Integration and Evaluation of Sensor Modalities for Polar Robots

Richard S. Stansbury Master's Thesis Defense

August 20, 2004

Committee: Prof. Arvin Agah (Chair), Prof. Victor Frost, and Prof. Costas Tsatsoulis

University of Kansas

PRSN

-P R **I** S M₇

Thanks

- Committee Members.
- PRISM faculty, staff, and students.
- NSF, NASA, KTEC, and the University of Kansas.

-P R **I** S M₁

Overview

- Motivation
- Background and Related Work
- Sensor Suite for PRISM robot
- Sensor Integration
 - Hardware
 - Software
- Sensor Evaluation
- Future Work

-PRSSM_T

Motivation

- Research in polar regions valuable to scientists
 - Determine impact of global warming and ice sheet melting.
 - Understand how the ice sheets play a role globally.
- Polar Radar for Ice Sheet Measurement (PRISM)
 - Radar system to measure ice sheet properties
 - Two radar systems
 - Monostatic/bistatic Synthetic Aperture Radar (SAR)
 - Wide-band dual mode radar
 - Radars towed by two vehicles
 - Human-driven tracked vehicle
 - Mobile robot

-P R **I** S M₁

Motivation:

• PRISM Mobile Robot

- Tows radar antenna for bistatic SAR
- Built upon 6-Wheeled Max ATV mobile platform
- Linear actuators for control
- Sensor suite
- Goal:
 - Selection, integration, and evaluation of commercial off-the-shelf sensor modalities to support polar mobile robots.

Background – Navigation Sensors

- Position:
 - Dead reckoning
 - Approximates position based on rate of movement.
 - Shaft encoders, Doppler, accelerometers, etc.
 - GPS
 - Satellite-based beacons for triangulation
 - Three satellites required
 - 10 meter accuracy
 - Real-Time Kinematic (RTK) Differential GPS (DGPS)
 - Base station required

Ielecommunication

Technology Center

Information and

- Four satellites required
- Centimeter-level accuracy

Background – Navigation Sensors

- Heading/Orientation:
 - Compass
 - Less reliable near magnetic poles
 - Gyroscopes
 - Rate of rotation about an axis
 - Single or multiple-axis
 - Inclinometers
 - Dielectric fluid suspended between terminals
 - Roll and pitch

Background - Collision Avoidance

- Avoidance sensors
 - Machine Vision
 - Stereo vision
 - Sonar
 - Distance based on time-of-flight of ultrasonic pulse.
 - Laser Range Finders
 - Distance based on time-of-flight of laser-light pulse.
 - Scanning laser range finders
 - Millimeter-Wave (MMW) Radar
 - Obstacle distance and density

Background – Other Sensors

- Proprioception
 - Vehicle's internal state
 - Fuel Sensors
 - Power Level Sensors
 - Internal Climate Sensors
 - Temperature
 - Humidity
- Outreach:
 - External Climate Sensors
 - Weather station
 - Video Camera

-PRSSM_T

Background - Sensor Fusion

- Complementary sensor data
 - Merge data
- Contradictory sensor data
 - Select data with highest believability
- Tele-operation
 - Reduce amount of data presented to user
 - Reduces mental load of operator
- Numerous algorithms and approaches

Related Work - Planetary Rovers

- Challenges
 - No direct human intervention
 - No GPS available
 - Scientific payload has highest priority
- FIDO and SRR Jet Propulsion Laboratories
 - Field Integration Design and Operation
 - Sample Return Rover
 - Design concepts for the Mars planetary rovers
 - Vision for navigation and obstacle detection
 - Sun sensor for heading

-PRISM

Related Work - Polar Rovers

- Challenges
 - Harsh environment: cold and wind
 - Unique obstacles
 - Crevasse, sastrugi, etc.
- Nomad Carnegie Mellon University
 - Collection of meteorite samples in Antarctica
 - Stereo vision determined unreliable due to lack of surface contrast.
 - Utilized laser range finder and a prototype MMW Radar.
 - Differential GPS for position

Related Work - Polar Rovers

- Robot for Antarctic Surface ENEA
 - Automated SnoCat tracked vehicle for travel between Antarctic camps
 - Vision for detection of previous tracks
 - RTK GPS for position
 - Accelerometers and inclinometers for orientation
 - Laser range finder for obstacle detection
 - Ground penetrating radar for crevasse detection

