
ABSTRACT 
One of the more interesting advancements in 
prototype robotics are tensegrity-based robots. These 
robots use compression elements and tension cables 
to create lightweight structures that can reconfigure 
their shape. While these capabilities are good for 
transport of the robot and costs of materials, they 
complicate planning and control of locomotion. 
With so these dynamic and reconfiguring parts, both 
simulating the motions of the robot and planning 
future motions become more challenging. New 
software packages and state-of-the-art planning 
algorithms are helping to address these challenges, 
but have yet to be used in tandem. This work shows 
the interaction of these two advancements in control 
and planning for tensegrity-based robots.   

 

1 INTRODUCTION 
Tensegrity-based structures have been proposed as 
flexible robotic systems [1], [2]. They provide 
compliance and load-distribution, which allow for 
dynamic maneuvers and reconfiguration over 
difficult terrains while maintaining structural 
integrity. Nevertheless, controlling tensegrity robots 
is challenging. There has been exciting progress on 
providing locally valid gaits [3], in some cases 
through the use of pattern generation principles [1], 
[4], and has been evaluated on physical robots (see 
Fig. 1). These breakthroughs allow moving the robot 
in a desired direction. It has not been possible, 
however, to purposefully navigate or reconfigure for 
longer horizon paths.  

The generation of purposeful motions requires 
global planners, which reason over long horizons, 
consider terrain complexity, and provide diverse 
paths for science teams. Such methods have to deal 
with the high dimensionality of the system, the 
effects of contacts with the ground on the system’s 
dynamics, and noisy actuation. A promising solution 
to this planning problem involves using sampling-
based motion planners [5], [6], which have been 
shown to be successful when dealing with high-
dimensional robots. It is also the case that under 
certain conditions, these sampling- based methods 
can achieve asymptotic optimality [7]. The 

asymptotic optimality property states that given 
sufficient computation time, the probability that 
these sampling-based algorithms return the optimal 
solution approaches one. In practice, the solutions 
returned by these algorithms are close to optimal in a 
short amount of time. Until recently, these desirable 
properties could not be achieved in the case of 
highly dynamical systems, such as tensegrity robots.  

Figure 1: SUPERball prototype from NASA Ames 
Research Center [3]. 

A more recent development is an algorithm that 
provides asymptotic optimality for systems with 
dynamics [8]. By making use of selective deletion of 
previously stored waypoints, the tree data structure 
used in the algorithm can focus computation on 
high-quality paths. Using this method, finding paths 
of increasing quality for systems with dynamics or 
physically-simulated systems is now possible in a 
reasonable amount of time. In addition, this method 
can operate while planning under uncertainty by 
using a particle representation to model multimodal 
belief distributions and nonlinear dynamics [9].  

For simulating the high-dimensional tensegrity 
robots, a software tool called the NASA Tensegrity 
Robotics Toolkit (NTRT) has become available to 
simulate tensegrity robots through the use of a 
physics engine [10]. Such simulations require 
significant computational resources due to the 
complex dynamics and contacts (tension cables, 
terrain contacts, shared force loads). The benefit of 
this expensive simulation is that it is shown to 
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accurately approximate the real-world prototypes. 
The integration of NTRT with the sampling-based 
methods described above provides an initial step 
toward long horizon planning capabilities for 
tensegrity robots.  

2 EXPERIMENTAL SETUP 
This work integrates the NTRT simulator [10] 
with the recent framework for belief space 
planning [9] to perform robust long-horizon 
planning for tensegrity robots. To the best of the 
authors knowledge, this is the first time it has 
become possible to plan for tensegrity robots 
while taking dynamics into account, i.e., not just 
in a quasi-static manner as in [11]. It is also 
possible to consider state uncertainty as part of 
the planning process.  

