5.1 Integer Exponents and Scientific Notation

Objectives
1 Use the product rule for exponents.
2 Define 0 and negative exponents.
3 Use the quotient rule for exponents.
4 Use the power rules for exponents.
5 Simplify exponential expressions.
6 Use the rules for exponents with scientific notation.

Integer Exponents and Scientific Notation

We use exponents to write products of repeated factors. For example

2^{5} is defined as $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2=32$.

The number 5 , the exponent, shows that the base 2 appears as a factor five times. The quantity 2^{5} is called an exponential or a power. We read 2^{5} as " 2 to the fifth power" or " 2 to the fifth."

Use the product rule for exponents.

Product Rule for Exponents

If m and n are natural numbers and a is any real number, then

$$
\mathbf{a}^{m} \cdot \mathbf{a}^{n}=\mathbf{a}^{m+n} .
$$

That is, when multiplying powers of like bases, keep the same base and add the exponents.

Be careful not to multiply the bases. Keep the same base and add the exponents.

```
CLASSROOM Using the Product Rule for Exponents
EXAMPLE 1
Apply the product rule, if possible, in each case.
Solution:
m}\cdot\mp@code{m}=\mp@subsup{m}{}{6}=\mp@subsup{m}{}{8+6}=\mp@subsup{m}{}{14
m}\cdot\mp@subsup{m}{}{4}\quad\mathrm{ Cannot be simplified further because the bases }m\mathrm{ and }
        are not the same. The product rule does not apply.
(-5\mp@subsup{p}{}{4})(-9\mp@subsup{p}{}{5})\quad=(-5)(-9)(\mp@subsup{p}{}{4}\mp@subsup{p}{}{5})\quad=45\mp@subsup{p}{}{4+5}=45\mp@subsup{p}{}{9}
(-3\mp@subsup{x}{}{2}\mp@subsup{y}{}{3})(7x\mp@subsup{y}{}{4})=(-3)(7)\mp@subsup{x}{}{2}x\mp@subsup{y}{}{3}\mp@subsup{y}{}{4}=-21\mp@subsup{x}{}{2+1}\mp@subsup{y}{}{3+4}=-21\mp@subsup{x}{}{3}\mp@subsup{y}{}{7}

\section*{Define 0 and negative exponents.}
Zero Exponent
If \(a\) is any nonzero real number, then
\(a^{0}=1\).

The expression \(0^{\circ}\) is undefined.
\begin{tabular}{|c|c|c|}
\hline CLASSROOM EXAMPLE 2 & Using 0 as an & \\
\hline \multicolumn{3}{|l|}{Evaluate.} \\
\hline \multicolumn{3}{|l|}{Solution:} \\
\hline \multicolumn{3}{|l|}{\(29^{0}=1\)} \\
\hline \multicolumn{3}{|l|}{\((-29)^{0} \quad=1\)} \\
\hline \multicolumn{3}{|l|}{\(-29^{0}=-\left(29^{0}\right)=-1\)} \\
\hline \(8^{0}-15^{0}\) & \(=1-1=0\) & \\
\hline
\end{tabular}

\section*{Define 0 and negative exponents.}

\section*{Negative Exponent}

For any natural number \(n\) and any nonzero real number a,
\[
a^{-n}=\frac{1}{a^{n}}
\]

\section*{exponents lead to reciprocals.}
\[
3^{-2}=\frac{1}{3^{-2}}=\frac{1}{9} \text { Not negative } \quad-3^{-2}=-\frac{1}{3^{-2}}=-\frac{1}{9} \text { Negative }
\]

\section*{CLASSROOM Using Negative Exponents}

Write with only positive exponents
Solution:
\(6^{-5}=\frac{1}{6^{5}}\)
\((2 x)^{-4}, x \neq 0 \quad=\frac{1}{(2 x)^{4}}, x \neq 0\)
\(-7 p^{-4}, p \neq 0 \quad=-7\left(\frac{1}{p^{4}}\right)=-\frac{7}{p^{4}}, p \neq 0\)
Evaluate \(4^{-1}-2^{-1} .=\frac{1}{4}-\frac{1}{2} \quad=\frac{1}{4}-\frac{2}{4} \quad=-\frac{1}{4}\)

\section*{Define 0 and negative exponents.}
\[
\begin{aligned}
& \text { Special Rules for Negative Exponents } \\
& \text { If } a \neq 0 \text { and } b \neq 0 \text {, then } \\
& \qquad \frac{1}{a^{-n}}=a^{n} \text { and } \frac{a^{-n}}{b^{-m}}=\frac{b^{m}}{a^{n}}
\end{aligned}
\]

\section*{Use the quotient rule for exponents.}

\section*{Quotient Rule for Exponents}

If \(a\) is any nonzero real number and \(m\) and \(n\) are integers, then
\[
\frac{a^{m}}{a^{n}}=a^{m-n}
\]

That is, when dividing powers of like bases, keep the same base and subtract the exponent of the denominator from the exponent of the numerator.
\begin{tabular}{l|l} 
CLASSROOM \\
