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Abstract: Reservoir properties such as fluid compositions, formation pressures, and fluid contacts are critical in the
early phase of the well life and represent the key inputs for comprehensive production and reservoir engineering studies
in the development phase. Accurate measurements and evaluations of reservoir fluid properties tend to become more
complex in challenging drilling environments, coupled with complicated reservoir facies such as the thinly laminated
formations. To reduce the uncertainty in the estimations of hydrocarbon in place and fluid contacts in clastic reservoirs,
it is paramount to integrate various measurements such as core data, log analysis, image logs, pressure data, and fluid
sampling results for a holistic and meaningful evaluation approach. Several methods are available nowadays for reservoir
fluid characterization but each method has its own limitations and advantages. However, technical advancement achieved
in individual technology alone may not necessarily provide a complete solution for the formation fluid evaluation task.
To reduce this uncertainty and to improve reservoir fluid evaluations, an integrated approach that combined various
methods such as Advanced Mud Gas Logging (AMG), wireline Downhole Fluid Analysis (DFA) and PVT laboratory
analysis is developed, based on a case study of an exploration well from deepwater Sabah. The integrated approach and
workflow that combined these independent measurement methods proved to be the key to the success for formation fluid
characterization. This paper is focused on how the integration of various methodologies can complement each other
through the following strategies: assessment of reservoir fluid properties, starting from the early stages of open hole
measurements, can be complemented by measurements obtained from AMG logging and wireline DFA and sampling.
The AMG provides an early approach to reservoir fluid identification through its capability to generate a continuous
fluid facies logged across the entire drilling interval. This study presents a successful case evaluation conducted for two
drilling sections of the investigated exploration well. It demonstrates the strategies used for accurate fluid characterization
assessments in a challenging deepwater environment, which is beneficial as a comparison for the subsurface assessment

of other discoveries made in similar depositional setting.
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INTRODUCTION AND GEOLOGICAL SETTING

The early quantitative assessment of fluid compositions
and sampling optimization of potential pay zones can
help in making timely decisions during the exploration
or development phases. This approach aids in reducing
data acquisition risk, and optimizes operation time spent
by correctly evaluating zones of interest during the
appraisal phase. At a later stage, the fluid compositions
and PVT information can provide important inputs for
petrophysical analysis to more precisely evaluate the
reservoir properties and volume of hydrocarbons present
in the reservoirs. This can reduce geological uncertainties
at an early stage of the field development (e.g. Ko et al.,
2014), which is critical for the development and production
of high-cost deepwater discoveries such as those found
in offshore Sabah turbidity channel-fan systems (Jong et
al., 2016). Based on the fluid samples and wireline data
acquired in the reservoir sections of an exploration well
located in deepwater Sabah area, this paper discusses
the integration of the fluid properties that can be used
for formation petrophysical evaluation to reduce the
uncertainties of these reservoir properties for a better
estimation of hydrocarbon in place and fluid contacts in
thinly laminated formations.

0126-6187 / © 2018 Geological Society of Malaysia. All rights reserved.

The Sabah fold-thrust belt, where the investigated
exploration well “B-1"is located, is one of the most actively
explored areas in Malaysia, with significant oil and gas
discoveries proving a world-class working petroleum system.
This area is located in the Sabah outboard deepwater arca
within a compressional tectonic regime (Figure 1). Structures
are formed as elongated toe-thrust features, trending NE-SW
(Mohd Asraf Khamis et al., 2017 & 2018).

Multiple Miocene turbidite depositional events have been
documented in this area, which are named Kebabangan, Kinarut,
Kamunsu and Pink Fans; ranging from stratigraphically older
to younger sections (Figure 2). These turbidite fans represent
key regional reservoirs for deepwater Sabah exploration. Thick
hemipelagic mudstones and mass transport complexes (MTCs)
are often interlayered with these reservoirs and act as both
regional and field-scale intraformational seals (Algar et al.,
2011). “B-1” found hydrocarbons in sand/shale sequences of
alternating deepwater MTCs and turbidite deposits trapped in
the toe-thrust structural four-way closure. The well confirmed
oil accumulations in multiple reservoirs including the Kamunsu
and Kinarut sands with oil samples taken from the reservoirs
and mud-gas samples acquired at regular intervals throughout
the well bore. In addition, a comprehensive wireline log suite
was also acquired across the oil-bearing intervals.
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Figure 1: Location map of the study area
offshore deepwater Sabah, where a discovery
was made by the “B-1" exploration well
within “Block X”, operated by JX Nippon
as enclosed in the dark line polygon (from
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Ogawa & Jong, 2016).

