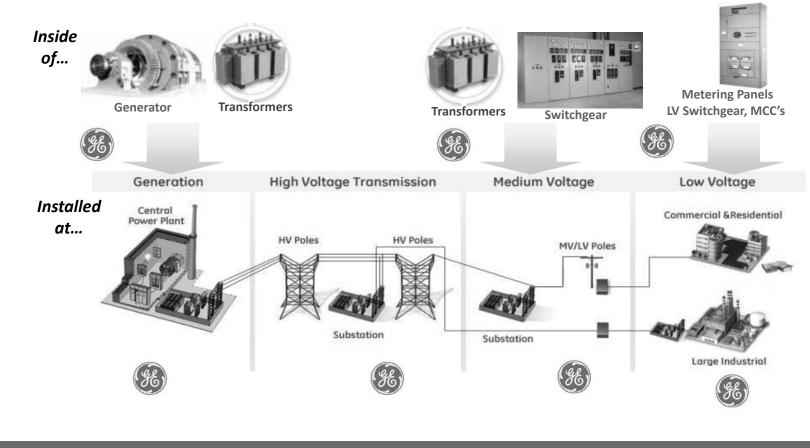
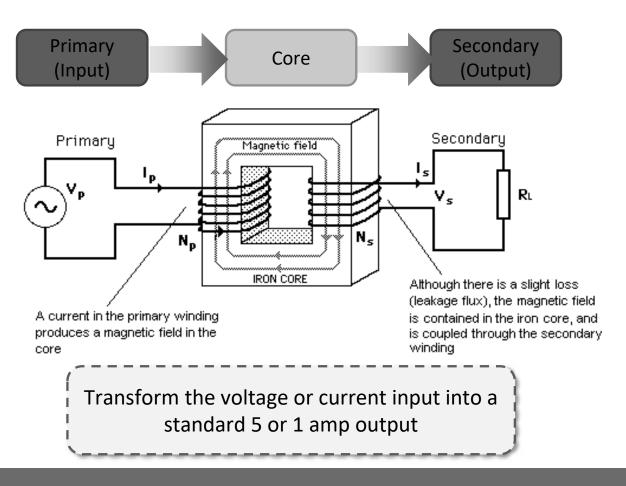


Instrument Transformer Basics Application & Selection

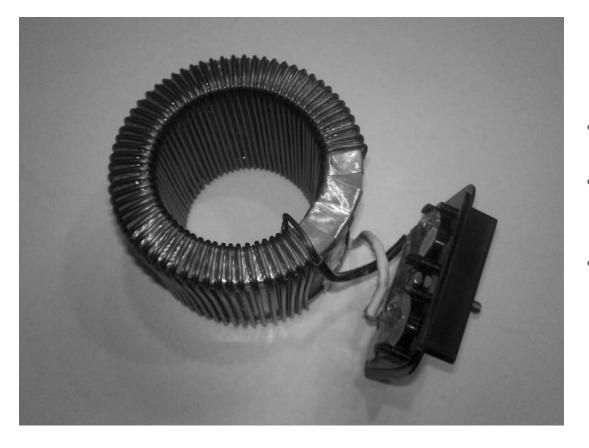

What Is An Instrument Transformer?

Instrument Transformers are used to scale down the voltage or current to a standardized value when voltage or current is too large to be conveniently used by a measurement, protection, or control instrument.

- **CT's:** Current Transformers
- VT's: Voltage transformers, also referred to as "potential transformers" (PT's)


GE Digital Energy

Instrument Transformer Applications



GE Digital Energy

Current Transformers

What Makes A CT Accurate?

- Core
- Secondary Winding
- Burden

Utility Metering CTs

What do I need to know?

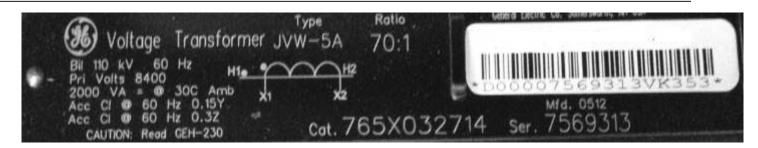
- **B** Burden
- R Ratio
- A Accuracy
- V voltage class
- **E** Etc (window size, special requirements)
- **R** Rating Factor

Revenue metering application

Name Plate Information: Burden

Definition: Load connected to CT secondary

- Includes devices & connecting leads
- Expressed in ohms
- Standard values = B0.1, B0.2, B0.5, B0.9, B1.8 E0.04, E0.2



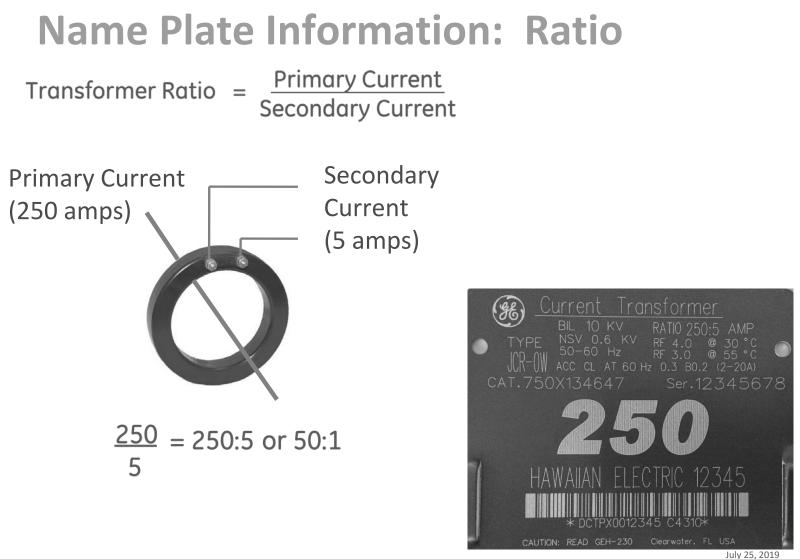
Standard Burdens

Standard IEEE CT Burdens (5 Amp) (Per IEEE Std. C57.13-1993 & C57.13.6)

Application	Burden	Impedance	VA @	Power
	Designation	(Ohms)	5 amps	Factor
Metering	B0.1	0.1	2.5	0.9
	B0.2	0.2	5	0.9
	B0.5	0.5	12.5	0.9
	B0.9	0.9	22.5	0.9
	B1.8	1.8	45	0.9
	E0.2	0.2	5	1.0
	E0.04	0.04	1	1.0

VT Burden

ANSI	VA	Power
Designation		Factor
W	12.5	0.10
X	25.0	0.70
Μ	35.0	0.20
Y	75.0	0.85
Z	200.0	0.85


What's the difference between a Y VA rating and a Thermal VA rating?

Utility Metering CTs

What do I need to know?

