
Integrated CPU-GPU Power Management for
3D Mobile Games

Anuj Pathania, Qing Jiao, Alok Prakash, and Tulika Mitra
School of Computing, National University of Singapore

{pathania,jiaoqing,alok,tulika}@comp.nus.edu.sg

ABSTRACT
Modern system-on-chips (SoC) integrate CPU and GPU for im-
mersive 3D gaming experience. These games require both the CPU
and GPU to work in tandem, resulting in high power consumption.
In the past, Dynamic Voltage Frequency Scaling (DVFS) has be-
en exploited for embedded CPU to save power during game play;
but it is only recently that embedded GPUs have attained DVFS
capabilities that provide additional opportunities. In this paper, we
propose a power management approach that takes a unified view
of the CPU-GPU DVFS, resulting in reduced power consumption
for latest 3D mobile games compared to an independent CPU-GPU
power management approach.

Categories and Subject Descriptors
C.1.4 [Parallel Architectures]: Mobile processors; D.4.7 [Organ-
ization and Design]: Real-time systems and embedded systems

General Terms
Algorithms, Design, Performance

Keywords
Embedded GPU, Power Management, 3D Mobile Games

1. INTRODUCTION
Multiprocessor system-on-chips (MPSoC) in high-performance

mobile platforms supporting consumer electronic devices have wit-
nessed unprecedented advances over the past decade. Current gene-
ration mobile SoCs consolidate heterogeneous processing elements
such as high-performance CPU, GPU, DSP blocks on a single chip.
Figure 1 shows the simplified block diagram of the recent Samsung
Exynos 5410 Octa SoC, that powers Samsung Galaxy S4 devices.
Qualcomm’s Snapdragon and AMD’s A-series APU are other ex-
amples of platforms with integrated CPU and GPU on a single chip.

The integration of the powerful 3D graphics capable GPU with
the CPU cores on the same chip enables sophisticated real-time 3D
gaming experience for the consumers on such mobile platforms.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
DAC ’14, June 01 - 05 2014, San Francisco, CA, USA
Copyright 2014 ACM 978-1-4503-2730-5/14/06 ...$15.00
http://dx.doi.org/10.1145/2593069.2593151.

L2 Cache

DRAM

CPU 0

Cortex-A15 Quad

CPU 1

CPU 2 CPU 3

L2 Cache

PowerVR
SGX544

GPU

CPU 0

Cortex-A7 Quad

CPU 1

CPU 2 CPU 3

Multi-layer BUS

Figure 1: Exynos 5 Octa SoC simplified block diagram.

However, 3D games are highly demanding of computational re-
sources as well as memory bandwidth on both the CPU and the
GPU. This is because while the GPU supports 3D rendering of a
scene, the CPU builds up the scene using complex game physics
or smart artificial-intelligence based strategies. The compute- and
memory- intensive nature of the 3D games translates to substan-
tially high power consumption in the mobile platforms, resulting
in poor battery life. Figure 2 shows the power consumption of the
ARM Cortex-A15 CPU cluster and the PowerVR GPU on Exynos
5410 Octa SoC for a popular Android game “Asphalt 7: Heat”
over 2-minute lifetime. The figure clearly shows that both the CPU
and the GPU contribute to the power consumption during gaming.
Thus, power management of both the CPU and the GPU is a first-
class design priority in all high-end mobile platforms.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

G
PU

 P
ow

er
 (W

)

CP
U
 P
ow

er
 (W

)

Time (seconds)

Cortex‐A15 Cluster PowerVR SGX544 GPU

Figure 2: CPU-GPU power behavior for Asphalt 7 game.

In this work, we focus on system level runtime power mana-
gement for integrated CPU-GPU system-on-chip devices. Modern
operating systems, such as the Linux kernel in Android, include
simple governors to perform power management through dynamic
frequency and voltage scaling (DVFS) of the CPU. The latest in-
tegrated GPU cores, emerging in the embedded SoCs also offer
DVFS capability. However, the GPU power management is typical-
ly achieved through GPU-specific firmware. In other words, there
is no synergy between the CPU and GPU power management.

In this paper, we first argue through quantitative characterisation
of a set of 3D gaming workloads that an integrated power manage-

ment framework, where the CPU-GPU frequency levels are scaled
in a synergistic fashion, is essential to achieve satisfactory user ex-
perience at minimal energy levels.

