

Slide 5.1

CLASSROOM EXAMPLE 1	Using the Product Rule for Exponents							
Apply the product Solution:	Apply the product rule, if possible, in each case. Solution:							
$m^{\beta} \cdot m^{\beta} = m^{\beta+\beta} = m^{14}$								
<i>m</i> ⁵ • <i>p</i> ⁴ (Cannot be simplified further because the bases m and p are not the same. The product rule does not apply.							
(-5p ⁴) (-9p ⁵)	$= (-5)(-9)(p^4p^5) = 45p^{4+5} = 45p^9$							
$(-3x^2y^3)(7xy^4)$	$= (-3)(7) x^2 x y^3 y^4 = -21 x^{2+1} y^{3+4} = -21 x^3 y^7$							
Convright © 2012, 2008, 2004, Pea	rson Education. Inc. Slide 5.1- 4							

	Zero Exponent	
If a is any nonzero re-	al number, then	
	<i>a</i> ⁰ =1.	
The expression 0° is	undefined.	
The expression 0º is	undefined.	
The expression 0º is	undefined.	
The expression 0° is	undefined.	
The expression 0º is	undefined.	

CLASSROOM EXAMPLE 2	Using 0 as an Exponent					
Evaluate.						
Solution:						
290 = 1						
$(-29)^0 = 1$						
$-29^0 = -(29^0) = -1$						
$8^0 - 15^0$	= 1 - 1 = 0					
opyright © 2012, 2008, 2004 Pear	son Education. Inc.	Slide 5.1				

CLASSROOM
EXAMPLE 6Using the Power Rules for ExponentsSimplify, using the power rules.Solution:
$$(r^5)^4 = (r^5)^4 = r^{5*4} = r^{20}$$
 $(-3y^5)^2 = (-3)^2 (y^5)^2 = 9y^{5*2} = 9y^{10}$ $\left(\frac{3}{4}\right)^3 = \frac{3^3}{4^3} = \frac{27}{64}$ Slide 5.1: 14

Use the rules for exponents with scientific notation.

Scientific Notation

A number is written in **scientific notation** when it is expressed in the form

a × 10ⁿ

Slide 5.1-2

where $1 \leq |a| < 10$ and *n* is an integer.

CLASSROOM EXAMPLE 11	Using Scientific Notation in Computation
Evaluate 200,00	00×0.0003
Solution:	0.06
$=\frac{2\times10^5\times3\times10^6}{6\times10^{-2}}$) ⁴
$=\frac{2\times3\times10^5\times10^5}{6\times10^{-2}}$)_4
$=\frac{2\times3\times10^1}{6\times10^{-2}}$	
$=\frac{2\times3}{6}\times10^3$ =	$= 1 \times 10^3 = 1000$

Know the basic definitions for polynomials. A polynomial containing only the variable x is called a **polynomial in x**. A polynomial in one variable is written in descending powers of the variable if the exponents on the variable decrease from left to right. $x^5 - 6x^2 + 12x - 5$ When written in descending powers of the variable, the greatest-degree term is written first and is called the **leading term** of the polynomial. Its coefficient is the leading coefficient. If a polynomial in a single variable is written in descending powers of that variable, the degree of the polynomial will be the degree of the leading term

CLASSROOM EXAMPLE 1	Writing Polynomials in Descending Powers						
Write the polynomial in descending powers of the variable. Then give the leading term and the leading coefficient.							
-3z ⁴ + 2z ³ + z ⁵ -	6 <i>z</i>						
Solution:							
$z^5 - 3z^4 + 2z^3 - 6z$							
The largest export would be 1.	nent is 5, it would be the first term and its coefficient						

