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Introduction 
 

An instrumentation system obtains data about a physical system 
either for the purpose of collecting information about that physical 
system or for the feedback control of the physical system 
 

Any instrumentation system must include an input transducer (sensor), 
such as a strain gauge, whose response to a particular stimulus can be 

measured electrically. The other component that is generally present in 
modern instrumentation systems is a digital processor, such as a 
computer or a micro-controller. These programmable components have 

the flexibility to be used for a variety of functions. The most important 

function that they perform is to convert data into information.  In the 

simplest situation the processing required to extract information may only 

involve converting an input signal by a scale factor so that the final result is 

in conventional units. For example, the output voltage signal from a strain 

gauge may be converted to the corresponding actual strain.  Alternatively, 

within a more sophisticated system the signal from a strain gauge placed 

on an engine mounting might be processed to extract the vibrational 

spectrum of an engine, which is then used to detect any unusual frequency 

that might be indicative of wear. This information can then be displayed to a 
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user, stored for later analysis, transmitted to a remote location or used by a 

controller. 

 

The signal from a transducer is usually analogue in nature, ie. it is 

continuously varying and can take any value (within an allowed range). 

This continuous analogue data has to be converted to a digital format 
prior to being transferred to the digital processor. Any 
instrumentation system must therefore include an analogue-to-digital 
(A/D) converter (ADC for short) to convert an analogue signal into a 
digital format, such as those discussed in the first year P2 course. 
 

A typical ADC will be an existing component that has been designed to 

convert an analogue input voltage, typically with a range of a few 
volts, into a digital word, which usually contains 8 or more bits. 
However, the output from a typical transducer, such as a strain-
gauge, might have an amplitude of less than 10 mV.  This transducer 

output signal must therefore be amplified in an analogue signal 
conditioning circuit before it can be converted into a digital word. 

 

Another aspect of the performance of the ADC that must also be taken into 

consideration when designing the signal conditioning circuit is that the ADC 

samples the transducer output at specific time intervals. An 
unfortunate consequence of this is that several frequencies will 
become indistinguishable at the ADC output. This is referred to as 
aliasing, and the effect can only be avoided by using a low-pass, anti-
alias filter to ensure that only the low frequencies that can be represented 

accurately are present in the signal applied to the ADC input. Since the 
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requirement for the anti-alias filter arises from a fundamental property of 

the ADC, this type of filter should always be present. 

 
Figure 1: A block diagram of a typical instrumentation  

system with several different output devices 

 

As shown in Figure 1 the characteristics of typical sensors and ADCs mean 

that the data collection (or acquisition) part of a typical modern 

instrumentation system can be split into the three functional blocks, a 

sensor, signal conditioning circuits and an ADC. The digital output from the 

ADC can then be processed in a programmable digital processor to extract 
information that can be displayed to an operator, stored in a memory 
or transmitted via a data link or used in feedback control. 
 

The costs of all the components are continually falling. It is therefore 

becoming economically viable to gather an increasing amount of data, and 

hence hopefully information, from an every expanding range of host 

systems.  One example of this trend is a 2.25 Km suspension bridge 
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constructed for the 2000 Olympics that had approximately 300 sensors 

embedded within the structure. These include: 

strain gauges to keep track of framework fatigue 

sensors to monitor motion in the stay cables caused by cross winds 

accelerometers in the roadway to measure the impact of earthquakes 

The data from these sensors are gathered by four separate data-

acquisition units (one in each pier of the bridge). These linked units are 

then connected to offices at the bridge site, in the headquarters of the 

bridge operating company in Athens and in the headquarters of the 

structural monitoring division of one of the bridge builders, which is in 

France.  

 

This technology trend and its impact on every conceivable system means 

that all engineers should be familiar with instrumentation systems. 
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Aims and Organisation of the Course 
 

The aim of the sensors and signal conditioning course is to develop an 

understanding of the function of the first key parts of a typical 

instrumentation system, such as the one in Figure 1.  

 

The first parts of the instrumentation system that will be considered are the 

sensors. There are many different sensors that rely upon one of a range of 

different physical phenomena to create an output signal in response to 

different stimuli. A comprehensive survey of all sensors is time-consuming 

and beyond the scope of this course. However, we will aim to give a brief 

survey (or list) of sensor types and the types of signals which might be 

produced. Such signals are typically rather weak.  These signals must 

therefore be amplified before they are converted into digital words. 

 

One problem caused by the small amplitude of the output signals 
from sensors is that they can be easily confused with other small 
voltage changes within the instrumentation system. Techniques to 

reduce the interference caused by these other small voltage changes, 

including careful design of the circuit layout, shielding it from external 

electromagnetic fields and creating a signal represented by the voltage 

difference between two signals, will be briefly described. The resulting 

small differential signals could be amplified by a differential amplifier 

containing a single operational amplifier (op-amp). However, this circuit is 

not ideal and the more complex, but easier to use, instrumentation 



 6 

amplifier, is therefore used. This was discussed in the first year P2 course, 

but it is so important we will cover it again here. 

 

Once the analogue output signals have been amplified they need to 
be converted into a digital word. Any instrumentation system must 

therefore include an analogue to digital converter (ADC). Two types of 

ADCs that are often used in instrumentation systems were discussed in the 

first year P2 course. The flash converter is conceptually simple and fast. 

However, it necessarily contains a large number of components and it is 

therefore relatively expensive. In some situations it is necessary to use an 

alternative type of converter. The alternative converter that was described 

in the P2 course, known as the successive approximation converter, 

contains a digital to analogue converter (DAC). These DACs are also 

useful in digital control systems, such as the one shown in Figure 2. In this 

course, the discussion of ADCs will concentrate on issues relating to 

interfacing. 

Figure 2: A block diagram of a typical digitally based control system. 
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Amplification of the sensor output signal is designed to match the 
maximum expected sensor output signal to the maximum input signal 
of the ADC. The sensitivity of the resulting data is then determined by 
the minimum change in the signal that can be reliably detected. The 

performance of ADCs means that this important aspect of the system 

performance is often limited by undesirable signals which are generated 

within the components of the electronic circuit. The origin of these noise 

signals, their effect on instrumentation systems and methods to limit their 

effects will therefore be described.  

  

The discussion of noise highlights the fact that one of the important 
system parameters that determines the amount of noise in a system 
is the system bandwidth. Filter circuits that can be used to control the 
bandwidth of the system therefore play a critical role in limiting the 
impact of noise on a system. In fact there are four key different types of 

filters that are commonly used in instrumentation systems to fulfil a variety 

of functions.  The circuits and characteristics of such filters were discussed 

in the first year P2 course. In this course the characteristics, applications 

and implementation of each of various filters will be further described.  

 

Amplifiers and filters within an instrumentation system are typically 
based upon op-amps. The function of a particular circuit within one of 
these systems can be understood by analysising the circuit with the 
assumption that the op-amp is ideal. However, all real op-amps have a 

finite input impedance, gain and output impedance. One of the key stages 
of designing any op-amp based circuit is the selection of the 
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particular op-amp that should be used so that it 'appears' to be ideal 
in the particular circuit that is being designed. Even after an op-amp 

has been selected that appears to be ideal additional components may be 

required in a circuit to compensate for other non-ideal aspects of an op-

amp’s behaviour. Finally, all op-amps have a gain that reduces at high 
frequencies. This means that any op-amp will only appear to be ideal 
for frequencies less than a maximum value.  
 

The output voltage from a strain gauge and several other sensors is a d.c. 

voltage. However, there are sensors in which the stimulus of interest 
causes a change in either capacitance or inductance. Changes in 
these two parameters can only be sensed if an a.c. signal is applied to 
the sensor. In addition, to avoid strong sources of interference, a.c. signals 

can also be applied to circuits containing sensors such as strain gauges.  

The use of this approach, with a lock-in amplifier, will be discussed. 
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Syllabus and Learning Outcomes 
 
Sensors and signal conditioning. Interference avoidance and 

instrumentation amplifiers. Non-ideal op-amps. Sources of noise (including 

quantisation noise) and noise reduction by bandwidth limitation; Filters and 

their applications.  

 

At the end of this course students should be able to: 
1. An appreciation of the importance of signal conditioning for the 

interfacing of sensors.  

2. An understanding of the key types of signal conditioning: amplification, 

filtering and isolation.  

3. An understanding of interference, and the roles of differential and 

instrumentation amplifiers.  

4. An appreciation of the impact of “real” operational amplifiers, and an 

understanding of how engineers can allow for real op-amp parameters in 

circuit analysis.  

5. An appreciation of the origins of noise in signal conditioning circuits, and 

how its impact can be estimated.  

6. An understanding and knowledge of basic filter types, together with their 

implementation.  

7. An understanding of the importance of bandwidth limitation using filters 

(including anti-aliasing) and the lock-in amplifier. 
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Textbooks 
 

A textbook that covers the majority of the topics in this course at an 

appropriate level is 

Design with operational amplifiers and analog integrated circuits 

by Sergio Franco, published by McGraw-Hill  

  

Additional material on noise and the design of low-noise systems is 

contained in 

Low-Noise Electronic System Design 

by C.D. Motchenbacher and J.A. Connelly 

published by John Wiley and Sons. 

 

For further reading on the subject of sensors  

Sensors and Transducer: Characteristics, Applications, 

Instrumentation and Interfacing 

by M.J. Usher and D.A. Keating, 

published by MacMillan Press Ltd 

or  

'Instrumentation for Engineers and Scientists' 

by John Turner and Martyn Hill, 

published by the OUP. 
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AN INTRODUCTION TO SENSORS 
 
The quantities measured by instrumentation systems are almost invariably 

non-electrical; for example, pressure, displacement, temperature, etc...  

The first step in any electronic system that gathers data on this type 
of quantity must be to find a device that will transform a change in the 
physical quantity of interest into an electrical signal. This 

transformation occurs in a device called a transducer; thus, within a 

platinum resistance thermometer a change in temperature is converted into 

a change in resistance using the temperature dependence of the resistance 

of the platinum wire. 

 

A transducer may be described as an input transducer (now more 
usually known as a sensor) or an output transducer (now more 
usually known as an actuator), depending on the direction of information 

flow. Examples of input transducers are thermometers, microphones, 

pressure sensors and photodiodes; the corresponding output transducers 

are heaters, loudspeakers, pistons and light-emitting diodes. 

 

There are many different types of sensor for some physical quantities (for 

example, temperature, strain, light flux etc...).  In addition, there are other 

physical quantities, such as pressure and viscosity, which can only be 

measured if a mechanical transducer is used to convert the primary 

variable, such as a pressure, into a secondary mechanical variable, such 

as strain in a thin membrane, which can be measured.  A description of the 

various sensors available to measure each physical quantity could be the 
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subject of an entire course of lectures. This type of review is not within the 

scope of this course, but we discuss some key issues in relation to sensors 

and some typical sensors. 

 

Some key sensor parameters 
 
A sensor's sensitivity indicates how much the sensor's output changes 

when the measured quantity changes. As a simple example, if a platinum 

resistance thermometer changes resistance by 0.4 ohm when the 

temperature changes by 1 °C, the sensitivity is 0.4 ohm/°C. Sensors that 

measure very small changes must have very high sensitivities. Sensors 

also have an impact on what they measure; for instance, a room 

temperature platinum resistance thermometer inserted into a hot liquid 

cools the liquid while the liquid heats the thermometer. Sensors need to be 

designed to have a small effect on what is measured. Making the sensor 

smaller often improves this and may introduce other advantages. 

Technological progress allows more and more sensors to be manufactured 

on a microscopic scale, such as microsensors using MEMS technology. In 

most cases, a microsensor reaches a significantly higher speed and 

sensitivity compared with macroscopic approaches. 

 
A good sensor obeys the following rules: 

• Is sensitive to the measured property  

• Is insensitive to any other property  

• Does not influence the measured property  
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Ideal sensors are designed to be linear. The output signal of such a sensor 

is linearly proportional to the value of the measured property. The 

sensitivity is then defined as the ratio between output signal and measured 

property. For example, if a sensor measures temperature and has a 

voltage output, the sensitivity is a constant with the unit [V/K]; this sensor is 

linear because the ratio is constant at all points of measurement. In general 

it is rather difficult to design sensors which are linear over wide ranges. For 

example, for the platinum resistance thermometer the resistance as a 

function of temperature can actually be expressed as: 

( )[ ]1001 32
0 −+++= TCTBTATRRT  

(see http://en.wikipedia.org/wiki/Resistance_thermometer) 

 

where the quadratic and cubic terms are small, but not necessarily 

negligible. It might be possible to correct for this non-linearity in the signal 

conditioning stage. However the programmability of microcontrollers and 

microprocessors means that it is easier to perform this correction after 

analogue to digital conversion. 

  

Sensor deviations 
 
More generally, if the sensor is not ideal, several types of deviation can be 

considered: 

• The sensitivity may in practice differ from the value specified. This is 

termed a sensitivity error, but the sensor may still be linear.  

• Since the range of the output signal is always limited, either by the 

voltages powering any circuits or by the ADC input range, the output 
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signal will eventually reach a minimum or maximum when the measured 

property exceeds the limits – often referred to as saturation. The full-

scale range defines the maximum and minimum values of the measured 

property.  

• If the output signal is not zero when the measured property is zero, the 

sensor has an offset or bias. This is defined as the output of the sensor 

at zero input – it is very common. 

• If the sensitivity is not constant over the range of the sensor, this is 

termed nonlinearity. Usually this is defined by the amount the output 

differs from ideal behaviour over the full range of the sensor.  

• If deviation is caused by a rapid change of the measured property over 

time, there is a dynamic error. Often, this behaviour is described with a 

Bode plot showing sensitivity error and phase shift as function of the 

frequency of a periodic input signal.  

• If the output signal slowly changes independent of the measured 

property, this is defined as drift.  

• Long-term drift can indicate a slow degradation of sensor properties 

over a long period of time.  

• Noise is a random deviation of the signal that varies in time.  

• Hysteresis is an error caused when the measured property reverses 

direction, but there is some finite change required for the sensor to 

respond, creating a history-dependent offset error.  

