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Instructor Solution Manual

This instructor solution manual to accompany the third edition of

“Probability and Statistics for Engineers and Scientists” by Anthony Hayter

provides worked solutions and answers to all of the problems given in the textbook. The student
solution manual provides worked solutions and answers to only the odd-numbered problems
given at the end of the chapter sections. In addition to the material contained in the student
solution manual, this instructor manual therefore provides worked solutions and answers to
the even-numbered problems given at the end of the chapter sections together with all of the
supplementary problems at the end of each chapter.
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Chapter 1

Probability Theory

1.1 Probabilities

1.1.1 S = {(head, head, head), (head, head, tail), (head, tail, head), (head, tail, tail),

(tail, head, head), (tail, head, tail), (tail, tail, head), (tail, tail, tail)}

1.1.2 S = {0 females, 1 female, 2 females, 3 females, . . . , n females}

1.1.3 S = {0,1,2,3,4}

1.1.4 S = {January 1, January 2, .... , February 29, .... , December 31}

1.1.5 S = {(on time, satisfactory), (on time, unsatisfactory),

(late, satisfactory), (late, unsatisfactory)}

1.1.6 S = {(red, shiny), (red, dull), (blue, shiny), (blue, dull)}

1.1.7 (a) p
1−p = 1 ⇒ p = 0.5

(b) p
1−p = 2 ⇒ p = 2

3

(c) p = 0.25 ⇒ p
1−p = 1

3

1.1.8 0.13 + 0.24 + 0.07 + 0.38 + P (V ) = 1 ⇒ P (V ) = 0.18

7
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1.1.9 0.08 + 0.20 + 0.33 + P (IV ) + P (V ) = 1 ⇒ P (IV ) + P (V ) = 1− 0.61 = 0.39

Therefore, 0 ≤ P (V ) ≤ 0.39.

If P (IV ) = P (V ) then P (V ) = 0.195.

1.1.10 P (I) = 2× P (II) and P (II) = 3× P (III) ⇒ P (I) = 6× P (III)

Therefore,

P (I) + P (II) + P (III) = 1

so that

(6× P (III)) + (3× P (III)) + P (III) = 1.

Consequently,

P (III) = 1
10 , P (II) = 3× P (III) = 3

10

and

P (I) = 6× P (III) = 6
10 .
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1.2 Events

1.2.1 (a) 0.13 + P (b) + 0.48 + 0.02 + 0.22 = 1 ⇒ P (b) = 0.15

(b) A = {c, d} so that P (A) = P (c) + P (d) = 0.48 + 0.02 = 0.50

(c) P (A′) = 1− P (A) = 1− 0.5 = 0.50

1.2.2 (a) P (A) = P (b) + P (c) + P (e) = 0.27 so P (b) + 0.11 + 0.06 = 0.27
and hence P (b) = 0.10

(b) P (A′) = 1− P (A) = 1− 0.27 = 0.73

(c) P (A′) = P (a) + P (d) + P (f) = 0.73 so 0.09 + P (d) + 0.29 = 0.73
and hence P (d) = 0.35

1.2.3 Over a four year period including one leap year, the number of days is

(3× 365) + 366 = 1461.

The number of January days is 4× 31 = 124

and the number of February days is (3× 28) + 29 = 113.

The answers are therefore 124
1461 and 113

1461 .

1.2.4 S = {1, 2, 3, 4, 5, 6}
Prime = {1, 2, 3, 5}
All the events in S are equally likely to occur and each has a probability of 1

6

so that

P (Prime) = P (1) + P (2) + P (3) + P (5) = 4
6 = 2

3 .

1.2.5 See Figure 1.10.

The event that the score on at least one of the two dice is a prime number consists
of the following 32 outcomes:

{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4) (2,5), (2,6), (3,1), (3,2),
(3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,5), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6),
(6,1), (6,2), (6,3), (6,5)}
Each outcome in S is equally likely to occur with a probability of 1

36 so that

P (at least one score is a prime number) = 32× 1
36 = 32

36 = 8
9 .

The complement of this event is the event that neither score is a prime number which
includes the following four outcomes:
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{(4,4), (4,6), (6,4), (6,6)}
Therefore, P (neither score prime) = 1

36 + 1
36 + 1

36 + 1
36 = 1

9 .

1.2.6 In Figure 1.10 let (x, y) represent the outcome that the score on the red die is x and
the score on the blue die is y. The event that the score on the red die is strictly
greater than the score on the blue die consists of the following 15 outcomes:

{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3), (5,1), (5,2), (5,3), (5,4), (6,1), (6,2), (6,3),
(6,4), (6,5)}
The probability of each outcome is 1

36 so the required probability is 15× 1
36 = 5

12 .

This probability is less than 0.5 because of the possibility that both scores are equal.

The complement of this event is the event that the red die has a score less than or
equal to the score on the blue die which has a probability of 1− 5

12 = 7
12 .

1.2.7 P (♠ or ♣) = P (A♠) + P (K♠) + . . . + P (2♠) +P (A♣) + P (K♣) + . . . + P (2♣)
= 1

52 + . . . + 1
52 = 26

52 = 1
2

1.2.8 P (draw an ace) = P (A♠) + P (A♣) + P (A♦) + P (A♥)

= 1
52 + 1

52 + 1
52 + 1

52 = 4
52 = 1

13

1.2.9 (a) Let the four players be named A, B, C, and T for Terica, and let the notation
(X, Y ) indicate that player X is the winner and player Y is the runner up.
The sample space consists of the 12 outcomes:
S = {(A,B), (A,C), (A,T), (B,A), (B,C), (B,T), (C,A), (C,B), (C,T), (T,A),
(T,B), (T,C)}
The event ‘Terica is winner’ consists of the 3 outcomes {(T,A), (T,B), (T,C)}.
Since each outcome in S is equally likely to occur with a probability of 1

12 it
follows that
P (Terica is winner) = 3

12 = 1
4 .

(b) The event ‘Terica is winner or runner up’ consists of 6 out of the 12 outcomes
so that
P (Terica is winner or runner up) = 6

12 = 1
2 .
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1.2.10 (a) See Figure 1.24.
P (Type I battery lasts longest)
= P ((II, III, I)) + P ((III, II, I))
= 0.39 + 0.03 = 0.42

(b) P (Type I battery lasts shortest)
= P ((I, II, III)) + P ((I, III, II))
= 0.11 + 0.07 = 0.18

(c) P (Type I battery does not last longest)
= 1− P (Type I battery lasts longest)
= 1− 0.42 = 0.58

(d) P (Type I battery last longer than Type II)
= P ((II, I, III)) + P ((II, III, I)) + P ((III, II, I))
= 0.24 + 0.39 + 0.03 = 0.66

1.2.11 (a) See Figure 1.25.
The event ‘both assembly lines are shut down’ consists of the single outcome
{(S,S)}.
Therefore,
P (both assembly lines are shut down) = 0.02.

(b) The event ‘neither assembly line is shut down’ consists of the outcomes
{(P,P), (P,F), (F,P), (F,F)}.
Therefore,
P (neither assembly line is shut down)
= P ((P, P )) + P ((P, F )) + P ((F, P )) + P ((F, F ))
= 0.14 + 0.2 + 0.21 + 0.19 = 0.74.

(c) The event ‘at least one assembly line is at full capacity’ consists of the outcomes
{(S,F), (P,F), (F,F), (F,S), (F,P)}.
Therefore,
P (at least one assembly line is at full capacity)
= P ((S, F )) + P ((P, F )) + P ((F, F )) + P ((F, S)) + P ((F, P ))
= 0.05 + 0.2 + 0.19 + 0.06 + 0.21 = 0.71.

(d) The event ‘exactly one assembly line at full capacity’ consists of the outcomes
{(S,F), (P,F), (F,S), (F,P)}.
Therefore,
P (exactly one assembly line at full capacity)
= P ((S, F )) + P ((P, F )) + P ((F, S)) + P ((F, P ))
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= 0.05 + 0.20 + 0.06 + 0.21 = 0.52.

The complement of ‘neither assembly line is shut down’ is the event ‘at least one
assembly line is shut down’ which consists of the outcomes

{(S,S), (S,P), (S,F), (P,S), (F,S)}.

The complement of ‘at least one assembly line is at full capacity’ is the event ‘neither
assembly line is at full capacity’ which consists of the outcomes

{(S,S), (S,P), (P,S), (P,P)}.

1.2.12 The sample space is

S = {(H,H,H), (H,T,H), (H,T,T), (H,H,T), (T,H,H), (T,H,T), (T,T,H), (T,T,T)}
with each outcome being equally likely with a probability of 1

8 .

The event ‘two heads obtained in succession’ consists of the three outcomes

{(H,H,H), (H,H,T), (T,H,H)}
so that P (two heads in succession) = 3

8 .
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1.3 Combinations of Events

1.3.1 The event A contains the outcome 0 while the empty set does not contain any
outcomes.

1.3.2 (a) See Figure 1.55.
P (B) = 0.01 + 0.02 + 0.05 + 0.11 + 0.08 + 0.06 + 0.13 = 0.46

(b) P (B ∩ C) = 0.02 + 0.05 + 0.11 = 0.18

(c) P (A∪C) = 0.07+0.05+0.01+0.02+0.05+0.08+0.04+0.11+0.07+0.11 = 0.61

(d) P (A ∩B ∩ C) = 0.02 + 0.05 = 0.07

(e) P (A ∪B ∪ C) = 1− 0.03− 0.04− 0.05 = 0.88

(f) P (A′ ∩B) = 0.08 + 0.06 + 0.11 + 0.13 = 0.38

(g) P (B′ ∪C) = 0.04 + 0.03 + 0.05 + 0.11 + 0.05 + 0.02 + 0.08 + 0.04 + 0.11 + 0.07
+ 0.07 + 0.05 = 0.72

(h) P (A ∪ (B ∩ C)) = 0.07 + 0.05 + 0.01 + 0.02 + 0.05 + 0.08 + 0.04 + 0.11 = 0.43

(i) P ((A ∪B) ∩ C) = 0.11 + 0.05 + 0.02 + 0.08 + 0.04 = 0.30

(j) P (A′ ∪ C) = 0.04 + 0.03 + 0.05 + 0.08 + 0.06 + 0.13 + 0.11 + 0.11 + 0.07 + 0.02
+ 0.05 + 0.08 + 0.04 = 0.87
P (A′ ∪ C)′ = 1− P (A′ ∪ C) = 1− 0.87 = 0.13

1.3.4 (a) A ∩B = {females with black hair}

(b) A ∪ C ′ = {all females and any man who does not have brown eyes}

(c) A′ ∩B ∩ C = {males with black hair and brown eyes}

(d) A ∩ (B ∪ C) = {females with either black hair or brown eyes or both}

1.3.5 Yes, because a card must be drawn from either a red suit or a black suit but it cannot
be from both at the same time.

No, because the ace of hearts could be drawn.
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1.3.6 P (A ∪B) = P (A) + P (B)− P (A ∩B) ≤ 1

so that

P (B) ≤ 1− 0.4 + 0.3 = 0.9.

Also, P (B) ≥ P (A ∩B) = 0.3

so that

0.3 ≤ P (B) ≤ 0.9.

1.3.7 Since P (A ∪B) = P (A) + P (B)− P (A ∩B)

it follows that

P (B) = P (A ∪B)− P (A) + P (A ∩B)

= 0.8− 0.5 + 0.1 = 0.4.

1.3.8 S = {1, 2, 3, 4, 5, 6} where each outcome is equally likely with a probability of 1
6 .

The events A, B, and B′ are A = {2, 4, 6}, B = {1, 2, 3, 5} and B′ = {4, 6}.

(a) A ∩B = {2} so that P (A ∩B) = 1
6

(b) A ∪B = {1, 2, 3, 4, 5, 6} so that P (A ∪B) = 1

(c) A ∩B′ = {4, 6} so that P (A ∩B′) = 2
6 = 1

3

1.3.9 Yes, the three events are mutually exclusive because the selected card can only be
from one suit.

Therefore,

P (A ∪B ∪ C) = P (A) + P (B) + P (C) = 1
4 + 1

4 + 1
4 = 3

4 .

A′ is the event ‘a heart is not obtained’ (or similarly the event ‘a club, spade, or
diamond is obtained’ ) so that B is a subset of A′.

1.3.10 (a) A ∩B = {A♥, A♦}

(b) A ∪ C = {A♥, A♦, A♣, A♠, K♥, K♦, K♣, K♠, Q♥, Q♦, Q♣, Q♠,

J♥, J♦, J♣, J♠}

(c) B ∩ C ′ = {A♥, 2♥, . . . , 10♥, A♦, 2♦, . . . , 10♦}

(d) B′ ∩ C = {K♣, K♠, Q♣, Q♠, J♣, J♠}
A ∪ (B′ ∩ C) = {A♥, A♦, A♣, A♠, K♣, K♠, Q♣, Q♠, J♣, J♠}
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1.3.11 Let the event O be an on time repair and let the event S be a satisfactory repair.

It is known that P (O ∩ S) = 0.26, P (O) = 0.74 and P (S) = 0.41.

We want to find P (O′ ∩ S′).

Since the event O′ ∩ S′ can be written (O ∪ S)′ it follows that

P (O′ ∩ S′) = 1− P (O ∪ S)

= 1− (P (O) + P (S)− P (O ∩ S))

= 1− (0.74 + 0.41− 0.26) = 0.11.

1.3.12 Let R be the event that a red ball is chosen and let S be the event that a shiny ball
is chosen.

It is known that P (R ∩ S) = 55
200 , P (S) = 91

200 and P (R) = 79
200 .

Therefore, the probability that the chosen ball is either shiny or red is

P (R ∪ S) = P (R) + P (S)− P (R ∩ S)

= 79
200 + 91

200 −
55
200

= 115
200 = 0.575.

The probability of a dull blue ball is

P (R′ ∩ S′) = 1− P (R ∪ S)

= 1− 0.575 = 0.425.

1.3.13 Let A be the event that the patient is male, let B be the event that the patient is
younger than thirty years of age, and let C be the event that the patient is admitted
to the hospital.

It is given that P (A) = 0.45, P (B) = 0.30, P (A′ ∩B′ ∩ C) = 0.15,

and P (A′ ∩B) = 0.21.

The question asks for P (A′ ∩B′ ∩ C ′).

Notice that

P (A′ ∩B′) = P (A′)− P (A′ ∩B) = (1− 0.45)− 0.21 = 0.34

so that

P (A′ ∩B′ ∩ C ′) = P (A′ ∩B′)− P (A′ ∩B′ ∩ C) = 0.34− 0.15 = 0.19.
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1.4 Conditional Probability

1.4.1 See Figure 1.55.

(a) P (A | B) = P (A∩B)
P (B) = 0.02+0.05+0.01

0.02+0.05+0.01+0.11+0.08+0.06+0.13 = 0.1739

(b) P (C | A) = P (A∩C)
P (A) = 0.02+0.05+0.08+0.04

0.02+0.05+0.08+0.04+0.018+0.07+0.05 = 0.59375

(c) P (B | A ∩B) = P (B∩(A∩B))
P (A∩B) = P (A∩B)

P (A∩B) = 1

(d) P (B | A ∪B) = P (B∩(A∪B))
P (A∪B) = P (B)

P (A∪B) = 0.46
0.46+0.32−0.08 = 0.657

(e) P (A | A ∪B ∪ C) = P (A∩(A∪B∪C))
P (A∪B∪C) = P (A)

P (A∪B∪C) = 0.32
1−0.04−0.05−0.03 = 0.3636

(f) P (A ∩B | A ∪B) = P ((A∩B)∩(A∪B))
P (A∪B) = P (A∩B)

P (A∪B) = 0.08
0.7 = 0.1143

1.4.2 A = {1, 2, 3, 5} and P (A) = 4
6 = 2

3

P (5 | A) = P (5∩A)
P (A) = P (5)

P (A) = ( 1
6)

( 2
3)

= 1
4

P (6 | A) = P (6∩A)
P (A) = P (∅)

P (A) = 0

P (A | 5) = P (A∩5)
P (5) = P (5)

P (5) = 1

1.4.3 (a) P (A♥ | red suit) = P (A♥∩red suit)
P (red suit) = P (A♥)

P (red suit) = ( 1
52)

( 26
52)

= 1
26

(b) P (heart | red suit) = P (heart∩red suit)
P (red suit) = P (heart)

P (red suit) = ( 13
52)

( 26
52)

= 13
26 = 1

2

(c) P (red suit | heart) = P (red suit∩heart)
P (heart) = P (heart)

P (heart) = 1

(d) P (heart | black suit) = P (heart∩black suit)
P (black suit) = P (∅)

P (black suit) = 0

(e) P (King | red suit) = P (King∩red suit)
P (red suit) = P (K♥, K♦)

P (red suit) = ( 2
52)

( 26
52)

= 2
26 = 1

13

(f) P (King | red picture card) = P (King∩red picture card)

P (red picture card)
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= P (K♥, K♦)

P (red picture card)
= ( 2

52)
( 6

52)
= 2

6 = 1
3

1.4.4 P (A) is smaller than P (A | B).

Event B is a necessary condition for event A and so conditioning on event B increases
the probability of event A.

1.4.5 There are 54 blue balls and so there are 150− 54 = 96 red balls.

Also, there are 36 shiny, red balls and so there are 96− 36 = 60 dull, red balls.

P (shiny | red) = P (shiny ∩ red)

P (red)
= ( 36

150)
( 96

150)
= 36

96 = 3
8

P (dull | red) = P (dull ∩ red)

P (red)
= ( 60

150)
( 96

150)
= 60

96 = 5
8

1.4.6 Let the event O be an on time repair and let the event S be a satisfactory repair.

It is known that P (S | O) = 0.85 and P (O) = 0.77.

The question asks for P (O ∩ S) which is

P (O ∩ S) = P (S | O)× P (O) = 0.85× 0.77 = 0.6545.

1.4.7 (a) It depends on the weather patterns in the particular location that is being
considered.

(b) It increases since there are proportionally more black haired people among
brown eyed people than there are in the general population.

(c) It remains unchanged.

(d) It increases.

1.4.8 Over a four year period including one leap year the total number of days is

(3× 365) + 366 = 1461.

Of these, 4× 12 = 48 days occur on the first day of a month and so the probability
that a birthday falls on the first day of a month is
48

1461 = 0.0329.

Also, 4× 31 = 124 days occur in March of which 4 days are March 1st.

Consequently, the probability that a birthday falls on March 1st. conditional that it
is in March is
4

124 = 1
31 = 0.0323.
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Finally, (3×28)+29 = 113 days occur in February of which 4 days are February 1st.

Consequently, the probability that a birthday falls on February 1st. conditional that
it is in February is
4

113 = 0.0354.

1.4.9 (a) Let A be the event that ‘Type I battery lasts longest’ consisting of the outcomes
{(III, II, I), (II, III, I)}.
Let B be the event that ‘Type I battery does not fail first’ consisting of the
outcomes {(III,II,I), (II,III,I), (II,I,III), (III,I,II)}.
The event A ∩B = {(III,II,I), (II,III,I)} is the same as event A.
Therefore,
P (A | B) = P (A∩B)

P (B) = 0.39+0.03
0.39+0.03+0.24+0.16 = 0.512.

(b) Let C be the event that ‘Type II battery fails first’ consisting of the outcomes
{(II,I,III), (II,III,I)}.
Thus, A ∩ C = {(II, III, I)} and therefore

P (A | C) = P (A∩C)
P (C) = 0.39

0.39+0.24 = 0.619.

(c) Let D be the event that ‘Type II battery lasts longest’ consisting of the outcomes
{(I,III,II), (III,I,II)}.
Thus, A ∩D = ∅ and therefore
P (A | D) = P (A∩D)

P (D) = 0.

(d) Let E be the event that ‘Type II battery does not fail first’ consisting of the
outcomes {(I,III,II), (I,II,III), (III,II,I), (III,I,II)}.
Thus, A ∩ E = {(III, II, I)} and therefore

P (A | E) = P (A∩E)
P (E) = 0.03

0.07+0.11+0.03+0.16 = 0.081.

1.4.10 See Figure 1.25.

(a) Let A be the event ‘both lines at full capacity’ consisting of the outcome {(F,F)}.
Let B be the event ‘neither line is shut down’ consisting of the outcomes
{(P,P), (P,F), (F,P), (F,F)}.
Thus, A ∩B = {(F, F )} and therefore

P (A | B) = P (A∩B)
P (B) = 0.19

(0.14+0.2+0.21+0.19) = 0.257.

(b) Let C be the event ‘at least one line at full capacity’ consisting of the outcomes
{(F,P), (F,S), (F,F), (S,F), (P,F)}.
Thus, C ∩B = {(F, P ), (F, F ), (P, F )} and therefore

P (C | B) = P (C∩B)
P (B) = 0.21+0.19+0.2

0.74 = 0.811.
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(c) Let D be the event that ‘one line is at full capacity’ consisting of the outcomes
{(F,P), (F,S), (P,F), (S,F)}.
Let E be the event ‘one line is shut down’ consisting of the outcomes
{(S,P), (S,F), (P,S), (F,S)}.
Thus, D ∩ E = {(F, S), (S, F )} and therefore

P (D | E) = P (D∩E)
P (E) = 0.06+0.05

0.06+0.05+0.07+0.06 = 0.458.

(d) Let G be the event that ‘neither line is at full capacity’ consisting of the
outcomes {(S,S), (S,P), (P,S), (P,P)}.
Let H be the event that ‘at least one line is at partial capacity’ consisting of
the outcomes {(S,P), (P,S), (P,P), (P,F), (F,P)}.
Thus, F ∩G = {(S, P ), (P, S), (P, P )} and therefore

P (F | G) = P (F∩G)
P (G) = 0.06+0.07+0.14

0.06+0.07+0.14+0.2+0.21 = 0.397.

1.4.11 Let L, W and H be the events that the length, width and height respectively are
within the specified tolerance limits.

It is given that P (W ) = 0.86, P (L ∩ W ∩ H) = 0.80, P (L ∩ W ∩ H ′) = 0.02,
P (L′ ∩W ∩H) = 0.03 and P (W ∪H) = 0.92.

(a) P (W ∩H) = P (L ∩W ∩H) + P (L′ ∩W ∩H) = 0.80 + 0.03 = 0.83
P (H) = P (W ∪H)− P (W ) + P (W ∩H) = 0.92− 0.86 + 0.83 = 0.89

P (W ∩H | H) = P (W∩H)
P (H) = 0.83

0.89 = 0.9326

(b) P (L ∩W ) = P (L ∩W ∩H) + P (L ∩W ∩H ′) = 0.80 + 0.02 = 0.82

P (L ∩W ∩H | L ∩W ) = P (L ∩ W ∩ H)
P (L ∩ W ) = 0.80

0.82 = 0.9756

1.4.12 Let A be the event that the gene is of ‘type A’, and let D be the event that the gene
is ‘dominant’.

P (D | A′) = 0.31

P (A′ ∩D) = 0.22

Therefore,

P (A) = 1− P (A′)

= 1− P (A′∩D)
P (D|A′)

= 1− 0.22
0.31 = 0.290

1.4.13 (a) Let E be the event that the ‘component passes on performance’, let A be the
event that the ‘component passes on appearance’, and let C be the event that
the ‘component passes on cost’.
P (A ∩ C) = 0.40
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P (E ∩A ∩ C) = 0.31
P (E) = 0.64
P (E′ ∩A′ ∩ C ′) = 0.19
P (E′ ∩A ∩ C ′) = 0.06
Therefore,
P (E′ ∩A′ ∩ C) = P (E′ ∩A′)− P (E′ ∩A′ ∩ C ′)
= P (E′)− P (E′ ∩A)− 0.19
= 1− P (E)− P (E′ ∩A ∩ C)− P (E′ ∩A ∩ C ′)− 0.19
= 1− 0.64− P (A ∩ C) + P (E ∩A ∩ C)− 0.06− 0.19
= 1− 0.64− 0.40 + 0.31− 0.06− 0.19 = 0.02

(b) P (E ∩A ∩ C | A ∩ C) = P (E∩A∩C)
P (A∩C)

= 0.31
0.40 = 0.775

1.4.14 (a) Let T be the event ‘good taste’, let S be the event ‘good size’, and let A be the
event ‘good appearance’.
P (T ) = 0.78
P (T ∩ S) = 0.69
P (T ∩ S′ ∩A) = 0.05
P (S ∪A) = 0.84
Therefore,
P (S | T ) = P (T∩S)

P (T ) = 0.69
0.78 = 0.885.

(b) Notice that
P (S′ ∩A′) = 1− P (S ∪A) = 1− 0.84 = 0.16.
Also,
P (T ∩ S′) = P (T )− P (T ∩ S) = 0.78− 0.69 = 0.09
so that
P (T ∩ S′ ∩A′) = P (T ∩ S′)− P (T ∩ S′ ∩A) = 0.09− 0.05 = 0.04.
Therefore,
P (T | S′ ∩A′) = P (T∩S′∩A′)

P (S′∩A′) = 0.04
0.16 = 0.25.

1.4.15 P (delay) = (P (delay | technical problems)× P (technical problems))

+ (P (delay | no technical problems)× P (no technical problems))

= (1× 0.04) + (0.33× 0.96) = 0.3568

1.4.16 Let S be the event that a chip ‘survives 500 temperature cycles’ and let A be the
event that the chip was ‘made by company A’.

P (S) = 0.42

P (A | S′) = 0.73
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Therefore,

P (A′ ∩ S′) = P (S′)× P (A′ | S′) = (1− 0.42)× (1− 0.73) = 0.1566.
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1.5 Probabilities of Event Intersections

1.5.1 (a) P (both cards are picture cards) = 12
52 ×

11
51 = 132

2652

(b) P (both cards are from red suits) = 26
52 ×

25
51 = 650

2652

(c) P (one card is from a red suit and one is from black suit)
= (P (first card is red)× P (2nd card is black | 1st card is red))
+ (P (first card is black)× P (2nd card is red | 1st card is black))

=
(

26
52 ×

26
51

)
+
(

26
52 ×

26
51

)
= 676

2652 × 2 = 26
51

1.5.2 (a) P (both cards are picture cards) = 12
52 ×

12
52 = 9

169

The probability increases with replacement.

(b) P (both cards are from red suits) = 26
52 ×

26
52 = 1

4

The probability increases with replacement.

(c) P (one card is from a red suit and one is from black suit)
= (P (first card is red)× P (2nd card is black | 1st card is red))
+ (P (first card is black)× P (2nd card is red | 1st card is black))

=
(

26
52 ×

26
52

)
+
(

26
52 ×

26
52

)
= 1

2

The probability decreases with replacement.

1.5.3 (a) No, they are not independent.
Notice that
P ((ii)) = 3

13 6= P ((ii) | (i)) = 11
51 .

(b) Yes, they are independent.
Notice that
P ((i) ∩ (ii)) = P ((i))× P ((ii))
since
P ((i)) = 1

4

P ((ii)) = 3
13

and
P ((i) ∩ (ii)) = P (first card a heart picture ∩ (ii))
+ P (first card a heart but not a picture ∩ (ii))

=
(

3
52 ×

11
51

)
+
(

10
52 ×

12
51

)
= 153

2652 = 3
52 .

(c) No, they are not independent.
Notice that
P ((ii)) = 1

2 6= P ((ii) | (i)) = 25
51 .
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(d) Yes, they are independent.
Similar to part (b).

(e) No, they are not independent.

1.5.4 P (all four cards are hearts) = P (lst card is a heart)

×P (2nd card is a heart | lst card is a heart)

×P (3rd card is a heart | 1st and 2nd cards are hearts)

×P (4th card is a heart | 1st, 2nd and 3rd cards are hearts)

= 13
52 ×

12
51 ×

11
50 ×

10
49 = 0.00264

P (all 4 cards from red suits) = P (1st card from red suit)

×P (2nd card is from red suit | lst card is from red suit)

×P (3rd card is from red suit | 1st and 2nd cards are from red suits)

×P (4th card is from red suit | 1st, 2nd and 3rd cards are from red suits)

= 26
52 ×

25
51 ×

24
50 ×

23
49 = 0.055

P (all 4 cards from different suits) = P (1st card from any suit)

×P (2nd card not from suit of 1st card)

×P (3rd card not from suit of 1st or 2nd cards)

×P (4th card not from suit of 1st, 2nd, or 3rd cards)

= 1× 39
51 ×

26
50 ×

13
49 = 0.105

1.5.5 P (all 4 cards are hearts) = (13
52)4 = 1

256

The probability increases with replacement.

P (all 4 cards are from red suits) = (26
52)4 = 1

16

The probability increases with replacement.

P (all 4 cards from different suits) = 1× 39
52 ×

26
52 ×

13
52 = 3

32

The probability decreases with replacement.

1.5.6 The events A and B are independent so that P (A | B) = P (A), P (B | A) = P (B),
and P (A ∩B) = P (A)P (B).

To show that two events are independent it needs to be shown that one of the above
three conditions holds.

(a) Recall that
P (A ∩B) + P (A ∩B′) = P (A)
and
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P (B) + P (B′) = 1.
Therefore,

P (A | B′) = P (A∩B′)
P (B′)

= P (A)−P (A∩B)
1−P (B)

= P (A)−P (A)P (B)
1−P (B)

= P (A)(1−P (B))
1−P (B)

= P (A).

(b) Similar to part (a).

(c) P (A′ ∩B′) + P (A′ ∩B) = P (A′)
so that
P (A′ ∩B′) = P (A)− P (A′ ∩B) = P (A)− P (A′)P (B)
since the events A′ and B are independent.
Therefore,
P (A′ ∩B′) = P (A)(1− P (B)) = P (A′)P (B′).

1.5.7 The only way that a message will not get through the network is if both branches are
closed at the same time. The branches are independent since the switches operate
independently of each other.

Therefore,

P (message gets through the network)

= 1− P (message cannot get through the top branch or the bottom branch)

= 1− (P (message cannot get through the top branch)

× P (message cannot get through the bottom branch)).

Also,

P (message gets through the top branch) = P (switch 1 is open ∩ switch 2 is open)

= P (switch 1 is open)× P (switch 2 is open)

= 0.88× 0.92 = 0.8096

since the switches operate independently of each other.

Therefore,

P (message cannot get through the top branch)

= 1− P (message gets through the top branch)

= 1− 0.8096 = 0.1904.

Furthermore,

P (message cannot get through the bottom branch)
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= P (switch 3 is closed) = 1− 0.9 = 0.1.

Therefore,

P (message gets through the network) = 1− (0.1× 0.1904) = 0.98096.

1.5.8 Given the birthday of the first person, the second person has a different birthday
with a probability 364

365 .

The third person has a different birthday from the first two people with a probability
363
365 , and so the probability that all three people have different birthdays is

1× 364
365 ×

363
365 .

Continuing in this manner the probability that n people all have different birthdays
is therefore
364
365 ×

363
365 ×

362
365 × . . .× 366−n

365

and

P (at least 2 people out of n share the same birthday)

= 1− P (n people all have different birthdays)

= 1−
(

364
365 ×

363
365 × . . . 366−n

365

)
.

This probability is equal to 0.117 for n = 10,

is equal to 0.253 for n = 15,

is equal to 0.411 for n = 20,

is equal to 0.569 for n = 25,

is equal to 0.706 for n = 30,

and is equal to 0.814 for n = 35.

The smallest values of n for which the probability is greater than 0.5 is n = 23.

Note that in these calculations it has been assumed that birthdays are equally likely
to occur on any day of the year, although in practice seasonal variations may be
observed in the number of births.

1.5.9 P (no broken bulbs) = 83
100 ×

82
99 ×

81
98 = 0.5682

P (one broken bulb) = P (broken, not broken, not broken)

+ P (not broken, broken, not broken) + P (not broken, not broken, broken)

=
(

17
100 ×

83
99 ×

82
98

)
+
(

83
100 ×

17
99 ×

82
98

)
+
(

83
100 ×

82
99 ×

17
98

)
= 0.3578

P (no more than one broken bulb in the sample)

= P (no broken bulbs) + P (one broken bulb)

= 0.5682 + 0.3578 = 0.9260
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1.5.10 P (no broken bulbs) = 83
100 ×

83
100 ×

83
100 = 0.5718

P (one broken bulb) = P (broken, not broken, not broken)

+ P (not broken, broken, not broken) + P (not broken, not broken, broken)

=
(

17
100 ×

83
100 ×

83
100

)
+
(

83
100 ×

17
100 ×

83
100

)
+
(

83
100 ×

83
100 ×

17
100

)
= 0.3513

P (no more than one broken bulb in the sample)

= P (no broken bulbs) + P (one broken bulb)

= 0.5718 + 0.3513 = 0.9231

The probability of finding no broken bulbs increases with replacement, but the prob-
ability of finding no more than one broken bulb decreases with replacement.

1.5.11 P (drawing 2 green balls)

= P (1st ball is green)× P (2nd ball is green | 1st ball is green)

= 72
169 ×

71
168 = 0.180

P (two balls same color)

= P (two red balls) + P (two blue balls) + P (two green balls)

=
(

43
169 ×

42
168

)
+
(

54
169 ×

53
168

)
+
(

72
169 ×

71
168

)
= 0.344

P (two balls different colors) = 1− P (two balls same color)

= 1− 0.344 = 0.656

1.5.12 P (drawing 2 green balls) = 72
169 ×

72
169 = 0.182

P (two balls same color)

= P (two red balls) + P (two blue balls) + P (two green balls)

=
(

43
169 ×

43
169

)
+
(

54
169 ×

54
169

)
+
(

72
169 ×

72
169

)
= 0.348

P (two balls different colors) = 1− P (two balls same color)

= 1− 0.348 = 0.652

The probability that the two balls are green increases with replacement while the
probability of drawing two balls of different colors decreases with replacement.

1.5.13 P (same result on both throws) = P (both heads) + P (both tails)

= p2 + (1− p)2 = 2p2 − 2p + 1 = 2(p− 0.5)2 + 0.5

which is minimized when p = 0.5 (a fair coin).
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1.5.14 P (each score is obtained exactly once)

= 1× 5
6 ×

4
6 ×

3
6 ×

2
6 ×

1
6 = 5

324

P (no sixes in seven rolls) =
(

5
6

)7
= 0.279

1.5.15 (a)
(

1
2

)5
= 1

32

(b) 1× 5
6 ×

4
6 = 5

9

(c) P (BBR) + P (BRB) + P (RBB)

=
(

1
2 ×

1
2 ×

1
2

)
+
(

1
2 ×

1
2 ×

1
2

)
+
(

1
2 ×

1
2 ×

1
2

)
= 3

8

(d) P (BBR) + P (BRB) + P (RBB)

=
(

26
52 ×

25
51 ×

26
50

)
+
(

26
52 ×

26
51 ×

25
50

)
+
(

26
52 ×

26
51 ×

25
50

)
= 13

34

1.5.16 1− (1− 0.90)n ≥ 0.995

is satisfied for n ≥ 3.

1.5.17 Claims from clients in the same geographical area would not be independent of each
other since they would all be affected by the same flooding events.

1.5.18 (a) P (system works) = 0.88× 0.78× 0.92× 0.85 = 0.537

(b) P (system works) = 1− P (no computers working)
= 1− ((1− 0.88)× (1− 0.78)× (1− 0.92)× (1− 0.85)) = 0.9997

(c) P (system works) = P (all computers working)
+ P (computers 1,2,3 working, computer 4 not working)
+ P (computers 1,2,4 working, computer 3 not working)
+ P (computers 1,3,4 working, computer 2 not working)
+ P (computers 2,3,4 working, computer 1 not working)
= 0.537 + (0.88× 0.78× 0.92× (1− 0.85)) + (0.88× 0.78× (1− 0.92)× 0.85)
+ (0.88× (1− 0.78)× 0.92× 0.85) + ((1− 0.88)× 0.78× 0.92× 0.85)
= 0.903
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1.6 Posterior Probabilities

1.6.1 (a) The following information is given:
P (disease) = 0.01
P (no disease) = 0.99
P (positive blood test | disease) = 0.97
P (positive blood test | no disease) = 0.06
Therefore,
P (positive blood test) = (P (positive blood test | disease)× P (disease))
+ (P (positive blood test | no disease)× P (no disease))
= (0.97× 0.01) + (0.06× 0.99) = 0.0691.

(b) P (disease | positive blood test)

= P (positive blood test ∩ disease)

P (positive blood test)

= P (positive blood test | disease)×P (disease)

P (positive blood test)
= 0.97×0.01

0.0691 = 0.1404

(c) P (no disease | negative blood test)

= P (no disease ∩ negative blood test)
P (negative blood test)

= P (negative blood test | no disease)×P (no disease)

1−P (positive blood test)
= (1−0.06)×0.99

(1−0.0691) = 0.9997

1.6.2 (a) P (red) = (P (red | bag 1)× P (bag 1)) + (P (red | bag 2)× P (bag 2))
+ (P (red | bag 3)× P (bag 3))

=
(

1
3 ×

3
10

)
+
(

1
3 ×

8
12

)
+
(

1
3 ×

5
16

)
= 0.426

(b) P (blue) = 1− P (red) = 1− 0.426 = 0.574

(c) P (red ball from bag 2) = P (bag 2)× P (red ball | bag 2)
= 1

3 ×
8
12 = 2

9

P (bag 1 | red ball) = P (bag 1 ∩ red ball)
P (red ball)

= P (bag 1)×P (red ball | bag 1)

P (red ball)

=
1
3
× 3

10
0.426 = 0.235

P (bag 2 | blue ball) = P (bag 2 ∩ blue ball)
P (blue ball)

= P (bag 2)×P (blue ball | bag 1)

P (blue ball)
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=
1
3
× 4

12
0.574 = 0.194

1.6.3 (a) P (Section I) = 55
100

(b) P (grade is A)
= (P (A | Section I)× P (Section I)) + (P (A | Section II)× P (Section II))

=
(

10
55 ×

55
100

)
+
(

11
45 ×

45
100

)
= 21

100

(c) P (A | Section I) = 10
55

(d) P (Section I | A) = P (A ∩ Section I)
P (A)

= P (Section I)×P (A | Section I)
P (A)

=
55
100

× 10
55

21
100

= 10
21

1.6.4 The following information is given:

P (Species 1) = 0.45

P (Species 2) = 0.38

P (Species 3) = 0.17

P (Tagged | Species 1) = 0.10

P (Tagged | Species 2) = 0.15

P (Tagged | Species 3) = 0.50

Therefore,

P (Tagged) = (P (Tagged | Species 1)× P (Species 1))

+ (P (Tagged | Species 2)× P (Species 2)) + (P (Tagged | Species 3)× P (Species 3))

= (0.10× 0.45) + (0.15× 0.38) + (0.50× 0.17) = 0.187.

P (Species 1 | Tagged) = P (Tagged ∩ Species 1)

P (Tagged)

= P (Species 1)×P (Tagged | Species 1)

P (Tagged)

= 0.45×0.10
0.187 = 0.2406

P (Species 2 | Tagged) = P (Tagged ∩ Species 2)

P (Tagged)

= P (Species 2)×P (Tagged | Species 2)

P (Tagged)

= 0.38×0.15
0.187 = 0.3048

P (Species 3 | Tagged) = P (Tagged ∩ Species 3)

P (Tagged)
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= P (Species 3)×P (Tagged | Species 3)

P (Tagged)

= 0.17×0.50
0.187 = 0.4545

1.6.5 (a) P (fail) = (0.02× 0.77) + (0.10× 0.11) + (0.14× 0.07) + (0.25× 0.05)
= 0.0487

P (C | fail) = 0.14×0.07
0.0487 = 0.2012

P (D | fail) = 0.25×0.05
0.0487 = 0.2567

The answer is 0.2012 + 0.2567 = 0.4579.

(b) P (A | did not fail) = P (A)×P (did not fail | A)

P (did not fail)
= 0.77×(1−0.02)

1−0.0487 = 0.7932

1.6.6 P (C) = 0.15

P (W ) = 0.25

P (H) = 0.60

P (R | C) = 0.30

P (R | W ) = 0.40

P (R | H) = 0.50

Therefore,

P (C | R′) = P (R′|C)P (C)
P (R′|C)P (C)+P (R′|W )P (W )+P (R′|H)P (H)

= (1−0.30)×0.15
((1−0.30)×0.15)+((1−0.40)×0.25)+((1−0.50)×0.60)

= 0.189

1.6.7 (a) P (C) = 0.12
P (M) = 0.55
P (W ) = 0.20
P (H) = 0.13
P (L | C) = 0.003
P (L | M) = 0.009
P (L | W ) = 0.014
P (L | H) = 0.018
Therefore,
P (H | L) = P (L|H)P (H)

P (L|C)P (C)+P (L|M)P (M)+P (L|W )P (W )+P (L|H)P (H)

= 0.018×0.13
(0.003×0.12)+(0.009×0.55)+(0.014×0.20)+(0.018×0.13)

= 0.224
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(b) P (M | L′) = P (L′|M)P (M)
P (L′|C)P (C)+P (L′|M)P (M)+P (L′|W )P (W )+P (L′|H)P (H)

= 0.991×0.55
(0.997×0.12)+(0.991×0.55)+(0.986×0.20)+(0.982×0.13)

= 0.551

1.6.8 (a) P (A) = 0.12
P (B) = 0.34
P (C) = 0.07
P (D) = 0.25
P (E) = 0.22
P (M | A) = 0.19
P (M | B) = 0.50
P (M | C) = 0.04
P (M | D) = 0.32
P (M | E) = 0.76
Therefore,
P (C | M) = P (M |C)P (C)

P (M |A)P (A)+P (M |B)P (B)+P (M |C)P (C)+P (M |D)P (D)+P (M |E)P (E)

= 0.04×0.07
(0.19×0.12)+(0.50×0.34)+(0.04×0.07)+(0.32×0.25)+(0.76×0.22)

= 0.0063

(b) P (D | M ′) = P (M ′|D)P (D)
P (M ′|A)P (A)+P (M ′|B)P (B)+P (M ′|C)P (C)+P (M ′|D)P (D)+P (M ′|E)P (E)

= 0.68×0.25
(0.81×0.12)+(0.50×0.34)+(0.96×0.07)+(0.68×0.25)+(0.24×0.22)

= 0.305
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1.7 Counting Techniques

1.7.1 (a) 7! = 7× 6× 5× 4× 3× 2× 1 = 5040

(b) 8! = 8× 7! = 40320

(c) 4! = 4× 3× 2× 1 = 24

(d) 13! = 13× 12× 11× . . .× 1 = 6,227,020,800

1.7.2 (a) P 7
2 = 7!

(7−2)! = 7× 6 = 42

(b) P 9
5 = 9!

(9−5)! = 9× 8× 7× 6× 5 = 15120

(c) P 5
2 = 5!

(5−2)! = 5× 4 = 20

(d) P 17
4 = 17!

(17−4)! = 17× 16× 15× 14 = 57120

1.7.3 (a) C6
2 = 6!

(6−2)!×2! = 6×5
2 = 15

(b) C8
4 = 8!

(8−4)!×4! = 8×7×6×5
24 = 70

(c) C5
2 = 5!

(5−2)!×2! = 5×4
2 = 10

(d) C14
6 = 14!

(14−6)!×6! = 3003

1.7.4 The number of full meals is 5× 3× 7× 6× 8 = 5040.

The number of meals with just soup or appetizer is (5 + 3)× 7× 6× 8 = 2688.

1.7.5 The number of experimental configurations is 3× 4× 2 = 24.

1.7.6 (a) Let the notation (2,3,1,4) represent the result that the player who finished 1st
in tournament 1 finished 2nd in tournament 2, the player who finished 2nd
in tournament 1 finished 3rd in tournament 2, the player who finished 3rd in
tournament 1 finished 1st in tournament 2, and the player who finished 4th in
tournament 1 finished 4th in tournament 2.
Then the result (1,2,3,4) indicates that each competitor received the same rank-
ing in both tournaments.
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Altogether there are 4! = 24 different results, each equally likely, and so this
single result has a probability of 1

24 .

(b) The results where no player receives the same ranking in the two tournaments
are:
(2,1,4,3), (2,3,4,1), (2,4,1,3), (3,1,4,2), (3,4,1,2) (3,4,2,1), (4,1,2,3), (4,3,1,2),
(4,3,2,1)
There are nine of these results and so the required probability is 9

24 = 3
8 .

1.7.7 The number of rankings that can be assigned to the top 5 competitors is

P 20
5 = 20!

15! = 20× 19× 18× 17× 16 = 1,860,480.

The number of ways in which the best 5 competitors can be chosen is

C20
5 = 20!

15!×5! = 15504.

1.7.8 (a) C100
3 = 100!

97!×3! = 100×99×98
6 = 161700

(b) C83
3 = 83!

80!×3! = 83×82×81
6 = 91881

(c) P (no broken lightbulbs) = 91881
161700 = 0.568

(d) 17× C83
2 = 17× 83×82

2 = 57851

(e) The number of samples with 0 or 1 broken bulbs is
91881 + 57851 = 149732.
P (sample contains no more than 1 broken bulb) = 149732

161700 = 0.926

1.7.9 Cn−1
k + Cn−1

k−1 = (n−1)!
k!(n−1−k)! + (n−1)!

(k−1)!(n−k)! = n!
k!(n−k)!

(
n−k

n + k
n

)
= n!

k!(n−k)! = Cn
k

This relationship can be interpreted in the following manner.

Cn
k is the number of ways that k balls can be selected from n balls. Suppose that

one ball is red while the remaining n − 1 balls are blue. Either all k balls selected
are blue or one of the selected balls is red. Cn−1

k is the number of ways k blue balls
can be selected while Cn−1

k−1 is the number of ways of selecting the one red ball and
k − 1 blue balls.

1.7.10 (a) The number of possible 5 card hands is C52
5 = 52!

47!×5! =2,598,960.

(b) The number of ways to get a hand of 5 hearts is C13
5 = 13!

8!×5! = 1287.

(c) The number of ways to get a flush is 4× C13
5 = 4× 1, 287 = 5148.
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(d) P (flush) = 5148
2,598,960 = 0.00198.

(e) There are 48 choices for the fifth card in the hand and so the number of hands
containing all four aces is 48.

(f) 13× 48 = 624

(g) P (hand has four cards of the same number or picture) = 624
2,598,960 = 0.00024.

1.7.11 There are n! ways in which n objects can be arranged in a line. If the line is made
into a circle and rotations of the circle are considered to be indistinguishable, then
there are n arrangements of the line corresponding to each arrangement of the circle.
Consequently, there are n!

n = (n− 1)! ways to order the objects in a circle.

1.7.12 The number of ways that six people can sit in a line at a cinema is 6! = 720.

See the previous problem.

The number of ways that six people can sit around a dinner table is 5! = 120.

1.7.13 Consider 5 blocks, one block being Andrea and Scott and the other four blocks being
the other four people. At the cinema these 5 blocks can be arranged in 5! ways, and
then Andrea and Scott can be arranged in two different ways within their block, so
that the total number of seating arrangements is 2× 5! = 240.

Similarly, the total number of seating arrangements at the dinner table is 2×4! = 48.

If Andrea refuses to sit next to Scott then the number of seating arrangements can
be obtained by subtraction. The total number of seating arrangements at the cinema
is 720− 240 = 480 and the total number of seating arrangements at the dinner table
is 120− 48 = 72.

1.7.14 The total number of arrangements of n balls is n! which needs to be divided by n1!
because the rearrangements of the n1 balls in box 1 are indistinguishable, and simi-
larly it needs to be divided by n2! . . . nk! due to the indistinguishable rearrangements
possible in boxes 2 to k.

When k = 2 the problem is equivalent to the number of ways of selecting n1 balls
(or n2 balls) from n = n1 + n2 balls.

1.7.15 (a) Using the result provided in the previous problem the answer is 12!
3!×4!×5! = 27720.

(b) Suppose that the balls in part (a) are labelled from 1 to 12. Then the positions
of the three red balls in the line (where the places in the line are labelled 1 to
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12) can denote which balls in part (a) are placed in the first box, the positions
of the four blue balls in the line can denote which balls in part (a) are placed in
the second box, and the positions of the five green balls in the line can denote
which balls in part (a) are placed in the third box. Thus, there is a one-to-one
correspondence between the positioning of the colored balls in part (b) and the
arrangements of the balls in part (a) so that the problems are identical.

1.7.16 14!
3!×4!×7! = 120120

1.7.17 15!
3!×3!×3!×3!×3! = 168,168,000

1.7.18 The total number of possible samples is C60
12 .

(a) The number of samples containing only items which have either excellent or
good quality is C43

12 .
Therefore, the answer is
C43

12

C60
12

= 43
60 ×

42
59 . . .× 32

49 = 0.0110.

(b) The number of samples that contain three items of excellent quality, three items
of good quality, three items of poor quality and three defective items is
C18

3 × C25
3 × C12

3 × C5
3 =4,128,960,000.

Therefore, the answer is
4,128,960,000

C60
12

= 0.00295.

1.7.19 The ordering of the visits can be made in 10! = 3,628,800 different ways.

The number of different ways the ten cities be split into two groups of five cities is
C10

5 = 252.

1.7.20

(
26
2

)
×
(

26
3

)
= 845000

1.7.21 (a)

(
39
8

)
(

52
8

) = 39
52 ×

38
51 ×

37
50 ×

36
49 ×

35
48 ×

34
47 ×

33
46 ×

32
45 = 0.082

(b)

(
13
2

)
×

(
13
2

)
×

(
13
2

)
×

(
13
2

)
(

52
8

) = 0.049
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1.7.22

(
5
2

)
×

(
30
4

)
×

(
5
2

)
(

40
8

) = 0.0356
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1.9 Supplementary Problems

1.9.1 S = { 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6}

1.9.2 If the four contestants are labelled A,B, C, D and the notation (X, Y ) is used to
indicate that contestant X is the winner and contestant Y is the runner up, then the
sample space is:

S = {(A,B), (A,C), (A,D), (B,A), (B,C), (B,D),

(C,A), (C,B), (C,D), (D,A), (D,B), (D,C)}

1.9.3 One way is to have the two team captains each toss the coin once. If one obtains a
head and the other a tail, then the one with the head wins (this could just as well
be done the other way around so that the one with the tail wins, as long as it is
decided beforehand). If both captains obtain the same result, that is if there are two
heads or two tails, then the procedure could be repeated until different results are
obtained.

1.9.4 See Figure 1.10.

There are 36 equally likely outcomes, 16 of which have scores differing by no more
than one.

Therefore,

P (the scores on two dice differ by no more than one) = 16
36 = 4

9 .

1.9.5 The number of ways to pick a card is 52.

The number of ways to pick a diamond picture card is 3.

Therefore,

P (picking a diamond picture card) = 3
52 .

1.9.6 With replacement:

P (drawing two hearts) = 13
52 ×

13
52 = 1

16 = 0.0625

Without replacement:

P (drawing two hearts) = 13
52 ×

12
51 = 3

51 = 0.0588

The probability decreases without replacement.

1.9.7 A = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1)}
B = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}
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(a) A ∩B = {(1, 1), (2, 2)}
P (A ∩B) = 2

36 = 1
18

(b) A ∪B = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1), (3, 3), (4, 4), (5, 5), (6, 6)}
P (A ∪B) = 10

36 = 5
18

(c) A′ ∪B = {(1, 1), (1, 4), (1, 5), (1, 6), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),
(3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6),
(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}
P (A′ ∪B) = 32

36 = 8
9

1.9.8 See Figure 1.10.

Let the notation (x, y) indicate that the score on the red die is x and that the score
on the blue die is y.

(a) The event ‘the sum of the scores on the two dice is eight’
consists of the outcomes:
{(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}

Therefore,
P (red die is 5 | sum of scores is 8)

= P (red die is 5 ∩ sum of scores is 8)

P (sum of scores is 8)

= ( 1
36)

( 5
36)

= 1
5 .

(b) P (either score is 5 | sum of scores is 8) = 2× 1
5 = 2

5

(c) The event ‘the score on either die is 5’
consists of the 11 outcomes:
{(1, 5), (2, 5), (3, 5), (4, 5), (5, 5), (6, 5), (5, 6), (5, 4), (5, 3), (5, 2), (5, 1)}

Therefore,
P (sum of scores is 8 | either score is 5)

= P (sum of scores is 8 ∩ either score is 5)

P (either score is 5)

= ( 2
36)

( 11
36)

= 2
11 .

1.9.9 P (A) = P (either switch 1 or 4 is open or both)

= 1− P (both switches 1 and 4 are closed)

= 1− 0.152 = 0.9775

P (B) = P (either switch 2 or 5 is open or both)
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= 1− P (both switches 2 and 5 are closed)

= 1− 0.152 = 0.9775

P (C) = P (switches 1 and 2 are both open) = 0.852 = 0.7225

P (D) = P (switches 4 and 5 are both open) = 0.852 = 0.7225

If E = C ∪D then

P (E) = 1− (P (C ′)× P (D′))

= 1− (1− 0.852)2 = 0.923.

Therefore,

P (message gets through the network)

= (P (switch 3 is open)× P (A)× P (B)) + (P (switch 3 closed)× P (E))

= (0.85× (1− 0.152)2) + (0.15× (1− (1− 0.852)2)) = 0.9506.

1.9.10 The sample space for the experiment of two coin tosses consists of the four equally
likely outcomes:

{(H,H), (H,T ), (T,H), (T, T )}
Three out of these four outcomes contain at least one head, so that

P (at least one head in two coin tosses) = 3
4 .

The sample space for four tosses of a coin consists of 24 = 16 equally likely outcomes
of which the following 11 outcomes contain at least two heads:

{(HHTT ), (HTHT ), (HTTH), (THHT ), (THTH), (TTHH),

(HHHT ), (HHTH), (HTHH), (THHH), (HHHH)}
Therefore,

P (at least two heads in four coin tosses) = 11
16

which is smaller than the previous probability.

1.9.11 (a) P (blue ball) = (P (bag 1)× P (blue ball | bag 1))
+ (P (bag 2)× P (blue ball | bag 2))
+ (P (bag 3)× P (blue ball | bag 3))
+ (P (bag 4)× P (blue ball | bag 4))

=
(
0.15× 7

16

)
+
(
0.2× 8

18

)
+
(
0.35× 9

19

)
+
(
0.3× 7

11

)
= 0.5112

(b) P (bag 4 | green ball) = P (green ball ∩ bag 4)

P (green ball)

= P (bag 4)×P (green ball | bag 4)

P (greenball)
= 0.3×0

P (green ball) = 0
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(c) P (bag 1 | blue ball) = P (bag 1)×P (blue ball | bag 1)

P (blue ball)

= 0.15× 7
16

0.5112 = 0.0656
0.5112 = 0.128

1.9.12 (a) S = {1, 2, 3, 4, 5, 6, 10}

(b) P (10) = P (score on die is 5)× P (tails)
= 1

6 ×
1
2 = 1

12

(c) P (3) = P (score on die is 3)× P (heads)
= 1

6 ×
1
2 = 1

12

(d) P (6) = P (score on die is 6) + (P (score on die is 3)× P (tails))
= 1

6 + (1
6 ×

1
2)

= 1
4

(e) 0

(f) P (score on die is odd | 6 is recorded)

= P (score on die is odd ∩ 6 is recorded)

P (6 is recorded)

= P (score on die is 3)×P (tails)
P (6 is recorded)

= ( 1
12)
( 1

4)
= 1

3

1.9.13 54 = 625

45 = 1024

In this case 54 < 45, and in general nn1
2 < nn2

1 when 3 ≤ n1 < n2.

1.9.14 20!
5!×5!×5!×5! = 1.17× 1010

20!
4!×4!×4!×4×4! = 3.06× 1011

1.9.15 P (X = 0) = 1
4

P (X = 1) = 1
2

P (X = 2) = 1
4

P (X = 0 | white) = 1
8

P (X = 1 | white) = 1
2

P (X = 2 | white) = 3
8
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P (X = 0 | black) = 1
2

P (X = 1 | black) = 1
2

P (X = 2 | black) = 0

1.9.16 Let A be the event that ‘the order is from a first time customer’

and let B be the event that ‘the order is dispatched within one day’.

It is given that P (A) = 0.28, P (B | A) = 0.75, and P (A′ ∩B′) = 0.30.

Therefore,

P (A′ ∩B) = P (A′)− P (A′ ∩B′)

= (1− 0.28)− 0.30 = 0.42

P (A ∩B) = P (A)× P (B | A)

= 0.28× 0.75 = 0.21

P (B) = P (A′ ∩B) + P (A ∩B)

= 0.42 + 0.21 = 0.63

and

P (A | B) = P (A ∩ B)
P (B)

= 0.21
0.63 = 1

3 .

1.9.17 It is given that

P (Puccini) = 0.26

P (Verdi) = 0.22

P (other composer) = 0.52

P (female | Puccini) = 0.59

P (female | Verdi) = 0.45

and

P (female) = 0.62.

(a) Since
P (female) = (P (Puccini)× P (female | Puccini))
+ (P (Verdi)× P (female | Verdi))
+ (P (other composer)× P (female | other composer))
it follows that
0.62 = (0.26× 0.59) + (0.22× 0.45) + (0.52× P (female | other composer))
so that
P (female | other composer) = 0.7069.
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(b) P (Puccini | male) = P (Puccini)×P (male | Puccini)
P (male)

= 0.26×(1−0.59)
1−0.62 = 0.281

1.9.18 The total number of possible samples is C92
10 .

(a) The number of samples that do not contain any fibers of polymer B is C75
10 .

Therefore, the answer is
C75

10

C92
10

= 75
92 ×

74
91 . . .× 66

83 = 0.115.

(b) The number of samples that contain exactly one fiber of polymer B is 17×C75
9 .

Therefore, the answer is
17×C75

9

C92
10

= 0.296.

(c) The number of samples that contain three fibers of polymer A, three fibers of
polymer B, and four fibers of polymer C is
C43

3 × C17
3 × C32

4 .
Therefore, the answer is
C43

3 ×C17
3 ×C32

4

C92
10

= 0.042.

1.9.19 The total number of possible sequences of heads and tails is 25 = 32, with each
sequence being equally likely. Of these, sixteen don’t include a sequence of three
outcomes of the same kind.

Therefore, the required probability is
16
32 = 0.5.

1.9.20 (a) Calls answered by an experienced operator that last over five minutes.

(b) Successfully handled calls that were answered either within ten seconds or by
an inexperienced operator (or both).

(c) Calls answered after ten seconds that lasted more than five minutes and that
were not handled successfully.

(d) Calls that were either answered within ten seconds and lasted less than five
minutes, or that were answered by an experienced operator and were handled
successfully.

1.9.21 (a) 20!
7!×7!×6! = 133, 024, 320
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(b) If the first and the second job are assigned to production line I, the number of
assignments is

18!
5!×7!×6! = 14, 702, 688.

If the first and the second job are assigned to production line II, the number of
assignments is

18!
7!×5!×6! = 14, 702, 688.

If the first and the second job are assigned to production line III, the number
of assignments is

18!
7!×7!×4! = 10, 501, 920.

Therefore, the answer is
14, 702, 688 + 14, 702, 688 + 10, 501, 920 = 39, 907, 296.

(c) The answer is 133, 024, 320− 39, 907, 296 = 93, 117, 024.

1.9.22 (a)

(
13
3

)
(

52
3

) = 13
52 ×

12
51 ×

11
50 = 0.0129

(b)

(
4
1

)
×

(
4
1

)
×

(
4
1

)
(

52
3

) = 12
52 ×

8
51 ×

4
50 = 0.0029

1.9.23 (a)

(
48
4

)
(

52
4

) = 48
52 ×

47
51 ×

46
50 ×

45
49 = 0.719

(b)

(
4
1

)
×

(
48
3

)
(

52
4

) = 4×4×48×47×46
52×51×50×49 = 0.256

(c)
(

1
52

)3
= 1

140608

1.9.24 (a) True
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(b) False

(c) False

(d) True

(e) True

(f) False

(g) False

1.9.25 Let W be the event that ‘the team wins the game’

and let S be the event that ‘the team has a player sent off’.