- **B** Burden
- **R** Ratio
- A Accuracy
- V voltage class
- E Etc (window size, special requirements)
- **R** Rating Factor

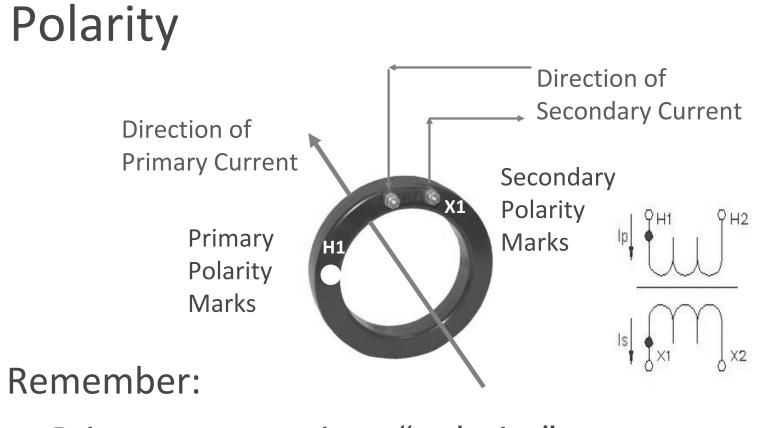
Revenue metering application

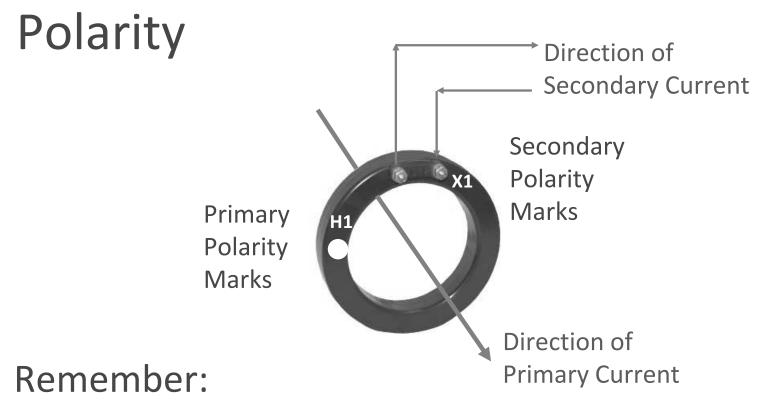
Private & Confidential, not for distribution. If the reader of this presentation is not the intended person or entity, you are notified that any unauthorized distribution, reproduction or use of this communication is strictly prohibited

Transformer ratio (TR)

Example: Window CT wound as a 200:5 Use as a 200:5 with one primary conductor turn Use as a 100:5 with two primary conductor turns Use as a 50:5 with four primary conductor turns

Remember: $I_p = I_s \times N_s/N_p$


Wound type CT MV Primary Winding


Higher primary turns, means lower ratios are possible while maintaining accuracy.

Primary current <u>into</u> "polarity" =

Secondary current out of "polarity"

GE ITI/ July 25, 2019

Primary current into "non-polarity" =

Secondary current out of "non-polarity"

GE ITI/ July 25, 2019

Utility Metering CTs

What do I need to know?

- **B** Burden
- **R** Ratio

A - Accuracy

- V voltage class
- E Etc (window size, special requirements)
- **R** Rating Factor

Revenue metering application

CT Metering Accuracy

Difference in % is known as the "Accuracy" of the CT

Definition: There are two sources of error in instrument transformers, namely ratio error and phase angle error. In a given transformer, the metering error is the combination of the two separate errors. This combination is called Transformer Correction Factor (TCF), IEEE has established accuracy classes for both current and potential transformers. The limit of permissible error in a potential transformer for a given accuracy class remains constant over a range of voltage from 10% below to 10% above rated voltage

Ratio Correction Factor (RCF)

IEEE C57.13 Terminology

RCF = True Ratio / Marked Ratio

Example: 500:5 CT

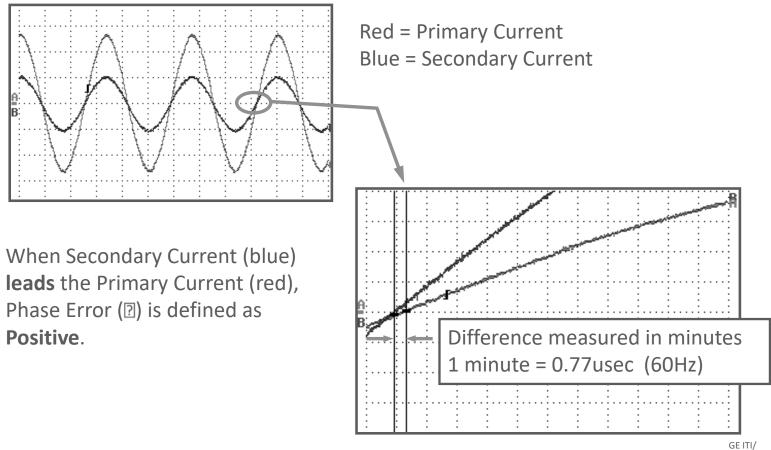
By test, CT Ratio = 100.1

RCF = 100.1 / 100 = 1.0010

What does this mean? How many amps is the meter seeing?

A. – With 500A through primary, only 4.995A is flowing on the secondary 4.995 x 1.001 = 5A. (Negative current error due to losses)

Private & Confidential, not for distribution. If the reader of this presentation is not the intended person or entity, you are notified that any unauthorized distribution, reproduction or use of this communication is strictly prohibited


/GE ITI July 25, 2019

Ratio Correction Factor (RCF)

RCF on Knopp Comparator

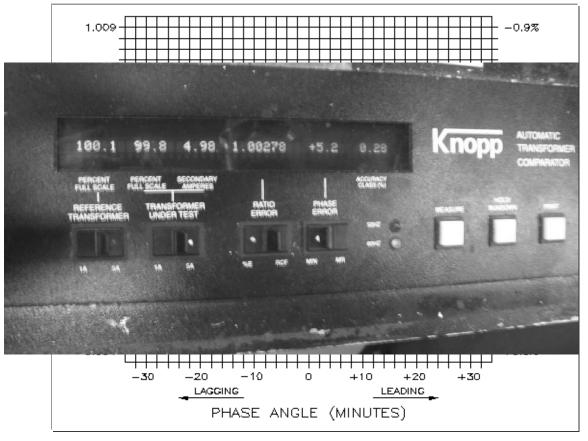
Private & Confidential, not for distribution. If the reader of this presentation is not the intended person or entity, you are notified that any unauthorized distribution, reproduction or use of this communication is strictly prohibited GE ITI/ July 25, 2019

Phase Error

GE ITI/ July 25, 2019

Phase Error

Phase Error on Knopp Comparator



Private & Confidential, not for distribution. If the reader of this presentation is not the intended person or entity, you are notified that any unauthorized distribution, reproduction or use of this communication is strictly prohibited

GE ITI/ July 25, 2019

CT PARALLELOGRAM

IEEE Std. C57.13 limits of accuracy class for current transformers for metering 0.3 accuracy class

Recall the Knopp Comparator The values were:

- Ratio Error = 1.00278
- Φ Angle Error = 5.2

GE ITI/ July 25, 2019

Energy Required to Energize the Core

mmf =
$$\phi \Re = k_1 \left[\frac{Z_s I_s}{N_s f} \right] k_2 \left[\frac{\text{mmp}}{A_c \mu_c} \right] = k_1 k_2 \left[\frac{Z_s I_s \text{mmp}}{N_s f A_c \mu_c} \right]$$

 ϕ = flux in the core \Re = magnetic reluctance k_1 = constant of proportionality k_2 = constant of proportionality Z_s = secondary impedance

mmp = core mean magnetic path

 $I_s =$ secondary current

 $A_{\rm C}$ = core cross-sectional area

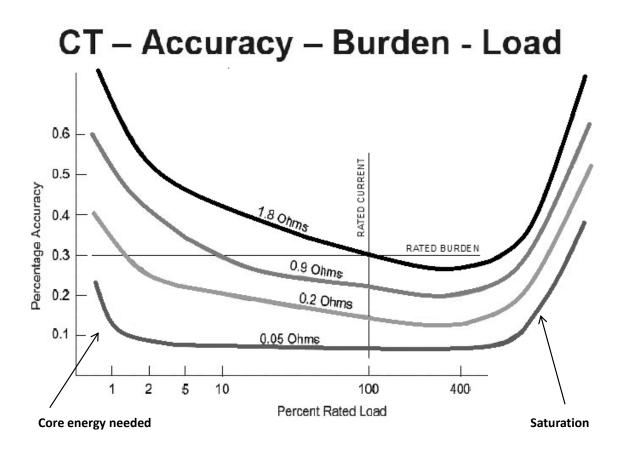
N_s = number of secondary turns

 $\mu_{\rm C}$ = permeability of core material

f = frequency, Hz

Secondary turns or core cross section

Then en


energy required to energize core

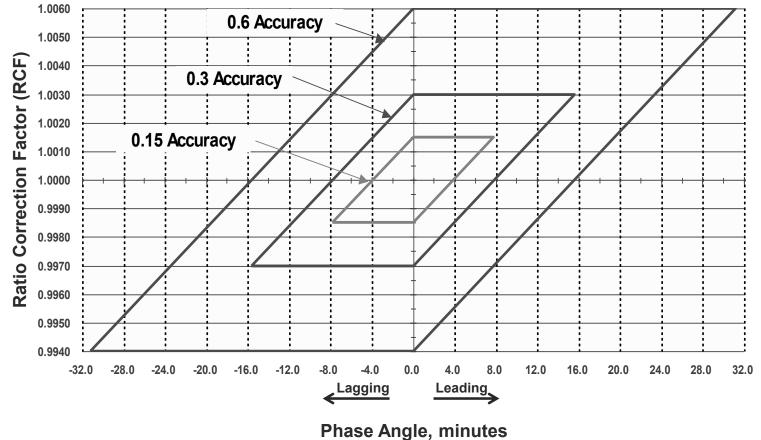
secondary impedance

lf

Courtesy of Electric Power Transformer Handbook

GE ITI/ July 25, 2019

Graph: Bill Hardy – TEC PowerMetrix


IEEE CT Metering Accuracy

<u>Accuracy</u>	Application		
<u>Class (*)</u>			
0.155	"Special" High Accuracy Metering		
0.15	High Accuracy Metering		
0.3	Revenue Metering		
0.6	Indicating Instruments		
1.2	Indicating Instruments		

* All accuracy classes defined by IEEE C57.13 or C57.13.6

* Accuracy classes include both ratio & phase angle error

CT PARALLELOGRAM IEEE C57.13 – Accuracy Limits

GE ITI/ July 25, 2019

Accuracy Class Definitions

IEEE CT Metering Accuracy


Example 1:

0.3 accuracy CT, 200:5, RF 4.0 (Standard)

200 amps (rated amps) to 800 amps (RF 4.0) = 0.3% accuracy

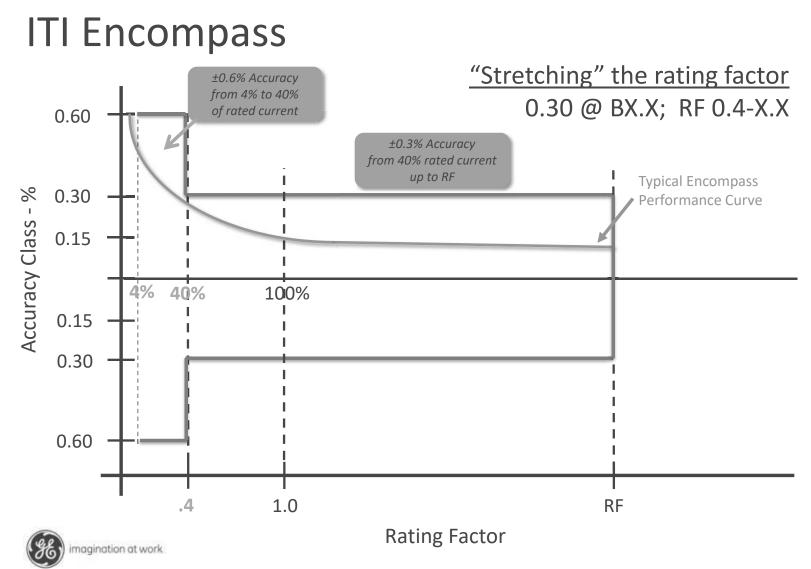
20 amps (10% of rated amps) to 200 amps (rated amps) = 0.6%

/GE ITI July 25, 2019

imagination at work

IEEE CT Metering Accuracy

Example 2:


0.3 accuracy CT, 500:5, RF 0.4 - 4.0 (Encompass)

200 amps (40% of rated amps) to 2000 amps (RF 4.0) = 0.3% accuracy

20 amps (4% of rated amps) to 200 amps (40% of rated amps) = 0.6% accuracy

Private & Confidential, not for distribution. If the reader of this presentation is not the intended person or entity, you are notified that any unauthorized distribution, reproduction or use of this communication is strictly prohibited

/GE ITI July 25, 2019

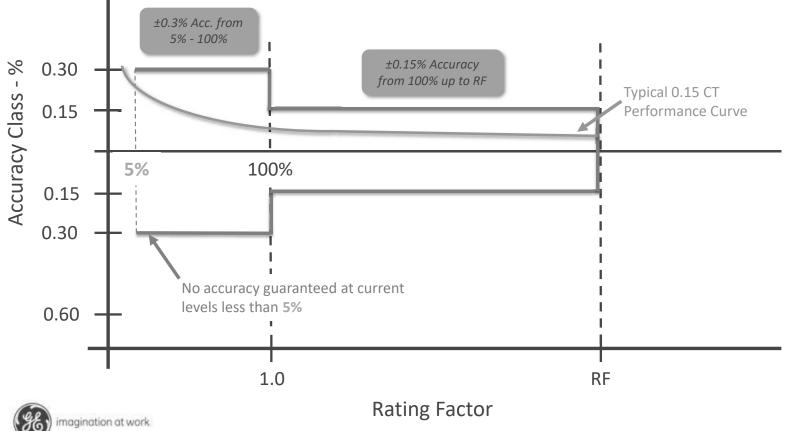
Private & Confidential, not for distribution. If the reader of this presentation is not the intended person or entity, you are notified that any unauthorized distribution, reproduction or use of this communication is strictly prohibited

