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Motivated by the shortcoming of current hospital scheduling and capacity planning methods which often

model different units in isolation, we introduce the first dynamic multi-day scheduling model that integrates

information about capacity usage at more than one location in a hospital. In particular, we analyze the first

dynamic model that accounts for patients’ length-of-stay and downstream census in scheduling decisions. Via

a simple and innovative variable transformation, we show that the optimal number of patients to be allowed

in the system is increasing in the state of the system and in the downstream capacity. Moreover, the total

system cost exhibits decreasing marginal returns as the capacity increases at any location independently of

another location. Through numerical experiments on realistic data, we show that there is substantial value

in making integrated scheduling decisions. In contrast, localized decision rules that only focus on a single

location of a hospital can result in up to 60% higher expenses.

History :

1. Introduction

In many healthcare systems, patient care is delivered in several successive stages at different loca-

tions. For example, in maternity wards, women go through “labor rooms, delivery rooms, postpar-

tum beds, [and] maternity beds.” In coronary-care facilities, patients flow through “coronary care,

post-coronary care, intensive care, medical care, surgical, and ambulatory-care [units]” (Cohen,

Hershey, and Weiss 1980). In certain geriatric hospitals, patients pass from “acute-care” facilities

to “rehabilitation” and “long-stay” facilities (El-Darzi, Vasilakis, Chaussalet and Millard 1998). In

many ambulatory surgical centers, patients move from operating rooms (ORs) to post-anesthesia-

care (PACU) facilities (Hsu, Ning, de Matta, and Lee 2003). In these multi-stage systems, patients’

length-of-stay (LOS) at a particular stage, frequently a downstream stage, can span several days.
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While staying at a downstream stage, patients consume the resource and service capacity there.

If the downstream stage becomes fully occupied, access to it might be blocked for other patients

upstream (Koizumi, Kuno, and Smith 2005).

Failure to account for patient LOS and potential blocking from downstream often leads to poor

scheduling, inefficient use of capacity, and consequently, high cost and reduced quality of care.

Robb, Osullivan, Brannigan, and Bouchier-Hayes (2004) report that “no bed” was the reason for

cancellation in general OR procedures for up to 62.5% of all canceled cases in a large university

teaching hospital. Cochran and Bharti (2006) study an obstetrics hospital and find that when

postpartum beds are full, patients are blocked in the upstream labor and delivery areas, preventing

new admissions and leading to delays for scheduled inductions. In the critical care setting, Intensive

Care Units (ICUs) are often operated at or above nominal capacity (Chan, Yom-Tov, and Escobar

2011), and a shortage of such beds often forces surgeons to cancel or reschedule elective patients

who might need ICU beds post surgery (Kim and Horowitz 2002). Gupta (2007) finds that “when

surgeons book OR time for various procedures, quite often there is no mechanism in place to

ensure that there are adequate downstream resources (specifically PACU, ICU, and bed capacity)

for postoperative care.” The resulting blocking can lead to “increased patient waits, excessive use

of overtime, inability to handle emergency cases, and ambulance diversion.”

In reality, the effective operation of a facility should depend on the “balanced” use of capacity at

different stages to ensure smooth patient flow through the facility. Indeed, evidence indicates that

accounting for patient LOS in downstream stages can confer significant benefits. Robinson, Wing,

and Davis (1968) demonstrate an 8 to 17 percent cost reduction in a 100-bed hospital by taking into

account patient LOS and downstream census when scheduling admissions. Griffin, Xia, Peng, and

Keskinocak (2012) show that blocking can be prevented by balancing capacities at different stages

in an obstetric department. Despite the evidence, many hospitals units still operate in isolation,

without considering other units. In particular, capacity planning for surgeries usually focuses on

the use of ORs only, “with beds being considered as a secondary resource requirement that seldom

constrains the overall capacity” (Bowers 2013).
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With more hospitals adopting electronic health record systems following the Federal Gov-

ernment’s “meaningful use” initiative (Blumenthal 2009), hospitals are acquiring the necessary

information-technology support to coordinate capacity usage among different units and stages.

However, the development of scheduling methods for multi-stage systems accounting for patient

LOS has remained a challenge and an open research area. As Gupta (2007) points out, the random

nature of LOS makes it difficult to formulate a tractable model. In such a model, the state space

needs to be very large to capture the number of patients at each stage as well as their partially

experienced LOS. The high dimensionality of the state space prevents such a model from being

easily analyzed or solved.

In this paper, we consider a two-stage system in which patients receive surgeries at the upstream

stage and may spend multiple days at the downstream stage. Both stages have finite capacity.

There are two classes of patients who arrive randomly on each day. Emergency patients are always

admitted on the day of arrival, whereas elective patients are initially added to a waitlist (the

use of a surgical waitlist is common in single-payer health systems, such as UK and Canada).

From this waitlist, a certain number of elective patients are chosen to be admitted each day. Once

admitted, patients receive care at the upstream stage on the day of admission, and then move to

the downstream stage, where they stay over multiple days before getting discharged. There are

idling and overtime costs at both stages for under and over consumption of available capacity at

these stages. There is also a waiting cost for making elective patients wait. Our goal is to determine

a dynamic admission policy for elective patients to minimize the total discounted expected cost of

the system over a finite or infinite horizon. Such a policy would schedule patients to account for

the linked usage of both stages of service, as well as patient LOS in the downstream stage.

Our model is an aggregate planning model similar to those studied in Gerchak, Gupta and Henig

(1996) and Ayvaz and Huh (2010). These models are used in the first step of a typical two-step

planning process. In this first step, the number of elective patients to be served on a given day is

determined to balance the cost of overtime capacity usage with the cost of making patients wait

and that of capacity under-utilization. In the second step, the sequence and timing of individual
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procedures on a given day is determined to minimize within-day wait time of patients and idle time

of providers. The second step is usually not explicitly considered in an aggregate-planning model.

Clearly, our model captures a relatively simple service system with two sequential stages and two

customer classes. A hospital may have more complex network structure and patient priority rules.

However our model is, to the best of our knowledge, the first attempt in the literature to explore

dynamic scheduling decisions in a multi-stage system. More importantly, our simple model can be

used to approximate more complex multi-stage healthcare systems, especially when there are two

obvious bottleneck stages. In this paper, we will specifically focus on a two-stage cardiothoracic

surgery centre described by Bowers (2013) as a canonical example. This Scotland-based centre

primarily provides cardiothoracic surgical service. The majority of patients are elective patients.

Patients receive scheduled operating theatre procedures, after which they transfer to ICUs, then to

a High Dependency Unit (HDU), and finally on to a conventional ward before they are discharged

from the centre. Patients’ LOS in the ICUs ranges from 1 to 50 days. The HDU and ward capacities

are high enough that they do not constrain the throughput of the centre. Thus, the ORs and the

ICUs are the main stages that must be considered in determining daily elective admission. Clearly,

the linked capacity of the ORs and the ICUs impacts the optimal number of elective patients to

receive surgery on any given day.

Our contributions in this work can be summarized as follows. We formulate and analyze the first

dynamic multi-day scheduling model that integrates information about capacity usage at more

than one service stage. In particular, ours is the first dynamic model that accounts for patient

LOS in scheduling decisions (see discussions below on the relevant literature). We demonstrate

that a formulation that uses the “natural” definition of decision variables does not generate help-

ful structural results or insights. But we are able to exploit a simple and yet innovative variable

transformation to reveal a hidden submodularity structure in the formulation. Building upon this

transformation, we prove that the number of patients allowed in the system in each period is mono-

tone in the state variables and in the downstream capacity, thereby generating useful guidelines for

adjusting scheduling decisions in practice. In addition, we show that the total expected cost of the
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system exhibits decreasing marginal returns as the capacity in each stage increases independently

of the the other stage, a result that has been confirmed earlier by simulation studies (Bowers

2013). In an infinite-horizon setting, we examine conditions under which the patient waitlist may

grow without bounds. In particular, we show that the number of admissions might be uniformly

bounded even as the number of patients waiting approaches infinity, as long as the waiting cost

rate is low enough. Though this result seems intuitive, it has seldom been studied in the literature,

and is particularly useful for informing the choice of model parameters to ensure that everyone on

the waitlist is served. Finally, through numerical experiments on realistic data, we show that there

are substantial values to make integrated scheduling decisions, that is, making scheduling decisions

while taking into account patient LOS and census information downstream. We find that ignoring

this information can lead to significant efficiency and financial loss to the whole system.

The remainder of this paper is organized as follows. Section 2 reviews the relevant literature. Sec-

tion 3 describes our model and its natural formulation. Section 4 introduces the variable transfor-

mation for the model. Section 5 discusses the structural properties of our transformed formulation

and its optimal decisions. Section 6 treats capacities at both stages as new decision variables and

investigates their relationship to the optimal cost and the optimal scheduling decisions. Section 7

studies the stability of the waitlist. Section 8 presents numerical results on the value of integrated

scheduling. Finally, Section 9 discusses extensions of our model and concluding remarks.

