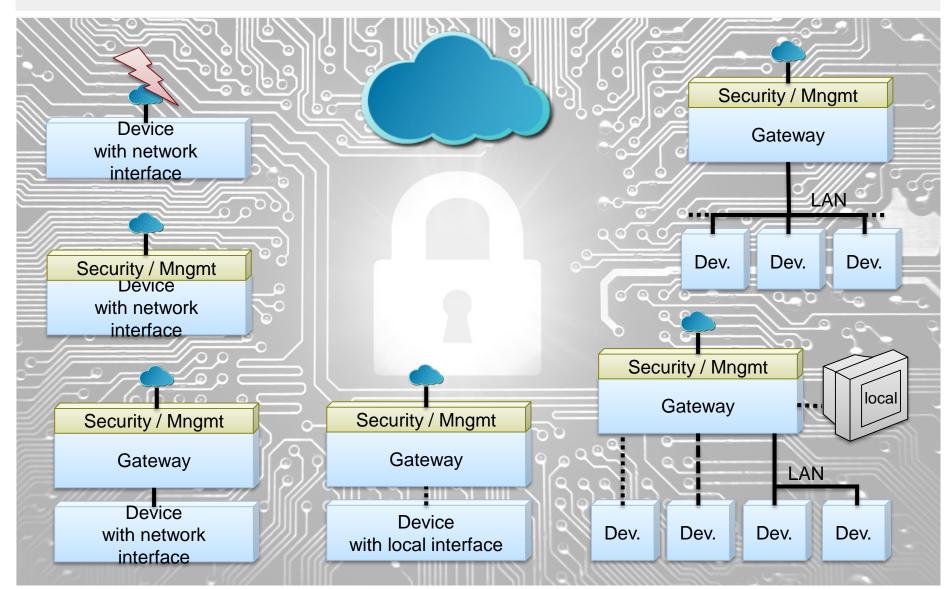


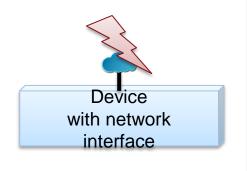
Intel® based Embedded Platforms for IoT Harald Maier (Product Manager x86 @ TQ-Systems)

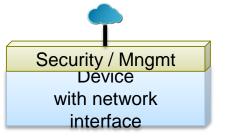
Different requirements for different applications Intel based Embedded solutions make it easier

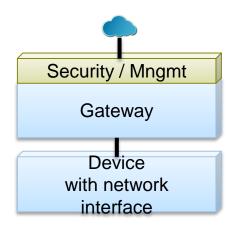


Agenda

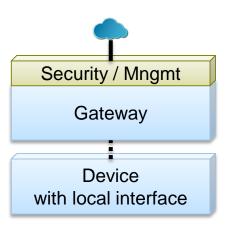
- Overview: non-connected / directly connected / via gateway connected
- Talking about different requirements
- How can Intel® based solutions can help to make IoT life easier
- Intel® based Embedded Platforms for IoT from TQ

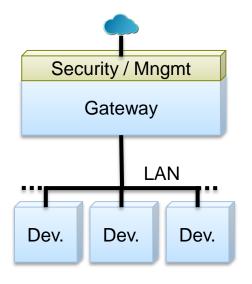

Different requirements for different applications non-connected, directly connected, via gateway connected



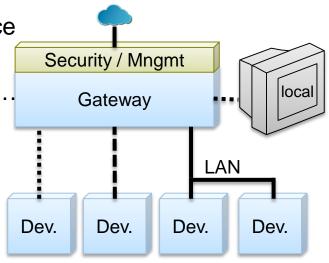


- Main Show-Stoppers: Missing security and manageability
- Security is a must have
 - Secure your data
 - Secure your device
- Management is necessary
 - to handle / update thousands of devices
 - to see the status of each device
- Integrate security and manageability into the device
- Use a gateway to separate the connectivity to the internet from the original device
 - to keep device untouched / use pre-qualified gateway (regarding software, certifications,...)