P (W ) = 0.55

P (S′) = 0.85

P (W | S′) = 0.60

Since

P (W ) = P (W ∩ S) + P (W ∩ S′)

= P (W ∩ S) + (P (W | S′)× P (S′))

it follows that

0.55 = P (W ∩ S) + (0.60× 0.85).

Therefore,

P (W ∩ S) = 0.04.

1.9.26 (a) Let N be the event that the machine is ‘new’
and let G be the event that the machine has ‘good quality’.

P (N ∩G′) = 120
500

P (N ′) = 230
500

Therefore,
P (N ∩G) = P (N)− P (N ∩G′)
= 1− 230

500 −
120
500 = 150

500 = 0.3.

(b) P (G | N) = P (N ∩ G)
P (N)

= 0.3
1− 230

500

= 5
9
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1.9.27 (a) Let M be the event ‘male’,
let E be the event ‘mechanical engineer’,
and let S be the event ‘senior’.

P (M) = 113
250

P (E) = 167
250

P (M ′ ∩ E′) = 52
250

P (M ′ ∩ E ∩ S) = 19
250

Therefore,
P (M | E′) = 1− P (M ′ | E′)

= 1− P (M ′ ∩ E′)
P (E′)

= 1− 52
250−167 = 0.373.

(b) P (S | M ′ ∩ E) = P (M ′ ∩ E ∩ S)
P (M ′ ∩ E)

= P (M ′ ∩ E ∩ S)
P (M ′)−P (M ′ ∩ E′)

= 19
250−113−52 = 0.224

1.9.28 (a) Let T be the event that ‘the tax form is filed on time’,
let S be the event that ‘the tax form is from a small business’,
and let A be the event that ‘the tax form is accurate’.

P (T ∩ S ∩A) = 0.11
P (T ′ ∩ S ∩A) = 0.13
P (T ∩ S) = 0.15
P (T ′ ∩ S ∩A′) = 0.21

Therefore,
P (T | S ∩A) = P (T ∩ S ∩ A)

P (S ∩ A)

= P (T ∩ S ∩ A)
P (T ∩ S ∩ A)+P (T ′ ∩ S ∩ A)

= 0.11
0.11+0.13 = 11

24 .

(b) P (S′) = 1− P (S)
= 1− P (T ∩ S)− P (T ′ ∩ S)
= 1− P (T ∩ S)− P (T ′ ∩ S ∩A)− P (T ′ ∩ S ∩A′)
= 1− 0.15− 0.13− 0.21 = 0.51

1.9.29 (a) P (having exactly two heart cards) = C13
2 ×C39

2

C52
4

= 0.213

(b) P (having exactly two heart cards and exactly two club cards)

= C13
2 ×C13

2

C52
4

= 0.022
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(c) P (having 3 heart cards | no club cards)
= P (having 3 heart cards from a reduced pack of 39 cards)

= C13
3 ×C26

1

C39
4

= 0.09

1.9.30 (a) P (passing the first time) = 0.26
P (passing the second time) = 0.43

P (failing the first time and passing the second time)
= P (failing the first time)× P (passing the second time)
= (1− 0.26)× 0.43 = 0.3182

(b) 1− P (failing both times) = 1− (1− 0.26)× (1− 0.43) = 0.5782

(c) P (passing the first time | moving to the next stage)

= P (passing the first time and moving to the next stage)

P (moving to the next stage)

= 0.26
0.5782 = 0.45

1.9.31 The possible outcomes are (6, 5, 4, 3, 2), (6, 5, 4, 3, 1), (6, 5, 4, 2, 1), (6, 5, 3, 2, 1),

(6, 4, 3, 2, 1), and (5, 4, 3, 2, 1).

Each outcome has a probability of 1
65 so that the required probability is

6
65 = 1

64 = 1
1296 .

1.9.32 P (at least one uncorrupted file) = 1− P (both files corrupted)

= 1− (0.005× 0.01) = 0.99995

1.9.33 Let C be the event that ‘the pump is operating correctly’

and let L be the event that ‘the light is on’.

P (L | C ′) = 0.992

P (L | C) = 0.003

P (C) = 0.996

Therefore, using Bayes theorem

P (C ′ | L) = P (L | C′)P (C′)
P (L | C′)P (C′)+P (L | C)P (C)

= 0.992×0.004
(0.992×0.004)+(0.003×0.996) = 0.57.
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1.9.34

(
4
2

)
×

(
4
2

)
×

(
4
3

)
×

(
4
3

)
(

52
10

) = 1
27,465,320

1.9.35 (a)

(
7
3

)
(

11
3

) = 7
11 ×

6
10 ×

5
9 = 7

33

(b)

(
7
1

)
×

(
4
2

)
(

11
3

) = 14
55

1.9.36 (a) The probability of an infected person having strain A is P (A) = 0.32.
The probability of an infected person having strain B is P (B) = 0.59.
The probability of an infected person having strain C is P (C) = 0.09.

P (S | A) = 0.21
P (S | B) = 0.16
P (S | C) = 0.63

Therefore, the probability of an infected person exhibiting symptoms is
P (S) = (P (S | A)× P (A)) + (P (S | B)× P (B)) + (P (S | C)× P (C))
= 0.2183
and
P (C | S) = P (S | C)×P (C)

P (S)

= 0.63×0.09
0.2183 = 0.26.

(b) P (S′) = 1− P (S) = 1− 0.2183 = 0.7817
P (S′ | A) = 1− P (S | A) = 1− 0.21 = 0.79

Therefore,
P (A | S′) = P (S′ | A)×P (A)

P (S′)

= 0.79×0.32
0.7817 = 0.323.

(c) P (S′) = 1− P (S) = 1− 0.2183 = 0.7817
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Chapter 2

Random Variables

2.1 Discrete Random Variables

2.1.1 (a) Since
0.08 + 0.11 + 0.27 + 0.33 + P (X = 4) = 1
it follows that
P (X = 4) = 0.21.

(c) F (0) = 0.08
F (1) = 0.19
F (2) = 0.46
F (3) = 0.79
F (4) = 1.00

2.1.2

xi -4 -1 0 2 3 7

pi 0.21 0.11 0.07 0.29 0.13 0.19

2.1.3

xi 1 2 3 4 5 6 8 9 10

pi
1
36

2
36

2
36

3
36

2
36

4
36

2
36

1
36

2
36

F (xi) 1
36

3
36

5
36

8
36

10
36

14
36

16
36

17
36

19
36

49
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xi 12 15 16 18 20 24 25 30 36

pi
4
36

2
36

1
36

2
36

2
36

2
36

1
36

2
36

1
36

F (xi) 23
36

25
36

26
36

28
36

30
36

32
36

33
36

35
36 1

2.1.4 (a)

xi 0 1 2

pi 0.5625 0.3750 0.0625

(b)

xi 0 1 2

F (xi) 0.5625 0.9375 1.000

(c) The value x = 0 is the most likely.

Without replacement:

xi 0 1 2

pi 0.5588 0.3824 0.0588

F (xi) 0.5588 0.9412 1.000

Again, x = 0 is the most likely value.
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2.1.5

xi -5 -4 -3 -2 -1 0 1 2 3 4 6 8 10 12

pi
1
36

1
36

2
36

2
36

3
36

3
36

2
36

5
36

1
36

4
36

3
36

3
36

3
36

3
36

F (xi) 1
36

2
36

4
36

6
36

9
36

12
36

14
36

19
36

20
36

24
36

27
36

30
36

33
36 1

2.1.6 (a)

xi -6 -4 -2 0 2 4 6

pi
1
8

1
8

1
8

2
8

1
8

1
8

1
8

(b)

xi -6 -4 -2 0 2 4 6

F (xi) 1
8

2
8

3
8

5
8

6
8

7
8 1

(c) The most likely value is x = 0.

2.1.7 (a)

xi 0 1 2 3 4 6 8 12

pi 0.061 0.013 0.195 0.067 0.298 0.124 0.102 0.140

(b)

xi 0 1 2 3 4 6 8 12

F (xi) 0.061 0.074 0.269 0.336 0.634 0.758 0.860 1.000

(c) The most likely value is 4.



52 CHAPTER 2. RANDOM VARIABLES

P(not shipped) = P(X ≤ 1) = 0.074

2.1.8

xi -1 0 1 3 4 5

pi
1
6

1
6

1
6

1
6

1
6

1
6

F (xi) 1
6

2
6

3
6

4
6

5
6 1

2.1.9

xi 1 2 3 4

pi
2
5

3
10

1
5

1
10

F (xi) 2
5

7
10

9
10 1

2.1.10 Since∑∞
i=1

1
i2

= π2

6

it follows that

P (X = i) = 6
π2i2

is a possible set of probability values.

However, since∑∞
i=1

1
i

does not converge, it follows that

P (X = i) = c
i

is not a possible set of probability values.

2.1.11 (a) The state space is {3, 4, 5, 6}.

(b) P (X = 3) = P (MMM) = 3
6 ×

2
5 ×

1
4 = 1

20

P (X = 4) = P (MMTM) + P (MTMM) + P (TMMM) = 3
20

P (X = 5) = P (MMTTM) + P (MTMTM) + P (TMMTM)
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+ P (MTTMM) + P (TMTMM) + P (TTMMM) = 6
20

Finally,
P (X = 6) = 1

2

since the probabilities sum to one, or since the final appointment made is equally
likely to be on a Monday or on a Tuesday.

P (X ≤ 3) = 1
20

P (X ≤ 4) = 4
20

P (X ≤ 5) = 10
20

P (X ≤ 6) = 1
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2.2 Continuous Random Variables

2.2.1 (a) Continuous

(b) Discrete

(c) Continuous

(d) Continuous

(e) Discrete

(f) This depends on what level of accuracy to which it is measured.
It could be considered to be either discrete or continuous.

2.2.2 (b)
∫ 6
4

1
x ln(1.5) dx = 1

ln(1.5) × [ln(x)]64

= 1
ln(1.5) × (ln(6)− ln(4)) = 1.0

(c) P (4.5 ≤ X ≤ 5.5) =
∫ 5.5
4.5

1
x ln(1.5) dx

= 1
ln(1.5) × [ln(x)]5.5

4.5

= 1
ln(1.5) × (ln(5.5)− ln(4.5)) = 0.495

(d) F (x) =
∫ x
4

1
y ln(1.5) dy

= 1
ln(1.5) × [ln(y)]x4

= 1
ln(1.5) × (ln(x)− ln(4))

for 4 ≤ x ≤ 6

2.2.3 (a) Since∫ 0
−2

(
15
64 + x

64

)
dx = 7

16

and∫ 3
0

(
3
8 + cx

)
dx = 9

8 + 9c
2

it follows that
7
16 + 9

8 + 9c
2 = 1

which gives c = −1
8 .

(b) P (−1 ≤ X ≤ 1) =
∫ 0
−1

(
15
64 + x

64

)
dx +

∫ 1
0

(
3
8 −

x
8

)
dx

= 69
128
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(c) F (x) =
∫ x
−2

(
15
64 + y

64

)
dy

= x2

128 + 15x
64 + 7

16

for −2 ≤ x ≤ 0

F (x) = 7
16 +

∫ x
0

(
3
8 −

y
8

)
dy

= −x2

16 + 3x
8 + 7

16

for 0 ≤ x ≤ 3

2.2.4 (b) P (X ≤ 2) = F (2) = 1
4

(c) P (1 ≤ X ≤ 3) = F (3)− F (1)

= 9
16 −

1
16 = 1

2

(d) f(x) = dF (x)
dx = x

8

for 0 ≤ x ≤ 4

2.2.5 (a) Since F (∞) = 1 it follows that A = 1.
Then F (0) = 0 gives 1 + B = 0 so that B = −1 and
F (x) = 1− e−x.

(b) P (2 ≤ X ≤ 3) = F (3)− F (2)
= e−2 − e−3 = 0.0855

(c) f(x) = dF (x)
dx = e−x

for x ≥ 0

2.2.6 (a) Since∫ 0.5
0.125 A (0.5− (x− 0.25)2) dx = 1

it follows that A = 5.5054.

(b) F (x) =
∫ x
0.125 f(y) dy

= 5.5054
(

x
2 −

(x−0.25)3

3 − 0.06315
)

for 0.125 ≤ x ≤ 0.5

(c) F (0.2) = 0.203
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2.2.7 (a) Since

F (0) = A + B ln(2) = 0

and

F (10) = A + B ln(32) = 1

it follows that A = −0.25 and B = 1
ln(16) = 0.361.

(b) P (X > 2) = 1− F (2) = 0.5

(c) f(x) = dF (x)
dx = 1.08

3x+2

for 0 ≤ x ≤ 10

2.2.8 (a) Since∫ 10
0 A (e10−θ − 1) dθ = 1

it follows that

A = (e10 − 11)−1 = 4.54× 10−5.

(b) F (θ) =
∫ θ
0 f(y) dy

= e10−θ−e10−θ

e10−11

for 0 ≤ θ ≤ 10

(c) 1− F (8) = 0.0002

2.2.9 (a) Since F (0) = 0 and F (50) = 1
it follows that A = 1.0007 and B = −125.09.

(b) P (X ≤ 10) = F (10) = 0.964

(c) P (X ≥ 30) = 1− F (30) = 1− 0.998 = 0.002

(d) f(r) = dF (r)
dr = 375.3

(r+5)4

for 0 ≤ r ≤ 50

2.2.10 (a) F (200) = 0.1

(b) F (700)− F (400) = 0.65
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2.2.11 (a) Since∫ 11
10 Ax(130− x2) dx = 1

it follows that

A = 4
819 .

(b) F (x) =
∫ x
10

4y(130−y2)
819 dy

= 4
819

(
65x2 − x4

4 − 4000
)

for 10 ≤ x ≤ 11

(c) F (10.5)− F (10.25) = 0.623− 0.340 = 0.283
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2.3 The Expectation of a Random Variable

2.3.1 E(X) = (0× 0.08) + (1× 0.11) + (2× 0.27) + (3× 0.33) + (4× 0.21)

= 2.48

2.3.2 E(X) =
(
1× 1

36

)
+
(
2× 2

36

)
+
(
3× 2

36

)
+
(
4× 3

36

)
+
(
5× 2

36

)
+
(
6× 4

36

)
+
(
8× 2

36

)
+
(
9× 1

36

)
+
(
10× 2

36

)
+
(
12× 4

36

)
+
(
15× 2

36

)
+
(
16× 1

36

)
+
(
18× 2

36

)
+
(
20× 2

36

)
+
(
24× 2

36

)
+
(
25× 1

36

)
+
(
30× 2

36

)
+
(
36× 1

36

)
= 12.25

2.3.3 With replacement:

E(X) = (0× 0.5625) + (1× 0.3750) + (2× 0.0625)

= 0.5

Without replacement:

E(X) = (0× 0.5588) + (1× 0.3824) + (2× 0.0588)

= 0.5

2.3.4 E(X) =
(
1× 2

5

)
+
(
2× 3

10

)
+
(
3× 1

5

)
+
(
4× 1

10

)
= 2

2.3.5

xi 2 3 4 5 6 7 8 9 10 15

pi
1
13

1
13

1
13

1
13

1
13

1
13

1
13

1
13

1
13

4
13

E(X) =
(
2× 1

13

)
+
(
3× 1

13

)
+
(
4× 1

13

)
+
(
5× 1

13

)
+
(
6× 1

13

)
+
(
7× 1

13

)
+
(
8× 1

13

)
+
(
9× 1

13

)
+
(
10× 1

13

)
+
(
15× 4

13

)
= $8.77

If $9 is paid to play the game, the expected loss would be 23 cents.
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2.3.6

xi 1 2 3 4 5 6 7 8 9 10 11 12

pi
6
72

7
72

8
72

9
72

10
72

11
72

6
72

5
72

4
72

3
72

2
72

1
72

E(X) =
(
1× 6

72

)
+
(
2× 6

72

)
+
(
3× 6

72

)
+
(
4× 6

72

)
+
(
5× 6

72

)
+
(
6× 6

72

)
+
(
7× 6

72

)
+
(
8× 6

72

)
+
(
9× 6

72

)
+
(
10× 6

72

)
+
(
11× 6

72

)
+
(
12× 6

72

)
= 5.25

2.3.7 P (three sixes are rolled) = 1
6 ×

1
6 ×

1
6

= 1
216

so that

E(net winnings) =
(
−$1 × 215

216

)
+
(
$499 × 1

216

)
= $1.31.

If you can play the game a large number of times then you should play the game as
often as you can.

2.3.8 The expected net winnings will be negative.

2.3.9

xi 0 1 2 3 4 5

pi 0.1680 0.2816 0.2304 0.1664 0.1024 0.0512

E(payment) = (0× 0.1680) + (1× 0.2816) + (2× 0.2304)

+ (3× 0.1664) + (4× 0.1024) + (5× 0.0512)

= 1.9072

E(winnings) = $2− $1.91 = $0.09

The expected winnings increase to 9 cents per game.

Increasing the probability of scoring a three reduces the expected value of the

difference in the scores of the two dice.
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2.3.10 (a) E(X) =
∫ 6
4 x 1

x ln(1.5) dx = 4.94

(b) Solving F (x) = 0.5 gives x = 4.90.

2.3.11 (a) E(X) =
∫ 4
0 x x

8 dx = 2.67

(b) Solving F (x) = 0.5 gives x =
√

8 = 2.83.

2.3.12 E(X) =
∫ 0.5
0.125 x 5.5054 (0.5 − (x− 0.25)2) dx = 0.3095

Solving F (x) = 0.5 gives x = 0.3081.

2.3.13 E(X) =
∫ 10
0

θ
e10−11

(e10−θ − 1) dθ = 0.9977

Solving F (θ) = 0.5 gives θ = 0.6927.

2.3.14 E(X) =
∫ 50
0

375.3 r
(r+5)4

dr = 2.44

Solving F (r) = 0.5 gives r = 1.30.

2.3.15 Let f(x) be a probability density function that is symmetric about the point µ,

so that f(µ + x) = f(µ− x).

Then

E(X) =
∫∞
−∞ xf(x) dx

which under the transformation x = µ + y gives

E(X) =
∫∞
−∞ (µ + y)f(µ + y) dy

= µ
∫∞
−∞ f(µ + y) dy +

∫∞
0 y (f(µ + y)− f(µ− y)) dy

= (µ× 1) + 0 = µ.

2.3.16 E(X) = (3× 1
20) + (4× 3

20) + (5× 6
20) + (6× 10

20)

= 105
20 = 5.25

2.3.17 (a) E(X) =
∫ 11
10

4x2(130−x2)
819 dx

= 10.418234
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(b) Solving F (x) = 0.5 gives the median as 10.385.

2.3.18 (a) Since∫ 3
2 A(x− 1.5)dx = 1

it follows that

A
[
x2 − 1.5x

]3
2 = 1

so that A = 1.

(b) Let the median be m.
Then∫m
2 (x− 1.5)dx = 0.5

so that[
x2 − 1.5x

]m
2 = 0.5

which gives

0.5m2 − 1.5m + 1 = 0.5.

Therefore,

m2 − 3m + 1 = 0

so that

m = 3±
√

5
2 .

Since 2 ≤ m ≤ 3 it follows that m = 3+
√

5
2 = 2.618.
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2.4 The Variance of a Random Variable

2.4.1 (a) E(X) =
(
−2× 1

3

)
+
(
1× 1

6

)
+
(
4× 1

3

)
+
(
6× 1

6

)
= 11

6

(b) Var(X) =
(

1
3 ×

(
−2− 11

6

)2
)

+
(

1
6 ×

(
1− 11

6

)2
)

+
(

1
3 ×

(
4− 11

6

)2
)

+
(

1
6 ×

(
6− 11

6

)2
)

= 341
36

(c) E(X2) =
(

1
3 × (−2)2

)
+
(

1
6 × 12

)
+
(

1
3 × 42

)
+
(

1
6 × 62

)
= 77

6

Var(X) = E(X2)− E(X)2 = 77
6 −

(
11
6

)2
= 341

36

2.4.2 E(X2) = (02 × 0.08) + (12 × 0.11) + (22 × 0.27)

+ (32 × 0.33) + (42 × 0.21) = 7.52

Then E(X) = 2.48 so that

Var(X) = 7.52− (2.48)2 = 1.37

and σ = 1.17.

2.4.3 E(X2) =
(
12 × 2

5

)
+
(
22 × 3

10

)
+
(
32 × 1

5

)
+
(
42 × 1

10

)
= 5

Then E(X) = 2 so that

Var(X) = 5− 22 = 1

and σ = 1.

2.4.4 See Problem 2.3.9.

E(X2) = (02 × 0.168) + (12 × 0.2816) + (32 × 0.1664)

+ (42 × 0.1024) + (52 × 0.0512)

= 5.6192

Then E(X) = 1.9072 so that

Var(X) = 5.6192− 1.90722 = 1.98
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and σ = 1.41.

A small variance is generally preferable if the expected winnings are positive.

2.4.5 (a) E(X2) =
∫ 6
4 x2 1

x ln(1.5) dx = 24.66

Then E(X) = 4.94 so that
Var(X) = 24.66− 4.942 = 0.25.

(b) σ =
√

0.25 = 0.5

(c) Solving F (x) = 0.25 gives x = 4.43.
Solving F (x) = 0.75 gives x = 5.42.

(d) The interquartile range is 5.42− 4.43 = 0.99.

2.4.6 (a) E(X2) =
∫ 4
0 x2

(
x
8

)
dx = 8

Then E(X) = 8
3 so that

Var(X) = 8−
(

8
3

)2
= 8

9 .

(b) σ =
√

8
9 = 0.94

(c) Solving F (x) = 0.25 gives x = 2.
Solving F (x) = 0.75 gives x =

√
12 = 3.46.

(d) The interquartile range is 3.46− 2.00 = 1.46.

2.4.7 (a) E(X2) =
∫ 0.5
0.125 x2 5.5054 (0.5− (x− 0.25)2) dx = 0.1073

Then E(X) = 0.3095 so that
Var(X) = 0.1073− 0.30952 = 0.0115.

(b) σ =
√

0.0115 = 0.107

(c) Solving F (x) = 0.25 gives x = 0.217.
Solving F (x) = 0.75 gives x = 0.401.

(d) The interquartile range is 0.401− 0.217 = 0.184.
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2.4.8 (a) E(X2) =
∫ 10
0

θ2

e10−11
(e10−θ − 1) dθ

= 1.9803

Then E(X) = 0.9977 so that
Var(X) = 1.9803− 0.99772 = 0.985.

(b) σ =
√

0.985 = 0.992

(c) Solving F (θ) = 0.25 gives θ = 0.288.
Solving F (θ) = 0.75 gives θ = 1.385.

(d) The interquartile range is 1.385− 0.288 = 1.097.

2.4.9 (a) E(X2) =
∫ 50
0

375.3 r2

(r+5)4
dr = 18.80

Then E(X) = 2.44 so that
Var(X) = 18.80− 2.442 = 12.8.

(b) σ =
√

12.8 = 3.58

(c) Solving F (r) = 0.25 gives r = 0.50.
Solving F (r) = 0.75 gives r = 2.93.

(d) The interquartile range is 2.93− 0.50 = 2.43.

2.4.10 Adding and subtracting two standard deviations from the mean value gives:

P (60.4 ≤ X ≤ 89.6) ≥ 0.75

Adding and subtracting three standard deviations from the mean value gives:

P (53.1 ≤ X ≤ 96.9) ≥ 0.89

2.4.11 The interval (109.55, 112.05) is (µ− 2.5c, µ + 2.5c)

so Chebyshev’s inequality gives:

P (109.55 ≤ X ≤ 112.05) ≥ 1− 1
2.52 = 0.84

2.4.12 E(X2) =
(
32 × 1

20

)
+
(
42 × 3

20

)
+
(
52 × 6

20

)
+
(
62 × 10

20

)
= 567

20

Var(X) = E(X2)− (E(X))2
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= 567
20 −

(
105
20

)2
= 63

80

The standard deviation is
√

63/80 = 0.887.

2.4.13 (a) E(X2) =
∫ 11
10

4x3(130−x2)
819 dx

= 108.61538

Therefore,
Var(X) = E(X2)− (E(X))2 = 108.61538− 10.4182342 = 0.0758
and the standard deviation is

√
0.0758 = 0.275.

(b) Solving F (x) = 0.8 gives the 80th percentile of the resistance as 10.69,
and solving F (x) = 0.1 gives the 10th percentile of the resistance as 10.07.

2.4.14 (a) Since

1 =
∫ 3
2 Ax2.5 dx = A

3.5 × (33.5 − 23.5)

it follows that A = 0.0987.

(b) E(X) =
∫ 3
2 0.0987 x3.5 dx

= 0.0987
4.5 × (34.5 − 24.5) = 2.58

(c) E(X2) =
∫ 3
2 0.0987 x4.5 dx

= 0.0987
5.5 × (35.5 − 25.5) = 6.741

Therefore,
Var(X) = 6.741− 2.582 = 0.085
and the standard deviation is

√
0.085 = 0.29.

(d) Solving

0.5 =
∫ x
2 0.0987 y2.5 dy

= 0.0987
3.5 × (x3.5 − 23.5)

gives x = 2.62.

2.4.15 E(X) = (−1× 0.25) + (1× 0.4) + (4× 0.35)

= $1.55

E(X2) = ((−1)2 × 0.25) + (12 × 0.4) + (42 × 0.35)

= 6.25
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Therefore, the variance is

E(X2)− (E(X))2 = 6.25− 1.552 = 3.8475

and the standard deviation is
√

3.8475 = $1.96.

2.4.16 (a) Since

1 =
∫ 4
3

A√
x

dx = 2A(2−
√

3)

it follows that

A = 1.866.

(b) F (x) =
∫ x
3

1.866√
y dy

= 3.732× (
√

x−
√

3)

(c) E(X) =
∫ 4
3 x 1.866√

x
dx

= 2
3 × 1.866× (41.5 − 31.5) = 3.488

(d) E(X2) =
∫ 4
3 x2 1.866√

x
dx

= 2
5 × 1.866× (42.5 − 32.5) = 12.250

Therefore,
Var(X) = 12.250− 3.4882 = 0.0834
and the standard deviation is

√
0.0834 = 0.289.

(e) Solving
F (x) = 3.732× (

√
x−

√
3) = 0.5

gives x = 3.48.

(f) Solving
F (x) = 3.732× (

√
x−

√
3) = 0.75

gives x = 3.74.

2.4.17 (a) E(X) = (2× 0.11) + (3× 0.19) + (4× 0.55) + (5× 0.15)
= 3.74

(b) E(X2) = (22 × 0.11) + (32 × 0.19) + (42 × 0.55) + (52 × 0.15)
= 14.70

Therefore,
Var(X) = 14.70− 3.742 = 0.7124
and the standard deviation is

√
0.7124 = 0.844.
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2.4.18 (a) E(X) =
∫ 1
−1

x(1−x)
2 dx = −1

3

(b) E(X2) =
∫ 1
−1

x2(1−x)
2 dx = 1

3

Therefore,

Var(X) = E(X2)− (E(X))2 = 1
3 −

1
9 = 2

9

and the standard deviation is
√

2
3 = 0.471.

(c) Solving∫ y
−1

(1−x)
2 dx = 0.75

gives y = 0.
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2.5 Jointly Distributed Random Variables

2.5.1 (a) P (0.8 ≤ X ≤ 1, 25 ≤ Y ≤ 30)

=
∫ 1
x=0.8

∫ 30
y=25

(
39
400 −

17(x−1)2

50 − (y−25)2

10000
)

dx dy

= 0.092

(b) E(Y ) =
∫ 35
20 y

(
83

1200 −
(y−25)2

10000
)

dy = 27.36

E(Y 2) =
∫ 35
20 y2

(
83

1200 −
(y−25)2

10000
)

dy = 766.84

Var(Y ) = E(Y 2)− E(Y )2 = 766.84− (27.36)2 = 18.27

σY =
√

18.274 = 4.27

(c) E(Y |X = 0.55) =
∫ 35
20 y

(
0.073− (y−25)2

3922.5
)

dy = 27.14

E(Y 2|X = 0.55) =
∫ 35
20 y2

(
0.073− (y−25)2

3922.5
)

dy = 753.74

Var(Y |X = 0.55) = E(Y 2|X = 0.55)− E(Y |X = 0.55)2

= 753.74− (27.14)2 = 17.16

σY |X=0.55 =
√

17.16 = 4.14

2.5.2 (a) p1|Y =1 = P (X = 1|Y = 1) = p11

p+1
= 0.12

0.32 = 0.37500

p2|Y =1 = P (X = 2|Y = 1) = p21

p+1
= 0.08

0.32 = 0.25000

p3|Y =1 = P (X = 3|Y = 1) = p31

p+1
= 0.07

0.32 = 0.21875

p4|Y =1 = P (X = 4|Y = 1) = p41

p+1
= 0.05

0.32 = 0.15625

E(X|Y = 1) = (1× 0.375) + (2× 0.25) + (3× 0.21875) + (4× 0.15625)
= 2.15625

E(X2|Y = 1) = (12 × 0.375) + (22 × 0.25) + (32 × 0.21875) + (42 × 0.15625)
= 5.84375

Var(X|Y = 1) = E(X2|Y = 1)− E(X|Y = 1)2

= 5.84375− 2.156252 = 1.1943

σX|Y =1 =
√

1.1943 = 1.093
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(b) p1|X=2 = P (Y = 1|X = 2) = p21

p2+
= 0.08

0.24 = 8
24

p2|X=2 = P (Y = 2|X = 2) = p22

p2+
= 0.15

0.24 = 15
24

p3|X=2 = P (Y = 3|X = 2) = p23

p2+
= 0.01

0.24 = 1
24

E(Y |X = 2) =
(
1× 8

24

)
+
(
2× 15

24

)
+
(
3× 1

24

)
= 41

24 = 1.7083

E(Y 2|X = 2) =
(
12 × 8

24

)
+
(
22 × 15

24

)
+
(
32 × 1

24

)
= 77

24 = 3.2083

Var(Y |X = 2) = E(Y 2|X = 2)− E(Y |X = 2)2

= 3.2083− 1.70832 = 0.290

σY |X=2 =
√

0.290 = 0.538

2.5.3 (a) Since∫ 3
x=−2

∫ 6
y=4 A(x− 3)y dx dy = 1

it follows that A = − 1
125 .

(b) P (0 ≤ X ≤ 1, 4 ≤ Y ≤ 5)

=
∫ 1
x=0

∫ 5
y=4

(3−x)y
125 dx dy

= 9
100

(c) fX(x) =
∫ 6
4

(3−x)y
125 dy = 2(3−x)

25

for −2 ≤ x ≤ 3

fY (y) =
∫ 3
−2

(3−x)y
125 dx = y

10

for 4 ≤ x ≤ 6

(d) The random variables X and Y are independent since

fX(x)× fY (y) = f(x, y)

and the ranges of the random variables are not related.

(e) Since the random variables are independent it follows that

fX|Y =5(x) is equal to fX(x).
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2.5.4 (a)

X\Y 0 1 2 3 pi+

0 1
16

1
16 0 0 2

16

1 1
16

3
16

2
16 0 6

16

2 0 2
16

3
16

1
16

6
16

3 0 0 1
16

1
16

2
16

p+j
2
16

6
16

6
16

2
16 1

(b) See the table above.

(c) The random variables X and Y are not independent.
For example, notice that
p0+ × p+0 = 2

16 ×
2
16 = 1

4 6= p00 = 1
16 .

(d) E(X) =
(
0× 2

16

)
+
(
1× 6

16

)
+
(
2× 6

16

)
+
(
3× 2

16

)
= 3

2

E(X2) =
(
02 × 2

16

)
+
(
12 × 6

16

)
+
(
22 × 6

16

)
+
(
32 × 2

16

)
= 3

Var(X) = E(X2)− E(X)2 = 3−
(

3
2

)2
= 3

4

The random variable Y has the same mean and variance as X.

(e) E(XY ) =
(
1× 1× 3

16

)
+
(
1× 2× 2

16

)
+
(
2× 1× 2

16

)
+
(
2× 2× 3

16

)
+
(
2× 3× 1

16

)
+
(
3× 2× 1

16

)
+
(
3× 3× 1

16

)
= 44

16

Cov(X, Y ) = E(XY )− (E(X)× E(Y ))

= 44
16 −

(
3
2 ×

3
2

)
= 1

2

(f) P (X = 0|Y = 1) = p01

p+1
= ( 1

16)
( 6

16)
= 1

6

P (X = 1|Y = 1) = p11

p+1
= ( 3

16)
( 6

16)
= 1

2

P (X = 2|Y = 1) = p21

p+1
= ( 2

16)
( 6

16)
= 1

3
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P (X = 3|Y = 1) = p31

p+1
= 0

( 6
16)

= 0

E(X|Y = 1) =
(
0× 1

6

)
+
(
1× 1

2

)
+
(
2× 1

3

)
+ (3× 0) = 7

6

E(X2|Y = 1) =
(
02 × 1

6

)
+
(
12 × 1

2

)
+
(
22 × 1

3

)
+
(
32 × 0

)
= 11

6

Var(X|Y = 1) = E(X2|Y = 1)− E(X|Y = 1)2

= 11
6 −

(
7
6

)2
= 17

36

2.5.5 (a) Since

∫ 2
x=1

∫ 3
y=0 A(ex+y + e2x−y) dx dy = 1

it follows that A = 0.00896.

(b) P (1.5 ≤ X ≤ 2, 1 ≤ Y ≤ 2)

=
∫ 2
x=1.5

∫ 2
y=1 0.00896 (ex+y + e2x−y) dx dy

= 0.158

(c) fX(x) =
∫ 3
0 0.00896 (ex+y + e2x−y) dy

= 0.00896 (ex+3 − e2x−3 − ex + e2x)

for 1 ≤ x ≤ 2

fY (y) =
∫ 2
1 0.00896 (ex+y + e2x−y) dx

= 0.00896 (e2+y + 0.5e4−y − e1+y − 0.5e2−y)

for 0 ≤ y ≤ 3

(d) No, since fX(x)× fY (y) 6= f(x, y).

(e) fX|Y =0(x) = f(x,0)
fY (0) = ex+e2x

28.28
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2.5.6 (a)

X\Y 0 1 2 pi+

0 25
102

26
102

6
102

57
102

1 26
102

13
102 0 39

102

2 6
102 0 0 6

102

p+j
57
102

39
102

6
102 1

(b) See the table above.

(c) No, the random variables X and Y are not independent.
For example,
p22 6= p2+ × p+2.

(d) E(X) =
(
0× 57

102

)
+
(
1× 39

102

)
+
(
2× 6

102

)
= 1

2

E(X2) =
(
02 × 57

102

)
+
(
12 × 39

102

)
+
(
22 × 6

102

)
= 21

34

Var(X) = E(X2)− E(X)2 = 21
34 −

(
1
2

)2
= 25

68

The random variable Y has the same mean and variance as X.

(e) E(XY ) = 1× 1× p11 = 13
102

Cov(X, Y ) = E(XY )− (E(X)× E(Y ))

= 13
102 −

(
1
2 ×

1
2

)
= − 25

204

(f) Corr(X, Y ) = Cov(X,Y )√
Var(X)Var(Y )

= −1
3

(g) P (Y = 0|X = 0) = p00

p0+
= 25

57

P (Y = 1|X = 0) = p01

p0+
= 26

57

P (Y = 2|X = 0) = p02

p0+
= 6

57

P (Y = 0|X = 1) = p10

p1+
= 2

3

P (Y = 1|X = 1) = p11

p1+
= 1

3
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P (Y = 2|X = 1) = p12

p1+
= 0

2.5.7 (a)

X\Y 0 1 2 pi+

0 4
16

4
16

1
16

9
16

1 4
16

2
16 0 6

16

2 1
16 0 0 1

16

p+j
9
16

6
16

1
16 1

(b) See the table above.

(c) No, the random variables X and Y are not independent.
For example,
p22 6= p2+ × p+2.

(d) E(X) =
(
0× 9

16

)
+
(
1× 6

16

)
+
(
2× 1

16

)
= 1

2

E(X2) =
(
02 × 9

16

)
+
(
12 × 6

16

)
+
(
22 × 1

16

)
= 5

8

Var(X) = E(X2)− E(X)2 = 5
8 −

(
1
2

)2
= 3

8 = 0.3676

The random variable Y has the same mean and variance as X.

(e) E(XY ) = 1× 1× p11 = 1
8

Cov(X, Y ) = E(XY )− (E(X)× E(Y ))

= 1
8 −

(
1
2 ×

1
2

)
= −1

8

(f) Corr(X, Y ) = Cov(X,Y )√
Var(X)Var(Y )

= −1
3

(g) P (Y = 0|X = 0) = p00

p0+
= 4

9

P (Y = 1|X = 0) = p01

p0+
= 4

9

P (Y = 2|X = 0) = p02

p0+
= 1

9

P (Y = 0|X = 1) = p10

p1+
= 2

3
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P (Y = 1|X = 1) = p11

p1+
= 1

3

P (Y = 2|X = 1) = p12

p1+
= 0

2.5.8 (a) Since∫ 5
x=0

∫ 5
y=0 A (20− x− 2y) dx dy = 1

it follows that A = 0.0032

(b) P (1 ≤ X ≤ 2, 2 ≤ Y ≤ 3)

=
∫ 2
x=1

∫ 3
y=2 0.0032 (20− x− 2y) dx dy

= 0.0432

(c) fX(x) =
∫ 5
y=0 0.0032 (20− x− 2y) dy = 0.016 (15− x)

for 0 ≤ x ≤ 5

fY (y) =
∫ 5
x=0 0.0032 (20− x− 2y) dx = 0.008 (35− 4y)

for 0 ≤ y ≤ 5

(d) No, the random variables X and Y are not independent since
f(x, y) 6= fX(x)fY (y).

(e) E(X) =
∫ 5
0 x 0.016 (15− x) dx = 7

3

E(X2) =
∫ 5
0 x2 0.016 (15− x) dx = 15

2

Var(X) = E(X2)− E(X)2 = 15
2 −

(
7
3

)2
= 37

18

(f) E(Y ) =
∫ 5
0 y 0.008 (35− 4y) dy = 13

6

E(Y 2) =
∫ 5
0 y2 0.008 (35− 4y) dy = 20

3

Var(Y ) = E(Y 2)− E(Y )2 = 20
3 −

(
13
6

)2
= 71

36

(g) fY |X=3(y) = f(3,y)
fX(3) = 17−2y

60

for 0 ≤ y ≤ 5

(h) E(XY ) =
∫ 5
x=0

∫ 5
y=0 0.0032 xy (20− x− 2y) dx dy = 5

Cov(X, Y ) = E(XY )− (E(X)× (EY ))

= 5−
(

7
3 ×

13
6

)
= − 1

18
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(i) Corr(X, Y ) = Cov(X,Y )√
Var(X)Var(Y )

= −0.0276

2.5.9 (a) P (same score) = P (X = 1, Y = 1) + P (X = 2, Y = 2)
+ P (X = 3, Y = 3) + P (X = 4, Y = 4)
= 0.80

(b) P (X < Y ) = P (X = 1, Y = 2) + P (X = 1, Y = 3) + P (X = 1, Y = 4)
+ P (X = 2, Y = 3) + P (X = 2, Y = 4) + P (X = 3, Y = 4)
= 0.07

(c)

xi 1 2 3 4

pi+ 0.12 0.20 0.30 0.38

E(X) = (1× 0.12) + (2× 0.20) + (3× 0.30) + (4× 0.38) = 2.94

E(X2) = (12 × 0.12) + (22 × 0.20) + (32 × 0.30) + (42 × 0.38) = 9.70

Var(X) = E(X2)− E(X)2 = 9.70− (2.94)2 = 1.0564

(d)

yj 1 2 3 4

p+j 0.14 0.21 0.30 0.35

E(Y ) = (1× 0.14) + (2× 0.21) + (3× 0.30) + (4× 0.35) = 2.86

E(Y 2) = (12 × 0.14) + (22 × 0.21) + (32 × 0.30) + (42 × 0.35) = 9.28

Var(Y ) = E(Y 2)− E(Y )2 = 9.28− (2.86)2 = 1.1004

(e) The scores are not independent.
For example, p11 6= p1+ × p+1.
The scores would not be expected to be independent since they apply to the
two inspectors’ assessments of the same building. If they were independent it
would suggest that one of the inspectors is randomly assigning a safety score
without paying any attention to the actual state of the building.

(f) P (Y = 1|X = 3) = p31

p3+
= 1

30
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P (Y = 2|X = 3) = p32

p3+
= 3

30

P (Y = 3|X = 3) = p33

p3+
= 24

30

P (Y = 4|X = 3) = p34

p3+
= 2

30

(g) E(XY ) =
∑4

i=1

∑4
j=1 i j pij = 9.29

Cov(X, Y ) = E(XY )− (E(X)× E(Y ))
= 9.29− (2.94× 2.86) = 0.8816

(h) Corr(X, Y ) = Cov(X,Y )√
VarX VarY

= 0.8816√
1.0564×1.1004

= 0.82

A high positive correlation indicates that the inspectors are consistent.
The closer the correlation is to one the more consistent the inspectors are.

2.5.10 (a)
∫ 2
x=0

∫ 2
y=0

∫ 2
z=0

3xyz2

32 dx dy dz = 1

(b)
∫ 1
x=0

∫ 1.5
y=0.5

∫ 2
z=1

3xyz2

32 dx dy dz = 7
64

(c) fX(x) =
∫ 2
x=0

∫ 2
y=0

3xyz2

32 dy dz = x
2

for 0 ≤ 2 ≤ x
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2.6 Combinations and Functions of Random variables

2.6.1 (a) E(3X + 7) = 3E(X) + 7 = 13

Var(3X + 7) = 32Var(X) = 36

(b) E(5X − 9) = 5E(X)− 9 = 1

Var(5X − 9) = 52Var(X) = 100

(c) E(2X + 6Y ) = 2E(X) + 6E(Y ) = −14

Var(2X + 6Y ) = 22Var(X) + 62Var(Y ) = 88

(d) E(4X − 3Y ) = 4E(X)− 3E(Y ) = 17

Var(4X − 3Y ) = 42Var(X) + 32Var(Y ) = 82

(e) E(5X − 9Z + 8) = 5E(X)− 9E(Z) + 8 = −54

Var(5X − 9Z + 8) = 52Var(X) + 92Var(Z) = 667

(f) E(−3Y − Z − 5) = −3E(Y )− E(Z)− 5 = −4

Var(−3Y − Z − 5) = (−3)2Var(Y ) + (−1)2Var(Z) = 25

(g) E(X + 2Y + 3Z) = E(X) + 2E(Y ) + 3E(Z) = 20

Var(X + 2Y + 3Z) = Var(X) + 22Var(Y ) + 32Var(Z) = 75

(h) E(6X + 2Y − Z + 16) = 6E(X) + 2E(Y )− E(Z) + 16 = 14

Var(6X + 2Y − Z + 16) = 62Var(X) + 22Var(Y ) + (−1)2Var(Z) = 159

2.6.2 E(aX + b) =
∫
(ax + b) f(x) dx

= a
∫

x f(x) dx + b
∫

f(x) dx

= aE(X) + b

Var(aX + b) = E((aX + b− E(aX + b))2)

= E((aX − aE(X))2)

= a2E((X − E(X))2)

= a2Var(X)
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2.6.3 E(Y ) = 3E(X1) = 3µ

Var(Y ) = 32Var(X1) = 9σ2

E(Z) = E(X1) + E(X2) + E(X3) = 3µ

Var(Z) = Var(X1) + Var(X2) + Var(X3) = 3σ2

The random variables Y and Z have the same mean

but Z has a smaller variance than Y .

2.6.4 length = A1 + A2 + B

E(length) = E(A1) + E(A2) + E(B) = 37 + 37 + 24 = 98

Var(length) = Var(A1) + Var(A2) + Var(B) = 0.72 + 0.72 + 0.32 = 1.07

2.6.5 Let the random variable Xi be the winnings from the ith game.

Then

E(Xi) =
(
10× 1

8

)
+
(
(−1)× 7

8

)
= 3

8

and

E(X2
i ) =

(
102 × 1

8

)
+
(
(−1)2 × 7

8

)
= 107

8

so that

Var(Xi) = E(X2
i )− (E(Xi))2 = 847

64 .

The total winnings from 50 (independent) games is

Y = X1 + . . . + X50

and

E(Y ) = E(X1) + . . . + E(X50) = 50× 3
8 = 75

4 = $18.75

with

Var(Y ) = Var(X1) + . . . + Var(X50) = 50× 847
64 = 661.72

so that σY =
√

661.72 = $25.72.

2.6.6 (a) E(average weight) = 1.12 kg

Var(average weight) = 0.032

25 = 3.6× 10−5
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The standard deviation is 0.03√
25

= 0.0012 kg.

(b) It is required that 0.03√
n
≤ 0.005 which is satisfied for n ≥ 36.

2.6.7 Let the random variable Xi be equal to 1 if an ace is drawn on the ith drawing (which
happens with a probability of 1

13) and equal to 0 if an ace is not drawn on the ith

drawing (which happens with a probability of 12
13).

Then the total number of aces drawn is Y = X1 + . . . + X10.

Notice that E(Xi) = 1
13 so that regardless of whether the drawing is performed with

or without replacement it follows that

E(Y ) = E(X1) + . . . + E(X10) = 10
13 .

Also, notice that E(X2
i ) = 1

13 so that

Var(Xi) = 1
13 −

(
1
13

)2
= 12

169 .

If the drawings are made with replacement then the random variables Xi are inde-
pendent so that

Var(Y ) = Var(X1) + . . . + Var(X10) = 120
169 .

However, if the drawings are made without replacement then the random variables
Xi are not independent.

2.6.8 FX(x) = P (X ≤ x) = x2 for 0 ≤ x ≤ 1

(a) FY (y) = P (Y ≤ y) = P (X3 ≤ y) = P (X ≤ y1/3) = FX(y1/3) = y2/3

and so

fY (y) = 2
3y−1/3

for 0 ≤ y ≤ 1

E(y) =
∫ 1
0 y fY (y) dy = 0.4

(b) FY (y) = P (Y ≤ y) = P (
√

X ≤ y) = P (X ≤ y2) = FX(y2) = y4

and so

fY (y) = 4y3

for 0 ≤ y ≤ 1

E(y) =
∫ 1
0 y fY (y) dy = 0.8

(c) FY (y) = P (Y ≤ y) = P ( 1
1+X ≤ y) = P (X ≥ 1

y − 1)

= 1− FX( 1
y − 1) = 2

y −
1
y2
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and so

fY (y) = − 2
y2 + 2

y3

for 1
2 ≤ y ≤ 1

E(y) =
∫ 1
0.5 y fY (y) dy = 0.614

(d) FY (y) = P (Y ≤ y) = P (2X ≤ y) = P
(
X ≤ ln(y)

ln(2)

)
= FX

(
ln(y)
ln(2)

)
=
(

ln(y)
ln(2)

)2

and so

fY (y) = 2 ln(y)
y (ln(2))2

for 1 ≤ y ≤ 2

E(y) =
∫ 2
1 y fY (y) dy = 1.61

2.6.9 (a) Since∫ 2
0 A(1− (r − 1)2) dr = 1

it follows that A = 3
4 .

This gives

FR(r) = 3r2

4 − r3

4

for 0 ≤ r ≤ 2.

(b) V = 4
3πr3

Since

FV (v) = P (V ≤ v) = P
(

4
3πr3 ≤ v

)
= FR

((
3v
4π

)1/3
)

it follows that

fV (v) = 1
2( 3

4π )2/3v−1/3 − 3
16π

for 0 ≤ v ≤ 32π
3 .

(c) E(V ) =
∫ 32π

3
0 v fV (v) dv = 32π

15

2.6.10 (a) Since∫ L
0 Ax(L− x) dx = 1

it follows that A = 6
L3 .
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Therefore,

FX(x) = x2(3L−2x)
L3

for 0 ≤ x ≤ L.

(b) The random variable corresponding to the difference between the lengths of the
two pieces of rod is
W = |L− 2X|.

Therefore,

FW (w) = P
(

L
2 −

w
2 ≤ X ≤ L

2 + w
2

)
= FX

(
L
2 + w

2

)
− FX

(
L
2 −

w
2

)
= w(3L2−w2)

2L3

and

fW (w) = 3(L2−w2)
2L3

for 0 ≤ w ≤ L.

(c) E(W ) =
∫ L
0 w fW (w) dw = 3

8L

2.6.11 (a) The return has an expectation of $100, a standard deviation of $20,
and a variance of 400.

(b) The return has an expectation of $100, a standard deviation of $30,
and a variance of 900.

(c) The return from fund A has an expectation of $50, a standard deviation of $10,
and a variance of 100.

The return from fund B has an expectation of $50, a standard deviation of $15,
and a variance of 225.

Therefore, the total return has an expectation of $100 and a variance of 325,
so that the standard deviation is $18.03.

(d) The return from fund A has an expectation of $0.1x,
a standard deviation of $0.02x,
and a variance of 0.0004x2.

The return from fund B has an expectation of $0.1(1000 − x),
a standard deviation of $0.03(1000 − x),
and a variance of 0.0009(1000− x)2.

Therefore, the total return has an expectation of $100
and a variance of 0.0004x2 + 0.0009(1000− x)2.
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This variance is minimized by taking x = $692,
and the minimum value of the variance is 276.9
which corresponds to a standard deviation of $16.64.

This problem illustrates that the variability of the return on an investment can be
reduced by diversifying the investment, so that it is spread over several funds.

2.6.12 The expected value of the total resistance is

5× E(X) = 5× 10.418234 = 52.09.

The variance of the total resistance is

5×Var(X) = 5× 0.0758 = 0.379

so that the standard deviation is
√

0.379 = 0.616.

2.6.13 (a) The mean is

E(X) =
(

1
3 × E(X1)

)
+
(

1
3 × E(X2)

)
+
(

1
3 × E(X3)

)
=
(

1
3 × 59

)
+
(

1
3 × 67

)
+
(

1
3 × 72

)
= 66

The variance is

Var(X) =
((

1
3

)2
×Var(X1)

)
+
((

1
3

)2
×Var(X2)

)
+
((

1
3

)2
×Var(X3)

)

=
((

1
3

)2
× 102

)
+
((

1
3

)2
× 132

)
+
((

1
3

)2
× 42

)
= 95

3

so that the standard deviation is
√

95/3 = 5.63.

(b) The mean is

E(X) = (0.4× E(X1)) + (0.4× E(X2)) + (0.2× E(X3))

= (0.4× 59) + (0.4× 67) + (0.2× 72) = 64.8.

The variance is

Var(X) =
(
0.42 ×Var(X1)

)
+
(
0.42 ×Var(X2)

)
+
(
0.22 ×Var(X3)

)
=
(
0.42 × 102

)
+
(
0.42 × 132

)
+
(
0.22 × 42

)
= 43.68

so that the standard deviation is
√

43.68 = 6.61.

2.6.14 1000 = E(Y ) = a + bE(X) = a + (b× 77)

102 = Var(Y ) = b2Var(X) = b2 × 92

Solving these equations gives a = 914.44 and b = 1.11,
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or a = 1085.56 and b = −1.11.

2.6.15 (a) The mean is µ = 65.90.
The standard deviation is σ√

5
= 0.32√

5
= 0.143.

(b) The mean is 8µ = 8× 65.90 = 527.2.
The standard deviation is

√
8σ =

√
8× 0.32 = 0.905.

2.6.16 (a) E(A) = E(X1)+E(X2)
2 = W+W

2 = W

Var(A) = Var(X1)+Var(X2)
4 = 32+42

4 = 25
4

The standard deviation is 5
2 = 2.5.

(b) Var(B) = δ2Var(X1) + (1− δ)2Var(X2) = 9δ2 + 16(1− δ)2

This is minimized when δ = 16
25 and the minimum value is 144

25

so that the minimum standard deviation is 12
5 = 2.4.

2.6.17 When a die is rolled once the expectation is 3.5 and the standard deviation is 1.71

(see Games of Chance in section 2.4).

Therefore, the sum of eighty die rolls has an expectation of 80× 3.5 = 280

and a standard deviation of
√

80× 1.71 = 15.3.

2.6.18 (a) The expectation is 4× 33.2 = 132.8 seconds.
The standard deviation is

√
4× 1.4 = 2.8 seconds.

(b) E(A1 + A2 + A3 + A4 −B1 −B2 −B3 −B4)
= E(A1) + E(A2) + E(A3) + E(A4)− E(B1)− E(B2)− E(B3)− E(B4)
= (4× 33.2)− (4× 33.0) = 0.8

Var(A1 + A2 + A3 + A4 −B1 −B2 −B3 −B4)
= Var(A1) + Var(A2) + Var(A3) + Var(A4)
+ Var(B1) + Var(B2) + Var(B3) + Var(B4)
= (4× 1.42) + (4× 1.32) = 14.6

The standard deviation is
√

14.6 = 3.82.

(c) E
(
A1 − A2+A3+A4

3

)
= E(A1)− E(A2)

3 − E(A3)
3 − E(A4)

3 = 0

Var
(
A1 − A2+A3+A4

3

)
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= Var(A1) + Var(A2)
9 + Var(A3)

9 + Var(A4)
9

= 4
3 × 1.42 = 2.613

The standard deviation is
√

2.613 = 1.62.

2.6.19 Let X be the temperature in Fahrenheit and let Y be the temperature in Centigrade.

E(Y ) = E
(

5(X−32)
9

)
=
(

5(E(X)−32)
9

)
=
(

5(110−32)
9

)
= 43.33

Var(Y ) = Var
(

5(X−32)
9

)
=
(

52Var(X)
92

)
=
(

52×2.22

92

)
= 1.49

The standard deviation is
√

1.49 = 1.22.

2.6.20 Var(0.5Xα + 0.3Xβ + 0.2Xγ)

= 0.52Var(Xα) + 0.32Var(Xβ) + 0.22Var(Xγ)

= (0.52 × 1.22) + (0.32 × 2.42) + (0.22 × 3.12) = 1.26

The standard deviation is
√

1.26 = 1.12.

2.6.21 The inequality 56√
n
≤ 10 is satisfied for n ≥ 32.

2.6.22 (a) E(X1 + X2) = E(X1) + E(X2) = 7.74
Var(X1 + X2) = Var(X1) + Var(X2) = 0.0648
The standard deviation is

√
0.0648 = 0.255.

(b) E(X1 + X2 + X3) = E(X1) + E(X2) + E(X3) = 11.61
Var(X1 + X2 + X3) = Var(X1) + Var(X2) + Var(X3) = 0.0972
The standard deviation is

√
0.0972 = 0.312.

(c) E
(

X1+X2+X3+X4
4

)
= E(X1)+E(X2)+E(X3)+E(X4)

4

= 3.87

Var
(

X1+X2+X3+X4
4

)
= Var(X1)+Var(X2)+Var(X3)+Var(X4)

16

= 0.0081

The standard deviation is
√

0.0081 = 0.09.
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(d) E
(
X3 − X1+X2

2

)
= E(X3)− E(X1)+E(X2)

2 = 0

Var
(
X3 − X1+X2

2

)
= Var(X3) + Var(X1)+Var(X2)

4 = 0.0486

The standard deviation is
√

0.0486 = 0.220.



86 CHAPTER 2. RANDOM VARIABLES

2.8 Supplementary Problems

2.8.1 (a)

xi 2 3 4 5 6

pi
1
15

2
15

3
15

4
15

5
15

(b) E(X) =
(
2× 1

15

)
+
(
3× 2

15

)
+
(
4× 3

15

)
+
(
5× 4

15

)
+
(
6× 5

15

)
= 14

3

2.8.2 (a)

xi 0 1 2 3 4 5 6

F (xi) 0.21 0.60 0.78 0.94 0.97 0.99 1.00

(b) E(X) = (0× 0.21) + (1× 0.39) + (2× 0.18) + (3× 0.16)
+ (4× 0.03) + (5× 0.02) + (6× 0.01)
= 1.51

(c) E(X2) = (02 × 0.21) + (12 × 0.39) + (22 × 0.18) + (32 × 0.16)
+ (42 × 0.03) + (52 × 0.02) + (62 × 0.01)
= 3.89

Var(X) = 3.89− (1.51)2 = 1.61

(d) The expectation is 1.51× 60 = 90.6
and the variance is 1.61× 60 = 96.6.

2.8.3 (a)

xi 2 3 4 5

pi
2
30

13
30

13
30

2
30

(b) E(X) =
(
2× 2

30

)
+
(
3× 13

30

)
+
(
4× 13

30

)
+
(
5× 2

30

)
= 7

2

E(X2) =
(
22 × 2

30

)
+
(
32 × 13

30

)
+
(
42 × 13

30

)
+
(
52 × 2

30

)
= 383

30
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Var(X) = E(X2)− E(X)2 = 383
30 −

(
7
2

)2
= 31

60

(c)

xi 2 3 4 5

pi
2
10

3
10

3
10

2
10

E(X) =
(
2× 2

10

)
+
(
3× 3

10

)
+
(
4× 3

10

)
+
(
5× 2

10

)
= 7

2

E(X2) =
(
22 × 2

10

)
+
(
32 × 3

10

)
+
(
42 × 3

10

)
+
(
52 × 2

10

)
= 133

10

Var(X) = E(X2)− E(X)2 = 133
10 −

(
7
2

)2
= 21

20

2.8.4 Let Xi be the value of the ith card dealt.

Then

E(Xi) =
(
2× 1

13

)
+
(
3× 1

13

)
+
(
4× 1

13

)
+
(
5× 1

13

)
+
(
6× 1

13

)
+
(
7× 1

13

)
+
(
8× 1

13

)
+
(
9× 1

13

)
+
(
10× 1

13

)
+
(
15× 4

13

)
= 114

13

The total score of the hand is

Y = X1 + . . . + X13

which has an expectation

E(Y ) = E(X1) + . . . + E(X13) = 13× 114
13 = 114.

2.8.5 (a) Since∫ 11
1 A

(
3
2

)x
dx = 1

it follows that A = ln(1.5)
1.511−1.5

= 1
209.6 .

(b) F (x) =
∫ x
1

1
209.6

(
3
2

)y
dy

= 0.01177
(

3
2

)x
− 0.01765

for 1 ≤ x ≤ 11

(c) Solving F (x) = 0.5 gives x = 9.332.

(d) Solving F (x) = 0.25 gives x = 7.706.
Solving F (x) = 0.75 gives x = 10.305.



88 CHAPTER 2. RANDOM VARIABLES

The interquartile range is 10.305− 7.706 = 2.599.

2.8.6 (a) fX(x) =
∫ 2
1 4x(2− y) dy = 2x for 0 ≤ x ≤ 1

(b) fY (y) =
∫ 1
0 4x(2− y) dx = 2(2− y) for 1 ≤ y ≤ 2

Since f(x, y) = fX(x)× fY (y) the random variables are independent.

(c) Cov(X, Y ) = 0 because the random variables are independent.

(d) fX|Y =1.5(x) = fX(x) because the random variables are independent.

2.8.7 (a) Since∫ 10
5 A

(
x + 2

x

)
dx = 1

it follows that A = 0.02572.

(b) F (x) =
∫ x
5 0.02572

(
y + 2

y

)
dy

= 0.0129x2 + 0.0514 ln(x)− 0.404

for 5 ≤ x ≤ 10

(c) E(X) =
∫ 10
5 0.02572 x

(
x + 2

x

)
dx = 7.759

(d) E(X2) =
∫ 10
5 0.02572 x2

(
x + 2

x

)
dx = 62.21

Var(X) = E(X2)− E(X)2 = 62.21− 7.7592 = 2.01

(e) Solving F (x) = 0.5 gives x = 7.88.