Some polynomials with a specific number of terms are so common that they are given special names.					
Trinomial: has exactly three terms					
Binomial: has exa	actly two terms				
.					
	alv and term				
Monomial : has or	nly one term				
fonomial: has or Type of Polynomial	nly one term Examples				
Nonomial : has or Type of Polynomial Monomial	nly one term Examples 5x, 7m ⁹ , –8, x ² y ²				
Monomial: has or Type of Polynomial Monomial Binomial	hly one term Examples $5x, 7m^{p}, -8, x^{2}y^{2}$ $3x^{2} - 6, 11y + 8, 5a^{2}b + 3a$				
Monomial: has or Type of Polynomial Monomial Binomial Trinomial	hly one term Examples $5x, 7m^9, -8, x^2y^2$ $3x^2 - 6, 11y + 8, 5a^2b + 3a$ $y^2 + 11y + 6, 8p^3 - 7p + 2m, -3 + 2k^5 + 9z^4$				

CLASSROOM EXAMPLE 2	Classifying Polynomials
Identify each poly none of these. Als	nomial as a <i>monomial, binomial, trinomial,</i> or so, give the degree.
a ⁴ b ² - ab ⁶	
Solution:	
Binomial of degre	e of 7
-100	
Monomial of degr	ee of 0
-	
onwright © 2012-2008-2004 Pea	son Education Inc. Slide 5.2-7

	CLASSROOM EXAMPLE 4	Adding Polynomials							
	Add.								
	$(-5p^3 + 6p^2) + (8p^3 - 12p^2)$ Solution:								
	Use commutative and associative properties to rearrange the polynomials so that like terms are together. Then use the distributive property to combine like terms. $= -5p^3 + 8p^3 + 6p^2 - 12p^2$ $= 3p^3 - 6p^2$								
	$-6t^{5} + 2t^{3} - t^{2}$ $8t^{5} - 2t^{3} + 5t^{2}$ $2t^{5} + 4t^{2}$	You can add polynomials vertically by placing like terms in columns.							
Com	aright © 2012-2008-2004 Pea	xon Education Inc. Slide 5.2-11							

Polynomial Fu	unction
A polynomial	function of degree <i>n</i> is defined by
f	$(\mathbf{x}) = a_n \mathbf{x}^n + a_{n-1} \mathbf{x}^{n-1} + \dots + a_1 \mathbf{x} + a_0,$
for real number number.	rs a_n , a_{n-1} , a_1 , and a_0 , where $a_n \neq 0$ and n is a wh

CLASSROOM EXAMPLE 3	Adding and Subtracting Functions
For $f(x) = 3x^2 + 8$ following.	$3x - 6$ and $g(x) = -4x^2 + 4x - 8$, find each of the
So	plution:
(f+g)(x)	
	=f(x)+g(x)
	$=(3x^2+8x-6)+(-4x^2+4x-8)$
	$=-x^{2}+12x-14$
(f-g)(x)	
	=f(x)-g(x)
	$=(3x^2+8x-6)-(-4x^2+4x-8)$
	$= 3x^2 + 8x - 6 + 4x^2 - 4x + 8$
	$=7x^2+4x+2$
	Slide 5.3

olutio	on:											
x	f(x) = -2x	2	F					¢y				
-2	-8	1	-		ļ	Ļ			Do	maiı	n	
-1	-2		-10	-8	•	1	1		Í			
0	0	-			+		1					
1	-2	-					1	,	1	Ran	ge	
2	-8	-						2-	1			
	1		E					4	-			

	CLASSROOM EXAMPLE 3	Multiplying Polynomia	Is Vertically (cont'd)					
	Find the product.							
	(5 <i>a</i> ³ – 6 <i>a</i> ² + 2 <i>a</i> –	3)(2 <i>a</i> – 5)						
	Solution:							
		$5a^3 - 6a^2 + 2a - 3$ 2a - 5						
	10 -4 12	$-23a^2 + 30a^2 - 10a + 13$						
	10a - 12	d" + 4d" - 0d						
	10 <i>a</i> ⁴ - 37	a ³ + 34 <i>a</i> ² – 16 <i>a</i> + 15	Combine like terms.					
Co	nvright © 2012, 2008, 2004. Pea	rson Education. Inc.	Slide 5.4- 7					

