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RICHARD SKEMP
March 10, 1919 – June 22, 1995
A Tribute by David Tall and Michael Thomas

Richard Skemp was a unique figure in
mathematics education – a significant
inspiration to a vast number of
teachers and educators who have
gained insight through reading his
works and a moving spirit in the
foundation of the International Group
for the Psychology of Mathematics
Education.

His background peculiarly fitted
him to the role of a father figure in the
psychology of mathematics education,
for he was qualified as a psychologist,
a mathematician and an educator, and
one should also add as a practising
teacher, an empirical researcher, and a
theorist.
He was born in Bristol on March 10th, 1919, the son of Professor A.
R. Skemp of the University of Bristol. He was educated as a
Foundation scholar at Wellington College, Berkshire (1932–7), taking
up an Open Scholarship in Mathematics at Hertford College, Oxford in
1937. The war intervened and he joined the Royal Signals, serving in
India and attaining the rank of Captain before returning at the end of
the war, sitting nervously on the bomb doors of a Lancaster bomber.
He then completed his degree at Hertford College (1945–1947) and
became a mathematics teacher for two years at Oundle School,
followed by two years at Rye St Antony, Oxford. His increasing
interest in how children learn caused him to return to Hertford College
once again in 1952 at the age of 33 to study for a second bachelor’s
degree in psychology. He completed his PhD in psychology at
Manchester University in 1959 where he was first a Lecturer in Psych-
ology (1955–1962) and subsequently Senior Lecturer (1962–1973),
directing the Child Study Unit. In 1973, at the age of 54, he became
Professor of Educational Theory at the University of Warwick, where
he remained until his retirement in 1986.

Richard pictured at Karlsruhe,
1976, at the International
Congress of Mathematics

Education.
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Richard prided himself on the quality of his output, polishing his work
for some time before releasing it for publication. His mould-breaking
paper “Instrumental understanding and Relational understanding” was
presented in talks for several years before it reached its final form; it is
no wonder it continues to be a seminal paper so many years after it
was written.

Richard had a special way of dealing with students’ work. For
instance, he would read a piece of writing with tape-recorder in hand,
making comments that he passed on to the student to study at leisure.
It was so valuable to have his on-going commentary and the possibility
of re-hearing subtle comments several times over.

He took delight in communicating with people of all ages,
especially young children, whom he treated with respect as if they
were his colleagues. His desire to communicate is evident in all his
writings, both practical and theoretical. He aimed for elegant, simple
expression of profound ideas, declaring that, “there is nothing as prac-
tical as a good theory.” He exemplified this duality of purpose by
producing both theories of learning, including Intelligence, Learning
and Action (Wiley, 1979) and corresponding practical curriculum
materials such as Understanding Mathematics at secondary level and
Mathematics in the Primary School.

He had a special gift for expressing the essence of ideas in simple
language. For instance, he said “it is easy to make simple things
difficult but difficult to make hard things easy.” He gently criticised
curriculum reformers who introduced the “new mathematics” as a
logical development by saying that this “teaches the product of
mathematical thought, not the process of mathematical thinking.”

Many of his ideas have passed into the folk-lore of the subject,
especially his use of the distinction between “instrumental” and
“relational understanding”. But there are also other things that many
find especially valuable, for instance, his simple descriptions of the
notions of “concept” and “schema”, his use of the terms “expansion”
and “reconstruction” of schemas instead of “assimilation” and
“accommodation”, his “three modes of building and testing mathem-
atical concepts”, his ideas on “reflective thinking” and his links
between the cognitive and affective sides of mathematics in his theory
of goals and anti-goals.

What is less well-known is that for 21 years he spent five weeks
every summer running camps for up to 45 boys a week, taking delight
not only in teaching camping, cooking and sailing, but also leading the
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camp-fire singing in his mellifluous, well-rounded voice. Sean Neill –
who was one of those boys, and later became a lecturer in education
with Richard at Warwick – wrote:

At that time Milford Haven was little developed, and the cottage at Burton
looked out over a deserted estuary. The steep hillside was covered with
bracken, with some shelter from patches of young trees. Five or six bell-
tents accommodated the boys; cooking was by primus stoves of uncertain
age and temper, and several tents regularly fried their tent-pole for breakfast.
As four of the tents were pitched in a line down the slope, when the weather
broke, gravity asserted itself and the bottom tent filled up with peaty slurry
and boys in wet sleeping bags. (In later years the tents were set on level
standings and cooking was done outside, which considerably reduced the
sporting element.)

Richard will be remembered with affection by those who knew him,
not only for the rich legacy of ideas he has left in the psychology of
mathematics education but also for his unfailing old-fashioned English
courtesy and charm, and for his clarity in presentation which made him
a great favourite on international speaking tours.

He continued to lecture around the world until he was taken ill at
the end of 1994 and diagnosed in January 1995 with non-Hodgkin’s
lymphoma. He passed peacefully away at noon on Thursday June
22nd with his wife Valerie at his side. He was laid to rest on June 27th.
It was a beautiful service, with a touching eulogy by a minister who
knew him well, ending with a children’s hymn, reflecting Richard’s care
and joy in communicating with young children. After the service his
relatives and a few friends had tea and cakes in the warm sunshine at
Pickwick’s Cake Shop, where he had delighted in going regularly for
cream cakes, a particular favourite since he was a child.

We are conscious of the personal effect he had, both those who
were privileged to know him, and the many more who know him
through his publications and seminal ideas. As representatives of
successive generations of his research students—David Tall (as his last
PhD student) and Michael Thomas (as a student of David Tall), we are
honoured to present this tribute to his memory.

Richard Skemp was a great pioneer theorist in the Psychology of
Learning Mathematics. With his passing a chapter closes, but his
legacy lives on.
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Relational Understanding and
Instrumental Understanding

Richard R. Skemp
Department of Education, University of Warwick

Faux Amis

Faux amis is a term used by the French to describe words which are
the same, or very alike, in two languages, but whose meanings are
different. For example:

French word Meaning in English
histoire story, not history
libraire bookshop, not library
chef head of any organisation, not only chief cook
agrément pleasure or amusement, not agreement
docteur doctor (higher degree) not medical practitioner
médecin medical practitioner, not medicine
parent relations in general, including parents

One gets faux amis between English as spoken in different parts of the
world. An Englishman asking in America for a biscuit would be given
what we call a scone. To get what we call a biscuit, he would have to
ask for a cookie. And between English as used in mathematics and in
everyday life there are such words as field, group, ring, ideal.

A person who is unaware that the word he is using is a faux ami
can make inconvenient mistakes. We expect history to be true, but not
a story. We take books without paying from a library, but not from a
bookshop; and so on. But in the foregoing examples there are cues
which might put one on guard: difference of language, or of country, or
of context.

If, however, the same word is used in the same language, country
and context, with two meanings whose difference is non-trivial but as
basic as the difference between the meaning of (say) ‘histoire’ and
‘story’, which is a difference between fact and fiction, one may expect
serious confusion. Two such words can be identified in the context of
mathematics; and it is the alternative meanings attached to these words,
each by a large following, which in my belief are at the root of many of
the difficulties in mathematics education today.
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One of these is ‘understanding’. It was brought to my attention some
years ago by Stieg Mellin-Olsen, of Bergen University, that there are in
current use two meanings of this word. These he distinguishes by
calling them ‘relational understanding’ and ‘instrumental understand-
ing’. By the former is meant what I have always meant by understand-
ing, and probably most readers of this article: knowing both what to do
and why. Instrumental understanding I would until recently not have
regarded as understanding at all. It is what I have in the past described
as ‘rules without reasons’, without realising that for many pupils and
their teachers the possession of such a rule, and ability to use it, was
why they meant by ‘understanding’.

Suppose that a teacher reminds a class that the area of a rectangle is
given by A L B= ¥ . A pupil who has been away says he does not
understand, so the teacher gives him an explanation along these lines.
“The formula tells you that to get the area of a rectangle, you multiply
the length by the breadth.” “Oh, I see,” says the child, and gets on with
the exercise. If we were now to say to him (in effect) “You may think
you understand, but you don’t really,” he would not agree. “Of course
I do. Look; I’ve got all these answers right.” Nor would he be pleased
at our devaluing of his achievement. And with his meaning of the word,
he does understand.

We can all think of examples of this kind: ‘borrowing’ in
subtraction, ‘turn it upside down and multiply’ for division by a
fraction, ‘take it over to the other side and change the sign’, are obvious
ones; but once the concept has been formed, other examples of instru-
mental explanations can be identified in abundance in many widely
used texts. Here are two from a text used by a former direct-grant
grammar school, now independent, with a high academic standard.

Multiplication of fractions To multiply a fraction by a fraction, multiply the two
numerators together to make the numerator of the product, and the two denominators
to makes its denominator.

E.g. 2
3

4
5

2 4
3 5

8
15 of = =¥

¥

3
5

10
13

30
65

6
13¥ = =

The multiplication sign ¥  is generally used instead of the word ‘of ’.

Circles The circumference of a circle (that is its perimeter, or the length of its
boundary) is found by measurement to be a little more than three times the length of
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its diameter. In any circle the circumference is approximately 3.1416 times the
diameter, which is roughly 3 1

7 times the diameter. Neither of these figures is exact,
as the exact number cannot be expressed either as a fraction or a decimal. The number
is represented by the Greek letter .

Circumference = d or 2 r,
Area = r2.

The reader is urged to try for himself this exercise of looking for and
identifying examples of instrumental explanations, both in texts and in
the classroom. This will have three benefits. (i) For persons like the
writer, and most readers of this article, it may be hard to realise how
widespread is the instrumental approach. (ii) It will help, by repeated
examples, to consolidate the two contrasting concepts. (iii) It is a good
preparation for trying to formulate the difference in general terms.
Result (i) is necessary for what follows in the rest of the present
section, while (ii) and (iii) will be useful for the others.

If it is accepted that these two categories are both well-filled, by
those pupils and teachers whose goals are respectively relational and
instrumental understanding (by the pupil), two questions arise. First,
does this matter? And second, is one kind better than the other? For
years I have taken for granted the answers to both these questions:
briefly, ‘Yes; relational.’ But the existence of a large body of
experienced teachers and of a large number of texts belonging to the
opposite camp has forced me to think more about why I hold this
view. In the process of changing the judgement from an intuitive to a
reflective one, I think I have learnt something useful. The two
questions are not entirely separate, but in the present section I shall
concentrate as far as possible on the first: does it matter?

The problem here is that of a mis-match, which arises automatically
in any faux ami situation, and does not depend on whether A or B’s
meaning is ‘the right one’. Let us imagine, if we can, that school A send
a team to play school B at a game called ‘football’, but that neither
team knows that there are two kinds (called ‘association’ and ‘rugby’).
School A plays soccer and has never heard of rugger, and vice versa for
B. Each team will rapidly decide that the others are crazy, or a lot of
foul players. Team A in particular will think that B uses a mis-shapen
ball, and commit one foul after another. Unless the two sides stop and
talk about what game they think they are playing at, long enough to
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gain some mutual understanding, the game will break up in disorder and
the two teams will never want to meet again.

Though it may be hard to imagine such a situation arising on the
football field, this is not a far-fetched analogy for what goes on in many
mathematics lessons, even now. There is this important difference,
that one side at least cannot refuse to play. The encounter is
compulsory, on five days a week, for about 36 weeks a year, over 10
years or more of a child’s life.

Leaving aside for the moment whether one kind is better than the
other, there are two kinds of mathematical mis-matches which can
occur.

1. Pupils whose goal is to understand instrumentally, taught
by a teacher who wants them to understand relationally.

2. The other way about.

The first of these will cause fewer problems short-term to the pupils,
though it will be frustrating to the teacher. The pupils just won’t want
to know all the careful groundwork he gives in preparation for
whatever is to be learnt next, nor his careful explanations. All they
want is some kind of rule for getting the answer. As soon as this is
reached, they latch on to it and ignore the rest.

If the teacher asks a question that does not quite fit the rule, of
course they will get it wrong. For the following example I have to thank
Mr. Peter Burney, at that time a student at Coventry College of
Education on teaching practice. While teaching area, he became
suspicious that the children did not really understand what they were
doing. So he asked them: “What is the area of a field 20 cms by 15
yards?” The reply was: “300 square centimetres”. He asked: “Why not
300 square yards?” Answer: “Because area is always in square
centimetres.”

To prevent errors like the above the pupils need another rule (or, of
course, relational understanding), that both dimensions must be in the
same unit. This anticipates one of the arguments which I shall use
against instrumental understanding, that it usually involves a
multiplicity of rules rather than fewer principles of more general
application.

There is of course always the chance that a few of the pupils will
catch on to what the teacher is trying to do. If only for the sake of
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these, I think he should go on trying. By many, probably a majority,
his attempts to convince them that being able to use the rule is not
enough will not be well received. ‘Well is the enemy of better,’ and if
pupils can get the right answers by the kind of thinking they are used
to, they will not take kindly to suggestions that they should try for
something beyond this.

The other mismatch, in which pupils are trying to understand
relationally but the teaching makes this impossible, can be a more
damaging one. An instance which stays in my memory is that of a
neighbour’s child, then seven years old. He was a very bright little boy,
with an I.Q. of 140. At the age of five he could read The Times, but at
seven he regularly cried over his mathematics homework. His
misfortune was that he was trying to understand relationally teaching
which could not be understood in this way. My evidence for this belief
is that when I taught him relationally myself, with the help of Unifix,
he caught on quickly and with real pleasure.

A less obvious mis-match is that which may occur between teacher
and text. Suppose that we have a teacher whose conception of
understanding is instrumental, who for one reason or other is using a
text which aim is relational understanding by the pupil. It will take
more than this to change his teaching style. I was in a school which was
using my own text1, and noticed (they were at Chapter 1 of Book 1)
that some of the pupils were writing answers like

‘the set of {flowers}’.
When I mentioned this to the teacher (he was head of mathematics)

he asked the class to pay attention to him and said: “Some of you are
not writing your answers properly. Look at the example in the book, at
the beginning of the exercise, and be sure you write you answers
exactly like that.”

Much of what is being taught under the description of “modern
mathematics” is being taught and learnt just as instrumentally as were
the syllabi which have been replaced. This is predictable from the
difficulty of accommodating (restructuring) our existing schemas2. To
the extent that this is so, the innovations have probably done more
harm than good, by introducing a mismatch between the teacher and the
aims implicit in the new content. For the purpose of introducing ideas
such as sets, mappings and variables is the help which, rightly used,
they can give to relational understanding. If pupils are still being taught
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instrumentally, then a ‘traditional’ syllabus will probably benefit them
more. They will at least acquire proficiency in a number of mathem-
atical techniques which will be of use to them in other subjects, and
whose lack has recently been the subject of complaints by teachers of
science, employers and others.

Near the beginning I said that two faux amis could be identified in
the context of mathematics. The second one is even more serious; it is
the word ‘mathematics’ itself. For we are not talking about better and
worse teaching of the same kind of mathematics. It is easy to think
this, just as our imaginary soccer players who did not know that their
opponents were playing a different game might think that the other
side picked up the ball and ran with it because they could not kick
properly, especially with such a mis-shapen ball. In which case they
might kindly offer them a better ball and some lessons on dribbling.

It has taken me some time to realise that this is not the case. I used
to think that maths teachers were all teaching the same subject, some
doing it better than others.

I now believe that there are two effectively different subjects being
taught under the same name, ‘mathematics’. If this is true, then this
difference matters beyond any of the differences in syllabi which are so
widely debated. So I would like to try to emphasise the point with the
help of another analogy.

Imagine that two groups of children are taught music as a pencil-
and-paper subject. They are all shown the five-line stave, with the
curly ‘treble sign at the beginning; and taught that marks on the lines
are called E, G, B, D, F. Marks between the lines are called F, A, C, E.
They learn that a line with an open oval is called a minim, and is worth
two with blacked-in ovals which are called crotches, or four with
blacked-in ovals and a tail which are called quavers, and so on – musical
multiplication tables if you like. For one group of children, all their
learning is of this kind and nothing beyond. If they have a music lesson
a day, five days a week in school terms, and are told that it is
important, these children could in time probably learn to write out the
marks for simple melodies such as God Save the Queen and Auld Lang
Syne, and to solve simple problems such as ‘What time is this in?’ and
‘What key?’, and even ‘Transpose this melody from C major to A
major.’ They would find it boring, and the rules to be memorised would
be so numerous that problems like ‘Write a simple accompaniment for
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this melody’ would be too difficult for most. They would give up the
subject as soon as possible, and remember it with dislike.

The other group is taught to associate certain sounds with these
marks on paper. For the first few years these are audible sounds, which
they make themselves on simple instruments. After a time they can
still imagine the sounds whenever they see or write the marks on
paper. Associated with every sequence of marks is a melody, and with
every vertical set a harmony. The keys C major and A major have an
audible relationship, and a similar relationship can be found between
certain other pairs of keys. And so on. Much less memory work is
involved, and what has to be remembered is largely in the form of
related wholes (such as melodies) which their minds easily retain.
Exercises such as were mentioned earlier (‘Write a simple accom-
paniment’) would be within the ability of most. These children would
also find their learning intrinsically pleasurable, and many would
continue it voluntarily, even after O-level or C.S.E.

For the present purpose I have invented two non-existent kinds of
‘music lesson’, both pencil-and-paper exercises (in the second case,
after the first year or two). But the difference between these imaginary
activities is no greater than that between two activities which actually
go on under the name of mathematics. (We can make the analogy closer,
if we imagine that the first group of children were initially taught
sounds for the notes in a rather half-hearted way, but that the
associations were too ill-formed and unorganised to last.)

The above analogy is, clearly, heavily biased in favour of relational
mathematics. This reflects my own viewpoint. To call it a viewpoint,
however, implies that I no longer regard it as a self-evident truth which
requires no justification: which it can hardly be if many experienced
teachers continue to teach instrumental mathematics. The next step is
to try to argue the merits of both points of view as clearly and fairly as
possible; and especially of the point of view opposite to one’s own.
This is why the next section is called Devil’s Advocate. In one way
this only describes that part which puts the case for instrumental
understanding. But it also justifies the other part, since an imaginary
opponent who thinks differently from oneself is a good device for
making clearer to oneself why one does think this way.
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Devil’s Advocate

Given that so many teachers teach instrumental mathematics, might
this be because it does have certain advantages? I have been able to
think of three advantages (as distinct from situational reasons for
teaching this way, which will be discussed later).

1. Within its own context, instrumental mathematics is usually
easier to understand; sometimes much easier. Some topics,
such as multiplying two negative numbers together, or
dividing by a fractional number, are difficult to understand
relationally. “Minus times minus equals plus” and “to
divide by a fraction you turn it upside down and multiply’
are easily remembered rules. If what is wanted is a page of
right answers, instrumental mathematics can provide this
more quickly and easily.

2. So the rewards are more immediate, and more apparent. It is
nice to get a page of right answers, and we must not under-
rate the importance of the feeling of success which pupils
get from this. Recently I visited a school where some of the
children describe themselves as ‘thickos’. Their teachers use
the term too. These children need success to restore their
self-confidence, and it can be argued that they can achieve
this more quickly and easily in instrumental mathematics
than in relational.

3. Just because less knowledge is involved, one can often get
the right answer more quickly and reliably by instrumental
thinking than relational. This difference, is so marked that
even relational mathematicians often use instrumental
thinking. This is a point of much theoretical interest, which
I hope to discuss more fully on a future occasion.

The above may well not do full justice to instrumental mathematics. I
shall be glad to know of any further advantages which it may have.

There are four advantages (at least) in relational mathematics.

4. It is more adaptable to new tasks. Recently I was trying to
help a boy who had learnt to multiply two decimal
fractions together by dropping the decimal point,
multiplying as for whole numbers, and re-inserting the
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decimal point to give the same total number of digits after
the decimal point as there were before. This is a handy
method if you know why it works. Through no fault of his
own, this child did not; and not unreasonably, applied it
also to division of decimals. By this method 4.8 ∏0.6 came
to 0.08. The same pupil had also learnt that if you know
two angles of a triangle, you can find the third by adding the
two given angles together and subtracting from 180˚. He got
ten questions right this way (his teacher believed in plenty
of practise), and went on to use the same method for
finding the exterior angles. So he got the next five answers
wrong.

I do not think he was being stupid in either of these cases. He was
simply extrapolating from what he already knew. But relational under-
standing, by knowing not only what method worked but why, would
have enabled him to relate the method to the problem, and possibly to
adapt the method to new problems. Instrumental understanding neces-
sitates memorising which problems a method works for and which not,
and also learning a different method for each new class of problems. So
the first advantage of relational mathematics leads to:

5. It is easier to remember. There is a seeming paradox here, in
that it is certainly harder to learn. It is certainly easier for
pupils to learn that ‘area of a triangle = 1

2 base ¥  height’
than to learn why this is so. But they then have to learn
separate rules for triangles, rectangles, parallelograms,
trapeziums; whereas relational understanding consists
partly in seeing all these in relation to the area of a
rectangle. It is still desirable to know the separate rules; one
does not want to have to derive them afresh every time. But
knowing also how they are inter-related enables one to
remember them as parts of a connected whole, which is
easier.

There is more to learn – the connections as well as the separate rules –
but the result, once learnt, is more lasting. So there is less re-learning to
do, and long-term the time taken may well be less altogether.

Teaching for relational understanding may also involve more actual
content. Earlier, an instrumental explanation was quoted leading to the
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statement ‘Circumference = pd’. For relational understanding of this,

the idea of a proportion would have to be taught first (among others),
and this would make it a much longer job than simply teaching the rules
as given. But proportionality has such a wide range of other
applications that it is worth teaching on these grounds also. In
relational mathematics this happens rather often. Ideas required for
understanding a particular topic turn out to be basic for understanding
many other topics too. Sets, mappings and equivalence are such ideas.
Unfortunately the benefits which might come from teaching them are
often lost by teaching them as separate topics, rather than as
fundamental concepts by which whole areas of mathematics can be
interrelated.

6. Relational knowledge can be effective as a goal in itself.
This is an empiric fact, based on evidence from controlled
experiments using non-mathematical material. The need for
external rewards and punishments is greatly reduced,
making what is often called the ‘motivational’ side of
teacher’s job much easier. This is related to:

7. Relational schemas are organic in quality. This is the best
way I have been able to formulate a quality by which they
seem to act as an agent of their own growth. The
connection with 3 is that if people get satisfaction from
relational understanding, they may not only try to
understand relationally new material which is put before
them, but also actively seek out new material and explore
new areas, very much like a tree extending its roots or an
animal exploring new territory in search of nourishment.
To develop this idea beyond the level of an analogy is
beyond the scope of the present paper, but it is too
important to leave out.

If the above is anything like a fair presentation of the cases for the two
sides, it would appear that while a case might exist for instrumental
mathematics short-term and within a limited context, long-term and in
the context of a child’s whole education it does not. So why are so
many children taught only instrumental mathematics throughout their
school careers? Unless we can answer this, there is little hope of
improving the situation.



11

An individual teacher might make a reasoned choice to teach for
instrumental understanding on one or more of the following grounds.

1. That relational understanding would take too long to
achieve, and to be able to use a particular technique is all
that these pupils are likely to need.

2. That relational understanding of a particular topic is too
difficult, but the pupils still need it for examination reasons.

3. That a skill is needed for use in another subject (e.g.
science) before it can be understood relationally with the
schemas presently available to the pupil.

4. That he is a junior teacher in a school where all the other
mathematics teaching is instrumental.

All of these imply, as does the phrase ‘make a reasoned choice’, that he
is able to consider the alternative goals of instrumental and relational
understanding on their merits and in relation to a particular situation.
To make an informed choice of this kind implies awareness of the
distinction, and relational understanding of the mathematics itself. So
nothing else but relational understanding can ever be adequate for a
teacher. One has to face the fact that this is absent in many who teach
mathematics; perhaps even a majority.

Situational factors which contribute to the difficulty include:

1. The backwash effect of examinations. In view of the
importance of examinations for future employment, one
can hardly blame pupils if success in these is one of their
major aims. The way pupils work cannot but be influ-
enced by the goal for which they are working, which is to
answer correctly a sufficient number of questions.

2. Over-burdened syllabi. Part of the trouble here is the high
concentration of the information content of mathematics.
A mathematical statement may condense into a single line
as much as in another subject might take over one or two
paragraphs. By mathematicians accustomed to handling
such concentrated ideas, this is often overlooked (which
may be why most mathematics lecturers go too fast).
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Non-mathematicians do not realise it at all. Whatever the reason,
almost all syllabi would be much better if much reduced in amount so
that there would be time to teach them better.

3. Difficulty of assessment of whether a person understands
relationally or instrumentally. From the marks he makes on
paper, it is very hard to make valid inference about the
mental processes by which a pupil has been led to make
them; hence the difficulty of sound examining in mathe-
matics. In a teaching situation, talking with the pupil is
almost certainly the best way to find out; but in a class of
over 30, it may be difficult to find the time.

4. The great psychological difficulty for teachers of accommo-
dating (re-structuring) their existing and long-standing
schemas, even for the minority who know they need to,
want to do so, and have time for study.

From a recent article3 discussing the practical, intellectual and cultural
value of a mathematics education (and I have no doubt that he means
relational mathematics!) by Sir Hermann Bondi, I take these three
paragraphs. (In the original, they are not consecutive.)

So far my glowing tribute to mathematics has left out a vital point: the
rejection of mathematics by so many, a rejection that in not a few cases
turns to abject fright.

The negative attitude to mathematics, unhappily so common, even among
otherwise highly-educated people, is surely the greatest measure for our
failure and a real danger to our society.

This is perhaps the clearest indication that something is wrong, and indeed
very wrong, with the situation. It is not hard to blame education for at least
a share of the responsibility; it is harder to pinpoint the blame, and even
more difficult to suggest new remedies.

If for ‘blame’ we may substitute ‘cause’, there can be small doubt that
the widespread failure to teach relational mathematics – a failure to be
found in primary, secondary and further education, and in ‘modern’ as
well as ‘traditional’ courses – can be identified as a major cause. To
suggest new remedies is indeed difficult, but it may be hoped that
diagnosis is one good step towards a cure. Another step will be offered
in the next section.
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A Theoretical Formulation

There is nothing so powerful for directing one’s actions in a complex
situation, and for coordinating one’s own efforts with those of others,
as a good theory. All good teachers build up their own stores of
empirical knowledge, and have abstracted from these some general
principles on which they rely for guidance. But while their knowledge
remains in this form it is largely still at the intuitive level within
individuals, and cannot be communicated, both for this reason and
because there is no shared conceptual structure (schema) in terms of
which it can be formulated. Were this possible, individual efforts could
be integrated into a unified body of knowledge which would be
available for use by newcomers to the profession. At present most
teachers have to learn from their own mistakes.

For some time my own comprehension of the difference between
the two kinds of learning which lead respectively to relational and
instrumental mathematics remained at the intuitive level, though I was
personally convinced that the difference was one of great importance,
and this view was shared by most of those with whom I discussed it.
Awareness of the need for an explicit formulation was forced on me in
the course of two parallel research projects; and insight came, quite
suddenly, during a recent conference. Once seen it appears quite
simple, and one wonders why I did not think of it before. But there are
two kinds of simplicity: that of naivety; and that which, by penetrating
beyond superficial differences, brings simplicity by unifying. It is the
second kind which a good theory has to offer, and this is harder to
achieve.

A concrete example is necessary to begin with. When I went to
stay in a certain town for the first time, I quickly learnt several
particular routes. I learnt to get between where I was staying and the
office of the colleague with whom I was working; between where I was
staying and the office of the colleague with whom I was working;
between where I was staying and the university refectory where I ate;
between my friend’s office and the refectory; and two or three others.
In brief, I learnt a limited number of fixed plans by which I could get
from particular starting locations to particular goal locations.

As soon as I had some free time, I began to explore the town. Now
I was not wanting to get anywhere specific, but to learn my way
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around, and in the process to see what I might come upon that was of
interest. At this stage my goal was a different one: to construct in my
mind a cognitive map of the town.

These two activities are quite different. Nevertheless they are, to an
outside observer, difficult to distinguish. Anyone seeing me walk from
A to B would have great difficulty in knowing (without asking me)
which of the two I was engaged in. But the most important thing about
an activity is its goal. In one case my goal was to get to B, which is a
physical location. In the other it was to enlarge or consolidate my
mental map of the town, which is a state of knowledge.

A person with a set of fixed plans can find his way from a certain
set of starting points to a certain set of goals. The characteristic of a
plan is that it tells him what to do at each choice point: turn right out
of the door, go straight on past the church, and so on. But if at any
stage he makes a mistake, he will be lost; and he will stay lost if he is
not able to retrace his steps and get back on the right path.

In contrast, a person with a mental map of the town has something
from which he can produce, when needed, an almost infinite number of
plans by which he can guide his steps from any starting point to any
finishing point, provided only that both can be imagined on his mental
map. And if he does take a wrong turn, he will still know where he is,
and thereby be able to correct his mistake without getting lost; even
perhaps to learn from it.

The analogy between the foregoing and the learning of mathematics
is close. The kind of learning which leads to instrumental mathematics
consists of the learning of an increasing number of fixed plans, by
which pupils can find their way from particular starting points (the
data) to required finishing points (the answers to the questions). The
plan tells them what to do at each choice point, as in the concrete
example. And as in the concrete example, what has to be done next is
determined purely by the local situation. (When you see the post office,
turn left. When you have cleared brackets, collect like terms.) There is
no awareness of the overall relationship between successive stages, and
the final goal. And in both cases, the learner is dependent on outside
guidance for learning each new ‘way to get there’.

