Short Course On Phase-Locked Loops and Their Applications Day 1, AM Lecture

Integer-N Frequency Synthesizers

Michael Perrott August 11, 2008

Copyright © 2008 by Michael H. Perrott All rights reserved.

What is a Phase-Locked Loop (PLL)?

- VCO efficiently provides oscillating waveform with variable frequency
- PLL synchronizes VCO frequency to input reference frequency through feedback
 - Key block is phase detector
 - Realized as digital gates that create pulsed signals

Integer-N Frequency Synthesizers

- Use digital counter structure to divide VCO frequency
 - Constraint: must divide by integer values
- Use PLL to synchronize reference and divider output

Output frequency is digitally controlled

M.H. Perrott

Integer-N Frequency Synthesizers in Wireless Systems

Design Issues: low noise, fast settling time, low power M.H. Perrott

Outline of Integer-N Frequency Synthesizer Talk

- Overview of PLL Blocks
- System Level Modeling
 - Transfer function analysis
 - Nonlinear behavior
 - Type I versus Type II systems
- Noise Analysis

Popular VCO Structures

- LC Oscillator: low phase noise, large area
- Ring Oscillator: easy to integrate, higher phase noise

Model for Voltage to Frequency Mapping of VCO

Model for Voltage to Phase Mapping of VCO

- Time-domain frequency relationship (from previous slide) $F_{out}(t) = K_v v(t)$
- Time-domain phase relationship

$$\Phi_{out}(t) = \int_{-\infty}^{t} 2\pi F_{out}(\tau) d\tau = \int_{-\infty}^{t} 2\pi K_v v(\tau) d\tau$$

Intuition of integral relationship between frequency and phase:

Frequency-Domain Model for VCO

Time-domain relationship (from previous slide)

$$\Phi_{out}(t) = \int_{-\infty}^{t} 2\pi K_v v(\tau) d\tau$$

Corresponding frequency-domain model

Divider

Implementation

M.H. Perrott

Frequency-Domain Model of Divider

Time-domain relationship between VCO phase and divider output phase (from previous slide)

$$\Phi_{div}(t) = \frac{1}{N} \Phi_{out}(t)$$

 Corresponding frequency-domain model (same as Laplace-domain)

Phase Detector (PD)

- XOR structure
 - Average value of error pulses corresponds to phase error
 - Loop filter extracts the average value and feeds to VCO

Modeling of XOR Phase Detector

- Average value of pulses is extracted by loop filter
 - Look at detector output over one cycle:

Equation:

$$avg\{e(t)\} = -1 + 2\frac{W}{T/2}$$

Relate Pulse Width to Phase Error

Two cases:

Overall XOR Phase Detector Characteristic

M.H. Perrott

Frequency-Domain Model of XOR Phase Detector

- Assume phase difference confined within 0 to π radians
 - Phase detector characteristic looks like a constant gain element

Corresponding frequency-domain model

e(t)

2

π

Loop Filter

- Consists of a lowpass filter to extract average of phase detector error pulses
- Frequency-domain model

First order example

$$\Rightarrow H(s) = \frac{1}{1 + sR_1C_1}$$

Overall Linearized PLL Frequency-Domain Model

Combine models of individual components

M.H. Perrott

Open Loop versus Closed Loop Response

Frequency-domain model

Define A(f) as open loop response

$$A(f) = \frac{2}{\pi} H(f) \left(\frac{K_v}{jf}\right) \frac{1}{N}$$

- Define G(f) as a parameterizing closed loop function
 - More details later in this lecture

$$G(f) = \frac{A(f)}{1 + A(f)}$$

Classical PLL Transfer Function Design Approach

- 1. Choose an appropriate topology for H(f)
 - Usually chosen from a small set of possibilities
- 2. Choose pole/zero values for H(f) as appropriate for the required filtering of the phase detector output
 - Constraint: set pole/zero locations higher than desired PLL bandwidth to allow stable dynamics to be possible
- 3. Adjust the open-loop gain to achieve the required bandwidth while maintaining stability
 - Plot gain and phase bode plots of A(f)
 - Use phase (or gain) margin criterion to infer stability

