
Intel® Compilers Version 15.0

Part of Intel® Parallel Studio XE Composer Edition
2015

February 2015

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Why Use Intel® Compilers?
Compatibility
§  OS Support: Windows*, Linux*, OS X* (for OS/X , both traditional Intel C++ front end and CLANG

version)

§  IDE support: Visual Studio* in Windows*, Eclipse* in Linux*, Xcode* in OS X*

§  Compatible with GNU* Compiler collection (gcc) – adapts to specific version up to 4.9

§  Source and binary compatibility with Microsoft Visual C++* Compilers

§  ISO Standard for C : almost full C99 compatibility, a few new features of C11

§  ISO C++ Standard: all of C++11

§  Full Fortran 2003, many features from Fortran 2008 including DO CONCURRENT, COARRAYS,
BLOCK

Parallelism
§  Language Extension (Intel Cilk® Plus™ for C/C++) for task parallelism
§  Explicit Vector Programming (OpenMP* / Cilk SIMD, Array Notation)
§  Support for OpenMP* 4.0 (except user-defined reductions)
§  C++ Multithreading Library (Intel® TBB)

2

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Why Use Intel® Compilers?

3

Performance
§ Code generation tuned for latest microarchitecture

§ Full – and very early - support of Intel processor instruction sets (SSE, AVX,
AVX2, AVX-512)

Optimization
§ Sophisticated optimizations like interprocedural and profile-guided optimization

§ Automatic vectorization

§ Automatic parallelization

§ Optimization reports

§ Highly optimized version of libm (Intel® Math Library libimf) and vector math
library libsvml

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

PGO Usage: Three Step Process

4

Compile + link to add instrumentation
icc -prof_gen foo.c –o foo

Execute instrumented program
foo.exe (on a typical dataset)

Compile + link using feedback
icc -prof_use prog.c –o foo

Dynamic profile:
12345678.dyn

Instrumented executable:
foo.exe

Merged .dyn files:
pgopti.dpi

Step 1

Step 2

Step 3

Optimized executable:
foo.exe

profmerge

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Simple PGO Example: Code Re-Order
for (i=0; i < NUM_BLOCKS; i++)
{
 switch (check3(i))
 {
 case 3: /* 25% */
 x[i] = 3; break;
 case 10: /* 75% */
 x[i] = i+10; break;
 default: /* 0% */
 x[i] = 99; break
 }
}

“Case 10” is moved to the beginning

§  PGO can eliminate most tests&jumps for the common case – less branch mispredicts

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. 6

Interprocedural Optimizations
Extends optimizations across file boundaries

Compile & Optimize

Compile & Optimize

Compile & Optimize

Compile & Optimize

file1.c

file2.c

file3.c

file4.c

Without IPO
Compile & Optimize

file1.c

file4.c file2.c

file3.c

With IPO

/Qip, -ip Only between modules of one source file

/Qipo, -ipo Modules of multiple files/whole application

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. 7

Interprocedural Optimizations (IPO)
Usage: Two-Step Process

Linking
Linux* icc -ipo main.o func1.o func2.o

Windows* icl /Qipo main.o func1.o func2.obj

Pass 1

Pass 2

Intermediate language
(mock) object

executable

Compiling
Linux* icc -c -ipo main.c func1.c func2.c

Windows* icl -c /Qipo main.c func1.c func2.c

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Reports

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

§  Old functionality implemented under -opt-report, -vec-report, -
openmp-report, -par-report replaced by unified -opt-report
compiler options
§  [vec,openmp,par]–report options deprecated and map to

equivalent opt-report-phase
§  Can still select phase with -opt-report-phase option. For example, to

only get vectorization reports, use -opt-report-phase=vec
§  Output now defaults to a <name>.optrpt file where <name>

corresponds to the output object name. This can be changed with -opt-
report-file=[<name>|stdout|stderr]

§  Windows*: /Qopt-report, /Qopt-report-phase=<phase> etc
§  Optimization report integrated into Microsoft Visual Studio*

9/11/15

Optimization Report Redesign

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. 9/11/15

Let’s take a Look at an Example

 1 double a[1000][1000],b[1000][1000],c[1000][1000];
 2
 3 void foo() {
 4 int i,j,k;
 5
 6 for(i=0; i<1000; i++) {
 7 for(j=0; j< 1000; j++) {
 8 c[j][i] = 0.0;
 9 for(k=0; k<1000; k++) {
 10 c[j][i] = c[j][i] + a[k][i] * b[j][k];
 11 }
 12 }
 13 }
 14 }

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

15.0 Loop Optimization Report
LOOP BEGIN at d:\iusers\hsaito\ics\15_0\dev\test.c(7,5)
Distributed chunk2
 remark #25448: Loopnest Interchanged : (1 2 3) --> (2 3 1)
 remark #15018: loop was not vectorized: not inner loop
 LOOP BEGIN at d:\iusers\hsaito\ics\15_0\dev\test.c(9,7)
 Distributed chunk2
 remark #15018: loop was not vectorized: not inner loop

 LOOP BEGIN at d:\iusers\hsaito\ics\15_0\dev\test.c(6,3)
 remark #15145: vectorization support: unroll factor set to 4
 remark #15003: PERMUTED LOOP WAS VECTORIZED
 LOOP END

 LOOP BEGIN at d:\iusers\hsaito\ics\15_0\dev\test.c(6,3)
 remark #15003: REMAINDER LOOP WAS VECTORIZED
 LOOP END
 LOOP END
LOOP END

Clearer view of what happens
where and in what order

Report from: Loop nest, Vector optimizations [loop, vec, par]

LOOP BEGIN at d:\iusers\hsaito\ics\15_0\dev\test.c(7,5)
 Distributed chunk1
 remark #25430: LOOP DISTRIBUTION (2 way)
 remark #25448: Loopnest Interchanged : (1 2) --> (2 1)
 remark #25424: Collapsed with loop at line 6
 remark #25412: memset generated
 remark #15144: loop was not vectorized: loop was transformed to
memset or memcpy
LOOP END

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Report Phases
The compiler reports optimizations from 9 phases:

LOOP: Loop Nest Optimizations
PAR: Auto-Parallelization
VEC: Vectorization
OPENMP: OpenMP
OFFLOAD: Offload

IPO: Interprocedural Optimizations
PGO: Profile Guided Optimizations
CG: Code Generation Optimizations
TCOLLECT: Trace Analyzer Collection

LOOP/PAR/VEC share a unified loop structure, a hierarchical output, to seamlessly display optimizations in an
integrated format; list of phases significantly simplified from 14.0

Selecting phases for compiler optimization reporting is highly
customizable to satisfy customers’ specific requirements.