EXAMPLE 5 & Using the Quotient Rule for Exponents
\end{tabular}

Apply the quotient rule, if possible, and write each result with only positive exponents.

\section*{Solution:}
\[
\begin{array}{ll}
\frac{m^{8}}{m^{13}} & =m^{8-13}=m^{-5}=\frac{1}{m^{5}}, m \neq 0 \\
\frac{5^{-6}}{5^{-8}} & =5^{-6-(-8)}=5^{-6+8}=5^{2}, \text { or } 25 \\
\frac{x^{3}}{y^{5}}, y \neq 0 & \begin{array}{l}
\text { Cannot be simplified because the bases } x \text { and } y \text { are } \\
\text { different. The quotient rule does not apply. }
\end{array}
\end{array}
\]

\section*{Use the power rules for exponents.}

\section*{Power Rule for Exponents}

If \(a\) and \(b\) are real numbers and \(m\) and \(n\) are integers, then
a) \(\left(a^{m}\right)^{n}=a^{m n}, \quad\) b) \((a b)^{m}=a^{m} b^{m}\),
and
c) \(\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}} \quad(b \neq 0)\).

That is,
a) To raise a power to a power, multiply exponents.
b) To raise a product to a power, raise each factor to that power.
c) To raise a quotient to a power, raise the numerator and the denominator to that power.
\begin{tabular}{l|l} 
CLASSROOM \\
EXAMPLE 6 & Using the Power Rules for Exponents
\end{tabular}
Simplify, using the power rules.

\section*{Solution}
\(\left(r^{5}\right)^{4}=\left(r^{5}\right)^{4}=r^{5 \cdot 4}=r^{20}\)
\(\left(-3 y^{5}\right)^{2}=(-3)^{2}\left(y^{5}\right)^{2}=9 y^{5 \cdot 2}=9 y^{10}\)
\(\left(\frac{3}{4}\right)^{3}=\frac{3^{3}}{4^{3}}=\frac{27}{64}\)

\section*{Use the power rules for exponents.}

\section*{Special Rules for Negative Exponents, Continued}

If \(a \neq 0\) and \(b \neq 0\) and \(n\) is an integer, then
\[
a^{-n}=\left(\frac{1}{a}\right)^{n} \quad \text { and }\left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n} .
\]

That is, any nonzero number raised to the negative \(n\)th power is equal to the reciprocal of that number raised to the \(n\)th power.

\section*{CLASSROOM \\ EXAMPLE 7}

Write with only positive exponents and then evaluate
Solution:
\(\left(\frac{2}{3}\right)^{-4}=\left(\frac{3}{2}\right)^{4}=\frac{3^{4}}{2^{4}}=\frac{81}{16}\)
\(\left(\frac{1}{2 x}\right)^{-5}, x \neq 0=\left(\frac{2 x}{1}\right)^{5}=2 x^{5}=32 x^{5}\)

Slide 5.1-16
\[
\begin{aligned}
& \text { Use the power rules for exponents. } \\
& \text { Definition and Rules for Exponents } \\
& \text { For all integers } m \text { and } n \text { and all real numbers } a \text { and } b \text {, the following } \\
& \text { rules apply. } \\
& \text { Product Rule } \quad a^{m} \cdot a^{n}=a^{m+n} \\
& \text { Quotient Rule } \quad \frac{a^{m}}{a^{n}}=a^{m-n} \quad(a \neq 0) \\
& \text { Zero Exponent } \quad a^{0}=1 \quad(a \neq 0)
\end{aligned}
\]

Use the power rules for exponents.

Definition and Rules for Exponents, Continued
Negative Exponent \(\quad a^{-n}=\frac{1}{a^{n}} \quad(a \neq 0)\)
\[
\left(a^{m}\right)^{n}=a^{m n} \quad(a b)^{m}=a^{m} b^{m}
\]

Power Rules \(\quad\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}} \quad(b \neq 0)\)
\[
\frac{1}{a^{-n}}=a^{n}(a \neq 0) \frac{a^{-n}}{b^{-m}}=\frac{b^{m}}{a^{n}}(a, b \neq 0)
\]

Special Rules
\(a^{-n}=\left(\frac{1}{a}\right)^{n}(a \neq 0) \quad\left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n}(a, b \neq 0), ~\)

\section*{Objective 5}

Simplify exponential expressions.
Simplify. Assume that all variables represent nonzero real numbers. Solution:
\[
\left.\begin{array}{rl}
\left(4^{2}\right)^{-5} & =4^{2(-5)}=4^{-10}=\frac{1}{4^{10}} \\
x^{-4} \cdot x^{-6} \cdot x^{8} & =x^{-4+(-6)+8}=x^{-2}
\end{array}=\frac{1}{x^{2}}\right] \begin{aligned}
\frac{\left(m^{2} n\right)^{-2}}{m^{-3} n} & =\frac{\left(m^{2}\right)^{-2} n^{-2}}{m^{-3} n} \\