HETUE

PRINCIPLES AND INTEGRATION OF
ANALYTICAL TECHNIQUES
Advanced Mud Gas logging (AMG)

AMG provides continuous measurement of the
fluid facies and fluid composition, while drilling, of the
hydrocarbons extracted at surface from the drilling mud. The
AMG logging technology provides gas chromatographic data
in the C,-C, range and analysis of longer chain hydrocarbons
(C,-C, including light aromatics and methylcyclohexane;
Ivan et al., 2015). The AMG acquisition system consists of
a heating extractor at both the flow line and in the active pit,
a non-condensing transportation line and a high-resolution
Gas Chromatograph-Mass Spectrometer (GCMS) analyser
(Figure 3). The setup and the main components of the AMG
has been widely discussed by Ivan et al. (2015).

Downhole Fluid Analysis (DFA) measurement

DFA is a process to identify the fluid types and perform
fluid property measurements at downhole conditions using
Wireline Formation Tester (WFT) fluid analyzer modules at
a particular depth of interest, by withdrawing the formation
fluid into the WFT flowline. The DFA technique is based
largely on optical spectroscopy and mechanical oscillator
measurements. The advanced downhole fluid analyzer
module - InSitu Fluid Analyzer (IFA) is used, and it is a key
element of this integration study discussed in this paper. The
IFA real-time DFA system integrates downhole quantitative
fluid property measurements to deliver a comprehensive
characterization of reservoir fluids at reservoir conditions.
The IFA is used to measure the hydrocarbon properties
and compositions at downhole conditions (Figure 4), and
provides data on absorption spectrometers: C,, C,, C.-C,,
C,, and CO, composition in %wt., downhole fluorescence
detection, resistivity of reservoir water, in situ fluid density
and viscosity, flow line pressure and temperature, gas oil
ratio (GOR), pH of formation water and estimation of filtrate
contamination (Schlumberger, 2017).

20

DFA prediction - the Yen-Mullins model

Asphaltene science has evolved over the past decade
especially in the oil and gas industry (Mullins et al.,
2007). The Yen-Mullins model provides a solid base for
understanding the asphaltene dispersion in crude oil.
Figure 5 shows that asphaltene can be dispersed in crude
oil in three forms (Julian et al., 2011); molecules with an
average diameter of about 1.5 nm, nanoaggregates (has 6
molecules) with an average diameter of 2 nm, and clusters
of nanoaggregates (with 5 nm diameter).

Flory-Huggins-Zuo (FHZ) has developed the Equation
of State (EOS), which is based on Mullins model of
asphaltene science and DFA measurements. The FHZ, the
first predictive asphaltene EOS is used to estimate asphaltene
concentration and help predict reservoir connectivity (Hani
et al., 2013; Julian et al., 2013a & b). Julian et al. (2013a
& b) stated that this technique has been successfully used
to estimate reservoir connectivity, which is subsequently
proven by production data.

The modified Yen-Mullins model can be used to
understand the distribution of asphaltenes in the reservoir
(Oliver et al., 2010), as it provides clear guidelines when
each structure is to be expected (based on the molecular and
colloidal sizes) (Figure 5). Gravitational segregation tends
to drive heavy asphaltenes down in an oil column whereas
light hydrocarbons tend to rise in the column (Figure 6;
Julian et al., 2011).

