
Integrating
QA·C into IAR

Embedded
Workbench

First Edition

 by

Eur Ing Chris Hills BSc (Hons),

C. Eng., MIET, MBCS, FRGS, FRSA

The Art in Embedded Systems
comes through Engineering discipline.

QAC-EWB

QAC-EWB

2library.phaedsys.com

Contents

Background 3

IAR EWB to QA·C 3

Compiler Personality 4
PATH not set 4
PATH Set: Compiler Personality Generator 5
Compiler Personality Generator:
 Screen 1 5
Compiler Personality Generator:
Compiler Command 5
Compiler Personality Generator:
Search Directories 5
Compiler Personality Generator:
Defines and Switches 6
Compiler Personality Generator:
Review and Generate 6

Integration of QA·C to IAR EWARM 7
Configure QA·C License Server 7
Configure QA·C to Analyse C files 7
Adusting Settings in the script files 7

Testing installation 8

References 9

QAC-EWB

3 library.phaedsys.com

Integrating
QA·C into IAR

Embedded
Workbench

The most effective way of doing static analysis is to

do it frequently as the code is written from within the

code development IDE. This app note will explain

how to integrate QA·C into the IAR Embedded

Workbench (EWB) to permit continuous static

analysis as the source code is written. Additionally,

QA·C can enforce local coding standards at the same

time if configured to do so.

Background
In 1976, before the C language was even complete,

Johnson (part of the C and UNIX team with Kernighan,

Ritchie & Thompson) had created static analysis and

the first lint (Johnson 1979) because programmers

were, according to Dennis Ritchie, using “legal but

dubious constructs” (Ritchie 1993). A compiler translates

syntactically correct source even if it is semantic rubbish.

Some simple examples of this include assigning a long to

a char and losing 3 bytes of data; falling foul of integer

promotion rules, which most people misunderstand;

having a local variable inadvertently mask a global

variable - the list goes on and on.

Due to the “trust the programmer” ethos around

the C language, static source code analysis is required

to find all the legal but very dangerous things that

can inadvertently get into the binary. Therefore static

analysis should be used frequently. Static analysis looks

at the source logically, without compiling and running it,

hence “static” analysis. Static analysis can find up to 80%

of non-functional bugs very quickly. Trying to find these

same bugs dynamically within a running system would

require extremely long and complex testing.

QA·C from Programming Research has been around

since 1985 and has proved itself over the decades.

QA·C has both command line and GUI options,

making it useful as a stand alone code inspection tool, or

it can be called by another tool such as Make, a VCS or,

as in this case, an IDE.

IAR EWB to QA·C
This integration guide assumes that you have both

the IAR compiler suite (Embedded Work Bench, or

EWB) and the Programming Research’s QA·C (QA·C)

correctly installed. This example uses the IAR EWARM

6.5 compiler suite and QA·C V8.1. However it should

work, with appropriate path changes, for the IAR EWB

for ARM, MSP340, V850 and M32C.

QAC-EWB

4library.phaedsys.com

Compiler Personality
The first step is to generate a Compiler Personality File.

NOTE: The PRQA license server must be running

in order to run the Automatic Compiler Personality

Generator.

To generate the compiler personality file just run the

Compiler Personality Generator AutoCmpPersonGen.

exe . The default location for this is C:\PRQA\CPG-

3.0.0\bin. However, this requires that the PATH to the

compiler is in the Windows Environment Variables under

PATH. This is NOT the default for the IAR installation.

To check if the compiler path is set, type “iccarm” in

the DOS window whilst it is in the C:\PRQA\CPG-3.0.0\

bin directory. If the compiler runs, the path is set, in

which case skip the next section and go to the section

PATH Set: Compiler Personality Generator

PATH not set
If the compiler PATH is not set in the environment

variable, the method is as follows:

Open a DOS or command window by, in Win7,

entering “cmd” in the “search programs and files”

window when you click the Windows start button.