–  Single Phase Reporting:
•  Compiler Option: -[Q]opt-report-phase=VEC

–  Multiple Phase Reporting (use a comma separated list):
•  Compiler Option: -[Q]opt-report-phase=VEC, OPENMP, IPO, LOOP

–  Default is “ALL” phases and default reporting verbosity level is 2
•  Want to encourage use of integrated HPO report instead of just vec-report[n]
•  Lot of changes from 14.0 to remove extraneous information

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Report Levels
The compiler’s optimization report have 5 verbosity levels.
§  Specifying report verbosity level:

§  Compiler Option: –opt-report=N where N = level of desired verbosity
 When option omitted, default N=2.

§  For each optimization phase, higher verbosity level indicates higher level of detail reported.
§  Each verbosity level is inclusive of lower levels.

§  Example, VEC Phase Levels:
§  Level 1: Reports when vectorization has occurred.
§  Level 2: Adds diagnostics why vectorization did not occur.
§  Level 3: Adds vectorization loop summary diagnostics.
§  Level 4: Adds additional available vectorization support information.
§  Level 5: Adds detailed data dependency information diagnostics.

§  Each phase can support up to 5 levels

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Example Code for IPO Opt Report
 1 #include <stdio.h>
 2
 3 static void __attribute__((noinline)) bar(float
 a[100][100], float b[100][100]) {
 4 int i, j;
 5 for (i = 0; i < 100; i++) {
 6 for (j = 0; j < 100; j++) {
 7 a[i][j] = a[i][j] + 2 * i;
 8 b[i][j] = b[i][j] + 4 * j;
 9 }
10 }
11 }
12
13 static void foo(float a[100][100], float b[100][100])
{
14 int i, j;
15 for (i = 0; i < 100; i++) {
16 for (j = 0; j < 100; j++) {
17 a[i][j] = 2 * i;
18 b[i][j] = 4 * j;
19 }
20 }
21 bar(a, b);
22 }
23

24 extern int main() {
25 int i, j;
26 float a[100][100];
27 float b[100][100];
28
29 for (i = 0; i < 100; i++) {
30 for (j = 0; j < 100; j++) {
31 a[i][j] = i + j;
32 b[i][j] = i - j;
33 }
34 }
35 foo(a, b);
36 foo(a, b);
37 fprintf(stderr, "%d %d\n", a[99][9], b[99][99]);
38 }

Compiled with:

icc -opt-report=L –opt-report-phase=ipo sm.c

 with L = 1, 2, 3, 4, 5

9/11/15

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Level 5 for Vectorization Report

15

VECRPT (col. 3) LOOP WAS VECTORIZED.
VECRPT (col. 3) entire loop may be executed in scalar remainder
VECRPT (col. 3) estimated potential speedup: 3.540000.
VECRPT (col. 3) lightweight vector operations: 26.
VECRPT (col. 3) loop inside vectorized loop at nesting level: 1.
VECRPT (col. 3) loop was vectorized (with peel/with remainder)
VECRPT (col. 3) medium-overhead vector operations: 10.
VECRPT (col. 3) scalar loop cost: 14.
VECRPT (col. 3) unmasked aligned unit stride loads: 4.
VECRPT (col. 3) unmasked aligned unit stride stores: 4.
VECRPT (col. 3) unmasked unaligned unit stride loads: 8.
VECRPT (col. 3) unmasked unaligned unit stride stores: 2.
VECRPT (col. 3) unroll factor set to 2.
VECRPT (col. 3) vector loop cost: 7.500000.

 6: do i=1,n
 7: a(i)= a(i)-b(i)*d(i)
 8: c(i)= a(i)+c(i)
 9: enddo

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Annotated Assembly Listings
.L11: # optimization report

 # LOOP WAS INTERCHANGED

 # loop was not vectorized: not inner loop

 xorl %edi, %edi #38.3

 movsd b.279.0.2(%rax,%rsi,8), %xmm0 #41.32

 unpcklpd %xmm0, %xmm0 #41.32

 # LOE rax rcx rbx rsi rdi r12 r13 r14 r15 edx xmm0

..B1.11: # Preds ..B1.11 ..B1.10

..L12: # optimization report

 # LOOP WAS INTERCHANGED

 # LOOP WAS VECTORIZED

 # VECTORIZATION HAS UNALIGNED MEMORY REFERENCES

 # VECTORIZATION SPEEDUP COEFFECIENT 2.250000

 movaps a.279.0.2(%rcx,%rdi,8), %xmm1 #41.22

 movaps 16+a.279.0.2(%rcx,%rdi,8), %xmm2 #41.22

 movaps 32+a.279.0.2(%rcx,%rdi,8), %xmm3 #41.22

 movaps 48+a.279.0.2(%rcx,%rdi,8), %xmm4 #41.22

 mulpd %xmm0, %xmm1 #41.32

 mulpd %xmm0, %xmm2 #41.32

<…>

16 9/11/15

L4:: ; optimization report
 ; PEELED LOOP FOR VECTORIZATION
$LN36:
$LN37:
 vaddss xmm1, xmm0, DWORD PTR [r8+r10*4] ;4.5

snip snip snip

L5:: ; optimization report
 ; LOOP WAS VECTORIZED
 ; VECTORIZATION HAS UNALIGNED MEMORY REFERENCES
 ; VECTORIZATION SPEEDUP COEFFECIENT 8.398438
$LN46:
 vaddps ymm1, ymm0, YMMWORD PTR [r8+r9*4] ;4.5

snip snip snip

L6:: ; optimization report
 ; LOOP WAS VECTORIZED
 ; REMAINDER LOOP FOR VECTORIATION
 ; VECTORIZATION HAS UNALIGNED MEMORY REFERENCES
 ; VECTORIZATION SPEEDUP COEFFECIENT 2.449219
$LN78:
 add r10, 4 ;3.3

snip snip snip

L7:: ; optimization report
 ; REMAINDER LOOP FOR VECTORIATION
$LN93:
 inc rax ;3.3

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Control of Floating Point Operations

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.
18

FP Programming Objectives Differ

These objectives usually conflict! Wise design of program code and
use of compiler options lets you control the tradeoffs

Accuracy Produce results that are ‘close’ to the
correct value

Measured in relative error, possibly
ulps

Consistence Produce consistent / reproducible results From one run to the next
From one set of build options to
another
From one compiler to another
From one platform to another

Conformanc
e

Produce results a standard or agreed on
convention defines

IEEE-754/758, C/C++, FORTRAN

Performance Produce most efficient code Default, primary goal of Intel
compilers

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.
19

Reassociation Example: A Reduction

float Sum(const float A[], int n)
{
 float sum=0;
 for (int i=0; i<n; i++)
 sum = sum + A[i];
 return sum;
}

float Sum(const float A[], int n)
{
 int n4 = n-n%4; // or n4=n4&(~3)
 int i;
 float sum1=0, sum2=0, sum3=0, sum4=0;
 for (i=0; i<n4; i+=4) {
 sum = sum + A[i];
 sum1 = sum1 + A[i+1];
 sum2 = sum2 + A[i+2];
 sum3 = sum3 + A[i+3];
 }
 sum += sum1 + sum2 + sum3;
 for (; i<n; i++)
 sum = sum + A[i];
 return sum;
}

•  Scalar reduction gives 7-8X perf
gain for SSE – AVX even more !