Julian et al. (2010) proposed a new thermodynamic
approach of EOS plus solubility model to calculate variations
of asphaltene with depth in reservoir fluid columns. This
approach can be used in combination with a new DFA
technology to address the issues on reservoir connectivity.
The fluid asphaltene EOS (Figure 7) for oil is based on sample
contamination and asphaltene size, and by using the InSitu
Pro (ISP) software, in many cases we can address the issues
on reservoir connectivity. ISP software can predict colour
optical density (OD) versus true vertical depth (TVD) for
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Figure 3: AMG layout and
measurements output (from
Ko et al., 2014). The AMG
acquisition system consists
of a heating extractor at both
the flow line, flex-in, flex-
out, and a high-resolution
Gas Chromatograph-Mass
Spectrometer (GCMS)
analyzer.
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Figure 4: InSitu Fluid Analyzer (IFA) sensors. The IFA is used to
measure the hydrocarbon properties and compositions at downhole
conditions, and provides data on absorption spectrometers: C,, C,,
C,-C,, C,, and CO, composition in %wt., downhole fluorescence
detection, fluid resistivity, in situ fluid density and viscosity, flow
line pressure and temperature, gas oil ratio (GOR), pH of formation
water and estimation of filtrate contamination.
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Figure 6: The colour variation of 24 dead oil bottle samples is
caused by the asphaltene gradient and the corresponding asphaltene
content variations (from Julian et al., 2011).

an oil column at fluid equilibrium. DFA colour prediction
consists of predicting the colour of the fluid in the reservoir
based on DFA measurements of fluid using OD channels.

All the required parameters of the FHZ EOS as
summarised in Figure 7 are available from DFA, except
for the asphaltene size (molar volume, va). The asphaltene
size is assumed from one of the three asphaltene forms
(Figure 5), and compared to the DFA measured colour
gradient (Figure 8).

METHODOLOGY
AMG-DFA integration process
Early Integration of the AMG and DFA is the key for a
more efficient formation evaluation approach. The integration

Figure 5: The Yen-Mullins model (from Julian et al., 2011). The
model provides a solid base for understanding the asphaltene
dispersion in crude oil. The figure shows that asphaltene can be
dispersed in crude oil in three forms; molecules with an average
diameter of about 1.5 nm, nanoaggregates (has 6 molecules) with
an average diameter of 2 nm, and clusters of nanoaggregates (with
5 nm diameter).
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Figure 7: The fluid asphaltene equation of state (FHZ EOS) for oil
(from Julian et al., 2010).

process starts by defining clear logging objectives of the

well to be drilled, planning various operations and the

selection of the appropriate technologies that fit the purpose

for reservoir formation evaluation (Ko et al., 2014).

The evaluation process consists of the following steps

(Figure 9):

1. AMG fluid facies log generation used to build an
understanding of fluid facies distribution,

2. AMG fluid type validation and integration with open
hole logs in refining WET fluid DFA and sampling
points,

3. Observation and comparison of open hole logs and
AMG data,

4. Theresults of the WFT DFA, AMG are used to establish
reservoir fluid signatures for correlation with future
well data, and

S. Integration of AMG findings with DFA prediction
results allow to further analyse the vertical connectivity
between sands.
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Figure 9: AMG-DFA integration process, which consists of five main steps: AMG fluid facies log generation, AMG fluid type validation
and integration with open hole logs, comparison of open hole logs and AMG data, establishing reservoir fluid signatures for correlation
with future well data, and Integration of AMG findings with DFA prediction results.

The AMG-DFA integration innovative approach as
shown in Figure 10 shows a workflow for the quick-
look analysis performed in this study. The integration
process starts with AMG data acquisition while drilling
and continuous fluid composition estimation (C,-C,), then
fluid sampling points recommendation are made with the
available AMG interpretation results (based on gas peak
readings and variations, in addition to group of fluids
with specific signatures). Following this, the outcomes of
downhole formation fluid sampling and analysis are used
to validate the AMG results, and lastly to establish typical
fluid signatures (from AMG, DFA and PVT results) to

Bulletin of the Geological Society of Malaysia, Volume 65, June 2018

correlate with future development wells in the same field
(Ko et al., 2014).

