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Integral transforms with generalized
Legendre functions as kernels

by
B. L. J. Braaksma and B. Meulenbeld

Part I

0. Introduction
0.1. The functions Pg»"(z) and Qz»"(z), two specified linearly

independent solutions of the differential equation:

(0.1) (1—z2) =2 2 ‘Z’

m? n?
+ {rte)- 2(1—7) 2(1+z)}’"
have been introduced by Kuipers and Meulenbeld [1] as functions
of 2 for all points of the z-plane, in which a cross-cut exists along
the real z-axis from 1 to —oo, and for complex values of the
parameters k, m and n. On the segment —1 < # < 1 of the cross-
cut these functions are defined in [2, (1) and (2)].
For the sake of brevity we put

« = k+3(m+n), p=
y =k+3m—n), &=

k—}m—n),
k—3(m+n).
In terms of hypergeometric functions we have:

(0.2)

P™(z) = (3—1)#m(z41)in

1'1(1_ )F(ﬂ—l—l’ —%5 l_m; '%(1——2))

if 2 is not lying on the cross-cut,

(0.3)
Ppn(z) = (1—a2) #m(1+-a)i»

1

if -1 <2 <1, and
235
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L(a+1)'(y+1)

™0, _ mimof
O @) = ke

(z—1)"F-in-1(z1)in

(0.4) 0

if 2 is not lying on the cross-cut.

0.2. In the present paper we shall derive a number of inversion
formulas for integral transforms, in which these functions occur
in the kernel.

The main results are contained in the following four theorems.

TaEOREM 1. Let k, be a real number with
(0.5) ky, > 3 Re m+3Re n|—1,
and ¢(t) a function such that for all a > 1

p(t)(t—1)"ttReml e @(1,a)  if Rem # 0,
(0.6) @(t)(t—1)"tlog (t—1) € &(1, a) if Rem =0,
p(t)t 1% e (a, ).

Let further ¢(t) be of bounded variation in a meighborhood of
t = a ( > 1). Then ¢(t) satisfies the relations:

ky+ic0 o0
[ aerr)Pr@) [ e
(7) b 1
__ p(z—0)+¢(z+0)
== 2 ’
and
1 k4400 oo
o | ke gim ) [ g P
'(0.8) kl—too 1

_ p(z—0)+¢(z+0)
2

THEOREM 2. Let k, be a real number satisfying (0.5), k, a complex
number with Re ky = —% and

(0.9) Re ky > 1 Re m+1 |Re n|—1.

Suppose f(k) is a function continuous on Re k = min (k,, Re k),
and analytic on Re k > min (k,, Re k). Let further

(0.10) f(k)kt+m & & (ky,—ico, ky+ico),
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f(k) = o(k™171Re™l) if Rem < 1, m # 0;

o(1) — o
(0.11) "~ klogk 7
f(k) = o(k*~3™) if Rem > 1;
o(l) .
f( ) = m 7«f Rem=1

as k — o on Re k = min (k,, Re k).

If Re ky = ky = —1, then f(k) has to satisfy a Holder-condition
in a right neighborhood of k = k,.

Then f(k) satisfies the relation:

ky+ic0

(0.12) 51;‘ f:odmeﬂth;:"»—"(w) f (2k+1) P (2)f (k) = f(k,).

ky—ico

THEOREM 8. Let k, be a real number satisfying (0.5), and k, a
complex number satisfying

|Re (2k4+1)} > Re m-+|Re n|—1.

Suppose f(k) is a function continuous on Re k = p, and analytic
on Re k > p, where p = min {k,, |[Re (ko+%)|—34}. Let further

F(Ee)A— & 8(k;—ico, ky+ico),
f(k) = ERem=Dl (1) if Rem # 1

(0.13) 1
f(k)—a( Py ) if Rem=1
ask — oo on Rek = p.
Then we have:
00 ky+io0
(0.14) f dzPi:"(z) (2k+1)Qz™ ~"(x)f(k)dk = 0.
1 ky—ico

THEOREM 4. Let m be a complex number with Re m < 1.

1. Let S be the strip |Re k| < a in the k-plane, and 8 the strip
|Re k| < a, where a is a positive number such that Q_7;3"(z) has
no poles in 8. Let k, be a real and ky a complex 'number in K.

Suppose f(k) is an even function, analytic on S and continous
on 8, satisfying

fk)kt—™ € &(ky—100, ky+i00),
(0.15) f(k) = o(k™}) as k — oo in S.
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When |Re ky| = a, then f(k) has to satisfy a Holder-condition in a

S-neighborhood of k,.
Then we have:
1 00 ky+ico
(0.16) — f dzPTy, (2) kemm Q-1 (@)f(k)dk = §f(k,)-
2me )y ky—ico

II. This formula also holds when k, = Re ky, = 0, and f(k) is
an even function defined only on the line Re k = 0 and satisfies
the conditions:
kf(k) € £(0, 1),
f(k)kt— € (3, 10),

f(k) is of bounded variation in a neighborhood of k = ky. In the
righthand side of (0.16) 3f(k,) has to be replaced by +{f(k,+0i)+
+1(ko—01)}.

Formula (0.12) is a direct inversion of (0.7), and (0.16) a direct
inversion of (0.8). If with the inversion of (0.8) similar strong
conditions on f(k) are required as in theorem 2, the righthand side
turns out to be zero instead of }f(k,), as theorem 8 shows.

(0.17)

0.3. In section 1 we give some applications of these theorems.
At first we will deduce some equivalent forms in which P""(z)
and Qp'™(x) occur.

Special cases are obtained by choosing appropriate relations
between the parameters. Among others we obtain generalizations
of theorems of Vilenkin [8], Gotze [4] and Mehler-Fock [5], [6].

Equivalent integral transforms with hypergeometric functions
as kernels are deduced, of which one gives a result of Titchmarsh
[7], and the other a result of Olevskii [8].

In section 2 asymptotic approximations of hypergeometric
functions are given, in section 8 of Pp»"(z). In the sections 4—7
we give the proofs of theorems 1—4.

Examples of the inversion formulas may be obtained by a
suitable choice of the occurring arbitrary functions. Since there are
not many integrals known in which the integration is with respect
to the parameters in Py "(z) and Qi "(x), it is obvious that it
is easier to find examples of the inversion formulas in theorem 1
than in the other theorems. In section 8 we give a number of these
examples with applications.

1. Applications

1.1. In order to obtain equivalent forms of the theorems 1—4,
we make use ot the following lemma.



[5) Integral transforms 239
LemMA. If 2 > —1 and z # 1, we have:

z—38
(1) Ppte) = 2 ().

If —1<z<1,then

9—k—}m+1 —x—38
,n Jomin—m2k+1 | T T}
(1.2) Pkm (w) _"—"‘( )I‘ 6+1) (1 «Z’) e Q— (mff*l)( z—1 )
If 2 > 1, then
(1.3)

_ -3
7m0 (x) = 2 T(a+ DT+ 1)1y 4Py ().
(1.4) 22-}m+k z+38

,n — ._.} —(2k+1)mé 2k+1 s
(1.5)
eTImQm () = 2—k—im-11’(a+1)l’(y-|—1)(w—l)-*P;(‘*’,l,‘:i)" (:—i—f)

Proor. In [9] it is deduced for z not lying on the real axis 1:

x—3
P'”'“(w) = eFimim 2k+§n+1(w+1)—}Pmi-(-3:;)1 ( 1) ,
_.w_—-
where the upper or lower sign in the exponential has to be taken
according as Im 2 is positive or negative. From this and the
definition of Py""(z) on the cross-cut it is easily seen that (1.1)
holds.

Combining
g amimon—m LT L(y+1) o o
0P (&) = etrimgrom p R @
(see [10, (7)]),
and
n,m — ___om—npmi(+k—m+n P(ﬂ-l—l) m,n
Qr™(—a) = —2m-nemiEh-mt )P———(y+1) %" (=)
(see [10, (25)]),
we find:
Q™ (z) = —emiFrimin) P(;ii; g (—=),

1 In the formula [9, p. 857, last formula] the signs F are not correct, they have
to be replaced by +.
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and this substituted in

Bt (w+i’) = e~ IR (—)[(—y)(z—1 )P " (z)
m_
(see [9, (1)],
yields:

pm™n —

") = R ea)
Passing to the limit gives (1.2) for # on the cross-cut —1 < z < 1.
Combining (1.1) and (1.2) we get (1.4) for > 1. (1.8) and (1.5)
are the inverses of (1.2) and (1.4) respectively.

g—t—jm+1

. —x—3
(m— 1 )—11, emin+1FE(m 1)) Q:;(vi’:il) (—___—w_ 1 ) .

1.2. In the theorems 1—4 we have integrated over the lower
parameter k of Py»"(z) and Q7" "(z). By means of the lemma it is
possible to find equivalents of these theorems (theorems 1a—4a),
in which integration is over the first upper parameter m.

Applying (1.4) and (1.5) in theorem 1, and replacing k& by
$(m—1), k, by (m;—1), m by —2k—1, t by (t+38)/(t—1), z by
(2+38)/(z—1), and ¢(¢) by @(t)(t—1)%, this theorem is transformed
into

THEOREM la. Let m, be a real number with
(1.6) m; > |[Ren|—2 Re k—2,
and @(t) a function such that for all a > 1

pt)(E—1)i™1 e &(1, a),
(1.7) p(t)t RNl e @ (a, 0) if Rek # —1,
@(t)tElog t e &(a, o) if Rek = —1.

Let further ¢(t) be of bounded variation in a neighborhood of
t=uz(z>1).
Then ¢(t) satisfies the relations:

1 [Matico om i m dt
o dm me-""m Qi (w)f o(t) Py ’""(t)'t—‘i
(Lg) e ‘ .
_ ¢@—=0)+¢(=+0)
2 b
and
1 M 4+100 00 ) m dt
o dmmP;"‘""(w)f ¢(t)e”’""ch'"(t)t——i
(Lo) m ' N

_ p(@—0)+9g(z+0)
2
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Applying again (1.4) and (1.5) in theorem 2, and replacing
k by ¥{m—1), k; by 3(m,—1), k, by ¥(m,—1), m by —2k—1,
@ by (248)/(z—1), and f(k) by 2HmDI(a+1)I(y+1){(m),
this theorem is transformed into

THEOREM 2a. Let m, be a real number satisfying (1.6), and my,
a complex number with Re my = 0 and

(1.10) Re m, > |Re n|—2 Re k—2.

Suppose f(m) is a function continuous on Re m = min (m,, Re m,),
and analytic on Re m > min (m,, Re my). Let further

(1.11)
f(m)I'(m—+1) € &(my—io0, m;+100);
fm)[(m+1) = 2imm-i-2k-Re@b+Dl o(1) if Rek > —1, k # —1;

f(m)[(m+1) = 2%’"m—%lz—f}7—)n if k= —% and if Rek = —1;

f(m)(m+1) = 2kmmi+4ko(1) if Rek < —1

as m — o on Re m = min (m,, Re m,).

If Remy=m, = 0, then f(m) has to satisfy a Holder-condition
in a right neighborhood of m = m,.

Then f(m) satisfies the relation:

(1.12)
1 00 d(ll P—m n 4100 i o d
B ), pmg @) | me T OR @) m)dm = fmo)

Using all the substitutions of the preceding case, but now
replacing
2%(m—1)

(«+ DI (y+1)

theorem 8 can be transformed into

1) by fm),

THEOREM 8a. Let m, be a real number satisfying (1.8), and m,
a complex number satisfying

(1.18) |Re my| > [Re n|—2 Re k—2.
Suppose f(m) is a function continuous on

Re m = min (m,, |Re m&l)»
and analytic on
Re m > min (m,, [Re m,)).
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Let further
m){I'(m)} € &(m,—1i00, m;+1i00),
(1.14) f(m){I'(m)}1 = 2-imm2k+i-2ReE+Dlo(1) if Rek # —1,

1
= 2—immp— if Rek = —1
2 #o (log ) if Re

as m — o on Re m = min (m,, |Re my)).
Then we have:

ke " () f ”‘1+‘°°mP;m *TH@)f(m)dm = 0.

m,—1$00

Applymg (1.4) and (1.5) in theorem 4, and replacing k& by
m, ky by 3m,, ko by 3m,, m by —2k—1, z by (2+8)/(z—1), and
f(k) by 23| I(a+1)'(y+1) f(m), this theorem is transformed into

THEOREM 4a. Let k be a complex number with Re k > —1.