A CPU-GPU integrated power management framework has to
identify the bottleneck (CPU or GPU) and take actions accordin-
gly through the DVFS knobs. However, an interactive 3D game is a
highly dynamic workload demanding multiple different CPU-GPU
frequency settings over the lifetime of a game play. In this work,
we develop an efficient integrated power management framework
that perform DVFS at runtime to save power while providing users
with a stable performance during game execution. We establish the
superiority of our integrated management approach over indepen-
dent CPU-GPU power management through quantitative evaluation
with popular high-end mobile 3D games on a real platform.

Previous work has demonstrated [11] that the frames per second
(FPS) is the key metric that contributes to the gaming experience.
Current Android platforms attempt to run a game at the highest
possible FPS level leading to quick battery drain. However, most
of the games can be played quite satisfactorily at much lower FPS
level. We can either allow the user to set the expected FPS for each
gaming session or target FPS can be set transparently by the OS
based on the remaining battery life and a simple user preference
profile. Our power management framework could maintain an FPS
level for majority of the execution and help save power.

The concrete contributions of this paper are the following.
• We perform 3D gaming workload characterisation on mo-

bile SoCs with integrated CPU-GPU to analyse the power-
performance behaviour. This analysis provides us with the
insights required to design the power management solution.

• To the best of our knowledge, ours is the first work that ex-
plores CPU and GPU DVFS in tandem to provide a simple
yet powerful power management approach for 3D mobile ga-
mes on integrated CPU-GPU platforms.

• We implement our power management technique by modify-
ing the Linux kernel on Android platform and evaluate its
effectiveness with latest high-end mobile 3D games.

2. RELATED WORK
The power management for CPU-GPU heterogeneous system-

on-chip architectures have so far primarily focused on the general-
purpose computing applications [8] [9] and not on 3D gaming
workload. Only recently [14] conducted a performance and power
consumption characterisation of 3D mobile games on three main-
stream mobile heterogeneous system-on-chips. However, they did
not consider power saving strategies for 3D games.

Few works in the literature studied power management and per-
formance characterisation of 3D games. [12] performed a detailed
dynamic workload characterisation of 3D applications. [10] built
a simulator based on hypothetical GPU architecture to analyse 3D
graphic application performance bottleneck and power consumpti-
on. In [6], [3], the authors observe that 3D graphics applications
show significant variation of workload with different configurati-
ons such as level of detail, resolution, texture mapping and lighting
and are amenable to potential power saving by employing dynamic
voltage and frequency scaling. However, they either employ CPU
or an emulator of the GPU pipeline for evaluation. [4] [7] proposed
DVFS technique based on workload prediction. However, none of
them target the modern embedded GPU.

In contrast to the above works, we target a modern SoC with in-
tegrated CPU and mainstream embedded PowerVR GPU. We con-
sider the 3D gaming workloads using both CPU & GPU and based
on their characterisation, we propose our integrated power mana-
gement strategy.

3. GAME POWER-PERFORMANCE
CHARACTERISATION

We first characterize the power-performance behaviour of con-
temporary high-end 3D mobile games at different voltage-frequency
levels for the CPU, GPU, and the memory. This application beha-
viour will lay the foundation of the design choices we make for our
power management algorithm in the subsequent section.
Experimental setup. We use an Odroid-XU+E board [1] running
Android 4.2.2v with Kernel 3.4.5v for our experiments. The board
contains Exynos 5410 Octa chip with Quad Core ARM Cortex A15
and Quad Core ARM Cortex A7 CPU clusters along with PowerVR
SGX544MP3 GPU and 2GB LPDDR3 RAM as shown in Figure 1.
As the focus of this work is on CPU-GPU interaction, we only use
the A15 cluster for our experiments. We plan to extend this work to
consider migration of the CPU workload between the A7 and the
A15 cluster, along with CPU-GPU DVFS in the immediate future.

The board offers DVFS capabilities for CPU, GPU and main me-
mory. The CPU can be operated at nine frequency levels 800, 900,
1000, 1100, 1200, 1300, 1400, 1500 & 1600 MHz, while the GPU
is capable of operating at six frequency levels 177, 266, 350, 480,
532 & 640 MHz. The memory subsystem has two operating fre-
quency levels 400 & 800 Mhz. Thus, we have a total of 108 dif-
ferent combinations of DVFS configurations, rendering exhaustive
exploration of the design space infeasible.