IEEE CT Metering Accuracy

Example 3:

0.15 accuracy CT, 200:5, RF 1.5 (High Accuracy Metering)

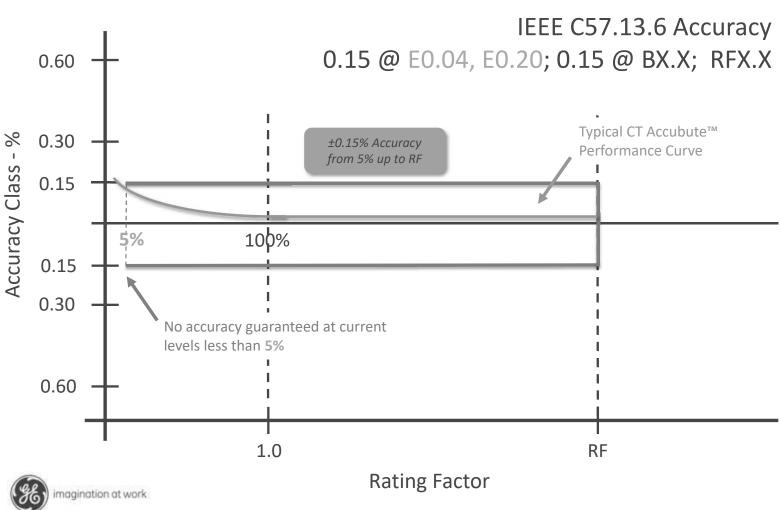
200 amps (rated amps) to 300 amps (RF 1.5) = 0.15% accuracy


10 amps (5% of rated amps) to 200 amps (rated amps) = 0.3%

/GE ITI July 25, 2019

0.60

IEEE C57.13.6 Accuracy 0.15 @ BX.X; RF = X.X


IEEE CT Metering Accuracy

Example 4: (Accubute)

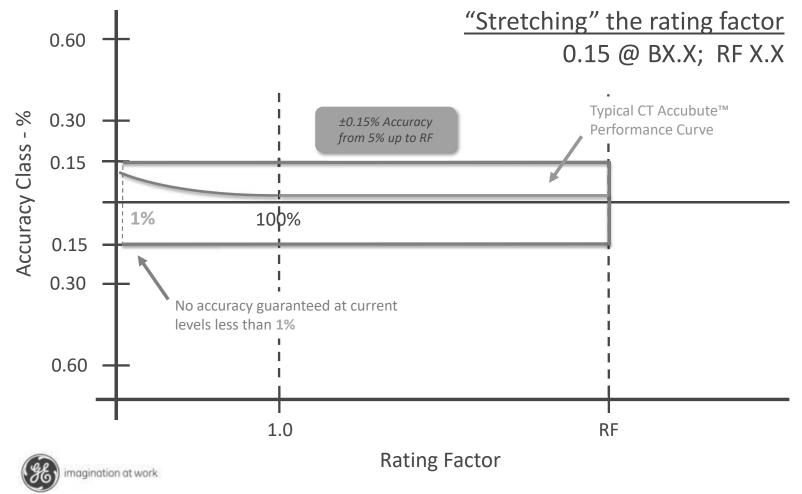
0.15S accuracy CT, 200:5, RF 1.5 (Special High Accuracy Metering)

10 amps (5% of rated amps) – 300 amps (rated amps) = 0.15%

Private & Confidential, not for distribution. If the reader of this presentation is not the intended person or entity, you are notified that any unauthorized distribution, reproduction or use of this communication is strictly prohibited GE ITI/ July 25, 2019

0.15S Special High Accuracy (Accubute)

IEEE CT <u>Metering</u> Accuracy


Example 5:

0.15S accuracy Extended Range CT, 600:5, RF 3.0 (RevenueSense)

6 amps (1% of rated amps) – 1800 amps (rated amps) = 0.15%

Private & Confidential, not for distribution. If the reader of this presentation is not the intended person or entity, you are notified that any unauthorized distribution, reproduction or use of this communication is strictly prohibited GE ITI/ July 25, 2019

0.15 High Accuracy Extended Range

Private & Confidential, not for distribution. If the reader of this presentation is not the intended person or entity, you are notified that any unauthorized distribution, reproduction or use of this communication is strictly prohibited

Definitions

Standard Revenue Metering Accuracy (IEEE 0.3 Accuracy Class)

 \pm 0.3% accurate from 100% Nameplate Rating, up to Rating Factor

 $\pm\,0.6\%$ accurate below 100% Nameplate Rating, down to 10% of Nameplate Rating

GE ITI Encompass CT's

- $\pm\,0.3\%$ accurate from 40% of Nameplate Rating, up to Rating Factor
- $\pm\,0.6\%$ accurate below 40% Nameplate Rating down to 4% of Nameplate Rating

High Accuracy (IEEE 0.15 Accuracy Class)

- \pm 0.15% accurate from 100% Nameplate Rating, up to Rating Factor
- \pm 0.3% accurate below 100% Nameplate Rating, down to 5% of Nameplate Rating

<u>GE Somersworth Accubute™ (IEEE 0.15S Accuracy Class)</u>

 \pm 0.15% accurate from down to 5% of Nameplate Rating, up to Rating Factor

<u>GE RevenueSense High Accuracy Extended Range (IEEE 0.15S Accuracy Class)</u> ± 0.15% accurate from down to 1% of Nameplate Rating, up to Rating Factor

imagination at work

Private & Confidential, not for distribution. If the reader of this presentation is not the intended person or entity, you are notified that any unauthorized distribution, reproduction or use of this communication is strictly prohibited

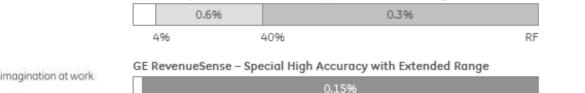
IEEE Metering Class

There are three revenue grade metering classes defined by IEEE C57.13-2008 and C57.13.6-2004. These are illustrated below, with limits shown as a percent of rated CT current:

0.3 Class - Standard Accuracy

0.6%		0.3%				
10%	100%	RF				
0.15 Class – High Accuracy						

	0.3%	0.15%
596	10	0% RF


0.15S Class - Special High Accuracy

	0.15%
5%	RF

Encompass & RevenueSense Exceed IEEE Standards

Encompass and RevenueSense redefine CT performance by exceeding the operating range within their respective IEEE accuracy classes, offering utilities additional flexibility to reduce inventory, part numbers, and billing multipliers. RevenueSense also allows for a further reduction of metering losses by extending high accuracy performance down to 1% of rated current.