(f) Solving F (x) = 0.25 gives x = 6.58.
Solving F (x) = 0.75 gives x = 9.00.
The interquartile range is 9.00− 6.58 = 2.42.

(g) The expectation is E(X) = 7.759.

The variance is Var(X)
10 = 0.0201.

2.8.8 Var(a1X1 + a2X2 + . . . + anXn + b)

= Var(a1X1) + . . . + Var(anXn) + Var(b)

= a2
1Var(X1) + . . . + a2

nVar(Xn) + 0
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2.8.9 Y = 5
3X − 25

2.8.10 Notice that E(Y ) = aE(X) + b and Var(Y ) = a2Var(X).

Also,

Cov(X, Y ) = E( (X − E(X)) (Y − E(Y )) )

= E( (X − E(X)) a(X − E(X)) )

= aVar(X).

Therefore,

Corr(X, Y ) = Cov(X,Y )√
Var(X)Var(Y )

= aVar(X)√
Var(X)a2Var(X)

= a
|a|

which is 1 if a > 0 and is −1 if a < 0.

2.8.11 The expected amount of a claim is

E(X) =
∫ 1800
0 x x(1800−x)

972,000,000 dx = $900.

Consequently, the expected profit from each customer is

$100− $5− (0.1× $900) = $5.

The expected profit from 10,000 customers is therefore 10, 000× $5 = $50, 000.

The profits may or may not be independent depending on the type of insurance and
the pool of customers.

If large natural disasters affect the pool of customers all at once then the claims
would not be independent.

2.8.12 (a) The expectation is 5× 320 = 1600 seconds.
The variance is 5× 632 = 19845
and the standard deviation is

√
19845 = 140.9 seconds.

(b) The expectation is 320 seconds.

The variance is 632

10 = 396.9

and the standard deviation is
√

396.9 = 19.92 seconds.

2.8.13 (a) The state space is the positive integers from 1 to n,
with each outcome having a probability value of 1

n .

(b) E(X) =
(

1
n × 1

)
+
(

1
n × 2

)
+ . . . +

(
1
n × n

)
= n+1

2
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(c) E(X2) =
(

1
n × 12

)
+
(

1
n × 22

)
+ . . . +

(
1
n × n2

)
= (n+1)(2n+1)

6

Therefore,

Var(X) = E(X2)− (E(X))2 = (n+1)(2n+1)
6 −

(
n+1

2

)2
= n2−1

12 .

2.8.14 (a) Let XT be the amount of time that Tom spends on the bus
and let XN be the amount of time that Nancy spends on the bus.
Therefore, the sum of the times is X = XT + XN and
E(X) = E(XT ) + E(XN ) = 87 + 87 = 174 minutes.

If Tom and Nancy ride on different buses then the random variables XT and
XN are independent so that
Var(X) = Var(XT ) + Var(XN ) = 32 + 32 = 18
and the standard deviation is

√
18 = 4.24 minutes.

(b) If Tom and Nancy ride together on the same bus then XT = XN so that
X = 2×XT , twice the time of the ride.
In this case
E(X) = 2× E(XT ) = 2× 87 = 174 minutes
and
Var(X) = 22 ×Var(X1) = 22 × 32 = 36
so that the standard deviation is

√
36 = 6 minutes.

2.8.15 (a) Two heads gives a total score of 20.
One head and one tail gives a total score of 30.
Two tails gives a total score of 40.
Therefore, the state space is {20, 30, 40}.

(b) P (X = 20) = 1
4

P (X = 30) = 1
2

P (X = 40) = 1
4

(c) P (X ≤ 20) = 1
4

P (X ≤ 30) = 3
4

P (X ≤ 40) = 1

(d) E(X) =
(
20× 1

4

)
+
(
30× 1

2

)
+
(
40× 1

4

)
= 30

(e) E(X2) =
(
202 × 1

4

)
+
(
302 × 1

2

)
+
(
402 × 1

4

)
= 950

Var(X) = 950− 302 = 50
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The standard deviation is
√

50 = 7.07.

2.8.16 (a) Since∫ 6
5 Ax dx = A

2 × (62 − 52) = 1

it follows that A = 2
11 .

(b) F (x) =
∫ x
5

2y
11 dy = x2−25

11

(c) E(X) =
∫ 6
5

2x2

11 dx = 2×(63−53)
33 = 182

33 = 5.52

(d) E(X2) =
∫ 6
5

2x3

11 dx = 64−54

22 = 671
22 = 30.5

Var(X) = 30.5−
(

182
33

)2
= 0.083

The standard deviation is
√

0.083 = 0.29.

2.8.17 (a) The expectation is 3× 438 = 1314.
The standard deviation is

√
3× 4 = 6.93.

(b) The expectation is 438.
The standard deviation is 4√

8
= 1.41.

2.8.18 (a) If a 1 is obtained from the die the net winnings are (3× $1)− $5 = −$2
If a 2 is obtained from the die the net winnings are $2− $5 = −$3
If a 3 is obtained from the die the net winnings are (3× $3)− $5 = $4
If a 4 is obtained from the die the net winnings are $4− $5 = −$1
If a 5 is obtained from the die the net winnings are (3× $5)− $5 = $10
If a 6 is obtained from the die the net winnings are $6− $5 = $1

Each of these values has a probability of 1
6 .

(b) E(X) =
(
−3× 1

6

)
+
(
−2× 1

6

)
+
(
−1× 1

6

)
+
(
1× 1

6

)
+
(
4× 1

6

)
+
(
10× 1

6

)
= 3

2

E(X2) =
(
(−3)2 × 1

6

)
+
(
(−2)2 × 1

6

)
+
(
(−1)2 × 1

6

)
+
(
12 × 1

6

)
+
(
42 × 1

6

)
+
(
102 × 1

6

)
= 131

6

The variance is

131
6 −

(
3
2

)2
= 235

12
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and the standard deviation is
√

235
12 = $4.43.

(c) The expectation is 10× 3
2 = $15.

The standard deviation is
√

10× 4.43 = $13.99.

2.8.19 (a) False

(b) True

(c) True

(d) True

(e) True

(f) False

2.8.20 E(total time) = 5× µ = 5× 22 = 110 minutes

The standard deviation of the total time is
√

5σ =
√

5× 1.8 = 4.02 minutes.

E(average time) = µ = 22 minutes

The standard deviation of the average time is σ√
5

= 1.8√
5

= 0.80 minutes.

2.8.21 (a) E(X) = (0× 0.12) + (1× 0.43) + (2× 0.28) + (3× 0.17) = 1.50

(b) E(X2) = (02 × 0.12) + (12 × 0.43) + (22 × 0.28) + (32 × 0.17) = 3.08
The variance is 3.08− 1.502 = 0.83
and the standard deviation is

√
0.83 = 0.911.

(c) E(X1 + X2) = E(X1) + E(X2) = 1.50 + 1.50 = 3.00
Var(X1 + X2) = Var(X1) + Var(X2) = 0.83 + 0.83 = 1.66
The standard deviation is

√
1.66 = 1.288.

2.8.22 (a) E(X) = (−22× 0.3) + (3× 0.2) + (19× 0.1) + (23× 0.4) = 5.1

(b) E(X2) = ((−22)2 × 0.3) + (32 × 0.2) + (192 × 0.1) + (232 × 0.4) = 394.7
Var(X) = 394.7− 5.12 = 368.69
The standard deviation is

√
368.69 = 19.2.

2.8.23 (a) Since∫ 4
2 f(x) dx =

∫ 4
2

A
x2 dx = A

4 = 1

it follows that A = 4.
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(b) Since

1
4 =

∫ y
2 f(x) dx =

∫ y
2

4
x2 dx =

(
2− 4

y

)
it follows that y = 16

7 = 2.29.

2.8.24 (a) 100 = E(Y ) = c + dE(X) = c + (d× 250)
1 = Var(Y ) = d2Var(X) = d2 × 16

Solving these equations gives d = 1
4 and c = 75

2

or d = −1
4 and c = 325

2 .

(b) The mean is 10× 250 = 1000.
The standard deviation is

√
10× 4 = 12.65.

2.8.25 Since

E(c1X1 + c2X2) = c1E(X1) + c2E(X2) = (c1 + c2)× 100 = 100

it is necessary that c1 + c2 = 1.

Also,

Var(c1X1 + c2X2) = c2
1Var(X1) + c2

2Var(X2) = (c2
1 × 144) + (c2

2 × 169) = 100.

Solving these two equations gives c1 = 0.807 and c2 = 0.193

or c1 = 0.273 and c2 = 0.727.

2.8.26 (a) The mean is 3µA = 3× 134.9 = 404.7.

The standard deviation is
√

3 σA =
√

3× 0.7 = 1.21.

(b) The mean is 2µA + 2µB = (2× 134.9) + (2× 138.2) = 546.2.

The standard deviation is
√

0.72 + 0.72 + 1.12 + 1.12 = 1.84.

(c) The mean is 4µA+3µB
7 = (4×134.9)+(3×138.2)

7 = 136.3.

The standard deviation is
√

0.72+0.72+0.72+0.72+1.12+1.12+1.12

7 = 0.34.
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Chapter 3

Discrete Probability Distributions

3.1 The Binomial Distribution

3.1.1 (a) P (X = 3) =

(
10
3

)
× 0.123 × 0.887 = 0.0847

(b) P (X = 6) =

(
10
6

)
× 0.126 × 0.884 = 0.0004

(c) P (X ≤ 2) = P (X = 0) + P (X = 1) + P (X = 2)
= 0.2785 + 0.3798 + 0.2330
= 0.8913

(d) P (X ≥ 7) = P (X = 7) + P (X = 8) + P (X = 9) + P (X = 10)
= 3.085× 10−5

(e) E(X) = 10× 0.12 = 1.2

(f) Var(X) = 10× 0.12× 0.88 = 1.056

3.1.2 (a) P (X = 4) =

(
7
4

)
× 0.84 × 0.23 = 0.1147

(b) P (X 6= 2) = 1− P (X = 2)

= 1−
(

7
2

)
× 0.82 × 0.25

= 0.9957

(c) P (X ≤ 3) = P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3) = 0.0334

95
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(d) P (X ≥ 6) = P (X = 6) + P (X = 7) = 0.5767

(e) E(X) = 7× 0.8 = 5.6

(f) Var(X) = 7× 0.8× 0.2 = 1.12

3.1.3 X ∼ B(6, 0.5)

xi 0 1 2 3 4 5 6

pi 0.0156 0.0937 0.2344 0.3125 0.2344 0.0937 0.0156

E(X) = 6× 0.5 = 3

Var(X) = 6× 0.5× 0.5 = 1.5

σ =
√

1.5 = 1.22

X ∼ B(6, 0.7)

xi 0 1 2 3 4 5 6

pi 0.0007 0.0102 0.0595 0.1852 0.3241 0.3025 0.1176

E(X) = 6× 0.7 = 4.2

Var(X) = 6× 0.7× 0.3 = 1.26

σ =
√

1.5 = 1.12

3.1.4 X ∼ B(9, 0.09)

(a) P (X = 2) = 0.1507

(b) P (X ≥ 2) = 1− P (X = 0)− P (X = 1) = 0.1912

E(X) = 9× 0.09 = 0.81

3.1.5 (a) P
(
B
(
8, 1

2

)
= 5

)
= 0.2187
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(b) P
(
B
(
8, 1

6

)
= 1

)
= 0.3721

(c) P
(
B
(
8, 1

6

)
= 0

)
= 0.2326

(d) P
(
B
(
8, 2

3

)
≥ 6

)
= 0.4682

3.1.6 P (B(10, 0.2) ≥ 7) = 0.0009

P (B(10, 0.5) ≥ 7) = 0.1719

3.1.7 Let the random variable X be the number of employees taking sick leave.

Then X ∼ B(180, 0.35).

Therefore, the proportion of the workforce who need to take sick leave is

Y = X
180

so that

E(Y ) = E(X)
180 = 180×0.35

180 = 0.35

and

Var(Y ) = Var(X)
1802 = 180×0.35×0.65

1802 = 0.0013.

In general, the variance is

Var(Y ) = Var(X)
1802 = 180×p×(1−p)

1802 = p×(1−p)
180

which is maximized when p = 0.5.

3.1.8 The random variable Y can be considered to be the number of successes out of

n1 + n2 trials.

3.1.9 X ∼ B(18, 0.6)

(a) P (X = 8) + P (X = 9) + P (X = 10)

=

(
18
8

)
× 0.68 × 0.410 +

(
18
9

)
× 0.69 × 0.49 +

(
18
10

)
× 0.610 × 0.48

= 0.0771 + 0.1284 + 0.1734 = 0.3789
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(b) P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3) + P (X = 4)

=

(
18
0

)
× 0.60 × 0.418 +

(
18
1

)
× 0.61 × 0.417 +

(
18
2

)
× 0.62 × 0.416

+

(
18
3

)
× 0.63 × 0.415 +

(
18
4

)
× 0.64 × 0.414

= 0.0013
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3.2 The Geometric and Negative Binomial Distributions

3.2.1 (a) P (X = 4) = (1− 0.7)3 × 0.7 = 0.0189

(b) P (X = 1) = (1− 0.7)0 × 0.7 = 0.7

(c) P (X ≤ 5) = 1− (1− 0.7)5 = 0.9976

(d) P (X ≥ 8) = 1− P (X ≤ 7) = (1− 0.7)7 = 0.0002

3.2.2 (a) P (X = 5) =

(
4
2

)
× (1− 0.6)2 × 0.63 = 0.2074

(b) P (X = 8) =

(
7
2

)
× (1− 0.6)5 × 0.63 = 0.0464

(c) P (X ≤ 7) = P (X = 3) + P (X = 4) + P (X = 5) + P (X = 6) + P (X = 7)
= 0.9037

(d) P (X ≥ 7) = 1− P (X = 3)− P (X = 4)− P (X = 5)− P (X = 6)
= 0.1792

3.2.4 Notice that a negative binomial distribution with parameters p and r can be thought
of as the number of trials up to and including the rth success in a sequence of
independent Bernoulli trials with a constant success probability p, which can be
considered to be the number of trials up to and including the first success, plus the
number of trials after the first success and up to and including the second success,
plus the number of trials after the second success and up to and including the third
success, and so on. Each of these r components has a geometric distribution with
parameter p.

3.2.5 (a) Consider a geometric distribution with parameter p = 0.09.
(1− 0.09)3 × 0.09 = 0.0678

(b) Consider a negative binomial distribution with parameters p = 0.09 and r = 3.(
9
2

)
× (1− 0.09)7 × 0.093 = 0.0136

(c) 1
0.09 = 11.11

(d) 3
0.09 = 33.33
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3.2.6 (a) 1
0.37 = 2.703

(b) 3
0.37 = 8.108

(c) The required probability is
P (X ≤ 10) = 0.7794
where the random variable X has a negative binomial distribution with param-
eters p = 0.37 and r = 3.

Alternatively, the required probability is
P (Y ≥ 3) = 0.7794
where the random variable Y has a binomial distribution with parameters
n = 10 and p = 0.37.

(d) P (X = 10) =

(
9
2

)
× (1− 0.37)7 × 0.373 = 0.0718

3.2.7 (a) Consider a geometric distribution with parameter p = 0.25.
(1− 0.25)2 × 0.25 = 0.1406

(b) Consider a negative binomial distribution with parameters p = 0.25 and r = 4.(
9
3

)
× (1− 0.25)6 × 0.254 = 0.0584

The expected number of cards drawn before the fourth heart is obtained is the
expectation of a negative binomial distribution with parameters p = 0.25 and r = 4,
which is 4

0.25 = 16.

If the first two cards are spades then the probability that the first heart card is
obtained on the fifth drawing is the same as the probability in part (a).

3.2.8 (a) 1
0.77 = 1.299

(b) Consider a geometric distribution with parameter p = 0.23.
(1− 0.23)4 × 0.23 = 0.0809

(c) Consider a negative binomial distribution with parameters p = 0.77 and r = 3.(
5
2

)
× (1− 0.77)3 × 0.773 = 0.0555

(d) P (B(8, 0.77) ≥ 3) = 0.9973
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3.2.9 (a) Consider a geometric distribution with parameter p = 0.6.
P (X = 5) = (1− 0.6)4 × 0.6 = 0.01536

(b) Consider a negative binomial distribution with parameters p = 0.6 and r = 4.

P (X = 8) =

(
7
3

)
× 0.64 × 0.44 = 0.116

3.2.10 E(X) = r
p = 3

1/6 = 18

3.2.11 P (X = 10) =

(
9
4

)
×
(

1
2

)5
×
(

1
2

)5
= 0.123
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3.3 The Hypergeometric Distribution

3.3.1 (a) P (X = 4) =

(
6
4

)
×

(
5
3

)
(

11
7

) = 5
11

(b) P (X = 5) =

(
6
5

)
×

(
5
2

)
(

11
7

) = 2
11

(c) P (X ≤ 3) = P (X = 2) + P (X = 3) = 23
66

3.3.2

xi 0 1 2 3 4 5

pi
3

429
40
429

140
429

168
429

70
429

8
429

3.3.3 (a)

(
10
3

)
×

(
7
2

)
(

17
5

) = 90
221

(b)

(
10
1

)
×

(
7
4

)
(

17
5

) = 25
442

(c) P (no red balls) + P (one red ball) + P (two red balls) = 139
442

3.3.4

(
16
5

)
×

(
18
7

)
(

34
12

) = 0.2535

P
(
B
(
12, 18

34

)
= 7

)
= 0.2131
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3.3.5

(
12
3

)
×

(
40
2

)
(

52
5

) = 55
833

The number of picture cards X in a hand of 13 cards has a

hypergeometric distribution with N = 52, n = 13, and r = 12.

The expected value is

E(X) = 13×12
52 = 3

and the variance is

Var(X) =
(

52−13
52−1

)
× 13× 12

52 ×
(
1− 12

52

)
= 30

17 .

3.3.6

(
4
1

)
×

(
5
2

)
×

(
6
2

)
(

15
5

) = 200
1001

3.3.7 (a)

(
7
3

)
×

(
4
0

)
(

11
3

) = 7
33

(b)

(
7
1

)
×

(
4
2

)
(

11
3

) = 7
165

3.3.8 P (5 ≤ X ≤ 7) = P (X = 5) + P (X = 6) + P (X = 7)

=

(
9
4

)
×

(
6
1

)
(

15
5

) +

(
9
3

)
×

(
6
2

)
(

15
5

) +

(
9
2

)
×

(
6
3

)
(

15
5

)

= 0.911

3.3.9 (a)

(
8
2

)
×

(
8
2

)
(

16
4

) = 28
65 = 0.431
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(b) P
(
B
(
4, 1

2

)
= 2

)
=

(
4
2

)
×
(

1
2

)2
×
(

1
2

)2
= 3

8 = 0.375

3.3.10

(
19
4

)
×

(
6
1

)
(

25
5

) +

(
19
5

)
×

(
6
0

)
(

25
5

) = 0.4377 + 0.2189 = 0.6566
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3.4 The Poisson Distribution

3.4.1 (a) P (X = 1) = e−3.2×3.21

1! = 0.1304

(b) P (X ≤ 3) = P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3) = 0.6025

(c) P (X ≥ 6) = 1− P (X ≤ 5) = 0.1054

(d) P (X = 0|X ≤ 3) = P (X=0)
P (X≤3) = 0.0408

0.6025 = 0.0677

3.4.2 (a) P (X = 0) = e−2.1×2.10

0! = 0.1225

(b) P (X ≤ 2) = P (X = 0) + P (X = 1) + P (X = 2) = 0.6496

(c) P (X ≥ 5) = 1− P (X ≤ 4) = 0.0621

(d) P (X = 1|X ≤ 2) = P (X=1)
P (X≤2) = 0.2572

0.6496 = 0.3959

3.4.4 P (X = 0) = e−2.4×2.40

0! = 0.0907

P (X ≥ 4) = 1− P (X ≤ 3) = 0.2213

3.4.5 It is best to use a Poisson distribution with λ = 25
100 = 0.25.

P (X = 0) = e−0.25×0.250

0! = 0.7788

P (X ≤ 1) = P (X = 0) + P (X = 1) = 0.9735

3.4.6 It is best to use a Poisson distribution with λ = 4.

(a) P (X = 0) = e−4×40

0! = 0.0183

(b) P (X ≥ 6) = 1− P (X ≤ 5) = 0.2149

3.4.7 A B(500, 0.005) distribution can be approximated by a

Poisson distribution with λ = 500× 0.005 = 2.5.

Therefore,

P (B(500, 0.005) ≤ 3)

' e−2.5×2.50

0! + e−2.5×2.51

1! + e−2.5×2.52

2! + e−2.5×2.53

3!
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= 0.7576

3.4.8 X ∼ P (9.2)

(a) P (X = 6) + P (X = 7) + P (X = 8) + P (X = 9) + P (X = 10)

= e−9.2×9.26

6! + e−9.2×9.27

7! + e−9.2×9.28

8! + e−9.2×9.29

9! + e−9.2×9.210

10!

= 0.0851 + 0.1118 + 0.1286 + 0.1315 + 0.1210

= 0.5780

(b) P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3) + P (X = 4)

= e−9.2×9.20

0! + e−9.2×9.21

1! + e−9.2×9.22

2! + e−9.2×9.23

3! + e−9.2×9.24

4!

= 0.0001 + 0.0009 + 0.0043 + 0.0131 + 0.0302

= 0.0486
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3.5 The Multinomial Distribution

3.5.1 (a) 11!
4!×5!×2! × 0.234 × 0.485 × 0.292 = 0.0416

(b) P (B(7, 0.23) < 3) = 0.7967

3.5.2 (a) 15!
3!×3!×9! ×

(
1
6

)3
×
(

1
6

)3
×
(

2
3

)9
= 0.0558

(b) 15!
3!×3!×4!×5! ×

(
1
6

)3
×
(

1
6

)3
×
(

1
6

)4
×
(

1
2

)5
= 0.0065

(c) 15!
2!×13! ×

(
1
6

)2
×
(

5
6

)13
= 0.2726

The expected number of sixes is 15
6 = 2.5.

3.5.3 (a) 8!
2!×5!×1! × 0.092 × 0.795 × 0.121 = 0.0502

(b) 8!
1!×5!×2! × 0.091 × 0.795 × 0.122 = 0.0670

(c) P (B(8, 0.09) ≥ 2) = 0.1577

The expected number of misses is 8× 0.12 = 0.96.

3.5.4 The expected number of dead seedlings is 22× 0.08 = 1.76

the expected number of slow growth seedlings is 22× 0.19 = 4.18

the expected number of medium growth seedlings is 22× 0.42 = 9.24

and the expected number of strong growth seedlings is 22× 0.31 = 6.82.

(a) 22!
3!×4!×6!×9! × 0.083 × 0.194 × 0.426 × 0.319 = 0.0029

(b) 22!
5!×5!×5!×7! × 0.085 × 0.195 × 0.425 × 0.317 = 0.00038

(c) P (B(22, 0.08) ≤ 2) = 0.7442

3.5.5 The probability that an order is received over the internet and it is large is

0.6× 0.3 = 0.18.

The probability that an order is received over the internet and it is small is

0.6× 0.7 = 0.42.
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The probability that an order is not received over the internet and it is large is
0.4× 0.4 = 0.16.

The probability that an order is not received over the internet and it is small is
0.4× 0.6 = 0.24.

The answer is 8!
2!×2!×2!×2! × 0.182 × 0.422 × 0.162 × 0.242 = 0.0212.



3.7. SUPPLEMENTARY PROBLEMS 109

3.7 Supplementary Problems

3.7.1 (a) P (B(18, 0.085) ≥ 3) = 1− P (B(18, 0.085) ≤ 2) = 0.1931

(b) P (B(18, 0.085) ≤ 1) = 0.5401

(c) 18× 0.085 = 1.53

3.7.2 P (B(13, 0.4) ≥ 3) = 1− P (B(13, 0.4) ≤ 2) = 0.9421

The expected number of cells is 13 + (13× 0.4) = 18.2.

3.7.3 (a) 8!
2!×3!×3! × 0.402 × 0.253 × 0.353 = 0.0600

(b) 8!
3!×1!×4! × 0.403 × 0.251 × 0.354 = 0.0672

(c) P (B(8, 0.35) ≤ 2) = 0.4278

3.7.4 (a) P (X = 0) = e−2/3×(2/3)0

0! = 0.5134

(b) P (X = 1) = e−2/3×(2/3)1

1! = 0.3423

(c) P (X ≥ 3) = 1− P (X ≤ 2) = 0.0302

3.7.5 P (X = 2) = e−3.3×(3.3)2

2! = 0.2008

P (X ≥ 6) = 1− P (X ≤ 5) = 0.1171

3.7.6 (a) Consider a negative binomial distribution with parameters p = 0.55 and r = 4.

(b) P (X = 7) =

(
6
3

)
× (1− 0.55)3 × 0.554 = 0.1668

(c) P (X = 6) =

(
5
3

)
× (1− 0.55)2 × 0.554 = 0.1853

(d) The probability that team A wins the series in game 5 is(
4
3

)
× (1− 0.55)1 × 0.554 = 0.1647.

The probability that team B wins the series in game 5 is
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(
4
3

)
× (1− 0.45)1 × 0.454 = 0.0902.

The probability that the series is over after game five is 0.1647+0.0902 = 0.2549.

(e) The probability that team A wins the series in game 4 is 0.554 = 0.0915.

The probability that team A wins the series is

0.0915 + 0.1647 + 0.1853 + 0.1668 = 0.6083.

3.7.7 (a) Consider a negative binomial distribution with parameters p = 0.58 and r = 3.

P (X = 9) =

(
8
2

)
× (1− 0.58)6 × 0.583 = 0.0300

(b) Consider a negative binomial distribution with parameters p = 0.42 and r = 4.

P (X ≤ 7) = P (X = 4) + P (X = 5) + P (X = 6) + P (X = 7) = 0.3294

3.7.8 P (two red balls | head) =

(
6
2

)
×

(
5
1

)
(

11
3

) = 5
11

P (two red balls | tail) =

(
5
2

)
×

(
6
1

)
(

11
3

) = 4
11

Therefore,

P (two red balls) = (P (head)× P (two red balls | head))

+ (P (tail)× P (two red balls | tail))

=
(
0.5× 5

11

)
+
(
0.5× 4

11

)
= 9

22

and

P (head | two red balls) = P (head and two red balls)
P (two red balls)

= P (head)×P (two red balls|head)

P (two red balls) = 5
9 .

3.7.9 Using the hypergeometric distribution, the answer is



3.7. SUPPLEMENTARY PROBLEMS 111

P (X = 0) + P (X = 1) =

(
36
5

)
×

(
4
0

)
(

40
5

) +

(
36
4

)
×

(
4
1

)
(

40
5

) = 0.9310.

For a collection of 4,000,000 items of which 400,000 are defective

a B(5, 0.1) distribution can be used.

P (X = 0) + P (X = 1) =

(
5
0

)
× 0.10 × 0.95 +

(
5
1

)
× 0.11 × 0.94 = 0.9185

3.7.10 (a) P
(
B
(
22, 1

6

)
= 3

)
=

(
22
3

)
×
(

1
6

)3
×
(

5
6

)19
= 0.223

(b) Using a negative binomial distribution with p = 1
6 and r = 3

the required probability is

P (X = 10) =

(
9
2

)
×
(

1
6

)3
×
(

5
6

)7
= 0.047

(c) P (B(11, 0.5) ≤ 3)

=

(
11
0

)
×0.50×0.511+

(
11
1

)
×0.51×0.510+

(
11
2

)
×0.52×0.59+

(
11
3

)
×0.53×0.58

= 0.113

3.7.11

(
11
3

)
×

(
8
3

)
(

19
6

) = 0.3406

3.7.12 (a) True

(b) True

(c) True

(d) True

3.7.13 (a) P
(
B
(
10, 1

6

)
= 3

)
=

(
10
3

)
×
(

1
6

)3
×
(

5
6

)7
= 0.155
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(b) Using a negative binomial distribution with p = 1
6 and r = 4

the required probability is

P (X = 20) =

(
19
3

)
×
(

1
6

)4
×
(

5
6

)16
= 0.040

(c) Using the multinomial distribution the required probability is

9!
5!×2!×2! ×

(
2
3

)5
×
(

1
6

)2
×
(

1
6

)2
= 0.077

3.7.14 (a) P (top quality) = P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3) + P (X = 4)

=
(
e−8.3 × 8.30

0!

)
+
(
e−8.3 × 8.31

1!

)
+
(
e−8.3 × 8.32

2!

)
+
(
e−8.3 × 8.33

3!

)
+
(
e−8.3 × 8.34

4!

)
= 0.0837

P (good quality) = P (X = 5) + P (X = 6) + P (X = 7) + P (X = 8)

=
(
e−8.3 × 8.35

5!

)
+
(
e−8.3 × 8.36

6!

)
+
(
e−8.3 × 8.37

7!

)
+
(
e−8.3 × 8.38

8!

)
= 0.4671

P (normal quality) = P (X = 9) + P (X = 10) + P (X = 11) + P (X = 12)

=
(
e−8.3 × 8.39

9!

)
+
(
e−8.3 × 8.310

10!

)
+
(
e−8.3 × 8.311

11!

)
+
(
e−8.3 × 8.312

12!

)
= 0.3699

P (bad quality) = 1− 0.0837− 0.4671− 0.3699 = 0.0793

Using the multinomial distribution the required probability is

7!
2!×2!×2!×1! × 0.08372 × 0.46712 × 0.36992 × 0.0793 = 0.0104

(b) The expectation is 10× 0.3699 = 3.699.

The standard deviation is
√

10× 0.3699× (1− 0.3699) = 1.527.

(c) The probability of being either top quality or good quality is
0.0837 + 0.4671 = 0.5508.

P (B(8, 0.5508) ≤ 3) =

(
8
0

)
× 0.55080 × 0.44928 +

(
8
1

)
× 0.55081 × 0.44927

+

(
8
2

)
× 0.55082 × 0.44926 +

(
8
3

)
× 0.55083 × 0.44925

= 0.2589



Chapter 4

Continuous Probability
Distributions

4.1 The Uniform Distribution

4.1.1 (a) E(X) = −3+8
2 = 2.5

(b) σ = 8−(−3)√
12

= 3.175

(c) The upper quartile is 5.25.

(d) P (0 ≤ X ≤ 4) =
∫ 4
0

1
11 dx = 4

11

4.1.2 (a) E(X) = 1.43+1.60
2 = 1.515

(b) σ = 1.60−1.43√
12

= 0.0491

(c) F (x) = x−1.43
1.60−1.43 = x−1.43

0.17

for 1.43 ≤ x ≤ 1.60

(d) F (1.48) = 1.48−1.43
0.17 = 0.05

0.17 = 0.2941

(e) F (1.5) = 1.5−1.43
0.17 = 0.07

0.17 = 0.412

The number of batteries with a voltage less than 1.5 Volts has a
binomial distribution with parameters n = 50 and p = 0.412
so that the expected value is
E(X) = n× p = 50× 0.412 = 20.6
and the variance is
Var(X) = n× p× (1− p) = 50× 0.412× 0.588 = 12.11.

113
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4.1.3 (a) These four intervals have probabilities 0.30, 0.20, 0.25, and 0.25 respectively, and
the expectations and variances are calculated from the binomial distribution.

The expectations are:
20× 0.30 = 6
20× 0.20 = 4
20× 0.25 = 5
20× 0.25 = 5

The variances are:
20× 0.30× 0.70 = 4.2
20× 0.20× 0.80 = 3.2
20× 0.25× 0.75 = 3.75
20× 0.25× 0.75 = 3.75

(b) Using the multinomial distribution the probability is

20!
5!×5!×5!×5! × 0.305 × 0.205 × 0.255 × 0.255 = 0.0087.

4.1.4 (a) E(X) = 0.0+2.5
2 = 1.25

Var(X) = (2.5−0.0)2

12 = 0.5208

(b) The probability that a piece of scrap wood is longer than 1 meter is

1.5
2.5 = 0.6.

The required probability is

P (B(25, 0.6) ≥ 20) = 0.0294.

4.1.5 (a) The probability is 4.184−4.182
4.185−4.182 = 2

3 .

(b) P (difference ≤ 0.0005 | fits in hole) = P (4.1835 ≤ diameter ≤ 4.1840)

P (diameter ≤ 4.1840)

= 4.1840−4.1835
4.1840−4.1820 = 1

4

4.1.6 (a) P (X ≤ 85) = 85−60
100−60 = 5

8

P
(
B
(
6, 5

8

)
= 3

)
=

(
6
3

)
×
(

5
8

)3
×
(
1− 5

8

)3
= 0.257

(b) P (X ≤ 80) = 80−60
100−60 = 1

2

P (80 ≤ X ≤ 90) = 90−60
100−60 −

80−60
100−60 = 1

4
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P (X ≥ 90) = 1− 90−60
100−60 = 1

4

Using the multinomial distribution the required probability is

6!
2!×2!×2! ×

(
1
4

)2
×
(

1
2

)2
×
(

1
4

)2
= 0.088.

(c) The number of employees that need to be tested before 3 are found with a score
larger than 90 has a negative binomial distribution with r = 3 and p = 1

4 ,
which has an expectation of r

p = 12.
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4.2 The Exponential Distribution

4.2.2 (a) E(X) = 1
0.1 = 10

(b) P (X ≥ 10) = 1− F (10) = 1− (1− e−0.1×10) = e−1 = 0.3679

(c) P (X ≤ 5) = F (5) = 1− e−0.1×5 = 0.3935

(d) The additional waiting time also has an exponential distribution with parameter
λ = 0.1.
The probability that the total waiting time is longer than 15 minutes is the
probability that the additional waiting time is longer than 10 minutes, which is
0.3679 from part (b).

(e) E(X) = 0+20
2 = 10 as in the previous case.

However, in this case the additional waiting time has a U(0, 15) distribution.

4.2.3 (a) E(X) = 1
0.2 = 5

(b) σ = 1
0.2 = 5

(c) The median is 0.693
0.2 = 3.47.

(d) P (X ≥ 7) = 1− F (7) = 1− (1− e−0.2×7) = e−1.4 = 0.2466

(e) The memoryless property of the exponential distribution implies that the re-
quired probability is
P (X ≥ 2) = 1− F (2) = 1− (1− e−0.2×2) = e−0.4 = 0.6703.

4.2.4 (a) P (X ≤ 5) = F (5) = 1− e−0.31×5 = 0.7878

(b) Consider a binomial distribution with parameters n = 12 and p = 0.7878.
The expected value is
E(X) = n× p = 12× 0.7878 = 9.45
and the variance is
Var(X) = n× p× (1− p) = 12× 0.7878× 0.2122 = 2.01.

(c) P (B(12, 0.7878) ≤ 9) = 0.4845

4.2.5 F (x) =
∫ x
−∞

1
2λe−λ(θ−y) dy = 1

2e−λ(θ−x)

for −∞ ≤ x ≤ θ, and
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F (x) = 1
2 +

∫ x
θ

1
2λe−λ(y−θ) dy = 1− 1

2e−λ(x−θ)

for θ ≤ x ≤ ∞.

(a) P (X ≤ 0) = F (0) = 1
2e−3(2−0) = 0.0012

(b) P (X ≥ 1) = 1− F (1) = 1− 1
2e−3(2−1) = 0.9751

4.2.6 (a) E(X) = 1
2 = 0.5

(b) P (X ≥ 1) = 1− F (1) = 1− (1− e−2×1) = e−2 = 0.1353

(c) A Poisson distribution with parameter 2× 3 = 6.

(d) P (X ≤ 4) = P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3) + P (X = 4)

= e−6×60

0! + e−6×61

1! + e−6×62

2! + e−6×63

3! + e−6×64

4! = 0.2851

4.2.7 (a) λ = 1.8

(b) E(X) = 1
1.8 = 0.5556

(c) P (X ≥ 1) = 1− F (1) = 1− (1− e−1.8×1) = e−1.8 = 0.1653

(d) A Poisson distribution with parameter 1.8× 4 = 7.2.

(e) P (X ≥ 4) = 1− P (X = 0)− P (X = 1)− P (X = 2)− P (X = 3)

= 1− e−7.2×7.20

0! − e−7.2×7.21

1! − e−7.2×7.22

2! − e−7.2×7.23

3! = 0.9281

4.2.8 (a) Solving
F (5) = 1− e−λ×5 = 0.90
gives λ = 0.4605.

(b) F (3) = 1− e−0.4605×3 = 0.75

4.2.9 (a) P (X ≥ 1.5) = e−0.8×1.5 = 0.301

(b) The number of arrivals Y has a Poisson distribution with parameter
0.8× 2 = 1.6
so that the required probability is

P (Y ≥ 3) = 1− P (Y = 0)− P (Y = 1)− P (Y = 2)
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= 1−
(
e−1.6 × 1.60

0!

)
−
(
e−1.6 × 1.61

1!

)
−
(
e−1.6 × 1.62

2!

)
= 0.217

4.2.10 P (X ≤ 1) = 1− e−0.3×1 = 0.259

P (X ≤ 3) = 1− e−0.3×3 = 0.593

Using the multinomial distribution the required probability is

10!
2!×4!×4! × 0.2592 × (0.593− 0.259)4 × (1− 0.593)4 = 0.072.

4.2.11 (a) P (X ≤ 6) = 1− e−0.2×6 = 0.699

(b) The number of arrivals Y has a Poisson distribution with parameter
0.2× 10 = 2
so that the required probability is

P (Y = 3) = e−2 × 23

3! = 0.180

4.2.12 P (X ≥ 150) = e−0.0065×150 = 0.377

The number of components Y in the box with lifetimes longer than 150 days has a
B(10, 0.377) distribution.

P (Y ≥ 8) = P (Y = 8) + P (Y = 9) + P (Y = 10)

=

(
10
8

)
× 0.3778 × 0.6232 +

(
10
9

)
× 0.3779 × 0.6231 +

(
10
10

)
× 0.37710 × 0.6230

= 0.00713 + 0.00096 + 0.00006 = 0.00815

4.2.13 The number of signals X in a 100 meter stretch has a Poisson distribution with mean
0.022× 100 = 2.2.

P (X ≤ 1) = P (X = 0) + P (X = 1)

=
(
e−2.2 × 2.20

0!

)
+
(
e−2.2 × 2.21

1!

)
= 0.111 + 0.244 = 0.355

4.2.14 Since

F (263) = 50
90 = 1− e−263λ

it follows that λ = 0.00308.

Therefore,

F (x) = 80
90 = 1− e−0.00308x

gives x = 732.4.
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4.3 The Gamma Distribution

4.3.1 Γ(5.5) = 4.5× 3.5× 2.5× 1.5× 0.5×
√

π = 52.34

4.3.3 (a) f(3) = 0.2055
F (3) = 0.3823
F−1(0.5) = 3.5919

(b) f(3) = 0.0227
F (3) = 0.9931
F−1(0.5) = 1.3527

(c) f(3) = 0.2592
F (3) = 0.6046
F−1(0.5) = 2.6229

In this case

f(3) = 1.44×34−1×e−1.4×3

3! = 0.2592.

4.3.4 (a) E(X) = 5
0.9 = 5.556

(b) σ =
√

5
0.9 = 2.485

(c) From the computer the lower quartile is
F−1(0.25) = 3.743
and the upper quartile is
F−1(0.75) = 6.972.

(d) From the computer P (X ≥ 6) = 0.3733.

4.3.5 (a) A gamma distribution with parameters k = 4 and λ = 2.

(b) E(X) = 4
2 = 2

(c) σ =
√

4
2 = 1

(d) The probability can be calculated as
P (X ≥ 3) = 0.1512
where the random variable X has a gamma distribution with parameters
k = 4 and λ = 2.
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The probability can also be calculated as
P (Y ≤ 3) = 0.1512
where the random variable Y has a Poisson distribution with parameter
2× 3 = 6
which counts the number of imperfections in a 3 meter length of fiber.

4.3.6 (a) A gamma distribution with parameters k = 3 and λ = 1.8.

(b) E(X) = 3
1.8 = 1.667

(c) Var(X) = 3
1.82 = 0.9259

(d) The probability can be calculated as
P (X ≥ 3) = 0.0948
where the random variable X has a gamma distribution with parameters
k = 3 and λ = 1.8.

The probability can also be calculated as
P (Y ≤ 2) = 0.0948
where the random variable Y has a Poisson distribution with parameter
1.8× 3 = 5.4
which counts the number of arrivals in a 3 hour period.

4.3.7 (a) The expectation is E(X) = 44
0.7 = 62.86

the variance is Var(X) = 44
0.72 = 89.80

and the standard deviation is
√

89.80 = 9.48.

(b) F (60) = 0.3991



4.4. THE WEIBULL DISTRIBUTION 121

4.4 The Weibull Distribution

4.4.2 (a) (− ln(1−0.5))1/4.9

0.22 = 4.218

(b) (− ln(1−0.75))1/4.9

0.22 = 4.859

(− ln(1−0.25))1/4.9

0.22 = 3.525

(c) F (x) = 1− e−(0.22x)4.9

P (2 ≤ X ≤ 7) = F (7)− F (2) = 0.9820

4.4.3 (a) (− ln(1−0.5))1/2.3

1.7 = 0.5016

(b) (− ln(1−0.75))1/2.3

1.7 = 0.6780

(− ln(1−0.25))1/2.3

1.7 = 0.3422

(c) F (x) = 1− e−(1.7x)2.3

P (0.5 ≤ X ≤ 1.5) = F (1.5)− F (0.5) = 0.5023

4.4.4 (a) (− ln(1−0.5))1/3

0.5 = 1.77

(b) (− ln(1−0.01))1/3

0.5 = 0.43

(c) E(X) = 1
0.5 Γ

(
1 + 1

3

)
= 1.79

Var(X) = 1
0.52

{
Γ
(
1 + 2

3

)
− Γ

(
1 + 1

3

)2
}

= 0.42

(d) P (X ≤ 3) = F (3) = 1− e−(0.5×3)3 = 0.9658

The probability that at least one circuit is working after three hours is
1− 0.96884 = 0.13.

4.4.5 (a) (− ln(1−0.5))1/0.4

0.5 = 0.8000

(b) (− ln(1−0.75))1/0.4

0.5 = 4.5255

(− ln(1−0.25))1/0.4

0.5 = 0.0888
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(c) (− ln(1−0.95))1/0.4

0.5 = 31.066

(− ln(1−0.99))1/0.4

0.5 = 91.022

(d) F (x) = 1− e−(0.5x)0.4

P (3 ≤ X ≤ 5) = F (5)− F (3) = 0.0722

4.4.6 (a) (− ln(1−0.5))1/1.5

0.03 = 26.11

(− ln(1−0.75))1/1.5

0.03 = 41.44

(− ln(1−0.99))1/1.5

0.03 = 92.27

(b) F (x) = 1− e−(0.03x)1.5

P (X ≥ 30) = 1− F (30) = 0.4258

The number of components still operating after 30 minutes has a binomial
distribution with parameters n = 500 and p = 0.4258.
The expected value is
E(X) = n× p = 500× 0.4258 = 212.9
and the variance is
Var(X) = n× p× (1− p) = 500× 0.4258× 0.5742 = 122.2.

4.4.7 The probability that a culture has developed within four days is

F (4) = 1− e−(0.3×4)0.6
= 0.672.

Using the negative binomial distribution, the probability that exactly ten cultures
are opened is(

9
4

)
× (1− 0.672)5 × 0.6725 = 0.0656.

4.4.8 A Weibull distribution can be used with

F (7) = 1− e−(7λ)a
= 9

82

and

F (14) = 1− e−(14λ)a
= 24

82 .

This gives a = 1.577 and λ = 0.0364 so that the median time is the solution to

1− e−(0.0364x)1.577
= 0.5

which is 21.7 days.
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4.5 The Beta Distribution

4.5.1 (a) Since∫ 1
0 A x3(1− x)2 dx = 1

it follows that A = 60.

(b) E(X) =
∫ 1
0 60 x4(1− x)2 dx = 4

7

E(X2) =
∫ 1
0 60 x5(1− x)2 dx = 5

14

Therefore,

Var(X) = 5
14 −

(
4
7

)2
= 3

98 .

(c) This is a beta distribution with a = 4 and b = 3.

E(X) = 4
4+3 = 4

7

Var(X) = 4×3
(4+3)2×(4+3+1)

= 3
98

4.5.2 (a) This is a beta distribution with a = 10 and b = 4.

(b) A = Γ(10+4)
Γ(10)×Γ(4) = 13!

9!×3! = 2860

(c) E(X) = 10
10+4 = 5

7

(d) Var(X) = 10×4
(10+4)2×(10+4+1)

= 2
147

σ =
√

2
147 = 0.1166

(e) F (x) =
∫ x
0 2860 y9 (1− y)3 dy

= 2860
(

x10

10 −
3x11

11 + x12

4 − x13

13

)
for 0 ≤ x ≤ 1

4.5.3 (a) f(0.5) = 1.9418
F (0.5) = 0.6753
F−1(0.5) = 0.5406

(b) f(0.5) = 0.7398
F (0.5) = 0.7823
F−1(0.5) = 0.4579
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(c) f(0.5) = 0.6563
F (0.5) = 0.9375
F−1(0.5) = 0.3407

In this case

f(0.5) = Γ(2+6)
Γ(2)×Γ(6) × 0.52−1 × (1− 0.5)6−1 = 0.65625.

4.5.4 (a) 3 ≤ y ≤ 7

(b) E(X) = 2.1
2.1+2.1 = 1

2

Therefore, E(Y ) = 3 + (4× E(X)) = 5.

Var(X) = 2.1×2.1
(2.1+2.1)2×(2.1+2.1+1)

= 0.0481

Therefore, Var(Y ) = 42 ×Var(X) = 0.1923.

(c) The random variable X has a symmetric beta distribution so
P (Y ≤ 5) = P (X ≤ 0.5) = 0.5.

4.5.5 (a) E(X) = 7.2
7.2+2.3 = 0.7579

Var(X) = 7.2×2.3
(7.2+2.3)2×(7.2+2.3+1)

= 0.0175

(b) From the computer P (X ≥ 0.9) = 0.1368.

4.5.6 (a) E(X) = 8.2
8.2+11.7 = 0.4121

(b) Var(X) = 8.2×11.7
(8.2+11.7)2×(8.2+11.7+1)

= 0.0116

σ =
√

0.0116 = 0.1077

(c) From the computer F−1(0.5) = 0.4091.
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4.7 Supplementary Problems

4.7.1 F (0) = P (winnings = 0) = 1
4

F (x) = P (winnings ≤ x) = 1
4 + x

720 for 0 ≤ x ≤ 360

F (x) = P (winnings ≤ x) =
√

x+72540
360 for 360 ≤ x ≤ 57060

F (x) = 1 for 57060 ≤ x

4.7.2 (a) Solving

0.693
λ = 1.5

gives λ = 0.462.

(b) P (X ≥ 2) = 1− F (2) = 1− (1− e−0.462×2) = e−0.924 = 0.397

P (X ≤ 1) = F (1) = 1− e−0.462×1 = 0.370

4.7.3 (a) E(X) = 1
0.7 = 1.4286

(b) P (X ≥ 3) = 1− F (3) = 1− (1− e−0.7×3) = e−2.1 = 0.1225

(c) 0.693
0.7 = 0.9902

(d) A Poisson distribution with parameter 0.7× 10 = 7.

(e) P (X ≥ 5) = 1− P (X = 0)− P (X = 1)− P (X = 2)− P (X = 3)− P (X = 4)
= 0.8270

(f) A gamma distribution with parameters k = 10 and λ = 0.7.

E(X) = 10
0.7 = 14.286

Var(X) = 10
0.72 = 20.408

4.7.4 (a) E(X) = 1
5.2 = 0.1923

(b) P
(
X ≤ 1

6

)
= F

(
1
6

)
= 1− e−5.2×1/6 = 0.5796

(c) A gamma distribution with parameters k = 10 and λ = 5.2.

(d) E(X) = 10
5.2 = 1.923
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(e) The probability is
P (X > 5) = 0.4191
where the random variable X has a Poisson distribution with parameter 5.2.

4.7.5 (a) The total area under the triangle is equal to 1
so the height at the midpoint is 2

b−a .

(b) P
(
X ≤ a

4 + 3b
4

)
= P

(
X ≤ a + 3(b−a)

4

)
= 7

8

(c) Var(X) = (b−a)2

24

(d) F (x) = 2(x−a)2

(b−a)2

for a ≤ x ≤ a+b
2

and

F (x) = 1− 2(b−x)2

(b−a)2

for a+b
2 ≤ x ≤ b

4.7.6 (a) (− ln(1−0.5))1/4

0.2 = 4.56

(− ln(1−0.75))1/4

0.2 = 5.43

(− ln(1−0.95))1/4

0.2 = 6.58

(b) E(X) = 1
0.2 Γ

(
1 + 1

4

)
= 4.53

Var(X) = 1
0.22

{
Γ
(
1 + 2

4

)
− Γ

(
1 + 1

4

)2
}

= 1.620

(c) F (x) = 1− e−(0.2x)4

P (5 ≤ X ≤ 6) = F (6)− F (5) = 0.242

4.7.7 (a) E(X) = 2.7
2.7+2.9 = 0.4821

(b) Var(X) = 2.7×2.9
(2.7+2.9)2×(2.7+2.9+1)

= 0.0378

σ =
√

0.0378 = 0.1945

(c) From the computer P (X ≥ 0.5) = 0.4637.
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4.7.8 Let the random variable Y be the starting time of the class in minutes after

10 o’clock, so that Y ∼ U(0, 5).

If x ≤ 0, the expected penalty is

A1(|x|+ E(Y )) = A1(|x|+ 2.5).

If x ≥ 5, the expected penalty is

A2(x− E(Y )) = A2(x− 2.5).

If 0 ≤ x ≤ 5, the penalty is

A1(Y − x) for Y ≥ x and A2(x− Y ) for Y ≤ x.

The expected penalty is therefore∫ 5
x A1(y − x)f(y) dy +

∫ x
0 A2(x− y)f(y) dy

=
∫ 5
x A1(y − x)1

5 dy +
∫ x
0 A2(x− y)1

5 dy

= A1(5−x)2

10 + A2x2

10 .

The expected penalty is minimized by taking

x = 5A1
A1+A2

.

4.7.9 (a) Solving simultaneously

F (35) = 1− e−(λ×35)a
= 0.25

and

F (65) = 1− e−(λ×65)a
= 0.75

gives λ = 0.0175 and a = 2.54.

(b) Solving

F (x) = 1− e−(0.0175×x)2.54
= 0.90

gives x as about 79 days.

4.7.10 For this beta distribution F (0.5) = 0.0925 and F (0.8) = 0.9851

so that the probability of a solution being too weak is 0.0925

the probability of a solution being satisfactory is 0.9851− 0.0925 = 0.8926

and the probability of a solution being too strong is 1− 0.9851 = 0.0149.

Using the multinomial distribution, the required answer is

10!
1!×8!×1! × 0.0925× 0.89268 × 0.0149 = 0.050.
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4.7.11 (a) The number of visits within a two hour interval has a Poisson distribution with
parameter 2× 4 = 8.

P (X = 10) = e−8 × 810

10! = 0.099

(b) A gamma distribution with k = 10 and λ = 4.

4.7.12 (a) 1
λ = 1

0.48 = 2.08 cm

(b) 10
λ = 10

0.48 = 20.83 cm

(c) P (X ≤ 0.5) = 1− e−0.48×0.5 = 0.213

(d) P (8 ≤ X ≤ 12) =
∑12

i=8 e−0.48×20 (0.48×20)i

i! = 0.569

4.7.13 (a) False

(b) True

(c) True

(d) True

4.7.14 Using the multinomial distribution the probability is

5!
2!×2!×1! ×

(
2
5

)2
×
(

2
5

)2
×
(

1
5

)2
= 96

625 = 0.154.

4.7.15 (a) The number of events in the interval has a Poisson distribution with parameter
8× 0.5 = 4.

P (X = 4) = e−4 × 44

4! = 0.195

(b) The probability is obtained from an exponential distribution with λ = 8 and is

1− e−8×0.2 = 0.798.

4.7.16 P (X ≤ 8) = 1− e−(0.09×8)2.3
= 0.375

P (8 ≤ X ≤ 12) = 1− e−(0.09×12)2.3 − 0.375 = 0.322

P (X ≥ 12) = 1− 0.375− 0.322 = 0.303

Using the multinomial distribution the required probability is

10!
3!×4!×3! × 0.3753 × 0.3224 × 0.3033 = 0.066.



Chapter 5

The Normal Distribution

5.1 Probability Calculations using the Normal Distribution

5.1.1 (a) Φ(1.34) = 0.9099

(b) 1− Φ(−0.22) = 0.5871

(c) Φ(0.43)− Φ(−2.19) = 0.6521

(d) Φ(1.76)− Φ(0.09) = 0.4249

(e) Φ(0.38)− Φ(−0.38) = 0.2960

(f) Solving Φ(x) = 0.55 gives x = 0.1257.

(g) Solving 1− Φ(x) = 0.72 gives x = −0.5828.

(h) Solving Φ(x)− Φ(−x) = (2× Φ(x))− 1 = 0.31 gives x = 0.3989.

5.1.2 (a) Φ(−0.77) = 0.2206

(b) 1− Φ(0.32) = 0.3745

(c) Φ(−1.59)− Φ(−3.09) = 0.0549

(d) Φ(1.80)− Φ(−0.82) = 0.7580

(e) 1− (Φ(0.91)− Φ(−0.91)) = 0.3628

(f) Solving Φ(x) = 0.23 gives x = −0.7388.

129
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(g) Solving 1− Φ(x) = 0.51 gives x = −0.0251.

(h) Solving 1− (Φ(x)− Φ(−x)) = 2− (2× Φ(x)) = 0.42 gives x = 0.8064.

5.1.3 (a) P (X ≤ 10.34) = Φ
(

10.34−10√
2

)
= 0.5950

(b) P (X ≥ 11.98) = 1− Φ
(

11.98−10√
2

)
= 0.0807

(c) P (7.67 ≤ X ≤ 9.90) = Φ
(

9.90−10√
2

)
− Φ

(
7.67−10√

2

)
= 0.4221

(d) P (10.88 ≤ X ≤ 13.22) = Φ
(

13.22−10√
2

)
− Φ

(
10.88−10√

2

)
= 0.2555

(e) P (|X − 10| ≤ 3) = P (7 ≤ X ≤ 13)

= Φ
(

13−10√
2

)
− Φ

(
7−10√

2

)
= 0.9662

(f) Solving P (N(10, 2) ≤ x) = 0.81 gives x = 11.2415.

(g) Solving P (N(10, 2) ≥ x) = 0.04 gives x = 12.4758.

(h) Solving P (|N(10, 2)− 10| ≥ x) = 0.63 gives x = 0.6812.

5.1.4 (a) P (X ≤ 0) = Φ
(

0−(−7)√
14

)
= 0.9693

(b) P (X ≥ −10) = 1− Φ
(
−10−(−7)√

14

)
= 0.7887

(c) P (−15 ≤ X ≤ −1) = Φ
(
−1−(−7)√

14

)
− Φ

(
−15−(−7)√

14

)
= 0.9293

(d) P (−5 ≤ X ≤ 2) = Φ
(

2−(−7)√
14

)
− Φ

(
−5−(−7)√

14

)
= 0.2884

(e) P (|X + 7| ≥ 8) = 1− P (−15 ≤ X ≤ 1)

= 1−
(
Φ
(

1−(−7)√
14

)
− Φ

(
−15−(−7)√

14

))
= 0.0326

(f) Solving P (N(−7, 14) ≤ x) = 0.75 gives x = −4.4763.

(g) Solving P (N(−7, 14) ≥ x) = 0.27 gives x = −4.7071.
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(h) Solving P (|N(−7, 14) + 7| ≤ x) = 0.44 gives x = 2.18064.

5.1.5 Solving

P (X ≤ 5) = Φ
(

5−µ
σ

)
= 0.8

and

P (X ≥ 0) = 1− Φ
(

0−µ
σ

)
= 0.6

gives µ = 1.1569 and σ = 4.5663.

5.1.6 Solving

P (X ≤ 10) = Φ
(

10−µ
σ

)
= 0.55

and

P (X ≤ 0) = Φ
(

0−µ
σ

)
= 0.4

gives µ = 6.6845 and σ = 26.3845.

5.1.7 P (X ≤ µ + σzα) = Φ
(

µ+σzα−µ
σ

)
= Φ(zα) = 1− α

P (µ− σzα/2 ≤ X ≤ µ + σzα/2) = Φ
(

µ+σzα/2−µ

σ

)
− Φ

(
µ−σzα/2−µ

σ

)
= Φ(zα/2)− Φ(−zα/2)

= 1− α/2− α/2 = 1− α

5.1.8 Solving Φ(x) = 0.75 gives x = 0.6745.

Solving Φ(x) = 0.25 gives x = −0.6745.

The interquartile range of a N(0, 1) distribution is therefore

0.6745− (−0.6745) = 1.3490.

The interquartile range of a N(µ, σ2) distribution is 1.3490× σ.

5.1.9 (a) P (N(3.00, 0.122) ≥ 3.2) = 0.0478

(b) P (N(3.00, 0.122) ≤ 2.7) = 0.0062



132 CHAPTER 5. THE NORMAL DISTRIBUTION

(c) Solving
P (3.00− c ≤ N(3.00, 0.122) ≤ 3.00 + c) = 0.99
gives
c = 0.12× z0.005 = 0.12× 2.5758 = 0.3091.

5.1.10 (a) P (N(1.03, 0.0142) ≤ 1) = 0.0161

(b) P (N(1.05, 0.0162) ≤ 1) = 0.0009
There is a decrease in the proportion of underweight packets.

(c) The expected excess weight is µ− 1 which is 0.03 and 0.05.

5.1.11 (a) Solving P (N(4.3, 0.122) ≤ x) = 0.75 gives x = 4.3809.
Solving P (N(4.3, 0.122) ≤ x) = 0.25 gives x = 4.2191.

(b) Solving
P (4.3− c ≤ N(4.3, 0.122) ≤ 4.3 + c) = 0.80
gives
c = 0.12× z0.10 = 0.12× 1.2816 = 0.1538.

5.1.12 (a) P (N(0.0046, 9.6× 10−8) ≤ 0.005) = 0.9017

(b) P (0.004 ≤ N(0.0046, 9.6× 10−8) ≤ 0.005) = 0.8753

(c) Solving P (N(0.0046, 9.6× 10−8) ≤ x) = 0.10 gives x = 0.0042.

(d) Solving P (N(0.0046, 9.6× 10−8) ≤ x) = 0.99 gives x = 0.0053.

5.1.13 (a) P (N(23.8, 1.28) ≤ 23.0) = 0.2398

(b) P (N(23.8, 1.28) ≥ 24.0) = 0.4298

(c) P (24.2 ≤ N(23.8, 1.28) ≤ 24.5) = 0.0937

(d) Solving P (N(23.8, 1.28) ≤ x) = 0.75 gives x = 24.56.

(e) Solving P (N(23.8, 1.28) ≤ x) = 0.95 gives x = 25.66.
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5.1.14 Solving

P (N(µ, 0.052) ≤ 10) = 0.01

gives

µ = 10 + (0.05× z0.01) = 10 + (0.05× 2.3263) = 10.1163.

5.1.15 (a) P (2599 ≤ X ≤ 2601) = Φ
(

2601−2600
0.6

)
− Φ

(
2599−2600

0.6

)
= 0.9522− 0.0478 = 0.9044

The probability of being outside the range is 1− 0.9044 = 0.0956.

(b) It is required that

P (2599 ≤ X ≤ 2601) = Φ
(

2601−2600
σ

)
−
(

2599−2600
σ

)
= 1− 0.001 = 0.999.