• The sensor may, to some extent, be sensitive to properties other than 

the property being measured. For example, most sensors are influenced 

by the temperature of their environment, even if that is not what they are 

designed to measure.  
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Such deviations can generally be classified as systematic errors or random 

errors: 

• Systematic errors can sometimes be compensated for by means of 

some kind of calibration strategy. (e.g. the non-linearity of the platinum 

resistance thermometer mentioned above) 

• Noise is a random error that can be reduced by signal processing, 

such as filtering, usually at the expense of the dynamic behaviour of the 

sensor. This is discussed further later. 

 

Resolution 
The resolution of a sensor is the smallest change it can detect in the 

quantity that it is measuring. The resolution is related to the precision with 

which the measurement can be made. 

 
Sensors 
The list of physical phenomena that can be measured is very long and 

includes:  

Acoustic, sound, vibration 
Chemical, Humidity 
Electric current, electric potential, magnetic, radio 
Flow, Pressure, force, density, level 
Ionising radiation, subatomic particles 
Position, angle, displacement, distance, speed, acceleration 
Optical, light, imaging 
Thermal, heat, temperature 
Proximity, presence 
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Since there are typically several different sensors per phenomenon then 

the list of sensors would be even longer. This is why a description of 

sensors would require a whole course. For this reason this course will be 

limited to using strain gauges to highlight the main problems that have to 

considered when designing analogue signal processing circuits.    

 

Strain gauge 
 

Strain gauges were discussed in the P2 lectures as an example of a 

sensor. A strain gauge takes advantage of the physical property of 

electrical conductance's dependence on the conductor's geometry. When 

an electrical conductor is stretched (within the limits of its elasticity such 

that it does not break or permanently deform) it will become narrower and 

longer, changes that increase its electrical resistance end-to-end. 

Conversely, when a conductor is compressed such that it does not buckle, 

it will broaden and shorten, changes that decrease its electrical resistance 

end-to-end. From the measured electrical resistance of the strain gauge, 

the amount of applied stress may be inferred. A typical strain gauge 

arranges a long, thin conductive strip in a zig-zag pattern of parallel lines 

such that a small amount of stress in the direction of the orientation of the 

parallel lines results in a multiplicatively larger strain over the effective 

length of the conductor—and hence a multiplicatively larger change in 

resistance—than would be observed with a single straight-line conductive 

wire. 
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The so-called gauge factor is defined as: 

ε
G

F
RR

G
/∆

=  

where RG is the initial resistance of the strain gauge 

∆R is the change in resistance when strain is applied 

ε is the applied strain. 

εFG GRR =∆ /  

Typically a gauge factors are ~2, which means that the fractional change 

in resistance is only twice as large as the strain. This means that the 

fractional changes in resistance are very small and they can only cause 

small changes in any electrical signals.    
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Signal Conditioning 
 

The output from a transducer is generally a continuously varying or 

analogue signal. In contrast digital processors store and process signals 

sampled at particular times and represented as binary numbers. Any 
modern instrumentation must therefore include a component 
(described in the P2 course), known as an Analogue-to-Digital converter 
(ADC), which converts the analogue input signal into a digital signal 
that can be read by the digital processor. 
 

The simplest and cheapest possible instrumentation system is one in which 

the output from the transducer is connected directly to the input of an ADC. 

However, both the transducer and the ADC are standard components that 

have not been designed for any particular application.  More importantly, 

transducers rely upon physical processes that rarely, if ever, generate 

output signals that are compatible with the ADC input range. In particular 

the maximum change in the output signal from a sensor is often 
smaller than the minimum change in signal that can be detected by 
the ADC. This means that in this simplest system even the maximum 

change in the transducer output may be undetectable. 

 

Instrumentation systems must therefore include a circuit before the 
ADC that amplifies the output from the transducer to make it 
detectable by the ADC. Such a circuit is referred to as signal 
conditioning. 
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In instrumentation, signal conditioning generally means manipulating an 

analogue signal (from a sensor) in such a way that it meets the 

requirements of the next stage of a system for further processing. In 

general the most common “next stage” will involve analogue-to-digital 

converters. 

 
Signal inputs accepted by signal conditioning circuits include DC voltage 

and current, AC voltage and current (and possibly but rarely electric 

charge). The processes that are performed by these circuits will almost 

certainly include amplification and filtering. In addition to these functions the 

signal conditioning may also include a step to isolate the input circuits from 

the rest of the system (one area where this is important is in medical 

electronics where isolation protects the patient who is hosting the sensors) 

and/or a non-linear step (such as a log or an anti-log amplifier) to 

compensate for any non-linearity of the sensor.  

 

Although isolation and non-linear stages are key to a few systems 

this course will focus on the amplification and filtering that must be 

included in almost all systems. Commonly used amplifiers for signal 

conditioning. 
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Simple Amplifier Circuits for Signal Conditioning 
 

The output from many transducers is a voltage and there are two simple 

circuits (described in the P2 course), the non-inverting and the inverting 

amplifier, which can be used to amplify a voltage signal. 

 

Non-inverting amplifier (P2 Revision): 

 
A non-inverting amplifier circuit. 

 

Don’t forget the analysis of any op-amp circuit to understand its function is 

based on the simple ideal op-amp rules (taken from P2): 

• An ideal op-amp has an infinite input resistance, an infinite 
differential gain and an output resistance of zero.  

The infinite gain means that provided there is negative feedback: 

 (be sure you understand WHY) 
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This equation and the characteristics of an ideal op-amp can be used to 

show that  for the non-inverting amplifier 

 
where the gain is given by the terms within the brackets. 

 
Inverting amplifier (P2 Revision): 

 
 An inverting amplifier circuit. 

 

Using the same rules as above, and noting that for the inverting amplifier 

V+ is connected to ground (0V) we can show that: 

inout V
R
RV







−=

1

2
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Mini-Summary 
 

Instrumentation systems are widely used to control and monitor many 

different “host” systems.  

 

Any physical variable that is being measured, has to be converted to an 

electrical signal, usually an analogue signal, by an input transducer or 

sensor.  Useful information then has to be extracted from this signal, most 

often by a programme in a digital processor. Conversion from an analogue 

sensor output to a digital input for the processor is a two-stage process 

involving analogue signal processing (conditioning) and an analogue-to-

digital converter. 

 

Each instrumentation system therefore usually consists of four constituent 

parts, the sensor, analogue signal processing circuits, an analogue-to-

digital converter and a digital processor. 

 

Sensors rely upon physical processes that allow an electrical signal to be 

generated in response to a change in a physical variable. These physical 

processes usually result in small output signals. A key part of any analogue 

signal processing circuit is therefore a circuit that amplifies the changes in 

the output signal from a sensor.   
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INTERFERENCE AND INSTRUMENTATION AMPLIFIERS 
 

Introduction 
 

A lot of this material was also covered in the P2 course, but it is important, 

so it will be included here. 

 

Inverting and the non-inverting amplifier circuits share a common problem - 

they both amplify the difference between the input voltage signal and the 

amplifier ‘ground' connection. Any variations in the ‘ground’ voltage will be 

indistinguishable from changes in the sensor output voltage. The resulting 

interference can be minimised by carefully designing the analogue signal 

processing circuit to avoid shared ground connections and coupling to 

electromagnetic radiation. In addition, whenever possible the sensor should 

be included within a circuit that produces an output that is the difference 

between two voltages, a type of output known as a differential output, with 

the largest possible amplitude. 

 

A differential output can be amplified using a simple differential amplifier 

circuit. However, variations between the actual and nominal values of the 

resistors in this circuit will create a response to changes in the average 

(common-mode) input signal. To avoid the problems that this causes the 

differential output from a transducer is usually amplified using a three  

op-amp instrumentation amplifier. 
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Illustration (see also P2 notes): 
 
In the analysis of the inverting op-amp circuit presented above you will 

notice that there are three points which are shown as ground. Now, this can 

present a problem:  

 
 An inverting amplifier circuit (showing ground points) 

How can we guarantee that these three “ground points” are in fact all at 

identical potential? In fact it was an assumption in the analysis, and if the 

assumption is not correct then the analysis changes. For example, if the V+ 

input is not at zero-volts then the V+=0 assumption must be dropped, and 

the output voltage becomes: 

( ) +++








++−=+−−= V

R
RV

R
RVVV

R
RV ininout

1

2

1

2

1

2 1  

It is clear from this that we would not be able to distinguish between sensor 

signal (Vin) and ground-point errors. This is a real problem! 

 

There are at least two origins of such problems. In the P2 course the issue 

of careful grounding was discussed, illustrated by the following diagram: 



 25 

 
Figure (6) Schematic diagrams of a poor earthing scheme, on the left, 

and a good earthing scheme, on the right. 

In Figure (6) the ground connections of three parts of the system on the left 

are connected to one another (“chained” together) within the overall circuit 

before a single connection is made to earth. A hidden danger with this 
simple grounding scheme is that each connection has a small but 

finite resistance. These resistances are represented by ,  and 

 in Figure (6), which shows that this grounding scheme creates 

common resistances to ground.  The problem caused by these common 
resistances is that the current flowing to ground through one circuit 
can change the ground potential of other circuits. As illustrated for 
the simple inverting op-amp circuit above, it is then impossible to tell 
the difference between real signals and such changes in ground 
potential. Since the shared resistances created by this grounding scheme 

are formed by contacts, tracks and wires that have an ideal resistance of 

zero, it is understandable to think that this effect is negligible. However, the 
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total resistance that is shared could be a few Ohms. If we approximate this 

to say 10 Ohms then it would only require a current of 50μA to flow through 

this shared resistance to change the 'ground' potential of the input amplifier 

by 0.5mV. If the subsequent signal conditioning circuits have an overall 

gain of say 1000 this would cause an output voltage “error” of 0.5V.  It is 

therefore quite possible for changes in the current drawn by one part of the 

circuit to create a fluctuation in the 'ground' potential of another part of the 

circuit that will be (incorrectly) interpreted as a significant signal. 
 

In the P2 course it was suggested that this interference can be avoided by 
using a single-point grounding scheme, often referred to as a star 
connection or star grounding scheme, shown on the right hand side 
of figure (6). 
 

However, there is a second problem… 
 

Electromagnetic interference 

 

All of the connecting wires act as aerials which can “receive” any 

electromagnetic fields in the environment. (This is especially so if there are 

any multiple ground paths, which can form beautiful loop aerials!) This can 

then result in significant time-varying currents flowing through the ground 

connections that could interfere with the circuit ground. Within small-scale 

circuits such effects can generally be avoided at low frequencies. However, 

in connecting sensors to signal conditioning circuits such electromagnetic 

interference on the cables can be problematic. 
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Bridge Circuits 
 

Careful circuit layout reduces the impact of interference arising from 
undesirable signals on the earth connection of the input amplifier. 
However, it is better to use a design that prevents the problem by 
avoiding the need to rely upon a good ground connection. This can 

often be achieved by placing the sensor (such as a strain gauge) in a 

bridge arrangement, see figure (7), which generates both a signal voltage 

and a reference voltage, giving a differential voltage. 

 

In figure (7), the transducer  is subjected to the “influence” to be 

measured whilst  and  are reference resistances subjected to 

the same conditions as , except for the influence.  

 

Let be the bridge differential output voltage when the transducer 

“senses”, such that the sensor resistance changes from R0 to R0 (1+α), 

then in this particular configuration, the currents in the potential dividers on 

the left and right are: 

 
so that 

 
hence 
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For small values of α this expression shows that the output voltage is 

proportional to α and does not include a large constant term. This 

means that none of the limited input range of the ADC is wasted 
representing a large, constant voltage which contains no information. 

Rather with this circuit the entire input range of subsequent circuits can be 

used to represent the useful signal. 

 

(However, it should be noted that neither of the outputs are grounded, and 

this must be kept in mind in designing the next stage of the system.) 

 

 
Figure 7: A sensor bridge circuit with a differential output. 
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Cables as a source of interference 
 

The bridge circuit with a sensor avoids interference from signals on the 

ground connection of the instrumentation system. However, the output 
signals are still small and are therefore vulnerable to electromagnetic 
interference.  With a pair of wires connecting the bridge circuit to the 
instrumentation system it is possible for interference to be caused by 
fields which couple to the connecting wires. There are particular effects 

with a connection formed by two wires. 

• The first is that the pair of wires can form a loop aerial that couples 
to any stray changing magnetic field. This can then generate an 
emf (i.e. voltage) around the loop. 

• The second is that if the two wires run parallel, but, separately they 
will have different coupling capacitances to other conductors in 
the local environment, particularly the local mains power leads. 

To minimise the impact of both these phenomena the two wires are 
typically twisted around each other to form a twisted pair. This cheap, 

and neat, solution ensures that the cross-sectional area of any loop formed 

by the wire is minimal and that both wires have the same coupling 

capacitance to any other conductor. A twisted pair is therefore often used 

as a cheap but effective method of connecting two separate parts of an 

instrumentation system. 
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The full bridge circuit 
 

The use of a twisted pair is effective, and represents a good solution to a 

problem. A better solution would be to avoid the problem altogether.  It is 
sometimes possible to minimise the impact of interference by 
adopting a good general design principle. This is to create the largest 
possible signal at the earliest opportunity. 
 
For example, the output signal from a bridge circuit can sometimes be 
increased by using the full bridge circuit with four sensors, as shown 
in Figure (8). In this circuit, the sensors are arranged so that each branch 

of the circuit contains a pair of sensors acting in complement (for example 

one strain gauge in tension and the other in compression). In this way, the 

output signal from the bridge circuit is enhanced by a factor of 4. 

 
Figure 8: A full bridge circuit containing four strain gauges. 
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The differential amplifier 
 
The output from the bridge circuit, and many other types of transducer, is 

the difference between two voltages. These differential voltages will be 

smaller than the input range of a typical ADC. A “signal conditioning” circuit 

is therefore required that amplifies a differential voltage, rather than a 

voltage relative to a ground point. i.e. given two wires coming from a sensor 

(or sensor in a bridge circuit) the voltage levels relative to a ground-point 

may be not well defined (due to electromagnetic interference, difficulty of 

“defining” the ground voltage, etc.). However, the voltage difference should 

be representative of the quantity being sensed.  