Overall PLL block diagram

Loop filter

Closed Loop Poles Versus Open Loop Gain

Higher open loop gain leads to an increase in Q of closed loop poles
M.H. Perrott

Corresponding Closed Loop Response

- Increase in open loop gain leads to
 - Peaking in closed loop frequency response
 - Ringing in closed loop step response

The Impact of Parasitic Poles

- Loop filter and VCO may have additional parasitic poles and zeros due to their circuit implementation
- We can model such parasitics by including them in the loop filter transfer function
- Example: add two parasitic poles to first order filter

$$\Rightarrow H(f) = \left(\frac{1}{1+jf/f_1}\right) \left(\frac{1}{1+jf/f_2}\right) \left(\frac{1}{1+jf/f_3}\right)$$

Closed Loop Poles Versus Open Loop Gain

Corresponding Closed Loop Response

- Increase in open loop gain now eventually leads to instability
 - Large peaking in closed loop frequency response
 - Increasing amplitude in closed loop step response

Response of PLL to Divide Value Changes

- Change in output frequency achieved by changing the divide value
- Classical approach provides no direct model of impact of divide value variations
 - Treat divide value variation as a perturbation to a linear system
 - PLL responds according to its closed loop response

Response of an Actual PLL to Divide Value Change

Example: Change divide value by one

Synthesizer Response To Divider Step

PLL responds according to closed loop response!

What Happens with Large Divide Value Variations?

PLL temporarily loses frequency lock (cycle slipping occurs)

• Why does this happen?

M.H. Perrott

Recall Phase Detector Characteristic

- To simplify modeling, we assumed that we always operated in a confined phase range (0 to π)
 - Led to a simple PD model
- Large perturbations knock us out of that confined phase range
 - PD behavior varies depending on the phase range it happens to be in

Cycle Slipping

- Consider the case where there is a frequency offset between divider output and reference
 - We know that phase difference will accumulate

Resulting ramp in phase causes PD characteristic to be swept across its different regions (cycle slipping)

Impact of Cycle Slipping

- Loop filter averages out phase detector output
- Severe cycle slipping causes phase detector to alternate between regions very quickly
 - Average value of XOR characteristic can be close to zero
 - PLL frequency oscillates according to cycle slipping
 - In severe cases, PLL will not re-lock
 - PLL has finite frequency lock-in range!

Back to PLL Response Shown Previously

PLL output frequency indeed oscillates

Eventually locks when frequency difference is small enough

How do we extend the frequency lock-in range?

M.H. Perrott

Phase Frequency Detectors (PFD)

Example: Tristate PFD

Tristate PFD Characteristic

Calculate using similar approach as used for XOR phase detector

- Note that phase error characteristic is asymmetric about zero phase
 - Key attribute for enabling frequency detection

PFD Enables PLL to Always Regain Frequency Lock

- Asymmetric phase error characteristic allows positive frequency differences to be distinguished from negative frequency differences
 - Average value is now positive or negative according to sign of frequency offset
 - PLL will always relock

Another PFD Structure

XOR-based PFD

XOR-based PFD Characteristic

Calculate using similar approach as used for XOR phase detector avg{e(t)}

- Phase error characteristic asymmetric about zero phase
 - Average value of phase error is positive or negative during cycle slipping depending on sign of frequency error

Linearized PLL Model With PFD Structures

- Assume that when PLL in lock, phase variations are within the linear range of PFD
 - Simulate impact of cycle slipping if desired (do not include its effect in model)
- Same frequency-domain PLL model as before, but PFD gain depends on topology used

Type I versus Type II PLL Implementations

- Type I: one integrator in PLL open loop transfer function
 - VCO adds on integrator
 - Loop filter, H(f), has no integrators
- Type II: two integrators in PLL open loop transfer function
 - Loop filter, H(f), has one integrator

VCO Input Range Issue for Type I PLL Implementations

DC output range of gain block versus integrator

- Issue: DC gain of loop filter often small and PFD output range is limited
 - Loop filter output fails to cover full input range of VCO