In contrast, learning relational mathematics consists of building up a
conceptual structure (schema) from which its possessor can (in
principle) produce an unlimited number of plans for getting from any
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starting point within his schema to any finishing point. (I say ‘in
principle’ because of course some of these paths will be much harder to
construct than others.)

This kind of learning is different in several ways from instrumental
learning.

1. The means become independent of particular ends to be
reached thereby.

2. Building up a schema within a given area of knowledge
becomes an intrinsically satisfying goal in itself.

3. The more complete a pupil’s schema, the greater his feeling
of confidence in his own ability to find new ways of
‘getting there’ without outside help.

4. But a schema is never complete. As our schemas enlarge, so
our awareness of possibilities is thereby enlarged. Thus the
process often becomes self-continuing, and (by virtue of 3)
self-rewarding.

Taking again for a moment the role of devil’s advocate, it is fair to
ask whether we are indeed talking about two subjects, relational
mathematics and instrumental mathematics, or just two ways of
thinking about the same subject matter. Using the concrete analogy, the
two processes described might be regarded as two different ways of
knowing about the same town; in which case the distinction made
between relational and instrumental understanding would be valid, but
not between instrumental and relational mathematics.

But what constitutes mathematics is not the subject matter, but a
particular kind of knowledge about it. The subject matter of relational
and instrumental mathematics may be the same: cars travelling at
uniform speeds between two towns, towers whose heights are to be
found, bodies falling freely under gravity, etc. etc. But the two kinds of
knowledge are so different that I think that there is a strong case for
regarding them as different kinds of mathematics. If this distinction is
accepted, then the word ‘mathematics’ is for many children indeed a
false friend, as they find to their cost.
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The State of Play

This is already a long article, yet it leaves many points awaiting further
development. The applications of the theoretical formulation in the last
section to the educational problems described in the first two have not
been spelt out. One of these is the relationship between the goals of the
teacher and those of the pupil. Another is the implications for a
mathematical curriculum.

In the course of discussion of these ideas with teachers and
lecturers in mathematical education, a number of other interesting
points have been raised which also cannot be explored further here.
One of these is whether the term ‘mathematics’ ought not to be used
for relational mathematics only. I have much sympathy with this view,
but the issue is not as simple as it may appear.

There is also research in progress. A pilot study aimed at
developing a method (or methods) for evaluating the quality of
children’s mathematical thinking has been finished, and has led to a
more substantial study in collaboration with the N.F.E.R. as part of the
TAMS continuation project. A higher degree thesis at Warwick
University is nearly finished; and a research group of the Department
of Mathematics at the University of Quebec in Montreal is
investigating the problem with first and fourth grade children. All this
will I hope be reported in due course.

The aims of the present paper are twofold. First, to make explicit
the problem at an empiric level of thinking, and thereby to bring to the
forefront of attention what some of us have known for a long time at
the back of our minds. Second, to formulate this in such a way that it
can be related to existing theoretical knowledge about the mathematical
learning process, and further investigated at this level and with the
power and generality which theory alone can provide.
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Richard Skemp and Reflective Intelligence

Zoltan Dienes
Nova Scotia, Canada

I first met Richard Skemp in Leicestershire, some time in the very late
fifties, probably 1959, when I was working with Len Sealey in the
County of Leicester. We were trying to introduce more psychologic-
ally valid mathematics learning into the elementary schools (known as
primary in England). He spent several days looking over my “experi-
mental schools” of which there were over a dozen at the time. The idea
of establishing mathematics learning starting from concrete situations
was practically unheard of in those days, much less the idea that
children should be encouraged to abstract mathematics (how else can
you learn it?). Skemp interacted well with the teachers and the children
and was keen to have discussions about my “learning theory” on which
I had based the work in the experimental schools. We discussed his idea
of “reflective learning”, which I agreed would follow hard upon the
“constructive learning” that we were looking at in the schools. The
Piagetian idea of “concrete operations” preceding the more analytical
type of thinking, was getting a certain amount of acceptance in
psychological circles, but was not known to any great extent in
pedagogical circles. I was on the point of accepting a position as Reader
(associate professor) of Psychology at Adelaide University, and I was
happy to have found someone who could “look after” my baby
project. Skemp was keen to do that, although his interests were more
linked with the secondary stage of mathematical thinking and learning.

Soon after, in 1961, an important experiment by Dr. Richard
Skemp was reported in the British Journal of Educational Psychology,
under the title ‘Reflective Intelligence and Mathematics’. In this paper
Skemp defined different kinds of intelligence: sensory intelligence;
motor intelligence; and reflective intelligence. When a child can tran-
scend the differences between sensory stimuli and can think in terms of
the relationships between these sensory stimuli, then, according to
Skemp, he is using sensory intelligence. In Piaget’s preoperational
stage, according to this, sensory intelligence would not be fully
operative because it is, for example, the look of a set of objects rather
than the relationship between their individual members that determines
which of them has more in it. Motor intelligence, he suggests, is
awareness of relationships between actions, such as between filling up
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and emptying, putting together and taking apart, and so on. So the child
who is learning arithmetic by manipulating objects is using his motor
intelligence in realising the relationships between his actions and he is
using his sensory intelligence when he is realising the relationship
between the sensory output of the result of his action. Skemp went on
to say that reflective intelligence is the ability to double back upon
ourselves and realise what we were doing when using our sensory and
our motor intelligence. He described the differences between each of
these kinds of intelligence as follows (Skemp, 1961, pp. 47, 48):

When a child can transcend [sensory stimuli], and give responses which
indicate his perception of the number property independently of config-
uration, we may say that he shows sensory intelligence – that is to say,
awareness of certain relationships between sensory stimuli.

. . . I suggest that the concept of motor intelligence should involve
awareness of relationships between actions, such as filling up and
emptying out, putting together and taking apart, taking away and putting
back. For a child learning arithmetic by manipulating objects, awareness
of the relationships between (physical) addition and subtraction,
successive addition and multiplication, v and division would then all be
described as manifestations of motor intelligence.

. . . consider a simple act of reflective thought, such as may be done by a
pupil who has been getting wrong a certain kind of algebraic problem, is
told his mistake, amends his method at this point, and thereafter solves
similar problems correctly. What he has done is to:

(1) reflect on what he did

(2) modify a particular part of the sequence of operations, and

(3) replace the former sequence by the modified sequence.

To do this he must be capable:

(1) of knowing what he did. There must be not only mental
representations of his operations, but also a system capable of
becoming conscious of these.

(2) (3) of changing some of these mental representations.

This requires a system capable also of acting upon the operations of
sensori-motor intelligence.

Reflective thought may thus be regarded as a second order system, aware
of and acting on the mental representations of the sensori-motor system in
ways which resemble the receptor and effector activity of that system. The
following diagram may be helpful in thinking about the two systems.
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 Thus Skemp looked at the situation in two cycles, or two signalling
systems, as the Russians would have described it. The environment is
received by the receptors, it is organised immediately by the sensory
motor intelligence and the effectors put the output back into the
environment. This is the response. This sensory motor organisation
can again act as a stimulus to the second signalling system, that is to
the reflective receptors that can again organise this and the effectors
will feed back into the sensory motor organising system which event-
ually will feed out into the environment through sensory effectors. So
the reflective system, according to Skemp, is in some sense built on top
of the sensory motor system and operates on it in the way that the
sensory motor system operates on the environment.

As regards mathematics learning, Skemp’s hypothesis is that in
learning arithmetic mostly the sensory motor system is involved
whereas in the learning of algebra and the higher reaches of mathematics
the reflective system is involved. One cannot help thinking that this
hypothesis would not have been made, had arithmetic not been treated
as a set of mechanical stimulus response situations, which simply had
to be learned. These days, arithmetic is no longer being strictly separ-
ated from the rest of mathematics and when we now speak about
learning arithmetic, we do not necessarily speak of mechanically
learning how to carry out certain processes. We now often mean the
learning of not only how arithmetical operations are carried out, but
why they are so carried out. In this case, even in the learning of
arithmetic, we would need to use our reflective intelligence to quite a
little extent. According to Piaget, of course, the reflective system does
not really begin to develop or be fully in use until the onset of puberty,
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so it would seem a sensible assumption to make that arithmetic learned
in primary school, that is during the greater part of the concrete opera-
tional stage, makes use of the sensory motor system.

It would appear to make a tidy kind of organisation of the theory.
Be that as it may with arithmetic it is certainly true that it becomes
more and more difficult to use merely sensory motor intelligence, the
higher we move into the study of mathematics. Skemp explained the
difference between arithmetic and algebra this way (Skemp, 1961, p.
49):

The ability to do simple arithmetic requires the ability to perceive
numbers and their relationships, and make correctly the appropriate
responses; but not necessarily the ability to become consciously aware
either of the relationships which determined the response, or of the
method by which the answer was obtained. … The transition to algebra,
however, involves deliberate generalisation of the concepts and operations
of arithmetic. . . Such a process of generalisation does require awareness
of the concepts and operations themselves. Since these are not physical
objects, perceivable by the senses, but are mental, this transition requires
the activity of reflective thought. And further, the generalisation requires
not only awareness of the concepts and operations but perception of their
inter-relations. This involves true reflective intelligence.

Skemp (1961, p. 50) then proposed four hypotheses with, he claimed,
far-reaching implications for the teaching of mathematics. These were:

1. For mathematical achievement a necessary, though not sufficient,
condition is the presence of reflective intelligence as well as sensori-motor
intelligence.

2. (a) The development of number concepts and arithmetical operations
arises partly as a cumulative trace representing the invariant properties and
relationships of groups of repeated sensori-motor experiences.

(b) The projection of these traces on to subsequent sensori-motor exper-
iences results in perception.

3. The development of mathematical concepts and operations arises partly
as a cumulative trace representing the invariant properties and relationships
of groups of repeatedly-employed arithmetical concepts and operations.

4. The successful use for solving problems, and for further generalisation,
of mathematical concepts and operations will be aided by any teaching
method which increases pupils’ awareness of the concepts and operations
which they use.

To investigate these hypotheses he designed a set of tests in which he
was able to measure the use of reflective intelligence by presenting
subjects with certain exemplars and non-exemplars of concepts in the
classical way. From these they would then extract certain concepts,
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and these concepts would then be used in certain operations which
would also be taught non-verbally in the test situation. The examin-
ation of the combination and reversals of the operations used were
taken as super-ordinates which could not have been learned already.
The results of these tests were then correlated to mathematical achieve-
ment. In Skemp’s test of reflective intelligence he used three stages.
Exemplars and non-exemplars were given of a concept. The test figures
were given to the subjects who had to decide which of these figures
were exemplars and which were non-exemplars. One example given
was:

EXAMPLES NOT EXAMPLES TEST FIGURES

Then operations were introduced, again non-verbally, by the use of
figures. For example operation C would be turning through a right angle
in a clockwise sense. This was not explained verbally, but illustrated
by pictorial examples. Similarly operation J was a reflection with
respect to a horizontal line. This was also illustrated by three
examples. Similarly operation N operated on a figure consisting of two
different kinds of things and the number of one kind had to be replaced
by the number of the other kind and vice versa. For example two
crosses and one circle had to be replaced by one cross and two circles.

In the next part of the experiment, figures were given and subjects
were asked to operate on these figures by means of the operations that
they had learned. Then finally, combinations of operations, for
instance: “Do an operation C followed by an operation J on the
following figures”, were asked for. To make sure that the super-
ordination which arose out of a combination of operations was what
was being tested, Skemp made sure that the operations were in fact
understood at this stage, namely they were explained to the subjects, in
case they had not learned them before this part of the test was given. In
the concept formation part, the learning of the concepts was followed
by learning of “double” concepts. That is, exemplars were only
exemplars if two criteria were satisfied. The subject had to sort out that
if only one criterion was satisfied the instance was not an exemplar of
the concept, and so had to reflect on whether in the particular instance,
only one or neither or both conditions were satisfied. Only in the latter
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case was it considered an exemplar of the concept. This is, of course,
the Bruner type of conjunctive concept formation (Bruner et al., 1956)
and it is also what happens with the Vygotsky blocks when conjunct-
ive concepts are being investigated in learning situations.

The correlations Skemp obtained between mathematical ability and
the test scores were as given in Table 1.

Table 1
 Correlations Between Mathematical Ability and Test Scores

x=mathematical criterion
u=use of operations, not requiring reflective activity
t=reflective activity on concepts
v= reflective activity on operations

Form 5 – age 16 years
(N = 50)

Form 4 – age 15
years (N = 88)

rtx 0.58 0.56

rux 0.42 0.48

rvx 0.72 0.73

Reliability of test scores for V and IV forms together (N=138)

Test Reliability

rtt 0.76

ruu 0.94

rvv 0.95

X was called the mathematical criterion, T the reflective ability on the
concepts, i.e. in this case the ability to handle conjunctions of the
concepts, U was taken to be the ability to use the operation intro-
duced, that is, not requiring reflective ability and V was the reflective
ability on operations, that is the ability to combine one operation with
another.

It was expected that correlations with the mathematical criterion
should be higher between T and X and between V and X than would be
between U and X and Skemp hypothesised that it would be highest
between V and X, since that was the highest level where operators were
being combined with other operators. The correlations of VTX = 0.58,
VUX = 0.42, VUX = 0.72 were obtained for fifth year United Kingdom
Grammar School children. The test was also given to fourth year
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Grammar School children, and the validation took place a year later,
when these children became eligible to take their general certificates of
education. The correlations of VTX=0.56, VUX=0.48, VUX = 0.73,
were remarkable similar.

The split half reliabilities ranged between 0.76 and 0.95 and so it
would seem, therefore, that it was amply validated that reflective activ-
ity is certainly connected with the ability to solve mathematical
problems, such as are encountered in secondary school mathematics
examinations. It is, of course, not established that reflective intelligence
is NOT used when handling arithmetical operations. One excellent
feature of this experiment was that the testing was not done in any
verbal sense, but the “possession of the concept” was regarded as
established if this concepts could in fact be used. The reflection on
concepts was regarded as having taken place if such reflection did in
fact result in an operation being performed which without such
reflection could not have been performed. Verbal difficulties of under-
standing were eliminated as far as possible.

On the basis of this study Skemp concluded that:

If a child does badly at mathematics, this paper indicates that it may be
because he has not formed the necessary concepts and operations, or it
may be because he cannot reflect on them. . . . If the understanding of
mathematics (as here defined) is dependent on reflective ability, then the
ages at which its various stages are taught should be related to the stages
by which reflective intelligence develops.

(Skemp, 1961, p. 54)

An immediate question that arises out of this study is whether
reflective intelligence, if indeed it is a separate entity, can be trained. It
would seem likely that one learns to reflect by reflecting and it is also
clear that in most of our educational procedures not a great deal of
reflection is incorporated, all or most of the reflection is done by the
teacher or the textbook. The results of reflections are prepared in the
form of lessons which the children learn. It is something of a miracle
that in spite of this children learn to reflect. It would seem that the
ability to reflect is a necessity for the prosecution of life and presum-
ably the mathematical situations are not the only ones which encourage
its formation and development.

It is quite likely that if care were taken to induce children to reflect
carefully on what they were doing, a much more rapid development of
the reflective ability could result than that which takes place now.
Researches in the use of “logical” materials to teach young children
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logical relationships would seem to indicate that this was so (Dienes,
1963). The reason young children do not use reflective intelligence is
probably because they can get along very nicely without it.. There are
no situations which they encounter which they cannot handle just
using their “childish” logic. Piaget describes this as operating on
concrete situations, and using juxtaposition rather than implication and
so on. If situations were created in which children were highly
motivated to engage, which for their efficient prosecution would require
the use of reflective intelligence, it is very possible that such reflective
abilities would thereby be helped to develop in children rather sooner
than later.

The second time Richard Skemp and I met was at the UNESCO
Conference on Mathematics Learning in 1962 held in Budapest. We
had three official languages, French, Hungarian and English, and Skemp
of course gave his contribution in English, while I made mine in
Hungarian with the discussions mostly in French. Fortunately there
was simultaneous translation, so that Skemp was able to follow my
train of thought, and of course I was able to follow his. We cemented
our professional relationship by exchanging views, and surprisingly, we
seemed to agree with each other on what was really wrong with
mathematics education, which for me, and no doubt for Skemp, was a
rare occasion.

This was a meeting held in the “heroic times” of the struggle to put
mathematics learning on to the right track. Papy and Servais were there,
Krygowska was there from Poland, Pescarini from Italy and many
others who were making attempts to improve the situation in their own
countries, but most of them only touching the periphery of the
problem.

I shall never forget the time when Skemp and I were having a drink
together in one of the bars, and Skemp exclaimed:” You know, Zed,
you and I are the only serious contenders in trying to pinpoint and to
solve the problems!” It seemed somewhat arrogant to say so, but
having listened to the “bella lingua” of Pescarini, to the theatrical
acrobatics performed by Papy in his explanation of the virtues of
arrows and most of the others munching platitudes, I must say I was
bound to agree with him.

The International Study Group for Mathematics Learning made a
contract with UNESCO, to draw up a report on what was then going
on in the reform of mathematics education, over which work I presided.
In the final report approved at the Hamburg meeting of UNESCO in
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1964 (I think), I gave Skemp’s effort a good deal of space, explaining
how he was one of the few who tried to get down to the basics of the
problem. I was pleased to be able to write in one of my books (Dienes,
1963, p. 175) about his work that:

Apart from work in these two major fields and, my own contributions, the
work of Skemp at Manchester University has shown a promising lead. His
predictions for thirteen year-olds are more accurate than any previous
predictions on percentage passes in mathematics examinations at sixteen.
According to him, mathematical understanding depends almost entirely on
the exercise of reflective intelligence (approximately what has been called
analysis here). … Skemp’s work opens up another avenue of attack in this
most intractable field of research.

On another, later, occasion I had occasion to witness reflective
intelligence first hand when Skemp was present with me. I had been
doing the isometries of the square with some ten year olds, of course
using the human body, cardboard squares, logic blocks and so on. An
inspector came into the room as Skemp and I were looking round and
seeing how the children were getting on. He was rather taken aback at
the sight of all the activity and asked me what the children were doing.
“Geometry,” I replied, “they are studying space.” “Oh”, replied the
inspector. As he seemed so uncertain I asked him to ask the children
what they were doing. He went to a little girl who was flipping her
square around and asked her. She tried to explain by doing two
consecutive flips and showing that one other flip (or turn) would have
had the same effect, but she saw that the inspector was still non-
plussed.

Having learned some “modern pedagogy”, she proceeded to use it
with the big burly inspector. (Skemp was all the time watching
developments with increasing interest). The little girl got out of her
desk and got hold of the inspector and turned him round one quarter of
a turn clockwise, and then followed this by turning him round through
a half turn. “You see, Sir, if I had turned you one quarter turn anti
clockwise, you would have finished up the same as you are now”. But
then she continued: “Actually, what I have done with you is not the
same as what I showed you with the square. To show you the same
thing, I would have needed to put you on your head, and, Sir, I am sure
you would not have liked that.” We all burst out laughing, and the
inspector as well as Skemp had had a lesson in “experiential learning”.
The girl had clearly been engaged in reflective thinking as her
postulation showed.
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It was through a number of shared experiences of the above kind
that Skemp and I cemented our professional and personal relationship,
which unfortunately was not to continue in any continuous manner
because of my departure for Harvard and then for Adelaide.
If you look around today, Skemp’s fairly recent book written for
practising and future teachers is possibly the only “textbook” that I
could recommend as one for a course on mathematics education. The
world has not yet caught up with Skemp, and even less so has it caught
up with me! I wish Skemp were around so we could confabulate
together again on these problems as we did in Leicestershire and in
Budapest! Since I have passed my eightieth birthday, I may soon have
the privilege again in the Elysian fields!

References

Bruner, J. S., Goodnow, J. J., & Austin, G. A. (1956). A Study of
Thinking, New York: Wiley.

Dienes, Z. P. (1963). An Experimental Study of Mathematics Learning,
London: Hutchinson.

Skemp, R. R. (1961). Reflective Intelligence and Mathematics, The
British Journal of Educational Psychology, 31, 45–55.



27

Similarities and Differences between the
Theory of Learning and Teaching of Skemp

and the Van Hiele Levels of Thinking

P. M. van Hiele
The Netherlands

Problems in Learning Caused by Information Overload

In connection with the teaching of mathematics, the Van Hiele levels
(van Hiele, 1986; Wirszup, 1974) usually refer to geometry. However
my first attempts to improve teaching were in algebra. For many years
I was a teacher in a secondary school with Montessori principles:
according to these principles teachers had to help children to find
solutions by themselves, hence, in Skemp’s (1976) terms, to learn not
instrumentally but relationally.

When I wanted to learn algebra myself for the first time – I was ten
years old and I found a textbook on that subject – I was overwhelmed
by the vast number of rules to apply. You were told that 3 4 7a a a+ = ,
but 3 4 12 2a a a¥ = . To make it more difficult, a a a3 4 7¥ = . In second-
dary school I got another textbook of algebra but it was not much
better. However I had no more difficulties with algebra because I had
overcome them when I was ten. Already, even at that time, the idea of
writing a better textbook of algebra had come into my mind.

I know now that in order to write a good textbook of mathematics
you need more courage, more experience and more knowledge of devel-
opmental psychology than an inexperienced teacher usually can have.
The first issue to address is motivation: ‘why should a pupil want to
learn the stuff the teacher wants to teach him?’ It is very unlikely that
a child wants to learn all those rules concerning the beginning of algebra.
So my advice is: do not start to teach it! With caution and cleverness a
teacher can arouse interest using problems solvable by introducing an
unknown quantity x upon which operations can be performed in a
natural way. After some time x may also be introduced as a variable in
a function. However that is enough for the first year.
Information overload is bad, but common. The inexperienced user of a
word-processor has problems understanding the manual, for example a
terminology may be used that was never introduced to him. Moreover
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at the beginning of his study the information concerns subjects he
cannot be interested in for he does not know of their existence. The
most irritating situation at the start is not knowing how to stop a
wrong process in which he has landed. Many people can tell about the
horrors they experienced beginning to learn something. It is common
for learners starting to learn algebra to suffer likewise.

In 1991 I attended an arithmetic lesson in Stellenbosch (South
Africa). Children were asked to find the results of divisions, such as
4536 divided by 72. They were approximately nine years old and of
average intelligence. They knew how to find the result with a calculator
but this time they were asked to do it without. They had never learned
long division but each pupil used his own method to get the result. I
was much impressed by the comprehension they showed. They had
better notion of arithmetic than candidates for the secondary school
entrance examination in my own country, The Netherlands. When I
returned to South Africa in 1994, I recalled my visit to the school in
Stellenbosch. People told me that the same pupils had had disappoint-
ing algebra results in secondary school. When I asked about the
textbooks that were using, it became clear that these had overloaded the
pupils with information. They did not get enough time to comprehend
what they were doing.

Why Did Skemp and I Never Exchange Ideas?

From the above it may be clear that there are many similarities between
the aims of the theory of Skemp and my theory. So we need to find an
explanation why cooperation has failed to occur. It is all the more
remarkable because a meeting was arranged in Utrecht some thirty
years ago as a result of a succession of misunderstandings. The people
who invited us together wrongly assumed that Richard Skemp had en-
countered something like the Van Hiele levels in practice and had found
a way to move from one level to the next. However this was not the
case. The problems in algebra that cause instrumental thinking have
nothing to do with level elevation since the Van Hiele levels do not
apply to that part of algebra. People applied terms such as ‘abstract-
ion’ and ‘reflection’ to the stages leading from one level to the next.
This resulted in a confusion of tongues: we were talking about
completely different things.
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The Discovery of My Levels of Thinking

I was thirteen when I first encountered geometry. Right from beginning
there were axioms and definitions but they were harmless because in
the proofs you were taught how to use them. Of course you had to
learn those proofs partly by heart, it was impossible to find out for
yourself what to do. Sometimes you had to take up a shape and rotate
it, how could one know that it was allowed? But soon you had to
prove congruence of triangles which was easy: you had to find three
things the triangles had equal, you wrote them down, a bracket behind
them then SAS or something of the sort and after that it was finished.

With time it became clearer however that proving in geometry
meant more than we had thought it did at the very beginning.
Sometimes you saw something at once and yet it had to be proven.
Then there was the incomprehensible topic of theoretical arithmetic.
Luckily for me, my teacher only read the theory with us without
examination. A friend of mine in a parallel class, whose teacher did test
the subject, got an unsatisfactory mark for it. Later as a professor of
mathematics he wrote an important book of modern algebra.

After some time new axioms were introduced in geometry of space;
this disappointed me because in some proofs reference was made to
both sides of a plane. It played an important part in them and it was
never mentioned in the axioms or definitions. My next problem was
therefore: how can I find better axioms and definitions? When I became
a teacher I solved that problem and then tried to put that knowledge
into practice. Time was ripe for such ideas: in the Netherlands teachers
like Beth and Dijksterhuis tried to teach mathematics in a more rigid
form. I discovered soon that results were poor. At the Montessori
school pupils really tried to understand but it was as if I spoke a
different language. It took them many months to understand what I
was talking about and then suddenly they said: “Yes it is easy, but
why did you bring it in such a difficult way?” Now they had learned to
speak the same language as I did.

At first I was convinced that geometry was a topic that could not
be taught, children learned it by their own accord. In the thesis of Jan
Koning (1948) on the didactics of physics the stages of Piaget were
mentioned. My first article of the levels of geometry (van Hiele, 1955)
was based on this part of the thesis. I wrote:
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You can say somebody has reached a higher level of thinking when a
new order of thinking enables him, with regard to certain operations, to
apply these operations on new objects, The attainment of the new level
cannot be effected by teaching, but still, by a suitable choice of exercises
the teacher can create a situation for the pupil favorable to the attainment
of the higher level of thinking.

The higher level of thinking I wanted the children to bring on had still
nothing to do with axioms. I had discovered very soon in my lessons
that it was quite impossible to begin geometry with axioms. In the
beginning children do not understand that in geometry shapes are
determined by their properties. A square is a square because it has four
equal sides and four right angles. But if the square was drawn with a
vertical diagonal the pupils called it a rhomb. Some years before one of
my pupils (twenty five years old) asked seeing an isosceles triangle
with one leg horizontal. “Do you really call this an isosceles triangle?”
She could only be convinced when I asked her: “Do you call a dog on
his back still a dog?” These are no exceptions: the painter Mondriaan
has made many pictures showing squares with a vertical diagonal. In
the catalogues they are all called rhombs.

Stages During Transition From One Level to the Next

In the above we have seen the difference between two levels: on the
lowest level, the visual level, shapes are recognised by seeing: ‘This is a
square because I see that it is one’. On the higher level a shape is
recognised by its properties: ‘This is an isosceles triangle because it has
three sides and two of them are equal’. This level I have called the
descriptive level. If a teacher wants something better than instrumental
thinking he will have to take account of the difference between the two
levels. In the beginning of geometry the names of shapes are important,
just by seeing, and children learn that those names do not change if the
shapes are put in another position.

In her thesis, my wife Dieke van Hiele-Geldof (1957) describes
how she invited pupils to come to the descriptive level. She gave each
child a set of congruent triangles and asked them whether it was
possible to make a tessellation of them. It was an exciting problem and
the children soon found the solution. Afterwards they were asked what
they saw in the achieved pattern.
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In the picture above you see what the children observed. I will give
some translations:

driehoek means triangle
gestrekte means straight
hoek means angle
trapezium means trapezoid
vergroot means enlarged
zaag means saw.
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The designations saw and ladder were invented by the children them-
selves in the discussion. This was the beginning of a development of
the language of the descriptive level. At first this language only had the
function to designate new parts of the structure they saw at the visual
level, but gradually they used it to solve problems on the descriptive
level.

This procedure just shows us the means to bring pupils from one
level to the next.

Stage 1 Information: The children were told to use congruent triangles
for a tessellation.

Stage 2 Guided orientation: The pupils were busy to find out whether
the problem had a solution.

Stage 3 Explicitation: After having found a solution the pupils
discussed the results. A technical language was born.

Stage 4 Free orientation: New problems were given to make use of
results that were obtained in the explicitation.

Stage 5 Integration: An overview of all that had been learned of the
subject, of the network of relations now at the disposal of the
pupils was given.

The five stages mentioned above are very similar to stages that can be
found in the work of Dienes. This is not purely accidental: in a
discussion people using the ideas of Dienes contributed to my work.

The Theoretical Level

It is easy to understand now that starting geometry with axioms causes
insurmountable problems for the pupils. The theoretical level to which
the axioms belong can only be reached by starting from the descriptive
level with the five stages and in the beginning the children have not
even attained the descriptive level. If they are treated in that way, the
best solution for their problems is learning parts of geometry by heart
and that means only instrumental understanding. Many teachers were
very content with such a course of events. They said: “I have taught in
this way for many years and the results are excellent.” This conclusion
is understandable for geometry had been taught for many years in this
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way and there were always pupils who liked mathematics from the
very beginning and found their own way to the higher levels. But a
great part of the pupils developed a dislike for geometry and after their
study was finished forgot practically all of it.

Statements on Different Levels

It is worth now comparing what I have written above with the ideas of
Skemp. There is an obvious similarity between my visual level and the
intuitive start of the solution of a problem Skemp mentions. In my
model intuition is a great deal ‘thinking on the visual level’, Skemp also
believes in the value of discussion just as I do in my stage of the
explicitation. However I have not found in the papers of Skemp that
judgments on the descriptive and the theoretical level are not better
than those on the visual level. The distinction between judgments on
different levels obviously does not exist in the papers of Skemp, he
uses his own language.