A simple op-amp circuit that can amplify a differential voltage is shown in 

Figure (9). This was analysed in the P2 course. 
 

 
Figure 9: Single op-amp differential amplifier 
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Assume the op-amp is ideal and considering the connections to the op-amp 

inverting input: 

1

1

2 R
vv

R
vvo −

=
− −−

 

The second input voltage is connected to the non-inverting input through a 

simple potential divider, so for this we can write: 

 
The “normal” ideal op-amp rules, together with negative feedback allow us, 

as usual, to equate the two op-amp inputs, writing . Using this to 

eliminate v+ and v- in the above equations gives us: 

 

The magnitude of the gain is the same as we saw for the inverting amplifier 

earlier, but now it is the difference between the voltages  which is 

amplified, which is just what we need! 

 

For signal conditioning applications a particularly useful aspect of this 

amplifier is that the output is dependent only on this difference and is 

independent of their absolute levels. This is important, so it is worth 

thinking about why this happens.  

 

Consider the situation when the two inputs are the same, let’s say v1=v2=v. 

Now the potential divider rule for the non-inverting input remains the same 

as before, and still we need , so that means that  
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But, the v- input is “fed” by a potential divider between v1 and vo , and given 

that v1 is also v the op-amp conditions can only be satisfied if vo is also 

zero. This means that the output depends only on the difference 
between the inputs. 
 

This type of differential behaviour is important, so we develop “standard” 

ways of expressing it. Firstly, we write the inputs in a different way. Rather 

than expressing the inputs in terms of the two voltages v1 and v2 we 

express the inputs in terms of the average and difference of these voltages. 

These are referred to as the “common mode” (cm) and “differential” (diff) 

voltages, expressed as: 

12

12

2
vvv

vvv

diff

cm

−=

+
=

 

REMEMBER: these are just a pair of simultaneous equations, so any pair 

of voltages can be expressed in terms of either their individual voltages or 

in terms of their common-mode and differential terms. We can re-arrange 

between the notations using the above expressions for the common-mode 

and differential voltages in terms of the input voltages, or their complement: 
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CAUTION: although there is no ambiguity in the definition of the common-

mode term there is a sign ambiguity in the differential term, the sign of 

which will depend on the labelling of the two individual voltages – be 

careful! 

 

Now, going back to the gain equation for the differential amplifier 

determined above: 

 
and substituting for  v1 and v2  in terms of the common-mode and 

differential voltages now makes it obvious that 

diffo v
R
Rv

1

2=  

which is independent of the common-mode term and has a gain for the 

differential term of R2/R1. This differential gain is normally designated as 

Adiff.  

 

More generally the output voltage from a circuit intended for differential 

amplification can then be written in the form: 

cmcmdiffdiffo vAvAv +=  

or 

 

where  is the differential gain of the amplifier and  is the so-
called common mode gain. For the ideal differential amplifier 

illustrated above the common mode gain is zero, , so that the 
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output is independent of the common mode signal. The differential gain 

is obviously (from the above analysis) just 12 / RRAdiff =  

 

Why the circuit might not be non-ideal 
 
The above analysis is an ideal situation, but of course in the real world the 

differential amplifier might not be so ideal. There are a number of reasons 

for this, but most commonly it is because the two resistors labelled R1 will 

not be identical to one another and similarly the two resistors labelled R2 

will not be identical to one another. You may recall that you analysed this 

issue as a tutorial problem for P2! In this analysis you assumed a small 

error in the resistors, so that the circuit became something like: 
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where x is a small error (<<1) and is chosen to represent a “worst case”. 

Assuming the normal op-amp rules, and after a bit of algebra, in the P2 

tutorial you came up with an equation for the output voltage of the form: 
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Now, expanding this for small x (i.e. ignoring terms in x2 or higher order) 

this can be written: 
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then substituting for v1 and v2 in terms of vcm and vdiff , and again assuming 

x is small we have: 

cmdiffo v
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so now there is an extra term in addition to the differential gain found 

above. The differential gain remains the same ( 12 / RRAdiff = ), but now 

there is also a common mode gain: 
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(which, as expected, obviously vanishes in the limit of perfectly matched 

resistors, i.e. when x=0). 

 

In general we would “like” a differential amplified to have a small common 

mode gain in comparison with the differential gain. This allows it to “reject” 

common-mode signals and amplify the differences. The ability of a 
differential amplifier to reject any common mode signal whilst 
amplifying the differential signal, is usually characterised by the ratio 
between the differential and common mode gains. It is called the 
common-mode rejection ratio (CMRR)  

 
This means that the common mode rejection ratio of an ideal circuit is 

infinity. Despite non-ideal effects the CMRR of a good differential amplifier 

is usually large and it is therefore often quoted in decibels 

 
Input impedance 
 
When using the basic differential amplifier illustrated above there is another 

problem, even if the circuit is carefully engineered with high tolerance 

resistors to maximise the CMRR. The two op-amp inputs are at the same 

voltage as one another (due to the negative feedback), so any differential 

input voltage “sees” the two resistors labelled as “R1”. The differential input 

impedance is therefore 2R1. You will recall from P2 that in general when 

connecting a signal source (in our case from a sensor/transducer) to an 

amplifier it is good to ensure that the input impedance of the amplifier is 
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large compared with the source output impedance. However, this cannot 

be guaranteed here. It would therefore be useful to arrange to INCREASE 

the input resistance of the differential amplifier. 

 

As discussed in the P2 course the input impedance of the circuit can 
be increased by simply inserting an op-amp buffer circuit on each 
input of the differential amplifier as shown in figure (10). The source 

(sensor) output (i.e. the input to the circuit) is then directly connected to one 

input of an op-amp that has a very high, if not infinite, input impedance. 

Provided the op-amps are ideal then in the arrangement shown in figure 10 

we have:  

 
which means that the signals from the sensor are applied to the differential 

amplifier as before. Adding op-amp buffers to the standard differential 

amplifier therefore simply increases its input impedance.  

 
Figure 10: A differential amplifier with buffered inputs. 
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Instrumentation amplifiers 
 
In principle we could add further gain to the input stages (buffers) by using 

the circuit for the basic non-inverting op-amp amplifier presented earlier. 

However, this is unwise because differences between the nominally 

identical resistors in the two non-inverting amplifiers will create different 

gains on the two input signals. It turns out we can do a bit better than the 

circuit in Figure (10) if we connect the non-inverting inputs through a 

common resistor, forming the standard 3 op-amp instrumentation 
amplifier shown in Figure (11). 
 

 
Figure 11:The standard 3 op-amp instrumentation amplifier. 
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The analysis of this circuit was presented in the P2 lectures, and is 
repeated here: To understand the circuit first consider the current flowing 

vertically through the resistors connecting  to  

 
the middle two equations can be re-arranged to give 

 
and the right hand pair give 

 
then subtracting the first of these two equations from the second gives 

 
So, the differential output from the first pair of op-amps (referred to as the 

first stage) is equal to the differential input multiplied by a differential gain 

factor, let’s say Adiff_1  

1

2
1_

21
R
RAdiff +=  

Adding the equations for  and  together (and dividing by two) we also 

have: 

22
'' 2121 vvvv +
=

+
 

i.e. the common mode term in the output from the first stage is identical to 

the common mode term in the input to the first stage, so the common-mode 
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gain is unity. Thus the first stage can provide a differential gain and 
unity common-mode gain, thereby increasing the CMRR as well as the 
input resistance. 
 
Additionally, analysis shows that the CMRR of the first stage is not 
substantially damaged by small errors in the resistor values. 
 
Normally the R2 resistors are part of the package and the single R1 
resistor is chosen by the user. 
 
The output from this first stage is fed to a differential amplifier circuit 
which is effectively identical to that considered above. This last stage 
is often given a fixed low differential gain (unity, for example) by the 

manufacturer. The advantage of this is that all the resistors within this part 

of the circuit can be integrated within the instrumentation amplifier package. 

Matching to the required accuracy is then achieved as part of the 

manufacturing process. With a low differential gain the main function of the 

differential amplifier is to provide a single output whilst rejecting any 

common-mode input signal. 

 

The overall CMRR of the instrumentation amplifier can be written in a 

number of ways. Given the way that we have expressed the differential and 

common-mode gains we can now gather things together. For the first 

stage: 
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and 

 22
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or 

1_' diffdiffdiff Avv =  

and  

cmcm vv ='  

For the last stage: 

( ) 






 +








+

−
+−=

2
''4'' 12

43

3

3

4
12

3

4 vv
RR

xR
R
Rvv

R
Rvo  

or 

cmlaststagecmdifflaststagediffo vAvAv '' __ +=  

Hence: 

cmlaststagecmdiffdifflaststagediffo vAvAAv _1__ +=  

So the overall differential gain is: 

1__ difflaststagediff AA  

and the overall common-mode gain is: 

laststagecmA _  

Generally the CMRR is therefore: 

1_
_

_
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laststagecm

laststagediff A
A
A
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If the first stage does also have common mode gain then this generalises 

to: 

1_

1_

_

_

cm

diff

laststagecm

laststagediff

A
A

A
A

CMRR ×=
 

In both cases this can also be expressed as: 

 

laststagefirststage CMRRCMRRCMRR ×=
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Mini Summary 
 

Amplification is required in the vast majority of systems to match the 
maximum output signal from the sensor to the maximum input signal 
of an ADC. 
 

Simple op-amp amplifiers with a single input amplify the difference 
between their input signal and the local ground voltage. Since this 

might be different from the ground voltage at the sensor this type of 

amplifier is vulnerable to interference caused by fluctuations in the 
ground potential.  When signals are small careful design is therefore 

required to prevent interference from sources, including electromagnetic 

radiation and current flowing through connections shared by different 

circuits. Techniques including shielding, good grounding and twisted 
pairs can significantly reduce interference.  
 

One approach to creating a system that is robust to interference is to use a 

sensitive transducer to create a large signal as early as possible. One 

problem that may arise with sensitive transducers is that they can be 

sensitive to more than one physical effect, for example a strain gauge may 

be sensitive to temperature. In some situations it is possible to design a 
circuit that distinguishes between changes in two physical quantities 
that both affect the output of a sensor. In other situations it may 
become necessary to measure both quantities and then to use the 
digital processor to correct for the undesirable dependence. 
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Another approach to creating a system that is robust to interference, that 

has the added advantage of creating a signal that only represents the 

change induced by the physical effect of interest, is to use a sensor with a 
differential output. This type of sensor must then be connected to a 
differential amplifier. A simple differential amplifier can be created from a 

single op-amp and two pairs of identical resistors.  However, variations 

between the resistances of nominally identical components leads to circuits 

which respond to the average input (common mode) signal.  

 

The problems caused by a finite common-mode gain are usually 
reduced by using a three op-amp instrumentation amplifier. This 
circuit has a high input impedance, a high common-mode rejection 
ratio and an easily set differential gain. An additional attractive feature is 

that it is very easy to use! 
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REAL OP-AMPS 
 
Introduction (– for information only) 
 
The inside of a real op-amp (for example, the 741) is rather 

complicated: 

 
This makes the full analysis of a signal conditioning circuit built using         

op-amps potentially rather difficult, as the op-amp may not be as “ideal” as 

initially assumed! 
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There are two stages in analysing any real op-amp circuit. Initially, the 
function of the circuit can be determined assuming that the op-amp is 
ideal. Subsequently, it may be necessary to perform a more detailed 
analysis of any circuit, including the non-ideal behaviour of the          
op-amp, in order to quantify the performance of the circuit more 
precisely. Alternatively, this type of detailed analysis is needed to 
ensure that an op-amp is chosen which appears to be ideal in the 
context of a particular circuit. 
 

Behaviour of Real Op-amps 
 

For a real op-amp the gain and input impedance are large and the 
output impedance is small, however, they are all finite.  A model of the 
op-amp that includes these effects is shown in figure (44). This model 
of the op-amp can be included in the analysis of a particular circuit to 
ensure that the non-ideal behaviour of the op-amp selected for a 
particular application has a negligible effect on the circuit performance. 

 
 

Figure 44: A model for an op-amp that includes its finite input 

impedance, output impedance and  gain. 
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In addition, to the finite gain and impedances of the op-amp there are a few 

other non-ideal aspects of the behaviour of the op-amp which must be taken 

into account when either designing/analysing a circuit or selecting an op-

amp. 

 
Limited Output Voltage Range –Power is supplied to the op-amp via two 

power supply connections, not shown on most circuit diagrams. The output 
voltage of the op-amp is limited by the supply voltages applied to these 
pins. Thus if an op-amp has a positive supply voltage of +5V and a negative 

supply voltage of -5V the output voltage will be limited to the range between 

+5V and -5V. In fact the actual output voltage range is likely to be less than 

the supply voltage range. If the input conditions require an output voltage 

outside the allowed range then the output voltage will saturate to a maximum 

positive or minimum negative value. If this range is too small for a particular 

circuit then an alternative op-amp should be used which has a larger 

maximum supply voltage and hence output voltage range. 

 

Input Offset Voltages – The two input signals are connected to two different 

input transistors within the op-amp. Ideally, these two transistors are 

identical. However, variations in the manufacturing process mean that this 

ideal condition is rarely achievable, which means that for a real op-amp a 
small differential input voltage is required to create an output of 0 V. 

This input offset voltage can be accommodated by one of two 
alternative techniques. In some op-amps extra connections are 
provided to allow the user to add a variable resistance that can then be 
used by the user to zero the input offset voltage. This trimming is the 

least expensive technique of compensating for the offset voltage, however, it 
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is inconvenient. For example the resistance may need to be adjusted if the 

operating temperature changes. The more usual solution to this problem 
is therefore for the op-amp manufacturer to include an equivalent 
resistance within the op-amp package that is adjusted as part of the 
manufacturing process. The additional manufacturing processes required 

to trim a circuit means that these components are more expensive. However, 

they are more ideal when received by the user and they are therefore very 

popular. 

 

Common Mode Rejection  
(In the material above the issue of differential and common mode 

gains for an op-amp based circuit were considered. Here the situation 

for the op-amp itself which is considered.)  