•  Invalid in SAFE modes

•  Even in SAFE mode, OpenMP,
MPI, TBB might do ‘unsafe’
reductions

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.
20

Controlling FP Computation by fp-model Switch
The –fp-model switch lets you specify the compiler rules for
§  Value safety

§  FP expression evaluation

§  FPU environment access

§  Precise FP exceptions

§  FP contractions

In the past (still available), a mix of many, many switches (-mp, -mp1, -
pc64, -pc80 etc) had to be used
§  Most marked ‘depreciated’ now; not very structured, not well documented, partially inconsistent

Still there are a couple of FP related switches outside of –fp-model
which remain useful

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

•  Transform sequential code to exploit vector processing capabilities (SIMD)
of Intel processors

§  Manually by explicit syntax

§  Automatically by tools like a compiler

What is Vectorization ?

for(i = 0; i <= MAX;i++)
 c[i] = a[i] + b[i];

+

a[i]

b[i]

c[i]

+

a[i+7] a[i+6] a[i+5] a[i+4] a[i+3] a[i+2] a[i+1] a[i]

b[i+7] b[i+6] b[i+5] b[i+4] b[i+3] b[i+2] b[i+1] b[i]

c[i+7] c[i+6] c[i+5] c[i+4] c[i+3] c[i+2] c[i+1] c[i]

21

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Many Ways to Vectorize

Ease	 of	 use	 Compiler:	 	
Auto-‐vectoriza6on	 (no	 change	 of	 code)	

Programmer	 control	

Compiler:	 	
Auto-‐vectoriza6on	 hints	 (#pragma vector,	 …)	

SIMD	 intrinsic	 class	
(e.g.:	 F32vec,	 F64vec,	 …)	

Vector	 intrinsic	
(e.g.:	 _mm_fmadd_pd(…),	 _mm_add_ps(…),	 …)	

Assembler	 code	
(e.g.:	 [v]addps,	 [v]addss,	 …)	

Compiler:	 	
OpenMP*	 4.0	 and	 Intel®	 Cilk™	 Plus	

22

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Many Ways to Vectorize

Ease	 of	 use	 Compiler:	 	
Auto-‐vectoriza6on	 (no	 change	 of	 code)	

Programmer	 control	

Compiler:	 	
Auto-‐vectoriza6on	 hints	 (#pragma vector,	 …)	

SIMD	 intrinsic	 class	
(e.g.:	 F32vec,	 F64vec,	 …)	

Vector	 intrinsic	
(e.g.:	 _mm_fmadd_pd(…),	 _mm_add_ps(…),	 …)	

Assembler	 code	
(e.g.:	 [v]addps,	 [v]addss,	 …)	

Compiler:	 	
OpenMP*	 4.0	 and	 Intel®	 Cilk™	 Plus	

23

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Many Ways to Vectorize

Ease	 of	 use	 Compiler:	 	
Auto-‐vectoriza6on	 (no	 change	 of	 code)	

Programmer	 control	

Compiler:	 	
Auto-‐vectoriza6on	 hints	 (#pragma vector,	 …)	

SIMD	 intrinsic	 class	
(e.g.:	 F32vec,	 F64vec,	 …)	

Vector	 intrinsic	
(e.g.:	 _mm_fmadd_pd(…),	 _mm_add_ps(…),	 …)	

Assembler	 code	
(e.g.:	 [v]addps,	 [v]addss,	 …)	

Compiler:	 	
OpenMP*	 4.0	 and	 Intel®	 Cilk™	 Plus	

24

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

•  Example using AVX intrinsics:

•  Example using Intel® MIC Architecture/Intel® AVX-512 intrinsics:

Intrinsics – Sample

#include <immintrin.h>

double A[40], B[40], C[40];
for (int i = 0; i < 40; i += 4) {
 __m256d a = _mm256_load_pd(&A[i]);
 __m256d b = _mm256_load_pd(&B[i]);
 __m256d c = _mm256_add_pd(a, b);
 _mm256_store_pd(&C[i], c);
}

#include <immintrin.h>

double A[40], B[40], C[40];
for (int i = 0; i < 40; i += 8) {
 __m512d a = _mm512_load_pd(&A[i]);
 __m512d b = _mm512_load_pd(&B[i]);
 __m512d c = _mm512_add_pd(a, b);
 _mm512_store_pd(&C[i], c);
}

25

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Intel provides an interactive intrinsics guide:

•  Lists all supported
intrinsics

•  Sorted by SIMD feature
version and generation

•  Quickly find the intrinsic
via instant search

•  Rich documentation of
each intrinsic

•  Filters for technologies,
types & categories

Access it here:
https://software.intel.com/sites/landingpage/IntrinsicsGuide/

Intel® Intrinsics Guide

26

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Many Ways to Vectorize

Ease	 of	 use	 Compiler:	 	
Auto-‐vectoriza6on	 (no	 change	 of	 code)	

Programmer	 control	

Compiler:	 	
Auto-‐vectoriza6on	 hints	 (#pragma vector,	 …)	

SIMD	 intrinsic	 class	
(e.g.:	 F32vec,	 F64vec,	 …)	

Vector	 intrinsic	
(e.g.:	 _mm_fmadd_pd(…),	 _mm_add_ps(…),	 …)	

Assembler	 code	
(e.g.:	 [v]addps,	 [v]addss,	 …)	

Compiler:	 	
OpenMP*	 4.0	 and	 Intel®	 Cilk™	 Plus	

27

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

•  For a full list, please refer to the header files!

•  Example for AVX:

SIMD Intrinsic Class

#include <dvec.h>

// 4 elements per vector * 25 = 100 elements
F64vec4 A[25], B[25], C[25];

for(int i = 0; i < 25; i++)
 C[i] = A[i] + B[i];

28

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Many Ways to Vectorize

Ease	 of	 use	 Compiler:	 	
Auto-‐vectoriza6on	 (no	 change	 of	 code)	

Programmer	 control	

Compiler:	 	
Auto-‐vectoriza6on	 hints	 (#pragma vector,	 …)	

SIMD	 intrinsic	 class	
(e.g.:	 F32vec,	 F64vec,	 …)	

Vector	 intrinsic	
(e.g.:	 _mm_fmadd_pd(…),	 _mm_add_ps(…),	 …)	

Assembler	 code	
(e.g.:	 [v]addps,	 [v]addss,	 …)	

Compiler:	 	
OpenMP*	 4.0	 and	 Intel®	 Cilk™	 Plus	

29

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Why is (automatic) Vectorization not so
easy ?

Using default compilation:

 icc –c vec.c

Compiler 14.0 says
dependence from A to A – no
vectorization.