DFA-AMG integration can be extended to identify
the presence of any possible compartmentalization in the
reservoir formations by integrating the findings from both
DFA prediction and AMG. Reservoir compartmentalization
and connectivity is one of the biggest problems that most
operators faced during the appraisal or development phases.
Hence, by assuming that the reservoir is a single and
connected tank may lead to undesirable consequences on
the assessment of economic risks. Reservoir connectivity is
defined by pressure and fluid equilibrium. Pressure gradients
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are generally used to determine reservoir connectivity,
and it is well-known that pressure communication is
necessary, however the data are insufficient to establish
flow communication (Julian et al., 2011). Overall, pressure
equilibrium can be achieved in years, a relative short time
span whereas fluid equilibrium takes millions of years to
establish; hence a hydrocarbon column at fluid equilibrium
usually implies connectivity.

DFA can be used for an early understanding of reservoir
compartmentalization and compositional gradients for
optimal field development (Hani et al., 2013), and it enables

g
I WFT DFA interpretation
) and single phase
‘ representative fluid
¥ samples

AMG data aquisition

AMG data QC and
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|
[ Detailed PVT LAB Sample
analysis
AMG Fluid composition
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hased on AMG

Figure 10: AMG-DFA integration innovative workflow (from Ko
etal., 2014).

accurate measurement of asphaltene content variations
through fluid coloration via OD (Hani et al., 2007; Dong et
al., 2008). In addition, DFA measures fluid properties such as
composition, density, GOR, OD and fluorescence intensity.
The analysis of colour gradient in oil columns in conjunction
with GOR gradient and integrating with asphaltene science
has become a key to discern reservoir complexity.

DFA prediction workflow

The WFT DFA prediction methodology is summarized
in Figure 11, with details of each step discussed below:

1. Determination of WFT intervals of interest: The
first step calls for data quality check (QC) of the open hole
logs, WFT pressure points, and DFA/sampling results: WFT
pretests, DFA, and sampling stations QC and interpretation
are done in real-time to ensure representative pressure and
fluid results are obtained. The second step is determining the
pressure gradients and fluid types for all zones of interest,
followed by the third step involving the determination of the
hydrocarbon bearing zones and select the oil/light hydrocarbon
zones of interest for further reservoir connectivity analysis.

2. Contamination Analysis: DFA analysis QC.

a. DFA/or sampling station results QC and
interpretation are done in real-time by monitoring the fluid
contamination level during the pump out period using
IFA. For DFA prediction purpose, it is advised to obtain
contamination level of less than 5% for both DFA and
sampling stations (if no station time limit is imposed).

b. Contamination estimation for the DFA/sampling
station. Real-time monitoring of the DFA station is required
to confirm the desired fluid contamination level. The oil-
based mud (OBM) filtrate contamination estimation (Figure
12) is based on OD measurements. The OD measured by
DFA spectrometer responds to colour/or methane absorption
is fitted with exponential regression model as a function of
pumping time (Ryan et al., 2016).

=
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3. DFA Prediction: DFA colour prediction model
determination (Figure 13). The asphaltene EOS is applied
in this case study to model reservoir fluid distribution, select
appropriate asphaltene size; fine-tune DFA station results
and predict OD profile to evaluate connectivity across sandy
intervals of interest.

Integration of AMG-DFA predictions
The integration process can be summarized as follows

(Figure 14):

1. AMG data are used to build an understanding of fluid
facies distribution and to help along with open hole
logs in refining WFT fluid sampling points,

2. Downhole formation fluid sampling and analysis results
are used to evaluate what were observed by open hole
logs and AMG data, and

3. The results of the DFA prediction are used to evaluate

" m— o100 Contam, e ieihans Contam, s Avérage Contam.

Contam nation [vol %]

Color OD DIff Methane 0D Diff
== J——
= 4 )
R

|
| g f e HHW'
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3 e
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Figure 12: Real-time contamination monitoring with OCM
technique (oil-based mud contamination monitoring).
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Figure 13: Asphaltene EOS is applied to model reservoir fluid
distribution by selecting appropriate asphaltene size, fine-tuning DFA
station results and predicting OD profile to evaluate connectivity
across sandy intervals of interest. Noted that the DFA prediction
indicated no clear evidence of connectivity between upper and
middle zones.

any possible compartmentalization in the reservoir
formations by integrating the findings from both AMG
and DFA, and open hole logs.