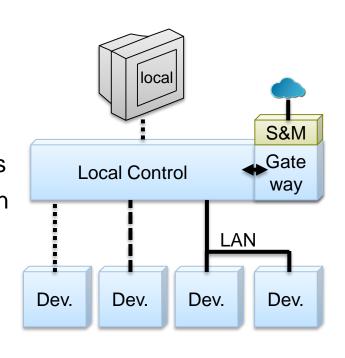


- Additional jobs of a gateway:
 - Upgrade a legacy device with an internet connection
 - Translate protocols (hardware & software)
 - Bridge a existing network to the internet
 - Local analytics and filtering of data
 - to reduce data traffic to the internet
 - **to recognize failures and sending alarms
 - Enable redundant connectivity

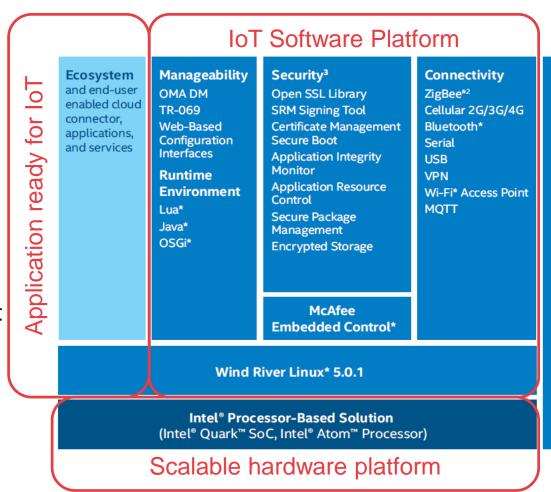


Additional jobs of a gateway:

Consolidate data to be a common IoT instance


representing a "thing" like a room with temperature, lightning, climate control,...

- Local HMI
 - »enables local control and observation
- Include additional data streams to the internet connection (audio, video,...)
 - »Needs additional interfaces
 - »Needs performance for data compression


- Virtual gateway:
 - Virtualization on Multi Core CPU
 - Hypervisor is running two completely independent Operating systems
 - Local control is running on one or more Cores
 Completely independent from IoT connection
 No special IoT adaptation is necessary
 - Running IoT gateway on separate core with dedicated interfaces connected to the internet
 - Connection between local control / device and the virtual gateway is done by internal virtual network connection
 - Can be implemented highly secure
- Multi Core CPUs enable retrofit from non-connected control / device into a connected device without any hardware changes

Making IoT life easier Optimized combination of hardware and software

- Intel® IoT platform (formerly called "Intel Moon Island"):
 - Secure
 - Scalable
 - Interoperable
- Optimized by close partnership between Intel, Wind River and Intel Security (McAfee)
- HW + SW = (Security)²
- Prepared for ready to use cloud based management with Wind River IDP

Wind River Development Environment

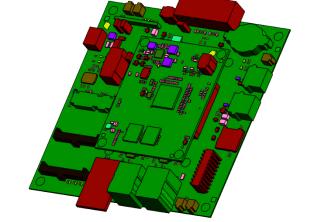
Different requirements for different applications Scalability with Intel® processors

- Simple Gateway applications with Intel® Quark™ X1000 series
 - Single Core, 400 MHz, flexible with I2C, SPI, UART, USB and PCIe

- Wide range of Gateway applications with Intel® Atom™ E3800 series
 - Pin-compatible derivates from Single Core up to Quad Core
 - Highly flexible highspeed connectivity and extendibility
 - Featuring also local control, analytics and observation (local HMI)
 - Data compression capabilities for video streaming add-on
 - Multi-Core architecture could cover also virtual gateway implementations
- Workload consolidation with Intel® Core™ series
 - Combining exhausting control, local analytics and observation with integrated gateway technology

Consistent SW Implementation thanks full x86 SW compatibility on all

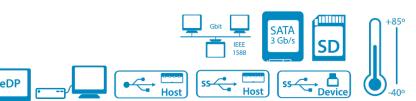
Intel® based Embedded Solutions for IoT TQ – Partner for OEM/ODM customers