Compiler 15.0 vectorizes loop

Using pre-15.0 Intel Compiler

icc –c –opt-report test1.c

test1.c(4): (col. 3) remark: loop was not
vectorized: existence of vector
dependence.

test1.c(5): (col. 7) remark: vector
dependence: assumed FLOW
dependence between A line 5 and A line
5.

test1.c(5): (col. 7) remark: vector
dependence: assumed ANTI dependence
between A line 5 and A line 5.

30 9/11/15

float *A;
void vectorize()
{
 int i;
 for (i=0; i<102400; i++)
 A[i] *= 2.0f;
}

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Compiler has to assume the Worst …

Loop Body:

•  Load of A

•  Load of A[i]

•  Multiply with 2.0f

•  Store of A[i]

Recompile with –ansi-alias (14.0 – default for
15.0 now):

•  icc –opt-report –ansi-alias test1.c

§  test1.c(4): (col. 3) remark: LOOP WAS
VECTORIZED.

Add “#pragma ivdep” to the loop.

•  icc –opt-report test1b.c

§  test1b.c(5): (col. 3) remark: LOOP WAS
VECTORIZED.

31 9/11/15

Q: Will the store
modify A?

A: Maybe

The C/C++ standards don’t allow this kind of aliasing while sometimes older
application code rely on this ! The Intel compilers before 14.0 by default accepted
the violation: Switch –ansi-alias had to be used to enforce standard conformance -
since 15.0, -ansi-alias is the default

float *A;
void vectorize()
{
 int i;
 for (i=0; i<102400; i++)
 A[i] *= 2.0f;
}

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

What about this ?

$ icc -c test1c.c –opt-report

test1c.c(10): (col. 5) remark: LOOP WAS VECTORIZED

Since no pointer is involved anymore, there can’t be any aliasing and so
the loop is always vectorized

32 9/11/15

float A[102400];
void vectorize()
{
 int i;
 for (i=0; i<102400; i++)
 A[i] *= 2.0f;
}

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Auto-vectorization of Intel Compilers: Target
Architecture makes a Difference !!

..B1.2:
 vmovupd (%rsp,%rax,8), %ymm0
 vmovupd 32(%rsp,%rax,8), %ymm2
 vmovupd 64(%rsp,%rax,8), %ymm4
 vmovupd 96(%rsp,%rax,8), %ymm6
 vaddpd 8032(%rsp,%rax,8), %ymm2, %ymm3
 vaddpd 8000(%rsp,%rax,8), %ymm0, %ymm1
 vaddpd 8064(%rsp,%rax,8), %ymm4, %ymm5
 vaddpd 8096(%rsp,%rax,8), %ymm6, %ymm7
 vmovupd %ymm1, 16000(%rsp,%rax,8)
 vmovupd %ymm3, 16032(%rsp,%rax,8)
 vmovupd %ymm5, 16064(%rsp,%rax,8)
 vmovupd %ymm7, 16096(%rsp,%rax,8)
 addq $16, %rax
 cmpq $992, %rax
 jb ..B1.2
 ...

Intel® AVX
..B1.2:
 movaps (%rsp,%rax,8), %xmm0
 movaps 16(%rsp,%rax,8), %xmm1
 movaps 32(%rsp,%rax,8), %xmm2
 movaps 48(%rsp,%rax,8), %xmm3
 addpd 8000(%rsp,%rax,8), %xmm0
 addpd 8016(%rsp,%rax,8), %xmm1
 addpd 8032(%rsp,%rax,8), %xmm2
 addpd 8048(%rsp,%rax,8), %xmm3
 movaps %xmm0, 16000(%rsp,%rax,8)
 movaps %xmm1, 16016(%rsp,%rax,8)
 movaps %xmm2, 16032(%rsp,%rax,8)
 movaps %xmm3, 16048(%rsp,%rax,8)
 addq $8, %rax
 cmpq $1000, %rax
 jb ..B1.2
 ...

Intel® SSE4.2

void add(A, B, C)
double A[1000]; double B[1000]; double C[1000];
{
 int i;
 for (i = 0; i < 1000; i++)
 C[i] = A[i] + B[i];
}

subroutine add(A, B, C)
 real*8 A(1000), B(1000), C(1000)
 do i = 1, 1000
 C(i) = A(i) + B(i)
 end do
end

33

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

•  Linux*, OS X*: -x<feature>, Windows*: /Qx<feature>
§  Might enable Intel processor specific optimizations

§  Processor-check added to “main” routine:
Application errors in case SIMD feature missing or non-Intel processor with
appropriate/informative message

•  Linux*, OS X*: -ax<features>, Windows*: /Qax<features>
§  Multiple code paths: baseline and optimized/processor-specific

§  Optimized code paths for Intel processors defined by <features>

§  Multiple SIMD features/paths possible, e.g.: -axSSE2,AVX

§  Baseline code path defaults to –msse2 (/arch:sse2)

§  The baseline code path can be modified by –m<feature> or –x<feature> (/
arch:<feature> or /Qx<feature>)

Basic Vectorization Switches I

34

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

•  Linux*, OS X*: -m<feature>, Windows*: /arch:<feature>
§  Neither check nor specific optimizations for Intel processors:

Application optimized for both Intel and non-Intel processors for selected SIMD feature

§  Missing check can cause application to fail in case extension not available

•  Default for Linux*: -msse2, Windows*: /arch:sse2:

§  Activated implicitly

§  Implies the need for a target processor with at least Intel® SSE2

•  Default for OS X*: -xsse3 (IA-32), -xssse3 (Intel® 64)

•  For 32 bit compilation, –mia32 (/arch:ia32) can be used in case target processor does not support
Intel® SSE2 (e.g. Intel® Pentium® 3 or older)

Basic Vectorization Switches II

35

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

•  Special switch for Linux*, OS X*: -xHost, Windows*: /QxHost
§  Compiler checks SIMD features of current host processor (where built on) and makes use of latest SIMD feature

available

§  Code only executes on processors with same SIMD feature or later as on build host

§  As for -x<feature> or /Qx<feature>, if “main” routine is built with
–xHost or /QxHost the final executable only runs on Intel processors

Basic Vectorization Switches III

36

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

•  SIMD features can also be set on a function/subroutine level via pragmas/directives:
§  C/C++:

#pragma intel optimization_parameter target_arch=<CPU>

§  Fortran:
!DIR$ ATTRIBUTES OPTIMIZATION_PARAMETER:TARGET_ARCH= <CPU>

•  Examples:

§  C/C++:

§  Fortran:

Vectorization Pragma/Directive

#pragma intel optimization_parameter target_arch=AVX
void optimized_for_AVX()
{
 …
}

function optimized_for_AVX()
!DIR$ ATTRIBUTES OPTIMIZATION_PARAMETER:TARGET_ARCH=AVX
 …
end function

37

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

•  Disable vectorization:
§  Globally via switch:

Linux*, OS X*: -no-vec, Windows*: /Qvec-

§  For a single loop:
C/C++: #pragma novector, Fortran: !DIR$ NOVECTOR

§  Compiler still can use some SIMD features

•  Using vectorization:
§  Globally via switch (default for optimization level 2 and higher):