FIELD STUDY — WELL “B-1”, AN OFFSHORE
DEEPWATER SABAH DISCOVERY

The case study presented in this paper is for an
exploration and discovery well “B-1" located in deepwater
Sabah (Figure 1). Various zones of interest are tested to
assess possible hydrocarbon accumulations. The formation
targets are referred herein as Kebabangan, Kinarut, Kamunsu
and Pink Fans (Figure 2).

The main objectives of the drilled well were to:

»  To confirm the hydrocarbon potential of the Kebabangan,
Kinarut, Kamunsu and Pink Fan reservoirs in prospect
target, an elongate toe-thrust anticline structure.

*  Toacquire reservoir information by advance gas logging
and electrical wireline logging of penetrated formations
to assess the quality of reservoirs.

»  To reduce exploration risk for the follow-up prospects.
For this integration study, advanced downhole fluid

analyzer was deployed in this exploration well and used to
identify fluid type in real-time to ensure the fluid samples
being collected are representative. This was achieved by
closely monitoring the formation fluid contamination level
and flowing drawdown pressure to ensure that the formation
fluid is collected as a single phase (monitor liquid drop-out
or gas breakthrough before sampling).

The WEFT tool string (Figure 15) consisted of one Extra
Large Diameter (XLD) probe (MRPQ1), and QuickSilver
probe (MRPQ2) with:

» IFAused for analyzing fluid in sampling line (pump up
direction), while Live Fluid Analyzer (LFA) was used
for analyzing fluid in guard line (pump down direction).

* Two standard displacement pump out modules were
installed to move fluid in the flow line.

*  Two multi-sample-chamber-module with 7 Multi Phase
Sample Requisites (MPSR) and 5 Single Phase Multiple
Chamber (SPMC) bottles were configured as normal
low shock sampling for storing PVT samples.

WEFT in combination with IFA and AMG logging were
run in the tested well to:

*  Acquire early continuous detection of fluid type aiding
in improved sampling program.

*  Acquire downhole fluid analysis to confirm fluid type
derived from open hole logs and AMG.

»  Obtain representative PVT quality samples for reservoir
fluid characterization.

* Obtain real-time composition plus fluid property
measurements at downhole conditions.

* Obtain formation pressures and fluid mobility for
productivity analysis.

*  Calibrate and verify continuous fluid facies log along
entire drilling interval using WFT-DFA prior to
availability of PVT sample analysis results.

* Integrate WFT and AMG results to confirm the vertical
reservoir connectivity.

Bulletin of the Geological Society of Malaysia, Volume 65, June 2018 25
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Figure 14: AMG-DFA prediction integration. The integration process consists of using AMG data to build an understanding of fluid facies distribution, followed
by using downhole fluid sampling and analysis results to validated the AMG and open hole data, and after that perform DFA prediction to evaluate possible
compartmentalization. Finally, the findings from both AMG and DFA, and open hole logs are integrated.
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Figure 15: WFT tool configuration.

INTEGRATION PROCESS, RESULTS AND
DISCUSSION

AMG-DFA integration process
1. Fluid facies log generation

During drilling the AMG provides quantitative
estimation of C, to C; in % mole and qualitative C, to C,
in % mole. Early reservoir fluid evaluation is done based
on Haworth parameter Equations 1 and 2 below.

5 o
Equation 1 ~ Wetness,Wh = @
ZE:]_CE

) C 4C
Equation 2 Balance, Bh = =
i=3 -1

The AMG logs response need to be calibrated with
fluid samples information to obtain high reliable fluid type
evaluation. The proportion of C, to C, (liquid) content
within overall fluid response is assessed by Light/Heavy
Ratio, Equation 3. It is not a standard mud gas ratio and
is only applicable with AMG measurements (scale 0-10)
and the cut-off depends on extraction efficiency for C_,
components. The ratio is not reliable for small hydrocarbon
concentrations (Crampin et al., 2013).