-PRSSM_T

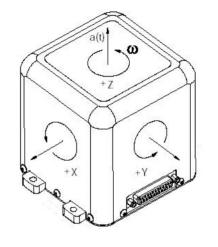
Sensor Suite - Position

- Topcon Legacy-E RTK DGPS
 - Centimeter-level position accuracy
 - Uses GPS and GLONASS satellites
 - Radio data link with maximum range near 10km

— P R **I** S M₁

Sensor Suite – Obstacle Detection

- SICK LMS221 Laser Range Finder
 - 80 meter range
 - Scans 180° field-of-view
 - 0.5° resolution
 - Smaller obstacles may be undetectable at a distance
 - Internal heater and fog correction



Sensor Suite - Orientation

- BEI MotionPak II:
 - Three-axis rate gyro and accelerometer
 - Temperature sensor

- PNI Corp. TCM2-50
 - Tilt, temperature, compass, and magnetometer

Sensor Suite – Other Sensors

- Pelco Esprit Pan/Tilt/Zoom Camera
 - Camera with heated and pressurized enclosure

- Cruz-Pro TL30 Digital Fuel Sensor
 - Receives signal from fuel sensor inside a fuel tanks
 - RS-232 output

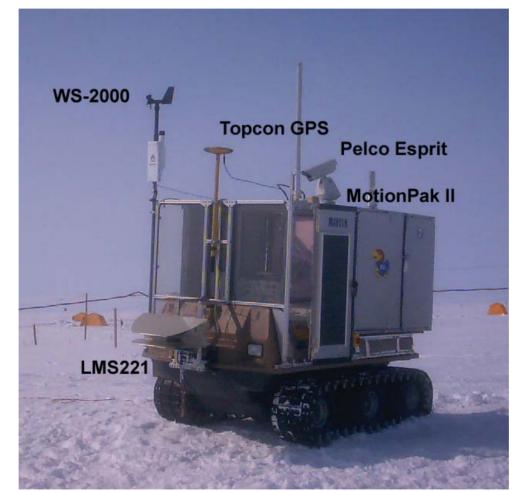
Sensor Suite – Other Sensors

- Rainwise WS-2000:
 - Temperature
 - Wind Speed
 - Wind Direction
 - Etc.

-PRISM_T

Hardware Integration: External

- Topcon GPS Antennas and WS-2000
 - Each pole mounted
 - GPS needs clear view of sky.
 - WS-2000 needs clearance for wind direction.
- Pelco Esprit
 - Mounted to center of rover's roof.
 - 360 degree view.
- MotionPak II:
 - Mounted on roof at rotational axis.


-PRSSM_T

Hardware Integration: External

- LMS221
 - Mounted to front of PRISM rover.
 - Configuration #1 positive and negative obstacle detector
 - Height: 1.5 meters
 - Tilt: 10 degrees
 - Range: 10 meters
 - Configuration #2 positive-only detector
 - Height: 0.5 meters
 - Tilt: 0 degrees
 - Range: 80 meters

Hardware Integration: External

University of Kansas

-PR SM_{-}

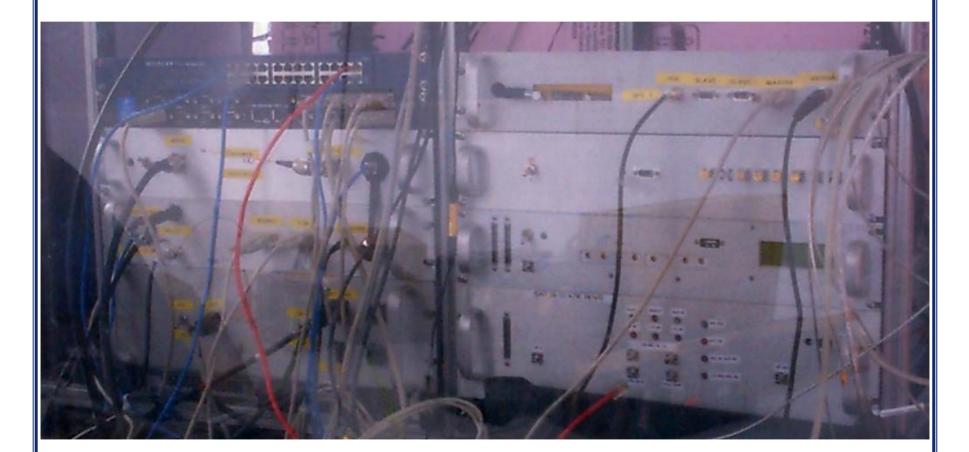
-P R I S M₁

Hardware Integration: Internal

- Sensors placed in rack-mountable cases
 - Sensor case
 - TCM
 - Communication interfaces for external sensors
 - Power case
 - Power supplies for sensors and actuators
 - GPS Cases
 - Legacy-E receiver
 - Radio link