Linux*, OS X*: -vec, Windows*: /Qvec

§  Enforce for a single loop (override compiler efficiency heuristic) if semantically correct:
C/C++: #pragma vector always, Fortran: !DIR$ VECTOR ALWAYS

§  Influence efficiency heuristics threshold:
Linux*, OS X*: -vec-threshold[n]
Windows*: /Qvec-threshold[[:]n]
n: 100 (default; only if profitable) … 0 (always)

Control Vectorization I

38

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

•  Verify vectorization:
§  Globally:

Linux*, OS X*: -opt-repot, Windows*: /Qopt-report

§  Abort compilation if loop cannot be vectorized:
C/C++: #pragma vector always assert
Fortran: !DIR$ VECTOR ALWAYS ASSERT

•  Advanced:

§  Ignore vector dependencies (IVDEP):
C/C++: #pragma ivdep
Fortran: !DIR$ IVDEP

§  “Enforce” vectorization:
C/C++: #pragma simd
Fortran: !DIR$ SIMD

•  We’ll address those later in more detail

Control Vectorization II

39

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

•  Assembler code inspection (Linux*, OS X*: -S, -Fa, Windows*: /Fa):
§  Most reliable way and gives all details of course

§  Check for scalar/packed or (E)VEX encoded instructions:
Assembler listing contains source line numbers for easier navigation

•  Using Intel® VTune™ Amplifier:
§  Different events can be selected to measure use of vector units, e.g.

FP_COMP_OPS_EXE.SSE_PACKED_[SINGLE|DOUBLE]

§  For Intel® MIC Architecture: Use metric Vectorization Intensity

•  Difference method:
1.  Compile and benchmark with –no-vec//Qvec- or on a loop by loop basis via #pragma novector/!DIR$

NOVECTOR

2.  Compile and benchmark with selected SIMD feature

3.  Compare runtime differences

Validating Vectorization Success I

40

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

•  Intel® Software Development Emulator:
§  Emulate (future) Intel® Architecture Instruction Set Extensions (e.g. Intel® AVX-512, Intel® MPX, …)

§  Use the “mix histogramming tool” to check for instructions using vectors

§  Also possible to debug the application while emulated

§  Source:
https://software.intel.com/en-us/articles/intel-software-development-emulator

•  Intel® Architecture Code Analyzer:
§  Statically analyze the data dependency, throughput and latency of code snippets (aka. kernels)

§  Considers ideal front-end, out-of-order engine and memory hierarchy conditions

§  Identifies binding of the kernel instructions to the processor ports & critical path

§  Source:
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer/

Validating Vectorization Success II

41

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

•  Optimization report:
§  Linux*, OS X*: -opt-report=<n>, Windows*: /Qopt-report:<n>

n: 0, …, 5 specifies level of detail; 2 is default (more later)

§  Prints optimization report with vectorization analysis

§  Also known as vectorization report for Intel® C++/Fortran Compiler before 15.0:
Linux*, OS X*: -vec-report=<n>, Windows*: /Qvec-report:<n>
Deprecated, don’t use anymore – use optimization report instead!

•  Optimization report phase:
§  Linux*, OS X*: -opt-report-phase=<p>,

Windows*: /Qopt-report-phase:<p>

§  <p> is all by default; use vec for just the vectorization report

•  Optimization report file:
§  Linux*, OS X*: -opt-report-file=<f>, Windows*: /Qopt-report-file:<f>

§  <f> can be stderr, stdout or a file (default: *.optrpt)

Validating Vectorization Success III

42

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Example novec.f90:

Optimization Report Example

1: subroutine fd(y)
2: integer :: i
3: real, dimension(10), intent(inout) :: y
4: do i=2,10
5: y(i) = y(i-1) + 1
6: end do
7: end subroutine fd

$ ifort novec.f90 –opt-report=5
ifort: remark #10397: optimization reports are generated in *.optrpt
files in the output location

$ cat novec.optrpt
…
LOOP BEGIN at novec.f90(4,5)
 remark #15344: loop was not vectorized: vector dependence prevents
vectorization
 remark #15346: vector dependence: assumed FLOW dependence between y
line 5 and y line 5
 remark #25436: completely unrolled by 9
LOOP END
…

43

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Most frequent reasons:

•  Data dependence

•  Alignment

•  Unsupported loop structure

•  Non-unit stride access

•  Function calls/in-lining

•  Non-vectorizable Mathematical functions

•  Data types

•  Control depencence

•  Bit masking

All those are common!

Reasons for Vectorization Fails I

44

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Other reasons:

•  Outer loop of loop nesting cannot be vectorized

•  Loop body too complex (register pressure)

•  Vectorization seems inefficient (low trip count)

•  Many more

Those are less likely!

Reasons for Vectorization Fails II

45

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Dependence is a key term for vectorization:

•  Vectorization is a transformation changing the execution order of statements

•  The execution order of statements as defined by the program source code can be changed as long as
the dependencies between all statements are preserved

A dependence either is a data or control dependence :

 Data dependence from
 S1 to S3 and from S2 to S3

 Control dependence from
 S1 to S2

Data/Control Dependence

S1 if (T != 0)
S2 A = A / T

S1 A = 3.0
S2 B = 4.0
S3 C = sqrt(A**2, B**2)

46

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Definition of data dependence:

There is a data dependence from statement S1 to statement S2
(written as S1 δ S2) if and only if:

•  There is a potential execution flow from S1 to S2

•  S1 and S2 reference a common memory location S1 or S2 write to

Note: S1 and S2 can be the very same statement

Data dependence classification:

•  S1 δF S2: S1 writes, S2 reads: Flow Dependence

•  S1 δA S2: S1 reads, S2 writes: Anti Dependence

•  S1 δO S2: S1 writes, S2 writes: Output Dependence

Data Dependence

S1 X = …
S2 … = X

S1 … = X
S2 X = …

S1 X = …
S2 X = …

47

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Dependencies in loops become more obvious by virtually unrolling the loop:

In case the dependency requires execution of any previous loop iteration, we call it loop-carried
dependence. Otherwise, loop-independent dependence.

E.g.:

 S1 δF S2: Loop-independent dependence

 S2 δF S2: Loop-carried dependence

Data Dependence in Loops

S1 A(2) = A(1) + B(1)
S1 A(3) = A(2) + B(2)
S1 A(4) = A(3) + B(3)
S1 A(5) = A(4) + B(4)
 ...

 DO I = 1, N
S1 A(I+1) = A(I) + B(I)
 ENDDO

S1 δF S1

 DO I = 1, 10000
S1 A(I) = B(I) * 17

S2 X(I+1) = X(I) + A(I)
 ENDDO

48

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Vectorization of a loop is similar to parallelization (loop iterations executed in parallel), however not
identical:

•  Parallelization requires all iterations to be independent to be executed in any order:
Loop-carried dependencies are not permitted; loop-independent dependencies are OK

•  Vectorization is applied to single operations of the loop body:
The same operations can be applied for multiple iterations at once if they follow serial order; both loop-
carried & loop-independent dependencies need to be taken into account!

