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ABSTRACT 
This paper demonstrates a method of estimating several key vehicle states – sideslip 

angle, longitudinal velocity, roll and grade – by combining automotive grade inertial 
sensors with a Global Positioning System (GPS) receiver. Kinematic Kalman filters that are 
independent of uncertain vehicle parameters integrate the inertial sensors with GPS to 
provide high update estimates of the vehicle states and the sensor biases. Using a two-
antenna GPS system, the effects of pitch and roll on the measurements can be quantified 
and are demonstrated to be quite significant in sideslip angle estimation. Employing the 
same GPS system as an input to the estimator, this paper develops a method that 
compensates for roll and pitch effects to improve the accuracy of the vehicle state and 
sensor bias estimates. In addition, calibration procedures for the sensitivity and cross-
coupling of inertial sensors are provided to further reduce measurement error. The resulting 
state estimates compare well to the results from calibrated models and Kalman filter 
predictions and are clean enough to use in vehicle dynamics control systems without 
additional filtering. 

1. INTRODUCTION 
While new steering and braking actuator designs provide new opportunities to shape 

vehicle dynamics through active control, the primary challenge in the development of 
vehicle control systems remains the lack of necessary feedback. In particular, the difficult 
problem of estimating the sideslip angle or lateral velocity of the vehicle currently limits 
the algorithms that can be incorporated in production systems. Although vehicle stability 
and steering control systems require sideslip angle for their control purposes [1-3] and 
future steer-by-wire systems will require it for full-state feedback [4], current vehicles are 
not equipped with an ability to measure the sideslip angle directly. As a result, the sideslip 
angle must instead be estimated for vehicle control applications. Two common techniques 
for estimating the sideslip angle are integrating an automotive grade accelerometer and rate 
gyro directly and using a physical vehicle model as an observer [3,5]. Some methods use a 
combination or switch between these two methods appropriately based on vehicle states 
[1,3]. While they have enabled vehicle dynamics control in series production, these 
solutions nevertheless have fundamental problems. Direct integration methods can 
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accumulate sensor errors and unwanted measurements from road grade and bank angle 
(superelevation) while methods based on a physical vehicle model can be sensitive to 
changes in the vehicle parameters and inaccurate on low friction surfaces [6]. The vehicle 
control systems of the future, therefore, will only be enabled by improvements in sensing.  

Since the vehicle sideslip angle is the difference between the vehicle yaw angle and 
the direction of the velocity, the sideslip angle can be calculated if both the attitude and 
velocity of the vehicle are known. Inertial Navigation Systems (INS), commonly used in 
aviation applications, could provide these values by integrating gyro measurements to get 
the attitude and integrating accelerometer measurements with gravity compensation to get 
the velocity [7-9]. In general, integration of inertial measurements is limited only by the 
drift in sensor bias and sensitivity, and sensor quality or grade is judged according to this 
drift rate. To estimate the vehicle yaw angle over long periods of time with enough 
accuracy for sideslip angle determination using INS alone would require a tactical or 
navigation grade system with a drift rate from 1 deg/hr to 0.01 deg/hr. With a cost of 
$10,000 or more [10], such a system is much too expensive for automotive applications. 
However, integration with velocity measurements from the Global Positioning System 
(GPS) can effectively negate these drift effects and enable the use of lower grade INS 
sensors. 

GPS velocity is considerably more accurate than position, with errors on the order 
of 3 cm/s (1σ, horizontal) and 6 cm/s (vertical) even without differential corrections [11]. 
The integration of INS sensors with GPS has been given much attention, especially in 
aircraft applications, due to the complementary nature of the individual systems. GPS 
measurements are stable but subject to a fairly low update rate and signal blockage while 
inertial sensor measurements are continuously available but suffer from long term drift. In 
aircraft, this combination has been used to update position, velocity, and attitude estimates 
with inertial equipment between GPS measurements [7,8] and to dead reckon with inertial 
sensors alone during GPS outages [9,12]. Spurred by the increase in GPS systems in cars, 
Bevly and colleagues developed a method of estimating vehicle sideslip by integrating 
inertial sensors from a stability control system with a single antenna GPS using a planar 
vehicle model [11,13]. With the planar model, out-of-plane vehicle motions due to roll and 
pitch could not be taken into account, leaving open questions of system accuracy and the 
potential benefits of additional sensing. 