I. Let S be the strip |Re m| < a in the m-plane, and S the strip
|Re m| < a, where a is a positive number. Let m, be a real and m,
a complex number in 8. Suppose f(m) is a function analytic on S and
continuous on S, such that

2tm

(1.16) et )G 11) f(m) is an even function of m in 8.

Let further

f(m){r(m)}—l € 8('r”’l—"?:co’ m1+iw)a

(1.17) fm){I'(m)}2 = o(1), as m — © in 8.

When |Re my| = a, then f(m) has to satisfy a Holder-condition
in a S-neighborhood of m,.
Then we have:

(1.18)
1 [ de ric I
i, s e [ mEe T @ymydm = fom)
II. This formula also holds when m, = Re my = 0, and f(m)
18 only defined on the line Re m = 0, and satisfies the condition
(1.16),
mf(m) € (0, ¢),
f(m){I'(m)} € &(4, i0),

f(m) is of bounded variation in a neighborhood of m = m,. In the

(1.19)
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righthand side of (1.18) f(m,) has to be replaced by

3{f(my—08)+f(my+0i)}.

1.3. In the formulas of the preceding theorems both functions
P and Q occur. By means of the lemma it is also possible to derive
theorems 1b—4b, equivalent to theorems 1—4, in which only
the function P;*" occur. In this case the integration is carried
out with respect to the upper parameters.

Instead of proving the theorems 1—4 we shall give the proofs
of the theorems 1b—4b in sections 4—7.

Theorem 1 may be transformed by applying (1.1) and (1.2).
Further, replacing k by —1(n+1), k, by —(n,+1), n by —2k—1,
t by —(t+8)/(t—1), @ by —(a+8)/(z—1), ¢(t) by (1—t)e(t),
this theorem can be written in the form:

THEOREM 1b. Let n, be a real number with
(1.20) ny; < min {Re (2k+42—m), Re (—2k—m)},
and ¢(t) a function such that for all a, —1 <a <1
@(t)(142t)-t-HReml e @(—1,a)  if Rem #0,
(1.21)  @(t)(1+t)-tlog (1+2) eR(—1,a) if Rem =0,
@) (1—t)1-i™ e &(a, 1).
Let further ¢(t) be of bounded variation in a meighborhood of

t=z(-1<2<1)
Then ¢(t) satisfies the relations:

1 nyi00 1 dt
| anarernreore—a) [ snremn
(1.22) Tt mmie -1 -
= —{p(z—0)+g¢(z+0)},
and
1 ny4-$00 1 dt
o dnnL(@+1)I(—x)Pp™(e) | ()P (—t) —
LA n,—100 -1 l—t
(1.28) x

= —{p(z—0)+gp(z+0)}.

Using again (1.1) and (1.2) in theorem 2, and replacing & by
—3¥(n+1), &k, by —¥(n,+1), ky by —3(ny+1), n by —2k—1,
z by —(x+8)/(z—1), and f(k) by 2i"f(n), this theorem can be
transformed into

THEOREM 2b. Let n, be a real number satisfying (1.20), n, a
complex number with Re ny, < 0, and
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(1.24) Re ny < min {Re (2k+2—m), Re (—2k—m)}.

Suppose f(n) is a function continuous on Re n < max (n,, Re n,),
and analytic on Re n < max {n,, Re n,}.

Let further

(1.25) f(n)n™+t e &(n,—1i00, n,+i0),

f(n) = 2-irp-1-IRemlg(1) if Rem < 1, m # 0;
_gtn 21) it m — 0:

(1.26) flw =27 nlog n i#m=0;

f(n) = 2-4ru1-3me(1)  if Rem > I
_in_0(1) .

f(n) = 2% wlogn if Rem =1

as n — o on Re n < max {n,, Re ny}.
If Re ny = n; =< 0, then f(n) has to satisfy a Holder-condition in
a left neighborhood of n = n,.

Then we have:
(1.27)
1 ! de nytioo —2f(n,)
—— — Plo™(2 nPPH(—a)f(n)dn = ,
2ni)_y1—2 " " (<) p— =) I'(8y+1)I"(—ay)

where oy = k+1(m-+n,), 8 = k—3(m-+n,).
Using all the substitutions of the preceding case, but now
replacing f(k) by 2-3"f(n), theorem 8 can be transformed into

THEOREM 8b. Let n,; be a real number satisfying (1.20), and n,
a complex number with
(1.28) |[Re no| > max {Re (m+2k), Re (m—2k—2)}.
Suppose f(n) is a function continuous on
Re n < max {n,, —|Ren,l},

and analytic on
Re n < max {n,, —|Re nyl}.

Let further
(1.29) f(n)nd—m € §(n,—i00, ny+ioo),
(1.30) f(n) = 2trp-IRe(m-Dlg(1) if Rem # 1;

f(n) = 2i"0 (10%2) if Rem =1

as n —> o on Re n < max {n,, —|Re ny|}.
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Then we have:
(1.81)

ny+1c0

f — P"‘ "o(—2z) nIl'(6+1)[(—a)Pp™(z)f(n)dn = 0.
—1 n,—ico

Applying (1.1) and (1.2) in theorem 4, and replacing k by —3n,
ky by —3n,, kg by —3n,, n by —2k—1, x by (8+=2)/(1—), and
f(k) by 2-#"f(n), this theorem is transformed into

THEOREM 4b. Let m be a complex number with Re m < 1.

1. Let S be the strip |Re n| < a in the n-plane, and 8 the strip
IRe n| < a, where a is positive number such that I'(6+1)I'(—a)
has no poles in 8. Let n, be a real and n, a complex number in S.

Suppose f(n) is a function analytic in S, and continuous in S,
satisfying:

(1.82) f(n) = 2"f{(—n),

f(n)nt—™ e &(n,—ic0, n,+1i00),

(1.88) f(n) = o(n™%) as n - o in 8.

If |Re ny| = a, then f(n) has to satisfy a Hilder-condition in a
S-neighborhood of n,.
Then we have:

(1.34)
1 d ny+i00
_2—17;1' itw; P ™(—z) . nl'(6+1)(—a)Pp™(x)f(n)dn
' = —2f(n,)-

II. This formula also holds when n, = Re ny, = 0, and f(n) is
only defined on the line Re n = 0, and satisfies the conditions (1.82),

nf(n) € &(0, ),

(1.85) f(n)nt—™ € 2(s, ic0),

f(n) is of bounded variation in a neighborhood of n = n,.
In the righthand side of (1.84) —2f(n,) has to be replaced by
—{f(ny—07¢)+f(ny+02)}.

1.4. In this section we consider some special cases of the
preceding theorems.
By choosing &k, = —% theorem 1 becomes

THEOREM 5. Let m and n be complex numbers with
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(1.86) [Re n| < 1—Rem,

and @(t) a function such that (0.6) with k, = —% holds. Let further
this function be of bounded wvariation in a neighborhood of
t=ga(z>1).

Then ¢(t) satisfies the relation:

(1.87)

R e e
fo @ T (2ir)T(—2ir)

Pr3e) | PR (gt = m2—m 3 {p(@—0)+9(a-+0))

Proor. If we substitute in (0.7) k, = —%, k = —4+ir, and use
the relation Py "(z) = P™;",(z), then we find for the lefthand
side of (0.7):

(s8) [ arrpmgo) [ oter (oo (-0 @)t

In order to reduce the expression between the braces we com-
bine the formulas:
I(8+1)I(+1)

Ql—c-m, -n (t) — e—-21r¢m om—n F(y+1 )I"(a_'_l)

e "(8)  (see [10, (7)])

and
sin az sin y Q%" " (t)—sin éz sin frQ™.", (t) = —;f e™™ sin 2kn Py "(t),
(see [10, (9)])

and obtain the formula:

(1.39) emm{QE™ () — Q" (1)} .
’ — g [(B 1)+ 1)~ [(—y) T2

— Pt().

Now (1.87) follows from (0.7), (1.88) and (1.89).

ReMARK 1. If in the proof we substitute in (0.8) instead of
in (0.7), we obtain the same result (1.87).

To find the inverse of theorem 5 we transform case II of
theorem 4. The result is

THEOREM 6. Let s be a positive number, Re m < 1; f(r) ts defined
for r >0, and s of bounded variation in a neighborhood of r = s.
Let further



(18] Integral transforms 247

f(r) € £(0, 1),

(1.40) fr)yrmt e g1, o).

Then we have:
(1.41)
[ awPrza@ [ 1o0Pg =
a2t (2is)'(—2is){f(s—0)+f(s+0)}
1l—-m+4n 1—m+4n 1—m—mn l—m—n
F( 2 +”)P( 2 _’)F( 2 +w)‘r( 2 —)

Proor. The proof is quite analogous to that of theorem 5.
Now we substitute k = r, k, = s, and replace f(k) by
I'(2ir)I(—2ir)f(r)
F(l——m+n +ir)r(1——m+n _ir)r(l-—m—n _H,T)I,(l—m-—n —ir)
2 2 2 2

REMARK 2. Theorem 6 is an extension of theorem 1 of Gotze
[4, p. 402].

If in theorem 1—6 we choose m = n, then since Py"™(z) = Py (z)
and Qp"™(z) = QF (z), these theorems give inversion formulas for
integral transformations with the associated Legendre functions
PP (z) and QF (z) as kernels. For m = n = 0 the ordinary Legendre
functions occur. Theorem 5 simplifies for m = n to

THEOREM 7. Let m be a complex number with Re m < %, and
let p(t) be defined for t > 1 and be of bounded variation in a neigh-
borhood of t = x, satisfying (0.6) with k, = —}.

Then we have:

I'(}3—m+ir)I(3—m—ir)

ar I'(¢r)I'(—ir)

(142) °°

Phle) [ Poattiot)ae

_ 9(e—0)+9(@+0)
2

If m = 0, (1.42) becomes:

00 Lo
f drr tanh 7rP_ ., (2) f P, (Hp(t)t
o 1

_ 9(@—0)+¢p(z+0)
2

(1.48)

Theorem 6 simplifies for m =n to
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THEOREM 8. Suppose the conditions of theorem 6 are satisfied.
Then we have:

fl dwP™,, . (x) f H(r)P™ (@) dr
(1.44) O TUs)[(—is)  f(s—0)+f(s+0)
© I'(3—m+is)[(3—m—is) 2 ’

If m = 0, (1.44) becomes:
fs—0)+1(s+0)

2s tanh s

(1.45) fl dacP_%_‘_“(w)f0 f(r)P_yip(@)dr =

ReMARK 8. The formulas (1.42) and (1.44) have been found by
Vilenkin [8]. The formulas (1.48) and (1.45) are the well-known
Mehler-Fock transformation formulas (see [5] and [6]).

1.5. Since the functions P;»"(z) and Q%" "(z) can be expressed
in terms of hypergeometric functions, the preceding theorems can
be transformed into theorems on integral transforms with hyper-
geometric kernels. We shall not carry out all these transformations,
but give two examples corresponding to the theorems 5 and 6.
Theorem 5 gives rise to the following

THEOREM 9. Let a and c be complex numbers with 0 < Rea < Rec.
Suppose @(t) is a function such that for all p > 0
p(t)t-t-t1-Recl € Q(0, p) if Rec # 1,
(1.46) p(t)ttlogte (0, p)] if Rec=1,
Pt € &(p, ).