& =\frac{m^{-4} n^{-2}}{m^{-3} n}=\frac{m^{-4}}{m^{-3}} \cdot \frac{n^{-2}}{n} \\
& =m^{-4-(-3)} n^{-2-1} \\
& =\frac{1}{m n^{3}}
\end{aligned}
\]

CLASSROOM EXAMPLE 8

Using the Definitions and Rules for Exponents (cont'd)
Simplify. Assume that all variables represent nonzero real numbers.
Solution:
\[
\begin{aligned}
&\left(\frac{2 y}{x^{3}}\right)^{2}\left(\frac{4 y}{x}\right)^{-1}=\frac{2^{2} y^{2}}{x^{6}} \cdot \frac{4^{-1} y^{-1}}{x^{-1}} \quad \text { Combination of rules } \\
&=\frac{2^{2} 4^{-1} y^{1}}{x^{5}} \\
&=\frac{2^{2} y}{4 x^{5}} \\
&=\frac{y}{x^{5}} \\
& \text { Slide 5.1-21 }
\end{aligned}
\]

\section*{Use the rules for exponents with scientific notation.}

In scientific notation, a number is written with the decimal point after the first nonzero digit and multiplied by a power of 10.

This is often a simpler way to express very large or very small numbers.

Use the rules for exponents with scientific notation.

\section*{Scientific Notation}

A number is written in scientific notation when it is expressed in the form
where \(1 \leq|\mathrm{a}|<10\) and \(n\) is an integer.

Use the rules for exponents with scientific notation.

\section*{Converting to Scientific Notation}

Step 1 Position the decimal point. Place a caret, ^, to the right of the first nonzero digit, where the decimal point will be placed.

Step 2 Determine the numeral for the exponent. Count the number of digits from the decimal point to the caret. This number gives the absolute value of the exponent on 10.

Step 3 Determine the sign for the exponent. Decide whether multiplying by \(10^{n}\) should make the result of Step 1 greater or less. The exponent should be positive to make the result greater; it should be negative to make the result less.
\begin{tabular}{|c|c|}
\hline CLASSROOM EXAMPLE 9 & Writing Numbers in Scientific Notation \\
\hline \multicolumn{2}{|l|}{Write the number in scientific notation.} \\
\hline \multicolumn{2}{|l|}{29,800,000} \\
\hline \multicolumn{2}{|l|}{Solution:} \\
\hline \multicolumn{2}{|l|}{Step 1 Place a caret to the right of the 2 (the first nonzero digit) to mark the new location of the decimal point.} \\
\hline \multicolumn{2}{|l|}{Step 2 Count from the decimal point 7 places, which is understood to be after the caret.} \\
\hline 29,800 & \[
0,000=2.9,800,000 \cdot \longleftarrow \quad \begin{aligned}
& \text { Decimal point moves } \\
& 7 \text { places to the left }
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{Step 3 Since 2.98 is to be made greater, the exponent on 10 is positive.} \\
\hline & , \(800,000=2.98 \times 10^{7}\) \\
\hline
\end{tabular}
\begin{tabular}{c|c} 
CLASSROOM \\
EXAMPLE 9 & Writing Numbers in Scientific Notation (cont'd)
\end{tabular}
Write the number in scientific notation.

\subsection*{0.0000000503}

\section*{Solution:}

Step 1 Place a caret to the right of the 5 (the first nonzero digit) to mark the new location of the decimal point.

Step 2 Count from the decimal point 8 places, which is understood to be after the caret.
\[
0.0000000503=0.00000005 .03 \longleftarrow \begin{aligned}
& \text { Decimal point moves } \\
& 7 \text { places to the left }
\end{aligned}
\]

Step 3 Since 5.03 is to be made less, the exponent 10 is negative.
\[
0.0000000503=5.03 \times 10^{-8}
\]

\section*{Use the rules for exponents with scientific notation.}

\section*{Converting a Positive Number from Scientific Notation}

Multiplying a positive number by a positive power of 10 makes the number greater, so move the decimal point to the right if \(n\) is positive in \(10^{n}\).

Multiplying a positive number by a negative power of 10 makes the number less, so move the decimal point to the left if \(n\) is negative.