Options for Achieving Full Range Span of VCO

- Type I
 - Add a D/A converter to provide coarse tuning
 - Adds power and complexity
 - Steady-state phase error inconsistently set
- Type II
 - Integrator automatically provides DC level shifting
 - Low power and simple implementation
 - Steady-state phase error always set to zero

A Common Loop Filter for Type II PLL Implementation

- Use a charge pump to create the integrator
 - Current onto a capacitor forms integrator
 - Add extra pole/zero using resistor and capacitor
- Gain of loop filter can be adjusted according to the value of the charge pump current
- Example: lead/lag network

Charge Pump Implementations

Switch currents in and out:

I_{out}(t)

e(t)

Modeling of Loop Filter/Charge Pump

- Charge pump is gain element
- Loop filter forms transfer function

Example: lead/lag network from previous slide

$$H(f) = \left(\frac{1}{sC_{sum}}\right) \frac{1 + jf/f_z}{1 + jf/f_p}$$

$$C_{sum} = C_1 + C_2, \quad f_z = \frac{1}{2\pi R_1 C_2}, \quad f_p = \frac{C_1 + C_2}{2\pi R_1 C_1 C_2}$$

Overall PLL block diagram

Loop filter

$$H(f) = \left(\frac{1}{sC_{sum}}\right) \frac{1 + jf/f_z}{1 + jf/f_p}$$

Set open loop gain to achieve adequate phase margin

Set f_z lower than and f_p higher than desired PLL bandwidth

Closed Loop Poles Versus Open Loop Gain

Open loop gain cannot be too low or too high if reasonable phase margin is desired

M.H. Perrott

Impact of Parasitics When Lead/Lag Filter Used

We can again model impact of parasitics by including them in loop filter transfer function

Example: include two parasitic poles with the lead/lag transfer function

$$H(f) = \left(\frac{1}{sC_{sum}}\right) \frac{1 + jf/f_z}{1 + jf/f_p} \left(\frac{1}{1 + jf/f_{p2}}\right) \left(\frac{1}{1 + jf/f_{p3}}\right)$$

Closed Loop Poles Versus Open Loop Gain

Closed loop response becomes unstable if open loop gain is too high

M.H. Perrott

Negative Issues For Type II PLL Implementations

Parasitic pole/zero pair causes

- Peaking in the closed loop frequency response
 - A big issue for CDR systems, but not too bad for wireless
- Extended settling time due to parasitic "tail" response
 - Bad for wireless systems demanding fast settling time

Summary of Integer-N Dynamic Modeling

- Linearized models can be derived for each PLL block
 - Resulting transfer function model of PLL is accurate for small perturbations in PLL
 - Linear PLL model breaks down for large perturbations on PLL, such as a large step change in frequency
 - Cycle slipping is key nonlinear effect
- Key issues for designing PLL are
 - Achieve stable operation with desired bandwidth
 - Allow full range of VCO with a simple implementation
 - Type II PLL is very popular to achieve this

Noise Analysis of Integer-N Synthesizers

Frequency Synthesizer Noise in Wireless Systems

Synthesizer noise has a negative impact on system

- Receiver lower sensitivity, poorer blocking performance
- Transmitter increased spectral emissions (output spectrum must meet a mask requirement)
- **Noise is characterized in frequency domain**

Noise Modeling for Frequency Synthesizers

- PLL has an impact on VCO noise in two ways
 - Adds extrinsic noise from various PLL circuits
 - Highpass filters VCO noise through PLL feedback dynamics
- Focus on modeling the above based on phase deviations
 - Simpler than dealing directly with PLL sine wave output