Consequently,

Φ
(

1
σ

)
− Φ

(
−1
σ

)
= 2Φ

(
1
σ

)
− 1 = 0.999

so that

Φ
(

1
σ

)
= 0.9995

which gives

1
σ = Φ−1(0.9995) = 3.2905

with

σ = 0.304.

5.1.16 P (N(1320, 152) ≤ 1300) = P
(
N(0, 1) ≤ 1300−1320

15

)
= Φ(−1.333) = 0.0912

P (N(1320, 152) ≤ 1330) = P
(
N(0, 1) ≤ 1330−1320

15

)
= Φ(0.667) = 0.7475

Using the multinomial distribution the required probability is

10!
3!×4!×3! × 0.09123 × (0.7475− 0.0912)4 × (1− 0.7475)3 = 0.0095.

5.1.17 0.95 = P (N(µ, 4.22) ≤ 100) = P
(
N(0, 1) ≤ 100−µ

4.2

)
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Therefore,

100−µ
4.2 = z0.05 = 1.645

so that µ = 93.09.
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5.2 Linear Combinations of Normal Random Variables

5.2.1 (a) P (N(3.2 + (−2.1), 6.5 + 3.5) ≥ 0) = 0.6360

(b) P (N(3.2 + (−2.1)− (2× 12.0), 6.5 + 3.5 + (22 × 7.5)) ≤ −20) = 0.6767

(c) P (N((3× 3.2) + (5× (−2.1)), (32 × 6.5) + (52 × 3.5)) ≥ 1) = 0.4375

(d) The mean is (4× 3.2)− (4× (−2.1)) + (2× 12.0) = 45.2.
The variance is (42 × 6.5) + (42 × 3.5) + (22 × 7.5) = 190.
P (N(45.2, 190) ≤ 25) = 0.0714

(e) P (| N(3.2 + (6× (−2.1)) + 12.0, 6.5 + (62 × 3.5) + 7.5) |≥ 2) = 0.8689

(f) P (| N((2× 3.2)− (−2.1)− 6, (22 × 6.5) + 3.5) |≤ 1) = 0.1315

5.2.2 (a) P (N(−1.9− 3.3, 2.2 + 1.7) ≥ −3) = 0.1326

(b) The mean is (2× (−1.9)) + (3× 3.3) + (4× 0.8) = 9.3.
The variance is (22 × 2.2) + (32 × 1.7) + (42 × 0.2) = 27.3.
P (N(9.3, 27.3) ≤ 10) = 0.5533

(c) P (N((3× 3.3)− 0.8, (32 × 1.7) + 0.2) ≤ 8) = 0.3900

(d) The mean is (2× (−1.9))− (2× 3.3) + (3× 0.8) = −8.0.
The variance is (22 × 2.2) + (22 × 1.7) + (32 × 0.2) = 17.4.
P (N(−8.0, 17.4) ≤ −6) = 0.6842

(e) P (| N(−1.9 + 3.3− 0.8, 2.2 + 1.7 + 0.2) |≥ 1.5) = 0.4781

(f) P (| N((4× (−1.9))− 3.3 + 10, (42 × 2.2) + 1.7) |≤ 0.5) = 0.0648

5.2.3 (a) Φ(0.5)− Φ(−0.5) = 0.3830

(b) P
(
| N

(
0, 1

8

)
|≤ 0.5

)
= 0.8428

(c) It is required that

0.5
√

n ≥ z0.005 = 2.5758

which is satisfied for n ≥ 27.
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5.2.4 (a) N(4.3 + 4.3, 0.122 + 0.122) = N(8.6, 0.0288)

(b) N
(
4.3, 0.122

12

)
= N (4.3, 0.0012)

(c) It is required that

z0.0015 × 0.12√
n

= 2.9677× 0.12√
n
≤ 0.05

which is satisfied for n ≥ 51.

5.2.5 P (144 ≤ N(37 + 37 + 24 + 24 + 24, 0.49 + 0.49 + 0.09 + 0.09 + 0.09) ≤ 147) = 0.7777

5.2.6 (a) Var(Y ) = (p2 × σ2
1) + ((1− p)2 × σ2

2)

The minimum variance is
1

1

σ2
1

+ 1

σ2
2

= σ2
1 σ2

2

σ2
1+σ2

2
.

(b) In this case

Var(Y ) =
∑n

i=1 p2
i σ2

i .

The variance is minimized with

pi =
1

σ2
i

1

σ2
1

+...+ 1

σ2
n

and the minimum variance is
1

1

σ2
1

+...+ 1

σ2
n

.

5.2.7 (a) 1.05y + 1.05(1000− y) = $1050

(b) 0.0002y2 + 0.0003(1000− y)2

(c) The variance is minimized with y = 600 and the minimum variance is 120.

P (N(1050, 120) ≥ 1060) = 0.1807

5.2.8 (a) P (N(3.00 + 3.00 + 3.00, 0.122 + 0.122 + 0.122) ≥ 9.50) = 0.0081

(b) P
(
N
(
3.00, 0.122

7

)
≤ 3.10

)
= 0.9863

5.2.9 (a) N(22× 1.03, 22× 0.0142) = N(22.66, 4.312× 10−3)
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(b) Solving P (N(22.66, 4.312× 10−3) ≤ x) = 0.75 gives x = 22.704.
Solving P (N(22.66, 4.312× 10−3) ≤ x) = 0.25 gives x = 22.616.

5.2.10 (a) Let the random variables Xi be the widths of the components.
Then

P (X1 + X2 + X3 + X4 ≤ 10402.5) = P (N(4× 2600, 4× 0.62) ≤ 10402.5)

= Φ
(

10402.5−10400
1.2

)
= Φ(2.083) = 0.9814.

(b) Let the random variable Y be the width of the slot.
Then

P (X1 + X2 + X3 + X4 − Y ≤ 0)

= P (N((4× 2600)− 10402.5, (4× 0.62) + 0.42) ≤ 0)

= Φ
(

2.5
1.2649

)
= Φ(1.976) = 0.9759.

5.2.11 (a) P
(
4.2 ≤ N

(
4.5, 0.88

15

)
≤ 4.9

)
= P

(√
15(4.2−4.5)√

0.88
≤ N(0, 1) ≤

√
15(4.9−4.5)√

0.88

)
= Φ(1.651)− Φ(−1.239)

= 0.951− 0.108 = 0.843

(b) 0.99 = P
(
4.5− c ≤ N

(
4.5, 0.88

15

)
≤ 4.5 + c

)
= P

(
−c
√

15√
0.88

≤ N(0, 1) ≤ c
√

15√
0.88

)
Therefore,

c
√

15√
0.88

= z0.005 = 2.576

so that c = 0.624.

5.2.12 (a) P (X1 + X2 + X3 + X4 + X5 ≥ 45)

= P (N(8 + 8 + 8 + 8 + 8, 22 + 22 + 22 + 22 + 22) ≥ 45)

= P
(
N(0, 1) ≥ 45−40√

20

)
= 1− Φ(1.118) = 0.132

(b) P (N(28, 52) ≥ N(8 + 8 + 8, 22 + 22 + 22))

= P (N(28− 24, 25 + 12) ≥ 0)

= P
(
N(0, 1) ≥ −4√

37

)
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= 1− Φ(−0.658) = 0.745

5.2.13 The height of a stack of 4 components of type A has a normal distribution with mean
4× 190 = 760 and a standard deviation

√
4× 10 = 20.

The height of a stack of 5 components of type B has a normal distribution with mean
5× 150 = 750 and a standard deviation

√
5× 8 = 17.89.

P (N(760, 202) > N(750, 17.892))

= P (N(760− 750, 202 + 17.782) > 0)

= P
(
N(0, 1) > −10√

720

)
= 1− Φ(−0.373) = 0.645

5.2.14 Let the random variables Xi be the times taken by worker 1 to perform a task and
let the random variables Yi be the times taken by worker 2 to perform a task.

P (X1 + X2 + X3 + X4 − Y1 − Y2 − Y3 ≤ 0)

= P (N(13+13+13+13−17−17−17, 0.52+0.52+0.52+0.52+0.62+0.62+0.62) ≤ 0)

= P (N(1, 2.08) ≤ 0)

= P
(
N(0, 1) ≤ −1√

2.08

)
= Φ(−0.693) = 0.244

5.2.15 It is required that

P
(
N
(
110, 4

n

)
≤ 111

)
= P

(
N(0, 1) ≤

√
n(111−110)

2

)
≥ 0.99.

Therefore,
√

n(111−110)
2 ≥ z0.01 = 2.326

which is satisfied for n ≥ 22.

5.2.16 If X has mean of 7.2 m and a standard deviation of 0.11 m,

then X
2 has a mean of 7.2

2 = 3.6 m and a standard deviation of 0.11
2 = 0.055 m.

5.2.17 (a) E(X) = 20µ = 20× 63400 = 1268000
The standard deviation is

√
20 σ =

√
20× 2500 = 11180.
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(b) E(X) = µ = 63400
The standard deviation is σ√

30
= 2500√

30
= 456.4.

5.2.18 (a) P (X < 800) = Φ
(

800−T
47

)
= 0.1

so that

800−T
47 = −z0.1 = −1.282.

This gives T = 860.3.

(b) The average Y is distributed as a N
(
850, 472

10

)
random variable.

Therefore,

P (Y < 875) = Φ
(

875−850
47/

√
10

)
= 0.954.
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5.3 Approximating Distributions with the Normal Distribution

5.3.1 (a) The exact probability is 0.3823.

The normal approximation is

1− Φ
(

8−0.5−(10×0.7)√
10×0.7×0.3

)
= 0.3650.

(b) The exact probability is 0.9147.

The normal approximation is

Φ
(

7+0.5−(15×0.3)√
15×0.3×0.7

)
− Φ

(
1+0.5−(15×0.3)√

15×0.3×0.7

)
= 0.9090.

(c) The exact probability is 0.7334.

The normal approximation is

Φ
(

4+0.5−(9×0.4)√
9×0.4×0.6

)
= 0.7299.

(d) The exact probability is 0.6527.

The normal approximation is

Φ
(

11+0.5−(14×0.6)√
14×0.6×0.4

)
− Φ

(
7+0.5−(14×0.6)√

14×0.6×0.4

)
= 0.6429.

5.3.2 (a) The exact probability is 0.0106.

The normal approximation is

1− Φ
(

7−0.5−(10×0.3)√
10×0.3×0.7

)
= 0.0079.

(b) The exact probability is 0.6160.

The normal approximation is

Φ
(

12+0.5−(21×0.5)√
21×0.5×0.5

)
− Φ

(
8+0.5−(21×0.5)√

21×0.5×0.5

)
= 0.6172.

(c) The exact probability is 0.9667.

The normal approximation is

Φ
(

3+0.5−(7×0.2)√
7×0.2×0.8

)
= 0.9764.

(d) The exact probability is 0.3410.

The normal approximation is

Φ
(

11+0.5−(12×0.65)√
12×0.65×0.35

)
− Φ

(
8+0.5−(12×0.65)√

12×0.65×0.35

)
= 0.3233.
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5.3.3 The required probability is

Φ
(
0.02

√
n + 1√

n

)
− Φ

(
−0.02

√
n− 1√

n

)
which is equal to

0.2358 for n = 100

0.2764 for n = 200

0.3772 for n = 500

0.4934 for n = 1000

and 0.6408 for n = 2000.

5.3.4 (a) Φ
(

180+0.5−(1,000×1/6)√
1,000×1/6×5/6

)
− Φ

(
149+0.5−(1,000×1/6)√

1,000×1/6×5/6

)
= 0.8072

(b) It is required that

1− Φ
(

50−0.5−n/6√
n×1/6×5/6

)
≥ 0.99

which is satisfied for n ≥ 402.

5.3.5 (a) A normal distribution can be used with
µ = 500× 2.4 = 1200
and
σ2 = 500× 2.4 = 1200.

(b) P (N(1200, 1200) ≥ 1250) = 0.0745

5.3.6 The normal approximation is

1− Φ
(

135−0.5−(15,000×1/125)√
15,000×1/125×124/125

)
= 0.0919.

5.3.7 The normal approximation is

Φ
(

200+0.5−(250,000×0.0007)√
250,000×0.0007×0.9993

)
= 0.9731.

5.3.8 (a) The normal approximation is

1− Φ
(

30−0.5−(60×0.25)√
60×0.25×0.75

)
' 0.
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(b) It is required that P (B(n, 0.25) ≤ 0.35n) ≥ 0.99.

Using the normal approximation this can be written

Φ
(

0.35n+0.5−0.25n√
n×0.25×0.75

)
≥ 0.99

which is satisfied for n ≥ 92.

5.3.9 The yearly income can be approximated by a normal distribution with

µ = 365× 5
0.9 = 2027.8

and

σ2 = 365× 5
0.92 = 2253.1.

P (N(2027.8, 2253.1) ≥ 2000) = 0.7210

5.3.10 The normal approximation is

P (N(1500× 0.6, 1500× 0.6× 0.4) ≥ 925− 0.5)

= 1− Φ(1.291) = 0.0983.

5.3.11 The expectation of the strength of a chemical solution is

E(X) = 18
18+11 = 0.6207

and the variance is

Var(X) = 18×11
(18+11)2(18+11+1)

= 0.007848.

Using the central limit theorem the required probability can be estimated as

P
(
0.60 ≤ N

(
0.6207, 0.007848

20

)
≤ 0.65

)
= Φ(1.479)− Φ(−1.045) = 0.7824.

5.3.12 P (B(1550, 0.135) ≥ 241)

' P (N(1550× 0.135, 1550× 0.135× 0.865) ≥ 240.5)

= P
(
N(0, 1) ≥ 240.5−209.25√

181.00

)
= 1− Φ(2.323) = 0.010



5.3. APPROXIMATING DISTRIBUTIONS WITH THE NORMAL DISTRIBUTION 143

5.3.13 P (60 ≤ X ≤ 100) = (1− e−100/84)− (1− e−60/84) = 0.1855

P (B(350, 0.1855) ≥ 55)

' P (N(350× 0.1855, 350× 0.1855× 0.8145) ≥ 54.5)

= P
(
N(0, 1) ≥ 54.5−64.925

7.272

)
= 1− Φ(−1.434) = 0.92

5.3.14 P (X ≥ 20) = e−(0.056×20)2.5
= 0.265

P (B(500, 0.265) ≥ 125)

' P (N(500× 0.265, 500× 0.265× 0.735) ≥ 124.5)

= P
(
N(0, 1) ≥ 124.5−132.57

9.871

)
= 1− Φ(−0.818) = 0.79

5.3.15 (a) P (X ≥ 891.2) = 892−891.2
892−890 = 0.4

Using the negative binomial distribution the required probability is(
5
2

)
× 0.43 × 0.63 = 0.138.

(b) P (X ≥ 890.7) = 892−890.7
892−890 = 0.65

P (B(200, 0.65) ≥ 100)

' P (N(200× 0.65, 200× 0.65× 0.35) ≥ 99.5)

= P
(
N(0, 1) ≥ 99.5−130√

45.5

)
= 1− Φ(−4.52) ' 1

5.3.16 P (spoil within 10 days) = 1− e10/8 = 0.713

The number of packets X with spoiled food has a binomial distribution with

n = 100 and p = 0.713,

so that the expectation is 100× 0.713 = 71.3

and the standard deviation is
√

100× 0.713× 0.287 = 4.52.

P (X ≥ 75) ' P (N(71.3, 4.522) ≥ 74.5)

= 1− Φ
(

74.5−71.3
4.52

)
= 1− Φ(0.71) = 0.24
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5.4 Distributions Related to the Normal Distribution

5.4.1 (a) E(X) = e1.2+(1.52/2) = 10.23

(b) Var(X) = e(2×1.2)+1.52 × (e1.52 − 1) = 887.69

(c) Since z0.25 = 0.6745 the upper quartile is

e1.2+(1.5×0.6745) = 9.13.

(d) The lower quartile is

e1.2+(1.5×(−0.6745)) = 1.21.

(e) The interquartile range is 9.13− 1.21 = 7.92.

(f) P (5 ≤ X ≤ 8) = Φ
(

ln(8)−1.2
1.5

)
− Φ

(
ln(5)−1.2

1.5

)
= 0.1136.

5.4.2 (a) E(X) = e−0.3+(1.12/2) = 1.357

(b) Var(X) = e(2×(−0.3))+1.12 × (e1.12 − 1) = 4.331

(c) Since z0.25 = 0.6745 the upper quartile is

e−0.3+(1.1×0.6745) = 1.556.

(d) The lower quartile is

e−0.3+(1.1×(−0.6745)) = 0.353.

(e) The interquartile range is 1.556− 0.353 = 1.203.

(f) P (0.1 ≤ X ≤ 7) = Φ
(

ln(7)−(−0.3)
1.1

)
− Φ

(
ln(0.1)−(−0.3)

1.1

)
= 0.9451.

5.4.4 (a) E(X) = e2.3+(0.22/2) = 10.18

(b) The median is e2.3 = 9.974.

(c) Since z0.25 = 0.6745 the upper quartile is

e2.3+(0.2×0.6745) = 11.41.

(d) P (X ≥ 15) = 1− Φ
(

ln(15)−2.3
0.2

)
= 0.0207
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(e) P (X ≤ 6) = Φ
(

ln(6)−2.3
0.2

)
= 0.0055

5.4.5 (a) χ2
0.10,9 = 14.68

(b) χ2
0.05,20 = 31.41

(c) χ2
0.01,26 = 45.64

(d) χ2
0.90,50 = 39.69

(e) χ2
0.95,6 = 1.635

5.4.6 (a) χ2
0.12,8 = 12.77

(b) χ2
0.54,19 = 17.74

(c) χ2
0.023,32 = 49.86

(d) P (X ≤ 13.3) = 0.6524

(e) P (9.6 ≤ X ≤ 15.3) = 0.4256

5.4.7 (a) t0.10,7 = 1.415

(b) t0.05,19 = 1.729

(c) t0.01,12 = 2.681

(d) t0.025,30 = 2.042

(e) t0.005,4 = 4.604

5.4.8 (a) t0.27,14 = 0.6282

(b) t0.09,22 = 1.385

(c) t0.016,7 = 2.670

(d) P (X ≤ 1.78) = 0.9556

(e) P (−0.65 ≤ X ≤ 2.98) = 0.7353
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(f) P (| X |≥ 3.02) = 0.0062

5.4.9 (a) F0.10,9,10 = 2.347

(b) F0.05,6,20 = 2.599

(c) F0.01,15,30 = 2.700

(d) F0.05,4,8 = 3.838

(e) F0.01,20,13 = 3.665

5.4.10 (a) F0.04,7,37 = 2.393

(b) F0.87,17,43 = 0.6040

(c) F0.035,3,8 = 4.732

(d) P (X ≥ 2.35) = 0.0625

(e) P (0.21 ≤ X ≤ 2.92) = 0.9286

5.4.11 This follows from the definitions

tν ∼ N(0,1)√
χ2

ν/ν

and

F1,ν ∼
χ2

1
χ2

ν/ν
.

5.4.12 (a) x = t0.05,23 = 1.714

(b) y = −t0.025,60 = −2.000

(c) χ2
0.90,29 = 19.768 and χ2

0.05,29 = 42.557
so
P (19.768 ≤ χ2

29 ≤ 42.557) = 0.95− 0.10 = 0.85

5.4.13 P (F5,20 ≥ 4.00) = 0.011

5.4.14 P (t35 ≥ 2.50) = 0.009
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5.4.15 (a) P (F10,50 ≥ 2.5) = 0.016

(b) P (χ2
17 ≤ 12) = 0.200

(c) P (t24 ≥ 3) = 0.003

(d) P (t14 ≥ −2) = 0.967

5.4.16 (a) P (t21 ≤ 2.3) = 0.984

(b) P (χ2
6 ≥ 13.0) = 0.043

(c) P (t10 ≤ −1.9) = 0.043

(d) P (t7 ≥ −2.7) = 0.985

5.4.17 (a) P (t16 ≤ 1.9) = 0.962

(b) P (χ2
25 ≥ 42.1) = 0.018

(c) P (F9,14 ≤ 1.8) = 0.844

(d) P (−1.4 ≤ t29 ≤ 3.4) = 0.913
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5.6 Supplementary Problems

5.6.1 (a) P (N(500, 502) ≥ 625) = 0.0062

(b) Solving P (N(500, 502) ≤ x) = 0.99 gives x = 616.3.

(c) P (N(500, 502) ≥ 700) ' 0
There is a strong suggestion that an eruption is imminent.

5.6.2 (a) P (N(12500, 200000) ≥ 13000) = 0.1318

(b) P (N(12500, 200000) ≤ 11400) = 0.0070

(c) P (12200 ≤ N(12500, 200000) ≤ 14000) = 0.7484

(d) Solving P (N(12500, 200000) ≤ x) = 0.95 gives x = 13200.

5.6.3 (a) P (N(70, 5.42) ≥ 80) = 0.0320

(b) P (N(70, 5.42) ≤ 55) = 0.0027

(c) P (65 ≤ N(70, 5.42) ≤ 78) = 0.7536

(d) c = σ × z0.025 = 5.4× 1.9600 = 10.584

5.6.4 (a) P (X1 −X2 ≥ 0) = P (N(0, 2× 5.42) ≥ 0) = 0.5

(b) P (X1 −X2 ≥ 10) = P (N(0, 2× 5.42) ≥ 10) = 0.0952

(c) P
(

X1+X2
2 −X3 ≥ 10

)
= P (N(0, 1.5× 5.42) ≥ 10) = 0.0653

5.6.5 P (| X1 −X2 |≤ 3)

= P (| N(0, 2× 22) |≤ 3)

= P (−3 ≤ N(0, 8) ≤ 3) = 0.7112

5.6.6 E(X) = 1.43+1.60
2 = 1.515

Var(X) = (1.60−1.43)2

12 = 0.002408

Therefore, the required probability can be estimated as
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P (180 ≤ N(120× 1.515, 120× 0.002408) ≤ 182) = 0.6447.

5.6.7 E(X) = 1
0.31 = 3.2258

Var(X) = 1
0.312 = 10.406

Therefore, the required probability can be estimated as

P
(
3.10 ≤ N

(
3.2258, 10.406

2000

)
≤ 3.25

)
= 0.5908.

5.6.8 The required probability is P (B(350000, 0.06) ≥ 20, 800).

The normal approximation is

1− Φ
(

20800−0.5−(350000×0.06)√
350000×0.06×0.94

)
= 0.9232.

5.6.9 (a) The median is e5.5 = 244.7.

Since z0.25 = 0.6745 the upper quartile is

e5.5+(2.0×0.6745) = 942.9.

The lower quartile is

e5.5−(2.0×0.6745) = 63.50.

(b) P (X ≥ 75000) = 1− Φ
(

ln(75000)−5.5
2.0

)
= 0.0021

(c) P (X ≤ 1000) = Φ
(

ln(1000)−5.5
2.0

)
= 0.7592

5.6.10 Using the central limit theorem the required probability can be estimated as

P (N(100× 9.2, 100× 9.2) ≤ 1000) = Φ(2.638) = 0.9958.

5.6.11 If the variables are measured in minutes after 2pm, the probability of making the
connection is

P (X1 + 30−X2 ≤ 0)

where X1 ∼ N(47, 112) and X2 ∼ N(95, 32).

This probability is

P (N(47 + 30− 95, 112 + 32) ≤ 0) = Φ(1.579) = 0.9428.
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5.6.12 The normal approximation is

P (N(80× 0.25, 80× 0.25× 0.75) ≥ 25− 0.5)

= 1− Φ(1.162) = 0.1226.

If physician D leaves the clinic, then the normal approximation is

P (N(80× 0.3333, 80× 0.3333× 0.6667) ≥ 25− 0.5)

= 1− Φ(−0.514) = 0.6963.

5.6.13 (a) P (B(235, 0.9) ≥ 221)
' P (N(235× 0.9, 235× 0.9× 0.1) ≥ 221− 0.5)
= 1− Φ(1.957) = 0.025

(b) If n passengers are booked on the flight, it is required that
P (B(n, 0.9) ≥ 221)
' P (N(n× 0.9, n× 0.9× 0.1) ≥ 221− 0.5) ≤ 0.25.

This is satisfied at n = 241 but not at n = 242.
Therefore, the airline can book up to 241 passengers on the flight.

5.6.14 (a) P (0.6 ≤ N(0, 1) ≤ 2.2)
= Φ(2.2)− Φ(0.6)
= 0.9861− 0.7257 = 0.2604

(b) P (3.5 ≤ N(4.1, 0.252) ≤ 4.5)

= P
(

3.5−4.1
0.25 ≤ N(0, 1) ≤ 4.5−4.1

0.25

)
= Φ(1.6)− Φ(−2.4)

= 0.9452− 0.0082 = 0.9370

(c) Since χ2
0.95,28 = 16.928 and χ2

0.90,28 = 18.939 the required probability is
0.95− 0.90 = 0.05.

(d) Since t0.05,22 = 1.717 and t0.005,22 = 2.819 the required probability is
(1− 0.005)− 0.05 = 0.945.

5.6.15 P (X ≥ 25) = 1− Φ
(

ln(25)−3.1
0.1

)
= 1− Φ(1.189) = 0.117

P (B(200, 0.117) ≥ 30)

' P (N(200× 0.117, 200× 0.117× 0.883) ≥ 29.5)
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= P
(
N(0, 1) ≥ 29.5−23.4√

20.66

)
= 1− Φ(1.342) = 0.090

5.6.16 (a) True

(b) True

(c) True

(d) True

(e) True

5.6.17 P (B(400, 0.2) ≥ 90)

' P (N(400× 0.2, 400× 0.2× 0.8) ≥ 89.5)

= P
(
N(0, 1) ≥ 89.5−80√

64

)
= 1− Φ(1.1875) = 0.118

5.6.18 (a) The probability that an expression is larger than 0.800 is

P (N(0.768, 0.0832) ≥ 0.80) = P
(
N(0, 1) ≥ 0.80−0.768

0.083

)
= 1− Φ(0.386) = 0.350

If Y measures the number of samples out of six that have an expression larger
than 0.80, then Y has a binomial distribution with n = 6 and p = 0.350.

P (Y ≥ 3) = 1− P (Y < 3)

= 1−
((

6
0

)
× (0.35)0 × (0.65)6 +

(
6
1

)
× (0.35)1 × (0.65)5

+

(
6
2

)
× (0.35)2 × (0.65)4

)
= 0.353

(b) Let Y1 be the number of samples that have an expression smaller than 0.70,
let Y2 be the number of samples that have an expression between 0.70 and 0.75,
let Y3 be the number of samples that have an expression between 0.75 and 0.78,
and let Y4 be the number of samples that have an expression larger than 0.78.

P (Xi ≤ 0.7) = Φ(−0.819) = 0.206
P (0.7 ≤ Xi ≤ 0.75) = Φ(−0.217)− Φ(−0.819) = 0.414− 0.206 = 0.208
P (0.75 ≤ Xi ≤ 0.78) = Φ(0.145)− Φ(−0.217) = 0.557− 0.414 = 0.143
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P (Xi ≥ 0.78) = 1− Φ(0.145) = 1− 0.557 = 0.443

P (Y1 = 2, Y2 = 2, Y3 = 0, Y4 = 2)

= 6!
2!×2!×2!×0! × 0.2062 × 0.2082 × 0.1430 × 0.4432

= 0.032

(c) A negative binomial distribution can be used with r = 3 and
p = P (X ≤ 0.76) = Φ(−0.096) = 0.462.

The required probability is

P (Y = 6) =

(
5
3

)
× (1− 0.462)3 × 0.4623 = 0.154.

(d) A geometric distribution can be used with
p = P (X ≤ 0.68) = Φ(−1.060) = 0.145.

The required probability is
P (Y = 5) = (1− 0.145)4 × 0.145 = 0.077.

(e) Using the hypergeometric distribution the required probability is(
5
3

)
×

(
5
3

)
(

10
6

) = 0.476.

5.6.19 (a) P (X ≤ 8000) = Φ
(

8000−8200
350

)
= Φ(−0.571) = 0.284

P (8000 ≤ X ≤ 8300) = Φ
(

8300−8200
350

)
− Φ

(
8000−8200

350

)
= Φ(0.286)− Φ(−0.571) = 0.330

P (X ≥ 8300) = 1− Φ
(

8300−8200
350

)
= 1− Φ(0.286) = 0.386

Using the multinomial distribution the required probability is

3!
1!×1!×1! × 0.2841 × 0.3301 × 0.3861 = 0.217.

(b) P (X ≤ 7900) = Φ
(

7900−8200
350

)
= Φ(−0.857) = 0.195

Using the negative binomial distribution the required probability is
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(
5
1

)
× (1− 0.195)4 × 0.1952 = 0.080.

(c) P (X ≥ 8500) = 1− Φ
(

8500−8200
350

)
= 1− Φ(0.857) = 0.195

Using the binomial distribution the required probability is(
7
3

)
× (0.195)3 × (1− 0.195)4 = 0.109.

5.6.20 0.90 = P (XA ≤ XB)

= P (N(220, 112) ≤ N(t + 185, 92))

= P (N(220− t− 185, 112 + 92) ≤ 0)

= P
(
N(0, 1) ≤ t−35√

202

)
Therefore,

t−35√
202

= z0.10 = 1.282

so that t = 53.22.

Consequently, operator B started working at 9:53 am.

5.6.21 (a) P (X ≤ 30) = 1− e−(0.03×30)0.8
= 0.601

Using the binomial distribution the required probability is(
5
2

)
× 0.6012 × (1− 0.601)3 = 0.23.

(b) P (B(500, 0.399) ≤ 210)

' P (N(500× 0.399, 500× 0.399× 0.601) ≤ 210.5)

= P
(
N(0, 1) ≤ 210.5−199.5

10.95

)
= Φ(1.005) = 0.843

5.6.22 P (N(3× 45.3, 3× 0.022) ≤ 135.975)

= P
(
N(0, 1) ≤ 135.975−135.9√

3×0.02

)
= Φ(2.165) = 0.985
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5.6.23 P (XA −XB1 −XB2 ≥ 0)

= P (N(67.2, 1.92)−N(33.2, 1.12)−N(33.2, 1.12) ≥ 0)

= P (N(67.2− 33.2− 33.2, 1.92 + 1.12 + 1.12) ≥ 0)

= P (N(0.8, 6.03) ≥ 0)

= P
(
N(0, 1) ≥ −0.8√

6.03

)
= 1− Φ(−0.326) = 0.628

5.6.24 P (X ≥ 25) = e−25/32 = 0.458

P (B(240, 0.458) ≥ 120)

' P (N(240× 0.458, 240× 0.458× 0.542) ≥ 119.5)

= P
(
N(0, 1) ≥ 119.5−109.9√

59.57

)
= 1− Φ(1.24) = 0.108

5.6.25 (a) P (N(55980, 102) ≥ N(55985, 92))

= P (N(55980− 55985, 102 + 92) ≥ 0)

= P (N(−5, 181) ≥ 0)

= P
(
N(0, 1) ≥ 5√

181

)
= 1− Φ(0.372) = 0.355

(b) P (N(55980, 102) ≤ N(56000, 102))

= P (N(55980− 56000, 102 + 102) ≤ 0)

= P (N(−20, 200) ≤ 0)

= P
(
N(0, 1) ≤ 20√

200

)
= Φ(1.414) = 0.921

(c) P (N(56000, 102) ≤ 55995)× P (N(56005, 82) ≤ 55995)

= P
(
N(0, 1) ≤ 55995−56000

10

)
× P

(
N(0, 1) ≤ 55995−56005

8

)
= Φ(−0.5)× Φ(−1.25)

= 0.3085× 0.1056 = 0.033
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5.6.26 (a) t0.10,40 = 1.303 and t0.025,40 = 2.021 so that
P (−1.303 ≤ t40 ≤ 2.021) = 0.975− 0.10 = 0.875

(b) P (t17 ≥ 2.7) = 0.008

5.6.27 (a) P (F16,20 ≤ 2) = 0.928

(b) P (χ2
28 ≥ 47) = 0.014

(c) P (t29 ≥ 1.5) = 0.072

(d) P (t7 ≤ −1.3) = 0.117

(e) P (t10 ≥ −2) = 0.963

5.6.28 (a) P (χ2
40 > 65.0) = 0.007

(b) P (t20 < −1.2) = 0.122

(c) P (t26 < 3.0) = 0.997

(d) P (F8,14 > 4.8) = 0.0053.

5.6.29 Let the time be measured in minutes after 9:40am.

The doctor’s consultation starts at time X1 ∼ N(62, 42).

The length of the consultation is X2 ∼ N(17, 52).

The time spent at the laboratory is X3 ∼ N(11, 32).

The time spent at the pharmacy is X4 ∼ N(15, 52).

Therefore,

P (X1 + X2 + 1 + X3 + 1 + X4 ≤ 120)

= P (N(62 + 17 + 1 + 11 + 1 + 15, 42 + 52 + 32 + 52) ≤ 120)

= P (N(107, 75) ≤ 120) = P
(
N(0, 1) ≤ 120−107√

75

)
= Φ(1.50) = 0.933.
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Chapter 6

Descriptive Statistics

6.1 Experimentation

6.1.1 For this problem the population is the somewhat imaginary concept of “all possible
die rolls.”

The sample should be representative if the die is shaken properly.

6.1.2 The population may be all television sets that are ready to be shipped during a
certain period of time, although the representativeness of the sample depends on
whether the television sets that are ready to be shipped on that Friday morning are
in any way different from television sets that are ready to be shipped at other times.

6.1.3 Is the population all students? - or the general public? - or perhaps it should just
be computing students at that college?

You have to consider whether the eye colors of computing students are representative
of the eye colors of all students or of all people.

Perhaps eye colors are affected by race and the racial make-up of the class may not
reflect that of the student body or the general public as a whole.

6.1.4 The population is all service times under certain conditions.

The conditions depend upon how representative the period between 2:00 and 3:00
on that Saturday afternoon is of other serving periods.

The service times would be expected to depend on how busy the restaurant is and
on the number of servers available.

6.1.5 The population is all peach boxes received by the supermarket within the time period.

The random sampling within each day’s shipment and the recording of an observation
every day should ensure that the sample is reasonably representative.
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6.1.6 The population is the number of calls received in each minute of every day during
the period of investigation.

The spacing of the sampling times should ensure that the sample is representative.

6.1.7 The population may be all bricks shipped by that company, or just the bricks in that
particular delivery.

The random selection of the sample should ensure that it is representative of that
particular delivery of bricks.

However, that specific delivery of bricks may not be representative of all of the
deliveries from that company.

6.1.8 The population is all car panels spray painted by the machine.

The selection method of the sample should ensure that it is representative.

6.1.9 The population is all plastic panels made by the machine.

If the 80 sample panels are selected in some random manner then they should be
representative of the entire population.
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6.2 Data Presentation

6.2.3 The smallest observation 1.097 and the largest observation 1.303 both appear to be
outliers.

6.2.4 The largest observation 66.00 can be considered to be an outlier.

In addition, the second largest observation 51 might also be considered to be an
outlier.

6.2.5 There would appear to be no reason to doubt that the die is a fair one.

A test of the fairness of the die could be made using the methods presented in section
10.3.

6.2.6 It appears that worse grades are assigned less frequently than better grades.

6.2.7 The assignment “other” is employed considerably less frequently than blue, green,
and brown, which are each about equally frequent.

6.2.8 The data set appears to be slightly positively skewed.

The observations 186, 177, 143, and 135 can all be considered to be outliers.

6.2.9 The observations 25 and 14 can be considered to be outliers.

6.2.10 The histogram is bimodal.

It may possibly be considered to be a mixture of two distributions corresponding to
“busy” periods and “slow” periods.

6.2.11 The smallest observation 0.874 can be considered to be an outlier.

6.2.12 The largest observation 0.538 can be considered to be an outlier.

6.2.13 This is a negatively skewed data set.

The smallest observations 6.00 and 6.04 can be considered to be outliers, and possibly
some of the other small observations may also be considered to be outliers.
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6.2.14 A bar chart represents discrete or categorical data while a histogram represents
continuous data.



6.3. SAMPLE STATISTICS 161

6.3 Sample Statistics

Note: The sample statistics for the problems in this section depend upon whether any obser-
vations have been removed as outliers. To avoid confusion, the answers given here assume that
no observations have been removed.

The trimmed means given here are those obtained by removing the largest 5% and the smallest
5% of the data observations.

6.3.1 The sample mean is x̄ = 155.95.

The sample median is 159.

The sample trimmed mean is 156.50.

The sample standard deviation is s = 18.43.

The upper sample quartile is 169.5.

The lower sample quartile is 143.25.

6.3.2 The sample mean is x̄ = 1.2006.

The sample median is 1.2010.

The sample trimmed mean is 1.2007.

The sample standard deviation is s = 0.0291.

The upper sample quartile is 1.2097.

The lower sample quartile is 1.1890.

6.3.3 The sample mean is x̄ = 37.08.

The sample median is 35.

The sample trimmed mean is 36.35.

The sample standard deviation is s = 8.32.

The upper sample quartile is 40.

The lower sample quartile is 33.5.

6.3.4 The sample mean is x̄ = 3.567.

The sample median is 3.5.

The sample trimmed mean is 3.574.

The sample standard deviation is s = 1.767.

The upper sample quartile is 5.

The lower sample quartile is 2.
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6.3.5 The sample mean is x̄ = 69.35.

The sample median is 66.

The sample trimmed mean is 67.88.

The sample standard deviation is s = 17.59.

The upper sample quartile is 76.

The lower sample quartile is 61.

6.3.6 The sample mean is x̄ = 3.291.

The sample median is 2.

The sample trimmed mean is 2.755.

The sample standard deviation is s = 3.794.

The upper sample quartile is 4.

The lower sample quartile is 1.

6.3.7 The sample mean is x̄ = 12.211.

The sample median is 12.

The sample trimmed mean is 12.175.

The sample standard deviation is s = 2.629.

The upper sample quartile is 14.

The lower sample quartile is 10.

6.3.8 The sample mean is x̄ = 1.1106.

The sample median is 1.1102.

The sample trimmed mean is 1.1112.

The sample standard deviation is s = 0.0530.

The upper sample quartile is 1.1400.

The lower sample quartile is 1.0813.

6.3.9 The sample mean is x̄ = 0.23181.

The sample median is 0.220.

The sample trimmed mean is 0.22875.

The sample standard deviation is s = 0.07016.

The upper sample quartile is 0.280.

The lower sample quartile is 0.185.
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6.3.10 The sample mean is x̄ = 9.2294.

The sample median is 9.435.

The sample trimmed mean is 9.3165.

The sample standard deviation is s = 0.8423.

The upper sample quartile is 9.81.

The lower sample quartile is 8.9825.

6.3.11 The sample mean is

65+x
6

and∑6
i=1 x2

i = 1037 + x2.

Therefore,

s2 = 1037+x2−(65+x)2/6
5

which by differentiation can be shown to be minimized when x = 13

(which is the average of the other five data points).
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6.6 Supplementary Problems

6.6.1 The population from which the sample is drawn would be all of the birds on the
island.

However, the sample may not be representative if some species are more likely to be
observed than others.

It appears that the grey markings are the most common, followed by the black
markings.

6.6.2 There do not appear to be any seasonal effects, although there may possibly be a
correlation from one month to the next.

The sample mean is x̄ = 17.79.

The sample median is 17.

The sample trimmed mean is 17.36.

The sample standard deviation is s = 6.16.

The upper sample quartile is 21.75.

The lower sample quartile is 14.

6.6.3 One question of interest in interpreting this data set is whether or not the month of
sampling is representative of other months.

The sample is skewed.

The most frequent data value (the sample mode) is one error.

The sample mean is x̄ = 1.633.

The sample median is 1.5.

The sample trimmed mean is 1.615.

The sample standard deviation is s = 0.999.

The upper sample quartile is 2.

The lower sample quartile is 1.

6.6.4 The population would be all adult males who visit the clinic.

This could be representative of all adult males in the population unless there is
something special about the clientele of this clinic.

The largest observation 75.9 looks like an outlier on a histogram but may be a valid
observation.

The sample mean is x̄ = 69.618.

The sample median is 69.5.

The sample trimmed mean is 69.513.
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The sample standard deviation is s = 1.523.

The upper sample quartile is 70.275.

The lower sample quartile is 68.6.

6.6.5 Two or three of the smallest observations and the largest observation may be con-
sidered to be outliers.

The sample mean is x̄ = 32.042.

The sample median is 32.55.

The sample trimmed mean is 32.592.

The sample standard deviation is s = 5.817.

The upper sample quartile is 35.5.

The lower sample quartile is 30.425.

6.6.6 The population of interest can be considered to be the soil throughout the construc-
tion site.

If the soil is of a fairly uniform type, and if the samples were taken representa-
tively throughout the site, then they should provide accurate information on the soil
throughout the entire construction site.

The sample mean is x̄ = 25.318.

The sample median is 25.301.

The sample trimmed mean is 25.319.

The sample standard deviation is s = 0.226.

The upper sample quartile is 25.501.

The lower sample quartile is 25.141.

6.6.7 (a) True

(b) False

(c) True

(d) False
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Chapter 7

Statistical Estimation and Sampling
Distributions

7.2 Properties of Point Estimates

7.2.1 (a) bias(µ̂1) = 0
The point estimate µ̂1 is unbiased.

bias(µ̂2) = 0
The point estimate µ̂2 is unbiased.

bias(µ̂3) = 9− µ
2

(b) Var(µ̂1) = 6.2500

Var(µ̂2) = 9.0625

Var(µ̂3) = 1.9444

The point estimate µ̂3 has the smallest variance.

(c) MSE(µ̂1) = 6.2500

MSE(µ̂2) = 9.0625

MSE(µ̂3) = 1.9444 + (9− µ
2 )2

This is equal to 26.9444 when µ = 8.

7.2.2 (a) bias(µ̂1) = 0

bias(µ̂2) = −0.217µ

bias(µ̂3) = 2− µ
4

The point estimate µ̂1 is unbiased.
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(b) Var(µ̂1) = 4.444

Var(µ̂2) = 2.682

Var(µ̂3) = 2.889

The point estimate µ̂2 has the smallest variance.

(c) MSE(µ̂1) = 4.444

MSE(µ̂2) = 2.682 + 0.0469µ2

This is equal to 3.104 when µ = 3.

MSE(µ̂3) = 2.889 + (2− µ
4 )2

This is equal to 4.452 when µ = 3.

7.2.3 (a) Var(µ̂1) = 2.5

(b) The value p = 0.6 produces the smallest variance which is Var(µ̂) = 2.4.

(c) The relative efficiency is 2.4
2.5 = 0.96.

7.2.4 (a) Var(µ̂1) = 2

(b) The value p = 0.875 produces the smallest variance which is Var(µ̂) = 0.875.

(c) The relative efficiency is 0.875
2 = 0.4375.

7.2.5 (a) a1 + . . . + an = 1

(b) a1 = . . . = an = 1
n

7.2.6 MSE(θ̂1) = 0.02 θ2 + (0.13 θ)2 = 0.0369 θ2

MSE(θ̂2) = 0.07 θ2 + (0.05 θ)2 = 0.0725 θ2

MSE(θ̂3) = 0.005 θ2 + (0.24 θ)2 = 0.0626 θ2

The point estimate θ̂1 has the smallest mean square error.

7.2.7 bias(µ̂) = µ0−µ
2

Var(µ̂) = σ2

4

MSE(µ̂) = σ2

4 + (µ0−µ)2

4
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MSE(X) = σ2

7.2.8 (a) bias(p̂) = − p
11

(b) Var(p̂) = 10 p (1−p)
121

(c) MSE(p̂) = 10 p (1−p)
121 +

( p
11

)2 = 10p−9p2

121

(d) bias
(

X
10

)
= 0

Var
(

X
10

)
= p(1−p)

10

MSE
(

X
10

)
= p(1−p)

10

7.2.9 Var
(

X1+X2
2

)
= Var(X1)+Var(X2)

4

= 5.392+9.432

4

= 29.49

The standard deviation is
√

29.49 = 5.43.
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7.3 Sampling Distributions

7.3.1 Var
(

X1
n1

)
= p(1−p)

n1

Var
(

X2
n2

)
= p(1−p)

n2

The relative efficiency is the ratio of these two variances which is n1
n2

.

7.3.2 (a) P
(∣∣∣N (

0, 1
10

)∣∣∣ ≤ 0.3
)

= 0.6572

(b) P
(∣∣∣N (

0, 1
30

)∣∣∣ ≤ 0.3
)

= 0.8996

7.3.3 (a) P
(∣∣∣N (

0, 7
15

)∣∣∣ ≤ 0.4
)

= 0.4418

(b) P
(∣∣∣N (

0, 7
50

)∣∣∣ ≤ 0.4
)

= 0.7150

7.3.4 (a) Solving

P
(
5× χ2

30
30 ≤ c

)
= P (χ2

30 ≤ 6c) = 0.90

gives c = 6.709.

(b) Solving

P
(
5× χ2

30
30 ≤ c

)
= P (χ2

30 ≤ 6c) = 0.95

gives c = 7.296.

7.3.5 (a) Solving

P
(
32× χ2

20
20 ≤ c

)
= P

(
χ2

20 ≤ 5c
8

)
= 0.90

gives c = 45.46.

(b) Solving

P
(
32× χ2

20
20 ≤ c

)
= P

(
χ2

20 ≤ 5c
8

)
= 0.95

gives c = 50.26.

7.3.6 (a) Solving

P (|t15| ≤ c) = 0.95
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gives c = t0.025,15 = 2.131.

(b) Solving

P (|t15| ≤ c) = 0.99

gives c = t0.005,15 = 2.947.

7.3.7 (a) Solving

P
(
|t20|√

21
≤ c

)
= 0.95

gives c = t0.025,20√
21

= 0.4552.

(b) Solving

P
(
|t20|√

21
≤ c

)
= 0.99

gives c = t0.005,20√
21

= 0.6209.

7.3.8 p̂ = 234
450 = 0.52

s.e.(p̂) =
√

p̂ (1−p̂)
n =

√
0.52×0.48

450 = 0.0236

7.3.9 µ̂ = x̄ = 974.3

s.e.(µ̂) = s√
n

=
√

452.1
35 = 3.594

7.3.10 p̂ = 24
120 = 0.2

s.e.(p̂) =
√

p̂ (1−p̂)
n =

√
0.2×0.8

120 = 0.0365

7.3.11 p̂ = 33
150 = 0.22

s.e.(p̂) =
√

p̂ (1−p̂)
n =

√
0.22×0.78

150 = 0.0338

7.3.12 p̂ = 26
80 = 0.325

s.e.(p̂) =
√

p̂ (1−p̂)
n =

√
0.325×0.675

80 = 0.0524
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7.3.13 µ̂ = x̄ = 69.35

s.e.(µ̂) = s√
n

= 17.59√
200

= 1.244

7.3.14 µ̂ = x̄ = 3.291

s.e.(µ̂) = s√
n

= 3.794√
55

= 0.512

7.3.15 µ̂ = x̄ = 12.211

s.e.(µ̂) = s√
n

= 2.629√
90

= 0.277

7.3.16 µ̂ = x̄ = 1.1106

s.e.(µ̂) = s√
n

= 0.0530√
125

= 0.00474

7.3.17 µ̂ = x̄ = 0.23181

s.e.(µ̂) = s√
n

= 0.07016√
75

= 0.00810

7.3.18 µ̂ = x̄ = 9.2294

s.e.(µ̂) = s√
n

= 0.8423√
80

= 0.0942

7.3.19 If a sample of size n = 100 is used, then the probability is

P (0.24− 0.05 ≤ p̂ ≤ 0.24 + 0.05) = P (19 ≤ B(100, 0.24) ≤ 29).

Using a normal approximation this can be estimated as

Φ
(

29+0.5−100×0.24√
100×0.24×0.76

)
− Φ

(
19−0.5−100×0.24√

100×0.24×0.76

)
= Φ(1.288)− Φ(−1.288) = 0.8022.

If a sample of size n = 200 is used, then the probability is

P (38 ≤ B(200, 0.24) ≤ 58).

Using a normal approximation this can be estimated as

Φ
(

58+0.5−200×0.24√
200×0.24×0.76

)
− Φ

(
38−0.5−200×0.24√

200×0.24×0.76

)
= Φ(1.738)− Φ(−1.738) = 0.9178.



7.3. SAMPLING DISTRIBUTIONS 173

7.3.20 P (173 ≤ µ̂ ≤ 175) = P (173 ≤ X̄ ≤ 175)

where

X̄ ∼ N
(
174, 2.82

30

)
.

This is

Φ
(

175−174√
2.82/30

)
− Φ

(
173−174√

2.82/30

)
= Φ(1.956)− Φ(−1.956) = 0.9496.

7.3.21 P (0.62 ≤ p̂ ≤ 0.64)

= P (300× 0.62 ≤ B(300, 0.63) ≤ 300× 0.64)

' P (185.5 ≤ N(300× 0.63, 300× 0.63× 0.37) ≤ 192.5)

= P
(

185.5−189√
69.93

≤ N(0, 1) ≤ 192.5−189√
69.93

)
= Φ(0.419)− Φ(−0.419) = 0.324

7.3.22 P
(
109.9 ≤ N

(
110.0, 0.42

22

)
≤ 110.1

)
= P

(√
22(109.9−110.0)

0.4 ≤ N(0, 1) ≤
√

22(110.1−110.0)
0.4

)
= Φ(1.173)− Φ(−1.173) = 0.759

7.3.23
√

0.126×0.874
360 = 0.017

7.3.24 P
(
N
(
341, 22

20

)
≤ 341.5

)
= P

(
N(0.1) ≤

√
20×(341.5−341)

2

)
= Φ(1.118) = 0.547

7.3.25 P
(
µ− 2 ≤ N

(
µ, 5.22

18

)
≤ µ + 2

)
= P

(
−
√

18×2
5.2 ≤ N(0.1) ≤

√
18×2
5.2

)
= Φ(1.632)− Φ(−1.632) = 0.103
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7.3.26 The largest standard error is obtained when p̂ = 0.5 and is equal to√
0.5×0.5

1400 = 0.0134.

7.3.27 P (X ≥ 60) = e−0.02×60 = 0.301

Let Y be the number of components that last longer than one hour.

P
(
0.301− 0.05 ≤ Y

110 ≤ 0.301 + 0.05
)

= P (27.6 ≤ Y ≤ 38.6)

= P (28 ≤ B(110, 0.301) ≤ 38)

' P (27.5 ≤ N(110× 0.301, 110× 0.301× 0.699) ≤ 38.5)

= P
(

27.5−33.11√
23.14

≤ N(0, 1) ≤ 38.5−33.11√
23.14

)
= Φ(1.120)− Φ(−1.166)

= 0.869− 0.122 = 0.747

7.3.28 (a) P (µ− 0.5 ≤ X̄ ≤ µ + 0.5)

= P
(
µ− 0.5 ≤ N

(
µ, 0.822

5

)
≤ µ + 0.5

)
= Φ

(
0.5
√

5
0.82

)
− Φ

(
−0.5

√
5

0.82

)
= 0.827

(b) P (µ− 0.5 ≤ X̄ ≤ µ + 0.5)

= P
(
µ− 0.5 ≤ N

(
µ, 0.822

10

)
≤ µ + 0.5

)
= Φ

(
0.5
√

10
0.82

)
− Φ

(
−0.5

√
10

0.82

)
= 0.946

(c) In order for

P
(
µ− 0.5 ≤ N

(
µ, 0.822

n

)
≤ µ + 0.5

)
= Φ

(
0.5
√

n
0.82

)
− Φ

(
−0.5

√
n

0.82

)
≥ 0.99

it is necessary that

0.5
√

n
0.82 ≥ z0.005 = 2.576

which is satisfied for a sample size n of at least 18.

7.3.29 (a) p = 592
3288 = 0.18

P (p− 0.1 ≤ p̂ ≤ p + 0.1)
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= P
(
0.08 ≤ X

20 ≤ 0.28
)

= P (1.6 ≤ X ≤ 5.6)

where X ∼ B(20, 0.18).

This probability is

P (X = 2) + P (X = 3) + P (X = 4) + P (X = 5)

=

(
20
2

)
× 0.182 × 0.8218 +

(
20
3

)
× 0.183 × 0.8217

+

(
20
4

)
× 0.184 × 0.8216 +

(
20
5

)
× 0.185 × 0.8215

= 0.7626.

(b) The probability that a sampled meter is operating outside the
acceptable tolerance limits is now

p∗ = 184
2012 = 0.09.

P (p− 0.1 ≤ p̂ ≤ p + 0.1)

= P
(
0.08 ≤ Y

20 ≤ 0.28
)

= P (1.6 ≤ Y ≤ 5.6)

where Y ∼ B(20, 0.09).

This probability is

P (Y = 2) + P (Y = 3) + P (Y = 4) + P (Y = 5)

=

(
20
2

)
× 0.092 × 0.9118 +

(
20
3

)
× 0.093 × 0.9117

+

(
20
4

)
× 0.094 × 0.9116 +

(
20
5

)
× 0.095 × 0.9115

= 0.5416.
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7.4 Constructing Parameter Estimates

7.4.1 λ̂ = x̄ = 5.63

s.e.(λ̂) =
√

λ̂
n =

√
5.63
23 = 0.495

7.4.2 Using the method of moments the point estimates â and b̂ are the solutions to the
equations

a
a+b = 0.782

and

ab
(a+b)2(a+b+1)

= 0.0083

which are â = 15.28 and b̂ = 4.26.

7.4.3 Using the method of moments

E(X) = 1
λ = x̄

which gives λ̂ = 1
x̄ .

The likelihood is

L(x1, . . . , xn, λ) = λn e−λ(x1+...+xn)

which is maximized at λ̂ = 1
x̄ .

7.4.4 p̂i = xi
n for 1 ≤ i ≤ n

7.4.5 Using the method of moments

E(X) = 5
λ = x̄

which gives λ̂ = 5
x̄ .

The likelihood is

L(x1, . . . , xn, λ) =
(

1
24

)n
× λ5n × x4

1 × . . .× x4
n × e−λ(x1+...+xn)

which is maximimized at λ̂ = 5
x̄ .
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7.6 Supplementary Problems

7.6.1 bias(µ̂1) = 5− µ
2

bias(µ̂2) = 0

Var(µ̂1) = 1
8

Var(µ̂2) = 1
2

MSE(µ̂1) = 1
8 + (5− µ

2 )2

MSE(µ̂2) = 1
2

7.6.2 (a) bias(p̂) = −p
7

(b) Var(p̂) = 3p(1−p)
49

(c) MSE(p̂) = 3p(1−p)
49 + (p

7)2 = 3p−2p2

49

(d) MSE
(

X
12

)
= p(1−p)

12

7.6.3 (a) F (t) = P (T ≤ t) = P (X1 ≤ t)× . . .× P (Xn ≤ t)

= t
θ × . . .× t

θ = ( t
θ )n

for 0 ≤ t ≤ θ

(b) f(t) = dF (t)
dt = n tn−1

θn

for 0 ≤ t ≤ θ

(c) Notice that

E(T ) =
∫ θ
0 t f(t) dt = n

n+1θ

so that E(θ̂) = θ.

(d) Notice that

E(T 2) =
∫ θ
0 t2 f(t) dt = n

n+2θ2

so that

Var(T ) = n
n+2θ2 −

(
n

n+1θ
)2

= nθ2

(n+2)(n+1)2
.
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Consequently,

Var(θ̂) = (n+1)2

n2 Var(T ) = θ2

n(n+2)

and

s.e.(θ̂) = θ̂√
n(n+2)

.

(e) θ̂ = 11
10 × 7.3 = 8.03

s.e.(θ̂) = 8.03√
10×12

= 0.733

7.6.4 Recall that f(xi, θ) = 1
θ for 0 ≤ xi ≤ θ

(and f(xi, θ) = 0 elsewhere)

so that the likelihood is 1
θn

as long as xi ≤ θ for 1 ≤ i ≤ n

and is equal to zero otherwise.

bias(θ̂) = − θ
n+1

7.6.5 Using the method of moments

E(X) = 1
p = x̄

which gives p̂ = 1
x̄ .

The likelihood is

L(x1, . . . , xn, λ) = pn(1− p)x1+...+xn−n

which is maximimized at p̂ = 1
x̄ .

7.6.6 p̂ = 35
100 = 0.35

s.e.(p̂) =
√

p̂ (1−p̂)
n =

√
0.35×0.65

100 = 0.0477

7.6.7 µ̂ = x̄ = 17.79

s.e.(x̄) = s√
n

= 6.16√
24

= 1.26

7.6.8 µ̂ = x̄ = 1.633

s.e.(x̄) = s√
n

= 0.999√
30

= 0.182
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7.6.9 µ̂ = x̄ = 69.618

s.e.(x̄) = s√
n

= 1.523√
60

= 0.197

7.6.10 µ̂ = x̄ = 32.042

s.e.(x̄) = s√
n

= 5.817√
40

= 0.920

7.6.11 Var(s2
1) = Var

(
σ2χ2

n1−1

n1−1

)

=
(

σ2

n1−1

)2
Var(χ2

n1−1)

=
(

σ2

n1−1

)2
2(n1 − 1) = 2σ4

n1−1

Similarly, Var(s2
2) = 2σ4

n2−1 .

The ratio of these two variances is n1−1
n2−1 .

7.6.12 The true proportion of “very satisfied” customers is

p = 11842
24839 = 0.4768.

The probability that the manager’s estimate of the proportion of “very satisfied”
customers is within 0.10 of p = 0.4768 is

P (0.4768− 0.10 ≤ p̂ ≤ 0.4768 + 0.10)

= P (0.3768× 80 ≤ X ≤ 0.5768× 80)

= P (30.144 ≤ X ≤ 46.144) = P (31 ≤ X ≤ 46)

where X ∼ B(80, 0.4768).

This probability is 0.9264.

7.6.13 When a sample of size n = 15 is used

P (62.8− 0.5 ≤ µ̂ ≤ 62.8 + 0.5)

= P (62.3 ≤ X̄ ≤ 63.3)

where X̄ ∼ N(62.8, 3.92/15).

This probability is equal to

Φ
(

63.3−62.8√
3.92/15

)
− Φ

(
62.3−62.8√

3.92/15

)
= Φ(0.4965)− Φ(−0.4965) = 0.3804.
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When a sample of size n = 40 is used

P (62.8− 0.5 ≤ µ̂ ≤ 62.8 + 0.5)

= P (62.3 ≤ X̄ ≤ 63.3)

where X̄ ∼ N(62.8, 3.92/40).

This probability is equal to

Φ
(

63.3−62.8√
3.92/40

)
− Φ

(
62.3−62.8√

3.92/40

)
= Φ(0.8108)− Φ(−0.8108) = 0.5826.

7.6.14 µ̂ = x̄ = 25.318

s.e.(x̄) = s√
n

= 0.226√
44

= 0.0341

The upper quartile of the distribution of soil compressibilities can be estimated by
the upper sample quartile 25.50.