If \(n\) is 0 , leave the decimal point where it is. move the decimal point.

\section*{CLASSROOM} EXAMPLE 12

The distance to the sun is \(9.3 \times 10^{7} \mathrm{mi}\). How long would it take a rocket traveling at \(3.2 \times 10^{3} \mathrm{mph}\) to reach the sun?

\section*{Solution:}
\[
\begin{aligned}
d=r t, \text { so } \quad t & =\frac{d}{r} \\
& =\frac{9.3 \times 10^{7}}{3.2 \times 10^{3}} \\
& =\frac{9.3}{3.2} \times 10^{7-3} \\
& \approx 2.9 \times 10^{4}
\end{aligned}
\]

It would take approximately \(2.9 \times 10^{4}\) hours.

\section*{(5.2) Adding and Subtracting Polynomials}

Objectives
1 Know the basic definitions for polynomials.
2 Add and subtract polynomials.

\section*{Know the basic definitions for polynomials.}

A term is a number (constant), a variable, or the product or quotient of a number and one or more variables raised to powers.
\[
4 x, \frac{1}{2} m^{5} \text { or }\left(\frac{m^{5}}{2}\right),-7 z^{9}, 6 x^{2} z, \frac{5}{3 x^{2}}, \text { and } 9
\]

The number in the product is called the numerical coefficient, or just the coefficient.

A term or a sum of two or more terms is and algebraic expression. The simplest kind of algebraic expression is a polynomial.

\section*{Know the basic definitions for polynomials.}

A polynomial containing only the variable x is called a polynomial in x . A polynomial in one variable is written in descending powers of the variable if the exponents on the variable decrease from left to right.
\[
x^{5}-6 x^{2}+12 x-5
\]

When written in descending powers of the variable, the greatest-degree term is written first and is called the leading term of the polynomial. Its coefficient is the leading coefficient.
Not Polynomials
\[
x^{-1}+3 x^{-2}, \quad \sqrt{9-x}, \quad \text { and } \frac{1}{x}
\]

\section*{Know the basic definitions for polynomials.}

Some polynomials with a specific number of terms are so common that they are given special names.

Trinomial: has exactly three terms

Binomial: has exactly two terms
Monomial: has only one term
\begin{tabular}{|llc|}
\hline \begin{tabular}{c} 
Type of \\
Polynomial
\end{tabular} & \multicolumn{1}{c|}{ Examples } \\
Monomial & \(5 x, \quad 7 m^{9}, \quad-8, \quad x^{2} y^{2}\) \\
Binomial & \(3 x^{2}-6, \quad 11 y+8, \quad 5 a^{2} b+3 a\) \\
Trinomial & \(y^{2}+11 y+6,8 p^{3}-7 p+2 m,-3+2 k^{5}+9 z^{4}\) \\
None of these & \(p^{3}-5 p^{2}+2 p-5,-9 z^{3}+5 c^{2}+2 m^{5}+11 r^{2}-7 r\)
\end{tabular}\(\quad\)\begin{tabular}{l} 
Slide 5.2-6 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{c} 
CLASSROOM \\
EXAMPLE 2
\end{tabular} & Classifying Polynomials \\
\begin{tabular}{l} 
Identify each polynomial as a monomial, binomial, trinomial, or \\
none of these. Also, give the degree.
\end{tabular} \\
\(a^{4} b^{2}-a b^{6}\) \\
Solution: \\
Binomial of degree of 7 \\
-100 \\
Monomial of degree of 0 \\
Conxishte2012.2008.2004_PearsonEducation_Inc._n
\end{tabular}

\section*{Objective 2}

Identify each polynomial as a monomial, binomial, trinomial, or none of these. Also, give the degree.

Add and subtract polynomials.
\[
\begin{aligned}
& \begin{array}{c}
\text { CLASSROOM } \\
\text { EXAMPLE } 3
\end{array} \\
& \text { Combine like terms. } \\
& \begin{aligned}
2 z^{4}+3 x^{4}+z^{4}-9 x^{4} & \text { Solution: } \\
& =2 z^{4}+z^{4}+3 x^{4}-9 x^{4} \\
& =3 z^{4}-6 x^{4} \\
3 t+4 r-4 t-8 r & =3 t-4 t+4 r-8 r \\
& =-t-4 r
\end{aligned}
\end{aligned}
\]
\(5 x^{2} z-3 x^{3} z^{2}+8 x^{2} z+12 x^{3} z^{2}\)
\(=5 x^{2} z+8 x^{2} z-3 x^{3} z^{2}+12 x^{3} z^{2}\)
\(=13 x^{2} z+9 x^{3} z^{2}\)
Add and subtract polynomials.

\section*{Adding Polynomials}

To add two polynomials, combine like terms.

Only like terms can be combined.
```