 

The two input signals to the op-amp can be considered to consist of  

an average, or common-mode, component and a differential component 

 so that  

 
 

The ideal op-amp will only respond to the differential part of these two 
input signals. However, a real op-amp will respond to the common-

mode signal with a common-mode gain . By convention this aspect of 

the performance of an op-amp, and other circuits, is characterised by the 
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logarithm of the ratio of the differential gain  to the common mode gain 

. This common-mode rejection ratio CMRR is 

 
Many important op-amp circuits are based upon a constant bias, usually 0V, 

applied to  and a feedback loop connected to . The operation of these 

circuits is based upon a high differential gain this ensures that , and 

since  is a constant this means that  is constant. For these circuits the 

effect of a finite common-mode gain is therefore negligible. However, in 

instrumentation amplifiers the input voltages to the op-amps will vary with the 

common-mode signal. For these circuits the CMRR of the op-amp can have 

a significant impact on performance. 

 

Input Bias Current - Each input to some op-amps is connected to 

the base of one of a pair of bipolar transistors. The base current for 

each device flows through the  op-amp inputs. These two dc currents 

are referred to as the input bias currents. A technique to 

compensate for the presence of these currents will be described later. 
 

Noise - Finally, op-amps contain several devices, each of which will 

generate noise. This aspect of the behaviour of real op-amps will be 

described later. 
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Real Op-amps in an Inverting Amplifier 
 

In order to understand how the finite gain and impedances of an op-amp can 

be included in the analysis of a circuit we consider an example, the inverting 

amplifier shown in figure (45). 

 

Some definitions before starting the analysis: 

open-loop voltage gain  (measured without feedback) 

closed-loop voltage gain  (gain with feedback) 

the feedback fraction  

 
Figure 45: Inverting amplifier circuit including non-ideal op--amp model. 
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The voltage at the inverting input to the op-amp can be determined by 
linear superposition of the voltages created by the two voltage sources 
within the circuit. To simplify the analysis assume that the op-amp is 

almost ideal so that the input impedance is large and the output impedance 

is small. In particular, for this circuit assume that  and that 

.  

 

First to determine the effect of the op-amp output voltage, assume that 
the input voltage is zero. Then the voltage at the inverting input arising 

from the output of the op-amp is equal to vf and is given by: 

 
Then to determine the effect of the input voltage assume that 

 and that for simplicity also assume  and . 

 
Linear superposition means that the voltage at the inverting input can then 

be determined by adding the effects of the input voltage and the op-amp 

output voltage  
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This expression for  can now be included in the equation for the voltage 

at the output from the op-amp. Taking into account that the input is 

connected to the inverting input to the op-amp and the direction of the output 

current  
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oodOLo ZivAv −=  

and then re-arrangement (eliminating vd ) gives 

 
The closed-loop gain is therefore given by: 

 
but since  

 
this expression becomes 

 

Finally, if  then  

 
The conclusion is that: 

(i) the output impedance has decreased by a factor of  

(ii) as long as the op-amps open loop gain is greater than the closed 

loop gain the  closed-loop gain is independent of the exact value of  

the op-amp's open-loop gain. 
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Real op-amps in a non-inverting amplifier 

 
Figure 46:A non-inverting amplifier circuit including 

non-ideal op-amp model. 

The circuit shown in figure (46) can be analysed to include the effects of a 

non-ideal op-amp, see the tutorial problem, to show that;  

 
This means that the circuit behaves as an amplifier with closed-loop gain: 

 
and the output impedance is  

 
The expression for the closed-loop gain can also be re-written as follows: 
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If , then  and the closed-loop gain once again only 

depends upon the components in the feedback circuits and is independent of 

the exact value of  as required.  

Since , the condition  is equivalent to . 

Thus one of the conditions for selecting an op-amp is that the open-loop gain 

is much larger than the closed-loop gain of the final circuit. 

 

Input impedance- Assume that the circuit design is power efficient, 

so that any currents through the feedback resistors are small 

compared to the current delivered to the load impedance ZL, then Zo 

and ZL form a potential divider and the output voltage becomes: 

oL

L
dOLo ZZ

ZvAv
+

=    (a) 

Now the voltage v2 can be determined from v0 and the R1 and R2 

potential divider, so: 

0
21

1
02 v

RR
Rvv β=
+

=  

where β is R1/(R1+R2). Substituting in for vo from eq. (a) we have: 

d
oL

L
OL v

ZZ
ZAv
+

= β2    (b) 

Now, considering figure 46, the input voltage vin can be written as the 

sum of v2 and vd , i.e.: 

din vvv += 2  

Substituting in for v2 from eq. (b) we then have: 
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We can now determine ZinCL by dividing by the input current iin 
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Thus 

 

Finally, assuming that , so that most of the power from the op-amp 

output is delivered to the load and not dissipated internally.  

 
so the already large input impedance is increased by the feedback loop. 

 

To summarize: 

(i) The output impedance has been decreased by a factor   

(ii) The closed-loop gain equal to  which is independent of the 

exact value of the op-amp's open-loop gain. 

(iii) The input impedance has been increased by the factor  

and the conditions for selecting an op-amp to ensure that an op-amp 

appears to be ideal for this application are 

 



 57 

Correcting for finite input bias currents 
 

When designing an op-amp circuit it is often necessary to consider the 

finite input bias current which many op-amps require. The input impedance 

of the op-amp that has been considered so far represents the changes in 

this current that occur when the two input voltages change. It is also 

necessary to consider the average current that must be supplied to 
these two inputs. Each of the inputs pins may require a dc bias current to 

ensure that a bipolar transistor within the op-amp operates correctly. These 
bias currents can be represented by two current sources between the 
relevant input and ground, shown in figure (47). 

 
Figure 47: An inverting amplifier circuit including input bias currents. For an 

ideal op-amp only two resistors are required, however, a third resistor is 

required to compensate for the input bias currents. 
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In the example circuit shown, an inverting amplifier, there are three signal 

sources, ,  and  that determine the voltage at the inverting input 

to the op-amp. Superposition means that the total voltage at the inverting 

input, can be calculated by adding together the effect of each source. During 

the calculation of the effect of each signal source, any other voltage source 

is short-circuited and any other current source is assumed to be open circuit.  

This means that whilst calculating the effects of the two voltage sources, the 

bias current source is open circuit, i.e. the op-amp is ideal. The error in 

voltage at the inverting input caused by the presence of  is therefore 
the voltage generated at this circuit node when the two voltage sources 
are short-circuited, i.e. both voltage sources are set to zero. With the 

output voltages from both the voltage sources set to zero then both  and 

 connect the inverting input to ground. The bias current flowing through 

this parallel combination of resistors will then cause a voltage signal 

 
At first it would appear that an input bias of an op-amp would be 

insignificant. However, this expression shows that with typical resistance 

values of 10K or more, an input bias current of 1μA can generate an error 

of 10mV. This is significant compared to the signal from the typical sensor. 

 

There are two possible solutions to this problem:   

(i) select an op-amp with a small bias current or  

(ii) use small value resistances in the feedback circuit.  
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Unfortunately in some situations neither of these two solutions are 
possible. In this case the circuit can be modified to significantly reduce 
the impact of the undesirable signal.  
 

To understand how the circuit must be modified remember that the 

op-amp has a high, if not quite infinite, differential gain. It will therefore 

amplify any differential input voltage, such as the one created by the bias 

current flowing in resistors  and , even in the absence of an input 

signal. The effects of this bias current will become negligible if the inverting 

input is at the same voltage as the non-inverting input so that the differential 

voltage is zero. Then there will be no differential input voltage when the input 

to the circuit is ground. The effects of the input bias currents will then be 

negligible.  

 

In the ideal circuit the voltage at the non-inverting input is zero, even when 

there is a finite input bias current.  To allow the input bias current to 
create a finite input voltage a resistor is required between the non-
inverting input and ground, see the dashed box in figure (47).  Assuming 

that the resistance of this extra resistor is  , then  . However, 

in order to obtain an output voltage of zero when the input is zero the value 

of  should be chosen so that under these conditions . Thus 

 
and since in  op-amps the two inputs to the op-amp will be connected to 

nominally ‘identical’ devices we can assume that  and hence 
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that is the new resistor is equivalent to the other two resistors acting in 

parallel. The addition of this extra resistor, which would have no effect on an 

ideal op-amp, is therefore to cancel the effects of the finite input bias current. 

 
Frequency Response 
 

So far it has been assumed that the gain of an op-amp is independent of 

frequency. However, because of unavoidable parasitic capacitances that 

form part of each transistor within the op-amp the gain of a real op-amp is 

frequency dependent. The result is a complex frequency dependent gain 

(and phase shift) that is both difficult for the manufacturer to control and/or 

specify accurately and for the designer to use confidently. 

  

The solution to this problem that has been adopted by manufacturers is to 

include a large capacitance within each op-amp. This capacitance is then 

designed to ensure that over the frequency range of interest the op-amp 

behaves as if it had a single dominant RC response. Thus compensated  
op-amps (such as the 741 and all the op-amps that you are likely to 
use) have the frequency response characteristics of a low-pass  RC 
filter 

 

where  is the dc gain of the op-amp and  is the 3dB break-point 

frequency created by the frequency compensating capacitor. 
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The op-amp is then designed to ensure that its gain falls to unity at a 
frequency that is low enough so that any other frequency dependant 
responses within the op-amp are negligible.  The consequence of this 

is that the 3dB break-point frequency  for compensated op-amps is 
extremely low: 5 Hz for the 741, for example. 
The convention in an op-amp data sheet is to give the values of the dc 

gain, , and the unity gain frequency  (which is the frequency 
at which the open-loop gain has fallen to 0 dB). This frequency 

represents the maximum frequency at which the op-amp could be used to 

create a unity gain buffer. It is therefore a measure of the maximum useful 

frequency of the op-amp. 

 

The closed-loop frequency response  of any circuit can now be 

determined by replacing the frequency independent open-loop gain   by 

the frequency dependant gain. Thus for the non-inverting amplifier 

 
becomes  

 
Because for this particular circuit the feedback network only contains 

resistors   is independent of frequency and   is a straight line parallel 

to the frequency axis, as shown in figure (48). 
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Figure 48:Closed-loop frequency response of a non-inverting amplifier. 

 

At the point Y in figure (48)  and hence at this point: 

 
The bandwidth of the circuit with the feedback loop, the closed-loop 

bandwidth, is therefore given by: 
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Thus although the open-loop bandwidth of the op-amp alone is only , the 

bandwidth for the circuit with feedback is   where, assuming , 

 

The greater the amount of feedback (i.e. the greater the value of and the 

lower the gain ), the greater the bandwidth . In fact this equation 

shows that the gain bandwidth product of the closed loop circuit   

 
is a constant and the value of the constant is determined by the op-amp.  
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Frequency compensation and slew rate 
 

One effect of the inclusion of a compensating capacitor within the  
op-amp is that it limits the rate at which the op-amp can respond to any 
sudden changes of input.  In the data sheets the parameter used to 

characterise this effect is the slew rate (usually expressed in ) 
which is the maximum rate of change of the output voltage of the  
op-amp. 

 

Op-amp data sheets usually give the slew rate for unity gain. Assume, 

therefore, that the input to a voltage follower is a large-amplitude high-

frequency sinewave where: 

 
The maximum rate of change of the output is given by: 

 
For an output free of distortion, the slew rate determines the maximum 

frequency of operation  for a desired output swing. Thus: 

 

where   is the slew rate in V/μs for a unity gain circuit.  
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Mini-Summary 
 

An ideal op-amp has an infinite differential gain, an infinite input 
impedance and an output impedance of zero. The characteristics of an 
ideal op-amp are used to select a circuit which performs the required 
function. 
 
Real op-amps have a large differential gain, a large input impedance 
and a small output impedance. These are represented in a model of the 
op-amp that can be used to derive conditions for an op-amp to appear 
to be ideal in a particular circuit.  
 
Other aspects of the behaviour of real op-amps also affect the 
performance of circuits. In particular the output voltage is limited by 
the voltages used to power the op-amp. There is also a finite dc input 
bias current whose effects can be cancelled by including an additional 
resistance in the circuit.  
 
The gain of a real op-amp is frequency dependant. To simplify the 
design of circuits the op-amps are designed to have a single dominant 
pole and therefore the gain-bandwidth product of an amplifier including 
an op-amp is constant.  
 
The slew-rate of the op-amp limits the maximum rate of change of the 
output voltage of an op-amp. 



66 
 

 
NOISE 

Introduction 
 

So far the emphasis has been on how to amplify an analogue signal 
so that it matches the maximum input voltage of an ADC. This will 
determine the maximum signal that can be detected without 
saturation. It is at least as important to know the minimum reliably 
detectable signal.  
 

Usually, the minimum detectable input signal is approximated to the 

maximum error that is made during the conversion process. This is half of 

the change in input voltage that corresponds to a change in output of one 

least significant bit (LSB). For a 12-bit converter with a maximum input 

voltage of 5V this error is 

. 

In itself this is a small voltage that shows that the system is 
vulnerable to interference. However, the original source of this ADC 
input signal is a sensor output signal that is considerably smaller. 
Thus for example if the maximum transducer signal was itself 10 mV, 
i.e. an amplifier with a gain of 500 has been used between the 
transducer and the ADC, then 1/2 LSB is equivalent to a change in 
transducer output of 1.2 μV. Careful design is then required to 
ensure that this small signal can be reliably detected despite 
interference and other signals generated by various unavoidable 
physical processes within components. Assuming that interference 
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can be avoided it is the noise signals, caused by the physical 
processes underlying charge flow in components,  that determine 
the sensitivity of modern instrumentation systems. 
 

Fundamental noise sources 
 

There are three noise mechanisms that are found in many components, 

 

Thermal or Johnson noise 
 

 
Figure 24: White noise from a 100 kΩ resistor in a bandwidth of 10 kHz. 