This paper investigates the use of several sensor configurations and levels of 
modeling fidelity in the estimation of vehicle sideslip. Unlike previous work, the vehicle 
yaw information is obtained from a two-antenna GPS system that not only eliminates issues 
of drift in attitude estimation but also provides a measurement of the roll angle. Using this 
system, the paper investigates the influence of road grade, bank angle, and vehicle roll on 
GPS-based vehicle sideslip and longitudinal velocity estimates derived from a planar model. 
Since roll and grade have a pronounced effect [14], this paper proposes a new method of 
estimating several key vehicle states (sideslip angle, longitudinal velocity, yaw, and roll) 
using the two-antenna GPS system in combination with inertial sensors. The combined 
system fuses a road grade estimate derived from GPS velocity [15] and the roll information 
from the two-antenna system with an appropriate roll center model of the vehicle. 

DS-03-1202, Ryu, Page 2 of 26 



Comparisons with a calibrated vehicle model show excellent correlation and the relative 
constancy of the sensor bias estimates demonstrates that no significant dynamics are 
ignored. From a practical standpoint, this paper also describes a couple of refinements to 
calibrate sensitivity variation and cross-coupling of inertial sensors. Statistical analysis 
demonstrates that the performance of the final system with calibration performs according 
to the predictions of propagated Kalman filter covariances.  The resulting system provides 
sideslip angle feedback at a level previously unavailable and has been successfully 
integrated as a state feedback measurement for a steer-by-wire system [4]. With multiple 
antenna GPS systems currently deployed for automated farming [16] and marine navigation 
and under development at automotive price points, a sensing system such as this could be 
the key enabling technology for future vehicle dynamics control systems.  

2. PLANAR BICYCLE MODEL AND SIDESLIP 
While the Kalman filters to be developed rely only on the kinematics of vehicle 

motion, a dynamic model is required for validating the filter performance.  The lateral 
dynamics of a vehicle in the horizontal plane are represented here by the single track, or 
bicycle model with states of lateral velocity, uy, and yaw rate, r. The bicycle model is a 
standard representation in the area of ground vehicle dynamics and has been used 
extensively in previous work [1,4-6,13,14]. While detailed derivation and explanation can 
be found in many textbooks [17,18], the underlying assumptions are that the slip angles on 
the inside and outside wheels are approximately the same and the effect of the vehicle roll 
is small. These assumptions hold well for most typical (non-emergency) driving situations 
and, in particular, for the test maneuvers used for validation in this paper.      
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Figure 1 Bicycle Model 

In Fig. 1, δ is the steering angle, ux and uy are the longitudinal and lateral 
components of the vehicle velocity, Fyf and Fyr are the lateral tire forces, and αf and αr are 
the tire slip angles. The state equation for the bicycle model can be written as: 
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(1) 

Iz is the moment of inertia of the vehicle about its yaw axis, m is the vehicle mass, a 
and b are distance of the front and rear axles from the CG, and Cαf and Cαr are the total front 
and rear cornering stiffness.  The assumption that both the slip angle and the cornering 
stiffness are approximately the same for the inner and outer tires on each axle is inherent in 
this model.   

Given the longitudinal and lateral velocities, ux and uy, at any point on the vehicle 
body, the sideslip angle can be defined by: 









= −

x

y

u
u1tanβ  (2) 

The sideslip angle at the center of gravity (CG) is shown by βCG in Fig. 1. The 
sideslip angle can also be defined as the difference between the vehicle yaw angle (ψ) and 
the direction of the velocity (γ) at any point on the body. 

ψγβ −=  (3) 
Since a two-antenna GPS receiver provides both velocity and attitude measurements, 

the vehicle yaw angle and direction of the velocity can be directly measured. In the flat 
world of the bicycle model, therefore, the sideslip angle can be calculated by simply using 
Eq. (3). The errors introduced by this simplification are discussed in subsequent sections. 

3. GPS/INS INTEGRATION USING KALMAN FILTERS 
3.1 General Kalman Filter Structure 

Because the update rate of most GPS receivers is not high enough for control 
purposes [13], INS sensors are commonly integrated with GPS measurements in a Kalman 
filter structure to provide higher update rate estimates of the vehicle states. While the filter 
could be based around the physical model in Eq. (1), there are some drawbacks to such an 
approach. Since this model is valid only in the linear region and the parameters involve 
significant uncertainty, particularly with respect to tire stiffnesses, a Kalman filter built on 
this model may possess significant estimation error. With the two antenna GPS system, 
however, it is possible to use two kinematic models, independent of any physical parameter 
uncertainties and changes, in the state estimator. 

