Integrating Social with Search

Edward Chang

Director, Google Research, Beijing

Related Papers

AdHeat (Social Ads):

- AdHeat: An Influence-based Diffusion Model for Propagating Hints to Match Ads,
 H.J. Bao and E. Y. Chang, WWW 2010 (best paper candidate), April 2010.
- Parallel Spectral Clustering in Distributed Systems,
 Wen-Yen Chen, Yangqiu Song, Hongjie Bai, Chih-Jen Lin, and E. Y. Chang,
 IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2010.

UserRank:

- Confucius and its Intelligent Disciples, X. Si, E. Y. Chang, Z. Gyongyi, VLDB, September 2010.
- Topic-dependent User Rank, Xiance Si, Z. Gyongyi, E. Y. Chang, and M.S. Sun, Google Technical Report.

Large-scale Collaborative Filtering:

- PLDA+: Parallel Latent Dirichlet Allocation for Large-Scale Applications, ACM Transactions on Internet Technology, 2011.
- Collaborative Filtering for Orkut Communities: Discovery of User Latent Behavior, W.-Y. Chen,
 J. Chu, E. Y. Chang, WWW 2009: 681-690.
- Combinational Collaborative Filtering for Personalized Community Recommendation, W.-Y.
 Chen, E. Y. Chang, KDD 2008: 115-123.
- PSVM: Parallelizing SVMs on distributed machines, E. Y. Chang, et al., NIPS 2007.

Web 1.0

Web 2.0 --- Web with People

Outline

- Search + Social Synergy
- Search → Social
- Social → Search
- Scalability

Google Q&A (Confucius)

- Developed from 2007 till now @ Beijing
- Launched in more than 60 courtiers
 - Russia
 - -HK
 - Southeast Asia
 - Arab World
 - Sub-Saharan Africa (Baraza)

🞁 start

② 2 Microsoft Off... ▼

Table Seeing_the_opp...

C:\Documents a...

Query: What are must-see attractions at Beijing

Downloads

🐸 北京旅游景点....

Search Quality at Stake.

61 countries have Q&A or advanced forums as top 10 most clicked destination

(out of 115 countries with more than 1M session)

% of First Result Page with >=1 Q&A Result from Yahoo or Baidu

% of Referral Traffic From 1st Page Sent to Yahoo / Baidu

SNS & Mobile Also Need Q&A

- Social Networks
 - Difficult to find user intent to match ads
 - Q&A is a perfect app to learn users' problems
- Mobile Search
 - Voice is the most convenient user interface
 - Succinct search result (or rich snippets) is desirable

Confucius: Google Q&A

Providing High-Quality Answers in a Timely Fashion

- ☐ Trigger a discussion/question session during search
- ☐ Provide labels to a post (semi-automatically)
- ☐ Given a post, find similar posts (automatically)
- ☐ Evaluate quality of a post, relevance and originality
- Evaluate user credentials in a topic sensitive way
- ☐ Route questions to experts
- ☐ Provide most relevant, high-quality content for Search to index
- ☐ Generate answers using NLP

Confucius: Google Q&A

Providing High-Quality Answers in a Timely Fashion

- ☐ Trigger a discussion/question session during search
- Provide labels to a question (semi-automatically)
 - Given a question, find similar questions (automatically)
 - ☐ Evaluate quality of an answer, relevance and originality
 - ☐ Evaluate user credentials in a topic sensitive way
 - ☐ Route questions to experts
 - ☐ Provide most relevant, high-quality content for Search to index
 - ☐ Generate answers using NLP

Collaborative Filtering

Based on *membership* so far, and *memberships* of others

Predict further *membership*

Questions

Labels/Qs

FIM-based Recommendation

To grow the base, we need association rules

- An association rule: $a, b, c \longrightarrow d$
- A Bayesian interpretation: $P(d \mid a, b, c) = \frac{N(a, b, c, d)}{N(a, b, c)}$
- The key is to count the occurrences (support) of itemsets $N(\ldots)$

Distributed Latent Dirichlet Allocation (LDA)

- Search
 - Construct a latent layer for better for semantic matching
- Example:
 - iPhone crack
 - Apple pie

? 2 ? 1 ? 5 3

Users/Music/Ads/Question

?