CLASSROOM Adding Polynomials
Add.
(-5p\mp@subsup{p}{}{3}+6\mp@subsup{p}{}{2})+(8\mp@subsup{p}{}{3}-12\mp@subsup{p}{}{2})
Solution:

```

Use commutative and associative properties to rearrange the polynomials so that like terms are together. Then use the distributive property to combine like terms.
\[
\begin{aligned}
& =-5 p^{3}+8 p^{3}+6 p^{2}-12 p^{2} \\
& =3 p^{3}-6 p^{2}
\end{aligned}
\]
\[
\begin{array}{ll}
-6 r^{5}+2 r^{3}-r^{2} & \text { You can add polynomials vertically by placing } \\
8 r^{5}-2 r^{3}+5 r^{2} & \text { like terms in columns. }
\end{array}
\]

\subsection*{5.3 Polynomial Functions, Graphs and Composition}

Objectives
1 Recognize and evaluate polynomial functions.
2 Use a polynomial function to model data.
3 Add and subtract polynomial functions.
4 Find the composition of functions.
5 Graph basic polynomial functions.

Recognize and evaluate polynomial functions.
Polynomial Function
A polynomial function of degree \(\boldsymbol{n}\) is defined by
\[
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}
\]
for real numbers \(a_{n}, a_{n-1}, \ldots a_{1}\), and \(a_{0}\), where \(a_{n} \neq 0\) and \(n\) is a whole number.


\section*{CLASSROOM EXAMPLE 2}

The number of students enrolled in public schools (grades pre-K-12) in the United States during the years 1990 through 2006 can be modeled by the polynomial function defined by
\[
P(x)=-0.01774 x^{2}+0.7871 x+41.26
\]
where \(x=0\) corresponds to the year 1990, \(x=1\) corresponds to 1991, and so on, and \(P(x)\) is in millions. Use this function to approximate the number of public school students in 2000.
(Source: Department of Education.)
Solution:
\(P(x)=-0.01774 x^{2}+0.7871 x+41.26\)
\(P(10)=-0.01774(10)^{2}+0.7871(10)+41.26\)
\(P(10)=-1.774+7.87+41.26\)
\(=47.4\) million students

\section*{Add and subtract polynomial functions.}

The operations of addition, subtraction, multiplication, and division are also defined for functions.

For example, businesses use the equation "profit equals revenue minus cost," written in function notation as

where \(x\) is the number of items produced and sold.

\section*{Add and subtract polynomial functions.}

\section*{Adding and Subtracting Functions}
If \(f(x)\) and \(g(x)\) define functions, then
\[
(f+g)(x)=f(x)+g(x) \quad \text { Sum function }
\]
and
\[
(f-g)(x)=f(x)-g(x) . \quad \text { Difference function }
\]
In each case, the domain of the new function is the intersection of the domains of \(f(x)\) and \(g(x)\).



\section*{Find the composition of functions.}

\section*{Composition of Functions}

If \(f\) and \(g\) are functions, then the composite function, or
composition, of \(g\) and \(f\) is defined by
\[
(g \circ f)(x)=g(f(x))
\]
for all \(x\) in the domain of \(f\) such that \(f(x)\) is in the domain of \(g\).


\section*{Graph basic polynomial functions.}

The simplest polynomial function is the identity function, defined by \(f(x)=x\) and graphed below. This function pairs each real number with itself.
\begin{tabular}{|c|c|}
\hline \(\boldsymbol{x}\) & \(\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}\) \\
\hline-2 & -2 \\
\hline-1 & -1 \\
\hline 0 & 0 \\
\hline 1 & 1 \\
\hline 2 & 2 \\
\hline
\end{tabular}


The domain (set of \(x\)-values) is all real numbers, \((-\infty, \infty)\).
The range (set of \(y\)-values) is also \((-\infty, \infty)\).

\section*{Graph basic polynomial functions.}

Another polynomial function, defined by \(f(x)=x^{2}\) and graphed below, is the squaring function. For this function, every real number is paired with its square. The graph of the squaring function is a parabola.
\begin{tabular}{|c|c|}
\hline \(\boldsymbol{x}\) & \(\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}^{2}\) \\
\hline-2 & 4 \\
\hline-1 & 1 \\
\hline 0 & 0 \\
\hline 1 & 1 \\
\hline 2 & 4 \\
\hline
\end{tabular}


The domain is all real numbers, \((-\infty, \infty)\).
The range is \([0, \infty)\).

\section*{Graph basic polynomial functions.}

The cubing function is defined by \(f(x)=x^{3}\) and graphed below. This function pairs every real number with its cube.
\begin{tabular}{|c|c|}
\hline \(\boldsymbol{x}\) & \(\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}^{\mathbf{3}}\) \\
\hline-2 & -8 \\
\hline-1 & -1 \\
\hline 0 & 0 \\
\hline 1 & 1 \\
\hline 2 & 8 \\
\hline
\end{tabular}


The domain and range are both \((-\infty, \infty)\).