Let further ¢(t) be of bounded variation in a meighborhood of
t = a (x > 0). Then we have:

f ™ dbb sinh 2bs I'a-+ib)T(a—ib)[(c—a-+ib)(c—a—ib)
0

(1.47) abeD(14g2)¥F(atib, a—ib; ¢; —) f tho=D(1 4 ¢)o-be

0
). P(e=0)+p(a+0)
. BT

F(a+ib, a—ib; ¢; —t)p(t)dt = n2{T(c

Proor. Applying (0.2) to (1.87), and replacing » by 2a—ec,
m by 1—¢, r by b, 3(1—x) by —=, }(1—t) by —t, the theorem
follows immediately.
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REMARK 4. This theorem is an extension of a result of Titch-
marsh [7, p. 93].
From theorem 6 we can derive

THEOREM 10. Let a and ¢ be complex numbers with Re ¢ > 0.
Suppose f(b) is a function such that

1(b) € £(0, 1),

f(B)oi— € &(1, ),

1(b) is of bounded variation in a meighborhood of b = b, (by > 0).
Then we have:

(1.48)

{o <]
f dzas-1(1+-z)2- F(a+iby, a—iby; ¢; —z)
0

fwf(b)F (a+1b, a—ib; ¢; —a)db

0

— 72{I'(c)}?

"~ b, sinh 2mb, I'(a+1ib,)[(a—1ib, ) [(c—a+ib,) I'(c—a—ib,)

f(bo—0)+1(by+-0)
2

(1.49)

The proof is analogous to that of theorem 9.
REeMARK 5. The formula (1.49) has been found by Olevskif [8].

Part 11

2. Asymptotic approximations of a hypergeometric function

The object of this section is to obtain asymptotic approxima-
tions of the hypergeometric function F(a+n, b+n; c+2n; z) as
n — 00, uniformly on 0 < z < 1.

Let L, and L, be closed paths in the u-plane, starting from a
point u, with 0 < %, <1, encircling the points ¥« =0, u =1
respectively, both counter-clockwise. The point % = 2! is
not encircled by these paths. It is easily seen that

(2.1)

r
F(a+mn,b+n; c+2n;2) = (c42n)

I'(b+n)T(c—b+n)
+ (]_ ._eBM(n+c—b) )—1]2}’

{(_1+82ni(n+b) )— II]

where
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I,= f,,, (ul(::)) W1 —u) N (1—uz)du  (f=1,2),

if ec+2n %40, —1,..3b4+n#1,2,..5¢c—b+n#£12,....

The phases of u, 1—u and 1—uz will be taken to be zero at
the starting point ¥ = u,. In order to apply the method of steepest
descents we choose L, in such a way that |{u(1—u)/1—ux}"|
decreases or increases strongly along L,. The derivative of
log u(1—u)/1—uz is equal to (2u?—2u+1)/u(l—u)(1—uz), and
vanishes for 4 = (14-4/1—2)/x.

Since 0 < (1—+/1—z)[z <1 we choose for the starting point
Uy = (1—/1=2)[z = 1/1++/T—2.

Because of u,11 as 41, we change the variables  and «
by means of y = 4/1—z and u = 1—yt. I, is then transformed
into

— __qc—b—a t(1—yt) \" —a\b—1 ge—b— _ —a
:i =1, 2),

where C, and C, are closed paths with starting point ¢, = 1/1+4y,
encircling the points £ = y~1, £ = 0 respectively, both in positive
sense, whereas the point ¢ = —y/1—y?, corresponding to u = 271,
is not encircled by C;. In the starting point ¢, the powers in the
integrand of I, have the principal values. If we put

we get
(to)—lg(1+ 5

Now we choose for C; and C, paths on which Re g(t) = g(¢,),
so that
(l—yt) | 1

’t(l—y2)+y T (14y)e

It is easily verified that these curves satisfy the conditions
mentioned above.

If ¢ describes the curves C; and C,, the function |e"®| de-
creases or increases monotonically according as Imn >0 or < 0.
From
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y{(y?—1)2—2yt4-1}

ee = t(1—yt){(1—y?)t+y}’
1 y? (1—g®)?
e A (=
2y3 2(1—y?)®

g‘“(t)——s— = — 5 ;
£ -y {1—y*)t+y}

() = — Y SYUEA— POy Ay 1)+
(1"‘3/t)“ t4{ _y2 t+y}4

we see that

gn(tO) - —2y(1 +y)2’ gul(t()) = 63/(1+3/)3(1—y),

and y'g"(t) is uniformly bounded on li—f| <%, 0 <y <1.
Therefore

g(t) = —2log (1+y)—y(1+y)*(t—1)*
+y(1+yP(L—y)(E—1 )P +y(E—1,)* O(1).

Furthermore we have

(1 —gt)P 1> (1—y?) 4y}
= (14+y)2{1+q(1+y)(E—t)+O0(t—1ty)?}

(¢ = c—b—a—1+y(a—b-+1)) as t — t,, uniformly in y.

We first consider the case: n = ile®, 1 >0, |p| < in—y
(0 <7 < 3n), iy > .

In order to evaluate the contribution of the saddle point to the
integral I,, we consider the integral I,,, along the first part of
C, from ¢, to t;, lying inside the circle |t—¢,| << (dy)~%. Putting

(2.2)

(2.8)

(2.4)  t,—t, = (Ay)~teimi+€, where &’ — 0 as Ay — oo,

and substituting t—t, = (14+y)~1(dy)tel" v}, one may verify,
using (2.2) and (2.8), that

I Y(14y)to? il fﬂl
— —qyCt—6— —c—2n — e—giq’v .
21 Yy Yy 2\/13/ o

ot Lo+ 2 0(1))(1+e2w«—‘:’_v%+ 10(1)) vt do,
Ay Ay Viy My

(1+e<zw+w1‘-’/
Ay

with v, = (y)}(1+y)2€*®, as ly — oo, uniformly on 0 < y < 1.
From this one may deduce:
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Va o l—y+q 0(1)}
2v'ny 2ny (ny)}

as ny —> oo, uniformly on 0 <y < 1.

In order to approximate the contribution Iy, to the integral I,
of the remaining part C,, of C,, we remark that |e"®| is mono-
tonically decreasing, and that the arc length of C, is bounded
for 0 < y < 1. Therefore from (2.2) and (2.4) we have

(2.6)  [em®] < e )] < K |(1+y)72"| exp —co(Ay)},

where ¢, and K are positive constants, independent of y and A.
Moreover, to estimate the other factors occurring in the in-
tegrand of I,, we remark that on C, we have [t| > 1y, and
[t+y/1—y?| > 4y for 0 < y < 1, as easily can be calculated, and
find that these factors are bounded for § =< y < 1, where d is a
positive constant < 1. Therefore

(2.7) Lol < K'yRe(e=2=2[(1+4y)72"| exp —ey(2y)}

foréd =y=1

In the case 0 <y < § we split up C,, into three parts: Cy3 is
the part where [f| = 8, (6, will be suitably chosen > §), C,,
where y < |t| < §; and Cy5 where || =< y. Let the points of the
division be t,, #; 15, t3; and #, the real point on C,, (see fig. 1).
‘We denote the corresponding contributions to the integral I,
by Iy, I,, and I, respectively.

(2.5) Iy, =y 2(1 +y)l—c—2n{

t; t-plane
Cs
. 9
-y~ fha I
Tt Cs Y
t,
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Since for sufficiently small § we have iy < [t| <y and
3y < |t+y/1—y?| < 2y on Cy, it follows from (2.6):

(2:8) Iy = g9 (L4y)tne-anto()
uniformly in y and n for 0 <y = é.

We now choose é and 4, so small that on C,, |Im ¢| increases
with Re t, and 6 < §;. If we denote by s the arc length from £,
to ¢t on C,y, then we have |t—t,| < s < 2 [t—1,|. Hence on Cy,
we have for sufficiently small §:

(L—yt)- -1t (1 —y) +y)* = so>--10(1),
and from (2.6):
I24 - yc—a—b(l+y)—-2ne—co(lﬂ)*0(l)fs'SRe(c—-a—b)-—ldS

3

=y (Lty) e O(1)+ Oy )}

uniformly in y and »n for 0 < y < 4.

If Re (c—a—b) = 0, then in this formula O(y°%~?) has to be
replaced by O (log y).

Further it is evident that

(2.10) Is =y (1+y) 2e-at0(1)

uniformly in y and n for 0 < y < 6. Hence from (2.5), (2.7),
(2.8), (2.9) and (2.10) we obtain:

(2.11)
12 — yc—a—b(l _|_y)1—c—2n {

(2.9)

+ 3 o(1)

Va l—y+q 0Q1) gy }
2V ny 2ny (ny)t ~ (ny)

uniformly as ny - oon0 <y < 1.
In a similar way we may prove:

(2.12)
Il — yc—a—b(l +y)1—c—2n {

—vx  1—y+q 0Q) gy (1)}
2vny  2ny  (ny)t  (ny)}

uniformly as ny - o on 0 <y < 1. If Re (c—a—b) = 0, then
the last terms of (2.11) and (2.12) have to be replaced by
log y/(ny)k o(1).

We now consider the case ny is bounded, Imn = 0. It is
evident that y — 0 and n — 0. Again |exp ng(t)| is monotonically
decreasing along the contour C,, and therefore absolutely less
than |exp ng(t,)|=|exp—2n log (14+y)| = O(1). Hence the for-
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mulas (2.8), (2.9), (2.10) hold for Im n = 0 if we omit the factor
exp —co(dy)d. Moreover it is clear that I, = O(y*—*?). Con-
sequently

(2.13) I2 = yc—a—b{O(l)_'_O(yc——a-b)}’
and in a similar way
(2.14) I, = O(y===)+0(1)

uniformly as ny is bounded, Imn = 0. If Re (c—a—b) = 0 the
last term in both formulas has to be replaced by O (logy).
From the formulas (2.1), (2.11)—(2.14), y = 4/I—z and Stirlings
formula we obtain the final results:

(2.15)
F(a+n, b+n; c+2n; 2) = 227+ 1(1—g)ble—a—v-(14 4 /T—g)l-c-2n
{1+n1(1—2)20(1)+n"1(1—a)ttc—a-2-Dg(1)
+n7H(1—a)derd—c—Do(1)}

uniformly as n—> 00, n4/I—2—>0on0 =z <1l,p<argn <a—1,
and

(2.16) F(a+mn, b+n; c+2n; z) = nt22*{0(1)+(1—2)°*°0(1)}

uniformly as n — o0 and n4/T—zis bounded, 0 <z <1,Im n =0,
le+2n+g| = p, |b+n—1—g| = p, [c-b+n—-1-g|=p (§=0,1,2,...)
where p is a positive number.

If Re (c—a—b) = 0, then we have to replace the last two
terms in (2.15) by n~1(1—a) % log (1—z)o(1), and the last term
in (2.16) by log (1—2)0(1).

It can be shown by the same method that (2.15) also holds if
n < —argn = n—, and (2.16) for Imn = 0.

REeMARK 6. From the proof of (2.15) it follows that in (2.15) the
terms o(1) may be replaced by (n+/T—z)# exp (—c,|ny/I—z|})O(1).

Remark 7. If in (2.15) 2 is kept constant, then this formula
is in accordance with the well known asymptotic expansion of
the hypergeometric function given by Watson [11]. However,
Watson’s formula does not hold uniformly on the interval 0 <z <1,
butonlyon0 <2 <1—ewith0 <& < 1.

3. Asymptotic approximations of Pp-*(x)

In order to find an asymptotic approximation of Py»"(z) for
large values of |n|, we use the relation:
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(8.1)

- -1
Pp™(z) = (1+w)"+i"‘(1—w)—i"'F (-—-y, —a; 1—m;y ilc——) s

I'(1—m) 41
—1<a <1 (see [12, (8)]), and the asymptotic expansion of
the F in (8.1) given by Watson [11], and obtain after some cal-
culation:

P»"(1—2 tanh?u)

(8.2) 1
= g~$2-4-imHin(—p)m—(tanh u) e (1 +0 (;))
as n — oo uniformly on |arg (—n)| < $n—7, (0 <7 < ix) and
for fixed u > 0. Using the other asymptotic expansion of Watson
we find:
24m—gn

n, m 2. 1) —
{8.3) Pp™(2tanh?u—1) Ti—n)

(tanh w)~ten (1+0 (%))

as n — oo and |arg (—n)| < n—, for fixed u > 0.