The traditional Kalman filter is comprised of a measurement update and a time 
update. Because of the lower update rate of the GPS measurement, the measurement update 
is performed only when GPS is available in order to estimate the sensor bias and zero out 
the state estimation error. The measurement update is generally described by: 
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where: 
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Here x and y represent vehicle states of interest and available measurements, 
respectively, for a general filter. Simple integration of the inertial sensors is performed 
during the time update because GPS measurements are not available. Using the discrete 
model of a sampled-data system, the time update can be written as: 
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This Kalman filter structure is used for all of the individual filters in the paper. 
3.2 State Estimation with Planar Vehicle Dynamics 

In previous work with GPS for sideslip estimation [13], the vehicle yaw angle was 
estimated by integrating a yaw gyro. This is not an ideal approach, however, since the 
estimate must be periodically reset while driving straight in order to prevent integration of 
gyro bias error from producing large, fictitious sideslip values. The addition of a two-
antenna GPS receiver solves this problem by providing an absolute attitude reference and 
the opportunity to neatly decouple the estimation problem into two simple Kalman filters. 
One is used to estimate the vehicle yaw angle without errors arising from gyro integration 
while the other is used to estimate absolute longitudinal and lateral velocities of the vehicle 
without using wheel speed sensors. 

For the yaw Kalman filter, the kinematic relationship between the yaw rate 
measurements and the yaw angle can be written as: 

noiserr biasm ++=ψ&  (6) 
where: 

bias andt measuremen gyro rateyaw ,
heading) (vehicle angleyaw 

=
=

biasm rr
ψ  

The yaw angle can be measured using a two-antenna GPS receiver. 
noiseGPS

m +=ψψ  (7) 
where: 

GPS fromt measuremen angle yaw=GPS
mψ  
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A linear dynamic system can be constructed from Eq. (6) and Eq. (7) using the 
inertial sensor as the input and GPS as the measurement. 
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When GPS attitude measurements are available, 
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The Kalman filter in Eq. (4) and Eq. (5) is then applied to the system to obtain the 
vehicle yaw angle and the gyro bias. Using Eq. (5), a discrete representation of sampled Eq. 
(8) can be written exactly as: 
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(10) 

 
The state vector, x, in this Kalman filter is [ψ  rbias]T, the input, u, is the measured 

yaw rate rm from the yaw rate gyro. The measurement y in the Kalman filter is the yaw 
angle from GPS, ψm

GPS, with observation matrix C, which is [1 0] only when GPS 
measurements are available. The observation matrix C is [0 0] when GPS measurements are 
not available since the system simply integrates the gyro in this case. 

For the velocity Kalman filter, the kinematic relationship between acceleration 
measurements and velocity components at the point where the sensor is located can be 
written as: 

noiseauua
noiseauua

biasysensorxsensorymy

biasxsensorysensorxmx

++⋅+=

++⋅−=

,,,,

,,,,

ψ

ψ
&&

&&  (11) 

where: 

bias andt measurementer accelerome lateral,

locationsensor at  velocity lateral
bias andt measurementer accelerome allongitudin,

locationsensor at  velocity allongitudin

,,

,

,,

,

=

=

=

=

biasymy

sensory

biasxmx

sensorx

aa

u
aa

u
 

The longitudinal and lateral velocity can be estimated using GPS velocity together 
with the yaw Kalman filter. First, the sideslip angle (β GPS) needs to be calculated using the 
velocity vector (UGPS) from the GPS measurement and the vehicle yaw angle (ψ) from the 
yaw Kalman filter by Eq. (3). Then, the longitudinal velocity measurement (ux,m

GPS) and 
lateral velocity measurement (uy,m

GPS) are simply: 

)sin(
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Assuming that the primary GPS antenna giving velocity measurements is placed 
directly above the sensor location, the measured velocity components from GPS can be 
written as: 
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where: 
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Note that Eq. (13) holds only when the primary GPS antenna is located above the sensor 
location. If it is not, an additional velocity term from the yaw rate must be taken into 
account. 

A Kalman filter is then applied to the following linear dynamic system from Eq. 
(11) and Eq. (13) to obtain the vehicle velocities and the sensor biases. 
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(14) 

where: 
rate yaw dcompensate=−== biasm rrr ψ&  

When GPS velocity measurements are available, 
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In the Kalman filter of Eq. (4) and Eq. (5), the state vector, x, is [ux,sensor ax,bias 
uy,sensor ay,bias]T and the measurement, y, is [ux,m

GPS  uy,m
GPS]T. The discrete state space form 

of Eq. (14) can be represented exactly as: 
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(16) 

4. EXPERIMENTAL RESULTS - PLANAR MODEL 
While the estimator in the previous section is quite simple, it relies heavily on the 

assumption that motion occurs only in the plane. To determine the validity of this 
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assumption, a series of experiments was performed on a Mercedes E-class wagon. This test 
vehicle is equipped with a 3-axis automotive-grade accelerometer/rate gyro triad sampled at 
100 Hz. Sensor noise levels (1σ) are 0.05 m/s2 for the accelerometers and 0.2 deg/s for the 
rate gyros. The vehicle is also equipped with Novatel GPS antenna/receiver pairs, providing 
10 Hz velocity measurements and 5 Hz attitude measurements with a noise level (1σ) of 
less than 3 cm/s and 0.2 deg respectively. 