On the visual level a square is such because we see it, on the
descriptive level it is one because it is assumed that the sides are equal
and the angles are right. When in practice a square has to be drawn it
may be better to see if it is a right one than to start a reasoning about
the equal sides and the right angles. In modern examinations you find
argumentations on the visual level too. In one of them candidates were
told that discs with a diameter of 20 cm had to be made out of a piece
of cardboard with a length of 54 cm and a width of 40 cm. How many
discs could be made of it? The answer that was graded as right was
‘five’: four discs in the four corners and one in the middle. If a pupil
used Pythagoras’ theorem he would find that the middle disc had a
diameter of 19.7 cm. The right answer was inspired by visual rather
than by descriptive thinking.

Reflection and Abstraction

I have difficulties with the use of ‘reflection’ for the transition from the
visual level to the descriptive one. For a pupil it is not a real problem
that he is only thinking on the visual level, he has the impression that
this thinking just is true thinking. He is not able to reason on the
descriptive level, but for him this is not a problem to be solved for he
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does not understand the language. If he is not helped by suitable
exercises it may last perhaps a year before he reaches the descriptive
level. Reflection fails because the pupil only disposes of concepts of
the visual level and those concepts do not lead to a result on the
descriptive level. In the discussion that is part of the explicitation
properties discovered in the guided orientation are emphasised, so there
the ‘abstraction’ obtained in the orientation is worked out.

Although Skemp did not see the gap of lack of understanding that
exists between two levels of thinking he warns many times for the bad
results of learning without building up concepts. Usually this leads to
instrumental understanding which really is no understanding at all. In
an entrance examination for a higher class of the secondary school I
asked a girl if she could compute the length of a diagonal of a rectangle
with sides of 12 cm and 5 cm. She said that she had no idea how to do
it. I said: “Look at the two triangles you have got by drawing the
diagonal.” It did not help. By this I concluded that she did not know
the Pythagoras’ theorem. Later that day I was called by the father of
the girl. He said: “My daughter did know Pythagoras’ theorem, for
when I asked for it she promptly said it.” The father too, a teacher of
classical languages, considered the knowledge of an uncomprehended
formula as an understanding of geometry.

Beginning Geometry as a Game

Russian researchers after having heard of my levels concluded that
results would be better if the education of the visual level of geometry
would be started with children at the age of about nine. It is right to
begin the education of the visual level of geometry at an early age on
condition that one works under two limitations. The first is that one
does not present problems which must be solved on the descriptive
level. The second is of a more universal character. No new subject must
be introduced if the child does not like it. So geometry only must be
brought into the child’s life if we are sure that it will enjoy it.
Sometimes this last condition causes problems. From Russia too
originates a beautiful game that may help to overcome resistances. It is
something like TANGRAM but it has more possibilities.
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It consists of seven pieces: a rectangle, two right-angled triangles, an
equilateral triangle, an isosceles triangle, a trapezoid and an isosceles
one. The shapes are based on equilateral triangles and therefore it is
easy to see that the areas of the different pieces are of 1, 2, 3 or 4
equilateral triangles. At first children can be invited to put some pieces
together in order to get a new shape. Some examples:

On the visual level children can learn many things: the names of shapes
in different positions, composition of shapes, area, enlargement, angles
(only multiples of 30 degrees), symmetry (from the very beginning
children see that some of the shapes do not change if they are put
upside down and others do). The material has specific properties and
therefore after some time it has to be replaced by something else. Then
we can introduce squared paper and after that coordinates and vectors.
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Using coordinates the picture above can be drawn by the following
instruction: Start at point (2, 0), join it with (8, 2), this with (6, 6) this
with (0, 4) and this with (2, 0). Draw the diagonals of the quadrangle.

If we use vectors we get the following instruction: Start at point (4, 3),

start from there and use the four vectors: 
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upwards. In the visual field many instructions of this kind can be given
that will be liked by the pupils.

Levels in Arithmetic and Algebra

Many psychologists of mathematics have looked for a succession of
levels in algebra of the secondary school. In normal circumstances such
a level-transition is absent. Later in this article I will give an example of
an abnormal circumstance in which a succession of levels does exist. In
arithmetic however an important level-transition is to be found. It is
described in Piaget’s book: The Child’s Conception of Number.
Opposite to five dolls are placed five umbrellas. They are all set up on
a table between a child and a research worker. The child is asked:
“What are more, dolls or umbrellas?” The child says: “There are just as
many dolls as umbrellas”. “Will each doll have his own umbrella?”
“Yes”. Then the umbrellas are shoved together and the child is asked
again: “What are more, dolls or umbrellas?” The child answers: “Now
there are more dolls”. “Will each doll have his own umbrella?” “No,
there are not enough umbrellas.” If children are young, till about five
years, this test always has this result, even when the child can count
till perhaps ten. Being able to count does not include that the child
understands that a set of umbrellas has a constant cardinal number.
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Skemp has observed that Piaget in his investigations always prevents
children from learning in the situation. His results are based on what
children usually know and understand and not on what they are able to
understand. This opinion is confirmed by a variation of the above test
that I carried out in 1953 with a daughter of mine of three years (3; 8).
She too had the opinion that here were less umbrellas (shown together)
than dolls. But then I showed a set of three dolls opposite to a set of
five umbrellas shown together. Now she said: “Of course there are
more umbrellas”. “Why?” “That is easy to see, there are five umbrellas
and only three dolls. Only you have shown the umbrellas together.”
After that I repeated the test with the five dolls and the five umbrellas.
Now she said that there were just as many umbrellas as dolls. “Are
there no less umbrellas?” “No, you have pushed them together.” After
a short time my daughter of five (5; 1) came home from the Montessori
pre-school. I subjected her to the same test and she too was deceived
by the five umbrellas shown together. Then the younger daughter said:
“Annely, how can you be so stupid, don’t you see that there are still
five umbrellas?” And then Annely said: “O, I see, you have pushed
them together.”

This experience of mine was published in 1958 (van Hiele, 1958)
and there were many responses. This sign of interest is not astonishing
for my test partly undermines Piaget’s theory. Piaget always main-
tained that the transition from the stage in which a child does not have
the concept of cardinal number to the stage where it has, is a question
of natural development, of as it were a biological growth. In my
opinion however it is a learning process. It has the character of a Van
Hiele level, which means that it is not possible to bring a child from the
visual level to the descriptive one by reasoning. You will have to bring
in suitable material to help the child find its own way to the higher
level. Following up the ideas of Piaget you will have to wait until the
child has reached the higher stage whereas my advice is: give the child
the right material. If you do, you can accelerate the process of the level
transition, if you don’t there is a possibility that the child is still on the
visual level when it goes to school and has to learn addition and
multiplication. Teachers have reported from their failures in such cases.
A child had to learn how to add 8 to 7. First he counted 7 objects of
one set and then 8 elements of the other one. Afterwards he was
invited to count the number of the two sets together. He found the
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right number of fifteen. Then the child was invited to do it in a quicker
way. After the two separate sets had been counted, the child was asked
to put his hand over the first set and to count further. “You know
already that under the hand are 7 elements. So now go on.” But the
child was not able to count the remaining elements as 8, 9, 10, ...
Counting 7 elements did not mean that under the hand was a set with
the cardinal number 7.

The Importance of the Level Transition in Arithmetic

Even though I oppose the meaning of Piaget that there is a gap in the
development of the concept of number that only can be conquered by
waiting till the child is old enough, his tests are of great importance.
The transition of the gap means, in my model, the passage from the
visual level of arithmetic to the descriptive one. If teachers do not take
this passage into account it is very likely that the pupil will never be
able to understand arithmetic. He is condemned to instrumental think-
ing because a reflection in the sense of Skemp’s theory is quite imposs-
ible.

Yet most pupils will, after a pretty long time, pass to the
descriptive level. They will no more be deceived by umbrellas shown
together. But their knowledge of addition and multiplication remains
instrumental for they have learned it before the level transition.
Reflection can be used as a means to change this, but it is far more
difficult than it would have been if the tables were learned at the right
moment.

Material to Help the Level Transition in Arithmetic

The understanding of the cardinal number as a property of set can be
helped by choosing suitable sets. The set of ‘two’ never gives prob-
lems: it always is clear that a set of two objects is something else than a
set of only one. ‘Three’ is already different: you can have ‘three in a
row’ with one element in the middle, but you can also have three
elements forming a triangle. The configuration of the numbers on a die
demonstrates how higher numbers can be recognised. This does not
mean however that if five in the configuration on a die is recognised as a
‘five’, it also has the concept of a cardinal number for a child. It is a
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step in the direction of such a concept, but it is not enough. Making
various buildings with five cubes and comparing the results with
buildings of four cubes may help to constitute the concept of the
cardinal number ‘five’.

The forming of the concept of the cardinal number ‘four’ can be
stimulated by blocks consisting of three and four cubes such as shown
in the picture underneath.

If children are invited to play with these blocks they will after some
time certainly call the blocks consisting of four cubes ‘fours’ and those
consisting of three cubes ‘threes’. In this way passing from the visual
level to the descriptive level of arithmetic can be encouraged.

An Example of a Level Transition in Algebra

The transition from arithmetic to algebra can not be considered the
transition to a new level. Letters can be used to indicate variables, but
with variables children are acquainted already. Letters can be used to
indicate an unknown quantity, but this too is not new. It is possible to
introduce a theoretical level of algebra in secondary school but meeting
such a case is exceptionable. In 1987 I encountered a secondary school
in New York where algebra was started with groups. The group was
defined by axioms and definitions and no examples of numbers and
addition or multiplication were given. Elements were just elements, no
more and the operator was just given by the necessary axioms and
indicated by *. This seemed to me the most direct way to cause
instrumental learning.
The normal instruction of algebra is just a continuation of arithmetic;
then no problems are expected unless the children are overloaded with
information.
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Six Kinds of Understanding in Skemp’s Theory

In the paper: ‘Goals of Learning and Qualities of Understanding’
Skemp (1979) elucidates his theory so clearly that it is a good starting-
point to compare his theory of learning with mine. In the beginning of
his article he gives his well-known picture of a ‘goal-directed activity
operating on the physical environment’.

For goal directed activity operating on the physical environment, we
have a director system, delta-one, which receives information about the
present state of the operand (what is being acted on), compares this with
a goal state, and with the help of a plan which it constructs from its
available schemas, takes the operand from its present state to its goal
state and keeps it there. We may, if we like call delta-one a sensori-
motor system.
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Delta-two is another director-system, with a difference. Its operands are
not in the outside environment, but in delta-one. They are not physical
objects but mental objects. The functioning of delta-two is to optimise
the functioning of delta-one.

According to the diagrams above Skemp discerns two modes of mental
activity: intuitive and reflective.
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This is just in accordance with my theory: The first level, the visual
one, is intuitive. In my view however reflection does not elevate
thinking to a higher level. But in his paper Skemp too objects to ident-
ifying reflective mental activity with a higher level. Later in his paper
he presents the following model:

KINDS OF UNDERSTANDING

INSTR. REL. LOG.

INT. I1 R1 L1
MODES OF
MENTAL
ACTIVITY REFL. I2 R2 L2

The two kinds of mental activity: intuitive and reflective are both
divided into instrumental, relational and logical and with this we have
six different modes of mental activity.

In this model I1 represents a mental activity just directed by delta-
one without interference of delta-two. The designation ‘instrumental’
for such understandings has a too negative meaning: in daily life we see
an object in a wrong place and we put it in the right one. Such an action
belongs to delta-one but is quite adequate.

I asked my daughter of four years old: “What do you see in this
picture?” “Oh, those are my blocks.” “How many blocks are there?”
“Three, no four, no five, no six!” It was clear that she saw the
ambivalence in the picture, one can consider the white rhombs as three
tops or three bottoms of cubes. I think this is a good example of R1. It
belongs to a direct seeing of delta-one ‘directly assimilated to an
appropriate scheme’.
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I must interrupt this analysis here for a discussion of my view on
‘intuition’. Just like Skemp I consider intuition to be the beginning of
all thinking. Essentially it is non-verbal. Language can help non-verbal
thinking to be recalled at appropriate moments and to nominate
phenomena that have been observed. Most of human life is filled with
non-verbal thinking: if we look around us, we observe many things, we
may draw conclusions without using words in our mind. We are called
by the telephone, someone speaks to us without mentioning her name
and we say: “Oh it is you, Annely”. A voice, a face, all are recognised
by their structure without interference of a language. It is not new what
I emphasise here, but it is important and in psychology it is too often
overlooked.

At the base of all our thinking lays intuition, (non-verbal thinking),
so we want to know what the leading powers of intuition are. Here I
propose to use ‘structure’. My daughter saw the picture, the structure
of it reminded her of blocks and thus she could give adequate answers.
The possibilities of a structure are determined by the prop-erties of
structure.

In my book Structure and Insight (1986) I have written down those
properties:

1. It is possible to extend a structure. Whoever knows a part
of the structure also knows the extension of it. The
extension of a structure is subjected to the same rules as the
visible part of it.

2. A structure may be seen as a part of a finer structure. The
original structure is not affected by this. The rules of the
game are not changed, they are only enlarged. Thus it is
possible that more details build up the structure.

3. A structure may be seen as a part of a more inclusive
structure. This more-inclusive structure also has more rules.
Some of them define the original structure.

4. A given structure may be isomorphic with another
structure. In this case the two structures are defined by
rules that correspond with each other. So if you have
studied the given structure, you also know how the other
structure is built up.
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Some psychologists were astonished about the fact that I have dug up
the structure (Gestalt) psychology again, but it is helpful to understand
animal thinking and to extend the human non-verbal thinking.

A striking example of L1 I met some years ago. It is a problem
posed by T. Ehrenfest-Afanassjewa. The problem is: ‘If you look in a
mirror you see that right and left are exchanged. This however is not
the case with below and above. Why not?’ A boy of ten years gave an
excellent answer: ‘It is not true that right and left are exchanged, it is
the front and the back that are. ‘In his mind he saw a person standing in
front of the mirror and seeing this situation he saw the solution. For a
boy of ten it is courageous daring to say that an assertion is not true.

In my model, reflective thinking is necessary to attain a higher level,
but it is not sufficient. Reaching a higher level is possible with help of
adequate material which stimulates reflection in the right direction.
Skemp observed in children a dislike to reflect but there are many
reasons for such a dislike. First the teachers and the system in which
they live are the cause of it. Reflection leads to a new network of
relations between concepts but if a child does not know the structure
of the topic the teacher is aiming at it takes much time to bring it to the
right reflection. The teacher looking at his time-table is doubtful about
the time available for such a reflection. After a short time the pupils
too understand that reflection will be only moderately appreciated.

The examples Skemp mentions in his article about I2, R2 and L2 do
not have any relations with a level transition. They are part of algebra
in which topic, as I have emphasised before, normally level transitions
do not occur.

For I2 he gives the example of someone who has to differentiate
1 3x . He does not know how to differentiate such a quotient, but he
remembers that 1 3x . After that he uses the rule:
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Skemp objects to such an instrumental action, He would like the
student to verify it by some extensive mathematical schemes for the
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differentiation of fractions. I would be content with the above
calculation if I were sure that the student once in his study had comp-
rehended a series of proofs demonstrating that the formula for the
differentiation of powers is true for all real exponents. A great part of
algebra is an instrument and it is recommendable to check it is reliable
before using it.

Strong and Feeble Structures in my Theory

In some of his papers Skemp gives the impression that mathematics is
a perfect way of thinking. I am not convinced that mathematical
thinking is in most respects superior to intuitive thinking. Mathematics
is of great importance in the theory of physics, chemistry and
technology but there are many disciplines in which mathematics is of
little importance. Sometimes we must even suspect that after intro-
ducing mathematics in such a discipline it has become less reliable. An
example is test psychology.

The attractiveness of mathematics is that it has a strong structure.
With a given set of premises you can be practically sure of the
conclusion, so, if you have translated your problem in a mathematical
model you can expect a univocal result. The main problem however is
how to translate the original structure in a mathematical one. One of the
most reliable laws of physics is Archimedes law on upwards force in
fluids. It seems that this law has a universal validity and with the proof
of Stevin we can even understand why the law is true. We must
however not apply the law to a sugar cube in a glass of water for sugar
dissolves in water. This exception must not be labelled as childish for it
belongs to a group of a more serious character and we must be careful
to take them into account. In the proof of Stevin it is supposed that the
forces of the water on the object are the same as the forces of the water
on the piece of water the object has replaced. With a sugar cube this is
not the case.

I need not go on providing examples from physics in which the use
of mathematics has to be adjusted. Physics is full of wonders, thus
repeatedly unexpected things happen. Sometimes it was already in the
mathematical support but very often it generates a new piece of
mathematics.
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By extending the theory we are able to understand more and more parts
of physics in an increasingly exact way. Sometimes a practical
application of the theory fails because of human errors. Many of those
can be explained by a wrong evaluation of the constituent conditions.
Very often these are brought in by intuitive, non-verbal thinking. This
mental activity underlies all thinking, but we also rely upon it when the
theory lets us down.

Many structures in human life are so strong that it is easy to
transform them to pieces of mathematics. But other structures are so
feeble that it is useless to apply mathematics to them. For instance the
human voice. Many people who call you by telephone do not need to
call their name because you recognise the voice directly. But you can
not explain how you do it. Yet mistakes occur: once my wife left the
house after saying: “See you later.” After a quarter of an hour I heard
her voice again. “I didn’t expect you so soon,” I said, but it was not
her, it was her sister. The same goes for the recognition of a face: you
see that someone is your friend without being able to give an accurate
description of him.

Whether we like feeble structures or not, yet we have to deal with
them. On a trip in India I said to a lady behind me in the car: “I just
saw a hoopoe”. “Yes”, she said, “There were two of them.” “It was the
second time in my life I saw one,” I said. “Oh for me it was the first
time.” How did we know that it was a hoopoe? Only by having seen
pictures in a book. The recognition of birds only by seeing is a feeble
structure but the study of bird migration would be impossible if we
could not use this structure.

Driving a car is working in a feeble structure. The signposting along
the road may be more or less strong, but the behaviour of the other
road users causes the whole situation to have an apparent feeble
structure. Most car drivers have learned to work with this structure
and because of that we have relative few car accidents.

The main part of psychology has a feeble structure. We can infer
this from the totally different descriptive levels that exist in the various
parts of psychology. The psychology of thought developed by Selz
has quite another structure than the developmental psychology of
Piaget and these two structures have little resemblance with the
structure of test psychology. But in each of those psychologies the
structure is feeble. It may be that in test psychology only one answer
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is considered as right but here an originally feeble structure has been
replaced by a strong structure. If the tester really wanted to know
whether a given answer is right or wrong, he would ask for the reasons
why the answer has been given. It may be that the given answer has a
greater value than the one he himself has in mind.

Feeble structures ought to deserve special attention. They descend
from the non-verbal intuitive thinking and therefore fill a great part of
our daily life. Often they are the origin of an important discipline on a
higher level of thinking which may have a strong structure or perhaps
still a rather feeble one. If disciplines with a feeble structure would be
rejected an important part of human thinking would be discarded.

Summary

a. I share Skemp’s opinion that ‘instrumental’ thinking can not be
considered as real thinking.

b. The main cause of instrumental thinking in algebra is information
overload.

c. In most disciplines there are different levels of thinking: the visual
level, the descriptive level and the theoretical level. Each level has
its own network of relations and its own judgments of truth. The
transition from one level to the next can not be realised by
reasoning or reflecting.

d. Just like Skemp I see intuitive thinking as the base of all rational
thinking.

e. Piaget has found an important level transition in arithmetic. On the
visual level children may be able to count but this does not imply
that they have a concept of the cardinal number. On the descriptive
level they have.

f. With the help of suitable blocks the transition from the visual level
to the descriptive level in arithmetic can be stimulated.

g. Geometry can be started in young children. Therefore material must
be introduced by which they can see geometry as a game.

h. No new subject ought to be introduced in primary and secondary
school if the child does not like it.

i. Many properties of thinking can be understood by using the
concept of ‘structure’.
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j. Many disciplines are based on feeble structures. Very often the
usefulness of such disciplines will not be improved by introducing
mathematics in them as a strong structure.
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Richard Skemp and his Conception of
Relational and Instrumental Understanding:

Open Sentences and Open Phrases

Efraim Fischbein Bracha Muzicant
Tel Aviv University  Open University, Tel Aviv

I met Richard Skemp for the first time during the second ICME
Congress in Exeter, UK, in 1972. We both attended a workshop
devoted to the Psychology of Mathematics Education which was
organised through the initiative of Hans Freudenthal. The discussions
between the participants touched a host of extremely interesting prob-
lems, both theoretically and didactically relevant. We felt that math-
ematics education could not genuinely improve its achievements
without carefully and systematically investigating the psychological
dimension of mathematical reasoning, teaching and learning.

Also among the participants was Richard Skemp, who proved to
be one of the most competent in the domain. It was obvious that he
was a professional mathematician, but with a very fine and deep
understanding of the psychological aspects of mathematical activity.
He used terminology which was then relatively new in mathematics
education – for example, intuitive and reflective intelligence, schemata
and their role, mathematical solving strategies, the interaction between
concepts and imagery in mathematical reasoning, etc. We continued the
discussions after the regular sessions of the workshop and I was
delighted to discover a man who was exceptionally original and fresh in
his thoughts. There were not – and are not today – many people in the
world so competent in both mathematics and psychology. This was
Richard Skemp. He mentioned to me his book (first printed in 1971),
The Psychology of Learning Mathematics and also had the kindness to
send me a copy of it. Since then the book has been greatly used by my
students and myself.

In 1979, Richard published his second book in the same area,
Intelligence, Learning and Action, in which he continued to develop
and deepen his insights – based on both his didactical experience and
reflections. Richard Skemp’s ideas inspired, and continue to inspire,
my work in the domain of mathematics education. E. F.
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Relational and Instrumental Understanding

In his second book, Richard Skemp refers explicitly to two basic forms
of learning and understanding: relational and instrumental. He writes:

Relational understanding in a mathematical situation consists of recognizing a
task as one of a particular class for which one already knows a rule. To find the
area of a rectangle, multiply the length by the breadth.

For a triangle, calculate half time the base time the perpendicular height. If the
figure is a parallelogram, multiply the length of one pair of parallel sides by the
perpendicular distance between them. The kind of learning which makes this
possible, which I call instrumental learning, is the memorizing of such rules.

(Skemp, 1979, p. 259)

Instrumental learning (and understanding) represents then, the assimil-
ation of a certain rule somehow isolated from a larger meaningful
context. The rule of action is triggered by a certain task, a certain situ-
ation.

The advantage of storing such rules mentally is the possibility of
translating them more or less automatically into reactions. The disad-
vantage is that considering a broader context, the reaction may reveal
itself to be inadequate. This broad context is represented by relational
learning and understanding.

“Relational understanding, in contrast, writes Skemp, consists
primarily in relating a task to an appropriate schema” (Skemp, ibid) In
his first book, Skemp describes a schema as “a mental structure”. The
term includes not only the complex conceptual structures of math-
ematics which coordinate sensori-motor activity. A schema has two
main functions. It integrates existing knowledge, and is a mental tool
for acquisition of new knowledge” (Skemp, 1971, p. 391). See also
Skemp’s paper published some years later (Skemp, 1976).

The integrative function of a schema is exemplified by Skemp in
the following way:

When one sees a car, one identifies the respective object by relating it to the
class of cars. But the process of integration may go further: We may ask
ourselves questions regarding the safety of the respective category of cars,
speed, cost, etc. This process of integration may help us to estimate the value
of the car, to take a decision with regard to its possible acquisition, etc.

Schemata then, make possible, the process of integration of a certain stimulus
in a class of stimuli and thus identifying them. Schemata tend to organize
themselves in hierarchical structures. This way our mind does not work as a
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conglomerate of independent acquisitions, but as a systematic, meaningful,
associative, adaptable, complex behavioural device. In instrumental learning
(and understanding), one tends to adapt the reactions – according to particular,
non-integrated rules – to particular elementary stimuli. In relational learning
(and understanding) the reactions are controlled by complex schemata by a
broad, integrative system which connects, meaningfully, the various aspects
relevant to the situation.

Another important role of schemata mentioned by Skemp is that they are also
“...indispensable tools for the acquisition or further learning. Almost
everything we learn depends on knowing something else already.”

(Skemp, 1971, p. 40)

Piaget has also insisted on the adaptive role of schemata: A child
cannot learn the operation of arithmetical addition for instance, if his
mind has not reached – by maturation and exercise – the general ideas
of arithmetical addition (as an interiorization of the act of combining
two sets).

Both functions of schemata – the integrative one and the assim-
ilatory ones – are of fundamental importance for the learning of math-
ematics. But the present paper focuses especially on the integrative
role of schemata. Our main theses are: a) Mathematics – as an integ-
rative intellectual system of concepts and operations should be taught
by strengthening – in the didactical process – the structural-integrative
nature of the mathematical-conceptual system; b) the school reality is
that this aim is not fulfilled in the process of mathematical education.
Students learn mathematics, mainly as a conglomerate of non-integ-
rated concepts, definitions, theorems and solving rules, and c) teachers
are usually not aware of, and not concerned with this aspect of the
mathematical knowledge of their students because, usually, the
questions used in tests point to how well their students are able to
solve a certain class of problems according to a certain standard
strategy. The rationale, the theoretical deductive justifications are not
invoked and not required.

The teaching of mathematics is generally reduced to instrumental
learning and understanding. It does not require, basically, the relational
type of learning and understanding. The effect is disastrous. First,
many students do not get an integrative image of mathematics, that is
an image in which axioms, theorems, definitions, general concepts and
properties control the interpretation and use of more specific concepts
and solving procedures. Secondly, and as an effect of the previous



52

phenomenon, even the particular procedures (“the instrumental”
aspect) are often mistakenly applied under the impact of superficial
similarities. This is, in fact, the fundamental thesis we have learned
from Skemp: relational and instrumental understanding should be
structurally integrated in every mathematical activity. If one reads
Skemp’s papers and books, one feels strongly that this is the image.
Skemp does not only tell us about the general properties, principles
and concepts of mathematics. In his work, the general analysis
(psychological and mathematical) is combined with analysis of
particular problem-solving processes and the respective difficulties and
obstacles.

We would like to add to what has been said above, an example from
our own work. The example refers to geometry. Students were
presented with various types of parallelograms (oblique ones, squares,
rectangles) and other figures. They were asked to define the term
“parallelogram” and to identify among the figures presented, those
which were parallelograms. We found that 90% of 10th grade students
were able to define the term correctly, but only 68% defined and
identified correctly, the parallelograms. For many students a square
was not a parallelogram. In grade 11, 88% defined correctly, but only
65% defined and identified correctly, all the parallelograms. Relational
learning would imply, in the above example, that the students possess
the schema (the concept) of a parallelogram, and are also able to apply
it in every particular case, despite the figural, apparent discrepancies.

For many students, the particular association of a certain category
of figures with the corresponding definition (instrumental learning) is
stronger than the schema, the concept of parallelogram which should
control the consistent application of the schema (Fischbein, Nachlieli,
1997). As Skemp has written:

The process which we subjectively experience as understanding is conceived, in
terms of the present theory, as making connections with and appropriate schema
... The importance of understanding is that it brings new experience into the
domains of our director system. Understanding is an essential contributor to
their functioning, to the achievement of our goal states and thereby to survival. 

(Skemp, 1979, p. 165)
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The Present Research

The research described in the present paper is intended to illustrate the
above ideas concerning the respective role and properties of instru-
mental and relational learning and understanding in mathematics.

A special methodology is required. Students may be able to answer
correctly standard questions, and by this, mask the absence of a struct-
ural understanding – in Skemp’s terminology an adequate schema. We
have used the term structural schema for this kind of schema with
general relevance.

In the present investigation, the central concept considered is that
of “equivalence” and specifically, “the equivalence of equations”. The
question we have asked was: Do students, who are able to solve a
simple linear equation, understand (in the sense of Skemp) what and
why they are acting as they do? Do they understand that the
successive transformations of equations until the final step, x a=  are
performed under a number of constraints – the aim of which being to
conserve the equivalence of the various steps of the transformation?

Our hypothesis is that many students do not possess the concepts
of equivalence and equivalence of equations, that their knowledge is
basically instrumental. Consequently they will be ready to produce, in
certain circumstances, transformations which would apparently be safe
as an effect of superficial similarities, but which would be, as a matter
of fact, incorrect. This would prove that these students, lacking the
control of the adequate schemata (which would guarantee a relational
type of understanding) proceed, in fact, instrumentally, reducing their
operations to elementary instrumental steps. We considered that our
findings, if confirming our hypothesis, would, in fact, point to a more
general deficiency in mathematics education: mathematics education is
usually reduced to an instrumental, procedural type of learning and
thus it misses its fundamental aims.

The central technique used by us has been to compare the
behaviour of students (grades 9 and 10) in solving linear equations
(open sentences) and in dealing with similar expressions, but which do
not contain the equality sign (open phrases).

For instance, a student is asked to solve the equation:

x x x

2
3

4
5
8

1+ - - =
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He solves correctly, producing the successive correct transformations.
The same student is asked to simplify the expression

x x x

2
3

4
5
8

+ - -

He is looking for the common denominator (as he does when solving
the equation) and he writes

4 2 3 5x x x+ -( ) - .