2. Related Literature

Our work draws upon several streams of literature. The first stream is the literature on surgical

scheduling. See Gupta (2007), Cardoen, Brecht, Demeulemeester, Belien (2010), May, Spangler,

Strum, and Vargas (2010), and Guerriero and Guido (2011) for in-depth reviews. This body of

work has examined a variety of decision problems, including how to distribute the operating room

time among different surgeons, how many operating rooms to be open and when to open them, and

how to sequence different procedures on the day of operation. In this literature, the papers that are

most relevant to our work include Gerchak, Gupta, and Henig (1996), Ayvaz and Huh (2010) and
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Huh, Liu and Truong (2012). These papers investigate the allocation of elective patients to surgery

days, using models similar to ours. They identify similar structure for the optimal scheduling policy.

However, their work only models a single stage of service and does not take into account the usage

of downstream capacity. In contrast, our work features a two-stage service system and develops

integrated scheduling methods that explicitly consider capacity usage in both stages.

The second stream of research relevant to ours is the work on hospital capacity planning. This

body of work recognizes different care paths for patients and develops either simulation or analytical

models to study congestion in hospitals. Though this literature confirms the impact of downstream

beds on overall system performance by modeling interactions among multiple units, they have

seldom incorporated scheduling decisions into the models. Simulation models have been developed

in a variety of settings, including geriatric departments (El-Darzi, Vasilakis, Chaussalet, and Millard

1998), obstetrics units (Griffin, Xia, Peng, and Keskinocak 2012), acute care services (Wang, Hare,

Vertesi and Rutherford 2010) and special cardiac and thoracic surgery centers (Bowers 2013).

More generally, Harper (2002) describes a framework for developing simulation models for hospital

operations.

Queuing models featuring blocking have been studied extensively. See Bretthauer, Heese, Pun,

and Coe (2011) for a brief review. The papers focusing specifically on hospital capacity planning

include Hershey, Weiss, and Cohen (1981), Weiss, Cohen, and Hershey (1982), Koizumi, Kuno, and

Smith (2005) and Bretthauer, Heese, Pun, and Coe (2011). These models make the assumption

that systems are passive in their admission decisions; that is, patients are admitted in a greedy

manner into a stage whenever there is sufficient capacity at the stage. As we will demonstrate in

this paper, actively managed scheduling systems, where the decision to admit a patient accounts

for resource usage in all succeeding stages, can significantly improve usage of capacity by smoothing

out potential imbalances between the stages.

Recently, joint scheduling and capacity planning decisions have received growing attention. Our

work contributes to this emerging literature. Our paper is distinct from this literature in the use

of an analytical, dynamic model of scheduling. Previous work has mainly focused on simulation or
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static optimization models. Ridge, Jones, Nielsen, and Shahani (1998) develop a simulation model

for bed capacity planning in intensive care. Kim and Horowitz (2002) use simulation to study the

impact of an ad hoc scheduling policy for elective surgeries on the capacity use of a downstream

ICU. Hsu, Ning, de Matta, and Lee (2003) develop a deterministic model to schedule patients in

an ambulatory surgical center to minimize the number of PACU nurses used. Helm and Van Oyen

(2012) develop a static optimization model to determine the weekly schedule of elective hospital

admission. Samiedaluie, Kucukyazici, Verter, and Zhang (2013) also consider patient admission

policy in a neurology ward, where there are two stages of service, the ED and the neurology ward.

Due to the complex actions allowed by their model, they do not identify the structure of an optimal

scheduling policy.

Our work is also related to the literature on the classical flow shop scheduling. In these problems,

a set of jobs flow sequentially through multiple stages, each stage consisting of one machine (John-

son 1954). The hybrid flow shop problem extends the classical flow shop problem by considering

multiple machines in each stage, job- and machine-dependent processing times, and general prece-

dence constraints for job processing. See Ruiz and Vázquez-Rodŕıguez (2010) and Ribas, Leisten,

and Framinan (2010) for in-depth reviews of this literature. The key decisions in these problems

include the allocation of jobs to machines as well as the sequencing of jobs through the shop. The

objective is to minimize the completion time of the jobs, the delays of the jobs, or a combination

of both. Our model differs in several respects. First, we do not explicitly model the assignment

of patients to resources. Second, we only consider a simple and fixed sequence of procedures for

patients. Third, while the flow shop problem focuses on a single period, our model makes dynamic,

multi-period decisions. Finally, we allow patient demand and resource utilization to be random,

whereas in the flow shop problem, job processing times are known deterministically.

3. Model

Although our model is more generally applicable, for concreteness, our terminology in the rest of

the paper will be adapted to the canonical example of the cardiothoracic surgery centre described
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by Bowers (2013). By convention and with a few exceptions, we will use Greek letters to denote

random variables, upper-case letters to denote constants, and lower-case letters to denote variables.

We will consider all subscripted or superscripted quantities as vectors when we omit their subscripts

or superscripts, respectively.

Consider a planning horizon of T days, numbered t = 1,2, . . . , T . We allow T =∞. Demand

for elective and emergency surgeries that arise over each day t are non-negative integer-valued

random variables denoted by δt and εt, respectively. We assume that δt and εt are independent and

identically distributed (i.i.d.) over time, and bounded. Emergency surgeries must be performed in

the same day in which they arise, whereas elective surgeries can be waitlisted and performed in the

future. Each elective case that is waitlisted incurs a waiting cost of W per day. The waiting cost

captures the inconvenience and loss of goodwill in patients due to waiting. It can also capture loss

in productivity to the patient and to society that is caused by delays in treatment. This model of

waiting cost follows Gerchak, Gupta, and Henig (1996) and Ayvaz and Huh (2010).

A patient undergoing surgery always proceeds through two main stages in the hospital. Stage

0, called the entry stage or upstream stage, takes place on the day when the patient is admitted

into the hospital. In this stage, surgery is performed. The patient stays in the entry stage for no

more than a fraction of a day. After receiving surgery in the entry stage, the patient will be moved

to stage 1, called the downstream stage, for recovery and observation. The downstream stage may

represent an intensive care unit (ICU), a progressive care unit (PCU), or an inpatient ward. The

patient stays in the downstream stage for a random number of days before she is finally discharged.

We assume that there is a single bottleneck resource that is consumed by patients in each stage

i∈ {0,1}. We called this resource stage-i capacity and denote it by Ci. For example, capacity might

be measured in surgeon time in the entry stage or in number of ICU beds in the downstream stage.

Each patient consumes a random amount υ0 of capacity in stage 0, and υ1 of capacity in each

day that she remains in stage 1. For each i ∈ {0,1}, we assume that υi is i.i.d. over the patient

population and over time.
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Since our model is an aggregate planning model that determines the total number of elective

patients to be treated each day, we estimate the total amount of stage-0 and stage-1 capacity used

by any k patients on any given day by the convolutions S0(k) and S1(k) of k i.i.d. random variables

distributed as υ0 and υ1, respectively. That is, we ignore any within day wait time by patients

and idle time by doctors that depend on the sequencing and timing of procedures within a day.

As discussed earlier, such approximation of the workload within a day is often used in aggregate-

planning models; see, e.g., Gerchak, Gupta, and Henig (1996) and Ayvaz and Huh (2010).

On any given day, if more capacity is required than is available at stage i, then surge capacity

will be used, incurring an overtime cost of Oi ≥ 0 per unit. Conversely, if less capacity is required

than is available at stage i, an idling cost of Li ≥ 0 is incurred per unit. Our overtime and idling

costs are motivated as follows. We take the hospital’s perspective and assume that there is a sunk

fixed cost, for example facility maintenance cost, at each stage. There are also variable costs, such

as staffing costs, that depend on the capacity installed at each stage. Take stage 0 as an example.

Suppose that each scheduled patient brings in a revenue R per hour. Suppose also that the hospital

maintains a fixed daily capacity level C every day, each unit of this capacity incurs a variable unit

cost of A (e.g., salary rate), and overusing this capacity via overtime results in an overtime unit

cost of P . If the number of patients scheduled for stage 0 is k, then the total cost incurred at

stage 0 is AC +P (S0(k)−C)+−RS0(k), which can be rewritten as (A−R)C + (P −R)(S0(k)−

C)+ +R(S0(k)−C)−. Without loss of generality, we can drop the first term (A−R)C as it is a

constant with C fixed, and focus on the last two terms which depend on the scheduling decision

k. In particular, we can think of P −R as the unit overtime cost and R as the unit idling cost.

