Name: \qquad Date: \qquad Period: \qquad
Integer Operations:

Addition and Subtraction

Vocabulary:

Integers: \qquad

Remember, if no sign is in front of the number, the number is \qquad .

Notes:
When adding two integers with the same sign: \qquad
\qquad
\qquad

Examples:

$52+31$
$-23+(-45)$
$-54+(-78)$

When adding two integers with different signs: \qquad
\qquad
\qquad

Examples:

$52+(-31)$
$-23+45$
$-54+(78)$
$2+(-51)$
$3+(-25)$
$-64+19$

When subtracting two integers: \qquad

What exactly is "Keep, Change, Change?"
Keep: \qquad
Change: \qquad
Change: \qquad

Examples:

42-(-21)
-52-14
5-(19)
-4-(-11)
13-(-25)
$-16-21$

17-(6)
-22-(-5)
-7-(-8)

Name: \qquad Date: \qquad Period: \qquad
Integer Operations:
Addition and Subtraction

Rules for Adding Integers
Rule 1: If the signs are the same then add the numbers. Keep the same sign.
Rule 2: If the signs are different then subtract the smaller number from the larger
number. Keep the sign of the bigger number.

Rules for Subtracting Integers:

The "Keep, Change, Change" Method

The "Keep, Change, Change" method is only used when you are subtracting two numbers and parenthesis surround the second number.

When implementing "Keep, Change, Change," keep the first term, change the subtraction to addition, and change the sign of the second term.

Solve. Show all of your work.
$(-87)-(-31)=$
$84-(-37)=$
$(-43)-71=$
$(-25)-88=$
$(-56)+91=$
$(-39)+47=$
$(-3)+(-71)=$
$52+23=$
$(-61)-26=$

Solve. Show all of your work.
$9+(-6)=$
$8-(-2)=$
$(-2)+8=$
$10+(-5)=$
$8-5=$
$(-3)+7=$
$3-(-6)=$
$(-2)-(-7)=$
$(-7)+10=$
$5-7=$
$(-4)+(-5)=$
$8-4=$
$(-9)+2=$
$(-6)+(-2)=$
$(-3)+1=$
$2-(-5)=$
$3+(-1)=$
$5+(-5)=$
$(-7)-4=$
$6+(-10)=$
$(-9)+(-1)=$

Challenge:

Solve the following. Be sure to use your rules!

$$
-9+2+(-5)+6-(-11) \quad-3-2+(-5)+8+(-9)
$$

Name: \qquad Date: \qquad Period: \qquad
Integer Operations:
Addition and Subtraction

Rules for Adding Integers

Rule 1: If the signs are the same then add the numbers. Keep the same sign.

Example: $23+15$
Note: Both numbers are positive and therefore have the same sign. Since the signs are the same, we add the two numbers.

Add: $23+15=38$
Note: However, we must keep the same sign. Since both addends are positive, your answer is also positive.

Example: - $45+(-23)$
Note: Both numbers are negative and therefore have the same sign. Since the signs are the same, we add the two numbers.

Add: $45+23=68$
Note: Keep the same sign. Since both numbers are negative, your answer is also negative.

Answer: 38
Answer: - 68

Rule 2: If the signs are different then subtract the smaller number from the bigger number. Keep the sign of the bigger number.

Example: $-13+25$
Note: Both numbers have different signs. Subtract the smaller number from the bigger number.

Subtract: $25-13=12$

Note: The answer has the same sign as the larger number. In this case, the larger number is positive. Therefore, the answer will also be positive.

Answer: 12

Example: $48+(-79)$
Note: Both numbers have different signs. Subtract the smaller number from the bigger number.

Subtract: $79-48=31$

Note: The answer has the same sign as the larger number. In this case, the larger number is negative. Therefore, the answer will also be negative.

Answer: - 31

Rules for Subtracting Integers The "Keep, Change, Change" Method	
When subtracting two integers, use "Keep, Change, Change" to keep the first term, change the subtraction to addition, and change the sign of the second term.	
Example: - 2 - (+ 6)	Example: - 4- (-8)
Keep the - 2 .	Keep the - 4.
Change the - to a +	Change the first - to a +
Change the + to a -	Change the second - to a +
Rewrite: - $2+(-6)$	Rewrite: - $4+(+8)$
Note that you are now adding two negatives. Follow Rule 1 to solve.	Note that you are now adding two numbers with different signs. Follow Rule 2 to solve.

Find each sum and difference. If subtracting, first rewrite the problem using the "Keep, Change, Change" method, then solve.
$-16+8$
-9-19
-4-(-16)
$3+(-9)$
\qquad
\qquad
\qquad
$-19-5$
11-(-8)
$-17+7$
$14+(-11)$

Name: \qquad Date: \qquad Period: \qquad
Integer Operations:

Multiplication and Division

Notes:

When multiplying integers: \qquad
\qquad
\qquad
\qquad

When dividing integers: \qquad
\qquad
\qquad
\qquad

How do I know if my answer should be positive or negative?

If I multiply two integers with the same sign, the answer is \qquad .

If I multiply two integers with different signs, the answer is \qquad .

If I divide two integers with the same sign, the answer is \qquad .

If I divide two integers with different signs, the answer is \qquad .