The board provides four power sensors, one each for the A7 clus-
ter, the A15 cluster, the GPU, and the DRAM main memory. The
power sensors can be sampled at 4Hz to obtain continuous power
readings for the different on-chip components. We also sample the
CPU utilisation, the GPU utilisation and the FPS (frames per se-
cond) directly from the kernel.

We present the characterisation results of the main game play
scene from a top racing Android game “Asphalt 7: Heat.” We choo-
se a fast changing, 3D graphics intensive scene of a car racing along
the track. The complexity of the scene provides us with an opportu-
nity to demonstrate the full of range of possible power-performance
behaviour.We observe similar behaviour for many other high-end
3D games in the Android platform even though the actual power
values and the FPS might differ from game to game. Indeed, we
evaluate our power management framework with a large number
of contemporary games in Section 5.

To demonstrate the power-performance behaviour of the game
across the 108 different DVFS configuration points, we need to re-
produce the exact workload every time. But we are not aware of
any existing mechanism that can record and replay the exact game
play on an Android platform. We observe, however, that in Asphalt
7, once a track is loaded, the car can race along the track without
any user input on a deterministic path. We play the car racing scene
for 108 different configuration points where each game play lasts
for two minutes and profile the power-performance behaviour. At
this point, we are interested in the power-performance at different
DVFS levels averaged over the lifetime of each game play.

20

25

30

35

40

45

50

55

60

AV
ER

AG
E
FP
S

CPU‐GPU FREQUENCY COMBINATIONS

Memory Frequency 400 MHz Memory Frequency 800 MHz

Figure 3: Impact of memory DVFS on FPS

0.5

1

1.5

2

2.5

3

3.5

AV
ER

AG
E
PO

W
ER

 C
O
N
SU

M
PT
IO
N

CPU‐GPU FREQUENCY COMBINATIONS

Memory Frequency 400 MHz Memory Frequency 800 MHz

Figure 4: Impact of memory DVFS on total power

Impact of memory frequency scaling. We first investigate the
impact of the memory subsystem frequency on the FPS and the
total power as shown in Figure 3 & 4, respectively. Note that the
memory bandwidth in integrated platforms is shared between the
CPU and the GPU. The X-axis corresponds to different CPU-GPU
frequency combinations. For each CPU-GPU frequency combina-
tion, we plot the average FPS (or average total power) at two diffe-
rent memory frequency levels. As expected, the game performance
(in terms of FPS) for a given CPU-GPU frequency combination is
always substantially higher at 800MHz memory frequency due to
increased memory bandwidth compared to 400MHz frequency.

However, it is interesting to observe that the total power remains
almost the same irrespective of the memory frequency. In fact, at
certain CPU-GPU frequency combinations, reducing the memory
bandwidth leads to increase in the total power consumption. This
behaviour can be explained by considering the effect of memory
DVFS on the individual units. When memory clock frequency is
reduced, CPU utilisation increases as the CPU spends more time
in active state waiting for memory responses, increasing its power
consumption [2]. GPU utilisation, on other hand, is severely re-
duced as it receives less data to render from the CPU and also
gets reduced bandwidth from the shared memory due to contenti-
on with the CPU. This reduced GPU utilisation decreases its power
consumption. Memory, as expected, observes a reduction in power
consumption as clock frequency is decreased. But the reduction in
power consumption of the GPU and the memory cannot always
compensate for the increased power consumption of the CPU, lea-
ding to increased total power with reduced memory frequency. This
makes memory DVFS unattractive for saving power. Therefore, in
the subsequent analysis, we set the memory frequency at 800MHz.