Our implicit assumption is that P ≥ R, so that the unit overtime cost is non-negative. If this

condition is not satisfied, then we can directly model the costs P and R, the capacity level C and

the revenue A. None of our structural results will change. We have chosen to assume P ≥ R to

reduce the number of parameters for the problem. Following a similar argument, this cost structure

also applies to stage 1.
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To give a sense the magnitude of these costs, we note that in the US, the average OR charge per

hour (i.e., the constant R above) is around $3600, the OR staffing cost per hour (i.e., the constant

A above) excluding physician costs is about $450 to $600 and this cost can be much higher when

it includes physician costs (Macario, Vitz, Dunn, and McDonald 1995). In addition, overtime cost

per hour (i.e., the constant P above) for staff are often 1.5 to 1.75 times the regular per hour cost

due to the federally mandated overtime rate of 1.5 (Dexter Epstein, and Marsh 2001).

The expected overtime and idling costs at stage 0, given that k patients are served, is O0E[S0(k)−

C0]+ + L0E[S0(k)− C0]− for any integer k. To avoid unnecessary complications imposed by the

integral requirement, we will allow the number of patients admitted to be non-integral. Accordingly,

we extend the stage 0-cost above to be defined on real-valued k by piecewise-linear extension.

Similarly, we extend the overtime and idling costs at stage 1.

The events in each day occur in the following sequence:

1. At the beginning of day t, there are wt elective patients patients on the waitlist. There is no

patient upstream (i.e., at stage 0) because all patients admitted on day t− 1 have completed

their service at stage 0 on the same day. There are nt patients downstream (i.e., at stage 1).

Waiting costs are incurred for each of the wt patients on the waitlist. We allow wt and nt to

be non-negative real numbers.

2. The random number δt of new elective surgery requests arises, bringing the total number of

patients in the waitlist to w̄t = wt + δt, and the total number of patients in the system to

wt + δt +nt.

3. The manager decides, out of the wt + δt outstanding elective cases, the number qt of elective

surgeries to fulfill in day t. Immediately after the decision, the number of patients at stages 0

increases to qt. Again, we allow qt to be a non-negative real number.

4. An additional random number εt emergency patients arrive and are served at stage 0. Idling

and overtime costs are incurred at stage 0 for the service of qt + εt patients.

5. Each patient in stage 0 moves to stage 1. Idling and overtime costs are incurred at stage 1.
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6. A random fraction 1− ξt, ξt ∈ (0,1), of patients at stage 1 exit the system. We assume that

the sequence {ξt}t is i.i.d. over time. This is similar to assuming that patient LOS in stage 1

is geometrically distributed. Litvak, van Rijsbergen, Boucherie, and van Houdenhoven (2008)

have shown that patient LOS in ICUs can be modeled as an exponential random variable.

Bowers (2013) has also noted that the exponential distribution provides an “approximate” fit

to the LOS data at the cardiothoracic center he studies. In our discrete-time system, we use

a geometric random variable, which is essentially the discrete time version of an exponential

variable, to model patient LOS.

The objective of the problem is to determine a scheduling policy which minimizes the total

discounted cost of the system over the planning horizon, assuming a discount factor of γ ∈ (0,1).

3.1. Dynamic-Programming Formulation

The decision problem introduced above can be formulated as a Markov Decision Process (MDP).

The system has the following tradeoff. If it schedules too many elective surgeries in a day, the

waiting cost is reduced but overtime cost might be high in both stages. In contrast, if it schedules

too few elective surgeries, it risks incurring high waiting costs for elective patients and high idling

costs in both stages. Very importantly, the scheduling decision needs to consider the use of capacity

system-wide, as the decision that optimizes the cost in one stage may not be optimal for the other

stage, nor for the system as a whole.

Recall that the decision to make in each day is the number of elective patients qt to serve.

The state of the system just before decision qt is made is represented by a triplet (wt, nt, δt),

where wt + δt = w̄t and nt represent the total number of patients on the waitlist and downstream,

respectively. The decision qt is constrained by 0≤ qt ≤ w̄t, since the number to be scheduled cannot

exceed the number currently on the waitlist.

The system evolves as follows:

wt+1 = wt + δt− qt, (1)
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nt+1 = ξt(nt + qt + εt). (2)

To see the second equation, note that a fraction 1− ξt of the nt + qt + εt patients who stay in stage

1 on day t exit the system.

The single-day cost function can be written as

F̃ (wt, nt, δt, qt) = Wwt +O0E[S0(qt + εt)−C0]+ +L0E[S0(qt + εt)−C0]−

+O1E[S1(nt + qt + εt)−C1]+ +L1E[S1(nt + qt + εt)−C1]− , (3)

where (·)+ = max(·,0), and (·)− =−min(·,0). Above, the first term captures the waiting cost for

elective patients who are waitlisted on day t; the second and third terms evaluate the overtime and

idling costs for stage 0 on day t, respectively; and the last two terms compute these costs for stage

1 on day t, respectively.

Let Ṽt(wt, nt, δt) denote the optimal total discounted cost incurred from days t to T when the

state just before the decision is made on day t is given by (wt, nt, δt). The Bellman equation can

be written as follows:

Ṽt(wt, nt, δt) = min
0≤qt≤wt+δt

G̃t(wt, nt, δt, qt) , where

G̃t(wt, nt, δt, qt) = F̃ (wt, nt, δt, qt) + γE
[
Ṽt+1(wt+1, nt+1, δt+1)|(wt, nt, qt, δt)

]
,

= F̃ (wt, nt, δt, qt) + γE
[
Ṽt+1(wt + δt− qt, ξt(nt + qt + εt), δt+1)

]
. (4)

For convenience, we take the termination function when T <∞ to be ṼT+1(·, ·, ·) = 0 but any linear

function would be acceptable. We will suppress the capacity vector C except when it is explicitly

required by the discussion. In the infinite-horizon case, since the demands are bounded and all

costs are non-negative, the time index can be dropped from the optimality equation (4).

We call formulation (4) the natural formulation of the problem because the variables used are

natural quantities to define. In the next section, we shall find it necessary to transform this natural

formulation into one that is more analytically tractable.
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4. Transformation of Variables

The natural formulation of the previous section turns out to be rather difficult to analyze. It does

not yield a clear and intuitive relationship between the system state and decision variables, nor

does it generate very useful managerial insights. For example, recall that the state variable nt

tracks the total number of patients downstream, and the decision variable qt controls the daily rate

at which regular patients are admitted. As the total number of patients downstream nt increases,

intuition seems to suggest that fewer patients should be admitted, i.e. qt should be smaller, to

avoid overtime in downstream. However, as it turns out, qt might increase or decrease when nt

grows, depending on the relative value of nt compared to capacity. A numerical example is shown

in Figure 1, in which the optimal decision q∗t initially decreases in nt but then increases.
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3

4

5

6

7

8

9

10

n
0

q 0*

Figure 1 For a fixed waitlist size w0 = 8, the optimal decision q∗0 is not monotone in the state variable n0.

The number of patients is rounded to the nearest integer. C0 = 7, C1 = 20, W = 2, O0 = 6, L0 = 6,

O1 = 5, L1 = 5, E[v0] = 1, E[v1] = 1, γ = 0.9, E[δ] = 6, E[ε] = 0.5, T=50, E[ξt] = 0.7 and ξt is uniformly

distributed over [0.6,0.8].

To give an explanation, when the number nt of patients downstream is small compared to the

downstream capacity, it is crucial to reduce the idling cost downstream as much as possible. Thus

it is optimal to pull more patients from the waitlist even if it leads to overtime costs upstream.

As nt increases, it becomes more important to reduce the overtime cost downstream by admitting

fewer patients. In order reduce overtime costs downstream, it is possible that the optimal decision
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will incur more idling cost upstream. However, when nt is sufficiently large, the overtime cost

downstream is almost the same for any newly admitted patient because to serve each one of them

will most likely require the use of surge capacity. In this case, balancing idling cost and overtime

cost upstream becomes more relevant, and therefore more patients should be admitted to the

upstream stage.

The example above shows that the relationship among the original model variables does not

provide a clear direction on how to adjust decisions if the system state changes. Next, we will

perform a transformation of variables that will place them in approximately the same “space,”

thereby helping to reveal the relationship among them. Let at denote the total number of patients

in the system at the beginning of day t, including those in the waitlist and those in stage 1.

Note that at = wt + nt. Let mt denote the number of patients in both stages (excluding those on

the waitlist) immediately after the decision qt. In other words, mt = nt + qt. We will reformulate

problem (4) with variables (at,mt) replacing (wt, qt).

Observe that with the above transformation, the decision variable becomes the total number

mt of patients to be in the hospital by the end of period t. It is more compatible with the state

variables at and nt in the sense that, rather than being a rate, it also accounts for the total number

of patients in the system at and beyond a point, in this case at stage 0 and beyond. In comparison,

at accounts for the total number of patients on the waitlist and beyond, and nt accounts for the

number of patients at stage 1 and beyond. In short, at, mt, and nt correspond to the size of three

nested sets of patients.