The common denominator is eliminated just as for the the equation,
where the elimination is justified.

This student has solved automatically. Because he has not learnt
algebra in a relational way, but merely in a instrumental spirit, his
procedural steps have also been negatively affected under certain
circumstances.

Several authors have studied the degree of understanding of the
concept of equivalence of equations. Their main finding was that many
students, even when able to perform adequate transformations for
solving equations, were not aware of the underlying conceptual const-
raints. Especially, it was the concept of equivalence of equations which
was deficient (Davis & Cooney, 1977; Kieran, 1984; Steinberg,
Sleeman & Ktorza, 1991). Steinberg, Sleeman and Ktorza concluded
that:

Many of the students in the study knew how to use transformations to solve
simple equations, yet many of them did not use this knowledge to judge that
the use of a simple transformation gives an equivalent equation.

(Steinberg, Sleeman & Ktorza, 1991, p. 119)

The above authors used pairs of simple linear equations and the
student had to decide whether the equations of the pair are equivalent
and justify their answer. For instance:

3 5 4x = +  and 3 4 5 4 4x - = + - .

In our research, the students were, generally, asked to compare
transformations performed on equations (in order to reach the solu-
tion) with transformations performed on similar algebraic expressions,
which were not equations (open phrases). As already mentioned, the
central idea of the technique used, was that students who are able to
solve an equation but are not aware of the justifying properties will
also tend to use, by analogy, but inadequately, the same transfor-
mations in the case of similar open phrases.
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Methodology
Subjects

The subjects were students enrolled in grades 9 and 10 – 52 students in
grade 9 and 53 students in grade 10. In each grade, two levels of
mathematical competence were considered: group A, the high level and
group B, the lower level. In all, the research population was
consequently divided into four groups: 30 subjects in group 9A and 22
subjects in group 9B; 30 subjects in group 10A and 23 subjects in
group 10B.

The levels of competence were established by the school itself and
are expressed in the quantity and subject-matter of the mathematics
taught to the respective students.

The schools in which the research was conducted were situated in
the centre of the country in a region with a population of average and
high socio-economic status.

Instruments

a) A questionnaire was administered in which equations and open
phrases appeared. The subjects had to estimate whether the
operations performed (and indicated in the questionnaire) were
mathematically correct. The central concept was that of equiv-
alence. The subjects had to estimate whether the successive steps of
successive transformations were correct and led to equivalent
expressions. After each question, the subjects were asked to justify
their answers.

b) A number of subjects, different from those to whom the quest-
ionnaire was administered, were interviewed with regard to the same
questions. We preferred to interview different subjects because it
was assumed that those students who already had to cope with the
respective questions, may have been interested in inquiring further
(asking colleagues or teachers) with respect to the correct answers.

Hypotheses

a) The main hypothesis of the present research was that many
students (in line with Skemp’s theory) perform and estimate the
successive algebraic transformations as mere technical operations
and not under the control of structural schemata – in the present
case the general concept of equation with its laws of equivalence and
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transformations. More specifically, we assumed that many student
will apply particular rules of transformation adequate in solving
equations, also to open phrases in which such rules lose their
legitimacy.

b) A second hypothesis was that age and level of mathematical comp-
etence have an impact on the students’ mathematical behaviour.
Namely, we have assumed that students in grade 10 and students in
group A would perform better than younger and weaker subjects.

The superiority will be expressed in the stronger control exerted by the
structural schema of equation (with its properties and rules). As
already mentioned, the concept of equivalence is at the centre of this
competence.

Results

Let us first consider a number of equations as they appear in the
questionnaire. The subjects are asked whether the transformations are
valid ones. In Table 1, there are three such equations given, along with
the percentages of correct evaluations. For instance:

“Given 
5
3

1 0
x + =

Tal writes:

5
3

1 0 5 3 0
x

x+ = ¤ + =

Is Tal correct? Yes/No. Justify your answer.”

Table 1 contains the results obtained along with the three equations
and their transformations. Except for the weaker students in grade 9,
almost all the students in groups 9A, 10A and 10B estimated correctly
that the transformations were legitimate.

The correct answers to all three questions should be “yes” (“The
transformations are correct”). Inspecting Table 1, one may conclude
that most of the students, except those in group 9B, seem to have a
good command of the equation concept and that they are able to
evaluate the correctness of the presented transformations.
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Table 1
Percentages of Correct Answers

5
3

1 0 5 3 0
x

x+ = ¤ + =

Grade 9 Grade 10
A B A B
97 50 90 91

x x
x x

2 3
10 3 2 60+ = ¤ + =

Grade 9 Grade 10
A B A B
97 50 90 87

 

x x x
x x x

2

3

4

5

8
1 4 2 6 5 8+ - - = ¤ + - - =

Grade 9 Grade 10
A B A B
 93 46 90 91

That is, in terms of schema one may assume, from the above data, that
the respective students possess both the structural schema of equation
and the specific procedures leading to the solution.

The questionnaire also presented two questions in which the
transformations were incorrect (see Table 2a and 2b):

2a) “Given p x
x x

( ) = - + + +2
3

2
2

4

Dan has written:

p x
x x x

x x( ) ( ) ( )= - + + + ¤ - + + +2
3

2
2

4 2 2 3 2 24

Was Dan correct? Yes/No.”

It is evident that the two expressions are not equivalent. The common
denominator has simply disappeared. This time many students did not
answer correctly (see Table 2, a and b). That is, they accepted the
elimination of the common denominator.
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2b)  “Given 
5

3
7

3-
+

+
=

x x
y

Dan wrote:

5
3

7
3

5 3 7 3
-

+
+

= ¤ + + - =
x x

y x x y( ) ( )

Was Dan correct? Yes/No.”

Many students answered incorrectly that the transformation was
adequate (Table 2, question 2b).

Table 2

Percentages of Correct Answers

Question 2a Question 2b

Grade 9 Grade 10 Grade 9 Grade 10

A B A B A B A B

27 45 60 22 67 27 63 50

It is clear that many students, in estimating the correctness of the
transformations, mechanically apply some rules suitable for equations
without the general conceptual control, that is the relational
understanding in Skemp’s terminology. In question 2a) one deals with
an open phrase which does not allow the elimination of the
denominators. In question 2b) one has an equation. This time the
elimination of the denominators would be possible with the condition
that the right side of the equation (y) is also adequately multiplied.
These results contradict our former assumption that most of the
students possess the structural schema of equation. The correct
transformations they perform looking for the solution are not
controlled, tacitly or explicitly, by the formal constraints which justify
these transformations. (For instance, that the two sides of an equation
may be multiplied by the same number and thus obtaining an
equivalent transformed equation.)
Except for the question 2a) (Grade 9) the highly competent students
performed better. The age level does not seem to be relevant. The
transformations accepted by these students express only particular
sets of technical procedures.
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Consequently, one has to admit that the mathematical knowledge of
these students is not genuine mathematics, but a set (or sets) of
procedures. Mathematical knowledge implies a structural organization
in which general, formal constraints (axioms, theorems and definitions)
control and justify thoroughly the validity of all the operations and
transformations performed.

But even when considering the highly competent students in both
grades 9 and 10, one finds that only about 60% of the subjects give
correct responses when the aspect of the problem does not fit the
standard exercises. The common denominator simply disappears
without the subjects considering the validity of the transformations.

The questionnaire included more open phrases together with some
transformations. The subjects had to answer whether the transfor-
mations were performed correctly.

a)
5
3

1 5 3
x

x+ Æ + ?

b) 
x x

x
2 3

3 2+ Æ + ?

c)  
x x x

x x x
2

3
4

5
8

1 4 2 6 5 8+ - - + Æ + - - + ?

Most of the students gave wrong answers (see Table 3). They relied on
the equation model in which the common denominator of both sides is
eliminated (which is equivalent to multiplying both expressions with
the same number). Evidently, the disappearance of the common den-
ominator in an open phrase is not justified and this, most of the
students did not know. But even in the case of an equation in which
the right side is a simple letter or number, many of the students did not
adequately perform the multiplication.

Table 3

Percentages of Correct Answers

Transformation a Transformation b Transformation c

Grade 9 Grade 10 Grade 9 Grade 10 Grade 9 Grade 10

A B A B A B A B A B A B

13 32 43 17 17 41 47 13 33 27 40 31
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The next questions were intended to check whether the subjects could
distinguish between open sentences and similar open phrases.
Therefore, pairs of questions were presented. In each pair, there was

one equation (for instance: 
x x

2 3
10+ = ) and a similar open phrase (for

instance: 
x x

2 3
+  ) Do the students distinguish between them so as to

understand that the treatment of the two expressions should be
different? We present the results separately for each pair. The subjects
were asked if the transformation corresponds to the mathematical
rules. The term “correct” implies that the subjects answered correctly
to both questions (that is, “yes” for the first question and “no” for the
second).

Clearly enough, 3 9x =  yields x = 3, so the answer “yes” is
correct. On the contrary, 3 9x +  cannot be transformed into x y+ 3 .
The division by 3 is not admissible. So, in this second example, the
correct answer should be: “no”.

Table 4a

Percentages of Correct Answers

Equation Open Phrase

3 9x =  (given) 3 9x y+  (given)
x = 3 x y= 3

Grade 9 Grade 10
A B A B
24 23 40 28

Table 4b

Percentages of Pairs of Correct Answers

Open Phrase Equation

x x

2 3
+  (given)

x x

2 3
10+ =  (given)

3 2 5x x+ =   3 2 60x x+ +
Grade 9 Grade 10

A B A B
30 13 33 26



61

Table 4c

Percentages of Pairs of Correct Answers

Equation Open Phrase

x x x

2
3

4
5
8

1+ - - = x x x

2
3

4
5
8

+ - - =

  ¤ + - - =4 2 6 5 8x x x
  
8
2

3
4

5
8

1(
x x x+ - - + =)

  ¤ =x 14  (given)  4 2 6 5 8x x x+ - - +
(given)

Grade 9 Grade 10
A B A B
30 13 33 26

It is obvious from the data in Tables 4a, b, c that most of the students
were not able to distinguish the two fundamentally different expres-
sions. Most of the students were ready to accept that transformations
suitable for equations (including the elimination of the common
denominator) are also suitable for an open phrase (that is, where the
equality sign did not appear).

All these findings lead us to the same conclusion. Most of the 9th
and 10th graders (even those who belong to the “high competence”
level) do not distinguish between an open sentence and open phrase.
They do not seem to understand what they are doing. They do not
seem to understand that mathematical transformations may be
performed only by respecting the formal, basic constraints on which
these transformations are based. It seems that for these students, the
concept of equation as a structural mathematical schema (with its
meaning and its properties) does not exist. What does exist, is a
number of particular procedures lacking any mathematical meaning,
that is, their understanding is mainly instrumental. The great contr-
ibution of Skemp in this respect was to analyse and clarify the
profound connection between schemata (we would call them “struct-
ural schemata”) and the process of understanding. “To understand”
means basically, to assimilate certain information by integrating it in
the person’s own mental system. But in order to achieve this aim,
certain hierarchically organized schemata are required. The concept of
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“understanding” cannot be genuinely understood if the nature and
dynamics of schemata are not clearly elucidated.

Interviews

In order to check further this interpretation, we carried out a number of
interviews. In this way we hoped not only to check the above findings,
but also to get a more complete image with regard to the students’
mathematical knowledge. Let us quote from a number of interviews.
The subjects belonged to all four groups investigated: 9A and 9B; 10A
and 10B.

Interview No. 1: Student R – Grade 9B. T stands for teacher; S stands
for student.

T: Given the following equation: 
x x

2 3
10= = . Would you like to

solve it?

S: I do not like to solve equations with fractions.

T: Nevertheless, please try.

S: O.K. I will eliminate the denominators. She writes:
3 2 10x x+ = .

T: How do you justify this transformation?

S: We have been taught this. This is the method.

T: Can you explain this method?

S: If I multiply 3 ¥ 2 I get 6 and this is the common denominator.

T: Again, on what grounds do you perform this transformation?

S: We have learned.

T: Can you go on?

S: I add and I get 5 10x + .

T: Can you go on?

S: I wanted to reach equality.

T: What do you mean?

S: I do not know more.
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The same student R:

T: Consider the expression: 
x x x

2
3

4
5
8

1+ - - + . Can you simplify

this expression?

S: Yes, to find the common denominator and to eliminate it.

T: Let us see.

The student writes: 4 2 6 5 1 5x x x x+ - - + = -
T: On what grounds did you perform the transformation from the

first expression into the second?

S: According to the formula. I do not act according to my personal
view.

T: How do you know that this formula fits the data?

S: According to the examples in the classroom, because of the
fractions. Always when there are fractions in a exercise, one
should find the common denominator.

T: Can you check whether the expression you have written is
correct?

S: I do not know how to check. If the common denominator is
correct, then the solution is correct.

Interview 2: Student S – Grade 9: a very good student.

T: Given the equation: 
x x

2 3
10+ = . Would you like to solve it?

S: I have to multiply by 6. I have to find the common denominator
and to eliminate the fractions.

She writes: 3 2 60x x+ =
T: On what do you rely when you operate this transformation?

S: On the fact that we may multiply or divide an expression by
the same number. We have been taught this.

T: Can you explain more?

S: It is what we have been taught.

T: Can you go on?

5 60 5x + = .

S: The student writes
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x = 12
T: On what did you rely when you divided by 5?

S: One may multiply and one may divide by the same number. We
have been taught this. The teachers have decided what we have
to know. I do not know more.

The student seems to understand what she is doing, that is, the formal
rationale of the transformations operated on the given equation. Her
competence is certainly higher than that of student R. But how high?
Let us see the continuation of the interview.

T: Given the expression 
x x x

2
3

4
5
8

1+ - - + . Could you simplify

that expression?

S: I can eliminate the denominator. She writes:
4 2 3 5 8x x+ - - +( ) .

T: On what did you rely when you transformed the given
expression into the second one?

S: This is what I have been taught in order to eliminate fractions. I
am acting according to rules.

T: According to which rules are you acting?

S: The rules for the elimination of denominators. The student con-
tinues to write:

4 2 6 5 8 2x x x x+ - - + = +
T: Can you check whether the expression you have obtained at the

end results from a correct transformation?

S: It is an easy exercise. It is not necessary to check.

Let us remember that this student is noted to be a very good one. This
is the illusion that many teachers live with. If the student used correct
techniques for solving an equation (or any other type of problem) one
may assume that he not only knows the rules, but that he also
possesses the formal, structural constraints guiding and justifying these
rules, that is, the corresponding “relational understanding”. As a matter
of fact, what we discover from the second part of the interview is that
student S does not possess the schema of equation as a math-ematical,
integral concept. Mathematics is a strictly deductive body of
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knowledge. Teaching rules, we do not reach mathematics. We simply
teach rules. Knowing mathematics implies the possession of a
ensemble of integrating and hierarchically organized schemata. Without
understanding the deep meaning of the concept of equivalence – with
its properties – one cannot understand, genuinely, the concept of equ-
ation and the meaning and limitations of its transformations.

Interview 3: Student T – Grade 9A

T: Given the equation 
x x

2 3
10+ = . Would you like to solve it?

S: First we find the common denominator and after this one
multiplies accordingly.

The student writes: 3 2 60x x+ = .

T: On what did you rely when you operated this transformation?

S: We have been taught. We all act in the same way.

T: Would you like to continue solving the equation?

S: The student writes: 5 60x =  x = 60
5

.

T: On what did you rely when you divided by 5?

S: One cannot divide by x . One has to find x .

T: On what did you rely when you did this?

S: According to what we have been taught.

T: (Writes): 
1
5

5
1
5

60¥ = ¥x .

What is your opinion with regard to this multiplication?

S: It does not seem to me to be correct. I do not know this
method.

T: Would you like to check this method I have shown you?

S: It does not seem to be correct. We have not been taught this
way.

Here the student applies a rule, which leads to the correct solution.
Like the former student interviewed, she has no justification for her
procedure. Moreover, when the interviewer suggests the corresponding
justification, the student does not agree. Not only does she not feel the
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need for any formal justification, but when presented with the resp-
ective justification, she rejects it as something unconnected, unknown,
unlike the usual procedure.
The same student: (T)

T: Given the expression: 
x x x

2
3

4
5
8

1+ - - + . Can you simplify it?

S:  She writes: 4
2
2 3

4
1 5
8

8 1) ) ) )x x x+ - - +

4 2 6 5 8 0x x x+ - - + =

She explains: I have found the common denominator in order to
eliminate it and I add and subtract. I have eliminated the common
denominator in order not to be disturbed by it when I have to add or
subtract.

T: On what did you rely when you acted this way?

S: All are doing the same. This means that it is correct.

T: Why have you introduced the equality with zero?

S: I think that we have to move the numbers of the left side to the
right side.

T: But I have not written “equal with zero” in the given expres-
sion.

S: We are used to acting this way according to the quadratic
equations we have learned. We write equal with 0 and we solve.

The student introduces a new element in our discussion which has not
been revealed so far. She needs the zero in order to get the entire
justification of this procedure. One may assume that what the students
have in mind when eliminating – incorrectly – the common denom-
inator, is the model of equations and the usual techniques for solving
them. The model is usually applied and generalised tacitly. When some
element is absent, the student simply produces it in order to fit the
mental model.

In other terms: it seems that all the students act in conformity with
the equation model when eliminating the common denominator in an
open phrase. One may assume that the students do not act blindly
without any justification. What guides their actions in “simplifying” an
open phrase (finding and eliminating the common denominator) is
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tacitly justified by the equation model. It is not the structural schema
of equation which inspires their operation, but some external aspects
of it, the apparent similarity between the open phrase and a certain
open sentence (an equation). Again, just because these students do not
possess the structural schema of equation, with all its meanings,
properties and rules of transformation, these superficial similarities
may mislead them in their algebraic operations.

Interview 4: Student U – Grade 10B

T: Given the equation. 
x x

2 3
10+ = . Would you like to solve it?

S: 3
2
2
3
6 10) ) )x x+ =

3 2 60 5 60 12x x x x+ = = = =; ;

T: On what did you rely when transforming the given equation
into the equation 3 2 60x x+ = ?

S: I have simplified using multiplication in order to eliminate the
denominator and find x.

T: On what did you rely when performing this transformation?

S: I have been taught this way. I know it.

T: What have you done in continuation?S: I had to add the
terms with x.

T: How did you get from 5 60 12x x= =, ?

S: Dividing by 5.

T: How do you justify this division?

S: When there is x multiplied by a number, one has to divide by
this number.

T: On what do you rely when operating this division?

S: I have two answers:

1. Because mathematics is built this way.

2. I have been trained this way, and I do not know another
method.
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The same student U:

T: Given the expression: 
x x x

2
3

4
5
8

1+ - - + . Can you simplify it?

S: The student writes:

4 2 3 5 8 4 2 6 5 8 1 14x x x x x x x+ + - + = + + - + = +( )

T: On what did you rely etc.?

S: I wanted to eliminate the common denominator.

T: On what did you rely when performing the above
transformations?

S: I have always been taught this way. In order to render the
expression easier, more beautiful and more concentrated.

T: Is it admissible to use every method in order to get a more
simple expression?

S: Everything is admissible in order to eliminate the common
denominator.

The student’s conception is that the purpose justifies the means! She
does not know another justification. The deductive structure on which
the respective operations rely simply do not exist for her. They
probably never existed in the student’s mind. What does exist, as we
mentioned above, is the model, the equation model from which the
conceptual, axiomatic content, the formal properties have been
eliminated.

Interview No. 5: Student V – Grade 10A

T:
x x x

2
3

8
5
8

1+ - - =

S: The student writes:
4 3 5 8

8
x x x+ - - =( )

4 3 5 8x x x+ - - =
- =3 8

0=11

T: On what did you rely when you performed the first
transformation?
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S: I have been taught this way. One looks for the common
denominator.

T: On what did you rely for the next transformation?

S: It is the way in which one solves an equation, but I do not
understand what happened.

T: Would you try to explain?

S: No.

The same student V:

T: Given the expression: 
x x

2 3
+ . Can you simplify it?

S: The student writes: 
3 2
6

5
x x

x
+ =

T: On what did you rely etc.?

S: One cannot simply add the two fractions. One has to find the
common denominator.

T: On what did you rely when you eliminated the common
denominator?

S: Because I have already used it and I did not need to any more.

This is really fantastic. A grade 10 student belonging to the high comp-
etence group eliminates the common denominator because “it has
already been used” (as you use a pair of scissors, for instance and puts
them away afterwards!) No deductive reasoning, no formal constraints
and no justification! The student’s empirical way of reasoning is
inspired, wrongly, by the equation model. Is this mathematical reas-
oning?

Interview 6: Student X – Grade 9B

T: Given the equation: 
x x x

2
3

4
5
8

1+ - - = . Can you solve it?

S: The student writes:

1
2
2 3

4
4 5

8
1) ) )x x x+ - = =

x x x+ - - =2 6 20 1
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T: On what did you rely when you operated the above
transformation?

S: One has to find the common denominator.

T: Can you explain what you mean by common denominator?

S: Common denominator is something which is common for a
number of things.

T: On what did you rely when you looked for the common
denominator?

S: One has to eliminate the common denominators.

T: Can you explain more?

S: No, it is the way to solve it and that is that.

The same student X:

T: Given the expression: 
x x

2 3
+ .  Can you simplify it?

S: (Writes): 3 2 5x x x+ =
T: On what did you rely when you passed from the first to the

second expression?

S: I made the common denominator.

T: Can you explain more: On what did you rely?

S: I eliminated the denominator, it is what we do in class.

The same ignorance as so far. In addition, being a low competence
student, her errors are expressed even in the techniques used when
looking for the common denominator for the initial equation. But
basically, with regard to the justification of the operations performed,
there is no difference between a highly competent student in grade 10
and a weak student in grade 9!

Interview No. 7 Student Y – Grade 10A

T: Given the equation: 
x x x

2
3

4
5
8

1+ - - = . Can you solve it?

S: One has to multiply by 8. The student writes:

4
2
2 3

4
1 5
8

8 1) ) ) )x x x+ - - =
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4 2 6 5 8x x x+ - - =
T: On what did you rely when you passed from the first to the

last equation?

S: One has to multiply both sides so that the relations do not
change and one multiplies by the denominator in order to solve
easier.

The same student Y:

T: Given the expression: 
x x

2 3
+  Can you simplify it?

S: One cannot simplify.

T: One student called Bill has written 3 2x x+ .What is you
opinion?

S: Not correct.

T: Can you explain?

S: Because it is not an equation.

T: Can you explain more?

S: There are no relations, there are no two sides and then there is
no motive to eliminate the denominator.

T: Is it a problem of “motive”?

S: Yes. There is no need to do it.

Until the final sequence of the interview, one may have the feeling that
this is a student who understands what she is doing. And yet! What
does she claim? She does not affirm that one cannot eliminate the
common denominator because this would imply that the expression is
multiplied by 6. What she claims is that there is “no motive” (“Ein ta-
am” in Hebrew) to get rid of the denominator. For her there is no
problem of a formal constraint which prevents the elimination of the
common denominator. It is a problem of empirical, technical utility.
The entire mathematical knowledge of this student seems to be
governed not by formal constraints, but rather by empirical, practical
justifications.
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Interview No. 8: Student Z – Grade 10B

The same equation as above. The student produces the common
denominator and writes:

4 2 6 5 8x x x+ - - = .

T: On what did you rely, etc?

S: I have multiplied both sides and eliminated the denominator.

T: Why is it necessary to multiply both notes?

S: We have been taught. If one multiplies one side, one has to
multiply also the other.

T: Can you explain why?

S: We always do the same and we do not ask why.

The same student, Z;

The expression: 
x x

2 3
+ .

T: Can you simplify it?

S: She writes: 3 2 5x x x+ = .

T: On what did you rely when you passed from the initial
expression to the next one (the interviewer indicates
3 2 5x x x+ = )?

S: I have multiplied everything by the common denominator.

T: You cannot explain more on what did you rely?

S: One has to eliminate the denominator in order to obtain a
simplified expression.

Let us try to summarise what we have learned from the above
interviews. The responses and justifications do not vary much
comparing a weak student in grade 9 with a strong, highly competent
student in grade 10. All the students except one (student X, interview
6) were able to obtain the correct common denominator in the given
equation. Focusing only on their ability to solve the equation – as
teachers usually do in standard examinations – one may conclude that
all these students except one possess the structural schema of equation
with both its technical solving rules and its formal, axiomatic
constraints. The data obtained using the questionnaire and those
obtained from interviews point to the same conclusion. But when we
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pass to the open phrase, one gets a completely different image. Not
one of the students interviewed has a complete understanding of what
she or he is doing. To most of them, the same justification is: “We act
this way because we have learned to act this way.” The student has in
mind a model: the solution of an equation including fractions using a
number of techniques. The fundamental idea that the procedures used
are justified deductively by formal properties – this idea does not exist
in the students’ minds.

Discussion

At first inspection of the data concerning the solution of equations, one
may conclude that at least some of the 9th and 10th grade students are
able to perform the transformations requested for solving linear
equations. They seem to understand that both sides have to be
simplified, fractions eliminated, algebraic entities containing x grouped
and added at the left side and the numbers grouped and added at the
right side until one gets an equality of the form ax=b and thus
obtaining the value of x for which the equality is true.

Not all the students were able to go all the way correctly, but at
least some of them, as we said, were able to do it. Solving equations –
in our examples, linear equations – is an important part of algebraic
competence. Things seem to be fine until we deviate from the standard
type of questions. But when the students were asked to simplify
expressions like:

p x
x x

y( ) = - + + +2
3

2
2

 or
x x

2 3
+  etc.

one obtains a fundamentally different picture. The students applied the
same programme they were using when solving equations. They looked
for the common denominator, they eliminated it, the equals sign
appears, completing the image of an equation and thus the students
reached an apparently simplified version of the given expression. As a
matter of fact, those students who solved the equations correctly
followed a programme of transformations mechanically: they simply
did not know what they were doing, because they did not know why
they were doing it; what justified their operations. The mathematical
understanding of these students is, essentially, procedural, instru-
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mental. In mathematics, if you don’t know why you are doing
something, you, in fact, don’t know what you are doing. The first
consequence is that there is high probability that the respective student
will make mistakes in his technical solving endeavours. This is an
extremely important consequence of Skemp’s theory. If the relat-ional
understanding is absent, the student does not remain, as a matter of
fact, even with a solid instrumental competence. His instrumental
competence is vulnerable to every shift, every modification of the
context.
We attempted to describe the above situation in terms of schemata –
structural and specific (procedural) schemata. The term schema
signifies a programme, a cognitive structure, the behavioural aim of
which is to process and integrate (interpret) information and to
prepare, release and control adequate reactions. The entire adaptive
activity of living organisms is made possible by such structures.
Without schemata, without such programmes of interpretation and
reaction, no understanding, learning and solving would be possible, as
Skemp has emphasised.

We distinguish between structural and specific schemata. Structural
schemata are basic, very general complex, cognitive behavioural
structures. They are the “building blocks” of cognition (Rumelhart,
1980, p. 33) or of ‘relational understanding’ in Skemp’s terminology.
They are pre-conditions for assimilating, understanding and reacting
correctly in various domains of human activity. The idea of causal
relationships, the concepts of experimentation, of inductive, deductive,
and conditional reasoning, of formal proof versus empirical proof,
stochastic versus deterministic reasoning are examples of structural
schemata.

Basic mathematical concepts like number, function, equivalence,
equation, limit, the group concept, the concept of bijection, etc., are
also examples of structural schemata. They are defined by formal
properties and by rules of operation, deductively organized.

Specific schemata are those procedures by which a structural
schema acts upon a specific content, leading to the solution which one
has been looking for. In Skemp’s terminology, they are expressed in
instrumental learning and understanding. In the case of equations, the
identification and elimination of a common denominator, the separation
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of the terms containing the unknown from the free terms, represent
specific schemata.

Skemp did not distinguish explicitly between structural and spec-
ific schemata. But, in our opinion, his theory implies such a distinction
(which in fact is never absolute). When Skemp speaks about relational
understanding and the role played by schemata in the process of
understanding, he in fact refers to what we call ‘structural schemata’:
general, powerful, extensively relevant, integrating devices. ‘Instrum-
ental understanding’ is reducible to specific, particular procedures.
If the specific schemata become autonomous and the general control
(conceptual and procedural) of the structural schema is lost, the
specific procedures become blind and may be used wrongly.

When the structural schema loses its control, there is another class
of factors which intervene. The impact of the structural schema – more
complex, more demanding – is replaced by a lower level influence, the
influence of a model, an analogy, a metaphor. In our case it is the usual
model of solving equations which intervenes. There is a superficial
similarity between an open phrase and open sentence. The fact that
one does not deal any more with a given equality does not disturb the
student. The concept of equivalence, the idea of performing trans-
formations which will lead to equivalent equations (having the same
truth sample) is too subtle for an insufficiently trained mind. It is the
superficial similarity with the inadequate model which dictates the
solving behaviour, and not the much more subtle idea of conceptual
equivalence.
This seems to be a general phenomenon: when the particular, specific,
procedural schemata are no more under the control of a higher order
adequate structural schema, it is, usually, a model, an analogy, a meta-
phor which takes over the control of the solving strategy. Certainly,
models, metaphors are of highest importance in scientific and
mathematical reasoning. But this, with the essential condition that the
adequate higher order systems of conceptual constraints keep exerting
their control.