 

Any resistor generates a noise voltage across its terminals, known as 

thermal or Johnson noise. This type of noise arises because the 

measured macroscopic current actually represents a flow of charge 

carriers through a component. The average velocity of these carriers, 
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and hence the average current, is determined by the electric field, 
however, interactions between carriers mean that there are 
variations in the velocity of individual carriers. These fluctuations in 
the motion of charge carriers in the resistor then lead to fluctuations 
in the current flowing through the resistor, which translate into 
momentary random changes in the voltage across the resistor such 
as those shown in figure (24).  In the frequency domain these random 

fluctuations correspond to equal amounts of power at all frequencies and 

it is this flat frequency spectrum which leads to this type of noise also 

being known as white noise. 

 

The flat frequency power spectrum means that the total amount of 
noise power will be proportional to the noise bandwidth of the 

system B . It is therefore not surprising that the root-mean-square output 

voltage generated by a resistor is proportional to B . In fact for a 

resistance R 

 

where k  is Boltzmann's constant and T the absolute temperature. 

  

To estimate the voltage change that this can represent, consider a 100 kΩ 

resistor at room temperature, over a modest bandwidth of 10 kHz: 

 
 
This is a small voltage, however, it is not negligible compared to the 
signal voltages that may need to be reliably detected in any 
application which requires a sensitive measurement. The impact of 
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this type of noise should therefore be considered in any carefully designed 

instrumentation system. 

 

The equation for thermal noise shows that two general principles should 

be followed in order to reduce the amount of Johnson noise.  

 

(i) Any resistances should be kept as small as possible. 

However, the ability of the designer to follow this strategy will always 

be limited by the necessity to limit power consumption and to ensure 

that any parasitic resistances in the circuit, such as contact and 

track resistances, are negligible. This usually limits the smallest 

resistance used to be greater than 1 kΩ.   

 

(ii) The frequency bandwidth of the system should be limited to 
the frequency range of interest. Filters should therefore be used 

to limit the frequency range of the ADC input signal to the frequency 

range required to capture any necessary information. Thus for 

example if vibrations in the range 0.1-1kHz from a motor are 

indicative of wear which requires maintenance then the system 

should be designed to limit the signal to frequencies in the range 

0.1-1kHz. The filter circuits used for this will be discussed later. 

 

In addition to these general precautions it is sometimes necessary to 
calculate the effects of Johnson noise in a particular circuit.  The 
equivalent circuit for Johnson noise that is used in these 
calculations is an ideal noise-free resistor in series with a voltage 
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noise source or in parallel with a current noise source as shown in 
figure (25). 

 
Figure 25: The Thevenin and Norton equivalent circuits to represent noise 

in a resistor. 

Shot noise 
 

Like thermal noise, shot noise also arises because the measured current 

represents a flow of charge carriers through a device.  Thermal noise 
arises from instantaneous variations in the average velocity of 
carriers. Shot noise arises from fluctuations in the number of 
carriers. The result of these microscopic fluctuations in carrier flow can be 

represented by a macroscopic current noise source . If a current  is 

flowing then for a noise bandwidth  

 

where  

 

Shot noise occurs in diodes, but, most importantly it arises as a 

consequence of the small, but, finite base current of a bipolar transistor. 
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This is an important contribution to the noise in some op-amps that will be 

considered later. 

 

1/f or Flicker noise. 
 

Flicker noise is present in many different physical systems. In electronic 

components it is associated with fluctuations in current flow caused by 

temporary trapping of charge carriers. 

 

Unlike the other two noise sources that have been mentioned the flicker 

noise power per unit frequency depends upon frequency.  Thus when a 
dc current I is flowing the noise in a frequency range of 1Hz centred 
on frequency f, is 

 

K and α are device dependant constants. 

 

To calculate the total noise between two frequencies  and  the 

expression for is integrated to give 

 
this shows that each decade of frequency adds an equal amount to 
the total noise of the device. 

 

The most important aspect of 1/f noise is that it shows that the 

significance of 1/f noise decreases as the frequency of interest increases. 

In all devices it will therefore always be less than the thermal noise at all 
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frequencies above a critical frequency. The value of this critical frequency 

depends upon the particular device. However, there are some important 
general trends. 

(i) 1/f noise is most significant in MOSFET transistors. These 

form the basis of almost all digital circuits and are increasing used to 

design analogue circuits on the same substrate as digital circuits. 

For this type of device 1/f noise can be the dominant noise source 

for frequencies up to 10kHz or above. 1/f noise therefore usually has 

to be taken into account in noise calculations. 

 

(ii) Compared to thermal noise, 1/f noise is only important in 
most bipolar devices at frequencies below 10-100Hz. Its effects 

are therefore usually insignificant, particularly when low-frequencies 

are removed by filtering. 

 

(iii) 1/f noise is usually negligible in resistors, however, normal 
carbon composite resistors can have an order of magnitude 
more 1/f noise than a wire-wound resistor. In critical parts of a 

circuit it is therefore sometimes necessary to use expensive wire-

wound resistors rather than the more usual carbon composite 

resistors. 
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Noise in Ideal Capacitors and Inductors 
 
An ideal inductor has no resistance and therefore it will not generate 
noise. Noise arises from fluctuations in either the average velocity or 

number of carriers. An ideal capacitor contains a perfect insulator that 
blocks the flow of carriers, which means that an ideal capacitor will 
not generate any noise.  
 
 
 
Addition of noise sources 
 

Noise arises from random processes within devices, which cause 

voltages and currents to fluctuate around mean values. Since it is 
impossible to ascribe a meaningful frequency or phase to this type 
of random signal, the only parameter that can be used to 
characterise noise is its power or root mean square amplitude.   

 
The quality of a signal in the presence of noise is most often 
specified by the signal-to-noise ratio (SNR) 

 

where  is the rms value of the signal and  is the rms value of the 

noise. 

 

A critical step in determining the SNR at the output of a circuit is to 

calculate the total rms noise arising from the different noise sources within 

the circuit.   
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For two noise sources the total mean square output voltage  is  

 
which can expanded to give 

 
If the two noise sources are independent, they will be uncorrelated and 

 
so that 

 

Since the fluctuations in different devices will be independent this 
equation can be used to add the noise from different devices. The 

first important consequence of this can be highlighted by a simple 

example. Consider a situation in which the rms output voltages of two 

noise sources are and , then the total rms output will be 

. 

This clearly demonstrates that if there are two unequal noise sources 
then the larger noise source will dominate.  In order to reduce the 
amount of noise in this situation the designer should concentrate 
upon reducing the noise from the larger noise source. A good 
strategy when designing a system is therefore to ensure that all 
noise sources are approximately equal. 
 

The equation  
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can also be used to add the effect of two noise sources in the same 
circuit. However, before it can be used the effect of each noise 
source within the circuit must be calculated. This can be done by 
simply assuming that each source acts alone in a circuit in which all 
other voltage sources are short-circuited and other current sources 
are open-circuited.  This first stage of these calculations is therefore 
similar to using superposition to calculate the response of a circuit 
to several signal sources.  This principle states that in a linear circuit 
the response of two or more sources acting simultaneously is the 
sum of the responses for each source acting alone with the other 
voltage sources short-circuited and other current sources open-
circuited. However, in the principle of superposition it is implicitly 
assumed that there is a fixed relationship between the phase of the 
various sources. The overall response is therefore calculated by 
simply adding the individual responses. This assumption is not valid 
for the signal sources representing noise that contains many 
frequency components. In this case the equation 

 

 
 

must be used to calculate the total amount of noise. 
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Figure 26:Two resistors in parallel, including the current sources that 

represent noise generated within each resistor. 

 

An important simple example of a circuit containing two noise sources is a 

parallel combination of two resistors,  and . First calculate the noise 

voltage caused by noise source, . For this calculation  is assumed 

to be open-circuit, i.e. disconnected or removed from the circuit. The 

current  therefore flows through the parallel combination of  and . 

The corresponding output voltage is therefore 

 
and similarly 

 
The total noise can then be calculated 

 
However, for a resistance R  
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which means that  

 
This is the noise voltage arising from a resistor with the same resistance 

as the parallel combination. In this example it would therefore be easier to 

combine the resistors to determine the effective total resistance and then 

calculate the corresponding noise. In fact this is an example of a general 

principle. A simple approach to calculating noise in networks of 
resistors is to calculate the effective resistance and then add a 
single noise source to represent the noise of the whole resistor 
network. 
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A circuit model for op-amp noise 
 

 
Figure 27: Circuit model to represent noise generated within an op-amp 

 

Calculation of noise in a circuit that includes an op-amp requires a model 

for noise generated within the op-amp.  A noisy resistance can be 

represented by an ideal resistance and a voltage or current source that 

generates the noise. Similarly, the noise produced internally by an  
op-amp is modelled, by a noiseless op-amp and three noise 
generators. As shown in figure (27) these are a noise voltage 
generator and two noise current generators. 
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Figure 28 Circuit diagram showing the various noise sources  

in an inverting amplifier circuit. 

 

This model can be used within any circuit to calculate the total noise. For 

example consider the inverting amplifier circuit, which includes a resistor 

connecting the non-inverting input to ground to compensate for the input 

current. Figure (28) then shows the circuit including the model of a noisy  

op-amp. 

 

The first stage in calculating the total equivalent noise at the input is 
to calculate the effect of each of the individual signal sources. 
 

Start by calculating the noise at the non-inverting input. Both the 

noise current sources,  and , create a noise voltage when 

they flow through resistor . Adding these two voltages to the 
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noise voltage from the op-amp itself leads to an expression for the 
total voltage noise at the non-inverting input 

 
 

Now in the circuit attached to the inverting input there are two 
resistors. These can be combined into an equivalent circuit before 

proceeding.  Since the voltage source at the output of the op-amp is 
assumed to be short-circuited during the calculation of the signal 

from all the noise sources the resistors  and  appear in parallel 
to create an effective resistance  

 
This effective resistance both generates its own thermal noise and 

acts as the effective resistance to ground for the current noise . 

The noise voltage at the non-inverting input is therefore 

 
The final step of the calculation is to combine the noise at the two 
input pins to give the total noise at the non-inverting amplifier input  

 

Assuming that  this reduces to 
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To simplify this expression further assume that the amplifier circuit has 

been well designed so that  1

 

. Hence 

this can be further simplified using the expression  

 
This last expression shows the three contributions to the total noise 
at the input to the amplifier; 
  (i) the voltage noise generated by the amplifier   

(ii) the voltage noise generated by the current noise in the 

amplifier flowing through an effective resistance, , which 

arises from a combination of the resistors associated with the 

amplifier 

(iii) the thermal noise generated by the effective resistance of 
the amplifier circuit 
 

The importance of the existence of the current noise, which primarily 

arises from shot noise associated with the input bias current, is now clear.  

If  is small then the total noise will be dominated by the voltage 

noise of the amplifier. However, as  increases the contribution 

from the other two terms will also increase and in particular the 

                                                 
1The resistance R3 has been included to compensate for the DC bias 

current that flows into the inputs of some non-ideal op-amps (see 

earlier section.)  
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contribution from the current noise of the amplifier, which is proportional to 

, will begin to dominate. This result demonstrates the 

importance of minimising  . Unfortunately, the minimum value of 

 will be restricted by the output resistance of the source of the input 

signal, . This arises because the values of R1 and R2 in the circuit will 

be designed to be large compared to . This is necessary to both 

reduce signal loss arising from the current drawn through  and to 

ensure that the amplifier gain is determined by R1 and R2. For an 

amplifier, for which R2>R1 these requirements mean that R2>R1>>RS. 

Then, since R3 is equivalent to the parallel combination of R1 and R2, 

 and there is a limit on the minimum value of . This is 
one reason why it is important to select a sensor with a small output 
resistance. If this is not possible it may be necessary to select an  
op-amp that has a small input bias current and therefore a small 
noise current. 
 

The noise at the input to the amplifier circuit is indistinguishable 
from the input signal. Like the signal it will be amplified by the gain 
of the amplifier circuit. Unfortunately the presence of noise in both the 

op-amp and the resistors in the feedback circuit reduces the signal to 

noise ratio at the output of the amplifier compared to that at the signal 

source. Since the SNR will only be reduced by any analogue circuits 
it is important to use a sensitive sensor so that the input SNR is as 
large as possible. This is another advantage of using a full-bridge circuit 

that can amplify the signal without adding any extra noise. 
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Quantisation Noise 
 
A further mechanism that degrades the signal-to-noise ratio in an 
instrumentation system is the errors introduced by quantisation in 
the analogue-to-digital converter. 
 

In an n-bit ADC every analogue input voltage is represented by a digital 

output that corresponds to one of  analogue reference levels.  The 
maximum error that will be made during each conversion is half the 
difference between two of these levels.  If the full-scale input voltage of 

the ADC is , then the difference between two reference levels is 

and the corresponding maximum error is . With 
the ever improving performance, and reducing cost, of ADCs it is 
now quite common for systems to be designed so that this error is 
smaller than the input noise. The output from the ADC will then be 
accurate enough to represent the noise as well as the signal.  
 

For the situations in which cost means that it is not possible to use an 

ADC with a large number of bits, it is possible to calculate the variance of 

the error introduced by the quantisation process. This error is often 

referred to as quantisation noise. It can be treated as another voltage 
noise source acting at the input to the ADC, however, the effects of 
this can only be quantified using an expression for the variance of 
this error. 
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To calculate this variance it is conceptually easiest to consider a flash 

converter, however, the result will apply to any converter.  Let the voltage 

difference between reference levels in the ADC be δ. Then the error, e, for 

each conversion will be between δ/2 and -δ/2. Assuming that each error is 

equally probable, then the probability density of error e, p(e), is 

 
Since the mean value of the error is zero, its variance is  

 
and hence 

 
This suggests that the ADC is more accurate than the simple 
estimate based upon the largest error, δ/2, suggests. However, the 

difference is relatively small. In many situations it is therefore appropriate 

to use the estimated error δ/2, but, to remember that this is a conservative 

figure so that if an n-bit ADC appears to be just adequate based upon the 

simple estimate, it will be adequate because the quantisation noise has 

been overestimates by a factor of 1.7, which is almost the equivalent of an 

extra bit. 
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Mini Summary 
 
Noise signals arise from unavoidable fluctuations in the flow of 
charge carriers through a conductor. The small signals that this 

generates can be comparable with the signals that can be represented at 

the output of modern ADCs.  Noise signals can therefore be critical in 
determining the accuracy of modern instrumentation systems that 
are no longer limited by ADC performance. 