Phase Deviation Model for Noise Analysis

Model the impact of noise on instantaneous phase

Relationship between PLL output and instantaneous phase

$$out(t) = 2\cos(2\pi f_o t + \Phi_{out}(t))$$

Output spectrum (we will derive this in a later lecture)

$$S_{out}(f) = S_{sin}(f) + S_{sin}(f) * S_{\Phi_{out}}$$

Phase Noise Versus Spurious Noise

Described as a spectral density relative to carrier power

$$L(f) = 10 \log(S_{\Phi_{out}}(f)) dBc/Hz$$

Described as tone power relative to carrier power

$$20\log\left(rac{d_{spur}}{2f_{spur}}
ight)~ ext{dBc}$$

Sources of Noise in Frequency Synthesizers

- Extrinsic noise sources to VCO
 - Reference/divider jitter and reference feedthrough
 - Charge pump noise

M.H. Perrott

Modeling the Impact of Noise on Output Phase of PLL

- Determine impact on output phase by deriving transfer function from each noise source to PLL output phase
 - There are a lot of transfer functions to keep track of!

Simplified Noise Model

Refer all PLL noise sources (other than the VCO) to the PFD output

PFD-referred noise corresponds to the sum of these noise sources referred to the PFD output

Impact of PFD-referred Noise on Synthesizer Output

Transfer function derived using Black's formula

$$\frac{\Phi_{out}}{e_n} = \frac{I_{cp}H(f)K_v/(jf)}{1 + \alpha/(2\pi)I_{cp}H(f)K_v/(jf)(1/N)}$$

Impact of VCO-referred Noise on Synthesizer Output

Transfer function again derived from Black's formula

$$\frac{\Phi_{out}}{\Phi_{vn}} = \frac{1}{1 + \alpha/(2\pi)I_{cp}H(f)K_v/(jf)(1/N)}$$

A Simpler Parameterization for PLL Transfer Functions

M.H. Perrott

Parameterize Noise Transfer Functions in Terms of G(f)

PFD-referred noise

$$\frac{\Phi_{out}}{e_n} = \frac{I_{cp}H(f)K_v/(jf)}{1 + \alpha/(2\pi)I_{cp}H(f)K_v/(jf)(1/N)}$$
$$= \frac{2\pi}{\alpha}N\frac{\alpha/(2\pi)I_{cp}H(f)K_v/(jf)(1/N)}{1 + \alpha/(2\pi)I_{cp}H(f)K_v/(jf)(1/N)}$$
$$= \frac{2\pi}{\alpha}N\frac{A(f)}{1 + A(f)} = \frac{2\pi}{\alpha}NG(f)$$

VCO-referred noise

$$\frac{\Phi_{out}}{\Phi_{vn}} = \frac{1}{1 + \alpha/(2\pi)I_{cp}H(f)K_v/(jf)(1/N)}$$
$$= \frac{1}{1 + A(f)} = 1 - \frac{A(f)}{1 + A(f)} = 1 - G(f)$$

M.H. Perrott

Parameterized PLL Noise Model

- PFD-referred noise is lowpass filtered
- VCO-referred noise is highpass filtered
- Both filters have the same transition frequency values
 - Defined as f_o

Impact of PLL Parameters on Noise Scaling

PFD-referred noise is scaled by square of divide value and inverse of PFD gain

High divide values lead to large multiplication of this noise

VCO-referred noise is not scaled (only filtered) M.H. Perrott

Optimal Bandwidth Setting for Minimum Noise

- Optimal bandwidth is where scaled noise sources meet
 - Higher bandwidth will pass more PFD-referred noise
 - Lower bandwidth will pass more VCO-referred noise

Resulting Output Noise with Optimal Bandwidth

- PFD-referred noise dominates at low frequencies
 - Corresponds to close-in phase noise of synthesizer
- VCO-referred noise dominates at high frequencies
 - Corresponds to far-away phase noise of synthesizer

Analysis of Charge Pump Noise Impact

We can refer charge pump noise to PFD output by simply scaling it by 1/I_{cp}

$$\frac{\Phi_{out}}{I_{cpn}} = \left(\frac{1}{I_{cp}}\right) \frac{\Phi_{out}}{e_n} = \left(\frac{1}{I_{cp}}\right) \frac{2\pi}{\alpha} NG(f)$$