0.5

1

1.5

2

2.5

3

22 27 32 37 42 47 52 57

AV
ER

AG
E
PO

W
ER

 C
O
N
SU

M
PT
IO
N

AVERAGE FPS

Figure 5: Average FPS vs Average Total Power

Power-Performance trade-off. Our goal in this work is to offer
the expected gaming performance (FPS) at minimal power through
DVFS. So we first analyse the relationship between power and per-
formance. Figure 5 plots the average power and FPS for each of the
CPU-GPU frequency combinations at 800MHz memory frequen-
cy. The obvious conclusion is that we can save significant energy if
we play at reduced FPS. The interesting observation from this plot,
however, is that we can achieve nearly the same level of performan-
ce with very different power profiles. The challenge therefore is to
identify the appropriate frequency levels that offer the required FPS

using minimal power. So we now need to understand how changing
CPU-GPU frequency impacts performance and power individually.
Impact of CPU-GPU frequency on performance. We focus on
the impact of CPU-GPU DVFS on the gaming performance. It is
not easy to isolate the effect of CPU or GPU frequency scaling
as they are interdependent through their producer-consumer relati-
onship. For example, reducing CPU frequency leads to less work
for the GPU leading to reduced GPU utilisation and hence reduced
FPS. Increasing the GPU frequency here will have no impact on
the FPS. In this context, we cannot simply consider the relation-
ship between the GPU frequency and the FPS. Instead, we need to
consider both the frequency and the utilisation. So we employ the
concept of CPU Cost[2] and GPU Cost. The CPU cost is defined
as the product of the CPU utilisation and its frequency. The GPU
cost is defined similarly w.r.t. GPU utilisation and its frequency.

Figure 6 plots the average FPS and average CPU Cost for the
different DVFS configuration points. In this figure, we distinguish
among the configuration points with different GPU frequency le-
vels. For example, consider GPU frequency of 640 MHz (circular
markers). At this GPU frequency level, we vary the CPU frequency
and compute the average cost and FPS at each CPU frequency le-
vel (total of 9 points). We observe near-linear increase in FPS with
increasing CPU Cost. In general, the correlation between the ave-
rage CPU Cost and the average FPS is 0.94, indicating near-linear
relationship between the two.

However, there are some exceptions. For example, consider the
lowest GPU frequency at 177 MHz (square markers). In this case,
the GPU is the bottleneck; therefore, as the CPU frequency is incre-
ased, FPS remains almost the same. Similarly, a restricted memory
bandwidth, refresh rate restriction on maximum FPS (60 frames per
sec), and possible internal FPS control by game developers can all
contribute to exception cases where the linear relationship between
CPU Cost and FPS may not hold good.

Figure 7 plots the average FPS and average GPU cost for diffe-
rent DVFS configuration points. The correlation between the avera-
ge GPU Cost and the average FPS is quite high at 0.98. The effect
of CPU bottleneck is much less apparent here because the scene
imposes more demand on the GPU than the CPU.

20
25
30
35
40
45
50
55
60

300 400 500 600 700 800

AV
ER

AG
E
FP
S

AVERAGE CPU COST

177 MHz 266 MHz 350 MHz 480 MHz 532 MHz 640 MHz
GPU Frequency

Figure 6: Average FPS vs Average CPU Cost

20
25
30
35
40
45
50
55
60

150 250 350 450 550

AV
ER

AG
E
FP
S

AVERAGE GPU COST

800 900 1000 1100 1200 1300 1400 1500 1600
CPU Frequency

Figure 7: Average FPS vs Average GPU Cost

200
300
400
500
600
700
800
900

0.3 0.5 0.7 0.9 1.1

AV
ER

AG
E
CP

U
 C
O
ST

AVERAGE CPU POWER (W)

800 MHz 900 MHz 1000 MHz 1100 MHz 1200 MHz

1300 MHz 1400 MHz 1500 MHz 1600 MHz
CPU
Frequency

Figure 8: Average CPU Power vs Average CPU Cost

100

200

300

400

500

600

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

AV
ER

AG
E
G
PU

 C
O
ST

AVERAGE GPU POWER (W)

177 MHz 266 MHz 350 MHz 480 MHz 532 MHz 640 MHz
GPU Frequency

Figure 9: Average GPU Power vs Average GPU Cost

Impact of CPU-GPU DVFS on power. We have established that,
in general, we need to increase the GPU and CPU costs to increase
the FPS level. However, CPU cost is a product of utilisation and
frequency. Thus, multiple different frequency levels can lead to the
same CPU cost depending on the utilisation. Hence, we investigate
the power behaviour of the design points with the same CPU cost.