In mathematics, there is a system of axioms, of general properties,
theorems and definitions which must guarantee the validity of the
subjacent interpretations and rules of operation.
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One may claim, considering many of the students’ responses to the
items of the questionnaire, that they simply forgot to consider that, in
some cases, they dealt with one-sided expressions – open phrases –
and not with equations.

But the interviews present a more complete picture of what
happened in reality. In these interviews the subjects were asked to
justify explicitly the operations performed: on what formal basis did
they perform the respective operations? Not one of the students
interviewed, weak or strong, 9th graders and 10th graders, those who
solved correctly and those who did not solve correctly, offered the
required formal justification. Everything is carried out at the low level
of instrumental understanding. What determines the students’
behaviour is mainly composed of technical rules without a conceptual
perspective, but influenced by a well rooted, familiar model. Let us
remember the beautiful reaction of a student quoted above: Teacher:
“On what grounds did you eliminate the common denominator?”
Student: “Because it was no more useful.” The justification was
empirically correct, but the formal justification was absent.

We discussed the above problem with a number of teachers. Some
answered that there is simply no time to explain why some
transformations may be performed. Others argued that, initially, the
formal properties and rules have been mentioned in the classroom, but
later on one has not insisted any more on these formal justifications.
What we have found is not an isolated symptom. The respective
students are, simply, not used to considering the operations they
perform as based on a formal deductive system which constitutes the
essence of mathematics. It is this deductive hierarchy, starting from
axioms, theorems, definitions and leading to practical rules which
characterises mathematical reasoning. Practical solving strategies are not
mathematics. We think that this point should be made very clear.

It may be that one decides that students should not learn
mathematics, but only systems of solving procedures. What we claim
is that, in this case, one should be morally honest and affirm this
loudly and explicitly: our society does not need mathematics – except
for a few professional mathematicians.

Our view is different, in agreement with Skemp’s view. Math-
ematics is a fundamental component of modern culture and students
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have to learn it as such – not only a number of practical solving
techniques. Didactically, this does not imply that the student should
be asked to mention at every step of an algorithm, the formal
justification. He should be able to perform the algorithm automatically.
What we claim is that the student should be able to justify formally, on
request, the steps of his solving operations. This is relational learning
and understanding.

This means that the teachers (and also the tests used) should ask
the student, from time to time, to explain, to justify why, on what
formal ground, does he act as he does. This behaviour should be
included in the usual didactical strategy. If this is not done, the student
will not learn mathematics and moreover, he will be exposed to the
possibility of committing, also, very often, systematic technical errors.
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Thinking in Metaphors and Metaphors for
Thinking

Anna Sfard
University of Haifa

Human learning as the natural growth of a plant, understanding as
constructing a map, mathematising as participating in a ball game, doing
pioneering research as erecting a building in an empty field – these are
but a few of many metaphors found in Richard Skemp’s writings1. The
parallels, analogies, images, and comparisons with which Skemp’s
books and papers are so tightly packed help in conveying the author’s
message, making understanding easy and transforming the reading into
an unforgettable intellectual experience.

Indeed, there is something special about metaphors and the way
they help. However, viewing them merely as an ancillary, explanatory
device would be a mistake. Try to take the metaphors out of Skemp’s
writings – try to say whatever he says using only direct, ‘literal’
expressions – and you will soon find out that the task is daunting, if
not outright impossible. Skemp’s metaphors are much more than
literary tricks: they are as substantial to his message as is colour and
shape to a picture and as are sounds to a melody. In a sense, metaphors
are the stuff of which Skemp’s theories are made.

Following this last remark, a comment should immediately be
added: Skemp’s metaphors may be particularly felicitous and imagin-
ative, but their appearance in a serious scholarly text is by no means an
unusual phenomenon. According to what becomes more and more
obvious to philosophers, linguists, and psychologist, using metaphors
in any discourse, and in scientific discourse in particular, is only
natural, indeed inevitable. In fact, we simply cannot do without them.
At a closer look it turns out that analogies, parallels, and comparisons
are essential to the progress of our thinking at large, and to the progress
of science in particular. Let me say a few more words about it before
turning to the analysis of some of Skemp’s metaphors.

Thinking in Metaphors

Quite often, when we choose a concept, say verbal communication,
and then look carefully at the language in which we use to talk about it,
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we are able to notice a striking phenomenon: while there may be a great
variety of common expressions – both colloquial and scientific –
concerned with this concept, a sizeable subset of these expressions
takes us in a systematic way to a certain well-defined domain which
does not seem to be a “natural setting” for the notion at hand. Thus,
for example, whether we talk about ‘conveying ideas’, ‘delivering
[getting] a message’ or ‘putting thoughts into words’, we make it clear
that our image of communicating is borrowed from the domain of
transport: the words are conceived as vehicles and meaning is a cargo to
be transmitted to the listener.

Similar phenomena can be noticed in any domain of knowledge. Let
us take education as our next example. To begin with, it is easy to see
the decisive role of metaphorical thinking in both Piaget’s and Vygot-
sky’s monumental works on the development of human intellect. It
was Piaget himself who pointed out to the metaphorical roots of his
theory when he admitted to his being inspired by the Darwinian idea of
biological evolution. The now famous ‘organic metaphor’, according to
which intellectual development may be compared to the growth of a
plant, followed as a natural consequence. Richard Skemp may not be
the only writer who pursued the idea, but he is certainly among those
who managed to present it in the most explicit and compelling way:

... learning is like natural growth. A plant’s development is a cooperation
between the roots, which draw its nourishment from the soil, and the leaves
which draw energy from the sun. The sun, the rain, and the temperature
provide the environment, the soil provides the nutrient. In a similar way,
intelligent learning requires a combination of several factors. The school has
to provide the environment – not a desert, not an Arctic waste. It has to
provide a micro-climate within which intelligent learning can take place. It
also has to provide nutrients in the form of specifically devised materials,
and this is the soil from which mathematical learning can draw its
nourishment. (in Sfard, 1990).

This, indeed, is a perfect example of a systematic metaphorical
mapping between two seemingly unrelated conceptual domains: To
each element in one domain a certain element from the other domain can
be matched. To use a mathematical metaphor, this mapping is clearly a
homeomorphism in that it preserves relations between elements of the
source domain while matching them to those of the target domain. As a
result, any metaphorical correspondence, and the correspondence
between the process of natural growth and that of intellectual
development in particular, may appear as almost self-evident; however,
it is important to note that, in fact, it has been created rather than
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merely documented by those who first spoke of learning in terms of
biological maturation. Moreover, it is the metaphor which dictates the
way we think about education rather than the other way round.

It is noteworthy that in mathematics metaphors are not less
ubiquitous than in any other domain, although their massive presence
may be much less obvious. One can easily overlook the figurative
nature of mathematical concepts for the simple reason that in
mathematics, metaphorical language is often the only one we have. As a
consequence, the ‘metaphorical’ expressions count also as ‘literal’.
This, by the way, may be the principal reason why many people,
mathematicians included, remain unaware of the metaphorical nature of
mathematical concepts.

Let’s look at an example. The common ways of talking about
numbers reveal a geometric connection: at a closer scrutiny, our
thinking about numbers turns out to be firmly grounded in the
metaphor of numbers as points on a line.

Here are but a few out of the many possible examples:

Think of a number between 0 and 10.

The values of the function g approach 5.

The values of f are very close to 0.

Even in the smallest neighbourhood of a rational number
there are infinitely many irrational numbers.

Clearly, the points are mapped onto the members of number set in
such a way that spatial relations between the former (points) are
isomorphically translated into the order relations between the latter
(numbers). Thus, the inequality 0 10< <x  may be translated into the
sentence: “a number x lies between 0 and 10”. The word “between”
originally refers to spatial relationship and is used now to present the
mutual “placement” of the numbers 0 and 10 (a metaphorical express-
ion again! Indeed, trying to talk without metaphors about anything –
metaphors included! – turns out to be an impossible task).

These examples show clearly what has been stated at the outset:
systematic conceptual metaphors are much more than a literary
gimmick;  neither in everyday life, nor in science can they be regarded
as mere tools for the enhancement of understanding and memorising.
Figurative expressions clearly have a constitute power, that is, they are
instrumental in constructing new concepts rather than just help in
conveying meanings of established notion. As such, metaphors must
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now be recognised as the primary cognitive constructions underlying all
our concepts (Lakoff & Johnson, 1980; Johnson, 1987; Lakoff, 1987,
1993; Ortony, 1993; Lakoff & Nunes, 1997).

Once the metaphor is understood this way, its centrality and
importance become immediately clear. A scrutinising look around
would now suffice to notice that metaphors are ubiquitous both in
everyday, intuitive thought, and in scientific theories. In mathematics
and in science metaphor is genuinely indispensable, and this is what
makes it even more transparent. As Scheffler (1991, p. 45) put it, “The
line, even in science, between serious theory and metaphor is a thin one
– if it can be drawn at all.... there is no obvious point at which we may
say, ‘Here the metaphors stop and the theories begin’”. Indeed, there
are no clear boundaries which would separate the metaphorical from
the literal; there is no background of genuinely non-figurative express-
ions against which the metaphorical nature of such terms as “cognitive
strain” or “closed set” would stand in full relief.

Let me finish this very brief exposition of the modern theory of
metaphor with stressing what may be the most important implication
of this theory for those who try to fathom the workings of human
mind: Since metaphors bring with them certain well-defined expect-
ations as to the possible features of target concepts, the choice of a
metaphor is a highly consequential decision. Different metaphors may
lead to different ways of thinking and to different activities. We can
say, therefore, that we live by the metaphors we use. Indeed, metaphors
are far from neutral with respect to the ways we reason, understand,
talk and do things. We must always remain alert to the possibility that
even the most useful of our metaphors may turn into obstacles to
thinking if they are taken too literally or if we interpret them
uncritically. Almost any metaphor can be shown to have some adverse
implications along with many useful entailments. Thus, for example,
Sheffler (1991) issues a caveat against the organic metaphor – the very
same metaphor which Skemp presented so beautifully:

... when the organic metaphor is transplanted into practical context in which
social policy is at stake, it may become positively misleading, since it
makes no room for distinctions that are of highest importance in practical
issues... Such distinctions are expressed, for example, in the separation of
teaching from force, propaganda, threat, and indoctrination. In addition,
biological regenerative processes are not, in general, considered to be subject
to choice and control, whereas social processes, to a significant extent, are.
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Obviously, it is not Sheffler’s intention to say that the organic
metaphor should be rejected altogether. Rather, his aim is to encourage
only those application of the metaphor which advance our thinking,
while warning us against metaphorical abuses and against limitations
which a given metaphor may impose if given a full exclusivity.

Metaphorical pluralism may be the answer to the dangers outlined
by Sheffler in this last example. Sheffler should therefore be pleased
with Skemp, who evidently liked some figurative expressions more
than others and yet displayed a great flexibility and diversity in his
choice of metaphors. The particular power of Skemp’s writing stems
from his ability to make agile transitions from one metaphor to another
whenever the other metaphor seems more appropriate for the purpose
at hand. None of Skemp’s metaphors, therefore, has been elevated to
the status of an exclusive truth, none of them was taken to be any more
than it was from the beginning: a metaphor. This flexibility, openness
and the plurality of outlook may be the principal source of Skemp’s
theory’s special appeal. In the reminder of this paper I will be survey
two of his most important metaphors, and then scrutinise their
different entailments.

Skemp’s Metaphors for Thinking

Relational Understanding as Having a Map

Relational understanding and instrumental understanding – these may
well be the first terms which come to mind when psychology of
mathematics education is being mentioned. Since their inception in mid-
seventies, the two terms became the hall-marks of the professional
discourse and penetrated our language so deeply that it seems as if
they have always been there. Today, we all speak of children ‘with
only instrumental understanding’ or about ‘successful problem-solvers
who capitalise on their relational understanding’, but not all of us may
be aware that the centrally important distinction was first proposed by
Skemp in his seminal paper of 1976. It is the characteristic feature of
the most successful of scientific ideas that at a certain point they start
looking as timeless and self-evident, and that their use is not always
accompanied by a reference to their conceivers. Skemp’s famous dist-
inction is clearly one of those.

To explain his idea, Skemp urges the reader to imagine a person
trying to learn his way around a foreign city. Basically, there are two
ways in which the task can be accomplished: one can learn ‘an increas-
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ing number of fixed plans [paths]’, or one can try ‘to construct in
[one’s] mind a cognitive map of the town’ (Skemp, 1976, p. 25). These
two types of learning, and of the resulting understanding, are given the
names ‘instrumental’ and ‘relational’, respectively. ‘The analogy
between the foregoing and learning mathematics is close’, explains
Skemp. Moreover, the metaphor is so powerful that one hardly needs a
guidance to understand the great difference between the two types of
learning and understanding. An exploration of the metaphor’s entail-
ments is best done with examples.

Let me begin with a story of a 16 year old girl – let us call her
Naomi – who was asked to solve a non-standard system of linear
equations:
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While solving the problem, Naomi arrived at a stage where the first of
the two equations turned into 1 = 1. The following exchange followed:

Naomi: One equals one. It’s true, but it gives us nothing. Maybe I
shouldn’t have opened the brackets [in the first equation]... I
don’t know...

Interviewer:What can you say now about the solution of the system of
equations?

Naomi: That maybe there is one solution.

Interviewer: What is it?

Naomi: One. The number 1. Or in fact... in fact I don’t think so.

Interviewer: So?

Naomi: There is no solution. An empty set.

Interviewer: Where do you infer it from?

Naomi: Because we did all this... we isolated 2x etc.... to arrive at the
value of y. We substituted this [7 – y instead of 2x in the first
equation] and we were left without x, only with y. And then
there was no y as well. Our goal was to find the value of y and
we didn’t succeed. So I think that we have here an empty [truth]
set.

Poor Naomi. Her brave attempt to apply the well known algebraic
technique led her to nowhere. Moreover, after she realised that the
standard algorithm would not work as expected, she found herself
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helpless and confused. A situation not altogether unknown from our
classrooms, one may say, but what does it have to do with Skemp’s
tourist in a foreign city?

Well, a lot. It is helpful to think of Naomi as a person who learned
a number of constant paths in the city, but who has no means of
dealing with the situation when faced with an unusual goal. She feels
quite helpless when the place she wants to go to proves unreachable
through any of the roads she knew. Like a tourist without a map and
with only limited knowledge of certain concrete paths, Naomi finds
herself ‘unable to retrace [her] steps and get back on the right path’,
even though she tries (see her first utterance above: ‘Maybe I shouldn’t
have opened the brackets. . . ’). She seems too poorly equipped to even
start solving the problem. Until now, she used a very limited range of
clues to decide whether her problem has been solved. Like a tourist
who has been instructed to stop when a particular sign-board appears
on her way, so did Naomi learn to deem her equations as solved only
when she reaches the ‘atomic’ equalities x=a, y=b, where a and b are
concrete numbers. Neither the tourist, nor Naomi, know what to do
when the ‘halting signal’ does not appear.

In situations like this, having a map can certainly help. It does not
matter whether the map is a real overall picture of the city or a
cognitive schema of the ‘problem domain’. The special power of maps
and schemes lies in their generative power: they make it possible for us
to find paths which we have never travelled before.

An episode from a study recently completed by Carolyn Kieran
and myself in Montreal aptly illustrates this last point. In the
Montreal experiment, a group of 12–year old children made their first
steps in algebra. Our approach was functional and the learning was
massively supported with computer graphics. In the final interview, a
boy named George was asked to solve the equation 7x+4 = 5x+8. The
children did not learn the algebraic methods of solving equations, but
they did learn to see linear functions through formulae such as 7x+4 or
5x+8. Here is our exchange with George:

George: Well, you could see, it would be like, … Start at 4 and 8, this one
would go up 7, hold on, 8 and 7, hold on... no, 4 and 7; 4 and 7 is 11 …
they will be equal at 2 or 3 or something like that.

At first sight, it is rather difficult to understand what George is talking
about and where his numbers and calculations are coming from. It
looked like George was able to see more than the symbols – more than
the formulae on the paper would show. He spoke as if he was looking
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at something none of us could see with an equal ease. Indeed, by the
end of the conversation, the following exchange between the boy and
the startled interviewer took place:

Interviewer: How are you getting that 2 or 3?

George: I am just graphing in my head.

In our attempt to interpret the episode, the metaphor of relational
understanding as having a map proved handy. It helped us greatly to
make sense of what was going on. Like a tourist with a mental map of a
city, who is able to find his way between two locations even though he
never walked this path before, so was George able to imagine a web of
relations between two abstract objects represented by the expressions
7x+4 and 5x+8. This ‘mental map’ helped him to cope with the
problem which, from his point of view, was rather unusual. Indeed,
Skemp’s description of a person with a mental map of the town seems
to fit George’s story perfectly: such person, says Skemp, ‘has
something from which he can produce, when needed, an almost infinite
number of plans by which he can guide his steps from any starting
point to any finishing point, provided only that both can be imagined
on his mental map.’ Moreover, ‘if he does take a wrong turn, he will
still know where he is, and thereby be able to correct his mistake
without getting lost’, (Skemp, 1976, p. 25). This is certainly true about
George, who used trial and error method, but who was perfectly able to
correct his own steps by confronting the intermediate results with
what his mental map was showing.

Powerful metaphors are those which can lead to new insights and
enhance one’s understanding of investigated phenomena beyond what
may be read directly form the empirical data. Let us now explore
certain entailments of the ‘map in a foreign city’ metaphor which
Skemp did not necessarily mention himself.

While elaborating on the advantages of relational understanding,
Skemp never considered the possible dangers of ‘having a map’.

Figure 1a.
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The very idea of a fixed plan which shows city’s overall structure and,
at the same time, overlooks lots of details, implies that as useful as
such plan may be, it can also lead us astray. In order to illustrate this
point, I conducted the following experiment in one of my university
classes. Half of the class was shown the picture presented in Figure 1a.
The students were instructed to pay a special attention to the encircled
part of the image. After being exposed to the picture for not more than
30 seconds, and after the picture has been taken away by the teacher,
the students were asked to reproduce the encircled part from memory.
Figure 1b displays a representative sample of the drawings produced
by the members of this group.

Figure 1b.

The other half of the class was presented at the same time with a
slightly different picture. Their following task was exactly like that of
the first group. The picture given to this second group and the results
of students’ reproductive efforts are displayed in Figures 2a and 2b.

The interesting – even if not quite surprising – result is that the
drawings produced by the two groups seem rather different while, in
fact, the shapes the two groups were supposed to reproduce were
exactly the same, although embedded in different pictures.

Figure 2a.
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Figure 2b.

Clearly, the pictures of the girl and of the mushroom that have been
shown to the two groups played a central role in the process of
memorising and then recalling the shapes. This means that the way the
students perceived these shapes in the first place depended very much
on the context within which the shapes have been shown. In fact, what
the participants saw and remembered was their own interpretation of
the shapes. It was the meanings the students gave to the shapes rather
than the shapes ‘as such’. Clearly, this meaning depended very much
on the general scheme within which the encircled shapes were
embedded.

Thus, the pictures fulfil the same important function as maps: they
confer meaning or, to put it in other words, they help in sense-making.
With the help of the two pictures, that of the girl and of the mushroom,
like with the help of a map, the students could find out without
difficulty where they were and then decide quickly how they should
respond to the task at hand. Whether we are talking about a place in a
city or a part of a picture, the entity one is dealing with can effectively
be handled only if it is recognised as a part of a greater familiar whole.

The point I wish to make is now that this easiness, however
important, clearly has its price. The two groups did not reproduce the
original picture in the same way: those students who were presented
with the picture of a girl have drawn shapes which can easily be
recognised as representing a part of a female body, whereas those who
dealt with the mushroom produced drawings which displayed all the
characteristics of a mushroom. It is therefore clear that the students did
not always notice all that could be noticed, while not all the things they
did see and memorise were, indeed, a part of the original shape.
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This example, therefore, shows how a particular map one has
constructed in the past may direct, shape and, eventually, limit one’s
understanding. While making remembering easier, it may close our eyes
to potentially important details. In consequence, it often makes us
impervious to novelties – to the things which have not been taken
under consideration in the process of constructing the maps. After all,
be a map as precise as it may, it will never contain all the possible
details.

Maps, therefore, may sometimes be a hurdle to creativity. They
make us notice only what we already know and ignore what does not
fit into the existing schema. They force us to see a new thing as an
instance of something we already know – if at all. Moreover, probably
just because of their effectiveness, they are also quite durable and
resistant to change. History of mathematics is replete with stories of
mathematicians who were reluctant to abandon well-documented paths
for the sake of routs which did not fit into the familiar territory. In
mathematics, like in geography, an all new area cannot be explored with
well established maps. More often than not, something has to be
destroyed if something new is to emerge. Thus, Columbus had the good
fortune to discover a new land only because he did not follow the
available map too carefully; and Bolyai could think of an all new
organisation of space only because in contrast to Sacceri he had the
power to set his imagination free from the constrains of the all too
familiar Euclidean geometry.

Let me finish this section with a double conclusion. First, here is
what we have learned from Skemp’s metaphor of understanding as
having a map: It certainly takes much intellectual power to build a map
of a new territory and arrive at relational understanding; it takes not
less creativity and intellectual courage to set oneself free from the
constrains of maps already established. Second, there is a meta-level
conclusion: A good metaphor can promote our understanding of
thinking processes in a much more effective way than a most strictly
scientific, ‘literal’ expositions.

Learning Mathematics as a Participation in a Game

Let me repeat: metaphors are ubiquitous, and not only in Skemp’s
writings. Psychologists and educators may be among those writers
who use explicit comparisons and parallels more often than others. Not
all metaphors, however, are explicit. Some of them, mainly those
overarching ‘big’ metaphors which underlie whole families of ‘smaller’
metaphor, may be quite difficult to detect. Among the most elusive,
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and at the same time most essential educational metaphors are those
we use in our thinking on learning. Right now, the field seems to be
caught between two such metaphors: one that views learning as an
acquisition of something (knowledge, concepts, schemes), and the
other one that equates learning with a steadily improving participation
in a certain kind of practice or discourse. I once called these metaphors
Acquisition Metaphor and Participation Metaphor, respectively (Sfard,
1998). Both these metaphors are simultaneously present in most
recent texts, but while the Acquisition Metaphor is likely to be more
prominent in older writings, more recent studies are often dominated
by the Participation Metaphor.

Skemp’s metaphor of the process of understanding as building a
map clearly belongs to the first school of thought; however, some other
metaphors in his books and papers may be deemed as participational
rather than acquisitional. Here is a representative example.

In his attempt to account for the ineffectiveness of mathematics
teaching, as can be witnessed only too often in today’s schools, Skemp
proposed to view the relations between teachers and students as
parallel, in a sense, to the relations between two teams of football
players. First implication of this comparison is that one can
conceptualise the situation of learning mathematics in terms of game
playing. This means, among others, that the two teams are expected to
accept a set of well-defined rules and then follow these rules faithfully
all along the way. Another entailments of the metaphor is that the
whole situation becomes highly ineffective if, for some reason, the two
parties have disparate understanding of the rules themselves. The
situation becomes positively hopeless if, in addition, the two teams
remain unaware of the differences. Skemp’s (1976, p. 21) description is
quite dramatic:

Let us imagine, if we can, that school A send a team to play school be at a
game called ‘football’, but neither team knows that there are two kinds
(called ‘association’ and ‘rugby’). School A plays soccer and has never heard
of rugger, and vice versa for B. Each team will rapidly decide that the other
team is crazy, or a lot of foul players. Team A in particular will think that B
uses a mis-shapen ball, and commit one foul after another. Unless the two
sides stop and talk about what game they think they are playing, long
enough to gain some mutual understanding, the game will break in disorder
and the two teams will never want to meet again.

The entailments of this metaphor are rich and many. Although Skemp
has discussed them only in the special context of instrumental versus
relational approach to mathematics, the metaphor of mathematical
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activity as game playing may be useful and eye-opening in a wide range
of greatly varying situations. It applies equally well to the
communication between teachers and students, as to the communi-
cation among mathematicians themselves. The metaphor sheds as much
light on the reasons for ineffectiveness of instruction as on the sources
of loud protests some mathematicians voiced when some others
presented such outrageously counter-intuitive inventions as negative
numbers or a straight line with infinitely many parallels crossing in one
point. In both these cases, the situation is characterised by the fact that
different participants hold greatly varying meta-mathematical beliefs on
such basic meta-mathematical questions as what counts as a legit-imate
definition, where mathematical ideas come from, what is acceptable as
mathematical proof, what counts as a mathematically sound argument,
what is the meaning of the term ‘axiom’, etc. Clearly, we are talking
here about the basic rules according to which the game called
mathematics is being played. Since, however, all these rules are mostly
tacit, the players do remain ignorant of the need to negotiate them
rather than just engage in the game itself. This, of course, makes the
situation extremely difficult and diminishes the chances for an effective
and satisfying play.

The metaphor of soccer and rugby works, indeed, extremely well if
applied to school situation. The teacher may juggle with such entities
as –5 or –2 in a matter-of-fact tone without ever realising that for the
student the negative and complex numbers are not the kind of objects
with which the game called mathematics can be played. For the
student, mathematics is about numbers, and numbers are about
quantities; however, can any question that begins with the words ‘How
many’ or ‘How much’ be answered with –5 or –2?

The impossible situation of the football match between soccer and
rugby also gives a good sense of those historical junctures where math-
ematicians were discussing truly innovative ideas. For example, the
metaphor helps to understand why Sacceri would be unable to
communicate with Bolyai or Lobachevsky, had the two parties ever
met. The reason, indeed, would be not so much their disagreement on
mathematical ideas as the fact that the very word ‘mathematics’ would
bring to them messages as disparate as the word ‘football’ brings to
soccer and to rugby. If, for Sacceri, mathematics dealt with physical,
mind-independent reality and, as such, would not admit of conflicting
statements on one and the same object, for Bolyai and Lobachevsky,
the idea that some entities (e.g. parallels to the given line) may be
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regarded as either existent or non-existent, depending only on our
choice, was perfectly admissible. While this discrepancy in meta-
mathematical assumptions was the principal reason for the historical
fight for recognition of non-Euclidean geometries, the situation was
exacerbated because the two camps remained unaware of the true
sources of their disagreement: they thought they were fighting for
access to the ball, while, in fact, they were negotiating the rules of the
game.

The metaphor of mathematising as game-playing proves itself times
and again as useful and enlightening. It is also noteworthy that it is
very much in the spirit of today’s research on learning which, inspired
by Wittgenstein’s ideas of ‘language games’ and by Foucault’s concept
of knowledge as a discursive practice, emphasises the aspects of
communication and of norms construction, and pays particular
attention to the way in which the student becomes a skilful follower of
the rules that render mathematical discourse its unique identity. In this
sense, Skemp seems to have got ahead of his times.

Yet Another Metaphor: Pioneering Research as Building a
House in an Empty Field

In early winter of 1989 I had the good fortune to meet Richard Skemp
personally. On a gloomy rainy day I came to his office at the
department of mathematics at the University of Warwick. Retired
already for a few years, Skemp was as interested in research as ever.
We soon found ourselves engrossed into a lively conversation on the
state of research in mathematics education in general, and on his own
work in particular. It did not take much effort to convince this retired
professor but never-tired thinker to render me an interview (Sfard,
1990).

Asked how he would summarise the last two decades of the
developments in research on mathematics education, and his own role
in it, Skemp responded with yet another metaphor:

In the domain of psychology of learning mathematics, we have come a long
way in the last twenty years... In general, the discipline can, and probably
should, develop through creative dialogues and discussions... This, I think,
is the best way of building knowledge. It happens only too often that
everybody puts his bricks in a different part of the field, so we never have a
wall or a house. In the present case, I put some bricks down, and then others
put some bricks on top of mine. Then I rearranged their bricks just a little,
to make a surface which could support my next bricks; and so on. (ibid, p.
49)
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Skemp, indeed, came to an empty field and left it with an impressive
construction. Like first settlers, he put foundations for a whole new
community. Being a member of this community, I feel indebted to its
founding father. I regard my own research as growing out of the ground
work he did for us all. In a sense, our whole activity as researchers may
be seen as a continuing attempt to build on, refine, and occasionally
rearrange, this fine layer of bricks he put in the then empty field.

When I was trying to make my first steps in this field, Skemp’s
ideas made me think. Inspired by the observation on a spectrum of
different types and levels of understanding I set to myself as a goal to
look for the reasons why people’s learning efforts may bring so
dramatically differing results. I emerged from this search with the idea
of reification – an ability to conceive of mathematical notions such as
number, set or function, as referring to certain objects. Of course, I was
well aware that these objects of mathematics were nothing like the
tangible objects we meet in the real life. Still, the way we speak of
number, derivative, set or function stroke me as not much different
from the way we speak about tables, trees, and boxes. It soon became
clear to me that what we use to refer to as a mathematical object is a
metaphor created through projection of certain linguistic forms from
the real-life discourse to the mathematical discourse. And if
mathematical objects are but metaphors, I concluded, then there may
well be another way of thinking and talking about functions, numbers,
and sets.