 

Thermal noise arises from fluctuations in the average velocity of 
carriers in a conductor. This is the dominant unavoidable noise source 

in any resistor in a circuit. It can only be limited by either reducing the 

value of resistance used or limiting the bandwidth of the signal to the 

frequency range required to capture any necessary information. 

 

Shot noise arises from fluctuations in the number of carriers passing 
a particular point in a device This mechanism is important in bipolar 

devices and hence in any op-amp which incorporates these transistors. As 

with thermal noise shot noise can be reduced by limiting the signal 

bandwidth. 

 

The power per unit bandwidth of flicker (1/f) noise reduces as frequency 

increases. In most devices this noise source is only important at low 

frequencies. However, it is important in MOSFET devices that are 

increasingly used to design analogue circuits in the same package as 

digital circuits. 
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Noise is a randomly fluctuating signal which is characterised by its root 

means square amplitude.  

 

Ideal capacitors and inductors do not generate noise themselves. 
 

The quality of a signal in the presence of noise is most often specified by 

the signal-to-noise ratio (SNR) which is  

 

where  is the rms value of the signal and  is the rms value of the 

noise.  

 

If the two noise sources are independent, they will be uncorrelated 

which means that  

 
and the root mean square output of two noise sources is 

 
This means that a good strategy when designing a system is to ensure 

that 

all noise sources are approximately equal. 

 

A simple approach to calculating noise in networks of resistors is to 

calculate the effective resistance and then add a single noise source to 

represent the noise of the whole resistor network. 

 

If a circuit with a large output resistance is connected to the input of an  
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op-amp amplifier the total noise of the circuit can be dominated by the 

current noise of the op-amp. It is therefore important to minimise output 

resistances. When this is not possible it may be necessary to select a op--

amp with a zero input bias current, and hence a negligible current noise. 

 

The standard deviation of quantisation noise, which represents fluctuating 

errors caused by the process of digitising a signal, is  

 
In order to achieve a requirement for both high-gain and low-noise it is 

often necessary to have a low-gain, low-noise circuit, usually called a pre-

amplifier, followed by a high-gain circuit. 
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NON-IDEAL DIGITAL-TO-ANALOGUE 

AND ANALOGUE-TO-DIGITAL CONVERSION 
 

Introduction 
 
Specification of D/A converters 

 
Figure 12: The ideal response of a 3-bit DAC, showing the analogue 

output voltage as a fraction of the full scale output FS. Each bar 

represents the output for a particular input and the dashed line shows 

the line connecting the ideal outputs. 

 

As you learnt in the P2 course last year, a digital to analogue 
converter (DAC) converters a digital input represented as a binary 
number to an analogue voltage (or current) that is proportional to the 
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value of this input. The ideal relationship between the analogue output 

and digital input for a 3-bit converter is shown in figure (12). 2

 

 

Various physical processes occur when circuits, including DACs, are 

manufactured which mean that it is very difficult, if not impossible, to 
manufacture a circuit which achieves the ideal performance 
specification. In the case of DACs the resulting error is characterised 
as the maximum deviation between the actual and ideal outputs. This 
absolute accuracy is expressed as a fraction of the output change 
caused by a change in the digital input of one least significant bit 
(LSB). 
 
                                      Offset Error                                                         Gain Error 

 
Figure 13: Exaggerated examples of DAC offset error, on the left, 

and gain error, on the right. 

 
                                                 
2 In figure 13 only 3 bits have been shown for clarity. However, in real instrumentation systems 

DACs with 6, 8, 10, 12 and 14 bits are often used. 
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The maximum deviation of the actual output from the ideal output is the 

absolute accuracy of the DAC. There are several different types of error 

that might occur in the output of a DAC.  An offset error means that the 
error between the actual output and the ideal output is the same for 
all binary inputs. In contrast, a gain error means that the slope of the 
ideal and actual outputs are different, see figure (13). 
 

 
Figure 14: The response of a DAC showing the two lines used to define 

the non-linear response of the DAC. 

 

Even for a system with no offset error and an ideal gain the individual 

outputs may still deviate from their ideal values. These errors are 

characterised as the integral non-linearity (INL) and the differential 
nonlinearity (DNL). The INL is the maximum difference between the 
actual and ideal output calculated for each digital input.  As with all 
errors the INL should be less than 1 LSB. The DNL is a measure of 
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the changes in output between successive inputs expressed as a 
fraction of the LSB. Again this should be less than an LSB.  However, 

this may not be achieved and in an extreme situation the DNL may be 

more than –1LSB. In this case for a particular digital input an increase by 

1 LSB in the input will cause a decrease in the output. This might be 

acceptable, but, it has to be avoided in many applications, particularly 

when the DAC output forms part of a control system or an ADC. 

 

Clearly, for an n-bit DAC to be credible all errors should be less than 
LSB/2. This will almost certainly be correct for low-frequency operation. 

However, there are other sources of error that can degrade the DAC 

performance at high frequencies. The most common cause of high 

frequency errors are glitches. These are spikes in the output which occur 

at transitions between different inputs because of imperfections in the 

DAC circuitry, for example during a transition from 0111 to 1000 the most 

significant bit (the MSB) may change fractionally faster than the other bits 

so that there is an instant at which the output corresponds to 1111. These 

glitches only become important when the difference between the 

switching times of different bits become a significant fraction of the time 

for which each different digital input is applied. These glitches are critical 

to an increasing number of systems that rely upon a digital circuit and a 

DAC to create a well controlled, programmable output signal (An example 

of this type of system is the signal generators which you use in labs.). 

Despite these applications many data sheets for DACs still specify the 

maximum operating frequency as the highest frequency at which the DAC 

output attempts to change in response to a new input. This may be 

dramatically higher then the frequency at which the absolute error is less 
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than an LSB. All data sheets therefore have to be read carefully when 
selecting a component to ensure that the required performance will 
be achieved at the required frequency. 

 
Specification of A/D converters 
 

As with DACs, the ADC characteristics are rarely ideal. Once again the 

ADC performance is specified in terms of offset error and gain error 

together with integral and differential non-linearities. The offset and gain 

error are each defined in terms of the input voltage at which the code 

transitions occur. Ideally, as shown in figure (19), for an ADC with a 

maximum input of  these transitions occur when the ratio  is 

an odd multiple of ½ LSB. 

 

 
 Figure 19: The ideal response of a 3-bit 

ADC.
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The offset error is the difference between the input corresponding to 
the first code transition and ideal value. The gain error is the 
difference between the first and last transitions and the ideal value 
for this parameter. 
 

Non-linearities of an ADC are defined with respect to the code centre 
line which is the line joining each of the mid-points of the measured 
code ranges shown in figure (20). The integral non-linearity is then 
the maximum difference between the code centre line and its ideal 
location. Similarly, the differential non-linearity is the maximum 
difference between neighbouring code transitions. 

 
Figure 20: The response of an ADC showing the differential and integral 

non-linearities and a missing code. 
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Finally, figure (20) also shows one last possible error. In some situations it 

is possible for the ADC to have a missing output code that is never 

generated. 

 

Oversampling Converters 
 

Over the past few years a new type of conversion architecture has 

emerged for low and medium speed applications, for example high-quality 

digital audio.  These new architectures exploit the increasingly low cost 

and high clock frequencies available in digital circuits to sample an input 

signal at many times the rate required to represent its maximum 

frequency.  This oversampled digital signal is then processed by 

algorithms, known as digital filters, that filter the signal to reduce its 

bandwidth whilst increasing the number of bits representing the signal.  

The advantages of this approach are: 

 

(i) The requirements placed upon the accuracy of the analogue 

components of the converter are reduced.  

(ii) The digital filtering after sampling allows the requirements on 

the anti-alias filter to be relaxed. 

(iii) In many applications a sample-and-hold circuit is no longer required.  
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Mini Summary 
 

DAC's and ADC's are important components of instrumentation and 
control systems. They convert analogue input signals into a digital 
format and enable the generation of analogue output signals to 
control actuators. 
 

Like all electronic components the actual performance of real DACs 
and ADCs are different from their ideal performance. Several different 

measures of these performance errors are used to characterise each type 

of DAC or ADC. This information is contained in a component data sheet. 

However, these data sheets need to be read carefully when selecting a 

particular component to ensure that it will perform to the required 

accuracy. 
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FILTER CIRCUITS 
Introduction 
 
A filter is a circuit whose transfer function, that is the ratio of its output 
to its input, depends upon the frequency of the input signal. The 

resulting frequency selectivity of filters means that they are used to fulfil a 

variety of functions in instrumentation and signal conditioning systems. In 

particular they are a vital part of any well-designed analogue signal 

processing circuit between the sensor and the ADC. 

 

Filters were part of the first year P2 course, so much of the material should 

be familiar. 

 

Basic filter ideas 
 

There are a number of ways to classify filters, but the simplest way is to 

classify them in terms of their frequency-dependent transfer function. We 

can write this as: 

 

( ) ( ) ( )ωωω jVjGjV inout =  

 

where “G(jω)” is the transfer function. 

 

Note: Although this is very simple, there are variations in the way this 

transfer function is presented. For example, sometimes it is written without 
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the “j” in front of the ω, i.e. ( ) ( ) ( )ωωω inout VGV = . The advantage of including 

the “j” is that the same form can then be used with Laplace transforms, i.e.   

( ) ( )sGjG →ω  

The transfer function contains “information” about how the amplitude and 

phase of the signal is influenced when passing through the filter. It is 

common to “classify” filters in terms of how the amplitude is influenced. Many 

types of filter can then be classified, but the most important are: 

 

Low-pass filters allow any signal at a frequency below a 
characteristic frequency to pass (ideally unattenuated). 

 
High-pass filters allow signals above a characteristic frequency to 
pass (ideally unattenuated).  
 
Band-pass filters allow frequencies in a particular range to pass 
(ideally unattenuated).  
 
Band-stop filters block frequencies in a particular range      
(ideally fully attenuated). 

 

These are illustrated in the figure below: 
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Of course, practical filters do not have ideal pass/block properties – therefore 

it is important to consider the behaviour of various basic filter elements. 

 

First order filters 
 

The most basic filter elements are first-order filters. This can be either low-

pass or high-pass – other functions are not available with first-order filters. 

 

The basic first order low pass filter consists of a resistor and capacitor: 

 

 
You should be very familiar with the analysis of this circuit (remind 

yourselves if not!), leading to a transfer function between the input and 

output of the form: 

( )
0/1

1
1

1
1

1
ωωωω

ω
jTjRCj

jG
+

≡
+

≡
+

=  

where RC is equal to the time constant T (sometimes given the symbol τ) 

and the reciprocal of the cross-over (or 3dB) frequency ω0 . 

 

The behaviour of this basic filter element can be represented in various 

ways: 
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Here, (a) is a Bode-plot of the frequency response of the amplitude (A) and 

phase angle (φ) of the transfer function, where the time-constant is set to be 

equal to unity. Logarithmic axes are used for the amplitude and frequency, 

showing that above the cross-over frequency the amplitude of the transfer 

function drops by a factor of ten for each factor of ten increase in frequency. 

This is equivalent to 20dB per decade (remember dB is a logarithmic power 

scale). We can determine the magnitude (or amplitude) of the transfer 

function as an equation very simply: 

( ) 2
0

2
0 /1

1
/1

1
ωωωω

ω
+

=
+

=
j

jG  

which at high frequency is equivalent to ω0/ ω , i.e. inversely proportional to 

ω, hence the 20dB per decade drop-off. 
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The plots (b), (c) and (d) show the amplitude responses as a function of time 

to a step, impulse and ramp input – these will be important when you 

consider control systems. 

 

Plot (e) is a polar plot of the transfer function. To produce this plot the real 

and imagninary components of the transfer function are plotted on an argand 

diagram as the frequency is varied. For the basic first order low-pass filter we 

can see that when ω=0 we have G(jω)=1, and as ω tends to infinity G tends 

to zero. Another “easy” point to see is that when ω=ω0 we have 

2/2/1 jG −= . As ω varies from zero to infinite frequency we follow the 

semi-circle from unity around to zero. This polar notation for transfer 

functions will also be important when considering control systems. 

 

The basic first-order high-pass filter can also be constructed with a resistor 

and capacitor: 

 
 

Again, you should be very familiar with the analysis of this (remind 

yourselves if not!), leading to a transfer function between the input and 

output of the form: 
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( )
0

0

/1
/

11 ωω
ωω

ω
ω

ω
ωω

j
j

Tj
Tj

RCj
RCjjG

+
≡

+
≡

+
=  

 

where RC is again equal to the time constant T (sometimes given the symbol 

τ) and the reciprocal of the cross-over (or 3dB) frequency ω0 . Similar to the 

diagrams of the low-pass filter transfer function and responses, we have: 

 

 

 

Now (a) shows a 20dB per decade cut-off BELOW the cross-over frequency 

(again chosen to be ω0 is unity), and the polar plot (e) is “inverted”. 
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Active first order filters 

The maximum “gain” of the passive filters shown above is unity. However, 

we can see how to engineer basic filter circuits with gain if we consider the 

inverting op-amp circuit in two variations. 

 
 

which has a transfer function: 

( ) 







+

−=








+

−=
21

2

1

2

2

1
11

CRjR
R

R
CRj

R

jG
ω

ω
ω  

which is identical to the low-pass filter form shown above, but now multiplied 

by a “gain” of –R2/R1 . 

 

and 
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which has a transfer function: 

( ) ( ) 







+

−=
+

−=
+

−=
CRj

CRj
R
R

CjR
CjR

CjR
RjG

2

2

1

2

1

2

1

2

11/1 ω
ω

ω
ω

ω
ω  

which is identical to the high-pass filter form shown above, but now 

multiplied by a “gain” of –R2/R1 . 