Example: Loop cannot be parallelized but vectorization possible:

Dependence and Vectorization

DO I = 1, N
 A(I + 1) = B(I) + C
 D(I) = A(I) + E
END DO

A(2:N + 1) = B(1:N) + C
D(1:N) = A(1:N) + E

49

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

A loop can be vectorized if and only if there is no cyclic dependency chain between the statements of the
loop body!

Example:
Although we have a cyclic dependency chain,
the loop can be vectorized for SSE or AVX in
case of VL being max. 3 times the data type
size of array A.

Key Theorem for Vectorization

DO I = 1, N
 A(I + 3) = A(I) + C
END DO

50

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Caveat with using unaligned memory access:

•  Unaligned loads and stores can be very slow due to higher I/O because two cache-lines need to be
loaded/stored (not always, though)

•  Compiler can mitigate expensive unaligned memory operations by using two partial loads/stores – still
slow
(e.g. two 64 bit loads instead of one 128 bit unaligned load)

•  The compiler can use “versioning” in case alignment is unclear:
Run time checks for alignment to use fast aligned operations if possible, the slower operations
otherwise – better but limited

Best performance: User defined aligned memory

•  16 byte for SSE

•  32 byte for AVX

•  64 byte for Intel® MIC Architecture & Intel® AVX-512

Alignment

51

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

•  Aligned heap memory allocation by intrinsic/library call:
§  void* _mm_malloc(int size, int base)

§  Linux*, OS X* only:
int posix_memaligned(void **p, size_t base, size_t size)

•  #pragma vector [aligned|unaligned]
§  Only for Intel Compiler

§  Asserts compiler that aligned memory operations can be used for all data accesses in loop following directive

§  Use with care:
The assertion must be satisfied for all(!) data accesses in the loop!

Alignment Hints for C/C++ I

52

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

•  Align attribute for variable declarations:
§  Linux*, OS X*, Windows*: __declspec(align(base)) <var>

§  Linux*, OS X*: <var> __attribute__((aligned(base)))

§  Portability caveat:
__declspec is not known for GCC and __attribute__ not for Microsoft Visual Studio*!

•  Hint that start address of an array is aligned (Intel Compiler only):
__assume_aligned(<array>, base)

Alignment Hints for C/C++ II

53

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

•  !DIR$ VECTOR [ALIGNED|UNALIGNED]
§  Asserts compiler that aligned memory operations can be used for all data accesses in loop following directive

§  Use with care:
The assertion must be satisfied for all(!) data accesses in the loop!

•  Hint that an entity in memory is aligned:
!DIR$ ASSUME_ALIGNED address1:base [, address2:base] ...

•  Align variables:
!DIR$ ATTRIBUTES ALIGN: base :: variable

•  Align data items globally:
Linux*, OS X*: -align <a>, Windows*: /align:<a>
§  <a> can be array<n>byte with <n> defining the alignment for arrays

§  Other values for <a> are also possible, e.g.: [no]commons, [no]records, …

All are Intel® Fortran Compiler only directives and options!

Alignment Hints for Fortran

54

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

•  Instructions with unaligned access are very slow except for SSE vector
memory operations (128 bit) on 2nd and 3rd generation Intel® Core™
processors (as fast as aligned access)

•  For AVX vectors (256 bit) unaligned accesses are slower compared to their
aligned accesses, even on 3rd generation Intel® Core™ processors

•  Independent on processor generation and instruction set features, one
unaligned instructions can replace a sequence of multiple instructions:

§  Fewer instructions result in less cycles, better use of instruction-cache and less
power consumption

§  To benefit make sure to at least use latest SSE/AVX feature set
(default for Intel® C++/Fortran Compiler is Intel® SSE2)

•  Attention:
When using SSE instructions directly (e.g. intrinsics) any aligned move on
unaligned data still fails!

Alignment & Processor Architecture

55

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Compiled both cases using –xAVX:

More efficient if aligned:

Alignment Impact: Example

void mult(double* a, double* b, double* c)
{
 int i;
#pragma vector aligned
 for (i = 0; i < N; i++)
 c[i] = a[i] * b[i];
}

..B2.2:
 vmovupd (%rdi,%rax,8), %ymm0
 vmulpd (%rsi,%rax,8), %ymm0, %ymm1
 vmovntpd %ymm1, (%rdx,%rax,8)
 addq $4, %rax
 cmpq $1000000, %rax
 jb ..B2.2

void mult(double* a, double* b, double* c)
{
 int i;
#pragma vector unaligned
 for (i = 0; i < N; i++)
 c[i] = a[i] * b[i];
}

..B2.2:
 vmovupd (%rdi,%rax,8), %xmm0
 vmovupd (%rsi,%rax,8), %xmm1
 vinsertf128 $1, 16(%rsi,%rax,8), %ymm1, %ymm3
 vinsertf128 $1, 16(%rdi,%rax,8), %ymm0, %ymm2
 vmulpd %ymm3, %ymm2, %ymm4
 vmovupd %xmm4, (%rdx,%rax,8)
 vextractf128 $1, %ymm4, 16(%rdx,%rax,8)
 addq $4, %rax
 cmpq $1000000, %rax
 jb ..B2.2

56

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

•  Loops where compiler does not know the iteration count:
§  Upper/lower bound of a loop are not loop-invariant

§  Loop stride is not constant

§  Early bail-out during iterations (e.g. break, exceptions, etc.)

§  Too complex loop body conditions for which no SIMD feature instruction exists

§  Loop dependent parameters are globally modifiable during iteration
(language standards require load and test for each iteration)

•  Transform is possible, e.g.:

Unsupported Loop Structure

struct _x { int d; int bound; };

void doit(int *a, struct _x *x)
{

 for(int i = 0; i < x->bound; i++)
 a[i] = 0;
}

struct _x { int d; int bound; };

void doit(int *a, struct _x *x)
{
 int local_ub = x->bound;
 for(int i = 0; i < local_ub; i++)
 a[i] = 0;
}

57

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

•  Non-consecutive memory locations are being accessed in the loop

•  Vectorization works best with contiguous memory accesses

•  Vectorization still be possible for non-contiguous memory access, but…
§  Data arrangement operations might be too expensive

(e.g. access pattern linear/regular)

§  Vectorization report issued when too expensive:
Loop was not vectorized: vectorization possible but seems inefficient

•  Examples:

Non-Unit Stride Access

for(i = 0; i <= MAX; i++) {
 for(j = 0; j <= MAX; j++) {
 D[i][j] += 1; // Unit stride
 D[j][i] += 1; // Non-unit stride but linear
 A[j * j] += 1; // Non-unit stride
 A[B[j]] += 1; // Non-unit stride (scatter)
 if(A[MAX - j]) == 1) last = j; // Non-unit stride
 }
}

