.

Thus
∆λ

λ
=

frac

1− frac =
0.75

1− 0.75
= 3 .

A 300% increase in the wavelength leads to a 75% decrease in the energy of the photon.

40. (a) The fractional change is

∆E

E
=

∆(hc/λ)

hc/λ
= λ∆

(

1

λ

)

= λ

(

1

λ′
− 1

λ

)

=
λ

λ′
− 1 =

λ

λ+ ∆λ
− 1

= − 1

λ/∆λ+ 1
= − 1

(λ/λC)(1 − cosφ)−1 + 1
.

If λ = 3.0 cm = 3.0× 1010 pm and φ = 90◦, the result is

∆E

E
= − 1

(3.0× 1010 pm/2.43 pm)(1 − cos 90◦)−1 + 1
= −8.1× 10−11 .

(b) Now λ = 500 nm = 5.00× 105 pm and φ = 90◦, so

∆E

E
= − 1

(5.00× 105 pm/2.43 pm)(1− cos 90◦)−1 + 1
= −4.9× 10−6 .

(c) Withλ = 25 pm and φ = 90◦, we find

∆E

E
= − 1

(25 pm/2.43 pm)(1− cos 90◦)−1 + 1
= −8.9× 10−2 .
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(d) In this case, λ = hc/E = 1240 nm·eV/1.0 MeV = 1.24× 10−3 nm = 1.24 pm, so

∆E

E
= − 1

(1.24 pm/2.43 pm)(1 − cos 90◦)−1 + 1
= −0.66 .

(e) From the calculation above, we see that the shorter the wavelength the greater the fractional
energy change for the photon as a result of the Compton scattering. Since ∆E/E is virtually zero
for microwave and visible light, the Compton effect is significant only in the x-ray to gamma ray
range of the electromagnetic spectrum.

41. The difference between the electron-photon scattering process in this problem and the one studied in
the text (the Compton shift, see Eq. 39-11) is that the electron is in motion relative with speed v to the
laboratory frame. To utilize the result in Eq. 39-11, shift to a new reference frame in which the electron
is at rest before the scattering. Denote the quantities measured in this new frame with a prime (′), and
apply Eq. 39-11 to yield

∆λ′ = λ′ − λ′0 =
h

mec
(1− cosπ) =

2h

mec
,

where we note that φ = π (since the photon is scattered back in the direction of incidence). Now, from
the Doppler shift formula (Eq. 38-25) the frequency f ′

0 of the photon prior to the scattering in the new
reference frame satisfies

f ′
0 =

c

λ′0
= f0

√

1 + β

1− β ,

where β = v/c. Also, as we switch back from the new reference frame to the original one after the
scattering

f = f ′

√

1− β
1 + β

=
c

λ′

√

1− β
1 + β

.

We solve the two Doppler-shift equations above for λ′ and λ′0 and substitute the results into the Compton
shift formula for ∆λ′:

∆λ′ =
1

f

√

1− β
1 + β

− 1

f0

√

1− β
1 + β

=
2h

mec2
.

Some simple algebra then leads to

E = hf = hf0

(

1 +
2h

mec2

√

1 + β

1− β

)−1

.

42. From Sample Problem 39-4, we have

∆E

E
=

∆λ

λ+ ∆λ

=
(h/mc)(1− cosφ)

λ′

=
hf ′

mc2
(1 − cosφ)

where we use the fact that λ+ ∆λ = λ′ = c/f ′.

43. (a) From Eq. 39-11, ∆λ = (h/mec)(1 − cosφ). In this case φ = 180◦ (so cosφ = −1), and the change
in wavelength for the photon is given by ∆λ = 2h/mec. The energy E′ of the scattered photon
(whose initial energy is E = hc/λ) is then

E′ =
hc

λ+ ∆λ
=

E

1 + ∆λ/λ
=

E

1 + (2h/mec)(E/hc)
=

E

1 + 2E/mec2

=
50.0 keV

1 + 2(50.0 keV)/0.511 MeV
= 41.8 keV .
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(b) From conservation of energy the kinetic energy K of the electron is given by K = E − E′ =
50.0 keV− 41.8 keV = 8.2 keV.

44. (a) From Eq. 39-11

∆λ =
h

mec
(1 − cosφ) = (2.43 pm)(1 − cos 90◦) = 2.43 pm .

(b) The fractional shift should be interpreted as ∆λ divided by the original wavelength:

∆λ

λ
=

2.425 pm

590 nm
= 4.11× 10−6 .

(c) The change in energy for a photon with λ = 590 nm is given by

∆Eph = ∆

(

hc

λ

)

≈ −hc∆λ
λ2

= − (4.14× 10−15 eV·s)(2.998× 108 m/s)(2.43 pm)

(590 nm)2

= −8.67× 10−6 eV .

For an x ray photon of energy Eph = 50 keV, ∆λ remains the same (2.43 pm), since it is independent
of Eph. The fractional change in wavelength is now

∆λ

λ
=

∆λ

hc/Eph
=

(50× 103 eV)(2.43 pm)

(4.14× 10−15 eV·s)(2.998× 108 m/s)
= 9.78× 10−2 ,

and the change in photon energy is now

∆Eph = hc

(

1

λ+ ∆λ
− 1

λ

)

= −
(

hc

λ

)

∆λ

λ+ ∆λ
= −Eph

(

α

1 + α

)

where α = ∆λ/λ. We substitute Eph = 50 keV and α = 9.78× 10−2 to obtain ∆Eph = −4.45 keV.
(Note that in this case α ≈ 0.1 is not close enough to zero so the approximation ∆Eph ≈ hc∆λ/λ2

is not as accurate as in the first case, in which α = 4.12 × 10−6. In fact if one were to use this
approximation here, one would get ∆Eph ≈ −4.89 keV, which does not amount to a satisfactory
approximation.)

45. The initial wavelength of the photon is (using the result of problem 3)

λ =
hc

E
=

1240 eV·nm

17500 eV
= 0.07086 nm

or 70.86 pm. The maximum Compton shift occurs for φ = 180◦, in which case Eq. 39-11 (applied to an
electron) yields

∆λ =

(

hc

mec2

)

(1− cos 180◦) =

(

1240 eV·nm

511× 103 eV

)

(1− (−1)) = 0.00485 nm

where Table 38-3 is used. Therefore, the new photon wavelength is λ′ = 0.07086 nm + 0.00485 nm =
0.0757 nm. Consequently, the new photon energy is

E′ =
hc

λ′
=

1240 eV·nm

0.0757 nm
= 1.64× 104 eV = 16.4 keV .

By energy conservation, then, the kinetic energy of the electron must equalE′−E = 17.5 keV−16.4 keV =
1.1 keV.
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46. We rewrite Eq. 39-9 as
h

mλ
− h

mλ′
cosφ =

v
√

1− (v/c)2
cos θ ,

and Eq. 39-10 as
h

mλ′
sinφ =

v
√

1− (v/c)2
sin θ .

We square both equations and add up the two sides:

(

h

m

)2
[

(

1

λ
− 1

λ′
cosφ

)2

+

(

1

λ′
sinφ

)2
]

=
v2

1− (v/c)2
,

where we use sin2 θ + cos2 θ = 1 to eliminate θ. Now the right-hand side can be written as

v2

1− (v/c)2
= −c2

[

1− 1

1− (v/c)2

]

,

so

1

1− (v/c)2
=

(

h

mc

)
2 [
(

1

λ
− 1

λ′
cosφ

)2

+

(

1

λ′
sinφ

)
2]

+ 1 .

Now we rewrite Eq. 39-8 as
h

mc

(

1

λ
− 1

λ′

)

+ 1 =
1

√

1− (v/c)2
.

If we square this, then it can be directly compared with the previous equation we obtained for [1 −
(v/c)2]−1. This yields

[

h

mc

(

1

λ
− 1

λ′

)

+ 1

]2

=

(

h

mc

)2
[

(

1

λ
− 1

λ′
cosφ

)2

+

(

1

λ′
sinφ

)2
]

+ 1 .

We have so far eliminated θ and v. Working out the squares on both sides and noting that sin2 φ+cos2 φ =
1, we get

λ′ − λ = ∆λ =
h

mc
(1− cosφ) .

47. The magnitude of the fractional energy change for the photon is given by

∣

∣

∣

∣

∆Eph

Eph

∣

∣

∣

∣

=

∣

∣

∣

∣

∆(hc/λ)

hc/λ

∣

∣

∣

∣

=

∣

∣

∣

∣

λ∆

(

1

λ

)∣

∣

∣

∣

= λ

(

1

λ
− 1

λ+ ∆λ

)

=
∆λ

λ+ ∆λ
= β

where β = 0.10. Thus ∆λ = λβ/(1 − β). We substitute this expression for ∆λ in Eq. 39-11 and solve
for cosφ:

cosφ = 1− mc

h
∆λ = 1− mcλβ

h(1− β)
= 1− β(mc2)

(1− β)Eph

= 1− (0.10)(511 keV)

(1− 0.10)(200 keV)
= 0.716 .

This leads to an angle of φ = 44◦.

48. Referring to Sample Problem 39-4, we see that the fractional change in photon energy is

E − E′

E
=

∆λ

λ+ ∆λ
=

h/mc(1 − cosφ)

(hc/E) + (h/mc(1− cosφ))
.
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Energy conservation demands that E−E′ = K, the kinetic energy of the electron. In the maximal case,
φ = 180◦, and we find

K

E
=

h/mc(1− cos 180◦)

(hc/E) + (h/mc(1− cos 180◦))
=

h/mc(2)

(hc/E) + (h/mc(2))
.

Multiplying both sides by E and simplifying the fraction on the right-hand side leads to

K = E

(

2/mc

c/E + 2/mc

)

=
E2

mc2/2 + E
.

49. We substitute the classical relationship between momentum p and velocity v, v = p/m into the classical
definition of kinetic energy, K = 1

2mv
2, to obtain K = p2/2m. Here m is the mass of an electron. Thus

p =
√

2mK. The relationship between the momentum and the de Broglie wavelength λ is λ = h/p,
where h is the Planck constant. Thus,

λ =
h√

2mK
.

If K is given in electron volts, then

λ =
6.626× 10−34 J · s

√

2(9.109× 10−31 kg)(1.602× 10−19 J/eV)K
=

1.226× 10−9 m · eV1/2

√
K

=
1.226 nm·eV1/2

√
K

.

50. The de Broglie wavelength for the bullet is

λ =
h

p
=

h

mv
=

6.63× 10−34 J·s
(40× 10−3 kg)(1000 m/s)

= 1.7× 10−35 m .

51. We start with the result of Exercise 49: λ = h/
√

2mK. Replacing K with eV , where V is the accelerating
potential and e is the fundamental charge, we obtain

λ =
h√

2meV
=

6.626× 10−34 J·s
√

2(9.109× 10−31 kg)(1.602× 10−19 C)(25.0× 103 V)

= 7.75× 10−12 m = 7.75 pm .

52. (a) Using Table 38-3 and the result of problem 3, we obtain

λ =
h

p
=

h√
2meK

=
hc√

2mec2K
=

1240 eV·nm
√

2(511000 eV)(1000 eV)
= 0.039 nm .

(b) A photon’s de Broglie wavelength is equal to its familiar wave-relationship value. Using the result
of problem 3,

λ =
hc

E
=

1240 eV·nm

1.00 keV
= 1.24 nm .

(c) The neutron mass may be found in Appendix B. Using the conversion from electronvolts to Joules,
we obtain

λ =
h√

2mnK
=

6.63× 10−34 J·s
√

2(1.675× 10−27 kg)(1.6 × 10−16 J)
= 9.1× 10−13 m .
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53. We use the result of Exercise 49: λ = (1.226 nm·eV1/2)/
√
K, where K is the kinetic energy. Thus

K =

(

1.226 nm·eV1/2

λ

)2

=

(

1.226 nm·eV1/2

590 nm

)2

= 4.32× 10−6 eV .

54. (a) We solve v from λ = h/p = h/(mpv):

v =
h

mpλ
=

6.63× 10−34 J·s
(1.675× 10−27 kg)(0.100× 10−12 m)

= 3.96× 106 m/s .

(b) We set eV = K = 1
2mpv

2 and solve for the voltage:

V =
mpv

2

2e
=

(1.67× 10−27 kg)(3.96× 106 m/s)2

2(1.60× 10−19 C)
= 8.18× 103 V .

55. (a) The average kinetic energy is

K =
3

2
kT =

3

2
(1.38× 10−23 J/K)(300 K) = 6.21× 10−21 J = 3.88× 10−2 eV .

(b) The de Broglie wavelength is

λ =
h√

2mnK

=
6.63× 10−34 J·s

√

2(1.675× 10−27 kg)(6.21× 10−21 J)

= 1.5× 10−10 m .

56. (a) and (b) The momenta of the electron and the photon are the same:

p =
h

λ
=

6.63× 10−34 J·s
0.20× 10−9 m

= 3.3× 10−24 kg·m/s .

The kinetic energy of the electron is

Ke =
p2

2me
=

(3.3× 10−24 kg·m/s)2
2(9.11× 10−31 kg)

= 6.0× 10−18 J = 38 eV ,

while that for the photon is

Kph = pc = (3.3× 10−24 kg·m/s)(2.998× 108 m/s) = 9.9× 10−16 J = 6.2 keV .

57. (a) The momentum of the photon is given by p = E/c, where E is its energy. Its wavelength is

λ =
h

p
=
hc

E
=

1240 eV·nm

1.00 eV
= 1240 nm .

See Exercise 3. The momentum of the electron is given by p =
√

2mK, where K is its kinetic
energy and m is its mass. Its wavelength is

λ =
h

p
=

h√
2mK

.

According to Exercise 49, if K is in electron volts, this is

λ =
1.226 nm · eV1/2

√
K

=
1.226 nm · eV1/2

√
1.00 eV

= 1.23 nm .
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(b) For the photon,

λ =
hc

E
=

1240 eV·nm

1.00× 109 eV
= 1.24× 10−6 nm .

Relativity theory must be used to calculate the wavelength for the electron. According to Eq. 38-51,
the momentum p and kinetic energy K are related by (pc)2 = K2 + 2Kmc2. Thus,

pc =
√

K2 + 2Kmc2

=
√

(1.00× 109 eV)2 + 2(1.00× 109 eV)(0.511× 106 eV)

= 1.00× 109 eV .

The wavelength is

λ =
h

p
=
hc

pc
=

1240 eV · nm

1.00× 109 eV
= 1.24× 10−6 nm .

58. (a) The average de Broglie wavelength is

λavg =
h

pavg
=

h
√

2mKavg

=
h

√

2m(3kT/2)
=

hc
√

2(mc2)kT

=
1240 eV·nm

√

3(4)(938 MeV)(8.62× 10−5 eV/K)(300 K)

= 7.3× 10−11 m = 73 pm .

(b) The average separation is

davg =
1
3
√
n

=
1

3
√

p/kT

=
3

√

(1.38× 10−23 J/K)(300 K)

1.01× 105 Pa
= 3.4 nm .

(c) Yes, since λavg ≪ davg .

59. (a) The kinetic energy acquired is K = qV , where q is the charge on an ion and V is the accelerating
potential. Thus K = (1.60 × 10−19 C)(300 V) = 4.80 × 10−17 J. The mass of a single sodium
atom is, from Appendix F, m = (22.9898 g/mol)/(6.02 × 1023 atom/mol) = 3.819 × 10−23 g =
3.819× 10−26 kg. Thus, the momentum of an ion is

p =
√

2mK =
√

2(3.819× 10−26 kg)(4.80× 10−17 J) = 1.91× 10−21 kg·m/s .

(b) The de Broglie wavelength is

λ =
h

p
=

6.63× 10−34 J · s
1.91× 10−21 kg ·m/s = 3.47× 10−13 m .

60. (a) We use the result of problem 3:

Ephoton =
hc

λ
=

1240 nm·eV
1.00 nm

= 1.24 keV

and for the electron

K =
p2

2me
=

(h/λ)2

2me
=

(hc/λ)2

2mec2
=

1

2(0.511 MeV)

(

1240 eV·nm

1.00 nm

)2

= 1.50 eV .



969

(b) In this case, we find

Ephoton =
1240 nm·eV

1.00× 10−6 nm
= 1.24× 109 eV = 1.24 GeV ,

and for the electron (recognizing that 1240 eV·nm = 1240 MeV·fm)

K =
√

p2c2 + (mec2)2 −mec
2 =

√

(hc/λ)2 + (mec2)2 −mec
2

=

√

(

1240 MeV·fm
1.00 fm

)2

+ (0.511 MeV)2 − 0.511 MeV

= 1.24× 103 MeV = 1.24 GeV .

We note that at short λ (large K) the kinetic energy of the electron, calculated with the relativistic
formula, is about the same as that of the photon. This is expected since now K ≈ E ≈ pc for the
electron, which is the same as E = pc for the photon.

61. We need to use the relativistic formula p =
√

(E/c)2 −m2
ec

2 ≈ E/c ≈ K/c (since E ≫ mec
2). So

λ =
h

p
≈ hc

K
=

1240 eV·nm

50× 109 eV
= 2.5× 10−8 nm ,

which is about 200 times smaller than the radius of an average nucleus.

62. (a) Since K = 7.5 MeV≪ mαc
2 = 4(932 MeV), we may use the non-relativistic formula p =

√
2mαK.

Using Eq. 38-43 (and recognizing that 1240 eV·nm = 1240 MeV·fm), we obtain

λ =
h

p
=

hc√
2mαc2K

=
1240 MeV·fm

√

2(4 u)(931.5 MeV/u)(7.5 MeV)
= 5.2 fm .

(b) Since λ = 5.2 fm ≪ 30 fm, to a fairly good approximation, the wave nature of the α particle does
not need to be taken into consideration.

63. The wavelength associated with the unknown particle is λp = h/pp = h/(mpvp), where pp is its momen-
tum, mp is its mass, and vp is its speed. The classical relationship pp = mpvp was used. Similarly, the
wavelength associated with the electron is λe = h/(meve), where me is its mass and ve is its speed. The
ratio of the wavelengths is λp/λe = (meve)/(mpvp), so

mp =
veλe

vpλp
me =

9.109× 10−31 kg

3(1.813× 10−4)
= 1.675× 10−27 kg .

According to Appendix B, this is the mass of a neutron.

64. (a) Setting λ = h/p = h/
√

(E/c)2 −m2
ec

2, we solve for K = E −mec
2:

K =

√

(

hc

λ

)2

+m2
ec

4 −mec
2

=

√

(

1240 eV·nm

10× 10−3 nm

)2

+ (0.511 MeV)2 − 0.511 MeV

= 0.015 MeV = 15 keV .

(b) Using the result of problem 3,

E =
hc

λ
=

1240 eV·nm

10× 10−3 nm
= 1.2× 105 eV = 120 keV .
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(c) The electron microscope is more suitable, as the required energy of the electrons is much less than
that of the photons.

65. The same resolution requires the same wavelength, and since the wavelength and particle momentum are
related by p = h/λ, we see that the same particle momentum is required. The momentum of a 100 keV
photon is p = E/c = (100× 103 eV)(1.60× 10−19 J/eV)/(3.00× 108 m/s) = 5.33× 10−23 kg ·m/s. This
is also the magnitude of the momentum of the electron. The kinetic energy of the electron is

K =
p2

2m
=

(5.33× 10−23 kg ·m/s)2
2(9.11× 10−31 kg)

= 1.56× 10−15 J .

The accelerating potential is

V =
K

e
=

1.56× 10−15 J

1.60× 10−19 C
= 9.76× 103 V .

66. (a)

nn∗ = (a+ ib)(a+ ib)∗ = (a+ ib)(a∗ + i∗b∗) = (a+ ib)(a− ib)
= a2 + iba− iab+ (ib)(−ib) = a2 + b2 ,

which is always real since both a and b are real.

(b)

|nm| = |(a+ ib)(c+ id)|
= |ac+ iad+ ibc+ (−i)2bd|
= |(ac− bd) + i(ad+ bc)|
=

√

(ac− bd)2 + (ad+ bc)2

=
√

a2c2 + b2d2 + a2d2 + b2c2 .

But

|n| |m| = |a+ ib| |c+ id| =
√

a2 + b2
√

c2 + d2

=
√

a2c2 + b2d2 + a2d2 + b2c2 ,

so |nm| = |n| |m|.

67. We plug Eq. 39-17 into Eq. 39-16, and note that

dψ

dx
=

d

dx

(

Aeikx +Be−ikx
)

= ikAeikx − ikBe−ikx.

Also,
d2ψ

dx2
=

d

dx

(

ikAeikx − ikBe−ikx
)

= −k2Aeikx − k2Beikx .

Thus,
d2ψ

dx2
+ k2ψ = −k2Aeikx − k2Beikx + k2

(

Aeikx +Be−ikx
)

= 0 .

68. (a) We use Euler’s formula eiφ = cosφ+ i sinφ to re-write ψ(x) as

ψ(x) = ψ0e
ikx = ψ0(cos kx+ i sinkx)

= (ψ0 cos kx) + i(ψ0 sinkx) = a+ ib ,

where a = ψ0 cos kx and b = ψ0 sin kx are both real quantities.
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(b)

ψ(x, t) = ψ(x)e−iωt = ψ0e
ikx e−iωt = ψ0e

i(kx−ωt)

= [ψ0 cos(kx− ωt)] + i [ψ0 sin(kx− ωt)] .

69. The angular wave number k is related to the wavelength λ by k = 2π/λ and the wavelength is related
to the particle momentum p by λ = h/p, so k = 2πp/h. Now, the kinetic energy K and the momentum
are related by K = p2/2m, where m is the mass of the particle. Thus p =

√
2mK and

k =
2π
√

2mK

h
.

70. We note that |eikx|2 = (eikx)∗(eikx) = e−ikxeikx = 1. Referring to Eq. 39-14, we see therefore that
|ψ|2 = |Ψ|2.

71. For U = U0, Schrödinger’s equation becomes

d2ψ

dx2
+

8π2m

h2
[E − U0]ψ = 0 .

We substitute ψ = ψ0e
ikx. The second derivative is d2ψ/dx2 = −k2ψ0e

ikx = −k2ψ. The result is

−k2ψ +
8π2m

h2
[E − U0]ψ = 0 .

Solving for k, we obtain

k =

√

8π2m

h2
[E − U0] =

2π

h

√

2m [E − U0] .

72. The wave function is now given by
Ψ(x, t) = ψ0 e

−i(kx+ωt) .

This function describes a plane matter wave traveling in the negative x direction. An example of the
actual particles that fit this description is a free electron with linear momentum ~p = −(hk/2π)̂ı and
kinetic energy K = p2/2me = h2k2/8π2me.

73. (a) The wave function is now given by

Ψ(x, t) = ψ0

[

ei(kx−ωt) + e−i(kx+ωt)
]

= ψ0 e
−iωt

(

eikx + e−ikx
)

.

Thus

|Ψ(x, t)|2 =
∣

∣ψ0 e
−iωt

(

eikx + e−ikx
)∣

∣

2

=
∣

∣ψ0 e
−iωt

∣

∣

2 ∣
∣eikx + e−ikx

∣

∣

2

= ψ2
0

∣

∣eikx + e−ikx
∣

∣

2

= ψ2
0 |(cos kx+ i sinkx) + (cos kx− i sinkx)|2

= 4ψ2
0(cos kx)2

= 2ψ2
0(1 + cos 2kx) .

(b) Consider two plane matter waves, each with the same amplitude ψ0/
√

2 and traveling in opposite
directions along the x axis. The combined wave Ψ is a standing wave:

Ψ(x, t) = ψ0 e
i(kx−ωt) + ψ0 e

−i(kx+ωt) = ψ0

(

eikx + e−ikx
)

e−iωt

= (2ψ0 cos kx) e−iωt .
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Thus, the squared amplitude of the matter wave is

|Ψ(x, t)|2 = (2ψ0 cos kx)2
∣

∣e−iωt
∣

∣

2
= 2ψ2

0(1 + cos 2kx) ,

which is shown below.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2 4 6 8kx

(c) We set |Ψ(x, t)|2 = 2ψ2
0(1 + cos 2kx) = 0 to obtain cos(2kx) = −1. This gives

2kx = 2

(

2π

λ

)

= (2n+ 1)π , (n = 0, 1, 2, 3, . . .)

We solve for x:

x =
1

4
(2n+ 1)λ .

(d) The most probable positions for finding the particle are where |Ψ(x, t)| ∝ (1 + cos 2kx) reaches its
maximum. Thus cos 2kx = 1, or

2kx = 2

(

2π

λ

)

= 2nπ , (n = 0, 1, 2, 3, . . .)

We solve for x:

x =
1

2
nλ .

74. (a) Since px = py = 0, ∆px = ∆py = 0. Thus from Eq. 39-20 both ∆x and ∆y are infinite. It is
therefore impossible to assign a y or z coordinate to the position of an electron.

(b) Since it is independent of y and z the wave function Ψ(x) should describe a plane wave that
extends infinitely in both the y and z directions. Also from Fig. 39-11 we see that |Ψ(x)|2 extends
infinitely along the x axis. Thus the matter wave described by Ψ(x) extends throughout the entire
three-dimensional space.

75. The uncertainty in the momentum is ∆p = m∆v = (0.50 kg)(1.0 m/s) = 0.50 kg·m/s, where ∆v is the
uncertainty in the velocity. Solving the uncertainty relationship ∆x∆p ≥ h̄ for the minimum uncertainty
in the coordinate x, we obtain

∆x =
h̄

∆p
=

0.60 J·s
2π(0.50 kg·m/s) = 0.19 m .
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76. If the momentum is measured at the same time as the position, then

∆p ≈ h̄

∆x
=

6.63× 10−34 J·s
2π(50 pm)

= 2.1× 10−24 kg·m/s .

77. We use the uncertainty relationship ∆x∆p ≥ h̄. Letting ∆x = λ, the de Broglie wavelength, we solve
for the minimum uncertainty in p:

∆p =
h̄

∆x
=

h

2πλ
=

p

2π

where the de Broglie relationship p = h/λ is used. We use 1/2π = 0.080 to obtain ∆p = 0.080p. We
would expect the measured value of the momentum to lie between 0.92p and 1.08p. Measured values of
zero, 0.5p, and 2p would all be surprising.

78. (a) Using the result of problem 3,

E =
hc

λ
=

1240 nm·eV
10.0× 10−3 nm

= 124 keV .

(b) The kinetic energy gained by the electron is equal to the energy decrease of the photon:

∆E = ∆

(

hc

λ

)

= hc

(

1

λ
− 1

λ+ ∆λ

)

=

(

hc

λ

)(

∆λ

λ+ ∆λ

)

=
E

1 + λ
∆λ

=
E

1 + λ
λC(1−cos φ)

=
124 keV

1 + 10.0 pm
(2.43 pm)(1−cos 180◦)

= 40.5 keV .

(c) It is impossible to “view” an atomic electron with such a high-energy photon, because with the
energy imparted to the electron the photon would have knocked the electron out of its orbit.

79. (a) The transmission coefficient T for a particle of mass m and energy E that is incident on a barrier
of height U and width L is given by

T = e−2kL ,

where

k =

√

8π2m(U − E)

h2
.

For the proton,

k =

√

8π2(1.6726× 10−27 kg)(10 MeV− 3.0 MeV)(1.6022× 10−13 J/MeV)

(6.6261× 10−34 J · s)2

= 5.8082× 1014 m−1 ,

kL = (5.8082× 1014 m−1)(10× 10−15 m) = 5.8082, and

T = e−2×5.8082 = 9.02× 10−6 .

The value of k was computed to a greater number of significant digits than usual because an
exponential is quite sensitive to the value of the exponent. The mass of a deuteron is 2.0141 u =
3.3454× 10−27 kg, so

k =

√

8π2(3.3454× 10−27 kg)(10 MeV− 3.0 MeV)(1.6022× 10−13 J/MeV)

(6.6261× 10−34 J·s)2

= 8.2143× 1014 m−1 ,

kL = (8.2143× 1014 m−1)(10× 10−15 m) = 8.2143, and

T = e−2×8.2143 = 7.33× 10−8 .
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(b) Mechanical energy is conserved. Before the particles reach the barrier, each of them has a kinetic
energy of 3.0 MeV and a potential energy of zero. After passing through the barrier, each again has
a potential energy of zero, so each has a kinetic energy of 3.0 MeV.

(c) Energy is also conserved for the reflection process. After reflection, each particle has a potential
energy of zero, so each has a kinetic energy of 3.0 MeV.

80. Letting

T ≈ e−2kL = exp

(

−2L

√

8π2m(U − E)

h2

)

,

and using the result of Exercise 3 in Chapter 39, we solve for E:

E = U − 1

2m

(

h lnT

4πL

)2

= 6.0 eV− 1

2(0.511 MeV)

[

(1240 eV·nm)(ln 0.001)

4π(0.70 nm)

]2

= 5.1 eV .

81. (a) If m is the mass of the particle and E is its energy, then the transmission coefficient for a barrier
of height U and width L is given by

T = e−2kL ,

where

k =

√

8π2m(U − E)

h2
.

If the change ∆U in U is small (as it is), the change in the transmission coefficient is given by

∆T =
dT

dU
∆U = −2LT

dk

dU
∆U .

Now,

dk

dU
=

1

2
√
U − E

√

8π2m

h2
=

1

2(U − E)

√

8π2m(U − E)

h2
=

k

2(U − E)
.

Thus,

∆T = −LTk ∆U

U − E .

For the data of Sample Problem 39-7, 2kL = 10.0, so kL = 5.0 and

∆T

T
= −kL ∆U

U − E = −(5.0)
(0.010)(6.8 eV)

6.8 eV− 5.1 eV
= −0.20 .

There is a 20% decrease in the transmission coefficient.

(b) The change in the transmission coefficient is given by

∆T =
dT

dL
∆L = −2ke−2kL ∆L = −2kT ∆L

and
∆T

T
= −2k∆L = −2(6.67× 109 m−1)(0.010)(750× 10−12 m) = −0.10 .

There is a 10% decrease in the transmission coefficient.



975

(c) The change in the transmission coefficient is given by

∆T =
dT

dE
∆E = −2Le−2kL dk

dE
∆E = −2LT

dk

dE
∆E .

Now, dk/dE = −dk/dU = −k/2(U − E), so

∆T

T
= kL

∆E

U − E = (5.0)
(0.010)(5.1 eV)

6.8 eV− 5.1 eV
= 0.15 .

There is a 15% increase in the transmission coefficient.

82. (a) The rate at which incident protons arrive at the barrier is n = 1.0 kA/1.60×10−19 C = 6.25×1023/s.
Letting nT t = 1, we find the waiting time t:

t = (nT )−1 =
1

n
exp

(

2L

√

8π2mp(U − E)

h2

)

=

(

1

6.25× 1023/s

)

exp

(

2π(0.70 nm)

1240 eV·nm

√

8(938 MeV)(6.0 eV− 5.0 eV)

)

= 3.37× 10111 s ≈ 10104 y ,

which is much longer than the age of the universe.

(b) Replacing the mass of the proton with that of the electron, we obtain the corresponding waiting
time for an electron:

t = (nT )−1 =
1

n
exp

[

2L

√

8π2me(U − E)

h2

]

=

(

1

6.25× 1023/s

)

exp

[

2π(0.70 nm)

1240 eV·nm

√

8(0.511 MeV)(6.0 eV − 5.0 eV)

]

= 2.1× 10−19 s .

The enormous difference between the two waiting times is the result of the difference between the
masses of the two kinds of particles.

83. The kinetic energy of the car of mass m moving at speed v is given by E = 1
2mv

2, while the potential
barrier it has to tunnel through is U = mgh, where h = 24 m. According to Eq. 39-21 and 39-22 the
tunneling probability is given by T ≈ e−2kL, where

k =

√

8π2m(U − E)

h2
=

√

8π2m(mgh− 1
2mv

2)

h2

=
2π(1500 kg)

6.63× 10−34 J·s

√

2

[

(9.8 m/s2)(24 m)− 1

2
(20 m/s)2

]

= 1.2× 1038 m−1 .

Thus, 2kL = 2(1.2× 1038 m−1)(30 m) = 7.2× 1039. One can see that T ≈ e−2kL is essentially zero.
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Chapter 40

1. (a) This is computed in part (a) of Sample Problem 40-1.

(b) With mp = 1.67× 10−27 kg, we obtain

E1 =

(

h2

8mL2

)

n2 =

(

(6.63× 10−34 J·s)2
8mp(100 × 1012 m)2

)

(1)2 = 3.29× 10−21 J = 0.0206 eV .

2. According to Eq. 40-4 En ∝ L−2. As a consequence, the new energy level E′
n satisfies

E′
n

En
=

(

L′

L

)−2

=

(

L

L′

)2

=
1

2
,

which gives L′ =
√

2L. Thus, the width of the potential well must be multiplied by a factor of
√

2.

3. To estimate the energy, we use Eq. 40-4, with n = 1, L equal to the atomic diameter, and m equal to
the mass of an electron:

E = n2 h2

8mL2
=

(1)2(6.63× 10−34 J·s)2
8(9.11× 10−31 kg)(1.4× 10−14 m)2

= 3.07× 10−10 J = 1920 MeV .

4. We can use the mc2 value for an electron from Table 38-3 (511× 103 eV) and the hc value developed in
problem 3 of Chapter 39 by writing Eq. 40-4 as

En =
n2h2

8mL2
=

n2(hc)2

8(mc2)L2
.

For n = 3, we set this expression equal to 4.7 eV and solve for L:

L =
n(hc)

√

8(mc2)En

=
3(1240 eV·nm)

√

8(511× 103 eV)(4.7 eV)
= 0.85 nm .

5. With mp = 1.67× 10−27 kg, we obtain

E1 =

(

h2

8mL2

)

n2 =

(

(6.63× 10−34 J·s)2
8mp(100 × 1012 m)2

)

(1)2 = 3.29× 10−21 J = 0.0206 eV .

Alternatively, we can use the mc2 value for a proton from Table 38-3 (938 × 106 eV) and the hc =
1240 eV·nm value developed in problem 3 of Chapter 39 by writing Eq. 40-4 as

En =
n2h2

8mL2
=

n2(hc)2

8(mpc2)L2
.

This alternative approach is perhaps easier to plug into, but it is recommended that both approaches be
tried to find which is most convenient.

977
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6. Since En ∝ L−2 in Eq. 40-4, we see that if L is doubled, then E1 becomes (2.6 eV)(2)−2 = 0.65 eV.

7. We can use the mc2 value for an electron from Table 38-3 (511× 103 eV) and the hc value developed in
problem 3 of Chapter 39 by writing Eq. 40-4 as

En =
n2h2

8mL2
=

n2(hc)2

8(mc2)L2
.

The energy to be absorbed is therefore

∆E = E4 − E1 =
(42 − 12)h2

8meL2
=

15(hc)2

8(mec2)L2

=
15(1240 eV·nm)2

8(511× 103 eV)(0.250 nm)2
= 90.3 eV .