Equation 3 (Character Ratio)

C3+ Cy

. . L
Light: Heavy Ratio,— = ————=~———
H Cs+nCg+nC;+C7Hyy

Fluid facies log is generated for the entire drilling
intervals in “B-1"" and covers all sandy sections (Figure 16).
All potential intervals are selected with fluid facies assigned.
Intervals showing similar fluid fingerprint are grouped and
a unique colour code and name assigned. The gas analysis
is performed quantitatively on C,-C; and C, data ranges. In
addition, the hydrocarbon peaks are delineated and compared
to assess compositional similarities or differences.

2. Fluid families generation and fluid typing validation

Various intervals were defined to capture every gas
peak and change in gas peak readings:

* C, to C, within each interval was averaged to generate

a star diagram.

*  Fluid with specific signature is identified and grouped
as the same fluid type.

From the synthetic fluid facies log (Figure 16) one main
fluid can be identified - Fluid 2, which is subdivided into
four fluid types (2A, 2A’, 2C, 2B’) (Figure 17), that represent
the main hydrocarbon fluid types detected in the well.

The validation of the AMG fluid typing results (Figure
18), with WFT DFA sampling is required to confirm the
formation fluid and to calibrate synthetic fluid facies log
(Figure 16). The PVT lab data from an offset well, is used
to calibrate and validate the AMG results. In the case that
the offset PVT well lab data is not available by the time
the new well is being drilled, the WFT DFA data becomes
the main source of validation. At this stage, the fluid facies
log is calibrated (Figure 16), and it is ready to be used for
the WFT sampling or DFA points selection.

3. DFA points suggestion by integrating AMG logs

The initial WFT points were selected based on the
petrophysical logs. To improve the WFT DFA and sampling
points selection especially in the intervals unfavourable for
open hole loggings (bad borehole conditions), the AMG
logs are integrated. The AMG helped to distinguish fine
variations within the same fluid type. A WFT sampling
program is suggested based on the changes observe on
fluid composition (Figure 19), gas peaks reading, group
of fluids with specific signatures, and by considering open
hole petrophysical logs.

The exact depth of the DFA and sampling stations are
fine-tuned once the WFT pretests points are acquired to
consider the sweet spots with high pretest mobility (Figure
20). The sampling stations are performed at the zones with
relatively high resistivity (open hole logs), high mobility (from
WEFT pretest), and high hydrocarbon content (from AMG).

4. Establish typical fluid facies signature

The fluid type validation is extended to the whole
drilled section by validating the major fluids facies. The
fluid facies validated by DFA results are compared to the
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Figure 17: Fluid families based on specific fluid signature. Various Intervals were defined to capture every gas peak and change in gas
peak readings: C, to C, within each interval was averaged to generate a star diagram, fluid with specific signature is identified and grouped
as the same fluid type. One main fluid is identified - Fluid 2, which is subdivided into four fluid types (2A, 2A’, 2C, 2B’; Figure 16).
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Figure 18: Fluid facies validation using PVT/IFA data. The
PVT lab data from an offset well (green curve in both start
o oss || diagrams) is used to calibrate and validate the AMG results.
w7 || In the case that the offset PVT well lab data is not available
by the time the new well is being drilled, the WFT DFA data

becomes the main source of validation.

major star diagrams to extend and validate the fluid facies
signature in other formations intervals (Figure 21). The
validation of the AMG major fluid typing results with WFT
DFA sampling is required to confirm the formation fluid and
to calibrate synthetic fluid facies log. The validated fluid
facies for the entire interval will be used as an input to the
reservoir model for calibrating reservoir fluid properties.

5. AMG-DFA prediction integration

The AMG-DFA integration was extended to identify
the presence of any possible compartmentalization in the
reservoir formations (Single Well Compartmentalization
Study) by integrating the findings from both DFA
prediction and AMG. As noted, there is no clear evidence
of connectivity between the upper and middle zones can be
established (Figure 22). The identification of the reservoir
compartmentalization is important for future field appraisal
and planning phases, as it is the primary cause of under-
performing field production. Figure 22 summarizes the main
results of the DFA prediction and connectivity analysis.