From day t to t+ 1, the system evolves as follows,

at+1 = at + δt + εt− (1− ξt)(mt + εt) = at + δt−mt + ξt(mt + εt), (5)

nt+1 = ξt(mt + εt). (6)

The single-day cost function can be written as

F (mt, at, nt, δt) = W (at−nt) +O0E[S0(mt−nt + εt)−C0]+ +L0E[S0(mt−nt + εt)−C0]−
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+O1E[S1(mt + εt)−C1]+ +L1E[S1(mt + εt)−C1]−. (7)

Let Vt(at, nt, δt) denote the optimal total discounted cost incurred from day t to T when the state

just before the decision mt is made on day t is (at, nt, δt). The Bellman equation can be written as

follows:

Vt(at, nt, δt) = min
nt≤mt≤at+δt

Gt(mt, at, nt, δt) , where (8)

Gt(mt, at, nt, δt) = F (mt, at, nt, δt) + γE [Vt+1(at+1, nt+1, δt+1)|(at, nt,mt, δt)] ,

= F (mt, at, nt, δt) + γE [Vt+1(at + δt−mt + ξt(mt + εt), ξt(mt + εt), δt+1)] ,

and the termination function is given by VT+1(·, ·, ·) = 0 or any linear function. Note that the

feasible region for mt is [nt, at+δt], ranging from the total number nt of patients downstream to the

total number at + δt patients in the system. Again, in the infinite-horizon case, since the demands

are bounded and all costs are non-negative, the time index can be dropped from the optimality

equation.

We call (8) the transformed formulation. In the following section we will show that the trans-

formed formulation yields a well-structured relationship between the optimal decision and the state

variables. In particular, the transformed formulation exhibits submodularity whereas the natural

formulation does not.

5. Structure of Optimal Solutions

We now investigate the transformed formulation (8). We will derive the structural properties that

will shed light on the characteristics of the optimal policies, thus providing decision makers with

helpful guidance on these policies. We first note that the convexity of the formulation follows from

the convexity of the single-period cost function and linear state transitions over time.

Proposition 1. For every t= 1,2, . . . , T , F (·, ·, ·, ·), Gt(·, ·, ·, ·), and Vt(·, ·, ·) are jointly convex in

their arguments, respectively.
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Proof. We first show the joint convexity of F (·, ·, ·, ·). The first component W (at−nt) is clearly

convex. Because Si(k) is a sum of k i.i.d non-negative random variables, {Si(k), k = 0,1,2, . . .} is

stochastic increasing and linear in sample path sense; or in short, {Si(k), k= 0,1,2, . . .} ∈ SIL(sp)

(see Example 4.3 in Shaked and Shanthikumar (1988)). Thus Ef(Si(k)) is convex in k if f is a

convex function (see Proposition 3.7 in Shaked and Shanthikumar (1988)). Since O1E(x+S1
t (εt)−

C1)+ is convex in x, we have that O1E(S1(mt)+S1
t (εt)−C0)+ is convex for mt ∈ {0,1,2, . . .}. Thus,

its piecewise-linear extension is also convex. Due to the fact that the convexity of a real function

is preserved under linear transformation of its arguments (see Theorem 5.7 in Rockafellar (1972)),

we know that O0E[S0(mt−nt + εt)−C0]+ is jointly convex in (mt, nt). The convexity of the other

terms in F (·, ·, ·, ·) follow a similar argument. Since F is obtained by adding up convex terms, it

must be convex.

Assuming that Vt+1(·, ·, ·) is jointly convex in its arguments (which is true for t= T ), we know

that

E [Vt+1(at + δt−mt + ξ(mt + εt), ξ(mt + εt)), δt+1] ,

is also convex (see Theorem 5.7 in Rockafellar (1972)). Therefore, Gt(·, ·, ·, ·) is jointly convex.

Because Vt(·, ·, ·) is obtained by minimizing a convex function Gt(·, ·, ·, ·) in a convex feasible region,

it follows that Vt(·, ·, ·) is also convex (see Theorem A.4. in Porteus (2002)). By induction, the

theorem holds for all t. �

Following Topkis (1998), we say that a function g :Rn→R is submodular if

g(x) + g(y)≥ g(x∧ y) + g(x∨ y),

for all x, y ∈Rn, where x∨ y denotes the component-wise maximum and x∧ y the component-wise

minimum of x and y. We can prove that the transformed formulation is submodular using the

submodularity of the one-period costs, the joint convexity of the value function shown above, the

linear state transitions, and the lattice structure of the feasible region.

Theorem 1. For every t, the following properties hold:
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1. F (mt, at, nt, δt) is submodular in (mt, at, nt);

2. Gt(mt, at, nt, δt) is submodular in (mt, at, nt); and

3. Vt(at, nt, δt) is submodular in (at, nt).

Proof. We start by proving (1). The first term W (at − nt) in F (·, ·, ·, ·) is linear and thus

submodular. If a function h(x) is convex in x, then h(x− y) is submodular in x and y. It follows

that the second and the third terms of F (·, ·, ·, ·) are submodular. The last two terms are trivially

submodular as they are both single variable functions.

We will prove (2) and (3) by induction. Assume that Vt+1(at+1, nt+1, δt+1) is submodular in

(at+1, nt+1). Because of the submodularity of F (·, ·, , ·, ·) shown above, to prove (2), it remains to

check the submodularity of its second term

Vt+1(at + δt−mt + ξt(mt + εt), ξt(mt + εt)) = Vt+1(at + δt− (1− ξt)mt + ξtεt, ξtmt + ξtεt))

for any realization of δt, ξt and εt. We drop δt+1 from the expression above for notational conve-

nience. For any a+
t ≥ a−t and m+

t ≥m−t , we have

Vt+1(a+
t + δt− (1− ξt)m+

t + ξtεt, ξtm
+
t + ξtεt)

−Vt+1(a+
t + δt− (1− ξt)m−t + ξtεt, ξtm

−
t + ξtεt)

−Vt+1(a−t + δt− (1− ξt)m+
t + ξtεt, ξtm

+
t + ξtεt)

+Vt+1(a−t + δt− (1− ξt)m−t + ξtεt, ξtm
−
t + ξtεt)

≤ Vt+1(a+
t + δt− (1− ξt)m+

t + ξtεt, ξtm
−
t + ξtεt)

−Vt+1(a+
t + δt− (1− ξt)m−t + ξtεt, ξtm

−
t + ξtεt)

−Vt+1(a−t + δt− (1− ξt)m+
t + ξtεt, ξtm

−
t + ξtεt)

+Vt+1(a−t + δt− (1− ξt)m−t + ξtεt, ξtm
−
t + ξtεt)

≤ Vt+1(a−t + δt− (1− ξt)m+
t + ξtεt, ξtm

−
t + ξtεt)

−Vt+1(a−t + δt− (1− ξt)m−t + ξtεt, ξtm
−
t + ξtεt)

−Vt+1(a−t + δt− (1− ξt)m+
t + ξtεt, ξtm

−
t + ξtεt)
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+Vt+1(a−t + δt− (1− ξt)m−t + ξtεt, ξtm
−
t + ξtεt)

= 0,

where the first inequality follows from the submodularity, the second from the joint convexity of

Vt+1(·, ·, ·). Thus,

E{Vt+1(at + δt−mt + ξt(mt + εt), ξt(mt + εt), δt+1)}

is submodular in (at,mt), and Gt(mt, at, nt, δt) is submodular in (mt, at, nt).

Lastly, note that for fixed δt, the set {(mt, at, nt) ∈ R3
+ | nt ≤ mt ≤ at + δt} is a lattice, and

Vt(at, nt, δt) is obtained by minimizing Gt(mt, at, nt, δt) over all mt such that (mt, at, nt) belongs

to this set. Thus, we have the submodularity of Vt(at, nt, δt) in (at, nt), proving (3) (see Theorem

2.7.6 in Topkis (1998)). �

The submodularity results established above are crucial in establishing the monotonicity of the

optimal decisions in the state variables. These monotonicity properties provide decision makers

with easy directions for policy adjustment.

Define the minimum and maximum optimal decision mt in day t to be, respectively,

mmin
t (at, nt, δt) = minarg min

nt≤mt≤at+δt
Gt(mt, at, nt, δt), and (9)

mmax
t (at, nt, δt) = maxarg min

nt≤mt≤at+δt
Gt(mt, at, nt, δt). (10)

Then we have the following result. (In this paper, we use the terms “increasing” and “decreasing”

to mean “non-decreasing” and “non-increasing,” respectively, unless otherwise specified.)

Corollary 1. For every period t and demand instance δt, the maximum and minimum optimal

number of elective patients in stage 0 and beyond, namely mmax
t (at, nt, δt) and mmin

t (at, nt, δt),

respectively, are both increasing in the state (at, nt).

Proof. This directly follows from Theorem 1 and the fact that the feasible region {(mt, at, nt)∈

R3
+ | nt ≤mt ≤ at + δt} is a lattice (see Theorem 2.8.2 in Topkis (1998)). �
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The monotonicity of the optimal decision in the state is quite intuitive after the variable trans-

formation. As noted above, at, mt, and nt account for the total number of elective patients on the

waitlist and beyond, at stage 0 and beyond, and at stage 1, respectively. They correspond to the size

of three nested sets of patients. These sets have a correspondence in size under an optimal policy.

