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Google Q&A (Confucius)

e Developed from 2007 till now @ Beijing

* Launched in more than 60 courtiers
— Russia
— HK
— Southeast Asia
— Arab World

— Sub-Saharan Africa (Baraza)
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Search Quality at Stake

61 countries have Q&A or advanced forums as top 10 most clicked destination
(out of 115 countries with more than 1M session)

% of First Result Page with >=1 Q&A Result from Yahoo or Baidu % of Referral Traffic From 1% Page Sent to Yahoo / Baidu
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SNS & Mobile Also Need Q&A

* Social Networks
— Difficult to find user intent to match ads
— Q&A is a perfect app to learn users’ problems

* Mobile Search

— Voice is the most convenient user interface

— Succinct search result (or rich snippets) is
desirable



Confucius: Google Q&A

Providing High-Quality Answers in a Timely Fashion

Differentiated Content

Search \ / Community W

Discussion/Question

Trigger a discussion/question session during search

Provide labels to a post (semi-automatically)

Given a post, find similar posts (automatically)

Evaluate quality of a post, relevance and originality

Evaluate user credentials in a topic sensitive way

Route questions to experts

Provide most relevant, high-quality content for Search to index
Generate answers using NLP

(I Iy Wy Wy Wy Wy
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Confucius: Google Q&A

Providing High-Quality Answers in a Timely Fashion

Differentiated Content

Search \ / Community W

Discussion/Question

Trigger a discussion/question session during search

Provide labels to a question (semi-automatically)

Given a question, find similar questions (automatically)
Evaluate quality of an answer, relevance and originality
Evaluate user credentials in a topic sensitive way

Route questions to experts

Provide most relevant, high-quality content for Search to index
Generate answers using NLP
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Collaborative Filtering

Labels/Qs

Based on membership so far,
and memberships of others

l

Predict further membership

Questions

2010-12-13 WISE Keynote 18



FIM-based Recommendation

To grow the base, we need association rules

@ An association rule: a,b,c — d

@ A Bayesian interpretation: P(d | a,b,c) = —N,\(,?f;:’:;)

@ The key is to count the occurrences (support) of itemsets N(...)

2010-12-13 WISE Keynote 19



Distributed Latent Dirichlet Allocation (LDA)

( )

e Search
— Construct a latent layer for better
for semantic matching
e Example:
— iPhone crack
— Apple pie

1 recipe pastry fora 9

Documents inch double crust How to install apps on
9 apples, 2/1 cup, Apple mobile phones?
brown sugar

Topic
Distribution

Topic
Distribution

iPhone crack Apple pie

User quries

2010-12-13 WISE Keynote

Users/Music/Ads/Answers

Users/Music/Ads/Question

Other Collaborative Filtering Apps

Recommend Users = Users
Recommend Music = Users
Recommend Ads = Users
Recommend Answers 2 Q

Predict the ? In the light-blue cells




Latent Dirichlet Allocation b. e, M. jordan 04]

a: uniform Dirichlet ¢ prior
for per document d topic
distribution (corpus level
parameter)

f: uniform Dirichlet ¢ prior
for per topic z word
distribution (corpus level
parameter)

6, is the topic distribution of
document d (document level)

Z4 the topic if the jt word in
d, wy the specific word (word
level)

2010-12-13 WISE Keynote
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Combinational Collaborative Filtering Model (CCF)
[W.-Y. Chen, et al, KDD2008]

Communities Communities Communities
@% P(c) Q P(©) @-— P(c) —
F’(Z|C) P(zlc) P(zlc)
— )
Q + [ ]
P(uIZ) P(dlz) l:}ulz) P(dlz)
users descriptions users descriptions
Community

3810-12-13 WISE Keynote
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Confucius: Google Q&A

Differentiated Content

..CCS/ Q&A o

Discussion/Question

Trigger a discussion/question session during search

Provide labels to a post (semi-automatically)

Given a post, find similar posts (automatically)

Evaluate quality of a post, relevance and originality

Evaluate user credentials in a topic sensitive way

Route questions to experts

Provide most relevant, high-quality content for Search to index
NLQA

DDD&DDDD

2010-12-13 WISE Keynote
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UserRank