The tensegrity evaluated in the planning method 
is the SUPERball [3], which is a prototype robotic 
platform built at NASA Ames Research Center. 
This structure has six rigid components arranged 
to mimic a icosohedron shape. These rigid 
elements are modeled as dynamic rigid bodies 
with 6 degrees of freedom each (three 
translational components, three rotational 
components, and their corresponding velocity 
terms). Movement is achieved by contracting the 
cables that connect the rigid elements. These 
contractions create forces on the rigid elements 
that cause the entire structure to reconfigure. 
Given enough change in the structure, rolling will 
occur, thus achieving locomotion.  

2.1 Algorithm 

Figure 2: Algorithmic framework for high-level 
motion planning. 

The high level planning methodology is provided in 
Fig. 2. Given an initial belief b0 taken from the space 
of beliefs B, the algorithm generates a tree of paths 
that use control inputs from the control space U to 
move the robot to the goal. The algorithm operates in 
a manner that first tries to explore the state space 
quickly, searching for successful paths. Then, 
because of the properties of the algorithm, the path 
will be improved given more computation time.  

At a high level, the algorithm works using some 
basic primitives. First, an existing node in the tree is 

selected. This node is then extended using random 
control inputs to generate a new node. Finally, if this 
new node is collision-free and has a good path cost, 
the node will be added to the tree. For more details 
about the algorithm, see [8], [9].  

2.2 Implementation Details 
When moving to planning under uncertainty, the 
correct representation of uncertainty must be 
chosen. In many other domains, a Gaussian 
distribution is chosen, but is not appropriate for 
highly dynamical systems, such as tensegrity 
robots. This is due to their nonlinear behavior that 
likely will cause the uncertainty to follow multi-
modal distributions, i.e. have multiple probability 
peaks rather than one. For this reason, a particle-
based representation is chosen, where a set of 
particles approximate the underlying probability 
distribution.  

Because a particle representation is used when 
planning under uncertainty, the computational cost 
of planning is increased significantly. Each 
particle must be simulated independently of the 
other particles, meaning NTRT must be called for 
each particle. Since this simulation is the dominant 
computation even when planning without 
uncertainty, improvements need to be made to 
make simulations faster. By taking advantage of 
the independence of the particles, a parallel 
extension can be performed, where multiple 
particles can be extended at the same time. 

3 EVALUATION 
The integration of NTRT with a sampling-based 
planner requires significant computational 
resources. This is mostly due to a basic primitive 
that a sampling-based planner requires, the 
forward propagation primitive. This forward 
propagation primitive in most cases is fast, but is 
a computational bottleneck when a physics engine 
is used. This is the case when using NTRT and 
this influences the planning time.  

In this section, different scenarios are constructed 
where the tensegrity robot must traverse from its 
start position to a goal region. A simple problem 
is shown first, which is only the task of moving 
from the start to the goal. Then, invalid regions 
are introduced, where the center of mass of the 
robot cannot intersect. These regions could 
represent unsafe traversal areas due to 
environmental factors, such as low sunlight or 
difficult terrain. Finally, the challenges related to 
planning under uncertainty are explored, along 
with some observations.  



3.1 Traversal Planning 
For an initial test, a plan for moving without invalid 
regions is performed. The best path in this setup is as 
close to a straight-line as possible. This is not 
directly achievable given the dynamics of the robot. 
An example planned trajectory that considers terrain 
is shown in Fig. 3. An example path planning tree is 
shown in Fig. 4 where the paths shown are for the 
center of a rod in the structure. The goal for the robot 
is the top right of the figure. The tree illustrates the 
inherent dynamics of the SUPERball and how 
moving in straight lines is difficult even on flat 
terrain.  

Figure 3: An example path for the SUPERball 
tensegrity robot. This path also considers the terrain 

effects through the physics simulator. 

Figure 4: An example tree computed from the 
motion planner. This example has no invalid 

regions.  

3.2 Navigation Around Obstacles 
In order to get closer to real mission objectives, a 
series of invalid regions are defined for the robot. 