8. (a) Let the quantum numbers of the pair in question be n and n+ 1, respectively. We note that

En+1 − En =
(n+ 1)2h2

8mL2
− n2h2

8mL2
=

(2n+ 1)h2

8mL2

Therefore, En+1 − En = (2n+ 1)E1. Now

En+1 − En = E5 = 52E1 = 25E1 = (2n+ 1)E1 ,

which leads to 2n+ 1 = 25, or n = 12.

(b) Now let
En+1 − En = E6 = 62E1 = 36E1 = (2n+ 1)E1 ,

which gives 2n+1 = 36, or n = 17.5. This is not an integer, so it is impossible to find the pair that
fits the requirement.

9. From Eq. 40-4

En+2 − En =

(

h2

8mL2

)

(n+ 2)2 −
(

h2

8mL2

)

n2 =

(

h2

2mL2

)

(n+ 1) .

10. (a) Let the quantum numbers of the pair in question be n and n+ 1, respectively. Then En+1 −En =
E1(n+ 1)2 − E1n

2 = (2n+ 1)E1. Letting

En+1 − En = (2n+ 1)E1 = 3(E4 − E3) = 3(42E1 − 32E1) = 21E1 ,

we get 2n+ 1 = 21, or n = 10.

(b) Now letting

En+1 − En = (2n+ 1)E1 = 2(E4 − E3) = 2(42E1 − 32E1) = 14E1 ,

we get 2n+ 1 = 14, which does not have an integer-valued solution. So it is impossible to find the
pair of energy levels that fits the requirement.

11. The energy levels are given by En = n2h2/8mL2, where h is the Planck constant, m is the mass of an
electron, and L is the width of the well. The frequency of the light that will excite the electron from the
state with quantum number ni to the state with quantum number nf is f = ∆E/h = (h/8mL2)(n2

f−n2
i )

and the wavelength of the light is

λ =
c

f
=

8mL2c

h(n2
f − n2

i )
.

We evaluate this expression for ni = 1 and nf = 2, 3, 4, and 5, in turn. We use h = 6.626× 10−34 J·s,
m = 9.109× 10−31 kg, and L = 250× 10−12 m, and obtain 6.87× 10−8 m for nf = 2, 2.58× 10−8 m for
nf = 3, 1.37× 10−8 m for nf = 4, and 8.59× 10−9 m for nf = 5.
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12. We can use the mc2 value for an electron from Table 38-3 (511× 103 eV) and the hc value developed in
problem 3 of Chapter 39 by rewriting Eq. 40-4 as

En =
n2h2

8mL2
=

n2(hc)2

8(mc2)L2
.

(a) The first excited state is characterized by n = 2, and the third by n′ = 4. Thus,

∆E =
(hc)2

8(mc2)L2

(

n′2 − n2
)

=
(1240 eV·nm)2

8(511× 103 eV)(0.250 nm)2
(

42 − 22
)

= (6.02 eV)(16− 4)

which yields ∆E = 72.2 eV.

(b) Now that the electron is in the n′ = 4 level, it can “drop” to a lower level (n′′) in a variety of ways.
Each of these drops is presumed to cause a photon to be emitted of wavelength

λ =
hc

En′ − En′′

=
8(mc2)L2

hc
(

n′2 − n′′2) .

For example, for the transition n′ = 4 to n′′ = 3, the photon emitted would have wavelength

λ =
8(511× 103 eV)(0.250 nm)2

(1240 eV·nm) (42 − 32)
= 29.4 nm ,

and once it is then in level n′′ = 3 it might fall to level n′′′ = 2 emitting another photon. Calculating
in this way all the possible photons emitted during the de-excitation of this system, we find λ4→1 =
13.7 nm, λ4→2 = 17.2 nm, λ3→1 = 25.8 nm, λ4→3 = 29.4 nm, λ3→2 = 41.2 nm, and λ2→1 = 68.7 nm.

(c) A system making the 4 → 1 transition will make no further transitions unless it is re-excited. If
it makes the 4 → 2 transition, then that is likely to followed by the 2 → 1 transition. However,
if it makes the 4 → 3 transition, then it could make either the 3 → 1 transition or the pair of
transitions: 3→ 2 and 2→ 1.

(d) The possible transitions are shown below. The energy levels are not drawn to scale.

n = 4

n = 3

n = 2

n = 1
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13. We can use the mc2 value for an electron from Table 38-3 (511× 103 eV) and the hc value developed in
problem 3 of Chapter 39 by writing Eq. 40-4 as

En =
n2h2

8mL2
=

n2(hc)2

8(mc2)L2
.

(a) With L = 3.0× 109 nm, the energy difference is

E2 − E1 =
12402

8(511× 103)(3.0× 109)2
(

22 − 12
)

= 1.3× 10−19 eV .

(b) Since (n+ 1)2 − n2 = 2n+ 1, we have

∆E = En+1 − En =
h2

8mL2
(2n+ 1) =

(hc)2

8(mc2)L2
(2n+ 1) .

Setting this equal to 1.0 eV, we solve for n:

n =
4(mc2)L2∆E

(hc)2
− 1

2

=
4(511× 103 eV)(3.0× 109 nm)2(1.0 eV)

(1240 eV·nm)2
− 1

2

≈ 12× 1018 .

(c) At this value of n, the energy is

En =
12402

8(511× 103)(3.0× 109)2
(

6× 1018
)2 ≈ 6× 1018 eV .

(d) Since
En

mc2
=

6× 1018 eV

511× 103 eV
≫ 1 ,

the energy is indeed in the relativistic range.

14. (a) With Eq. 40-11, we compare the ψ2
1 and ψ2

2 graphs in Fig. 40-6. The former has a maximum at the
center and the latter is zero there. Thus, the excitation of the system described in this problem
implies the electron has become much less likely to be detected near the middle of the well.

(b) Examining the 0 ≤ x ≤ 25 pm regions of those two graphs, we conclude that the excited state
electron is somewhat more likely to be “near” (not “at”) a well wall. Eq. 40-13 supports this
conclusion in the sense that there is more “area” under the curve of ψ2

2 in the 0 ≤ x ≤ 25 pm region
than under the ψ2

1 curve for that region.

15. (a) The allowed energy values are given by En = n2h2/8mL2. The difference in energy between the
state n and the state n+ 1 is

∆Eadj = En+1 − En =
[

(n+ 1)2 − n2
] h2

8mL2
=

(2n+ 1)h2

8mL2

and
∆Eadj

E
=

[

(2n+ 1)h2

8mL2

](

8mL2

n2h2

)

=
2n+ 1

n2
.

As n becomes large, 2n+ 1 −→ 2n and (2n+ 1)/n2 −→ 2n/n2 = 2/n.

(b) As n −→∞,∆Eadj and E do not approach 0, but ∆Eadj/E does.

(c) See part (b).
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(d) See part (b).

(e) ∆Eadj/E is a better measure than either ∆Eadj or E alone of the extent to which the quantum
result is approximated by the classical result.

16. We follow Sample Problem 40-3 in the presentation of this solution. The integration result quoted below
is discussed in a little more detail in that Sample Problem. We note that the arguments of the sine
functions used below are in radians.

(a) The probability of detecting the particle in the region 0 ≤ x ≤ L
4 is

(

2

L

)(

L

π

)∫ π/4

0

sin2 y dy =
2

π

(

y

2
− sin 2y

4

)π/4

0

= 0.091 .

(b) As expected from symmetry,

(

2

L

)(

L

π

)∫ π

π/4

sin2 y dy =
2

π

(

y

2
− sin 2y

4

)π

π/4

= 0.091 .

(c) For the region L
4 ≤ x ≤ 3L

4 , we obtain

(

2

L

)(

L

π

)∫ 3π/4

π/4

sin2 y dy =
2

π

(

y

2
− sin 2y

4

)3π/4

π/4

= 0.82

which we could also have gotten by subtracting the results of part (a) and (b) from 1; that is,
1− 2(0.091) = 0.82.

17. The probability that the electron is found in any interval is given by P =
∫

|ψ|2 dx, where the integral is
over the interval. If the interval width ∆x is small, the probability can be approximated by P = |ψ|2 ∆x,
where the wave function is evaluated for the center of the interval, say. For an electron trapped in an
infinite well of width L, the ground state probability density is

|ψ|2 =
2

L
sin2

(πx

L

)

,

so

P =

(

2 ∆x

L

)

sin2
(πx

L

)

.

(a) We take L = 100 pm, x = 25 pm, and ∆x = 5.0 pm. Then,

P =

[

2(5.0 pm)

100 pm

]

sin2

[

π(25 pm)

100 pm

]

= 0.050 .

(b) We take L = 100 pm, x = 50 pm, and ∆x = 5.0 pm. Then,

P =

[

2(5.0 pm)

100 pm

]

sin2

[

π(50 pm)

100 pm

]

= 0.10 .

(c) We take L = 100 pm, x = 90 pm, and ∆x = 5.0 pm. Then,

P =

[

2(5.0 pm)

100 pm

]

sin2

[

π(90 pm)

100 pm

]

= 0.0095 .
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18. (a) We recall that a derivative with respect to a dimensional quantity carries the (reciprocal) units of
that quantity. Thus, the first term in Eq. 40-18 has dimensions of ψ multiplied by dimensions of
x−2. The second term contains no derivatives, does contain ψ, and involves several other factors
that (as we show below) turn out to have dimensions of x−2:

8π2m

h2
[E − U(x)] =⇒ kg

(J · s)2 [J]

assuming SI units. Recalling from Eq. 7-9 that J = kg·m2/s2, then we see the above is indeed in
units of m−2 (which means dimensions of x−2 ).

(b) In one-dimensional Quantum Physics, the wavefunction has units of m−1/2 as Sample Problem 40-2
shows. Thus, since each term in Eq. 40-18 has units of ψ multiplied by units of x−2, then those
units are m−1/2 ·m−2 = m−2.5.

19. According to Fig. 40-9, the electron’s initial energy is 109 eV. After the additional energy is absorbed,
the total energy of the electron is 109 eV+400 eV = 509 eV. Since it is in the region x > L, its potential
energy is 450 eV (see Section 40-5), so its kinetic energy must be 509 eV− 450 eV = 59 eV.

20. From Fig. 40-9, we see that the sum of the kinetic and potential energies in that particular finite well
is 280 eV. The potential energy is zero in the region 0 < x < L. If the kinetic energy of the electron is
detected while it is in that region (which is the only region where this is likely to happen), we should
find K = 280 eV.

21. (a) and (b) Schrödinger’s equation for the region x > L is

d2ψ

dx2
+

8π2m

h2
[E − U0]ψ = 0 ,

where E−U0 < 0. If ψ2(x) = Ce−2kx, then ψ(x) = C′e−kx, where C′ is another constant satisfying
C′2 = C. Thus d2ψ/dx2 = 4k2C′e−kx = 4k2ψ and

d2ψ

dx2
+

8π2m

h2
[E − U0]ψ = k2ψ +

8π2m

h2
[E − U0]ψ .

This is zero provided that

k2 =
8π2m

h2
[U0 − E] .

The quantity on the right-hand side is positive, so k is real and the proposed function satisfies
Schrödinger’s equation. If k is negative, however, the proposed function would be physically unre-
alistic. It would increase exponentially with x. Since the integral of the probability density over the
entire x axis must be finite, ψ diverging as x→∞ would be unacceptable. Therefore, we choose

k =
2π

h

√

2m (U0 − E) > 0 .

22. (a) and (b) In the region 0 < x < L, U0 = 0, so Schrödinger’s equation for the region is

d2ψ

dx2
+

8π2m

h2
Eψ = 0

where E > 0. If ψ2(x) = B sin2 kx, then ψ(x) = B′ sin kx, where B′ is another constant satisfying
B′2 = B. Thus d2ψ/dx2 = −k2B′ sin kx = −k2ψ(x) and

d2ψ

dx2
+

8π2m

h2
Eψ = −k2ψ +

8π2m

h2
Eψ .
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This is zero provided that

k2 =
8π2mE

h2
.

The quantity on the right-hand side is positive, so k is real and the proposed function satisfies
Schrödinger’s equation. In this case, there exists no physical restriction as to the sign of k. It can
assume either positive or negative values. Thus

k = ±2π

h

√
2mE .

23. Schrödinger’s equation for the region x > L is

d2ψ

dx2
+

8π2m

h2
[E − U0]ψ = 0 .

If ψ = De2kx, then d2ψ/dx2 = 4k2De2kx = 4k2ψ and

d2ψ

dx2
+

8π2m

h2
[E − U0]ψ = 4k2ψ +

8π2m

h2
[E − U0]ψ .

This is zero provided

k =
π

h

√

2m (U0 − E) .

The proposed function satisfies Schrödinger’s equation provided k has this value. Since U0 is greater
than E in the region x > L, the quantity under the radical is positive. This means k is real. If k is
positive, however, the proposed function is physically unrealistic. It increases exponentially with x and
becomes large without bound. The integral of the probability density over the entire x axis must be
unity. This is impossible if ψ is the proposed function.

24. We can use the mc2 value for an electron from Table 38-3 (511× 103 eV) and the hc value developed in
problem 3 of Chapter 39 by writing Eq. 40-20 as

Enx,ny =
2h2

8m

(

n2
x

L2
x

+
n2

y

L2
y

)

=
(hc)2

8(mc2)

(

n2
x

L2
x

+
n2

y

L2
y

)

.

For nx = ny = 1, we obtain

E1,1 =
(1240 eV·nm)2

8(511× 103 eV)

(

1

(0.800 nm)2
+

1

(1.600 nm)2

)

= 0.73 eV .

25. We can use the mc2 value for an electron from Table 38-3 (511× 103 eV) and the hc value developed in
problem 3 of Chapter 39 by writing Eq. 40-21 as

Enx,ny,nz =
2h2

8m

(

n2
x

L2
x

+
n2

y

L2
y

+
n2

z

L2
z

)

=
(hc)2

8(mc2)

(

n2
x

L2
x

+
n2

y

L2
y

+
n2

z

L2
z

)

.

For nx = ny = nz = 1, we obtain

E1,1 =
(1240 eV·nm)2

8(511× 103 eV)

(

1

(0.800 nm)2
+

1

(1.600 nm)2
+

1

(0.400 nm)2

)

= 3.1 eV .

26. We are looking for the values of the ratio

Enx,ny

h2/8mL2
= L2

(

n2
x

L2
x

+
n2

y

L2
y

)

=

(

n2
x +

1

4
n2

y

)

and the corresponding differences.
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(a) For nx = ny = 1, the ratio becomes 1 + 1
4 = 1.25.

(b) For nx = 1 and ny = 2, the ratio becomes 1 + 1
4 (4) = 2.00. One can check (by computing other

(nx, ny) values) that this is the next to lowest energy in the system.

(c) The lowest set of states that are degenerate are (nx, ny) = (1, 4) and (2, 2). Both of these states
have that ratio equal to 1 + 1

4 (16) = 5.00.

(d) For nx = 1 and ny = 3, the ratio becomes 1 + 1
4 (9) = 3.25. One can check (by computing other

(nx, ny) values) that this is the lowest energy greater than that computed in part (b). The next
higher energy comes from (nx, ny) = (2, 1) for which the ratio is 4 + 1

4 (1) = 4.25. The difference
between these two values is 4.25− 3.25 = 1.00.

27. The energy levels are given by

Enx,ny =
h2

8m

[

n2
x

L2
x

+
n2

y

L2
y

]

=
h2

8mL2

[

n2
x +

n2
y

4

]

where the substitutions Lx = L and Ly = 2L were made. In units of h2/8mL2, the energy levels are
given by n2

x + n2
y/4. The lowest five levels are E1,1 = 1.25, E1,2 = 2.00, E1,3 = 3.25, E2,1 = 4.25, and

E2,2 = E1,4 = 5.00. It is clear that there are no other possible values for the energy less than 5. The
frequency of the light emitted or absorbed when the electron goes from an initial state i to a final state
f is f = (Ef − Ei)/h, and in units of h/8mL2 is simply the difference in the values of n2

x + n2
y/4 for

the two states. The possible frequencies are 0.75 (1,2−→ 1,1), 2.00 (1,3−→ 1,1), 3.00 (2,1−→ 1,1), 3.75
(2,2−→ 1,1), 1.25 (1,3−→ 1,2), 2.25 (2,1−→ 1,2), 3.00 (2,2−→ 1,2), 1.00 (2,1−→ 1,3), 1.75 (2,2−→ 1,3),
0.75 (2,2−→ 2,1), all in units of h/8mL2.

28. We are looking for the values of the ratio

Enx,ny,nz

h2/8mL2
= L2

(

n2
x

L2
x

+
n2

y

L2
y

+
n2

z

L2
z

)

=
(

n2
x + n2

y + n2
z

)

and the corresponding differences.

(a) For nx = ny = nz = 1, the ratio becomes 1 + 1 + 1 = 3.00.

(b) For nx = ny = 2 and nz = 1, the ratio becomes 4 + 4 + 1 = 9.00. One can check (by computing
other (nx, ny, nz) values) that this is the third lowest energy in the system. One can also check
that this same ratio is obtained for (nx, ny, nz) = (2, 1, 2) and (1, 2, 2).

(c) For nx = ny = 1 and nz = 3, the ratio becomes 1 + 1 + 9 = 11.00. One can check (by computing
other (nx, ny, nz) values) that this is three “steps” up from the lowest energy in the system. One
can also check that this same ratio is obtained for (nx, ny, nz) = (1, 3, 1) and (3, 1, 1). If we take
the difference between this and the result of part (b), we obtain 11.00− 9.00 = 2.00.

(d) For nx = ny = 1 and nz = 2, the ratio becomes 1 + 1 + 4 = 6.00. One can check (by computing
other (nx, ny, nz) values) that this is the next to the lowest energy in the system. One can also
check that this same ratio is obtained for (nx, ny, nz) = (2, 1, 1) and (1, 2, 1). Thus, three states
(three arrangements of (nx, ny, nz) values) have this energy.

(e) For nx = 1, ny = 2 and nz = 3, the ratio becomes 1 + 4 + 9 = 14.00. One can check (by computing
other (nx, ny, nz) values) that this is five “steps” up from the lowest energy in the system. One can
also check that this same ratio is obtained for (nx, ny, nz) = (1, 3, 2), (2, 3, 1), (2, 1, 3), (3, 1, 2) and
(3, 2, 1). Thus, six states (six arrangements of (nx, ny, nz) values) have this energy.

29. The ratios computed in problem 28 can be related to the frequencies emitted using f = ∆E/h, where
each level E is equal to one of those ratios multiplied by h2/8mL2. This effectively involves no more
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than a cancellation of one of the factors of h. Thus, for a transition from the second excited state (see
part (b) of problem 28) to the ground state (treated in part (a) of that problem), we find

f = (9.00− 3.00)

(

h

8mL2

)

= (6.00)

(

h

8mL2

)

.

In the following, we omit the h/8mL2 factors. For a transition between the fourth excited state and the
ground state, we have f = 12.00− 3.00 = 9.00. For a transition between the third excited state and the
ground state, we have f = 11.00 − 3.00 = 8.00. For a transition between the third excited state and
the first excited state, we have f = 11.00 − 6.00 = 5.00. For a transition between the fourth excited
state and the third excited state, we have f = 12.00− 11.00 = 1.00. For a transition between the third
excited state and the second excited state, we have f = 11.00− 9.00 = 2.00. For a transition between
the second excited state and the first excited state, we have f = 9.00− 6.00 = 3.00, which also results
from some other transitions.

30. For n = 1

E1 = −mee
4

8ε20h
2

= − (9.11× 10−31 kg)(1.6× 10−19 C)4

8(8.85× 10−12 F/m)2(6.63× 10−34 J·s)2(1.60× 10−19 J/eV)

= −13.6 eV .

31. From Eq. 40-6,
∆E = hf = (4.14× 10−15 eV·s)(6.2× 1014 Hz) = 2.6 eV .

32. The difference between the energy absorbed and the energy emitted is

Ephoton absorbed − Ephoton emitted =
hc

λabsorbed
− hc

λemitted
.

Thus, using the result of problem 3 in Chapter 39, the net energy absorbed is

hc∆

(

1

λ

)

= (1240 eV·nm)

(

1

375 nm
− 1

580 nm

)

= 1.17 eV .

33. The energy E of the photon emitted when a hydrogen atom jumps from a state with principal quantum
number u to a state with principal quantum number ℓ is given by

E = A

(

1

ℓ2
− 1

u2

)

where A = 13.6 eV. The frequency f of the electromagnetic wave is given by f = E/h and the wavelength
is given by λ = c/f . Thus,

1

λ
=
f

c
=
E

hc
=
A

hc

(

1

ℓ2
− 1

u2

)

.

The shortest wavelength occurs at the series limit, for which u = ∞. For the Balmer series, ℓ = 2 and
the shortest wavelength is λB = 4hc/A. For the Lyman series, ℓ = 1 and the shortest wavelength is
λL = hc/A. The ratio is λB/λL = 4.

34. (a) The energy level corresponding to the probability density distribution shown in Fig. 40-20 is the
n = 2 level. Its energy is given by

E2 = −13.6 eV

22
= −3.4 eV .
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(b) As the electron is removed from the hydrogen atom the final energy of the proton-electron system
is zero. Therefore, one needs to supply at least 3.4 eV of energy to the system in order to bring
its energy up from E2 = −3.4 eV to zero. (If more energy is supplied, then the electron will retain
some kinetic energy after it is removed from the atom.)

35. (a) Since energy is conserved, the energy E of the photon is given by E = Ei − Ef , where Ei is the
initial energy of the hydrogen atom and Ef is the final energy. The electron energy is given by
(−13.6 eV)/n2, where n is the principal quantum number. Thus,

E = Ei − Ef =
−13.6 eV

(3)2
− −13.6 eV

(1)2
= 12.1 eV .

(b) The photon momentum is given by

p =
E

c
=

(12.1 eV)(1.60× 10−19 J/eV)

3.00× 108 m/s
= 6.45× 10−27 kg·m/s .

(c) Using the result of problem 3 in Chapter 39, the wavelength is

λ =
1240 eV·nm

12.1 eV
= 102 nm .

36. (a) The “home-base” energy level for the Balmer series is n = 2. Thus the transition with the least
energetic photon is the one from the n = 3 level to the n = 2 level. The energy difference for this
transition is

∆E = E3 − E2 = −(13.6 eV)

(

1

32
− 1

22

)

= 1.889 eV .

Using the result of problem 3 in Chapter 39, the corresponding wavelength is

λ =
hc

∆E
=

1240 eV·nm

1.889 eV
= 658 nm .

(b) For the series limit, the energy difference is

∆E = E∞ − E2 = −(13.6 eV)

(

1

∞2
− 1

22

)

= 3.40 eV .

The corresponding wavelength is then

λ =
hc

∆E
=

1240 eV·nm

3.40 eV
= 366 nm .

37. If kinetic energy is not conserved, some of the neutron’s initial kinetic energy is used to excite the
hydrogen atom. The least energy that the hydrogen atom can accept is the difference between the first
excited state (n = 2) and the ground state (n = 1). Since the energy of a state with principal quantum
number n is −(13.6 eV)/n2, the smallest excitation energy is 13.6 eV − (13.6 eV)/(2)2 = 10.2 eV. The
neutron does not have sufficient kinetic energy to excite the hydrogen atom, so the hydrogen atom is left
in its ground state and all the initial kinetic energy of the neutron ends up as the final kinetic energies
of the neutron and atom. The collision must be elastic.

38. (a) We use Eq. 40-25. At r = a

ψ2(r) =

(

1√
πa3/2

e−a/a

)2

=
1

πa3
e−2 =

1

π(5.29× 10−2 nm)3
e−2 = 291 nm−3 .
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(b) We use Eq. 40-31. At r = a

P (r) =
4

a3
a2e−2a/a =

4e−2

a
=

4e−2

5.29× 10−2 nm
= 10.2 nm−1 .

39. (a) We use Eq. 40-31. At r = 0, P (r) ∝ r2 = 0.

(b) At r = a

P (r) =
4

a3
a2e−2a/a =

4e−2

a
=

4e−2

5.29× 10−2 nm
= 10.2 nm−1 .

(c) At r = 2a

P (r) =
4

a3
(2a)2e−4a/a =

16e−4

a
=

16e−4

5.29× 10−2 nm
= 5.54 nm−1 .

40. (a) ∆E = −(13.6 eV)(4−2 − 1−2) = 12.8 eV.

(b) The values of the photon energies are:

E4→1 = ∆Epart (a) = 12.8 eV

E3→1 = −(13.6 eV)(3−2 − 1−2) = 12.1 eV

E2→1 = −(13.6 eV)(2−2 − 1−2) = 10.2 eV

E4→2 = −(13.6 eV)(4−2 − 2−2) = 2.55 eV

E3→2 = −(13.6 eV)(3−2 − 2−2) = 1.89 eV

E4→3 = −(13.6 eV)(4−2 − 3−2) = 0.66 eV

The various photon energies correspond to the transitions between energy levels indicated below.
The levels are not drawn to scale.

n = 4

n = 3

n = 2

n = 1
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41. (a) We take the electrostatic potential energy to be zero when the electron and proton are far removed
from each other. Then, the final energy of the atom is zero and the work done in pulling it apart
is W = −Ei, where Ei is the energy of the initial state. The energy of the initial state is given by
Ei = (−13.6 eV)/n2, where n is the principal quantum number of the state. For the ground state,
n = 1 and W = 13.6 eV.

(b) For the state with n = 2, W = (13.6 eV)/(2)2 = 3.40 eV.

42. Conservation of linear momentum of the atom-photon system requires that

precoil = pphoton =⇒ mpvrecoil =
hf

c
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where we use Eq. 39-7 for the photon and use the classical momentum formula for the atom (since we
expect its speed to be much less than c). Thus, from Eq. 40-6 and Table 38-3,

vrecoil =
∆E

mpc
=

E4 − E1

(mpc2)/c

=
(−13.6 eV)

(

4−2 − 1−2
)

(938× 106 eV)/(2.998× 108 m/s)

= 4.1 m/s .

43. (a) and (b) Using Eq. 40-6 and the result of problem 3 in Chapter 39, we find

∆E = Ephoton =
hc

λ
=

1240 eV·nm

486.1 nm
= 2.55 eV .

Referring to Fig. 40-16, we see that this must be one of the Balmer series transitions (this fact
could also be found from Fig. 40-17). Therefore, nlow = 2, but what precisely is nhigh?

Ehigh = Elow + ∆E

−13.6 eV

n2
= −13.6 eV

22
+ 2.55 eV

which yields n = 4. Thus, the transition is from the n = 4 to the n = 2 state.

44. (a) The calculation is shown in Sample Problem 40-6. The difference in the values obtained in parts
(a) and (b) of that Sample Problem is 122 nm− 91.4 nm ≈ 31 nm.

(b) Fig. 40-17 shows that the width of the Balmer series is 656.3 nm− 364.6 nm ≈ 292 nm. This can
be confirmed with a calculation very much like the one shown in Sample Problem 40-6, but with
the longest wavelength arising from the 3 → 2 transition, and the series limit obtained from the
∞→ 2 transition.

(c) We use Eq. 39-1. For the Lyman series,

∆f =
2.998× 108 m/s

91.4× 10−9 m
− 2.998× 108 m/s

122× 10−9 m
= 8.2× 1014 Hz

or 8.2× 102 THz. For the Balmer series,

∆f =
2.998× 108 m/s

364.6× 10−9 m
− 2.998× 108 m/s

656.3× 10−9 m
= 3.65× 1014 Hz

which is equivalent to 365 THz.

45. Letting a = 5.292× 10−11 m be the Bohr radius, the potential energy becomes

U = − e2

4πε0a
=

(8.99× 109 N·m2/C2)(1.602× 10−19 C)2

5.292× 10−11 m
= −4.36× 10−18 J = −27.2 eV .

The kinetic energy is K = E − U = (−13.6 eV)− (−27.2 eV) = 13.6 eV.

46. (a) and (b) Using Eq. 40-6 and the result of problem 3 in Chapter 39, we find

∆E = Ephoton =
hc

λ
=

1240 eV·nm

121.6 nm
= 10.2 eV .

Referring to Fig. 40-16, we see that this must be one of the Lyman series transitions. Therefore,
nlow = 1, but what precisely is nhigh?

Ehigh = Elow + ∆E

−13.6 eV

n2
= −13.6 eV

12
+ 10.2 eV

which yields n = 2 (this is confirmed by the calculation found from Sample Problem 40-6). Thus,
the transition is from the n = 2 to the n = 1 state.
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47. (a) Since E2 = −0.85 eV and E1 = −13.6 eV + 10.2 eV = −3.4 eV, the photon energy is Ephoton =
E2 − E1 = −0.85 eV− (−3.4 eV) = 2.6 eV.

(b) From

E2 − E1 = (−13.6 eV)

(

1

n2
2

− 1

n2
1

)

= 2.6 eV

we obtain
1

n2
2

− 1

n2
1

= − 2.6 eV

13.6 eV
≈ − 3

16
=

1

42
− 1

22
.

Thus, n2 = 4 and n1 = 2. So the transition is from the n = 4 state to the n = 2 state. One can
easily verify this by inspecting the energy level diagram of Fig. 40-16.

48. The wavelength λ of the photon emitted in a transition belonging to the Balmer series satisfies

Eph =
hc

λ
= En − E2 = −(13.6 eV)

(

1

n2
− 1

22

)

where n = 3, 4, 5, . . .

Using the result of problem 3 in Chapter 39, we find

λ =
4hcn2

(13.6 eV)(n2 − 4)
=

4(1240 eV·nm)

13.6 eV

(

n2

n2 − 4

)

.

Plugging in the various values of n, we obtain these values of the wavelength: λ = 656 nm (for n = 3),
λ = 486 nm (for n = 4), λ = 434 nm (for n = 5), λ = 410 nm (for n = 6), λ = 397 nm (for
n = 7), λ = 389 nm (for n = 8), etc. Finally for n = ∞, λ = 365 nm. These values agree well with
the data found in Fig. 40-17. [One can also find λ beyond three significant figures by using the more
accurate values for me, e and h listed in Appendix B when calculating En in Eq. 40-24. Another factor
that contributes to the error is the motion of the atomic nucleus. It can be shown that this effect can
be accounted for by replacing the mass of the electron me by memp/(mp +me) in Eq. 40-24, where mp

is the mass of the proton. Since mp ≫ me, this is not a major effect.]

49. According to Sample Problem 40-8, the probability the electron in the ground state of a hydrogen atom
can be found inside a sphere of radius r is given by

p(r) = 1− e−2x
(

1 + 2x+ 2x2
)

where x = r/a and a is the Bohr radius. We want r = a, so x = 1 and

p(a) = 1− e−2 (1 + 2 + 2) = 1− 5e−2 = 0.323 .

The probability that the electron can be found outside this sphere is 1− 0.323 = 0.677. It can be found
outside about 68% of the time.

50. Using Eq. 40-6 and the result of problem 3 in Chapter 39, we find

∆E = Ephoton =
hc

λ
=

1240 eV·nm

102.6 nm
= 12.09 eV .

Referring to Fig. 40-16, we see that this must be one of the Lyman series transitions. Therefore, nlow = 1,
but what precisely is nhigh?

Ehigh = Elow + ∆E

−13.6 eV

n2
= −13.6 eV

12
+ 12.09 eV

which yields n = 3. Thus, the transition is from the n = 3 to the n = 1 state.
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51. The proposed wave function is

ψ =
1√
πa3/2

e−r/a

where a is the Bohr radius. Substituting this into the right side of Schrödinger’s equation, our goal is to
show that the result is zero. The derivative is

dψ

dr
= − 1√

πa5/2
e−r/a

so

r2
dψ

dr
= − r2√

πa5/2
e−r/a

and
1

r2
d

dr

(

r2
dψ

dr

)

=
1√
πa5/2

[

−2

r
+

1

a

]

e−r/a =
1

a

[

−2

r
+

1

a

]

ψ .

The energy of the ground state is given by E = −me4/8ε20h2, and the Bohr radius is given by a =
h2ε0/πme

2, so E = −e2/8πε0a. The potential energy is given by U = −e2/4πε0r, so

8π2m

h2
[E − U ]ψ =

8π2m

h2

[

− e2

8πε0a
+

e2

4πε0r

]

ψ =
8π2m

h2

e2

8πε0

[

−1

a
+

2

r

]

ψ

=
πme2

h2ε0

[

−1

a
+

2

r

]

ψ =
1

a

[

−1

a
+

2

r

]

ψ .

The two terms in Schrödinger’s equation cancel, and the proposed function ψ satisfies that equation.

52. From Sample Problem 40-8, we know that the probability of finding the electron in the ground state of
the hydrogen atom inside a sphere of radius r is given by

p(r) = 1− e−2x (1 + 2x+ 2x2)

where x = r/a. Thus the probability of finding the electron between the two shells indicated in this
problem is given by

p(a < r < 2a) = p(2a)− p(a)
=

[

1− e−2x (1 + 2x+ 2x2)
]

x=2
−
[

1− e−2x (1 + 2x+ 2x2)
]

x=1

= 0.44 .

53. The radial probability function for the ground state of hydrogen is P (r) = (4r2/a3)e−2r/a, where a is
the Bohr radius. (See Eq. 40-31.) We want to evaluate the integral

∫∞
0 P (r) dr. Eq. 15 in the integral

table of Appendix E is an integral of this form. We set n = 2 and replace a in the given formula with
2/a and x with r. Then

∫ ∞

0

P (r) dr =
4

a3

∫ ∞

0

r2e−2r/a dr =
4

a3

2

(2/a)3
= 1 .

54. (a) The allowed values of l for a given n are 0, 1, 2, . . . , n− 1. Thus there are n different values of l.

(b) The allowed values of ml for a given l are −l, −l+ 1, · · · , l. Thus there are 2l+ 1 different values
of ml.

(c) According to part (a) above, for a given n there are n different values of l. Also, each of these l’s
can have 2l+ 1 different values of ml [see part (b) above]. Thus, the total number of ml’s is

n−1
∑

l=0

(2l + 1) = n2 .
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55. Since ∆r is small, we may calculate the probability using p = P (r)∆r, where P (r) is the radial proba-
bility density. The radial probability density for the ground state of hydrogen is given by Eq. 40-31:

P (r) =

(

4r2

a3

)

e−2r/a

where a is the Bohr radius.

(a) Here, r = 0.500a and ∆r = 0.010a. Then,

p =

(

4r2 ∆r

a3

)

e−2r/a = 4(0.500)2(0.010) e−1 = 3.68× 10−3 .

(b) We set r = 1.00a and ∆r = 0.010a. Then,

p =

(

4r2 ∆r

a3

)

e−2r/a = 4(1.00)2(0.010) e−2 = 5.41× 10−3 .