Answered Another Questlon ot 8

Rank users by quantity (number of links)
and quality (weights on links) of
contributions

Quality include:
— Relevance. Is an answer relevant to the

Q? Measured by KL divergence between

latent-topic vectors of A and Q

— Coverage. Compared among different
answers

— Originality. Detect potential plagiarism
and spam

— Promptness. Time between Q and A
posting time

2010-12-13

WISE Keynote
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Outline

e Search + Social Synergy
e Social =2 Search



Outline

e Search + Social Synergy
* Social =2 Search
—% Search = Social

e Scalability




Social?

* Connecting to friends
* Knowing what friends are up to

* Connecting to strangers
— Dating, Gaming
— Shopping

 Making recommendations based on activities

2010-12-13 WISE Keynote 28



User Latent Model

a: uniform Dirichlet ¢ prior
for per user u interest
distribution (population level
parameter)

* [3: uniform Dirichlet ¢ prior
for per interest z activity
distribution (population level
parameter)

e @,is the interest distribution
of user u (user level)

 z,theinterest of the jt"
activity in u, wy; the specific
activity (activity level)

2010-12-13 WISE Keynote
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Combinational Collaborative Filtering Model (CCF)

Users Users Users
@ P(c) Q P(c) @—— P(c) —
P(Z|C) P(zlc) P(zlc)

— !
Q + [ ]
P(uIZ) P(dlz)

l:}ulz) P(dlz)

© © )

Keywords Videos/Photos Keywords Videos/Photos
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Outline

e Search + Social Synergy
* Social = Search

— Mobilize users to improve search quality
— Google Q&A, Facebook Like

* Search = Social

— Use query log to help social
* Activities = Interests - Social
* Groupcom

—»+ Scalability



Prefixes

k kilo thousand

M mega million 10 ° 2t
G giga billion 10° 230
T tera trillion 10 12 e
P peta quadrillion 10 1° et
E exa quintillion 10 18 e
Z zetta sextillion 102! R
Y vyotta sepftillion 10 %4 e
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Prefixes

thousand

k kilo

M mega million 10 © 1=t
G giga billion 102 230
T tera trillion 10 12 e
P peta quadrillion 10 1° 2t
E exa quintillion 10 18 2L
Z zetta sextillion 102! A
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More Data vs. Better Algorithms

Banko & Birill, 2001

Test Accuracy
1.00

075

1 10 100 1000
Sze of Tranng Corpus (Vilions of Words)
Figure 2. Learning Curves for Confusable Disambiguation
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More Data vs. Better Algorithms

Banko & Brill, 2001

Test Accuracy
1.00 -

1 10 100 1000
Sze of Tranng Corpus (Vlions of Words)

Figure 2. Learning Curves for Confusable Disambiguation
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Test Accuracy
1.00 4

095 -
090 -
085y

080 4

More Data vs. Better Algorithms

Banko & Brill, 2001

075

10 100 1000
Sze of Tranng Corpus (Vilions of Words)

Figure 2. Learning Curves for Confusable Disambiguation
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More Data vs. Better Algorithms

Banko & Brill, 2001

Test Accuracy
1.00

1 10 100 1000
Sze of Tranng Corpus (Mlions of Words)
Figure 2. Learning Curves for Confusable Disambiguation
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User Latent Model

a: uniform Dirichlet ¢ prior
for per user u interest
distribution (population level
parameter)

* [3: uniform Dirichlet ¢ prior
for per interest z activity
distribution (population level
parameter)

e @,is the interest distribution
of user u (user level)

 z,theinterest of the jt"
activity in u, wy; the specific
activity (activity level)

2010-12-13 WISE Keynote
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LDA Gibbs Sampling: Inputs & Outputs

Inputs:

1. training data: users as bags of
words

2. parameter: the number of

topics

words topics

users users

Outputs:

1. model parameters: a co-
occurrence matrix of topics and 1
words. topics _

2. by-product: a co-occurrence words
matrix of topics and users.
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Parallel Gibbs Sampling

Inputs:

1. training data: users as bags of
words

2. parameter: the number of

topics

words topics

Outputs:

1. model parameters: a co-
occurrence matrix of topics and 1
words. topics _

2. by-product: a co-occurrence words
matrix of topics and users.
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Observations

o a 0 * Bottleneck:

A 0 Communication

0 AAQ % * Amdahl’s law caps

® I}QrAﬂ speedup

% 4

& * Words in a bag have
[ no order
D> * Words on a computer

Master Node node can be reordered

2010-12-13 WISE Keynote 44



Example Bags / Node A

Bag #1 w1, w2, w3, wl, w2, w3, wl, w2, w3
Bag#2 w1, w2, wl, w2, wl, w2, wl, w2
Bag #3 w3, wl, w3, wl, w3, wl, w3, wl

Bundle #1 w1, wl, wl, wl, wl, wil, ...
Bundle #2 w2, w2, w2,...,

Bundle #3 w3, w3, w3,...



Two Nodes

W1 W2

W2 W3

W3 W1

2010-12-13 WISE Keynote 46



Parallel Gibbs Sampling

Inputs:

1. training data: documents as
bags of words

2. parameter: the number of

topics o H - : .
-
}

words topics

Outputs:

1. model parameters: a co-
occurrence matrix of topics and
words. topics _

2. by-product: a co-occurrence words
matrix of topics and
documents.
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PLDA -- enhanced parallel LDA

* Take advantage of bag of words modeling: each Pw
machine processes vocabulary in a word order

* Pipelining: fetching the updated topic distribution
matrix while doing Gibbs sampling

Time Time
— _
| | | | |
| | |
w F S U w F S U
w | | W |
| | |
w F s U F s |u
¢ | | W2 |
Wy F s u : w, : Fl s |u
w | F s u w | F s |u
I | 4 ‘ | ‘ ‘
(A) ' (B)

Fig. 4: Pipeline-based Gibbs Sampling in PLDA*. (A): ts > ty +tu. (B):ts <tf+tu.
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Speedups

Speedup
1.500x using 2,000 machines

Number of Processors
WISE Keynote
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Lessons Learned

e Bottleneck Matters
* |Inter-iteration Matters



Data
datadatada
tadatadata
datadatada
tadatadata

2010-12-13

MapReduce

Data Block 1

- map
Data Block 4

WISE Keynote

Results
datadata
datadata

datadata
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Parallel Programming Models

MapReduce Project + MPI
GFS/10 and task rescheduling Yes No No
overhead between iterations +1 +1
Flexibility of computation model AllIReduce only ? Flexible
+0.5 +1 +1
Efficient AllIReduce Yes Yes Yes
+1 +1 +1
Recover from faults between Yes Yes Apps
iterations +1 +1
Recover from faults within each Yes Yes Apps
iteration +1 +1
Final Score for scalable machine 3.5 5 4

learning

2010-12-13

WISE Keynote
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SVM Bottlenecks

Time consuming — 1M dataset, 8 days

Bty &y @

Memory consuming — 1M dataset, 10G

2010-12-13 WISE Keynote 53



Matrix Factorization Alternatives

Factorization Cost
O
exact « O( 3)
O(3n* + 2n?)
LDL O(%n?’)
oneck 0(272.2)

/

approximate

2010-12-13 WISE Keynote



Parallelizing SVM [e. chang, et al, NIPs 07]

Matrix Summation

Raw Data  Kernel Matrix

YIDJ [DAIUDD)

AEEQ

%

T e e
6 e 6

Yo JpAJUI )

Incremental

Linear System Solving

Incremental [ncremental  Incremental Incremental

a Tower

Data Kernel Matrix ICF Matrix Multiplication
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Incomplete Cholesky Factorization (ICF)

X

nxXxn nxp pXn

IR

2010-12-13 WISE Keynote 56



1\\»

Raw Data  Kernel Matrix

y = E =
Incremental
Linear System Solving

Incremental [ncremental Incremental Incremental
Data Kernel Matrix ICF Matrix Multiplication

2010-12-13 WISE Keynote

m% “

T e e

S 2 A B

a Tower

YIDJ [DAIUDD)