- Other Collaborative Filtering Apps
 - Recommend Users → Users
 - Recommend Music → Users
 - Recommend Ads → Users
 - Recommend Answers \rightarrow Q
- Predict the ? In the light-blue cells

Latent Dirichlet Allocation [D. Blei, M. Jordan 04]

- α : uniform Dirichlet ϕ prior for per document d topic distribution (corpus level parameter)
- β : uniform Dirichlet ϕ prior for per topic z word distribution (corpus level parameter)
- θ_d is the topic distribution of document d (document level)
- z_{dj} the topic if the jth word in d, w_{dj} the specific word (word level)

Combinational Collaborative Filtering Model (CCF)

[W.-Y. Chen, et al, KDD2008]

Confucius: Google Q&A

- ☐ Trigger a discussion/question session during search
- ☐ Provide labels to a post (semi-automatically)
- ☐ Given a post, find similar posts (automatically)
- ☐ Evaluate quality of a post, relevance and originality
- Evaluate user credentials in a topic sensitive way
- ☐ Route questions to experts
- ☐ Provide most relevant, high-quality content for Search to index
- □ NLQA

UserRank

 Rank users by quantity (number of links) and quality (weights on links) of contributions

Quality include:

- Relevance. Is an answer relevant to the Q? Measured by KL divergence between latent-topic vectors of A and Q
- Coverage. Compared among different answers
- Originality. Detect potential plagiarism and spam
- Promptness. Time between Q and A posting time

Outline

- Search + Social Synergy
- Social → Search
- Search → Social
- Scalability

Outline

- Search + Social Synergy
- Social → Search
- → Search → Social
 - Scalability

Social?

- Connecting to friends
- Knowing what friends are up to
- Connecting to strangers
 - Dating, Gaming
 - Shopping

Making recommendations based on activities

User Latent Model

- α : uniform Dirichlet ϕ prior for per user u interest distribution (population level parameter)
- β : uniform Dirichlet ϕ prior for per interest z activity distribution (population level parameter)
- θ_d is the interest distribution of user u (user level)
- z_{uj} the interest of the jth
 activity in u, w_{uj} the specific
 activity (activity level)

? ? 1 3 1 ? ? ? 2 ? 1 2 ? 1 ? ? ? ? ? 1 5 3 1 1	? ?	? ? ? ? ? 3 ? 1 ? 2 ? 1 ? ? ? ? 5 3	1 ? ? ? ? ? ? 2 ? 1 ? 3 ? 1 ? 1 5 1 1 1 1
1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 1 1 1 1 1 3 6 ? ? ? ? 1 1 4 1 3 6 ? ?	1 2 1 2 1 1 1 1 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1	1 4 1 1 5 1 6 ?
?	? 3 1	2 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
1	1 2 1 1 3 6 1 1 4 1 3 6 1 1 4 1 3 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 3	

Combinational Collaborative Filtering Model (CCF)

Interest Networks

Outline

- Search + Social Synergy
- Social → Search
 - Mobilize users to improve search quality
 - Google Q&A, Facebook Like
- Search → Social
 - Use query log to help social
 - Activities → Interests → Social
 - Groupcom
- Scalability

Prefixes

SI prefix	Name	Power	of 10 or 2	
k kilo	thousand	10 ³	2 ¹⁰	
M mega	million	10 ⁶	2 ²⁰	
G giga	billion	10 ⁹	2 ³⁰	
T tera	trillion	10 12	2 ⁴⁰	
P peta	quadrillion	10 ¹⁵	2 ⁵⁰	
E exa	quintillion	10 ¹⁸	2 ⁶⁰	
Z zetta	sextillion	10 21	2 ⁷⁰	
Y yotta	septillion	10 24	2 ⁸⁰	