56. According to Fig. 40-23, the quantum number n in question satisfies r = n2a. Letting r = 1.0 mm, we
solve for n:

n =

√

r

a
=

√

1.0× 10−3 m

5.29× 10−11 m
≈ 4.3× 103 .

57. The radial probability function for the ground state of hydrogen is P (r) = (4r2/a3)e−2r/a, where a is
the Bohr radius. (See Eq. 40-31.) The integral table of Appendix E may be used to evaluate the integral
ravg =

∫∞
0 rP (r) dr. Setting n = 3 and replacing a in the given formula with 2/a (and x with r), we

obtain

ravg =

∫ ∞

0

rP (r) dr =
4

a3

∫ ∞

0

r3e−2r/a dr =
4

a3

6

(2/a)4
= 1.5a .

58. (a) The plot shown below for |ψ200(r)|2 is to be compared with the dot plot of Fig. 40-20. We note
that the horizontal axis of our graph is labeled “r,” but it is actually r/a (that is, it is in units of
the parameter a). Now, in the plot below there is a high central peak between r = 0 and r ∼ 2a,
corresponding to the densely dotted region around the center of the dot plot of Fig. 40-20. Outside
this peak is a region of near-zero values centered at r = 2a, where ψ200 = 0. This is represented in
the dot plot by the empty ring surrounding the central peak. Further outside is a broader, flatter,
low peak which reaches its maximum value at r = 4a. This corresponds to the outer ring with
near-uniform dot density which is lower than that of the central peak.

0

0.01

0.02

0.03

0.04

1 2 3 4 5 6 7r
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(b) The extrema of ψ2(r) for 0 < r <∞ may be found by squaring the given function, differentiating
with respect to r, and setting the result equal to zero:

− 1

32

(r − 2a)(r − 4a)

a6π
e−r/a = 0

which has roots at r = 2a and r = 4a. We can verify directly from the plot above that r = 4a
is indeed a local maximum of ψ2

200(r). As discussed in part (a), the other root (r = 2a) is a local
minimum.

(c) Using Eq. 40-30 and Eq. 40-28, the radial probability is

P200(r) = 4πr2ψ2
200(r) =

r2

8a3

(

2− r

a

)2

e−r/a .

(d) Let x = r/a. Then

∫ ∞

0

P200(r) dr =

∫ ∞

0

r2

8a3

(

2− r

a

)2

e−r/a dr

=
1

8

∫ ∞

0

x2(2− x)2e−x dx

=

∫ ∞

0

(x4 − 4x3 + 4x2)e−x dx

=
1

8
[4!− 4(3!) + 4(2!)]

= 1

where the integral formula
∫ ∞

0

xn e−x dx = n!

is used.

59. (a) ψ210 is real. Squaring it, we obtain the probability density:

|ψ210|2 =
r2

32πa5
e−r/a cos2 θ .

Each of the other functions is multiplied by its complex conjugate, obtained by replacing i with
−i in the function. Since eiφe−iφ = e0 = 1, the result is the square of the function without the
exponential factor:

|ψ21+1|2 =
r2

64πa5
e−r/a sin2 θ

and

|ψ21−1|2 =
r2

64πa5
e−r/a sin2 θ .

The last two functions lead to the same probability density.

(b) The total probability density for the three states is the sum:

|ψ210|2 + |ψ21+1|2 + |ψ21−1|2 =
r2

32πa5
e−r/a

[

cos2 θ +
1

2
sin2 θ +

1

2
sin2 θ

]

=
r2

32πa5
e−r/a .

The trigonometric identity cos2 θ + sin2 θ = 1 is used. We note that the total probability density
does not depend on θ or φ; it is spherically symmetric.



Chapter 41

1. One way to think of the units of h is that, because of the equation E = hf and the fact that f is
in cycles/second, then the “explicit” units for h should be J·s/cycle. Then, since 2π rad/cycle is a
conversion factor for cycles→ radians, h̄ = h/2π can be thought of as the Planck constant expressed in
terms of radians instead of cycles. Using the precise values stated in Appendix B,

h̄ =
h

2π
=

6.62606876× 10−34 J·s
2π

= 1.05457× 10−34 J·s

=
1.05457× 10−34 J·s

1.6021765× 10−19 J/eV
= 6.582× 10−16 eV·s .

2. For a given quantum number l there are (2l + 1) different values of ml. For each given ml the electron
can also have two different spin orientations. Thus, the total number of electron states for a given l is
given by Nl = 2(2l+ 1).

(a) Now l = 3, so Nl = 2(2× 3 + 1) = 14.

(b) In this case, l = 1, which means Nl = 2(2× 1 + 1) = 6.

(c) Here l = 1, so Nl = 2(2× 1 + 1) = 6.

(d) Now l = 0, so Nl = 2(2× 0 + 1) = 2.

3. (a) For a given value of the principal quantum number n, the orbital quantum number ℓ ranges from
0 to n− 1. For n = 3, there are three possible values: 0, 1, and 2.

(b) For a given value of ℓ, the magnetic quantum number mℓ ranges from −ℓ to +ℓ. For ℓ = 1, there
are three possible values: −1, 0, and +1.

4. (a) We use Eq. 41-2:

L =
√

l(l+ 1) h̄ =
√

3(3 + 1) (1.055× 10−34 J·s) = 3.653× 10−34 J·s .

(b) We use Eq. 41-7: Lz = mlh̄. For the maximum value of Lz set ml = l. Thus

[Lz]max = lh̄ = 3(1.055× 10−34 J·s) = 3.165× 10−34 J·s .

5. For a given quantum number n there are n possible values of l, ranging from 0 to n− 1. For each l the
number of possible electron states is Nl = 2(2l+ 1) (see problem 2). Thus, the total number of possible
electron states for a given n is

Nn =

n−1
∑

l=0

Nl = 2

n−1
∑

l=0

(2l + 1) = 2n2 .

(a) In this case n = 4, which implies Nn = 2(42) = 32.

993
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(b) Now n = 1, so Nn = 2(12) = 2.

(c) Here n = 3, and we obtain Nn = 2(32) = 18.

(d) Finally, n = 2 → Nn = 2(22) = 8.

6. Using Table 41-1, we find for n = 4 and l = 3: ml = +3, +2, +1, 0, −1, −2, −3 and ms = ± 1
2 .

7. The principal quantum number n must be greater than 3. The magnetic quantum number mℓ can have
any of the values −3, −2, −1, 0, +1, +2, or +3. The spin quantum number can have either of the values
− 1

2 or + 1
2 .

8. Using Table 41-1, we find l = [ml]max = 4 and n = lmax + 1 ≥ l + 1 = 5. And, as usual, ms = ± 1
2 .

9. The principal quantum number n must be greater than 3. The magnetic quantum number ml can have
any of the values −3, −2, −1, 0, +1, +2, or +3. The spin quantum number can have either of the values
− 1

2 or + 1
2 .

10. For a given quantum number n there are n possible values of l, ranging from 0 to n− 1. For each l the
number of possible electron states is Nl = 2(2l+ 1) (see problem 2). Thus the total number of possible
electron states for a given n is

Nn =
n−1
∑

l=0

Nl = 2
n−1
∑

l=0

(2l + 1) = 2n2 .

Thus, in this problem, the total number of electron states is Nn = 2n2 = 2(5)2 = 50.

11. (a) For ℓ = 3, the magnitude of the orbital angular momentum is L =
√

ℓ(ℓ+ 1)h̄ =
√

3(3 + 1)h̄ =√
12h̄.

(b) The magnitude of the orbital dipole moment is µorb =
√

ℓ(ℓ+ 1)µB =
√

12µB.

(c) We use Lz = mℓh̄ to calculate the z component of the orbital angular momentum, µz = −mℓµB

to calculate the z component of the orbital magnetic dipole moment, and cos θ = mℓ/
√

ℓ(ℓ+ 1)
to calculate the angle between the orbital angular momentum vector and the z axis. For ℓ = 3,
the magnetic quantum number mℓ can take on the values −3, −2, −1, 0, +1, +2, +3. Results are
tabulated below.

mℓ Lz
µorb, z θ

−3 −3h̄ +3µB 150.0◦

−2 −2h̄ +2µB 125◦

−1 −h̄ +µB 107◦

0 0 0 90.0◦

1 +h̄ −µB 73.2◦

2 2h̄ −2µB 54.7◦

3 3h̄ −3µB 30.0◦

12. (a) For n = 3 there are 3 possible values of l: 0, 1, and 2.
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(b) We interpret this as asking for the number of distinct values for ml (this ignores the multiplicity of
any particular value). For each l there are 2l+1 possible values of ml. Thus the number of possible
m′

ls for l = 2 is (2l+1) = 5. Examining the l = 1 and l = 0 cases cannot lead to any new (distinct)
values for ml, so the answer is 5.

(c) Regardless of the values of n, l and ml, for an electron there are always two possible values of ms:
± 1

2 .

(d) The population in the n = 3 shell is equal to the number of electron states in the shell, or 2n2 =
2(32) = 18.

(e) Each subshell has its own value of l. Since there are three different values of l for n = 3, there are
three subshells in the n = 3 shell.

13. Since L2 = L2
x + L2

y + L2
z,
√

L2
x + L2

y =
√

L2 − L2
z. Replacing L2 with ℓ(ℓ+ 1)h̄2 and Lz with mℓh̄, we

obtain
√

L2
x + L2

y = h̄
√

ℓ(ℓ+ 1)−m2
ℓ .

For a given value of ℓ, the greatest that mℓ can be is ℓ, so the smallest that
√

L2
x + L2

y can be is

h̄
√

ℓ(ℓ+ 1)− ℓ2 = h̄
√
ℓ. The smallest possible magnitude of mℓ is zero, so the largest

√

L2
x + L2

y can be

is h̄
√

ℓ(ℓ+ 1). Thus,

h̄
√
ℓ ≤

√

L2
x + L2

y ≤ h̄
√

ℓ(ℓ+ 1) .

14. (a) The value of l satisfies
√

l(l+ 1)h̄ ≈
√
l2h̄ = lh̄ = L, so l ≃ L/h̄ ≃ 3× 1074.

(b) The number is 2l+ 1 ≈ 2(3× 1074) = 6× 1074.

(c) Since

cos θmin =
ml maxh̄
√

l(l + 1)h̄
=

l
√

l(l + 1)
≈ 1− 1

2l
= 1− 1

2(3× 1074)

or cos θmin ≃ 1− θ2min/2 ≈ 1− 10−74/6, we have θmin ≃
√

10−74/3 = 6× 10−38 rad. The correspon-
dence principle requires that all the quantum effects vanish as h̄→ 0. In this case h̄/L is extremely
small so the quantization effects are barely existent, with θmin ≃ 10−38 rad ≃ 0.

15. The magnitude of the spin angular momentum is S =
√

s(s+ 1) h̄ = (
√

3/2)h̄, where s = 1
2 is used.

The z component is either Sz = h̄/2 or −h̄/2. If Sz = +h̄/2, the angle θ between the spin angular
momentum vector and the positive z axis is

θ = cos−1

(

Sz

S

)

= cos−1

(

1√
3

)

= 54.7◦ .

If Sz = −h̄/2, the angle is θ = 180◦ − 54.7◦ = 125.3◦.

16. (a) From Fig. 41-10 and Eq. 41-18,

∆E = 2µBB =
2(9.27× 10−24 J/T)(0.50 T)

1.60× 10−19 J/eV
= 58µeV .

(b) From ∆E = hf we get

f =
∆E

h
=

9.27× 10−24 J

6.63× 10−34 J·s = 1.4× 1010 Hz = 14 GHz .

(c) The wavelength is

λ =
c

f
=

2.998× 108 m/s

1.4× 1010 Hz
= 2.1 cm ,

which is in the short radio wave region.
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17. The acceleration is

a =
F

M
=

(µ cos θ) (dB/dz)

M
,

where M is the mass of a silver atom, µ is its magnetic dipole moment, B is the magnetic field, and θ is
the angle between the dipole moment and the magnetic field. We take the moment and the field to be
parallel (cos θ = 1) and use the data given in Sample Problem 41-1 to obtain

a =
(9.27× 10−24 J/T)(1.4× 103 T/m)

1.8× 10−25 kg
= 7.21× 104 m/s

2
.

18. (a) From Eq. 41-19,

F = µB

∣

∣

∣

∣

dB

dz

∣

∣

∣

∣

= (9.27× 10−24 J/T)(1.6× 102 T/m) = 1.5× 10−21 N .

(b) The vertical displacement is

∆x =
1

2
at2 =

1

2

(

F

m

)(

l

v

)2

=
1

2

(

1.5× 10−21 N

1.67× 10−27 kg

)(

0.80 m

1.2× 105 m/s

)2

= 2.0× 10−5 m .

19. The energy of a magnetic dipole in an external magnetic field ~B is U = −~µ · ~B = −µzB, where ~µ is
the magnetic dipole moment and µz is its component along the field. The energy required to change
the moment direction from parallel to antiparallel is ∆E = ∆U = 2µzB. Since the z component
of the spin magnetic moment of an electron is the Bohr magneton µB , ∆E = 2µBB = 2(9.274 ×
10−24 J/T)(0.200 T) = 3.71× 10−24 J. The photon wavelength is

λ =
c

f
=

hc

∆E
=

(6.63× 10−34 J·s)(3.00× 108 m/s)

3.71× 10−24 J
= 5.36× 10−2 m .

20. We let ∆E = 2µBBeff (based on Fig. 41-10 and Eq. 41-18) and solve for Beff :

Beff =
∆E

2µB
=

hc

2λµB
=

1240 nm·eV
2(21× 10−7 nm)(5.788× 10−5 eV/T)

= 51 mT .

21. (a) Using the result of problem 3 in Chapter 39,

∆E = hc

(

1

λ1
− 1

λ2

)

= (1240 eV·nm)

(

1

588.995 nm
− 1

589.592 nm

)

= 2.13 meV .

(b) From ∆E = 2µBB (see Fig. 41-10 and Eq. 41-18), we get

B =
∆E

2µB
=

2.13× 10−3 eV

2(5.788× 10−5 eV/T)
= 18 T .

22. The total magnetic field, B = Blocal +Bext, satisfies ∆E = hf = 2µB (see Eq. 41-22). Thus,

Blocal =
hf

2µ
−Bext =

(6.63× 10−34J·s)(34 × 106 Hz)

2(1.41× 10−26 J/T)
− 0.78 T = 19 mT .
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23. Because of the Pauli principle (and the requirement that we construct a state of lowest possible total
energy), two electrons fill the n = 1, 2, 3 levels and one electron occupies the n = 4 level. Thus, using
Eq. 40-4,

Eground = 2E1 + 2E2 + 2E3 + E4

= 2

(

h2

8mL2

)

(1)2 + 2

(

h2

8mL2

)

(2)2 + 2

(

h2

8mL2

)

(3)2 +

(

h2

8mL2

)

(4)2

= (2 + 8 + 18 + 16)

(

h2

8mL2

)

= 44

(

h2

8mL2

)

.

24. Using Eq. 40-20 (see also problem 27 in Chapter 40) we find that the lowest four levels of the rectangular
corral (with this specific “aspect ratio”) are non-degenerate, with energies E1,1 = 1.25, E1,2 = 2.00,
E1,3 = 3.25, and E2,1 = 4.25 (all of these understood to be in “units” of h2/8mL2). Therefore, obeying
the Pauli principle, we have

Eground = 2E1,1 + 2E1,2 + 2E1,3 + E2,1 = 2(1.25) + 2(2.00) + 2(3.25) + 4.25

which means (putting the “unit” factor back in) that the lowest possible energy of the system is Eground =
17.25(h2/8mL2).

25. (a) Promoting one of the electrons (described in problem 23) to a not-fully occupied higher level, we
find that the configuration with the least total energy greater than that of the ground state has the
n = 1 and 2 levels still filled, but now has only one electron in the n = 3 level; the remaining two
electrons are in the n = 4 level. Thus,

Efirst excited = 2E1 + 2E2 + E3 + 2E4

= 2

(

h2

8mL2

)

(1)2 + 2

(

h2

8mL2

)

(2)2 +

(

h2

8mL2

)

(3)2 + 2

(

h2

8mL2

)

(4)2

= (2 + 8 + 9 + 32)

(

h2

8mL2

)

= 51

(

h2

8mL2

)

.

(b) Now, the configuration which provides the next higher total energy, above that found in part (a),
has the bottom three levels filled (just as in the ground state configuration) and has the seventh
electron occupying the n = 5 level:

Esecond excited = 2E1 + 2E2 + 2E3 + E5

= 2

(

h2

8mL2

)

(1)2 + 2

(

h2

8mL2

)

(2)2 + 2

(

h2

8mL2

)

(3)2 +

(

h2

8mL2

)

(5)2

= (2 + 8 + 18 + 25)

(

h2

8mL2

)

= 53

(

h2

8mL2

)

.

(c) The third excited state has the n = 1, 3, 4 levels filled, and the n = 2 level half-filled:

Ethird excited = 2E1 + E2 + 2E3 + 2E4

= 2

(

h2

8mL2

)

(1)2 +

(

h2

8mL2

)

(2)2 + 2

(

h2

8mL2

)

(3)2 + 2

(

h2

8mL2

)

(4)2

= (2 + 4 + 18 + 32)

(

h2

8mL2

)

= 56

(

h2

8mL2

)

.

(d) The energy states of this problem and problem 23 are suggested in the sketch below:
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third excited 56(h2/8mL2)

second excited 53(h2/8mL2)

first excited 51(h2/8mL2)

ground state 44(h2/8mL2)

26. (a) Using Eq. 40-20 (see also problem 27 in Chapter 40) we find that the lowest five levels of the
rectangular corral (with this specific “aspect ratio”) have energies E1,1 = 1.25, E1,2 = 2.00, E1,3 =
3.25, E2,1 = 4.25, and E2,2 = 5.00 (all of these understood to be in “units” of h2/8mL2). It
should be noted that the energy level we denote E2,2 actually corresponds to two energy levels
(E2,2 and E1,4; they are degenerate), but that will not affect our calculations in this problem. The
configuration which provides the lowest system energy higher than that of the ground state has the
first three levels filled, the fourth one empty, and the fifth one half-filled:

Efirst excited = 2E1,1 + 2E1,2 + 2E1,3 + E2,2 = 2(1.25) + 2(2.00) + 2(3.25) + 5.00

which means (putting the “unit” factor back in) the energy of the first excited state is Efirst excited =
18.00(h2/8mL2).

(b) The configuration which provides the next higher system energy has the first two levels filled, the
third one half-filled, and the fourth one filled:

Esecond excited = 2E1,1 + 2E1,2 + E1,3 + 2E2,1 = 2(1.25) + 2(2.00) + 3.25 + 2(4.25)

which means (putting the “unit” factor back in) the energy of the second excited state isEsecond excited =
18.25(h2/8mL2).

(c) Now, the configuration which provides the next higher system energy has the first two levels filled,
with the next three levels half-filled:

Ethird excited = 2E1,1 + 2E1,2 + E1,3 + E2,1 + E2,2 = 2(1.25) + 2(2.00) + 3.25 + 4.25 + 5.00

which means (putting the “unit” factor back in) the energy of the third excited state isEthird excited =
19.00(h2/8mL2).

(d) The energy states of this problem and problem 24 are suggested in the sketch below:
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third excited 19.00(h2/8mL2)

second excited 18.25(h2/8mL2)

first excited 18.00(h2/8mL2)

ground state 17.25(h2/8mL2)

27. In terms of the quantum numbers nx, ny, and nz, the single-particle energy levels are given by

Enx,ny,nz =
h2

8mL2

(

n2
x + n2

y + n2
z

)

.

The lowest single-particle level corresponds to nx = 1, ny = 1, and nz = 1 and is E1,1,1 = 3(h2/8mL2).
There are two electrons with this energy, one with spin up and one with spin down. The next lowest
single-particle level is three-fold degenerate in the three integer quantum numbers. The energy is E1,1,2 =
E1,2,1 = E2,1,1 = 6(h2/8mL2). Each of these states can be occupied by a spin up and a spin down
electron, so six electrons in all can occupy the states. This completes the assignment of the eight
electrons to single-particle states. The ground state energy of the system is Egr = (2)(3)(h2/8mL2) +
(6)(6)(h2/8mL2) = 42(h2/8mL2).

28. We use the results of problem 28 in Chapter 40. The Pauli principle requires that no more than two
electrons be in the lowest energy level (at E1,1,1 = 3(h2/8mL2)), but – due to their degeneracies – as
many as six electrons can be in the next three levels (E′ = E1,1,2 = E1,2,1 = E2,1,1 = 6(h2/8mL2),
E′′ = E1,2,2 = E2,2,1 = E2,1,2 = 9(h2/8mL2), and E′′′ = E1,1,3 = E1,3,1 = E3,1,1 = 11(h2/8mL2)).
Using Eq. 40-21, the level above those can only hold two electrons: E2,2,2 = (22 + 22 + 22)(h2/8mL2) =
12(h2/8mL2). And the next higher level can hold as much as twelve electrons (see part (e) of problem 28
in Chapter 40) and has energy E′′′′ = 14(h2/8mL2).

(a) The configuration which provides the lowest system energy higher than that of the ground state
has the first level filled, the second one with one vacancy, and the third one with one occupant:

Efirst excited = 2E1,1,1 + 5E′ + E′′ = 2(3) + 5(6) + 9

which means (putting the “unit” factor back in) the energy of the first excited state is Efirst excited =
45(h2/8mL2).

(b) The configuration which provides the next higher system energy has the first level filled, the second
one with one vacancy, the third one empty, and the fourth one with one occupant:

Esecond excited = 2E1,1,1 + 5E′ + E′′ = 2(3) + 5(6) + 11

which means (putting the “unit” factor back in) the energy of the second excited state isEsecond excited =
47(h2/8mL2).

(c) Now, there are a couple of configurations which provides the next higher system energy. One has
the first level filled, the second one with one vacancy, the third and fourth ones empty, and the fifth
one with one occupant:

Ethird excited = 2E1,1,1 + 5E′ + E′′′ = 2(3) + 5(6) + 12
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which means (putting the “unit” factor back in) the energy of the third excited state isEthird excited =
48(h2/8mL2). The other configuration with this same total energy has the first level filled, the sec-
ond one with two vacancies, and the third one with one occupant.

(d) The energy states of this problem and problem 27 are suggested in the sketch below:

third excited 48(h2/8mL2)

second excited 47(h2/8mL2)

first excited 45(h2/8mL2)

ground state 42(h2/8mL2)

29. For a given shell with quantum number n the total number of available electron states is 2n2. Thus, for
the first four shells (n = 1 through 4) the number of available states are 2, 8, 18, and 32 (see Appendix
G). Since 2 + 8 + 18 + 32 = 60 < 63, according to the “logical” sequence the first four shells would be
completely filled in an europium atom, leaving 63− 60 = 3 electrons to partially occupy the n = 5 shell.
Two of these three electrons would fill up the 5s subshell, leaving only one remaining electron in the only
partially filled subshell (the 5p subshell). In chemical reactions this electron would have the tendency to
be transferred to another element, leaving the remaining 62 electrons in chemically stable, completely
filled subshells. This situation is very similar to the case of sodium, which also has only one electron in
a partially filled shell (the 3s shell).

30. The first three shells (n = 1 through 3), which can accommodate a total of 2 + 8 + 18 = 28 electrons,
are completely filled. For selenium (Z = 34) there are still 34− 28 = 6 electrons left. Two of them go to
the 4s subshell, leaving the remaining four in the highest occupied subshell, the 4p subshell. Similarly,
for bromine (Z = 35) the highest occupied subshell is also the 4p subshell, which contains five electrons;
and for krypton (Z = 36) the highest occupied subshell is also the 4p subshell, which now accommodates
six electrons.

31. Without the spin degree of freedom the number of available electron states for each shell would be
reduced by half. So the values of Z for the noble gas elements would become half of what they are now:
Z = 1, 5, 9, 18, 27, and 43. Of this set of numbers, the only one which coincides with one of the familiar
noble gas atomic numbers (Z = 2, 10, 18, 36, 54, and 86) is 18. Thus, argon would be the only one that
would remain “noble.”

32. When a helium atom is in its ground state, both of its electrons are in the 1s state. Thus, for each of
the electrons, n = 1, l = 0, and ml = 0. One of the electrons is spin up (ms = + 1

2 ), while the other is
spin down (ms = − 1

2 ).

33. (a) All states with principal quantum number n = 1 are filled. The next lowest states have n = 2. The
orbital quantum number can have the values ℓ = 0 or 1 and of these, the ℓ = 0 states have the
lowest energy. The magnetic quantum number must be mℓ = 0 since this is the only possibility if
ℓ = 0. The spin quantum number can have either of the values ms = − 1

2 or + 1
2 . Since there is

no external magnetic field, the energies of these two states are the same. Therefore, in the ground
state, the quantum numbers of the third electron are either n = 2, ℓ = 0, mℓ = 0, ms = − 1

2 or
n = 2, ℓ = 0, mℓ = 0, ms = + 1

2 .

(b) The next lowest state in energy is an n = 2, ℓ = 1 state. All n = 3 states are higher in energy. The
magnetic quantum number can be mℓ = −1, 0, or +1; the spin quantum number can be ms = − 1

2
or + 1

2 . If both external and internal magnetic fields can be neglected, all these states have the same
energy.
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34. (a) The number of different ml
′s is 2l+1 = 3, and the number of different ms

′s is 2. Thus, the number
of combinations is N = (3× 2)2/2 = 18.

(b) There are six states disallowed by the exclusion principle, in which both electrons share the quantum
numbers

(n, l,ml,ms) =

(

2, 1, 1,
1

2

)

,

(

2, 1, 1,−1

2

)

,

(

2, 1, 0,
1

2

)

,

(

2, 1, 0,−1

2

)

,

(

2, 1,−1,
1

2

)

,

(

2, 1,−1,−1

2

)

.

35. For a given value of the principal quantum number n, there are n possible values of the orbital quantum
number ℓ, ranging from 0 to n− 1. For any value of ℓ, there are 2ℓ+ 1 possible values of the magnetic
quantum number mℓ, ranging from −ℓ to +ℓ. Finally, for each set of values of ℓ and mℓ, there are
two states, one corresponding to the spin quantum number ms = − 1

2 and the other corresponding to
ms = + 1

2 . Hence, the total number of states with principal quantum number n is

N = 2
n−1
∑

0

(2ℓ+ 1) .

Now
n−1
∑

0

2ℓ = 2

n−1
∑

0

ℓ = 2
n

2
(n− 1) = n(n− 1) ,

since there are n terms in the sum and the average term is (n− 1)/2. Furthermore,

n−1
∑

0

1 = n .

Thus N = 2 [n(n− 1) + n] = 2n2.

36. The kinetic energy gained by the electron is eV , where V is the accelerating potential difference. A
photon with the minimum wavelength (which, because of E = hc/λ, corresponds to maximum photon
energy) is produced when all of the electron’s kinetic energy goes to a single photon in an event of the
kind depicted in Fig. 41-15. Thus, using the result of problem 3 in Chapter 39,

eV =
hc

λmin
=

1240 eV·nm

0.10 nm
= 1.24× 104 eV .

Therefore, the accelerating potential difference is V = 1.24× 104 V = 12.4 kV.

37. We use eV = hc/λmin (see Eq. 41-23 and Eq. 39-4):

h =
eV λmin

c
=

(1.60× 10−19 C)(40.0× 103 eV)(31.1× 10−12 m)

2.998× 108 m/s
= 6.63× 10−34 J·s .

38. Letting eV = hc/λmin (see Eq. 41-23 and Eq. 39-4), we get

λmin =
hc

eV
=

1240 nm·eV
eV

=
1240 pm·keV

eV
=

1240 pm

V

where V is measured in kV.

39. The initial kinetic energy of the electron is 50.0 keV. After the first collision, the kinetic energy is 25 keV;
after the second, it is 12.5 keV; and after the third, it is zero. The energy of the photon produced in the
first collision is 50.0 keV− 25.0 keV = 25.0 keV. The wavelength associated with this photon is

λ =
1240 eV·nm

25.0× 103 eV
= 4.96× 10−2 nm = 49.6 pm
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where the result of Exercise 3 of Chapter 39 is used. The energies of the photons produced in the second
and third collisions are each 12.5 keV and their wavelengths are

λ =
1240 eV·nm

12.5× 103 eV
= 9.92× 10−2 nm = 99.2 pm .

40. (a) and (b) Let the wavelength of the two photons be λ1 and λ2 = λ1 + ∆λ. Then,

eV =
hc

λ1
+

hc

λ1 + ∆λ
,

or

λ1 =
−(∆λ/λ0 − 2)±

√

(∆λ/λ0)2 + 4

2/∆λ
.

Here, ∆λ = 130 pm and λ0 = hc/eV = 1240 keV·pm/20 keV = 62 pm. The result of problem 3 in
Chapter 39 is adapted to these units (hc = 1240 eV·nm = 1240 keV·pm). We choose the plus sign
in the expression for λ1 (since λ1 > 0) and obtain

λ1 =
−(130 pm/62 pm− 2) +

√

(130 pm/62 pm)2 + 4

2/62 pm
= 87 pm ,

and
λ2 = λ1 + ∆λ = 87 pm + 130 pm = 2.2× 102 pm .

The energy of the electron after its first deceleration is

K = Ki −
hc

λ1
= 20 keV− 1240 keV·pm

87 pm
= 5.7 keV.

The energies of the two photons are

E1 =
hc

λ1
=

1240 keV·pm

87 pm
= 14 keV

and

E2 =
hc

λ2
=

1240 keV·pm

130 pm
= 5.7 keV .

41. Suppose an electron with total energy E and momentum p spontaneously changes into a photon. If
energy is conserved, the energy of the photon is E and its momentum has magnitude E/c. Now the
energy and momentum of the electron are related by E2 = (pc)2 +(mc2)2, so pc =

√

E2 − (mc2)2. Since
the electron has non-zero mass, E/c and p cannot have the same value. Hence, momentum cannot be
conserved. A third particle must participate in the interaction, primarily to conserve momentum. It
does, however, carry off some energy.

42. (a) We use eV = hc/λmin (see Eq. 41-23 and Eq. 39-4). The result of problem 3 in Chapter 39 is
adapted to these units (hc = 1240 eV·nm = 1240 keV·pm).

λmin =
hc

eV
=

1240 keV·pm

50.0 keV
= 24.8 pm .

(b) and (c) The values of λ for the Kα and Kβ lines do not depend on the external potential and are
therefore unchanged.

43. (a) The cut-off wavelength λmin is characteristic of the incident electrons, not of the target material.
This wavelength is the wavelength of a photon with energy equal to the kinetic energy of an incident
electron. According to the result of Exercise 3 of Chapter 39,

λmin =
1240 eV·nm

35× 103 eV
= 3.54× 10−2 nm = 35.4 pm .
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(b) A Kα photon results when an electron in a target atom jumps from the L-shell to the K-shell.
The energy of this photon is 25.51 keV − 3.56 keV = 21.95 keV and its wavelength is λKα =
(1240 eV·nm)/(21.95× 103 eV) = 5.65× 10−2 nm = 56.5 pm.

(c) A Kβ photon results when an electron in a target atom jumps from the M -shell to the K-
shell. The energy of this photon is 25.51 keV − 0.53 keV = 24.98 keV and its wavelength is
λKβ = (1240 eV·nm)/(24.98× 103 eV) = 4.96× 10−2 nm = 49.6 pm.

44. The result of problem 3 in Chapter 39 is adapted to these units (hc = 1240 eV·nm = 1240 keV·pm). For
the Kα line from iron

∆E =
hc

λ
=

1240 keV·pm

193 pm
= 6.4 keV .

We remark that for the hydrogen atom the corresponding energy difference is

∆E12 = −(13.6 eV)

(

1

22
− 1

11

)

= 10 eV.

That this difference is much greater in iron is due to the fact that its atomic nucleus contains 26 protons,
exerting a much greater force on the K- and L-shell electrons than that provided by the single proton
in hydrogen.

45. Since the frequency of an x-ray emission is proportional to (Z − 1)2, where Z is the atomic number of
the target atom, the ratio of the wavelength λNb for the Kα line of niobium to the wavelength λGa for
the Kα line of gallium is given by λNb/λGa = (ZGa − 1)2/(ZNb − 1)2, where ZNb is the atomic number
of niobium (41) and ZGa is the atomic number of gallium (31). Thus λNb/λGa = (30)2/(40)2 = 9/16.

46. The result of problem 3 in Chapter 39 is adapted to these units (hc = 1240 eV·nm = 1240 keV·pm).
The energy difference EL − EM for the x-ray atomic energy levels of molybdenum is

∆E = EL − EM =
hc

λL
− hc

λM
=

1240 keV·pm

63.0 pm
− 1240 keV·pm

71.0 pm
= 2.2 keV .

47. From the data given in the problem, we calculate frequencies (using Eq. 39-1), take their square roots,
look up the atomic numbers (see Appendix F), and do a least-squares fit to find the slope: the result
is 5.02× 107 with the odd-sounding unit of a square root of a Hertz. We remark that the least squares
procedure also returns a value for the y-intercept of this statistically determined “best-fit” line; that
result is negative and would appear on a graph like Fig. 41-17 to be at about −0.06 on the vertical axis.
Also, we can estimate the slope of the Moseley line shown in Fig. 41-17:

(1.95− 0.50)109 Hz1/2

40− 11
≈ 5.0× 107 Hz1/2 .

These are in agreement with the discussion in §41-10.

48. (a) From Fig. 41-14 we estimate the wavelengths corresponding to the Kα and Kβ lines to be λα =
70.0 pm and λβ = 63.0 pm, respectively. Using the result of problem 3 in Chapter 39, adapted to
these units (hc = 1240 eV·nm = 1240 keV·pm),

Eα =
hc

λα
=

1240 keV·pm

70.0 pm
= 17.7 keV ,

and Eβ = (1240 keV·nm)/(63.0 pm) = 19.7 keV.

(b) Both Zr and Nb can be used, since Eα < 18.00 eV < Eβ and Eα < 18.99 eV < Eβ . According to
the hint given in the problem statement, Zr is the better choice.

49. (a) An electron must be removed from the K-shell, so that an electron from a higher energy shell can
drop. This requires an energy of 69.5 keV. The accelerating potential must be at least 69.5 kV.
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(b) After it is accelerated, the kinetic energy of the bombarding electron is 69.5 keV. The energy of a
photon associated with the minimum wavelength is 69.5 keV, so its wavelength is

λmin =
1240 eV·nm

69.5× 103 eV
= 1.78× 10−2 nm = 17.8 pm .