CLASSROOM EXAMPLE 4	Using the FOIL Method
Use the FOIL me	hod to find each product.
	Solution:
(5r-3)(2r-5)	F O I L = $(5t)(2t) + (5t)(-5) + (-3)(2t) + (-3)(-5)$
	$= 10r^2 - 25r - 6r + 15$
	$= 10r^2 - 31r + 15$
(4y - z)(2y + 3z)	F O I L= (4y)(2y) + (4y)(3z) + (-z)(2y) + (-z)(3z)
	$= 8y^2 + 12yz - 2yz - 3z^2$
	$= 8y^2 + 10yz - 3z^2$
'onvright © 2012, 2008, 2004, Pea	son Education Inc. Slide 5.4- 9

CLASSROOM EXAMPLE 5	Multiplying the Sum and Difference of Two Terms
Find each produc	rt.
	Solution:
(m + 5)(m - 5)	$= m^2 - 5^2$
	$= m^2 - 25$
(x-4y)(x+4y)	$= x^2 - (4y)^2$
	$= x^2 - 4^2 y^2$
	$= x^2 - 16y^2$
$4y^2(y+7)(y-7)$	$=4y^{2}(y^{2}-49)$
	$=4y^4-196y^2$
Copyright © 2012, 2008, 2004 Pea	arson Education. Inc. Slide 5.4- 12

CLASSROOM EXAMPLE 6	Squaring Binomials	
Find each produc	ct.	
	Solution:	
$(t + 9)^2$	$= t^2 + 2 \cdot t \cdot 9 + 9^2$	
	$= t^2 + 18t + 81$	
$(2m + 5)^2$	$= (2m)^2 + 2(2m)(5) + 5^2$	
	$=4m^{2}+20m+25$	
$(3k-2n)^2$	$= (3k)^2 - 2(3k)(2n) + (2n)^2$	
	$=9k^2 - 12kn + 4n^2$	
	arran Education Jac	Slide 5.4

CLASSR	ООМ LE 7	Multiplying More Complicated Binomials	5
Find each	produc	t. Solution:	
[(<i>x</i> – <i>y</i>) + z][(x – y	$ \begin{aligned} &= (x - y)^2 - z^2 \\ &= x^2 - 2(x)(y) + y^2 - z^2 \\ &= x^2 - 2xy + y^2 - z^2 \end{aligned} $	
(p + 2q) ³	= (p) $= (p^{2})$ $= p^{3}$ $= p^{3}$	$\begin{array}{l} + 2q)^2(p+2q) \\ + 4pq + 4q^2)(p+2q) \\ + 4p^2q + 4pq^2 + 2p^2q + 8pq^2 + 8q^3 \\ + 6p^2q + 12pq^2 + 8q^3 \end{array}$	
$(x + 2)^4$	$= (x + x^{2})$ $= (x^{2})$ $= x^{4}$ $= x^{4}$	$(x + 2)^{2} (x + 2)^{2} + 4x + 4) (x^{2} + 4x + 4) + 4x^{3} + 4x^{2} + 4x^{3} + 16x^{2} + 16x + 4x^{2} + 16x + 1 + 8x^{3} + 24x^{2} + 32x + 16$	6
Convright © 2012-200	18 2004 Pea	ron Education Inc	Slide 5.4- 1

CLASSROOM
 Dividing Polynomial Functions

 For
$$f(x) = 2x^2 + 17x + 30$$
 and $g(x) = 2x + 5$,
 find $\left(\frac{f}{g}\right)(x)$ and $\left(\frac{f}{g}\right)(-1)$.

 Solution:
 From previous Example 2, we conclude that $(f/g)(x) = x + 6$,

 Provided the denominator $2x + 5$, is *not* equal to zero.

 $x \neq -\frac{5}{2}$
 $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{2x^2 + 17x + 30}{2x + 5} = x + 6$
 $\left(\frac{f}{g}\right)(-1) = -1 + 6 = 5$

 Consider 0.202 2008 2001 Person Education for