As the smallest set containing nt recovering patients increases in size, the middle set containing mt

admitted and recovering patients increases. Similarly, as the largest set containing at patients in

the whole system increases in size, the middle set containing mt admitted and recovering patients

also enlarges.

6. Relationship to Capacity

So far we have assumed that the capacity vector is fixed at both stages. In this section, we treat

the daily capacity Ci’s as additional decision variables and study how the optimal cost function Vt

and the optimal scheduling decisions mmin
t and mmax

t change with respect to changes in Ci’s.

6.1. Impact of Capacity Changes on the Optimal Cost

Including the capacity vector C into analysis makes it difficult to investigate the convexity and

other structural properties of Vt. To see why, consider the fourth term in the single-day cost function

(7) which has the following functional form O1E(S1(m)−C1]+. It is not clear how to define the

joint convexity of this term in {(m,C1) :m ∈ Z+,C1 ∈R+}, where Z+ and R+ represent the set of

non-negative integers and that of non-negative real numbers, respectively. For technical tractability,

we make the following simplification to the model. Instead of assuming the capacity used by each

patient is i.i.d., we assume that the total amount of stage-i capacity used by any k patients on

any given day is given by vik, where vi is a non-negative random variable representing the average

capacity used by a patient for stage i, i= 1,2.

For the cost of capacity, we assume that at any stage each additional unit of capacity incurs a

daily cost. This daily cost can be thought of as daily depreciation of the infrastructure investment

plus the staffing cost associated with the capacity. However, as our goal is to obtain structural

insights on how the capacity at the two stages affects overall costs and affects the optimal policies,
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we can assume zero capacity expansion cost because adding a linear capacity cost to our formulation

will not change its structural properties.

With these modifications, the single-day cost function becomes

F (mt, at, nt, δt,C) = W (at−nt) +O0E[v0(mt−nt + εt)−C0]+ +L0E[v0(mt−nt + εt)−C0]−

+O1E[v1(mt + εt)−C1]+ +L1E[v1(mt + εt)−C1]−, (11)

and the value function Vt remains the same as defined in (8) except that Ci’s are now included as

new variables. Then, we can show the following results similar to Proposition 1.

Theorem 2. For each t, F (C,mt, at, nt), Gt(C,mt, at, nt), and Vt(C,at, nt) are jointly convex in

their arguments, respectively.

Proof. It is easy to check the single-day function defined in (11) is jointly convex in its argu-

ments, and the rest of the proof is similar to that of Proposition 1. �

The theorem above suggests a diminishing return as the capacity upstream or downstream

increases, a trend that has been confirmed by simulation in Bowers (2013). With greater investments

in capacity, we eventually experience lower marginal returns because the population of patients

as reflected in the demand distribution is fixed. These convexity results are derived by relaxing

the assumption that capacity use of different patients are i.i.d. A natural question is whether such

convexity with respect to capacity C would still hold with the i.i.d. assumption. Our intuition,

however, does not seem to suggest otherwise, and our numerical experiments below indeed confirm

our intuition.

Figures 2 and 3 illustrate the convexity of the value function Vt(C,at, nt) in the capacities C0 and

C1, respectively, when capacity use of different patients are i.i.d. That is, these figures are plotted

for the original model presented in Section 4. These two figures use the same set of parameters,

except that Figure 2 shows how Vt changes in upstream capacity C0 with downstream capacity C1

fixed, while Figure 3 presents how Vt changes by varying C1 but fixing C0. These trends imply that

expanding the capacity of a single resource provides diminishing marginal returns. In addition,
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the optimal capacity of one stage depends on the relative weight of costs in both stages, and the

total system cost is more sensitive to the capacity change in a stage that carries higher costs. Note

that the cost function V0(C,a0, n0) also depends on the initial state (a0, n0). For different initial

states, the optimal capacity level is different, but the impact of the initial state vanishes when the

discount factor γ approaches 1 or the planning horizon increases.
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Figure 2 Total expected cost V0(C,a0, n0) as a convex function of C0. a0 = 18, n0 = 13, W = 1, C1 = 30, E[v0] = 1,

E[v1] = 1, γ = 0.8, E[δ] = 8, E[ε] = 1.5, T=90, E[ξt] = 0.85 and ξt is uniformly distributed over [0.7,1].

In Figure 2, the downstream capacity is C1 = 30. Each patient is expected to stay 1/(1−E[ξt]) =

6.67 days in the system, and therefore, on average, the downstream stage can process C1(1−E[ξ]) =

4.5 patients each day, which is much smaller than the expected daily arrival rate of E[δ]+E[ε] = 9.5.

As a result of the lack of downstream capacity, the optimal value of C0 is sensitive to the relative

weight between surgery costs (O0,L0) and bed-stay costs (O1,L1). When the surgery costs are

relatively higher (O0 = 10,L0 = 10,O1 = 0.5,L0 = 0.2), the system throughput is primarily driven

by the need to use the upstream capacity efficiently, making the optimal value of C0 closer to the

external arrival rate 9.5. On the other hand, when the surgery costs are relatively lower (O0 =

1,L0 = 1,O1 = 3,L1 = 1.2), the optimal value of C0 is closer to C1(1−E[ξ]) = 4.5, as the throughput
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is primarily determined by the downstream capacity.

In Figure 3, the capacity upstream is C0 = 5, which is smaller than the average daily patient

demand rate of E[δ]+E[ε] = 9.5. The optimal downstream capacity C1 again is sensitive to whether

upstream or downstream cost dominates. With higher downstream costs, the total cost Vt is more

sensitive to the choice of C1 (see dotted lines). In this case, the optimal C1 is driven by the urgency

to satisfy patient demand from upstream, and also the need to consider the tradeoff between under-

utilization and over-utilization downstream. Note that 3 =O1 >L1 = 1.2, and thus we expect the

optimal C1 to be close to but smaller than 9.5/(1−E[ξt]) = 63. When downstream costs are lower,

the total cost Vt is less sensitive to the choice of C1 (see solid lines). The optimal C1 should match

the capacity upstream, and is close to C0/(1−E[ξt]) = 33.

6.2. Impact of Capacity Changes on the Optimal Decisions

In this section, we study how the optimal scheduling decisions change with varying levels of capacity.

For the same technical reason above, we still assume that the total amount of stage-i capacity used

by any k patients on any given day is given by vik for i= 1,2, where vi is a non-negative random
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variable. Then, we can prove that the formulation is submodular with respect to the capacity at

stage 1, i.e., the downstream stage. The proof is similar to that of Theorem 1, and thus we omit it

here.

Corollary 2. For every t and every fixed C0,

1. F (·, ·, ·, ·) is submodular in (C1,mt, at, nt);

2. Gt(·, ·, ·, ·) is submodular in (C1,mt, at, nt); and

3. Vt(·, ·, ·) is submodular in (C1, at, nt).

Submodularity implies, as before, monotonicity of the decisions in the downstream capacity,

which is formalized in the corollary below.

Corollary 3. For every t and every fixed C0, the optimal decisions mmax
t (C,at, nt) and

mmin
t (C,at, nt) are increasing in the downstream capacity C1.

The monotonicity property stated in the corollary is easy to see. Any increase of capacity down-

stream enables more patients to be accommodated in the system regardless of the current level

of capacity available upstream. Intuitively, a higher level of capacity downstream “pulls” more

patients through the system.

A similar result, however, does not necessarily hold for the capacity upstream. That is, if we fix

the capacity level C1 downstream and increase the capacity level C0 upstream, the optimal decisions

mmax
t (C,at, nt) and mmin

t (C,at, nt) might not increase. To see, note that upstream capacity affects

the rate at which patients may be admitted into the hospital, whereas the decision mt controls

the total number of patients in the hospital at t. An increase in upstream capacity has a dual

effect on the total number of patients in the hospital at t. On the one hand, more patient may

be admitted without incurring high upstream overtime costs. This effect tends to increase the

total number of patients in the hospital at t. On the other hand, with an increase in upstream

capacity, more patients can be admitted in the future who will be sharing the limited amount of

available downstream capacity with current patients. This effect tends to decrease the total number

of patients in the hospital at t.
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The numerical example in Figure 4 illustrates the points above. In this case, the waiting cost is

W = 1, while the overtime cost in upstream stage, O0 = 3, is three times that. Thus, if the system

knows that it could process a patient within 3 days of his arrival without using surge capacity, it

would choose to keep the patient on waitlist to avoid incurring overtime cost right away. When

the upstream capacity is relatively small compared to the length of the waitlist (wt = at−nt = 30

patients), the optimal number of patients to admit is at a level beyond which admitting any

additional patient would almost surely incur overtime cost in the upstream stage. (For example,

when C0 = 3, the optimal number of admissions qt = mt − nt = 19, and these patients would

collectively consume 19 units of resource upstream on average.) At such a low capacity level C0 = 3,

additional upstream capacity allows the system to process more patients on the waitlist in the

future, and thus leads the optimal decision mt to be smaller in order to save overtime cost now.