Figure 8 plots the average CPU cost and the average CPU Power
for different configuration points. For the same frequency level,
higher CPU utilisation (due to increasing GPU frequency) leads
to higher CPU power consumption. More importantly, for the sa-
me CPU cost, the power increases with increasing CPU frequency.
Thus, it is beneficial to choose the design point with lower frequen-
cy and higher utilisation rather than higher frequency and lower
utilisation to pay the required CPU cost. Figure 9 shows similar
observations between average GPU cost and average GPU power.
Game dynamism. So far, we have focused on the averaged power-
performance of a game play. However, gaming workloads can exhi-
bit highly dynamic characteristics. We analyse the game dynamics
to decide when and how to perform power management.

A game is composed of a set of scenes with which the user inter-
acts and during game play different scenes can demand very diffe-
rent processing costs (CPU costs and GPU costs) depending on the
scene’s complexity. At the same time, the complexity also varies
within a scene due to user interactions and game dynamics.

0

20

40

60

80

100

120

0

5

10

15

20

25

30

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

G
PU

 U
til
isa

tio
n

CP
U
 U
til
isa

tio
n

Time (seconds)

CPU Utilisation GPU Utilisation

Scene 1 Loading… Scene 2

Figure 10: Scene change detection using CPU-GPU utilisation
We notice that scene changes do not happen often during game

play and can be easily detected from CPU-GPU utilisation. Figure
10 plots the CPU and GPU utilisation as the sample racing game
proceeds from the welcome screen to car selection to the racing
track. Before a scene is rendered by the GPU, the CPU has to first
create the scene that requires substantial computational resources.

During this time, the GPU generally stays idle. So a scene change
can be detected by concurrent sharp increase and decrease in the
CPU and GPU utilisation, respectively. Similarly, sharp decline in
CPU utilisation combined with sharp increase in GPU utilisation
indicates completion of the scene creation by the CPU. In Figure
10, three scene changes are detected and marked on the timeline.

Scene changes do not happen often because the game cannot be
played when a scene is loading; sometimes developers are forced
to show a loading screen. To avoid such disruption, the scene envi-
ronment is often large and created at once. In general, a user spends
substantial amount of time (in minutes) in each main game scene.
For example, in our illustrative racing game, once the track (scene)
is loaded, the car makes multiple laps lasting for several minutes
around the track without any scene change. We observe this be-
haviour in multiple games and draw an assumption that the main
scenes in games can be expected to be long running.

20

30

40

50

60

70

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

FP
S

Time (seconds)

Random Game Controlled Game

Figure 11: Impact of user interaction on FPS during a scene.

The dynamism within a scene, however, is completely unpredic-
table due to random user interaction and closed-source nature of
commercial games. In the literature, several DVFS techniques ha-
ve been proposed for games based on workload prediction [4, 7].
We first investigate whether workload prediction can be effective
for modern high-end interactive 3D games. Figure 11 plots the in-
stantaneous FPS over time for two runs of the same scene with the
same DVFS settings. In the random run, the racing game is played
aggressively with car bumping into fences and other cars, while in
the controlled run the car is driven carefully in the center of the
road without any collisions. Clearly, the FPS is very stable in the
controlled run; but varies without any pattern in the random run.
Unlike videos, it is very difficult to predict such interactive beha-
viour during game play. Only the after-effect of such an interaction
can be observed through the resulting FPS. Therefore, we develop
a reactive rather than predictive power management approach.

4. INTEGRATED POWER MANAGEMENT
We now proceed to present our power management algorithm for

3D mobile games derived on the observations in the previous secti-
on. The proposed algorithm exploits CPU-GPU DVFS capabilities
to achieve the target FPS range with minimal power.

As mentioned earlier, we design a reactive power management
technique due to the difficulty in predicting the future workload in
a highly interactive 3D game. Moreover, unlike previous work [5]
that proposes per-frame DVFS, we perform frequency scaling, if
necessary, only at per-second granularity. This is because frequent
DVFS (2400 DVFS per minute for 40 FPS) may lead to hardware
failure due to thermal cycling [13].

We also observe that for highly dynamic and demanding scenes,
maintaining the FPS at a fixed value (e.g., 30 FPS) may lead to fre-
quent DVFS and hysteresis. Instead, we define performance as an
FPS range (e.g., 30–35 FPS). We attempt to maintain the perfor-
mance within the FPS range averaged over a sliding window of 5
sec. The 5 sec window is chosen as game players cannot notice any

observable difference in performance even if the instantaneous FPS
varies within this 5sec interval.