- IoT Building Blocks and Solutions from TQ
 - Based on Intel® Quark™, Intel® Atom™ and Intel® Core™ Processors
 - > Hardware and Software IP Building Blocks for fully customized designs
 - »Hardware Building Blocks for modular system designs
 - »Ready to use solutions
 - Design and Manufacturing Made-in-Germany

EVALx1000 with Intel® Quark™ X1000 series Evaluation platform for customized designs

- Key Features
 - Intel® QuarkTM X1000 optimized for IoT Gateway applications
 - Ultra Low Power (max. 2.2W TDP)
 - Tested with Intel® IoT Gateway Software Stack ("Moon Island")
 - Available with Intel® IoT Gateway Development License
 - Modular Design for Rapid Prototyping (TQMx1000 + MBx1000)
 - Software development
 - Feature testing and specification
 - Feasibility analyses (3D,...)

This platform is for reference only (and not for sale) addressing full custom designs.


TQMxE38M with Intel® Atom™ E3800 series Modular designs based on COM Express Mini Type 10

Key Features

- Intel® AtomTM E3800 ("Bay Trail-I")
 - Single Core 1.46 GHz / 512 KB cache up to Quad Core 1.91 GHz / 2 MB cache
- Up to 8 GB DDR3L with ECC support
- SD Card and USB 3.0 Device support
- High flexibility with eDP
- Optimized for Ultra Low Power
- Extended temperature range

General TQMx86 Features

- TPM 1.2/2.0, highly accurate industrial RTC, TQ board controller with flexiConfig
- UEFI BIOS with optimized Touch support, easyConfig and multiConfig
- Highly ruggedized design
- Customer specific added value like conformal coating

TQMx50UC with Intel® Core™ i3/i5/i7 5000U series Modular designs based on COM Express Compact Type 6

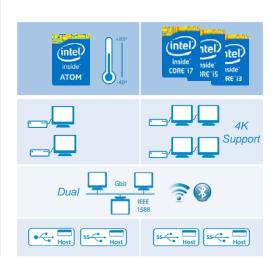
- Key Features
 - Intel® CoreTM 5000U series ("Broadwell-U")
 - Note: The initial initial
 - »Intel® Core™ i5-5350U (up to 2.9 GHz / 3 MB car
 - »Intel® Core™ i7-5650U (up to 3.2 GHz / 4 MB car
 - Up to 16 GB DDR3L-1600
 - 3 independent display outputs up to 4K & MST Support
 - Intel® RealSense support
 - 14nm ⇒ best Performance-per-Watt ratio (15W TDP)

With

optimized cooling

- TPM 1.2/2.0, highly accurate industrial RTC, TQ board controller with flexiConfig
- UEFI BIOS with optimized Touch support, easyConfig and multiConfig
- Highly ruggedized design

Ready to use Gateways References / Product Preview



MBox-E38 with Intel® Atom™ E3800

- Up to Quad-Core 1.9 GHz with 2 MB Cache
- Up to 8 GB DDR3L-1333
- 2x Mini DisplayPort (DP++) with up to 2560x1600
- 2x Gigabit Ethernet
- 2x USB (3.0 + 2.0)
- WiFi Dual Band, AC + Bluetooth optional
- Mini PCIe (Full-Size / Half-Size) extension sockets
- mSATA Flash Disk
- -40°C ... +60°C (passive cooled)
- ~ 10 x 10 x 6 cm
- Intel® IoT Gateway Support

CBox-50U with Intel® Core™ 5000U

- Dual Core bis zu 3.2 GHz (Turbo)
- Up to 16 GB DDR3L-1600
- 2x Mini DisplayPort (DP++) with up to 3840x2160 (UHD) + Multi Stream Transport (MST)
- 2x Gigabit Ethernet
- 2x USB 3.0
- WiFi Dual Band, AC + Bluetooth optional
- Mini PCIe (Full-Size / Half-Size)extension sockets
- mSATA Flash Disk
- 0°C ... +40°C (passive cooled)
- ~ 10 x 16 x 6 cm
- Intel® RealSense™ Support

TQ – your Partner for Intel® based components & solutions

Embedded Partnership

United by Technology . Embedded Partnership www.tq-group.com/intel