 

Second order filters 
 

Whilst the filter ideas introduced above are useful, they also have some 

limitations. Only low-pass and high-pass functions can be implemented and 

the cut-off is limited to 20dB per decade. What if we would like steeper cut-

offs etc.? One basic answer is simple, we can chain filters together. For 

example if we connect two low-pass filters together (putting a buffer between 

them) we have: 
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This gives a transfer function equivalent to the first order low pass filter 

multiplied by itself, i.e: 

( )
( ) ( )2

0
22

/1
1

1
1

1
1

1
1

ωωωωω
ω

jTjRCjRCj
jG

+
≡

+
≡

+
×

+
=  

which for high frequencies becomes ω0
2/ ω2 . Therefore at high frequencies 

the magnitude is inversely proportional to ω2, whereas for the first order filter 

it was inversely proportional to ω . Hence, for this second-order filter the 

drop-off at high frequencies is 40dB per decade. 

 

For the first order low-pass filter the transfer function is always of the form: 

( )
0/1

1
1

1
ωωω

ω
jTj

jG
+

≡
+

=  . 

However, does the second order low-pass filter always have a transfer 

function of the form determined above? The answer is yes and no! This can 

be illustrated by determining the response if we had not included the buffer. 

The circuit is now: 

 



 105 

 
To determine the transfer function of this we could use mesh/loop or node 

analysis – a very similar problem was on a P2 tutorial sheet. The resulting 

transfer function is: 

( ) 2
0

2
0

222222 //31
1

31
1

31
1

ωωωωωωωω
ω

−+
≡

−+
≡

−+
=

jTTjCRRCj
jG  

which is not identical in form to the transfer function determined above, but 

has a similar overall structure. Note that it is the middle term which has 

changed, and in general we can write an expression for a second-order low-

pass filter which is of the form: 

( ) 2
0

2
0

2 //21
1

ωωωωζ
ω

−+
=

j
jG  

where ζ is the referred to as the damping. In the buffered case above ζ=1 

and in the un-buffered case ζ=1.5 . 

 

In general, we can conveniently design a second-order low-pass filter where 

the damping ratio ζ and characteristic frequency ω0 can be controlled, by 

using a Sallen-Key topology. Such a circuit is illustrated below: 

 



 106 

 
For this circuit the transfer function is: 

( ) ( ) 2121
2

212
2 1

1
RRCCRRCj

jG
ωω

ω
−++

=  

so,  

( )
2121

212

2121
0 2

      and      1
RRCC

RRC
RRCC

+
== ζω  

and given that there are four components and only two parameters to set we 

have enough freedom to independently control the damping ratio ζ and 

characteristic frequency ω0 . 

 

To illustrate the effect of varying the damping parameter  a series of plots of 

|G| for a second order low pass filter, where we have fixed ω0=1,  but 

changed the damping. Taking the form used above: 
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( )

( )
( ) 2

0
2222

0
2

2

2
0

2
0

2

/4/1

1

//21
1

ωωζωω
ω

ωωωωζ
ω

+−
=

⇒
−+

=

jG

j
jG
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For any damping we can see that when ω<<ω0 (in this case ω<<1) then G=1 

and when ω>>ω0 (in this case ω>>1) G=ω0
2/ ω2 , i.e. the roll-off is 40dB per 

decade. However, the behaviour around ω=ω0 (in this case ω=1) varies 

substantially. 

 

For large values of damping (greater than 1) the transfer function for the 

second order low pass filter can be factorised. For example, when the 

damping is 10 we have: 

( )
00

2
0

2
0

2 /05.01
1

/95.191
1

//201
1

ωωωωωωωω
ω

jjj
jG

×+
×

×+
≅

−+
=  
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So the second order filter behaves as the “product” of two first order filters, 

with cross-over frequencies of ω=ω0/19.95 and ω=ω0/0.05. This is evident 

from the diagram above, where when the damping is 10 we can see two 

cross over frequencies, the first at 1/19.95 and the second at 1/0.05, where 

between them we see a first-order roll-off of 20dB per decade.  

 

As the damping ratio is reduced the two cross-over frequencies come 

together, until when the damping is unity we reach the point where the 

behaviour is equivalent to two “cascaded” (and buffered) identical first-order 

filters as shown earlier. That is, when damping is unity: 

( )
00

2
0

2
0

2 /1
1

/1
1

//21
1

ωωωωωωωω
ω

jjj
jG

+
×

+
=

−+
=  

 

If the damping is further reduced (less than unity) then it is less convenient to 

factorise into two first order terms. The factors in front of the jω terms 

become complex! The resulting behaviour can be seen in the diagram 

above. For example, when the damping is 0.1, we see a resonance around 

the cross-over frequency. 

 

It is easier to understand the relevance of the above to practical filter usage 

is we introduce an alternative way of characterising the low-pass filter. The 

cross over frequency is a key characteristic, but if we observe the behaviour 

in the responses shown above then we can see that the roll-off “appears” to 

begin at different points for different damping values. This can be allowed for 

by adjusting the cross-over frequencies so that the roll-off occurs at a similar 

point in each case. To do this we must select a point to characterise the 
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“start” of the roll-off. The point normally chosen is the -3dB point. That is 

where the gain of the low-pass filter has dropped by 3dB from its low 

frequency value. This is also where the amplitude of the transfer function has 

dropped by a factor of 2  (because ( ) dB32/1log20 10 −= ). Adjusting the 

values of the cross-over frequencies in this way for a range of damping we 

get the plots shown below: 
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We can now see that for a fixed 3dB point, reducing the damping in a 

second order low pass filter causes the transfer function to roll-off earlier 

(qualitatively, this is sometimes referred to as “sharpening” the response). 

The cost of this is the potential introduction of a peak around the cross-over 

frequency. (Note: ω0 now varies from curve-to-curve, and is not always =1!) 

 

It turns out that the “best” which can be done without introducing any peak is 

when the damping is equal to 707.02/1 ≅ . (This has the advantage that 

ω0 is the 3dB frequency – which avoids any possible confusion when 
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describing the filter) In this case the second-order low pass transfer function 

becomes: 

( )
2
0

2
0

2 //21
1

ωωωω
ω

−+
=

j
jG  

and the amplitude of the transfer function is given by: 

( ) 4
0

42 /1
1

ωω
ω

+
=jG  

This is referred to as a second-order low-pass Butterworth filter, named after 

the British engineer Stephen Butterworth (~1930). 

 

A high-pass second order filter can be constructed in a similar way to that 

outlined above, but swapping the resistors and capacitors, to give: 

 
For this circuit the transfer function is: 

( ) ( ) 2121
2

211

2121
2

2 1 RRCCCCRj
RRCCjG

ωω
ωω

−++
−

=  

so with,  
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( )
2121

211

2121
0 2

      and      1
RRCC

CCR
RRCC

+
== ζω  

we have: 

( ) 2
0

2
0

2
0

2

2 //21
/

ωωωωζ
ωωω
−+

−
=

j
jG  

and the amplitude of the transfer function is then: 

( )
( ) 2

0
2222

0
2

2
0

2

2
/4/1

/

ωωζωω

ωωω
+−

=jG  

This leads to amplitude Bode plots of the form: 
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Or, if the cross-over frequencies are adjusted to make the -3dB points 

identical for each case we have: 
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Band pass 
 
A further form of second-order filter is possible. A good way to see this 

concept is to re-consider the first order low-pass filter introduced earlier. 

Remember the basic first order low pass filter consists of a resistor and 

capacitor: 

 

 
which resulted in a transfer function between the input and output of the 

form: 
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( )
0/1

1
1

1
1

1
ωωωω

ω
jTjRCj

jG
+

≡
+

≡
+

=  

Now, consider what happens if an inductor is placed in parallel with the 

capacitor, to give: 

 
This changes the impedance of the reactive part from 

Cjω
1

   to    

1
1

−









+

Lj
Cj

ω
ω  

or, if we consider admittances it changes  

Cjω    to    Lj
Cj

ω
ω 1

+  

If we substitute this into the low pass filter transfer function we generate a 

new transfer function: 

( )

( ) ( )

( )BAB

B

BA

BA
bp

low
low

j
j

j
j

jj
jG

j
jG

ωωωωω
ωω

ωωωω
ω

ωωωω
ω

ωω
ω

//1
/

/

//1
1

/1
1

2

2

_0

−+
=

+−
=

++
=

→
+

=
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which is the transfer function for a band-pass filter, conventionally expressed 

in the form: 

( ) 2
0

2
0

0

//21
/2

ωωωωζ
ωωζω
−+

=
j

jjGbp  

or, introducing the “quality factor” Q this can be written: 

( )
2
0

2
0

0

//11

/1

ωωωω

ωω
ω

−+
=

j
Q

j
QjGbp  

and the amplitude of the transfer function is: 

( )
( ) 2

0
2222

0
2

0

/4/1

/2

ωωζωω

ωζωω
+−

=jGbp  

We can again plot the amplitude Bode diagram for various damping, giving: 
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In this case the curves are symmetric, and the cross-over (natural) frequency 

is the useful characteristic. It is also clear that at ω=ω0 we have: 
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( )
( )

1
/4/1

/2
2
0

2
0

2
2

2
0

2
0

00
0 =

+−
=

ωωζωω

ωζωωjGbp  

The behaviour of this filter is also nicely illustrated if we plot |G| on a linear 

scale, giving: 

0

0.2

0.4

0.6

0.8

1

0.001 0.01 0.1 1 10 100 1000

|G
(w

)|

Ang-frequency (w)

damp=0.1

damp=0.7
07
damp=1

 
Clearly, the smaller the damping the narrower the range of frequencies that 

are passed (centred around the natural frequency). 

 

This is exactly what happens with the resistor-capacitor-inductor circuit 

shown above. However, inductors can be inconvenient (they are both large 

and imperfect), and it is often more useful to use active circuits based on 

resistors and capacitors only (together with an op-amp). There are many 

active implementations of the band pass filter. A simple implementation is: 
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Recalling the well-known transfer function when only the resistors are 

present (i.e. 12 / RRG −=   ) we can easily see that we now have: 

( )

( )
( )

( ) 2211
2

2211

2211

2211

21

2211
2

2211

21

1
1

22

2

1

1

1
1

RCRCRCRCj
RCRCj

RCRC
RC

RCRCRCRCj
RCj

Cj
R

RCj
R

jG

ωω
ω

ωω
ω

ω

ω
ω

−++
+









+

−=

−++
−=

+









+

−=

 

which is of the form introduced above for a second-order band-pass filter, 

but now with a gain (or loss) at the cross-over (natural) frequency given by 

the term in front. 
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General second order filter implementation. 
 

In the P2 course you were introduced to a multiple feedback circuit design 

which could be used to implement second-order low-pass, band-pass and 

high-pass filters. The circuit is reproduced below: 

 
Figure 40: Generalised multiple feedback circuit. 

 

Where the “Y”s represent the admittances of the various feedback 

components, i.e. Yn=1/Zn , so for a resistor YR=1/R and for a capacitor 

YC=jωC. The analysis of the circuit was presented in the P2 course (if you 

are not confident you could analyse it if asked to do so then remind yourself 

of this because it is important!). The resulting transfer function is: 

 

( ) 4343215

310

YYYYYYY
YY

v
vG

i ++++
−

==  
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Now, by comparing this transfer function with the general transfer functions 

for the various filter types we can see that by selecting appropriate 

components they can be implemented. For example, if we use: 

11 /1 RY =  

22 /1 RY =  

33 CjY ω=  

44 CjY ω=  

55 /1 RY =  

we get the transfer function: 

( )
( )

( )

( )

( ) 
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which is identical in form to the general second-order band-pass filter 

transfer function introduced above. 

 

Alternative component selection allows low and high pass to be 

implemented. 
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Band-stop filter 
 
The band-stop filter (sometimes called a notch filter) is intended to remove 

signals around a narrow frequency range. For example we mentioned earlier 

that 50Hz mains interference is a common problem, so a 50Hz “notch” filter 

might be useful. A simple implementation is to feed a signal though both a 

second order low-pass filter and a second order high-pass filter 

simultaneously and then to combine the signals with a further op-amp. 

Consider the following circuit: 

 
The transfer function for the circuit around the upper left op amp, between 

Vin and Vlp is given by: 

( ) 2
0

2
0 //21

1
ωωωωζ

ω
−+

=
j

jGlp  

The transfer function for the circuit around the lower left op amp, between Vin 

and Vhp is given by: 
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( ) 2
0

2
0

2
0

2

//21
/

ωωωωζ
ωωω
−+

−
=

j
jGhp  

The circuit around the right hand op amp is then an inverting summing 

amplifier, so the overall transfer function between Vin and Vout is: 

( ) 2
0

2
0

2
0

2

//21
1/

ωωωωζ
ωωω

−+
−

=
j

jGbs  

If we plot the modulus of this for various damping ratios (where we have 

fixed the cross-over (natural) frequency to be unity) we have: 

0

0.2

0.4

0.6

0.8

1

1.2

0.001 0.01 0.1 1 10 100 1000

|G
(w

)|

Ang-frequency (w)

damp=0.
1
damp=0.
707
damp=1

 
 

Higher order filters 
 

In the above material we have discussed first-order filters (low-pass and 

high-pass) and second order filters (low-pass, band-pass, high-pass and 

stop-band). Clearly it is possible to engineer “higher” order filters, which 

generally have steeper characteristics. For example, the first-order low-pass 

filter had a roll-off of 20dB per decade and the second order low-pass filter 
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had a roll-off of 40dB per decade. Clearly third, fourth, etc. order low-pass 

filters would have roll-offs of 60, 80, etc. dB per decade. These are created 

by connecting the correct number of first and second order filters in series. 

 

Applications of filters 
 
Noise rejection 
 
Filters are often used to limit the noise bandwidth (see definition below) of 

the input signal in order to reduce the amount of noise in the input signal. 

 

The quality of a signal in the presence of noise is most often specified by the 

signal-to-noise ratio (SNR) which is  









≡








=

n

s

n

s

V
V

V
VSNR 102

2

10 log20log10  

where  is the rms value of the signal and  is the rms value of the noise. 

