
1

Islamic University Of Gaza Assembly Language

Faculty of Engineering Discussion

Computer Department Chapter 7

Eng. Ahmed M. Ayash Date: 21/04/2013

Chapter 7

Integer Arithmetic

Part2

 7.4: Multiplication and Division Instructions

 MUL Instruction

 The MUL (unsigned multiply) instruction comes in three versions:

o The first version multiplies an 8-bit operand by the AL register.

o The second version multiplies a 16-bit operand by the AX register.

o The third version multiplies a 32-bit operand by the EAX register.

 The multiplier and multiplicand must always be the same size, and the product is

twice their size.

 The three formats accept register and memory operands, but not immediate operands:

o MUL reg/mem8

o MUL reg/mem16

o MUL reg/mem32

 MUL sets the Carry and Overflow flags if the upper half of the product is not equal

to zero.

 IMUL Instruction

 The IMUL instruction is used for signed multiplication

 Preserves the sign of the product by sign-extending it.

2

 One-Operand formats, as in MUL

o IMUL r/m8 ; AX = AL * r/m8

o IMUL r/m16 ; DX:AX = AX * r/m16

o IMUL r/m32 ; EDX:EAX = EAX * r/m32

 Two-Operand formats:

o IMUL r16, r16/m16/imm8/imm16

o IMUL r32, r32/m32/imm8/imm32

 Three-Operand formats:

o IMUL r16, r16/m16, imm8/imm16

o IMUL r32, r32/m32, imm8/imm32

 The Carry and Overflow flags are set if the upper half of the product is not a sign

extension of the lower half.

 Example1:

mov al,48

mov bl,4

imul bl ; AX = 00C0h (decimal +192), OF = CF = 1

Because AH is not a sign extension of AL, the Overflow flag is set to 1.

 Example2:

 mov ax, 48

 mov bx, 4

 imul bx ; DX:AX = 0000h:00C0h , OF = CF = 0

Here, DX is a sign extension of AX, so the Overflow flag is cleared.

 Example3:

mov al,-4

mov bl,4

imul bl ; AX = FFF0h, CF = OF = 0

AH is a sign extension of AL, therefore the Overflow flag is cleared.

 DIV Instruction

 The DIV (unsigned divide) instruction performs 8-bit, 16-bit, and 32-bit unsigned

integer division.

 The single register or memory operand is the divisor.

 The formats are

o DIV reg/mem8
o DIV reg/mem16
o DIV reg/mem32

3

 Signed Integer Division

 The dividend must be fully sign-extended before the division takes place.

o Fill high byte, word, or double-word with a copy of the low byte/word/double

word’s sign bit.

o Then we will apply them to the signed integer divide instruction, IDIV.

o For Example:

 Sign Extension Instructions (CBW, CWD, CDQ)

o Provide important sign-extension operations before division

o CBW: Convert Byte to Word, sign-extends AL into AH

o CWD: Convert Word to Double, sign-extends AX into DX

o CDQ: Convert Double to Quad, sign-extends EAX into EDX

 IDIV Instruction

 The IDIV (signed divide) instruction performs signed integer division, using the

same operands as DIV.

 Before executing 8-bit division, the dividend (AX) must be completely sign-extended.

 The remainder always has the same sign as the dividend.

 Divide Overflow

 Divide Overflow occurs when …

o Quotient cannot fit into the destination operand, or when

o Dividing by Zero.

 Divide Overflow causes a CPU interrupt

o The current program halts and an error dialog box is produced

 For Example:

mov ax,1000h

mov bl,10h

div bl ; AL cannot hold 100h

 All status flags are undefined after executing DIV and IDIV

4

 7.4.7 Section Review

 (7.4.7 p1) Explain why overflow cannot occur when the MUL and one-operand IMUL

instructions execute.

Ans.:

The product is stored in registers that are twice the size of the multiplier and

multiplicand. If you multiply 0FFh by 0FFh, for example, the product (FE01h) easily

fits within 16 bits.

 (7.4.7 p2) How is the one-operand IMUL instruction different from MUL in the way it

generates a multiplication product?

Ans.:

When the product fits completely within the lower register of the product, IMUL sign

extends the product into the upper product register. MUL, on the other hand, zero-

extends the product.

 (7.4.7 p3) What has to happen in order for the one-operand IMUL to set the Carry and

Overflow flags?

Ans.:

With IMUL, the Carry and Overflow flags are set when the upper half of the product is

not a sign extension of the lower half of the product.

 (7.4.7 p4) When EBX is the operand in a DIV instruction, which register holds the

quotient?

Ans.:

EAX

 (7.4.7 p5) When BX is the operand in a DIV instruction, which register holds the

quotient?

Ans.:

AX

 (7.4.7 p6) When BL is the operand in a MUL instruction, which registers hold the

product?

Ans.:

AX.

 (7.4.7 p7) Show an example of sign extension before calling the IDIV instruction with a

16-bit operand.

Ans.:

Code example:

5

mov ax,dividendLow

cwd ; sign-extend dividend

mov bx,divisor

idiv bx

 (7.4.7 p8) What will be the contents of AX and DX after the following operation?

mov dx,0

mov ax,222h

mov cx,100h

mul cx

Ans.:

DX = 0002h, AX = 2200h.

 (7.4.7 p9) What will be the contents of AX after the following operation?

mov ax,63h

mov bl,10h

div bl

Ans.:

AX = 0306h.

 (7.4.7 p10) What will be the contents of EAX and EDX after the following operation?

mov eax,123400h

mov edx,0

mov ebx,10h

div ebx

Ans.:

EDX = 0, EAX = 00012340h.