7.6.15 Probability theory

7.6.16 Probability theory

7.6.17 p̂ = 39
220 = 0.177

s.e.(p̂) =
√

0.177×0.823
220 = 0.026

7.6.18 Let X be the number of cases where the treatment was effective.

P
(
0.68− 0.05 ≤ X

140 ≤ 0.68 + 0.05
)

= P (88.2 ≤ X ≤ 102.2)

= P (89 ≤ B(140, 0.68) ≤ 102)

' P (88.5 ≤ N(140× 0.68, 140× 0.68× 0.32) ≤ 102.5)

= P
(

88.5−95.2
5.519 ≤ N(0, 1) ≤ 102.5−95.2

5.519

)
= Φ(1.268)− Φ(−1.268) = 0.80

7.6.19 (a) µ̂ = x̄ = 70.58
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(b) s√
n

= 12.81√
12

= 3.70

(c) 67+70
2 = 68.5

7.6.20 Statistical inference

7.6.21 Statistical inference

7.6.22 (a) True

(b) True

(c) True

(d) True

7.6.23 P
(
722 ≤ X̄ ≤ 724

)
= P

(
722 ≤ N

(
723, 32

11

)
≤ 724

)
= P

(
−1×

√
11

3 ≤ N (0, 1) ≤ 1×
√

11
3

)
= Φ(1.106)− Φ(−1.106) = 0.73

7.6.24 (a) P
(
µ− 20.0 ≤ X̄ ≤ µ + 20.0

)
= P

(
µ− 20.0 ≤ N

(
µ, 40.02

10

)
≤ µ + 20.0

)
= P

(
−20.0×

√
10

40.0 ≤ N (0, 1) ≤ 20.0×
√

10
40.0

)
= Φ(1.58)− Φ(−1.58) = 0.89

(b) P
(
µ− 20.0 ≤ X̄ ≤ µ + 20.0

)
= P

(
µ− 20.0 ≤ N

(
µ, 40.02

20

)
≤ µ + 20.0

)
= P

(
−20.0×

√
20

40.0 ≤ N (0, 1) ≤ 20.0×
√

20
40.0

)
= Φ(2.24)− Φ(−2.24) = 0.97

7.6.25 p̂A = 852
1962 = 0.434

s.e.(p̂A) =
√

0.434×(1−0.434)
1962 = 0.011
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Chapter 8

Inferences on a Population Mean

8.1 Confidence Intervals

8.1.1 With t0.025,30 = 2.042 the confidence interval is(
53.42− 2.042×3.05√

31
, 53.42 + 2.042×3.05√

31

)
= (52.30, 54.54).

8.1.2 With t0.005,40 = 2.704 the confidence interval is(
3.04− 2.704×0.124√

41
, 3.04 + 2.704×0.124√

41

)
= (2.99, 3.09).

The confidence interval does not contain the value 2.90, and so 2.90 is not a plausible
value for the mean glass thickness.

8.1.3 At 90% confidence the critical point is t0.05,19 = 1.729 and the confidence interval is(
436.5− 1.729×11.90√

20
, 436.5 + 1.729×11.90√

20

)
= (431.9, 441.1).

At 95% confidence the critical point is t0.025,19 = 2.093 and the confidence interval is(
436.5− 2.093×11.90√

20
, 436.5 + 2.093×11.90√

20

)
= (430.9, 442.1).

At 99% confidence the critical point is t0.005,19 = 2.861 and the confidence interval is(
436.5− 2.861×11.90√

20
, 436.5 + 2.861×11.90√

20

)
= (428.9, 444.1).

Even the 99% confidence level confidence interval does not contain the value 450.0,
and so 450.0 is not a plausible value for the average breaking strength.

8.1.4 With t0.005,15 = 2.947 the confidence interval is

183
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(
1.053− 2.947×0.058√

16
, 1.053 + 2.947×0.058√

16

)
= (1.010, 1.096).

The confidence interval contains the value 1.025, and so 1.025 is a plausible value for
the average weight.

8.1.5 With z0.025 = 1.960 the confidence interval is(
0.0328− 1.960×0.015√

28
, 0.0328 + 1.960×0.015√

28

)
= (0.0272, 0.0384).

8.1.6 At 90% confidence the critical point is z0.05 = 1.645 and the confidence interval is(
19.50− 1.645×1.0√

10
, 19.50 + 1.645×1.0√

10

)
= (18.98, 20.02).

At 95% confidence the critical point is z0.025 = 1.960 and the confidence interval is(
19.50− 1.960×1.0√

10
, 19.50 + 1.960×1.0√

10

)
= (18.88, 20.12).

At 99% confidence the critical point is z0.005 = 2.576 and the confidence interval is(
19.50− 2.576×1.0√

10
, 19.50 + 2.576×1.0√

10

)
= (18.69, 20.31).

Even the 90% confidence level confidence interval contains the value 20.0, and so
20.0 is a plausible value for the average resilient modulus.

8.1.7 With t0.025,n−1 ' 2.0 a sufficient sample size can be estimated as

n ≥ 4×
(

t0.025,n−1 s
L0

)2

= 4×
(

2.0×10.0
5

)2
= 64.

A sample size of about n = 64 should be sufficient.

8.1.8 With t0.005,n−1 ' 3.0 a sufficient sample size can be estimated as

n ≥ 4×
(

t0.005,n−1 s
L0

)2

= 4×
(

3.0×0.15
0.2

)2
= 20.25.

A sample size slightly larger than 20 should be sufficient.

8.1.9 A total sample size of
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n ≥ 4×
(

t0.025,n1−1 s

L0

)2

= 4×
(

2.042×3.05
2.0

)2
= 38.8

is required.

Therefore, an additional sample of at least 39− 31 = 8 observations

should be sufficient.

8.1.10 A total sample size of

n ≥ 4×
(

t0.005,n1−1 s

L0

)2

= 4×
(

2.704×0.124
0.05

)2
= 179.9

is required.

Therefore, an additional sample of at least 180− 41 = 139 observations

should be sufficient.

8.1.11 A total sample size of

n ≥ 4×
(

t0.005,n1−1 s

L0

)2

= 4×
(

2.861×11.90
10.0

)2
= 46.4

is required.

Therefore, an additional sample of at least 47− 20 = 27 observations

should be sufficient.

8.1.12 With t0.05,29 = 1.699 the value of c is obtained as

c = x̄ + tα,n−1 s√
n

= 14.62 + 1.699×2.98√
30

= 15.54.

The confidence interval does not contain the value 16.0, and so it is not plausible
that µ ≥ 16.

8.1.13 With t0.01,60 = 2.390 the value of c is obtained as

c = x̄− tα,n−1 s√
n

= 0.768− 2.390×0.0231√
61

= 0.761.

The confidence interval contains the value 0.765, and so it is plausible that the
average solution density is less than 0.765.
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8.1.14 With z0.05 = 1.645 the value of c is obtained as

c = x̄− zα σ√
n

= 11.80− 1.645×2.0√
19

= 11.05.

8.1.15 With z0.01 = 2.326 the value of c is obtained as

c = x̄ + zα σ√
n

= 415.7 + 2.326×10.0√
29

= 420.0.

The confidence interval contains the value 418.0, and so it is plausible that the mean
radiation level is greater than 418.0.

8.1.16 The interval (6.668, 7.054) is

(6.861− 0.193, 6.861 + 0.193)

and

0.193 = 1.753×0.440√
16

.

Since 1.753 = t0.05,15 it follows that the confidence level is

1− (2× 0.05) = 0.90.

8.1.17 Using the critical point t0.005,9 = 3.250 the confidence interval is(
2.752− 3.250×0.280√

10
, 2.752 + 3.250×0.280√

10

)
= (2.464, 3.040).

The value 3.1 is outside this confidence interval, and so 3.1 is not a plausible value
for the average corrosion rate.

Note: The sample statistics for the following problems in this section and the related
problems in this chapter depend upon whether any observations have been removed
as outliers. To avoid confusion, the answers given here assume that no observations
have been removed. Notice that removing observations as outliers reduces the sample
standard deviation s as well as affecting the sample mean x̄.

8.1.18 At 95% confidence the critical point is t0.025,199 = 1.972 and the confidence interval
is(
69.35− 1.972×17.59√

200
, 69.35 + 1.972×17.59√

200

)
= (66.89, 71.80).

8.1.19 At 95% confidence the critical point is t0.025,89 = 1.987 and the confidence interval is(
12.211− 1.987×2.629√

90
, 12.211 + 1.987×2.629√

90

)
= (11.66, 12.76).
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8.1.20 At 95% confidence the critical point is t0.025,124 = 1.979 and the confidence interval
is(
1.11059− 1.979×0.05298√

125
, 1.11059 + 1.979×0.05298√

125

)
= (1.101, 1.120).

8.1.21 At 95% confidence the critical point is t0.025,74 = 1.9926 and the confidence interval
is(
0.23181− 1.9926×0.07016√

75
, 0.23181 + 1.9926×0.07016√

75

)
= (0.2157, 0.2480).

8.1.22 At 95% confidence the critical point is t0.025,79 = 1.9905 and the confidence interval
is(
9.2294− 1.9905×0.0942√

80
, 9.2294 + 1.9905×0.0942√

80

)
= (9.0419, 9.4169).

8.1.23 Since

2.773 = 2.843− tα,8×0.150√
9

it follows that tα,8 = 1.40 so that α = 0.10.

Therefore, the confidence level of the confidence interval is 90%.

8.1.24 (a) The sample median is 34.

(b)
∑15

i=1 xi = 532∑15
i=1 x2

i = 19336

x̄ = 532
15 = 35.47

s2 = 19336−5322/15
15−1 = 33.41

Using the critical point z0.005 = 2.576 the confidence interval is

35.47± 2.576×
√

33.41
15 = (31.02, 39.91).

8.1.25 (a) Using the critical point t0.025,13 = 2.160 the confidence interval is

µ ∈ 5437.2± 2.160×376.9√
14

= (5219.6, 5654.8).

(b) With

4×
(

2.160×376.9
300

)2
= 29.5

it can be estimated that an additional 30 − 14 = 16 chemical solutions would
need to be measured.
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8.1.26 With t0.025,n−1 ' 2 the required sample size can be estimated to be about

n = 4×
(

t×σ
L0

)2

= 4×
(

2×0.2031
0.1

)2

= 66.
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8.2 Hypothesis Testing

8.2.1 (a) The test statistic is

t =
√

n(x̄−µ0)
s =

√
18×(57.74−55.0)

11.2 = 1.04.

The p-value is 2× P (t17 ≥ 1.04) = 0.313.

(b) The test statistic is

t =
√

n(x̄−µ0)
s =

√
18×(57.74−65.0)

11.2 = −2.75.

The p-value is P (t17 ≤ −2.75) = 0.0068.

8.2.2 (a) The test statistic is

t =
√

n(x̄−µ0)
s =

√
39×(5532−5680)

287.8 = −3.21.

The p-value is 2× P (t38 ≥ 3.21) = 0.003.

(b) The test statistic is

t =
√

n(x̄−µ0)
s =

√
39×(5,532−5,450)

287.8 = 1.78.

The p-value is P (t38 ≥ 1.78) = 0.042.

8.2.3 (a) The test statistic is

z =
√

n(x̄−µ0)
σ =

√
13×(2.879−3.0)

0.325 = −1.34.

The p-value is 2× Φ(−1.34) = 0.180.

(b) The test statistic is

z =
√

n(x̄−µ0)
σ =

√
13×(2.879−3.1)

0.325 = −2.45.

The p-value is Φ(−2.45) = 0.007.

8.2.4 (a) The test statistic is

z =
√

n(x̄−µ0)
σ =

√
44×(87.90−90.0)

5.90 = −2.36.

The p-value is 2× Φ(−2.36) = 0.018.

(b) The test statistic is

z =
√

n(x̄−µ0)
σ =

√
44×(87.90−86.0)

5.90 = 2.14.

The p-value is 1− Φ(2.14) = 0.016.
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8.2.5 (a) The critical point is t0.05,40 = 1.684
and the null hypothesis is accepted when |t| ≤ 1.684.

(b) The critical point is t0.005,40 = 2.704
and the null hypothesis is rejected when |t| > 2.704.

(c) The test statistic is

t =
√

n(x̄−µ0)
s =

√
41×(3.04−3.00)

0.124 = 2.066.

The null hypothesis is rejected at size α = 0.10
and accepted at size α = 0.01.

(d) The p-value is 2× P (t40 ≥ 2.066) = 0.045.

8.2.6 (a) The critical point is t0.05,19 = 1.729
and the null hypothesis is accepted when |t| ≤ 1.729.

(b) The critical point is t0.005,19 = 2.861
and the null hypothesis is rejected when |t| > 2.861.

(c) The test statistic is

t =
√

n(x̄−µ0)
s =

√
20×(436.5−430.0)

11.90 = 2.443.

The null hypothesis is rejected at size α = 0.10
and accepted at size α = 0.01.

(d) The p-value is 2× P (t19 ≥ 2.443) = 0.025.

8.2.7 (a) The critical point is t0.05,15 = 1.753
and the null hypothesis is accepted when |t| ≤ 1.753.

(b) The critical point is t0.005,15 = 2.947
and the null hypothesis is rejected when |t| > 2.947.

(c) The test statistic is

t =
√

n(x̄−µ0)
s =

√
16×(1.053−1.025)

0.058 = 1.931.

The null hypothesis is rejected at size α = 0.10
and accepted at size α = 0.01.

(d) The p-value is 2× P (t15 ≥ 1.931) = 0.073.
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8.2.8 (a) The critical point is z0.05 = 1.645
and the null hypothesis is accepted when |z| ≤ 1.645.

(b) The critical point is z0.005 = 2.576
and the null hypothesis is rejected when |z| > 2.576.

(c) The test statistic is

z =
√

n(x̄−µ0)
σ =

√
10×(19.50−20.0)

1.0 = −1.581.

The null hypothesis is accepted at size α = 0.10
and consequently also at size α = 0.01.

(d) The p-value is 2× Φ(−1.581) = 0.114.

8.2.9 (a) The critical point is t0.10,60 = 1.296
and the null hypothesis is accepted when t ≤ 1.296.

(b) The critical point is t0.01,60 = 2.390
and the null hypothesis is rejected when t > 2.390.

(c) The test statistic is

t =
√

n(x̄−µ0)
s =

√
61×(0.0768−0.065)

0.0231 = 3.990.

The null hypothesis is rejected at size α = 0.01
and consequently also at size α = 0.10.

(d) The p-value is P (t60 ≥ 3.990) = 0.0001.

8.2.10 (a) The critical point is z0.10 = 1.282
and the null hypothesis is accepted when z ≥ −1.282.

(b) The critical point is z0.01 = 2.326
and the null hypothesis is rejected when z < −2.326.

(c) The test statistic is

z =
√

n(x̄−µ0)
σ =

√
29×(415.7−420.0)

10.0 = −2.316.

The null hypothesis is rejected at size α = 0.10
and accepted at size α = 0.01.

(d) The p-value is Φ(−2.316) = 0.0103.
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8.2.11 Consider the hypotheses H0 : µ = 44.350 versus HA : µ 6= 44.350.

The test statistic is

t =
√

n(x̄−µ0)
s =

√
24×(44.364−44.350)

0.019 = 3.61.

The p-value is 2× P (t23 ≥ 3.61) = 0.0014.

There is sufficient evidence to conclude that the machine is miscalibrated.

8.2.12 Consider the hypotheses H0 : µ ≤ 120 versus HA : µ > 120.

The test statistic is

t =
√

n(x̄−µ0)
s =

√
36×(122.5−120.0)

13.4 = 1.12.

The p-value is P (t35 ≥ 1.12) = 0.135.

There is not sufficient evidence to conclude that the manufacturer’s claim is incorrect.

8.2.13 Consider the hypotheses H0 : µ ≤ 12.50 versus HA : µ > 12.50.

The test statistic is

t =
√

n(x̄−µ0)
s =

√
15×(14.82−12.50)

2.91 = 3.09.

The p-value is P (t14 ≥ 3.09) = 0.004.

There is sufficient evidence to conclude that the chemical plant is in violation of the
working code.

8.2.14 Consider the hypotheses H0 : µ ≥ 0.25 versus HA : µ < 0.25.

The test statistic is

t =
√

n(x̄−µ0)
s =

√
23×(0.228−0.250)

0.0872 = −1.21.

The p-value is P (t22 ≤ −1.21) = 0.120.

There is not sufficient evidence to conclude that the advertised claim is false.

8.2.15 Consider the hypotheses H0 : µ ≤ 2.5 versus HA : µ > 2.5.

The test statistic is

t =
√

n(x̄−µ0)
s =

√
10×(2.752−2.5)

0.280 = 2.846.

The p-value is P (t9 ≥ 2.846) = 0.0096.

There is sufficient evidence to conclude that the average corrosion rate of chilled cast
iron of this type is larger than 2.5.
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8.2.16 Consider the hypotheses H0 : µ ≤ 65 versus HA : µ > 65.

The test statistic is

t =
√

n(x̄−µ0)
s =

√
200×(69.35−65.00)

17.59 = 3.50.

The p-value is P (t199 ≥ 3.50) = 0.0003.

There is sufficient evidence to conclude that the average service time is greater than
65 seconds and that the manager’s claim is incorrect.

8.2.17 Consider the hypotheses H0 : µ ≥ 13 versus HA : µ < 13.

The test statistic is

t =
√

n(x̄−µ0)
s =

√
90×(12.211−13.000)

2.629 = −2.85.

The p-value is P (t89 ≤ −2.85) = 0.0027.

There is sufficient evidence to conclude that the average number of calls taken per
minute is less than 13 so that the manager’s claim is false.

8.2.18 Consider the hypotheses H0 : µ = 1.1 versus HA : µ 6= 1.1.

The test statistic is

t =
√

n(x̄−µ0)
s =

√
125×(1.11059−1.10000)

0.05298 = 2.23.

The p-value is 2× P (t124 ≥ 2.23) = 0.028.

There is some evidence that the manufacturing process needs adjusting but it is not
overwhelming.

8.2.19 Consider the hypotheses H0 : µ = 0.2 versus HA : µ 6= 0.2.

The test statistic is

t =
√

n(x̄−µ0)
s =

√
75×(0.23181−0.22500)

0.07016 = 0.841.

The p-value is 2× P (t74 ≥ 0.841) = 0.40.

There is not sufficient evidence to conclude that the spray painting machine is not
performing properly.

8.2.20 Consider the hypotheses H0 : µ ≥ 9.5 versus HA : µ < 9.5.

The test statistic is

t =
√

n(x̄−µ0)
s =

√
80×(9.2294−9.5000)

0.8423 = −2.87.

The p-value is P (t79 ≤ −2.87) = 0.0026.

There is sufficient evidence to conclude that the design criterion has not been met.
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8.2.21 The hypotheses are H0 : µ ≤ 238.5 versus HA : µ > 238.5

and the test statistic is

t =
√

16(239.13−238.50)
2.80 = 0.90.

The p-value is P (t15 > 0.90) = 0.191.

There is not sufficient evidence to conclude that the average voltage of the batteries
from the production line is at least 238.5.

8.2.22 (a) 0.002 ≤ 2× P (t11 > 3.21) ≤ 0.01

(b) 0.05 ≤ 2× P (t23 > 1.96) ≤ 0.10

(c) 2× P (t29 > 3.88) ≤ 0.001

8.2.23 The hypotheses are H0 : µ = 82.50 versus HA : µ 6= 82.50

and the test statistic is

t =
√

25(82.40−82.50)
0.14 = −3.571.

The p-value is 2× P (t24 > 3.571) = 0.0015.

There is sufficient evidence to conclude that the average length of the components is
not 82.50.

8.2.24 The hypotheses are H0 : µ ≤ 70 versus HA : µ > 70

and the test statistic is

t =
√

25(71.97−70)
7.44 = 1.324.

The p-value is P (t24 > 1.324) = 0.099.

There is some evidence to conclude that the components have an average weight
larger than 70, but the evidence is not overwhelming.

8.2.25 The hypotheses are H0 : µ = 7.000 versus HA : µ 6= 7.000

and the test statistic is

t =
√

28(7.442−7.000)
0.672 = 3.480.

The p-value is 2× P (t27 > 3.480) = 0.002.

There is sufficient evidence to conclude that the average breaking strength is not
7.000.
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8.2.26 The hypotheses are H0 : µ ≤ 50 versus HA : µ > 50

and the test statistic is

t =
√

25(53.43−50)
3.93 = 4.364.

The p-value is P (t24 > 4.364) = 0.0001.

There is sufficient evidence to conclude that average failure time of this kind of
component is at least 50 hours.

8.2.27 The hypotheses are H0 : µ ≥ 25 versus HA : µ < 25.

8.2.28 (a) The t-statistic is

t =
√

20(12.49−10)
1.32 = 8.44

and the p-value is 2× P (t19 > 8.44) which is less than 1%.

(b) The t-statistic is

t =
√

43(3.03−3.2)
0.11 = −10.13

and the p-value is P (t42 > −10.13) which is greater than 10%.

(c) The t-statistic is

t =
√

16(73.43−85)
16.44 = −2.815

and the p-value is P (t15 < −2.815) which is less than 1%.

8.2.29 (a) The sample mean is x̄ = 11.975
and the sample standard deviation is s = 2.084
so that the t-statistic is

t =
√

8(11.975−11)
2.084 = 1.32.

The p-value is P (t7 > 1.32) which is greater than 10%.
Consequently, the experiment does not provide sufficient evidence to conclude
that the average time to toxicity of salmon fillets under these storage conditions
is more than 11 days.

(b) With t0.005,7 = 3.499 the confidence interval is

11.975± 3.499×2.084√
8

= (9.40, 14.55).
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8.5 Supplementary Problems

8.5.1 (a) Consider the hypotheses H0 : µ ≤ 65 versus HA : µ > 65.
The test statistic is

t =
√

n(x̄−µ0)
s =

√
15×(67.42−65.00)

4.947 = 1.89.

The p-value is P (t14 ≥ 1.89) = 0.040.
There is some evidence that the average distance at which the target is detected
is at least 65 miles although the evidence is not overwhelming.

(b) With t0.01,14 = 2.624 the confidence interval is(
67.42− 2.624×4.947√

15
,∞
)

= (64.07,∞).

8.5.2 (a) Consider the hypotheses H0 : µ ≥ 10 versus HA : µ < 10.
The test statistic is

t =
√

n(x̄−µ0)
s =

√
40×(9.39−10.00)

1.041 = −3.71.

The p-value is P (t39 ≤ −3.71) = 0.0003.
The company can safely conclude that the telephone surveys will last on average
less than ten minutes each.

(b) With t0.01,39 = 2.426 the confidence interval is(
−∞, 9.39 + 2.426×1.041√

40

)
= (−∞, 9.79).

8.5.3 (a) Consider the hypotheses H0 : µ = 75.0 versus HA : µ 6= 75.0.
The test statistic is

t =
√

n(x̄−µ0)
s =

√
30×(74.63−75.00)

2.095 = −0.1766.

The p-value is 2× P (t29 ≥ 0.1766) = 0.861.
There is not sufficient evidence to conclude that the paper does not have an
average weight of 75.0 g/m2.

(b) With t0.005,29 = 2.756 the confidence interval is(
74.63− 2.756×2.095√

30
, 74.63 + 2.756×2.095√

30

)
= (73.58, 75.68).

(c) A total sample size of

n ≥ 4×
(

t0.005,n1−1 s

L0

)2
= 4×

(
2.756×2.095

1.5

)2
= 59.3

is required.
Therefore, an additional sample of at least 60− 30 = 30 observations should be
sufficient.
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8.5.4 (a) Consider the hypotheses H0 : µ ≥ 0.50 versus HA : µ < 0.50.
The test statistic is

t =
√

n(x̄−µ0)
s =

√
14×(0.497−0.500)

0.0764 = −0.147.

The p-value is P (t13 ≤ −0.147) = 0.443.
There is not sufficient evidence to establish that the average deformity value of
diseased arteries is less than 0.50.

(b) With t0.005,13 = 3.012 the confidence interval is(
0.497− 3.012×0.0764√

14
, 0.497 + 3.012×0.0764√

14

)
= (0.435, 0.559).

(c) A total sample size of

n ≥ 4×
(

t0.005,n1−1 s

L0

)2
= 4×

(
3.012×0.0764

0.10

)2
= 21.2

is required.
Therefore, an additional sample of at least 22− 14 = 8 observations should be
sufficient.

8.5.5 At a 90% confidence level the critical point is t0.05,59 = 1.671 and the confidence
interval is(
69.618− 1.671×1.523√

60
, 69.618 + 1.671×1.523√

60

)
= (69.29, 69.95).

At a 95% confidence level the critical point is t0.025,59 = 2.001 and the confidence
interval is(
69.618− 2.001×1.523√

60
, 69.618 + 2.001×1.523√

60

)
= (69.23, 70.01).

At a 99% confidence level the critical point is t0.005,59 = 2.662 and the confidence
interval is(
69.618− 2.662×1.523√

60
, 69.618 + 2.662×1.523√

60

)
= (69.10, 70.14).

There is not strong evidence that 70 inches is not a plausible value for the mean
height because it is included in the 95% confidence level confidence interval.

8.5.6 At a 90% confidence level the critical point is t0.05,39 = 1.685 and the confidence
interval is(
32.042− 1.685×5.817√

40
, 32.042 + 1.685×5.817√

40

)
= (30.49, 33.59).

At a 95% confidence level the critical point is t0.025,39 = 2.023 and the confidence
interval is
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(
32.042− 2.023×5.817√

40
, 32.042 + 2.023×5.817√

40

)
= (30.18, 33.90).

At a 99% confidence level the critical point is t0.005,39 = 2.708 and the confidence
interval is(
32.042− 2.708×5.817√

40
, 32.042 + 2.708×5.817√

40

)
= (29.55, 34.53).

Since 35 and larger values are not contained within the 99% confidence level confi-
dence interval they are not plausible values for the mean shoot height, and so these
new results contradict the results of the previous study.

8.5.7 The interval (472.56, 486.28) is

(479.42− 6.86, 479.42 + 6.86)

and

6.86 = 2.787×12.55√
26

.

Since 2.787 = t0.005,25 it follows that the confidence level is

1− (2× 0.005) = 0.99.

8.5.8 (a) Consider the hypotheses H0 : µ ≥ 0.36 versus HA : µ < 0.36.
The test statistic is

t =
√

n(x̄−µ0)
s =

√
18×(0.337−0.36)

0.025 = −3.903.

The p-value is P (t17 ≤ −3.903) = 0.0006.
There is sufficient evidence to conclude that the average weight gain for com-
posites of this kind is smaller than 0.36%.

(b) Using the critical point t0.01,17 = 2.567 the confidence interval is(
−∞, 0.337 + 2.567×0.025√

18

)
= (−∞, 0.352).

8.5.9 Using the critical point t0.01,43 = 2.416 the confidence interval is(
−∞, 25.318 + 2.416×0.226√

44

)
= (−∞, 25.400).

Consider the hypotheses H0 : µ ≥ 25.5 versus HA : µ < 25.5.

The test statistic is

t =
√

n(x̄−µ0)
s =

√
44×(25.318−25.5)

0.226 = −5.342.

The p-value is P (t43 ≤ −5.342) = 0.000.

There is sufficient evidence to conclude that the average soil compressibility is no
larger than 25.5.
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8.5.11 At a 95% confidence level the critical points are

χ2
0.025,17 = 30.19 and χ2

0.975,17 = 7.564

so that the confidence interval is(
(18−1)×6.482

30.19 , (18−1)×6.482

7.564

)
= (23.6, 94.4).

At a 99% confidence level the critical points are

χ2
0.005,17 = 35.72 and χ2

0.995,17 = 5.697

so that the confidence interval is(
(18−1)×6.482

35.72 , (18−1)×6.482

5.697

)
= (20.0, 125.3).

8.5.12 At a 99% confidence level the critical points are

χ2
0.005,40 = 66.77 and χ2

0.995,40 = 20.71

so that the confidence interval is(√
(41−1)×0.1242

66.77 ,
√

(41−1)×0.1242

20.71

)
= (0.095, 0.170).

8.5.13 At a 95% confidence level the critical points are

χ2
0.025,19 = 32.85 and χ2

0.975,19 = 8.907

so that the confidence interval is(
(20−1)×11.902

32.85 , (20−1)×11.902

8.907

)
= (81.9, 302.1).

8.5.14 At a 90% confidence level the critical points are

χ2
0.05,15 = 25.00 and χ2

0.95,15 = 7.261

so that the confidence interval is(√
(16−1)×0.0582

25.00 ,
√

(16−1)×0.0582

7.261

)
= (0.045, 0.083).

At a 95% confidence level the critical points are

χ2
0.025,15 = 27.49 and χ2

0.975,15 = 6.262

so that the confidence interval is(√
(16−1)×0.0582

27.49 ,
√

(16−1)×0.0582

6.262

)
= (0.043, 0.090).

At a 99% confidence level the critical points are

χ2
0.005,15 = 32.80 and χ2

0.995,15 = 4.601

so that the confidence interval is
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(√
(16−1)×0.0582

32.80 ,
√

(16−1)×0.0582

4.601

)
= (0.039, 0.105).

8.5.15 (a) The p-value is 2× P (t7 > 1.31) which is more than 0.20.

(b) The p-value is 2× P (t29 > 2.82) which is between 0.002 and 0.01.

(c) The p-value is 2× P (t24 > 1.92) which is between 0.05 and 0.10.

8.5.16 The hypotheses are H0 : µ ≥ 81 versus HA : µ < 81 and the test statistic is

t =
√

16×(76.99−81.00)
5.37 = −2.987

so that the p-value is P (t15 ≤ −2.987) = 0.005.

There is sufficient evidence to conclude that the average clay compressibility at the
location is less than 81.

8.5.17 The hypotheses are H0 : µ ≤ 260.0 versus HA : µ > 260.0 and the test statistic is

t =
√

14×(266.5−260.0)
18.6 = 1.308

so that the p-value is P (t13 ≥ 1.308) = 0.107.

There is not sufficient evidence to conclude that the average strength of fibers of this
type is at least 260.0.

8.5.18 (a) n = 18

(b) 50+52
2 = 51

(c) x̄ = 54.61

(d) s = 19.16

(e) s2 = 367.07

(f) s√
n

= 4.52

(g) With t0.01,17 = 2.567 the confidence interval is

µ ∈
(
54.61− 2.567×19.16√

18
,∞
)

= (43.02,∞).
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(h) The test statistic is

t =
√

18(54.61−50)
19.16 = 1.021

and the p-value is 2× P (t17 ≥ 1.021).
The critical points in Table III imply that the p-value is larger than 0.20.

8.5.19 (a) True

(b) False

(c) True

(d) True

(e) True

(f) True

(g) True

8.5.20 The hypotheses are H0 : µ = 200.0 versus HA : µ 6= 200.0 and the test statistic is

t =
√

22×(193.7−200)
11.2 = −2.639

so that the p-value is 2× P (t21 ≥ 2.639) = 0.015.

There is some evidence that the average resistance of wires of this type is not 200.0
but the evidence is not overwhelming.

8.5.21 (a) Since

L = 74.5− 72.3 = 2.2 = 2× t0.005,9s√
10

= 2× 3.250×s√
10

it follows that s = 1.070.

(b) Since

4× 3.2502×1.0702

12 = 48.4

it can be estimated that a further sample of size 49− 10 = 39 will be sufficient.

8.5.22 (a) The hypotheses are H0 : µ = 600 versus HA : µ 6= 600 and the test statistic is

t =
√

10(614.5−600)
42.9 = 1.069

The p-value is 2× P (t9 ≥ 1.069) = 0.313.
There is not sufficient evidence to establish that the population average
is not 600.
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(b) With t0.01,9 = 3.250 the confidence interval is

µ ∈ 614.5± 3.250×42.9√
10

= (570.4, 658.6)

(c) With

4×
(

3.250×42.9
30

)2
= 86.4

it can be estimated that about 87 − 10 = 77 more items would need to be
sampled.

8.5.23 (a) The hypotheses are H0 : µ ≥ 750 versus HA : µ < 750 and the t-statistic is

t =
√

12(732.9−750)
12.5 = −4.74

so that the p-value is P (t11 < −4.74) = 0.0003.
There is sufficient evidence to conclude that the flexibility of this kind of metal
alloy is smaller than 750.

(b) With t0.01,11 = 2.718 the confidence interval is(
−∞, 732.9 + 2.718×12.5√

12

)
= (−∞, 742.7).

8.5.24 (a) x̄ =
∑9

i=1
xi

9 = 4047.4
9 = 449.71

(b) The ordered data are: 402.9 418.4 423.6 442.3 453.2 459 477.7 483 487.3
Therefore, the sample median is 453.2.

(c) s2 =
(
∑9

i=1
x2

i )−(
∑9

i=1
xi)

2/9

8 = 913.9111

s = 30.23

(d)
(
x̄− t0.005,8×30.23√

9
, x̄ + t0.005,8×30.23√

9

)
=
(
449.71− 3.355×30.23

3 , 449.71 + 3.355×30.23
3

)
= (415.9, 483.52)

(e)
(
−∞, x̄ + t0.05,8×30.23√

9

)
=
(
−∞, 449.71 + 1.86×30.23

3

)
= (−∞, 468.45)

(f) n ≥ 4×
(

t0.005,8×30.23
L0

)2

= 4×
(

3.355×30.23
50

)2
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= 16.459 ' 17
Therefore, 17− 9 = 8 additional samples should be sufficient.

(g) The hypotheses are H0 : µ = 440 versus HA : µ 6= 440.
The t-statistic is

t =
√

9×(449.71−440)
30.23 = 0.9636

so that the p-value is 2× P (t8 ≥ 0.9636) > 0.2.
This large p-value indicates that H0 should be accepted.

(h) The hypotheses are H0 : µ ≥ 480 versus HA : µ < 480.
The t-statistic is

t =
√

9×(449.71−480)
30.23 = −3.006

so that the p-value is P (t8 ≤ −3.006) < 0.01.
This small p-value indicates that H0 should be rejected.

8.5.25 (a) The sample mean is x̄ = 3.669
and the sample standard deviation is s = 0.2531.
The hypotheses are H0 : µ ≤ 3.50 versus HA : µ > 3.50 and the t-statistic is

t =
√

8(3.669−3.50)
0.2531 = 1.89

so that the p-value is P (t7 ≥ 1.89) = 0.51.
There is some evidence to establish that the average density of these kind of
compounds is larger than 3.50, but the evidence is not overwhelming.

(b) With t0.01,7 = 2.998 the confidence interval is

µ ∈
(
3.669− 0.2531×2.998√

8
,∞
)

= (3.40,∞).

8.5.26 (a) The hypotheses are H0 : µ = 385 versus HA : µ 6= 385 and the t-statistic is

t =
√

33(382.97−385.00)
3.81 = −3.06

so that the p-value is 2× P (t32 ≥ 3.06) = 0.004.
There is sufficient evidence to establish that the population mean is not 385.

(b) With t0.005,32 = 2.738 the confidence interval is

µ ∈
(
382.97− 3.81×2.738√

33
, 382.97 + 3.81×2.738√

33

)
= (381.1, 384.8).

8.5.27 (a) The t-statistic is

t =
√

24×(2.39−2.5)
0.21 = −2.566
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so that the p-value is 2× P (t23 ≥ | − 2.566|).
The critical points in Table III imply that the p-value is between 0.01 and 0.02.

(b) The t-statistic is

t =
√

30×(0.538−0.54)
0.026 = −0.421

so that the p-value is P (t29 ≤ −0.421).
The critical points in Table III imply that the p-value is larger than 0.1.

(c) The t-statistic is

t =
√

10×(143.6−135)
4.8 = 5.67

so that the p-value is P (t9 ≥ 5.67).
The critical points in Table III imply that the p-value is smaller than 0.0005.



Chapter 9

Comparing Two Population Means

9.2 Analysis of Paired Samples

9.2.1 The differences zi = xi − yi have a sample mean z̄ = 7.12 and a sample standard
deviation s = 34.12.

Consider the hypotheses

H0 : µ = µA − µB ≤ 0 versus HA : µ = µA − µB > 0

where the alternative hypothesis states that the new assembly method is quicker on
average than the standard assembly method.

The test statistic is

t =
√

n z̄
s =

√
35×7.12
34.12 = 1.23.

The p-value is P (t34 ≥ 1.23) = 0.114.

There is not sufficient evidence to conclude that the new assembly method is any
quicker on average than the standard assembly method.

With t0.05,34 = 1.691 a one-sided 95% confidence level confidence interval

for µ = µA − µB is(
7.12− 1.691×34.12√

35
,∞
)

= (−2.63,∞).

9.2.2 The differences zi = xi − yi have a sample mean z̄ = −1.36 and a sample standard
deviation s = 6.08.

Consider the hypotheses

H0 : µ = µA − µB = 0 versus HA : µ = µA − µB 6= 0.

The test statistic is

t =
√

n z̄
s =

√
14×(−1.36)

6.08 = −0.837.

The p-value is 2× P (t13 ≤ −0.837) = 0.418.

205
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There is not sufficient evidence to conclude that the different stimulation conditions
affect the adhesion of the red blood cells.

With t0.025,13 = 2.160 a two-sided 95% confidence level confidence interval

for µ = µA − µB is(
−1.36− 2.160×6.08√

14
,−1.36 + 2.160×6.08√

14

)
= (−4.87, 2.15).

9.2.3 The differences zi = xi − yi have a sample mean z̄ = 0.570 and a sample standard
deviation s = 0.813.

Consider the hypotheses

H0 : µ = µA − µB ≤ 0 versus HA : µ = µA − µB > 0

where the alternative hypothesis states that the new tires have a smaller average
reduction in tread depth than the standard tires.

The test statistic is

t =
√

n z̄
s =

√
20×0.570
0.813 = 3.14.

The p-value is P (t19 ≥ 3.14) = 0.003.

There is sufficient evidence to conclude that the new tires are better than the standard
tires in terms of the average reduction in tread depth.

With t0.05,19 = 1.729 a one-sided 95% confidence level confidence interval

for µ = µA − µB is(
0.570− 1.729×0.813√

20
,∞
)

= (0.256,∞).

9.2.4 The differences zi = xi − yi have a sample mean z̄ = −7.70 and a sample standard
deviation s = 14.64.

Consider the hypotheses

H0 : µ = µA − µB ≥ 0 versus HA : µ = µA − µB < 0

where the alternative hypothesis states that the new teaching method produces
higher scores on average than the standard teaching method.

The test statistic is

t =
√

n z̄
s =

√
40×(−7.70)

14.64 = −3.33.

The p-value is P (t39 ≤ −3.33) = 0.001.

There is sufficient evidence to conclude that the new teaching method is better since
it produces higher scores on average than the standard teaching method.

With t0.05,39 = 1.685 a one-sided 95% confidence level confidence interval
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for µ = µA − µB is(
−∞,−7.70 + 1.685×14.64√

40

)
= (−∞,−3.80).

9.2.5 The differences zi = xi − yi have a sample mean z̄ = 2.20 and a sample standard
deviation s = 147.8.

Consider the hypotheses

H0 : µ = µA − µB = 0 versus HA : µ = µA − µB 6= 0.

The test statistic is

t =
√

n z̄
s =

√
18×2.20
147.8 = 0.063.

The p-value is 2× P (t17 ≥ 0.063) = 0.95.

There is not sufficient evidence to conclude that the two laboratories are any different
in the datings that they provide.

With t0.025,17 = 2.110 a two-sided 95% confidence level confidence interval

for µ = µA − µB is(
2.20− 2.110×147.8√

18
, 2.20 + 2.110×147.8√

18

)
= (−71.3, 75.7).

9.2.6 The differences zi = xi − yi have a sample mean z̄ = −1.42 and a sample standard
deviation s = 12.74.

Consider the hypotheses

H0 : µ = µA − µB ≥ 0 versus HA : µ = µA − µB < 0

where the alternative hypothesis states that the new golf balls travel further on
average than the standard golf balls.

The test statistic is

t =
√

n z̄
s =

√
24×(−1.42)

12.74 = −0.546.

The p-value is P (t23 ≤ −0.546) = 0.30.

There is not sufficient evidence to conclude that the new golf balls travel further on
average than the standard golf balls.

With t0.05,23 = 1.714 a one-sided 95% confidence level confidence interval

for µ = µA − µB is(
−∞,−1.42 + 1.714×12.74√

24

)
= (−∞, 3.04).
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9.2.7 The differences zi = xi − yi have a sample mean z̄ = −2.800 and a sample standard
deviation s = 6.215.

The hypotheses are

H0 : µ = µA − µB = 0 versus HA : µ = µA − µB 6= 0

and the test statistic is

t =
√

10×(−2.800)
6.215 = −1.425.

The p-value is 2× P (t9 ≥ 1.425) = 0.188.

There is not sufficient evidence to conclude that procedures A and B give different
readings on average.

The reviewer’s comments are plausible.

9.2.8 The differences zi = xi − yi have a sample mean z̄ = 1.375 and a sample standard
deviation s = 1.785.

Consider the hypotheses

H0 : µ = µS − µN ≤ 0 versus HA : µ = µS − µN > 0

where the alternative hypothesis states that the new antibiotic is quicker than the
standard antibiotic.

The test statistic is

t =
√

n z̄
s =

√
8×1.375
1.785 = 2.18.

The p-value is P (t7 ≥ 2.18) = 0.033.

Consequently, there is some evidence that the new antibiotic is quicker than the
standard antibiotic, but the evidence is not overwhelming.

9.2.9 The differences zi = xi − yi have a sample mean z̄ = 0.85 and a sample standard
deviation s = 4.283.

Consider the hypotheses

H0 : µ = µA − µB = 0 versus HA : µ = µA − µB 6= 0

where the alternative hypothesis states that the addition of the surfactant has an
effect on the amount of uranium-oxide removed from the water.

The test statistic is

t =
√

n z̄
s =

√
6×0.85
4.283 = 0.486.

The p-value is 2× P (t5 ≥ 0.486) = 0.65.

Consequently, there is not sufficient evidence to conclude that the addition of the
surfactant has an effect on the amount of uranium-oxide removed from the water.
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9.3 Analysis of Independent Samples

9.3.2 (a) The pooled variance is

s2
p = (n−1)s2

x+(m−1)s2
y

n+m−2 = ((14−1)×4.302)+((14−1)×5.232)
14+14−2 = 22.92.

With t0.005,26 = 2.779 a 99% two-sided confidence interval
for µA − µB is

32.45− 41.45± 2.779×
√

22.92×
√

1
14 + 1

14

= (−14.03,−3.97).

(b) Since(
4.302

14
+ 5.232

14

)2

4.304

142×(14−1)
+ 5.234

142×(14−1)

= 25.06

the degrees of freedom are ν = 25.

Using a critical point t0.005,25 = 2.787
a 99% two-sided confidence interval for µA − µB is

32.45− 41.45± 2.787×
√

4.302

14 + 5.232

14

= (−14.04,−3.96).

(c) The test statistic is

t = x̄−ȳ√
s2x
n

+
s2y
m

= 32.45−41.45√
4.302

14
+ 5.232

14

= 4.97.

The null hypothesis is rejected since |t| = 4.97 is larger
than the critical point t0.005,26 = 2.779.
The p-value is 2× P (t26 ≥ 4.97) = 0.000.

9.3.3 (a) The pooled variance is

s2
p = (n−1)s2

x+(m−1)s2
y

n+m−2 = ((8−1)×44.762)+((17−1)×38.942)
8+17−2 = 1664.6.

With t0.005,23 = 2.807 a 99% two-sided confidence interval
for µA − µB is

675.1− 702.4± 2.807×
√

1664.6×
√

1
8 + 1

17

= (−76.4, 21.8).
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(b) Since(
44.762

8
+ 38.942

17

)2

44.764

82×(8−1)
+ 38.944

172×(17−1)

= 12.2

the degrees of freedom are ν = 12.

Using a critical point t0.005,12 = 3.055
a 99% two-sided confidence interval for µA − µB is

675.1− 702.4± 3.055×
√

44.762

8 + 38.942

17

= (−83.6, 29.0).

(c) The test statistic is

t = x̄−ȳ

sp

√
1
n

+ 1
m

= 675.1−702.4√
1664.6×

√
1
8
+ 1

17

= −1.56.

The null hypothesis is accepted since |t| = 1.56 is smaller
than the critical point t0.005,23 = 2.807.
The p-value is 2× P (t23 ≥ 1.56) = 0.132.

9.3.4 (a) Since(
1.072

10
+ 0.622

9

)2

1.074

102×(10−1)
+ 0.624

92×(9−1)

= 14.7

the degrees of freedom are ν = 14.

Using a critical point t0.01,14 = 2.624
a 99% one-sided confidence interval for µA − µB is(

7.76− 6.88− 2.624×
√

1.072

10 + 0.622

9 ,∞
)

= (−0.16,∞).

(b) The value of c increases with a confidence level of 95%.

(c) The test statistic is

t = x̄−ȳ√
s2x
n

+
s2y
m

= 7.76−6.88√
1.072

10
+ 0.622

9

= 2.22.

The null hypothesis is accepted since
t = 2.22 ≤ t0.01,14 = 2.624.
The p-value is P (t14 ≥ 2.22) = 0.022.
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9.3.5 (a) The pooled variance is

s2
p = (n−1)s2

x+(m−1)s2
y

n+m−2 = ((13−1)×0.001282)+((15−1)×0.000962)
13+15−2

= 1.25× 10−6.

With t0.05,26 = 1.706 a 95% one-sided confidence interval
for µA − µB is(
−∞, 0.0548− 0.0569 + 1.706×

√
1.25× 10−6 ×

√
1
13 + 1

15

)
= (−∞,−0.0014).

(b) The test statistic is

t = x̄−ȳ

sp

√
1
n

+ 1
m

= 0.0548−0.0569√
1.25×10−6×

√
1
13

+ 1
15

= −4.95.

The null hypothesis is rejected at size α = 0.01 since
t = −4.95 < −t0.01,26 = −2.479.
The null hypothesis is consequently also rejected at size α = 0.05.
The p-value is P (t26 ≤ −4.95) = 0.000.

9.3.6 (a) The pooled variance is

s2
p = (n−1)s2

x+(m−1)s2
y

n+m−2 = ((41−1)×0.1242)+((41−1)×0.1372)
41+41−2 = 0.01707.

The test statistic is

t = x̄−ȳ

sp

√
1
n

+ 1
m

= 3.04−3.12√
0.01707×

√
1
41

+ 1
41

= −2.77.

The null hypothesis is rejected at size α = 0.01 since |t| = 2.77 is larger
than t0.005,80 = 2.639.
The p-value is 2× P (t80 ≤ −2.77) = 0.007.

(b) With t0.005,80 = 2.639 a 99% two-sided confidence interval
for µA − µB is

3.04− 3.12± 2.639×
√

0.01707×
√

1
41 + 1

41

= (−0.156,−0.004).

(c) There is sufficient evidence to conclude that the average thicknesses of sheets
produced by the two processes are different.

9.3.7 (a) Since(
11.902

20
+ 4.612

25

)2

11.904

202×(20−1)
+ 4.614

252×(25−1)

= 23.6
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the degrees of freedom are ν = 23.

Consider the hypotheses
H0 : µ = µA − µB ≥ 0 versus HA : µ = µA − µB < 0
where the alternative hypothesis states that the synthetic fiber bundles have an
average breaking strength larger than the wool fiber bundles.

The test statistic is

t = x̄−ȳ√
s2x
n

+
s2y
m

= 436.5−452.8√
11.902

20
+ 4.612

25

= −5.788.

The null hypothesis is rejected at size α = 0.01 since
t = −5.788 < −t0.01,23 = −2.500.
The p-value is P (t23 ≤ −5.788) = 0.000.

(b) With a critical point t0.01,23 = 2.500
a 99% one-sided confidence interval for µA − µB is(
−∞, 436.5− 452.8 + 2.500×

√
11.902

20 + 4.612

25

)
= (−∞,−9.3).

(c) There is sufficient evidence to conclude that the synthetic fiber bundles have an
average breaking strength larger than the wool fiber bundles.

9.3.8 Since(
0.0582

16
+ 0.0622

16

)2

0.0584

162×(16−1)
+ 0.0624

162×(16−1)

= 29.9

the appropriate degrees of freedom for a general analysis without assuming equal
population variances are ν = 29.

Consider the hypotheses

H0 : µ = µA − µB ≥ 0 versus HA : µ = µA − µB < 0

where the alternative hypothesis states that the brand B sugar packets weigh slightly
more on average than brand A sugar packets.

The test statistic is

t = x̄−ȳ√
s2x
n

+
s2y
m

= 1.053−1.071√
0.0582

16
+ 0.0622

16

= −0.848

and the p-value is P (t29 ≤ −0.848) = 0.202.

There is not sufficient evidence to conclude that the brand B sugar packets weigh
slightly more on average than brand A sugar packets.
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9.3.9 (a) The test statistic is

z = x̄−ȳ−δ√
σ2

A
n

+
σ2

B
m

= 100.85−89.32−3√
252

47
+ 202

62

= 1.92

and the p-value is 2× Φ(−1.92) = 0.055.

(b) With a critical point z0.05 = 1.645 a 90% two-sided confidence interval
for µA − µB is

100.85− 89.32± 1.645×
√

252

47 + 202

62

= (4.22, 18.84).

9.3.10 (a) The test statistic is

z = x̄−ȳ√
σ2

A
n

+
σ2

B
m

= 5.782−6.443√
2.02

38
+ 2.02

40

= −1.459

and the p-value is Φ(−1.459) = 0.072.

(b) With a critical point z0.01 = 2.326 a 99% one-sided confidence interval
for µA − µB is(
−∞, 5.782− 6.443 + 2.326×

√
2.02

38 + 2.02

40

)
= (−∞, 0.393).

9.3.11 (a) The test statistic is

z = x̄−ȳ√
σ2

A
n

+
σ2

B
m

= 19.50−18.64√
1.02

10
+ 1.02

12

= 2.009

and the p-value is 2× Φ(−2.009) = 0.045.

(b) With a critical point z0.05 = 1.645 a 90% two-sided confidence interval
for µA − µB is

19.50− 18.64± 1.645×
√

1.02

10 + 1.02

12

= (0.16, 1.56).

With a critical point z0.025 = 1.960 a 95% two-sided confidence interval
for µA − µB is

19.50− 18.64± 1.960×
√

1.02

10 + 1.02

12

= (0.02, 1.70).

With a critical point z0.005 = 2.576 a 99% two-sided confidence interval
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for µA − µB is

19.50− 18.64± 2.576×
√

1.02

10 + 1.02

12

= (−0.24, 1.96).

9.3.12 Using 2.6 as an upper bound for t0.005,ν equal sample sizes of

n = m ≥
4 t2

α/2,ν
(σ2

A+σ2
B)

L2
0

= 4×2.62×(10.02+15.02)
10.02 = 87.88

should be sufficient.

Equal sample sizes of at least 88 can be recommended.

9.3.13 Using 2.0 as an upper bound for t0.025,ν equal sample sizes of

n = m ≥
4 t2

α/2,ν
(σ2

A+σ2
B)

L2
0

= 4×2.02×(1.22+1.22)
1.02 = 46.08

should be sufficient.

Equal sample sizes of at least 47 can be recommended.

9.3.14 Using t0.005,26 = 2.779 equal total sample sizes of

n = m ≥
4 t2

α/2,ν
(s2

x+s2
y)

L2
0

= 4×2.7792×(4.302+5.232)
5.02 = 56.6

should be sufficient.

Additional sample sizes of at least 57− 14 = 43 from each population

can be recommended.

9.3.15 Using t0.005,80 = 2.639 equal total sample sizes of

n = m ≥
4 t2

α/2,ν
(s2

x+s2
y)

L2
0

= 4×2.6392×(0.1242+0.1372)
0.12 = 95.1

should be sufficient.

Additional sample sizes of at least 96− 41 = 55 from each population

can be recommended.

9.3.16 (a) The appropriate degrees of freedom are(
0.3152

12
+ 0.2972

13

)2

0.3154

122×(12−1)
+ 0.2974

132×(13−1)

= 22.5

which should be rounded down to ν = 22.
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Consider the two-sided hypotheses
H0 : µA = µB versus HA : µA 6= µB

for which the test statistic is

t = x̄−ȳ√
s2x
n

+
s2y
m

= 2.462−2.296√
0.3152

12
+ 0.2972

13

= 1.35

and the p-value is 2× P (t22 ≥ 1.35) = 0.190.
There is not sufficient evidence to conclude that the amount of chromium con-
tent has an effect on the average corrosion rate of chilled cast iron.

(b) With a critical point t0.005,22 = 2.819 a 99% two-sided confidence interval for
the difference of the average corrosion rates of chilled cast iron at the two levels
of chromium content is

2.462− 2.296± 2.819×
√

0.3152

12 + 0.2972

13

= (−0.180, 0.512).

9.3.17 There is sufficient evidence to conclude that the paving slabs from company A weigh
more on average than the paving slabs from company B.

There is also more variability in the weights of the paving slabs from company A.

9.3.18 There is a fairly strong suggestion that the paint thicknesses from production line A
are larger than those from production line B, although the evidence is not completely
overwhelming (the p-value is 0.011).

9.3.19 There is sufficient evidence to conclude that the damped feature is effective in re-
ducing the heel-strike force.

9.3.20 The high level of hydrogen peroxide seems to produce more variability in the white-
ness measurements than the low level.

There is not sufficient evidence to conclude that the high level of hydrogen peroxide
produces a larger average whiteness measurement than the low level of hydrogen
peroxide.

9.3.21 There is not sufficient evidence to conclude that the average service times are any
different at these two times of day.

9.3.22 The hypotheses are

H0 : µN ≤ µS versus HA : µN > µS

and
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(
6.302

14
+ 7.152

20

)2

6.304

142×(14−1)
+ 7.154

202×(20−1)

= 30.2

so that the degrees of freedom are ν = 30.

The test statistic is

t = 56.43−62.11√
6.302

14
+ 7.152

20

= −2.446

and the p-value is P (t30 < −2.446) = 0.0103.

Since the p-value is almost equal to 0.01, there is sufficient evidence to conclude
that the new procedure has a larger breaking strength on average than the standard
procedure.

9.3.23 x̄A = 142.4

sA = 9.24

nA = 10

x̄B = 131.6

sB = 7.97

nB = 10

The hypotheses are

H0 : µA ≤ µB versus HA : µA > µB

and(
9.242

10
+ 7.972

10

)2

9.244

102×(10−1)
+ 7.974

102×(10−1)

= 17.6

so that the degrees of freedom are ν = 17.

The test statistic is

t = 142.4−131.6√
9.242

10
+ 7.972

10

= 2.799

and the p-value is P (t17 > 2.799) = 0.006.

There is sufficient evidence to conclude that on average medicine A provides a higher
response than medicine B.

9.3.24 (a) x̄M = 132.52
sM = 1.31
nM = 8
x̄A = 133.87
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sA = 1.72
nA = 10

The hypotheses are
H0 : µM = µA versus HA : µM 6= µA

and(
1.312

8
+ 1.722

10

)2

1.314

82×(8−1)
+ 1.724

102×(10−1)

= 15.98

so that the degrees of freedom are ν = 15.

The test statistic is

t = 132.52−133.87√
1.312

8
+ 1.722

10

= −1.89

and the p-value is 2× P (t15 > 1.89) which is between 5% and 10%.
There is some evidence to suggest that there is a difference between the running
times in the morning and afternoon, but the evidence is not overwhelming.

(b) With t0.005,15 = 2.947 the confidence interval is

µM − µA ∈ 132.52− 133.87± 2.947×
√

1.312

8 + 1.722

10 = (−3.46, 0.76).

9.3.25 x̄A = 152.3

sA = 1.83

nA = 10

sB = 1.94

nB = 8

The hypotheses are

H0 : µA ≤ µB versus HA : µA > µB

and(
1.832

10
+ 1.942

8

)2

1.834

102×(10−1)
+ 1.944

82×(8−1)

= 14.7

so that the degrees of freedom are ν = 14.

Since the p-value is P (t14 > t) < 0.01, it follows that

t = x̄A−x̄B√
s2
A

nA
+

s2
B

nB

= 152.3−x̄B
0.8974 > t0.01,14 = 2.624

so that x̄B < 149.9.
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9.6 Supplementary Problems

9.6.1 The differences zi = xi − yi have a sample mean z̄ = 2.85 and a sample standard
deviation s = 5.30.

Consider the hypotheses

H0 : µ = µA − µB ≤ 0 versus HA : µ = µA − µB > 0

where the alternative hypothesis states that the color displays are more effective than
the black and white displays.

The test statistic is

t =
√

n z̄
s =

√
22×2.85
5.30 = 2.52

and the p-value is P (t21 ≥ 2.52) = 0.010.

There is sufficient evidence to conclude that the color displays are more effective
than the black and white displays.

With t0.05,21 = 1.721 a one-sided 95% confidence level confidence interval

for µ = µA − µB is(
2.85− 1.721×5.30√

22
,∞
)

= (0.91,∞).

9.6.2 The differences zi = xi − yi have a sample mean z̄ = 7.50 and a sample standard
deviation s = 6.84.

Consider the hypotheses

H0 : µ = µA − µB = 0 versus HA : µ = µA − µB 6= 0.

The test statistic is

t =
√

n z̄
s =

√
14×7.50
6.84 = 4.10

and the p-value is 2× P (t13 ≥ 4.10) = 0.001.

There is sufficient evidence to conclude that the water absorption properties of the
fabric are different for the two different roller pressures.

With t0.025,13 = 2.160 a two-sided 95% confidence level confidence interval

for µ = µA − µB is(
7.50− 2.160×6.84√

14
, 7.50 + 2.160×6.84√

14

)
= (3.55, 11.45).
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9.6.3 (a) Since(
5.202

35
+ 3.062

35

)2

5.204

352×(35−1)
+ 3.064

352×(35−1)

= 55.03

the degrees of freedom are ν = 55.

The test statistic is

t = x̄−ȳ√
s2x
n

+
s2y
m

= 22.73−12.66√
5.202

35
+ 3.062

35

= 9.87

and the p-value is 2× P (t55 ≥ 9.87) = 0.000.
It is not plausible that the average crystal size does not depend upon the pre-
expansion temperature.

(b) With a critical point t0.005,55 = 2.668 a 99% two-sided confidence interval
for µA − µB is

22.73− 12.66± 2.668×
√

5.202

35 + 3.062

35

= (7.35, 12.79).

(c) Using t0.005,55 = 2.668 equal total sample sizes of

n = m ≥
4 t2

α/2,ν
(s2

x+s2
y)

L2
0

= 4×2.6682×(5.202+3.062)
4.02 = 64.8

should be sufficient.
Additional sample sizes of at least 65− 35 = 30 from each population
can be recommended.

9.6.4 Since(
20.392

48
+ 15.622

10

)2

20.394

482×(48−1)
+ 15.624

102×(10−1)

= 16.1

the appropriate degrees of freedom for a general analysis without assuming equal
population variances are ν = 16.

Consider the hypotheses

H0 : µ = µA − µB ≤ 0 versus HA : µ = µA − µB > 0

where the alternative hypothesis states that the new driving route is quicker on
average than the standard driving route.

The test statistic is

t = x̄−ȳ√
s2x
n

+
s2y
m

= 432.7−403.5√
20.392

48
+ 15.622

10

= 5.08
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and the p-value is P (t16 ≥ 5.08) = 0.000.

There is sufficient evidence to conclude that the new driving route is quicker on
average than the standard driving route.

9.6.5 There is sufficient evidence to conclude that the additional sunlight results in larger
heights on average.

9.6.6 There is not sufficient evidence to conclude that the reorganization has produced any
improvement in the average waiting time.

However, the variability in the waiting times has been reduced following the reorga-
nization.

9.6.7 This is a paired data set.

There is not any evidence of a difference in the average ocular motor measurements
after reading a book and after reading a computer screen.

9.6.8 The variabilities in the viscosities appear to be about the same for the two engines,
but there is sufficient evidence to conclude that the average viscosity is higher after
having been used in engine 2 than after having been used in engine 1.

9.6.10 With F0.05,17,20 = 2.1667 and F0.05,20,17 = 2.2304

the confidence interval is(
6.482

9.622×2.1667
, 6.482×2.2304

9.622

)
= (0.21, 1.01).

9.6.11 With F0.05,40,40 = 1.6928

the confidence interval is(
0.1242

0.1372×1.6928
, 0.1242×1.6928

0.1372

)
= (0.484, 1.387).

9.6.12 With F0.05,19,24 = 2.0399 and F0.05,24,19 = 2.1141

the 90% confidence interval is(
11.902

4.612×2.0399
, 11.902×2.1141

4.612

)
= (3.27, 14.09).