Indeed, a closer look at what we do and how we speak when
mathematising has shown that in addition to structural thinking, that is
thinking in terms of objects, there was an operational mode which
appeared whenever the same notions were treated as referring to
processes rather than objects. I conjectured that in the course of
learning of a new mathematical concept, one usually proceeds from
operational to structural conceptions, that is, reifies the processes that
underlie this concept. The relation between the structural and oper-
ational conceptions on the one hand, and different types of
understanding proposed by Skemp on the other hand, could then been
described as follows:

… we can say that in mathematics, transition from processes to objects
enhances our sense of understanding mathematics. After all, reification
increases problem-solving and learning abilities, so the more structural our
approach, the deeper our confidence in what we are doing.... [S]tructural
conception is probably what underlies the relational understanding, defined
by Skemp (1976) as ‘knowing both what and why to do’, or having both
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rules and reasons. Purely operational approach would usually give no more
than instrumental understanding, once presented by Skemp as having rules
without reasons. (Sfard, 1991, pp. 29–30)

Now, let us go back for a moment to the two students, Naomi and
George, whom we met above while talking about instrumental and
relational understanding. Let us compare the language of Naomi, who
struggles hopelessly with the singular system of linear equations, with
that of George who copes successfully with an equation for the
solution of which he has no algebraic method. While it is quite clear
that Gorge is acting as if he was scrutinising the relations of some
objects which he is able to ‘see through symbols’, it is equally obvious
that Naomi can only see the symbols themselves. Clearly, it is the
ability to interpret algebraic expressions as representing certain
mathematical objects which makes George successful, and it is the lack
of this ability which accounts for Naomi’s failure. It seems, therefore,
that the ‘maps’ which, according to Skemp, may be held responsible
for the relational understanding have, indeed, much to do with one’s
capacity for structural thinking.

To put it differently, mathematical objects and the web of their
mutual relations may be just the stuff Skemp’s imaginary maps are
made of. To make this message clearer, I once proposed a metaphor
which, in a sense, elaborates on Skemp’s idea of the map: I proposed
to look at the learner of mathematics as a person who wants to take
part in a virtual reality game. This game, played so skilfully by
mathematicians and by mathematics teachers, is inaccessible to those
who cannot re-create for themselves the virtual world that the
experienced players can see with ease. The game is practically out of
reach for a person who does not have an ability to construct a map of
the space replete with mathematical objects where the game called
mathematics is taking place. Without the map, thus without being able
to locate the objects among which she is supposed to move when
playing the game, Naomi was unable to make a step. Unlike her,
George acted as if he was endowed with this special equipment through
which the virtual landscape can be seen and operated upon with ease.

Building on one’s ideas does not necessarily mean accepting all the
other person says. Thus, some of my personal ‘sequels’ to Skemp’s
work are modifications rather than simple additions or refinements. For
example, I decided there is room to reconsider the idea of instrumental
understanding and to ask ourselves whether our tendency to view it as
a rather undesirable phenomenon is fully justified. The argument I
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presented a few years ago goes approximately as follows: If one agrees
that relational understanding has much to do with person’s capacity for
structural thinking, and if one accepts the claim that operational
conceptions are a necessary step toward structural conceptions, one is
compelled to conclude that instrumental understanding might have been
somehow underrated. This kind of understanding, I claimed, ‘is both
valuable and inevitable at certain stages of learning’. In the end, I
decided ‘to push Skemp’s original idea a little further, and talk about a
third kind of understanding: reasons without rules’. This third type
was presented as:

purely intuitive understanding, attained in those rare cases when the vague
structural conception is achieved before the operational basis has fully
developed... having ‘reasons without rules’ may be not enough for creating a
fully-fledged mathematical theory, but it is certainly most helpful in
discovering theorem and in deciding about directions of further
developments (p. 30).

This is how I managed to put my own modest layer of bricks on
Skemp’s solid foundations. Admittedly, the similarity between the
original plan and the present construction may be sometimes a bit
difficult to see. It is important, however, to recognise the fact that even
if our modern buildings look different from those the founding fathers
had in mind, Skemp’s basic layer of bricks is still there, in the ground.
Lest the difference in the facade fool us, then. Lest it conceal the fact
that our high-rising buildings would probably never be the same – and
perhaps would never be at all – without Skemp’s founding effort.
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Schemes, Schemas and Director Systems
(An Integration of Piagetian Scheme Theory
with Skemp’s Model of Intelligent Learning)

John Olive & Leslie P. Steffe
The University of Georgia

 “All action that is repeatable or generalized through application to
new objects engenders by this very fact a ‘scheme’”

(Piaget, 1980, p. 24)

 “All schemes consist of 3 parts: (1) Recognition of a certain
situation and/or experience; (2) association of a specific activity
with that kind of item; (3) expectation of a certain result that can
turn into a prediction.” (von Glasersfeld, 1995)

 “The first part of a scheme can be regarded as a ‘recognition
template’ [that] involves interpreting a task or problem for which
the goal of the scheme’s second part is directed.” (Steffe, 1994)

These three quotes define “schemes” as goal-directed activity in ways
remarkably similar to Skemp’s description of Director Systems in his
model of intelligent learning (Skemp, 1979, 1987). We identify schemes
through observing children recurrently use a goal-directed activity on
several different occasions in what to us are related situations.

Skemp (1979, 1987) used the word “schema” to convey the idea of
personal knowledge structures, that he likened to the notion of a
cognitive map. Skemp later (1987, 1989) described a special kind of
schema that is the result of intensive conceptual analysis of a particular
mathematical topic (such as whole number arithmetic). Whereas our
personal knowledge structures may be non-hierarchical, these “concept
maps” are partially ordered schemas that provide possible learning
trajectories that build from lower-order concepts to higher-order
concepts. As such, “they can be used in at least two ways [by a
teacher]: for planning a teaching sequence, and for diagnosis.” (Skemp,
1987, p. 122) In our work on children’s construction of fraction
knowledge we make distinctions among children’s mathematics (that
are the children’s first-order models of their own mathematical
knowledge; i.e. their personal mathematical schemas), mathematics of
children (that are the second-order models that we create of children’s
mathematics; i.e. our schemas of the children’s mathematical
knowledge), and mathematics for children (that are the Concept Maps
that we construct based on our schemas of the mathematics of
children).
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While schemas are representational structures, schemes and director
systems are action structures. Both kinds of structure are necessary for
understanding intelligent learning. This chapter will attempt to explain
how schemes, schemas and director systems are related, and how they
can be used to build a viable, theoretical model of children’s
constructive activity in the context of learning about fractions. In the
process we construct a modified model of intelligent learning that
integrates scheme theory with Skemp’s Model of Intelligence.

Skemp’s Model of Intelligence – A General Framework

Underlying Skemp’s model of intelligence is the assumption that much
of human (and animal) behavior is goal directed and that survival is a
goal state on which all other states depend. People’s actions move
them toward or away from particular goal or anti-goal states.
Borrowing from the field of cybernetics, Skemp used the metaphor of a
director system for explaining how an individual might organize and
direct these actions. A director system keeps things heading in the right
direction until the goal state is reached.

Skemp (1979) suggested that an individual has many innate director
systems which are the result of evolution and which are essential to the
physical survival of the individual. New director systems, constructed
within the lifetime of an individual, are the result of learning. Other
animals can also develop new director systems as a result of learning,
but humans “have available a more advanced kind of learning, which is
qualitatively different from any of those available to other species,”
(Skemp, 1979, p. 7). Skemp described this qualitatively different
learning as intelligent learning, brought about by the action of a second
order director system acting on the first order system.

In the description of director systems and their components, the
following terms are used:

1. Operand: the physical or mental object of concern which is
brought to the desired goal state and kept there.

2. Operator: that which actually does the work of changing the
state of the operand from the initial to the chosen (goal) state.

3. Comparator: that which compares the mental realizations of
present state and goal state of the operand.

4. Plan: the mental plan of action for changing the state of the
operand.
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Skemp provided several examples of mechanical director systems to
help the reader make sense of these terms but cautioned that the mental
analog was not to be regarded as purely mechanistic in nature. We offer
one such example: that of an electric oven. The goal is to raise the
interior of the oven to a desired temperature (set by the dial on the
front of the oven). The operand in this example is the interior of the
oven (or more precisely, the air or food inside the oven). The operator
is the heating coil inside the oven, and the comparator is a device that
compares the present temperature of the oven to the goal temperature.
In order to make that comparison, a sensor is required that indicates
the current temperature. This sensor is the oven thermostat. The plan
that has been (literally) hard wired into the system is to provide
electricity to the heating element while the oven temperature is less
than the goal temperature and to turn off the electricity when the oven
temperature is greater than or equal to the goal temperature.

In using this metaphor for the explanation of goal-directed activity
in humans several complex issues arise. The first issue is that of
perceived goal state and present state of the system. Skemp made a
distinction between “actuality” and personal “reality.” Actuality is the
physical world in which we live; our personal realities are the ways in
which we perceive that physical world. Another issue is the
relationship that any particular operand has with the environment
within which it exists. In the oven example the interior of the oven is
the environment of the operand; the particular relationship is the
temperature of the interior (not, for instance, how clean it is!). It is this
relationship between operand and environment that determines the
particular goal state to be achieved. For human activity we need to have
some way of abstracting the relevant relationships and sensing them.
The oven example presents a fixed director system, whereas intelligent
learning is concerned with “teachable” director systems. Skemp
addressed all of these issues (and many more) in his model of intelligent
learning. Of particular importance in this chapter is the distinction that
Skemp made between a First Order Director System (Delta-one) that
directs physical activity and a Second Order Director System (Delta-
two) that directs mental activity.

First-Order Director Systems (Delta-one)

Delta-one directs the actions of operators acting on operands which
exist within the physical environment. Figure 1 illustrates the
components of a director system.



100

Figure 1. Components of a director system,
(from p. 49 of Skemp, 1979).

Actuality is represented within a director system in the form of
conceptual structures or schemas. As illustrated in Figure 1, both the
present state, indicated at point P, and the goal state, G of the operand
must be realizable within a schema.

The vertical lines between operand and environment represent
relationships between these two. The small circles ( ) represent
sensors which abstract these relationships, making the realization of
both the present state and goal states of the operand possible within a

schema. The comparator  compares present state and goal

state. The plan converts this information into appropriate action by
directing the energies of the operators, acting on the operand, in such a
way as to bring the operand to the goal state. The director system as a
whole has been enclosed by a dotted boundary line.

Thus it is from the individual’s schemas (in which actuality is
realized) that the director system develops plans for progressing from
present state to goal state. The accuracy and completeness of one’s
schemas will directly affect the quality of the plans derived from them.

Qualities of Schemas

Schemas can be regarded as networks of connected concepts. They are
our mental models of actuality, “or rather, by a process of abstraction,
those qualities of actuality which are relevant to the functioning of
particular director systems” (Skemp, 1979, p. 113).

Several aspects of a schema affect its quality:
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i) The type of concepts which make up the schema (e.g. object
concepts, class concepts). The more abstract the concept, the
more extensive the domain of the director system of which it
forms part.

ii) The quantity of connections between concepts. The more
complete the network, the greater variety of plans that may be
produced, the more adaptable the director system becomes.

iii) The quality of connections. Concepts may be linked either
associatively or conceptually. An example of an associatively
linked (A-linked) schema is the schema containing a person’s
name, address and phone number. The individual concepts have
no conceptual relationship with one another; they are linked only
by association with a particular person and must be learned by
either a process of rote memorizing or by consciously being taken
together as one thing. In many cases, a non-conceptual relation
may be established (such as a mnemonic) to aid memory. We
regard the unitizing of information (taking together) and the
establishing of relations as different from “rote memorization.”

Skemp (pp. 187–189) gives the following examples of conceptual
connections:

a) 2–5–8–11–14–17,
b) 1–2–4–7–11–16,
c) parler – je parle, aimer – j’aime, donner – je donne.

In each example the link between each component can be
conceptualized. In (a) the link is “a difference of 3”; in (b) it is a more
complex concept – “a difference which increases by one for each
successive link;” in (c) the link is a regularity, or rule, consistent for
regular verbs of the same declension. In contrast to (c), the link
between the verb etre and je suis is purely associative.

According to Skemp, other factors important for the effectiveness
of a schema include:

iv) Relevance of content to the task in hand.
v) The accuracy with which it represents actuality1.

                                                
1 From our perspective as radical constructivists the notion of “accurately
representing actuality” appears to assume that an actuality exists totally independent
of any “knower.” We would argue with this assumption and prefer to replace the
notion of “accurately representing actuality” with the notion of “viability.” A schema
is viable if it fits with our experiences of actuality (i.e. provides us with ways of
explaining our experiences).
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vi) The quality of organization which makes it possible to use
concepts of lower or higher order as required.

vii) The strength of the connections.
viii) The content of ready-to-hand plans, which remain integrated with

the parent schema.
ix) Penetration – the degree to which it can function in high noise

conditions.
x) Assimilatory power – the degree to which it can assimilate new

experience, as well as the possibility of mutual assimilation with
other schemas.

xi) The extent of its domain.

Schema Construction

Skemp formulated three modes by which individuals both build and
test their schemas. The following table (taken from Skemp, 1989, p.
74) outlines these three modes.

Table 1
Schema Construction

BUILDING TESTING
Mode 1

from our own encounters
with the physical world:
experience

against expectations of events
in the physical world:
experiment

Mode 2
from the schemas of others:

communication

comparison with the schemas
of others:
discussion

Mode 3
from within, by
formulation of higher-order
concepts: by extrapolation,
imagination, intuition:
creativity

comparison with one’s own
existing knowledge and
beliefs:

internal consistency

As mathematics educators we need to provide learning situations in
which all six modes (three modes of building and three modes of
testing) are brought into use if children are to be successful in
constructing their own schemas. Mode 1 points to the importance of
structured practical activities; mode 2 points to the value of co-
operative learning situations; and mode 3 emphasizes the need for
creativity in the learning of mathematics.
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The Domain of a Director System

The Domain of a Director System refers to a well-defined set of
situations or states within a particular universe of discourse. As these
states must be realized within a person’s available schemas, the
quantity and quality of these schemas define the extent of the domain.
The director system can function effectively (i.e. is able to develop
plans to move the operand from a present state to a goal state) if it is
operating within its domain. It cannot function outside its domain. It is
important for teachers to know whether a student’s inability to reach a
goal state is because the goal state is outside the domain of the
student’s director system or because it is beyond the capacity of the
student’s operators. Skemp termed that set of states which are both
within the domain of the director system and the capacity of the
operators the prohabitat of the individual. Olive has used the term
comfort zone in a similar way to that of prohabitat. Skemp (1979)
provided an example of prohabitat in terms of a swimmer and non-
swimmer. An experienced swimmer would be in the domain of her
swimming director system when swimming across a river, but a non-
swimmer would be outside of his domain if the river was too deep for
wading across. The swimmer, however, might also get into trouble if
the river was running too swiftly for the swimmer to reach her goal on
the opposite bank. Here the problem is not the domain of the director
system, but the capacity of the operators – the swimmer’s muscles are
not sufficiently strong to swim against the current. Thus, the
swimmer’s prohabitat consists of those situations in which she can
swim effectively (and safely!).

Frontier Zones are those regions on the boundary of a domain
within which the director system can function but not with complete
reliability. One expands one’s domains by operating within these
frontier zones until they are made reliable regions of the domain; then
new frontiers are established. (In the case of the swimmer, she builds
up her muscle strength and swimming technique to be able to function
reliably in more swiftly flowing rivers.) Thus learning is an activity
which may benefit greatly from challenging situations under protected
conditions in which the learner can make mistakes without too serious
consequences. Steffe’s notion of zones of potential construction is
compatible with Skemp’s notion of frontier zones.

There are many other details of the model concerned with the
nature and use of director systems – the role of emotions as feedback
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mechanisms, interaction between first order director systems, the
concept of motivation, internal and external organization and
cooperation between individuals. The goal of an individual’s second-
order director system is improved functioning of the individual’s
director systems. This should also be the goal of education. Thus it is
only in cooperation with a student’s second-order director system that
a teacher may improve the functioning of a student’s first-order
director system. This implication of Skemp’s model of intelligent
learning becomes critical when we examine children’s construction of
mathematical schemes.

Second Order Director Systems (Delta-two)

It is the existence (and use) of these second-order systems which,
according to Skemp, separates humans from other species and makes
possible intelligent learning. The operands of Delta-two are teachable
Delta-one director systems. The function of Delta-two is to take a
teachable Delta-one from a present state in which Delta-one does not
function optimally to a goal state of optimal functioning. Components
of the state of a director system include its domain, the viability and
completeness of its schemas, and the skill with which it translates
plans into action. Successful learning is thus indicative of having more
extensive domains, having more viable and complete schemas, and
possessing greater skills in putting plans into action.

Prohabitat at the Delta-two level refers to the intellectual regions
within which a Delta-two functions; that is, brings Delta-one systems
to better states. Emotional signals also come into play at the Delta-two
level. If one is operating within one’s intellectual prohabitat one
experiences confidence in one’s ability to learn, whereas, if one is faced
with a task outside the intellectual prohabitat one experiences anxiety
and frustration. These emotions will now be signaled from two levels,
Delta-one and Delta-two, and the signals may not always be
complementary.

Intuitive and Reflective Processing

We now turn to the processing by which plans for action by a director
system may be produced. Prerequisite for the production of these
plans is understanding, which Skemp (1979) defined as “the realization
of present state and goal state within an appropriate existing schema.”
(p.170). The existence of such a schema implies the existence of one or
more paths between these states but does not guarantee that this path
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can be thought of. However, the better the quality of the schema, the
more likelihood of discerning a path and thus producing a plan.

Intuitive path finding. As stated earlier, a schema can be regarded as
a network of connected concepts. The strength and quality of those
connections (A-links or C-links) have been described as important
aspects of a schema. The proximity of connected concepts is another
important aspect; in the non-spatial sense, proximity can be regarded
as “closely related”. Activation of one concept can activate or heighten
awareness of other concepts; those closely related will be more
activated than distantly related ones.

In Figure 2 the thin lines represent the schema as a whole; the
thicker lines radiating from P (present state) and G (goal state)
represent the activation of “neighboring” concepts resulting from
heightened consciousness of present state and goal state.

P

G

Figure 2. An activated schema.
(from Skemp, 1979, p. 171)

“If these neighborhoods connect, then one or more paths from P to G
will result. This represents path finding at an intuitive level.” (p. 171).
Just by thinking about the problem a solution rises to consciousness.
Skemp described the intuitive process in more detail in terms of a
resonance model – the mutual excitation of tuned structures resulting in
the amplification of a shared frequency due to the phenomena of
resonance. During intuitive processing consciousness is centered in
Delta-one.

Reflective processing. Intuitive path finding has a fundamental
weakness. It does not always perform to order. If the goal state and
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present state are far apart (either literally or metaphorically) then a
connected pathway may not surface into consciousness. One may
choose a succession of present states which one hopes will eventually
bring one within the neighborhood of the goal state. However, if, by a
process of reflection, the schema as a whole can be brought into
consciousness the planning function becomes much more powerful.

The difference may be illustrated by regarding one’s schemas as
road maps. If the whole map is available, one can select an optimal
route from present state to goal state; and if one encounters unforeseen
obstacles on the way, alternative routes can be planned given a map
with sufficient detail! If, on the other hand, the whole map is not
available but one can recall certain neighboring streets and has a general
idea of which direction the goal state lies, one can head off on a trial and
error basis; this may, however, result in getting oneself completely
lost!

Bringing the whole schema, or as much of it as possible, into
consciousness is a function of Delta-two operating on Delta-one.
Following Piaget, Skemp has termed this ability to make one’s own
mental processes the object of conscious observation “reflective
intelligence.” An immediate consequence of this ability is the
possibility of separating the activity of thought from physical action.
“This not only allows the preparation of plans in advance of action: it
also makes it possible to construct several possible plans for the
achievement of a particular purpose, to consider their respective
merits, and to settle on that which seems to be the best; then either
immediately or at a later time, to put this plan into action.” (Skemp,
1979). This process could be regarded in a problem solving situation as
the ability to withhold closure.

Another consequence of the shifting of consciousness to the Delta-
two level is diminished functioning at the Delta-one level. In effect,
Delta-one ceases to direct action. The diminished functioning of Delta-
one would explain Romberg’s findings (1982), when investigating the
acquisition of higher-level algebraic abilities, with respect to already
established abilities: “The first step toward progress is regress.” The
established ability actually diminishes while the student is progressing
to the higher level ability (Delta-two activation). When the new ability
is acquired the performance of the old ability stabilizes (Delta-one is
back in action).

Reflective processing serves many important functions; the
following is a brief summary:



107

  Awareness of one’s schemas

 – improving them by formulating new concepts and

connections

 – testing their predictive powers and internal consistencies

– revising them if necessary.

 Generalizing from our concepts and schemas

– forming higher-order concepts and schemas.

Improving and systematizing the knowledge we already have.

 (DIRECTOR SYSTEMS)

Figure 3. Skemp’s model of intelligence.

There are many other important aspects of Skemp’s model of
intelligence not included in this summary. The reader is encouraged to
fill in these gaps for him/herself by referring to the original source
(l979). Figure 3 is a representation of those parts of the model touched
upon here.

Building Models of Children’s Mathematical Thinking

The main goal of our work in the research project on children’s
construction of the rational numbers of arithmetic is to build models of
the children’s mathematical thinking as they struggle to make sense of
situations and problems involving fractional quantities. These models
can be regarded as our schemas of the children’s fractional knowledge.
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They are what we call second-order models (not to be confused with
Skemp’s Second-Order Director System!). The schemas that the
children construct as they develop understandings of fractions in many
different situations are what we call first-order models. We also have
our own first-order models of fraction knowledge (our schemas of
fractions), but as adults and mathematics educators our first-order
models of fraction knowledge are likely to be very different from the
children’s schemas.

Distinguishing between first- and second-order models is critical in
avoiding a conflation between children’s mathematical concepts and
operations and what is regarded as mathematics for children.
Traditionally, both have been understood as first-order models –
mathematical knowledge from the point of view of contemporary
school mathematics. In our developing framework, both of these things
are regarded as second-order models. Second-order models are
constructed through social processes and we thereby refer to them as
social knowledge. In terms of Skemp’s three modes of schema building
and testing this social knowledge would be the result of Mode 2
building and testing: building from the schemas of others (through
communication and observation), and testing by comparison with the
schemas of others (through discussion). Regarding school mathematics
as social knowledge is a fundamental shift in belief that is yet to be
fully appreciated. Included in this shift in belief is Skemp’s implication
that a teacher must cooperate with children’s second-order director
systems in order to foster intelligent learning.

In making the above distinction between what we call first and
second-order models of children’s mathematical knowledge we add a
new quality to Skemp’s notion of Schema that is important for
educators to understand. As educators we cannot know directly the
children’s own schemas, we must construct our second-order schemas
of that knowledge based on our interactions with and observations of
the children’s mathematical activity. In what follows we elaborate on
these different levels of schemas and introduce the Piagetian notion of
schemes of action in an effort to explain children’s mathematical
behavior in ways that we believe go beyond Skemp’s cybernetic model
of director systems, and yet are compatible with that model.

Mathematics of children

We attribute mathematical realities to children that are independent of
our own mathematical reality (Kieren, 1993; Steffe, Cobb & von
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Glasersfeld, 1988). Although the attribution of such realities to children
is essential, it does not provide models of what these realities might be
like. We adults are obliged to construct models of children’s
mathematical realities. In this, we use the phrase “children’s
mathematics” to mean whatever constitutes children’s mathematical
realities (their mathematical schemas) and “mathematics of children” to
mean our models of children’s mathematics (our schemas of their
mathematical knowledge). We regard the mathematics of children as
legitimate mathematics to the extent that we find a rational basis for
what children do.

The first-order models that constitute children’s mathematics (their
schemas) are essentially inaccessible to us as observers. By saying this,
we don’t mean that we don’t try to understand children’s mathematical
realities. Quite to the contrary, we spend a substantial part of our time,
during and after teaching children, analyzing their evolving
mathematics. What we do mean is that regardless of what the results of
those analyses might be, we make no claim that the first-order models
that constitutes the children’s mathematics corresponds piece-by-piece
to what we have established as second-order models (our schemas).

Mathematics for Children

We usually find it inappropriate to attribute even our most
fundamental mathematical concepts and operations to children. For
example, a set of elements arranged in order is a basic element in ordinal
number theory. Although children establish units of units and later use
these composite units in further operating (e.g. four iterated six times),
these composite units are not constituted as ordered sets by the
children in the way we understand ordered sets. The observer might
regard the composite units that are attributed to the children as early
forms of ordered sets, but to call them ordered sets would be a serious
conflation of our idea of an ordered set and the idea of a composite unit
as a concept that we have found useful in understanding children’s
mathematics. Ordinal number theory can be orienting, but it is not
explanatory in the sense that it can be used to account for children’s
numerical concepts and operations. In this, it might seem that what
adults intend for children to learn remains unspecified.

Mathematics for children consists of those concepts and operations
that children might learn (Steffe, 1988). But rather than regard these
concepts as being a part of our own mathematical knowledge, we base
mathematics for children on the mathematics that we have observed
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children actually learn. Essentially, mathematics for children cannot be
specified a priori and must be experientially abstracted from the
observed modifications children make in their schemes (or, in Skemp’s
terminology, their first-order director systems). That is, mathematics
for children can be known only through interpreting changes in
children’s mathematical activity. Specifically, the mathematics for a
group of children with respect to a particular mathematical scheme is
initially determined by the modifications that we have observed other
children make in the particular scheme. We call this a zone of potential
construction. As will be seen, this zone of potential construction is
analogous to Skemp’s frontier zone with respect to the domain of a
particular director system.

An initial zone of potential construction serves as a guide in the
selection of learning situations. As a result of actually interacting with
the particular children, the zone of potential construction may be
reconstituted as a zone of actual construction (the prohabitat of a
director system). The two zones usually diverge, however, because in
the course of actually interacting with the children, they may make
unanticipated contributions and new situations of learning may need to
be formulated. Through establishing actual zones of construction, new
possibilities may arise for a zone of potential construction with respect
to the particular scheme. Some elements may be retrospectively of less
importance than originally thought or may be reorganized in new
relations with the more novel elements. In short, we recognize the
necessity to modify our models of children’s mathematics according to
the children’s work and maintain that teaching mathematics is
constitutively adaptive.

Our first-order models of mathematics do play fundamental roles in
formulating the second-order models that we call the mathematics of
children. Perhaps the most fundamental of these roles is in orienting us
as we formulate mathematics for children and how to interact with
them. Our focus in the remainder of this chapter is on developing a
central conceptual construct – schemes – that we use in building
models of children’s mathematics. Our focus on schemes is appropriate
because we regard children’s fractional knowledge as consisting of
schemes of action and operation that are functioning reliably and
effectively. While schemes have many similar features to those of a
Director System, we shall show how the two constructs differ and how
they might complement each other.
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Schemes and Model Building

Because of the close similarity of the two words “schema” and
“scheme” it is necessary to emphasize their functional difference:
Schemas are representational structures – they represent knowledge in
the form of networks of connected concepts, whereas schemes are
action structures. Piaget (1980) based the idea of scheme on repeatable
and generalized action. “All action that is repeatable or generalized
through application to new objects engenders … a ‘scheme’.” (p. 24)
From this, we identify schemes through observing children recurrently
use a goal-directed activity on several different occasions in what to us
are related situations. Through such observations, it is possible to
describe a scheme. These descriptions are usually interesting and often
contain insightful behavior on the part of the child. For the practice of
teaching, the descriptions are usually sufficient and there is little need
to go beyond them if there is at least an intuitive understanding of the
mental operations that may have given rise to the goal-directed activity.

For example, Kieren (1993) described three seven-year-old girls as
characterizing one of seven children’s share of four pizzas in Figure 4
as “a half and a bite”.

Figure 4. A sharing situation.

As researchers, it is our intention to go beyond this description in an
attempt to understand and formulate plausible conceptual operations
used by the children as they established one child’s share as “a half and
a bite.” In this, we infer that the children’s assimilated situation, which
involved a question of how much pizza one child would get as well as
the picture of the seven children and the four pizzas, constitutes what
we interpret as a sharing situation. This inference is based on the result
of the children’s activity – “a half and a bite”. We infer that the
children would need to establish a goal and engage in a sharing activity
in order to reply as they did.

The Parts of a Scheme

This intuitive understanding of the mental operations involved in
sharing is enough to qualify the sharing activity as a scheme in the
Piagetian sense if we could observe the three children engage in similar
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sharing activity in other situations. Focusing only on the activity of
sharing, however, does not provide a full account of the concept of
scheme. von Glasersfeld (1980), in a reformulation of the classical
Stimulus Æ Response schema in associationist learning theories in

terms of Piaget’s concept of scheme, elaborated the concept of scheme
in a way that opens the possibility of focusing on what may go on
prior to observable action. It also opens the possibility that the action
of a scheme is not sensory-motor action, but interiorized action that is
executed with only the most minimal sensory-motor indication.
Finally, it opens the possibility to focus on the results of the scheme’s
action and how those results might close the child’s use of the scheme.
In these ways, schemes modify the notion of a director system as shall
be shown later in this chapter.

According to von Glasersfeld, a scheme consists of three parts.
First, there is an experiential situation; an activating situation as
perceived or conceived by the child, with which an activity has been
associated. Second, there is the child’s specific activity or procedure
associated with the situation. Third, there is a result of the activity
produced by the child.