However, as C0 increases, the emphasis of the optimal scheduling policy changes from preventing

overtime cost to reducing idling cost in the upstream stage, and as a result it may admit more

patients from the waitlist.
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E[ξt] = 0.85 and ξt is uniformly distributed over [0.7,1].
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7. Growth of the Waitlist

When we consider an infinite horizon, the system may grow out of control (i.e., the waitlist

will increase without bounds) under certain conditions, although the total cost remains bounded

because of the discounting effect. From classical queuing results, we know that when the average

patient demand exceeds the daily processing capacities, the size of the waitlist will grow over time

and the system will blow up eventually. However, stability in our system requires more subtle

considerations. The optimal number of patients admitted everyday, and thus the system through-

put rate are endogenous in our case. In particular, the optimal scheduling policy balances patient

waiting costs and service costs at both stages. Therefore, if patient waiting costs are relatively low

but service costs are high, the system would admit fewer patients per day, keeping more of them

in the waitlist and in this way, become more likely to explode.

In this section, we will study the growth of waitlist and the stability of the system. We will

show that when the waiting cost is sufficiently small and the patient demand significantly high,

the waitlist is expected to grow without bounds. We will characterize sufficient conditions under

which the system size is stable, i.e., {at} being finite in an infinite horizon. Though we rarely see

an exploding system in reality, our analysis here generates useful insights on system dynamics. In

addition, it can inform the choice of model parameters for decisions makers so that they can be

sure that the waitlist will be cleared eventually.

Define

W ∗ =
1− γ
γ

[
E[v0]O0 +

E[v1]O1

1−E[ξt]γ

]
(12)

to be our critical waiting cost. Note that W ∗ is a function of the capacity required by patients,

their tendency to persist in the system as reflected in the distribution of ξ, the overtime costs, and

the discount factor γ. We first show that when the waiting cost is below W ∗, the optimal maximum

number of regular admissions qmaxt in each period is uniformly bounded above for all system states.

Therefore the optimal decisions mmin
t (at, nt, δt) and mmax

t (at, nt, δt) approach finite limits as the

number of patients in the system, at, approaches infinity.
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Proposition 2. For fixed C, T =∞ and W <W ∗,

1. The optimal number of admissions qmaxt = qmaxt (nt,wt, δt) is uniformly bounded above for any

(nt,wt, δt);

2. For each fixed nt, there are finite limiting functions for m̃max(nt) and m̃min(nt) such that

lim
at→+∞

mmin(at, nt, δt) = m̃min(nt), and

lim
at→+∞

mmax(at, nt, δt) = m̃max(nt).

Proof. The total cost of having a new patient stay in the waitlist forever (discounted from the

current period) is

c1 = γW + γ2W + · · ·= γW

1− γ
. (13)

After we schedule a patient to surgery, the expected downstream resource consumed by this

patient on the k-th day after the admission is

E[v11{The patient has a length-of-stay of at least k days}]

= E[v1]P (The patient has a length-of-stay of at least k days)

= E[v1]E[ξt]
k. (14)

The worst case of admitting an additional patient happens when the patient consumes only overtime

resources. This patient incurs a discounted total cost of

c2 =O0E[v0] +
∞∑
k=0

γkO1E[v1]E[ξt]
k =O0E[v0] +O1

E[v1]

1− γE[ξt]
, (15)

where E[v1]E[ξt]
k is the expected usage of downstream resource on the kth day after the admission

as given by (14).

If W <W ∗, then c1 < c2. To prove the first statement, note that after sufficiently many patients

are admitted in one day, the marginal cost of admitting an additional patient is arbitrarily close to

c2. To be more specific, fix ε∈ (0, c2− c1), we can always find a threshold independent of (nt,wt, δt)

beyond which if an additional patient is admitted, this patient will lead to an increase in overall
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overtime costs of no smaller than c2 − ε > c1. In this case, keeping this additional patient in the

waitlist forever will lead to a strictly smaller overall cost, implying that the optimal policy would

not admit this patient at t, i.e., qmaxt should not exceed this threshold.

To prove the second statement, note that mmax(at, nt, δt) and mmin(at, nt, δt) are monotonic

functions of at as proved in Corollary 1. Since the optimal value of qt = mt − nt is uniformly

bounded in (nt,wt, δt), the limits m̃max(nt) and m̃min(nt) exist and are finite for any given nt. �

The limiting function m̃max(nt) defined in Proposition 2 is the optimal decision when there are

infinitely many patients on the waitlist and W <W ∗. Consider a scenario in which at is very large

(the waitlist has blown up). If we apply m̃max(nt) in this situation, the process {nt} will satisfy

nt+1 ≈ ξt(m̃max(nt) + εt). Then the process {nt} approximates a Markov chain, for ξt and εt are

both exogenous random variables. We can then define the average number of elective admissions

per period as

µ = lim
T→∞

1

T

T∑
t=1

(m̃max(nt)−nt), where

nt+1 = ξt(m̃
max(nt) + εt).

For any system with W <W ∗, µ as defined above can be seen as the limiting service rate of the

system. Note that this may not be the actual rate in which elective patients are admitted, but rather

a rate in a hypothetical limiting state where the waitlist always approaches infinity. Therefore, if

E[δt]>µ, the system size at will go to infinity in expectation because the limiting departure rate

µ is less than the arrival rate. Conversely, if E[δt]<µ, the system is stable.

As W becomes larger than W ∗, our intuition suggests that the system becomes more likely to

be stable. It is relatively easy to check if the waitlist explodes via numerical computation, but

it is difficult to establish a general condition under which the waitlist is stable. This is because

the transition probabilities governing the evolution of the system under the optimal scheduling

policy are not explicitly available, making it difficult to check the positive recurrence of the system.

Nevertheless, we are able to show one sufficient condition for system stability in line with our

intuition.
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Lemma 1. When W ≥ W∗

1−γ , it is optimal to admit anyone upon his arrival, and thus the waitlist is

stable.

Proof. Note that W ≥ W∗

1−γ implies γW ≥ c2, where c2 is defined in (15). Recall that c2 is the

highest cost that a patient can incur to the system after being admitted. Consider any time t and

any system state at t, keeping one new patient if any in the waitlist at t incurs a waiting cost of

γW in period t+ 1, but admitting this patient right away incurs an expected overall cost no larger

than c2. Because γW ≥ c2, an optimal policy would not keep any new patient waiting, proving the

desired results. �

To further explore these technical results, we numerically investigate how the limiting service

rate µ changes as other model parameters change. Figure 5 shows µ as a function of the waiting cost

W for different values of the discount factor γ. For each fixed γ, the figure shows that the system

tends to admit more patients as W increases, and the limiting service rate approaches infinity as

W approaches W ∗ (the vertical lines), suggesting that the system would be stable when W is large

enough. We also observe that the higher the discount factor γ is, the larger the limiting service

rate is, and the more sensitive it is to the changes in the waiting cost W . This is because a larger γ

leads to higher costs for keeping a waitlist, and thus gives greater incentive to serve patients rather

than to make them wait.

Figures 6 and 7 show the limiting service rate µ as a function of the downstream capacity C1.

We find that generally µ increases in C1 as expected. Moreover, a larger idling cost leads to higher

utilization of the system, and thus a higher value of µ. In determining µ, the idling cost regulates

two different tradeoffs: (1) the tradeoff against overtime cost in the same stage; and (2) the tradeoff

against overtime cost in the other stage.

The second tradeoff becomes more dominant when the capacity gap (the difference between C0

and (1−E[ξt]) ·C1) is larger. This explains the deviation between the two lines in Figures 6 and

7. Consider the region C1 · (1 − E[ξt]) < 8 = C0 in Figure 6. This is the region where capacity

downstream is relatively smaller than that upstream. Since the downstream stage is the bottleneck,
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Figure 5 Limiting service rate µ as a function of W , with vertical lines specifying the values of W ∗. O0 = 6,

O1 = 5, L0 = 2, L1 = 1, C0 = 8, C1 = 45, E[v0] = 1, E[v1] = 1, E[ε] = 1.5, E[ξt] = 0.85 and ξt is uniformly

distributed over [0.7,1]. Note that µ is independent of δt.

admitting an additional patient will lead to almost the same amount of overtime cost in this

stage, but may decrease the idling cost in upstream stage quite substantially, especially when the

idling cost there is high. Therefore, idling cost upstream when downstream capacity is tight has a

significant impact on the optimal scheduling policy, and thus on the limiting service rate. Similarly,

consider the region C1 · (1−E[ξt])> 8 =C0 in Figure 7 where the capacity upstream is tight. Here,

the impact of the idling cost downstream becomes important.