Examples:

positive \div positive $=$ \qquad positive \times negative $=$ \qquad
negative \times positive $=$ \qquad negative \div positive $=$ \qquad
positive \div negative $=$ \qquad
positive \times positive $=$ \qquad
negative \div negative $=$ \qquad negative \times negative $=$ \qquad

Notes:

If you have difficulty remembering whether your answer should be negative or positive, you can use the following chart:

How do I use the chart?
\qquad
\qquad
\qquad

Examples:

$-6 \cdot 8$
$-12 \div(-4)$
$-10 \times(-2)$
$49 \div(-7)$
$63 \div(-9)$
$9 \times(-3)$
$-4 \div 4$
3•(-8)

Name: \qquad Date: \qquad Period: \qquad

Integer Operations

Addition	Subtraction
Rule 1: If the signs are the same then add the numbers. Keep the same sign.	Rule 1: "Keep, Change, Change," then follow the rules for adding integers.
Rule 2: If the signs are different then subtract bigger number and the smaller number. Keep the sign of the bigger number.	

Multiplication and Division

Step 1: Multiply/divide, first ignoring the signs.
Step 2: Insert the appropriate sign.
How do I know what sign to use when multiplying and dividing?
If the signs of the numbers you are multiplying/dividing are the same, then your answer is positive.

If the signs of the numbers you are multiplying/dividing are the different, then your answer is negative.

You can also use the chart below:

Name: \qquad Date: \qquad Period: \qquad

Integer Operations

Rules for Adding Integers

Rule 1: If the signs are the same then add the numbers. Keep the same sign.
Rule 2: If the signs are different then subtract smaller number from the largest number. Keep the sign of the bigger number.

Rule for Subtracting Integers

Rule 1: "Keep, Change, Change," then follow the rules for adding integers.

Steps for Multiplying and
 Dividing Integers

Step 1: Multiply/divide ignoring the signs.
Step 2: Insert the appropriate sign.
How do I know what sign to use when multiplying and dividing?
If the signs of the numbers you are multiplying/dividing are the same, then your answer is positive.

If the signs of the numbers you are multiplying/dividing are the different, then your answer is negative.

Or, you can use the chart below:

Remember, your "positives" go on a diagonal.

Name: \qquad Date: \qquad Period: \qquad
Integer Operations:
Mixed Operations: Warm-Up
$-5+4$
$8 \times(-7)$
$-12+(-16)$
$56 \div(-7)$
\qquad
\qquad
\qquad
\qquad
$-72 \div-8$
$-18-(-13)$
$7 \times(-7)$

- 4-(-10)
[Warm-Up]

Name: \qquad Date: \qquad Period: \qquad
Integer Operations:
Mixed Operations: Exit Ticket

$$
-5+14
$$

$6 \times(-8)$
$-22+(-18)$
$49 \div(-7)$
\qquad
$-48 \div-8$

- 3-(-13)
$11 \times(-7)$
- $34-(-20)$

Name: \qquad Date: \qquad Period: \qquad
Integer Operations:

Multiplication and Division

$$
\begin{array}{ll}
(-3) \div 3= & 2 \times(-2)= \\
(-44) \div(-11)= & 0 \times 9= \\
(-21) \div 3= & 4 \times(-10)= \\
(-48) \div(-4)= & 9 \times 6= \\
30 \div(-3)= & (-6) \times(-9)= \\
(-11) \div(-1)= & (-12) \times 0= \\
8 \div(-8)= & 7 \times(-4)= \\
5 \div(-1)= & 0 \times 2= \\
30 \div 3= & (-4) \times(-1)= \\
(-36) \div 12= & 4 \times 0= \\
(-72) \div(-8)= & 7 \times(-7)= \\
(-40) \div(-4)= & (-5) \times 3= \\
20 \div 2= & 3 \times(-4)= \\
10 \div 1= & 3 \times(-6)= \\
7 \div(-1)= & 0 \times(-5)= \\
72 \div(-12)= & 6 \times(-2)= \\
80 \div(-8)= & (-3) \times 9= \\
& (-9) \times 3= \\
3 \times(-8)=
\end{array}
$$

$$
\begin{aligned}
& (-6) \div 1= \\
& 45 \div(-9)= \\
& (-15) \div 5= \\
& (-4) \div 4= \\
& (-42) \div 6= \\
& (-72) \div(-6)= \\
& 40 \div(-10)= \\
& 80 \div 8= \\
& (-110) \div 11= \\
& 8 \div 2= \\
& 6 \div 3= \\
& 24 \div(-12)= \\
& 108 \div(-12)= \\
& 15 \div(-3)= \\
& (-56) \div 7= \\
& 32 \div 8= \\
& (-20) \div 10=
\end{aligned}
$$

$(-5) \times 6=$
$4 \times(-1)=$
$9 \times 3=$
$8 \times(-1)=$
$11 \times(-11)=$
$0 \times 12=$
$(-7) \times 11=$
$(-6) \times(-8)=$
$10 \times 12=$
$(-9) \times(-5)=$
$(-2) \times 4=$
$(-11) \times(-5)=$
$(-3) \times(-12)=$
$8 \times(-3)=$
$(-11) \times(-2)=$
$(-10) \times 0=$
$(-6) \times(-3)=$
$11 \times 9=$
$11 \times(-4)=$