GE Encompass - Standard Accuracy with Extended Range

Private & Coi

ed that any

RF

IEEE VT Accuracy Class

<u>Metering Accuracy</u> <u>Classes (% error)</u>

0.3		Defined by IEEE C57.13
0.6	}	Applicable from 90% to 110%
1.2	J	rated voltage

0.15 — Defined by IEEE C57.13.6

VT Accuracy/Burden Designation

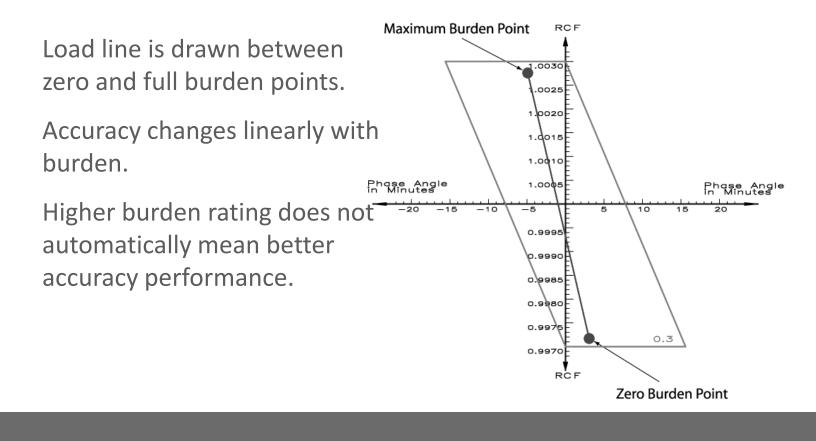
Expressed as:

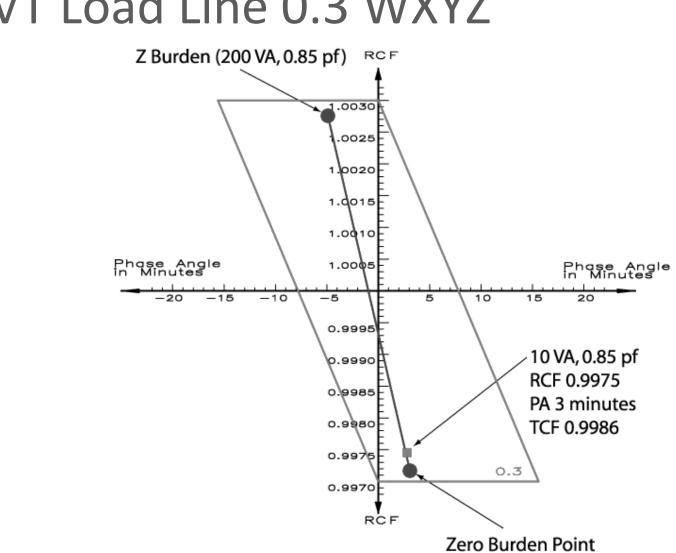
Accuracy Class + Burden Code

0.3 W,X,Y 0.6 Z 1.2 ZZ

Means 0.3 class up to a 75 VA burden

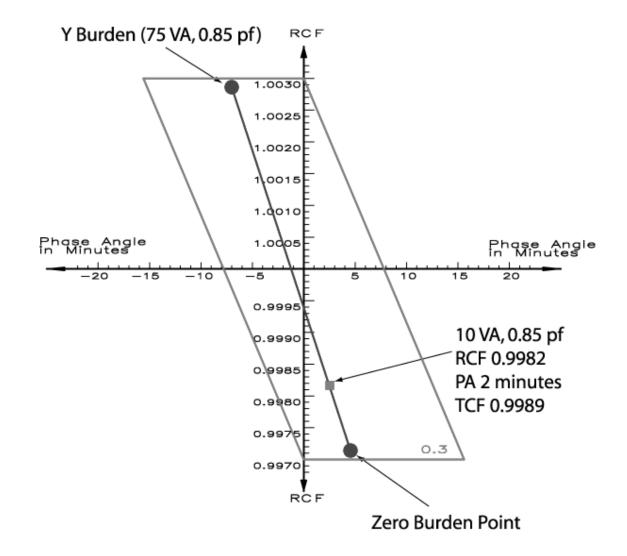
PT PARALLELOGRAM


IEEE Std. C57.13 limits of accuracy class for potential transformers for metering 0.3 accuracy class



GE ITI/ July 25, 2019

Private & Confidential, not for distribution. If the reader of this presentation is not the intended person or entity, you are notified that any unauthorized distribution, reproduction or use of this communication is strictly prohibited


VT 0.3 Accuracy Class

VT Load Line 0.3 WXYZ

VT Load Line 0.3 WXY

Utility Metering CTs

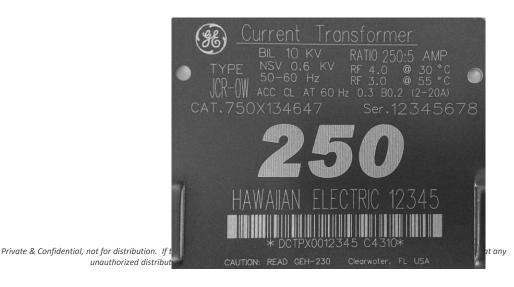
What do I need to know?

- **B** Burden
- R Ratio
- A Accuracy
- V voltage class
- **E** Etc (window size, special requirements)
- **R** Rating Factor

Revenue metering application

GE Instrument Transformers

Name Plate Information: Voltage


Nominal System Voltage

• The insulation class is based on Phase to Phase Voltage

Basic Impulse Level (Simulates impulse from lightning)

- IT BIL must match or exceed the System BIL.
- Caution: More than one BIL may be available for a Nominal System Voltage.

GE ITI/ July 25, 2019

Standard Voltage Classes

Insulation Class

(IEEE C57.13)

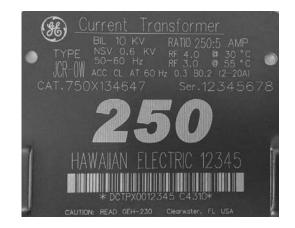
Class	Power Freq.	BIL
0.6kV	4kV	10kV
5kV	19kV	60kV
8.7kV	26kV	75kV
15kV	34kV	95-110kV
25kV	40-50kV	125-150kV
34.5kV	70kV	200kV

Insulation class should at least equal maximum Line-Line voltage at the point of connection.

Utility Metering CTs

What do I need to know?

- **B** Burden
- R Ratio
- A Accuracy
- V voltage class
- E Etc (window size, special requirements)
- **R** Rating Factor


Revenue metering application

Name Plate Information: Rating Factor

Rated current x (RF) = Maximum continuous current carrying capability:

- Without exceeding temperature limits
- Without loss of published accuracy class

Typical rating factors -- 1.0, 1.33, 1.5, 2.0, 3.0, 4.0

Rating Factor

Ambient rating is based on average 24hr ambient temp and the peak ambient tem cannot exceed the average ambient tem by more than 10 C.

IEEEC57.13 gives a chart for de-rating as a function of avg. ambient temperatures.

Generally, 4.0 is the highest RF used due to 20A continuous limits of most connected devices.

Different primary and secondary rating factors are often seen on tapped secondary designs.

Sometimes RF<1.0 is seen, normally for very high ratios.