The asymptotic behavior of Py™ (2 tanh?4—1) as n — 00 on
larg n| < 47— can be derived from those of Pg™ " (1—2 tanh? u)
and Py»~" (1—2 tanh? u) by making use of the formulas:

P (z) = 27"Pg""(x)
(see [2, (18)]), and
n —a2™" n,m(__
Pe@) = m T e Dysmmn 1 F - (2)
ﬂ2n—-m

(B+1)I'(—y)sin nx
This last relation can be deduced from [2, (8) and (10)]. We
obtain again (8.8) as n — oo for fixed 4 > 0, uniformly on every
subset of the sector |arg n| < }n—z with a positive distance to
the set of positive integers. Consequently (8.8) holds for such
subsets of the sector |arg n| < n—7, and fixed w.

With aid of the results of section 2 we may deduce asymptotic
approximations for the functions in the lefthand side of (8.3)
and (8.2), valid uniformly in « for # > 0. Using (0.3) and (2.15)
we obtain:

(8.5)
PM™(2tanh?u—1) =

(8.4)
Prm(—a).

T

24m—gn
I'l—n)
+ (tanh % )~™"1n"10(1)+ (tanh u)™1n"1o(1)}

(tanh u)~%e™{1+4(n tanh u)~10(1)




256 B. L. J. Braaksma and B. Meulenbeld [22]

as n —> 00, nu —> ©, § < |arg n| = n—n. If Rem = 0, then the
last two terms have to be replaced by (log tanh u) (n tanh «)~10(1).
If |nu| is bounded then we have from (2.16):

2-#"nt{um0(1)4+u"0(1)}

1
, m 2y—1) =
(8.6) Pp™(2tanh?u—1) Ta—n)

as n — 0. If Rem = 0, then the expression between braces
has to be replaced by log (1—a)0(1).
Applying (8.4) and (8.5) we have:
(8.7)
PP ™(1—2 tanh? u) = n12-i-im+in(—p)»¥(tanh )~}

- [e7™{1+4(n tanh »)~*0(1)-+ (tanh u)™"1n"lo(1)
+(tanh w)™1n~19(1)} +em+mm={1 | (n tanh u)~10(1)
4+ (tanh ©#)~"™"1n"10(1)+ (tanh u)™n"10o(1)}]

as n — o and nu — ©, < |arg n| =< n—. The upper or the
lower sign in the exponential is to be taken according as Imn 2 0.
If |nu| remains bounded we have from (8.4) and (8.6):

(8.8) Pp"(1—2tanh?u) = 28" n"{u™0(1)+u"0(1)}

as n — oo in the entire n-plane. If Re m = 0, in (8.7) and (8.8)

similar corrections have to be made as in (8.5) and (8.6).

ReMARKk 8. It is evident from (8.5) that (8.3) holds uniformly
foru =a >0and 5 = |largn| < n—1.

4. Proof of Theorem 1b

In order to apply the approximations deduced in sections 2 and
8 we may transform theorem 1b by means of the substitutions:

z = 2 tanh?u—1 (u > 0), t = 2 tanh?v—1(v > 0),
(2 tanh? v—1) = f(v),
into the following

THEOREM lc. Let n, be a real number satisfying (1.20). Suppose
f(v) is a function such that for all a > 0
f(v)ot-IReml € &(0, @) if Rem # 0,
f(v)vtlogv e L(0, a) if Re m = 0,
f(v) em? € &(a, ©).
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Let further f(v) be of bounded variation in a meighborhood of

v = u with u > 0.
Then f(v) satisfies the relations:

(4.1)
1 n4-+00

pver dnnl'(6+1)(—a)P"(1—2 tanh? u)
442 n,—900

f ” o) P™(2 tanh? v—1) tanh vdo — — Hf(u—0)+/(u+0)},
0

and

(4.2)
1 ny+4-i00
— dnnl(6+1)I'(—a)Pp™(2 tanh? u—1)

P ) ny—ioo

fm]‘(v)P;"'”(l-—2 tanh? v) tanh vdv = —3{f(u—0)+f(u+0)}.

Proor oF THEOREM lec.
Case A: First we shall prove this theorem in the case that
f(v) = 0 if v < u. Therefore we consider the integral

(4.8) I(u,v, 1)
ny+EA
= nl'(641)I'(—a) Py "(1—2 tanh? ) P;»™(2 tanh2v—1)dn,
n—iA
where A is a positive number. If we denote the integrand in (4.8)
by g(u, v, n), then g(u, v, n) is an analytic function of n if Ren < n,
on account of (1.20). Further from (8.2), (8.8) and the relation:
nl(6+1)(—a)

(8.4) Ta—my  — ad(—n)t—m {1+0 (%):

as n — o0 on |arg (—n)| = n—mn, we obtain for positive % and v:

g(u, v, n) (tanh % tanh v)t = entv—» {1—}«0 (%)}

as n — oo on |arg (—n)| < n—.
From this and Cauchy’s theorem we find for v > u:

ocoelmi

ocoe—int
(4.5) I(u,v,A) =f g(u, v, n)dn—f g(u, v, n)dn.

ny—iA ny+id

To approximate I(u, v, 2) for large values of 4 and v > u, we
need the behavior of g(u, v, ) in the sector S:
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tn—n < larg n| < 3ntn.
From (4.4), (8.7) and (8.3) (see remark 8) we obtain:

g(u, v, n) (tanh u tanh v)t = —e™*—" {14y, (u, v, n)}

4.6
(4.6) —en o) fexmid—m) Ly, (u, v, n)},

with

(4.7) ypi(u, v,n) =0 (7}[) s ye(u,v,m) =0 (%)

as n — 00, uniformly on v = % > 0 (u fixed) and in the sector S.
Defining

coelmi ooe—imi
mwo )= ([T [ )emevan

ny+EA ny—iA
—00—id —004-EA
— e"<“+ﬂ)+"i(i—7n)d,n+f en(u+u)—1ri(§—m)dn,
ny—id ny-id
we obtain:
enl(u—u)
(4!.8) ¢1(u, v, ;') = - 21 sin l(v—u)
em(v+u)

2i sin {A(v+u)—a(3—m)}.

Similarly we define

ooelft ooe"*"")

(4.9) Palts v 2) = (fn,.;.u T Jaia

{e"=y,(u, v, n)+e" T yy(u, v, n)}dn.
From (4.5) and (4.6) we have:
(4.10) I(u,v, A)=(tanh « tanh v)=#{p,(u, v, 1)+@,(u, v, 1)}.

Hence
(4.11)
0 tanh v tanh v\#
i = — Jem =)
res . 1©)gs(s,0,2) (t hu) 0= ;E.I?omf fo)e (tanh u)

sin l(v u) e”l"""“’ tanh v) ;
—a(t—m)}d
— }irg% ' f(v) —wn (tanhu sin {A(v+u)—n(3—m)}dv

= —nif(u+0),

as follows from Dirichlet’s formula and the Riemann-Lebesgue
lemma.
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To calculate

00

lim | f(0) (

A0 Jy

tanh v

1
o u) pa(t, v, A)do

we split the integral in two parts.

From (4.9) and (4.7) it follows that e~"1?g,(u, v, 1) tends to
zero as A — o0, uniformly on v = ¢ > «. On account of the con-
ditions on f(v) it is clear that

(4.12) lim [ f(v)

A—00 c

) @o(u, v, A)dv = 0.

tanh v\%
(ta.nhu

From the assumptions on f(v) it follows that we can choose ¢
such that f(v) is of bounded variation in the interval ¥ < v < ¢.
Therefore the real and imaginary part of f(v) (tanh v)} can be
written as a difference of two monotonic increasing functions.
Furthermore from (4.7) and (4.9) we have:

d
(4.18) f @g(u, v, A)dv — 0
as A — oo, uniformly on % =< d < ¢. Applying Bonnet’s mean
value theorem and (4.18), it follows that

tanh v\

(4.14) lim :f(v) (ta nhu) Paltty v, A)dv = 0.

From (4.12) and (4.14) we conclude:

0 tanh v\?
li =
tim [4(0) (220) a0, 2)do = 0,
and from (4.11) and (4.10):
oo
lim | f(v)tanh v I(u, v, A)dv = —nif(u+0).
Aso00 u

From (4.6), (4.7) and the conditions assumed on f(v), it follows
that

00 ny44A
f dv f(v) tanh vf g(u,v,n)dn

ny—iA
ny+iA 00
= f dnf f(v) tanh v g(u, v, n)dv.
ny—iA u
Passing to the limit 4 — 00, we obtain (4.1) in the case that
) =0if v < u.
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Now we consider the lefthand side of (4.2) with f(v) =0 if
v < u, and therefore we investigate the integral I(v, u, 1), see (4.8).
Applying (8.4) to Pi»" (1—2 tanh? v) we find:
(4.15) I(v, u, 2) = I,(v, u, A)+14(v, u, 1),

where

(4.16) I,(v, u,A)

7,464
B T sinnn Py™(2 tanh? w—1)P;™™(2 tanh*v—1)dn,
n—iA 7T
and
Lo, w ) = W7 TE+I(—a)
(4.17) 2\Us U, i sin nzw T'(B+1)T'(—y)

P»™(2 tanh? u—1) P»™(2 tanh® v—1)dn.

(In the case that n, is an integer we deform the path of integration
around the point n = n,). Denoting the integrands in (4.16) and
(4.17) by h,(v,u, n) and hy(v, u, n) respectively, we see that the poles
of hy(v, u, n) are n = +1, 42, ..., whereas hy(v, u, n) has poles
at these points, and at the points where k—3(m+n) = —1, —2,...
and —k—%(m+n) =0, —1, —2, .. ..

Applying (8.8) we find for the asymptotic behavior of k, (v, u, n):

(4.18)  hy(v, u, n)(tanh w tanh v)} = —en¥— {1+0 (%)} ,

valid for n — oo in every subset of the sector |arg n| < n—n» with
a positive distance to the set of positive integers. In a similar
way we find:

hy(v, u, n)(tanh u tanh v)}
_ 2 sin fz sin yw J {1+0 (_17;)} ’

sin nw

(4.19)

valid for n — o0 on every subset of the sector |arg(—n)| < n—y
with a positive distance to the set of negative integers.

Now we have from Cauchy’s theorem and (4.15)—(4.19) for
A > max {|{Im (2k—m)|, |Im (—2k—m)|}, and v > u:
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(4.20)
ooe—3mi 0ot
I(v, u, A) =f hy(v, u, n)dn— hy(v, u, n)dn

ny—iA nyFid
—2m1 Y (residues of h, (v, 4, n) at the poles to the right of Ren =n,)

P L ool
+ hy(v, u, n)dn— hy(v, u, n)dn

ny—id ny+iA

+2mi Y (residues of hy(v, 4, n) at the poles to the left of Re n =n,).

The residue of h,(v, u, n) at the pointn =g (g =1,2,...) is
equal to

(—1)y+12-mgP2™(2 tanh? u—1)P;*™(2 tanh? v—1)
F(k+ -——g;m +1)1"(k+ g——:m -|-1)
F(k— g—m +1)F(k— g+m +1)
2 2
Pyo™(2 tanh? u—1)Py%™(2 tanh? v—1)

= g-9-mg

(see [2, (15)]). The residue of hy(v, u,n) at the point
n=—g(g=12,...)is equal to

F(k+ g&m -|-1)I‘(—k+ w)

2 2

B )
2 2

Pyo™(2 tanh? u—1) Py%™(2 tanh? v—1)

2-0-m(—1)o+lg

= the residue of h,(v, u, n) at the point n = g.