In the DOS window we need to change directory to

the CPG directory. Start by entering “CD c:\ ” to get

to the root directory and then enter “cd PRQA”. Then

“dir /w” to list the files and sub directories. Finally

enter the CD command to move to the bin directory in

the CPG directory, in this case “cd CPG-3.0.0\bin”.

Take care to use the correct version number.

Next you need to set the path to the compiler. This

uses the command

SET PATH=%PATH%;”path-to-compiler“.

With my IAR installation this is

SET PATH=%PATH%; “C:\Program Files

(x86)\IAR Systems\Embedded Workbench

6.5\arm\bin”

NOTE: The fastest way to get the full path information

is to navigate to it in the Windows file explorer. Hit the

down arrow at the end of the path window and copy it.

The path can then be pasted into the DOS window using

“paste” from the right click mouse menu. (Control-V

will not work.)

To test the path, enter the command “iccarm” in

the DOS window to invoke the compiler. You will then

see the compiler information scroll past in the command

window. Scroll back up to check that the compiler is the

correct one. It will look something like this:

 C:\PRQA\CPG-3.0.0\bin>PATH=%PATH%;

C:\Program Files (x86)\IAR Systems\

Embedded Workbench 6.5\arm\bin

C:\PRQA\CPG-3.0.0\bin>iccarm

 IAR ANSI C/C++ Compiler

 V6.50.1.4415/W32 for ARM

 Copyright 1999-2012 IAR.

Available command line options:

--aapcs {std|vfp}

 Specify calling convention.

--aeabi

 Generate aeabi compliant code

--align_sp_on_irq

 Generate code to align SP on

 entry to __irq functions

QAC-EWB

5 library.phaedsys.com

This will take you the Compiler Selection screen.

Follow the screen instructions and select your compiler

from the list under the EXE command button. In this

case IAR and from the IAR sub menu select ARM.

The iccarm should appear in the EXE Command

space and be in black text . If it is in red i.e. iccarm, the

Compiler Personality Generator can’t find the executable

and you will need to re-check the paths.

Assuming the compiler name is in black, ensure that

the “cross compiler” box is ticked and the rest of the

settings are as shown. My notes say do NOT change

any of the values unless you are really sure you know

what you are doing (and even then it is best to check with

PRQA first!).

Then click “Next” to get to the Search Directories

screen.

Compiler Personality Generator:
Search Directories

Now you need to add all the directories for the

libraries. The tool will look at all subdirectories of the

directory(s) you give it. So you should only need the

base directory unless you are using additional libraries

in other places.

C:\Program Files (x86)\IAR Systems\

Embedded Workbench 6.5\arm\inc\

Now click the “Next” button to go to the Defines and

Switches screen.

PATH Set: Compiler Personality Generator
When the PATH does have the correct path to the

compiler set, we can run the Compiler Personality

Generator from within the DOS or command window.

Enter the command “AutoCmpPersonGen”

The Compiler Personality Generator should start.

The AutoCmpPersonGen is a windows application

despite it being called from the command line in the

DOS window.

Compiler Personality Generator:
 Screen 1

On the first page of the personality generator, ensure

that QA·C is selected or QA·C++ if you are using QA·C++

and programming in C++. (Do not use QA·C++ for C

source.)

Next you need to set the destination for the

personality file. This will be the “personality”

directory in QA·C. Finally set a name for the file in the

box below the path. It should be “meaningful” as you

potentially could have several personalities. In any case

it needs to end in .p _ c mine is IAR-ARM-C.p _ c

Having completed the directory and personality

name, click the “Next” button.

Compiler Personality Generator:
Compiler Command

QAC-EWB

6library.phaedsys.com

Compiler Personality Generator:
Defines and Switches

Again my notes say (in block capitals this time) DO

NOT CHANGE THESE UNLESS YOU REALLY KNOW

WHAT YOU ARE DOING. Even if you do think that

you really know what you are doing, please call PRQA

first. It is small “insignificant” changes here that can

cause hours of pain later!

Press the “Next” button to go to the Review page.