With F0.025,19,24 = 2.3452 and F0.025,24,19 = 2.4523

the 95% confidence interval is(
11.902

4.612×2.3452
, 11.902×2.4523

4.612

)
= (2.84, 16.34).
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With F0.005,19,24 = 3.0920 and F0.005,24,19 = 3.3062

the 99% confidence interval is(
11.902

4.612×3.0920
, 11.902×3.3062

4.612

)
= (2.16, 22.03).

9.6.13 x̄A = 327433

sA = 9832

nA = 14

x̄B = 335537

sB = 10463

nB = 12

The hypotheses are

H0 : µA = µB versus HA : µA 6= µB

and since(
98322

14
+ 104632

12

)2

98324

142×(14−1)
+ 104634

122×(12−1)

= 22.8

the degrees of freedom are ν = 22.

The test statistic is

t = 327433−335537√
98322

14
+ 104632

12

= −2.024

and the p-value is 2× P (t22 > 2.024) which is between 5% and 10%.

There is some evidence to suggest that there is a difference between the strengths of
the two canvas types, but the evidence is not overwhelming.

9.6.14 Let xi be the strength of the cement sample using procedure 1 and let yi be the
strength of the cement sample using procedure 2.

With zi = xi − yi it can be found that

z̄ =
∑9

i=1
zi

9 = −0.0222

and

sz =

√∑9

i=1
(zi−z̄)2

8 = 0.5911.

For the hypotheses

H0 : µx = µy versus HA : µx 6= µy

the test statistic is
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t =
√

9(−0.0222−0)
0.5911 = −0.113

and the p-value is 2× P (t8 ≥ 0.113) = 0.91.

Therefore, there is no evidence of any difference between the two procedures.

9.6.15 (a) False

(b) True

(c) True

(d) False

(e) False

(f) True

(g) True

(h) True

(i) True

9.6.16 Let xi be the data obtained using therapy 1 and let yi be the data obtained using
therapy 2.

With zi = xi − yi it can be found that

z̄ =
∑8

i=1
zi

8 = 1.000

and

sz =

√∑8

i=1
(zi−z̄)2

7 = 5.757.

For the hypotheses

H0 : µx = µy versus HA : µx 6= µy

the test statistic is

t =
√

8(1.000−0)
5.757 = 0.491

and the p-value is 2× P (t7 ≥ 0.491) = 0.638.

Therefore, there is not sufficient evidence to conclude that there is a difference be-
tween the two experimental drug therapies.

9.6.17 (a) The hypotheses are
H0 : µA ≥ µB versus HA : µA < µB

and the appropriate degrees of freedom are
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(
24.12

20
+ 26.42

24

)2

24.14

202×(20−1)
+ 26.44

242×(24−1)

= 41.6

which should be rounded down to ν = 41.

The test statistic is

t = 2376.3−2402.0√
24.12

20
+ 26.42

24

= −3.37

and the p-value is P (t41 ≤ −3.37) = 0.0008.
There is sufficient evidence to conclude that the items from manufacturer B
provide larger measurements on average than the items from manufacturer A.

(b) With t0.05,41 = 1.683 the confidence interval is

µB − µA ∈
(
−∞, 2402.0− 2376.3 + 1.683

√
24.12

20 + 26.42

24

)
= (−∞, 38.5).

9.6.20 Let xi be the mean error measurement for patient i using joystick design 1 and let
yi be the mean error measurement for patient i using joystick design 2.

With zi = xi − yi it can be found that

z̄ =
∑9

i=1
zi

9 = 0.02067

and

sz =

√∑9

i=1
(zi−z̄)2

8 = 0.03201.

For the hypotheses

H0 : µx = µy versus HA : µx 6= µy

the test statistic is

t =
√

9(0.02067−0)
0.03201 = 1.937

and the p-value is 2× P (t8 ≥ 1.937) which is between 5% and 10%.

Therefore, there is some evidence that the the two joystick designs result in different
error rate measurements, but the evidence is not overwhelming.

With t0.005,8 = 3.355 a 99% confidence interval for the difference between the mean
error measurements obtained from the two designs is

0.02067± 3.355×0.03201√
9

= (−0.015, 0.056).
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Chapter 10

Discrete Data Analysis

10.1 Inferences on a Population Proportion

10.1.1 (a) With z0.005 = 2.576 the confidence interval is(
11
32 −

2.576
32 ×

√
11×(32−11)

32 , 11
32 + 2.576

32 ×
√

11×(32−11)
32

)
= (0.127, 0.560).

(b) With z0.025 = 1.960 the confidence interval is(
11
32 −

1.960
32 ×

√
11×(32−11)

32 , 11
32 + 1.960

32 ×
√

11×(32−11)
32

)
= (0.179, 0.508).

(c) With z0.01 = 2.326 the confidence interval is(
0, 11

32 + 2.326
32 ×

√
11×(32−11)

32

)
= (0, 0.539).

(d) The exact p-value is 2× P (B(32, 0.5) ≤ 11) = 0.110.
The statistic for the normal approximation to the p-value is

z = x−np0√
np0(1−p0)

= 11−(32×0.5)√
32×0.5×(1−0.5)

= −1.768

and the p-value is 2× Φ(−1.768) = 0.077.

10.1.2 (a) With z0.005 = 2.576 the confidence interval is(
21
27 −

2.576
27 ×

√
21×(27−21)

27 , 21
27 + 2.576

27 ×
√

21×(27−21)
27

)
= (0.572, 0.984).

225
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(b) With z0.025 = 1.960 the confidence interval is(
21
27 −

1.960
27 ×

√
21×(27−21)

27 , 21
27 + 1.960

27 ×
√

21×(27−21)
27

)
= (0.621, 0.935).

(c) With z0.05 = 1.645 the confidence interval is(
21
27 −

1.645
27 ×

√
21×(27−21)

27 , 1
)

= (0.646, 1).

(d) The exact p-value is P (B(27, 0.6) ≥ 21) = 0.042.
The statistic for the normal approximation to the p-value is

z = x−np0√
np0(1−p0)

= 21−(27×0.6)√
27×0.6×(1−0.6)

= 1.886

and the p-value is 1− Φ(1.886) = 0.030.

10.1.3 (a) Let p be the probability that a value produced by the random number generator
is a zero, and consider the hypotheses
H0 : p = 0.5 versus HA : p 6= 0.5
where the alternative hypothesis states that the random number generator is
producing 0’s and 1’s with unequal probabilities.
The statistic for the normal approximation to the p-value is

z = x−np0√
np0(1−p0)

= 25264−(50000×0.5)√
50000×0.5×(1−0.5)

= 2.361

and the p-value is 2× Φ(−2.361) = 0.018.

There is a fairly strong suggestion that the random number generator is pro-
ducing 0’s and 1’s with unequal probabilities, although the evidence is not
completely overwhelming.

(b) With z0.005 = 2.576 the confidence interval is(
25264
50000 −

2.576
50000 ×

√
25264×(50000−25264)

50000 , 25264
50000 + 2.576

50000 ×
√

25264×(50000−25264)
50000

)
= (0.4995, 0.5110).

(c) Using the worst case scenario
p̂(1− p̂) = 0.25
the total sample size required can be calculated as

n ≥
4 z2

α/2
p̂(1−p̂)

L2

= 4×2.5762×0.25
0.0052 = 265431.04

so that an additional sample size of 265432−50000 ' 215500 would be required.
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10.1.4 With z0.05 = 1.645 the confidence interval is(
35
44 −

1.645
44 ×

√
35×(44−35)

44 , 1
)

= (0.695, 1).

10.1.5 Let p be the probability that a six is scored on the die and consider the hypotheses

H0 : p ≥ 1
6 versus HA : p < 1

6

where the alternative hypothesis states that the die has been weighted to reduce the
chance of scoring a six.

In the first experiment the exact p-value is

P
(
B
(
50, 1

6

)
≤ 2

)
= 0.0066

and in the second experiment the exact p-value is

P
(
B
(
100, 1

6

)
≤ 4

)
= 0.0001

so that there is more support for foul play from the second experiment than from
the first.

10.1.6 The exact p-value is

2× P
(
B
(
100, 1

6

)
≥ 21

)
= 0.304

and the null hypothesis is accepted at size α = 0.05.

10.1.7 Let p be the probability that a juror is selected from the county where the investigator
lives, and consider the hypotheses

H0 : p = 0.14 versus HA : p 6= 0.14

where the alternative hypothesis implies that the jurors are not being randomly
selected.

The statistic for the normal approximation to the p-value is

z = x−np0√
np0(1−p0)

= 122−(1,386×0.14)√
1,386×0.14×(1−0.14)

= −5.577

and the p-value is 2× Φ(−5.577) = 0.000.

There is sufficient evidence to conclude that the jurors

are not being randomly selected.
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10.1.8 The statistic for the normal approximation to the p-value is

z = x−np0√
np0(1−p0)

= 23−(324×0.1)√
324×0.1×(1−0.1)

= −1.741

and the p-value is Φ(−1.741) = 0.041.

With z0.01 = 2.326 the confidence interval is(
0, 23

324 + 2.326
324 ×

√
23×(324−23)

324

)
= (0, 0.104).

It has not been conclusively shown that the screening test is acceptable.

10.1.9 With z0.025 = 1.960 and L = 0.02

the required sample size for the worst case scenario with

p̂(1− p̂) = 0.25

can be calculated as

n ≥
4 z2

α/2
p̂(1−p̂)

L2 = 4×1.9602×0.25
0.022 = 9604.

If it can be assumed that

p̂(1− p̂) ≤ 0.75× 0.25 = 0.1875

then the required sample size can be calculated as

n ≥
4 z2

α/2
p̂(1−p̂)

L2 = 4×1.9602×0.1875
0.022 = 7203.

10.1.10 With z0.005 = 2.576 and L = 0.04

the required sample size for the worst case scenario with

p̂(1− p̂) = 0.25

can be calculated as

n ≥
4 z2

α/2
p̂(1−p̂)

L2 = 4×2.5762×0.25
0.042 = 4148.

If it can be assumed that

p̂(1− p̂) ≤ 0.4× 0.6 = 0.24

then the required sample size can be calculated as

n ≥
4 z2

α/2
p̂(1−p̂)

L2 = 4×2.5762×0.24
0.042 = 3982.
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10.1.11 With z0.005 = 2.576 the confidence interval is(
73
120 −

2.576
120 ×

√
73×(120−73)

120 , 73
120 + 2.576

120 ×
√

73×(120−73)
120

)
= (0.494, 0.723).

Using

p̂(1− p̂) = 73
120 ×

(
1− 73

120

)
= 0.238

the total sample size required can be calculated as

n ≥
4 z2

α/2
p̂(1−p̂)

L2 = 4×2.5762×0.238
0.12 = 631.7

so that an additional sample size of 632− 120 = 512 would be required.

10.1.12 Let p be the proportion of defective chips in the shipment.

With z0.05 = 1.645 a 95% upper confidence bound on p is(
0, 8

200 + 1.645
200 ×

√
8×(200−8)

200

)
= (0, 0.06279).

A 95% upper confidence bound on the total number of defective chips in the shipment
can therefore be calculated as

0.06279× 100000 = 6279 chips.

10.1.13 With z0.025 = 1.960 the confidence interval is(
12
20 −

1.960
20 ×

√
12×(20−12)

20 , 12
20 + 1.960

20 ×
√

12×(20−12)
20

)
= (0.385, 0.815).

10.1.14 Let p be the proportion of the applications that contained errors.

With z0.05 = 1.645 a 95% lower confidence bound on p is(
17
85 −

1.645
85 ×

√
17×(85−17)

85 , 1
)

= (0.1286, 1).

A 95% lower confidence bound on the total number of applications which contained
errors can therefore be calculated as

0.1286× 7607 = 978.5 or 979 applications.
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10.1.15 With z0.025 = 1.960 and L = 0.10

the required sample size for the worst case scenario with

p̂(1− p̂) = 0.25

can be calculated as

n ≥
4 z2

α/2
p̂(1−p̂)

L2 = 4×1.9602×0.25
0.102 = 384.2

or 385 householders.

If it can be assumed that

p̂(1− p̂) ≤ 0.333× 0.667 = 0.222

then the required sample size can be calculated as

n ≥
4 z2

α/2
p̂(1−p̂)

L2 = 4×1.9602×0.222
0.102 = 341.1

or 342 householders.

10.1.16 With z0.005 = 2.576 the confidence interval is(
22
542 −

2.576
542 ×

√
22×(542−22)

542 , 22
542 + 2.576

542 ×
√

22×(542−22)
542

)
= (0.019, 0.062).

10.1.17 The standard confidence interval is (0.161, 0.557).

The alternative confidence interval is (0.195, 0.564).

10.1.18 (a) Let p be the probability that the dielectric breakdown strength is below the
threshold level, and consider the hypotheses
H0 : p ≤ 0.05 versus HA : p > 0.05
where the alternative hypothesis states that the probability of an insulator of
this type having a dielectric breakdown strength below the specified threshold
level is larger than 5%.
The statistic for the normal approximation to the p-value is

z = x−np0−0.5√
np0(1−p0)

= 13−(62×0.05)−0.5√
62×0.05×(1−0.05)

= 5.48

and the p-value is 1− Φ(5.48) = 0.000.

There is sufficient evidence to conclude that the probability of an insulator of
this type having a dielectric breakdown strength below the specified threshold
level is larger than 5%.
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(b) With z0.05 = 1.645 the confidence interval is(
13
62 −

1.645
62

√
13(62−13)

62 , 1
)

= (0.125, 1).

10.1.19 p̂ = 31
210 = 0.148

With z0.005 = 2.576 the confidence interval is

p ∈ 0.148± 2.576
210

√
31×(210−31)

210

= (0.085, 0.211).

10.1.20 Let p be the probability of preferring cushion type A.

Then

p̂ = 28
38 = 0.737

and the hypotheses of interest are

H0 : p ≤ 2
3 versus HA : p > 2

3 .

The test statistic is

z = 28−(38×2/3)−0.5√
38×2/3×1/3

= 0.75

and the p-value is 1− Φ(0.75) = 0.227.

The data set does not provide sufficient evidence to establish that cushion type A is
at least twice as popular as cushion type B.

10.1.21 If 793 =
z2
α/2

(2×0.035)2

then z2
α/2 = 1.97 so that α ' 0.05.

Therefore, the margin of error was calculated with 95% confidence under the worst
case scenario where the estimated probability could be close to 0.5.
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10.2 Comparing Two Population Proportions

10.2.1 (a) With z0.005 = 2.576 the confidence interval is

14
37 −

7
26 ± 2.576×

√
14×(37−14)

373 + 7×(26−7)
263

= (−0.195, 0.413).

(b) With z0.025 = 1.960 the confidence interval is

14
37 −

7
26 ± 1.960×

√
14×(37−14)

373 + 7×(26−7)
263

= (−0.122, 0.340).

(c) With z0.01 = 2.326 the confidence interval is(
14
37 −

7
26 − 2.326×

√
14×(37−14)

373 + 7×(26−7)
263 , 1

)
= (−0.165, 1).

(d) With the pooled probability estimate

p̂ = x+y
n+m = 14+7

37+26 = 0.333

the test statistic is

z = p̂A−p̂B√
p̂(1−p̂)( 1

n
+ 1

m)
=

14
37
− 7

26√
0.333×(1−0.333)×( 1

37
+ 1

26)
= 0.905

and the p-value is 2× Φ(−0.905) = 0.365.

10.2.2 (a) With z0.005 = 2.576 the confidence interval is

261
302 −

401
454 ± 2.576×

√
261×(302−261)

3023 + 401×(454−401)
4543

= (−0.083, 0.045).

(b) With z0.05 = 1.645 the confidence interval is

261
302 −

401
454 ± 1.645×

√
261×(302−261)

3023 + 401×(454−401)
4543

= (−0.060, 0.022).

(c) With z0.05 = 1.645 the confidence interval is(
−1, 261

302 −
401
454 + 1.645×

√
261×(302−261)

3023 + 401×(454−401)
4543

)
= (−1, 0.022).
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(d) With the pooled probability estimate

p̂ = x+y
n+m = 261+401

302+454 = 0.876

the test statistic is

z = p̂A−p̂B√
p̂(1−p̂)( 1

n
+ 1

m)
=

261
302

− 401
454√

0.876×(1−0.876)×( 1
302

+ 1
454)

= −0.776

and the p-value is 2× Φ(−0.776) = 0.438.

10.2.3 (a) With z0.005 = 2.576 the confidence interval is

35
44 −

36
52 ± 2.576×

√
35×(44−35)

443 + 36×(52−36)
523

= (−0.124, 0.331).

(b) With the pooled probability estimate

p̂ = x+y
n+m = 35+36

44+52 = 0.740

the test statistic is

z = p̂A−p̂B√
p̂(1−p̂)( 1

n
+ 1

m)
=

35
44
− 36

52√
0.740×(1−0.740)×( 1

44
+ 1

52)
= 1.147

and the p-value is 2× Φ(−1.147) = 0.251.

There is not sufficient evidence to conclude that one radar system is any better
than the other radar system.

10.2.4 (a) With z0.005 = 2.576 the confidence interval is

4
50 −

10
50 ± 2.576×

√
4×(50−4)

503 + 10×(50−10)
503

= (−0.296, 0.056).

(b) With the pooled probability estimate

p̂ = x+y
n+m = 4+10

50+50 = 0.14

the test statistic is

z = p̂A−p̂B√
p̂(1−p̂)( 1

n
+ 1

m)
=

4
50
− 10

50√
0.14×(1−0.14)×( 1

50
+ 1

50)
= −1.729

and the p-value is 2× Φ(−1.729) = 0.084.

(c) In this case the confidence interval is

40
500 −

100
500 ± 2.576×

√
40×(500−40)

5003 + 100×(500−100)
5003

= (−0.176,−0.064).

With the pooled probability estimate
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p̂ = x+y
n+m = 40+100

500+500 = 0.14

the test statistic is

z = p̂A−p̂B√
p̂(1−p̂)( 1

n
+ 1

m)
=

40
500

− 100
500√

0.14×(1−0.14)×( 1
500

+ 1
500)

= −5.468

and the p-value is 2× Φ(−5.468) = 0.000.

10.2.5 Let pA be the probability of crystallization within 24 hours without seed crystals and
let pB be the probability of crystallization within 24 hours with seed crystals.

With z0.05 = 1.645 a 95% upper confidence bound for pA − pB is(
−1, 27

60 −
36
60 + 1.645×

√
27×(60−27)

603 + 36×(60−36)
603

)
= (−1,−0.002).

Consider the hypotheses

H0 : pA ≥ pB versus HA : pA < pB

where the alternative hypothesis states that the presence of seed crystals increases
the probability of crystallization within 24 hours.

With the pooled probability estimate

p̂ = x+y
n+m = 27+36

60+60 = 0.525

the test statistic is

z = p̂A−p̂B√
p̂(1−p̂)( 1

n
+ 1

m)
=

27
60
− 36

60√
0.525×(1−0.525)×( 1

60
+ 1

60)
= −1.645

and the p-value is Φ(−1.645) = 0.050.

There is some evidence that the presence of seed crystals increases the probability
of crystallization within 24 hours but it is not overwhelming.

10.2.6 Let pA be the probability of an improved condition with the standard drug and let
pB be the probability of an improved condition with the new drug.

With z0.05 = 1.645 a 95% upper confidence bound for pA − pB is(
−1, 72

100 −
83
100 + 1.645×

√
72×(100−72)

1003 + 83×(100−83)
1003

)
= (−1,−0.014).

Consider the hypotheses

H0 : pA ≥ pB versus HA : pA < pB

where the alternative hypothesis states that the new drug increases the probability
of an improved condition.

With the pooled probability estimate
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p̂ = x+y
n+m = 72+83

100+100 = 0.775

the test statistic is

z = p̂A−p̂B√
p̂(1−p̂)( 1

n
+ 1

m)
=

72
100

− 83
100√

0.775×(1−0.775)×( 1
100

+ 1
100)

= −1.863

and the p-value is Φ(−1.863) = 0.031.

There is some evidence that the new drug increases the probability of an improved
condition but it is not overwhelming.

10.2.7 Let pA be the probability that a television set from production line A does not
meet the quality standards and let pB be the probability that a television set from
production line B does not meet the quality standards.

With z0.025 = 1.960 a 95% two-sided confidence interval for pA − pB is

23
1128 −

24
962 ± 1.960×

√
23×(1128−23)

11283 + 24×(962−24)
9623

= (−0.017, 0.008).

Consider the hypotheses

H0 : pA = pB versus HA : pA 6= pB

where the alternative hypothesis states that there is a difference in the operating
standards of the two production lines.

With the pooled probability estimate

p̂ = x+y
n+m = 23+24

1128+962 = 0.022

the test statistic is

z = p̂A−p̂B√
p̂(1−p̂)( 1

n
+ 1

m)
=

23
1128

− 24
962√

0.022×(1−0.022)×( 1
1128

+ 1
962)

= −0.708

and the p-value is 2× Φ(−0.708) = 0.479.

There is not sufficient evidence to conclude that there is a difference in the operating
standards of the two production lines.

10.2.8 Let pA be the probability of a successful outcome for the standard procedure and let
pB be the probability of a successful outcome for the new procedure.

With z0.05 = 1.645 a 95% upper confidence bound for pA − pB is(
−1, 73

120 −
101
120 + 1.645×

√
73×(120−73)

1203 + 101×(120−101)
1203

)
= (−1,−0.142).

Consider the hypotheses
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H0 : pA ≥ pB versus HA : pA < pB

where the alternative hypothesis states that the new procedure increases the proba-
bility of a successful outcome.

With the pooled probability estimate

p̂ = x+y
n+m = 73+101

120+120 = 0.725

the test statistic is

z = p̂A−p̂B√
p̂(1−p̂)( 1

n
+ 1

m)
=

73
120

− 101
120√

0.725×(1−0.725)×( 1
120

+ 1
120)

= −4.05

and the p-value is Φ(−4.05) ' 0.0000.

There is sufficient evidence to conclude that the new procedure increases the proba-
bility of a successful outcome.

10.2.9 Let pA be the probability that a computer chip from supplier A is defective and let
pB be the probability that a computer chip from supplier B is defective.

With z0.025 = 1.960 a 95% two-sided confidence interval for pA − pB is

8
200 −

13
250 ± 1.960×

√
8×(200−8)

2003 + 13×(250−13)
2503

= (−0.051, 0.027).

Consider the hypotheses

H0 : pA = pB versus HA : pA 6= pB

where the alternative hypothesis states that there is a difference in the quality of the
computer chips from the two suppliers.

With the pooled probability estimate

p̂ = x+y
n+m = 8+13

200+250 = 0.047

the test statistic is

z = p̂A−p̂B√
p̂(1−p̂)( 1

n
+ 1

m)
=

8
200

− 13
250√

0.047×(1−0.047)×( 1
200

+ 1
250)

= −0.600

and the p-value is 2× Φ(−0.600) = 0.549.

There is not sufficient evidence to conclude that there is a difference in the quality
of the computer chips from the two suppliers.

10.2.10 Let pA be the probability of an error in an application processed during the first two
weeks and let pB be the probability of an error in an application processed after the
first two weeks.

With z0.05 = 1.645 a 95% lower confidence bound for pA − pB is
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(
17
85 −

16
132 − 1.645×

√
17×(85−17)

853 + 16×(132−16)
1323 , 1

)
= (−0.007, 1).

Consider the hypotheses

H0 : pA ≤ pB versus HA : pA > pB

where the alternative hypothesis states that the probability of an error in the pro-
cessing of an application is larger during the first two weeks.

With the pooled probability estimate

p̂ = x+y
n+m = 17+16

85+132 = 0.152

the test statistic is

z = p̂A−p̂B√
p̂(1−p̂)( 1

n
+ 1

m)
=

17
85
− 16

132√
0.152×(1−0.152)×( 1

85
+ 1

132)
= 1.578

and the p-value is 1− Φ(1.578) = 0.057.

There is some evidence that the probability of an error in the processing of an
application is larger during the first two weeks but it is not overwhelming.

10.2.11 With the pooled probability estimate

p̂ = x+y
n+m = 159+138

185+185 = 0.803

the test statistic is

z = p̂A−p̂B√
p̂(1−p̂)( 1

n
+ 1

m)
=

159
185

− 138
185√

0.803×(1−0.803)×( 1
185

+ 1
185)

= 2.745

and the two-sided p-value is 2× Φ(−2.745) = 0.006.

The two-sided null hypothesis H0 : pA = pB is rejected and there is sufficient evidence
to conclude that machine A is better than machine B.

10.2.12 Let pA be the probability of a link being followed with the original design and let pB

be the probability of a link being followed with the modified design.

With z0.05 = 1.645 a 95% upper confidence bound for pA − pB is(
−1, 22

542 −
64
601 + 1.645×

√
22×(542−22)

5423 + 64×(601−64)
6013

)
= (−1,−0.041).

Consider the hypotheses

H0 : pA ≥ pB versus HA : pA < pB

where the alternative hypothesis states that the probability of a link being followed
is larger after the modifications.
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With the pooled probability estimate

p̂ = x+y
n+m = 22+64

542+601 = 0.0752

the test statistic is

z = p̂A−p̂B√
p̂(1−p̂)( 1

n
+ 1

m)
=

22
542

− 64
601√

0.0752×(1−0.0752)×( 1
542

+ 1
601)

= −4.22

and the p-value is Φ(−4.22) ' 0.000.

There is sufficient evidence to conclude that the probability of a link being followed
has been increased by the modifications.

10.2.13 (a) Consider the hypotheses
H0 : p180 ≥ p250 versus HA : p180 < p250

where the alternative hypothesis states that the probability of an insulator of
this type having a dielectric breakdown strength below the specified threshold
level is larger at 250 degrees Centigrade than it is at 180 degrees Centigrade.
With the pooled probability estimate
x+y
n+m = 13+20

62+70 = 0.25

the test statistic is

z = p̂180−p̂250√
p̂(1−p̂)( 1

n
+ 1

m)
=

13
62
− 20

70√
0.25×(1−0.25)( 1

62
+ 1

70)
= −1.007

and the p-value is Φ(−1.007) = 0.1570.

There is not sufficient evidence to conclude that the probability of an insulator
of this type having a dielectric breakdown strength below the specified threshold
level is larger at 250 degrees Centigrade than it is at 180 degrees Centigrade.

(b) With z0.005 = 2.576 the confidence interval is

13
62 −

20
70 ± 2.576×

√
13×(62−13)

623 + 20×(70−20)
703

= (−0.269, 0.117).

10.2.14 p̂A = 72
125 = 0.576

p̂B = 60
125 = 0.480

The pooled estimate is

p̂ = 72+60
125+125 = 0.528

and the hypotheses are

H0 : pA = pB versus HA : pA 6= pB.

The test statistic is
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z = 0.576−0.480√
0.528×0.472×( 1

125
+ 1

125)
= 1.520

and the p-value is 2× Φ(−1.520) = 0.128.

There is not sufficient evidence to conclude that there is a difference between the two
treatments.

10.2.15 p̂1 = 76
243 = 0.313

p̂2 = 122
320 = 0.381

With z0.005 = 2.576 the confidence interval is

p1 − p2 ∈ 0.313− 0.381± 2.576×
√

76×(243−76)
2433 + 122×(320−122)

3203

= (−0.172, 0.036)

The confidence interval contains zero so there is not sufficient evidence to conclude
that the failure rates due to operator misuse are different for the two products.
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10.3 Goodness of Fit Tests for One-way Contingency Tables

10.3.1 (a) The expected cell frequencies are ei = 500
6 = 83.33.

(b) The Pearson chi-square statistic is

X2 = (80−83.33)2

83.33 + (71−83.33)2

83.33 + (90−83.33)2

83.33 + (87−83.33)2

83.33

+ (78−83.33)2

83.33 + (94−83.33)2

83.33 = 4.36.

(c) The likelihood ratio chi-square statistic is

G2 = 2×
(
80 ln

(
80

83.33

)
+ 71 ln

(
71

83.33

)
+ 90 ln

(
90

83.33

)
+ 87 ln

(
87

83.33

)
+ 78 ln

(
78

83.33

)
+ 94 ln

(
94

83.33

))
= 4.44.

(d) The p-values are P (χ2
5 ≥ 4.36) = 0.499 and P (χ2

5 ≥ 4.44) = 0.488.

A size α = 0.01 test of the null hypothesis that the die is fair is accepted.

(e) With z0.05 = 1.645 the confidence interval is(
94
500 −

1.645
500 ×

√
94×(500−94)

500 , 94
500 + 1.645

500 ×
√

94×(500−94)
500

)
= (0.159, 0.217).

10.3.2 The expected cell frequencies are

1 2 3 4 5 6 7 8 9 ≥10

50.00 41.67 34.72 28.94 24.11 20.09 16.74 13.95 11.62 58.16

The Pearson chi-square statistic is X2 = 10.33.

The p-value is P (χ2
9 ≥ 10.33) = 0.324.

The geometric distribution with p = 1
6 is plausible.

10.3.3 (a) The expected cell frequencies are:

e1 = 221× 4
7 = 126.29

e2 = 221× 2
7 = 63.14
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e3 = 221× 1
7 = 31.57

The Pearson chi-square statistic is

X2 = (113−126.29)2

126.29 + (82−63.14)2

63.14 + (26−31.57)2

31.57 = 8.01.

The p-value is P (χ2
2 ≥ 8.01) = 0.018.

There is a fairly strong suggestion that the supposition is not plausible although
the evidence is not completely overwhelming.

(b) With z0.005 = 2.576 the confidence interval is(
113
221 −

2.576
221 ×

√
113×(221−113)

221 , 113
221 + 2.576

221 ×
√

113×(221−113)
221

)
= (0.425, 0.598).

10.3.4 The expected cell frequencies are:

e1 = 964× 0.14 = 134.96

e2 = 964× 0.22 = 212.08

e3 = 964× 0.35 = 337.40

e4 = 964× 0.16 = 154.24

e5 = 964× 0.13 = 125.32

The Pearson chi-square statistic is X2 = 14.6.

The p-value is P (χ2
4 ≥ 14.6) = 0.006.

There is sufficient evidence to conclude that the

jurors have not been selected randomly.

10.3.5 (a) The expected cell frequencies are:
e1 = 126× 0.5 = 63.0
e2 = 126× 0.4 = 50.4
e3 = 126× 0.1 = 12.6

The likelihood ratio chi-square statistic is

G2 = 2×
(
56 ln

(
56

63.0

)
+ 51 ln

(
51

50.4

)
+ 19 ln

(
19

12.6

))
= 3.62.

The p-value is P (χ2
2 ≥ 3.62) = 0.164.

These probability values are plausible.
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(b) With z0.025 = 1.960 the confidence interval is(
56
126 −

1.960
126 ×

√
56×(126−56)

126 , 56
126 + 1.960

126 ×
√

56×(126−56)
126

)
= (0.358, 0.531).

10.3.6 If the three soft drink formulations are equally likely

then the expected cell frequencies are

ei = 600× 1
3 = 200.

The Pearson chi-square statistic is

X2 = (225−200)2

200 + (223−200)2

200 + (152−200)2

200 = 17.29.

The p-value is P (χ2
2 ≥ 17.29) = 0.0002.

It is not plausible that the three soft drink formulations are equally likely.

10.3.7 The first two cells should be pooled so that there are 13 cells altogether.

The Pearson chi-square statistic is X2 = 92.9

and the p-value is P (χ2
12 ≥ 92.9) = 0.0000.

It is not reasonable to model the number of arrivals with a

Poisson distribution with mean λ = 7.

10.3.8 A Poisson distribution with mean λ = x̄ = 4.49 can be considered.

The first two cells should be pooled and the last two cells should be pooled

so that there are 9 cells altogether.

The Pearson chi-square statistic is X2 = 8.3

and the p-value is P (χ2
7 ≥ 8.3) = 0.307.

It is reasonable to model the number of radioactive particles emitted

with a Poisson distribution.

10.3.9 If the pearl oyster diameters have a uniform distribution then the expected cell
frequencies are:

e1 = 1490× 0.1 = 149

e2 = 1490× 0.2 = 298

e3 = 1490× 0.2 = 298

e4 = 1490× 0.5 = 745
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The Pearson chi-square statistic is

X2 = (161−149)2

149 + (289−298)2

298 + (314−298)2

298 + (726−745)2

745 = 2.58.

The p-value is P (χ2
3 ≥ 2.58) = 0.461.

It is plausible that the pearl oyster diameters have a uniform distribution

between 0 and 10 mm.

10.3.13 According to the genetic theory the probabilities are 9
16 , 3

16 , 3
16 and 1

16 ,

so that the expected cell frequencies are:

e1 = 9×727
16 = 408.9375

e2 = 3×727
16 = 136.3125

e3 = 3×727
16 = 136.3125

e4 = 1×727
16 = 45.4375

The Pearson chi-square statistic is

X2 = (412−408.9375)2

408.9375 + (121−136.3125)2

136.3125

+ (148−136.3125)2

136.3125 + (46−45.4375)2

45.4375 = 2.75

and the likelihood ratio chi-square statistic is

G2 = 2×
(
412 ln

(
412

408.9375

)
+ 121 ln

(
121

136.3125

)
+148 ln

(
148

136.3125

)
+ 46 ln

(
46

45.4375

))
= 2.79.

The p-values are P (χ2
3 ≥ 2.75) = 0.432 and P (χ2

3 ≥ 2.79) = 0.425

so that the data set is consistent with the proposed genetic theory.

10.3.14 e1 = e2 = e3 = 205× 1
3 = 68.33

The Pearson chi-square statistic is

X2 = (83−68.33)2

68.33 + (75−68.33)2

68.33 + (47−68.33)2

68.33 = 10.46

so that the p-value is P (X2
2 ≥ 10.46) = 0.005.

There is sufficient evidence to conclude that the three products do not have equal
probabilities of being chosen.
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10.3.15 (a) p̂3 = 489
630 = 0.776

The hypotheses are
H0 : p3 = 0.80 versus HA : p3 6= 0.80
and the test statistic is

z = 489−(630×0.8)√
630×0.8×0.2

= −1.494.

The p-value is 2× Φ(−1.494) = 0.135.

There is not sufficient evidence to conclude that the probability that a solution
has normal acidity is not 0.80.

(b) e1 = 630× 0.04 = 25.2
e2 = 630× 0.06 = 37.8
e3 = 630× 0.80 = 504.0
e4 = 630× 0.06 = 37.8
e5 = 630× 0.04 = 25.2

The Pearson chi-square statistic is

X2 = (34−25.2)2

25.2 + (41−37.8)2

37.8 + (489−504.0)2

504.0 + (52−37.8)2

37.8 + (14−25.2)2

25.2 = 14.1

so that the p-value is P (X2
4 ≥ 14.1) = 0.007.

The data is not consistent with the claimed probabilities.

10.3.16 P (X ≤ 24) = 1− e−(0.065×24)0.45
= 0.705

P (X ≤ 48) = 1− e−(0.065×48)0.45
= 0.812

P (X ≤ 72) = 1− e−(0.065×72)0.45
= 0.865

The observed cell frequencies are x1 = 12, x2 = 53, x3 = 39, and x4 = 21.

The expected cell frequencies are:

e1 = 125× 0.705 = 88.125

e2 = 125× (0.812− 0.705) = 13.375

e3 = 125× (0.865− 0.812) = 6.625

e4 = 125× (1− 0.865) = 16.875

The Pearson chi-square statistic is

X2 = (12−88.125)2

88.125 + (53−13.375)2

13.375 + (39−6.625)2

6.625 + (21−16.875)2

16.875 = 342

so that the p-value is P (χ2
3 ≥ 342) ' 0.
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It is not plausible that for these batteries under these storage conditions the time
in hours until the charge drops below the threshold level has a Weibull distribution
with parameters λ = 0.065 and a = 0.45.

10.3.17 The total sample size is n = 76.

Under the specified Poisson distribution the expected cell frequencies are:

e1 = 76× e−2.5 × 2.50

0! = 6.238

e2 = 76× e−2.5 × 2.51

1! = 15.596

e3 = 76× e−2.5 × 2.52

2! = 19.495

e4 = 76× e−2.5 × 2.53

3! = 16.246

e5 = 76× e−2.5 × 2.54

4! = 10.154

e6 = 76− e1 − e2 − e3 − e4 − e5 = 8.270

The Pearson chi-square statistic is

X2 = (3−6.238)2

6.238 + (12−15.596)2

15.596 + (23−19.495)2

19.495

+ (18−16.246)2

16.246 + (13−10.154)2

10.154 + (7−8.270)2

8.270 = 4.32

so that the p-value is P (χ2
5 ≥ 4.32) = 0.50.

It is plausible that the number of shark attacks per year follows a Poisson distribution
with mean 2.5.
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10.4 Testing for Independence in Two-way Contingency Tables

10.4.1 (a) The expected cell frequencies are

Acceptable Defective

Supplier A 186.25 13.75

Supplier B 186.25 13.75

Supplier C 186.25 13.75

Supplier D 186.25 13.75

(b) The Pearson chi-square statistic is X2 = 7.087.

(c) The likelihood ratio chi-square statistic is G2 = 6.889.

(d) The p-values are P (χ2
3 ≥ 7.087) = 0.069 and P (χ2

3 ≥ 6.889) = 0.076
where the degrees of freedom of the chi-square random variable are calculated
as (4− 1)× (2− 1) = 3.

(e) The null hypothesis that the defective rates are identical for the four suppliers
is accepted at size α = 0.05.

(f) With z0.025 = 1.960 the confidence interval is

10
200 ±

1.960
200 ×

√
10×(200−10)

200

= (0.020, 0.080).

(g) With z0.025 = 1.960 the confidence interval is

15
200 −

21
200 ± 1.960×

√
15×(200−15)

2003 + 21×(200−21)
2003

= (−0.086, 0.026).
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10.4.2 The expected cell frequencies are

Dead Slow growth Medium growth Strong growth

No fertilizer 57.89 93.84 172.09 163.18

Fertilizer I 61.22 99.23 181.98 172.56

Fertilizer II 62.89 101.93 186.93 177.25

The Pearson chi-square statistic is X2 = 13.66.

The p-value is P (χ2
6 ≥ 13.66) = 0.034 where the degrees of freedom of the chi-square

random variable are (3− 1)× (4− 1) = 6.

There is a fairly strong suggestion that the seedlings growth pattern is different for
the different growing conditions, although the evidence is not overwhelming.

10.4.3 The expected cell frequencies are

Formulation I Formulation II Formulation III

10-25 75.00 74.33 50.67

26-50 75.00 74.33 50.67

≥ 51 75.00 74.33 50.67

The Pearson chi-square statistic is X2 = 6.11.

The p-value is P (χ2
4 ≥ 6.11) = 0.191 where the degrees of freedom of the chi-square

random variable are calculated as (3− 1)× (3− 1) = 4.

There is not sufficient evidence to conclude that the preferences for the different
formulations change with age.
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10.4.4 (a) The expected cell frequencies are

Pass Fail

Line 1 166.2 13.8

Line 2 166.2 13.8

Line 3 166.2 13.8

Line 4 166.2 13.8

Line 5 166.2 13.8

The Pearson chi-square statistic is X2 = 13.72.

The p-value is P (χ2
4 ≥ 13.72) = 0.008 where the degrees of freedom of the

chi-square random variable are calculated as (5− 1)× (2− 1) = 4.

There is sufficient evidence to conclude that the pass rates are different for the
five production lines.

(b) With z0.025 = 1.960 the confidence interval is

11
180 −

15
180 ± 1.960×

√
11×(180−11)

1803 + 15×(180−15)
1803

= (−0.076, 0.031).

10.4.5 The expected cell frequencies are

Completely satisfied Somewhat satisfied Not satisfied

Technician 1 71.50 22.36 4.14

Technician 2 83.90 26.24 4.86

Technician 3 45.96 14.37 2.66

Technician 4 57.64 18.03 3.34

The Pearson chi-square statistic is X2 = 32.11.



10.4. TESTING FOR INDEPENDENCE IN TWO-WAY CONTINGENCY TABLES 249

The p-value is P (χ2
6 ≥ 32.11) = 0.000 where the degrees of freedom of the chi-square

random variable are calculated as (4− 1)× (3− 1) = 6.

There is sufficient evidence to conclude that some technicians are better than others
in satisfying their customers.

Note: In this analysis 4 of the cells have expected values less than 5 and it may be
preferable to pool together the categories “somewhat satisfied” and “not satisfied”.
In this case the Pearson chi-square statistic is X2 = 31.07 and comparison with a
chi-square distribution with 3 degrees of freedom again gives a p-value of 0.000. The
conclusion remains the same.

10.4.7 (a) The expected cell frequencies are

Less than one week More than one week

Standard drug 88.63 64.37

New drug 79.37 57.63

The Pearson chi-square statistic is X2 = 15.71.

The p-value is P (χ2
1 ≥ 15.71) = 0.0000 where the degrees of freedom of the

chi-square random variable are calculated as (2− 1)× (2− 1) = 1.

There is sufficient evidence to conclude that ps 6= pn.

(b) With z0.005 = 2.576 the confidence interval is

72
153 −

96
137 ± 2.576×

√
72×(153−72)

1533 + 96×(137−96)
1373

= (−0.375,−0.085).

10.4.8 The Pearson chi-square statistic is

X2 = 1986×(1078×111−253×544)2

1331×655×1622×364 = 1.247

which gives a p-value of P (χ2
1 ≥ 1.247) = 0.264 where the degrees of freedom of the

chi-square random variable are calculated as (2− 1)× (2− 1) = 1.

It is plausible that the completeness of the structure and the etch depth are inde-
pendent factors.
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10.4.9 The expected cell frequencies are

Type Warranty purchased Warranty not purchased

A 34.84 54.16

B 58.71 91.29

C 43.45 67.55

The Pearson chi-square statistic is X2 = 2.347.

The p-value is P (χ2
2 ≥ 2.347) = 0.309.

The null hypothesis of independence is plausible and there is not sufficient evidence
to conclude that the probability of a customer purchasing the extended warranty is
different for the three product types.

10.4.10 The expected cell frequencies are

Type Minor cracking Medium cracking Severe cracking

A 35.77 13.09 8.14

B 30.75 11.25 7.00

C 56.48 20.66 12.86

The Pearson chi-square statistic is X2 = 5.024.

The p-value is P (χ2
4 ≥ 5.024) = 0.285.

The null hypothesis of independence is plausible and there is not sufficient evidence
to conclude that the three types of asphalt are different with respect to cracking.
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10.6 Supplementary Problems

10.6.1 With z0.025 = 1.960 the confidence interval is(
27
60 −

1.960
60 ×

√
27×(60−27)

60 , 27
60 + 1.960

60 ×
√

27×(60−27)
60

)
= (0.324, 0.576).

10.6.2 Let p be the probability that a bag of flour is underweight and consider the hypotheses

H0 : p ≤ 1
40 = 0.025 versus HA : p > 1

40 = 0.025

where the alternative hypothesis states that the consumer watchdog organization can
take legal action.

The statistic for the normal approximation to the p-value is

z = x−np0√
np0(1−p0)

= 18−(500×0.025)√
500×0.025×(1−0.025)

= 1.575

and the p-value is 1− Φ(1.575) = 0.058.

There is a fairly strong suggestion that the proportion of underweight bags is more
than 1 in 40 although the evidence is not overwhelming.

10.6.3 Let p be the proportion of customers who request the credit card.

With z0.005 = 2.576 a 99% two-sided confidence interval for p is(
384
5000 −

2.576
5000 ×

√
384×(5000−384)

5000 , 384
5000 + 2.576

5000 ×
√

384×(5000−384)
5000

)
= (0.0671, 0.0865).

The number of customers out of 1,000,000 who request the credit card can be

estimated as being between 67,100 and 86,500.

10.6.4 Let pA be the probability that an operation performed in the morning is a total
success and let pB be the probability that an operation performed in the afternoon
is a total success.

With z0.05 = 1.645 a 95% lower confidence bound for pA − pB is(
443
564 −

388
545 − 1.645×

√
443×(564−443)

5643 + 388×(545−388)
5453 , 1

)
= (0.031, 1).

Consider the hypotheses
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H0 : pA ≤ pB versus HA : pA > pB

where the alternative hypothesis states that the probability that an operation is a
total success is smaller in the afternoon than in the morning.

With the pooled probability estimate

p̂ = x+y
n+m = 443+388

564+545 = 0.749

the test statistic is

z = p̂A−p̂B√
p̂(1−p̂)( 1

n
+ 1

m)
=

443
564

− 388
545√

0.749×(1−0.749)×( 1
564

+ 1
545)

= 2.822

and the p-value is 1− Φ(2.822) = 0.002.

There is sufficient evidence to conclude that the probability that an operation is a
total success is smaller in the afternoon than in the morning.

10.6.5 Let pA be the probability that a householder with an income above $60,000 supports
the tax increase and let pB be the probability that a householder with an income
below $60,000 supports the tax increase.

With z0.025 = 1.960 a 95% two-sided confidence interval for pA − pB is

32
106 −

106
221 ± 1.960×

√
32×(106−32)

1063 + 106×(221−106)
2213

= (−0.287,−0.068).

Consider the hypotheses

H0 : pA = pB versus HA : pA 6= pB

where the alternative hypothesis states that the support for the tax increase does
depend upon the householder’s income.

With the pooled probability estimate

p̂ = x+y
n+m = 32+106

106+221 = 0.422

the test statistic is

z = p̂A−p̂B√
p̂(1−p̂)( 1

n
+ 1

m)
=

32
106

− 106
221√

0.422×(1−0.422)×( 1
106

+ 1
221)

= −3.05

and the p-value is 2× Φ(−3.05) = 0.002.

There is sufficient evidence to conclude that the support for the tax increase does
depend upon the householder’s income.

10.6.6 The expected cell frequencies are:

e1 = 619× 0.1 = 61.9

e2 = 619× 0.8 = 495.2
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e3 = 619× 0.1 = 61.9

The Pearson chi-square statistic is

X2 = (61−61.9)2

61.9 + (486−495.2)2

495.2 + (72−61.9)2

61.9 = 1.83

so that the p-value is P (χ2
2 ≥ 3.62) = 0.400.

These probability values are plausible.

10.6.7 A Poisson distribution with mean λ = x̄ = 2.95 can be considered.

The last two cells can be pooled so that there are 8 cells altogether.

The Pearson chi-square statistic is X2 = 13.1 and the p-value is

P (χ2
6 ≥ 13.1) = 0.041.

There is some evidence that a Poisson distribution is not appropriate although the
evidence is not overwhelming.

10.6.8 If the random numbers have a uniform distribution then the expected cell frequencies
are ei = 1000.

The Pearson chi-square statistic is X2 = 9.07 and the

p-value is P (χ2
9 ≥ 9.07) = 0.431.

There is no evidence that the random number generator is not operating correctly.

10.6.10 The expected cell frequencies are

A B C

This year 112.58 78.18 30.23

Last year 211.42 146.82 56.77

The Pearson chi-square statistic is X2 = 1.20.

The p-value is P (χ2
2 ≥ 1.20) = 0.549 where the degrees of freedom of the chi-square

random variable are calculated as (2− 1)× (3− 1) = 2.

There is not sufficient evidence to conclude that there has been a change in prefer-
ences for the three types of tire between the two years.
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10.6.11 The expected cell frequencies are

Completely healed Partially healed No change

Treatment 1 19.56 17.81 6.63

Treatment 2 22.22 20.24 7.54

Treatment 3 14.22 12.95 4.83

The Pearson chi-square statistic is X2 = 5.66.

The p-value is P (χ2
4 ≥ 5.66) = 0.226 where the degrees of freedom of the chi-square

random variable are calculated as (3− 1)× (3− 1) = 4.

There is not sufficient evidence to conclude that the three medications are not equally
effective.

10.6.12 The expected cell frequencies are

Computers Library

Engineering 72.09 70.91

Arts & Sciences 49.91 49.09

The Pearson chi-square statistic is X2 = 4.28.

The p-value is P (χ2
1 ≥ 4.28) = 0.039 where the degrees of freedom of the chi-square

random variable are calculated as (2− 1)× (2− 1) = 1.

There is a fairly strong suggestion that the opinions differ between the two colleges
but the evidence is not overwhelming.

10.6.13 (a) Let p be the probability that a part has a length outside the specified tolerance
range, and consider the hypotheses
H0 : p ≤ 0.10 versus HA : p > 0.10
where the alternative hypothesis states that the probability that a part has a
length outside the specified tolerance range is larger than 10%.

The statistic for the normal approximation to the p-value is
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z = x−np0−0.5√
np0(1−p0)

= 445−(3877×0.10)−0.5√
3877×0.10×(1−0.10)

= 3.041

and the p-value is 1− Φ(3.041) = 0.0012.

There is sufficient evidence to conclude that the probability that a part has a
length outside the specified tolerance range is larger than 10%.

(b) With z0.01 = 2.326 the confidence interval is(
445
3877 −

2.326
3877

√
445(3877−445)

3877 , 1
)

= (0.103, 1).

(c) The Pearson chi-square statistic is

X2 = 3877×(161×420−3271×25)2

186×3691×3432×445 = 0.741

which gives a p-value of P (χ2
1 ≥ 0.741) = 0.389 where the degrees of freedom of

the chi-square random variable are calculated as (2− 1)× (2− 1) = 1.

It is plausible that the acceptability of the length and the acceptability of the
width of the parts are independent of each other.

10.6.14 (a) The expected cell frequencies are:
800× 0.80 = 640
800× 0.15 = 120
800× 0.05 = 40

The Pearson chi-square statistic is

X2 = (619−640)2

640 + (124−120)2

120 + (57−40)2

40 = 8.047

and the likelihood ratio chi-square statistic is

G2 = 2×
(
619 ln

(
619
640

)
+ 124 ln

(
124
120

)
+ 57 ln

(
57
40

))
= 7.204.

The p-values are P (χ2
2 ≥ 8.047) = 0.018 and P (χ2

2 ≥ 7.204) = 0.027.

There is some evidence that the claims made by the research report are incorrect,
although the evidence is not overwhelming.

(b) With z0.01 = 2.326 the confidence interval is(
0, 57

800 + 2.326
800

√
57(800−57)

800

)
= (0, 0.092).
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10.6.15 The expected cell frequencies are

Weak Satisfactory Strong

Preparation method 1 13.25 42.65 15.10

Preparation method 2 23.51 75.69 26.80

Preparation method 3 13.25 42.65 15.10

The Pearson chi-square statistic is X2 = 16.797 and the p-value is

P (χ2
4 ≥ 16.797) = 0.002

where the degrees of freedom of the chi-square random variable are calculated as
(3− 1)× (3− 1) = 4.

There is sufficient evidence to conclude that the three preparation methods are not
equivalent in terms of the quality of chemical solutions which they produce.

10.6.16 (a) The expected cell frequencies are

No damage Slight damage Medium damage Severe damage

Type I 87.33 31.33 52.00 49.33

Type II 87.33 31.33 52.00 49.33

Type III 87.33 31.33 52.00 49.33

The Pearson chi-square statistic is X2 = 50.08 so that the p-value is

P (χ2
6 ≥ 50.08) = 0.000

where the degrees of freedom of the chi-square random variable are calculated
as (4− 1)× (3− 1) = 6.

Consequently, there is sufficient evidence to conclude that the three types of
metal alloy are not all the same in terms of the damage that they suffer.

(b) p̂Se1 = 42
220 = 0.1911

p̂Se3 = 32
220 = 0.1455
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The pooled estimate is

p̂ = 42+32
220+220 = 0.1682.

The test statistic is

z = 0.1911−0.1455√
0.1682×0.8318×( 1

220
+ 1

220)
= 1.27

and the p-value is 2× Φ(−1.27) = 0.20.

There is not sufficient evidence to conclude that the probability of suffering
severe damage is different for alloys of type I and type III.

(c) p̂N2 = 52
220 = 0.236

With z0.005 = 2.576 the confidence interval is

0.236± 2.576
220

√
52×(220−52)

220

= (0.163, 0.310).

10.6.17 (a) The expected cell frequencies are:
e1 = 655× 0.25 = 163.75
e2 = 655× 0.10 = 65.50
e3 = 655× 0.40 = 262.00
e4 = 655× 0.25 = 163.75

The Pearson chi-square statistic is

X2 = (119−163.75)2

163.75 + (54−65.50)2

65.50 + (367−262.00)2

262.00 + (115−163.75)2

163.75 = 70.8

so that the p-value is P (χ2
3 ≥ 70.8) = 0.000.

The data is not consistent with the claimed probabilities.

(b) With z0.005 = 2.576 the confidence interval is

pC ∈ 367
655 ±

2.576
655

√
367×(655−367)

655

= (0.510, 0.610).

10.6.18 P (N(120, 42) ≤ 115) = P
(
N(0, 1) ≤ 115−120

4

)
= Φ(−1.25) = 0.1056

P (N(120, 42) ≤ 120) = P
(
N(0, 1) ≤ 120−120

4

)
= Φ(0) = 0.5000

P (N(120, 42) ≤ 125) = P
(
N(0, 1) ≤ 125−120

4

)
= Φ(1.25) = 0.8944

The observed cell frequencies are x1 = 17, x2 = 32, x3 = 21, and x4 = 14.
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The expected cell frequencies are:

e1 = 84× 0.1056 = 8.87

e2 = 84× (0.5000− 0.1056) = 33.13

e3 = 84× (0.8944− 0.5000) = 33.13

e4 = 84× (1− 0.8944) = 8.87

The Pearson chi-square statistic is

X2 = (17−8.87)2

8.87 + (32−33.13)2

33.13 + (21−33.13)2

33.13 + (14−8.87)2

8.87 = 14.88

so that the p-value is P (χ2
3 ≥ 14.88) = 0.002.

There is sufficient evidence to conclude that the breaking strength of concrete of this
type is not normally distributed with a mean of 120 and a standard deviation of 4.

10.6.19 (a) p̂M = 28
64 = 0.438

p̂F = 31
85 = 0.365

The hypotheses are
H0 : pM = pF versus HA : pM 6= pF

and the pooled estimate is

p̂ = 28+31
64+85 = 0.396.

The test statistic is

z = 0.438−0.365√
0.396×0.604×( 1

64
+ 1

85)
= 0.90

and the p-value is 2× Φ(−0.90) = 0.37.

There is not sufficient evidence to conclude that the support for the proposal is
different for men and women.

(b) With z0.005 = 2.576 the confidence interval is

pM − pF ∈ 0.438− 0.365± 2.576
√

28×36
643 + 31×54

853

= (−0.14, 0.28).

10.6.20 (a) p̂A = 56
94 = 0.596

p̂B = 64
153 = 0.418

The hypotheses are
H0 : pA ≤ 0.5 versus HA : pA > 0.5
and the test statistic is
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z = 56−(94×0.5)−0.5√
94×0.5×0.5

= 1.753

so that the p-value is 1− Φ(1.753) = 0.040.

There is some evidence that the chance of success for patients with Condition
A is better than 50%, but the evidence is not overwhelming.

(b) With z0.005 = 2.576 the confidence interval is

pA − pB ∈ 0.596− 0.418± 2.576
√

56×38
943 + 64×89

1533

= (0.012, 0.344).

(c) The Pearson chi-square statistic is

X2 = n(x11x22−x12x21)2

x1.x.1x2.x.2
= 247×(56×89−38×64)2

94×120×153×127 = 7.34

and the p-value is P (χ2
1 ≥ 7.34) = 0.007.

There is sufficient evidence to conclude that the success probabilities are differ-
ent for patients with Condition A and with Condition B.

10.6.21 (a) True

(b) True

(c) False

(d) False

(e) True

(f) True

(g) True

(h) True

(i) True

(j) False

10.6.22 (a) p̂ = 485
635 = 0.764

With z0.025 = 1.960 the confidence interval is

0.764± 1.960
635 ×

√
485×(635−485)

635

= 0.764± 0.033

= (0.731, 0.797).
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(b) The hypotheses are
H0 : p ≤ 0.75 versus HA : p > 0.75
and the test statistic is

z = 485−(635×0.75)−0.5√
635×0.75×0.25

= 0.756

so that the p-value is 1− Φ(0.756) = 0.225.

There is not sufficient evidence to establish that at least 75% of the customers
are satisfied.

10.6.23 (a) The expected cell frequencies are

Hospital 1 Hospital 2 Hospital 3 Hospital 4 Hospital 5

Admitted 38.07 49.60 21.71 74.87 50.75

Returned home 324.93 423.40 185.29 639.13 433.25

The Pearson chi-square statistic is X2 = 26.844
so that the p-value is P (χ2

4 ≥ 26.844) ' 0.

Consequently, there is sufficient evidence to support the claim that the hospital
admission rates differ between the five hospitals.

(b) p̂3 = 42
207 = 0.203

p̂4 = 57
714 = 0.080

With z0.25 = 1.960 the confidence interval is

p3 − p4 ∈ 0.203− 0.080± 1.960
√

0.203×0.797
207 + 0.080×0.920

714

= 0.123± 0.058

= (0.065, 0.181).

(c) p̂1 = 39
363 = 0.107

The hypotheses are
H0 : p1 ≤ 0.1 versus HA : p1 > 0.1
and the test statistic is

z = 39−(363×0.1)−0.5√
363×0.1×0.9

= 0.385

so that the p-value is 1− Φ(0.385) = 0.35.

There is not sufficient evidence to conclude that the admission rate for
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hospital 1 is larger than 10%.

10.6.24 (a) The expected cell frequencies are

Minimal Substantial Severe
scour depth scour depth scour depth

Pier design 1 7.86 13.82 7.32

Pier design 2 8.13 14.30 7.57

Pier design 3 13.01 22.88 12.11

The Pearson chi-square statistic is

X2 =
∑3

i=1

∑3
j=1

(xij−eij)
2

eij
= 17.41

so that the p-value is P (χ2
4 ≥ 17.41) = 0.002.

Consequently, there is sufficient evidence to conclude that the pier design has
an effect on the amount of scouring.

The likelihood ratio chi-square statistic is

G2 = 2
∑3

i=1

∑3
j=1 xij ln

(
xij

eij

)
= 20.47

which provides a similar conclusion.

(b) The expected cell frequencies are

e1 = e2 = e3 = 29
3

and the Pearson chi-square statistic is

X2 = (12− 29
3

)2

29
3

+ (15− 29
3

)2

29
3

+ (2− 29
3

)2

29
3

= 9.59

so that the p-value is P (χ2
2 ≥ 9.59) = 0.008.

Consequently, the hypothesis of homogeneity is not plausible and the data set
provides sufficient evidence to conclude that for pier design 1 the three levels of
scouring are not equally likely.

(c) Let p3m be the probability of minimal scour depth with pier design 3, so that
the hypotheses of interest are
H0 : p3m = 0.25 versus HA : p3m 6= 0.25.

Since

p̂3m = x
n = 15

48 = 0.3125 > 0.25
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the exact p-value is 2× P (B(48, 0.25) ≥ 15).

With a test statistic

z = x−np0√
np0(1−p0)

= 15−48(0.25)√
48(0.25)(1−0.25)

= 3
3 = 1

the normal approximation to the p-value is

2Φ(− |z|) = 2Φ(−1) = 0.3174.

Consequently, the null hypothesis is not rejected and it is plausible that the
probability of minimal scour for pier design 3 is 25%.

(d) p̂1s = 2
29 = 0.0690

p̂2s = 8
30 = 0.2667

With z0.005 = 2.576 the confidence interval is

p1s − p2s ∈ 0.0690− 0.2667± 2.576
√

0.0690(1−0.0690)
29 + 0.2667(1−0.2667)

30

= −0.1977± 0.2407

= (−0.4384, 0.0430).