Since hy(v, w, n)+hy(v, u,n) is equal to the integrand in
I(v, u, 2), it is regular at n = g (g = 41, 42, .. .). Therefore the
residue of Ay(v, u,n) at n = g is equal to minus the residue of
hy(v, u, ») at n = g. Hence
(Res. of ky(v, u, n) at n = g)+(Res. of hy(v, u,n) at n = —g) = 0;
(Res. of hy(v, u, n) at n = g)+(Res. of hy(v, u,n) at n = —g) = 0.

Consequently both sums of residues in (4.20) are equal. So

ocoe—imi coedmt
I(v, u, A) =f hy(v, u, n)dn— hy(v, u, n)dn
n,—iA 0462
(4.21) o B ot
f hy(v, u, n)dn— hy(v, u, n)dn.
n,—iA A
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Now we may calculate

lm [ ( (ot o00gt
{f hy(v, u, n)dn— hy(v, u, n)dn} f(v) tanh vdv

A0
u n—id ny+id

in the same way as in the first part of this section, now using
(4.18) instead of (4.6). The limit is equal to —zif(u+0).
Further, from
W = exmitm—}) :1 +0 (_L)} as :!: Imn— 0,
sin nx Imn
and (4.19) we obtain:
1

, 4, n)(tanh u tanh v)t = —enwtoIzmitn—p {1 0(——)}
hy(v, w, n)(tanh u tanh v) e + o

as 4+ Im n — oo.

Using this result and an analogous reasoning as in the first part
of this section we find:

00 [ poce—imi ocogdns
lim { f hy(v, u, n)dn— hy(v, u, n)dn} f(v) tanh vdv =0.
A-o0Ju ny—iA nyiA
Combining this with (4.21) we obtain:

lim | f(v)tanh v I(v, u, A)dv = —aif(u-+0).

Aso0du

Changing the order of integration we have (4.2) in the case that
fv) =0if v < u.

Case B: To prove (4.1) in the case that f(v) =0 if v > u, we
have to investigate I(u,v, 1) with v < w. Therefore we inter-
change the roles of  and v, and apply the previous results on
I(v, u, A) with v < v. Hence (4.21) holds. Applying (8.8) and
(8.5) we find:

(4.22) hy(v, u, n)(tanh u tanh v)} = —er“—2{1 4 y,(v, u, n)},
where

(4.28) (v, , m) = ;zl—z; {0(1)+u™o(1)+u™0(1)}

as n — oo and nu — oo uniformly in the sector S and 0 < u < v.
Moreover from (8.3) and (8.6) we obtain:

(4.24) hy(v, u, n) = nte~"{u™0(1)4-u—"0(1)},

as n — o in S, and |nu| is bounded.
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If Rem =0 in (4.28) and (4.24) the expressions between
the braces have to be replaced by O(1)+o(logu), O(log u)
respectively. To calculate

(4.25)
lim " ooe—}ﬂi oo0etmi
Asoo { f {hy(v, u, n)dn— f hy(v, u, n)dn} f(u) tanh udu,
0 \Jn—id n il
we use (4.22), and find:
o017t o0et T
(tanh u tanh v)} ( f - ) hy(v, u, n)dn
n,—4A ny4A
.26
(4.26)  _gipmtun SR A=) s, 4)
- U—1D ‘Pa s £ 9
where
coe—imt oy 4
(4.27) @s(v, u, A) = — (J. — )e”(“‘”)wa(v, u, n)dn.
n—iA ny+id
From Dirichlet’s formula we have:
(4.28)
N sin A(u—v) ta,nhu)‘lr .
1 —21em(u—v) —_ _
Agf:lo , e py— (tanh , flu)du mwif(v—0),

uniformlyindon 0 =d =S¢ <w.

Now we choose ¢ such that f(u) is of bounded variation on the
interval ¢ < u < v. Applying Bonnet’s mean value theorem as in
the deduction of (4.14), we find:

(4.29) lim vf(u)

A= 00 ¢

From (4.27) and (4.28) we have for Re m # 0:

(tanh u

3
tanh v) ‘Pa(v,u, l)du = 0.

7a(0, 4, 3) = - {O(1)+um0(1) +umo(1)}

as A - oo, Au — o0 uniformly on 0 < # = ¢. From this we have:

° tanh w\}
> Uy A d
[} outo w0 ) (%) s

- z}éf;m%f(u){o(l)+u-mo(1)+u"‘o(1)}du,

for positive K, K — o and 4 > K/c. Hence on account of the
conditions on f(z) given £ > 0, there exists a constant K, such that
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o tanh u\?
d
[l oo () Frdn

Using (4.28) with d = K,[4, (4.29) and (4.80), we obtain:
ocog—imt

f { f hy(v, u, n)dn
By \npmia

s L
| hyou n)dn} fw) tanhudu-l—m'f(v—o)l <e
nytiA

(4.80) < }e.

(4.81)

if 4> Zq(e).
Finally we have to approximate:

(4.82)

Ko | pooe—ts coctTi
f { f hy(v, u, n)dn— f hy (o, u,n)dn} #(w) tanh u du.

0 n,—~iA ny+id

Since on the path of integration Au is bounded, we can use
(4.24), and find for the expression between braces in (4.82):
AHum0(1)4w™0(1)} if Re m 7 0. Hence the integral (4.82) is

#0(1) fo I ) du-H 1O (1) fox"/ku—mﬂ f(w)du,

and therefore from the conditions on f(z) this expression tends
to zero as A — oo. Using this and (4.81) we see that the limit
(4.25) is equal to —azif(v—0).

By an analogous reasoning we find:

v coe—int coeiTé
lim U hy(v, u, n)dn— hy(v, u,n)d'n} f(u)tanhudu=0.

Asoodg \Jnpmin 1A

From this, (4.83) and (4.21) we have, after interchanging » and
v for Re m £ 0:

lim | f(v)tanhvI(u, v, A)dv = —mif(u—0).

Ao Jo

If Rem = 0, we obtain the same result with the corresponding
condition on f(v).

Changing the order of integration we have (4.1) in the case
that f(v) =0if v > w.

In a similar way it may be derived that (4.2) holds in this case.

Combining the results obtained in 4 and B, theorem 1lc is
proved completely.
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Part 111

5. Proof of Theorem 2b

On account of (1.25) and (8.2), the integral in » occurring in
the theorem is uniformly convergent for

az=ex=bif —-1<a<b<l.

Hence
b dw ny+ico
f =L Ppr@) [ PPN (—a)f(n)dn
(5.1) a n,—ico
n,+i00 b dw
= [ dnnfm) [ Ppie) PR (—0)
ny—ico a 1—a

Putting Ppo™(z) = w; and Pp"(—z) = w,, we see that w,
and w, satisfy the differential equations:

(1—a?)w; —20w; + {k(k—}—l)— % m? =0
! ! 2(1—z) 2(1—}—w)} T=0
m? n?

(1—a?)w, — 2w, -+ {k(k-l—l)— } wy = 0,

2(1+z) 2(1—=z)
from which we derive:

0 Wy W, = 0,

(1) (] —toy2ey) —2a(oyue; —yw})+ Z—

Hence
G2) [ Prr@PEt—a) (= A6)-A(),

where

A@) = = (1—at) [PP7(—2) - PB"@)

2__m2
(5.8) Tt

d
—Ppme) o P::‘"*(—w)} :
Using [18, (24)]:

AP ™(z) _ o(d+1) Pretni(g)

— " (mAn)ztm—n o,
dz (1—a?)}

(5.4) 21— P (),

we find:
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(5.5)

Aw) = 212 pron(—g) Ppom(a)+ (1—a?)

ng+n ng—mn?
[oo( 8o +1) P " (—) P ™)+ (8 +1) Py~ " (—) Por™ (@) .
From (5.1) and (5.2) we have:

b dx ny+i00
[ rem@) [ nPpe(—anan
a1—2 ny—00
n4+4400

= nf(n){A(b)—A(a)}dn.

ny;—i00

(5.6)

Case A: We now consider the case Re ny = n, < 0.

The function nf(n){4(b)—A(a)} is analytic in » in the half
plane Ren < n,, and continuous in the half plane Ren < n,
(see (5.2)). Hence, from Cauchy’s theorem we have:

Ng+-1€

[T ntmya®)-A@nin = | afm)a@)-a@pan
Ng—1i€ C,

where ¢ > 0 and C, is the half circle [n—n, = ¢, Ren < n,,

traversed from n,—ic to n,+ie. Therefore

N0
[ neae)—d(@yan
(5'7) hamte ny+i8 744100

— ([ +] +[7 ) mmae)—A@yan.

nyg—ioco Cy Ngt+4E
The function nf(n)A4 (@) is analytic in n in the half plane Re n < n,,
and is continuous on Re n < mn,, n # ny. Applying again Cauchy’s
theorem we find that

ny—1iE ny+100
(5.8) (f + 1 + ) nf(n)A4(a)dn = f nf(n)A(a)dn.
ny—ico C, ng+i€ L
Herein L is defined as follows. Choose a positive number R > [n,].
Let C, be the part of the circle |n| = R to the left of the line
Re n =n,. L is the straight line Re n = n, with the part inside
the circle |n| = R replaced by C,. L is traversed from n,—ic0
to n,+ic0.

Putting a = 2 tanh? y—1 and choosing R = 7™, we have to
investigate the asymptotic behavior of 4(2tanh?2%—1) on C,
as 7} 0. Since |np| is bounded on C,, we may use (3.8) for
P "(1—2 tanh?n) and Pp-1-"1(1—2tanh?y) in (5.5). More-
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over we apply (8.4) and (0.3) to Ppr™ (2tanh?®7n—1) and
Ppo~tm-1 (2 tanh2 —1) in (5.5). The result is

A(2 tanh? n—1)
[ 2trnlRemm1O(1) if Rem < 1, m # 0; 24*n~10(logn) if m = 0;
o { 2inp3m-1Q(1) if Rem > 1; 2"O(logn) if Rem =1

as 7| 0, |n] = 7%, Ren < n,. Hence from (1.26) we find:

f nf(n)A(a)dn -0 as a | —1.
Cs

For the straight parts of L we follow a similar argument; here
we have to apply (8.7) besides (8.8), and find that the correspond-
ing integral also tends to zero as a| —1. Hence by (5.8) the
contribution of A(a) to the integral in the righthand side of
(5.7) tends to zero as a | —1.

To evaluate the contribution of A(d) to the integral at the
righthand side of (5.7) we use the asymptotic behavior of A4(b)
as n — oo uniformly for b 4 1. Putting b = 2 tanh® N—1 and using
(5.5), (0.8) and (8.7), we obtain:

A(2 tanh? N—1) = (—n)™*¥0(1) as n — o0, Ren = n,,
uniformly for N — co. Hence from (1.25) it follows that

ny+ico ny—i M,
(5.9) ( f + ) nf(n)A(b)dn = o(1)
ny+iM n,—ioo
as M — oo uniformly for b 4 1.
To determine
(5.10) lim (

b11

ny—1i€ ny+iM

f + ) nf(n)A (b)dn
n,—iM nyti€

we use the asymptotic behavior of A(b) as b4 1 uniformly in n

on the path of integration. Using (0.3), (3.4) and (5.5) we may

deduce:

(5.11)

_ 2¥n-m+L - (sech N)"="I'(—n) 1
A(2 tanh*N—1) = ng—n 1’(1+a)r(—a)r(1—no)(1+0(z_\i))

2¥(n=n)+l  (sech N)="—"I(n) 1
motn TOHAT (=) T (=) (1+0 (N))

as N — oo. Since n—mn, is purely imaginary, we may apply the
Riemann-Lebesgue lemma to
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Mot ) (sech N)»=™I'(—n)
$(n—ng)+1
(f 1—£M+f i€ ) Nnyg—n 2 F(1+6)F(—°‘)F(1—no) f('n)dn,

n ny

so that this integral vanishes as N — co0. Since Re (—n—n,) =

—2n, > 0, it is easily be seen that the other terms in (5.11) give

contributions to the value of the integrals in (5.10) which tend to

zero as b} 1. Hence the limit in (5.10) is equal to zero.
Furthermore

[ ntma@yin = | _ nlftn)—f(na)}A ()

(5.12) 1 1

+1n) | na@)an.
¢

From (5.5) and the Holder-condition on f(n) we see that

n{f(n)—f(ne)}A(b) = (n—m,)°"*O(1)
asn—>ny, Renm =n, 0 <c<l.