The first part of a scheme involves the operation of assimilation.
For Piaget (1964), assimilation constituted the fundamental relation
involved in learning, and he defined it as follows:

I shall define assimilation as the integration of any sort of reality into a
structure, and it is this assimilation which seems to me fundamental in
learning, and which seems to me the fundamental relation from the point
of view of pedagogical or didactic applications. … Learning is possible
only when there is active assimilation. (p. 18)

When we speak of assimilating operations of a scheme, we do not
assume that an experiential situation “exists” somewhere in the mind in
its totality as an object that a child retrieves. Rather, we assume that
records of operations used in past activity are activated in assimilation.
In Skemp’s model these records of operations could be the pathways
in an activated schema. In this respect, the first part of a scheme can be
regarded as a schema in which the experiential situation has been
assimilated. We further assume that the operations comprise a
“recognition template” which, when implemented, creates an
“experiential situation” that may have been experienced before. When it
is clear from context, we refer to the recognition template as an
assimilating structure (i.e. a schema).
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So, the first part of a scheme consists of a “recognition template” (or
schema), which contains records of operations used in past experience.
In this respect, the first part of a scheme is very compatible with the
way in which a Director System must represent the present state
(assimilated situation) within a schema. Recognition of a situation may
activate the scheme’s activity (Intuitive Processing). The activity of a
cognitive scheme may consist of an implementation of the assimilating
operations, and the result of the scheme may consist of an experienced
situation. In the case of partitioning operations, mental partitioning
activity might constitute the activity of the child’s scheme and an
imagined partitioned entity might constitute the scheme’s result. This
is in contrast to the sharing scheme alluded to in Figure 4. There,
sharing activity was actually implemented, and the situation implied by
the comment “a half and a bite” constituted the scheme’s result. In
either case we regard both the activity and the result as parts of the
scheme, rather than as being external to the scheme, as is the case with
Skemp’s model of a director system.

The Structure of a Scheme

Figure 5 is a diagram of the idea of a scheme. This diagram is static and
as such it can be grossly misleading in interpretation. But it does help
to highlight the essential aspects of a scheme. The Generated Goal can
be regarded as the apex of a tetrahedron. The vertices of the base of the
tetrahedron constitute the three components of a scheme proposed by
von Glasersfeld. We include the generated goal in our idea of a scheme
for reasons similar to Skemp’s inclusion of the goal of a director
system (needing to be realized) within a schema that also includes the
present state of the situation on which the system is operating.

Scheme's 
Situation

Generated 
Goal

Scheme's 
Activity

Scheme's 
Result

Figure 5. The structure of a scheme.
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The generated goal has to be associated with the situation of the
scheme, the scheme’s activity is directed toward that goal, and the
results of the scheme are compared to the goal. In these respects, our
idea of a scheme is analogous to Skemp’s director system but, as will
be shown, the ways in which these components may be related are
more complex than in Skemp’s director system.

The double arrows linking the three base components are to be
interpreted as meaning that it is possible for any one of them to be in
some way compared or related to either of the two others. The dashed
arrow from situation to result is to be interpreted as an expectation of
the scheme’s result. The dashed arrow in the opposite direction
indicates that the result could modify the situation of the scheme.

The generated goal is compared to both the situation and result
(these double arrows are similar to Skemp’s Comparator in Figure 1).
The generated goal frames the activity of the scheme (arrow from goal
to activity ). It is also possible that the activity of a scheme can
generate new goals (or modify an existing goal).

Whereas in Skemp’s model present state (P) and goal state (G) are
locations within a schema, and the action plan of the director system is
to take an operand from P to G, the Generated Goal in von
Glasersfeld’s structure of a scheme could be thought of as framing the
activity of the scheme, and the result of the activity is compared to the
goal. The result is a new state and if it satisfies the goal then the
scheme is closed. For example, in the problem presented in Figure 4,
the goal is to find how much of a pizza is the share of one of seven
people who are sharing four pizzas. The result is “a half and a bite.”
For the child, the goal is satisfied and the “sharing scheme” is closed off
by the production of the result. (For the teacher, whose goal may have
been more mathematically exact, the goal may not be satisfied!)

The goal to find the share for one of the seven stick figures drives
the sharing activity during the activity. In this way the goal frames the
activity. Partial results (partial from the point of view of the goal) feed
back into the goal and we assume that they are compared with the
generated goal. This feedback system is indicated by the double arrow
between the generated goal and the results. Skemp’s notion of a
“comparator” is crucial in this situation; however, the comparison is
not simply made between “present state” and “goal state” but between
successive results of the scheme’s activity and the framing goal of the
scheme. For us, the “present state” is always changing rather than
some fixed position in a cognitive map.
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Given a generated goal and a result of a scheme, in some cases it is
possible for a child to establish a situation of the scheme if the
scheme’s activity is reversible. For example, a basic reason why 58
percent of the 11-year-old children in the study of mathematical
development conducted by the National Foundation for Educational
Research in England & Wales (Foxman, et al., 1980) could not say that
1/4 of 1/2 is 1/8 is understandable when considering the possibility that
their fractionizing schemes were not reversible schemes. The students
were first given a piece of string and then were asked to cut it in half.
The students were then presented with one of the halves and were
asked to “cut off 1/4 of this piece”. The question “what fraction of the
whole string that you started with is that little piece”? was then asked.

The students who were successful in cutting off 1/4 of 1/2 of the
whole string had produced a result of their fractionizing scheme and
their goal of making 1/4 had been satisfied. When the last question of
the series of three was asked, this would serve to establish a new goal
and a new situation using the results of the old scheme. Finding 1/8
might involve the students reassembling the four pieces in thought and
seeing this as 1/2 of the string partitioned into four equal pieces. If the
child then produced another 1/2 of the string in thought also partitioned
into four equal pieces to produce the whole string as two equal pieces
each partitioned into four equal pieces, the student’s fractionizing
schemes would be reversible schemes in that the student would be able
to start from a result and reestablish the situation using inverse
operations. So, in the case a scheme is reversible, its result can be used
in establishing a situation of the scheme via the scheme’s reversible
activity. We stress, however, that these relations are only possible for
some schemes. They are not a necessary aspect of all schemes. Some
schemes are entirely “one-way” schemes that proceed from situation to
activity to result.

The double arrow between the scheme’s activity and the scheme’s
results indicates that the results or partial results may modify the
activity, which in turn may modify the results. Likewise, a
modification of either of the scheme’s activity or results may lead to a
modification of the recognition template (the assimilating schema). In
further uses of the scheme, the latter modification may in turn lead to a
change in the scheme’s activity. Of course, the generated goal may also
change as the scheme is being used. Thus our schemes are, by their
very nature, dynamic and liable to modification whenever they are used
in non-routine situations.
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Reflective Processing and Interiorization

The potential of our schemes for modification when used in non-
routine situations points to the very essence of intelligent learning.
Skemp’s model of intelligence provides us with a possible mechanism
for effecting such modifications – a second-order director system that
operates on our first-order systems in order to bring these first-order
systems into more effective and more powerful conditions. Skemp
described the modifications of our first order director systems in terms
of improvements in our schemas by formulating new concepts and
connections. The improvement could also be in terms of greater
interiority of the concepts in the schema. “A schema in its general form
contains many levels of abstraction, concepts with interiority, and
represents possible states (conceivable states) as well as actual states.”
(Skemp, 1979, p. 190) In terms of scheme-theory, the second-order
director system has as its goal the improvement or modification of our
schemes of action. As Skemp described in his model, an individual may
bring about modifications in his or her own schemes through Reflective
Processing. There are several ways in which a scheme may be modified.
The recognition template (assimilating schema) may be expanded, thus
making the scheme more widely applicable. This would be analogous to
extending the domain of a director system. Another, more radical
modification concerns the activity of the scheme. We hypothesize that
through a process of reflective abstraction the activity of a scheme
becomes interiorized. Piaget (1964) called such interiorized action an
operation: “An operation is … the essence of knowledge: it is an
interiorized action which modifies the object of knowledge” (p. 8). This
process of interiorization can continue to produce more abstract
operations (reinteriorized operations) that have wider applications. In
the construction of mathematical knowledge, this process of
reinteriorization is obviously necessary for the construction of highly
abstract schemes involved in algebraic reasoning; Steffe (1988),
however, has shown that for children to reason multiplicatively
requires the construction of highly abstract number sequences
(schemes) that are the results of several levels of reinteriorization of
their initial counting activities. The following example illustrates the
process of interiorization for a child who can only count perceptual
items (items that the child can actually see and touch).

From Perceptual to Figurative counting. A child is given four
checkers and asked to find out how many checkers there are in front of
him. The request to find “how many” activates the child’s perceptual
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counting scheme, which has as its framing goal “to count the visible
objects.” The child counts the checkers by pointing to each one in turn
uttering the number words “one, two, three, four” and then looks up
and says “four.” The assimilating structure of the child’s counting
scheme is a perceptual plurality (visible objects to be counted). The
activity of the scheme is a coordination of pointing to each item in turn
while uttering number words in a set sequence until all items have been
touched. The result of the scheme is a counted collection and a final
number word. The four checkers are now covered by a cloth or piece of
paper and the child is asked “How many checkers are hidden under the
cover?” The perceptual counter cannot answer this question even
though he has just counted the checkers. The prior result is no longer
available. It is only available as a result of the activity of counting, but
the counting scheme was closed when the result was obtained.
However, the scheme may still be activated and in order to implement
his counting scheme the child needs some objects to count. The
assimilating structure of this perceptual counting scheme has nothing to
assimilate – there are no visible checkers.

After a few moments, the child points to a position on the cover,
staring intently, and utters the word “one.” He then continues this
activity pointing to another part of the cover and uttering the word
“two” – this process continues until the previous result of counting
(“four”) is obtained. Our explanation of this activity is that the child
generated a new temporary goal “create something to count.” Because
the child had a concept of “checker” the child was able to “re-present”
in imagination a figurative checker. This was an act of reflective
abstraction from the immediate past experience of a checker. The child,
however, could not yet re-present more than one checker in imagination
(a figurative plurality). The child’s counting scheme, however, was still
activated, thus the action of the scheme could be applied to the
imagined checker, and another imagined checker can then be produced
for continued application of the action of the scheme. The child knew
when to stop counting imagined checkers because of the trace of the
immediate past counting activity that ended in the number word
“four.” In essence the child has reenacted his counting activity using a
figurative checker in place of the perceptual checkers. What has
happened to the child’s counting scheme? It has been internalized in
that it can now be applied to imagined checkers and not just perceptual
checkers. Further applications of this internalized scheme will lead to
an interiorization of the scheme whereby the results of the counting
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scheme can be taken as given – the final number word will now
represent the whole scheme and the child does not have to recount even
imagined checkers. The number word “four” can stand for the act of
counting “one, two, three, four.” The child can now “count-on” and has
constructed what Steffe, von Glasersfeld, Richards and Cobb (1983)
have termed an “initial number sequence” – an Interiorized Counting
Scheme.

From the point of view of Skemp’s theory, we could say that the
blocked implementation of the child’s perceptual counting scheme
caused a shift of consciousness from functioning at the level of Delta 1
(implementation) to Delta 2 functioning (modification). The first
modification was to generate a new but temporary goal: form items to
count. This, in turn led to a modification of both the recognition
template (assimilating schema) and the activity of the perceptual
counting scheme so that it could operate on one imagined item at a time
as well as perceptual items.

While schemas may contain interiorized concepts (that are
themselves schemas) (Skemp, 1979, p 141), higher-order schemes
contain interiorized actions that are themselves schemes. An
interiorized action can be taken as given – that is, the child does not
have to carry out the action to obtain a result. As seen in the example
above, a child with an “Initial Number Sequence” (an interiorized
counting scheme) the number four stands for the result of having
counted from one to four. Such a child can “count-on,” whereas a child
with only a figurative or perceptual counting scheme cannot count-on.
For the perceptual or figurative counter, when three new checkers are
added to a previously counted set of four checkers, the child has to
“count-all” to find out how many checkers there are altogether. The
child with the interiorized counting scheme does not have to count-all.
This child points to the set of previously counted checkers and says
“four” then continues counting on “five, six, seven” while pointing to
each of the new checkers.

Interiorized Schemes:
A Modified Model of Intelligent Learning

Both interiorized concepts (schemas) and interiorized actions are
needed for intelligent learning. Are interiorized actions accounted for in
Skemp’s model of intelligent learning? Not exactly. Skemp suggested
that by bringing a delta 1 schema into conscious awareness (by action
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of delta 2) several plans of action can be formulated in thought and
their results anticipated without actually carrying out the plans, and
thus, an optimal plan could be chosen and then put into action by delta
1. This is not the same as having an interiorized action – that is, a
conceptual symbol for the “plan-in-action” that is its result. In the
following modification of the structure of a scheme we have attempted
to include both interiorized concepts (Skemp’s schemas) and
Interiorized Action. Figure 6 illustrates a modification of Figure 5 in
order to incorporate some critical aspects of Skemp’s Director System
into the structure of a scheme.

In Figure 6 the dashed arrows indicate possible modifying relations.
The solid arrows indicate a direct relationship. P represents the present
state of the assimilated situation. The generated goal and the result also
need to be realized within a schema. For the scheme to function
effectively, all three (goal, situation and result) must be part of the
same schema. It is conceivable that some schemes may realize these
three components in disjoint schemas (for instance, when the goal is set
by another person and not fully understood, or when the result is
unexpected and connects with a different schema from the one used in
the assimilation of the situation). The arrows between Goal and
Situation, and between Goal and Result have been replaced by Skemp’s
comparators as the relations between these components are primarily
comparison relations.
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In Figure 7 we represent what we think of as an Interiorizing Scheme,
which modifies Skemp’s notion of a Second-Order Director System
through the structure of a scheme that operates on “lower-order”
schemes. Thus the Assimilating Structure of an interiorizing scheme is a
schema in which the person’s schemes of action can be represented.
The Mental Action of the interiorizing scheme is Interiorization of the
actions of the lower-order scheme that has been assimilated. The
Results of the interiorizing scheme are modified (interiorized) schemes,
and the generated goal is Learning. The power of this modified model
lies in its recursive structure, in that the resulting interiorized schemes
can be then assimilated by the interiorizing scheme for reinteriorization.
This process of reinteriorization, of course, is not automatic but can
only be brought about through perturbations encountered through the
use of a scheme (as was the case when the child’s counting scheme was
blocked). This idea of a recursive model of intelligent learning is
compatible with the recursive model of mathematical understanding
developed by Kieren and Pirie (1991).
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What Skemp’s model adds to the Scheme Structure is the importance
of two distinct levels of goal directed activity: the first level is involved
with the implementation of our schemes of action, the second is
involved with the modification of our schemes through a process of
interiorization brought about through reflective abstraction. However,
we do not limit Delta 1 to directing only sensory-motor activity, but to
the implementation of any action scheme (physical or mental activity).
Delta 2 directs the mental activity involved in modifying our schemes –
that is, accommodation and expansion. Accommodation is the result of
interiorized action, whereas expansion is accomplished through
interiorized concepts (expanding the schemas of the scheme).

When Delta 1 is in control, the activity of the scheme is directed
outward – to something or some situation that the scheme is acting on.
When Delta 2 is in control, the activity of the scheme is directed
inward – to some aspect of the scheme’s structure: the recognition
template, the activity, the result or the generated goal. In this way,
Delta 2’s activity is always “reflective.” The interiorization process is
a Delta 2 activity for both schemas and schemes.

What we have attempted to do in our research on children’s
fraction knowledge is to find ways of collaborating with the children’s
Interiorizing Schemes (or second-order director systems) to bring about
yet further reinteriorizations of their number sequences that produce
schemes for operating on fractional quantities. The following section is
an example of this kind of collaboration that resulted in the
reinteriorization of the children’s partitioning schemes.

Collaboration with and Modification of
Children’s Partitioning Schemes

Our collaboration with children’s interiorizing schemes took place in
the context of a teaching experiment with 12 children over a period of
three years. We started working with the children when they were in
their third grade of elementary school (8 to 9 years of age). We worked
with them in pairs for approximately 45 minutes each week for
approximately 20 weeks each of the three years (through their fifth
grade of elementary school). The contexts for our teaching episodes
were established using computer environments that we developed
especially for the project. These Tools for Interactive Mathematical
Activity (TIMA) microworlds provided the children with on-screen
manipulatives and actions on those manipulatives that were designed to
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provide means of enacting their fractionizing operations. There were
three such computer environments: Toys, Sticks and Bars. (Olive &
Steffe, 1994) All teaching episodes were videotaped using two cameras
– one focused on the computer screen and one on the children and
teacher.

The coherence of a teaching experiment resides in what we can say
about bringing forth children’s mathematical schemes and about
sustaining and modifying those schemes. The process we engage in can
be regarded as an instantiation of Skemp’s three modes of Schema
Construction outlined in Table 1 above. We generate and test
hypotheses in our teaching episodes. The hypotheses may be generated
on the fly while interacting with the children (mode 1) or in between
two teaching episodes through discussion with the observers of the
teaching episode (mode 2). Through generating and testing hypotheses,
boundaries of the children’s ways and means of operating can be
formulated. These boundaries arise from the children’s failure in making
adaptations and correspond to the boundaries of Skemp’s domain of a
director system. What are inside of the boundaries constitute living
models of children’s mathematics – the actual mathematical activity of
children that can be judged to be independently contributed by the
children (the prohabitat of the children’s particular scheme). Our
second-order schemas of the children’s mathematical activity are the
product of retrospective analyses of the videotapes of the teaching
episodes (mode 3). As illustration, we present an example of a basic
partitioning scheme which we were able to engender in the children
through our teaching actions.

The Equi-Partitioning Scheme

We did not decide a priori how to base children’s construction of
partitioning schemes on their number sequences. Rather, our method
arose as an insight in the context of teaching two children, Jason and
Patricia, when they independently used their numerical concepts in
partitioning what to us was a continuous unit. Not only did our
method arise in the context of teaching these two children, but what we
now refer to as the equi-partitioning scheme was constructed by us as
mathematics for Jason and Patricia as we taught the two children. Prior
to our teaching experience, we had a concept that we called
“partitioning”, but it was based on mathematical analysis of
equivalence relations. We found it necessary when teaching Jason and
Patricia to construct a concept of partitioning that consisted of less
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abstract and of more specific conceptual operations than equivalence
relations. Our concept of equivalence relations served us in defining the
rational numbers of arithmetic as equivalence classes, but it did not
help in explaining Jason and Patricia’s partitioning behavior.

Using the computer program TIMA: Sticks, it was our goal for
Jason and Patricia to break a stick into two sub-sticks of equal length.
After being asked to draw a stick and to share it equally, Jason drew a
stick that spanned the screen as shown in Figure 8 and cut it into two
pieces. The two pieces were obviously of different lengths and the two
children made a visual comparison between them. The teacher then
asked, “How do you know that the two pieces are of the same size?”
There were several suggestions for how to test to find if the two pieces
were of the same size, such as Jason’s comment to “copy the biggest
one and then copy them again”. He then said, “no,” shaking his head.
After Jason’s suggestion, the two children sat in silent concentration.

                                                                                                                   

Figure 8. A stick cut into two pieces in TIMA: Sticks.

The teacher’s question seemed essential in provoking a perturbation
within the two children. Their perturbation is indicated by Jason
saying “no” and shaking his head as well as by the children sitting in
silent concentration. They had formed a goal of justifying why the two
pieces were of equal size, but they seemed to have no action they could
use to reach their goal. This, along with Protocol I illustrates our role in
bringing forth the children’s numerical concepts in a situation where
there were no countable items in the children’s visual field.

Activation of the children’s numerical concepts. The teacher
suggested to Patricia that she draw a shorter stick that would be easier
to divide visually. After Patricia drew this stick, the actions the
children contributed that are reported in Protocol I were not suggested
by the teacher. Rather, they arose independently from the children,
which illustrates our understanding of the children as self-regulating and
self-organizing.

Protocol I

T: (After Patricia had drawn a stick about one decimeter in length) Now, I
want you to break that stick up into two pieces of the same size.
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P: (Places her right index finger on the right endpoint of the stick, then
places her right middle finger to the immediate left of her index finger.
Continues on in this way, walking her two fingers along the stick in
synchrony with uttering) one, two, three, four, five. (Stops when she is
about one-half of the way across the stick).

J: (Places his right index finger where Patricia left off; uses his right
thumb rather than his middle finger to begin walking along the stick.
Changes to his left index finger rather than his right thumb after placing
his thumb down once. Continues on in this way until he reaches the left
endpoint of the stick) six, seven, eight, nine, ten. (Then) there’re five and
five (Smiles with satisfaction).

P: (Smiles also).

Patricia independently introduced the action of walking her fingers
along the stick until she arrived at a place she regarded as one-half of
the way. Jason picked up counting where Patricia left off, which
solidly indicates that he assembled meaning for Patricia’s method of
establishing equal pieces of the stick2 . Patricia’s counting activity was
meaningful to him and he could be said to engage in cooperative
mathematical activity with Patricia (Mode 2 scheme construction).
Patricia, as well as Jason, now had a way to at least justify where the
stick should be cut so that the two pieces would be of the same size.
The pleased look on their faces indicated that they had achieved their
goal.

Establishing a blank stick as a situation of counting suggests that
Patricia projected units into the stick in such a way that she imagined
the stick broken into two equal sized pieces, where each piece was in
turn broken into an indefinite numerosity of pieces of the same size.
The fact that Patricia counted indicates that she was aware of an
indefinite numerosity of pieces prior to counting. In this, she satisfied
two essential conditions for a counting scheme to be activated. The
first is that the child establishes a plurality of unit items to be counted
even though there may be no such items in the child’s visual field, and
the second is that the child is aware of an indefinite numerosity of such
items. But rather than use her unitizing operations to establish a
collection of discrete items, she used them as partitioning operations.
This opened a path for the construction of fractionizing schemes.

                                                
2 Using “five and five” as a mechanism for establishing two equal pieces seemed to
evolve in the joint activity of the two children. It did not seem to be the original goal of
either child although one could argue that Patricia originally intended to count five
times. In watching the video tape, it seemed that she stopped counting at “five” because
she reached a place that she regarded as one-half of the way across the stick.
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The children’s method of justifying where the stick should be cut may
seem to have achieved our goal of basing fractionizing schemes on
children’s number sequences. But it only established the goal as a
possibility. Although the children could use their composite units as
templates for partitioning a stick into equal and connected parts, we
regarded these templates as only assimilating structures of a possible
fractionizing scheme. The children had no reliable activity they could
use to partition a stick into any definite numerosity of pieces.

A new concept of partitioning. Based on the insight that the children
independently used their number concepts in partitioning, we
constructed a new concept of partitioning that was based on our social
models of children’s numerical concepts rather than on our concept of
mathematical equivalence. Because each element of the composite units
Jason and Patricia used as templates in breaking a stick was an iterable
unit3 , we hypothesized that the operations of iterating and partitioning
are parts of the same psychological structure. The hypothesis would
be confirmed if any single part of a partitioning could be used to
reconstitute the unpartitioned whole by iterating the part.

For a child to be judged to have constructed an iterable unit, the
child must be able to experientially repeat the unit. But, unless the
observer can make two more inferences, the simple repetition of a unit
would not imply its iterability. For a unit to be iterable, there must be
indication that the child can use the operation of repetition in re-
presentation to produce a sequence of unit items that can be taken as a
composite unit. In this, the operation of repetition is carried out at the
figurative level rather than at the sensory-motor level. Second, as the
child repeats the unit, there must be the possibility that the child can
unite a current repetition with those preceding, forming a nested
sequence of units. If there is solid indication of these two conditions,
the child could be judged to have constructed an anticipatory iterating
scheme with an expected outcome. Being able to make these two
inferences was necessary in a test of our hypothesis.

Constructing an equi-partitioning scheme. Based on our concept of
partitioning as a psychological structure that included both operations
of breaking a continuous unit into equal sized parts and iterating any of

                                                
3 In a teaching experiment, the researcher builds a case for an interpretation by
consideration of what the child may or may not do in problem solving episodes. An
interpretation is rarely based on only one observation even though singular observations
usually are the contexts in which insight occurs. The claim that the two children had
constructed their units of one as iterable is warranted by our observations of them
solving a myriad of numerical situations.
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the parts to reconstitute the whole, we designed a situation of learning
in a test of our hypothesis. If our concept of partitioning was viable,
then we should have been able to engender an accommodation in the
children’s number sequence in such a way they would use the parts of
the stick they produced in partitioning as countable items rather than
their fingers as in Protocol I.

Protocol II

T: Let’s say that the three of us are together and then there is Dr. Olive
over there. Dr. Olive wants a piece of this candy (the stick), but we want
to have fair shares. We want him to have a share just like our shares and
we want all of our shares to be fair. I wonder if you could cut a piece of
candy off from here (the stick) for Dr. Olive.

J: (Using MARKS, makes three marks on the stick, visually estimating
the place for the marks.)

P: How do you know they are even? There is a big piece right there.

J: I don’t know. (Clears all marks and then makes a mark indicating one
share. Before he can continue making marks, the teacher-researcher
intervenes.)

T: Can you break that somehow (the teacher-researcher asks this question
to open the possibility of iterating)?

J: (Using BREAK, breaks the stick at the mark; then makes three copies
of the piece; aligns the copies end-to-end under the remaining piece of the
stick starting from the left endpoint of the remaining piece as in Figure 9.)

Figure 9. Jason testing if one piece is one of four equal pieces.

T: Why don’t you make another copy (this suggestion was made to explore if
Jason regarded the piece as belonging to the three copies as well as to the
original stick)?

J: (Makes another copy and then aligns it with the three others. He now has
the four copies aligned directly beneath the original stick which itself is cut
once. The four pieces joined together were slightly longer than the original
stick as in Figure 10.)

Figure 10. Jason’s completed test.
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Jason copied the part he broke off from the stick three times in a test
to find if three copies would reconstitute the remaining part. This was
crucial because, along with his completed test, it allowed us to make
the two inferences that we stated above. This way of operating was a
modification of his countable items displayed in Protocol I4 , and it
solidly indicated that the part he broke off from the stick was for Jason
an iterable unit. The iterability of his units was presaged by his
comment “copy the biggest one and copy them again” preceding
Protocol I. Patricia, in the same teaching episode, demonstrated that
she too could operate in the way Jason operated in Protocol II. We
regard the scheme that Jason and Patricia constructed as an equi-
partitioning scheme. It is crucial to understand that the children’s
language and actions served in the test of our hypothesis. It is crucial
because Jason’s test to find if the piece he broke off was a fair share
was contributed by him with only a minimal intervention by us.

We now have a living model for what it might mean for children to
construct the equi-partitioning scheme as an accommodation of their
number sequences. It was produced in a retrospective analysis of the
two teaching episodes in which it was observed. However, we still
have to specify the accommodations that must have occurred in the
unit items that constitute the elements of the children’s numerical
concepts when they used their numerical concepts in partitioning. We
also need to establish whether the change that was observed from
Protocol I to Protocol II constituted an accommodation or whether it
was only a temporary modification that was constrained to the
situation of observation.

Final Comments

Children’s mathematics can be stressed in their mathematics education
without the kinds of models that we propose here. But without such
models, children’s mathematics remains situated within the contexts of
observation and can be at most described. Without the explanations
that we are attempting to build through conceptual analysis, children’s
mathematics stands little chance of becoming taken-as-shared in the
community of mathematics educators, including teachers. If children’s

                                                
4 Although it is possible to regard Jason’s behavior in Protocol I as unrelated to his
behavior in Protocol II, this would miss Jason’s use of his number concepts in
partitioning.
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mathematics is to become the focus of their mathematics education, a
language must be developed for its communication.

As did Skemp, we focus on children’s mathematics as a
constitutive part of a living conceptual system. This way of
understanding children’s mathematics has great advantages for
mathematics education and puts us in education, we think, in an
appropriate frame of reference. No longer is the sole focus on the
abstracted adult concepts and operations, and no longer is children’s
mathematical development conflated with those abstracted concepts
and operations. Rather, the focus is on the living systems that children
comprise and the problem is to understand how to bring the
subsystems called mathematics of these living systems forth, and how
to bring modifications in these subsystems forth. We believe that the
integration of scheme theory (as we are using it) within a modified
framework of Skemp’s model of intelligent learning provides a
powerful schema for generating this understanding.
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What is a Scheme?

Gary E. Davis & David O. Tall
University of Southampton & University of Warwick, UK

This chapter is dedicated to, and fundamentally influenced by, Richard
Skemp’s pioneering work on schemes. Both of us were present in
Warwick when Richard died, and we sang at his funeral. This is no
maudlin sentiment but a deeply felt gratitude for the man and his work.
David Tall occupies Skemp’s Chair of Mathematics Education at
Warwick, and both of us were influenced, as have been many
mathematics educators, by Skemp’s highly polished works. His
contributions have an enduring quality because he tackled basic issues
of mathematical intelligence.

Schemes: Psychology to Mathematics Education

The terms “schema” and “schemata” were apparently introduced into
psychology by Bartlett (1932), in his study of memory. Bartlett took
the term from the neurologist Henry Head who had used it to describe
a person’s conception of their body or the relation of their body to the
world. Bartlett used the term schema in much the same way as Skemp,
following him, did: as an organised structure of knowledge, into which
new knowledge and experience might fit. The utilisation of Head’s
notion of schema in psychology was reviewed by Oldfield and
Zangwill (1942a, 1942b, 1943). Bartlett’s notion of schema was
picked up by Skemp (1962, 1971), and then Rumelhart (1975) also
resurrected Bartlett’s idea and terminology, once again in the study of
memory.

Minsky (1975) introduced his idea of “frames” and Schank (1975)
the idea of “scripts”, both of which are similar to Bartlett’s schemata.
Davis’ (1984) influential book on cognitive science methods in
mathematics learning leant heavily on the idea of schemes. It is fair to
say that whilst the term scheme has been used in mathematics
education (see, for example, Steffe, 1983, 1988; Davis, 1984;
Dubinsky, 1992; Cottrill et al., 1996) there have not been many
attempts to define more precisely what might constitute a scheme.