```

5.4 Multiplying Polynomials
Objectives
1 Multiply terms.
2 Multiply any two polynomials.
3 Multiply binomials.
4 Find the product of the sum and difference of two terms.
5 Find the square of a binomial.
6 Multiply polynomial functions.

```

Find the product.
\(8 k^{3} y(9 k y)\)
Solution:
\(=(8)(9) k^{3} \cdot k^{1} \cdot y^{1} \cdot y^{1}\)
\(=72 k^{3+1} y^{1+1}\)
\(=72 k^{4} y^{2}\)

\section*{Objective 2}

Multiply any two polynomials.

\begin{tabular}{|c|c|c|}
\hline CLASSROOM EXAMPLE 2 & Multiplying Polynomials (con & \\
\hline \multicolumn{3}{|l|}{Find the product.} \\
\hline \multicolumn{3}{|l|}{\((2 k-5 m)(3 k+2 m)\)} \\
\hline \multicolumn{3}{|l|}{Solution:} \\
\hline \multicolumn{3}{|l|}{\(=(2 k-5 m)(3 k)+(2 k-5 m)(2 m)\)} \\
\hline \multicolumn{3}{|l|}{\(=2 k(3 k)+(-5 m)(3 k)+(2 k)(2 m)+(-5 m)(2 m)\)} \\
\hline \multicolumn{3}{|l|}{\(=6 k^{2}-15 k m+4 k m-10 m^{2}\)} \\
\hline \multicolumn{3}{|l|}{\(=6 k^{2}-11 \mathrm{~km}-10 \mathrm{~m}^{2}\)} \\
\hline
\end{tabular}



\section*{Multiply binomials.}

When working with polynomials, the products of two binomials occurs repeatedly. There is a shortcut method for finding these products.

First Terms
Outer Terms
Inner Terms
Last Terms
\begin{tabular}{|c|c|}
\hline CLASSROOM EXAMPLE 4 & Using the FOIL Method \\
\hline \multicolumn{2}{|l|}{Use the FOIL method to find each product.} \\
\hline & Solution: \\
\hline \multirow[t]{4}{*}{\((5 r-3)(2 r-5)\)} & F O I L \\
\hline & \(=(5 r)(2 r)+(5 r)(-5)+(-3)(2 r)+(-3)(-5)\) \\
\hline & \(=10 r^{2}-25 r-6 r+15\) \\
\hline & \(=10 r^{2}-31 r+15\) \\
\hline \multirow[t]{4}{*}{\((4 y-z)(2 y+3 z)\)} & F O I L \\
\hline & \(=(4 y)(2 y)+(4 y)(3 z)+(-z)(2 y)+(-z)(3 z)\) \\
\hline & \(=8 y^{2}+12 y z-2 y z-3 z^{2}\) \\
\hline & \(=8 y^{2}+10 y z-3 z^{2}\) \\
\hline
\end{tabular}

\section*{Objective 4}

Find the product of the sum and difference of two terms.

Find the product of the sum and difference of two terms.
Product of the Sum and Difference of Two Terms
The product of the sum and difference of the two terms \(x\) and \(y\) is the difference of the squares of the terms.
\[
(x+y)(x-y)=x^{2}-y^{2}
\]

\section*{Find the square of a binomial.}

\section*{Square of a Binomial}

The square of a binomial is the sum of the square of the first term twice the product of the two terms, and the square of the last term.
\[
\begin{aligned}
& (x+y)^{2}=x^{2}+2 x y+y^{2} \\
& (x-y)^{2}=x^{2}-2 x y+y^{2}
\end{aligned}
\]

Find each product
Solution:
\((t+9)^{2} \quad=t^{2}+2 \cdot t \cdot 9+9^{2}\)
\(=t^{2}+18 t+81\)
\((2 m+5)^{2} \quad=(2 m)^{2}+2(2 m)(5)+5^{2}\)
\(=4 m^{2}+20 m+25\)
\((3 k-2 n)^{2}=(3 k)^{2}-2(3 k)(2 n)+(2 n)^{2}\)
\(=9 k^{2}-12 k n+4 n^{2}\)

\section*{Objective 6}
\[
=(x-y)^{2}-z^{2}
\]
\[
=x^{2}-2(x)(y)+y^{2}-z^{2}
\]
\[