(c) The energy of a photon associated with the Kα line is 69.5 keV − 11.3 keV = 58.2 keV and its
wavelength is λKα = (1240 eV·nm)/(58.2 × 103 eV) = 2.13 × 10−2 nm = 21.3 pm. The energy
of a photon associated with the Kβ line is 69.5 keV − 2.30 keV = 67.2 keV and its wavelength is
λKβ = (1240 eV·nm)/(67.2 × 103 eV) = 1.85 × 10−2 nm = 18.5 pm. The result of Exercise 3 of
Chapter 39 is used.

50. We use Eq. 37-31, Eq. 40-6, and the result of problem 3 in Chapter 39, adapted to these units (hc =
1240 eV·nm = 1240 keV·pm). Letting 2d sin θ = mλ = mhc/∆E, where θ = 74.1◦, we solve for d:

d =
mhc

2∆E sin θ
=

(1)(1240 keV·nm)

2(8.979 keV− 0.951 keV)(sin 74.1◦)
= 80.3 pm .

51. (a) According to Eq. 41-26, f ∝ (Z − 1)2, so the ratio of energies is (using Eq. 39-2) f/f ′ = [(Z −
1)/(Z ′ − 1)]2.

(b) We refer to Appendix F. Applying the formula from part (a) to Z = 92 and Z ′ = 13, we obtain

E

E′ =
f

f ′ =

(

Z − 1

Z ′ − 1

)2

=

(

92− 1

13− 1

)2

= 57.5 .

(c) Applying this to Z = 92 and Z ′ = 3, we obtain

E

E′ =

(

92− 1

3− 1

)2

= 2070 .

52. (a) The transition is from n = 2 to n = 1, so Eq. 41-26 combined with Eq. 41-24 yields

f =

(

mee
4

8ε20h
3

)(

1

12
− 1

22

)

(Z − 1)2

so that the constant in Eq. 41-27 is

C =

√

3mee4

32ε20h
3

= 4.9673× 107 Hz1/2

using the values in the next-to-last column in the Table in Appendix B (but note that the power
of ten is given in the middle column).

(b) We are asked to compare the results of Eq. 41-27 (squared, then multiplied by the accurate values
of h/e found in Appendix B to convert to x ray energies) with those in the table of Kα energies (in
eV) given at the end of the problem. We look up the corresponding atomic numbers in Appendix F.
An example is shown below (for Nitrogen):

Etheory =
h

e
C2(Z − 1)2 =

6.6260688× 10−34 J·s
1.6021765× 10−19 J/eV

(

4.9673× 107 Hz1/2
)2

(7− 1)2 = 367.35 eV

which is 6.4% lower than the experimental value of 392.4 eV. Progressing through the list, from
Lithium to Magnesium , we find all the theoretical values are lower than the experimental ones by
these percentages: 24.8%, 15.4%, 10.9%, 7.9%, 6.4%, 4.7%, 3.5%, 2.6%, 2.0%, and 1.5%.
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(c) The trend is clear from the list given above: the agreement between theory and experiment becomes
better as Z increases. One might argue that the most questionable step in §41-10 is the replacement
e4 → (Z − 1)2e4 and ask why this could not equally well be e4 → (Z − .9)2e4 or e4 → (Z − .8)2e4?
For large Z, these subtleties would not matter so much as they do for small Z, since Z − ξ ≈ Z for
Z ≫ ξ.

53. (a) The length of the pulse’s wave train is given by L = c∆t = (2.998 × 108 m/s)(10 × 10−15 s) =
3.0× 10−6 m. Thus, the number of wavelengths contained in the pulse is

N =
L

λ
=

3.0× 10−6 m

500× 10−9 m
= 6.0 .

(b) We solve for X from 10 fm/1 m = 1 s/X :

X =
(1 s)(1 m)

10× 10−15 m
=

1 s

(10× 10−15)(3.15× 107 s/y)
= 3.2× 106y .

54. According to Sample Problem 41-6, Nx/N0 = 1.3×10−38. Let the number of moles of the lasing material
needed be n; then N0 = nNA, where NA is the Avogadro constant. Also Nx = 10. We solve for n:

n =
Nx

(1.3× 10−38)NA
=

10

(1.3× 10−38)(6.02× 1023 )
= 1.3× 1015 mol .

55. The number of atoms in a state with energy E is proportional to e−E/kT , where T is the temperature
on the Kelvin scale and k is the Boltzmann constant. Thus the ratio of the number of atoms in the
thirteenth excited state to the number in the eleventh excited state is

n13

n11
= e−∆E/kT ,

where ∆E is the difference in the energies: ∆E = E13 − E11 = 2(1.2 eV) = 2.4 eV. For the given
temperature, kT = (8.62× 10−2 eV/K)(2000 K) = 0.1724 eV. Hence,

n13

n11
= e−2.4/0.1724 = 9.0× 10−7 .

56. (a) The distance from the Earth to the Moon is dem = 3.82× 108 m (see Appendix C). Thus, the time
required is given by

t =
2dem

c
=

2(3.82× 108 m)

2.998× 108 m/s
= 2.55 s .

(b) We denote the uncertainty in time measurement as δt and let 2δdes = 15 cm. Then, since dem ∝ t,
δt/t = δdem/dem. We solve for δt:

δt =
tδdem

dem
=

(2.55 s)(0.15 m)

2(3.82× 108 m)
= 5.0× 10−10 s .

57. From Eq. 41-29, N2/N1 = e−(E2−E1)/kT . We solve for T :

T =
E2 − E1

k ln(N1/N2)
=

3.2 eV

(1.38× 10−23 J/K) ln(2.5× 1015/6.1× 1013)
= 10000 K .

58. Consider two levels, labeled 1 and 2, with E2 > E1. Since T = −|T | < 0,

N2

N1
= e−(E2−E1)/kT = e−|E2−E1|/(−k|T |) = e|E2−E1|/k|T | > 1 .

Thus, N2 > N1; this is population inversion. We solve for T :

T = −|T | = − E2 − E1

k ln(N2/N1)
= − 2.26 eV

(8.62× 10−5 eV/K) ln(1 + 0.100)
= −2.75× 105 K .
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59. (a) If t is the time interval over which the pulse is emitted, the length of the pulse is L = ct =
(3.00× 108 m/s)(1.20× 10−11 s) = 3.60× 10−3 m.

(b) If Ep is the energy of the pulse, E is the energy of a single photon in the pulse, and N is the
number of photons in the pulse, then Ep = NE. The energy of the pulse is Ep = (0.150 J)/(1.602×
10−19 J/eV) = 9.36× 1017 eV and the energy of a single photon is E = (1240 eV·nm)/(694.4 nm) =
1.786 eV. Hence,

N =
Ep

E
=

9.36× 1017 eV

1.786 eV
= 5.24× 1017 photons .

60. Let the power of the laser beam be P and the energy of each photon emitted be E. Then, the rate of
photon emission is

R =
P

E
=

P

hc/λ
=
Pλ

hc

=
(2.3× 10−3 W)(632.8× 10−9 m)

(6.63× 10−34 J·s)(2.998× 108 m/s)

= 7.3× 1015 s−1 .

61. The Moon is a distance R = 3.82×108 m from Earth (see Appendix C). We note that the “cone” of light
has apex angle equal to 2θ. If we make the small angle approximation (equivalent to using Eq. 37-14),
then the diameter D of the spot on the Moon is

D = 2Rθ = 2R

(

1.22λ

d

)

=
2(3.82× 108 m)(1.22)(600× 10−9 m)

0.12 m

= 4.7× 103 m = 4.7 km .

62. Let the range of frequency of the microwave be ∆f . Then the number of channels that could be
accommodated is

N =
∆f

10 MHz
=

(2.998× 108 m/s)[(450 nm)−1 − (650 nm)−1]

10 MHz
= 2.1× 107 .

The higher frequencies of visible light would allow many more channels to be carried compared with
using the microwave.

63. Let the power of the laser beam be P and the energy of each photon emitted be E. Then, the rate of
photon emission is

R =
P

E
=

P

hc/λ
=
Pλ

hc

=
(5.0× 10−3 W)(0.80× 10−6 m)

(6.63× 10−34 J·s)(2.998× 108 m/s)

= 2.0× 1016 s−1 .

64. For the nth harmonic of the standing wave of wavelength λ in the cavity of width L we have nλ = 2L,
so n∆λ+ λ∆n = 0. Let ∆n = ±1 and use λ = 2L/n to obtain

|∆λ| = λ|∆n|
n

=
λ

n
= λ

(

λ

2L

)

=
(533 nm)2

2(8.0× 107 nm)
= 1.8× 10−12 m = 1.8 pm .
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65. (a) If both mirrors are perfectly reflecting, there is a node at each end of the crystal. With one end
partially silvered, there is a node very close to that end. We assume nodes at both ends, so there are
an integer number of half-wavelengths in the length of the crystal. The wavelength in the crystal
is λc = λ/n, where λ is the wavelength in a vacuum and n is the index of refraction of ruby. Thus
N(λ/2n) = L, where N is the number of standing wave nodes, so

N =
2nL

λ
=

2(1.75)(0.0600 m)

694× 10−9 m
= 3.03× 105 .

(b) Since λ = c/f , where f is the frequency, N = 2nLf/c and ∆N = (2nL/c)∆f . Hence,

∆f =
c∆N

2nL
=

(2.998× 108 m/s)(1)

2(1.75)(0.0600 m)
= 1.43× 109 Hz .

(c) The speed of light in the crystal is c/n and the round-trip distance is 2L, so the round-trip travel
time is 2nL/c. This is the same as the reciprocal of the change in frequency.

(d) The frequency is f = c/λ = (2.998× 108 m/s)/(694× 10−9 m) = 4.32× 1014 Hz and the fractional
change in the frequency is ∆f/f = (1.43× 109 Hz)/(4.32× 1014 Hz) = 3.31× 10−6.

66. (a) We denote the upper level as level 1 and the lower one as level 2. From N1/N2 = e−(E1−E2)/kT we
get (using the result of problem 3 in Chapter 39)

N1 = N2e
−(E1−E2)/kT = N2e

−hc/λkT

= (4.0× 1020)e−(1240 eV·nm)/[(580 nm)(8.62×10−5 eV/K)(300K)]

= 5.0× 10−16 ≪ 1 ,

so practically no electron occupies the upper level.

(b) With N1 = 3.0× 1020 atoms emitting photons and N2 = 1.0× 1020 atoms absorbing photons, then
the net energy output is

E = (N1 −N2)Ephoton = (N1 −N2)
hc

λ

=
(

2.0× 1020
) (6.63× 10−34 J·s)(2.998× 108 m/s)

580× 10−9 m
= 68 J .

67. (a) The intensity at the target is given by I = P/A, where P is the power output of the source and A is

the area of the beam at the target. We want to compute I and compare the result with 108 W/m
2
.

The beam spreads because diffraction occurs at the aperture of the laser. Consider the part of the
beam that is within the central diffraction maximum. The angular position of the edge is given by
sin θ = 1.22λ/d, where λ is the wavelength and d is the diameter of the aperture (see Exercise 61).
At the target, a distance D away, the radius of the beam is r = D tan θ. Since θ is small, we may
approximate both sin θ and tan θ by θ, in radians. Then, r = Dθ = 1.22Dλ/d and

I =
P

πr2
=

Pd2

π(1.22Dλ)2

=
(5.0× 106 W)(4.0 m)2

π [1.22(3000× 103 m)(3.0× 10−6 m)]
2

= 2.1× 105 W/m
2
,

not great enough to destroy the missile.
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(b) We solve for the wavelength in terms of the intensity and substitute I = 1.0× 108 W/m2:

λ =
d

1.22D

√

P

πI
=

4.0 m

1.22(3000× 103 m)

√

5.0× 106 W

π(1.0× 108 W/m2)

= 1.4× 10−7 m = 140 nm .

68. (a) The radius of the central disk is

R =
1.22fλ

d
=

(1.22)(3.50 cm)(515 nm)

3.00 mm
= 7.33µm .

(b) The average power flux density in the incident beam is

P

πd2/4
=

4(5.00 W)

π(3.00 mm)2
= 707 kW/m

2
.

(c) The average power flux density in the central disk is

(0.84)P

πR2
=

(0.84)(5.00 W)

π(7.33µm)2
= 24.9 GW/m

2
.

69. (a) In the lasing action the molecules are excited from energy level E0 to energy level E2. Thus the
wavelength λ of the sunlight that causes this excitation satisfies

∆E = E2 − E0 =
hc

λ
,

which gives (using the result of problem 3 in Chapter 39)

λ =
hc

E2 − E0
=

1240 eV·nm

0.289 eV− 0
= 4.29× 103 nm = 4.29µm .

(b) Lasing occurs as electrons jump down from the higher energy level E2 to the lower level E1. Thus
the lasing wavelength λ′ satisfies

∆E′ = E2 − E1 =
hc

λ′
,

which gives

λ′ =
hc

E2 − E1
=

1240 eV·nm

0.289 eV− 0.165 eV
= 1.00× 104 nm = 10.0µm .

(c) Both λ and λ′ belong to the infrared region of the electromagnetic spectrum.

70. (a) The energy difference between the two states 1 and 2 was equal to the energy of the photon emitted.
Since the photon frequency was f = 1666 MHz, its energy was given by hf = (4.14 × 10−15 eV ·
s)(1666 MHz) = 6.90× 10−6 eV. Thus,

E2 − E1 = hf = 6.9× 10−6 eV = 6.9µeV .

(b) The emission was in the radio region of the electromagnetic spectrum.
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1. The number of atoms per unit volume is given by n = d/M , where d is the mass density of copper and
M is the mass of a single copper atom. Since each atom contributes one conduction electron, n is also
the number of conduction electrons per unit volume. Since the molar mass of copper is A = 63.54 g/mol,
M = A/NA = (63.54 g/mol)/(6.022× 1023 mol−1) = 1.055× 10−22 g. Thus,

n =
8.96 g/cm

3

1.055× 10−22 g
= 8.49× 1022 cm−3 = 8.49× 1028 m−3 .

2. We compute
(

3
16

√
2π

)2/3

≈ 0.121.

3. We use the ideal gas law in the form of Eq. 20-9:

p = nkT = (8.43× 1028 m−3)(1.38× 10−23 J/K)(300 K) = 3.49× 108 Pa = 3490 atm .

4. We note that n = 8.43× 1028 m−3 = 84.3 nm−3. From Eq. 42-9,

EF =
0.121(hc)2

mec2
n2/3 =

0.121(1240 eV·nm)2

511× 103 eV
(84.3 nm−3)2/3 = 7.0 eV

where the result of problem 3 in Chapter 39 is used.

5. (a) For copper, Eq. 42-10 leads to

dρ

dT
= [ρα]Cu = (2× 10−8 Ω·m)(4× 10−3 K−1) = 8× 10−11 Ω·m/K .

(b) For silicon,

dρ

dT
= [ρα]Si = (3× 103 Ω·m)(−70× 10−3 K−1) = −2.1× 102 Ω·m/K .

6. We note that there is one conduction electron per atom and that the molar mass of gold is 197 g/mol.
Therefore, combining Eqs. 42-2, 42-3 and 42-4 leads to

n =
(19.3 g/cm

3
)(106 cm3/m3)

(197 g/mol)/(6.02× 1023 mol−1)
= 5.90× 1028 m−3 .

7. (a) Eq. 42-5 gives

N(E) =
8
√

2πm3/2

h3
E1/2

for the density of states associated with the conduction electrons of a metal. This can be written

n(E) = CE1/2

1009
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where

C =
8
√

2πm3/2

h3
=

8
√

2π(9.109× 10−31 kg)3/2

(6.626× 10−34 J·s)3 = 1.062× 1056 kg3/2/J3 · s3 .

Now, 1 J = 1 kg·m2/s2 (think of the equation for kinetic energy K = 1
2mv

2), so 1 kg = 1 J·s2 ·m−2.

Thus, the units of C can be written (J·s2)3/2 ·(m−2)3/2 ·J−3 ·s−3 = J−3/2 ·m−3. This means

C = (1.062× 1056 J−3/2 ·m−3)(1.602× 10−19 J/eV)3/2 = 6.81× 1027 m−3 ·eV−3/2 .

(b) If E = 5.00 eV, then

n(E) = (6.81× 1027 m−3 ·eV−3/2
)(5.00 eV)1/2 = 1.52× 1028 eV−1 ·m−3 .

8. We equate EF with 1
2mev

2
F and write our expressions in such a way that we can make use of the electron

mc2 value found in Table 38-3:

vF =

√

2EF

m
= c

√

2EF

mc2
= (3.0× 105 km/s)

√

2(7.0 eV)

5.11× 105 eV
= 1.6× 103 km/s .

9. (a) At absolute temperature T = 0, the probability is zero that any state with energy above the Fermi
energy is occupied.

(b) The probability that a state with energy E is occupied at temperature T is given by

P (E) =
1

e(E−EF )/kT + 1

where k is the Boltzmann constant and EF is the Fermi energy. Now, E − EF = 0.062 eV and
(E − EF )/kT = (0.062 eV)/(8.62× 10−5 eV/K)(320 K) = 2.248, so

P (E) =
1

e2.248 + 1
= 0.0956 .

See Appendix B or Sample Problem 42-1 for the value of k.

10. We use the result of problem 7:

n(E) = CE1/2 =
[

6.81× 1027 m−3 ·(eV)
−2/3

]

(8.0 eV)1/2 = 1.9× 1028 m−3 ·eV−1 .

This is consistent with Fig.42-5.

11. According to Eq. 42-9, the Fermi energy is given by

EF =

(

3

16
√

2π

)2/3
h2

m
n2/3

where n is the number of conduction electrons per unit volume, m is the mass of an electron, and h is
the Planck constant. This can be written EF = An2/3, where

A =

(

3

16
√

2π

)2/3
h2

m
=

(

3

16
√

2π

)2/3
(6.626× 10−34 J·s)2

9.109× 10−31 kg
= 5.842× 10−38 J2 ·s2/kg .

Since 1 J = 1 kg·m2/s
2
, the units of A can be taken to be m2 ·J. Dividing by 1.602 × 10−19 J/eV, we

obtain A = 3.65× 10−19 m2 · eV.
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12. We reproduce the calculation of Exercise 6: Combining Eqs. 42-2, 42-3 and 42-4, the number density of
conduction electrons in gold is

n =
(19.3 g/cm

3
)(6.02× 1023/mol)

(197 g/mol)
= 5.90× 1022 cm−3 = 59.0 nm−3 .

Now, using the result of Exercise 3 in Chapter 39, Eq. 42-9 leads to

EF =
0.121(hc)2

(mec2)
n2/3 =

0.121(1240 eV·nm)2

511× 103 eV
(59.0 nm−3)2/3 = 5.52 eV .

13. Let E1 = 63 meV + EF and E2 = −63 meV + EF. Then according to Eq. 42-6,

P1 =
1

e(E1−EF)/kT + 1
=

1

ex + 1

where x = (E1 − EF)/kT . We solve for ex:

ex =
1

P1
− 1 =

1

0.090
− 1 =

91

9
.

Thus,

P2 =
1

e(E2−EF)/kT + 1
=

1

e−(E1−EF)/kT + 1
=

1

e−x + 1
==

1

(91/9)−1 + 1
= 0.91 ,

where we use E2 − EF = −63 meV = EF − E1 = −(E1 − EF).

14. (a) Eq. 42-6 leads to

E = EF + kT ln(P−1 − 1)

= 7.0 eV + (8.62× 10−5 eV/K)(1000 K) ln

(

1

0.90
− 1

)

= 6.8 eV .

(b) n(E) = CE1/2 = (6.81× 1027 m−3 ·eV−3/2)(6.8 eV)1/2 = 1.77× 1028 m−3 ·eV−1.

(c) n0(E) = P (E)n(E) = (0.90)(1.77× 1028 m−3 ·eV−1) = 1.6× 1028 m−3 ·eV−1.

15. The Fermi-Dirac occupation probability is given by PFD = 1/
(

e∆E/kT + 1
)

, and the Boltzmann occu-

pation probability is given by PB = e−∆E/kT . Let f be the fractional difference. Then

f =
PB − PFD

PB
=
e−∆E/kT − 1

e∆E/kT + 1
e−∆E/kT

.

Using a common denominator and a little algebra yields

f =
e−∆E/kT

e−∆E/kT + 1
.

The solution for e−∆E/kT is

e−∆E/kT =
f

1− f .

We take the natural logarithm of both sides and solve for T . The result is

T =
∆E

k ln
(

f
1− f

) .
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(a) Letting f equal 0.01, we evaluate the expression for T :

T =
(1.00 eV)(1.60× 10−19 J/eV)

(1.38× 10−23 J/K) ln
(

0.010
1− 0.010

) = 2.5× 103 K .

(b) We set f equal to 0.10 and evaluate the expression for T :

T =
(1.00 eV)(1.60× 10−19 J/eV)

(1.38× 10−23 J/K) ln
(

0.10
1− 0.10

) = 5.3× 103 K .

16. According to Eq. 42-6,

P (EF + ∆E) =
1

e(EF+∆E−EF)/kT + 1
=

1

e∆E/kT + 1
=

1

ex + 1

where x = ∆E/kT . Also,

P (EF −∆E) =
1

e(EF−∆E−EF)/kT + 1
=

1

e−∆E/kT + 1
=

1

e−x + 1
.

Thus,

P (EF + ∆E) + P (EF −∆E) =
1

ex + 1
+

1

e−x + 1
=

ex + 1 + e−x + 1

(e−x + 1)(ex + 1)
= 1 .

A special case of this general result can be found in problem 13, where ∆E = 63 meV and P (EF +
63 meV) + P (EF − 63 meV) = 0.090 + 0.91 = 1.0.

17. (a) The volume per cubic meter of sodium occupied by the sodium ions is

VNa =
(971 kg)(6.022× 1023/mol)(4π/3)(98× 10−12 m)3

(23 g/mol)
= 0.100 m3 ,

so the fraction available for conduction electrons is 1− (VNa/1.00 m3) = 1− 0.100 = 0.900.

(b) For copper,

VCu =
(8960 kg)(6.022× 1023/mol)(4π/3)(135× 10−12 m)3

63.5 g/mol
= 0.876 m−3 .

Thus, the fraction is 1− (VCu/1.00 m3) = 1− 0.876 = 0.124.

(c) Sodium, because the electrons occupy a greater portion of the space available.

18. We use N0 = N(E)P (E) = CE1/2
[

e(E−EF)/kT + 1
]−1

, where C is given in problem 7(a). At E =
4.00 eV,

n0 =

(

6.8× 1027 m−3 ·(eV)
−3/2

)

(4.00 eV)1/2

e(4.00 eV−7.00 eV)/[(8.62×10−5 eV/K)(1000K)] + 1

= 1.36× 1028 m−3 ·eV−1 ,

and at E = 6.75 eV,

n0 =

(

6.8× 1027 m−3 ·(eV)−3/2
)

(6.75 eV)1/2

e(6.75 eV−7.00 eV)/[(8.62×10−5 eV/K)(1000K)] + 1

= 1.67× 1028 m−3 ·eV−1 .

Similarly at E = 7.00, 7.25 and 9.00 eV, the values of n0(E) are 9.0×1027 m−3·eV−1, 9.5×1026 m−3·eV−1

and 1.7 × 1018 m−3 ·eV−1, respectively. We note that the latter value is effectively zero (relative to the
other results).
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19. (a) The ideal gas law in the form of Eq. 20-9 leads to p = NkT/V = nkT . Thus, we solve for the
molecules per cubic meter:

n =
p

kT
=

(1.0 atm)(1.0× 105 Pa/atm)

(1.38× 10−23 J/K)(273 K)
= 2.7× 1025 m−3 .

(b) Combining Eqs. 42-2, 42-3 and 42-4 leads to the conduction electrons per cubic meter in copper:

n =
8.96× 103 kg/m

3

(63.54)(1.67× 10−27 kg)
= 8.43× 1028 m−3 .

(c) The ratio is (8.43× 1028 m−3)/(2.7× 1025 m−3) = 3.1× 103.

(d) We use davg = n−1/3. For case (a), davg = (2.7× 1025 m−3)−1/3 which equals 3.3 nm. For case (b),
davg = (8.43× 1028 m−3)−1/3 = 0.23 nm.

20. The molar mass of carbon is m = 12.01115 g/mol and the mass of the Earth is Me = 5.98 × 1024 kg.
Thus, the number of carbon atoms in a diamond as massive as the Earth is N = (Me/m)NA, where NA

is the Avogadro constant. From the result of Sample Problem 42-1, the probability in question is given
by

P = Ne−Eg/kT =

(

Me

m

)

NAe
−Eg/kT

=

(

5.98× 1024 kg

12.01115 g/mol

)

(6.02× 1023/mol)(3× 10−93) = 9× 10−43 .

21. (a) We evaluate P (E) = 1/
(

e(E−EF )/kT + 1
)

for the given value of E, using

kT =
(1.381× 10−23 J/K)(273 K)

1.602× 10−19 J/eV
= 0.02353 eV .

For E = 4.4 eV, (E − EF )/kT = (4.4 eV− 5.5 eV)/(0.02353 eV) = −46.25 and

P (E) =
1

e−46.25 + 1
= 1.00 .

Similarly, for E = 5.4 eV, P (E) = 0.986, for E = 5.5 eV, P (E) = 0.500, for E = 5.6 eV, P (E) =
0.0141, and for E = 6.4 eV, P (E) = 2.57× 10−17.

(b) Solving P = 1/
(

e∆E/kT + 1
)

for e∆E/kT , we get

e∆E/kT =
1

P
− 1 .

Now, we take the natural logarithm of both sides and solve for T . The result is

T =
∆E

k ln
(

1
P − 1

) =
(5.6 eV− 5.5 eV)(1.602× 10−19 J/eV)

(1.381× 10−23 J/K) ln
(

1
0.16 − 1

) = 699 K .

22. The probability Ph that a state is occupied by a hole is the same as the probability the state is unoccupied

by an electron. Since the total probability that a state is either occupied or unoccupied is 1, we have
Ph + P = 1. Thus,

Ph = 1− 1

e(E−EF)/kT + 1
=

e(E−EF)/kT

1 + e(E−EF)/kT
=

1

e−(E−EF)/kT + 1
.
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23. Let N be the number of atoms per unit volume and n be the number of free electrons per unit volume.
Then, the number of free electrons per atom is n/N . We use the result of Exercise 11 to find n:
EF = An2/3, where A = 3.65× 10−19 m2 · eV. Thus,

n =

(

EF

A

)3/2

=

(

11.6 eV

3.65× 10−19 m2 · eV

)3/2

= 1.79× 1029 m−3 .

If M is the mass of a single aluminum atom and d is the mass density of aluminum, then N = d/M .

Now, M = (27.0 g/mol)/(6.022× 1023 mol−1) = 4.48× 10−23 g, so N = (2.70 g/cm3)/(4.48× 10−23 g) =
6.03× 1022 cm−3 = 6.03× 1028 m−3. Thus, the number of free electrons per atom is

n

N
=

1.79× 1029 m−3

6.03× 1028 m−3
= 2.97 .

24. Let the energy of the state in question be an amount ∆E above the Fermi energy EF. Then, Eq. 42-6
gives the occupancy probability of the state as

P =
1

e(EF+∆E−EF)/kT + 1
=

1

e∆E/kT + 1
.

We solve for ∆E to obtain

∆E = kT ln

(

1

P
− 1

)

= (1.38× 1023 J/K)(300 K) ln

(

1

0.10
− 1

)

= 9.1× 10−21 J ,

which is equivalent to 5.7× 10−2 eV = 57 meV.

25. (a) According to Appendix F the molar mass of silver is 107.870 g/mol and the density is 10.49 g/cm
3
.

The mass of a silver atom is

107.870× 10−3 kg/mol

6.022× 1023 mol−1 = 1.791× 10−25 kg .

We note that silver is monovalent, so there is one valence electron per atom (see Eq. 42-2). Thus,
Eqs. 42-4 and 42-3 lead to

n =
ρ

M
=

10.49× 103 kg/m3

1.791× 1025 kg
= 5.86× 1028 m−3 .

(b) The Fermi energy is

EF =
0.121h2

m
n2/3 =

(0.121)(6.626× 10−34 J·s)2
9.109× 10−31 kg

(5.86× 1028 m−3)2/3

= 8.80× 10−19 J = 5.49 eV .

(c) Since EF = 1
2mv

2
F ,

vF =

√

2EF

m
=

√

2(8.80× 10−19 J)

9.109× 10−31 kg
= 1.39× 106 m/s .

(d) The de Broglie wavelength is

λ =
h

mvF
=

6.626× 10−34 J·s
(9.109× 10−31 kg)(1.39× 106 m/s)

= 5.23× 10−10 m .
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26. (a) Combining Eqs. 42-2, 42-3 and 42-4 leads to the conduction electrons per cubic meter in zinc:

n =
2(7.133 g/cm

3
)

(65.37 g/mol)/(6.02× 1023/mol)
= 1.31× 1023 cm−3 = 1.31× 1029 m−3 .

(b) From Eq. 42-9,

EF =
0.121h2

me
n2/3 =

0.121(6.63× 10−34 J·s)2(1.31× 1029 m−3)2/3

(9.11× 10−31 kg)(1.60× 10−19 J/eV)
= 9.43 eV .

(c) Equating the Fermi energy to 1
2mev

2
F , we find (using the mec

2 value in Table 38-3)

vF =

√

2EFc2

mec2
=

√

2(9.43 eV)(2.998× 108 m/s)2

511× 103 eV
= 1.82× 106 m/s .

(d) The de Broglie wavelength is

λ =
h

mevF
=

6.63× 10−34 J·s
(9.11× 10−31 kg)(1.82× 106 m/s)

= 0.40 nm .

27. (a) Setting E = EF (see Eq. 42-9), Eq. 42-5 becomes

N(EF ) =
8πm
√

2m

h3

(

3

16π
√

2

)1/3
h√
m
n1/3 .

Noting that 16
√

2 = 2421/2 = 29/2 so that the cube root of this is 23/2 = 2
√

2, we are able to
simplify the above expression and obtain

N(EF ) =
4m

h2

3
√

3π2n

which is equivalent to the result shown in the problem statement. Since the desired numerical
answer uses eV units, we multiply numerator and denominator of our result by c2 and make use of
the mc2 value for an electron in Table 38-3 as well as the hc value found in problem 3 of Chapter 39:

N(EF ) =

(

4mc2

(hc)2
3
√

3π2

)

n1/3 =

(

4(511× 103 eV)

(1240 eV·nm)2
3
√

3π2

)

n1/3 =
(

4.11 nm−2 · eV−1
)

n1/3

which is equivalent to the value indicated in the problem statement.

(b) Since there are 1027 cubic nanometers in a cubic meter, then the result of problem 1 may be written

n = 8.49× 1028 m−3 = 84.9 nm−3 .

The cube root of this is n1/3 ≈ 4.4/nm. Hence, the expression in part (a) leads to

N(EF ) =
(

4.11 nm−2 · eV−1
) (

4.4 nm−1
)

= 18 nm−3 · eV−1 .

If we multiply this by 1027 m3/nm3, we see this compares very well with the curve in Fig. 42-5
evaluated at 7.0 eV.

28. (a) The derivative of P (E) is

(

−1
(

e(E−EF )/kT + 1
)2

)

d

dE
e(E−EF )/kT =

(

−1
(

e(E−EF )/kT + 1
)2

)

1

kT
e(E−EF )/kT .

Evaluating this at E = EF we readily obtain the desired result.
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(b) The equation of a line may be written y = m(x− xo) where m is the slope (here: equal to −1/kT ,
from part (a)) and xo is the x-intercept (which is what we are asked to solve for). It is clear that
P (EF ) = 2, so our equation of the line, evaluated at x = EF , becomes 2 = (−1/kT )(EF − xo),
which leads to xo = EF + 2kT .

29. The average energy of the conduction electrons is given by

Eavg =
1

n

∫ ∞

0

EN(E)P (E) dE

where n is the number of free electrons per unit volume, N(E) is the density of states, and P (E) is the
occupation probability. The density of states is proportional to E1/2, so we may write N(E) = CE1/2,
where C is a constant of proportionality. The occupation probability is one for energies below the Fermi
energy and zero for energies above. Thus,

Eavg =
C

n

∫ EF

0

E3/2 dE =
2C

5n
E

5/2
F .

Now

n =

∫ ∞

0

N(E)P (E) dE = C

∫ EF

0

E1/2 dE =
2C

3
E

3/2
F .

We substitute this expression into the formula for the average energy and obtain

Eavg =

(

2C

5

)

E
5/2
F

(

3

2CE
3/2
F

)

=
3

5
EF .

30. Let the volume be V = 1.0× 10−6 m3. Then,

Ktotal = NEavg = nVEavg

= (8.43× 1028 m−3)(1.0× 10−6 m3)

(

3

5

)

(7.0 eV)(1.6× 10−19 J/eV)

= 5.7× 104 J = 57 kJ .

31. (a) Using Eq. 42-4, the energy released would be

E = NEavg

=
(3.1 g)

(63.54 g/mol)/(6.02× 1023/mol)

(

3

5

)

(7.0 eV)(1.6× 10−19 J/eV)

= 1.98× 104 J ≈ 20 kJ .

(b) Keeping in mind that a Watt is a Joule per second, we have

1.98× 104 J

100 J/s
= 198 s .

32. (a) At T = 300 K

f =
3kT

2EF
=

3(8.62× 10−5 eV/K)(300 K)

2(7.0 eV)
= 5.5× 10−3 .

(b) At T = 1000 K,

f =
3kT

2EF
=

3(8.62× 10−5 eV/K)(1000 K)

2(7.0 eV)
= 1.8× 10−2 .
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(c) Many calculators and most math software packages (here we use MAPLE) have built-in numerical
integration routines. Setting up ratios of integrals of Eq. 42-7 and canceling common factors, we
obtain

frac =

∫∞
EF

√
E/(e(E−EF )/kT + 1) dE

∫∞
0

√
E/(e(E−EF )/kT + 1) dE

where k = 8.62×10−5 eV/K. We use the Fermi energy value for copper (EF = 7.0 eV) and evaluate
this for T = 300 K and T = 1000 K; we find frac = 0.00385 and frac = 0.0129, respectively.

33. The fraction f of electrons with energies greater than the Fermi energy is (approximately) given in
Problem 42-32:

f =
3kT/2

EF

where T is the temperature on the Kelvin scale, k is the Boltzmann constant, and EF is the Fermi
energy. We solve for T :

T =
2fEF

3k
=

2(0.013)(4.7 eV)

3(8.62× 10−5 eV/K)
= 4.7× 102 K .

It should be noted that the numerical approach, discussed briefly in part (c) of problem 32, would lead
to a value closer to T = 6.5× 102 K.

34. If we use the approximate formula discussed in problem 32, we obtain

frac =
3(8.62× 10−5 eV/K)(961 + 273 K)

2(5.5 eV)
≈ 0.03 .