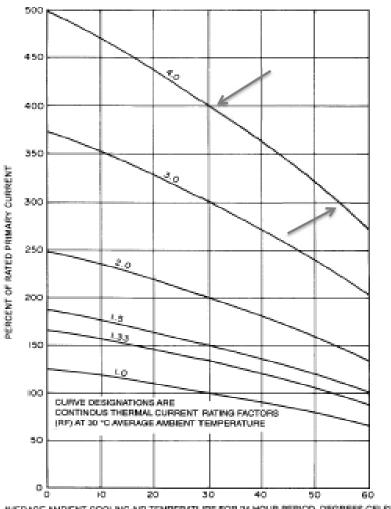
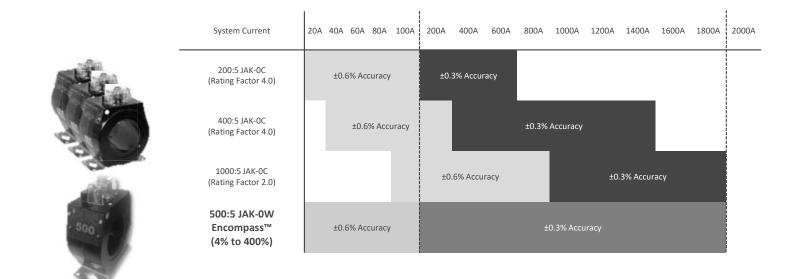


Figure 1-55 °C rise current transformer basic loading characteristics (In air)

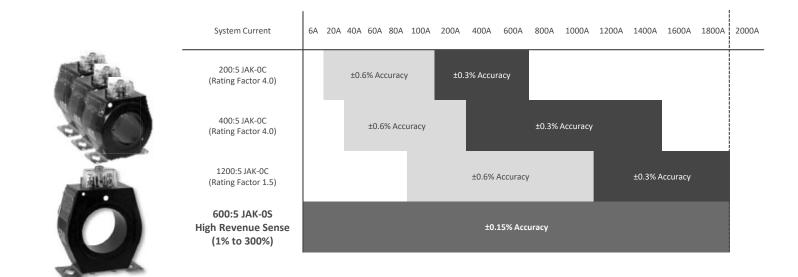
LV Extended Range



Private & Confidential, not for distribution. If the reader of this presentation is not the intended person or entity, you are notified that any unauthorized distribution, reproduction or use of this communication is strictly prohibited

Encompass™

Low Voltage Encompass[™] Series


One Encompass CT offers equal to, or better accuracy class over the range of multiple legacy CT's

RevenueSense™

Low Voltage RevenueSense[™] Series

One RevenueSense[™] CT improves accuracy over the range of multiple legacy CT's, with significant improvement at low currents

JAK-0W Encompass Data Table

CURRENT RATIO (AMPS)	IEEE METERING	RATING FACTOR		PRIMARY BAR	CATALOG NUMBER		
	ACCURACY (60Hz)	30°C	55°C	PRIMART DAK	NO BASE	LOW BASE	HIGH BASE
500:5	0.3B0.51	4	3	No	750X133655	750X133629	750X133633
500:5	0.3B0.51	4	3	Yes	750X133470	750X133630	750X133634

(1) Exceeds IEEE definition for standard accuracy. Maintains 0.6 Accuracy from 4% to 40% and 0.3 from 40% to Rating Factor.

JAK-0S RevenueSense Data Table

CURRENT RATIO (AMPS)	IEEE METERING	RATING FACTOR		PRIMARY BAR	CATALOG NUMBER		
	ACCURACY (60Hz)	30°C	55°C	PRIMART DAK	NO BASE	LOW BASE	HIGH BASE
600:5	0.15SB0.2 ²	3	2	No	-	750X333002	750X333003
600:5	0.15SB0.2²	3	2	Yes	750X333101	750X333102	750X333103
600:5	0.15SB0.5²	2	1.5	No	-	750X333012	750X333013
600:5	0.15SB0.5²	2	1.5	Yes	750X333011	750X333112	750X333113

JAB-0W Encompass Data Table

CURRENT RATIO	IEEE METERING		RATING FACTOR	НІ ТЕМР	CATALOG NUMBER	
(AMPS)	ACCURACY (60Hz)	30°C	55°C	85°C	nitemp	CAIALOG NUMBER
500:5	0.3B0.51	4	3	-	No	750X136651
1500:5	0.3B0.51	2	1.5	-	No	750X136652
500:5	0.3B0.51	-	-	4	Yes	750X136464
1500:5	0.3B0.51	-	-	2	Yes	750X136463

(1) Exceeds IEEE definition for standard accuracy. Maintains 0.6 Accuracy from 4% to 40% and 0.3 from 40% to Rating Factor.

JAB-0S RevenueSense Data Table

CURRENT RATIO	IEEE METERING		RATING FACTOR	НІ ТЕМР	CATALOG NUMBER	
(AMPS)	ACCURACY (60Hz)	30°C			ппст	CATALOG NUMBER
1000:5	0.15SB0.5²	3	2	-	No	750X336001
2000:5	0.15SB0.5²	2	1.5	-	No	750X336002
1000:5	0.15SB0.5²	-	-	2	Yes	750X336101
2000:5	0.15SB0.5²	-	-	1.5	Yes	750X336102

JCR-0W Encompass Data Table

CURRENT RATIO (AMPS)	IEEE METERING RATING FACTOR		PRIMARY BAR	CATALOG NUMBER			
	ACCURACY (60Hz)	30°C	55°C	PRIMART DAK	NO BASE	LOW BASE	HIGH BASE
250:5	0.3B0.51	4	3	No	750X134608	750X134609	750X134610
250:5	0.3B0.51	4	3	Yes	750X134627	750X134618	750X134646
500:5	0.3B0.51	2.4	1.2	No	750X134641	750X134642	-
500:5	0.3B0.51	2.4	1.2	Yes	750X134643	750X134644	-

(1) Exceeds IEEE definition for standard accuracy. Maintains 0.6 Accuracy from 4% to 40% and 0.3 from 40% to Rating Factor.

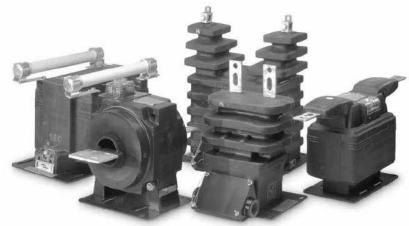
JCT-0S RevenueSense Data Table

CURRENT RATIO	IEEE METERING RATING FA		FACTOR	PRIMARY BAR	CATALOG NUMBER		
(AMPS)	ACCURACY (60Hz)	30°C	55°C	PRIMARY DAR	NO BASE	LOW BASE	HIGH BASE
600:5	0.15SB0.2 ²	2	1.5	Yes	750X323001	750X323002	750X323003

JAD-0W Encompass Data Table

CURRENT RATIO	IEEE METERING	RATING	FACTOR	CATALOG	CATALOG NUMBER	
(AMPS)	ACCURACY (60Hz)	30°C	55°C	NO BASE	WITH BASE	
1000:5	0.3B0.51	4	3	750X120609	750X120612	
1500:5	0.3B0.91	3	2	750X120922	750X120980	

(1) Exceeds IEEE definition for standard accuracy. Maintains 0.6 Accuracy from 4% to 40% and 0.3 from 40% to Rating Factor.