=x^{2}-2 x y+y^{2}-z^{2}
\]
\((p+2 q)^{3}=(p+2 q)^{2}(p+2 q)\)
\(=\left(p^{2}+4 p q+4 q^{2}\right)(p+2 q)\)
\(=p^{3}+4 p^{2} q+4 p q^{2}+2 p^{2} q+8 p q^{2}+8 q^{3}\)
\(=p^{3}+6 p^{2} q+12 p q^{2}+8 q^{3}\)
\((x+2)^{4}=(x+2)^{2}(x+2)^{2}\)
\(=\left(x^{2}+4 x+4\right)\left(x^{2}+4 x+4\right)\)
\(=x^{4}+4 x^{3}+4 x^{2}+4 x^{3}+16 x^{2}+16 x+4 x^{2}+16 x+16\)
\(=x^{4}+8 x^{3}+24 x^{2}+32 x+16\)
Multiply polynomial functions.

Multiply polynomial functions.

Slide 5.4. 18

> CLASSROOM
> EXAMPLE 8
> For \(f(x)=3 x+1\) and \(g(x)=2 x-5\), find ( \(f g\) ) ( \(x\) ) and (fg) (2).
> Solution:
> \((f g)(x)=f(x) \cdot g(x)\).
> \(=(3 x+1)(2 x-5)\)
> \(=6 x^{2}-15 x+2 x-5\)
> \(=6 x^{2}-13 x-5\)
> \((f g)(2)=6(2)^{2}-13(2)-5\)
> \(=24-26-5\)
> \(=-7\)

\section*{5.5) Dividing Polynomials}

Objectives
1 Divide a polynomial by a monomial.
2 Divide a polynomial by a polynomial of two or more terms.

3 Divide polynomial functions.

\section*{Divide a polynomial by a monomial.}

\section*{Dividing a Polynomial by a Monomial}

To divide a polynomial by a monomial, divide each term in the polynomial by the monomial, and then write each quotient in lowest terms

\(\begin{gathered}\text { CLASSROOM } \\ \text { EXAMPLE } 1\end{gathered}\)
Divide.
\(\begin{aligned} \frac{4 x^{4}-7 x^{3}+12 x^{2}}{4 x^{3}} & \text { Dividing a Polynomial by a Monomial (cont'd) } \\ \text { Solution: } & =\frac{4 x^{4}}{4 x^{3}}-\frac{7 x^{3}}{4 x^{3}}+\frac{12 x^{2}}{4 x^{3}} \\ & =x-\frac{7}{4}+\frac{3}{x}\end{aligned}\)

Check: \(\quad 4 x^{3}\left(x-\frac{7}{4}+\frac{3}{x}\right)=4 x^{4}-7 x^{3}+12 x^{2}\)

\[
\begin{aligned}
& \begin{array}{c}
\text { CLASSROOM } \\
\text { EXAMPLE } 1
\end{array} \\
& \text { Divide. } \\
& \begin{aligned}
& \frac{6 a^{2} b^{4}-9 a^{3} b^{3}+4 a^{3} b^{4}}{a^{3} b^{4}} \\
& \text { Solution: }=\frac{6 a^{2} b^{4}}{a^{3} b^{4}}-\frac{9 a^{3} b^{3}}{a^{3} b^{4}}+\frac{4 a^{3} b^{4}}{a^{3} b^{4}} \\
&=\frac{6}{a}-\frac{9}{b}+4
\end{aligned}
\end{aligned}
\]
\(\frac{2 k^{2}+17 k+30}{k+6}\)

Solution:
Write the problem as if dividing whole numbers, make sure that both polynomials are written in descending powers of the variables.
\[
k + 6 \longdiv { 2 k ^ { 2 } + 1 7 k + 3 0 }
\]


\begin{tabular}{c|l} 
CLASSROOM & Dividing a Polynomial with a Missing Term \\
EXAMPLE 3 &
\end{tabular}
Divide \(4 x^{3}+3 x-8\) by \(x+2\).

\section*{Solution:}

Write the polynomials in descending order of the powers of the variables.

Add a term with 0 coefficient as a placeholder for the missing \(x^{2}\) term.
\[
x + 2 \longdiv { 4 x ^ { 3 } + 0 x ^ { 2 } + 3 x - 8 } \quad \text { Missing term }
\]

Remember to include remainder \(\frac{\text { as part of the answer. Don't forget to }}{}\)
insert a plus sign between the polynomial quotient and this fraction.