Yo JpAJUI )




pXp

)
@)
suEEEEEE | | 1 [
- HEEEEEEEEEEN
O EEEEEENEEEERE
W 1
X B
— o
2 ¥
L
M o

X
|
\

X

- - .a.
c

x
"

58

WISE Keynote

2010-12-13



PSVM [E. Chang, et al, NIPS 07]

* Column-based ICF
— Slower than row-based on single machine
— Parallelizable on multiple machines

* Changing IPM computation order to achieve
parallelization
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Speedup

[mage (200k) CoverType (500k) RCV (800k)
Machines Time (s) Speedup Time (s) Speedup Time (s) Speedup
10 1,958 (9] 10 | 16,818 (442) | 107 45,135 (1373) | 107
30 572 (8) 342 | 5591 (10 30.1 12,280 (98) 36.7
| 50 473 (14) 414 ) 3,598 (60 46.8 7,695 (92 58,7
100 330 (47) | 594 | 2.082 (20) 80.8 4,992 (34) 00,4
150 214 (40 714 1,865 (93] 90.2| 3,313 (59] 136.3
200 204 (41) 66.7 1416 (24) | 1187 3,163 (69) 142.7
250 307 (78 494 1405 (115) | 119.7 2,719 (203) | 166.0
500 814 (123) | 241 1,655 (34) | 1016 2,671 (193) | 169.0
LIBSVM | 4,334 NA NA | 28,149 NA NA | 184,199 NA NA
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Scalability

* Computation
— Parallelization
— Approximation

* File Systems
— Latency
— Recovery

* Power Management



—_

Servers
« CPUs
+ DRAM
* Disks

2010-12-13

Sample Platforms

Warehouse-scale Computer (WSC)

Racks
» 40-80 servers
» Ethernet switch

WISE Keynote
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Sample Hierarchy

e Server
— 16GB DRAM; 160MB Flash; 5 x 1TB disk

* Rack

— 40 servers

— 48 port Gigabit Ethernet switch
* Warehouse

— 10,000 servers (250 racks)
— 2K port Gigabit Ethernet switch



Storage --- One Server
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Storage --- One Rack
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Storage --- One Center
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Google File System (GFS)

Master

> Client

Replicas

Client

 Master manages metadata

« Data transfers happen directly between clients/chunkservers
* Files broken into chunks (typically 64 MB)

* Chunks triplicated across three machines for safety

* See SOSPA03 paper at http://labs.google.com/papers/gfs.html
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WSC data availability: cluster fiIe systems

/)rlglnalda\

replication stripe erasure-coding stripe
* Data blocks of each stripe are placed on different fault domains
— different disks, servers, racks

— Data blocks are distributed across the whole WSC
» read operations are easily load-balanced
» recovery is highly efficient

* What affects data availability as seen by a client of a cluster file
system?

2010-12-13 WISE Keynote



Win in Scale

* Google Translate
* Voice
* Trend Prediction

— An example benefits society



HI1N1 United Nation Report

Explore flu trends - United States

We've found that certain search terms are good indicators of flu activity. Google Flu Trends uses
aggregated Google search data to estimate flu activity. Learn more »

National @ 2000-2010 ® Past vears v

Jul Aug Sep Ocl Nov Dec Jan Fab Mar Apr May Jun
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Concluding Remarks

Search + Social

Increasing quantity and complexity of data demands scalable
solutions

Have parallelized key subroutines for mining massive data sets
— Spectral Clustering [ECML 08]

— Frequent Itemset Mining [ACM RS 08]

— PLSA [KDD 08]

— LDA [WWW 09, AAIM 09]

— UserRank [Google TR 09]

— Support Vector Machines [NIPS 07]

Launched Google Q&A (Confucius) in 60+ countries
Relevant papers
— http://infolab.stanford.edu/~echang/

Open Source PSVM, PLDA

— http://code.google.com/p/psvm/
— http://code.google.com/p/plda/




Models of Innov

lvory tower
* Only consider theory but not application

Build it and they will come

 Scientists drives product development

“Research for sale”

* Research funded by:
— product groups or customers

Research & development as equals

* Research “sells” innovation;
* Product “requests” innovation

Google-style innovation
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