The proposed algorithm can be summarized as follows. The al-
gorithm begins with the lowest CPU and GPU frequency at the
start of a scene. In case the desired FPS range cannot be met at
the lowest CPU-GPU frequency, the current CPU and GPU costs
are evaluated. Using the current costs, algorithm then extrapolates
the estimated CPU-GPU frequency that is sufficient to achieve the
desired FPS range; the process is repeated till the target is met. On-
ce the target FPS range is achieved, algorithm tries to maintain this
FPS by only varying CPU frequency, as given the high sensitivi-
ty of FPS to GPU frequency, changing GPU frequency will cause
current FPS to move out of the target range.

4.1 Algorithm
We first construct a cost-performance model for integrated CPU-

GPU system that is later used to explain the proposed algorithm.
Cost Model at Current Setting. Let the tuple (c, g) represent

frequency setting combination when CPU and GPU are set at fre-
quency level c and g, respectively. Let Qmin and Qmax repre-
sent the maximum and minimum values for the target FPS range.
UC(c,g), UG(c,g) and Q(c,g) represent the observed averaged CPU
utilisation, GPU utilisation and FPS, respectively at frequency set-
ting (c, g). We sample the utilisation and FPS once per second.

As defined earlier, CPU and GPU cost paid at a particular CPU-
GPU frequency combination is the product of their respective fre-
quency and utilisation. The current CPU and GPU costs can be con-
sidered the payment required to generate the current FPS Q(c,g).

We define PC(c,g) and PG(c,g) as the price paid by CPU and
GPU to produce unit FPS at (c, g) frequency setting. PC(c,g) and
PG(c,g) together represent the minimum cost required to produce
unit FPS at the current settings.

PC(c,g) =
UC(c,g) × c

Q(c,g)
PG(c,g) =

UG(c,g) × g

Q(c,g)

Extrapolation. Let (c, g) be the current frequency setting that
achieves an FPS less than the minimum (or more than the maxi-
mum) specified FPS range. To achieve higher (or lower) FPS, the
CPU-GPU frequency must be increased (or decreased).

Let Q be the target FPS that we wish to achieve. Let OC & OG
be the expected CPU and GPU cost that are sufficient to achieve
the target FPS Q. We can estimate OC & OG based on the near-
linear relationship observed between CPU (GPU) cost and FPS (see
Figure 6 and Figure 7).

OC = PC(c,g) ×Q OG = PG(c,g) ×Q

As we increase (or decrease) frequency, the CPU-GPU utilisati-
on values typically drop (or rise). So the current utilisation values
can serve as upper (or lower) bound for utilisation values expected
at higher (or lower) frequencies. Thus, the maximum (or minimum)
expected CPU-GPU cost at a higher (or lower) CPU and GPU fre-

quency (c′, g′) represented by OC
c′

& OG
g′

can be computed as:

OC
c′

= c′ × UC(c,g) OG
g′

= g′ × UG(c,g)

When we need to improve the FPS, we set the target Q = Qmax

and look for higher frequency levels. We choose the lowest CPU

frequency level c′, such that OC
c′ ≥ OC. Similarly, we choo-

se the lowest GPU frequency g′ such that OG
g′ ≥ OG. In other

words, we choose the minimum CPU-GPU frequency level where
we expect the required cost to be satisfied with maximum utilisati-
on. When we need to lower the FPS, we set Q = Qmin and look
for lower frequency levels. We again choose the lowest CPU-GPU

frequencies that just satisfy the target cost. If the performance is
still outside the target FPS range after DVFS, we continue our ex-
trapolation with the new utilisations and FPS values. We employ a
conservative cost model and always strive to run at the bare mini-
mum CPU-GPU frequency level to save as much power as possible.

Maintenance Mode. Once the desired FPS range is achieved
through extrapolation, it is essential to maintain the FPS within the
target range. The FPS is highly sensitive to GPU frequency scaling
(see Figure 6). Thus, we avoid scaling the GPU frequency and ins-
tead rely on CPU frequency scaling to keep the instantaneous FPS
within range. When we observe that the instantaneous FPS sam-
pled at one second interval falls outside the range, we increase (or
decrease) the CPU frequency to bring it back within the desired
range. As mentioned earlier, instantaneous FPS sampled at a 1 sec
interval may fall outside the range; but it does not have a major
impact on user experience. However, if the average FPS over 5sec
sliding window falls outside the target range even with CPU fre-
quency scaling, then we need to alter the GPU frequency setting. In
such scenarios, the algorithm starts performing extrapolation again.