Chapter 11

The Analysis of Variance

11.1 One Factor Analysis of Variance

11.1.1 (a) P (X ≥ 4.2) = 0.0177

(b) P (X ≥ 2.3) = 0.0530

(c) P (X ≥ 31.7) ≤ 0.0001

(d) P (X ≥ 9.3) = 0.0019

(e) P (X ≥ 0.9) = 0.5010

11.1.2 Source df SS MS F p-value
Treatments 5 557.0 111.4 5.547 0.0017
Error 23 461.9 20.08
Total 28 1018.9

11.1.3 Source df SS MS F p-value
Treatments 7 126.95 18.136 5.01 0.0016
Error 22 79.64 3.62
Total 29 206.59

11.1.4 Source df SS MS F p-value
Treatments 6 7.66 1.28 0.78 0.59
Error 77 125.51 1.63
Total 83 133.18
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11.1.5 Source df SS MS F p-value
Treatments 3 162.19 54.06 6.69 0.001
Error 40 323.34 8.08
Total 43 485.53

11.1.6 Source df SS MS F p-value
Treatments 2 46.8 23.4 2.7 0.08
Error 52 451.2 8.7
Total 54 498.0

11.1.7 Source df SS MS F p-value
Treatments 3 0.0079 0.0026 1.65 0.189
Error 52 0.0829 0.0016
Total 55 0.0908

11.1.8 (a) µ1 − µ2 ∈
(
48.05− 44.74−

√
4.96×3.49√

11
, 48.05− 44.74 +

√
4.96×3.49√

11

)
= (0.97, 5.65)

µ1 − µ3 ∈
(
48.05− 49.11−

√
4.96×3.49√

11
, 48.05− 49.11 +

√
4.96×3.49√

11

)
= (−3.40, 1.28)

µ2 − µ3 ∈
(
44.74− 49.11−

√
4.96×3.49√

11
, 44.74− 49.11 +

√
4.96×3.49√

11

)
= (−6.71,−2.03)

(c) The total sample size required from each factor level can be estimated as

n ≥ 4 s2 q2
α,k,ν

L2 = 4×4.96×3.492

2.02 = 60.4

so that an additional sample size of 61− 11 = 50 observations from each factor
level can be recommended.

11.1.9 (a) µ1 − µ2 ∈
(
136.3− 152.1−

√
15.95×4.30√

6
, 136.3− 152.1 +

√
15.95×4.30√

6

)
= (−22.8,−8.8)

µ1 − µ3 ∈ (3.6, 17.6)

µ1 − µ4 ∈ (−0.9, 13.1)

µ1 − µ5 ∈ (−13.0, 1.0)

µ1 − µ6 ∈ (1.3, 15.3)

µ2 − µ3 ∈ (19.4, 33.4)
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µ2 − µ4 ∈ (14.9, 28.9)

µ2 − µ5 ∈ (2.8, 16.8)

µ2 − µ6 ∈ (17.1, 31.1)

µ3 − µ4 ∈ (−11.5, 2.5)

µ3 − µ5 ∈ (−23.6,−9.6)

µ3 − µ6 ∈ (−9.3, 4.7)

µ4 − µ5 ∈ (−19.1,−5.1)

µ4 − µ6 ∈ (−4.8, 9.2)

µ5 − µ6 ∈ (7.3, 21.3)

(c) The total sample size required from each factor level can be estimated as

n ≥ 4 s2 q2
α,k,ν

L2 = 4×15.95×4.302

10.02 = 11.8

so that an additional sample size of 12 − 6 = 6 observations from each factor
level can be recommended.

11.1.10 The p-value remains unchanged.

11.1.11 (a) x̄1. = 5.633
x̄2. = 5.567
x̄3. = 4.778

(b) x̄.. = 5.326

(c) SSTR = 4.076

(d)
∑k

i=1

∑ni
j=1 x2

ij = 791.30

(e) SST = 25.432

(f) SSE = 21.356

(g) Source df SS MS F p-value
Treatments 2 4.076 2.038 2.29 0.123
Error 24 21.356 0.890
Total 26 25.432

(h) µ1 − µ2 ∈
(
5.633− 5.567−

√
0.890×3.53√

9
, 5.633− 5.567 +

√
0.890×3.53√

9

)
= (−1.04, 1.18)



266 CHAPTER 11. THE ANALYSIS OF VARIANCE

µ1 − µ3 ∈
(
5.633− 4.778−

√
0.890×3.53√

9
, 5.633− 4.778 +

√
0.890×3.53√

9

)
= (−0.25, 1.97)

µ2 − µ3 ∈
(
5.567− 4.778−

√
0.890×3.53√

9
, 5.567− 4.778 +

√
0.890×3.53√

9

)
= (−0.32, 1.90)

(j) The total sample size required from each factor level can be estimated as

n ≥ 4 s2 q2
α,k,ν

L2 = 4×0.890×3.532

1.02 = 44.4

so that an additional sample size of 45 − 9 = 36 observations from each factor
level can be recommended.

11.1.12 (a) x̄1. = 10.560

x̄2. = 15.150

x̄3. = 17.700

x̄4. = 11.567

(b) x̄.. = 14.127

(c) SSTR = 364.75

(d)
∑k

i=1

∑ni
j=1 x2

ij = 9346.74

(e) SST = 565.23

(f) SSE = 200.47

(g) Source df SS MS F p-value
Treatments 3 364.75 121.58 24.26 0.000
Error 40 200.47 5.01
Total 43 565.23

(h) µ1 − µ2 ∈ (−7.16,−2.02)

µ1 − µ3 ∈ (−9.66,−4.62)

µ1 − µ4 ∈ (−3.76, 1.75)

µ2 − µ3 ∈ (−4.95,−0.15)

µ2 − µ4 ∈ (0.94, 6.23)

µ3 − µ4 ∈ (3.53, 8.74)
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Note: In the remainder of this section the confidence intervals for the pairwise dif-
ferences of the factor level means are provided with an overall confidence level of
95%.

11.1.13 Source df SS MS F p-value
Treatments 2 0.0085 0.0042 0.24 0.787
Error 87 1.5299 0.0176
Total 89 1.5384

µ1 − µ2 ∈ (−0.08, 0.08)

µ1 − µ3 ∈ (−0.06, 0.10)

µ2 − µ3 ∈ (−0.06, 0.10)

There is not sufficient evidence to conclude that there is a difference between the
three production lines.

11.1.14 Source df SS MS F p-value
Treatments 2 278.0 139.0 85.4 0.000
Error 50 81.3 1.63
Total 52 359.3

µ1 − µ2 ∈ (3.06, 5.16)

µ1 − µ3 ∈ (4.11, 6.11)

µ2 − µ3 ∈ (−0.08, 2.08)

There is sufficient evidence to conclude that Monday is slower than the other two
days.

11.1.15 Source df SS MS F p-value
Treatments 2 0.0278 0.0139 1.26 0.299
Error 30 0.3318 0.0111
Total 32 0.3596

µ1 − µ2 ∈ (−0.15, 0.07)

µ1 − µ3 ∈ (−0.08, 0.14)

µ2 − µ3 ∈ (−0.04, 0.18)

There is not sufficient evidence to conclude that the radiation readings are affected
by the background radiation levels.
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11.1.16 Source df SS MS F p-value
Treatments 2 121.24 60.62 52.84 0.000
Error 30 34.42 1.15
Total 32 155.66

µ1 − µ2 ∈ (−5.12,−2.85)

µ1 − µ3 ∈ (−0.74, 1.47)

µ2 − µ3 ∈ (3.19, 5.50)

There is sufficient evidence to conclude that layout 2 is slower than the other two
layouts.

11.1.17 Source df SS MS F p-value
Treatments 2 0.4836 0.2418 7.13 0.001
Error 93 3.1536 0.0339
Total 95 3.6372

µ1 − µ2 ∈ (−0.01, 0.22)

µ1 − µ3 ∈ (0.07, 0.29)

µ2 − µ3 ∈ (−0.03, 0.18)

There is sufficient evidence to conclude that the average particle diameter is larger
at the low amount of stabilizer than at the high amount of stabilizer.

11.1.18 Source df SS MS F p-value
Treatments 2 135.15 67.58 19.44 0.000
Error 87 302.50 3.48
Total 89 437.66

µ1 − µ2 ∈ (−1.25, 1.04)

µ1 − µ3 ∈ (1.40, 3.69)

µ2 − µ3 ∈ (1.50, 3.80)

There is sufficient evidence to conclude that method 3 is quicker than the other two
methods.

11.1.19 x̄.. = (8×42.91)+(11×44.03)+(10×43.72)
8+11+10 = 1264.81

29 = 43.61

SSTr = (8× 42.912) + (11× 44.032) + (10× 43.722)− 1264.812

29 = 5.981
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SSE = (7× 5.332) + (10× 4.012) + (9× 5.102) = 593.753

Source df SS MS F p-value
Treatments 2 5.981 2.990 0.131 0.878
Error 26 593.753 22.837
Total 28 599.734

There is not sufficient evidence to conclude that there is a difference between the
catalysts in terms of the strength of the compound.

11.1.20 (a) x̄1. = 33.6

x̄2. = 40.0

x̄3. = 20.4

x̄4. = 31.0

x̄5. = 26.5

Source df SS MS F p-value
Treatments 4 1102.7 275.7 18.51 0.000
Error 20 297.9 14.9
Total 24 1400.6

(b) q0.05,5,20 = 4.23

s =
√

MSE =
√

14.9 = 3.86

The pairwise comparisons which contain zero are:
treatment 1 and treatment 2
treatment 1 and treatment 4
treatment 3 and treatment 5
treatment 4 and treatment 5

The treatment with the largest average quality score is either
treatment 1 or treatment 2.

The treatment with the smallest average quality score is either
treatment 3 or treatment 5.

11.1.21 q0.05,5,43 = 4.04

With a 95% confidence level the pairwise confidence intervals that contain zero are:

µ1 − µ2

µ2 − µ5

µ3 − µ4

It can be inferred that the largest mean is either µ3 or µ4
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and that the smallest mean is either µ2 or µ5.

11.1.22 (a) x̄.. = (8×10.50)+(8×9.22)+(9×6.32)+(6×11.39)
31

= 9.1284

SSTr = (8× 10.502) + (8× 9.222) + (9× 6.322) + (6× 11.392)− (31× 9.12842)

= 116.79

SSE = (7× 1.022) + (7× 0.862) + (8× 1.132) + (5× 0.982)

= 27.48

Source df SS MS F p-value
Alloy 3 116.79 38.93 38.3 0.000
Error 27 27.48 1.02
Total 30 144.27

There is sufficient evidence to conclude that the average strengths of the four
metal alloys are not all the same.

(b) q0.05,4,27 = 3.88

µ1 − µ2 ∈ 10.50− 9.22±
√

1.02×3.88√
2

√
1
8 + 1

8 = (−0.68, 3.24)

µ1 − µ3 ∈ 10.50− 6.32±
√

1.02×3.88√
2

√
1
8 + 1

9 = (2.28, 6.08)

µ1 − µ4 ∈ 10.50− 11.39±
√

1.02×3.88√
2

√
1
8 + 1

6 = (−3.00, 1.22)

µ2 − µ3 ∈ 9.22− 6.32±
√

1.02×3.88√
2

√
1
8 + 1

9 = (1.00, 4.80)

µ2 − µ4 ∈ 9.22− 11.39±
√

1.02×3.88√
2

√
1
8 + 1

6 = (−4.28,−0.06)

µ3 − µ4 ∈ 6.32− 11.39±
√

1.02×3.88√
2

√
1
9 + 1

6 = (−7.13,−3.01)

The strongest metal alloy is either type A or type D.

The weakest metal alloy is type C.

11.1.23 x̄1. = 40.80

x̄2. = 32.80

x̄3. = 25.60

x̄4. = 50.60

x̄5. = 41.80
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x̄6. = 31.80

Source df SS MS F p-value
Physician 5 1983.8 396.8 15.32 0.000
Error 24 621.6 25.9
Total 29 2605.4

The p-value of 0.000 implies that there is sufficient evidence to conclude that the
times taken by the physicians for the investigatory surgical procedures are different.

Since

s×q0.05,6,24√
5

=
√

25.9×4.37√
5

= 9.95

it follows that two physicians cannot be concluded to be different if their sample
averages have a difference of less than 9.95.

The slowest physician is either physician 1, physician 4, or physician 5.

The quickest physician is either physician 2, physician 3, or physician 6.

11.1.24 x̄1. = 29.00

x̄2. = 28.75

x̄3. = 28.75

x̄4. = 37.00

x̄5. = 42.00

Source df SS MS F p-value
Treatments 4 596.3 149.08 24.44 0.000
Error 15 91.50 6.10
Total 19 687.80

The small p-value in the analysis of variance table implies that there is sufficient
evidence to conclude that the E. Coli pollution levels are not the same at all five
locations.

Since

s×q0.05,5,15√
n

=
√

6.10×4.37√
4

= 5.40

the pairwise comparisons reveal that the pollution levels at both locations 4 and 5
are larger than the pollution levels at the other three locations.

The highest E. Coli pollution level is at either location 4 or 5, and the smallest E.
Coli pollution level is at either location 1, 2 or 3.
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11.1.25 (a) x̄1. = 46.83

x̄2. = 47.66

x̄3. = 48.14

x̄4. = 48.82

x̄.. = 47.82

SSTr =
∑4

i=1 ni(x̄i. − x̄..)2 = 13.77

Since the p-value is 0.01, the F -statistic in the analysis of variance table must
be F0.01,3,24 = 4.72 so that the complete analysis of variance table is

Source df SS MS F p-value
Treatments 3 13.77 4.59 4.72 0.01
Error 24 23.34 0.97
Total 27 37.11

(b) With s =
√

MSE = 0.986 and q0.05,4,24 = 3.90 the pairwise confidence intervals
for the treatment means are:

µ1 − µ2 ∈ (−2.11, 0.44)

µ1 − µ3 ∈ (−2.63, 0.01)

µ1 − µ4 ∈ (−3.36,−0.62)

µ2 − µ3 ∈ (−1.75, 0.79)

µ2 − µ4 ∈ (−2.48, 0.18)

µ3 − µ4 ∈ (−2.04, 0.70)

There is sufficient evidence to establish that µ4 is larger than µ1.
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11.2 Randomized Block Designs

11.2.1 Source df SS MS F p-value
Treatments 3 10.15 3.38 3.02 0.047
Blocks 9 24.53 2.73 2.43 0.036
Error 27 30.24 1.12
Total 39 64.92

11.2.2 Source df SS MS F p-value
Treatments 7 26.39 3.77 3.56 0.0036
Blocks 7 44.16 6.31 5.95 0.0000
Error 49 51.92 1.06
Total 63 122.47

11.2.3 Source df SS MS F p-value
Treatments 3 58.72 19.57 0.63 0.602
Blocks 9 2839.97 315.55 10.17 0.0000
Error 27 837.96 31.04
Total 39 3736.64

11.2.4 Source df SS MS F p-value
Treatments 4 240.03 60.01 18.59 0.0000
Blocks 14 1527.12 109.08 33.80 0.0000
Error 56 180.74 3.228
Total 74 1947.89

11.2.5 (a) Source df SS MS F p-value
Treatments 2 8.17 4.085 8.96 0.0031
Blocks 7 50.19 7.17 15.72 0.0000
Error 14 6.39 0.456
Total 23 64.75

(b) µ1 − µ2 ∈
(
5.93− 4.62−

√
0.456×3.70√

8
, 5.93− 4.62 +

√
0.456×3.70√

8

)
= (0.43, 2.19)

µ1 − µ3 ∈
(
5.93− 4.78−

√
0.456×3.70√

8
, 5.93− 4.78 +

√
0.456×3.70√

8

)
= (0.27, 2.03)

µ2 − µ3 ∈
(
4.62− 4.78−

√
0.456×3.70√

8
, 4.62− 4.78 +

√
0.456×3.70√

8

)
= (−1.04, 0.72)
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11.2.6 The numbers in the “Blocks” row change (except for the degrees of freedom) and the
total sum of squares changes.

11.2.7 (a) x̄1. = 6.0617

x̄2. = 7.1967

x̄3. = 5.7767

(b) x̄.1 = 7.4667

x̄.2 = 5.2667

x̄.3 = 5.1133

x̄.4 = 7.3300

x̄.5 = 6.2267

x̄.6 = 6.6667

(c) x̄.. = 6.345

(d) SSTr = 6.7717

(e) SSBl = 15.0769

(f)
∑3

i=1

∑6
j=1 x2

ij = 752.1929

(g) SST = 27.5304

(h) SSE = 5.6818

(i) Source df SS MS F p-value
Treatments 2 6.7717 3.3859 5.96 0.020
Blocks 5 15.0769 3.0154 5.31 0.012
Error 10 5.6818 0.5682
Total 17 27.5304

(j) µ1 − µ2 ∈
(
6.06− 7.20−

√
0.5682×3.88√

6
, 6.06− 7.20 +

√
0.5682×3.88√

6

)
= (−2.33, 0.05)

µ1 − µ3 ∈
(
6.06− 5.78−

√
0.5682×3.88√

6
, 6.06− 5.78 +

√
0.5682×3.88√

6

)
= (−0.91, 1.47)

µ2 − µ3 ∈
(
7.20− 5.78−

√
0.5682×3.88√

6
, 7.20− 5.78 +

√
0.5682×3.88√

6

)
= (0.22, 2.61)
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(l) The total sample size required from each factor level (number of blocks) can be
estimated as

n ≥ 4 s2 q2
α,k,ν

L2 = 4×0.5682×3.882

2.02 = 8.6

so that an additional 9− 6 = 3 blocks can be recommended.

11.2.8 Source df SS MS F p-value
Treatments 3 67.980 22.660 5.90 0.004
Blocks 7 187.023 26.718 6.96 0.000
Error 21 80.660 3.841
Total 31 335.662

µ1 − µ2 ∈ (−2.01, 3.46)

µ1 − µ3 ∈ (−5.86,−0.39)

µ1 − µ4 ∈ (−3.95, 1.52)

µ2 − µ3 ∈ (−6.59,−1.11)

µ2 − µ4 ∈ (−4.68, 0.79)

µ3 − µ4 ∈ (−0.83, 4.64)

The total sample size required from each factor level (number of blocks) can be
estimated as

n ≥ 4 s2 q2
α,k,ν

L2 = 4×3.841×3.952

4.02 = 14.98

so that an additional 15− 8 = 7 blocks can be recommended.

Note: In the remainder of this section the confidence intervals for the pairwise dif-
ferences of the factor level means are provided with an overall confidence level of
95%.

11.2.9 Source df SS MS F p-value
Treatments 2 17.607 8.803 2.56 0.119
Blocks 6 96.598 16.100 4.68 0.011
Error 12 41.273 3.439
Total 20 155.478

µ1 − µ2 ∈ (−1.11, 4.17)

µ1 − µ3 ∈ (−0.46, 4.83)

µ2 − µ3 ∈ (−1.99, 3.30)
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There is not sufficient evidence to conclude that the calciners are operating at differ-
ent efficiencies.

11.2.10 Source df SS MS F p-value
Treatments 2 133.02 66.51 19.12 0.000
Blocks 7 1346.76 192.39 55.30 0.000
Error 14 48.70 3.48
Total 23 1528.49

µ1 − µ2 ∈ (−8.09,−3.21)

µ1 − µ3 ∈ (−4.26, 0.62)

µ2 − µ3 ∈ (1.39, 6.27)

There is sufficient evidence to conclude that radar system 2 is better than the other
two radar systems.

11.2.11 Source df SS MS F p-value
Treatments 3 3231.2 1,077.1 4.66 0.011
Blocks 8 29256.1 3,657.0 15.83 0.000
Error 24 5545.1 231.0
Total 35 38032.3

µ1 − µ2 ∈ (−8.20, 31.32)

µ1 − µ3 ∈ (−16.53, 22.99)

µ1 − µ4 ∈ (−34.42, 5.10)

µ2 − µ3 ∈ (−28.09, 11.43)

µ2 − µ4 ∈ (−45.98,−6.46)

µ3 − µ4 ∈ (−37.65, 1.87)

There is sufficient evidence to conclude that driver 4 is better than driver 2.

11.2.12 Source df SS MS F p-value
Treatments 2 7.47 3.73 0.34 0.718
Blocks 9 313.50 34.83 3.15 0.018
Error 18 199.20 11.07
Total 29 520.17

µ1 − µ2 ∈ (−3.00, 4.60)
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µ1 − µ3 ∈ (−2.60, 5.00)

µ2 − µ3 ∈ (−3.40, 4.20)

There is not sufficient evidence to conclude that there is any difference between the
assembly methods.

11.2.13 Source df SS MS F p-value
Treatments 4 8.462× 108 2.116× 108 66.55 0.000
Blocks 11 19.889× 108 1.808× 108 56.88 0.000
Error 44 1.399× 108 3.179× 106

Total 59 29.750× 108

µ1 − µ2 ∈ (4372, 8510)

µ1 − µ3 ∈ (4781, 8919)

µ1 − µ4 ∈ (5438, 9577)

µ1 − µ5 ∈ (−3378, 760)

µ2 − µ3 ∈ (−1660, 2478)

µ2 − µ4 ∈ (−1002, 3136)

µ2 − µ5 ∈ (−9819,−5681)

µ3 − µ4 ∈ (−1411, 2727)

µ3 − µ5 ∈ (−10228,−6090)

µ4 − µ5 ∈ (−10886,−6748)

There is sufficient evidence to conclude that either agent 1 or agent 5 is the best
agent.

The worst agent is either agent 2, 3 or 4.

11.2.14 Source df SS MS F p-value
Treatments 3 10.637 3.546 2.01 0.123
Blocks 19 169.526 8.922 5.05 0.000
Error 57 100.641 1.766
Total 79 280.805

µ1 − µ2 ∈ (−1.01, 1.21)

µ1 − µ3 ∈ (−1.89, 0.34)

µ1 − µ4 ∈ (−1.02, 1.20)
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µ2 − µ3 ∈ (−1.98, 0.24)

µ2 − µ4 ∈ (−1.12, 1.11)

µ3 − µ4 ∈ (−0.24, 1.98)

There is not sufficient evidence to conclude that there is any difference between the
four formulations.

11.2.15 (a) Source df SS MS F p-value
Treatments 3 0.151 0.0503 5.36 0.008
Blocks 6 0.324 0.054 5.75 0.002
Error 18 0.169 0.00939
Total 27 0.644

(b) With q0.05,4,18 = 4.00 and
√

MSE×q0.05,4,18√
b

=
√

0.00939×4.00√
7

= 0.146

the pairwise confidence intervals are:

µ2 − µ1 ∈ 0.630− 0.810± 0.146 = (−0.326,−0.034)

µ2 − µ3 ∈ 0.630− 0.797± 0.146 = (−0.313,−0.021)

µ2 − µ4 ∈ 0.630− 0.789± 0.146 = (−0.305,−0.013)

None of these confidence intervals contains zero so there is sufficient evidence
to conclude that treatment 2 has a smaller mean value than each of the other
treatments.

11.2.16 x̄.. = 107.68+109.86+111.63
3 = 329.17

3 = 109.72

SSTR = 4× (107.682 + 109.862 + 111.632)− 12×
(

329.17
3

)2
= 31.317

MSE = σ̂2 = 1.4452 = 2.088

Source df SS MS F p-value
Treatments 2 31.317 15.659 7.50 0.023
Blocks 3 159.720 53.240 25.50 0.001
Error 6 12.528 2.088
Total 11 203.565
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11.2.17 The new analysis of variance table is

Source df SS MS F p-value
Treatments same a2 SSTr a2 MSTr same same
Blocks same a2 SSBl a2 MSBl same same
Error same a2 SSE a2 MSE
Total same a2 SST

11.2.18 x̄.. = x̄1.+x̄2.+x̄3.+x̄4.
4 = 3107.3

4 = 776.825

SSTr = 7× (763.92 + 843.92 + 711.32 + 788.22)− 4× 7× 776.8252 = 63623.2

Source df SS MS F p-value
Treatments 3 63623.2 21207.7 54.13 0.000
Blocks 6 13492.3 2248.7 5.74 0.002
Error 18 7052.8 391.8
Total 27 84168.3

There is sufficient evidence to conclude that the treatments are not all the same.

Since

s×q0.05,4,18√
b

=
√

391.8×4.00√
7

= 29.9

it follows that treatments are only known to be different if their sample averages are
more than 29.9 apart.

It is known that treatment 2 has the largest mean, and that treatment 3 has the
smallest mean.

Treatments 1 and 4 are indistinguishable.

11.2.19 x̄1. = 23.18

x̄2. = 23.58

x̄3. = 23.54

x̄4. = 22.48

Source df SS MS F p-value
Locations 3 3.893 1.298 0.49 0.695
Time 4 472.647 118.162 44.69 0.000
Error 12 31.729 2.644
Total 19 508.270

The p-value of 0.695 implies that there is not sufficient evidence to conclude that the
pollution levels are different at the four locations.
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The confidence intervals for all of the pairwise comparisons contain zero, so the
graphical representation has one line joining all four sample means.
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11.4 Supplementary Problems

11.4.1 Source df SS MS F p-value
Treatments 3 1.9234 0.6411 22.72 0.000
Error 16 0.4515 0.0282
Total 19 2.3749

µ1 − µ2 ∈ (−0.35, 0.26)

µ1 − µ3 ∈ (0.38, 0.99)

µ1 − µ4 ∈ (−0.36, 0.25)

µ2 − µ3 ∈ (0.42, 1.03)

µ2 − µ4 ∈ (−0.31, 0.30)

µ3 − µ4 ∈ (−1.04,−0.43)

There is sufficient evidence to conclude that type 3 has a lower average Young’s
modulus.

11.4.2 Source df SS MS F p-value
Treatments 3 5.77 1.92 0.49 0.690
Error 156 613.56 3.93
Total 159 619.33

µ1 − µ2 ∈ (−1.27, 1.03)

µ1 − µ3 ∈ (−0.82, 1.61)

µ1 − µ4 ∈ (−1.16, 1.17)

µ2 − µ3 ∈ (−0.64, 1.67)

µ2 − µ4 ∈ (−0.97, 1.22)

µ3 − µ4 ∈ (−1.55, 0.77)

There is not sufficient evidence to conclude that any of the cars is getting better gas
mileage than the others.

11.4.3 Source df SS MS F p-value
Treatments 4 2,716.8 679.2 3.57 0.024
Blocks 5 4,648.2 929.6 4.89 0.004
Error 20 3,806.0 190.3
Total 29 11,171.0
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There is not conclusive evidence that the different temperature levels have an effect
on the cement strength.

11.4.4 Source df SS MS F p-value
Treatments 4 10,381.4 2,595.3 25.70 0.000
Blocks 9 6,732.7 748.1 7.41 0.000
Error 36 3,635.8 101.0
Total 49 20,749.9

There is sufficient evidence to conclude that either fertilizer type 4 or type 5 provides
the highest yield.

11.4.5 Source df SS MS F p-value
Treatments 3 115.17 38.39 4.77 0.007
Blocks 11 4,972.67 452.06 56.12 0.000
Error 33 265.83 8.06
Total 47 5,353.67

There is sufficient evidence to conclude that clinic 3 is different from clinics 2 and 4.

11.4.6 Source df SS MS F p-value
Treatments 2 142.89 71.44 16.74 0.000
Error 24 102.42 4.27
Total 26 245.31

µh − µa ∈ (−5.13,−0.27)

µh − µb ∈ (0.50, 5.36)

µa − µb ∈ (3.20, 8.06)

There is sufficient evidence to conclude that each of the three positions produce
different average insertion gains.

11.4.7 Source df SS MS F p-value
Treatments 3 1175.3 391.8 8.11 0.000
Error 33 1595.1 48.3
Total 36 2770.4

µ1 − µ2 ∈ (3.45, 21.32)

µ1 − µ3 ∈ (3.29, 20.13)

µ1 − µ4 ∈ (−6.94, 10.36)
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µ2 − µ3 ∈ (−9.61, 8.26)

µ2 − µ4 ∈ (−19.82,−1.53)

µ3 − µ4 ∈ (−18.65,−1.35)

The drags for designs 1 and 4 are larger than the drags for designs 2 and 3.

11.4.8 Source df SS MS F p-value
Treatments 3 0.150814 0.050271 5.39 0.008
Blocks 6 0.325043 0.054174 5.80 0.002
Error 18 0.167986 0.009333
Total 27 0.643843

There is sufficient evidence to conclude that the shrinkage from preparation method
2 is smaller than from the other preparation methods.

11.4.9 (a) True

(b) False

(c) True

(d) True

(e) True

(f) True

(g) False

(h) False

11.4.10 (a) x̄1. = 16.667

x̄2. = 19.225

x̄3. = 14.329

Source df SS MS F p-value
Alloys 2 89.83 44.91 13.84 0.000
Error 18 58.40 3.24
Total 20 148.23

There is sufficient evidence to establish that the alloys are not all the same with
respect to their hardness measurements.
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(b) With q0.05,3,18 = 3.61 the pairwise confidence intervals are:

µ1 − µ2 ∈ 16.667− 19.225± 3.61×
√

3.24√
2

√
1
6 + 1

8 = (−5.042,−0.075)

µ1 − µ3 ∈ 16.667− 14.329± 3.61×
√

3.24√
2

√
1
6 + 1

7 = (−0.220, 4.896)

µ2 − µ3 ∈ 19.225− 14.329± 3.61×
√

3.24√
2

√
1
8 + 1

7 = (2.517, 7.276)

These confidence intervals show that alloy 2 has larger hardness measurements
than both alloys 1 and 3, which are indistinguishable.

Alloy 2 has the largest mean.

Either alloy 1 or alloy 3 has the smallest mean.

11.4.11 x̄.. = x̄1.+x̄2.+x̄3.+x̄4.
4 = 50.1

4 = 12.525

SSTr = 9× (11.432 + 12.032 + 14.882 + 11.762)− 4× 9× 12.5252 = 68.18

Source df SS MS F p-value
Treatments 3 68.18 22.73 38.63 0.000
Blocks 8 53.28 6.66 11.32 0.000
Error 24 14.12 0.588
Total 35 135.58

There is sufficient evidence to conclude that the treatments are not all the same.

Since

s×q0.05,4,24√
b

=
√

0.588×3.90√
9

= 0.997

it follows that two treatments are only known to be different if their sample averages
are more than 0.997 apart.

Therefore, treatment 3 is known to have a larger mean than treatments 1, 2, and 4,
which are indistinguishable.

11.4.12 x̄1. = 310.83

x̄2. = 310.17

x̄3. = 315.33

x̄4. = 340.33

x̄5. = 300.00
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Source df SS MS F p-value
Rivers 4 5442.3 1360.6 20.71 0.000
Error 25 1642.3 65.7
Total 29 7084.7

There is sufficient evidence to conclude that the average radon levels in the five rivers
are different.

Since

s×q0.05,5,25√
n

=
√

65.7×4.165√
6

= 13.7

it follows that rivers are only known to be different if their sample averages are more
than 13.7 apart.

River 4 can be determined to be the river with the highest radon level.

11.4.13 µ1 − µ2 ∈ (3.23, 11.57)

µ1 − µ3 ∈ (4.32, 11.68)

µ1 − µ4 ∈ (−5.85, 1.65)

µ2 − µ3 ∈ (−3.44, 4.64)

µ2 − µ4 ∈ (−13.60,−5.40)

µ3 − µ4 ∈ (−13.70,−6.50)
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Chapter 12

Simple Linear Regression and
Correlation

12.1 The Simple Linear Regression Model

12.1.1 (a) 4.2 + (1.7× 10) = 21.2

(b) 3× 1.7 = 5.1

(c) P (N(4.2 + (1.7× 5), 3.22) ≥ 12) = 0.587

(d) P (N(4.2 + (1.7× 8), 3.22) ≤ 17) = 0.401

(e) P (N(4.2 + (1.7× 6), 3.22) ≥ N(4.2 + (1.7× 7), 3.22)) = 0.354

12.1.2 (a) 123.0 + (−2.16× 20) = 79.8

(b) −2.16× 10 = −21.6

(c) P (N(123.0 + (−2.16× 25), 4.12) ≤ 60) = 0.014

(d) P (30 ≤ N(123.0 + (−2.16× 40), 4.12) ≤ 40) = 0.743

(e) P (N(123.0 + (−2.16× 30), 4.12) ≤ N(123.0 + (−2.16× 27.5), 4.12)) = 0.824

12.1.3 (a) y = 5 + (0.9× 20) = 23.0

(b) The expected value of the porosity decreases by 5× 0.9 = 4.5.

(c) P (N(5 + (0.9× 25), 1.42) ≤ 30) = 0.963

287
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(d) P
(
17 ≤ N

(
5 + (0.9× 15), 1.42

4

)
≤ 20

)
= 0.968

12.1.4 Since the model minimizes the sum of squares of residuals (vertical differences) the
model will change if the x and y variables are exchanged.

If there is a reason to consider that one variable can be naturally thought of as being
“determined” by the choice of the other variable, then that indicates the appropriate
choice of the x and y variables (the y variable should be the “determined” variable).

In addition, if the model is to be used to predict one variable for given values of
the other variable, then that also indicates the appropriate choice of the x and y
variables (the y variable should be the variable that is being predicted).

12.1.5 P (N(675.30− (5.87× 80), 7.322) ≤ 220)

= P
(
N(0, 1) ≤ 220−205.7

7.32

)
= Φ(1.954) = 0.975
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12.2 Fitting the Regression Line

12.2.2 n = 20∑20
i=1 xi = 8.552∑20
i=1 yi = 398.2∑20
i=1 x2

i = 5.196∑20
i=1 y2

i = 9356∑20
i=1 xiyi = 216.6

x̄ = 8.552
20 = 0.4276

ȳ = 398.2
20 = 19.91

SXX = 5.196− (20× 0.42762) = 1.539

SXY = 216.6− (20× 0.4276× 19.91) = 46.330

Using these values

β̂1 = 46.330
1.539 = 30.101

β̂0 = 19.91− (30.10× 0.4276) = 7.039

and

SSE = 9356− (7.039× 398.2)− (30.101× 216.6) = 33.291

so that

σ̂2 = 33.291
20−2 = 1.85.

When x = 0.5 the fitted value is

7.039 + (30.101× 0.5) = 22.09.

12.2.3 β̂0 = 39.5

β̂1 = −2.04

σ̂2 = 17.3

39.5 + (−2.04× (−2.0)) = 43.6
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12.2.4 (a) β̂0 = −2, 277

β̂1 = 1.003

(b) 1.003× 1000 = $1003

(c) −2277 + (1.003× 10000) = 7753

The predicted cost is $7,753,000.

(d) σ̂2 = 774211

(e) If the model is used then it would be extrapolation,
so the prediction may be inaccurate.

12.2.5 (a) β̂0 = 36.19

β̂1 = 0.2659

(b) σ̂2 = 70.33

(c) Yes, since β̂1 > 0.

(d) 36.19 + (0.2659× 72) = 55.33

12.2.6 (a) β̂0 = 54.218

β̂1 = −0.3377

(b) No, β̂1 < 0 suggests that aerobic fitness deteriorates with age.

The predicted change in VO2-max for an additional 5 years of age is
−0.3377× 5 = −1.6885.

(c) 54.218 + (−0.3377× 50) = 37.33

(d) If the model is used then it would be extrapolation,
so the prediction may be inaccurate.

(e) σ̂2 = 57.30

12.2.7 (a) β̂0 = −29.59

β̂1 = 0.07794
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(b) −29.59 + (0.07794× 2, 600) = 173.1

(c) 0.07794× 100 = 7.794

(d) σ̂2 = 286

12.2.8 (a) β̂0 = −1.911

β̂1 = 1.6191

(b) 1.6191× 1 = 1.6191

The expert is underestimating the times.

−1.911 + (1.6191× 7) = 9.42

(c) If the model is used then it would be extrapolation,
so the prediction may be inaccurate.

(d) σ̂2 = 12.56

12.2.9 (a) β̂0 = 12.864

β̂1 = 0.8051

(b) 12.864 + (0.8051× 69) = 68.42

(c) 0.8051× 5 = 4.03

(d) σ̂2 = 3.98
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12.3 Inferences on the Slope Parameter β̂1

12.3.1 (a) (0.522− (2.921× 0.142), 0.522 + (2.921× 0.142)) = (0.107, 0.937)

(b) The t-statistic is

0.522
0.142 = 3.68

and the p-value is 0.002.

12.3.2 (a) (56.33− (2.086× 3.78), 56.33 + (2.086× 3.78)) = (48.44, 64.22)

(b) The t-statistic is

56.33−50.0
3.78 = 1.67

and the p-value is 0.110.

12.3.3 (a) s.e.(β̂1) = 0.08532

(b) (1.003− (2.145× 0.08532), 1.003 + (2.145× 0.08532)) = (0.820, 1.186)

(c) The t-statistic is

1.003
0.08532 = 11.76

and the p-value is 0.000.

12.3.4 (a) s.e.(β̂1) = 0.2383

(b) (0.2659− (1.812× 0.2383), 0.2659 + (1.812× 0.2383)) = (−0.166, 0.698)

(c) The t-statistic is

0.2659
0.2383 = 1.12

and the p-value is 0.291.

(d) There is not sufficient evidence to conclude that on average trucks take longer
to unload when the temperature is higher.

12.3.5 (a) s.e.(β̂1) = 0.1282

(b) (−∞,−0.3377 + (1.734× 0.1282)) = (−∞,−0.115)
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(c) The t-statistic is

−0.3377
0.1282 = −2.63

and the (two-sided) p-value is 0.017.

12.3.6 (a) s.e.(β̂1) = 0.00437

(b) (0.0779− (3.012× 0.00437), 0.0779 + (3.012× 0.00437)) = (0.0647, 0.0911)

(c) The t-statistic is

0.0779
0.00437 = 17.83

and the p-value is 0.000.

There is sufficient evidence to conclude that the house price depends upon the
size of the house.

12.3.7 (a) s.e.(β̂1) = 0.2829

(b) (1.619− (2.042× 0.2829), 1.619 + (2.042× 0.2829)) = (1.041, 2.197)

(c) If β1 = 1 then the actual times are equal to the estimated times except for a
constant difference of β0.

The t-statistic is

1.619−1.000
0.2829 = 2.19

and the p-value is 0.036.

12.3.8 (a) s.e.(β̂1) = 0.06427

(b) (0.8051− (2.819× 0.06427), 0.8051 + (2.819× 0.06427)) = (0.624, 0.986)

(c) The t-statistic is

0.8051
0.06427 = 12.53

and the p-value is 0.000.

There is sufficient evidence to conclude that resistance
increases with temperature.

12.3.9 For the hypotheses

H0 : β1 = 0 versus HA : β1 6= 0

the t-statistic is
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t = 54.87
21.20 = 2.588

so that the p-value is 2× P (t18 ≥ 2.588) = 0.019.

12.3.10 The model is y = β0 + β1x,

where y is the density of the ceramic and x is the baking time.

n = 10∑10
i=1 xi = 2600∑10
i=1 yi = 31.98∑10
i=1 x2

i = 679850∑10
i=1 y2

i = 102.3284∑10
i=1 xiyi = 8321.15

x̄ = 2600
10 = 260

ȳ = 31.98
10 = 3.198

SXX = 679850− (10× 2602) = 3850

SY Y = 102.3284− (10× 3.1982) = 0.05636

SXY = 8321.15− (10× 260× 3.198) = 6.35

Using these values

β̂1 = 6.35
3850 = 0.00165

β̂0 = 3.198− (0.00165× 260) = 2.769

and

SSE = 102.3284− (2.769× 31.98)− (0.00165× 8321.15) = 0.04589

so that

σ̂2 = 0.04589
10−2 = 0.00574.

For the hypotheses

H0 : β1 = 0 versus HA : β1 6= 0

the t-statistic is

t = 0.00165√
0.00574/3850

= 1.35

so that the p-value is 2× P (t9 ≥ 1.35) = 0.214.
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Therefore, the regression is not significant and there is not sufficient evidence to
establish that the baking time has an effect on the density of the ceramic.
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12.4 Inferences on the Regression Line

12.4.2 (1392, 1400)

12.4.3 (21.9, 23.2)

12.4.4 (6754, 7755)

12.4.5 (33.65, 41.02)

12.4.6 (201.4, 238.2)

12.4.7 (−∞, 10.63)

12.4.8 (68.07, 70.37)

12.4.9
∑8

i=1 xi = 122.6∑8
i=1 x2

i = 1939.24

x̄ = 122.6
8 = 15.325

SXX = 1939.24− 122.62

8 = 60.395

With t0.025,6 = 2.447 the confidence interval is

β0 + (β1 × 15) ∈ 75.32 + (0.0674× 15)± 2.447× 0.0543×
√

1
8 + (15−15.325)2

60.395

which is (76.284, 76.378).

12.4.10 n = 7∑7
i=1 xi = 240.8∑7
i=1 yi = 501.8∑7
i=1 x2

i = 8310.44∑7
i=1 y2

i = 36097.88∑7
i=1 xiyi = 17204.87
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x̄ = 240.8
7 = 34.400

ȳ = 501.8
7 = 71.686

SXX = 8310.44− 240.82

7 = 26.920

SY Y = 36097.88− 501.82

7 = 125.989

SXY = 17204.87− 240.8×501.8
7 = −57.050

Using these values

β̂1 = −57.050
26.920 = −2.119

β̂0 = 71.686− (−2.119× 34.400) = 144.588

and

SSE = 36097.88− (144.588× 501.8)− (−2.119× 17204.87) = 5.086

so that

σ̂2 = 5.086
7−2 = 1.017.

With t0.005,5 = 4.032 the confidence interval is

β0 + (β1 × 35) ∈ 144.588 + (−2.119× 35)± 4.032×
√

1.017×
√

1
7 + (35−34.400)2

26.920

which is

70.414± 1.608 = (68.807, 72.022).
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12.5 Prediction Intervals for Future Response Values

12.5.1 (1386, 1406)

12.5.2 (19.7, 25.4)

12.5.3 (5302, 9207)

12.5.4 (21.01, 53.66)

12.5.5 (165.7, 274.0)

12.5.6 (−∞, 15.59)

12.5.7 (63.48, 74.96)

12.5.8 x̄ = 603.36
30 = 20.112

SXX = 12578.22− 603.362

30 = 443.44

σ̂2 = 329.77
30−2 = 11.778

With t0.025,28 = 2.048 the prediction interval is

51.98 + (3.44× 22)± 2.048×
√

11.778×
√

31
30 + (22−20.112)2

443.44

= 127.66± 7.17 = (120.49, 134.83).

12.5.9 n = 7∑7
i=1 xi = 142.8∑7
i=1 yi = 361.5∑7
i=1 x2

i = 2942.32∑7
i=1 y2

i = 18771.5∑7
i=1 xiyi = 7428.66

x̄ = 142.8
7 = 20.400
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ȳ = 361.5
7 = 51.643

SXX = 2942.32− 142.82

7 = 29.200

SY Y = 18771.5− 361.52

7 = 102.607

SXY = 7428.66− 142.8×361.5
7 = 54.060

Using these values

β̂1 = 54.060
29.200 = 1.851

β̂0 = 51.643− (1.851× 20.400) = 13.875

and

SSE = 18771.5− (13.875× 361.5)− (1.851× 7428.66) = 2.472

so that

σ̂2 = 2.472
7−2 = 0.494.

With t0.005,5 = 4.032 the prediction interval is

13.875 + (1.851× 20)± 4.032×
√

0.494×
√

8
7 + (20−20.400)2

29.200

which is

50.902± 3.039 = (47.864, 53.941).
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12.6 The Analysis of Variance Table

12.6.1 Source df SS MS F p-value
Regression 1 40.53 40.53 2.32 0.137
Error 33 576.51 17.47
Total 34 617.04

R2 = 40.53
617.04 = 0.066

12.6.2 Source df SS MS F p-value
Regression 1 120.61 120.61 6.47 0.020
Error 19 354.19 18.64
Total 20 474.80

R2 = 120.61
474.80 = 0.254

12.6.3 Source df SS MS F p-value
Regression 1 870.43 870.43 889.92 0.000
Error 8 7.82 0.9781
Total 9 878.26

R2 = 870.43
878.26 = 0.991

12.6.4 Source df SS MS F p-value
Regression 1 6.82× 106 6.82× 106 1.64 0.213
Error 23 95.77× 106 4.16× 106

Total 24 102.59× 106

R2 = 6.82×106

102.59×106 = 0.06

12.6.5 Source df SS MS F p-value
Regression 1 10.71× 107 10.71× 107 138.29 0.000
Error 14 1.08× 107 774,211
Total 15 11.79× 107

R2 = 10.71×107

11.79×107 = 0.908

12.6.6 Source df SS MS F p-value
Regression 1 87.59 87.59 1.25 0.291
Error 10 703.33 70.33
Total 11 790.92
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R2 = 87.59
790.92 = 0.111

The large p-value implies that there is not sufficient evidence to conclude that on
average trucks take longer to unload when the temperature is higher.

12.6.7 Source df SS MS F p-value
Regression 1 397.58 397.58 6.94 0.017
Error 18 1031.37 57.30
Total 19 1428.95

R2 = 397.58
1428.95 = 0.278

The R2 value implies that about 28% of the variability in VO2-max can be accounted
for by changes in age.

12.6.8 Source df SS MS F p-value
Regression 1 90907 90907 318.05 0.000
Error 13 3716 286
Total 14 94622

R2 = 90907
94622 = 0.961.

The high R2 value indicates that there is almost a perfect linear relationship between
appraisal value and house size.

12.6.9 Source df SS MS F p-value
Regression 1 411.26 411.26 32.75 0.000
Error 30 376.74 12.56
Total 31 788.00

R2 = 411.26
788.00 = 0.522

The p-value is not very meaningful because it tests the null hypothesis that the actual
times are unrelated to the estimated times.

12.6.10 Source df SS MS F p-value
Regression 1 624.70 624.70 156.91 0.000
Error 22 87.59 3.98
Total 23 712.29

R2 = 624.70
712.29 = 0.877
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12.7 Residual Analysis

12.7.1 There is no suggestion that the fitted regression model is not appropriate.

12.7.2 There is no suggestion that the fitted regression model is not appropriate.

12.7.3 There is a possible suggestion of a slight reduction in the variability of the VO2-max
values as age increases.

12.7.4 The observation with an area of 1,390 square feet appears to be an outlier.

There is no suggestion that the fitted regression model is not appropriate.

12.7.5 The variability of the actual times increases as the estimated time increases.

12.7.6 There is a possible suggestion of a slight increase in the variability of the resistances
at higher temperatures.
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12.8 Variable Transformations

12.8.1 The model

y = γ0 eγ1x

is appropriate.

A linear regression can be performed with ln(y) as the dependent variable

and with x as the input variable.

γ̂0 = 9.12

γ̂1 = 0.28

γ̂0 eγ̂1×2.0 = 16.0

12.8.2 The model

y = x
γ0+γ1x

is appropriate.

A linear regression can be performed with 1
y as the dependent variable

and with 1
x as the input variable.

γ̂0 = 1.067

γ̂1 = 0.974

2.0
γ̂0+(γ̂1×2.0) = 0.66

12.8.3 γ̂0 = 8.81

γ̂1 = 0.523

γ0 ∈ (6.84, 11.35)

γ1 ∈ (0.473, 0.573)

12.8.4 (b) γ̂0 = 89.7

γ̂1 = 4.99

(c) γ0 ∈ (68.4, 117.7)

γ1 ∈ (4.33, 5.65)
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12.8.5 γ̂0 = eβ̂0 = e2.628 = 13.85

γ̂1 = β̂1 = 0.341

With t0.025,23 = 2.069 the confidence interval for γ1 (and β1) is

0.341± (2.069× 0.025) = (0.289, 0.393).

12.8.6 The model can be rewritten

y = γ0 ln(γ1)− 2γ0 ln(x).

If a simple linear regression is performed with ln(x) as the input variable

and y as the output variable, then

β̂0 = γ̂0 ln(γ̂1)

and

β̂1 = −2γ̂0.

Therefore,

γ̂0 = −β̂1

2

and

γ̂1 = e−2β̂0/β̂1 .

12.8.7 γ̂0 = 12.775

γ̂1 = −0.5279

When the crack length is 2.1 the expected breaking load is

12.775× e−0.5279×2.1 = 4.22.
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12.9 Correlation Analysis

12.9.3 The sample correlation coefficient is r = 0.95.

12.9.4 The sample correlation coefficient is r = 0.33.

12.9.5 The sample correlation coefficient is r = −0.53.

12.9.6 The sample correlation coefficient is r = 0.98.

12.9.7 The sample correlation coefficient is r = 0.72.

12.9.8 The sample correlation coefficient is r = 0.94.

12.9.9 The sample correlation coefficient is r = 0.431.

12.9.10 It is known that β̂1 > 0 but nothing is known about the p-value.

12.9.11 The variables A and B may both be related to a third surrogate variable C. It is
possible that the variables A and C have a causal relationship, and that the variables
B and C have a causal relationship, without there being a causal relationship between
the variables A and B.
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12.11 Supplementary Problems

12.11.1 (a) β̂0 = 95.77

β̂1 = −0.1003

σ̂2 = 67.41

(b) The sample correlation coefficient is r = −0.69.

(c) (−0.1003− (2.179× 0.0300),−0.1003 + (2.179× 0.0300))

= (−0.1657,−0.0349)

(d) The t-statistic is

−0.1003
0.0300 = −3.34

and the p-value is 0.006.

There is sufficient evidence to conclude that the time taken to finish the test
depends upon the SAT score.

(e) −0.1003× 10 = −1.003

(f) 95.77 + (−0.1003× 550) = 40.6

The confidence interval is (35.81, 45.43).

The prediction interval is (22.09, 59.15).

(g) There is no suggestion that the fitted regression model is not appropriate.

12.11.2 (a) β̂0 = 18.35

β̂1 = 6.72

σ̂2 = 93.95

(b) The sample correlation coefficient is r = 0.84.

(c) The t-statistic is 23.91 and the p-value is 0.000.

There is sufficient evidence to conclude that the amount of scrap material
depends upon the number of passes.

(d) (6.72− (1.960× 0.2811), 6.72 + (1.960× 0.2811)) = (6.17, 7.27)

(e) It increases by 6.72× 1 = 6.72.
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(f) 18.35 + (6.72× 7) = 65.4

The prediction interval is (46.1, 84.7).

(g) Observations x = 2, y = 67.71 and x = 9, y = 48.17 have standardized residuals
with absolute values larger than three.

The linear model is reasonable, but a non-linear model with a decreasing slope
may be more appropriate.

12.11.3 β̂0 = 29.97

β̂1 = 0.0923

σ̂ = 0.09124

The t-statistic for the null hypothesis H0 : β1 = 0 is

0.09234
0.01026 = 9.00

and the p-value is 0.000.

There is a significant association between power loss and bearing diameter.

The sample correlation coefficient is r = 0.878.

The fitted value for the power loss of a new engine with a bearing diameter of 25.0
is 32.28 and a 95% prediction interval is (32.09, 32.47).

There are no data points with values ei
σ̂ larger than three in absolute value.

12.11.4 β̂0 = 182.61

β̂1 = 0.8623

σ̂ = 32.08

The sample correlation coefficient is r = 0.976.

When the energy lost by the hot liquid is 500, the fitted value for the energy gained
by the cold liquid is 613.8 and a 95% prediction interval is (547.1, 680.3).

12.11.5 β̂0 = 3.252

β̂1 = 0.01249

σ̂ = 2.997

The t-statistic for the null hypothesis H0 : β1 = 0 is
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0.01249
0.003088 = 4.04

and the p-value is 0.001.

There is a significant association between the pulse time and the capacitance value.

The sample correlation coefficient is r = 0.690.

For a capacitance of 1700 microfarads, the fitted value for the pulse time is 24.48
milliseconds and a 95% prediction interval is (17.98, 30.99).

The data point with a pulse time of 28.52 milliseconds for a capacitance of 1400
microfarads has a residual ei = 7.784 so that

ei
σ = 7.784

2.997 = 2.60.

12.11.6 (b) γ̂0 = 0.199

γ̂1 = 0.537

(c) γ0 ∈ (0.179, 0.221)

γ1 ∈ (0.490, 0.584)

(d) 0.199 + 0.537
10.0 = 0.253

12.11.7 (a) The model is y = β0 + β1x where y is the strength of the chemical solution and
x is the amount of the catalyst.

n = 8∑8
i=1 xi = 197∑8
i=1 yi = 225∑8
i=1 x2

i = 4951∑8
i=1 y2

i = 7443∑8
i=1 xiyi = 5210

x̄ = 197
8 = 24.625

ȳ = 225
8 = 28.125

SXX = 4951− (8× 24.6252) = 99.874

SY Y = 7443− (8× 28.1252) = 1114.875

SXY = 5210− (8× 24.625× 28.125) = −330.625

Using these values

β̂1 = −330.625
99.874 = −3.310
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β̂0 = 28.125− (−3.310× 24.625) = 109.643

and

SSE = 7443− (109.643× 225)− (−3.310× 5210) = 20.378

so that

σ̂2 = 20.378
8−2 = 3.396.

(b) The t-statistic is

−3.310√
3.396/99.874

= −17.95

so that the p-value is 2× P (t6 > 17.95) = 0.000.

Therefore, the null hypothesis H0 : β1 = 0 can be rejected and the regression is
significant.
There is sufficient evidence to establish that the amount of the catalyst does
effect the strength of the chemical solution.

(c) With t0.025,6 = 2.447 the prediction interval is

109.643 + (−3.310× 21.0)± 2.447×
√

3.396×
√

1 + 1
8 + (21.0−24.625)2

99.874

= 40.125± 5.055

= (35.070, 45.180).

(d) e2 = 17− (109.643 + (−3.310× 28)) = 0.05

12.11.8 (a) x̄ = 856
20 = 42.8

SXX = 37636− (20× 42.82) = 999.2

With t0.025,18 = 2.101 the prediction interval is

123.57− (3.90× 40)± 2.101× 11.52×
√

21
20 + (40−42.8)2

999.2

= (−57.32,−7.54)

(b) SST = 55230− (−869)2

20 = 17472

Source df SS MS F p-value
Regression 1 15083 15083 114 0.000
Error 18 2389 133
Total 19 17472

R2 = 15083
17472 = 86%
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12.11.9 (a) The model is y = β0+β1x where y is the bacteria yield and x is the temperature.

n = 8∑8
i=1 xi = 197∑8
i=1 yi = 429∑8
i=1 x2

i = 4943∑8
i=1 y2

i = 23805∑8
i=1 xiyi = 10660

x̄ = 197
8 = 24.625

ȳ = 429
8 = 53.625

SXX = 4943− (8× 24.6252) = 91.875

SY Y = 23805− (8× 53.6252) = 799.875

SXY = 10660− (8× 24.625× 53.625) = 95.875

Using these values

β̂1 = 95.875
91.875 = 1.044

β̂0 = 53.625− (1.044× 24.625) = 27.93

and

SSE = 23805− (27.93× 429)− (1.044× 10660) = 699.8

so that

σ̂2 = 699.8
8−2 = 116.6.

(b) The t-statistic is
1.044√

116.6/91.875
= 0.93

so that the p-value is 2× P (t6 > 0.93) = 0.390.

Therefore, the null hypothesis H0 : β1 = 0 cannot be rejected and the regression
is not significant.
There is not sufficient evidence to establish that the bacteria yield does depend
on temperature.

(c) e1 = 54− (27.93 + 1.044× 22) = 3.1

12.11.10 The F -statistic from the analysis of variance table is

F = MSR
MSE = (n−2)SSR

SSE = (n−2)R2

1−R2 = 18×0.853
1−0.853 = 104.4

The p-value is P (F1,18 ≥ 104.4) = 0.000.
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12.11.11 (a) The model is y = β0 +β1x where y is the amount of gold obtained and x is the
amount of ore processed.

n = 7∑7
i=1 xi = 85.8∑7
i=1 yi = 87.9∑7
i=1 x2

i = 1144.40∑7
i=1 y2

i = 1158.91∑7
i=1 xiyi = 1146.97

x̄ = 85.8
7 = 12.257

ȳ = 87.9
7 = 12.557

SXX = 1144.40− (7× 12.2572) = 92.737

SY Y = 1158.91− (7× 12.5572) = 55.137

SXY = 1146.97− (7× 12.257× 12.557) = 69.567

Using these values

β̂1 = 69.567
92.737 = 0.750

and

β̂0 = 12.557− (0.750× 12.257) = 3.362.

(b) Since

SSE = 1158.91− (3.362× 87.9)− (0.750× 69.567) = 2.9511

it follows that

σ̂2 = 2.9511
7−2 = 0.5902.

The t-statistic is

0.750√
0.5902/92.737

= 9.40

so that the p-value is 2× P (t5 > 9.40) ' 0.

Therefore, the null hypothesis H0 : β1 = 0 can be rejected and it can be
concluded that the regression is significant.

(c) r = 69.567√
92.737

√
55.137

= 0.973

(d) R2 = r2 = 0.9732 = 0.946

(e) With t0.025,5 = 2.571 the prediction interval is
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3.362 + (0.750× 15)± 2.571×
√

0.5902×
√

1 + 1
7 + (15−12.257)2

92.737

which is

14.615± 2.185 = (12.430, 16.800).

(f) e1 = 8.9− (3.362 + 0.750× 7.3) = 0.06
e2 = 11.3− (3.362 + 0.750× 9.1) = 1.11
e3 = 10.6− (3.362 + 0.750× 10.2) = −0.41
e4 = 11.6− (3.362 + 0.750× 11.5) = −0.38
e5 = 12.2− (3.362 + 0.750× 13.2) = −1.06
e6 = 15.7− (3.362 + 0.750× 16.1) = 0.26
e7 = 17.6− (3.362 + 0.750× 18.4) = 0.43

12.11.12 (a) False

(b) True

(c) True

(d) False

(e) True

(f) False

(g) True

(h) False

(i) True

(j) True

(k) False

(l) True

(m) False

12.11.13 (a) The model is y = β0 + β1x where y is the downloading time and x is the file
size.

n = 9∑9
i=1 xi = 50.06∑9
i=1 yi = 1156∑9
i=1 x2

i = 319.3822∑9
i=1 y2

i = 154520
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∑9
i=1 xiyi = 6894.34

x̄ = 50.06
9 = 5.562

ȳ = 1156
9 = 128.444

SXX = 319.3822− (9× 5.5622) = 40.9374

SY Y = 154520− (9× 128.4442) = 6038.2223

SXY = 6894.34− (9× 5.562× 128.444) = 464.4111

Using these values

β̂1 = 464.4111
40.9374 = 11.344

β̂0 = 128.444− (11.344× 5.562) = 65.344

and

SSE = 154520− (65.344× 1156)− (11.344× 6894.34) = 769.737

so that

σ̂2 = 769.737
9−2 = 109.962.

(b) The t-statistic is

11.344√
109.962/40.9374

= 6.92

so that the p-value is 2× P (t7 > 6.92) ' 0.

Therefore, the null hypothesis H0 : β1 = 0 can be rejected and it can be
concluded that the regression is significant.

(c) 65.344 + (11.344× 6) = 133.41

(d) Since

SSR = SST − SSE = 6038.2223− 769.737 = 5268.485

it follows that

R2 = 5268.485
6038.2223 = 87.25%.

(e) With t0.025,7 = 2.365 the prediction interval is

65.344 + (11.344× 6)± 2.365×
√

109.962×
√

1 + 1
9 + (6−5.562)2

40.9374

which is

133.41± 26.19 = (107.22, 159.60).

(f) 103− (65.344 + (4.56× 6)) = −14.07
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(g) r =
√

R2 =
√

0.8725 = 0.934

(h) It may be quite unreliable to extrapolate the model to predict the downloading
time of a file of size 0.40.