 (7.4.7 p11) What will be the contents of AX and DX after the following operation?

mov ax,4000h

mov dx,500h

mov bx,10h

div bx

Ans.:

The DIV will cause a divide overflow, so the values of AX and DX cannot be determined.

 (7.4.7 p12) Write instructions that multiply -5 by 3 and store the result in a 16-bit variable

val1.

Ans.:

mov al,3

mov bl,-5

imul bl

mov val1,ax ; product

6

 (7.4.7 p13) Write instructions that divide -276 by 10 and store the result in a 16-bit

variable val1.

Ans.:

mov ax,-276

cwd ; sign-extend AX into DX

mov bx,10

idiv bx

mov val1,ax ; quotient

 (7.4.7 p14) Implement the following C++ expression in assembly language, using 32-bit

unsigned operands:

 val1 = (val2 * val3) / (val4 - 3)

Ans.:

mov eax,val2

mul val3

mov ebx,val4

sub ebx,3

div ebx

mov val1,eax

 (7.4.7 p15) Implement the following C++ expression in assembly language, using 32-bit

signed operands:

val1 = (val2 / val3) * (val1 + val2)

Ans.:

mov eax,val2

cdq ; extend EAX into EDX

idiv val3 ; EAX = quotient

mov ebx,val1

add ebx,val2

imul ebx

mov val1,eax ; lower 32 bits of product

 Extended Addition and Subtraction

 Extended precision addition and subtraction is adding and subtracting numbers having

an almost unlimited size.

 ADC Instruction

o ADC (add with carry) instruction adds both a source operand and the contents of the

Carry flag to a destination operand.

o The instruction formats are the same as for the ADD instruction, and the operands

must be the same size:

 ADC reg,reg

 ADC mem,reg

 ADC reg,mem

 ADC mem,imm

 ADC reg,imm

7

o Example: Add two 32-bit integers (FFFFFFFFh + FFFFFFFFh), producing a 64-bit

sum in EDX:EAX:

mov edx,0

mov eax,0FFFFFFFFh

add eax,0FFFFFFFFh

adc edx,0 ;EDX:EAX = 00000001FFFFFFFEh

o Task: Add 1 to EDX:EAX

 Starting value of EDX:EAX: 00000000FFFFFFFFh

 Add the lower 32 bits first, setting the Carry flag.

 Add the upper 32 bits, and include the Carry flag.

mov edx,0 ; set upper half

mov eax,0FFFFFFFFh ; set lower half

add eax,1 ; add lower half

adc edx,0 ; add upper half

 ;EDX:EAX = 00000001 00000000

 SBB Instruction

o The SBB (subtract with borrow) instruction subtracts both a source operand and the

value of the Carry flag from a destination operand.

o Operand syntax:

 Same as for the ADC instruction.

o Task: Subtract 1 from EDX:EAX

 Starting value of EDX:EAX: 0000000100000000h

 Subtract the lower 32 bits first, setting the Carry flag.

 Subtract the upper 32 bits, and include the Carry flag.

mov edx,1 ; set upper half

mov eax,0 ; set lower half

sub eax,1 ; subtract lower half

sbb edx,0 ; subtract upper half

 ;EDX:EAX = 00000000 FFFFFFFF

 7.5.4 Section Review

 (7.5.4 p1) Describe the ADC instruction.

Ans.:

The ADC instruction adds both a source operand and the Carry flag to a destination

operand.

8

 (7.5.4 p2) Describe the SBB instruction.

Ans.:

The SBB instruction subtracts both a source operand and the Carry flag from a destination

operand.

 (7.5.4 p3) What will be the values of EDX:EAX after the following instructions execute?

mov edx,10h

mov eax,0A0000000h

add eax,20000000h

adc edx,0

Ans.:

EAX = C0000000h, EDX = 00000010h.

 (7.5.4 p4) What will be the values of EDX:EAX after the following instructions execute?

mov edx,100h

mov eax,80000000h

sub eax,90000000h

sbb edx,0

Ans.:

EAX = F0000000h, EDX = 000000FFh.

 (7.5.4 p5) What will be the contents of DX after the following instructions execute (STC

sets the Carry flag)?

mov dx,5

stc ; set Carry flag

mov ax,10h

adc dx,ax

Ans.:

DX = 0016h.

 (7.5.4 p6) The following program is supposed to subtract val2 from val1. Find and correct

all logic errors (CLC clears the Carry flag):

.data

 val1 QWORD 20403004362047A1h

 val2 QWORD 055210304A2630B2h

 result QWORD 0

.code

 mov cx,8 ; loop counter

 mov esi,val1 ; set index to start

 mov edi,val2

 clc ; clear Carry flag

top:

 mov al,BYTE PTR[esi] ; get first number

9

 sbb al,BYTE PTR[edi] ; subtract second

 mov BYTE PTR[esi],al ; store the result

 dec esi

 dec edi

 loop top

Ans.:

In correcting this example, it is easiest to reduce the number of instructions. You can

use a single register (ESI) to index into all three variables. ESI should be set to zero

before the loop because the integers are stored in little endian order with their low-

order bytes occurring first:

mov ecx,8 ; loop counter

mov esi,0 ; use the same index reg

clc ; clear Carry flag

top:

mov al,byte ptr val1[esi] ; get first number

sbb al,byte ptr val2[esi] ; subtract second

mov byte ptr result[esi],al ; store the result

inc esi ; move to next pair

loop top

Of course, you could easily reduce the number of loop iterations by adding

doublewords rather than bytes.

Quiz Next Week