Scene Transitions. The extrapolation and maintenance modes
continue alternatively till a scene change is detected (Figure 10).
At this point, the CPU is immediately set to run at maximum fre-
quency and the GPU at minimum frequency to quickly complete
the loading phase. Once the scene loading is finished, the extrapo-
lation and maintenance are triggered again starting from the mini-
mum CPU-GPU frequency levels. This strategy improves the user
experience as waiting time is reduced during scene loading.

5. EXPERIMENTAL RESULTS
In this section we compare the proposed integrated approach

against the independent Linux CPU-GPU power management so-
lution used in Android platforms. We implement our integrated
power management framework in the Linux kernel on Android
platform. The independent power management approach consists
of an on-demand governor for the CPU implemented in Linux ker-
nel and a custom firmware-controlled DVFS management for the
GPU that works independently. The independent power manage-
ment approach in Linux kernel does not take into account the ga-
ming performance and hence cannot respond to FPS.

Apart from Asphalt 7 mentioned earlier, we select several other
high-end popular Android games: Anomaly 2, Call of Duty: Final
Strike, Need for Speed Most Wanted, Real Football 2013, AVP. Evo-
lution. To compare our integrated approach with Linux, we should
ideally be able to record and replay identical game play. However,
as mentioned earlier, we are not aware of any available record and
replay mechanism for 3D games on Android platform. To overco-
me this limitation, we requested volunteers to play the main level
of the games with repetition of their game-play as far as possible.
For each game, a volunteer played it 5 times on both off-the-shelf
Linux and our integrated approach. The results presented are ave-
raged across 5 runs. We first present detailed results for Asphalt 7
followed by experimental results for the other games.

Figure 12 shows the total power consumption of the propo-
sed integrated approach against Linux for various FPS target ran-
ges. The minimum and maximum lines represent the lower and
upper bounds of power consumption with minimum and maxi-
mum frequency settings. The power consumption for Linux, mi-
nimum, and maximum remains unchanged across FPS range set-
tings. The figure shows that the Integrated approach can provide
significant performance-power trade-off capability. To compare the
power consumption by the proposed approach against Linux, we
observed the performance (FPS) achieved by these approaches as
shown in 13. Comparing Figure 12 with Figure 13. it is evident that

15-20 20-25 25-30 30-35 35-40 40-45 45-50
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

FPS Range

To
ta
l P
ow

er
 (W

)

Minimum Linux Integrated Maximum

Figure 12: Total power for Asphalt 7 at different specified ranges
for Linux and integrated approach.

M
in
im

um

Li
nu

x

In
te
gr
at
ed

Li
nu

x

In
te
gr
at
ed

Li
nu

x

In
te
gr
at
ed

Li
nu

x

In
te
gr
at
ed

Li
nu

x

In
te
gr
at
ed

Li
nu

x

In
te
gr
at
ed

Li
nu

x

In
te
gr
at
ed

M
ax
m
iu
m

15‐20 20‐25 25‐30 30‐35 35‐40 40‐45 45‐50

0
20
40
60
80
100
120

FPS Range

%
 o
f F
PS

 R
an
ge
 A
ch
ie
ve
d

Below In Above

Figure 13: The achieved FPS (below, within, or above the specified
range) for Asphalt 7 with Linux and integrated approach.

for most FPS ranges (e.g., 30–35), we attain similar performance as
Linux with significantly lower power consumption. This is achie-
ved by operating closer to the possible minimal CPU-GPU cost and
lowest CPU-GPU frequency necessary. We begin to consume mo-
re power than Linux as we try to achieve higher performance than
Linux can offer.

30‐35 50‐55 55‐60* 45‐50 50‐55 55‐60* 25‐30* 30‐35 50‐55 55‐60 55‐60* 55‐60*

Anomaly 2 Call of Duty Final Strike Need For Speed Most Wanted Real
Football
2013

AVP.
Evolution

0

20

40

60

80

100

120

Games (FPS Range)

%
 o
f F
PS

 R
an
ge
 M

iss
ed

Below In Above

(a) FPS (below, within, or above the specified range) with integrated approach.