58

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

•  Function calls prevent vectorization in general

•  Exceptions:

§  Call of intrinsic routines such as mathematical functions:
Implementation is known to compiler

§  Successful in-lining of called routine:
IPO enables in-lining of routines across source files

Function Calls/In-lining I

for (i = 1; i < nx; i++) {
 x = x0 + i * h;
 sumx = sumx + func(x, y, xp, yp);
}

// Defined in different compilation unit!
float func(float x, float y, float xp, float yp)
{
 float denom;
 denom = (x - xp) * (x - xp) + (y - yp) * (y - yp);
 denom = 1. / sqrt(denom);
 return denom;
}

59

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

•  Success of in-lining can be verified using the optimization report:
Linux*, OS X*: -opt-report=<n> -opt-report-phase=ipo
Windows*: /Qopt-report:<n> /Qopt-report-phase:ipo

•  Intel compilers offer a large set of switches, directives and language extensions to control in-lining
globally or locally, e.g.:

§  #pragma [no]inline (C/C++), !DIR$ [NO]iNLINE (Fortran):
Instructs compiler that all calls in the following statement can be in-lined or may never be in-lined

§  #pragma forceinline (C/C++), !DIR$ FORCEINLINE (Fortran):
Instructs compiler to ignore the heuristic for in-lining and to inline all calls in the following statement

§  See section “Inlining Options” in compiler manual for full list of options

•  IPO offers additional advantages to vectorization
§  Inter-procedural alignment analysis

§  Improved (more precise) dependency analysis

Function Calls/In-lining II

60

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

•  Calls to most mathematical functions in a loop body can be vectorized using “Short Vector Math
Library”:

§  Short Vector Math Library (libsvml) provides vectorized implementations of different mathematical functions

§  Optimized for latency compared to the VML library component of Intel® MKL which realizes same functionality
but which is optimized for throughput

•  Routines in libsvml can also be called explicitly, using intrinsics
(see manual)

•  These mathematical functions are currently supported:

Vectorizable Mathematical Functions

acos acosh asin asinh atan atan2 atanh cbrt
ceil cos cosh erf erfc erfinv exp exp2
fabs floor fmax fmin log log10 log2 pow
round sin sinh sqrt tan tanh trunc

61

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

•  Most frequent reason of failing vectorization is Dependence:
Minimize dependencies among iterations by design!

•  Alignment: Align your arrays/data structures

•  Function calls in loop body: Use aggressive in-lining (IPO)

•  Complex control flow/conditional branches:
Avoid them in loops by creating multiple versions of loops

•  Unsupported loop structure: Use loop invariant expressions

•  Not inner loop:
Manual loop interchange possible? Intel Compilers 12.1 and higher can do outer loop vectorization
now as well!

•  Mixed data types:
Avoid type conversions in rare cases Intel Compiler cannot do automatically

How to Succeed in Vectorization?

62

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

•  Non-unit stride between elements:
Possible to change algorithm to allow linear/consecutive access?

•  Loop body too complex reports: Try splitting up the loops!

•  Vectorization seems inefficient reports:
Enforce vectorization, benchmark and verify results!

How to Succeed in Vectorization? II

63

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

•  VECTORLENGTH(n1 [,n2] …)
n1, n2, … must be 2, 4, 8, …: The compiler can assume a safe vectorization for a vector length of n1,
n2, …

•  PRIVATE(v1, v2, …)
Variables private to each iteration; supersets (extensions):
§  FIRSTPRIVATE(…): initial value is broadcast to all private instances

§  LASTPRIVATE(…): last value is copied out from the last iteration instance

•  LINEAR(v1:step1, v2:step2, …)
For every iteration of original scalar loop v1 is incremented by step1, … etc. Therefore it is
incremented by step1 * VL for the vectorized loop.

•  REDUCTION(operator:v1, v2, …)
Variables v1, v2, … etc. are reduction variables for operation operator

•  [NO]ASSERT
Warning (default: NOASSERT) or error with failed vectorization

!DIR$ SIMD Clauses for Fortran

64

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Problem:

“Enforced” vectorization still fails

with the following message:

loop was not vectorized: conditional assignment to a scalar

loop was not vectorized with "simd"

Solution:

Clarify that scalar is a reduction with
operator +.

Attention:

Same as for OpenMP* reduction variables can only be associated to one operator each!

!DIR$ SIMD Example for Fortran

!DIR$ SIMD
do i = 1,n
 if (a(i) .GT. 0) then
 sum2 = sum2 + a(i) * b(i)
 else
 sum2 = sum2 + a(i)
 endif
enddo

!DIR$ SIMD REDUCTION(+:sum2)
do i = 1,n
 if (a(i) .GT. 0) then
 sum2 = sum2 + a(i) * b(i)
 else
 sum2 = sum2 + a(i)
 endif
enddo

65

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Differences between IVDEP & SIMD pragmas/directives:

•  #pragma ivdep (C/C++) or !DIR$ IVDEP (Fortran)

§  Ignore vector dependencies (IVDEP): Ignore assumed but not proven dependencies for a loop

§  Example:

•  #pragma simd (C/C++) or !DIR$ SIMD (Fortran):
§  Aggressive version of IVDEP: Ignores all dependencies inside a loop and ignore efficiency heursitic

§  It’s an imperative that forces the compiler try everything to vectorize

§  Attention: This can break semantically correct code!
However, it can vectorize code legally in some cases that wouldn’t be possible otherwise!

IVDEP vs. SIMD Pragma/Directives

void foo(int *a, int k, int c, int m)
{
#pragma ivdep
 for (int i = 0; i < m; i++)
 a[i] = a[i + k] * c;
}

66

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

•  OpenMP* 4.0 ratified July 2013

•  Specifications:
http://openmp.org/wp/openmp-specifications/

•  Well established in HPC – parallelism is critical there

•  Extension to C/C++ & Fortran

•  New features with 4.0:
§  Target Constructs: Accelerator support
§  Distribute Constructs/Teams: Better hierarchical assignment of workers
§  SIMD (Data Level Parallelism!)
§  Task Groups/Dependencies: Runtime task dependencies & synchronization
§  Affinity: Pinning workers to cores/HW threads
§  Cancelation Points/Cancel: Defined abort locations for workers
§  User Defined Reductions: Create own reductions

OpenMP* 4.0

67

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

•  Pragma SIMD:
The simd construct can be applied to a loop to indicate that the loop can be transformed into a SIMD loop
(that is, multiple iterations of the loop can be executed concurrently using SIMD instructions).
[OpenMP* 4.0 API: 2.8.1]

•  Syntax:
#pragma omp simd [clause [,clause]…]  
 for-loop

•  For-loop has to be in “canonical loop form” (see OpenMP 4.0 API:2.6)

§  Random access iterators required for induction variable
(integer types or pointers for C++)

§  Limited test and in-/decrement for induction variable

§  Iteration count known before execution of loop

§  …

Pragma SIMD

68

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

•  safelen(n1[,n2] …)
n1, n2, … must be power of 2: The compiler can assume a vectorization for a vector length of n1, n2, …
to be safe

•  private(v1, v2, …): Variables private to each iteration
§  lastprivate(…): last value is copied out from the last iteration instance

•  linear(v1:step1, v2:step2, …)
For every iteration of original scalar loop v1 is incremented by step1, … etc. Therefore it is incremented
by step1 * vector length for the vectorized loop.