Prefixes

SI prefix	Name	Powe	er of 10 or 2
k kilo	thousand	10 ³	2 ¹⁰
M mega	million	10 ⁶	2 ²⁰
G giga	billion	10 ⁹	230
T tera	trillion	10 ¹²	240
P peta	quadrillion	10 ¹⁵	2 ⁵⁰
E exa	quintillion	10 ¹⁸	2 ⁶⁰
Z zetta	sextillion	10 21	2 ⁷⁰
Y yotta	septillion	10 24	2 ⁸⁰

Prefixes

SI prefix	Name	Powe	r of 10 o	r 2
k kilo	thousand	10 ³	2 ¹⁰	
M mega	million	10 ⁶	2 ²⁰	
G giga	billion	10 ⁹	2 ³⁰	
T tera	trillion	10 12	2 ⁴⁰	
P peta	quadrillion	10 ¹⁵	2 ⁵⁰	
E exa	quintillion	10 18	2 ⁶⁰	
Z zetta	sextillion	10 21	2 ⁷⁰	
Y yotta	septillion	10 24	2 ⁸⁰	

More Data vs. Better Algorithms

More Data vs. Better Algorithms

Figure 2. Learning Curves for Confusable Disambiguation

More Data vs. Better Algorithms

Figure 2. Learning Curves for Confusable Disambiguation

User Latent Model

- α : uniform Dirichlet ϕ prior for per user u interest distribution (population level parameter)
- β : uniform Dirichlet ϕ prior for per interest z activity distribution (population level parameter)
- θ_d is the interest distribution of user u (user level)
- z_{uj} the interest of the jth
 activity in u, w_{uj} the specific
 activity (activity level)

LDA Gibbs Sampling: Inputs & Outputs

Inputs:

- training data: users as bags of words
- 2. <u>parameter</u>: the number of topics

Outputs:

- model parameters: a cooccurrence matrix of topics and words.
- 2. <u>by-product</u>: a co-occurrence matrix of topics and users.

Parallel Gibbs Sampling

Inputs:

- training data: users as bags of words
- 2. <u>parameter</u>: the number of topics

Outputs:

- model parameters: a cooccurrence matrix of topics and words.
- 2. <u>by-product</u>: a co-occurrence matrix of topics and users.

Observations

- Bottleneck: Communication
- Amdahl's law caps speedup
- Words in a bag have no order
- Words on a computer node can be reordered

Example Bags / Node A

- Bag #1 w1, w2, w3, w1, w2, w3, w1, w2, w3
- Bag #2 w1, w2, w1, w2, w1, w2, w1, w2
- Bag #3 w3, w1, w3, w1, w3, w1, w3, w1

- Bundle #1 w1, w1, w1, w1, w1, w1, ...
- Bundle #2 w2, w2, w2,...,
- Bundle #3 w3, w3, w3,...

Two Nodes

Node A	Node B
W1	W2
W2	W3
W3	W1

Parallel Gibbs Sampling

Inputs:

- training data: documents as bags of words
- 2. <u>parameter</u>: the number of topics

Outputs:

- model parameters: a cooccurrence matrix of topics and words.
- 2. by-product: a co-occurrence matrix of topics and documents.

PLDA -- enhanced parallel LDA

- Take advantage of bag of words modeling: each Pw machine processes vocabulary in a word order
- Pipelining: fetching the updated topic distribution matrix while doing Gibbs sampling

Fig. 4: Pipeline-based Gibbs Sampling in PLDA*. (A): $t_s \ge t_f + t_u$. (B): $t_s < t_f + t_u$.