30‐35 50‐55 55‐60 45‐50 50‐55 55‐60 25‐30 30‐35 50‐55 55‐60 55‐60 55‐60

Anomaly 2 Call of Duty Final Strike Need For Speed Most Wanted Real
Football
2013

AVP.
Evolution

0

0.5

1

1.5

2

2.5

3

3.5

Games (FPS Range)

To
ta
l P
ow

er
 (W

)

Integrated Power Linux Power

(b) Total power consumption at different target FPS range.

Figure 14: Linux vs Integrated Power Management for Games

The Linux power management approach does not consider tar-
get FPS range for DVFS and hence the achieved FPS is distributed
over a wide spectrum. On the other hand, the proposed integrated
approach responds to the target range of FPS and succeeds to keep
FPS within this range for longer durations. The discrete nature of

CPU-GPU DVFS limits the ability to achieve a stable FPS range for
all FPS values. This can be observed in Figure 13 where the propo-
sed approach performs better for some ranges more than others.

Figures 14a and 14b show the achieved FPS and corresponding
power consumption during game-play for a set of latest Android ga-
mes. These games are selected from different genres based on their
popularity. The Linux approach typically keeps the performance at
the highest FPS range of 55-60 for most of the games tested ex-
cept for Need for Speed (NFS) Most Wanted for which it stays at
the lowest FPS range of 25–30. In Figure 14b, we plot the power
consumption for Linux only at that achieved FPS range.

The integrated approach can achieve the same FPS range as Li-
nux at significantly less power. Moreover, for games like Anomaly
2 and Call of Duty: Final Strike, the integrated approach allows ad-
ditional power saving at a lower, albeit acceptable, FPS range. On
the other hand, for games like NFS, the integrated approach can im-
prove performance significantly compared to Linux with additional
power. Games like Real Football 2013 and AVP Evolution achieve
the highest FPS range at very low frequency settings, thereby lea-
ving us with no scope for further FPS reduction. Still we manage
to save power compared to the Linux.

The overhead of our approach is 2%, mostly due to the extraction
of FPS information during game play. We plan to reduce the over-
head through optimizations of the current naive implementation.

6. CONCLUSION
In this paper, we presented an integrated CPU-GPU power ma-

nagement approach for 3D mobile games. Empirical results on a
real CPU-GPU platform with the latest Android games, show that
we are able to provide the user with flexible power-performance
tradeoff options that can reduce gaming power consumption by up
to 58%. In comparison to the independent power management ap-
proach in current Android platforms, the proposed integrated ap-
proach is able to reduce power consumption of games by up to
26% for comparable FPS range.

7. ACKNOWLEDGEMENT
This work was partially supported by CSR research funding and

Singapore Ministry of Education Academic Research Fund Tier 2
MOE2012-T2-1-115.

8. REFERENCES
[1] ODROID_XU–E. http://hardkernel.com/main/main.php.
[2] Y. Bai. Memory Characterization to Analyze and Predict Multimedia

Performance and Power in an Application Processor. In Marvell White Paper.
2011.

[3] B. C. Mochocki et al. Power Analysis of Mobile 3D Graphics. In DATE, 2006.
[4] B. Dietrich et al. LMS-based low-complexity game workload prediction for

DVFS. In ICCD, 2010.
[5] B. Dietrich et al. Managing power for closed-source android os games by

lightweight graphics instrumentation. In NetGames, 2012.
[6] G. Yan et al. Games are up for DVFS. In DAC, 2006.
[7] G. Yan et al. A Hybrid DVS Scheme for Interactive 3D Games. In RTAS, 2008.
[8] H. Wang et al. Workload and Power Budget Partitioning for Single-chip

Heterogeneous Processors. In PACT, 2012.
[9] I. Paul et al. Coordinated energy management in heterogeneous processors. In

SC13, 2013.
[10] J. W. Sheaffer et al. A flexible simulation framework for graphics architectures.

In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware, 2004.

[11] M. Claypool et al. The effects of frame rate and resolution on users playing
First Person Shooter games. In In Electronic Imaging, 2006.

[12] T. Mitra et al. Dynamic 3d graphics workload characterization and the
architectural implications. In MICRO, 1999.

[13] T.S. Rosing et al. Power and Reliability Management of SoCs. VLSI, 2007.
[14] X. Ma et al. Characterizing the Performance and Power Consumption of 3D

Mobile Games. 2013.