The numerical approach is briefly discussed in part (c) of problem 32. Although the problem does not
ask for it here, we remark that numerical integration leads to a fraction closer to 0.02.

35. (a) Since the electron jumps from the conduction band to the valence band, the energy of the photon
equals the energy gap between those two bands. The photon energy is given by hf = hc/λ, where
f is the frequency of the electromagnetic wave and λ is its wavelength. Thus, Eg = hc/λ and

λ =
hc

Eg
=

(6.63× 10−34 J·s)(2.998× 108 m/s)

(5.5 eV)(1.60× 10−19 J/eV)
= 2.26× 10−7 m = 226 nm .

Photons from other transitions have a greater energy, so their waves have shorter wavelengths.

(b) These photons are in the ultraviolet portion of the electromagnetic spectrum.

36. Each Arsenic atom is connected (by covalent bonding) to four Gallium atoms, and each Gallium atom
is similarly connected to four Arsenic atoms. The “depth” of their very non-trivial lattice structure is,
of course, not evident in a flattened-out representation such as shown for Silicon in Fig. 42-9. Still we
try to convey some sense of this (in the [1, 0, 0] view shown below – for those who might be familiar
with Miller indices) by using letters to indicate the depth: A for the closest atoms (to the observer), b
for the next layer deep, C for further into the page, d for the last layer seen, and E (not shown) for the
atoms that are at the deepest layer (and are behind the A’s) needed for our description of the structure.
The capital letters are used for the Gallium atoms, and the small letters for the Arsenic. Consider the
Arsenic atom (with the letter b) near the upper left; it has covalent bonds with the two A’s and the
two C’s near it. Now consider the Arsenic atom (with the letter d) near the upper right; it has covalent
bonds with the two C’s which are near it and with the two E’s (which are behind the A’s which are near
it).
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(a) The 3p, 3d and 4s subshells of both Arsenic and Gallium are filled. They both have partially filled
4p subshells. An isolated, neutral Arsenic atom has three electrons in the 4p subshell, and an
isolated, neutral Gallium atom has one electron in the 4p subshell. To supply the total of eight
shared electrons (for the four bonds connected to each ion in the lattice), not only the electrons
from 4p must be shared but also the electrons from 4s. The core of the Arsenic ion has charge
q = +5e (due to the “loss” of the three 4p and two 4s electrons), and the charge of the Gallium ion
has charge q = +3e (due to the “loss” of its single 4p and two 4s electrons).

(b) As remarked in part (a), there are two electrons shared in each of the covalent bonds. This is the
same situation that one finds for Silicon (see Fig. 42-9).

37. The description in the problem statement implies that an atom is at the centerpoint C of the regular
tetrahedron, since its four neighbors are at the four vertices. The side length for the tetrahedron is given
as a = 388 pm. Since each face is an equilateral triangle, the “altitude” of each of those triangles (which
is not to be confused with the altitude of the tetrahedron itself) is h′ = 1

2a
√

3 (this is generally referred
to as the “slant height” in the solid geometry literature). At a certain location along the line segment
representing “slant height” of each face is the center C′ of the face. Imagine this line segment starting
at atom A and ending at the midpoint of one of the sides. Knowing that this line segment bisects the
60◦ angle of the equilateral face, then it is easy to see that C′ is a distance AC′ = a/

√
3. If we draw

a line from C′ all the way to farthest point on the tetrahedron (this will land on an atom we label B),
then this new line is the altitude h of the tetrahedron. Using the Pythagorean theorem,

h =

√

a2 − (AC′)2 =

√

a2 −
(

a√
3

)2

= a

√

2

3
.

Now we include coordinates: imagine atom B is on the +y axis at yb = h = a
√

2/3, and atom A is on

the +x axis at xa = AC′ = a/
√

3. Then point C′ is the origin. The tetrahedron centerpoint C is on the
y axis at some value yc which we find as follows: C must be equidistant from A and B, so

yb − yc =
√

x2
a + y2

c

a

√

2

3
− yc =

√

(

a√
3

)2

+ y2
c

which yields yc = a/2
√

6.

(a) In unit vector notation, using the information found above, we express the vector starting at C and
going to A as

~rac = xa ı̂ + (−yc) ĵ =
a√
3

ı̂ − a

2
√

6
ĵ .
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Similarly, the vector starting at C and going to B is ~rbc = (yb − yc )̂j = a
2

√

3/2 ĵ. Therefore, using
Eq. 3-20,

θ = cos−1

(

~rac · ~rbc
|~rac| |~rbc|

)

= cos−1

(

−1

3

)

which yields θ = 109.5◦ for the angle between adjacent bonds.

(b) The length of vector ~rbc (which is, of course, the same as the length of ~rac) is

|~rbc| =
a

2

√

3

2
=

388 pm

2

√

3

2
= 237.6 pm .

We note that in the solid geometry literature, the distance a
2

√

3
2 is known as the circumradius of

the regular tetrahedron.

38. (a) At the bottom of the conduction band E = 0.67 eV. Also EF = 0.67 eV/2 = 0.335 eV. So the
probability that the bottom of the conduction band is occupied is

P (E) =
1

e(E−EF)/kT + 1
=

1

e(0.67 eV−0.335 eV)/[(8.62×10−5 eV/K)(290 K)] + 1

= 1.5× 10−6 .

(b) At the top of the valence band E = 0, so the probability that the state is unoccupied is given by

1− P (E) = 1− 1

e(E−EF)/kT + 1
=

1

e−(E−EF)/kT + 1

=
1

e−(0−0.335 eV)/[(8.62×10−5 eV/K)(290K)] + 1

= 1.5× 10−6 .

39. (a) The number of electrons in the valence band is

Nev = NvP (Ev) =
Nv

e(Ev−EF)/kT + 1
.

Since there are a total of Nv states in the valence band, the number of holes in the valence band is

Nhv = Nv −Nev = Nv

[

1− 1

e(Ev−EF)/kT + 1

]

=
Nv

e−(Ev−EF)/kT + 1
.

Now, the number of electrons in the conduction band is

Nec = NcP (Ec) =
Nc

e(Ec−EF)/kT + 1
,

Hence, from Nev = Nhc, we get

Nv

e−(Ev−EF)/kT + 1
=

Nc

e(Ec−EF)/kT + 1
.

(b) In this case, e(Ec−EF)/kT ≫ 1 and e−(Ev−EF)/kT ≫ 1. Thus, from the result of part (a),

Nc

e(Ec−EF)/kT
≈ Nv

e−(Ev−EF)/kT
,

or e(Ev−Ec+2EF)/kT ≈ Nv/Nc. We solve for EF:

EF ≈
1

2
(Ec + Ev) +

1

2
kT ln

(

Nv

Nc

)

.
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40. (a) n-type, since each phosphorous atom has one more valence electron than a silicon atom.

(b) The added charge carrier density is nP = 10−7nSi = 10−7(5 × 1028 m−3) = 5× 1021 m−3.

(c) The ratio is (5 × 1021 m−3)/[2(5× 1015 m−3)] = 5 × 105. Here the factor of 2 in the denominator
reflects the contribution to the charge carrier density from both the electrons in the conduction
band and the holes in the valence band.

41. Sample Problem 42-6 gives the fraction of silicon atoms that must be replaced by phosphorus atoms. We
find the number the silicon atoms in 1.0 g, then the number that must be replaced, and finally the mass
of the replacement phosphorus atoms. The molar mass of silicon is 28.086 g/mol, so the mass of one
silicon atom is (28.086 g/mol)/(6.022× 1023 mol−1) = 4.66 × 10−23 g and the number of atoms in 1.0 g
is (1.0 g)/(4.66× 10−23 g) = 2.14× 1022. According to Sample Problem 42-6 one of every 5× 106 silicon
atoms is replaced with a phosphorus atom. This means there will be (2.14×1022)/(5×106) = 4.29×1015

phosphorus atoms in 1.0 g of silicon. The molar mass of phosphorus is 30.9758 g/mol so the mass of a
phosphorus atom is (30.9758 g/mol)/(6.022 × 10−23 mol−1) = 5.14 × 10−23 g. The mass of phosphorus
that must be added to 1.0 g of silicon is (4.29× 1015)(5.14× 10−23 g) = 2.2× 10−7 g.

42. (a) Measured from the top of the valence band, the energy of the donor state is E = 1.11 eV−0.11 eV =
1.0 eV. We solve EF from Eq. 42-6:

EF = E − kT ln
[

P−1 − 1
]

)

= 1.0 eV− (8.62× 10−5 eV/K)(300 K) ln
[

(5.00× 10−5)−1 − 1
]

= 0.744 eV .

(b) Now E = 1.11 eV, so

P (E) =
1

e(E−EF)/kT + 1
=

1

e(1.11 eV−0.744 eV)/[(8.62×10−5 eV/K)(300 K)] + 1

= 7.13× 10−7 .

43. (a) The probability that a state with energy E is occupied is given by

P (E) =
1

e(E−EF )/kT + 1

where EF is the Fermi energy, T is the temperature on the Kelvin scale, and k is the Boltz-
mann constant. If energies are measured from the top of the valence band, then the energy
associated with a state at the bottom of the conduction band is E = 1.11 eV. Furthermore,
kT = (8.62×10−5 eV/K)(300 K) = 0.02586 eV. For pure silicon, EF = 0.555 eV and (E−EF )/kT =
(0.555 eV)/(0.02586 eV) = 21.46. Thus,

P (E) =
1

e21.46 + 1
= 4.79× 10−10 .

For the doped semiconductor, (E − EF )/kT = (0.11 eV)/(0.02586 eV) = 4.254 and

P (E) =
1

e4.254 + 1
= 1.40× 10−2 .

(b) The energy of the donor state, relative to the top of the valence band, is 1.11 eV − 0.15 eV =
0.96 eV. The Fermi energy is 1.11 eV − 0.11 eV = 1.00 eV. Hence, (E − EF )/kT = (0.96 eV −
1.00 eV)/(0.02586 eV) = −1.547 and

P (E) =
1

e−1.547 + 1
= 0.824 .
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44. (a) The vertical axis in the graph below is the current in nanoamperes:
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–0.1 0.1V

(b) The ratio is

i|v=+0.50 V

i|v=−0.50V
=
i0[e

+0.50 eV/[(8.62×10−5 eV/K)(300 K)] − 1]

i0[e−0.50 eV/[(8.62×10−5 eV/K)(300K)] − 1]
= 2.5× 108 .

45. The energy received by each electron is exactly the difference in energy between the bottom of the
conduction band and the top of the valence band (1.1 eV). The number of electrons that can be excited
across the gap by a single 662-keV photon is N = (662 × 103 eV)/(1.1 eV) = 6.0 × 105. Since each
electron that jumps the gap leaves a hole behind, this is also the number of electron-hole pairs that can
be created.

46. Since (using the result of problem 3 in Chapter 39)

Ephoton =
hc

λ
=

1240 eV·nm

140 nm
= 8.86 eV > 7.6 eV ,

the light will be absorbed by the KCI crystal. Thus, the crystal is opaque to this light.

47. The valence band is essentially filled and the conduction band is essentially empty. If an electron in
the valence band is to absorb a photon, the energy it receives must be sufficient to excite it across the
band gap. Photons with energies less than the gap width are not absorbed and the semiconductor is
transparent to this radiation. Photons with energies greater than the gap width are absorbed and the
semiconductor is opaque to this radiation. Thus, the width of the band gap is the same as the energy
of a photon associated with a wavelength of 295 nm. We use the result of Exercise 3 of Chapter 39 to
obtain

Egap =
1240 eV·nm

λ
=

1240 eV·nm

295 nm
= 4.20 eV .

48. We denote the maximum dimension (side length) of each transistor as ℓmax, the size of the chip as A,
and the number of transistors on the chip as N . Then A = Nℓ2max. Therefore,

ℓmax =

√

A

N
=

√

(1.0 in.× 0.875 in.)(2.54× 10−2 m/in.)2

3.5× 106
= 1.3× 10−5 m = 13µm .

49. (a) According to Chapter 26, the capacitance is C = κε0A/d. In our case κ = 4.5, A = (0.50µm)2,
and d = 0.20µm, so

C =
κε0A

d
=

(4.5)(8.85× 10−12 F/m)(0.50µm)2

0.20µm
= 5.0× 10−17 F .
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(b) Let the number of elementary charges in question be N . Then, the total amount of charges that
appear in the gate is q = Ne. Thus, q = Ne = CV , which gives

N =
CV

e
=

(5.0× 10−17 F)(1.0 V)

1.6× 10−19 C
= 3.1× 102 .



Chapter 43

1. In order for the α particle to penetrate the gold nucleus, the separation between the centers of mass
of the two particles must be no greater than r = rCu + rα = 6.23 fm + 1.80 fm = 8.03 fm. Thus, the
minimum energy Kα is given by

Kα = U =
1

4πε0

qαqAu

r
=
kqαqAu

r

=
(8.99× 109 V·m/C)(2e)(79)(1.60× 10−19 C)

8.03× 10−15 m
= 28.3× 106 eV .

We note that the factor of e in qα = 2e was not set equal to 1.60 × 10−19 C, but was instead carried
through to become part of the final units.

2. Our calculation is similar to that shown in Sample Problem 43-1. We set K = 5.30 MeV = U =
(1/4πε0)(qαqCu/rmin) and solve for the closest separation, rmin :

rmin =
qαqCu

4πε0K
=
kqαqCu

4πε0K

=
(2e)(29)(1.60× 10−19 C)(8.99× 109 V·m/C)

5.30× 106 eV

= 1.58× 10−14 m = 15.8 fm .

We note that the factor of e in qα = 2e was not set equal to 1.60× 10−19 C, but was instead allowed to
cancel the “e” in the non-SI energy unit, electronvolt.

3. The conservation laws of (classical kinetic) energy and (linear) momentum determine the outcome of the
collision. The results are given in Chapter 10, Eqs. 10-30 and 10-31. The final speed of the α particle is

vαf =
mα −mAu

mα +mAu
vαi ,

and that of the recoiling gold nucleus is

vAu,f =
2mα

mα +mAu
vαi .

(a) Therefore, the kinetic energy of the recoiling nucleus is

KAu,f =
1

2
mAuv

2
Au,f

=
1

2
mAu

(

2mα

mα +mAu

)2

v2
αi = Kαi

4mAumα

(mα +mAu )2

= (5.00 MeV)
4(197 u)(4.00 u)

(4.00 u + 197 u)2

= 0.390 MeV .
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(b) The final kinetic energy of the alpha particle is

Kαf =
1

2
mαv

2
αf

=
1

2
mα

(

mα −mAu

mα +mAu

)2

v2
αi = Kαi

(

mα −mAu

mα +mAu

)2

= (5.00 MeV)

(

4.00 u− 197 u

4.00 u + 197 u

)2

= 4.61 MeV .

We note that Kαf +KAu,f = Kαi is indeed satisfied.

4. We solve for A from Eq. 43-3:

A =

(

r

r0

)3

=

(

3.6 fm

1.2 fm

)3

= 27 .

5. We locate a nuclide from Table 43-1 by finding the coordinate (N, Z) of the corresponding point in
Fig. 43-4. It is clear that all the nuclides listed in Table 43-1 are stable except the last two, 227Ac and
239Pu.

6. We note that the mean density and mean radius for the Sun are given in Appendix C. Since ρ = M/V
where V ∝ r3, we get r ∝ ρ−1/3. Thus, the new radius would be

r = Rs

(

ρs

ρ

)1/3

= (6.96× 108 m)

(

1410 kg/m
3

2× 1017 kg/m
3

)1/3

= 1.3× 104 m .

7. (a) 6 protons, since Z = 6 for carbon (see Appendix F).

(b) 8 neutrons, since A− Z = 14− 6 = 8 (see Eq. 43-1).

8. The problem with Web-based services is that there are no guarantees of accuracy or that the webpage
addresses will not change from the time this solution is written to the time someone reads this. Still, it is
worth mentioning that a very accessible website for a wide variety of periodic table and isotope-related
information is http://www.webelements.com. Two websites aimed more towards the nuclear professional
are http://nucleardata.nuclear.lu.se/nucleardata and http://www.nndc.bnl.gov/nndc/ensdf, which are
where some of the information mentioned below was obtained.

(a) According to Appendix F, the atomic number 60 corresponds to the element Neodymium (Nd).
The first website mentioned above gives 142Nd, 143Nd, 144Nd, 145Nd, 146Nd, 148Nd, and 150Nd in
its list of naturally occurring isotopes. Two of these, 144Nd and 150Nd, are not perfectly stable, but
their half-lives are much longer than the age of the universe (detailed information on their half-lives,
modes of decay, etc are available at the last two websites referred to, above).

(b) In this list, we are asked to put the nuclides which contain 60 neutrons and which are recognized
to exist but not stable nuclei (this is why, for example, 108Cd is not included here). Although the
problem does not ask for it, we include the half-lives of the nuclides in our list, though it must be
admitted that not all reference sources agree on those values (we picked the ones we regarded as
“most reliable”). Thus, we have 97Rb (0.2 s), 98Sr (0.7 s), 99Y (2 s), 100Zr (7 s), 101Nb (7 s), 102Mo
(11 minutes), 103Tc (54 s), 105Rh (35 hours), 109In (4 hours), 110Sn (4 hours), 111Sb (75 s), 112Te
(2 minutes), 113I (7 s), 114Xe (10 s), 115Cs (1.4 s), and 116Ba (1.4 s).

(c) We would include in this list: 60Zn, 60Cu, 60Ni, 60Co, 60Fe, 60Mn, 60Cr, and 60V.

9. Although we haven’t drawn the requested lines in the following table, we can indicate their slopes: lines
of constant A would have −45◦ slopes, and those of constantN−Z would have 45◦. As an example of the
latter, the N−Z = 20 line (which is one of “eighteen-neutron excess”) would pass through Cd-114 at the
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lower left corner up through Te-122 at the upper right corner. The first column corresponds to N = 66,
and the bottom row to Z = 48. The last column corresponds to N = 70, and the top row to Z = 52.
Much of the information below (regarding values of T1/2 particularly) was obtained from the websites
http://nucleardata.nuclear.lu.se/nucleardata and http://www.nndc.bnl.gov/nndc/ensdf (we refer the
reader to the remarks we made in the solution to problem 8).

114Cd

28.7%

115Cd

53.5 h

116Cd

7.5%

117Cd

2.5 h

118Cd

50.3 min

115In

95.7%

116In

14.1 s

117In

43.2 min

118In

5.0 s

119In

2.4 min

116Sn

14.5%

117Sn

7.7%

118Sn

24.2%

119Sn

8.6%

120Sn

32.6%

117Sb

2.8 h

118Sb

3.6 min

119Sb

38.2 s

120Sb

15.9 min

121Sb

57.2%

118Te

6.0 days

119Te

16.0 h

120Te

0.1%

121Te

19.4 days

122Te

2.6%

10. (a) The atomic number Z = 39 corresponds to the element Yttrium (see Appendix F and/or Appendix
G), and Z = 53 corresponds to Iodine.

(b) A detailed listing of stable nuclides (such as the website http://nucleardata.nuclear.lu.se/nucleardata)
shows that the stable isotope of Iodine has 74 neutrons, and that the stable isotope of Yttrium has
50 neutrons (this can also be inferred from the Molar Mass values listed in Appendix F).

(c) The number of neutrons left over is 235− 127− 89 = 19.

11. (a) For 239Pu, Q = 94e and R = 6.64 fm. Including a conversion factor for J→ eV, we obtain

U =
3Q2

20πε0r
=

3[94(1.60× 10−19 C)]2(8.99× 109 N·m2/C2)

5(6.64× 10−15 m)

(

1 eV

1.60× 10−19 J

)

= 1.15× 109 eV = 1.15 GeV .

(b) Since Z = 94 andA = 239, the electrostatic potential per nucleon is 1.15 GeV/239 = 4.81 MeV/nucleon,
and per proton is 1.15 GeV/94 = 12.2 MeV/proton. These are of the same order of magnitude as
the binding energy per nucleon.

(c) The binding energy is significantly reduced by the electrostatic repulsion among the protons.

12. (a) For 55Mn the mass density is

ρm =
M

V
=

0.055 kg/mol

(4π/3)[(1.2× 10−15 m)(55)1/3]3(6.02× 1023/mol)
= 2.3× 1017 kg/m

3
,

and for 209Bi

ρm =
M

V
=

0.209 kg/mol

(4π/3)[(1.2× 10−15 m)(209)1/3]3(6.02× 1023/mol)
= 2.3× 1017 kg/m

3
.
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(b) For 55Mn the charge density is

ρq =
Ze

V
=

(25)(1.6× 10−19 C)

(4π/3)[(1.2× 10−15 m)(55)1/3]3
= 1.0× 1025 C/m

3
,

and for 209Bi

ρq =
Ze

V
=

(83)(1.6× 10−19 C)

(4π/3)[(1.2× 10−15 m)(209)1/3]3
= 8.8× 1024 C/m

3
.

(c) Since V ∝ r3 = (r0A
1/3)3 ∝ A, we expect ρm ∝ A/V ∝ A/A ≈ const. for all nuclides, while

ρq ∝ Z/V ∝ Z/A should gradually decrease since A > 2Z for large nuclides.

13. The binding energy is given by ∆Ebe = [ZmH + (A− Z)mn −MPu] c
2, where Z is the atomic number

(number of protons), A is the mass number (number of nucleons), mH is the mass of a hydrogen atom,
mn is the mass of a neutron, and MPu is the mass of a 239

94Pu atom. In principle, nuclear masses should
be used, but the mass of the Z electrons included in ZMH is canceled by the mass of the Z electrons
included in MPu, so the result is the same. First, we calculate the mass difference in atomic mass units:
∆m = (94)(1.00783 u) + (239 − 94)(1.00867 u)− (239.05216 u) = 1.94101 u. Since 1 u is equivalent to
931.5 MeV, ∆Ebe = (1.94101 u)(931.5 MeV/u) = 1808 MeV. Since there are 239 nucleons, the binding
energy per nucleon is ∆Eben = E/A = (1808 MeV)/239 = 7.56 MeV.

14. (a) The mass number A is the number of nucleons in an atomic nucleus. Since mp ≈ mn the mass of
the nucleus is approximately Amp. Also, the mass of the electrons is negligible since it is much less
than that of the nucleus. So M ≈ Amp.

(b) For 1H, the approximate formula gives M ≈ Amp = (1)(1.007276 u) = 1.007276 u. The actual
mass is (see Table 47-1) 1.007825 u. The percent error committed is then δ = (1.007825 u −
1.007276 u)/1.007825 u = 0.054%. Similarly, δ = 0.50% for 7Li, 0.81% for 31P, 0.83% for 81Br,
0.81% for 120Sn, 0.78% for 157Gd, 0.74% for 197Au, 0.72% for 272Ac, and 0.71% for 239Pu.

(c) No. In a typical nucleus the binding energy per nucleon is several MeV, which is a bit less than 1%
of the nucleon mass times c2. This is comparable with the percent error calculated in part (b), so
we need to use a more accurate method to calculate the nuclear mass.

15. (a) The de Broglie wavelength is given by λ = h/p, where p is the magnitude of the momentum. The
kinetic energy K and momentum are related by Eq. 38-51, which yields

pc =
√

K2 + 2Kmc2 =
√

(200 MeV)2 + 2(200 MeV)(0.511 MeV) = 200.5 MeV .

Thus,

λ =
hc

pc
=

1240 eV·nm

200.5× 106 eV
= 6.18× 10−6 nm = 6.18 fm .

(b) The diameter of a copper nucleus, for example, is about 8.6 fm, just a little larger than the de
Broglie wavelength of a 200-MeV electron. To resolve detail, the wavelength should be smaller than
the target, ideally a tenth of the diameter or less. 200-MeV electrons are perhaps at the lower limit
in energy for useful probes.

16. We take the speed to be constant, and apply the classical kinetic energy formula:

t =
d

v
=

d
√

2K/m
= 2r

√

mn

2K
=
r

c

√

2mc2

K

≈ (1.2× 10−15 m)(100)1/3

3.0× 108 m/s

√

2(938 MeV)

5 MeV

≈ 10−22 s .
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17. We note that hc = 1240 MeV·fm (see problem 3 of Chapter 39), and that the classical kinetic energy
1
2mv

2 can be written directly in terms of the classical momentum p = mv (see below). Letting p ≃ ∆p ≃
h/∆x ≃ h/r, we get

E =
p2

2m
≃ (hc)2

2(mc2)r2
=

(1240 MeV·fm)2

2(938 MeV)[(1.2 fm)(100)1/3]2
≃ 30 MeV .

18. (a) In terms of the original value of u, the newly defined u is greater by a factor of 1.007825. So the
mass of 1H would be 1.000000 u, the mass of 12C would be (12.000000/1.007825)u = 11.90683 u,
and the mass of 238U would be (238.050785/1.007825)u = 236.2025 u.

(b) Defining the mass of 1H to be exactly 1 does not result in any overall simplification.

19. (a) Since the nuclear force has a short range, any nucleon interacts only with its nearest neighbors,
not with more distant nucleons in the nucleus. Let N be the number of neighbors that interact
with any nucleon. It is independent of the number A of nucleons in the nucleus. The number of
interactions in a nucleus is approximately NA, so the energy associated with the strong nuclear
force is proportional to NA and, therefore, proportional to A itself.

(b) Each proton in a nucleus interacts electrically with every other proton. The number of pairs of
protons is Z(Z − 1)/2, where Z is the number of protons. The Coulomb energy is, therefore,
proportional to Z(Z − 1).

(c) As A increases, Z increases at a slightly slower rate but Z2 increases at a faster rate than A and
the energy associated with Coulomb interactions increases faster than the energy associated with
strong nuclear interactions.

20. (a) The first step is to add energy to produce 4He→ p+ 3H, which – to make the electrons “balance”
– may be rewritten as 4He → 1H + 3H. The energy needed is ∆E1 = (m3H + m1H −m4He)c

2 =
(3.01605 u+ 1.00783 u− 4.00260 u)(931.5 MeV/u) = 19.8 MeV. The second step is to add energy to
produce 3H→ n+2H. The energy needed is ∆E2 = (m2H+mn−m3H)c2 = (2.01410 u+1.00867 u−
3.01605 u)(931.5 MeV/u) = 6.26 MeV. The third step: 2H→ p+ n, which – to make the electrons
“balance” – may be rewritten as 2H→ 1H+n. The work required is ∆E3 = (m1H +mn−m2H)c2 =
(1.00783 u + 1.00867 u− 2.01410 u)(931.5 MeV/u) = 2.23 MeV.

(b) The total binding energy is ∆Ebe = ∆E1 + ∆E2 + ∆E3 = 19.8 MeV + 6.26 MeV + 2.23 MeV =
28.3 MeV.

(c) The binding energy per nucleon is ∆Eben = ∆Ebe/A = 28.3 MeV/4 = 7.07 MeV.

21. Let f24 be the abundance of 24Mg, let f25 be the abundance of 25Mg, and let f26 be the abundance of
26Mg. Then, the entry in the periodic table for Mg is 24.312 = 23.98504f24+24.98584f25+25.98259f26.
Since there are only three isotopes, f24 + f25 + f26 = 1. We solve for f25 and f26. The second equation
gives f26 = 1−f24−f25. We substitute this expression and f24 = 0.7899 into the first equation to obtain
24.312 = (23.98504)(0.7899)+ 24.98584f25 + 25.98259− (25.98259)(0.7899)− 25.98259f25. The solution
is f25 = 0.09303. Then, f26 = 1− 0.7899− 0.09303 = 0.1171. 78.99% of naturally occurring magnesium
is 24Mg, 9.30% is 25Mg, and 11.71% is 26Mg.

22. (a) Table 43-1 gives the atomic mass of 1H as m = 1.007825 u. Therefore, the mass excess for 1H is
∆ = (1.007825 u− 1.000000 u)(931.5 MeV/u) = +7.29 MeV.

(b) The mass of the neutron is given in Sample Problem 43-3. Thus, for the neutron, ∆ = (1.008665 u−
1.000000 u)(931.5 MeV/u) = +8.07 MeV.

(c) Appealing again to Table 43-1, we obtain, for 120Sn, ∆ = (119.902199 u−120.000000 u)(931.5MeV/u) =
−91.10 MeV.

23. We first “separate” all the nucleons in one copper nucleus (which amounts to simply calculating the
nuclear binding energy) and then figure the number of nuclei in the penny (so that we can multiply the
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two numbers and obtain the result). To begin, we note that (using Eq. 43-1 with Appendix F and/or
G) the copper-63 nucleus has 29 protons and 34 neutrons. We use the more accurate values given in
Sample Problem 43-3:

∆Ebe = (29(1.007825 u) + 34(1.008665 u)− 62.92960 u) (931.5 MeV/u) = 551.4 MeV .

To figure the number of nuclei (or, equivalently, the number of atoms), we adapt Eq. 43-20:

NCu =

(

3.0 g

62.92960 g/mol

)

(

6.02× 1023 atoms/mol
)

≈ 2.9× 1022 atoms .

Therefore, the total energy needed is

NCu∆Ebe = (551.4 MeV)
(

2.9× 1022
)

= 1.6× 1025 MeV .

24. It should be noted that when the problem statement says the “masses of the proton and the deuteron
are . . .” they are actually referring to the corresponding atomic masses (given to very high precision).
That is, the given masses include the “orbital” electrons. As in many computations in this chapter, this
circumstance (of implicitly including electron masses in what should be a purely nuclear calculation)
does not cause extra difficulty in the calculation (see remarks in Sample Problems 43-4, 43-6, and 43-7).
Setting the gamma ray energy equal to ∆Ebe, we solve for the neutron mass (with each term understood
to be in u units):

mn = Md −mH +
Eγ

c2

= 2.0141019− 1.007825035 +
2.2233

931.502
= 1.0062769 + 0.0023868

which yields mn = 1.0086637 u, where the last digit (7) is uncertain to within roughly ±2 (but this
depends on what precisely the uncertainties are in the given data).

25. If a nucleus contains Z protons and N neutrons, its binding energy is ∆Ebe = (ZmH + Nmn −m)c2,
where mH is the mass of a hydrogen atom, mn is the mass of a neutron, and m is the mass of the atom
containing the nucleus of interest. If the masses are given in atomic mass units, then mass excesses are
defined by ∆H = (mH − 1)c2, ∆n = (mn − 1)c2, and ∆ = (m − A)c2. This means mHc

2 = ∆H + c2,
mnc

2 = ∆n+c2, and mc2 = ∆+Ac2. Thus E = (Z∆H +N∆n−∆)+(Z+N−A)c2 = Z∆H +N∆n−∆,
where A = Z +N is used. For 197

79Au, Z = 79 and N = 197− 79 = 118. Hence,

∆Ebe = (79)(7.29 MeV) + (118)(8.07 MeV)− (−31.2 MeV) = 1560 MeV .

This means the binding energy per nucleon is ∆Eben = (1560 MeV)/197 = 7.92 MeV.

26. (a) Since 60 y = 2(30 y) = 2T1/2, the fraction left is 2−2 = 1/4.

(b) Since 90 y = 3(30 y) = 3T1/2, the fraction that remains is 2−3 = 1/8.

27. By the definition of half-life, the same has reduced to 1
2 its initial amount after 140 d. Thus, reducing it

to 1
4 = (1

2 )2 of its initial number requires that two half-lives have passed: t = 2T1/2 = 280 d.

28. We note that t = 24 h is four times T1/2 = 6.5 h. Thus, it has reduced by half, four-fold:

(

1

2

)4
(

48× 1019
)

= 3× 1019 .
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29. (a) The decay rate is given by R = λN , where λ is the disintegration constant and N is the number
of undecayed nuclei. Initially, R = R0 = λN0, where N0 is the number of undecayed nuclei
at that time. One must find values for both N0 and λ. The disintegration constant is related
to the half-life T1/2 by λ = (ln 2)/T1/2 = (ln 2)/(78 h) = 8.89 × 10−3 h−1. If M is the mass
of the sample and m is the mass of a single atom of gallium, then N0 = M/m. Now, m =
(67 u)(1.661× 10−24 g/u) = 1.113× 10−22 g and N0 = (3.4 g)/(1.113× 10−22 g) = 3.05× 1022. Thus
R0 = (8.89× 10−3 h−1)(3.05× 1022) = 2.71× 1020 h−1 = 7.53× 1016 s−1.

(b) The decay rate at any time t is given by

R = R0 e
−λt

where R0 is the decay rate at t = 0. At t = 48 h, λt = (8.89× 10−3 h−1)(48 h) = 0.427 and

R = (7.53× 1016 s−1) e−0.427 = 4.91× 1016 s−1 .

30. (a) Replacing differentials with deltas in Eq. 43-11, we use the fact that ∆N = −12 during ∆t = 1.0 s
to obtain

∆N

N
= −λ∆t =⇒ λ = 4.8× 10−18/s

where N = 2.5× 1018, mentioned at the second paragraph of §43-3, is used.

(b) Eq. 43-17 yields T1/2 = ln 2/λ = 1.4× 1017 s, or about 4.6 billion years.

31. (a) The half-life T1/2 and the disintegration constant are related by T1/2 = (ln 2)/λ, so T1/2 =
(ln 2)/(0.0108 h−1) = 64.2 h.

(b) At time t, the number of undecayed nuclei remaining is given by

N = N0 e
−λt = N0 e

−(ln 2)t/T1/2 .

We substitute t = 3T1/2 to obtain

N

N0
= e−3 ln 2 = 0.125 .

In each half-life, the number of undecayed nuclei is reduced by half. At the end of one half-life,
N = N0/2, at the end of two half-lives, N = N0/4, and at the end of three half-lives, N = N0/8 =
0.125N0.

(c) We use
N = N0 e

−λt .

10.0 d is 240 h, so λt = (0.0108 h−1)(240 h) = 2.592 and

N

N0
= e−2.592 = 0.0749 .

32. (a) We adapt Eq. 43-20:

NPu =

(

0.002 g

239 g/mol

)

(

6.02× 1023 nuclei/mol
)

≈ 5× 1018 nuclei .

(b) Eq. 43-19 leads to

R =
N ln 2

T1/2
=

5× 1018 ln 2

2.41× 104 y
= 1.4× 1014/y

which is equivalent to 4.6× 106/s = 4.6× 106 Bq (the unit becquerel is defined in §43-3).
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33. The rate of decay is given by R = λN , where λ is the disintegration constant and N is the number of
undecayed nuclei. In terms of the half-life T1/2, the disintegration constant is λ = (ln 2)/T1/2, so

N =
R

λ
=
RT1/2

ln 2
=

(6000 Ci)(3.7× 1010 s−1/Ci)(5.27 y)(3.16× 107 s/y)

ln 2

= 5.33× 1022 nuclei .