Calculation of Charge Pump Noise Impact

Contribution of charge pump noise to overall output noise

$$S_{\Phi_{out}}(f) = \left(\frac{1}{I_{cp}}\right)^2 \left(\frac{2\pi}{\alpha}N\right)^2 |G(f)|^2 S_{I_{cpn}}(f) + \text{other sources}$$

Need to determine impact of I_{cp} on S_{Icpn}(f)

M.H. Perrott

Impact of Transistor Current Value on its Noise

- Charge pump noise will be related to the current it creates as $S_{I_{cpn}}(f) \propto \frac{\overline{I_d^2}}{\Delta f} = 4kT\gamma g_{do}$
- Recall that g_{do} is the channel resistance at zero V_{ds}
 - At a fixed current density, we have

$$g_{do} \propto W \propto I_d \Rightarrow \overline{I_d^2} \propto I_d$$

Impact of Charge Pump Current Value on Output Noise

Recall

$$S_{\Phi_{out}}(f) = \left(\frac{1}{I_{cp}}\right)^2 \left(\frac{2\pi}{\alpha}N\right)^2 |G(f)|^2 S_{I_{cpn}}(f) + \text{other sources}$$

Given previous slide, we can say

$$S_{I_{cpn}}(f) \propto I_{cp}$$

- Assumes a fixed current density for the key transistors in the charge pump as I_{cp} is varied
- Therefore

$$S_{\Phi_{out}}(f) \Big|_{ ext{charge pump}} \propto rac{1}{I_{cp}}$$

- Want high charge pump current to achieve low noise
- Limitation set by power and area considerations

Impact of Synthesizer Noise on Transmitters

- Synthesizer noise can be lumped into two categories
 - Close-in phase noise: reduces SNR of modulated signal
 - Far-away phase noise: creates spectral emissions outside the desired transmit channel
 - This is the critical issue for transmitters
Impact of Remaining Portion of Transmitter

Power amplifier

- Nonlinearity will increase out-of-band emission and create harmonic content
- Band select filter
 - Removes harmonic content, but not out-of-band emission

Why is Out-of-Band Emission A Problem?

Near-far problem

- Interfering transmitter closer to receiver than desired transmitter
- Out-of-emission requirements must be stringent to prevent complete corruption of desired signal

Specification of Out-of-Band Emissions

- Maximum radiated power is specified in desired and adjacent channels
 - Desired channel power: maximum is M₀ dBm
 - Out-of-band emission: maximum power defined as integration of transmitted spectral density over bandwidth R centered at midpoint of each channel offset

Calculation of Transmitted Power in a Given Channel

- For simplicity, assume that the spectral density is flat over the channel bandwidth
 - Actual spectral density of signal often varies with frequency over the bandwidth of a given channel
- Resulting power calculation (single-sided S_x(f))

$$P_x = \int_{f_{mid}-R/2}^{f_{mid}+R/2} S_x(f) df \approx RS_x(f_{mid})$$

Express in dB (Note: dB(x) = 10log(x))

$$dB(P_x) \approx dB(RS_x(f_{mid})) = dB(S_x(f_{mid})) + dB(R)$$

Transmitter Output Versus Emission Specification

- Assume a piecewise constant spectral density profile for transmitter
 - Simplifies calculations
- Issue: emission specification is measured over a narrower band than channel spacing
 - Need to account for bandwidth discrepancy when doing calculations

Correction Factor for Bandwidth Mismatch

Calculation of maximum emission in offset channel 1

$$dB(S_{(Y_0+X_1)}R) \leq M_1$$

$$\Rightarrow dB\left(S_{(Y_0+X_1)}W\frac{R}{W}\right) \leq M_1$$

$$\Rightarrow dB\left(S_{(Y_0+X_1)}W\right) + dB\left(\frac{R}{W}\right) \leq M_1$$

$$\Rightarrow Y_0 + X_1 + dB\left(\frac{R}{W}\right) \leq M_1 \Rightarrow X_1 \leq M_1 - Y_0 + dB\left(\frac{W}{R}\right)$$