The center of mass of the robot cannot overlap with 
the invalid regions. The goal is to move to a position 
that is nearby the start point, but requires movement 
around obstacles. This highlights the need for high-
level planners. An illustration of the motion 
planner’s tree is shown in Fig. 5.  

Figure 5. An example tree computed from the motion 
planner. This tree has to avoid the red region, which 
causes the robot to move around it. Invalid regions 
could correspond to craters or inescapable areas. 

3.3 Planning Under Uncertainty 
The following table outlines the performance of 
planning in the state space and the belief space. For 
increasing computation times, the largest distance 
that can be traversed is reported. The increased 
computational cost planning under uncertainty has 
relative to just path planning severely reduces 
exploration capabilities. Both sets of experiments use 
a single computer core for computation. 

 Time/ 
Dist. 

Time/ 
Dist. 

Time/ 
Dist. 

State 
Space 
Planning 

1 min/14m 2 min/31m 3 min/71m 

Belief 
Space 
Planning 

2 min/4m 4 min/12m 6 min/14m 

A trajectory computed in the belief space is shown in 
Fig. 6. Due to noise in actuation, different final states 
may be reached, which composes a belief over the 
actual state of the robot, illustrated as transparent 
shapes of the robot. Planning in belief space has 
higher computational cost relative to state space 



planning, but provides the benefit of robustness to 
errors.  

Another interesting property that was discovered 
while planning under uncertainty is that the 
SUPERball can inherently reduce its uncertainty 
with specific motions. This behavior arises due to the 
different faces that can be touching the ground at any 
given time. Even with small errors in actuation, a 
similar resting state can be achieved by not changing 
control inputs too rapidly. In addition, the set of 
particles quickly diverges and clusters into multiple 
modes (see Fig. 7 for an example). It may be 
possible to exploit this behavior in an intelligent way 
to help reduce overall uncertainty when executing a 
trajectory in the real world.  

Figure 6: An example trajectory computed when 
planning under uncertainty. The transparent 

versions of the SUPERball show different possible 
futures given uncertain actuation. 

Figure 7: A single set of particles that represent one 
belief distribution. This distribution is multi-modal. 
The dynamics of the system naturally create these 

situations. 

 

4 DISCUSSION 
The integration of a simulator for tensegrity 
robots with motion planning techniques allows for 
more diverse robot trajectories to be computed. It 
also allows for those trajectories to be more 
dynamic and not limited to being quasi-static. 
There are some interesting research directions to 
explore as well.  

4.1 Implementation Efficiency Concerns 
One of the most obvious drawbacks discovered 
when planning with the physics engine is that the 
computational cost of planning is large. Especially 
in the case of planning under uncertainty, there is 
a lot of work to be done to make planning faster. 
This work takes advantage of parallelism to 
achieve faster times, but alternatives should be 
explored. It might be possible to find a different 
representation for the probability distributions that 
is not particle-based. If this is possible, much of 
the computational cost can be reduced. Another 
possible direction is looking into more 
approximate models of tensegrity robots for long 
horizon planning. Then, the full simulator can be 
used more as a verification tool than planning 
primitive.  

4.2 Algorithmic Additions 
Much of the integration between the simulator and 
the planner assumes that there is no knowledge other 
component. The planner considers the simulator as a 
"black box" that given a start state, an end state is 
provided as output. If more knowledge about the 
underlying workings of the simulator is given to 
planning, more efficiency may be gained. By 
maximizing the usefulness of each iteration of the 
planner, the resulting paths will have better quality. 
This addition could be further parallelization, biasing 
the search region, or even moving into a replanning 
framework.  

Another way to improve the integration is to better 
focus the search process to promising controls and 
integrating this high-level planning method with 
efficient local gaits that have been recently 
developed [3]. This work uses random control inputs 
to the robot, while more intelligent control inputs 
will more effectively move the robot. The question 
then becomes, what are the set of diverse local gaits 
that allow for locomotion in the largest amount of 
cases? This question is the focus of ongoing work.  
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