AMG - petrophysics multi-mineral simultaneous
solver workflow
1. AMG - real-time LWD integration

For real-time formation characterization and fluid ID
identification, AMG can deliver an integrated petrophysical
volumetric calculation along with the real-time LWD
logs, thereby facilitating an improved monitoring and thus
optimizing the drilling operations, as well as supporting
formation evaluation processes and enabling timely decision
making for upcoming wireline log acquisition plan and fluid
sampling program. This case study well is characterized
by thinly laminated formations, similar to those studied by
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Budi et al. (2010), and standard LWD log responses were
supressed due to vertical resolution issue, resulted in an
underestimation of hydrocarbon volumes compared with
standard LWD evaluation.

Figure 23 displayed the LWD gamma ray and resistivity
shallow and deep logs indicating inadequate reservoir quality
with possible high water saturation since the deep resistivity
log readings is ranging from 3-4 ohm.m. However, AMG
data from gas chromatographic C,-C and longer carbon
chain of C.-C, provided a strong evidence of hydrocarbon
existence thus trigger the need for further appraisal with
more inputs and core laboratory plan.

2. AMG - integrated formation evaluation with
Quanti.ELAN solver

A good understanding of reservoir fluid composition
is crucial for fluid volume computation and is an essential
output from any petrophysical formation evaluation that
have a direct impact to any resource estimation. Often, the
Petrophysicist or Log Analyst tends to estimate the fluid
endpoint based on the observation from log integration,
which can be a good starting point. However, in the case of
thinly bedded or lamination formations, the log response will
somehow be affected by the nature of formation character
hence making the judgment of lithology and fluid typing
selection become more challenging.

The petrophysical Quanti. ELAN solver workflow enable
an inverse modelling to use tool vector (t) where the input
well logs or core - log correlation along with their known
pure component endpoint (R) to compute for volume vector
(v) of the formation component (Figure 24). This workflow
also allows a forward modelling process, which is also known
as log reconstruction, where used of v and R to compute
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Figure 19: An integration of AMG and petrophysical log to optimize wireline formation testing (WFT) pressure point selection.
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Figure 21: Establish typical fluid facies signatures. The fluid type validation is extended to the whole drilled section by validating the
major fluids facies based on the major star diagrams. The validation of the AMG major fluid typing results with WFT DFA sampling is
required to confirm the formation fluid and to calibrate synthetic fluid facies log.

Bulletin of the Geological Society of Malaysia, Volume 65, June 2018 31



SMAIL CHOUYA, JOHN JONG, JANICE BOAY, SHOTA NAKATSUKA, SAMIE LEE & PASCAL MILLOT

FA AMG
o Drawdown Formation .
GR Resistivily re FA GOR 0D Profile Composition Composition
C3F - 20 _mesias |
s s |0 &2 ™l - - B
N— m W 2 m oy - m m oo "y " T ik s - IFA Comp FLAIR Comp
MIBIEES=e 1= ==l=] & = = - =
41.9766 3558.16 L=
138625
88.9475 I =
Seom - Pressure suggests no connectivity
1
Upper ++ 4 T o * [ I— —
Zone i i + L 4 * [ B ——
W - * 3
Ny R 1
q [+ ?
. 7 =
Middle b il N ®
Zones ; iy - » ¥ s e (e e [ —
ik
= ] e @
Lower o iy
] — [ I—
Zone m\ U N + * L4 1
+ @
Av W -+ ® i
was o Duni?_ﬁ&m\\
/
\
C2s_Cas ?:_,.w_m.nww //,
All data show no clear evidence of connectivity among top, middle and bottom, intervals

Figure 22: Anintegration of AMG, DFA, and petrophysical results for a better reservoir fluid characterization in well “B-1" (Lower Kamunsu) reservoirs. There is no clear evidence of connectivity
between the upper and middle zones can be established, as based on the fluid facies validation from the star diagram, the upper and lower zones have different fluid affinities.
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for t. The forward modelling technique is adopted in the
thin bed log resolution enhancement workflow namely the
SHARP technique used by Budi et al. (2015) and Laurent
et al. (2015), and in this case study.