M.H. Perrott

Condition for Most Stringent Emission Requirement

- Out-of-band emission requirements are function of the power of the signal in the desired channel
 - For offset channel 1 (as calculated on previous slide)

$$X_1 \leq M_1 - Y_0 + \mathsf{dB}\left(\frac{W}{R}\right)$$

Most stringent case is when Y₀ maximum

$$\Rightarrow Y_0 = M_0$$

Table of Most Stringent Emission Requirements

Channel Offset	Mask Power	Emission Requirements (Most Stringent)
0	M ₀ dBm	$Y_0 = M_0$ (for most stringent case)
1	M ₁ dBm	$X_1 = M_1 - M_0 + dB(W/R) dB$
2	M ₂ dBm	$X_2 = M_2 - M_0 + dB(W/R) dB$
3	M ₃ dBm	$X_3 = M_3 - M_0 + dB(W/R) dB$

(Note: $dB(W/R) = 10 \log(W/R)$)

Impact of Synthesizer Noise on Transmitter Output

Consider a spurious tone at a given offset frequency

Convolution with IF signal produces a replica of the desired signal at the given offset frequency

Impact of Synthesizer Phase Noise (Isolated Channel)

Consider phase noise at a given offset frequency

- Convolution with IF signal produces a smeared version of the desired signal at the given offset frequency
 - For simplicity, approximate smeared signal as shown

Impact of Synthesizer Phase Noise (All Channels)

- Partition synthesizer phase noise into channels
 - Required phase noise power (dBc) in each channel is related directly to spectral mask requirements
 - Exception is X₀ set by transmit SNR requirements

Synthesizer Phase Noise Requirements

Impact of channel bandwidth (offset channel 1)

$$dB(S_{X_1}W) \leq X_1 dBc \Rightarrow dB(S_{X_1}) \leq X_1 - dB(W) dBc/Hz$$

Overall requirements (most stringent, i.e., Y₀ = M₀)

Channel Offset	Emission Requirements (Most Stringent)	Maximum Synth. Phase Noise (Most Stringent)	
0	$Y_0 = M_0$	set by required transmit SNR	
1	$X_1 = M_1 - M_0 + dB(W/R) dB$	X ₁ - dB(W) dBc/Hz	
2	$X_2 = M_2 - M_0 + dB(W/R) dB$	X ₂ - dB(W) dBc/Hz	
3	$X_3 = M_3 - M_0 + dB(W/R) dB$	X ₃ -dB(W) dBc/Hz	

M.H. Perrott

Example – DECT Cordless Telephone Standard

- Standard for many cordless phones operating at 1.8 GHz
- Transmitter Specifications
 - Channel spacing: W = 1.728 MHz
 - **•** Maximum output power: $M_o = 250 \text{ mW} (24 \text{ dBm})$
 - Integration bandwidth: R = 1 MHz
 - Emission mask requirements

f_{offset} (MHz)	Emission Mask (dBm)
0	$M_0 = 24 \text{ dBm}$
1.728	$M_1 = -8 \text{ dBm}$
3.456	$M_2 = -30 \text{ dBm}$
5.184	$M_3 = -44 \text{ dBm}$

Using previous calculations with DECT values

Channel Offset	Mask Power	Maximum Synth. Noise Power in Integration BW	Maximum Synth. Phase Noise at Channel Offset	
0	24 dBm	set by required transmit SNR		
1.728 MHz	-8 dBm	X ₁ = -29.6 dBc	-92 dBc/Hz	
3.456 MHz	-30 dBm	X ₂ = -51.6 dBc	-114 dBc/Hz	
5.184 MHz	-44 dBm	X ₃ = -65.6 dBc	-128 dBc/Hz	

Graphical display of phase noise mask

Critical Specification for Phase Noise

- Critical specification is defined to be the one that is hardest to meet with an assumed phase noise rolloff
 - Assume synthesizer phase noise rolls off at -20 dB/decade
 - Corresponds to VCO phase noise characteristic
- For DECT transmitter synthesizer
 - Critical specification is -128 dBc/Hz at 5.184 MHz offset