Because the GPS receiver introduces a half sample period inherent latency and a 
finite amount of time is needed for computation and data transfer, the time tags in the GPS 
measurement messages and the synchronizing pulse from the receiver are used to align the 
GPS information with the inertial sensor measurements. This synchronizing process is very 
important when the inertial sensors are combined with the GPS measurements, because any 
time offset between two measurements may result in significant overall estimation errors 
[13]. 

Figure 2 shows yaw angle estimates compared to raw GPS measurements. 
Experimental tests consisting of several laps around an uneven parking lot are performed. 
Note that integration of inertial sensors fills in the gaps between GPS measurements. Even 
though the update rate of the GPS measurements is not high enough for vehicle control 
purposes, the combination of GPS measurements with inertial measurements provides 
estimates with sufficient bandwidth for vehicle control applications [13]. 

 
Figure 2 Yaw Angle Estimates 
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Figure 3 compares yaw rate and sideslip angle estimates from the GPS/INS 
integration with the results from a carefully calibrated bicycle model. Since the velocity 
Kalman filter provides the velocity at the sensor location, the velocity estimates are 
translated to the center of gravity with the yaw rate for comparison with the bicycle model. 
The similarity between the estimated and model yaw rates demonstrates that the bicycle 
model used in the comparison is indeed calibrated for the vehicle. 
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Figure 3 Yaw Rate and Sideslip Angle Estimates 

In contrast, there are differences between estimated and modeled sideslip angles. 
Even though the estimated sideslip is still much better than that obtained from simply 
integrating the accelerometer [13] – the slip angle estimate is quite clean and does not drift 
– the accuracy is less than would be desired for control purposes. Not surprisingly, these 
differences are consistent with the uneven grade and bank angle of the test path – factors 
neglected in the assumption of planar motion. The correlation between these differences 
and unevenness of the surface can be seen easily by comparing the accelerometer biases 
with the surface grade and vehicle roll. 

Although some caveats are noted later in the paper, the surface grade can in general 
be estimated by examining the ratio of the vertical velocity obtained from GPS to the 
horizontal GPS velocity [15]. 


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≈ −
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V
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U1tanθ  (17) 

where: 
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Figure 4 shows the strong correlation between the longitudinal accelerometer bias and the 
grade along the test path calculated according to the velocity ratio. 
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Figure 4 Longitudinal Accelerometer Bias and Grade Estimates 
As would be expected, the longitudinal accelerometer bias term reflects the component of 
gravitational acceleration entering as a result of the grade.  

Since the two antennas of the GPS receiver are placed laterally, the combination of 
road bank angle (sometimes called side-slope or superelevation) and vehicle roll can be 
directly measured. As shown in Fig. 5, the lateral accelerometer bias and the roll angle 
show the same correlation as the longitudinal values. The rationale is exactly the same 
since roll causes a component of the gravitational acceleration to enter the lateral 
acceleration measurement.  

 
Figure 5 Lateral Accelerometer Bias and Roll Angle 
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5. ROLL CENTER MODEL WITH ROAD GRADE 
For a more accurate estimate of the slip angle it is necessary to compensate for the 

effects of vehicle pitch and roll. While this could be accomplished in a number of ways – 
such as incorporating a 3 or 4 antenna GPS system for 3D attitude measurement – basic 
estimates of roll and grade are available with the existing sensor suite. Assuming that 
vehicle pitch is caused mostly by road grade, and that grade can be estimated by examining 
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the velocity ratio using Eq. (17), gravity components in acceleration measurements due to 
pitch and roll can be compensated using only a two-antenna GPS receiver. Thus the 
measurements used to demonstrate the correlation between sensor biases and road 
geometry in the previous section can be harnessed to remove these effects. 
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Figure 6 Roll Center Model with Grade and Bank Angle 

A roll center vehicle model with a road grade and a bank angle is shown in Fig. 6. 
This model assumes that the vehicle body rotates about a fixed point (the roll center) on a 
frame that remains in the plane of the road. The expected gravity component in the 
acceleration measurement can be explicitly specified and compensated in Eq. (11) because 
the grade of the surface can be estimated from the GPS velocity measurement and the total 
roll angle (the sum of the vehicle roll angle and the bank angle or superelevation of the 
surface) can be measured utilizing the two-antenna GPS receiver.  

The kinematic relationship between acceleration measurements and velocity 
components at the sensor location for this model can be written as: 

noisegauua
noisegauua

tbiasysensorxsensorymy

rbiasxsensorysensorxmx

+⋅++⋅+=
+⋅++⋅−=

φψ
θψ

sin
sin

,,,,

,,,,
&&
&&  (18) 

where: 
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These additional terms can easily be included in the Kalman filter based on Eq. (14) - Eq. 
(16). 