•  reduction(operator:v1, v2, …)
Variables v1, v2, … etc. are reduction variables for operation operator

•  collapse(n): Combine nested loops – collapse them

•  aligned(v1:base, v2:base, …): Tell variables v1, v2, … are aligned; (default is architecture
specific alignment)

Pragma SIMD Clauses

69

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Ignore data dependencies, indirectly mitigate control flow dependence & assert alignment:

Pragma SIMD Example

void vec1(float *a, float *b, int off, int len)
{
#pragma omp simd safelen(32) aligned(a:64, b:64)
 for(int i = 0; i < len; i++)
 {
 a[i] = (a[i] > 1.0) ?
 a[i] * b[i] :
 a[i + off] * b[i];
 }
}

LOOP BEGIN at simd.cpp(4,5)
 remark #15388: vectorization support: reference a has aligned access [simd.cpp(6,9)]
 remark #15388: vectorization support: reference b has aligned access [simd.cpp(6,9)]
 …
 remark #15301: OpenMP SIMD LOOP WAS VECTORIZED
 …
LOOP END

70

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

•  SIMD-Enabled Function (aka. declare simd construct):
The declare simd construct can be applied to a function […] to enable the creation of one or more
versions that can process multiple arguments using SIMD instructions from a single invocation from a
SIMD loop.
[OpenMP* 4.0 API: 2.8.2]

•  Syntax:
#pragma omp declare simd [clause [,clause]…]  
 function definition or declaration

•  Intent:
Express work as scalar operations (kernel) and let compiler create a vector version of it. The size of
vectors can be specified at compile time (SSE, AVX, …) which makes it portable!

•  Remember:
Both the function definition as well as the function declaration (header file) need to be specified like this!

SIMD-Enabled Functions

71

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

•  simdlen(len)
len must be power of 2: Allow as many elements per argument
(default is implementation specific)

•  linear(v1:step1, v2:step2, …)
Defines v1, v2, … to be private to SIMD lane and to have linear (step1, step2, …) relationship when
used in context of a loop

•  uniform(a1, a2, …)
Arguments a1, a2, … etc. are not treated as vectors (constant values across SIMD lanes)

•  inbranch, notinbranch: SIMD-enabled function called only inside branches or never

•  aligned(a1:base, a2:base, …): Tell arguments a1, a2, … are aligned; (default is architecture
specific alignment)

SIMD-Enabled Function Clauses

72

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Ignore data dependencies, indirectly mitigate control flow dependence & assert alignment:

SIMD-Enabled Function Example

#pragma omp declare simd simdlen(16) notinbranch uniform(a, b, off)
float work(float *a, float *b, int i, int off)
{
 return (a[i] > 1.0) ? a[i] * b[i] : a[i + off] * b[i];
}

void vec2(float *a, float *b, int off, int len)
{
#pragma omp simd safelen(64) aligned(a:64, b:64)
 for(int i = 0; i < len; i++)
 {
 a[i] = work(a, b, i, off);
 }
}

INLINE REPORT: (vec2(float *, float *, int, int)) [4/9=44.4%] simd.cpp(8,1)
 -> INLINE: (12,16) work(float *, float *, int, int) (isz = 18) (sz = 31)

LOOP BEGIN at simd.cpp(10,5)
 remark #15388: vectorization support: reference a has aligned access [simd.cpp(4,20)]
 remark #15388: vectorization support: reference b has aligned access [simd.cpp(4,20)]
 …
 remark #15301: OpenMP SIMD LOOP WAS VECTORIZED
 …
LOOP END

73

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Target Constructs (Fortran)

!$omp target [clause[[,] clause],...] new-line
 structured-block

!$omp end target

 Clauses: device(scalar-integer-expression)
 map(alloc | to | from | tofrom: list)
 if(scalar-expr)

!$omp target data [clause[[,] clause],...] new-line
 structured-block

!$omp end target data
 Clauses: device(scalar-integer-expression)
 map(alloc | to | from | tofrom: list)
 if(scalar-expr)

!$omp target update [clause[[,] clause],...] new-line

 Clauses: to(list)
 from(list)
 device(integer-expression)
 if(scalar-expression)

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

SIMD loops: syntax

#pragma omp simd [clauses]

 for-loop

!$omp simd [clauses]

 do-loops

[!$omp end simd]

Loop has to be in “Canonical loop form”
§  as do/for worksharing

 75

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

SIMD loop clauses

safelen (length)
§  Maximum number of iterations that can run concurrently without breaking a dependence

§  in practice, maximum vector length

linear (list[:linear-step])
§  The variable value is in relationship with the iteration number

§  xi = xorig + i * linear-step

aligned (list[:alignment])
§  Specifies that the list items have a given alignment

§  Default is alignment for the architecture

private (list)
lastprivate (list)
reduction (operator:list)
collapse (n)

76

Same as existing
clauses

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

SIMD loop example

double pi()

{

 double pi = 0.0;
 double t;

#pragma omp simd private(t) reduction(+:pi)

 for (i=0; i<count; i++) {

 t = (double)((i+0.5)/count);

 pi += 4.0/(1.0+t*t);

 }

 pi /= count

 return pi;

}

77

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

The following compilers support OpenMP* 4.0:

-  GNU* GCC 4.9:
4.9 for C/C++ (4.9.1 for Fortran); no accelerator support (yet)

-  clang/LLVM 3.5:
Not official yet but development branch exists: http://clang-omp.github.io/

-  Intel® C++/Fortran Compiler:
Beginning with 14.0; full 15.0 (except user defined reductions)

SIMD extensions require at least –fopenmp-simd (or –fopenmp)!

OpenMP* runtime is not needed, though.

OpenMP* 4.0: Compilers

78

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

•  Intel® C++ Compiler and Intel® Fortran Compiler provide sophisticated and flexible support for
vectorization

•  They also provide a rich set of reporting features that help verifying vectorization and optimization in
general

•  Directives and compiler switches permit fine-tuning for vectorization

•  Vectorization can even be enforced for certain cases where language standards are too restrictive

•  Understanding of concepts like dependency and alignment is required to take advantage from SIMD
features

•  Intel® C++/Fortran Compiler can create multi-version code to address a broad range of processor
generations, Intel and non-Intel processors and individually exploiting their feature set

Summary

79

Intel Confidential — Do Not Forward
80

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Legal Disclaimer & Optimization Notice
INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL
OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL
ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined with other products.

Copyright © , Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Xeon Phi, Core, VTune, and Cilk are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are
not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