34. Using Eq. 43-14 and Eq. 43-17 (and the fact that mass is proportional to the number of atoms), the
amount decayed is

|∆m| = m|tf=16.0 h −m|ti=14.0 h

= m0(1− e−ti ln 2/T1/2)−m0(1− e−tf ln 2/T1/2)

= m0(e
−tf ln 2/T1/2 − e−ti ln 2/T1/2)

= (5.50 g)
[

e−(16.0 h/12.7 h) ln 2 − e−(14.0 h/12.7 h) ln 2
]

= 0.256 g .

35. (a) We assume that the chlorine in the sample had the naturally occurring isotopic mixture, so the
average mass number was 35.453, as given in Appendix F. Then, the mass of 226Ra was

m =
226

226 + 2(35.453)
(0.10 g) = 76.1× 10−3 g .

The mass of a 226Ra nucleus is (226 u)(1.661× 10−24 g/u) = 3.75× 10−22 g, so the number of 226Ra
nuclei present was N = (76.1× 10−3 g)/(3.75× 10−22 g) = 2.03× 1020.

(b) The decay rate is given by R = Nλ = (N ln 2)/T1/2, where λ is the disintegration constant, T1/2 is
the half-life, and N is the number of nuclei. The relationship λ = (ln 2)/T1/2 is used. Thus,

R =
(2.03× 1020) ln 2

(1600 y)(3.156× 107 s/y)
= 2.79× 109 s−1 .

36. (a) We use R = R0e
−λt to find t:

t =
1

λ
ln
R0

R
=
T1/2

ln 2
ln
R0

R
=

14.28 d

ln 2
ln

3050

170
= 59.5 d .

(b) The required factor is

R0

R
= eλt = et ln 2/T1/2 = e(3.48 d/14.28 d) ln 2 = 1.18 .

37. We label the two isotopes with subscripts 1 (for 32P) and 2 (for 33P). Initially, 10% of the decays come
from 33P, which implies that the initial rate R02 = 9R01. Using Eq. 43-16, this means

R01 = λ1N01 =
1

9
R02 =

1

9
λ2N02 .

At time t, we have R1 = R01e
−λ1t and R2 = R02e

−λ2t. We seek the value of t for which R1 = 9R2 (which
means 90% of the decays arise from 33P). We divide equations to obtain (R01/R02)e

−(λ1−λ2)t = 9, and
solve for t:

t =
1

λ1 − λ2
ln

(

R01

9R02

)

=
ln(R01/9R02)

ln 2/T1/2 1
− ln 2/T1/2 2

=
ln[(1/9)2]

ln 2[(14.3 d)−1 − (25.3 d)−1]
= 209 d .
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38. We have one alpha particle (helium nucleus) produced for every plutonium nucleus that decays. To find
the number that have decayed, we use Eq. 43-14, Eq. 43-17, and adapt Eq. 43-20:

N0 −N = N0

(

1− e−t ln 2/T1/2

)

= NA
12.0 g/mol

239 g/mol

(

1− e−20000 ln 2/24100
)

where NA is the Avogadro constant. This yields 1.32 × 1022 alpha particles produced. In terms of
the amount of helium gas produced (assuming the α particles slow down and capture the appropriate
number of electrons), this corresponds to

mHe =

(

1.32× 1022

6.02× 1023/mol

)

(4.0 g/mol) = 87.9× 10−3 g .

39. The number N of undecayed nuclei present at any time and the rate of decay R at that time are related
by R = λN , where λ is the disintegration constant. The disintegration constant is related to the half-life
T1/2 by λ = (ln 2)/T1/2, so R = (N ln 2)/T1/2 and T1/2 = (N ln 2)/R. Since 15.0% by mass of the sample
is 147Sm, the number of 147Sm nuclei present in the sample is

N =
(0.150)(1.00 g)

(147 u)(1.661× 10−24 g/u)
= 6.143× 1020 .

Thus

T1/2 =
(6.143× 1020) ln 2

120 s−1
= 3.55× 1018 s = 1.12× 1011 y .

40. We note that 2.42 min = 145.2 s. We are asked to plot (with SI units understood)

lnR = ln
(

R0e
−λt +R′

0e
−λ′t

)

where R0 = 3.1× 105, R′
0 = 4.1× 106, λ = ln 2/145.2 and λ′ = ln 2/24.6. Our plot is shown below.
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We note that the magnitude of the slope for small t is λ′ (the disintegration constant for 110Ag), and
for large t is λ (the disintegration constant for 108Ag).

41. If N is the number of undecayed nuclei present at time t, then

dN

dt
= R− λN
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where R is the rate of production by the cyclotron and λ is the disintegration constant. The second
term gives the rate of decay. Rearrange the equation slightly and integrate:

∫ N

N0

dN

R− λN =

∫ t

0

dt

where N0 is the number of undecayed nuclei present at time t = 0. This yields

− 1

λ
ln
R− λN
R− λN0

= t .

We solve for N :

N =
R

λ
+

(

N0 −
R

λ

)

e−λt .

After many half-lives, the exponential is small and the second term can be neglected. Then, N = R/λ,
regardless of the initial value N0. At times that are long compared to the half-life, the rate of production
equals the rate of decay and N is a constant.

42. Combining Eqs. 43-19 and 43-20, we obtain

Msam = N
MK

NA
=

(

RT1/2

ln 2

)(

40 g/mol

6.02× 1023/mol

)

which gives 0.66 g for the mass of the sample once we plug in 1.7 × 105/s for the decay rate and
1.28× 109 y = 4.04× 1016 s for the half-life.

43. (a) The sample is in secular equilibrium with the source and the decay rate equals the production rate.
Let R be the rate of production of 56Mn and let λ be the disintegration constant. According to
the result of problem 41, R = λN after a long time has passed. Now, λN = 8.88 × 1010 s−1, so
R = 8.88× 1010 s−1.

(b) They decay at the same rate as they are produced, 8.88× 1010 s−1.

(c) We use N = R/λ. If T1/2 is the half-life, then the disintegration constant is λ = (ln 2)/T1/2 =
(ln 2)/(2.58 h) = 0.269 h−1 = 7.46× 10−5 s−1, so N = (8.88× 1010 s−1)/(7.46× 10−5 s−1) = 1.19×
1015.

(d) The mass of a 56Mn nucleus is (56 u)(1.661×10−24 g/u) = 9.30×10−23 g and the total mass of 56Mn
in the sample at the end of the bombardment is Nm = (1.19×1015)(9.30×10−23 g) = 1.11×10−7 g.

44. (a) The rate at which Radium-226 is decaying is

R = λN =

(

ln 2

T1/2

)(

M

m

)

=
(ln 2)(1.00 mg)(6.02× 1023/mol)

(1600 y)(3.15× 107 s/y)(226 g/mol)
= 3.66× 107 s−1 .

(b) Since 1600 y≫ 3.82 d the time required is t≫ 3.82 d.

(c) It is decaying at the same rate as it is produced, or R = 3.66× 107 s−1.

(d) From RRa = RRn and R = λN = (ln 2/T1/2)(M/m), we get

MRn =

(

T1/2Rn

T1/2Ra

)

(

mRn

mRa

)

MRa

=
(3.82 d)(1.00× 10−3 g)(222 u)

(1600 y)(365 d/y)(226 u)

= 6.42× 10−9 g .



1033

45. Since the spreading is assumed uniform, the count rateR = 74, 000/s is given byR = λN = λ(M/m)(a/A),
where M = 400 g, m is the mass of the 90Sr nucleus, A = 2000 km2, and a is the area in question. We
solve for a:

a = A
(m

M

)

(

R

λ

)

=
AmRT1/2

M ln 2

=
(2000× 106 m2)(90 g/mol)(29 y)(3.15× 107 s/y)(74, 000/s)

(400 g)(6.02× 1023/mol)(ln 2)

= 7.3× 10−2 m2 = 730 cm2 .

46. Eq. 25-43 gives the electrostatic potential energy between two uniformly charged spherical charges (in
this case q1 = 2e and q2 = 90e) with r being the distance between their centers. Assuming the “uniformly
charged spheres” condition is met in this instance, we write the equation in such a way that we can make
use of k = 1/4πε0 and the electronvolt unit:

U = k
(2e)(90e)

r
=

(

8.99× 109 V ·m
C

)

(

3.2× 10−19 C
)

(90e)

r
=

2.59× 10−7

r
eV

with r understood to be in meters. It is convenient to write this for r in femtometers, in which case
U = 259/r MeV. This is shown plotted below.
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47. The fraction of undecayed nuclei remaining after time t is given by

N

N0
= e−λt = e−(ln 2)t/T1/2

where λ is the disintegration constant and T1/2 (= (ln 2)/λ) is the half-life. The time for half the original
238U nuclei to decay is 4.5× 109 y. For 244Pu at that time,

(ln 2)t

T1/2
=

(ln 2)(4.5× 109 y)

8.2× 107 y
= 38.0

and
N

N0
= e−38.0 = 3.1× 10−17 .

For 248Cm at that time,
(ln 2)t

T1/2
=

(ln 2)(4.5× 109 y)

3.4× 105 y
= 9170
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and
N

N0
= e−9170 = 3.31× 10−3983 .

For any reasonably sized sample this is less than one nucleus and may be taken to be zero. A standard
calculator probably cannot evaluate e−9170 directly. Our recommendation is to treat it as (e−91.70)100.

48. (a) The nuclear reaction is written as 238U → 234Th + 4He. The energy released is

∆E1 = (mU −mHe −mTh)c2

= (238.05079 u− 4.00260 u− 234.04363 u)(931.5 MeV/u)

= 4.25 MeV .

(b) The reaction series consists of 238U → 237U + n, followed by

237U → 236Pa + p
236Pa → 235Pa + n

235Pa → 234Th + p

The net energy released is then

∆E2 = (m238U −m237U −mn)c2 + (m237U −m236Pa −mp)c
2

+(m236Pa −m235Pa −mn)c2 + (m235Pa −m234Th −mp)c
2

= (m238U − 2mn − 2mp −m234Th)c2

= [238.05079 u− 2(1.00867 u)− 2(1.00783 u)− 234.04363 u](931.5 MeV/u)

= −24.1 MeV .

(c) This leads us to conclude that the binding energy of the α particle is
∣

∣(2mn + 2mp −mHe)c
2
∣

∣ = | − 24.1 MeV− 4.25 MeV| = 28.3 MeV .

49. Energy and momentum are conserved. We assume the residual thorium nucleus is in its ground state.
Let Kα be the kinetic energy of the alpha particle and KTh be the kinetic energy of the thorium
nucleus. Then, Q = Kα +KTh. We assume the uranium nucleus is initially at rest. Then, conservation
of momentum yields 0 = pα + pTh, where pα is the momentum of the alpha particle and pTh is the
momentum of the thorium nucleus. Both particles travel slowly enough that the classical relationship
between momentum and energy can be used. Thus KTh = p2

Th/2mTh, where mTh is the mass of the
thorium nucleus. We substitute pTh = −pα and use Kα = p2

α/2mα to obtain KTh = (mα/mTh)Kα.
Consequently,

Q = Kα +
mα

mTh
Kα =

(

1 +
mα

mTh

)

Kα =

(

1 +
4.00 u

234 u

)

(4.196 MeV) = 4.27 MeV .

50. (a) The disintegration energy for uranium-235 “decaying” into thorium-232 is

Q3 = (m235U −m232Th −m3He) c
2

= (235.0439 u− 232.0381 u− 3.0160 u)(931.5 MeV/u)

= −9.50 MeV .

(b) Similarly, the disintegration energy for uranium-235 decaying into thorium-231 is

Q4 = (m235U −m231Th −m4He) c
2

= (235.0439 u− 231.0363 u− 4.0026 u)(931.5 MeV/u)

= 4.66 MeV .
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(c) Finally, the considered transmutation of uranium-235 into thorium-230 has a Q-value of

Q5 = (m235U −m230Th −m5He) c
2

= (235.0439 u− 230.0331 u− 5.0122 u)(931.5 MeV/u)

= −1.30 MeV .

Only the second decay process (the α decay) is spontaneous, as it releases energy.

51. (a) For the first reaction

Q1 = (mRa −mPb −mC)c2

= (223.01850 u− 208.98107 u− 14.00324 u)(931.5 MeV/u)

= 31.8 MeV ,

and for the second one

Q2 = (mRa −mRn −mHe)c
2

= (223.01850 u− 219.00948 u− 4.00260 u)(931.5 MeV/u)

= 5.98 MeV .

(b) From U ∝ q1q2/r, we get

U1 ≈ U2

(

qPb qC
qRn qHe

)

= (30.0 MeV)
(82e)(6.0e)

(86e)(2.0e)
= 86 MeV .

52. (a) The mass number A of a radionuclide changes by 4 in an α decay and is unchanged in a β decay.
If the mass numbers of two radionuclides are given by 4n + k and 4n′ + k (where k = 0, 1, 2, 3),
then the heavier one can decay into the lighter one by a series of α (and β) decays, as their mass
numbers differ by only an integer times 4. If A = 4n + k, then after α-decaying for m times, its
mass number becomes A = 4n+ k − 4m = 4(n−m) + k, still in the same chain.

(b) 235 = 58× 4 + 3 = 4n1 + 3, 236 = 59× 4 = 4n2, 238 = 59× 4 + 2 = 4n2 + 2, 239 = 59× 4 + 3 =
4n2 + 3, 240 = 60 × 4 = 4n3, 245 = 61 × 4 + 1 = 4n4 + 1, 246 = 61 × 4 + 2 = 4n4 + 2, 249 =
62× 4 + 1 = 4n5 + 1, 253 = 63× 4 + 1 = 4n6 + 1.

53. Let A
ZX represent the unknown nuclide. The reaction equation is

A
ZX + 1

0n→ 0
−1e + 2 4

2He .

Conservation of charge yields Z+0 = −1+4 or Z = 3. Conservation of mass number yields A+1 = 0+8
or A = 7. According to the periodic table in Appendix G (also see Appendix F), lithium has atomic
number 3, so the nuclide must be 7

3 Li.

54. (a) We recall that mc2 = 0.511 MeV from Table 38-3, and note that the result of problem 3 in
Chapter 39 can be written as hc = 1240 MeV·fm. Using Eq. 38-51 and Eq. 39-13, we obtain

λ =
h

p
=

hc√
K2 + 2Kmc2

=
1240 MeV·fm

√

(1.0 MeV)2 + 2(1.0 MeV)(0.511 MeV)
= 9.0× 102 fm .

(b) r = r0A
1/3 = (1.2 fm)(150)1/3 = 6.4 fm.

(c) Since λ ≫ r the electron cannot be confined in the nuclide. We recall from Chapters 40 and 41,
that at least λ/2 was needed in any particular direction, to support a standing wave in an “infinite
well.” A finite well is able to support slightly less than λ/2 (as one can infer from the ground state
wavefunction in Fig. 40-8), but in the present case λ/r is far too big to be supported.
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(d) A strong case can be made on the basis of the remarks in part (c), above.

55. Let MCs be the mass of one atom of 137
55Cs and MBa be the mass of one atom of 137

56Ba. To obtain the
nuclear masses, we must subtract the mass of 55 electrons from MCs and the mass of 56 electrons from
MBa. The energy released is Q = [(MCs − 55m)− (MBa − 56m)−m] c2, where m is the mass of an
electron. Once cancellations have been made, Q = (MCs −MBa)c

2 is obtained. Therefore,

Q = [136.9071 u− 136.9058 u] c2 = (0.0013 u)c2 = (0.0013 u)(931.5 MeV/u) = 1.21 MeV .

56. Assuming the neutrino has negligible mass, then

∆mc2 = (mTi −mV −me) c
2 .

Now, since Vanadium has 23 electrons (see Appendix F and/or G) and Titanium has 22 electrons, we
can add and subtract 22me to the above expression and obtain

∆mc2 = (mTi + 22me −mV − 23me) c
2 = (mTi −mV ) c2 .

We note that our final expression for ∆mc2 involves the atomic masses, and that this assumes (due to
the way they are usually tabulated) the atoms are in the ground states (which is certainly not the case
here, as we discuss below). The question now is: do we set Q = −∆mc2 as in Sample Problem 43-7?
The answer is “no.” The atom is left in an excited (high energy) state due to the fact that an electron
was captured from the lowest shell (where the absolute value of the energy, EK , is quite large for large
Z – see Eq. 41-25). To a very good approximation, the energy of the K-shell electron in Vanadium is
equal to that in Titanium (where there is now a “vacancy” that must be filled by a readjustment of the
whole electron cloud), and we write Q = −∆mc2 − EK so that Eq. 43-27 still holds. Thus,

Q = (mV −mTi ) c
2 − EK .

57. The decay scheme is n→ p+e−+ν. The electron kinetic energy is a maximum if no neutrino is emitted.
Then, Kmax = (mn −mp −me)c

2, where mn is the mass of a neutron, mp is the mass of a proton, and
me is the mass of an electron. Since mp +me = mH , where mH is the mass of a hydrogen atom, this can
be written Kmax = (mn −mH)c2. Hence, Kmax = (840 × 10−6 u)c2 = (840 × 10−6 u)(931.5 MeV/u) =
0.783 MeV.

58. We obtain

Q = (mV −mTi ) c
2 − EK

= (48.94852 u− 48.94787 u) (931.5 MeV/u)− 0.00547 MeV

= 0.600 MeV .

59. (a) Since the positron has the same mass as an electron, and the neutrino has negligible mass, then

∆mc2 = (mB +me −mC) c2 .

Now, since Carbon has 6 electrons (see Appendix F and/or G) and Boron has 5 electrons, we can
add and subtract 6me to the above expression and obtain

∆mc2 = (mB + 7me −mC − 6me) c
2 = (mB + 2me −mC ) c2 .

We note that our final expression for ∆mc2 involves the atomic masses, as well an “extra” term
corresponding to two electron masses. From Eq. 38-47 and Table 38-3, we obtain

Q = (mC −mB − 2me) c
2 = (mC −mB) c2 − 2(0.511 MeV) .
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(b) The disintegration energy for the positron decay of Carbon-11 is

Q = (11.011434 u− 11.009305 u)(931.5 MeV/u)− 1.022 MeV = 0.961 MeV .

60. (a) The rate of heat production is

dE

dt
=

3
∑

i=1

RiQi =
3
∑

i=1

λ1NiQi =
3
∑

i=1

(

ln 2

T1/2i

)

(1.00 kg)fi

mi
Qi

=
(1.00 kg)(ln 2)(1.60× 10−13 J/MeV)

(3.15× 107 s/y)(1.661× 10−27 kg/u)

[

(4 × 10−6)(51.7 MeV)

(238 u)(4.47× 109 y)

+
(13× 10−6)(42.7 MeV)

(232 u)(1.41× 1010 y)
+

(4× 10−6)(1.31 MeV)

(40 u)(1.28× 109 y)

]

= 1.0× 10−9 W .

(b) The contribution to heating, due to radioactivity, is P = (2.7 × 1022 kg)(1.0 × 10−9 W/kg) =
2.7× 1013 W, which is very small compared to what is received from the Sun.

61. Since the electron has the maximum possible kinetic energy, no neutrino is emitted. Since momentum
is conserved, the momentum of the electron and the momentum of the residual sulfur nucleus are
equal in magnitude and opposite in direction. If pe is the momentum of the electron and pS is the
momentum of the sulfur nucleus, then pS = −pe. The kinetic energy KS of the sulfur nucleus is
KS = p2

S/2MS = p2
e/2MS, where MS is the mass of the sulfur nucleus. Now, the electron’s kinetic

energy Ke is related to its momentum by the relativistic equation (pec)
2 = K2

e + 2Kemc
2, where m is

the mass of an electron. See Eq. 38-51. Thus,

KS =
(pec)

2

2MSc2
=
K2

e + 2Kemc
2

2MSc2
=

(1.71 MeV)2 + 2(1.71 MeV)(0.511 MeV)

2(32 u)(931.5 MeV/u)

= 7.83× 10−5 MeV = 78.3 eV

where mc2 = 0.511 MeV is used (see Table 38-3).

62. We solve for t from R = R0e
−λt:

t =
1

λ
ln
R0

R
=

(

5730 y

ln 2

)

ln

[(

15.3

63.0

)(

5.00

1.00

)]

= 1.61× 103 y .

63. (a) The mass of a 238U atom is (238 u)(1.661× 10−24 g/u) = 3.95× 10−22 g, so the number of uranium
atoms in the rock is NU = (4.20 × 10−3 g)/(3.95 × 10−22 g) = 1.06 × 1019. The mass of a 206Pb
atom is (206 u)(1.661 × 10−24 g) = 3.42 × 10−22 g, so the number of lead atoms in the rock is
NPb = (2.135× 10−3 g)/(3.42× 10−22 g) = 6.24× 1018.

(b) If no lead was lost, there was originally one uranium atom for each lead atom formed by decay,
in addition to the uranium atoms that did not yet decay. Thus, the original number of uranium
atoms was NU0 = NU +NPb = 1.06× 1019 + 6.24× 1018 = 1.68× 1019.

(c) We use

NU = NU0 e
−λt

where λ is the disintegration constant for the decay. It is related to the half-life T1/2 by λ =
(ln 2)/T1/2. Thus

t = − 1

λ
ln

(

NU

NU0

)

= −T1/2

ln 2
ln

(

NU

NU0

)

= −4.47× 109 y

ln 2
ln

(

1.06× 1019

1.68× 1019

)

= 2.97× 109 y .



1038 CHAPTER 43.

64. The original amount of 238U the rock contains is given by

m0 = meλt = (3.70 mg) e(ln 2)(260×106 y)/(4.47×109 y) = 3.85 mg .

Thus, the amount of lead produced is

m′ = (m0 −m)

(

m206

m238

)

= (3.85 mg− 3.70 mg)

(

206

238

)

= 0.132 mg .

65. We can find the age t of the rock from the masses of 238U and 206Pb. The initial mass of 238U is

mU0
= mU +

238

206
mPb .

Therefore, mU = mU0
e−λUt = (mU +m238Pb/206)e−(t ln 2)/T1/2U . We solve for t:

t =
T1/2U

ln 2
ln

(

mU + (238/206)mPb

mU

)

=
4.47× 109 y

ln 2
ln

[

1 +

(

238

206

)(

0.15 mg

0.86 mg

)]

= 1.18× 109 y .

For the β decay of 40K, the initial mass of 40K is

mK0
= mK + (40/40)mAr = mK +mAr ,

so
mK = mK0

e−λKt = (mK +mAr)e
−λKt .

We solve for mK:

mK =
mAre

−λKt

1− e−λKt
=

mAr

eλKt − 1

=
1.6 mg

e(ln 2)(1.18×109 y)/(1.25×109 y) − 1
= 1.7 mg .

66. The becquerel (Bq) and curie (Ci) are defined in §43-3. Thus, R = 8700/60 = 145 Bq, and

R =
145 Bq

3.7× 1010 Bq/Ci
= 3.92× 10−9 Ci .

67. The decay rate R is related to the number of nuclei N by R = λN , where λ is the disintegration constant.
The disintegration constant is related to the half-life T1/2 by λ = (ln 2)/T1/2, so N = R/λ = RT1/2/ ln 2.
Since 1 Ci = 3.7× 1010 disintegrations/s,

N =
(250 Ci)(3.7× 1010 s−1/Ci)(2.7 d)(8.64× 104 s/d)

ln 2
= 3.11× 1018 .

The mass of a 198Au atom is M = (198 u)(1.661× 10−24 g/u) = 3.29× 10−22 g, so the mass required is
NM = (3.11× 1018)(3.29× 10−22 g) = 1.02× 10−3 g = 1.02 mg.

68. The annual dose equivalent is (20 h)(52 week/y)(7.0µSv/h) = 7.3 mSv.

69. The dose equivalent is the product of the absorbed dose and the RBE factor, so the absorbed dose is
(dose equivalent)/(RBE) = (250×10−6 Sv)/(0.85) = 2.94×10−4 Gy. But 1 Gy = 1 J/kg, so the absorbed
dose is

(

2.94× 10−4 Gy
)

(

1
J

kg·Gy

)

= 2.94× 10−4 J/kg .

To obtain the total energy received, we multiply this by the mass receiving the energy: E = (2.94 ×
10−4 J/kg)(44 kg) = 1.29× 10−2 J.
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70. (a) Using Eq. 43-31, the energy absorbed is

(2.4× 10−4 Gy)(75 kg) = 18 mJ .

(b) The dose equivalent is

(2.4× 10−4 Gy)(12) = 2.9× 10−3 Sv = 0.29 rem

where Eq. 43-32 is used in the last step.

71. (a) Adapting Eq. 43-20, we find

N0 =
(2.5× 10−3 g)(6.02× 1023/mol)

239 g/mol
= 6.3× 1018 .

(b) From Eq. 43-14 and Eq. 43-17,

|∆N | = N0

[

1− e−t ln 2/T1/2

]

= (6.3× 1018)
[

1− e−(12 h) ln 2/(24,100 y)(8760 h/y)
]

= 2.5× 1011 .

(c) The energy absorbed by the body is

(0.95)Eα|∆N | = (0.95) (5.2 MeV)
(

2.5× 1011
) (

1.6× 10−13 J/MeV
)

= 0.20 J .

(d) On a per unit mass basis, the previous result becomes (according to Eq. 43-31)

0.20 mJ

85 kg
= 2.3× 10−3 J/kg = 2.3 mGy .

(e) Using Eq. 43-32, (2.3 mGy)(13) = 30 mSv.

72. From Eq. 20-24, we obtain

T =
2

3

(

Kavg

k

)

=
2

3

(

5.00× 106 eV

8.62× 10−5 eV/K

)

= 3.9× 1010 K .

73. (a) Following Sample Problem 43-10, we compute

∆E ≈ h̄

tavg
=

(4.14× 10−15 eV·fs)/2π
1.0× 10−22 s

= 6.6× 106 eV .

(b) In order to fully distribute the energy in a fairly large nucleus, and create a “compound nucleus”
equilibrium configuration, about 10−15 s is typically required. A reaction state that exists no more
than about 10−22 s does not qualify as a compound nucleus.

74. (a) We compare both the proton numbers (atomic numbers, which can be found in Appendix F and/or
G) and the neutron numbers (see Eq. 43-1) with the magic nucleon numbers (special values of either
Z or N) listed in §43-8. We find that 18O, 60Ni, 92Mo, 144Sm, and 207Pb each have a filled shell
for either the protons or the neutrons (two of these, 18O and 92Mo, are explicitly discussed in that
section).

(b) Consider 40K, which has Z = 19 protons (which is one less than the magic number 20). It has
N = 21 neutrons, so it has one neutron outside a closed shell for neutrons, and thus qualifies for
this list. Others in this list include 91Zr, 121Sb, and 143Nd.
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(c) Consider 13C, which has Z = 6 and N = 13− 6 = 7 neutrons. Since 8 is a magic number, then 13C
has a vacancy in an otherwise filled shell for neutrons. Similar arguments lead to inclusion of 40K,
49Ti, 205Tl, and 207Pb in this list.

75. A generalized formation reaction can be written X + x → Y, where X is the target nucleus, x is the
incident light particle, and Y is the excited compound nucleus (20Ne). We assume X is initially at rest.
Then, conservation of energy yields

mXc
2 +mxc

2 +Kx = mY c
2 +KY + EY

where mX , mx, and mY are masses, Kx and KY are kinetic energies, and EY is the excitation energy
of Y. Conservation of momentum yields

px = pY .

Now, KY = p2
Y /2mY = p2

x/2mY = (mx/mY )Kx, so

mXc
2 +mxc

2 +Kx = mY c
2 + (mx/mY )Kx + EY

and
Kx =

mY

mY −mx

[

(mY −mX −mx)c2 + EY

]

.

(a) Let x represent the alpha particle and X represent the 16O nucleus. Then, (mY −mX −mx)c2 =
(19.99244 u− 15.99491 u− 4.00260 u)(931.5 MeV/u) = −4.722 MeV and

Kα =
19.99244 u

19.99244 u− 4.00260 u
(−4.722 MeV + 25.0 MeV) = 25.35 MeV .

(b) Let x represent the proton and X represent the 19F nucleus. Then, (mY − mX − mx)c2 =
(19.99244 u− 18.99841 u− 1.00783 u)(931.5 MeV/u) = −12.85 MeV and

Kα =
19.99244 u

19.99244 u− 1.00783 u
(−12.85 MeV + 25.0 MeV) = 12.80 MeV .

(c) Let x represent the photon and X represent the 20Ne nucleus. Since the mass of the photon is
zero, we must rewrite the conservation of energy equation: if Eγ is the energy of the photon, then
Eγ +mXc

2 = mY c
2 +KY + EY . Since mX = mY , this equation becomes Eγ = KY + EY . Since

the momentum and energy of a photon are related by pγ = Eγ/c, the conservation of momentum
equation becomes Eγ/c = pY . The kinetic energy of the compound nucleus is KY = p2

Y /2mY =
E2

γ/2mY c
2. We substitute this result into the conservation of energy equation to obtain

Eγ =
E2

γ

2mY c2
+ EY .

This quadratic equation has the solutions

Eγ = mY c
2 ±

√

(mY c2)2 − 2mY c2EY .

If the problem is solved using the relativistic relationship between the energy and momentum of
the compound nucleus, only one solution would be obtained, the one corresponding to the negative
sign above. Since mY c

2 = (19.99244 u)(931.5 MeV/u) = 1.862× 104 MeV,

Eγ = (1.862× 104 MeV)−
√

(1.862× 104 MeV)2 − 2(1.862× 104 MeV)(25.0 MeV)

= 25.0 MeV .

The kinetic energy of the compound nucleus is very small; essentially all of the photon energy goes
to excite the nucleus.
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76. (a) From the decay series, we know that N210, the amount of 210Pb nuclei, changes because of two
decays: the decay from 226Ra into 210Pb at the rate R226 = λ226N226, and the decay from 210Pb
into 206Pb at the rate R210 = λ210N210. The first of these decays causes N210 to increase while the
second one causes it to decrease. Thus,

dN210

dt
= R226 −R210 = λ226N226 − λ210N210 .

(b) We set dN210/dt = R226 −R210 = 0 to obtain R226/R210 = 1.

(c) From R226 = λ226N226 = R210 = λ210N210, we obtain

N226

N210
=
λ210

λ226
=
T1/2226

T1/2210

=
1.60× 103 y

22.6 y
= 70.8 .

(d) Since only 1.00% of the 226Ra remains, the ratio R226/R210 is 0.00100 of that of the equilibrium
state computed in part (b). Thus the ratio is (0.0100)(1) = 0.0100.

(e) This is similar to part (d) above. Since only 1.00% of the 226Ra remains, the ratio N226/N210 is
1.00% of that of the equilibrium state computed in part (c), or (0.0100)(70.8) = 0.708.

(f) Since the actual value of N226/N210 is 0.09, which much closer to 0.0100 than to 1, the sample of
the lead pigment cannot be 300 years old. So Emmaus is not a Vermeer.

77. Using Eq. 43-14 with Eq. 43-17, we find the fraction remaining:

N

N0
= e−t ln 2/T1/2 = e−30 ln 2/29 = 0.49 .

78. Using Eq. 43-15 with Eq. 43-17, we find the initial activity:

R0 = Ret ln 2/T1/2 =
(

7.4× 108 Bq
)

e24 ln 2/83.61 = 9.0× 108 Bq .

79. (a) Molybdenum beta decays into Technetium:

99
42Mo → 99

43Tc + e− + ν

(b) Each decay corresponds to a photon produced when the Technetium nucleus de-excites [note that
the de-excitation half-life is much less than the beta decay half-life]. Thus, the gamma rate is the
same as the decay rate: 8.2× 107/s.

(c) Eq. 43-19 leads to

N =
RT1/2

ln 2
=

(38/s)(6.0 h)(3600 s/h)

ln 2
= 1.2× 106 .

80. (a) Assuming a “target” area of one square meter, we establish a ratio:

rate through you

total rate upward
=

1 m2

(2.6× 105 km2)(1000 m/km)2
= 3.8× 10−12 .

The SI unit becquerel is equivalent to a disintegration per second. With half the beta-decay electrons
moving upward, we find

rate through you =
1

2

(

1× 1016/s
) (

3.8× 10−12
)

= 1.9× 104/s

which implies (converting s → h) the rate of electrons you would intercept is R0 = 7× 107/h.

(b) Let D indicate the current year (2000, 2001, etc) Combining Eq. 43-15 and Eq. 43-17, we find

R = R0e
−t ln 2/T1/2 =

(

7× 107/h
)

e−(D−1996) ln 2/(30.2 y) .
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81. Eq. 43-19 leads to

R =
ln 2

T1/2
N

=
ln 2

30.2 y

(

Msam

matom

)

=
ln 2

9.53× 108 s

(

0.0010 kg

137× 1.661× 10−27 kg

)

= 3.2× 1012 Bq = 86 Ci .

82. The lines that lead toward the lower left are alpha decays, involving an atomic number change of
∆Zα = −2 and a mass number change of ∆Aα = −4. The short horizontal lines toward the right are
beta decays (involving electrons, not positrons) in which case A stays the same but the change in atomic
number is ∆Zβ = +1. Fig. 43-16 shows three alpha decays and two beta decays; thus,

Zf = Zi + 3∆Zα + 2∆Zβ and Af = Ai + 3∆Aα .

Referring to Appendix F or G, we find Zi = 93 for Neptunium, so Zf = 93 + 3(−2) + 2(1) = 89, which
indicates the element Actinium. We are given Ai = 237, so Af = 237 + 3(−4) = 225. Therefore, the
final isotope is 225Ac.

83. We note that every Calcium-40 atom and Krypton-40 atom found now in the sample was once one of
the original number of Potassium atoms. Thus, using Eq. 43-13 and Eq. 43-17, we find

ln

(

NK

NK +NAr +NCa

)

= −λt

ln

(

1

1 + 1 + 8.54

)

= − ln 2

T1/2
t

which (with T1/2 = 1.26× 109 y) yields t = 4.3× 109 y.

84. We note that 3.82 days is 330048 s, and that a becquerel is a disintegration per second (see §43-3). From
Eq. 34-19, we have

N

V =
R

V
T1/2

ln 2
=

(

1.55× 105 Bq

m3

)

330048 s

ln 2
= 7.4× 1010 atoms

m3

where we have divided by volume V . We estimate V (the volume breathed in 48 h = 2880 min) as follows:
(

2
Liters

breath

)(

1 m3

1000 L

)(

40
breaths

min

)

(2880 min)

which yields V ≈ 200 m3. Thus, the order of magnitude of N is
(

N

V

)

(V) ≈
(

7× 1010 atoms

m3

)

(

200 m3
)

≈ 1013 atoms .