Another important advantage in using the roll center model is that the roll motion of 
vehicle can be taken into account when determining vehicle velocity. Note that Eq.(18) is 
written for the point at which the sensor is located and the two GPS antennas are placed on 
the top of the vehicle roof. Therefore, there is an additional velocity component due to 
vehicle yaw and roll in the GPS velocity measurement. This can be included by translating 
the velocity at the antenna to the point at which the sensor is located using Eq. (19) under 
the assumption of small road grades and bank angles. 

noisehhpu
noisehhpuu

noiseu
noisehhruu

sasensory

savsensory
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sensorx

savsensorx
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mx

+−⋅−≈
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,,

,
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φ

 
(19) 

where: 

sensor INS center to roll from distance
antenna GPS center to roll from distance

rate roll
rateyaw

=
=
=
=

s

a

h
h
p
r

 

Since the vehicle roll angle is small, the additional velocity component is negligible 
relative to the vehicle longitudinal velocity. However, the additional velocity component 
due to the roll rate should be considered in the lateral direction since the lateral velocity is 
comparably small. This roll rate compensation plays an important role when the vehicle is 
experiencing a heavy roll motion. If the primary GPS antenna is not placed directly above 
the inertial sensor, the yaw rate of the vehicle should also be taken into account in the 
lateral velocity measurement. 

In addition, the sum of the road bank angle and the vehicle roll can be estimated by 
constructing a roll Kalman filter in the same manner as in the yaw Kalman filter. Since the 
GPS antennas and roll gyro are attached to the vehicle body, only the sum of the road bank 
angle and the vehicle roll angle can be measured without additional modeling. For the roll 
Kalman filter, the kinematic relationship between roll rate measurements and roll angle can 
be written as: 

noisepp biastm ++= φ&  (20) 
where: 

bias andt measuremen gyro rate roll, =biasm pp  

The roll angle can be measured using a two-antenna GPS receiver: 
noiset

GPS
m

+= φφ  (21) 

where: 
GPS fromt measuremen angle roll=GPS

mφ  
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The roll Kalman filter is then implemented using Eq. (20) and Eq. (21) in the same manner 
as in the yaw Kalman filter. The state vector, x, is [φt  pbias]T and the measurement, y, is the 
roll angle from GPS, φm

GPS. 

6. EXPERIMENTAL RESULTS - ROLL MODEL 

 
Figure 7 Comparison of Sideslip Angle Estimates 
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Figure 7 shows the experimental results of sideslip angle estimation with and 
without the compensation. Since the velocity Kalman filter provides the velocity at the 
sensor location, whereas the bicycle model generates the sideslip angle at the center of 
gravity, the velocity estimates from the filter are translated with yaw and roll rates to the 
corresponding point on the vehicle frame for the comparison with the bicycle model. Note 
that the discrepancies between the model and estimate are significantly reduced after the 
compensation. The same improvement can be seen in the case of longitudinal velocity 
estimation shown in Fig. 8. Differences between the longitudinal velocity estimate and 
wheel speed after the compensation are, in fact, due to longitudinal slip of the tire. 

 
Figure 8 Longitudinal Velocity Estimates 
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The combination of road bank angle and vehicle roll angle is also estimated using 
the roll Kalman filter. Figure 9 shows roll estimates together with raw GPS roll 
measurements. Integration of INS sensors fills in the gaps between GPS measurements 
giving a smooth roll signal. 

 
Figure 9 Roll Angle Estimates 
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With accurate measurements of roll angle and roll rate, it is possible to estimate 
parameters related to the roll dynamics such as roll stiffness and damping ratio [19]. A 
dynamic roll model can be used for a wide variety of applications including rollover 
warning [20] or active suspension control. In addition, a parameterized vehicle roll dynamic 
model could conceivably be used to separate roll and bank angle. 

7. FURTHER REFINEMENTS 
7.1 Gyro Sensitivity Effects and Estimation 

After the compensation for grade and roll described in the previous sections, both 
sideslip angle and yaw rate estimates match the model predicted values very well, 
suggesting that the proposed scheme can correct for changes in grade and roll. However, 
the estimated sensor biases show significant variations over a short period of time, which is 
not consistent with the bias estimates representing true electrical biases. These variations 
can be seen in the following typical experimental results. As Fig. 10 illustrates, 
considerable low frequency variation exists in the estimated accelerometer bias after 
compensating for road grade and roll. 
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Figure 10 Estimated Accelerometer Biases 
These variations in the estimated accelerometer bias can be also seen in the 

estimated yaw gyro bias in Fig. 11. 