Hardware Integration: Connectivity

• Network Connectivity


- Axis 2400 video server and computers
- Netgear 24-Port Switch
- RS-232 Serial Connectivity
 - Each sensor (except Pelco) uses RS-232
 - Edgeport 16-port serial-to-USB hub
- Computing
 - Itronix GoBook Max ruggedized laptop

University of Kansas

P R S /

Hardware Integration: Internal

University of Kansas

 $-PRSM_{T}$

Software Integration – Sensor API

- Part of the PRISM robot API
- Java
- Interfaces written for generic sensor types
 - e.g. BumpSensor.java, PositionSensor.java, etc.
- Events and event listeners
 - Sensor error and update events are propagated to listeners
 - Listeners can add or remove themselves from a sensor's listener list

University of Kansas

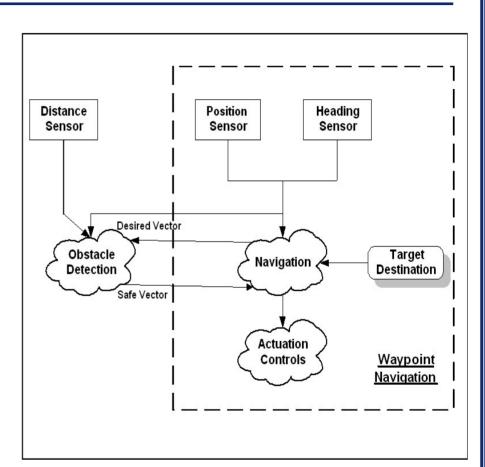
P R S /

-PRSSM₇

Software Integration – Drivers

- Driver classes instantiate the API's base classes for each sensor in the sensor suite
- Several sensors implement multiple sensor interfaces:
 - e.g. TCM2 HeadingSensor, TiltSensor, and TemperatureSensor
- Utilized manufacturers communication protocols
 - Datagram byte format
 - ASCII format

-PRSSM_T


Software Integration – Fusion

- Postion2HeadingSensor.java
 - Topcon GPS as a position sensor
 - Cannot provide heading while turning in place
- MarvinHeadingSensor.java
 - Heading sensor data forwarded based on actuator state
 - Actuator State = Turning
 - Forward MotionPak II heading
 - Actuator State = Not Turning
 - Forward Position2HeadingSensor heading
 - Calibrates MotionPak II

Software Integration – Fusion

- Waypoint Navigation
 - Initial autonomous mode of the PRISM mobile robot
 - Fusion of sensor data with actuation

University of Kansas

PR SM-

-PRSSM₇

Evaluation – Greenland Field Seasons

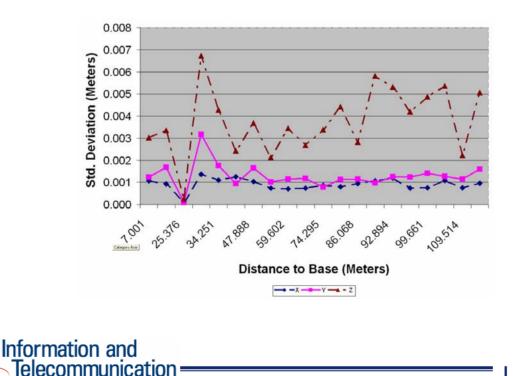
- Greenland 2003
 - North GRIP camp.
 - Rover and sensor survivability
 - Individual sensor tests and integrated data collection
- Greenland 2004
 - Summit camp
 - Radar integration and waypoint navigation
 - Collection of sensor data for future simulation