Hence in the first term of the righthand side of (5.12) C; can be
replaced by the straight line segment from n,—is to nyt|ie.
With the aid of the Riemann-Lebesgue lemma and (5.11) we
see that the first term in the righthand side of (5.12) vanishes
as b1 1.

Finally applying the theorem of residues we have:

(5.18) f nA(b)dn = f nA(b)in—2ni (residue at n — ),
c c

1

where C; is the half circle |n—ny| = &, Re n = n,, traversed from
ny—ie to ny-+ie. From (5.83) we find for the residue of A(b) at
the point n = n,:

L a—wywippmm), Ppm(—b),
Ty

and this is according to [14, (15)] equal to 2/nyI'(—ay)I'(dp+1).
Hence the residue in (5.18) is equal to 2/I'(—ae)I'(6e+1).

Choosing ¢ < —2n, it is easily seen from (5.11) that the last
integral in (5.18) tends to zero as b1 1. So the first integral in
(5.18) tends to —4sm{11 I'(8,+1)} as b4 1, and therefore
the first integral in (5.12) to —4mj 1o){"(—ag)[(8o+1)}2. This
completes the proof of theorem 2b in case A.
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Case B: n, = 0, Re ny = 0, my 7~ 0.
Without loss of generality we may assume Im n, > 0.
In this case the righthand side of (5.6) is equal to

(5.14)

—ng—4$€ no—ie
([ +f + +[ ) mma®—a@an
—foo -—n.,,+ia Cy g€
where C, is the half circle [n Fny| = ¢, Ren =< 0, traversed from
+ny—ie to tny+ie. Here ¢ is a positive number with ¢ < [n,|.
It follows from a similar argument as in case A that the con-
tribution of 4 (a) to the integrals in (5.14) tends to zeroas a | —1,
and that

lim ( f T ) nf(n)A(b)dn = 0.

511 \J —joo —no+ie Ngti

To evaluate [¢, nf(n)A(b)dn we use (5.12) with C, replaced by C, .
Again the corresponding first term in the righthand side tends
to zero as b4 1. To calculate the corresponding second term we
apply (8.4) in (5.5), and write

A(b) = A,(b)+4,(0)

with
(5.15) )

. —n2™" +1 g, M n,m
4,(b) = I'(—a)I'(641)sin nx [no—l—n P (@) P (0)

+ PR a0t ) PR )P m ) PR P10}
0
and
_ 2n-m b+1 g, M n,m
A0) = Ty e TR
(5.16) 1 20200 00 1) Pt ) P e)

— a(a+1)P,:w'"(b)P;;—Lm-l(b)}] .

A4,(b) is an analytic function in n in a deleted neighborhood of
n = n,. So we may apply (5.18) with C, replaced by C, and A(b)
by A;(b). The residue of A,(b) at n = n, is equal to zero, so that
the residue of A,(b) is the same as that of 4(b) and this is, as in
case A, equal to 2/nyI'(—uo)l'(6,+1). Further [¢, nd,(b)dn — 0
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as b1 1, since 4,(b) = (1—b)}¥*"20(1) as b4 1 (see (5.15) and
(0.3)).
Using (5.16) and (0.8) we may deduce that
Ay(b) = (1—b)#m+m) O(1) as b4 1.
Hence

f nf(n)4y(b)dn — 0 as b4 1.
Cy

Consequently

. —4mif(n)

lim | nf(n)A(b)dn = .

o, AN = T e D)
The above method is applicable to the integral over C_. In this
case the residue of 4,(b) at n = —n, is equal to

2™
N I'(—yo)'(Bo+1) sin ny7
+ag(Gp+1)(1—02)} Ppo~1™1(p) - 2(1—b2)k Ppotl™1(p)},

Ppo™(b){ne(b+1)Pio™(b)

where
Bo = k——-%—('m—'no), Yo = k‘*‘%(m—”o),

and using the recurrence relations between the Pg'™(b) it can be
shown that this expression vanishes.
Hence

lim | nf(n)A(b)dn = 0.

vt1de
Combining the results obtained above the theorem is proved in
this case.

We use the same argument as in case B. The residue of n4,(b)
at n = 0 is given by

1
— | n4,(b)dn,
27Zifcn 1( ) "

where C is the circle |n| = r traversed in positive sense (r < 1).
To evaluate this integral we first consider the case n, = 0 and
|ng| < 7. Then we have two poles n = 4-n, inside C, and the residues
in these poles are according to case B equal to 2/I'(—ay)I(6+1)
and 0 respectively. Since the integrand is a continuous function of
n on C, the residue at n = 0 remains 2/I'(—a,)I(y+1) if ng = 0.
Hence the result is the same as in the former cases.
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Case D: n, # Re n,.

This case can be reduced to the preceding cases. Now we will
prove that

n,+-i00 Re ny+ic0
f — ) nPy*(—a)f(n)dn =0

n,—ico Re ny—ioco

(5.17) (

if —-l<a<l

The integrand is analytic in n for Re n < max (Re n,, n,), and
continuous for Ren =< max (Ren,, n,). Furthermore the asymp-
totic behavior of Pp"(—e) is given in (8.2). From (1.25) it
follows that the integrand tends to zero as [Imn|—> oo if
min (Re ny, ;) = Re n < max (Re ny, n,). Cauchy’s theorem
yields (5.17) immediately.

From the cases A, B and C it follows that

g, T Re nokieo m,n _ —4&7!’17(%)
L— i )Le,,o_m B I = e T (ot 1)

Combining this and (5.17) the theorem is proved in this case.
Herewith theorem 2b is proved completely.

6. Proof of Theorem 3b

Since
Pp»=ro(z) = 2-" P} ™(a),

it is sufficient to prove this theorem for Re n, =< 0. The proof
in that case may be given in the same way as that of theorem 2b.
Now we have:

® dx 1+’°°

— Pp™(—a) I'(84-1)(—a)Pp™(@) F(n)dn
(1) °° nptico e
= nl(0+1)(—a)F(n){4*(b, n)—A*(a, n)}dn,

where (see (5.8))
(6.2) A*(z,n)

d d
= i (1=a) [ P "o(—) 2 P (@)= Py ™(a) 7 PR ()

and (see (5.4))
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(6.3) A*(w, n)
. x+1
T ndn,
Prbm () Loy (8g+1) Pp ™ () Pt ™~ (—a)].

P ™o (—z) Py ™(x)+ (1—a?)}[a(6+1) P "(—=)

2__m2

A*(z, n) is obtained from A4 (z) of the proof of theorem 2b by
interchanging n and n,. Moreover the analogues of (5.7) and
(5.8) hold. From (0.3) and (8.6) it follows that

—3n

2
A*(2 tanh? 9p—1, n) = T nt0(1) if Rem < 1;

(1—n)

= T n~10(logn) if Rem = 1;
T(1—n) g ;

_ " mb0(1) if Rem>1
T(l—n)

as n —> o, 7 = 1/|n|, Ren < n,. Hence from (4.4) and (1.80)
we find

lim | al'(6+1)I'(—a)f(n)A*(a, n)dn = 0.

al-1 Cy
Proceeding further as in the proof of theorem 2b, it is easily
shown that the contribution of 4*(a, n) to the integral in the right-
hand side of the analogue of (5.7) tends to zero.

The contribution of A*(b, n) to this integral can also be

determined in a similar way as in the proof of theorem 2b.
However, the calculation of

lim | nl(6+1)I(—a)f(n)A*(b, n)dn

vt1de,
is much easier, since 4*(b, n) on C, tends to zero on account of
the formula (5.11) with ny and » interchanged. Therefore the
Holder condition, the evaluation of the residue at n = n,, and
in the case Re ny, = n; = 0 the splitting up of A*(x, n) in two
functions, is superfluous, and it follows that the lefthand side of
(6.1) tends to zero as a{ —1 and b1 1.

7. Proof of Theorem 4b

Without loss of generality we may assume that Remy, <0
on account of
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Pp="o(w) = 2-"PP"(z) and f(—ns) = 2-"f(no).

Moreover, from the conditions on f(n) and Cauchy’s theorem, it
follows that we only have to treat the case Re n, = n,. Further
we may use again the formulas (6.1), (6.2) and (6.3).

Case A: Suppose n, = Reny < 0.

The integrand in the righthand side of (6.1) is analytic in »
in the strip S and continuous in 8. Hence, by Cauchy’s theorem,
we may replace the part of the path of integration [n,—is,
ny+1ie] by the half circle C, : [n—ny| = ¢, Re n = n,. Denoting
the new path by L,, we have to prove:

(7.1) 1
lim — | «al'(6+1)I(—o)f(n){A*({d, n)—A*(a, n)}dn = —2f(n,).
pr12m ),
al—1
By (1.88) and Cauchy’s theorem we have:
(7.2)
J nI'(0+41)I'(—a)f(n)A*(a, n)dn = nI'(8+1)'(—a)f(n)A *(a, n)dn
Ll

—i00

= f wnf(n){l’(é—}—l)l’(-—-oc)A*(a, n)—T(B+1)(—y)2-"A*a, —n)}dn.
[}

From (6.2), (8.4) and (5.4) we may deduce:
(7.8)
nl'(64+1)I'(—a)A*(a, n)—nIl(f+1)I'(—y)2-"A*(a, —n) = B(a, n),
where
(7.4)
B(z, n) = I'(—«)[(f+1)I(—y)I'(6+1)2m"

x+1 ol _ o
[n - PR )P+

n sin nw

(1—a2)t
{xo(do+1) Pp~" %~ (—a) Py "(—@) —a(8+1) Py "o(—a) Py~ "7( —w)}]-
Hence from (7.2):

(7.5) L nI(0+1)T(—x)f(n)A*(a, n)dn — f " {n)B(a, n)dn.
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The function B(a, n) is regular at the point n = n,. We split
up the last integral into three parts:

100 iN, il $00
(7.6) [=]"+] +]".
0 0 iN, i

where N, is sufficiently large and 2 tanh? #—1 = a. From (7.4)
and (0.3) we find:

(7.7) B(z,n) = (14+z)*™0(1) as | —1 on [0, iN,].
Hence

iN,
(7.8) fo f(r)B(a, n)dn — 0 as a | —1,

since Re m < 1. In the second integral in the righthand side of
(7.6), |ny| is bounded, and we can use (8.8). Since

sin nx

nI(—a)I(+1)I(—y)[(5+1)2m" = ni-mO(1)

as n — o0, Imn = 0 (see (4.4)), we obtain:
(7.9) B(2 tanh?p—1,n) = n™0(1)

as 70, n - o, Imn = 0 and |nn| bounded. Hence from (1.33):
i
f f(n)B(2 tanh? p—1,n)dn - 0 as Ny, — oo, 7| 0.
iN,

To the third integral in (7.6) we apply (8.7) instead of (3.8),
and we obtain again (7.9) as ny — co. Using (1.88) we see that
this integral tends to zero as % | 0. Consequently from (7.6) and
(7.5) we get:

(7.10) lim | al'(6+1)[(—a)f(n)A*(a, n)dn = 0.
al—-1J L,

The contribution of A*(b, n) to the integral in (7.1) may be
evaluated in the same way as that of 4(b) to the integral in the
righthand side of (5.7). We now use the asymptotic behavior:

1
A*(2tanh®?N—1,n) = —— O0(1
(2 tan m = F—ay 00
as n — 00, Re n = n, uniformly for N — oo, and (5.11) with 4
replaced by A* and » and n, interchanged. Then we find:
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(7.11) lm | al@+1)1(—a)f(n)A*(d, n)dn = —dnif(n,).

pt1Jz,

From (7.10) and (7.11) we find (7.1).