 
Figure 11 Estimated Yaw Gyro Bias and Yaw Rate 
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While the bias variation is significant, it is interesting to note that the bias is strongly 
correlated with the yaw rate. In other words, the yaw gyro bias increases or decreases 
depending on the sign of the yaw rate. The yaw gyro bias increases when the yaw rate is 
negative and decreases when the yaw rate is positive. This can easily be seen in Fig. 11 at 
around 100 and 200 seconds. 

The dependency of the bias on the sign of the yaw rate implies that there is an error 
in the sensitivity (scale factor) of the yaw rate gyro. In order to resolve this problem, a new 
sensor kinematic relationship that includes both sensitivity and bias is used: 

mrbiasrm wrsr ,++⋅= ψ&  (22) 
where: 

noise (gyro)t measuremen rate yaw
ysensitivit gyro rate yaw

, =
=

mr

r

w
s  

Taking Eq. (22) into account, the system model becomes: 
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 (23) 

where: 
noises  process, , =biasrsr ww  

The yaw Kalman filter can then be constructed using Eq. (22) in place of Eq. (8).  
With this structure, the sensitivity and bias of the yaw rate gyro are estimated together; the 
results are shown in Fig. 12. The estimated bias with the sensitivity estimation shows much 
less variation and appears to have acceptable performance for use in chassis control 
systems. Although the sensitivity is only observable when the vehicle is maneuvering, its 
value changes very slowly in the sensors used in this work. Thus some heuristics can be 
used to estimate the sensitivity on the first few turns a vehicle makes (and perhaps 
occasionally update this value over the course of a trip) before returning to the original 
filter structure.    

 
Figure 12 Estimated Yaw Gyro Sensitivity and Bias 
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7.2 Removing Cross-Coupling in Accelerometers 
Since the yaw angle and yaw rate are coupled with the longitudinal and lateral 

velocities, the accelerometer biases are altered when the filter calibrates the correct yaw 
gyro sensitivity. The estimated longitudinal and lateral accelerometer biases with the new 
yaw filter are shown in Fig. 13. 
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Figure 13 Estimated Accelerometer Biases with New Yaw Angle Estimation 
Comparing with the previous results in Fig. 10, little improvement can be seen in 

these biases. In fact, the ay bias looks even worse. However, these bias variations can also 
be explained by correlation with other signals. Figure 14 compares the longitudinal biases 
with the measured lateral acceleration, showing the similarity between the two signals. 

 
Figure 14 Longitudinal Accelerometer Bias and Lateral Acceleration 
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Since the longitudinal accelerometer is not exactly aligned with the vehicle’s 
longitudinal axis, the longitudinal accelerometer picks up not only longitudinal acceleration 
but also lateral acceleration. Therefore, a cross-coupled lateral acceleration component 
shows up as in the longitudinal accelerometer bias. This component can be explicitly 
specified and compensated in the previous kinematic relationship for the longitudinal 
accelerometer. 

maxeffyyxrbiasxsensorysensorxmx wacgauua ,,,,,,, sin +⋅+⋅++⋅−= θψ&&  (24) 
where: 
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Fig. 15 shows the comparison between lateral accelerometer bias and lateral 
acceleration. 

 
Figure 15 Lateral Accelerometer Bias and Lateral Acceleration 
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As in the case of the gyro, the lateral accelerometer bias variation has a dependency on the 
lateral acceleration, which implies there is an error in the sensitivity of the lateral 
accelerometer. As with the gyro sensitivity estimation, a new sensor kinematic relationship 
that includes both sensitivity and bias can be defined: 

maybiasytsensorxsensoryaymy waguusa ,,,,, )sin( ++⋅+⋅+⋅= φψ&&  (25) 
where: 

noise eter)(acceleromt measuremen a

ysensitivitter accelerome lateral

y, =

=

may

ay

w

s  

In order to estimate the cross-coupling coefficient, cx,y, Eq. (24) can be integrated 
and rearranged by defining a term, ∆ux(t). 
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where: 
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Evaluating Eq. (26) at every sample time and rewriting in a linear estimation format gives 
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(27) 
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which is equivalently, 
noisexHz xx += ˆ  (28) 

where: 
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Assuming that noise is zero-mean and uncorrelated, a least squares estimator can 
then be applied to estimate the ax bias, cross-coupling coefficient, and initial velocity. 

x
TT

x zHHHx 1)(ˆ −=  (29) 

In practice, these assumptions will not strictly hold. However, this simple approach works 
very well in obtaining reasonable estimates. The estimation is presented as a batch process 
here since the cross-coupling is essentially static and continuous updating is not required. 