Evaluation – Climate Survivability

- Issues
 - Topcon GPS
 - Batteries proved unreliable
 - Replaced with power supplies
 - Generator for the base station
 - LMS221
 - Sun shroud necessary to reduce glare on scan window
 - WS-2000
 - Wind gauge became stiff in cold weather
 - Replaced for 2004 field season
- After resolving issues, all sensors now operate correctly in the harsh polar climate

Evaluation: GPS Relative Accuracy

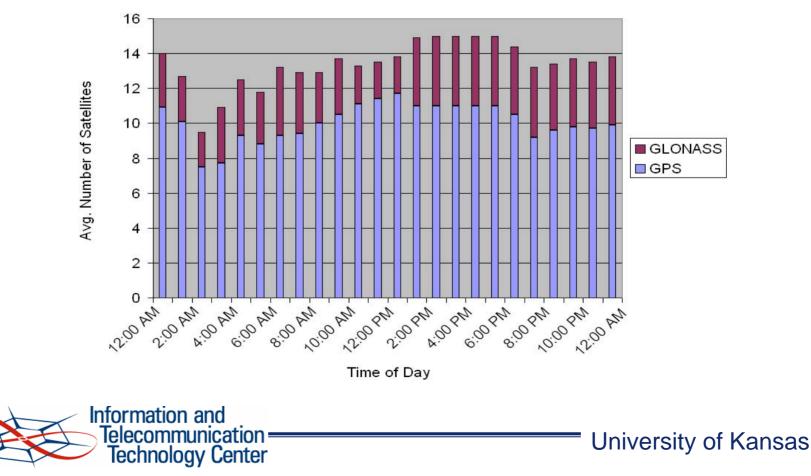
- Relative Accuracy
 - Accuracy in the measure of distance between two points
- Two known locations required
 - National Geodetic Survey benchmarks
- Compared measured distance vs. known distance
- Relative Accuracy
 - $x = 0.006 \pm 0.004$ meters
 - $y=0.010\pm0.007\ meters$
 - $z = 0.022 \pm 0.016 \text{ meters}$



PRSM

Evaluation: GPS Stability

Technology Center


- Calculated the standard deviation of measurements within 100 meters of the base station.
- Experiment requested by the PRISM radar team.

Evaluation: Visibility

• Measured number of GPS and GLONASS satellites available at the North Grip camp for a 24-hour period.

-P R I S N

Evaluation – MotionPak II vs. TCM2

- Vibration and engine noise a major concern.
- Monitor sensor output over one minute and calculate the error accumulated
 - Sensor initially zeroed prior to data collection.
- No additional noise filters added
- Compare error at various levels of noise
 - No engine noise (ambient noise)
 - Rover engine noise (medium noise)
 - Rover and generator engine noise (high noise)

University of Kansas

PR S/

Evaluation – MP2 vs. TCM2

TCM2

Trial	Engine	Generator	Roll Error	Pitch Error	Yaw Error
1	off	off	0.026°	0.036 °	0.106 °
2	on	off	0.440 °	0.888 °	0.391 °
3	on	on	0.555 °	1.120 °	0.649 °

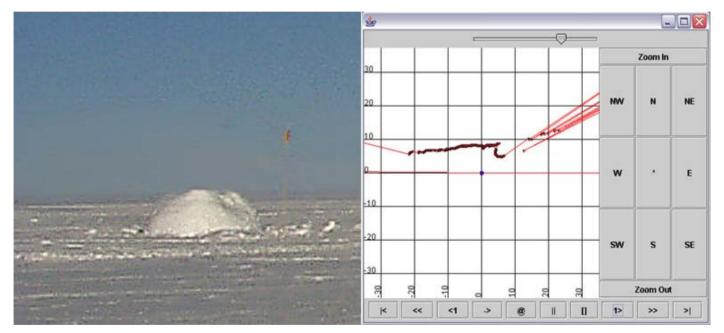
MotionPak II

Trial	Engine	Generator	Roll Error	Pitch Error	Yaw Error
1	off	off	0.056 °	0.096 °	0.002 °
2	on	off	59.599 °	60.486 °	0.007 °
3	on	on	85.201 °	56.318 °	0.006 °