JAD-0S RevenueSense Data Table

CURRENT RATIO	IEEE METERING	RATING	FACTOR	CATALOG NUMBER			
(AMPS)	ACCURACY (60Hz)	30°C	55°C	NO BASE	WITH BASE		
1200:5	0.15SB0.9²	2	1.5	750X320001	750X320011		
2000:5	0.15SB0.9²	2	1.5	750X320002	750X320012		
3000:5	0.15SB0.9²	1.5	1	750X320003	750X320013		

MV Extended Range

SELECTION GUIDE

PRODUCT CLASS	5KV	8.7KV	15KV	25 KV	35KV	46KV	69KV
STATION CLASS	JKW3	JKW4	JKW5	JKW150	JKW200	JKW250	JKW350
BIL	60kV BIL	75kV BIL	110kV BIL	150kV BIL	200kV BIL	250kV BIL	350kV BIL
Accuracy, RF	0.3B1.8, RF 1.5	0.3B1.8, RF 1.5	0.3B1.8, RF 1.5	0.3B1.8, RF 2.0/1.5	0.3B1.8, RF 2.0/1.5	0.3B1.8, RF 2.0/1.5	0.3B1.8, RF 2.0/1.5
Relay Class	T100	T100	T200	T200/T400	T200/T400	T200/T400	T200/T400
Creep Distance	12.5″	12.5"	24"	44.1"	56.6"	71.0*	86.6"
Net Weight	40lbs	40lbs	60lbs	323lbs	348lbs	543lbs	593lbs
DISTRIBUTION CLASS	JCK3	JCK4	JCK5	JKW6	JKW7		
BIL	60kV BIL	75kV BIL	110kV BIL	150kV BIL	200kV BIL		
Accuracy, RF	0.3B0.5, RF 3.0	0.3B0.5, RF 3.0	0.3B0.5, RF 3.0	0.3B0.9, RF 3.0	0.3B0.5, RF 3.0		
Relay Class				T100 or T200			
Creep Distance	15.5″	15.5"	15.5″	24"	27.6"		
Net Weight	35lbs	35lbs	35lbs	80lbs	72lbs		

JKW150 - 350

RATIO	IEEE METERING	IEEE RELAY ACCURACY CLASS ²	THERMAL RATING FACTOR	CATALOG NUMBER
25/50:5	0.3 B1.8	T200/T400	2.0/1.33	759X030013
50/100:5	0.3 B1.8	T200/T400	2.0/1.33	759X030012
75/150:5	0.3 B1.8	T200/T400	2.0/1.33	759X030011
100/200:5	0.3 B1.8	T200/T400	2.0/1.33	759X030010
150/300:5	0.3 B1.8	T200/T400	2.0/1.33	759X030009
200/400:5	0.3 B1.8	T200/T400	2.0/1.33	759X030008
300/600:5	0.3 B1.8	T200/T400	2.0/1.33	759X030007
400/800:5	0.3 B1.8	T200/T400	2.0/1.33	759X030006
500/1000:5	0.3 B1.8	T200/T400	2.0/1.33	759×030005
600/1200:5	0.3 B1.8	T200/T400	2.0/1.33	759×030004
800/1600:5	0.3 B1.8	T200/T400	2.0/1.33	759X030003
1000/2000:5	0.3 B1.8	T200/T400	2.0/1.33	759X030002
1500/3000:5	0.3 B1.8	T400/T800	1.5/1.33	759×030001

1. High accuracy options available

2. First value given is for lawer primary Ampere rating (tapped secondary); second value is for higher primary Ampere rating (full secondary).

Private & Confidential, not for distribution or entity, you are notified that any unauthorized distribution, reproduction or use of this communication is strictly prohibited

GE ITI/ July 25, 2019

Sizing Installation

- 13.8 kV, Grounded Wye
- Max Load: 60 amps
- Normal Load: 20 amps

13.8 kV Phase to Phase, 8 KV Phase to Ground

- 7.2 KV, 60:1 133V Secondary Voltage
- 8.4 KV, 70:1 114V Secondary Voltage

	Line-T	o-Line				Catalog Number						
	Circuit	Voltage		Transf	former	JVW-4	JVV	V-5				
	For Per	missible		Ratir	ng 1	BIL 75 kV	BIL 110 kV					
	Primary C	Connection		Primary		Two-Bushing	Single-Bushing	Two-Bushing				
Δ	Y	Y Only	GY Only ④	Voltage	Ratio	Model	Model	Model				
2,400	2,400	4,160		2,400	20:1	764X030011						
4,200	4,200	7,280		4,200	35:1	764X030012						
4,800	4,800	8,320		4,800	40:1	764X030013						
7,200	7,200			7,200	60:1	764X030014						
			▶7200 ⓑ	7,200	60:1		765X030051	765X030042				
			>8400 ⊚	8,400	70:1		765X030052	765X030044				
2,000	12,000	12,000		12,000	100:1			765X030045				
14,400	14,400	14,400		14,400	120:1			765X030046				

Review of a typical	Catalog Number	Current Ratio	Relay Class 60 Hz	Metering Class 60 Hz	Rating Factor
Action devices of a typical stallation	Single Ratio Ty	BIL			
	755C150001	5:5	C200	0.3 B-1.8	1.5
	755C150002	10:5	C200	0.3 B-1.8	1.5
	755C150003	15:5	C200	0.3 B-1.8	1.5
2	755C150004	20:5	C200	0.3 B-1.8	1.5
1 1	755C150005	25:5	C200	0.3 B-1.8	1.5
	755C150006	30:5	C200	0.3 B-1.8	1.5
	755C150007	40:5	C200	0.3 B-1.8	1.5
	755C150008	50:5	C200	0.3 B-1.8	1.5
	755C150009	75:5	C200	0.3 B-1.8	1.5
	755C150010	100:5	C200	0.3 B-1.8	1.5
	755C150011	150:5	C200	0.3 B-1.8	1.5
20	755C150012	200:5	C200	0.3 B-1.8	1.5
The same	755C150013	300:5	C200	0.3 B-1.8	1.5
Conversion &	755C150014	400:5	C200	0.3 B-1.8	1.5
	755C150015	600:5	C200	0.3 B-1.8	1.5
6 40	755C150016	800:5	C200	0.3 B-1.8	1.33
	755C150017	1000:5	C150	0.3 B-1.8	1.33
	755C150018	1200:5	C200	0.3 B-1.8	1.1

	1 2 3 4 5	10A	15A	20A	25A	30A	35A	40A	45A	50A	55A	60A
0.3B1.8, RF 1.5, 40:5			±0.	.6 Accu	iracy				±0.3	Accur	racy	