Case B: Suppose Re ny = n; = 0, n; # 0.

Since the case I of theorem 4b for Re n, = n, = 0 is contained
in case II, we may restrict ourselves to this last case. It is also
clear that without loss of generality we may assume Im n, > 0.

In a similar way as in case A it may be shown that

[ ar@+1r-a a6, m—a%(@ ndn
(1.12) Y -
= " f)(B®, »)— B(a, n)}dn,

and that the contribution of B(a, n) to the last integral tends to
zero as a | —1. \
To calculate

(7.18) lim mf(n)B(b, n)dn

bt1do

we now split it into two integrals:

i00 iN, io0
(7.14) f - f ¥ f .
0 0 iN,

To approximate B(b, n) in the first integral we apply (8.4)
and (0.8), and find:

B(z, n) = (1—a)k~+m g (n, )+ (1—z) 3"+ gy(n, 7)

+ —— {A—a)rm— (1—2)Ho {1 +gy ()}

n—mn,
+ (@ —z) = gy (n, 2)+(1—z)b =" gy (n, ),

where the functions g; are analytic in » and 2 in the neighborhood
of x = 1, whereas g3(z) > 0as 2} 1.

Since
n—;no lOg (1 —m)a

(L—az)¥n—m0) — (1 —z)%0~™ = 24 sin —
i

and log (1—2) - —o0 as #11, we may apply the Riemann-
Lebesgue lemma and Dirichlet’s formula to the first integral in
the righthand side of (7.14) as b} 1, and find:
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iN,

lim | f(n)B(®, n)dn = —2mi{f(ne-0i)--f(ng—0i)}.

btldo

By applying (8.7) and (8.4) to the integrand in the last integral
of (7.14), it is easily found that this integrand is f(n)n—3-"0(1)
as n — 00, b1 1. Hence from (1.85) it follows that the integral
tends to zero as b1 1, Ny — co. This completes the proof in this
case.

Case C: Suppose ny = n, = 0.
The proof in this case differs from that in B only in the ap-
proximation of B(b, n). To estimate Pp»°(—b) it is not possible
to use (8.4). We now apply (0.3) and the formula:
—I'(a+b)

log (1—2)4-0(1), as 11

(see [15, p. 110, (14)]). The integrand in (7.18) can be written as

‘_‘f_y(:i) (1) — (1—b)~4"}(1+hy (b))

+(n)(1—b)i"{log (1—b)hs(n, b)+he(n, b)}
+#(n)(1—b)~#"{log (1—b)hy(n, b)+hs(n, b)},

where the functions A, are analytic in » and b in the neighborhood
of n = 0 and b = 1. Further the proof is quite similar to that in
case B. With this theorem 4b is now proved completely.

Part 1V

8. Examples

8.1. LEMMA. Let p and q be arbitrary complex numbers with
Re (p—%n) > —1 and Re ¢+1 > %lRe m|. Then we have:

(8.1)
' (1 —2)? (1+2)2 P™(t)dt

-1
— I'(g+3m+1)(p—jn+1)

TA—m)[(ptg+Hm—n)+2)
ovtetbim—m+l F (y41, —B, p—3n+1; 1—n, p+q+E(m—n)+2; 1).
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Proor: From (0.8) it follows that the lefthand side is equal to
1 1
1—8)? (1 4-t) e Fly+1, —B8; 1—n; 2(1—t)} dt.
Fiomy ) AP () F L, —; 1—m; Ja ) d

The integral is convergent on account of the conditions on p and gq.
Substituting 3(1—¢) = « and applying [16, p. 399, (5)] we obtain
(8.1).

REMARK 9. (8.1) is an extension of [17, (88)].

CoroLLARY. Choosing ¢ = k—p—1 we oblain:
If Re (p—3n) > —1 and Re (k—p) > } |Re m|, we have:
1
j (1—2)? (14-8)*—2-1 P ™(1)dt
-1
, Tk —p-+im) I (k—p—m)T(p—fn+1)
T+ 1) (—p—3n)

THEOREM 11. Let p be a complex number, and n, a real number
with

(8.2)
=2

(8.8) n,; < min {242 Re p, —Re (2k+m)}
and
(8.4) Re (k—p) > 1.

Then for —1 < & < 1 we have:

1 [ratie I'(—a)(p— 1
s T T
(1+z)7+ (1 —z)F—»-1
I(k—p+3m)I(k—p—§m)’
Proor. We apply theorem 1b, formula (1.22), with
p(t) = A=)+ (142)t>1

and (8.2). Then we obtain (8.5) with the conditions (8.8) and
the condition:

(8.5)

—_ __21—k—%m

|Re m| < 2 Re (k—p)—1.

The asymptotic behavior as n — c, Re n — n; of the integrand
in (8.5) can be found from (8.7) and Stirling’s formula. From this
it is easily seen that the integral has a meaning and is an analytic
function of m if (8.8) and (8.4) are satisfied. Hence (8.5) holds
for these conditions. :
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(8.5) becomes for p = —3:
L o T(—a)

270y o 01" T(y+1)

Py "(z)dn

(1+2) 4 (1—a)*H
I(k+3m~+3) I(k—3m+3)
if #;, < min (—1, —Re (2k+m)), Rek > —%, —1 <z < 1. For
= —3m—1 we have:
1 [t g

278 J oo M1

= —9Q—k—}§m-1

(14z)H(1—z)im
I(1—m)

24P p(@)in = 2}

ifn, < —L,Rem<3 —1<a<l.
(8.5) becomes for p = —1:

1 (e [(—)
— —in _> ' P™(a)dn
o)y el Ti1) )

= 9—k—}m

(1—=z)*
T(k+im+1)T(k—im+1)

if n, < —Re (2k+m),Rek > —3, —1 <z < 1.
For k = —}{m—13 we have:

1 protico ) (l_w)-—}(mﬂ)
S 2—%npm n dn = V_ -

2708 J oo il (#)dn n  I(3—m)

1

ifRem <3}, —1<z<Ll

(8.5) becomes for p = —3:
1 n4+100 P(—a)

— —3n pmr an
2 T1) E )

— 21—-k—im

14z} (1—a)*1
I'(k+3m+3)I(k—3m—+3)

ifn, < —Re (2k+m),Rek > —1, —1 <z < 1.Fork=—}m—1}
we have:

1 ny+i00
i) n2~irpPme o (@)dn =0 if Rem < —%, —1 <z <1,
-

a trivial result since the integrand is an odd function of n.

8.2. Theorem 11 may be transformed by applying (1.1) to
Py "(z) in (8.5), substituting (z—38)/(—2—1) by «, and replacing k
by —3(n+1),n by —2k—1 and n, by —2k,—1, into the following
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THEOREM 12. Let p be a complex number and k, a real number
with
(8.6) k,>max {—3—Rep, }Re(m—n)—1}and Re (n+2p) < —3.

Then we have for x > 1:

1 ok I'(ﬁ-i-l)l’(p—l—k-{-%)
2k+1 Ppen(a)dk
e e T TG I at )
— go+hn—m)+} (z—1)7trH(@+1)i"

I(—p+im—in—PI(—p—Im—tn—3)
For m = n we have:

1 phe T(p+k+3)
2k+1) ——m8M8 ————
@) R Tkt D)
oy (a—1)yim it 1)

— or+h
I'(—p—3$)I'(—p—m—1})

if k, > —§—Rep, Re (m+2p) < —%, 2> 1.

— Pr
=1 ™ (2)dl

(8.8)

For p = —32 (8.7) becomes:

1 f"“““ 2k+1 I(B+1)
271 )5 o B(E+1) T(y+1)

P™"(2)dk

(8:9) (@—1)#(z+1)i

I(1+4m—4n) [(1—}m—3n)
if k, > max {0, 1Re (m—n)—1}, Ren < $, z > 1.
Taking m = n in (8.9) or p = —3% in (8.8) we find:

_1_f"x+‘°° 2k+1 (@) dks = 1 (z41\im
2 i _so0 B(l+1) " ~ I'(1—m) (ZZT)

= 2}("_"')

ifk, >0, Rem <3, z>1.
For p = —1, we derive from (8.7):

1 (e D(E41)
2ai fw T(y+1)

= 2_‘}"'*(”_"')

P (w)dk

(8:10) @—1)yH-dn(a+ 1ie

I(3+4m—in)I(3—jm—in)

if ki, > 3 Re (m—n)—1, Ren < }, z > 1.
For m = n we have from this last formula:
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L (" ppayak = —— L
2 O BTG m)

ifRem < 4,z > 1.

(@—1)"4im (41 )im

For p = —} we obtain from (8.7):

1 kytico F(ﬂ+1) .
(8 11) E_n—z ky—ioo (2k+1) P(y+1) Py (w)dk
| = Q23(n—m)+1 (x—1)~#1(p4-1)in

I(3m—4n)I(—jm—in)

if b, > {Re (m—n)—1, Ren < —%, 2 > 1.
For m = n the integral vanishes, a trivial result since the
integrand is an odd function of k—}.

8.3. (8.7) can be transformed by means of (0.2) in an integral
with a hypergeometric function. After replacing (n—m) by a,
1—m by m, 1—z by —2z we obtain:

1 (*+ (2k4+1)[(k+a+1)(p+k+-3)
%‘fkrm I(m)T(k—a+1)T(—p+k+1%)
F(—k+a, k4+a+1; m; —z)dk
x—?-o—¢
~ T(—p—a—PTm—p—a—P)
if k, > max (—3—Rep, —Rea—1), Re (2p+2a—m) < —%,
x > 0.

For p = —1 we obtain:
1 fatie Nk+4a+1) 1
278 Ji,—s00 T'(k—a+1) I'(m)
z—%
I'(}—a)l(m—a—1})

if k; > —Rea—1, Re (2a—m) < —%, z > 0.
For a = 0 this becomes:

F(—k+a, k+a+1; m; —z)dk

.

LI s SR A A dh—
2 ky—ico L'(M) = s —a)dl = 24/l (m—1%)

if Rem > %, 2 > 0.

8.4. Now we return to (8.10) and deduce from this formula
a summation formula for the Q.
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We suppose m—n # 1, 2, .. ., and deform the path of integra-
tion in (8.10) such that the points k = }(m—n)—g (g =1,2,...)
and k = —3}, —1, —13}, —2, ... are to the left, and the points
k= —}m—n)+h (h=0,1,2,...)and k=0,%,1,14,... are
to the right of the new path L. From (1.89) and (8.10) we obtain:

1 —sin pz 2n—mH o o
2ni (0™ " (@) — Qe (@)} dke
2mi ), T(3+1)T'(—a) sin 2kn 0™ @) — 0= " (@)}

(@—1)dr@+1)in
I(3+3m—3in)I(3—im—1in)

To find the asymptotic behavior of Q;™ "(z) as k — o0 on
larg k| =< m—n with 0 < 9 < =, we use the formula ([12, (9)]):

I'(6+1)I'(B+1)
T(2k+2)

(8.12)

= 2"}"'%(”—"")

Q;m, —n(w) — e—mimgy (w_l..l)'k—i"‘_l(w—l )‘5‘"‘

2

Applying (2.15) we obtain:

r—1\ —2k
14+ )/ —
z+1
F 1, ; 2; = o(1),
(oc—l— y+1; 2k+ 1+w) 2 (1)
so that, using Stirling’s formula, we have:
(8.13) Q™ "(@) = k™ ¥(x+4/22—T)7*0(1)

as k — oo on |arg k| < zn—7, 2 > 1. Furthermore

—sin yﬂgn—m-}-l emim
T'(6+1)I(—a) sin 2kn

= k™0(1),

valid for &k — oo on every set with a positive distance to the set
of integers.

From this formula and (8.18) the asymptotic behavior of the
integrand in (8.12) can be found. Then we see that for Re n < —%
we may split up the integral in (8.12) into the two parts:

1 —sin ym - 27" m+1gmim
8.14 — —m,—=n () dk;
(8.14) 275 ), T(0-+1)I(—a) sin 2k °* (@)
and

1 3 2n—m+1 mim
(8.15) S d =0 () dk.