85. Kinetic energy (we use the classical formula since v is much less than c) is converted into potential
energy (see Eq. 25-43). From Appendix F or G, we find Z = 3 for Lithium and Z = 90 for Thorium;
the charges on those nuclei are therefore 3e and 90e, respectively. We manipulate the terms so that one
of the factors of e cancels the “e” in the kinetic energy unit MeV, and the other factor of e is set equal
to its SI value 1.6× 10−19 C. We note that k = 1/4πε0 can be written as 8.99× 109 V·m/C. Thus, from
energy conservation, we have

K = U =⇒ r =
kq1q2
K

=

(

8.99× 109 V·m
C

) (

3× 1.6× 10−19 C
)

(90e)

3.00× 106 eV

which yields r = 1.3× 10−13 m (or about 130 fm).
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86. Form Appendix F and/or G, we find Z = 107 for Bohrium, so this isotope has N = A−Z = 262−107 =
155 neutrons. Thus,

∆Eben =
(ZmH +Nmn −mBh) c2

A
=

((107)(1.007825 u)+ (155)(1.008665 u)− 262.1231 u) (931.5 MeV/u)

262

which yields 7.3 MeV per nucleon.

87. Since R is proportional to N (see Eq. 43-16) then N/N0 = R/R0. Combining Eq. 43-13 and Eq.43-17
leads to

t = −T1/2

ln 2
ln

(

R

R0

)

= −5730 y

ln 2
ln(0.020) = 3.2× 104 y .

88. Adapting Eq. 43-20, we have

NKr =
Msam

MKr
NA =

(

20× 10−9 g

92 g/mol

)

(

6.02× 1023 atoms/mol
)

= 1.3× 1014 atoms .

Consequently, Eq. 43-19 leads to

R =
N ln 2

T1/2
=

(

1.3× 1014
)

ln 2

1.84 s
= 4.9× 1013 Bq .
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Chapter 44

1. (a) The mass of a single atom of 235U is (235 u)(1.661× 10−27 kg/u) = 3.90× 10−25 kg, so the number
of atoms in 1.0 kg is (1.0 kg)/(3.90×10−25 kg) = 2.56×1024. An alternate approach (but essentially
the same once the connection between the “u” unit and NA is made) would be to adapt Eq. 43-20.

(b) The energy released by N fission events is given by E = NQ, where Q is the energy released in
each event. For 1.0 kg of 235U, E = (2.56× 1024)(200× 106 eV)(1.60× 10−19 J/eV) = 8.19× 1013 J.

(c) If P is the power requirement of the lamp, then t = E/P = (8.19×1013 J)/(100 W) = 8.19×1011 s =
2.6× 104 y. The conversion factor 3.156× 107 s/y is used to obtain the last result.

2. We note that the sum of superscripts (mass numbers A) must balance, as well as the sum of Z values
(where reference to Appendix F or G is helpful). A neutron has Z = 0 and A = 1. Uranium has Z = 92.

• Since xenon has Z = 54, then “Y” must have Z = 92 − 54 = 38, which indicates the element
Strontium. The mass number of “Y” is 235 + 1− 140− 1 = 95, so “Y” is 95Sr.

• Iodine has Z = 53, so “Y” has Z = 92−53 = 39, corresponding to the element Yttrium (the symbol
for which, coincidentally, is Y). Since 235 + 1− 139− 2 = 95, then the unknown isotope is 95Y.

• The atomic number of Zirconium is Z = 40. Thus, 92 − 40 − 2 = 52, which means that “X” has
Z = 52 (Tellurium). The mass number of “X” is 235 + 1− 100− 2 = 134, so we obtain 134Te.

• Examining the mass numbers, we find b = 235 + 1− 141− 92 = 3.

3. If R is the fission rate, then the power output is P = RQ, where Q is the energy released in each fission
event. Hence, R = P/Q = (1.0 W)/(200× 106 eV)(1.60× 10−19 J/eV) = 3.12× 1010 fissions/s.

4. Adapting Eq. 43-20, there are

NPu =
Msam

MPu
NA =

(

1000 g

239 g/mol

)

(

6.02× 1023/mol
)

= 2.5× 1024

plutonium nuclei in the sample. If they all fission (each releasing 180 MeV), then the total energy release
is 4.5× 1026 MeV.

5. At T = 300 K, the average kinetic energy of the neutrons is (using Eq. 20-24)

Kavg =
3

2
kT =

3

2
(8.62× 10−5 eV/K)(300 K) ≈ 0.04 eV .

6. We consider the process 98Mo → 49Sc + 49Sc. The disintegration energy is Q = (mMo − 2mSc)c
2 =

[97.90541 u−2(48.95002 u)](931.5MeV/u) = +5.00 MeV. The fact that it is positive does not necessarily
mean we should expect to find a great deal of Molybdenum nuclei spontaneously fissioning; the energy
barrier (see Fig. 44-3) is presumably higher and/or broader for Molybdenum than for Uranium.

7. If MCr is the mass of a 52Cr nucleus and MMg is the mass of a 26Mg nucleus, then the disintegration
energy is Q = (MCr − 2MMg) c

2 = [51.94051 u− 2(25.98259 u)] (931.5 MeV/u) = −23.0 MeV.

1045
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8. (a) Using Eq. 43-19 and adapting Eq. 43-20 to this sample, the number of fission-events per second is

Rfission =
N ln 2

T1/2 fission

=
MsamNA ln 2

MU T1/2 fission

=
(1.0 g)(6.02× 1023/mol) ln 2

(235 g/mol)(3.0× 1017 y)(365 d/y)
= 16 fissions/day .

(b) Since R ∝ 1
T1/2

(see Eq. 43-19), the ratio of rates is

Rα

Rfission
=
T1/2 fission

T1/2α

=
3.0× 1017 y

7.0× 108 y
= 4.3× 108 .

9. The energy released is

Q = (mU +mn −mCs −mRb − 2mn)c2

= (235.04392 u− 1.00867 u− 140.91963 u− 92.92157 u)(931.5 MeV/u)

= 181 MeV .

10. First, we figure out the mass of U-235 in the sample (assuming “3.0%” refers to the proportion by weight
as opposed to proportion by number of atoms):

MU−235 = (3.0%)Msam

(

(97%)m238 + (3.0%)m235

(97%)m238 + (3.0%)m235 + 2m16

)

= (0.030)(1000 g)

(

0.97(238) + 0.030(235)

0.97(238) + 0.030(235) + 2(16.0)

)

= 26.4 g .

Next, this uses some of the ideas illustrated in Sample Problem 43-5; our notation is similar to that used
in that example. The number of 235U nuclei is

N235 =
(26.4 g)(6.02× 1023/mol)

235 g/mol
= 6.77× 1022 .

If all the U-235 nuclei fission, the energy release (using the result of Eq. 44-6) is

N235Qfission =
(

6.77× 1022
)

(200 MeV) = 1.35× 1025 MeV = 2.17× 1012 J .

Keeping in mind that a Watt is a Joule per second, the time that this much energy can keep a 100-W
lamp burning is found to be

t =
2.17× 1012 J

100 W
= 2.17× 1010 s ≈ 690 y .

If we had instead used the Q = 208 MeV value from Sample Problem 44-1, then our result would have
been 715 y, which perhaps suggests that our result is meaningful to just one significant figure (“roughly
700 years”).

11. (a) If X represents the unknown fragment, then the reaction can be written

235
92U + 1

0n→ 83
32Ge + A

ZX

where A is the mass number and Z is the atomic number of the fragment. Conservation of charge
yields 92+0 = 32+Z, so Z = 60. Conservation of mass number yields 235+1 = 83+A, so A = 153.
Looking in Appendix F or G for nuclides with Z = 60, we find that the unknown fragment is 153

60Nd.
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(b) We neglect the small kinetic energy and momentum carried by the neutron that triggers the fission
event. Then, Q = KGe +KNd, where KGe is the kinetic energy of the germanium nucleus and KNd

is the kinetic energy of the neodymium nucleus. Conservation of momentum yields ~pGe + ~pNd =
0. Now, we can write the classical formula for kinetic energy in terms of the magnitude of the
momentum vector:

K =
1

2
mv2 =

p2

2m

which implies that KNd = (mGe/mNd)KGe . Thus, the energy equation becomes

Q = KGe +
MGe

MNd
KGe =

MNd +MGe

MNd
KGe

and

KGe =
MNd

MNd +MGe
Q =

153 u

153 u + 83 u
(170 MeV) = 110 MeV .

Similarly,

KNd =
MGe

MNd +MGe
Q =

83 u

153 u + 83 u
(170 MeV) = 60 MeV .

(c) The initial speed of the germanium nucleus is

vGe =

√

2KGe

MGe
=

√

2(110× 106 eV)(1.60× 10−19 J/eV)

(83 u)(1.661× 10−27 kg/u)
= 1.60× 107 m/s .

The initial speed of the neodymium nucleus is

vNd =

√

2KNd

MNd
=

√

2(60× 106 eV)(1.60× 10−19 J/eV)

(153 u)(1.661× 10−27 kg/u)
= 8.69× 106 m/s .

12. (a) Consider the process 239U + n → 140Ce + 99Ru + Ne. We have Zf − Zi = ZCe + ZRu − ZU =
58 + 44− 92 = 10. Thus the number of beta-decay events is 10.

(b) Using Table 38-3, the energy released in this fission process is

Q = (mU +mn −mCe −mRu − 10me)c
2

= (238.05079 u + 1.00867 u− 139.90543 u− 98.90594 u)(931.5 MeV/u)− 10(0.511 MeV)

= 226 MeV .

13. (a) The electrostatic potential energy is given by

U =
1

4πε0

ZXeZSre
2

rXe + rSr

where ZXe is the atomic number of xenon, ZSr is the atomic number of strontium, rXe is the radius
of a xenon nucleus, and rSr is the radius of a strontium nucleus. Atomic numbers can be found
either in Appendix F or Appendix G. The radii are given by r = (1.2 fm)A1/3, where A is the mass
number, also found in Appendix F. Thus, rXe = (1.2 fm)(140)1/3 = 6.23 fm = 6.23 × 10−15 m and
rSr = (1.2 fm)(96)1/3 = 5.49 fm = 5.49× 10−15 m. Hence, the potential energy is

U = (8.99× 109 V·m/C)
(54)(38)(1.60× 10−19 C)2

6.23× 10−15 m + 5.49× 10−15 m
= 4.08× 10−11 J = 251 MeV .

(b) The energy released in a typical fission event is about 200 MeV, roughly the same as the electrostatic
potential energy when the fragments are touching. The energy appears as kinetic energy of the
fragments and neutrons produced by fission.
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14. (a) The surface area a of a nucleus is given by a ≃ 4πR2 ≃ 4π[R0A
1/3]2 ∝ A2/3. Thus, the fractional

change in surface area is

∆a

ai
=
af − ai

ai
=

(140)2/3 + (96)2/3

(236)2/3
− 1 = +0.25 .

(b) Since V ∝ R3 ∝ (A1/3)3 = A, we have

∆V

V
=
Vf

Vi
− 1 =

140 + 96

236
− 1 = 0 .

(c) The fractional change in potential energy is

∆U

U
=

Uf

Ui
− 1

=
Q2

Xe/RXe +Q2
Sr/RSr

Q2
U/RU

− 1

=
(54)2(140)−1/3 + (38)2(96)−1/3

(92)2(236)−1/3
− 1 = −0.36 .

15. If P is the power output, then the energy E produced in the time interval ∆t (= 3 y) is E = P ∆t =
(200 × 106 W)(3 y)(3.156 × 107 s/y) = 1.89 × 1016 J, or (1.89 × 1016 J)/(1.60 × 10−19 J/eV) = 1.18 ×
1035 eV = 1.18 × 1029 MeV. At 200 MeV per event, this means (1.18 × 1029)/200 = 5.90 × 1026 fission
events occurred. This must be half the number of fissionable nuclei originally available. Thus, there
were 2(5.90 × 1026) = 1.18 × 1027 nuclei. The mass of a 235U nucleus is (235 u)(1.661× 10−27 kg/u) =
3.90× 10−25 kg, so the total mass of 235U originally present was (1.18× 1027)(3.90× 10−25 kg) = 462 kg.

16. In Sample Problem 44-2, it is noted that the rate of consumption of U-235 by (nonfission) neutron
capture is one-fourth as big as the rate of the rate of neutron-induced fission events. Consequently, the
mass of 235U should be larger than that computed in problem 15 by 25%: (1.25)(462 kg) = 5.8× 102 kg.
If appeal is to made to other sources (other than Sample Problem 44-2), then it might be possible to
argue for a factor other than 1.25 (we found others in our brief search) and thus to a somewhat different
result.

17. When a neutron is captured by 237Np it gains 5.0 MeV, more than enough to offset the 4.2 MeV required
for 238Np to fission. Consequently, 237Np is fissionable by thermal neutrons.

18. (a) Using the result of problem 4, the TNT equivalent is

(2.50 kg)(4.54× 1026 MeV/kg)

2.6× 1028 MeV/106 ton
= 4.4× 104 ton = 44 kton .

(b) Assuming that this is a fairly inefficiently designed bomb, then much of the remaining 92.5 kg is
probably “wasted” and was included perhaps to make sure the bomb did not “fizzle.” There is also
an argument for having more than just the critical mass based on the short assembly-time of the
material during the implosion, but this so-called “super-critical mass,” as generally quoted, is much
less than 92.5 kg, and does not necessarily have to be purely Plutonium.

19. If R is the decay rate then the power output is P = RQ, where Q is the energy produced by each alpha
decay. Now R = λN = N ln 2/T1/2, where λ is the disintegration constant and T1/2 is the half-life. The
relationship λ = (ln 2)/T1/2 is used. If M is the total mass of material and m is the mass of a single
238Pu nucleus, then

N =
M

m
=

1.00 kg

(238 u)(1.661× 10−27 kg/u)
= 2.53× 1024 .

Thus,

P =
NQ ln 2

T1/2
=

(2.53× 1024)(5.50× 106 eV)(1.60× 10−19 J/eV)(ln 2)

(87.7 y)(3.156× 107 s/y)
= 558 W .
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20. (a) We solve Qeff from P = RQeff :

Qeff =
P

R
=

P

Nλ
=
mPT1/2

M ln 2

=
(90.0 u)(1.66× 10−27 kg/u)(0.93 W)(29 y)(3.15× 107 s/y)

(1.00× 10−3 kg)(ln 2)(1.60× 10−13 J/MeV)

= 1.2 MeV .

(b) The amount of 90Sr needed is

M =
150 W

(0.050)(0.93 W/g)
= 3.2 kg .

21. Since Plutonium has Z = 94 and Uranium has Z = 92, we see that (to conserve charge) two electrons
must be emitted so that the nucleus can gain a +2e charge. In the beta decay processes described in
Chapter 43, electrons and neutrinos are emitted. The reaction series is as follows:

238U + n → 239Np + 239U + e+ ν
239Np → 239Pu + e+ ν

22. After each time interval tgen the number of nuclides in the chain reaction gets multiplied by k. The
number of such time intervals that has gone by at time t is t/tgen. For example, if the multiplication
factor is 5 and there were 12 nuclei involved in the reaction to start with, then after one interval 60
nuclei are involved. And after another interval 300 nuclei are involved. Thus, the number of nuclides
engaged in the chain reaction at time t is N(t) = N0k

t/tgen . Since P ∝ N we have

P (t) = P0k
t/tgen .

23. (a) The energy yield of the bomb is E = (66 × 10−3 megaton)(2.6 × 1028 MeV/megaton) = 1.72 ×
1027 MeV. At 200 MeV per fission event, (1.72× 1027 MeV)/(200 MeV) = 8.58× 1024 fission events
take place. Since only 4.0% of the 235U nuclei originally present undergo fission, there must have
been (8.58 × 1024)/(0.040) = 2.14 × 1026 nuclei originally present. The mass of 235U originally
present was (2.14× 1026)(235 u)(1.661× 10−27 kg/u) = 83.7 kg.

(b) Two fragments are produced in each fission event, so the total number of fragments is 2(8.58 ×
1024) = 1.72× 1025.

(c) One neutron produced in a fission event is used to trigger the next fission event, so the average
number of neutrons released to the environment in each event is 1.5. The total number released is
(8.58× 1024)(1.5) = 1.29× 1025.

24. We recall Eq. 44-6: Q ≈ 200 MeV = 3.2×10−11 J. It is important to bear in mind that Watts multiplied
by seconds give Joules. From E = Ptgen = NQ we get the number of free neutrons:

N =
Ptgen
Q

=
(500× 106 W)(1.0 × 10−3 s)

3.2× 10−11 J
= 1.6× 1016 .

25. Let P0 be the initial power output, P be the final power output, k be the multiplication factor, t be the
time for the power reduction, and tgen be the neutron generation time. Then, according to the result of
Problem 22,

P = P0 k
t/tgen .

We divide by P0, take the natural logarithm of both sides of the equation and solve for ln k:

ln k =
tgen
t

ln
P

P0
=

1.3× 10−3 s

2.6 s
ln

350 MW

1200 MW
= −0.0006161 .

Hence, k = e−0.0006161 = 0.99938.
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26. We use the formula from problem 22:

P (t) = P0k
t/tgen

= (400 MW)(1.0003)(5.00min)(60 s/min)/(0.00300 s)

= 8.03× 103 MW .

27. (a) Let vni be the initial velocity of the neutron, vnf be its final velocity, and vf be the final velocity
of the target nucleus. Then, since the target nucleus is initially at rest, conservation of momentum
yields mnvni = mnvnf + mvf and conservation of energy yields 1

2mnv
2
ni = 1

2mnv
2
nf + 1

2mv
2
f . We

solve these two equations simultaneously for vf . This can be done, for example, by using the
conservation of momentum equation to obtain an expression for vnf in terms of vf and substituting
the expression into the conservation of energy equation. We solve the resulting equation for vf . We
obtain vf = 2mnvni/(m +mn). The energy lost by the neutron is the same as the energy gained
by the target nucleus, so

∆K =
1

2
mv2

f =
1

2

4m2
nm

(m+mn)2
v2

ni .

The initial kinetic energy of the neutron is K = 1
2mnv

2
ni, so

∆K

K
=

4mnm

(m+mn)2
.

(b) The mass of a neutron is 1.0 u and the mass of a hydrogen atom is also 1.0 u. (Atomic masses can
be found in Appendix G.) Thus,

∆K

K
=

4(1.0 u)(1.0 u)

(1.0 u + 1.0 u)2
= 1.0 .

Similarly, the mass of a deuterium atom is 2.0 u, so (∆K)/K = 4(1.0 u)(2.0 u)/(2.0 u+1.0 u)2 = 0.89.
The mass of a carbon atom is 12 u, so (∆K)/K = 4(1.0 u)(12 u)/(12 u + 1.0 u)2 = 0.28. The mass
of a lead atom is 207 u, so (∆K)/K = 4(1.0 u)(207 u)/(207 u + 1.0 u)2 = 0.019.

(c) During each collision, the energy of the neutron is reduced by the factor 1 − 0.89 = 0.11. If Ei is
the initial energy, then the energy after n collisions is given by E = (0.11)nEi. We take the natural
logarithm of both sides and solve for n. The result is

n =
ln(E/Ei)

ln 0.11
=

ln(0.025 eV/1.00 eV)

ln 0.11
= 7.9 .

The energy first falls below 0.025 eV on the eighth collision.

28. Our approach is the same as that shown in Sample Problem 44-3. We have

N5(t)

N8(t)
=
N5(0)

N8(0)
e−(λ5−λ8)t ,

or

t =
1

λ8 − λ5
ln

[(

N5(t)

N8(t)

)(

N8(0)

N5(0)

)]

=
1

(1.55− 9.85)10−10 y−1
ln
[

(0.0072)(0.15)−1
]

= 3.6× 109 y .

29. (a) Pavg = (15× 109 W·y)/(200, 000 y) = 7.5× 104 W = 75 kW.
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(b) Using the result of Eq. 44-6, we obtain

M =
mUEtotal

Q

=
(235 u)(1.66× 10−27 kg/u)(15× 109 W·y)(3.15× 107 s/y)

(200 MeV)(1.6× 10−13 J/MeV)

= 5.8× 103 kg .

30. The nuclei of 238U can capture neutrons and beta-decay. With large amount of neutrons available due to
the fission of 235U, the probability for this process is substantially increased, resulting in a much higher
decay rate for 238U and causing the depletion of 238U (and relative enrichment of 235U).

31. Let t be the present time and t = 0 be the time when the ratio of 235U to 238U was 3.0%. Let N235 be
the number of 235U nuclei present in a sample now and N235, 0 be the number present at t = 0. Let N238

be the number of 238U nuclei present in the sample now and N238, 0 be the number present at t = 0.
The law of radioactive decay holds for each specie, so

N235 = N235, 0 e
−λ235t

and
N238 = N238, 0 e

−λ238t .

Dividing the first equation by the second, we obtain

r = r0 e
−(λ235−λ238)t

where r = N235/N238 (= 0.0072) and r0 = N235, 0/N238, 0 (= 0.030). We solve for t:

t = − 1

λ235 − λ238
ln

r

r0
.

Now we use λ235 = (ln 2)/T1/2235
and λ238 = (ln 2)/T1/2238

to obtain

t = −
T1/2235

T1/2238

(T1/2238
− T1/2235

) ln 2
ln

r

r0
= − (7.0× 108 y)(4.5× 109 y)

(4.5× 109 y− 7.0× 108 y) ln 2
ln

0.0072

0.030
= 1.71× 109 y .

32. (a) Fig. 43-9 shows the barrier height to be about 30 MeV.

(b) The potential barrier height listed in Table 44-2 is roughly 5 MeV. There is some model-dependence
involved in arriving at this estimate, and other values can be found in the literature (6 MeV is
frequently cited).

33. The height of the Coulomb barrier is taken to be the value of the kinetic energy K each deuteron must
initially have if they are to come to rest when their surfaces touch (see Sample Problem 44-4). If r is
the radius of a deuteron, conservation of energy yields

2K =
1

4πε0

e2

2r
,

so

K =
1

4πε0

e2

4r
= (8.99× 109 V·m/C)

(1.60× 10−19 C)2

4(2.1× 10−15 m)
= 2.74× 10−14 J = 170 keV .

34. We are given the energy release per fusion (Q = 3.27 MeV = 5.24×10−13 J) and that a pair of deuterium
atoms are consumed in each fusion event. To find how many pairs of deuterium atoms are in the sample,
we adapt Eq. 43-20:

Nd pairs =
Msam

2Md
NA =

(

1000 g

2(2.0 g/mol)

)

(

6.02× 1023/mol
)

= 1.5× 1026 .
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Multiplying this by Q gives the total energy released: 7.9 × 1013 J. Keeping in mind that a Watt is a
Joule per second, we have

t =
7.9× 1013 J

100 W
= 7.9× 1011 s = 2.5× 104 y .

35. (a) Our calculation is identical to that in Sample Problem 44-4 except that we are now using R ap-
propriate to two deuterons coming into “contact,” as opposed to the R = 1.0 fm value used in the
Sample Problem. If we use R = 2.1 fm for the deuterons (this is the value given in problem 33),
then our K is simply the K calculated in Sample Problem 44-4, divided by 2.1:

Kd+d =
Kp+p

2.1
=

360 keV

2.1
≈ 170 keV .

Consequently, the voltage needed to accelerate each deuteron from rest to that value of K is 170 kV.

(b) Not all deuterons that are accelerated towards each other will come into “contact” and not all of
those that do so will undergo nuclear fusion. Thus, a great many deuterons must be repeatedly
encountering other deuterons in order to produce a macroscopic energy release. An accelerator
needs a fairly good vacuum in its beam pipe, and a very large number flux is either impractical
and/or very expensive. Regarding expense, there are other factors that have dissuaded researchers
from using accelerators to build a controlled fusion “reactor,” but those factors may become less
important in the future – making the feasibility of accelerator “add-on’s” to magnetic and inertial
confinement schemes more cost-effective.

36. Our calculation is very similar to that in Sample Problem 44-4 except that we are now usingR appropriate
to two Lithium-7 nuclei coming into “contact,” as opposed to the R = 1.0 fm value used in the Sample
Problem. If we use

R = r = r0A
1/3 = (1.2 fm)

3
√

7 = 2.3 fm

and q = Ze = 3e, then our K is given by (see Sample Problem 44-4)

K =
Z2e2

16πε0r
=

32(1.6× 10−19 C)2

16π(8.85× 10−12 F/m)(2.3× 1015 m)

which yields 2.3× 10−13 J = 1.4 MeV. We interpret this as the answer to the problem, though the term
“Coulomb barrier height” as used here may be open to other interpretations.

37. From the expression for n(K) given we may write n(K) ∝ K1/2e−K/kT . Thus, with k = 8.62 ×
10−5 eV/K = 8.62× 10−8 keV/K, we have

n(K)

n(Kavg)
=

(

K

Kavg

)1/2

e−(K−Kavg)/kT

=

(

5.00 keV

1.94 keV

)1/2

e−(5.00 keV−1.94 keV)/[(8.62×10−8 keV/K)(1.50×107 K)]

= 0.151 .

38. (a) Rather than use P (v) as it is written in Eq. 20-27, we use the more convenient nK expression given
in problem 37 of this chapter [44]. The n(K) expression can be derived from Eq. 20-27, but we do
not show that derivation here. To find the most probable energy, we take the derivative of n(K)
and set the result equal to zero:

dn(K)

dK

∣

∣

∣

∣

K=Kp

=
1.13n

(kT )3/2

(

1

2K1/2
− K3/2

kT

)

e−K/kT

∣

∣

∣

∣

K=Kp

= 0 ,
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which gives Kp = 1
2kT . Specifically, for T = 1.5× 107 K we find

Kp =
1

2
kT =

1

2
(8.62× 10−5 eV/K)(1.5× 107 K) = 6.5× 102 eV

or 0.65 keV, in good agreement with Fig. 44-10.

(b) Eq. 20-35 gives the most probable speed in terms of the molar mass M , and indicates its derivation
(see also Sample Problem 20-6). Since the mass m of the particle is related to M by the Avogadro
constant, then

vp =

√

2RT

M
=

√

2RT

mNA
=

√

2kT

m

using Eq. 20-7. With T = 1.5× 107 K and m = 1.67× 10−27 kg, this yields vp = 5.0× 105 m/s.

(c) The corresponding kinetic energy is

Kv,p =
1

2
mv2

p =
1

2
m

(
√

2kT

m

)2

= kT

which is twice as large as that found in part (a). Thus, at T = 1.5× 107 K we have Kv,p = 1.3 keV,
which is indicated in Fig. 44-10 by a single vertical line.

39. If MHe is the mass of an atom of helium and MC is the mass of an atom of carbon, then the energy
released in a single fusion event is

Q = [3MHe −MC] c2 = [3(4.0026 u)− (12.0000 u)] (931.5 MeV/u) = 7.27 MeV .

Note that 3MHe contains the mass of six electrons and so does MC. The electron masses cancel and the
mass difference calculated is the same as the mass difference of the nuclei.

40. In Fig. 44-11, let Q1 = 0.42 MeV, Q2 = 1.02 MeV, Q3 = 5.49 MeV and Q4 = 12.86 MeV. For the overall
proton-proton cycle

Q = 2Q1 + 2Q2 + 2Q3 +Q4

= 2(0.42 MeV + 1.02 MeV + 5.49 MeV) + 12.86 MeV = 26.7 MeV .

41. (a) From ρH = 0.35ρ = npmp, we get the proton number density np:

np =
0.35ρ

mp
=

(0.35)(1.5× 105 kg/m
3
)

1.67× 10−27 kg
= 3.14× 1031 m−3 .

(b) From Chapter 20 (see Eq. 20-9), we have

N

V
=

p

kT
=

1.01× 105 Pa

(1.38× 10−23 J/K)(273 K)
= 2.68× 1025 m−3

for an ideal gas under “standard conditions.” Thus,

np

(N/V )
=

3.14× 1031 m−3

2.44× 1025 m−3
= 1.2× 106 .

42. We assume the neutrino has negligible mass. The photons, of course, are also taken to have zero mass.

Q1 = (2mp −m2 −me)c
2 = [2(m1 −me)− (m2 −me)−me]c

2

= [2(1.007825 u)− 2.014102 u− 2(0.0005486 u)](931.5 MeV/u)

= 0.42 MeV
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Q2 = (m2 +mp −m3)c
2 = (m2 +mp −m3)c

2

= (2.014102 u) + 1.007825 u− 3.016029 u)(931.5 MeV/u)

= 5.49 MeV

Q3 = (2m3 −m4 − 2mp)c
2 = (2m3 −m4 − 2mp)c

2

= [2(3.016029 u)− 4.002603 u− 2(1.007825 u)](931.5 MeV/u)

= 12.86 MeV .

43. (a) Let M be the mass of the Sun at time t and E be the energy radiated to that time. Then, the
power output is P = dE/dt = (dM/dt)c2, where E = Mc2 is used. At the present time,

dM

dt
=
P

c2
=

3.9× 1026 W

(2.998× 108 m/s)2
= 4.33× 109 kg/s .

(b) We assume the rate of mass loss remained constant. Then, the total mass loss is ∆M = (dM/dt)∆t =
(4.33× 109 kg/s)(4.5 × 109 y)(3.156× 107 s/y) = 6.15× 1026 kg. The fraction lost is

∆M

M + ∆M
=

6.15× 1026 kg

2.0× 1030 kg + 6.15× 1026 kg
= 3.07× 10−4 .

44. (a) We are given the energy release per fusion (calculated in §44-7: Q = 26.7 MeV = 4.28 × 10−12 J)
and that four protons are consumed in each fusion event. To find how many sets of four protons
are in the sample, we adapt Eq. 43-20:

N4p =
Msam

4MH
NA =

(

1000 g

4(1.0 g/mol)

)

(

6.02× 1023/mol
)

= 1.5× 1026 .

Multiplying this by Q gives the total energy released: 6.4×1014 J. It is not required that the answer
be in SI units; we could have used MeV throughout (in which case the answer is 4.0× 1027 MeV).

(b) The number of 235U nuclei is

N235 =

(

1000 g

235 g/mol

)

(

6.02× 1023/mol
)

= 2.56× 1024 .

If all the U-235 nuclei fission, the energy release (using the result of Eq. 44-6) is

N235Qfission =
(

2.56× 1022
)

(200 MeV) = 5.1× 1026 MeV = 8.2× 1013 J .

We see that the fusion process (with regard to a unit mass of fuel) produces a larger amount of
energy (despite the fact that the Q value per event is smaller).

45. (a) Since two neutrinos are produced per proton-proton cycle (see Eq. 44-10 or Fig. 44-11), the rate of
neutrino production Rν satisfies

Rν =
2P

Q
=

2(3.9× 1026 W)

(26.7 MeV)(1.6× 10−13 J/MeV)
= 1.8× 1038 s−1 .

(b) Let des be the Earth to Sun distance, and R be the radius of Earth (see Appendix C). Earth
represents a small cross section in the “sky” as viewed by a fictitious observer on the Sun. The rate
of neutrinos intercepted by that area (very small, relative to the area of the full “sky”) is

Rν,Earth = Rν

(

πR2
e

4πd2
es

)

=
(1.8× 1038 s−1)

4

(

6.4× 106 m

1.5× 1011 m

)2

= 8.2× 1028 s−1 .
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46. (a) The products of the carbon cycle are 2e+ + 2ν + 4He, the same as that of the proton-proton cycle
(see Eq. 44-10). The difference in the number of photons is not significant.

(b) Qcarbon = Q1+Q2+ · · ·+Q6 = (1.95+1.19+7.55+7.30+1.73+4.97)MeV = 24.7 MeV, which is the
same as that for the proton-proton cycle (once we subtract out the electron-positron annihilations;
see Fig. 44-11): Qp−p = 26.7 MeV− 2(1.02 MeV) = 24.7 MeV.

47. (a) The mass of a carbon atom is (12.0 u)(1.661×10−27 kg/u) = 1.99×10−26 kg, so the number of carbon
atoms in 1.00 kg of carbon is (1.00 kg)/(1.99×10−26 kg) = 5.02×1025. The heat of combustion per
atom is (3.3× 107 J/kg)/(5.02× 1025 atom/kg) = 6.58× 10−19 J/atom. This is 4.11 eV/atom.

(b) In each combustion event, two oxygen atoms combine with one carbon atom, so the total mass
involved is 2(16.0 u) + (12.0 u) = 44 u. This is (44 u)(1.661× 10−27 kg/u) = 7.31× 10−26 kg. Each
combustion event produces 6.58 × 10−19 J so the energy produced per unit mass of reactants is
(6.58× 10−19 J)/(7.31× 10−26 kg) = 9.00× 106 J/kg.

(c) If the Sun were composed of the appropriate mixture of carbon and oxygen, the number of combus-
tion events that could occur before the Sun burns out would be (2.0× 1030 kg)/(7.31× 10−26 kg) =
2.74× 1055. The total energy released would be E = (2.74× 1055)(6.58× 10−19 J) = 1.80× 1037 J.
If P is the power output of the Sun, the burn time would be

t =
E

P
=

1.80× 1037 J

3.9× 1026 W
= 4.62× 1010 s = 1460 y .

48. The mass of the hydrogen in the Sun’s core is mH = 0.35(1
8MSun). The time it takes for the hydrogen

to be entirely consumed is

t =
MH

dm/dt
=

(0.35)(1
8 )(2.0× 1030 kg)

(6.2× 1011 kg/s)(3.15× 107 s/y)
= 5× 109 y .

49. Since the mass of a helium atom is (4.00 u)(1.661×10−27 kg/u) = 6.64×10−27 kg, the number of helium
nuclei originally in the star is (4.6 × 1032 kg)/(6.64 × 10−27 kg) = 6.92 × 1058. Since each fusion event
requires three helium nuclei, the number of fusion events that can take place is N = 6.92 × 1058/3 =
2.31×1058. If Q is the energy released in each event and t is the conversion time, then the power output
is P = NQ/t and

t =
NQ

P
=

(2.31× 1058)(7.27× 106 eV)(1.60× 10−19 J/eV)

5.3× 1030 W
= 5.07× 1015 s = 1.6× 108 y .

50. (a) From E = NQ = (Msam/4mp)Q we get the energy per kilogram of hydrogen consumed:

E

Msam
=

Q

4mp
=

(26.2 MeV)(1.60× 10−13 J/MeV)

4(1.67× 10−27 kg)
= 6.3× 1014 J/kg .

(b) Keeping in mind that a Watt is a Joule per second, the rate is

dm

dt
=

3.9× 1026 W

6.3× 1014 J/kg
= 6.2× 1011 kg/s .

This agrees with the computation shown in Sample Problem 44-5.

(c) From the Einstein relation E = Mc2 we get P = dE/dt = c2dM/dt, or

dM

dt
=
P

c2
=

3.9× 1026 W

(3.0× 108 m/s)2
= 4.3× 109 kg/s .

This finding, that dm
dt > dM

dt , is in large part due to the fact that, as the protons are consumed,
their mass is mostly turned into alpha particles (helium), which remain in the Sun.
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(d) The time to lose 0.10% of its total mass is

t =
0.0010M

dM/dt
=

(0.0010)(2.0× 1030 kg)

(4.3× 109 kg/s)(3.15× 107 s/y)
= 1.5× 1010 y .