 

This definition shows that a signal-to-noise ratio of one means that the 
noise power equals the signal power.  Initially, it would appear that 
under these conditions it would be difficult to distinguish a signal from 
noise to obtain an accurate measurement. The signal in figure (31) 
shows that as expected with a SNR of one it is difficult to make an 
estimate of the signal component over a short interval, in this case less 

than 0.1s. However, this figure also shows that over a longer timescale it 
can be possible to distinguish a periodic signal from the random signal 
caused by noise. In effect you can recognise the underlying 10 Hz signal 
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using its predictable periodic behaviour. In an instrumentation system the 

same effect can be achieved by filtering this voltage to reduce the amount of 

noise. 

 
Figure 31: A signal at 10Hz with noise when the signal-to-noise ratio is one. 

 
Signal Bandwidth and Noise Bandwidth 
 

One of the useful functions of a low-pass filter is that it limits the noise 

bandwidth of the signal.  

 

For example, the transfer function of a simple RC low-pass filter, with a 

characteristic frequency, , can be written in the form 
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Figure 37: The frequency response of a simple RC low-pass filter. 

 
This is a smooth transfer function and it has to be assumed that some 
attenuation of the frequencies of interest is acceptable. By convention 
it is usually assumed that this filter will be used for signal frequencies 

less than . This means that it is assumed that it is acceptable to 
attenuate some signal frequencies by as much as 3dB and by 

convention the signal bandwidth of this filter is . 

 

The signal bandwidth of the low-pass filter is only determined by convention, 

and, in practice it is determined by the amount of acceptable signal 

attenuation in a particular application. In contrast, the noise bandwidth 
unambiguously arises from a calculation of the noise at the output of 
the filter. 
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For a white noise source the noise power in a small frequency range df is 

independent of the actual centre frequency.  As with independent noise 

sources the total noise arising from contributions in different frequency 

ranges is determined by adding the power in each frequency band. Hence 

for a white noise source with a noise power of  per Hertz, the output 

power from the filter will be 

 
which can be integrated to give 

 
This is equivalent to the output of an ideal low-pass filter with a bandwidth of 

1.57 . This is the noise equivalent band-width of the filter. Using the 
characteristic frequency of the filter to determine the noise bandwidth 
of the filter would therefore significantly under-estimate the amount of 
noise that would be present at the output of the filter. However, not 

unexpectedly, for filters with faster roll-offs at higher frequencies the noise 

equivalent bandwidth quickly approaches the characteristic frequency of the 

filter. 

 
Anti-aliasing 

 

Aliasing is a problem that arises when a signal that is continuously 

varying in time is sampled in time.  If a high frequency signal is 

sampled too infrequently then once it is sampled it appears to be a 

signal at a different (lower) frequency. To avoid aliasing problems the 
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sampling frequency must be twice the maximum frequency of the 

input signal.  This is the Nyquist  (or Nyquist–Shannon) sampling 
theorem.  
 

Increasing the sampling rate of a signal will prevent aliasing problems for 

signal frequencies, but, it can never prevent aliasing of high frequency noise.  

Analogue anti-aliasing filters are therefore included in all well designed 

instrumentation systems. However, good analogue filters, with a sharp roll-

off, requires a large number of components and must be carefully designed. 

Even then they are not ideal. Once they have been sampled signal are 

therefore sometimes filtered by the digital processor. 
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AC SIGNALS IN INSTRUMENTATION – the lock-in amplifier 
 
Introduction  
 
In the earlier description of a bridge circuit it was assumed that a d.c. bias 

voltage was applied to the elements of the bridge. However, there are 
some situations in which an a.c. bias voltage is either necessary or 
beneficial. One example of a situation in which an a.c. bias voltage is 
necessary is when taking measurements from a bridge circuit formed 
by capacitors. The problem with using a d.c. bias voltage with this type of 

bridge circuit is that the d.c. impedance of all capacitors is infinite and it is 

impossible to detect a change in capacitance. In this case to reduce the 

impedance of the capacitors an a.c. bias voltage should be applied to the 

bridge circuit.   

 

An example of a situation in which an a.c. bias voltage is beneficial is 
when there is a small signal expected near 50 Hz. Since this is the 
same frequency as the mains power supply, it is particularly 
vulnerable to interference. An a.c. bias voltage can then be used to 
shift the sensor output signal to a different frequency to separate the 
signal frequency of interest from the frequency of the interfering 
signal. Filters can then be used to reject the interference whilst amplifying 

the signal.  To support these two critical functions an important system 

component is required – the lock-in amplifier. The lock-in amplifier removes 

the effects of the a.c. bias from the filtered and amplified output of the 

bridge circuit. It also acts as a narrow pass-band filter around the operating 

frequency. 
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Bridge Circuits and Capacitance Based Sensors 
 

A change of resistance is only one of the means that can be used to create 

a circuit element that is sensitive to a physical variable. The other two 

properties that could be used are capacitance and inductance. An example 

of the use of inductance to measure a variable, is the use of a moving core 

within a inductor to detect displacement. In addition, changes in 

capacitance arising from variations in dielectric constant caused by 

absorbed gases can also be detected. This mechanism then forms the 

basis of gas detectors, including detectors for humidity and explosive or 

poisonous gases. 

 

One approach to converting changes in inductance or capacitance to 
a voltage change is to simply form a bridge circuit containing either 
inductors or capacitors. However, the low-frequency impedance of an 

inductance is very small and its dc impedance is zero. A real dc power 

supply, with a small but finite output impedance, would be unable to sustain 

a voltage across this type of bridge. In contrast the impedance of a 

capacitor at low frequencies is very large. It would therefore be easy to 

sustain a dc voltage across a bridge circuit containing capacitors. However, 

this large impedance will make it impossible to sense the voltage across 

the bridge circuit without altering its value. 

 

The problems with dc bridges containing inductors or capacitors can 
only be overcome if the impedance of the inductors can be increased 
and the impedance of capacitances can be decreased. Both these 
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objectives can be achieved using the same approach: applying an ac 
voltage of a known frequency to the bridge circuit. 
 
Output Signal Processing 
 

 
Figure 54: Bridge circuit formed with capacitors biased by 

an ac signal generator. 

 

To understand the effects of applying an a.c. bias voltage to a bridge circuit 

consider a bridge formed from two sensor capacitors and two 
reference capacitors as shown in figure (54). If the voltage applied to 

this bridge circuit is , then the differential output voltage is 

 

 
 
Now assume that the value of the sensing capacitor has been chosen 
so that  
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and the modulation of the capacitance value caused by the physical 

variable, , is only a small fraction of its average value so that 

, then 

 
 
The final stage of the analysis is to assume that the physical stimulus 
has a single dominant frequency so that 

 
where ωm is the frequency of the physical effect itself, and that the 

bias voltage has the form 

 
where ω r is the frequency of the applied bias voltage. 

Then the output signal from the bridge circuit is: 

  

                               
 

Assuming that  (reference/bias frequency is greater than the 
physical-effect/signal frequency) this means that the output signal 

contains two frequencies centred on  separated by . 
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With recent and continuing improvements in ADC performance it may be 

feasible to digitise this output signal before extracting the required 

information in a digital processor. However, in order to obtain a reasonable 

impedance in the bridge circuit it may be necessary to operate at 

frequencies of more than 100KHz. This could preclude the use of the 

cheaper successive approximation ADCs. Even in situations in which it 

may be possible to directly digitise the ac signal, it might therefore be 

cheaper to process the signal to reduce its frequency without losing 

relevant information. The sampling rate of the ADC will then be determined 

by the rate of change of the physical variable, , rather than the higher 

frequency of the applied ac stimulus, .  An instrumentation system 
that employs an ac bridge may therefore require a technique to 
remove the effects of the a.c. signal that has been applied to a bridge 
circuit. 
 

One approach to removing the applied ac signal is to use the circuit 
shown in figure (55). This circuit relies upon the existence of a reference 

signal, r(t), which can be used to  switch the input signal, s(t), through one 

of two alternate paths. These two paths are designed so that one path acts 

as an amplifier with a gain of +1, whilst the other path acts as an inverting 

amplifier with a gain of -1.  In effect this switching between two paths 

multiplies the input signal by a square wave with an amplitude of 1± . 
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Figure 55: Block diagram of a lock-in amplifier. 

 

To analyse the system assume that the reference signal r(t) is a square 

wave of frequency  (where  is the frequency of the a.c. signal 

generator). By determining the position of an electronic switch between A 

and B this signal effectively multiplies the signal s(t) by a square wave. The 

Fourier series of this type of square wave is (see HLT): 

 
This is then multiplied by the input signal 

 
and hence the output from the switch multiplier is 
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The low-pass filter which follows the switch is then designed so that 

its cut-off frequency is significantly less than . Hence the 
output from the low-pass filter is: 

 

where  is the magnitude response of the LPF at  frequency  

and since  

 
The combination of a multiplier and a low-pass filter that respond to a 

narrow range of frequencies is a commonly used component of an 

instrumentation system. It is often referred to as a  lock-in amplifier. 
 

Interference and Noise Reduction 

 
Figure 56: A bridge circuit of resistors with an ac input voltage. 

 

The use of a lock-in amplifier has been introduced in the context of 
either all-capacitance or all-inductance bridge circuits.  In these 
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situations the bridge circuit is biased with an a.c. signal in order to control 

the impedance of the elements within the bridge. The lock-in amplifier is 

then used to reduce the frequency at which the output signal has to be 

sampled without losing any information about the physical process being 

monitored.  However, lock-in amplifiers can also be used in other 
systems in order to avoid strong sources of interference or noise.  
 

To understand how a lock-in amplifier can be used to avoid 
interference or noise consider a bridge formed from two sensor 
resistors and two reference resistors. If the voltage applied to this bridge 

circuit is , then the differential output voltage is 

 
Now assume that the value of the sensitive resistor has been chosen so 

that  

 
and the modulation of the resistance value caused by the physical variable, 

, is only a small fraction of its average value so that , then 

 
Problems arise when the system has to be designed to detect small 

changes in resistance. In this situation small changes in the output signal 

will be vulnerable to either external interference or noise arising within 

subsequent analogue circuits. Some protection from interference can be 
obtained by filtering the signal. However, any filters must be designed to 

pass frequencies that contain information about the physical variable that is 
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being measured. It can then be very difficult to obtain a filter with a 
sharp enough cut-off to reject a strong source of interference and in 
the worst-case situation the interfering signal may occur within the 
interesting frequency range. Analogue filtering is then impossible and 
there is a risk that the interfering signal could sometimes be large 
enough to cause saturation of the input signal to the ADC. 

 

The solution in these situations is to apply an a.c. bias voltage to the 
bridge circuit 

 
To understand the effect of this consider a situation in which the physical 

stimulus has a single dominant frequency, , so that  

 
In this situation the output signal from the bridge circuit is: 

 
This can be rewritten in the form 

 
to show that the output now contains two signals at frequencies  

and . 
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Figure 57: A schematic diagram of the component parts required to shift 

the intermediate signal frequency in order to avoid noise and or 

interference. Once all the analogue amplification and filtering has been 

performed in a frequency range chosen by the designer a lock-in amplifier 

can be used to reduce the output frequency (Note that the two points 

labelled A are connected together as are the points labelled B) 

 

Applying an a.c. signal of known frequency to the bridge circuit 
therefore enables the designer to create an output signal with two 
well controlled frequency components. Although the amplitude of these 

two components is small the designer can select the value to  in order to 

avoid frequencies at which interference is expected (usually the frequency 

of the local mains and/or its harmonics).  Furthermore, the value of  can 
be chosen to shift the output frequencies so far from the frequency of 
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any interference that even a relatively simple band-pass filter can 

amplify the signal at frequencies around  whilst rejecting 
interference.  Once the signal has been amplified without amplifying any 

interference its frequency can be reduced using a switching multiplier and 

low-pass filter prior to digitisation without fear of degradation. 

 

Phase-Difference Detection or Phase-Sensitive Detection (not really 
part of this course, but rather interesting….) 
 

Another approach to detecting a change in capacitance is to place a 
reference resistor in series with a variable sensor capacitance to 
create a low-pass filter. If the input voltage to this circuit is close to 
the 3dB frequency of the filter then variations in the capacitance 
values will cause a measurable change in the phase difference 
between the input signal to the filter and its output. This phase 
difference can then be detected using a combination of a switching 
multiplier and low-pass filter  
 

To understand how this can occur consider a difference between the phase 

of two signals consider the situation in which the transducer modulates the 

phase of a signal with a known frequency. In this situation the input signal 

can be expressed as  

 
Once again assume that the reference signal r(t) is a square wave of 

frequency  and amplitude , equivalent to a Fourier series of: 
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The output  of the switching multiplier is then given by the product r(t)s(t). 

Thus: 

 
 

The 3-dB cut-off frequency of the low-pass filter  is chosen to be well 

below . Hence the multiplier products at frequencies 2 , 4 , 6 , etc 

are eliminated and the output of the Phase-Sensitive Detector contains only 

the phase-sensitive d.c component: 

 
(assuming that the d.c. gain of the LPF is 1) Hence using this circuit it is 
possible to detect any phase difference between the reference signal 
and input signal. The circuit is therefore often referred to as a phase 
sensitive detector. 
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Mini summary 
 

Alternating current (a.c.) biasing signals can be used in conjunction with 

bridge circuits containing inductors or capacitors to control the impedance 

of the elements of the bridge circuit so that a measurable output signal can 

be created. 

 

Alternating current (a.c.) biasing signals can be used with bridge circuits of 

resistors in order to shift the frequency of the output signal to a pre-

determined frequency range. Filter circuits can then be designed in the 

analogue signal processing stage which can amplify the signal but reject 

interference whose frequency would otherwise be too close to the signal 

frequency of interest. 

 

A lock-in amplifier can be used after amplification and filtering to remove 

the effects of the a.c. bias. The maximum required ADC sampling rate is 

then determined by the rate of change of the physical variable being 

measured rather than the much higher a.c. frequency chosen by the 

designer. 

 

The key component of the lock-in amplifier is a circuit that can also be used 

to detect the phase between two signals of the same frequency. It is 

therefore often known as a phase sensitive detector. 
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