8. Numerical Studies

As discussed earlier, previous Healthcare Operations Management literature has either focused

on dynamic scheduling decisions for a single stage (e.g., Gerchak, Gupta and Henig 1996), or

considered systems design under static scheduling rules in a facility with multiple units (e.g., Helm

and Van Oyen 2012). Little is known about how to dynamically schedule patients taking into

account downstream capacity and patient census. Our paper is the first to analytically study such

integrated decision making. Our numerical experiments in this section follow the theoretical work

above to investigate the performance of our proposed scheduling method and compare it with

scheduling policies that make decisions independently of operations in other units. This comparison

reveals the value of integrated scheduling.
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Figure 6 Limiting service rate µ as a function of

downstream capacity for different values of

upstream idling cost L0. W = 3.2, O0 = 6,

O1 = 5, L1 = 1, C0 = 8, E[v0] = 1, E[v1] = 1,

γ = 0.8, E[ε] = 1.5, E[ξt] = 0.85 and ξt is uni-

formly distributed over [0.7,1].
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Figure 7 Limiting service rate µ as a function of down-

stream capacity for different values of down-

stream idling cost L1. W = 1, O0 = 6, L0 = 2,

O1 = 5, C0 = 8, E[v0] = 1, E[v1] = 1, γ = 0.8,

E[ε] = 1.5, E[ξt] = 0.85 and ξt is uniformly

distributed over [0.7,1].

To study the value of integrated scheduling, we compare the numerical performances of the

optimal policy Π∗ against two single-stage policies Πi, i= 0,1. Each policy Πi treats stage i as the

only bottleneck resource and assumes that there is infinite capacity at the other stage. A policy

Πi can be thought of as being used by a manager operating her own unit in isolation and making

decisions without regards to their impact on other units. A large performance gap between Π∗ and

Πi indicates a higher value of integrated scheduling.

To make our comparison realistic, we adopt data from Bowers (2013) in our experiments. In that

paper, the author simulates the scheduling system in the Heart and Lung Centre (HLC) at the

Golden Jubilee National Hospital in Scotland. The paper generates the optimal staffing levels for

the ICU (stage 1), but has not compared the performance of different scheduling heuristics. We

use data from Bowers (2013) in the following way.

Upstream and Downstream Capacity. In Bowers (2013), the upstream capacity is 30 surgeries per

week and about 12% of the cases are canceled. To model the “effective” capacity level that needs to

satisfy patient demand, we set the upstream capacity in our experiments to be C0 = 30 · 88%/7 =

3.77 per day. In the HLC the average bed occupancy in ICU is 14.9 per day. In our experiment,
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we vary C1 from 9 to 21.

Arrival Rates. Since the HLC has a growing waitlist, we set the total patient arrival rate to be

equal or slightly higher than the surgery capacity. We assume the arrival rate for emergency

patients E[εt] = 0.2, and consider two possible elective arrival rates for E[δt]. First, we assume a

balanced system in which E[δt] = 3.57 =C0−E[εt]; then, we consider an overloaded system where

the demand is on average 10% more than the surgical capacity: E[δt] = 3.94 = 110% ·C0−E[εt].

Resource Usage and LOS. Bowers (2013) assumes that each patient takes a constant unit of

resource per day. In our experiment we let v0 and v1 to be exponentially distributed with mean

1. The average LOS in the HLC is 3.69 days. Accordingly, we let ξt be uniformly distributed in

[0.63,0.83] for every period t, so that the mean LOS is 1/(1−E[ξt]) = 3.69.

Cost Rates. We normalize the waiting cost rate to W = 1, and set the overtime cost rates to be

O0 = 5,10, and O1 = 5. We experiment with different idling cost rates in two stages by choosing

(L0,L1)∈ {(1,1), (0.8,1.6), (1.6,0.8)}.

Planning Horizon and Other Parameters. We let the planning horizon be T = 50, set the discount

factor γ = 0.8, and assume the initial system size is a0 = 12 patients and among them n0 = 8

patients stay in the downstream stage at the beginning.

For each combination of experimental parameters, we calculate the total discounted costs V Π0 ,

V Π1 and V Π∗
under policies Π0, Π1 and Π∗, respectively. For easy comparison, we report results

as the performance ratio with respect to V Π∗
, the total cost under the optimal policy Π∗. We

summarize the ratios of V Π0/V Π∗
, V Π1/V Π∗

, and min{V Π0 , V Π1}/V Π∗
in Tables 1 to 3. These cost

ratios indicate the value of integrated scheduling. Higher ratios correspond to more cost saving

when integrated scheduling is used.

We see that when we misidentify the bottleneck stage, that is, when we use the worse of Π0 and

Π1, the performance gap between the integrated scheduling policy and policies based on single-

stage optimization can be quite significant. In some cases, integrated scheduling can reduce cost

by more than 50%. However, even when we correctly identify the bottleneck stage, that is, when
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we select the better policy between Π0 and Π1, integrated scheduling may still help reduce cost up

to 17%.

More specifically, the cost ratio V Π0/V Π∗
represents the performance of a system admitting

patients according to a surgical scheduler who ignores the operations in the downstream ICU stage.

We see that the largest ratio is 159%, suggesting that the system overspends by almost 60% when

not taking downstream stage into account. More importantly, in one third of the scenarios tested,

the system overspends by more than 20%. However, as the downstream capacity C1 increases, we

observe that this ratio consistently decreases across the three tables. This is because that stage 0

becomes the bottleneck stage as C1 gets larger, making Π0 behave similarly to Π∗ and closing the

performance gaps of these two policies. Comparing Tables 1 and 2, we also see that Π0 in general

performs better when the overtime cost upstream O0 is larger. The explanation is that when the

upstream cost becomes more significant, a policy that aims to minimize the cost upstream is likely

to perform well.

The cost ratio of V Π1/V Π∗
indicates the system performance following the decisions of an ICU

manager who does not pay attention to the OR usage. Our experiments show that the system

could overspend 2%-18% of the optimal cost without considering the stage upstream. When C1 is

relatively small (e.g., 9 or 10), the stage downstream is in fact the bottleneck. Policy Π1 behaves

similarly to Π∗, and thus the total discounted cost under Π1 is only a few percentage points higher

than the optimal cost under Π∗. As C1 becomes larger, the value of dynamically balancing the

usage of upstream and downstream capacity becomes more significant, and as a result we see

that the performance gap between Π1 and Π∗ increases as C1 increases. Interestingly, however, we

find that after C1 is raised to a certain level (C1 = 13 or 14 in Tables 1 and 2, and C1 = 16 in

Table 3), the performance of Π1 and Π∗ starts to converge again as C1 increases, indicating that a

policy which treats downstream as the only bottleneck performs quite well when the downstream

capacity is large. This may seem counter-intuitive at first, but a close look at our experiment

setup reveals that the upstream capacity C0, which is fixed at an equal or a slightly lower level

compared to the overall demand, would not be a significant bottleneck for patient flow in general.
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Table 1 Cost Ratio Under Different Policies (E[δt] = 3.57, O0 = 5)

V Π0/V Π∗
V Π1/V Π∗

min{V Π0 , V Π1}/V Π∗

C1
L0 = 1
L1 = 1

L0 = 1.6
L1 = 0.8

L0 = 0.8
L1 = 1.6

L0 = 1
L1 = 1

L0 = 1.6
L1 = 0.8

L0 = 0.8
L1 = 1.6

L0 = 1
L1 = 1

L0 = 1.6
L1 = 0.8

L0 = 0.8
L1 = 1.6

9 1.5925 1.4789 1.5403 1.0193 1.0138 1.0099 1.0193 1.0138 1.0099
10 1.4813 1.3939 1.4360 1.0301 1.0287 1.0215 1.0301 1.0287 1.0215
11 1.3806 1.3168 1.3429 1.0522 1.0382 1.0279 1.0522 1.0382 1.0279
12 1.2853 1.2459 1.2606 1.0444 1.0510 1.0360 1.0444 1.0510 1.0360
13 1.2117 1.1899 1.1954 1.0854 1.0674 1.0462 1.0854 1.0674 1.0462
14 1.1486 1.1412 1.1406 1.0645 1.0827 1.0548 1.0645 1.0827 1.0548
15 1.0973 1.0998 1.0974 1.0519 1.0677 1.0409 1.0519 1.0677 1.0409
16 1.0635 1.0682 1.0647 1.0551 1.0693 1.0424 1.0551 1.0682 1.0424
17 1.0409 1.0448 1.0415 1.0549 1.0683 1.0374 1.0409 1.0448 1.0374
18 1.0254 1.0285 1.0258 1.0449 1.0655 1.0334 1.0254 1.0285 1.0258
19 1.0153 1.0176 1.0156 1.0411 1.0591 1.0283 1.0153 1.0176 1.0156
20 1.0090 1.0105 1.0091 1.0348 1.0480 1.0208 1.0090 1.0105 1.0091
21 1.0051 1.0060 1.0052 1.0298 1.0411 1.0165 1.0051 1.0060 1.0052

Note that the capacity levels for C1 above are “balanced” levels to match capacity upstream,

e.g., C0/(1−E(ξ)) = 3.77× 3.69 = 13.9 in Tables 1 and 2. As the downstream capacity C1 passes

beyond these levels, both stages have relatively sufficient capacity for handling patient demand,

and thus Π1 would not behave too differently from Π∗. However, as C1 increases, the idling cost

of downstream carries increasingly more weights in the total cost, which cannot be offset much

by integrated scheduling. Therefore, at very high level of C1, the cost of Π1 is close to that of Π∗

because idling cost downstream dominates. Indeed, we see that the performance gap is smaller in

Table 1 than Tables 2 and 3 as idling cost downstream is relatively higher compared to other costs

in Table 1.