51. (a) Q = (5m2H−m3He−m4He−m1H−2mn)c2 = [5(2.014102 u)−3.016029 u−4.002603 u−1.007825 u−
2(1.008665 u)](931.5 MeV/u) = 24.9 MeV.

(b) Assuming 30.0% of the deuterium undergoes fusion, the total energy released is

E = NQ =

(

0.300M

5m2H

)

Q .

Thus, the rating is

R =
E

2.6× 1028 MeV/megaton TNT

=
(0.300)(500 kg)(24.9 MeV)

5(2.0 u)(1.66× 10−27 kg/u)(2.6× 1028 MeV/megaton TNT)

= 8.65 megaton TNT .

52. In Eq. 44-13,

Q = (2m2H −m3He −mn)c2

= [2(2.014102 u)− 3.016049 u− 1.008665 u](931.5 MeV/u)

= 3.27 MeV .

In Eq. 44-14,

Q = (2m2H −m3H −m1H)c2

= [2(2.014102 u)− 3.016049 u− 1.007825 u](931.5 MeV/u)

= 4.03 MeV .

Finally, in Eq. 44-15,

Q = (m2H +m3H −m4He −mn)c2

= [2.014102 u + 3.016049 u− 4.002603 u− 1.008665 u](931.5 MeV/u)

= 17.59 MeV .

53. Since 1.00 L of water has a mass of 1.00 kg, the mass of the heavy water in 1.00 L is 0.0150× 10−2 kg =
1.50 × 10−4 kg. Since a heavy water molecule contains one oxygen atom, one hydrogen atom and one
deuterium atom, its mass is (16.0 u + 1.00 u + 2.00 u) = 19.0 u or (19.0 u)(1.661× 10−27 kg/u) = 3.16×
10−26 kg. The number of heavy water molecules in a liter of water is (1.50×10−4 kg)/(3.16×10−26 kg) =
4.75 × 1021. Since each fusion event requires two deuterium nuclei, the number of fusion events that
can occur is N = 4.75 × 1021/2 = 2.38 × 1021. Each event releases energy Q = (3.27 × 106 eV)(1.60 ×
10−19 J/eV) = 5.23×10−13 J. Since all events take place in a day, which is 8.64×104 s, the power output
is

P =
NQ

t
=

(2.38× 1021)(5.23× 10−13 J)

8.64× 104 s
= 1.44× 104 W = 14.4 kW .

54. Conservation of energy gives Q = Kα+Kn, and conservation of linear momentum (due to the assumption
of negligible initial velocities) gives |pα| = |pn|. We can write the classical formula for kinetic energy in
terms of momentum:

K =
1

2
mv2 =

p2

2m
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which implies that Kn = (mα/mn)Kα . Consequently, conservation of energy and momentum allows us
to solve for kinetic energy of the alpha particle which results from the fusion:

Kα =
Q

1 + mα

mn

=
17.59 MeV

1 + 4.0015 u
1.008665u

= 3.541 MeV

where we have found the mass of the alpha particle by subtracting two electron masses from the 4He
mass (quoted several times in this and the previous chapter). Then, Kn = Q−Kα yields 14.05 MeV for
the neutron kinetic energy.
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Chapter 45

1. Using Table 45-1, the difference in mass between the muon and the pion is

∆m =
(

139.6
MeV

c2
− 105.7

MeV

c2

)

=
(33.9 MeV)(1.60× 10−13 J/MeV)

(2.998× 108 m/s)2
= 6.03× 10−29 kg .

2. We establish a ratio, using Eq. 22-4 and Eq. 14-1:

Fgravity

Felectric
=

Gm2
e/r

2

ke2/r2
=

4πε0Gm
2
e

e2

=
(6.67× 10−11 N ·m2/C2)(9.11× 10−31 kg)2

(9.0× 109 N ·m2/C2)(1.60× 10−19 C)2

= 2.4× 10−43 .

Since Fgravity ≪ Felectric , we can neglect the gravitational force acting between particles in a bubble
chamber.

3. Conservation of momentum requires that the gamma ray particles move in opposite directions with
momenta of the same magnitude. Since the magnitude p of the momentum of a gamma ray particle is
related to its energy by p = E/c, the particles have the same energy E. Conservation of energy yields
mπc

2 = 2E, where mπ is the mass of a neutral pion. According to Table 45-4, the rest energy of a neutral
pion is mπc

2 = 135.0 MeV. Hence, E = (135.0 MeV)/2 = 67.5 MeV. We use the result of Exercise 3 of
Chapter 39 to obtain the wavelength of the gamma rays:

λ =
1240 eV·nm

67.5× 106 eV
= 1.84× 10−5 nm = 18.4 fm .

4. By charge conservation, it is clear that reversing the sign of the pion means we must reverse the sign of
the muon. In effect, we are replacing the charged particles by their antiparticles. Less obvious is the fact
that we should now put a “bar” over the neutrino (something we should also have done for some of the
reactions and decays discussed in the previous two chapters, except that we had not yet learned about
antiparticles). To understand the “bar” we refer the reader to the discussion in §45-4. The decay of the
negative pion is π− → µ− + ν̄. A subscript can be added to the antineutrino to clarify what “type” it
is, as discussed in §45-4.

5. The energy released would be twice the rest energy of Earth, or E = 2mc2 = 2(5.98× 1024 kg)(2.998×
108 m/s)2 = 1.08× 1042 J. The mass of Earth can be found in Appendix C.

6. Since the density of water is ρ = 1000 kg/m3 = 1 kg/L, then the total mass of the pool is ρV =
4.32× 105 kg, where V is the given volume. Now, the fraction of that mass made up by the protons is
10/18 (by counting the protons versus total nucleons in a water molecule). Consequently, if we ignore

1059
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the effects of neutron decay (neutrons can beta decay into protons) in the interest of making an order-of-
magnitude calculation, then the number of particles susceptible to decay via this T1/2 = 1032 y half-life
is

N =
10
18Mpool

mp
=

10
18 (4.32× 105 kg)

1.67× 10−27 kg
= 1.44× 1032 .

Using Eq. 43-19, we obtain

R =
N ln 2

T1/2
=

(

1.44× 1032
)

ln 2

1032 y
≈ 1 decay/y .

7. From Eq. 38-45, the Lorentz factor would be

γ =
E

mc2
=

1.5× 106 eV

20 eV
= 75000 .

Solving Eq. 38-8 for the speed, we find

γ =
1

√

1− (v/c)2
=⇒ v = c

√

1− 1

γ2

which implies that the difference between v and c is

c− v = c

(

1−
√

1− 1

γ2

)

≈ c

(

1−
(

1− 1

2γ2
+ · · ·

))

where we use the binomial expansion (see Appendix E) in the last step. Therefore,

c− v ≈ c
(

1

2γ2

)

= (299792458 m/s)

(

1

2(75000)2

)

= 0.0266 m/s .

8. From Eq. 38-49, the Lorentz factor is

γ = 1 +
K

mc2
= 1 +

80 MeV

135 MeV
= 1.59 .

Solving Eq. 38-8 for the speed, we find

γ =
1

√

1− (v/c)2
=⇒ v = c

√

1− 1

γ2

which yields v = 0.778c or v = 2.33×108 m/s. Now, in the reference frame of the laboratory, the lifetime
of the pion is not the given τ value but is “dilated.” Using Eq. 38-9, the time in the lab is

t = γτ = (1.59)
(

8.3× 10−17 s
)

= 1.3× 10−16 s .

Finally, using Eq. 38-10, we find the distance in the lab to be

x = vt =
(

2.33× 108 m/s
) (

1.3× 10−16 s
)

= 3.1× 10−8 m .

9. Table 45-4 gives the rest energy of each pion as 139.6 MeV. The magnitude of the momentum of each pion
is pπ = (358.3 MeV)/c. We use the relativistic relationship between energy and momentum (Eq. 38-52)
to find the total energy of each pion:

Eπ =
√

(pπc)2 + (mπc2)2 =
√

(358.3 MeV)2 + (139.6 MeV)2 = 384.5 MeV .

Conservation of energy yields mρc
2 = 2Eπ = 2(384.5 MeV) = 769 MeV.
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10. (a) In SI units, K = (2200 MeV)(1.6× 10−13 J/MeV) = 3.52× 10−10 J. Similarly, mc2 = 2.85× 10−10 J
for the positive tau. Eq. 38-51 leads to the relativistic momentum:

p =
1

c

√

K2 + 2Kmc2 =
1

2.998× 108

√

(3.52× 10−10)2 + 2 (3.52× 10−10) (2.85× 10−10)

which yields p = 1.90× 10−18 kg·m/s.
(b) According to problem 46 in Chapter 38, the radius should be calculated with the relativistic mo-

mentum:
r =

γmv

|q|B =
p

eB

where we use the fact that the positive tau has charge e = 1.6 × 10−19 C. With B = 1.20 T, this
yields r = 9.9 m.

11. (a) Conservation of energy gives Q = K2 +K3 = E1−E2−E3 where E refers here to the rest energies
(mc2) instead of the total energies of the particles. Writing this as K2 + E2 − E1 = −(K3 + E3)
and squaring both sides yields

K2
2 + 2K2E2 − 2K2E1 + (E1 − E2)

2
= K2

3 + 2K3E3 + E2
3 .

Next, conservation of linear momentum (in a reference frame where particle 1 was at rest) gives
|p2| = |p3| (which implies (p2c)

2 = (p3c)
2). Therefore, Eq. 38-51 leads to

K2
2 + 2K2E2 = K2

3 + 2K3E3

which we subtract from the above expression to obtain

−2K2E1 + (E1 − E2)
2

= E2
3 .

This is now straightforward to solve for K2 and yields the result stated in the problem.

(b) Setting E3 = 0 in

K2 =
1

2E1

[

(E1 − E2)
2 − E2

3

]

and using the rest energy values given in Table 45-1 readily gives the same result forKµ as computed
in Sample Problem 45-1.

12. (a) Eq. 45-14 conserves charge since both the proton and the positron have q = +e (and the neutrino
is uncharged).

(b) Energy conservation is not violated since mpc
2 > mec

2 +mνc
2.

(c) We are free to view the decay from the rest frame of the proton. Both the positron and the neutrino
are able to carry momentum, and so long as they travel in opposite directions with appropriate
values of p (so that

∑

~p = 0) then linear momentum is conserved.

(d) If we examine the spin angular momenta, there does seem to be a violation of angular momentum
conservation (Eq. 45-14 shows a spin-one-half particle decaying into two spin-one-half particles).

13. (a) The conservation laws considered so far are associated with energy, momentum, angular momentum,
charge, baryon number, and the three lepton numbers. The rest energy of the muon is 105.7 MeV,
the rest energy of the electron is 0.511 MeV, and the rest energy of the neutrino is zero. Thus, the
total rest energy before the decay is greater than the total rest energy after. The excess energy can be
carried away as the kinetic energies of the decay products and energy can be conserved. Momentum
is conserved if the electron and neutrino move away from the decay in opposite directions with equal
magnitudes of momenta. Since the orbital angular momentum is zero, we consider only spin angular
momentum. All the particles have spin h̄/2. The total angular momentum after the decay must be
either h̄ (if the spins are aligned) or zero (if the spins are antialigned). Since the spin before the
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decay is h̄/2, angular momentum cannot be conserved. The muon has charge −e, the electron has
charge −e, and the neutrino has charge zero, so the total charge before the decay is −e and the total
charge after is −e. Charge is conserved. All particles have baryon number zero, so baryon number
is conserved. The muon lepton number of the muon is +1, the muon lepton number of the muon
neutrino is +1, and the muon lepton number of the electron is 0. Muon lepton number is conserved.
The electron lepton numbers of the muon and muon neutrino are 0 and the electron lepton number
of the electron is +1. Electron lepton number is not conserved. The laws of conservation of angular
momentum and electron lepton number are not obeyed and this decay does not occur..

(b) We analyze the decay in the same way. We find that only charge is not conserved.

(c) Here we find that energy and muon lepton number cannot be conserved.

14. (a) Noting that there are two positive pions created (so, in effect, its decay products are doubled), then
we count up the electrons, positrons and neutrinos: 2e+ + e− + 5ν + 4ν̄.

(b) The final products are all leptons, so the baryon number of A+
2 is zero. Both the pion and rho

meson have integer-valued spins, so A+
2 is a meson (and a boson).

15. For purposes of deducing the properties of the antineutron, one may cancel a proton from each side of
the reaction and write the equivalent reaction as

π+ → p + n .

Particle properties can be found in Tables 45-3 and 45-4. The pion and proton each have charge +e,
so the antineutron must be neutral. The pion has baryon number zero (it is a meson) and the proton
has baryon number +1, so the baryon number of the antineutron must be −1. The pion and the proton
each have strangeness zero, so the strangeness of the antineutron must also be zero. In summary, q = 0,
B = −1, and S = 0 for the antineutron.

16. (a) Referring to Tables 45-3 and 45-4, we find the strangeness of K0 is +1, while it is zero for both π+

and π−. Consequently, strangeness is not conserved in this decay; K0 → π+ + π− does not proceed
via the strong interaction.

(b) The strangeness of each side is −1, which implies that the decay is governed by the strong interac-
tion.

(c) The strangeness or Λ0 is−1 while that of p+π− is zero, so the decay is not via the strong interaction.

(d) The strangeness of each side is −1; it proceeds via the strong interaction.

17. (a) See the solution to Exercise 13 for the quantities to be considered, adding strangeness to the list.
The lambda has a rest energy of 1115.6 MeV, the proton has a rest energy of 938.3 MeV, and the
kaon has a rest energy of 493.7 MeV. The rest energy before the decay is less than the total rest
energy after, so energy cannot be conserved. Momentum can be conserved. The lambda and proton
each have spin h̄/2 and the kaon has spin zero, so angular momentum can be conserved. The lambda
has charge zero, the proton has charge +e, and the kaon has charge −e, so charge is conserved.
The lambda and proton each have baryon number +1, and the kaon has baryon number zero, so
baryon number is conserved. The lambda and kaon each have strangeness −1 and the proton has
strangeness zero, so strangeness is conserved. Only energy cannot be conserved.

(b) The omega has a rest energy of 1680 MeV, the sigma has a rest energy of 1197.3 MeV, and the pion
has a rest energy of 135 MeV. The rest energy before the decay is greater than the total rest energy
after, so energy can be conserved. Momentum can be conserved. The omega and sigma each have
spin h̄/2 and the pion has spin zero, so angular momentum can be conserved. The omega has charge
−e, the sigma has charge −e, and the pion has charge zero, so charge is conserved. The omega and
sigma have baryon number +1 and the pion has baryon number 0, so baryon number is conserved.
The omega has strangeness −3, the sigma has strangeness −1, and the pion has strangeness zero,
so strangeness is not conserved.
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(c) The kaon and proton can bring kinetic energy to the reaction, so energy can be conserved even
though the total rest energy after the collision is greater than the total rest energy before. Momen-
tum can be conserved. The proton and lambda each have spin h̄/2 and the kaon and pion each
have spin zero, so angular momentum can be conserved. The kaon has charge −e, the proton has
charge +e, the lambda has charge zero, and the pion has charge +e, so charge is not conserved. The
proton and lambda each have baryon number +1, and the kaon and pion each have baryon number
zero; baryon number is conserved. The kaon has strangeness −1, the proton and pion each have
strangeness zero, and the lambda has strangeness −1, so strangeness is conserved. Only charge is
not conserved.

18. (a) From Eq. 38-47,

Q = −∆mc2 = (mΣ+ +mK+ −mπ+ −mp)c
2

= 1189.4 MeV + 493.7 MeV− 139.6 MeV− 938.3 MeV

= 605 MeV .

(b) Similarly,

Q = −∆mc2 = (mΛ0 +mπ0 −mK− −mp)c
2

= 1115.6 MeV + 135.0 MeV− 493.7 MeV− 938.3 MeV

= −181 MeV .

19. Conservation of energy (see Eq. 38-44) leads to

Kf = −∆mc2 +Ki = (mΣ− −mπ− −mn)c2 +Ki

= 1197.3 MeV− 139.6 MeV− 939.6 MeV + 220 MeV

= 338 MeV .

20. The formula for Tz as it is usually written to include strange baryons is Tz = q − (S + B)/2. Also, we
interpret the symbol q in the Tz formula in terms of elementary charge units; this is how q is listed in
Table 45-3. In terms of charge q as we have used it in previous chapters, the formula is Tz = q

e− 1
2 (B+S).

For instance, Tz = + 1
2 for the proton (and the neutral Xi) and Tz = − 1

2 for the neutron (and the negative
Xi). The baryon number B is +1 for all the particles in Fig. 45-4(a). Rather than use a sloping axis
as in Fig. 45-4 (there it is done for the q values), one reproduces (if one uses the “corrected” formula
for Tz mentioned above) exactly the same pattern using regular rectangular axes (Tz values along the
horizontal axis and Y values along the vertical) with the neutral lambda and sigma particles situated at
the origin.

21. (a) As far as the conservation laws are concerned, we may cancel a proton from each side of the reaction
equation and write the reaction as p→ Λ0 + x. Since the proton and the lambda each have a spin
angular momentum of h̄/2, the spin angular momentum of x must be either zero or h̄. Since the
proton has charge +e and the lambda is neutral, x must have charge +e. Since the proton and the
lambda each have a baryon number of +1, the baryon number of x is zero. Since the strangeness
of the proton is zero and the strangeness of the lambda is −1, the strangeness of x is +1. We take
the unknown particle to be a spin zero meson with a charge of +e and a strangeness of +1. Look
at Table 45-4 to identify it as a K+ particle.

(b) Similar analysis tells us that x is a spin- 1
2 antibaryon (B = −1) with charge and strangeness both

zero. Inspection of Table 45-3 reveals it is an antineutron.

(c) Here x is a spin-0 (or spin-1) meson with charge zero and strangeness −1. According to Table 45-4,

it could be a K
0

particle.
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22. (a) From Eq. 38-47,

Q = −∆mc2 = (mΛ0 −mp −mπ−)c2

= 1115.6 MeV− 938.3 MeV− 139.6 MeV = 37.7 MeV .

(b) We use the formula obtained in problem 11 (where it should be emphasized that E is used to mean
the rest energy, not the total energy):

Kp =
1

2EΛ

[

(EΛ − Ep)
2 − E2

π

]

=
(1115.6 MeV− 938.3 MeV)2 − (139.6 MeV)2

2(1115.6 MeV)
= 5.35 MeV .

(c) By conservation of energy,

Kπ− = Q−Kp = 37.7 MeV− 5.35 MeV = 32.4 MeV .

23. (a) We indicate the antiparticle nature of each quark with a “bar” over it. Thus, ūūd̄ represents an
antiproton.

(b) Similarly, ūd̄d̄ represents an antineutron.

24. (a) The combination ddu has a total charge of (− 1
3 − 1

3 + 2
3 ) = 0, and a total strangeness of zero. From

Table 45-3, we find it to be a neutron (n).

(b) For the combination uus, we have Q = + 2
3 + 2

3 − 1
3 = 1 and S = 0 + 0 − 1 = 1. This is the Σ+

particle.

(c) For the quark composition ssd, we have Q = − 1
3 − 1

3 − 1
3 = −1 and S = −1− 1 + 0 = −2. This is

a Ξ−.

25. (a) Looking at the first three lines of Table 45-5, since the particle is a baryon, we determine that it
must consist of three quarks. To obtain a strangeness of −2, two of them must be s quarks. Each
of these has a charge of −e/3, so the sum of their charges is −2e/3. To obtain a total charge of
e, the charge on the third quark must be 5e/3. There is no quark with this charge, so the particle
cannot be constructed. In fact, such a particle has never been observed.

(b) Again the particle consists of three quarks (and no antiquarks). To obtain a strangeness of zero,
none of them may be s quarks. We must find a combination of three u and d quarks with a total
charge of 2e. The only such combination consists of three u quarks.

26. (a) Using Table 45-3, we find q = 0 and S = −1 for this particle (also, B = 1, since that is true for all
particles in that table). From Table 45-5, we see it must therefore contain a strange quark (which
has charge −1/3), so the other two quarks must have charges to add to zero. Assuming the others
are among the lighter quarks (none of them being an antiquark, since B = 1), then the quark
composition is ūs̄d̄.

(b) The reasoning is very similar to that of part (a). The main difference is that this particle must
have two strange quarks. Its quark combination turns out to be ūs̄s̄.

27. If we were to use regular rectangular axes, then this would appear as a right triangle. Using the sloping
q axis as the problem suggests, it is similar to an “upside down” equilateral triangle as we show below.
The leftmost slanted line is for the −1 charge, and the rightmost slanted line is for the +2 charge.
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.

.

.

.

.

.

.

.

.

.

.

.

.

.

. S = 0

S = −1

S = −2

S = −3•
Ω−

•
Ξ⋆−

•
Σ⋆−

•∆
−

•
Ξ⋆0

•
Σ⋆0

•∆
0

•
Σ⋆−

•∆
+

•∆
++

28. Since only the strange quark (s) has non-zero strangeness, in order to obtain S = −1 we need to combine
s with some non-strange antiquark (which would have the negative of the quantum numbers listed in
Table 45-5). The difficulty is that the charge of the strange quark is −1/3, which means that (to obtain a
total charge of +1) the antiquark would have to have a charge of + 4

3 . Clearly, there are no such antiquarks
in our list. Thus, a meson with S = −1 and q = +1 cannot be formed with the quarks/antiquarks of
Table 45-5. Similarly, one can show that, since no quark has q = − 4

3 , there cannot be a meson with
S = +1 and q = −1.

29. From γ = 1 +K/mc2 (see Eq. 38-49) and v = βc = c
√

1− γ−2 (see Eq. 38-8), we get

v = c

√

1−
(

1 +
K

mc2

)−2

.

Therefore, for the Σ∗0 particle,

v = (2.9979× 108 m/s)

√

1−
(

1 +
1000 MeV

1385 MeV

)−2

= 2.4406× 108 m/s ,

and for Σ0,

v′ = (2.9979× 108 m/s)

√

1−
(

1 +
1000 MeV

1192.5 MeV

)−2

= 2.5157× 108 m/s .

Thus Σ0 moves faster than Σ∗0 by

∆v = v′ − v = (2.5157− 2.4406)(108 m/s) = 7.51× 106 m/s .

30. Letting v = Hr = c, we obtain

r =
c

H
=

3.0× 108 m/s

0.0193 m/s·ly = 1.6× 1010 ly .

31. We apply Eq. 38-33 for the Doppler shift in wavelength:

∆λ

λ
=
v

c
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where v is the recessional speed of the galaxy. We use Hubble’s law to find the recessional speed:
v = Hr, where r is the distance to the galaxy and H is the Hubble constant (19.3 × 10−3 m

s·ly ). Thus,

v = [19.3× 10−3 m
s·ly ](2.40× 108 ly) = 4.63× 106 m/s and

∆λ =
v

c
λ =

(

4.63× 106 m/s

3.00× 108 m/s

)

(656.3 nm) = 10.1 nm .

Since the galaxy is receding, the observed wavelength is longer than the wavelength in the rest frame of
the galaxy. Its value is 656.3 nm + 10.1 nm = 666.4 nm.

32. First, we find the speed of the receding galaxy from Eq. 38-30:

β =
1− (f/f0)

2

1 + (f/f0)2
=

1− (λ0/λ)
2

1 + (λ0/λ)2

=
1− (590.0 nm/602.0 nm)2

1 + (590.0 nm/602.0 nm)2
= 0.02013

where we use f = c/λ and f0 = c/λ0. Then from Eq. 45-19,

r =
v

H
=
βc

H
=

(0.02013)(2.998× 108 m/s)

19.3 mm/s·ly = 3.13× 108 ly .

(Note: if one uses the classical Doppler shift formula instead of the relativistic version in Eq. 38-30,
one obtains r = 31.7 × 108 ly, which is reasonably close to the value we obtained above. This is to be
expected since β ≈ 0.02≪ 1.)

33. (a) Letting v(r) = Hr ≤ ve =
√

2GM/r, we get M/r3 ≥ H2/2G. Thus,

ρ =
M

4πr3/3
=

3

4π

M

r3
≥ 3H2

8πG
.

(b) The density being expressed in H-atoms/m3 is equivalent to expressing it in terms of ρ0 = mH/m
3 =

1.67× 10−27 kg/m
3
. Thus,

ρ =
3H2

8πGρ0

(

Hatoms/m
3
)

=
3(0.0193 m/s·ly)2(1.00 ly/9.460× 1015 m)2(H atoms/m

3
)

8π(6.67× 10−11 m3/kg·s2)(1.67× 10−27 kg/m
3
)

= 4.5 Hatoms/m3 .

34. (a) From f = c/λ and Eq. 38-30, we get

λ0 = λ

√

1− β
1 + β

= (λ0 + ∆λ)

√

1− β
1 + β

.

Dividing both sides by λ0 leads to

1 = (1 + z)

√

1− β
1 + β

.

We solve for β:

β =
(1 + z)2 − 1

(1 + z)2 + 1
=

z2 + 2z

z2 + 2z + 2
.

(b) Now z = 4.43, so

β =
(4.43)2 + 2(4.43)

(4.43)2 + 2(4.43) + 2
= 0.934 .
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(c) From Eq. 45-19,

r =
v

H
=
βc

H
=

(0.943)(3.0× 108 m/s)

0.0193 m/s·ly = 1.5× 1010 ly .

35. (a) From Eq. 41-29, we know that N2/N1 = e−∆E/kT . We solve for ∆E:

∆E = kT ln
N1

N2
= (8.62× 10−5 eV/K)(2.7 K) ln

(

1− 0.25

0.25

)

= 2.56× 10−4 eV = 256µeV .

(b) Using the result of problem 3 in Chapter 39,

λ =
hc

∆E
=

1240 eV·nm

2.56× 10−4 eV
= 4.84× 106 nm = 4.84 mm .

36. From Fgrav = GMm/r2 = mv2/r we find M ∝ v2. Thus, the mass of the Sun would be

M ′
s =

(

vMercury

vPluto

)2

Ms =

(

47.9 km/s

4.74 km/s

)2

Ms = 102Ms .

37. (a) The mass M within Earth’s orbit is used to calculate the gravitational force on Earth. If r is the
radius of the orbit, R is the radius of the new Sun, and MS is the mass of the Sun, then

M =
( r

R

)3

MS =

(

1.50× 1011 m

5.90× 1012 m

)3

(1.99× 1030 kg) = 3.27× 1025 kg .

The gravitational force on Earth is given by GMm/r2, where m is the mass of Earth and G is the
universal gravitational constant. Since the centripetal acceleration is given by v2/r, where v is the
speed of Earth, GMm/r2 = mv2/r and

v =

√

GM

r
=

√

(6.67× 10−11 m3/s
2 · kg)(3.27× 1025 kg)

1.50× 1011 m
= 1.21× 102 m/s .

(b) The period of revolution is

T =
2πr

v
=

2π(1.50× 1011 m)

1.21× 102 m/s
= 7.82× 109 s = 248 y .

38. (a) The mass of the portion of the galaxy within the radius r from its center is given by M ′ = (r/R)3M .
Thus, from GM ′m/r2 = mv2/r (where m is the mass of the star) we get

v =

√

GM ′

r
=

√

GM

r

( r

R

)3

= r

√

GM

R3
.

(b) In the case where M ′ = M , we have

T =
2πr

v
= 2πr

√

r

GM
=

2πr3/2

√
GM

.

39. (a) We substitute λ = (2898µm·K)/T into the result of Exercise 3 of Chapter 39: E = (1240 eV·nm)/λ.
First, we convert units: 2898µm·K = 2.898× 106 nm·K and 1240 eV·nm = 1.240× 10−3 MeV·nm.
Hence,

E =
(1.240× 10−3 MeV·nm)T

2.898× 106 nm·K = (4.28× 10−10 MeV/K)T .
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(b) The minimum energy required to create an electron-positron pair is twice the rest energy of an
electron, or 2(0.511 MeV) = 1.022 MeV. Hence,

T =
E

4.28× 10−10 MeV/K
=

1.022 MeV

4.28× 10−10 MeV/K
= 2.39× 109 K .

40. (a) For the universal microwave background, Wien’s law leads to

T =
2898µm·K

λmax
=

2.898 mm·K
1.1 mm

= 2.6 K .

(b) At “decoupling” (when the universe became approximately “transparent”),

λmax =
2898µm·K

T
=

2898µm·K
105 K

= 29 nm .

41. (a) We use the relativistic relationship between speed and momentum:

p = γmv =
mv

√

1− (v/c)2
,

which we solve for the speed v:

v

c
=

√

1− 1
(

pc
mc2

)2
+ 1

.

For an antiproton mc2 = 938.3 MeV and pc = 1.19 GeV = 1190 MeV, so

v = c

√

1− 1

(1190 MeV/938.3 MeV)
2
+ 1

= 0.785c .

For the negative pion mc2 = 193.6 MeV, and pc is the same. Therefore,

v = c

√

1− 1

(1190 MeV/193.6 MeV)
2
+ 1

= 0.993c .

(b) See part (a).

(c) Since the speed of the antiprotons is about 0.78c but not over 0.79c, an antiproton will trigger C1.

(d) Since the speed of the negative pions exceeds 0.79c, a negative pion will trigger C2.

(e) and (f) We use ∆t = d/v, where d = 12 m. For an antiproton

∆t =
12 m

0.785(2.998× 108 m/s)
= 5.1× 10−8 s = 51 ns ,

and for a negative pion

∆t =
12 m

0.993(2.998× 108 m/s)
= 4.0× 10−8 s = 40 ns .

42. We note from track 1, and the quantum numbers of the original particle (A), that positively charged
particles move in counterclockwise curved paths, and – by inference – negatively charged ones move
along clockwise arcs. This immediately shows that tracks 1, 2, 4, 6, and 7 belong to positively charged
particles, and tracks 5, 8 and 9 belong to negatively charged ones. Looking at the fictitious particles
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in the table (and noting that each appears in the cloud chamber once [or not at all]), we see that this
observation (about charged particle motion) greatly narrows the possibilities:

tracks 2, 4, 6, 7 ↔ particles C,F,H, J

tracks 5, 8, 9 ↔ particles D,E,G

This tells us, too, that the particle that does not appear at all is either B or I (since only one neutral
particle “appears”). By charge conservation, tracks 2, 4 and 6 are made by particles with a single unit of
positive charge (note that track 5 is made by one with a single unit of negative charge), which implies (by
elimination) that track 7 is made by particle H . This is confirmed by examining charge conservation at
the end-point of track 6. Having exhausted the charge-related information, we turn now to the fictitious
quantum numbers. Consider the vertex where tracks 2, 3 and 4 meet (the Whimsy number is listed here
as a subscript):

tracks 2, 4 ↔ particles C2, F0, J−6

tracks 3 ↔ particle B4 or I6

The requirement that the Whimsy quantum number of the particle making track 4 must equal the sum
of the Whimsy values for the particles making tracks 2 and 3 places a powerful constraint (see the
subscripts above). A fairly quick trial and error procedure leads to the assignments: particle F makes
track 4, and particles J and I make tracks 2 and 3, respectively. Particle B, then, is irrelevant to this
set of events. By elimination, the particle making track 6 (the only positively charged particle not yet
assigned) must be C. At the vertex defined by

A → F + C + (track 5)− ,

where the charge of that particle is indicated by the subscript, we see that Cuteness number conservation
requires that the particle making track 5 has Cuteness = −1, so this must be particle G. We have only
one decision remaining:

tracks 8, 9 ↔ particles D,E

Re-reading the problem, one finds that the particle making track 8 must be particle D since it is the one
with seriousness = 0. Consequently, the particle making track 9 must be E.

43. (a) During the time interval ∆t, the light emitted from galaxy A has traveled a distance c∆t. Mean-
while, the distance between Earth and the galaxy has expanded from r to r′ = r + rα∆t. Let
c∆t = r′ = r + rα∆t, which leads to

∆t =
r

c− rα .

(b) The detected wavelength λ′ is longer then λ by λα∆t due to the expansion of the universe:
λ′ = λ+ λα∆t. Thus,

∆λ

λ
=
λ′ − λ
λ

= α∆t =
αr

c− αr .

(c) We use the binomial expansion formula (see Appendix E):

(1 ± x)n = 1± nx

1!
+
n(n− 1)x2

2!
+ · · · (x2 < 1)

to obtain

∆λ

λ
=

αr

c− αr =
αr

c

(

1− αr

c

)−1

=
αr

c

[

1 +
−1

1!

(

−αr
c

)

+
(−1)(−2)

2!

(

−αr
c

)2

+ · · ·
]

≈ αr

c
+
(αr

c

)2

+
(αr

c

)3

.
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(d) When only the first term in the expansion for ∆λ/λ is retained we have

∆λ

λ
≈ αr

c
.

(e) We set
∆λ

λ
=
v

c
=
Hr

c

and compare with the result of part (d) to obtain α = H .

(f) We use the formula ∆λ/λ = αr/(c− αr) to solve for r:

r =
c(∆λ/λ)

α(1 + ∆λ/λ)
=

(2.998× 108 m/s)(0.050)

(0.0193 m/s·ly)(1 + 0.050)
= 7.4× 108 ly .

(g) From the result of part (a),

∆t =
r

c− αr =
(7.4× 108 ly)(9.46× 1015 m/ly)

2.998× 108 m/s− (0.0193 m/s·ly)(7.4× 108 ly)
= 2.5× 1016 s ,

which is equivalent to 7.8× 108 y.

(h) Letting r = c∆t, we solve for ∆t:

∆t =
r

c
=

7.4× 108 ly

c
= 7.4× 108 y .

(i) The distance is given by
r = c∆t = c(7.8× 108 y) = 7.8× 108 ly .

(j) From the result of part (f),

rB =
c(∆λ/λ)

α(1 + ∆λ/λ)
=

(2.998× 108 m/s)(0.080)

(0.0193 mm/s·ly)(1 + 0.080)
= 1.15× 109 ly .

(k) From the formula obtained in part (a),

∆tB =
rB

c− rBα
=

(1.15× 109 ly)(9.46× 1015 m/ly)

2.998× 108 m/s− (1.15× 109 ly)(0.0193 m/s·ly)
= 3.9× 1016 s ,

which is equivalent to 1.2× 109 y.

(l) At the present time, the separation between the two galaxies A and B is given by rnow = c∆tB −
c∆tA. Since rnow = rthen + rthenα∆t, we get

rthen =
rnow

1 + α∆t
= 4.4× 108 ly .

44. Assuming the line passes through the origin, its slope is 0.40c/(5.3× 109 ly). Then,

T =
1

H
=

1

slope
=

5.3× 109 ly

0.40c
=

5.3× 109 y

0.40
≈ 13× 109 y .