Compiler Personality Generator:
Review and Generate

All being well you should see the options you selected

in the previous screens for the IAR ARM compiler. Do

recheck the settings and in particular the paths for the

compiler and libraries. If anything is incorrect use the

Back button to go back and adjust the settings.

Now you have finished, so click on the “Finish”

button to let the tool start generating the Compiler

Personality File. The tool will parse all the header files

testing ALL the compiler keywords and tokens in ALL

the directories and their sub directories in the search

paths.

This may take some time probably several minutes,

and my notes say: “go and get a cup of coffee”.

The screenshot shows that a few keywords will be

ignored (macro replaced with nothing), as CPG was not

able to work out by running the compiler how to handle

them. You will need to look at the IAR compiler manual

and library sources to determine the solutions.

In this instance: the _ Complex and _ Imaginary

keywords are handled acceptably as they are.

The _ _ segment _ size is an intrinsic function so

should be removed from the compiler personality and

added to the force include .h file (the argument

of the –fi option in the compiler personality). QA·C has

some force include files that contain definitions

for specific compilers in C:/PRQA/CPG-3.0.0/

forceincludes . See the QA·C Compiler Personality

Generator User Guide for details on how to use them.

IMPORTANT: If you click the “Back” button at this

point you will have to re-run the personality generation.

This is because for the IAR compiler the file is saved

on clicking the “Close” button to close the Compiler

Personality Generator.

It you are producing a personality file for a compiler

not on the list in the compiler selection screen you will

need to explicitly save it using the “Save Compiler”

button.

The log only needs to be saved if there is an error in

generating the compiler personality file. NOTE: This

does not include the case shown were there are some

flagged keywords.

Close the Compiler Personality Generator. You will

only need to run it again if you change compiler version

or change the libraries. You should put a note or flag in

your procedures that when you upgrade the compiler or

libraries, other tools including the static analysers may

need to update scripts and data files.

Now we have the compiler personality we can

integrate QA·C into the IAR Embedded Workbench.

QAC-EWB

7 library.phaedsys.com

PC-lint-EWB

7

Integration of QA·C to IAR EWARM
Start the IAR EWARM compiler suite. Ensure that

you have the correct ARM compiler set, since when there

are multiple IAR compilers installed, the IAR EWB IDE

can call any of them. The best way of doing this is to load

a suitable project for the correct MCU.

With the EWARM IDE

running with a suitable

project go to the “TOOLS”

menu and select the

Configure Tools option.

This will get you the small

Configure Tools dialogue

shown. However, your

dialogue will not have the

two QAC entries shown.

Configure QA·C License Server
You are going to add an entry to start the QA·C license

server. It is highly likely that unless the QA·C license

server is automatically started at the PC boot time it will

not be running when you want to do the static analysis.

Click on the “New”

Button and change the

menu text to “Start QA·C

License Server”. The

Command box should

contain the path to the

license server. On a standard

PC installation it will be C:\

Program Files (x86)\

PRQA\Reprise\rml.exe

as shown in the picture.

Click “OK” to save the dialogue.

Configure QA·C to Analyse C files
The next step is to

configure QA·C to analyse

a single C file. On the IAR

EWARM IDE select the

“Tools” menu as above

and click on “Configure

Tools” and the “New” in

the tools dialogue.

In the Menu text box

enter “QA·C Analysis”.

Then enter the command to run QA·C. On a standard

QA·C installation, it will be C:\PRQA\PRQA Project

Creator 1.3\bin\analyse _ ide _ proj.bat

Next you will need to enter the arguments which will

be: QA·C “$PROJ _ PATH$?$FILE _ PATH$”

The syntax here is quite specific. PROJ _ PATH and

FILE _ PATH are internal IAR EWB variables. They are

not available outside the IAR environment.

Adusting Settings in the script files
The last thing to do is to adjust the script_setting.

bat file. This file lives in the PR QA·C Project Creator

installation bin directory. This file contains default

vales for various settings and information on where the

QA·C tool is installed. Some of the default settings can be

over ridden by the project _ settings.bat file. The

Project file will reside in the same directory as the IAR

project file. The analyse _ ide _ proj.bat copies it

there on its first run.