Receiver Blocking Performance

- Radio receivers must operate in the presence of large interferers (called blockers)
- Channel filter plays critical role in removing blockers
 - Passes desired signal channel, rejects interferers

Impact of Nonidealities on Blocking Performance

- Blockers leak into desired band due to
 - Nonlinearity of LNA and mixer (IIP3)
 - Synthesizer phase and spurious noise

In-band interference cannot be removed by channel filter! M.H. Perrott

89

Quantifying Tolerable In-Band Interference Levels

- Digital radios quantify performance with bit error rate (BER)
 - Minimum BER often set at 1e-3 for many radio systems
 - There is a corresponding minimum SNR that must be achieved

90

Goal: design so that SNR with interferers is above SNR_{min}

Impact of Synthesizer on Blockers

Synthesizer passes desired signal and blocker

Assume blocker is Y dB higher in signal power than desired signal

Impact of Synthesizer Spurious Noise on Blockers

- Spurious tones cause the blocker (Y dB) (and desired) signals to "leak" into other frequency bands
 - In-band interference occurs when spurious tone offset frequency is same as blocker offset frequency
 - Resulting SNR = -X-Y dB with spurious tone (X dBc)

Impact of Synthesizer Phase Noise on Blockers

- Same impact as spurious tone, but blocker signal is "smeared" by convolution with phase noise
 - For simplicity, ignore "smearing" and approximate as shown above

Blocking Performance Analysis (Part 1)

Ignore all out-of-band energy at the IF output

- Assume that channel filter removes it
- Motivation: simplifies analysis

Blocking Performance Analysis (Part 2)

- Consider the impact of blockers surrounding the desired signal with a given phase noise profile
 - SNR_{min} must be maintained
 - Evaluate impact on SNR one blocker at a time

Blocking Performance Analysis (Part 3)

Blocking Performance Analysis (Part 4)

Example – DECT Cordless Telephone Standard

- Receiver blocking specifications
 - Channel spacing: W = 1.728 MHz
 - Power of desired signal for blocking test: -73 dBm
 - Minimum bit error rate (BER) with blockers: 1e-3
 - Sets the value of SNR_{min}
 - Perform receiver simulations to determine SNR_{min}
 - Assume SNR_{min} = 15 dB for calculations to follow
 - Strength of interferers for blocking test

f_{offset} (MHz)	Blocker Power (dBm)	Relative Strength
1.728	-58 dBm	$Y_1 = 15 \text{ dB}$
3.456	-39 dBm	$Y_2 = 34 \text{ dB}$
5.184	-33 dBm	$Y_3 = 40 \text{ dB}$

Synthesizer Phase Noise Requirements for DECT

Channel Offset	Relative Blocking Power	Maximum Synth. Noise Power at Channel Offset	Maximum Synth. Phase Noise at Channel Offset
0	0 dB	X ₀ = -15 dBc	-77 dBc/Hz
1.728 MHz	Y ₁ = 15 dB	X ₁ = -30 dBc	-92 dBc/Hz
3.456 MHz	Y ₂ = 34 dB	X ₂ = -49 dBc	-111 dBc/Hz
5.184 MHz	Y ₃ = 40 dB	X ₃ = -55 dBc	-117 dBc/Hz

M.H. Perrott

Graphical Display of Required Phase Noise Performance

Mark phase noise requirements at each offset frequency

Calculate critical specification for receive synthesizer

Critical specification is -117 dBc/Hz at 5.184 MHz offset

 Lower performance demanded of receiver synthesizer than transmitter synthesizer in DECT applications!

M.H. Perrott

Summary of Noise Analysis of Integer-N Synthesizers

- Key PLL noise sources are
 - VCO noise (we will cover in detail tomorrow)
 - PFD-referred noise
 - Charge pump noise, reference noise, etc.
- Setting of PLL bandwidth has strong impact on noise
 - High PLL bandwidth suppresses VCO noise
 - Low PLL bandwidth suppresses PFD-referred noise
- Noise performance required of PLL depends on application
 - Wireless transmitter: must meek spectral mask
 - Wireless receiver: must suppress blockers and achieve good SNR for received signal