Similarly, Eq. (25) can be integrated and rearranged to estimate the lateral 
accelerometer sensitivity, say by defining a term, ∆ux(t). 
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where: 
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Evaluating Eq. (30) at every sample time: 
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(31) 

which is equivalently, 
noisexHz yy += ˆ  (32) 

where: 
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As before, a least square estimator is applied to estimate the ay bias, sensitivity, and initial 
velocity: 

y
TT

y zHHHx 1)(ˆ −=  (33) 

While the sensitivity may change with time, this variation was not found to be particularly 
large so continuous updating is unnecessary.  The estimated cross-coupling coefficient, cx,y, 
and lateral accelerometer sensitivity, say, are shown in the Fig. 16. 
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Figure 16 Estimated Cross-coupling Coefficient and Lateral Accelerometer Sensitivity 
Taking into account compensation for roll, grade, the cross-coupling coefficient, cx,y, 

and lateral accelerometer sensitivity, say, the model for the velocity Kalman filter in Eq. 
(14) is replaced by the following linear dynamic system constructed from Eq. (24) and Eq. 
(25): 
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(34) 

where: 
noises  process, ,, =biasaybiasax ww  

Figure 17 shows the estimated accelerometer biases after the cross-coupling 
between the two accelerometers and lateral accelerometer sensitivity are taken into account. 

 
Figure 17 Estimated Accelerometer Biases after the Compensation 
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Note that the variations are reduced after the compensation. Since the lateral 
acceleration tends to dominate over longitudinal acceleration, only cross-coupling from the 
lateral acceleration to the longitudinal accelerometer and the lateral accelerometer 
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sensitivity are considered. Estimation of other sensitivity or cross-coupling parameters 
could be included in an analogous manner but, since the signals are somewhat lower, more 
convergence time is necessary and the resulting improvement is less. Obviously, there are 
some remaining bias variations, but the absolute level of variation is quite small given the 
relatively simple vehicle model used for estimation purposes.  

In fact, a large portion of the remaining bias in longitudinal acceleration can be 
traced to a single modeling assumption. Rapid grade fluctuations at certain spatial 
frequencies are not detectable through the velocity based grade estimate. As the vehicle 
moves along the road, the rear wheels see almost the same input as the front wheels, 
delayed in time by the interval equal to the wheelbase divided by speed. This time delay 
acts to filter the bounce and pitch motion of the vehicle, and has been called wheelbase 
filtering [21]. The typical effects of wheelbase filtering are illustrated in Fig. 18. 

Bounce Only

Pitch Only

 
Figure 18 Wheelbase Filtering Mechanism 

When the wavelength of the road is equal to the wheelbase of the vehicle, or integer 
multiples equal to the wheelbase, the vehicle only bounces up and down without a pitch 
change. Similarly, only pitch motion occurs when the wavelength is equal to twice the 
wheelbase or odd integer multiples equal to twice the wheelbase length. In either case, at 
these frequencies, the velocity based grade estimate does not reflect the true grade seen by 
the vehicle. While this effect is small for most roads, the parking lot structure used for 
testing has a pronounced periodic texture (comparable to the lower half of Fig. 18) to 
provide for drainage. Thus the unmodeled dynamics reflected in the bias variation in Fig. 
17 have an easily understood physical interpretation in light of the assumptions made in 
grade measurement. The fact that such seemingly small effects appear provides some 
additional measure of confidence that the estimator is correctly capturing the larger vehicle 
motion. 

8. STATISTICAL ANALYSIS OF THE KALMAN FILTERS 
In the previous sections, the vehicle state estimates are compared to predictions 

from a calibrated model instead of actual truth.  This is a result of the difficulty involved 
with obtaining truth measurements for speed over ground.  Optical systems do exist but are 
far more expensive than the even the research version of the system presented here and 
suffer from some inaccuracies of their own.  It is possible, however, to offer additional 
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support for the filter performance by comparing the innovation statistics to the predictions 
obtained by propagating the sensor and process noise covariances through the Kalman 
filters.  As this section shows, simple prediction from a linear Kalman filter analysis 
describes the experimental behavior quite accurately. 

The unique structure of the Kalman filters used in this paper make it possible to 
develop a statistical analysis easily given only the specifications of the INS sensors and 
GPS receivers. This follows from the fact that all the system models for the Kalman filters 
are purely based on the kinematic relationships between the INS sensor measurements and 
the vehicle states as shown in Eq. (22) and Eq. (34). This means that the system model 
noises (process noises) are mainly from the INS sensor noises, assuming that the biases and 
sensitivities of the INS sensors can be modeled as random walks with relatively small 
variances. As a result, noises from the INS sensors, such as accelerometers and rate gyros, 
act as the process noises in the Kalman filters and the noise from the GPS system enters as 
traditional measurement noise in Eq (7) and Eq. (19).   