In the script _ setting.bat file you need to

add the compiler personalities and any local coding

standards or MISRA-C personalties.

Setting the compiler is done with C_IDE_COMPILER_

PERSON

C_IDE_compiler_Person = “C:\PRQA….

Personalities\IAR-arm-c.P_c

For the Message personality, e.g. a local coding

standard it is C _ MESSAGE _ PERSON which requires

a .p _ s file and for the Analyser personality C _

ANALYSER _ PERSON which uses a –P _ a file.

For a MISRA-C personality these need to point by default

as shown below:

C_MESSAGE_PERSON=%PRQA_INSTALL_

DIR%\%QA·C_DIR%\m2cm\personalities\

m2cm.p_s”

C_ANALYSER_PERSON=”%PRQA_INSTALL_

DIR%\%QA·C_DIR%\m2cm\personalities\

m2cm.p_a”

NOTE:

For MISRA-C 1998 (C1) the files are:

 mcm.p _ s and mcm.p _ a

For MISRA-C:2004 (C2) the files are:

 m2cm.p _ s and m2cm.p _ a

For MISRA C:2012 (C3) the files are:

 m3cm.p _ s and m3cm.p _ a

QAC-EWB

8library.phaedsys.com

PC-lint-EWB

8

Testing installation
Start the configured IAR Embedded Workbench and

load/write a simple “Hello World” type project using

standard C with no IAR specific compiler extensions.

If it is not already running start the QA·C license

server from the tools menu in the IAR Embedded

Workbench.

Note: you cannot run more than one instance of the

license server. The server will start a DOS box.

DO NOT CLOSE the DOS window or it will close

the server and QA·C will not run. You can minimise

the DOS window. Do check that the server is running

correctly and has picked up the correct license files,

which are displayed on the last two lines of the server

start-up in the DOS window.

 Set focus to the source code file in the editor. This is

important and a bit awkward in EW-ARM as almost any

action seems to remove the focus.

 I find the best way of doing it is to click on the tab of

the file you want to analysis and then the next action is to

select the analysis in the tool menu. Doing anything else

seems to remove the focus.

You should see, in the IAR EW-ARM Tool Output

window, the responses from QA·C running, though not

the analysis messages. Do check these messages, as it

will show the start up of the QA·C and the files called.

This window will also hold the clues as to any failures if

QA·C does not start

All being well the QA·C front end will automatically

start and open its own message browser. Look at the

analysis in QA·C.

Test the system by adding a line to the project using

an IAR specific extension.

For example _ _ arm _ _ arm int j;

Then re-run QA·C from the QA·C Analysis option in

the Tools Menue and examine the output. There should

not be an error for this line if the IAR –ARM personality

file is correct and the settings.bat has been correctly

configured.

QAC-EWB

9 library.phaedsys.com

References

IAR Embedded Workbench IDE User Guide

Johnson, S. C. (1979) Lint, a Program Checker. Unix

Programmer’s Manual, Seventh Edition 2B,

Lindgren, A. MISRA C—Some key rules to make

embedded systems safer. IAR, IAR.

Ritchie, D. M. (1993). The Development of the C

Language. ACM Second History of Programming

Languages. Cambridge, Mass., AMC: 16.

QA·C CPG USER GUIDE

The Art in Embedded Systems
comes through Engineering discipline.

QAC-EWB

Integrating QA·C into IAR
Embedded Workbench

First edition June 2014

© Copyright Chris A Hills 2014

The right of Chris A Hills to be identified as

the author of this work has been asserted by him

in accordance with the Copyright, Designs and

Patents Act 1988

Phaedrus Systems Library
The Phaedrus SystemsLibrary is a collection of useful

technical documents on development. This includes

project management, integrating tools like QA·C to IDE’s,

the use of debuggers, coding tricks and tips. The Library

also includes the QuEST series.

Copies of this paper (and subsequent versions) with

the associated files, will be available with other members

of the Library, at:

http://library.phaedsys.com