Information and Telecommunication = Technology Center

-PRSSM_T

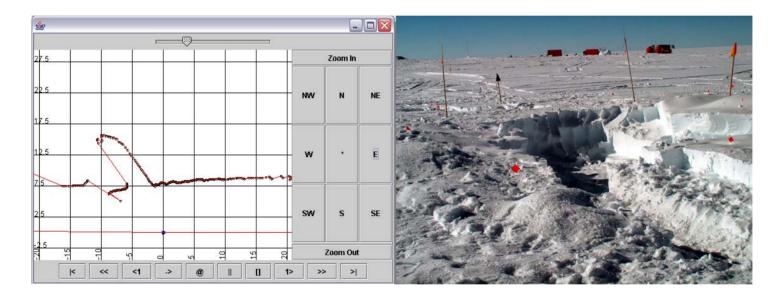
Evaluation: Obstacle Detection


- Test each configuration
- Distance for which obstacle first detected
 - Range
- Distance for which obstacles last detected
 - Peripheral vision

-P R 🛯 S M 7

Evaluation: Obstacle Detection

Configuration #1: Igloo

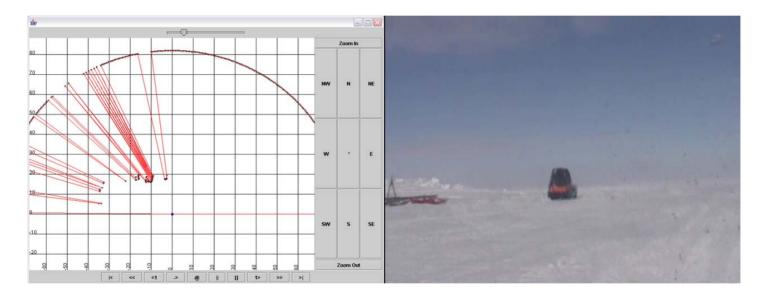

- First detected: 8 meters
- Last detected: 4 meters

Information and Telecommunication Technology Center

-PRSSM_T

Evaluation: Obstacle Detection

Configuration #1: Snow Pit

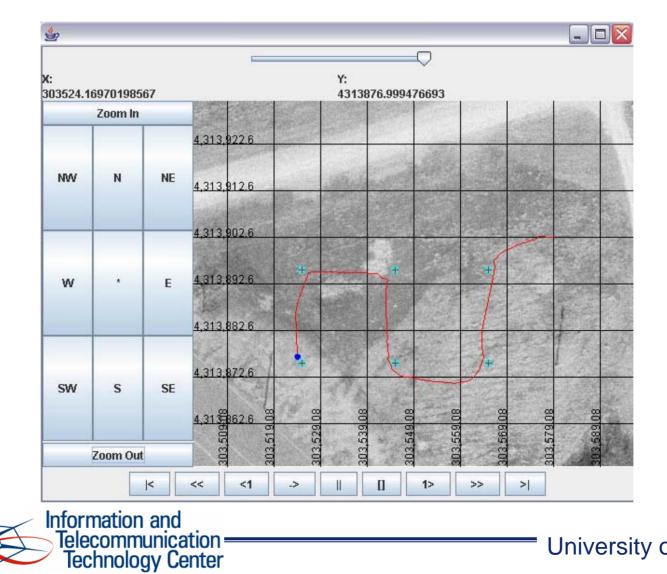


- As snow pit, obstacle detected at 10 meters
- As trench/crevasse, obstacle undetectable

Evaluation: Obstacle Detection

Configuration #2: Snowmobile

- First detect: 40 meters
- Last detect: 0 meters



PRS/ Evaluation – Waypoint Navigation

- Waypoint Navigation
 - Demonstrates the integration of sensors, actuation, and platform.
 - Waypoints assigned in a pattern similar to its data collection pattern on the ice.
 - Thresholds:
 - Waypoint arrival: 1 meter
 - Heading on target: 10 degrees

Evaluation – Waypoint Navigation

University of Kansas

-P R 🛾 S M-

-P R **I** S M₁

Discussion

- Each sensor survives polar environment.
- Topcon GPS reliable with great accuracy.
- Noise filter needed for MotionPak II input.
- Laser range finder only viable for positive obstacles.
- Waypoint navigation using the sensors within the suite was accomplished.

-P R **I** S M₁

Future Work

- Improve waypoint navigation precision
- Implement and test obstacle avoidance
- Additional software for fault tolerance
- Investigate the coupling of vision systems with existing avoidance sensors
- Further investigate
 - Data fusion techniques
 - Crevasse detection

–P R 🛯 S M 🕇

Questions