In summary, policies Π0 or Π1, which make scheduling decisions based on capacity usage at

only one stage in the system, can lead to significant efficiency and financial loss. However they

might perform well when (1) the bottleneck stage is correctly identified and has much smaller

capacity than the other stage; and (2) the cost of the bottleneck stage is significantly higher than

that of the other stage. Integrated decision making, conversely, can bring significant values to the

system as a whole. It is most beneficial when there are no clear bottleneck stages in the system,

This is likely due to that when one of the stages is clearly short of capacity, there is no much

room for integrated scheduling to make a difference. By identifying the bottleneck stage correctly,
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Table 2 Cost Ratio Under Different Policies (E[δt] = 3.57, O0 = 10)

V Π0/V Π∗
V Π1/V Π∗

min{V Π0 , V Π1}/V Π∗

C1
L0 = 1
L1 = 1

L0 = 1.6
L1 = 0.8

L0 = 0.8
L1 = 1.6

L0 = 1
L1 = 1

L0 = 1.6
L1 = 0.8

L0 = 0.8
L1 = 1.6

L0 = 1
L1 = 1

L0 = 1.6
L1 = 0.8

L0 = 0.8
L1 = 1.6

9 1.5670 1.4808 1.5605 1.0465 1.0344 1.0263 1.0465 1.0344 1.0263
10 1.4547 1.3924 1.4499 1.0731 1.0670 1.0535 1.0731 1.0670 1.0535
11 1.3482 1.3095 1.3507 1.1173 1.0890 1.0714 1.1173 1.0890 1.0714
12 1.2518 1.2275 1.2572 1.1132 1.1091 1.0859 1.1132 1.1091 1.0859
13 1.1721 1.1692 1.1883 1.1829 1.1466 1.1140 1.1721 1.1466 1.1140
14 1.1189 1.1213 1.1319 1.1627 1.1777 1.1336 1.1189 1.1213 1.1319
15 1.0805 1.0848 1.0879 1.1546 1.1623 1.1121 1.0805 1.0848 1.0879
16 1.0508 1.0565 1.0554 1.1562 1.1668 1.1134 1.0508 1.0565 1.0554
17 1.0292 1.0347 1.0330 1.1479 1.1633 1.1032 1.0292 1.0347 1.0330
18 1.0154 1.0196 1.0190 1.1268 1.1559 1.0945 1.0154 1.0196 1.0190
19 1.0073 1.0102 1.0108 1.1167 1.1439 1.0847 1.0073 1.0102 1.0108
20 1.0032 1.0049 1.0063 1.1047 1.1263 1.0712 1.0032 1.0049 1.0063
21 1.0013 1.0023 1.0037 1.0952 1.1151 1.0625 1.0013 1.0023 1.0037

Table 3 Cost Ratio Under Different Policies (E[δt] = 3.94, O0 = 10)

V Π0/V Π∗
V Π1/V Π∗

min{V Π0 , V Π1}/V Π∗

C1
L0 = 1
L1 = 1

L0 = 1.6
L1 = 0.8

L0 = 0.8
L1 = 1.6

L0 = 1
L1 = 1

L0 = 1.6
L1 = 0.8

L0 = 0.8
L1 = 1.6

L0 = 1
L1 = 1

L0 = 1.6
L1 = 0.8

L0 = 0.8
L1 = 1.6

9 1.5918 1.5245 1.6551 1.0380 1.0324 1.0247 1.0380 1.0324 1.0247
10 1.4877 1.4354 1.5441 1.0689 1.0633 1.0504 1.0689 1.0633 1.0504
11 1.3866 1.3494 1.4402 1.0913 1.0849 1.0679 1.0913 1.0849 1.0679
12 1.2886 1.2633 1.3393 1.1184 1.1056 1.0831 1.1184 1.1056 1.0831
13 1.2135 1.1989 1.2594 1.1509 1.1472 1.1147 1.1509 1.1472 1.1147
14 1.1524 1.1444 1.1904 1.1660 1.1854 1.1399 1.1524 1.1444 1.1399
15 1.1048 1.1017 1.1331 1.1651 1.1925 1.1355 1.1048 1.1017 1.1331
16 1.0674 1.0674 1.0883 1.1780 1.2051 1.1386 1.0674 1.0674 1.0883
17 1.0392 1.0404 1.0558 1.1695 1.1897 1.1222 1.0392 1.0404 1.0558
18 1.0203 1.0219 1.0346 1.1644 1.1834 1.1136 1.0203 1.0219 1.0346
19 1.0093 1.0104 1.0214 1.1532 1.1704 1.1028 1.0093 1.0104 1.0214
20 1.0038 1.0043 1.0131 1.1333 1.1570 1.0914 1.0038 1.0043 1.0131
21 1.0014 1.0016 1.0080 1.1205 1.1396 1.0774 1.0014 1.0016 1.0080

simple policies like Π0 or Π1 can already perform reasonably well. But when the capacities of both

stages are relatively “balanced,” a dynamic scheduling policy can make real-time adjustment to

use capacity more efficiently.

9. Conclusions

This paper introduces a centralized scheduling decision model based on capacity usage in different

units of a hospital. Using this model enables hospitals to significantly improve their operational

efficiency compared to using localized decision rules that only focus on a single location of the

hospital. Although the efficient use of healthcare capacity has long been considered as an important
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issue, changes in the US practice environment after the recent health care reform have made the

decision problem we study here even more timely and crucial. First, providers are under tremendous

pressure from payers to improve efficiency and reduce cost due to the ongoing payment reform that

shifts from fee-for-service to pay-for-performance. Second, with quick adoption of health informa-

tion technology spurred by the Health Information Technology for Economic and Clinical Health

(HITECH) Act enacted in 2009, more hospital operational data are being collected, making it

easier to use decision models like ours. Third, health care organizations are becoming more cog-

nizant of the power of data analytics, and thus there are fewer barriers to implement data-driven

operations management approaches than before (Kamath, Osborn, Roger, and Rohleder 2011).

Our work makes an important contribution by introducing the first dynamic multi-day scheduling

model that integrates information about capacity usage at more than one stage in hospitals. In

particular, we analyze the first dynamic model that accounts for patient LOS and downstream

census in scheduling decisions. We develop effective scheduling methods that provide intuitive

insights for practitioners. Through numerical experiments on realistic data from practice, we show

that there is a substantial value in making integrated scheduling decisions as suggested by our

models.

Our modeling framework is quite flexible, and can be extended in a variety of ways to accommo-

date more details in reality. Specifically, all of our structural results remain valid under a number

of extensions:

Multiple Resources. There are multiple resources used in each stage, each with its own overtime

and idling cost. In this case, the total overtime and idling cost is the sum of these costs due to use

of each individual resource. For example, upstream resources may include those that are essential

for performing surgeries, such as ORs, nurses, surgeons and anesthesiologists.

Non-stationary Environment. The exogenous random variables in our models, e.g., elective and

emergency demand, can be independent but not necessarily identically distributed. This extension

is useful when strong seasonality, e.g., seasonal demand pattern, is observed in the environment.
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General Convex Cost Function. We can also use any convex increasing function for the overtime

and idling costs instead of assuming constant per unit overtime cost and idling cost.

Heterogeneous Resource Usage. Emergency patients might have a different distribution of capacity

usage compared to elective patients. Since emergency patients are always admitted on the day

of arrival, the number of emergency patients in each stage at any time is independent of the

policy used. Thus, these numbers can be considered as exogenous random variables that reduce

the capacity at the stages by random amounts. In this way, all of our structural results remain the

same. As a special case, we can also consider the demand process as coming from elective patients

alone. This simplified model is especially applicable to elective surgical centers which only accept

elective patients or those facilities with only a small amount of emergency cases.

In summary, our model is useful to direct scheduling decisions in a system with two sequential

service stages or a system with multiple service stages among which two are the obvious bottlenecks.

Our work provides a stepping stone to study scheduling decisions in more complex settings. Future

research could focus on determining whether our results extend to systems with more than two

stages and multiple patient classes with different urgency for care, and advance scheduling decisions

that assign patients directly to future days.
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