2miJ, T'(6+1)I(—«) sin 2kx ©
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Moreover we see that (8.14) is equal to
—3 (residues at the poles of the integrand to the right of L),

and (8.15) is equal to
3 (residues at the poles of the integrand to the left of L).

Hence the righthand side of (8.12) is equal to

00 —sin §(m—n)zm (—1)7 2n-m+1 emim .

2 T = Kmtn) T(—g—Rmtm) 2w &0 )

oo. —cos %(m———n)n(—l)"2"“""+1 —emim i —n
2 Tlgri—Hom+m) I{—g—3—Jom+m) 2z o5 @
LG sindmoma (g e
51 I(—g+1—}(m+n)) I(g—}(m+n)) 2 7

o cos %_(m_,n)ﬂ(_l)g2n—-m+1 —eTim —M,—"(w)

& Mgt i fmtm) Mgt mtm) 2w O
__ cos }(m—n)m 2"
~ I(3—}m+n)? =«
+2§ cos ¥(m—n)m (—1) 2" P

=1 D(g+3—3m+n) I(—g+3—m+n)) = 7
Replacing m by —m we find after some simplifications the
relation:

eﬂim Q_"‘;"r —”(w)

().

(8.16)
I(3+jm+
emim 23 (n—m—1) Fg.{..—%%:—_—%%%% (w-—l )—}ﬂ—i(w-{—l )‘}»

3 (=1)°0525 (=)

1

= " (z)4-2 > .
Fa+im—gor o O 2 F o) T (—g+ b+ fm—tm)

This formula has been proved under the conditions z > 1,

Ren < —34, m+n # —1, —2,.... From (8.18) it follows that

the series in (8.16) converges for every n. Hence it can be shown

that (8.16) is valid for # > 1.

For m = n (8.16) becomes:

em‘m‘/% (w_}.l)}"‘(m—-l)"'%m"‘} = I‘(m—}—%) { 2*(w)+2g§1Q:”-}(w)} .

This is a special case of [15, p. 166 (3)].
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With the same method we can deduce from (8.11) the following
relation:

mim n—m I'(1+2m %n) n—1
et 2%( ) W ( l)i‘ (m—l—l)“%
2g+1 _—
=3 (—1) , ,
Eo( Tt it Im T I (—gt Imidm) &2 @)
valid for > 1, and for m = n:
eﬂim o) 2g_|_1
—1)im (g4 1) = 3 (—1) ™ (2).
Ty @@ = 2V Ferm ) Fmg) 0 @

It is evident that from (8.7) more similar relations can be deduced.

8.5. If we choose in (8.1) p = ¢ = —} we may apply Watson’s
theorem [15, p. 189 (6)] to the 4F, and obtain:

1
(1—22) 2Py ™(t)dt
-1
72 24m+in 1

~ cos o T3 T30 Ty + 1) T (0 +1)
if Ren <1, |Rem| < 1. Applying theorem 1b, (1.22), with
o(t) = (1—2t) (1+t)~% we find:

1 e DTG
f_m M(—3+HrEy+y " e
1+m)i

1
= — — cos ymn 22+im (-——-
7 1—2z

(8.17)

valid for (1.20) and —1 <z < 1.
From (8.17) we may deduce with the aid of (1.1) and the usual
substitutions:
ky4-ioco

oo D) T ly+1)

(8.18)

— cos ymm - 2+ (g2 —1)4,
%

valid for (0.5) and # > 1. For m = n this becomes:

i I¢k+3) IGk—4m+3)

1
2723 Ji o0 (2k+1)1‘(%k+1 I'(3k+3im+1)

A

P (z)dk

-

cos 3max - 2™+2(22—1)"4,

a]r—t
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8.6. In order to apply (1.28) we transform (8.2) by interchanging

m and n and replacing ¢t by —t. We obtain:

[ a—opraqtipppr—na

-1
I(B+1)I(8+1)I(—p—}m)

if Re (p—3m) > —1 and { |Re n| < Re (k—p).
This leads to the result:

(" b Fi—pt ) T —p—dm) 2% i dn
i) . (k—p+3n) I'(k—p—3n) T )
G20y I(—p—}m)
— _o—k+im41 — )k~
T Rp—gmry) (TP

ifRep > —1, Iny| <2Re(k—p), n; < —Re (2k+m), —1 <z <1.
Choosing p = k—1 we obtain:

1 e nt  I(—a)
— g4n Prm () d
27 )y i S0 dna T(BH1) " (@) dn
1 I(1—k—3%m)
— _ _ 9—kt+jm42 1— 1 k—1
—2 Ty (90 4®)

if Rek > %, lny] < 2, ny < —Re (2k+m).
Formula (8.20) may be transformed by (1.2) into

(8.21)
1 [Rrtico P(_k—|-%fn——p—1)r(k+%n—p) —mwim ()M, n
2 )y oo oY) I(—8)I(a+1) e
I'(—p+4m)
—_ —%m n—p-1 _ ' - & 7 —_ -—%n
2 R dmgy) @R

valid for # > 1, Rep > —%, |2k, +1| < Re (n—1—2p),

ky, > } Re (n—m)—1.
For p = {n—1 this formula becomes:
1 ky+i00 2k_|_1 1 .
P —mim ()m, n dk
278 J,—so0 SIN bt I'(—06) I'(@+-1) e " ()
I'1+1im—1
PA+3m—3n) o 1)in1(zt1)dn,

1
—_ — — 2%”_‘}"‘
x T(gm+n)

valid for > 1, Ren >3, —1 <k, <0, k, > {Re (n—m)—1.
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8.7. From [16, p. 400, (10)], (0.2) and (0.3) the following formula
is easily derived:

(8.22)

f " (1)t 1) (e )P (1) de

I‘(a+2l+1)l’(—6+2l) —n—zl.—-m—zt(w)

= (z+1)"in(1—g)t-1n T@i+1) k

valid for Rem <1, |Re (2k+1)| <Re (m+n+4l+1), —1<az<1.
Applying (0.8) of theorem 1 we obtain:

(8.28)
1 et
— (2k-+1) T'(8 — 20+ 1) [ (— a— 20) e=7im QI 5(r) P2Lm422) g

278 J,—ioo

= I(1—2l)(z—1)}"(z+1)I*(1—z)*-ir(z41)"dm(z4-2)2-,

valid for 2 > 1, —1 <z2<1, Rem > —3%, k;, > —}Rem+
3Re n|—1, |2k,+1| < 1—Re(m-+n-+41).
For m = n (8.28) becomes:

(8.24)
ky-i00

-2717;% (2k+1) I (k—m—21+1) [ (—k—m—2])e~"m Q™) Pr+2Y2)dk
o = I'(1—2l)(x2—1)}™ (1 —22)~ 3™ (g 4-2)2-1,

~

Choosing in (8.28) I = 0, and replacing m by —m, we find:

kytico

(2k+1)1(—=B)(y+1)e"™ Q™ ~"(z) P ™(3)dk

_2men l—z)-i" 1+z)‘}"‘
o r-+2 (w-l—l (a—v—:i-

valid forz > 1, —1 <2 <1, Rem < %, (0.5) and
|2k,+1| < 1+4+Re (m—n). For m = n this becomes:

1 [Etiogpty

278 Ji _ioo SID k70

(8.25) 2 Jr-ioo

e"m Q™ () Py (2)dk
-1 1+z.w+1)*m
T a(z+z) (l—z z—1]

8.8. Other applications of theorem 1, (0.8), may be found by
using the formulas:

(8.26)
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00 —
f e~ (2 —1)" I PR (t)dt = V—f; a" 1K, 4(a),
1

where Rea >0, Rem < 1, and K;(x) denotes the modified
Bessel function (see [16, p. 823, (11)]), and

f (tj;i) e~ PP(t)dt = a—IWm,k+§(2a)’
. \—

where Rea > 0, Rem < 1, and W, ,(2) denotes the Whittaker
function.
The results are:

1 ky+ico
pwr (2k+1)e ™" QO (2) K.y (a) dke

271 ky—ico

(8.27) _
— V_;Z a§+me—aw(w2_1)~}m’

valid for
z>1,Rea >0 Rem > —3, k, > —iRem+13 |Rem| —1,
and

(8.28)
1 kytioo

im
(2h+1)e™mQ;™ (@) W,y 1y (2)dk = @ (‘;—t—i) p—

270 Jy—ioo

valid forz > 1, Rea > 0, Rem < %, k; > } Re m+3} |Re m|—1.

REFERENCES

L. KuipErs and B. MEULENBELD,
[1] On a generalization of Legendre’s associated differential equation I and II,
Proc. Kon. Ned. Ak. v. Wet., Amsterdam 60, 436—450 (1957).

B. MEULENBELD,
[2] Generalized Legendre’s associated functions for real values of the argument
numerically less than unity, Proc. Kon. Ned. Ak. v. Wet., Amsterdam 61,
557—563 (1958).

N. J. VILENEKIN,
[3] The matrix elements of irreducible unitary representations of a group of
Lobatchevsky space motions and the generalized Fock-Mehler transfor-
mations, Dokl. Akad. Nauk S.S.S.R. 118, 219—222 (1958) (Russ.).

F. GoTzE,
[4] Verallgemeinerung einer Integraltransformation von Mehler-Fock durch den
von Kuipers und Meulenbeld eingefiihrten Kern Pj* "(z), Proc. Kon. Ned.
Ak. v. Wet., Amsterdam 68, 396—404 (1965).



(53] Integral transforms 287

F. G. MEHLER,
(5] Uber eine mit den Kugel- und Zylinderfunktion verwandte Funktion und
jhre Anwendung in der Theorie der Elektrizititsverteilung, Math. Ann. 18,
161—194 (1881).

V. A. Fock,
[6] Uber die Zerlegung einer willkiirlichen Funktion in ein Integral nach Legen-
dreschen Funktionen mit komplexem Index, Dokl. Akad. Nauk S.S.S.R. 39,
279—283 (1943) (Russ.).

E. C. TITCHMARSH,
[7] Eigenfunction expansions associated with second-order differential equations
I, Oxford 1946.

M. N. OLEvVsKIi,
[8] On the representation of an arbitrary function in the form of an integral
with a kernel containing a hypergeometric function, Dokl. Akad. Nauk S.S.S.R.
69, 11—14 (1949) (Russ.).

B. MEULENBELD,
[9] New recurrence formulas for the Pp»™(z) and Qf"™(z), Monatshefte fiir
Mathematik 64, 855—360 (1960).

L. Kureers and B. MEULENBELD,

[10] Related generalized Legendre’s associated functions, Arch. Math. 9, 394—400
(1958).

G. N. WarsoN,

[11] Asymptotic expansions of hypergeometric functions, Cambridge Phil. Trans.
22, 277—808 (1918).

L. Kurrers and B. MEULENBELD,
[12] Linear transformations of generalized Legendre’s associated functions, Proc.
Kon. Ned. Ak. v. Wet., Amsterdam 61, 330—333 (1958).

L. KUIPERS,
[18] Relations between contiguous generalized Legendre associated functions.
Recurrence formulas, Math. Scand. 6, 200—206 (1958).

B. MEULENBELD,

[14] Wronskians of linearly independent solutions of the generalized Legendre’s
equation. Recurrence formulas. Math. Nachrichten 21, 193—200 (1960).

A. ErpDELYI a.0.,

[15] Higher transcendental functions I. New York-Toronto-London, 1953.

A. ERDELYI a.0.,

[16] Tables of integral transforms, vol. 2, New York, 1954.

B. MEULENBELD et L. RoBIN,

[17] Nouveaux résultats relatifs aux fonctions de Legendre généralisées, Proc. Kon.
Ned. Ak. v. Wet., Amsterdam 64, 333—347 (1961).

(Oblatum 10-11-1966) Delft Institute of Technology
Department of Mathematics