```

CLASSROOM Dividing a Polynomial with a Missing Term
EXAMPLE 4
Divide 4m}4-23\mp@subsup{m}{}{3}+16\mp@subsup{m}{}{2}-4m-1 by m\mp@subsup{m}{}{2}-5
Solution:
Write the polynomial m

```

\[
\begin{aligned}
& \begin{array}{c}
\text { CLASSROOM } \\
\text { EXAMPLE } 4
\end{array} \\
& \begin{array}{c}
\text { Dividing a Polynomial with a Missing Term (cont'd) } \\
m ^ { 2 } - 5 m \longdiv { 4 m ^ { 2 } - 3 m + 1 } + 1 \\
\frac{4 m^{4}-23 m^{3}+16 m^{2}-4 m-1}{-3 m^{3}+16 m^{2}} \\
-\frac{3 m^{3}+15 m^{2}}{m^{2}-4 m} \\
\text { Remainder } \frac{m^{2}-5 m}{\longrightarrow}
\end{array} \\
& 4 m^{2}-3 m+1+\frac{m-1}{m^{2}-5 m} \\
& \text { Slide 5.5-11 }
\end{aligned}
\]

CLASSROOM
EXAMPLE 5
Divide \(8 x^{3}+21 x^{2}-2 x-24\) by \(4 x+8\).
Solution:
\[
\begin{aligned}
& 2 x^{2}+\frac{5}{4} x-3 \\
& 4 x + 8 \longdiv { 8 x ^ { 3 } + 2 1 x ^ { 2 } - 2 x - 2 4 } \\
& \frac{8 x^{3}+16 x^{2}}{5 x^{2}-2 x} \\
& \frac{5 x^{2}+10 x}{-12 x-24} \\
& \frac{-12 x-24}{0} \text { The solution is: } \\
& 2 x^{2}+\frac{5}{4} x-3
\end{aligned}
\]

\section*{Divide polynomial functions.}

\section*{Dividing Functions}

If \(f(x)\) and \(g(x)\) define functions, then
\[
\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)} . \quad \text { Quotient function }
\]

The domain of the quotient function is the intersection of the domains of \(f(x)\) and \(g(x)\), excluding any values of \(x\) for which \(g(x)=0\).

\section*{CLASSROOM Dividing Polynomial Functions}

For \(f(x)=2 x^{2}+17 x+30\) and \(g(x)=2 x+5\),
find \(\left(\frac{f}{g}\right)(x)\) and \(\left(\frac{f}{g}\right)(-1)\).
Solution:
From previous Example 2, we conclude that \((f / g)(x)=x+6\), provided the denominator \(2 x+5\), is not equal to zero
\(x \neq-\frac{5}{2}\)
\(\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}=\frac{2 x^{2}+17 x+30}{2 x+5}=x+6\)
\(\left(\frac{f}{g}\right)(-1)=-1+6=5\)
Slide 5.5-14```