In well “B-1”, the AMG data are used to compute the
fluid endpoint and later feed into the Petrophysical Quanti.
ELAN solver to compute the individual fluid fraction and
their cumulative volumes as shown in Figure 25. The
green box highlighted is the oil bearing reservoir, and
the assessment is further supported by existence of C-C,
components, whereas the zone underneath is mostly devoid
of C-C; or C,,, which can be potentially interpreted as
water bearing zone.
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tand R are used to compute v

Where:

= Tool vector (nput well lops)

R =Response vector for 100% component (also
known as pure component endpoint)

v = Volume vector for component

Figure 24: Petrophysics Quanti. ELAN solver workflow.

3. AMG - fluid ID with nuclear magnetic resonance
fluid (MRF) station

The AMG data provides a good insight on the fluid ID
while drilling and LWD operational time window, however
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Figure 25: In well
“B-17, the AMG data
(Tracks 4 to 7) are used
to compute the fluid
endpoint and later feed
into the Petrophysical
Quanti. ELAN solver to

.

compute the individual
fluid fraction and their
cumulative volumes
as shown in Track 8
in the layout. Interval
highlighted in green box
indicates the presence
of C,, and minor gas
component in the pore
volumes. Interval with
blue box highlighted

indicates the presence

of mixture of free water
and very minor C,,
volumes, which could
be associated with the

R

[xx 75

mud filtrate invaded into
the formation.

the extraction of their individual fluid volume or fraction
required further log interpretation. The magnetic resonance
fluid characterization method is a patented technique for
direct identification and analysis of hydrocarbons from
station log measurements made by the CMR tool. By
inverting a specially designed suite of nuclear magnetic
resonance measurements with different echo spacing,
the MRF method can separate water, oil and gas signals
following the computation of their volumes and saturations.

The example below shows the two MRF stations (D-T1
and D-T2 maps; Figure 26) indicating the predominate fluid
in the reservoir is oil with traces of water (free and bound)
and gas signal. The presence of formation oil showed in
Stations 1 and 2 correlates well with the AMG data. The
water zone (blue box) also shows a good correlation with
the wetness index as discussed in Equation 1.

CONCLUSIONS
Based on the outcomes of a case study from “B-1” well,
offshore Sabah the following conclusions can be drawn:

e Anintegrated approach and workflow can help in better
reservoir fluid characterization in thinly laminated
formations and to reduce the geological uncertainties at
an early stage of the field development phase, thereby
saving operating cost.

Integration of various methodologies including AMG
and DFA predictions and calibrated with the acquired
wireline log data has proven to complement each
other and can be successfully used to address reservoir
connectivity concern.

Early quantitative assessment of fluid compositions
and sampling optimization through the integration of
WFT-DFA, and AMG provides a high confidence in
real-time fluid typing, and helps to refine WFT sampling
depths, have better adaptability of downhole sampling
process planning in real-time, and improves fluid
characterization for entire reservoir zone especially in
a challenging drilling environment.

The developed approach and methodology aids in
reducing data acquisition risk, and optimizes operations
time spent by correctly evaluating zones of interest
during the appraisal phase.

Accurate fluid composition from WFT DFA provides
important inputs for petrophysical analysis to more
precisely evaluate the reservoir properties and volume
of hydrocarbons present in the reservoir to capture the
thin lamination potential, which is normally excluded
in the conventional thick bed volumetric resource
assessment.

The case study demonstrates the strategies used
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Figure 26: AMG validating the MRF fluid ID determination. The example shows the two MRF stations (D-T1 and D-T2 maps) indicating
the predominate fluid in the reservoir is oil with traces of water (free and bound) and gas signal. The presence of formation oil showed
in Stations 1 and 2 correlate well with the AMG data. Interval with blue box highlighted shows the high wetness presence as supported
by the Quanti.ELAN interpretation of high free water volumes. The water zone also shows a good correlation with the wetness index as

discussed in Equation 1.

for accurate fluid characterization assessments in a
challenging deepwater environment, which is beneficial
as a comparison for the subsurface assessment of the
thinly laminated formations of discoveries made in
similar depositional setting. It has been estimated that
the resource of the thin laminations encountered in
the Kikeh Field has contributed up to 20% of the total
estimated in place resource of the producing field (Doug
Gillies, pers. Comm.).
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