Table 1 shows the actual values for the process noise variances of the Kalman filters 
used in this paper. The noise variances of the accelerometers and the rate gyros are taken 
from the sensor specification and are used as the process noise variances for the 
corresponding vehicle states. The noise variances for the sensor sensitivities and biases are 
chosen from the experimental tests to give reasonable convergence rates of the sensitivity 
and bias estimates. The numerical values for the measurement noise variances of the 
Kalman filters are also shown in Table 1. The noise covariances of the GPS angle and 
velocity measurements are taken from the GPS receiver specifications and are used as the 
measurement noise variances for each Kalman filter.  

Process Noise Measurement Noise 
State 1σ State 1σ Measurement 1σ 
wr,m 0.2 (deg/s) wax,m 0.05 (m/s2) ψm

GPS 0.2 (deg) 
wsr 1.0e-3 way,m 0.05 (m/s2) ux,m

GPS 0.03 (m/s)
wr,bias 1.0e-2 (deg/s) wax,bias, way,bias 1.0e-3 (m/s2) uy,m

GPS  0.03 (m/s) 
Table 1 Measurement and Process Noise Covariances 

With these noise variances, the estimate error covariances can be calculated from 
the Kalman filters under the assumption that all calibration is correct and all compensation 
is performed exactly.  These covariances describe the differences between the filter output 
and ground truth, however, and are not directly comparable to the measurement residual (or 
innovation) obtained by comparing the filter output to the measurement at each time step.   
For a proper comparison, the expected variances of the measurement residuals may be 
calculated as the sum of the error covariances from the Kalman filters and the variances of 
the measurement noises as shown in Eq. (35), assuming that the process and measurement 
noises are uncorrelated.  

RCPCS T +=  (35) 
where: 
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Measurement Residuals Expected Variances Yaw 

Filter Mean -4.1e-3 1σ 0.2572 1σ 0.2544 
Measurement Residuals Expected Variances Velocity 

Filter Mean -1.3e-4 1σ 0.04037 1σ 0.03852  
Percentages within σ Bounds 

Yaw Filter < 1σ 71.57% < 2σ 94.90% < 3σ 98.83% 
Velocity Filter < 1σ 69.88% < 2σ 95.54% < 3σ 99.08% 

Gaussian (Normal) < 1σ 68.27% < 2σ 95.45% < 3σ 99.73%  
Table 2 Statistics of Measurement Residuals and Estimated Variances 

The statistics of the actual measurement residuals from the experimental tests are 
shown in Table 2 together with the expected variances of the measurement residuals.  It can 
be clearly seen that the variances of measurement residuals are similar to the Kalman filter 
predictions.  This suggests that the calibration and compensation methods function as 
desired.  In reality, the sensor performance is slightly better than that guaranteed by the 
manufacturer but in these experiments this conservatism neatly balances degradation due to 
unmodeled effects such as wheelbase filtering.  Table 2 also demonstrates that the mean 
values of the measurement residuals are virtually zero. This implies that the techniques for 
the sensor bias removal work and no serious biases exist during the estimation processes.  
The distributions of the measurement residuals are also compared with the Gaussian 
(normal) distribution in the last three columns of Table 2. The comparison shows that the 
measurement residuals follow the normal distribution roughly. This indicates that the basic 
assumption of this analysis (zero-mean Gaussian noise) is reasonable and that the Kalman 
filter error prediction is in fact meaningful. Figure 19 shows the plot of measurement 
residuals for each Kalman filter and the bounding 3σ regions of confidence derived from 
the filter. Note that measurement residuals are centered at zero and most of them are within 
the bounding 3σ regions.  The outliers, in fact, correspond to points where new GPS data 
was not available for a given time step, an effect that could be explicitly included in 
calculating the expected variances but was not considered here.   
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Figure 19 Measurement Residual vs. Estimated 3σ Bounds 

9. CONCLUSIONS 
With the combination of a two-antenna GPS receiver and four automotive grade 

inertial sensors (two rate gyros and two accelerometers), it is possible to develop an 
estimate of vehicle sideslip corrected for roll and grade effects. The proposed method 
provides high update estimates of sideslip, longitudinal velocity, roll and grade and 
compares well to predictions from calibrated models and Kalman filter analysis. The 
complete system calibrates the inertial sensor sensitivities and biases at appropriate update 
rates and can handle loss of the GPS signal for periods of time by simply integrating the 
calibrated inertial sensors. The vehicle states obtained by this system represent a new level 
of fidelity for vehicle control and have been successfully implemented in steer-by-wire 
control [4] and for tire cornering stiffness estimation. Future work will use this feedback 
system for rollover avoidance intervention, operation of by-wire systems at the limits of 
handling and highly detailed steering force feedback for the driver. 
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