Speedup

1,500x using 2,000 machines

Lessons Learned

- Bottleneck Matters
- Inter-iteration Matters

MapReduce

Parallel Programming Models

	MapReduce	Project +	MPI
GFS/IO and task rescheduling overhead between iterations	Yes	No +1	No +1
Flexibility of computation model	AllReduce only +0.5	Flexible +1	
Efficient AllReduce	Yes +1	Yes +1	Yes +1
Recover from faults between iterations	Yes +1	Yes +1	Apps
Recover from faults within each iteration	Yes +1	Yes +1	Apps
Final Score for scalable machine learning	3.5	5	4

SVM Bottlenecks

Time consuming – 1M dataset, 8 days

Matrix Factorization Alternatives

Parallelizing SVM [E. Chang, et al, NIPS 07]

Incomplete Cholesky Factorization (ICF)

PSVM

Matrix Product

PSVM [E. Chang, et al, NIPS 07]

- Column-based ICF
 - Slower than row-based on single machine
 - Parallelizable on multiple machines
- Changing IPM computation order to achieve parallelization

Overheads

Speedup

	Image (200k)		CoverType (500k)		RCV (800k)				
Machines	Time	me (s) Speedup		Time (s)		Speedup	Time (s)		Speedup
10	1,958	(9)	10*	16,818	(442)	10*	45,135	(1373)	10*
30	572	(8)	34.2	5,591	(10)	30.1	12,289	(98)	36.7
50	473	(14)	41.4	3,598	(60)	46.8	7,695	(92)	58.7
100	330	(47)	59.4	2,082	(29)	80.8	4,992	(34)	90.4
150	274	(40)	71.4	1,865	(93)	90.2	3,313	(59)	136.3
200	294	(41)	66.7	1,416	(24)	118.7	3,163	(69)	142.7
250	397	(78)	49.4	1,405	(115)	119.7	2,719	(203)	166.0
500	814	(123)	24.1	1,655	(34)	101.6	2,671	(193)	169.0
LIBSVM	4,334	NA	NA	28,149	NA	NA	184, 199	NA	NA

Scalability

- Computation
 - Parallelization
 - Approximation
- File Systems
 - Latency
 - Recovery
- Power Management

Sample Platforms

Sample Hierarchy

- Server
 - 16GB DRAM; 160MB Flash; 5 x 1TB disk
- Rack
 - 40 servers
 - 48 port Gigabit Ethernet switch
- Warehouse
 - 10,000 servers (250 racks)
 - 2K port Gigabit Ethernet switch

Storage --- One Server

Storage --- One Rack

Storage --- One Center

Google File System (GFS)

- Master manages metadata
- Data transfers happen directly between clients/chunkservers
- Files broken into chunks (typically 64 MB)
- Chunks triplicated across three machines for safety
- See SOSP^03 paper at http://labs.google.com/papers/gfs.html

WSC data availability: cluster file systems

- Data blocks of each stripe are placed on different fault domains
 - different disks, servers, racks
 - Data blocks are distributed across the whole WSC
 - · read operations are easily load-balanced
 - · recovery is highly efficient
- What affects data availability as seen by a client of a cluster file system?

Win in Scale

- Google Translate
- Voice
- Trend Prediction
 - An example benefits society

H1N1 United Nation Report

Explore flu trends - United States

We've found that certain search terms are good indicators of flu activity. Google Flu Trends uses aggregated Google search data to estimate flu activity. Learn more »

Concluding Remarks

- Search + Social
- Increasing quantity and complexity of data demands scalable solutions
- Have parallelized key subroutines for mining massive data sets
 - Spectral Clustering [ECML 08]
 - Frequent Itemset Mining [ACM RS 08]
 - PLSA [KDD 08]
 - LDA [WWW 09, AAIM 09]
 - UserRank [Google TR 09]
 - Support Vector Machines [NIPS 07]
- Launched Google Q&A (Confucius) in 60+ countries
- Relevant papers
 - http://infolab.stanford.edu/~echang/
- Open Source PSVM, PLDA
 - http://code.google.com/p/psvm/
 - http://code.google.com/p/plda/

Models of Innovation

- Ivory tower
 - Only consider theory but not application
- Build it and they will come
 - Scientists drives product development
- "Research for sale"
 - Research funded by:
 - product groups or customers
- Research & development as equals
 - Research "sells" innovation;
 - Product "requests" innovation
- Google-style innovation