Catalog Number	J. J		Metering Class 60 Hz	Rating Factor
Single Ratio Type J	CK-5C 15kV, 110	0kV BIL		
755C152001	5:5	C40	0.3 B-0.5	3.0
755C152002	10:5	C40	0.3 B-0.5	3.0
755C152003	15:5	C40	0.3 B-0.5	3.0
755C152004	20:5	C40	0.3 B-0.5	3.0

	1 2 3 4 5 1 0	A 15A	20A	25A	30A	35A	40A	45A	50A	55A	60A
0.3B1.8, RF 1.5, 40:5		±(0.6 Accı	ıracy			±0.3 Accuracy				
0.3B0.5, RF 3.0, 20:5	±0.6 Acc	uracy				±0.3	Accu	racy			

JKW-5A DATA TABLE				
Current Ratio	Continuous Thermal	Mechanical	One-Second	
(in Amps)	Current Rating Factor	Limit;	Thermal Limit,	
Pri : Sec	30°C Ambient	Amperes	Amperes	Catalog Number
5:5	1.5	625	465	755X053101
10:5	1.5	1,250	930	755X053102
15:5	1.5	1,875	1,470	755X053103
20:5	1.5	2,500	1,860	755X053104
25:5	1.5	3,125	2,300	755X053105
30:5	1.5	3,750	2,460	755X053106
40:5	1.5	5,000	3,720	755X053107
50:5	1.5	6,250	4,600	755X053108

	1 2 3 4 5 10A	15A 20A	25A	30A	35A	40A	45A	50A	55A	60A
0.3B1.8, RF 1.5, 40:5		±0.6 Acc	uracy				±0.3	Accu	racy	
0.3B0.5, RF 3.0, 20:5	±0.6 Accura	су			±0.3	Accuracy				
			1							
0.15S Class, B0.5, 40:5		±0.15 Accuracy								

		1 2 3 4 5 10A 15A	20A 25A	30A	35A 40	A 45A	50A	55A	60A			200A
1	0.3B1.8, RF 1.5, 40:5	±	0.6 Accuracy			±0.3	8 Accui	racy				
2	0.3B0.5, RF 3.0, 20:5	±0.6 Accuracy			±0.3 Ac	curacy						
3	0.15S Class, B0.5, 40:5		±0.15 Accuracy									
4	Extended Range 200:5					±0.15 Ac	curac	у				

Which is least expensive? Which is most expensive? Which offers the "fastest' payback?

			1 2 3 4 5 10A 15A 20A 25A 30A 35A 40A 45A 50A 55A 60A	
1		0.3B1.8, RF 1.5, 40:5	±0.6 Accuracy ±0.3 Accuracy	
2	10% less	0.3B0.5, RF 3.0, 20:5	±0.6 Accuracy ±0.3 Accuracy	
3	10-20% more	0.15S Class, B0.5, 40:5	±0.15 Accuracy	
4	considerably more	Extended Range 200:5	±0.15 Accuracy	

- 13.8 kV, Grounded Wye 70:1 PT
- Max: 60amps Normal: 20amps Min: 2amps
 - o 20:5 CT, RF3.0 Cost less, 0.3
 - o 40:5 CT, RF1.5 Cost more, 0.15

What Would You Select? Current Range – 30amps – 1200amps

Current Ratio Continuous Thermal Current Rating Factor Window (Amps) I.D. Burden Pri : Sec @ 30°C Amb. @ 55°C Amb. (inches) Window-Typ 1.50 B0.2 100:5 4.0 4.0 **100:5 4.0 4.0 2.60 B0.1 4.0 150:5 4.0 2.60 B0.1 200:5 4.0 4.0 2.60 B0.5 200:5 4.0 2.9 2.60 B0.2 200:5 4.0 2.9 3.062 B0.1 2 50:5 4.0 4.0 2.60 B0.5 ** 300:5 4.0 2.9 3.062 B0.5 4.0 2.9 400:5 3.062 B0.5 500:5 3.0 2.4 3.062 B0.5 600:5 2.0 1.8 3.062 B0.5 800:5 2.0 1.5 3.062 B0.5 2.0 1000:5 1.5 3.062 B0.5

JAK-0C DATA TABLE

0.3 Class - Standard Revenue Metering Accuracy

	0.6%	0.30%
10	% 10	0% RF

What Would You Select? Current Range – 30amps – 1200amps

Encompass[™] MODEL JAK-OW

Current Ratio	IEEE Metering	Rating	Factor
(Amps)	Accuracy (60Hz)	30°C	55°C
500:5	0.3 B0.5 ¹	4.0	3.0

GE Er	ncompass™	
	0.6%	0.30%
49	% 4	0% RF

0.3 Class - Standard Revenue Metering Accuracy

	0.6%	0.30%
10	% 10	0% RF

What Would You Select? Current Range – 30amps – 1200amps

RevenueSense[™] MODEL JAK-OS

Current Ratio	IEEE Metering	Rating Factor	
(Amps)	Accuracy (60Hz)	30 ° C	55 ° C
600:5	0.15SB0.21	3.0	2.0
1000:5	0.15SB0.51	2.0	1.5

GE RevenueSense™

	0.15%	
1%		RF

GE Encompass™

0.0	5%	0.30%	
4%	40%		RF

0.3 Class - Standard Revenue Metering Accuracy

	0.6%	0.30%
10%	100	0% RF

Sizing CTs for Metering

- Use as low of a ratio as possible with the RF covering the maximum current level
- CT error is **almost** always negative
- Using a more accurate metering class will almost always result in higher revenue levels
- Burden adversely affects accuracy, the lower the applied burden, the better the accuracy performance

Installation Suggestions

Check and Double-Check Polarity!

Be cautious - Ground a point in circuits connected to VT and CT Secondaries.

Never Open Circuit a CT Secondary while the primary is energized.

> For Tapped Secondary CT's, DO NOT short circuit the unused terminals.

Never Short Circuit the Secondary Terminals of a voltage transformer.

After CT windings have been exposed to direct current, demagnetize the CT to eliminate errors that may be caused by residual magnetism.

GE Instrument Transformers

Random Thoughts and Questions?

- Is there an advantage to using AWG10 over AWG12 for secondary wiring? Why?
- What are the Pros and Cons of using a bar type CT?
- When using SS meters, are higher or lower CT burdens required?
- Do you size CTs to Transformer KVA, Main Breaker or Customer load?
- When selecting High Accuracy CTs, how might this impact the meter?
- Why is grounding at one location important and where is this location?
- Can a LV CT be used in a MV application? Explain?
- What does a phase angle (Site Genie) tell you about a metering circuit?

Private & Confidential, not for distribution. If the reader of this presentation is not the intended person or entity, you are notified that any unauthorized distribution, reproduction or use of this communication is strictly prohibited

GE ITI/ July 25, 2019

Thank You For Your Time

Frank Lopez Field Application Engineer <u>Frank2.lopez@ge.com</u> 813 482-5268 http://www.gedigitalenergy.com/iti/

imagination at work

GE ITI/

/GE ITI July 25, 2019

Private & Confidential, not for distribution. If the reader of this presentation is not the intended person or entity, you are notified that any unauthorized distribution, reproduction or use of this communication is strictly prohibited