12.11.14 (a) The model is y = β0 + β1x where y is the speed and x is the depth.

n = 18∑18
i=1 xi = 56.988∑18
i=1 yi = 27343.03∑18
i=1 x2

i = 234.255∑18
i=1 y2

i = 41535625∑18
i=1 xiyi = 86560.46

x̄ = 56.988
18 = 3.166

ȳ = 27343.03
18 = 1519.06

SXX = 234.255− (18× 3.1662) = 53.8307

SY Y = 41535625− (18× 1519.062) = 5.2843

SXY = 86560.46− (18× 3.166× 1519.06) = −16.666

Using these values

β̂1 = −16.666
53.8307 = −0.3096

and

β̂0 = 1519.06− (−0.31× 3.16) = 1520.04.

(b) With

SSE = 41535625− (1520.04× 27343.03)− (−0.3096× 86560.46) = 0.1232

it follows that

σ̂2 = 0.1232
18−2 = 0.00770.

(c) The t-statistic is

−0.3096√
0.00770/53.8307

= −25.89

so that the p-value is 2× P (t16 > 25.84) ' 0.

Therefore, the null hypothesis H0 : β1 = 0 can be rejected and it can be
concluded that the regression is significant.
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(d) With t0.025,16 = 2.120 the confidence interval is

β0 + (β1 × 4) ∈ 1520.04 + (−0.3096× 4)± 2.120×
√

0.00770×
√

1
18 + (4−3.166)2

53.8307

which is

1518.80± 0.05 = (1518.75, 1518.85).

(e) Since

SSR = SST − SSE = 5.2843− 0.1232 = 5.1611

it follows that

R2 = 5.1611
5.2843 = 97.7%.
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Chapter 13

Multiple Linear Regression and
Nonlinear Regression

13.1 Introduction to Multiple Linear Regression

13.1.1 (a) R2 = 0.89

(b) Source df SS MS F p-value
Regression 3 96.5 32.17 67.4 0.000
Error 26 12.4 0.477
Total 29 108.9

(c) σ̂2 = 0.477

(d) The p-value is 0.000.

(e) (16.5− (2.056× 2.6), 16.5 + (2.056× 2.6)) = (11.2, 21.8)

13.1.2 (a) R2 = 0.23

(b) Source df SS MS F p-value
Regression 6 2.67 0.445 1.89 0.108
Error 38 8.95 0.2355
Total 44 11.62

(c) σ̂2 = 0.2355

(d) The p-value is 0.108.

(e) (1.05− (2.024× 0.91), 1.05 + (2.024× 0.91)) = (−0.79, 2.89)

317
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13.1.3 (a) (132.4− (2.365× 27.6), 132.4 + (2.365× 27.6)) = (67.1, 197.7)

(b) The test statistic is t = 4.80 and the p-value is 0.002.

13.1.4 (a) (0.954− (2.201× 0.616), 0.954 + (2.201× 0.616)) = (−0.402, 2.310)

(b) The test statistic is t = 1.55 and the p-value is 0.149.

13.1.5 The test statistic for H0 : β1 = 0 is t = 11.30 and the p-value is 0.000.

The test statistic for H0 : β2 = 0 is t = 5.83 and the p-value is 0.000.

The test statistic for H0 : β3 = 0 is t = 1.15 and the p-value is 0.257.

Variable x3 should be removed from the model.

13.1.6 The test statistic is F = 1.56 and the p-value is 0.233.

13.1.7 The test statistic is F = 5.29 and the p-value is 0.013.

13.1.8 (b) ŷ = 7.280− 0.313− 0.1861 = 6.7809

13.1.9 (a) ŷ = 104.9 + (12.76× 10) + (409.6× 0.3) = 355.38

(b) (355.38− (2.110× 17.6), 355.38 + (2.110× 17.6)) = (318.24, 392.52)

13.1.10 (a) ŷ = 65.98 + (23.65× 1.5) + (82.04× 1.5) + (17.04× 2.0) = 258.6

(b) (258.6− (2.201× 2.55), 258.6 + (2.201× 2.55)) = (253.0, 264.2).

13.1.11 MSE = 4.332 = 18.749

SST = 694.09− (−5.68)2

20 = 692.477

Source df SS MS F p-value
Regression 3 392.495 130.832 6.978 0.003
Error 16 299.982 18.749
Total 19 692.477

The p-value in the analysis of variance table is for the null hypothesis

H0 : β1 = β2 = β3 = 0.
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The proportion of the variability of the y variable that is explained by the model is

R2 = 392.495
692.477 = 56.7%.

13.1.12 (a) R2 = SSR
SST = 45.76−23.98

45.76 = 47.6%

(b) Source df SS MS F p-value
Regression 4 21.78 5.445 3.860 0.021
Error 17 23.98 1.411
Total 21 45.76

(c) σ̂2 = MSE = 1.411

(d) From the analysis of variance table the p-value is 0.021.

(e) With t0.25,17 = 2.110 the confidence interval is

β2 ∈ 183.2± (2.110× 154.3) = (−142.4, 508.8)
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13.2 Examples of Multiple Linear Regression

13.2.1 (b) The variable competitor’s price has a p-value of 0.216 and is not needed in the
model.

The sample correlation coefficient between the competitor’s price and the sales
is r = −0.91.

The sample correlation coefficient between the competitor’s price and the com-
pany’s price is r = 0.88.

(c) The sample correlation coefficient between the company’s price and the sales is
r = −0.96.

Using the model

sales = 107.4− (3.67× company’s price)

the predicted sales are 107.4− (3.67× 10.0) = 70.7.

13.2.2 β̂0 = 20.011

β̂1 = −0.633

β̂2 = −1.467

β̂3 = 2.083

β̂4 = −1.717

β̂5 = 0.925

All terms should be kept in the model.

It can be estimated that the fiber strength is maximized at

x1 = −0.027 and x2 = 0.600.

13.2.3 (a) β̂0 = −3, 238.6

β̂1 = 0.9615

β̂2 = 0.732

β̂3 = 2.889

β̂4 = 389.9

(b) The variable geology has a p-value of 0.737 and is not needed in the model.

The sample correlation coefficient between the cost and geology is r = 0.89.
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The sample correlation coefficient between the depth and geology is r = 0.92.

The variable geology is not needed in the model because it is highly correlated
with the variable depth which is in the model.

(c) The variable rig-index can also be removed from the model.

A final model

cost = −3011 + (1.04× depth) + (2.67× downtime)

can be recommended.

13.2.4 A final model

VO2-max = 88.8− (0.343× heart rate)− (0.195× age)− (0.901× bodyfat)

can be recommended.

13.2.5 Two indicator variables x1 and x2 are needed.

One way is to have (x1, x2) = (0, 0) at level 1,

(x1, x2) = (0, 1) at level 2,

and (x1, x2) = (1, 0) at level 3.

13.2.6 No bounds can be put on the p-value for x2 in the simple linear regression.

It can take any value.
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13.3 Matrix Algebra Formulation of Multiple Linear Regres-
sion

13.3.1 (a)

Y =



2
−2

4
−2

2
−4

1
3
1

−5


(b)

X =



1 0 1
1 0 −1
1 1 4
1 1 −4
1 −1 2
1 −1 −2
1 2 0
1 2 0
1 −2 3
1 −2 −3


(c)

X′X =

 10 0 0
0 20 0
0 0 60


(d)

(X′X)−1 =

 0.1000 0 0
0 0.0500 0
0 0 0.0167


(e)

X′Y =

 0
20
58
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(g)

Ŷ =



0.967
−0.967

4.867
−2.867

0.933
−2.933

2.000
2.000
0.900

−4.900


(h)

e =



1.033
−1.033
−0.867

0.867
1.067

−1.067
−1.000

1.000
0.100

−0.100


(i) SSE = 7.933

(k) s.e.(β̂1) = 0.238

s.e.(β̂2) = 0.137

Both input variables should be kept in the model.

(l) The fitted value is

0 + (1× 1) +
(

29
30 × 2

)
= 2.933.

The standard error is 0.496.

The confidence interval is (1.76, 4.11).

(m) The prediction interval is (0.16, 5.71).
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13.3.2 (a)

Y =



3
−5

2
4
4
6
3

15


(b)

X =



1 −3 0.5
1 −2 −3.0
1 −1 0.5
1 0 −1.0
1 0 −1.0
1 1 1.5
1 2 −1.0
1 3 3.5


(c)

X′X =

 8 0 0
0 28 14
0 14 27


(d)

(X′X)−1 =

 0.125 0 0
0 0.048 −0.025
0 −0.025 0.050


(e)

X′Y =

 32
56
68


(f)

β̂ =

 4
1
2
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(g)

Ŷ =



2
−4

4
2
2
8
4

14


(h)

e =



1
−1
−2

2
2

−2
−1

1


(j) σ̂2 = 4

(k) s.e.(β̂1) = 0.439

s.e.(β̂2) = 0.447

Perhaps the variable x1 could be dropped from the model (the p-value is 0.072).

(l) The fitted value is

4 + (1× 1) + (2× 1) = 7.

The standard error is 0.832.

The confidence interval is (4.86, 9.14).

(m) The prediction interval is (1.43, 12.57).

13.3.3

Y =



10
0

−5
2
3

−6
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X =



1 −3 1 3
1 −2 1 0
1 −1 1 −5
1 1 −6 1
1 2 −3 0
1 3 6 1



X′X =


6 0 0 0
0 28 0 0
0 0 84 −2
0 0 −2 36



(X′X)−1 =


0.16667 0 0 0

0 0.03571 0 0
0 0 0.01192 0.00066
0 0 0.00066 0.02781



X′Y =


4

−35
−52

51



β̂ =


0.6667

−1.2500
−0.5861

1.3841
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13.4 Evaluating Model Accuracy

13.4.1 (a) There is a slight suggestion of a greater variability in the yields at higher
temperatures.

(b) There are no unusually large standardized residuals.

(c) The points (90, 85) and (200, 702) have leverage values hii = 0.547.

13.4.2 (a) The residual plots do not indicate any problems.

(b) If it were beneficial to add the variable geology to the model, then there would
be some pattern in this residual plot.

(d) The observation with a cost of 8089.5 has a standardized residual of 2.01.

13.4.3 (a) The residual plots do not indicate any problems.

(b) If it were beneficial to add the variable weight to the model, then there would
be some pattern in this residual plot.

(d) The observation with VO2-max = 23 has a standardized residual of −2.15.

13.4.4 The leverage values only depend upon the design matrix X and will not change if
any of the values yi are altered.
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13.6 Supplementary Problems

13.6.1 (b) Source df SS MS F p-value
Regression 2 2,224.8 1,112.4 228.26 0.000
Error 8 39.0 4.875
Total 10 2,263.7

(c) The test statistic is t = 5.85 and the p-value is 0.000.

(d) The fitted value is

18.18− (44.90× 1) + (44.08× 12) = 17.36.

The confidence interval is (15.04, 19.68).

13.6.2 (a)

Y =



24
8

14
6
0
2

−8
−8
−12
−16



X =



1 −4 5
1 −4 −5
1 −2 2
1 −2 −2
1 1 0
1 1 0
1 4 2
1 4 −2
1 6 5
1 6 −5


(b)

X′X =

 10 10 0
10 146 0
0 0 116
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(e)

Ŷ =



21
11
12
8
1
1

−6
−10
−9
−19



e =



3
−3

2
−2
−1

1
−2

2
−3

3


(f) SSE = 54

(h) s.e.(β̂1) = 0.238

s.e.(β̂2) = 0.258

Both input variables should be kept in the model.

(i) The fitted value is

4− (3× 2) + (1× (−2)) = −4.

The standard error is 1.046.

(j) The prediction interval is (−11.02, 3.02).

13.6.3 (b) The fitted model is

powerloss = 30.2 + (0.0933× diameter)− (4.081× clearance)

with σ̂ = 0.0764.

When the bearing diameter is 25 and the bearing clearance is 0.07, the fitted
value is 32.29 and a 95% prediction interval is (32.13, 32.45).

The data point with a bearing diameter of 28.2, a bearing clearance of 0.086,
and a powerloss of 32.35 has a standardized residual of −2.46.
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13.6.4 (a) The values of the additive levels and the temperature levels used in the experi-
ment have been chosen according to a grid pattern.

(b) The data point obtained with an additive level of 2.3 and a temperature of 160
has a standardized residual of −3.01.

(c) The fitted model is maximized with an additive level of 2.80 and a temperature
of 155.4.

13.6.5 e1 = 288.9− (−67.5+(34.5×12.3)− (0.44×143.4)+(108.6× (−7.2))+(55.8×14.4))

= −26.454

Since

e∗1 = e1

σ̂
√

1−h11

it follows that

−1.98 = −26.454
σ̂
√

1−0.0887

so that σ̂ = 13.996.

Therefore,

SSE = MSE × (44− 4− 1) = 13.9962 × 39 = 7639

so that

R2 = SST−SSE
SST = 20554−7639

20554 = 62.8%.

13.6.6 The sample correlation coefficient between y and x3 could be either negative, zero,
or positive.

13.6.7 (a) True

(b) False

13.6.8 (a) β̂1

s.e.(β̂1)
= −45.2

39.5 = −1.14

β̂2

s.e.(β̂2)
= 3.55

5.92 = 0.60

The p-value for variable 1 is 2× P (t27 ≥ 1.14) = 0.26.

The p-value for variable 2 is 2× P (t27 ≥ 0.60) = 0.55.

The variables should be removed sequentially. Variable 2 should be removed
first since it has the largest p-value. When variable 2 has been removed and a



13.6. SUPPLEMENTARY PROBLEMS 331

simple linear regression is performed with variable 1, the p-value of variable 1
may change. Therefore, it is not clear whether variable 1 should also be removed
from the model. It is not clear that both variables should be removed from the
model. False.

(b) β̂1

s.e.(β̂1)
= −45.2

8.6 = −5.26

β̂2

s.e.(β̂2)
= 3.55

0.63 = 5.63

The p-value for variable 1 is 2× P (t27 ≥ −5.26) = 0.000.

The p-value for variable 2 is 2× P (t27 ≥ 5.63) = 0.000.

Neither variable should be removed from the model. True.
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Chapter 14

Multifactor Experimental Design
and Analysis

14.1 Experiments with Two Factors

14.1.1 Source df SS MS F p-value
Fuel 1 96.33 96.33 3.97 0.081
Car 1 75.00 75.00 3.09 0.117
Fuel*Car 1 341.33 341.33 14.08 0.006
Error 8 194.00 24.25
Total 11 706.66

14.1.2 (a) Source df SS MS F p-value
Type 3 160.61 53.54 9.63 0.002
Temp 2 580.52 290.26 52.22 0.000
Type*Temp 6 58.01 9.67 1.74 0.195
Error 12 66.71 5.56
Total 23 865.85

(c) With a confidence level 95% the pairwise comparisons are:

α1 − α2 ∈ (0.26, 8.34)

α1 − α3 ∈ (−2.96, 5.12)

α1 − α4 ∈ (−6.97, 1.11)

α2 − α3 ∈ (−7.26, 0.82)

α2 − α4 ∈ (−11.27,−3.19)

α3 − α4 ∈ (−8.05, 0.03)

(d) With a confidence level 95% the pairwise comparisons are:

β1 − β2 ∈ (4.61, 10.89)

333
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β1 − β3 ∈ (8.72, 15.00)

β2 − β3 ∈ (0.97, 7.25)

14.1.3 (a) Source df SS MS F p-value
Tip 2 0.1242 0.0621 1.86 0.175
Material 2 14.1975 7.0988 212.31 0.000
Tip*Material 4 0.0478 0.0120 0.36 0.837
Error 27 0.9028 0.0334
Total 35 15.2723

(c) Apart from one large negative residual there appears to be less variability in
the measurements from the third tip.

14.1.4 (a) Source df SS MS F p-value
Material 3 51.7 17.2 0.11 0.957
Magnification 3 13493.7 4,497.9 27.47 0.000
Material*Magnification 9 542.1 60.2 0.37 0.947
Error 80 13098.8 163.7
Total 95 27186.3

(c) Material type 3 has the least amount of variability.

14.1.5 Source df SS MS F p-value
Glass 2 3.134 1.567 0.32 0.732
Acidity 1 18.201 18.201 3.72 0.078
Glass*Acidity 2 83.421 41.711 8.52 0.005
Error 12 58.740 4.895
Total 17 163.496

14.1.6 Source df SS MS F p-value
A 2 230.11 115.06 11.02 0.004
B 2 7.44 3.72 0.36 0.710
A*B 4 26.89 6.72 0.64 0.645
Error 9 94.00 10.44
Total 17 358.44

The low level of ingredient B has the smallest amount of variability in the percentage
improvements.
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14.1.7 Source df SS MS F p-value
Design 2 3.896× 103 1.948× 103 0.46 0.685
Material 1 0.120× 103 0.120× 103 0.03 0.882
Error 2 8.470× 103 4.235× 103

Total 5 12.487× 103
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14.2 Experiments with Three or More Factors

14.2.1 (d) Source df SS MS F p-value
Drink 2 90.65 45.32 5.39 0.007
Gender 1 6.45 6.45 0.77 0.384
Age 2 23.44 11.72 1.39 0.255
Drink*Gender 2 17.82 8.91 1.06 0.352
Drink*Age 4 24.09 6.02 0.72 0.583
Gender*Age 2 24.64 12.32 1.47 0.238
Drink*Gender*Age 4 27.87 6.97 0.83 0.511
Error 72 605.40 8.41
Total 89 820.36

14.2.2 (a) Source df SS MS F p-value
Rice 2 527.0 263.5 1.72 0.193
Fert 1 2394.2 2394.2 15.62 0.000
Sun 1 540.0 540.0 3.52 0.069
Rice*Fert 2 311.6 155.8 1.02 0.372
Rice*Sun 2 2076.5 1038.3 6.78 0.003
Fert*Sun 1 77.5 77.5 0.51 0.481
Rice*Fert*Sun 2 333.3 166.6 1.09 0.348
Error 36 5516.3 153.2
Total 47 11776.5

(b) Yes

(c) No

(d) Yes

14.2.3 (a) Source df SS MS F p-value
Add-A 2 324.11 162.06 8.29 0.003
Add-B 2 5.18 2.59 0.13 0.877
Conditions 1 199.28 199.28 10.19 0.005
Add-A*Add-B 4 87.36 21.84 1.12 0.379
Add-A*Conditions 2 31.33 15.67 0.80 0.464
Add-B*Conditions 2 2.87 1.44 0.07 0.930
Add-A*Add-B*Conditions 4 21.03 5.26 0.27 0.894
Error 18 352.05 19.56
Total 35 1023.21

The amount of additive B does not effect the expected value of the gas mileage
although the variability of the gas mileage increases as more of additive B is
used.
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14.2.4 Source df SS MS F p-value
Radar 3 40.480 13.493 5.38 0.009
Aircraft 1 2.750 2.750 1.10 0.311
Period 1 0.235 0.235 0.09 0.764
Radar*Aircraft 3 142.532 47.511 18.94 0.000
Radar*Period 3 8.205 2.735 1.09 0.382
Aircraft*Period 1 5.152 5.152 2.05 0.171
Radar*Aircraft*Period 3 5.882 1.961 0.78 0.521
Error 16 40.127 2.508
Total 31 245.362

14.2.5 (d) Source df SS MS F p-value
Machine 1 387.1 387.1 3.15 0.095
Temp 1 29.5 29.5 0.24 0.631
Position 1 1271.3 1271.3 10.35 0.005
Angle 1 6865.0 6685.0 55.91 0.000
Machine*Temp 1 43.0 43.0 0.35 0.562
Machine*Position 1 54.9 54.9 0.45 0.513
Machine*Angle 1 1013.6 1013.6 8.25 0.011
Temp*Position 1 67.6 67.6 0.55 0.469
Temp*Angle 1 8.3 8.3 0.07 0.798
Position*Angle 1 61.3 61.3 0.50 0.490
Machine*Temp*Position 1 21.0 21.0 0.17 0.685
Machine*Temp*Angle 1 31.4 31.4 0.26 0.620
Machine*Position*Angle 1 13.7 13.7 0.11 0.743
Temp*Position*Angle 1 17.6 17.6 0.14 0.710
Machine*Temp*Position*Angle 1 87.5 87.5 0.71 0.411
Error 16 1964.7 122.8
Total 31 11937.3
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14.2.6 Source df SS MS F p-value
Player 1 72.2 72.2 0.21 0.649
Club 1 289.0 289.0 0.84 0.365
Ball 1 225.0 225.0 0.65 0.423
Weather 1 2626.6 2626.6 7.61 0.008
Player*Club 1 72.2 72.2 0.21 0.649
Player*Ball 1 169.0 169.0 0.49 0.488
Player*Weather 1 826.6 826.6 2.39 0.128
Club*Ball 1 5700.3 5700.3 16.51 0.000
Club*Weather 1 10.6 10.6 0.03 0.862
Ball*Weather 1 115.6 115.6 0.33 0.566
Player*Club*Ball 1 22500.0 22500.0 65.17 0.000
Player*Club*Weather 1 297.6 297.6 0.86 0.358
Player*Ball*Weather 1 115.6 115.6 0.33 0.566
Club*Ball*Weather 1 14.1 14.1 0.04 0.841
Player*Club*Ball*Weather 1 0.6 0.6 0.00 0.968
Error 48 16571.0 345.2
Total 63 49605.8

14.2.7 A redundant

B redundant

C redundant

D redundant

A*B not significant

A*C redundant

A*D redundant

B*C significant

B*D significant

C*D redundant

A*B*C not significant

A*B*D not significant

A*C*D significant

B*C*D not significant

A*B*C*D not significant
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14.2.8 A plot should be made of the data averaged over the levels of factor B.

A low A middle A high

C low 45 42.5 51

C high 45 45.5 68
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14.3 Supplementary Problems

14.3.1 (a) Source df SS MS F p-value
Material 2 106.334 53.167 34.35 0.000
Pressure 2 294.167 147.084 95.03 0.000
Material*Pressure 4 2.468 0.617 0.40 0.808
Error 27 41.788 1.548
Total 35 444.756

(c) With a confidence level 95% the pairwise comparisons are:

α1 − α2 ∈ (2.61, 5.13)

α1 − α3 ∈ (2.11, 4.64)

α2 − α3 ∈ (−1.75, 0.77)

(d) With a confidence level 95% the pairwise comparisons are:

β1 − β2 ∈ (−0.96, 1.56)

β1 − β3 ∈ (−7.17,−4.65)

β2 − β3 ∈ (−7.47,−4.95)

14.3.2 Source df SS MS F p-value
Location 1 34.13 34.13 2.29 0.144
Coating 2 937.87 468.93 31.40 0.000
Location*Coating 2 43.47 21.73 1.46 0.253
Error 24 358.40 14.93
Total 29 1373.87

14.3.3 Source df SS MS F p-value
Drug 3 593.19 197.73 62.03 0.000
Severity 1 115.56 115.56 36.25 0.000
Drug*Severity 3 86.69 28.90 9.07 0.006
Error 8 25.50 3.19
Total 15 820.94
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14.3.4 (c) Source df SS MS F p-value
Furnace 1 570.38 570.38 27.77 0.000
Layer 2 18.08 9.04 0.44 0.654
Position 1 495.04 495.04 24.10 0.000
Furnace*Layer 2 23.25 11.63 0.57 0.582
Furnace*Position 1 18.38 18.38 0.89 0.363
Layer*Position 2 380.08 190.04 9.25 0.004
Furnace*Layer*Position 2 84.25 42.13 2.05 0.171
Error 12 246.50 20.54
Total 23 1835.96

14.3.5 Source df SS MS F p-value
Monomer 1 19.220 19.220 15.40 0.001
Stab 1 13.781 13.781 11.04 0.004
Cat 1 36.125 36.125 28.94 0.000
Water 1 4.061 4.061 3.25 0.090
Monomer*Stab 1 0.000 0.000 0.00 1.000
Monomer*Cat 1 22.781 22.781 18.25 0.001
Monomer*Water 1 11.520 11.520 9.23 0.008
Stab*Cat 1 0.405 0.405 0.32 0.577
Stab*Water 1 0.011 0.011 0.01 0.926
Cat*Water 1 0.845 0.845 0.68 0.423
Monomer*Stab*Cat 1 2.101 2.101 1.68 0.213
Monomer*Stab*Water 1 2.000 2.000 1.60 0.224
Monomer*Cat*Water 1 0.281 0.281 0.23 0.641
Stab*Cat*Water 1 1.445 1.445 1.16 0.298
Monomer*Stab*Cat*Water 1 0.101 0.101 0.08 0.779
Error 16 19.970 1.248
Total 31 134.649

14.3.6 Source df SS MS F p-value
Lathe 1 1144.7 1144.7 8.92 0.006
Operator 2 2325.7 1162.9 9.06 0.001
Lathe*Operator 2 485.7 242.9 1.89 0.168
Error 30 3849.5 128.3
Total 35 7805.6

There is sufficient evidence to conclude that lathe 2 is more efficient than lathe 1.

There is no evidence of an interaction effect, so there is no evidence that the difference
between the lathes is not the same for each of the operators.
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14.3.7 Source df SS MS F p-value
Speed 2 400.509 200.254 171.65 0.000
Cooler 3 215.884 71.961 61.68 0.000
Position 1 0.101 0.101 0.09 0.771
Speed*Cooler 6 59.550 9.925 8.51 0.000
Speed*Position 2 41.595 20.798 17.83 0.000
Cooler*Position 3 55.034 18.345 15.72 0.000
Speed*Cooler*Position 6 47.280 7.880 6.75 0.000
Error 24 28.000 1.167
Total 47 847.953
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Nonparametric Statistical Analysis

15.1 The Analysis of a Single Population

15.1.1 (c) It is not plausible.

(d) It is not plausible.

(e) S(65) = 84
The p-value is 0.064.

(f) The p-value is 0.001.

(g) The confidence interval from the sign test is (65.0, 69.0).
The confidence interval from the signed rank test is (66.0, 69.5).

15.1.2 (c) A N(1.1, 0.052) distribution is plausible while
a N(1.0, 0.052) distribution is not plausible.

(d) S(1.1) = 51
The p-value is 0.049.

(e) The p-values are 0.014 for the signed rank test and 0.027 for the t-test.

(f) The confidence interval from the sign test is (1.102, 1.120).
The confidence interval from the signed rank test is (1.102, 1.120).
The confidence interval from the t-test is (1.101, 1.120).

15.1.3 The p-values for the hypotheses

H0 : µ = 0.2 versus HA : µ 6= 0.2

are 0.004 for the sign test,
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0.000 for the signed rank test,

and 0.000 for the t-test.

Confidence intervals for µ with a confidence level of at least 95% are

(0.207, 0.244) for the sign test,

(0.214, 0.244) for the signed rank test,

and (0.216, 0.248) for the t-test.

There is sufficient evidence to conclude that the median paint thickness is larger than
0.2 mm.

15.1.4 The p-values for the hypotheses

H0 : µ ≥ 9.5 versus HA : µ < 9.5

are 0.288 for the sign test,

0.046 for the signed rank test,

and 0.003 for the t-test.

A histogram of the data shows a skewed distribution, so that the assumptions of
symmetry and normality required by the signed rank test and the t-test respectively
appear to be invalid.

The sign test does not provide support for the statement that the median is less than
9.5.

15.1.5 (a) S(18.0) = 14

(b) The exact p-value is
2× P (B(20, 0.5) ≥ 14) = 0.115.

(c) 2× Φ(−1.57) = 0.116

(d) S+(18.0) = 37

(e) 2× Φ(−2.52) = 0.012

15.1.6 (a) S(40) = 7

(b) The exact p-value is
2× P (B(25, 0.5) ≤ 7) = 0.064.

(c) 2× Φ(−2.00) = 0.046
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(d) S+(40) = 241

(e) 2× Φ(−2.10) = 0.036

15.1.7 It is reasonable to assume that the differences of the data have a symmetric distri-
bution in which case the signed rank test can be used.

The p-values for the hypotheses

H0 : µA − µB = 0 versus HA : µA − µB 6= 0

are 0.296 for the sign test and 0.300 for the signed rank test.

Confidence intervals for µA − µB with a confidence level of at least 95% are

(−1.0, 16.0) for the sign test and

(−6.0, 17.0) for the signed rank test.

There is not sufficient evidence to conclude that there is a difference between the two
assembly methods.

15.1.8 The p-values for the hypotheses

H0 : µA − µB = 0 versus HA : µA − µB 6= 0

are 0.774 for the sign test and 0.480 for the signed rank test.

Confidence intervals for µA − µB with a confidence level of at least 95% are

(−6.0, 4.0) for the sign test and

(−4.0, 2.0) for the signed rank test.

There is not sufficient evidence to conclude that there is a difference between the two
stimulation conditions.

15.1.9 The p-values for the hypotheses

H0 : µA − µB = 0 versus HA : µA − µB 6= 0

are 0.003 for the sign test and 0.002 for the signed rank test.

Confidence intervals for µA − µB with a confidence level of at least 95% are

(−13.0,−1.0) for the sign test and

(−12.0,−3.5) for the signed rank test.

The signed rank test shows that the new teaching method is better by at least 3.5
points on average.
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15.1.10 The p-values for the hypotheses

H0 : µA − µB = 0 versus HA : µA − µB 6= 0

are 0.815 for the sign test and 0.879 for the signed rank test.

Confidence intervals for µA − µB with a confidence level of at least 95% are

(−70.0, 80.0) for the sign test and

(−65.0, 65.0) for the signed rank test.

There is not sufficient evidence to conclude that there is a difference between the two
dating methods.

15.1.11 The p-values for the hypotheses

H0 : µA − µB = 0 versus HA : µA − µB 6= 0

are 0.541 for the sign test and 0.721 for the signed rank test.

Confidence intervals for µA − µB with a confidence level of at least 95% are

(−13.6, 7.3) for the sign test and

(−6.6, 6.3) for the signed rank test.

There is not sufficient evidence to conclude that there is a difference between the two
ball types.
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15.2 Comparing Two Populations

15.2.1 (c) The Kolmogorov-Smirnov statistic is M = 0.2006, which is larger than

d0.01

√
1

200 + 1
180 = 0.167.

There is sufficient evidence to conclude that the two distribution functions are
different.

15.2.2 (c) The Kolmogorov-Smirnov statistic is M = 0.376, which is larger than

d0.01

√
1

125 + 1
125 = 0.206.

There is sufficient evidence to conclude that the two distribution functions are
different.

15.2.3 The Kolmogorov-Smirnov statistic is M = 0.40, which is larger than

d0.01

√
1
50 + 1

50 = 0.326.

There is sufficient evidence to conclude that the two distribution functions are
different.

15.2.4 (b) SA = 75.5

(c) UA = 75.5− 8×(8+1)
2 = 39.5

(d) Since

UA = 39.5 < mn
2 = 8×13

2 = 52

the value of UA is consistent with the observations from population A being
smaller than the observations from population B.

(e) The p-value is 0.385.
There is not sufficient evidence to conclude that there is a difference between
the two distribution functions.

15.2.5 (b) SA = 245

(c) UA = 245− 14×(14+1)
2 = 140

(d) Since

UA = 140 > mn
2 = 14×12

2 = 84
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the value of UA is consistent with the observations from population A being
larger than the observations from population B.

(e) The p-value is 0.004.
There is sufficient evidence to conclude that the observations from population
A tend to be larger than the observations from population B.

15.2.6 (b) SA = 215.5

(c) UA = 215.5− 15×(15+1)
2 = 95.5

(d) Since

UA = 95.5 < mn
2 = 15×15

2 = 112.5

the value of UA is consistent with the hypothesis that the observations from the
standard treatment are smaller than the observations from the new treatment.

(e) The one-sided p-value is 0.247.
There is not sufficient evidence to conclude that there is a difference between
the new and the standard treatments.

15.2.7 (c) The Kolmogorov-Smirnov statistic is M = 0.218, which is approximately equal
to

d0.05

√
1
75 + 1

82 = 0.217.

There is some evidence that the two distribution functions are different,
although the evidence is not overwhelming.

(d) SA = 6555.5

UA = 6555.5− 75×(75+1)
2 = 3705.5

Since

UA = 3705.5 > mn
2 = 75×82

2 = 3075.0

the value of UA is consistent with the observations from production line A being
larger than the observations from production line B.

The two-sided p-value is 0.027.

A 95% confidence interval for the difference in the population medians is
(0.003, 0.052).

The rank sum test is based on the assumption that the two distribution functions
are identical except for a location difference, and the plots of the empirical
cumulative distribution functions in (a) suggest that this assumption is not
unreasonable.
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15.2.8 The rank sum test has a two-sided p-value of 0.24 and there is not sufficient evidence
to conclude that there is a difference between the low and high levels of hydrogen
peroxide.
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15.3 Comparing Three or More Populations

15.3.1 (b) r̄1. = 16.6

r̄2. = 15.5

r̄3. = 9.9

(c) H = 3.60

(d) The p-value is P (χ2
2 > 3.60) = 0.165.

15.3.2 (a) r̄1. = 10.4

r̄2. = 26.1

r̄3. = 35.4

r̄4. = 12.5

(b) H = 28.52

(c) The p-value is P (χ2
3 > 28.52) = 0.000.

15.3.3 (a) r̄1. = 17.0

r̄2. = 19.8

r̄3. = 14.2

H = 1.84

The p-value is P (χ2
2 > 1.84) = 0.399.

There is not sufficient evidence to conclude that the radiation readings are
affected by the background radiation level.

(b) See Problem 11.1.15.

15.3.4 r̄1. = 13.0

r̄2. = 28.5

r̄3. = 10.9

H = 20.59

The p-value is P (χ2
2 > 20.59) = 0.000.
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There is sufficient evidence to conclude that the different layouts affect the time
taken to perform a task.

15.3.5 r̄1. = 55.1

r̄2. = 55.7

r̄3. = 25.7

H = 25.86

The p-value is P (χ2
2 > 25.86) = 0.000.

There is sufficient evidence to conclude that the computer
assembly times are affected by the different assembly methods.

15.3.6 (b) r̄1. = 1.50

r̄2. = 2.83

r̄3. = 1.67

(c) S = 6.33

(d) The p-value is P (χ2
2 > 6.33) = 0.043.

15.3.7 (a) r̄1. = 2.250

r̄2. = 1.625

r̄3. = 3.500

r̄4. = 2.625

(b) S = 8.85

(c) The p-value is P (χ2
3 > 8.85) = 0.032.

15.3.8 (a) r̄1. = 2.429

r̄2. = 2.000

r̄3. = 1.571

S = 2.57

The p-value is P (χ2
2 > 2.57) = 0.277.

There is not sufficient evidence to conclude that the calciners are operating at
different efficiencies.
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(b) See Problem 11.2.9.

15.3.9 r̄1. = 1.125

r̄2. = 2.875

r̄3. = 2.000

S = 12.25

The p-value is P (χ2
2 > 12.25) = 0.002.

There is sufficient evidence to conclude that there is a difference between the radar
systems.

15.3.10 r̄1. = 2.4

r̄2. = 1.7

r̄3. = 1.9

S = 2.60

The p-value is P (χ2
2 > 2.60) = 0.273.

There is not sufficient evidence to conclude that there is any difference between the
assembly methods.

15.3.11 r̄1. = 4.42

r̄2. = 2.50

r̄3. = 1.79

r̄4. = 1.71

r̄5. = 4.58

S = 37.88

The p-value is P (χ2
4 > 37.88) = 0.000.

There is sufficient evidence to conclude that there is a difference in the performances
of the agents.

15.3.12 r̄1. = 2.375

r̄2. = 2.225
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r̄3. = 3.100

r̄4. = 2.300

S = 5.89

The p-value is P (χ2
3 > 5.89) = 0.118.

There is not sufficient evidence to conclude that there is any difference between the
detergent formulations.
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15.4 Supplementary Problems

15.4.1 (c) The distribution is not plausible.

(d) The distribution is not plausible.

(e) S(70) = 38
The p-value is 0.011.

(f) The p-value is 0.006.

(g) Confidence intervals for µ with a confidence level of at least 95% are
(69.00, 70.00) for the sign test,
(69.15, 69.85) for the signed rank test,
and (69.23, 70.01) for the t-test.

15.4.2 The p-values for the hypotheses

H0 : µ ≥ 35 versus HA : µ < 35

are 0.005 for the sign test,

0.000 for the signed rank test,

and 0.001 for the t-test.

Confidence intervals for µ with a confidence level of at least 95% are

(30.9, 33.8) for the sign test,

(31.3, 34.0) for the signed rank test,

and (30.2, 33.9) for the t-test.

15.4.3 The p-values for the hypotheses

H0 : µA − µB = 0 versus HA : µA − µB 6= 0

are 0.115 for the sign test,

0.012 for the signed rank test,

and 0.006 for the t-test.

Confidence intervals for µA − µB with a confidence level of at least 95% are

(−1.20, 0.10) for the sign test,

(−1.05,−0.20) for the signed rank test,

and (−0.95,−0.19) for the t-test.
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15.4.4 The p-values for the hypotheses

H0 : µA − µB = 0 versus HA : µA − µB 6= 0

are 0.134 for the sign test,

0.036 for the signed rank test,

and 0.020 for the t-test.

Confidence intervals for µA − µB with a confidence level of at least 95% are

(−1.00, 6.90) for the sign test,

(0.20, 5.15) for the signed rank test,

and (0.49, 5.20) for the t-test.

15.4.5 (c) The Kolmogorov-Smirnov statistic is M = 0.20, which is smaller than

d0.20

√
1
40 + 1

40 = 0.239.

This does not provide any evidence of a difference between the distributions of
the waiting times before and after the reorganization.

15.4.6 (c) The Kolmogorov-Smirnov statistic is M = 0.525, which is larger than

d0.01

√
1
40 + 1

40 = 0.364.

There is sufficient evidence to conclude that there is a difference between the
two distribution functions.

(d) SA = 1143

UA = 1143− 40×(40+1)
2 = 323

Since

UA = 323 < mn
2 = 40×40

2 = 800

and the p-value is 0.000, there is sufficient evidence to conclude that the heights
under growing conditions A tend to be smaller than the heights under growing
conditions B.

A 95% confidence interval for the difference between the median bamboo shoot
heights for the two growing conditions is (−8.30,−3.50).

15.4.7 (b) SA = 292

(c) UA = 292− 20×(20+1)
2 = 82
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(d) The value

UA = 82 < mn
2 = 20×25

2 = 250

is consistent with the observations being smaller without anthraquinone than
with anthraquinone.

(e) The one-sided p-value is 0.000.

15.4.8 (b) r̄1. = 12.4

r̄2. = 12.6

r̄3. = 3.0

r̄4. = 14.0

(c) H = 10.93

(d) The p-value is P (χ2
3 > 10.93) = 0.012.

The p-value is about equal to the boundary value of 1%.

15.4.9 (a) r̄1. = 80.6

r̄2. = 84.2

r̄3. = 75.3

r̄4. = 80.9

H = 0.75

The p-value is P (χ2
3 > 0.75) = 0.861.

There is not sufficient evidence to conclude that any of the cars is getting a
better gas mileage than the others.

(b) See Problem 11.3.3.

15.4.10 (b) r̄1. = 3.500

r̄2. = 2.500

r̄3. = 1.583

r̄4. = 4.000

r̄5. = 3.417

(c) S = 8.83
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(d) The p-value is P (χ2
4 > 8.83) = 0.066.

There is some evidence that the different temperature levels have an effect on
the cement strength, but the evidence is not overwhelming.

15.4.11 r̄1. = 1.7

r̄2. = 1.5

r̄3. = 3.5

r̄4. = 4.2

r̄5. = 4.1

S = 27.36

The p-value is P (χ2
4 > 27.36) = 0.000.

There is sufficient evidence to conclude that there is a difference between
the fertilizers.

15.4.12 (a) r̄1. = 2.292

r̄2. = 2.000

r̄3. = 3.708

r̄4. = 2.000

S = 14.43

The p-value is P (χ2
3 > 14.43) = 0.002.

There is sufficient evidence to conclude that there is a difference between
the clinics.

(b) See Problem 11.3.6.

15.4.13 For the hypotheses

H0 : µ ≥ 25.5 versus HA : µ < 25.5

the sign test has a p-value of 0.0006

and the signed rank test has a p-value of 0.0000.

There is sufficient evidence to conclude that the average soil compressibility is no
larger than 25.5.
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15.4.14 This is a paired data set.

The p-values for the hypotheses

H0 : µA = µB versus HA : µA 6= µB

are 0.754 for the sign test

and 0.610 for the signed rank test.

There is not sufficient evidence to conclude that there is a difference in the average
ocular motor measurements after reading a book and after reading a computer screen.

15.4.15 The rank sum test has a two-sided p-value of 0.002 and there is sufficient evidence
to conclude that the average viscosity is higher after having being used in engine 2
than after having being used in engine 1.

15.4.16 The Kruskal-Wallis test gives a p-value of 0.000 and there is sufficient evidence to
conclude that there is a difference between the three positions.

15.4.17 The Kruskal-Wallis test gives a p-value of 0.001 and there is sufficient evidence to
conclude that there is a difference between the four different vehicle designs.

15.4.18 The Friedman test gives a p-value of 0.04.

This provides some evidence of a difference between the four different preparation
methods, although the evidence is not overwhelming.
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Quality Control Methods

16.2 Statistical Process Control

16.2.1 (a) The center line is 10.0 and the control limits are 9.7 and 10.3.

(b) The process is declared to be out of control at x̄ = 9.5 but not at x̄ = 10.25.

(c) P
(
9.7 ≤ N

(
10.15, 0.22

4

)
≤ 10.3

)
= 0.9332

The probability that an observation lies outside the control limits is therefore
1− 0.9332 = 0.0668.

The average run length for detecting the change is 1
0.0668 = 15.0.

16.2.2 (a) The center line is 0.650 and the control limits are 0.605 and 0.695.

(b) There is no evidence that the process is out of control at either x̄ = 0.662 or at
x̄ = 0.610.

(c) P (0.605 ≤ N(0.630, 0.0152) ≤ 0.695) = 0.9522.

The probability that an observation lies outside the control limits is therefore
1− 0.9522 = 0.0478.

The average run length for detecting the change is 1
0.0478 = 20.9.

16.2.3 (a) P (µ− 2σ ≤ N(µ, σ2) ≤ µ + 2σ) = 0.9544

The probability that an observation lies outside the control limits is therefore
1− 0.9544 = 0.0456.

(b) P (µ− 2σ ≤ N(µ + σ, σ2) ≤ µ + 2σ) = 0.8400

The probability that an observation lies outside the control limits is therefore
1− 0.8400 = 0.1600.

359
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The average run length for detecting the change is 1
0.1600 = 6.25.

16.2.4 The average run length is about 1
1−0.9974 = 380.

16.2.5 The probability that a point is above the center line and within the upper control
limit is

P (µ ≤ N(µ, σ2) ≤ µ + 3σ) = 0.4987.

The probability that all eight points lie above the center line and within the upper
control limit is therefore 0.49878 = 0.0038.

Similarly, the probability that all eight points lie below the center line and within
the lower control limit is 0.49878 = 0.0038.

Consequently, the probability that all eight points lie on the same side of the center
line and within the control limits is 2× 0.0038 = 0.0076.

Since this probability is very small, if all eight points lie on the same side of the
centerline this suggests that the process has moved out of control, even though the
points may all lie within the control limits.
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16.3 Variable Control Charts

16.3.1 (a) The X̄-chart has a center line at 91.33 and control limits at 87.42 and 95.24.

The R-chart has a center line at 5.365 and control limits at 0 and 12.24.

(b) No

(c) x̄ = 92.6

r = 13.1

The process can be declared to be out of control due to an increase in the
variability.

(d) x̄ = 84.6

r = 13.5

The process can be declared to be out of control due to an increase in the
variability and a decrease in the mean value.

(e) x̄ = 91.8

r = 5.7

There is no evidence that the process is out of control.

(f) x̄ = 95.8

r = 5.4

The process can be declared to be out of control due to an increase in the mean
value.

16.3.2 (a) The X̄-chart has a center line at 12.02 and control limits at 11.27 and 12.78.

The R-chart has a center line at 1.314 and control limits at 0 and 2.779.

(b) Sample 8 lies above the upper control limits.

(c) If sample 8 is removed then the following modified control charts can
be employed.

The X̄-chart has a center line at 11.99 and control limits at 11.28 and 12.70.

The R-chart has a center line at 1.231 and control limits at 0 and 2.602.

16.3.3 (a) The X̄-chart has a center line at 2.993 and control limits at 2.801 and 3.186.
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The R-chart has a center line at 0.2642 and control limits at 0 and 0.6029.

(b) x̄ = 2.97

r = 0.24

There is no evidence that the process is out of control.
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16.4 Attribute Control Charts

16.4.1 The p-chart has a center line at 0.0500 and control limits at 0.0000 and 0.1154.

(a) No

(b) In order for

x
100 ≥ 0.1154

it is necessary that x ≥ 12.

16.4.2 (a) Samples 8 and 22 are above the upper control limit on the p-chart.

(b) If samples 8 and 22 are removed from the data set then a p-chart with a center
line at 0.1400 and control limits at 0.0880 and 0.1920 is obtained.

(c) In order for

x
400 ≥ 0.1920

it is necessary that x ≥ 77.

16.4.3 The c-chart has a center line at 12.42 and control limits at 1.85 and 22.99.

(a) No

(b) At least 23.

16.4.4 (a) The c-chart has a center line at 2.727 and control limits at 0 and 7.682.
Samples 16 and 17 lie above the upper control limit.

(b) If samples 16 and 17 are removed then a c-chart with a center line at 2.150 and
control limits at 0 and 6.549 is obtained.

(c) At least 7.
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16.5 Acceptance Sampling

16.5.1 (a) With p0 = 0.06 there would be 3 defective items in the batch of N = 50 items.
The producer’s risk is 0.0005.

(b) With p1 = 0.20 there would be 10 defective items in the batch of N = 50 items.
The consumer’s risk is 0.952.

Using a binomial approximation these probabilities are estimated to be 0.002 and
0.942.

16.5.2 (a) With p0 = 0.10 there would be 2 defective items in the batch of N = 20 items.
The producer’s risk is 0.016.

(b) With p1 = 0.20 there would be 4 defective items in the batch of N = 20 items.
The consumer’s risk is 0.912.

Using a binomial approximation these probabilities are estimated to be 0.028 and
0.896.

16.5.3 (a) The producer’s risk is 0.000.

(b) The consumer’s risk is 0.300.

16.5.4 (a) The producer’s risk is 0.000.

(b) The consumer’s risk is 0.991.

(c) If c = 9 then the producer’s risk is 0.000 and the consumer’s risk is 0.976.

16.5.5 The smallest value of c for which

P (B(30, 0.10) > c) ≤ 0.05

is c = 6.
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16.6 Supplementary Problems

16.6.1 (a) The center line is 1250 and the control limits are 1214 and 1286.

(b) Yes
Yes

(c) P (1214 ≤ N(1240, 122) ≤ 1286) = 0.9848

The probability that an observation lies outside the control limits is therefore
1− 0.9848 = 0.0152.

The average run length for detecting the change is 1
0.0152 = 66.

16.6.2 (a) Sample 3 appears to have been out of control.

(b) If sample 3 is removed then the following modified control charts can
be employed.

The X̄-chart has a center line at 74.99 and control limits at 72.25 and 77.73.

The R-chart has a center line at 2.680 and control limits at 0 and 6.897.

(c) x̄ = 74.01

r = 3.4

There is no evidence that the process is out of control.

(d) x̄ = 77.56

r = 3.21

There is no evidence that the process is out of control.

16.6.3 (a) No

(b) The p-chart has a center line at 0.0205 and control limits at 0 and 0.0474.

(c) In order for
x

250 ≥ 0.0474

it is necessary that x ≥ 12.

16.6.4 (a) Sample 13 lies above the center line of a c-chart.
If sample 13 is removed then a c-chart with a center line at 2.333 and control
limits at 0 and 6.916 is obtained.
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(b) At least seven flaws.

16.6.5 The smallest value of c for which

P (B(50, 0.06) > c) ≤ 0.025

is c = 7.

The consumer’s risk is 0.007.
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Reliability Analysis and Life Testing

17.1 System Reliability

17.1.1 r = 0.9985

17.1.2 r = 0.9886

17.1.3 (a) If r1 is the individual reliability then in order for

r4
1 ≥ 0.95

it is necessary that r1 ≥ 0.9873.

(b) If r1 is the individual reliability then in order for

1− (1− r1)4 ≥ 0.95

it is necessary that r1 ≥ 0.5271.

(c) Suppose that n components with individual reliabilities r1 are used, then an
overall reliability of r is achieved as long as

r1 ≥ r1/n

when the components are placed in series, and as long as

r1 ≥ 1− (1− r)1/n

when the components are placed in parallel.

17.1.4 (a) The fourth component should be placed in parallel with the first component.

(b) In general, the fourth component (regardless of the value of r4) should be placed
in parallel with the component with the smallest reliability.

367
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17.1.5 r = 0.9017

17.1.6 r = 0.9507
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17.2 Modeling Failure Rates

17.2.1 The parameter is λ = 1
225 .

(a) P (T ≥ 250) = e−250/225 = 0.329

(b) P (T ≤ 150) = 1− e−150/225 = 0.487

(c) P (T ≥ 100) = e−100/225 = 0.641

If three components are placed in series then
the system reliability is 0.6413 = 0.264.

17.2.2 The parameter is λ = 1
35 .

(a) P (T ≥ 35) = e−35/35 = 0.368

(b) P (T ≤ 40) = 1− e−40/35 = 0.681

(c) P (T ≥ 5) = e−5/35 = 0.867

If six components are placed in series then
the system reliability is 0.8676 = 0.424.

17.2.3 1
1

125
+ 1

60
+ 1

150
+ 1

100

= 24.2 minutes

17.2.4 The failure time distribution is exponential with parameter λ = 0.2.

(a) P (T ≥ 4) = e−0.2×4 = 0.449

(b) P (T ≤ 6) = 1− e−0.2×6 = 0.699

17.2.5 (a) P (T ≥ 40) = 1− Φ
(

ln(40)−2.5
1.5

)
= 0.214

(b) P (T ≤ 10) = Φ
(

ln(10)−2.5
1.5

)
= 0.448

(c) e2.5+1.52/2 = 37.5
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(d) Solving

Φ
(

ln(t)−2.5
1.5

)
= 0.5

gives t = e2.5 = 12.2.

17.2.6 (a) P (T ≥ 50) = 1− Φ
(

ln(50)−3.0
0.5

)
= 0.034

(b) P (T ≤ 40) = Φ
(

ln(40)−3.0
0.5

)
= 0.916

(c) e3.0+0.52/2 = 22.8

(d) Solving

Φ
(

ln(t)−3.0
0.5

)
= 0.5

gives t = e3.0 = 20.1.

17.2.7 (a) P (T ≥ 5) = e−(0.25×5)3.0
= 0.142

(b) P (T ≤ 3) = 1− e−(0.25×3)3.0
= 0.344

(c) Solving

1− e−(0.25×t)3.0
= 0.5

gives t = 3.54.

(d) The hazard rate is

h(t) = 3.0× 0.253.0 × t3.0−1 = 0.0469× t2.

(e) h(5)
h(3) = 2.78

17.2.8 (a) P (T ≥ 12) = e−(0.1×12)4.5
= 0.103

(b) P (T ≤ 8) = 1− e−(0.1×8)4.5
= 0.307

(c) Solving

1− e−(0.1×t)4.5
= 0.5

gives t = 9.22.

(d) The hazard rate is

h(t) = 4.5× 0.14.5 × t4.5−1 = 0.0001423× t3.5.
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(e) h(12)
h(8) = 4.13
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17.3 Life Testing

17.3.1 (a) With χ2
60,0.005 = 91.952 and χ2

60,0.995 = 35.534 the confidence interval is(
2×30×132.4

91.952 , 2×30×132.4
35.534

)
= (86.4, 223.6).

(b) The value 150 is within the confidence interval, so the claim is plausible.

17.3.2 (a) With χ2
40,0.025 = 59.342 and χ2

40,0.975 = 24.433, and with t̄ = 12.145,
the confidence interval is(

2×20×12.145
59.342 , 2×20×12.145

24.433

)
= (8.19, 19.88).

(b) The value 14 is within the confidence interval so it is a plausible value.

17.3.3 (a) With χ2
60,0.005 = 91.952 and χ2

60,0.995 = 35.534, and with t̄ = 176.5/30 = 5.883,
the confidence interval is(

2×30×5.883
91.952 , 2×30×5.883

35.534

)
= (3.84, 9.93).

(b) The value 10 is not included within the confidence interval, and so it is not
plausible that the mean time to failure is 10 hours.

17.3.4 (a) The natural logarithms of the data values have a sample mean µ̂ = 2.007 and a
sample standard deviation σ̂ = 0.3536.

(b) P (T ≥ 10) = 1− Φ
(

ln(10)−2.007
0.3536

)
= 0.202
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17.3.5 (a)

0 < t ≤ 67 ⇒ r̂(t) = 1
67 < t ≤ 72 ⇒ r̂(t) = 1× (27− 1)/27 = 0.963
72 < t ≤ 79 ⇒ r̂(t) = 0.963× (26− 2)/26 = 0.889
79 < t ≤ 81 ⇒ r̂(t) = 0.889× (24− 1)/24 = 0.852
81 < t ≤ 82 ⇒ r̂(t) = 0.852× (22− 1)/22 = 0.813
82 < t ≤ 89 ⇒ r̂(t) = 0.813× (21− 1)/21 = 0.774
89 < t ≤ 93 ⇒ r̂(t) = 0.774× (18− 1)/18 = 0.731
93 < t ≤ 95 ⇒ r̂(t) = 0.731× (17− 1)/17 = 0.688

95 < t ≤ 101 ⇒ r̂(t) = 0.688× (16− 1)/16 = 0.645
101 < t ≤ 104 ⇒ r̂(t) = 0.645× (15− 1)/15 = 0.602
104 < t ≤ 105 ⇒ r̂(t) = 0.602× (14− 1)/14 = 0.559
105 < t ≤ 109 ⇒ r̂(t) = 0.559× (13− 1)/13 = 0.516
109 < t ≤ 114 ⇒ r̂(t) = 0.516× (11− 1)/11 = 0.469
114 < t ≤ 122 ⇒ r̂(t) = 0.469× (9− 2)/9 = 0.365
122 < t ≤ 126 ⇒ r̂(t) = 0.365× (7− 1)/7 = 0.313
126 < t ≤ 135 ⇒ r̂(t) = 0.313× (6− 2)/6 = 0.209
135 < t ≤ 138 ⇒ r̂(t) = 0.209× (3− 1)/3 = 0.139

138 < t ⇒ r̂(t) = 0.139× (2− 2)/2 = 0.000

(b) Var(r̂(100)) = 0.6452×(
1

27(27−1) + 2
26(26−2) + 1

24(24−1) + 1
22(22−1)

+ 1
21(21−1) + 1

18(18−1) + 1
17(17−1) + 1

16(16−1)

)
= 0.0091931

The confidence interval is

(0.645− 1.960×
√

0.0091931, 0.645 + 1.960×
√

0.0091931) = (0.457, 0.833).
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17.4 Supplementary Problems

17.4.1 (a) In order for

1− (1− 0.90)n ≥ 0.995

it is necessary that n ≥ 3.

(b) In order for

1− (1− ri)n ≥ r

it is necessary that n ≥ ln(1−r)
ln(1−ri)

.

17.4.2 r = 0.9890

17.4.3 The failure time distribution is exponential with parameter λ = 0.31.

(a) P (T ≥ 6) = e−0.31×6 = 0.156

(b) P (T ≤ 2) = 1− e−0.31×2 = 0.462

17.4.4 (a) P (T ≥ 120) = e−(0.01×120)2.5
= 0.207

(b) P (T ≤ 50) = 1− e−(0.01×50)2.5
= 0.162

(c) Solving

1− e−(0.01×t)2.5
= 0.5

gives t = 86.4 days.

(d) The hazard rate is

h(t) = 2.5× 0.012.5 × t2.5−1 = 2.5× 10−5 × t1.5.

(e) h(120)
h(100) = 1.31

17.4.5 (a) With χ2
50,0.025 = 71.420 and χ2

50,0.975 = 32.357, and with t̄ = 141.2,
the confidence interval is(

2×25×141.2
71.420 , 2×25×141.2

32.357

)
= (98.85, 218.19).
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(b) The value 7×24 = 168 is within the confidence interval so it is a plausible value.

17.4.6 (a) The natural logarithms of the data values have a sample mean µ̂ = 2.5486 and
a sample standard deviation σ̂ = 0.2133.

(b) P (T ≥ 15) = 1− Φ
(

ln(15)−2.5486
0.2133

)
= 0.227

17.4.7 (a)

0 < t ≤ 99 ⇒ r̂(t) = 1
99 < t ≤ 123 ⇒ r̂(t) = 1× (39− 1)/39 = 0.974

123 < t ≤ 133 ⇒ r̂(t) = 0.974× (38− 1)/38 = 0.949
133 < t ≤ 142 ⇒ r̂(t) = 0.949× (37− 2)/37 = 0.897
142 < t ≤ 149 ⇒ r̂(t) = 0.897× (35− 1)/35 = 0.872
149 < t ≤ 154 ⇒ r̂(t) = 0.872× (32− 2)/32 = 0.817
154 < t ≤ 155 ⇒ r̂(t) = 0.817× (30− 1)/30 = 0.790
155 < t ≤ 168 ⇒ r̂(t) = 0.790× (29− 1)/29 = 0.763
168 < t ≤ 172 ⇒ r̂(t) = 0.763× (27− 2)/27 = 0.706
172 < t ≤ 176 ⇒ r̂(t) = 0.706× (24− 2)/24 = 0.647
176 < t ≤ 179 ⇒ r̂(t) = 0.647× (21− 4)/21 = 0.524
179 < t ≤ 181 ⇒ r̂(t) = 0.524× (16− 1)/16 = 0.491
181 < t ≤ 182 ⇒ r̂(t) = 0.491× (15− 1)/15 = 0.459
182 < t ≤ 184 ⇒ r̂(t) = 0.459× (14− 1)/14 = 0.426
184 < t ≤ 185 ⇒ r̂(t) = 0.426× (13− 2)/13 = 0.360
185 < t ≤ 186 ⇒ r̂(t) = 0.360× (11− 1)/11 = 0.328
186 < t ≤ 191 ⇒ r̂(t) = 0.328× (10− 1)/10 = 0.295
191 < t ≤ 193 ⇒ r̂(t) = 0.295× (9− 1)/9 = 0.262
193 < t ≤ 199 ⇒ r̂(t) = 0.262× (8− 1)/8 = 0.229
199 < t ≤ 207 ⇒ r̂(t) = 0.229× (6− 1)/6 = 0.191
207 < t ≤ 211 ⇒ r̂(t) = 0.191× (4− 1)/4 = 0.143
211 < t ≤ 214 ⇒ r̂(t) = 0.143× (3− 1)/3 = 0.096
214 < t ≤ 231 ⇒ r̂(t) = 0.096× (2− 1)/2 = 0.048

231 < t ⇒ r̂(t) = 0.048× (1− 1)/1 = 0.000

(b) Var(r̂(200)) = 0.1912 ×
(

1
39(39−1) + 1

38(38−1) + 2
37(37−2) + 1

35(35−1) + 2
32(32−2)

+ 1
30(30−1) + 1

29(29−1) + 2
27(27−2) + 2

24(24−2) + 4
21(21−4) + 1

16(16−1) + 1
15(15−1)

+ 1
14(14−1) + 2

13(13−2) + 1
11(11−1) + 1

10(10−1) + 1
9(9−1) + 1

8(8−1) + 1
6(6−1)

)
= 0.005103

The confidence interval is

(0.191− 1.960×
√

0.005103, 0.191 + 1.960×
√

0.005103) = (0.051, 0.331).