Notable exceptions, apart from Skemp’s own writings, are the
articles by Dubinsky (1992) and Cottrill et al. (1996), the first of
which at least acknowledged that some sort of definition would help
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people working in the field, and the second of which attempted a
recursive definition.

Skemp (1986) made it clear that schemes play a pivotal role in
relational understanding:

To understand something means to assimilate it into an
appropriate schema. (p. 43; author’s italics).

Chapter 2 of The Psychology of Learning Mathematics is entitled “The
Idea of a Schema”. In that chapter Skemp makes it clear that he views
schema as a connected collection of hierarchical relations. It is this
point of view that we wish to explore.

Structuring the World: Categories

A necessary condition for higher order mental functioning is the
ability of an individual to categorise things in the world. In order to
count, for example, we need things to count. These things are
categorised by us as instances of the same thing for the purposes of
counting. Do you have enough clean shirts to take on holiday? Are
there enough chairs to seat all our guests? In order to answer questions
like these we necessarily have to see different things, such as different
shirts or chairs, as instances of the same category for the purpose of
counting them.

This ability to categorise is possessed by many animals (Edelman,
1989) and is fundamental to the ways in which human beings structure
their worlds. It is critical in mathematics learning because counting,
the first mathematics that most of us engage in, is so clearly predicated
on an ability to categorise.

The patterned records of actions we use in mathematical activity
are themselves instances of categorisation. The categorisation involved
in the formation of schemes is the brain categorising its own activities.
In primary categorisation, perceptual events are categorised, whereas
in secondary categorisation – the type of categorisation in which
schemes are formed – the brain’s own responses to perceptual
categorisation are themselves categorised. This reflective activity of
the brain is an essential part of Piaget’s theories of the development of
logico-mathematical structures. Recently, it has been given a more
detailed functional and structural form by Edelman (1989, 1992):

… the theory of neuronal group selection suggests that in forming
concepts, the brain constructs maps of its own activities, not just of
external stimuli, as in perception. According to the theory, the brain areas
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responsible for concept formation contain structures that categorize,
discriminate, and recombine the various brain activities occurring in
different kinds of global mappings. Such structures in the brain, instead of
categorizing outside inputs from sensory modalities, categorize parts of
past global mappings according to modality, the presence or absence of
movement, and the presence or absence of relationships between
perceptual categorizations. (1992, p. 109, author’s italics)

Action Schemes and Higher Order Schemes

Apart from the ability to subitize numbers in suitably configured
arrays, number involves counting, which is an action scheme – a
sequence of actions performed to achieve a goal. Using counting,
addition is an extended action scheme to obtain the total in two
collections. Children use the initial “count-all” scheme until they
recognise certain parts of the process as redundant. They then make
new connections by omitting the initial counting. This new
reconstructed scheme misses out the first part of the count and
performs a “count-on”. If they sufficiently well manage the “count-on”
to allow a neuronal  trace of the input to link with the output (or the
results are re-corded to see the links), they may make a connection
between input and output to give the known fact.

Essential to an understanding of schemes is the focus of attention
of a learner. What it is a person focuses on in an action scheme
determines the consequent structure of that scheme for them. The first
attempt to use attentional systems as the basis for mathematical
development appears to be von Glasersfeld’s (1981) attentional model
of unitizing operations. These operations play a major part in his
theoretical model for an operation of the human mind that creates a
unitary item from perceptual experience. They are still our only model
for how it is humans form units and pluralities. So, in this sense,
attention is fundamental to how we understand numerosity. von
Glasersfeld stated very clearly what he meant by attention for this
purpose:

... I want to emphasize that ‘attention’ in this context has a special
meaning. Attention is not to be understood as a state that can be extended
over longish periods. Instead, I intend a pulselike succession of moments
of attention, each one of which may or may not be ‘focussed’ on some
neural event in the organism. By ‘focussed’ I intend no more than that an
attentional pulse is made to coincide with some other signal (from the
multitude that more or less continuously pervades the organism’s nervous
system) and thus allows it to be registered. An ‘unfocussed’ pulse is one
that registers no content. (p. 85)
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and he cites  neurophysiological experiments that support the view

that:
… attention operates above, and independently of, sensation and can,
therefore, function as an organizing principle; second, if attention can,
indeed, shift from one place in the experiential field to another, it must
have a means of regarding ... these places and disregarding what lies in
between. (p. 85).

Von Glasersfeld’s model is fundamental to the Steffe-Cobb-von
Glasersfeld-Richards theory of children’s counting types and
arithmetic operations (Steffe, von Glasersfeld, Richards & Cobb 1983;
Steffe, Cobb & von Glasersfeld, 1988). von Glasersfeld provides a
model of how records of experience can be obtained by a focus of
attention on the perceptual stream of data. It is a basic tenet of a
constructivist theory of learning, as we understand it, that these records
of experience – the memories – are not veridical records of any thing
in the world external to the recorder. Rather they are chemical traces
of neuronal activity occurring as a result of perceptual interaction with
the world. Importantly, for our theme, these traces are themselves
capable of being taken as the primary material for experience:

Perceptual categorization, for example, is non-conscious and can be carried
out by classification couples, or even by automata. It treats signals from the
outside world – that is, signals from sensory sheets and organs. By
contrast, conceptual categorization works from within the brain, requires
perceptual categorization and memory, and treats the activities of portions
of global mappings as its substrate. (Edelman, 1984, p. 125, author’s
italics)

This, for us, is in essence how schemes come into being, so we make
the following definition:

∑  An action scheme (or 0-order scheme) is a sequence of actions
performed to achieve a goal.

∑ An nth-order scheme is a categorization of lower order schemes.

Our brains take as basic data for reflection the records of our previous
experience, and just as we categorize visual perceptions from cup-like
things into the category of cups, so we categorize patterns of action
such as directed movement with synchronized standard utterances into
the category of counting.
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Examples of Scheme Formation

A well-studied action scheme is children’s dealing, or distributive
counting, to allocate fair shares (Miller, 1984; Davis and Pitkethly,
1990; Davis and Hunting, 1990; Davis and Pepper, 1992). This is a
sequence of actions that children in many, if not all, cultures can carry
out to allocate fair shares , but one which, at a young age, 4– 5 years,
they usually do not internalize  as a 1st order scheme. By the time
children are about 8 years of age, however, it is not uncommon for
them to refer to dealing as “just like when you play cards”. At this
point, we infer, they have conceptually categorized various action
schemes of dealing and so established a 1st-order scheme for dealing.

An example of higher order scheme formation appears in the
thought of a student, Stephanie, described by Maher and Speiser
(1997). Carolyn Maher at Rutgers University, and her colleague
Robert Speiser, at Brigham Young University, reported a beautiful
series of episodes involving a young high school student, Stephanie.
She found the formula for calculating the binomial coefficients by
relating the problem to one of counting towers of blocks – a problem
she, along with many other children, had studied in elementary school.

In 1989 Maher, and her colleague Al Martino, began working with
a small group of first graders to encourage the children to explore and
explain their differences in thinking as they solved problems.
Stephanie was one of the children in this group and when she was in
grade 4 worked on the problem: how many different towers of a fixed
height can we make from blocks of two colors? (Maher and Martino,
1996; 1997). In the fall of 1995 – coincidentally, just after Richard
Skemp passed away – Stephanie had moved to a different school and
was in grade 8.  Maher and Speiser worked with Stephanie on her
reasoning in mathematics problems, which now revolved around
algebra. Stephanie had calculated the binomial coefficients for ( )a b+ 2

and ( )a b+ 3 . One of the researchers asked her about these numbers for
( )a b+ 3  and Stephanie replied: “So there’s a cubed. ... And there’s
three a squared b and there’s three ab squared and there’s b cubed.”
She then said: “Isn’t that the same thing?” The researcher asked what
she meant, and Stephanie replied: “As the towers.”

It’s fair to say that the researchers were surprised at this sudden,
unannounced, appearance of towers in an algebra problem. Stephanie
had not systematically counted towers of blocks in school since
elementary classes.  Maher and Speiser’s hunch was that Stephanie
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was visualizing towers of height 3 in order to organize the products of
powers a bi j  of a  and b.  They got support for this hunch when, in
questioning Stephanie further about the terms in the expansion of
( )a b+ 3 , she said: “I don’t want to think of a’s. I want to think of red.”
In the same session Stephanie was asked: “What about b squared?”
and she replied: “Um. Two yellow.”

Stephanie seemed to interpret the numbers a  and b  in the
expression ( )a b+ 3  as colours of blocks – red or yellow – and the
index “3” as the height of a tower of red or yellow blocks. She could
then bunch together those towers that had the same number of red (and
so same number of yellow) blocks. This was because, in her
interpretation, the order of the red and yellow in the towers didn’t
matter: the towers were standing in for products of a’s and b’s, just as
the individual red and yellow blocks were standing in for individual
a’s and b’s.

Imagery can act as a generator of mathematical thought, when the
imagery acts to reduce the load on working memory. This is what
happened to Stephanie when she formed images of the expansion of
( )a b+ 3  as a row of towers of red and yellow blocks. Far from being a
dead weight, filling up working memory with irrelevant detail, the
images acted as a powerful engine for her, allowing her to accelerate
rapidly and easily through some complicated counting.

Two weeks after the episode reported above, Stephanie was asked
to explain to a researcher who was not previously present, what she
had said about binomial coefficients and towers. As she began to
explain Stephanie described, in vivid detail, episodes from a grade 4
class in which she and two classmates had figured out how to build
towers of a given height from those of height one less. Stephanie was
able to write a recursive formula for the binomial coefficients by
utilising her recalled images of towers of blocks.

That Stephanie had established a 1st-order scheme from conceptual
categorization of the action schemes of building blocks was evident
from her previous conversations about them. At the time of the first
interview, above, there does not seem to be evidence that she had
similarly schematized the action schemes of expanding a power of a
sum of two terms. However Stephanie made the remarks: “Isn’t that
the same thing?” and “As the towers” in her explanation of her
algebraic calculations. At this point we infer that she has, by analogy,
established a 1st-order scheme for binomial expansions. When, two
weeks later, she is able to write down the recurrence relation for the
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binomial coefficients by reference to counting towers we infer that
Stephanie is able to express clearly that she sees essentially the same
process occurring in these two 1st-order schemes. In other words, she
has established a 2nd-order scheme through conceptual categorization
of 1st-order schemes.

Schemes and Symbols

The operations of arithmetic benefit from being written in signs. These
signs enable a subtle form of compression that is not immediately
apparent. For many students the signs are simply indicators – for
example, the sign “2 + 3” indicates to some students that one should
carry out an action, whereas for other students the same sign also
functions as a symbol. For these latter students there is a symbolic
relation with other signs and a flexibility in interpreting a frame of
reference for the signs. This is essentially what Gray and Tall (1994)
refer to as a procept. Steffe (1988) has written in relation to symbols
that:

Children's operations seem to be primarily outside their awareness, and,
without the use of symbols, they have little chance of becoming aware of
them nor can they elaborate those operations beyond their primitive forms.

In answer to the question of whether his use of the word “symbols”
referred to conventional mathematical signs, or whether there was a
deeper interpretation in which the symbols were records of a process
of interaction between a student and teacher, Steffe (personal
communication) replied:

I was thinking of, for example, the way in which a child might use the
records of past experience that are recorded in the unit items of a sequence
to regenerate something of that past experience in a current context. The
figurative material that is regenerated may act as symbols of the operations
of uniting or of the results of the operations in that the operations may not
need to be carried out to assemble an experiential unit item. The figurative
material stands in for the operations or their results. In this I assume that
the records are interiorized records – that is, records of operating with re-
presented figurative material.

My hypothesis is that these operations will continue to be outside the
awareness of the operating child until a stand-in is established in which the
operations are embedded. ... awareness to me is a function of the operations
of which one is capable. But those operations must become objects of
awareness just as the results of operating. To become aware of the
operations involves the operations becoming embedded in figurative
material on which the operations operate. To the extent that this figurative
material can be re-generated the operations become embedded in it.
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The figurative material is also operated on again. In this way the
operations are enlarged and modified.

The idea that operations are outside conscious awareness until a
mental “stand-in”, or symbol, is developed upon which the operations
can act mentally – is of critical importance in the development of
mathematical schemes. For it is these symbols that form 1st-order
schemes: not only is the scope of the operations extended, as Steffe
says, but what the operations operate on becomes a mental object – a
1st -order scheme.

When Bob Speiser talked about Stephanie’s scheme for thinking
about the binomial coefficients at the Psychology of Mathematics
Education conference in Lahti, Finland, we wondered how much of the
connection between the towers and the binomial coefficients Stephanie
had taken on board. We asked him if Stephanie had thought about a
more complicated situation, such as ( )a b c+ + 3  in terms of towers
made from three colours. He affirmed that she had indeed; what’s
more, Stephanie could write down the recursive definition for the
coefficients of the products of powers for any number of variables a, b,
c, d , ... by using images of towers of blocks of the same number of
colours as the number of variables.

This is a singular achievement for a grade 8 student, and it
illustrates the amazing generative power of vivid images that are
tightly coupled to a problem. The complicated looking signs:

( ) ( , ) ,a b C p q a b p q nn p q
+ = + = sum of terms  where  and

C p q C p q C p q( , ) ( , ) ( , )+ + = + +1 1 1

with  and C n C n n( , ) ( , )0 1 1= =

are not abstruse to a child who has assimilated a model in terms of
towers of coloured blocks. These signs simply express a recursive way
of building towers. What appears to be complicated mathematics is
just a way of writing this recursive relationship. The written
mathematics – the marks – are what many students focus their
attention on. In so doing they can, and often do, lose sight of the
fundamentally simple idea that the marks, or signs, express. Worse,
their only terms of reference for the signs is likely to be at an indexical
level – a conditioned response. This is how many students see
formulas in mathematics: as something upon which something has to
be done, such as rearrangement, substitution, cancellation or similar
actions. What the signs refer to for students who think this way is the
actions that they themselves could carry out. Furthermore, that is all
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the signs refer to. A student who understands the signs symbolically
can also do things like rearrangement, substitution, and cancellation.
However, they can do more. They can focus on other aspects of the
signs, such as Stephanie’s focus on the recursive formula for the
binomial coefficients in terms of a recursive procedure for building
towers of blocks. This is an essential aspect of Peirce’s (see Deacon,
1997) view of the icon-index-symbol relationship as a hierarchy. The
ability to operate at one level in this hierarchy implies an ability to
operate at a lower level, but not conversely. It is not that children who
learn to operate symbolically in mathematics forget the relationship of
signs to concrete objects or to remembered processes – it is just that in
a particular context some of these memories are not particularly
helpful. Indeed, they may well be just so much clutter, filling up the
available space in working memory. The sign formulas are useful for
programming a machine to calculate the binomial or multinomial
coefficients, but these mathematical signs also behave as a very
compact symbolic expression of the relationships they embody. So a
student capable of interpreting these signs symbolically can choose to
think in terms of models, such as towers of blocks, or can withhold
any such interpretation, knowing that they could interpret it this way if
they wished. Their thinking has become proceptual (Gray and Tall,
1994) and they have gained enormous flexibility and economy of
thought.

This leads to a curious, and critical, chicken and egg situation.
Students may not have a scheme about which they can talk, but their
lack of awareness of the operations used in the procedure inhibits them
from talking about the procedure in the absence of carrying it out. Talk
about the procedure by a teacher would seem to be insufficient for
scheme formation, because many students have no awareness of the
operations of the procedure on which to hang the talk. They have no
symbolic frame of reference for the teacher’s words. Repeated
carrying out of the procedure by itself is no guarantee that awareness
will result, because there may be no necessity to reflect on the
procedure in the absence of carrying it out in practice. This dilemma
was summed up succinctly by von Glasersfeld (1990), who wrote:

If it is the case that ... conceptual schemas – and indeed concepts in general
– cannot be conveyed or transported from one to the other by words of the
language, this raises the question of how language users acquire them. The
only viable answer seems to be that they must abstract them from their own
experience. (p. 35)
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So if talk alone and repeated practice do not suffice for the formation
of schemes, and if students must abstract them from their own
experience, where does this leave a teacher? Many students, in the
process of counting or carrying out elementary operations on numbers,
focus their attention on what we, as observers, deem to be peripheral
properties of objects, such as their colour or size (Gray, 1991; Gray &
Pitta, 1996; Gray & Pitta, 1997a, b; Gray, Pitta & Tall; 1997).This
focus of attention necessarily occupies a student’s working memory
with detail that is known to be irrelevant to the formation of higher
order mathematical schemes. We don’t usually care whether the chairs
we are counting are red or blue, for the purposes of determining
whether a given collection of people will be able to be seated. This
filling of working memory with irrelevant detail has two effects. First
it slows the student considerably: they are able to consider fewer
examples in a given time than those students whose focus is not on
irrelevant detail. Consequently, such students have considerably fewer
examples to categorise. Second, with each example they encounter
there is less room in working memory for those aspects that we do
consider relevant for the establishment of higher order schemes. As a
result these students are seeing fewer examples, and less that is
relevant in each example they encounter. Consider, for example, a
student at secondary level who is engaged in expansion of the
algebraic square of a sum or difference of terms. Examples such as
( )a b+ 2 , ( )c d+ 2, ( )e f- 2 , ( )s t+ 3 2 , ( )x y z- + 2, might well be seen
by a student as unrelated things to do – unrelated actions which they
do not categorize as similar instances of a single phenomenon. The
most likely purpose of a collection of exercises like this is to give a
student practice in algebraic expansion, and to give them enough
examples to enable them to categorise the exercises as examples of
algebraic squaring of a sum or difference. If a student continues to
focus on the actual letters, or whether there is a sum or difference, or a
coefficient “3”, then they are unlikely to attain the categorization a
teacher intended. They remain stuck at the level of individual actions,
instead of forming schemes. Consequently, algebra becomes, for such
students, a hard subject, with many detailed and unrelated calculations.
What a student needs to do is to learn to throw away much of the
perceptual information available to them. This involves a focus of
attention on a different aspect of the algebraic expressions.
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Schemes as Mental Objects

Perceptual categorization gives rise to our feeling for prototypical
named objects in the world. The fact that we can talk about chairs, or a
chair, without referring to or pointing at a particular world-thing is a
result of a process of perceptual categorization. The concept “chair” is
a mental concept, and not a corporeal world-thing. Nevertheless, it is
extremely convenient for us to think of “chair” as an object. We
cannot even count “chairs” unless we see certain world-things as
instances of “chairs”. In other words, we reify our conceptions
obtained through perceptual categorization. This should give us cause
to suspect that schema formation, which we have defined as
categorization based on action schemes, also leads to mental objects.
These mental objects are based not on world-things, as in perceptual
categorization, but on world-actions.

Dörfler (1993) casts doubt on the nature of mathematical objects.
He writes:

My subjective introspection never permitted me to find or trace something
like a mental object for, say, the number 5. What invariably comes to my
mind are certain patterns of dots or other units, a pentagon, the symbol 5 or
V, relations like 5+5=10, 5*5=25, sentences like five is prime, five is odd,
5/30, etc., etc. But nowhere in my thinking I ever could find something
object-like that behaved like the number 5 as a mathematical object does.
But nevertheless I deem myself able to talk about the number "five"
without having distinctly available for my thinking a mental object which I
could designate as the mental object ‘5’. (pp. 146–147)

This, however, is to miss the point of categorization. Where, in our
heads do we see the object “chair”? As Dörfler intimates, we may see
images of particular chairs, and even be capable of forming images of
chairs we have never seen. The point is that “chair” is the name of a
category to which we agree that certain world-objects belong. As such,
it acquires object status: that of a mental object, a conception, resulting
from perceptual categorization. Likewise, the word “dealing” refers to
a category of world-actions, and as such it is a mental object resulting
from conceptual categorization.

Perceptual, Social and Conceptual Categorization

Perceptual categorization is, as we have noted, common not only
among different peoples, but also among animals of many sorts. Social
categorization is also very common among mammals. This form of
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categorization is exemplified by the “them and us” syndrome:  the
division of a group into two on the basis of a perceived difference,
such as skin color, accent, behaviour, speech, or indeed almost any
perceived difference (Harris, 1998). These types of categorization are
so common, occurring almost obligatorily in human society, that we
often overlook them as mental constructions and take them to
represent significant differences given by the phenomenal world.

Why then should the sort of categorization that we postulate as the
basis of scheme formation seem to be so difficult for individuals to
establish? Why should it require an elaborate apparatus of cultural
transmission – classrooms, teachers and textbooks, not to mention
psychologists and mathematics education researchers? The answer,
one might suspect, lies in the everyday nature of perceptual and social
categorization. Perceptual categorization is vital for animals that move
around looking for food, shelter, and mates, in a potentially dangerous
world. Social categorization is an inevitable consequence for humans
who have warring social ancestors (Harris, 1998). Conceptual
categorization, one might imagine, arises as a possibility, and only as a
possibility, with the development of language. However, the recency,
in evolutionary terms, of conceptual development does not provide a
sufficient reason why conceptual categorization should be so difficult,
at least in the field of mathematics.

What seems, from the empirical evidence, to be a much more
compelling reason for the difficulties we see in scheme formation in
mathematics is the general lack of awareness that humans have of
action schemes. By “lack of awareness” we mean inability to articulate
action schemes as distinct from their outcomes. Steffe, among others
has remarked on this lack of awareness of action schemes, as we have
noted above. Granted this lack of awareness, it is almost clear that we
should have difficulty categorizing action schemes: we are not aware
of them as schemes. Instead, what we are aware of is the outcome of
those schemes: the results of sharing by dealing, or the results of
counting, the results of an algebraic calculation. Why this should be
the case is, as far as we are cognisant, not known. However, granted
that it is the case, it provides a considerable obstacle for conceptual
categorization of action schemes. As Steffe has remarked on other
occasions, this provides a supremely important role for a teacher of
mathematics in helping students to be able to articulate their action
schemes regarding number, space, and arrangement – the basic
elements of mathematical experience.
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The question of why humans should not naturally find it
straightforward to articulate an awareness of action schemes therefore
assumes a great importance in the study of the acquisition of
mathematical conceptual thought. A simple reason suggests itself,
namely a separation between the language and motor centres of the
brain. The neurologist Ramachandran (1998) highlights the problem of
putting actions into words as a translation problem. He writes, a

… fundamental problem arises when the left hemisphere tries to read and
interpret messages from the right hemisphere. … crudely speaking, the
right hemisphere tends to use an analogue – rather than digital– medium of
representation, emphasizing body image, spatial vision and other functions
of the how pathway. The left hemisphere, on the other hand, prefers a more
logical style related to language, recognizing and categorizing objects,
tagging objects with verbal labels and representing them in logical
sequences (done mainly by the what pathway). This represents a profound
translation barrier. (p. 283, author’s italics)

This translation barrier is particularly evident in adults who have
damage to the right brain or a disconnection of the two hemispheres.
This happens, for example, when the corpus callosum, the bridge
connecting the two hemispheres, is damaged or cut (as used to happen
in cases of severe epilepsy). How might this explain why young
children have difficulty articulating their action schemes? After all,
only in rare cases will children have such sever dislocation between
their two brain hemispheres. Yes, but the fact is that the corpus
callosum is quite undeveloped in young children: the nerve fibres
connecting the two hemispheres have not yet been fully myelinated, so
nerve impulses in young children do not conduct between the left and
right hemispheres as well as they do for older children and adults
(Joseph, 1993, p. 353 ff). Whilst this might suggest a reason for young
children’s relative inability to articulate awareness of their action
schemes, it does not explain why older children, and indeed many
young adults, are equally incapable of such articulation. It is not
uncommon, even in university level mathematics, for students to be
able to carry out taught procedures – such as solving simultaneous
linear equations by Gaussian elimination – and yet have an almost
total inability to articulate how the procedure is carried out. Often the
best they can do is to ask for an example, which they then proceed to
calculate.

A further clue to the relative difficulty in articulating action
schemes comes from work of Ullman et al (1997) on language
difficulties in sufferers of Alzheimer's disease on the one hand and
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Huntington’s and Parkinson’s on the other. Their work suggests that
word memory relies on areas of the brain that handle declarative
memory – memory of facts and events. These areas appear to be the
temporal or parietal neocortex. However, rules of grammar seem to be
processed by areas of the brain that manage procedural memory, the
basal ganglia, which are also involved in motor actions. That there
seem to be two distinct brain areas for procedural and declarative
memory must make us suspicious. In mathematical settings, at least,
the region devoted to declarative memory may have difficulty – that is,
few mechanisms for – taking as its basic material the activities of the
region responsible for procedural memory. If so, the role of teacher
becomes even more evident: as an external conduit to allow
declarative memories to be formed from the raw material of stored
procedural memories.

Let us look again at Stephanie’s categorizations in this light,
because Stephanie is a child who was able to make higher order
categorizations beyond the commonplace. First, Stephanie was
motivated to seek reasons for things mathematical (Maher & Speiser,
1997). Indeed this was a prime reason for Carolyn Maher and Bob
Speiser’s focus on Stephanie. However, if we are right about the need
for procedural memory to be externalized before it can become
declarative then Stephanie must have had some external influence on
the formation of her declarative memories of building towers. Did she?
Indeed she did: Maher and Speiser report how Stephanie was engaged
in elementary school with a group of children who built towers
together, and engaged in argument and reasoning about their activities.
So Stephanie’s external agent in this case was her group of classmates
who not only built towers with her, but also argued with her. What
about Stephanie’s 2nd-order categorization, in which she linked in
considerable detail building towers with the binomial and multinomial
theorems? We have to suspect, from the records of interviews, that her
external agent for utilising procedural memories to create declarative
ones, was the pair of interviewers. Through the questions asked by the
interviewers Stephanie was able to take her procedural memories and
turn them into objects of reflection, which then created declarative
memories for her.

The decisive force in the creation of higher-order schemes,
therefore, may be an appropriate agent who can externalize procedural
memory and utilize it, consciously or not, so that a child can form
declarative memories. The reason for this, we hypothesize, is that the
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temporal and parietal neocortex  has, in young children, or young
adults, few mechanisms for taking the memory activities of the basal
ganglia as raw data for the formation of new declarative memories.
What has to happen, we suspect, is that an external agent needs to
externalize those memories of motor actions from the basal ganglia
and recast them in a form suitable for the temporal or parietal
neocortex to process them as procedural memories.

Connections with APOS Theory

Dubinsky and colleagues (Dubinsky, 1992; Cotterill et al., 1996) have
proposed an Action-Process-Object-Schema theory in which schemes
feature as the end result of  a structural organization. In the APOS
setting, an action is a physical or mental transformation of objects to
obtain other objects. A process arises from an action when a person is
able to reflect upon and establish conscious control over the action. A
process becomes an object when “the individual becomes aware of the
totality of the process, realizes that transformations can act on it, and is
able to construct such transformations.” (Cottrill, et al, 1996). Schemas
enter into this theory as structural organizations of actions, process and
objects.

Our proposal is that this “structural organization” is obtained
through conceptual categorization in the sense of Edelman (1989). The
essential point, for us, is that some mechanism must be postulated to
facilitate the structural organization central to APOS theory. In line
with Skemp’s emphasis on brain activity and brain models of
mathematical thought we believe that the process of conceptual
categorization provides such a mechanism. Skemp discussed the
connections between categorization and schema in Intelligence,
Learning and Action: indeed he regarded them as practically
synonymous. The only extra highlight we wish to stress is that, in line
with Skemp’s emphasis on intelligent, goal-driven, action (an
emphasis he shared with many other seminal thinkers in mathematics
learning), the focus on scheme formation in mathematics is on
categorization beginning with action schemes.

Dedication

We owe a debt to Richard Skemp. Apart from pioneering work in
schema, he began the process of modelling what it is that the brain is
doing when it’s thinking mathematically. Skemp concentrated on
fundamental issues of models for brain operations in mathematical
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thought, and for intelligent thought more generally. Recent
developments in psychology and neurology have been reinforced the
gems of principles and models that he elucidated so clearly. He
established a solid link between intelligent human actions and the
operations of our brains, and regarded the study of mathematics
learning as a way to develop models for higher-order intelligence in
general. As Anna Sfard has written (this volume) “ Skemp ... came to
an empty field and left it with an impressive construction.” Skemp,
himself, wrote:

... it seemed that by studying the psychology of learning mathematics, the
improved understanding of intelligent learning which can be gained by
working in this area should be generalisable to give a better understanding
of the nature of intelligence itself: with a potential for applications
extending over a very wide range of activities. (1979, p. 288)

This gentle man treated human beings as intelligent creatures who
have a capacity to reflect on their actions and learn from them. In so
doing he was led to examine models for brain functioning that might
allow us to think in this way. His excursion into brain models was an
intellectually necessary part of his quest to understand what it is that
allows human beings to think as they do, and to behave with the
intelligence they are capable of manifesting. We are forever grateful to
Richard Skemp for these pioneering efforts. They laid a clear and firm
foundation for a subject whose time has now well and truly come – the
nature of the mathematical brain, its relation to mathematical
intelligence, and to intelligence in general.
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Continuities and Discontinuities
in Long-Term Learning Schemas

(Reflecting on how relational understanding may be
instrumental in creating learning problems)

David Tall
University of Warwick

(Robert Recorde, The Ground of Artes, 1543)

The notion of “learning by reason” rather than “learning by rote” has
long been a focus of creative teaching. In writing the oft-quoted paper
on “instrumental understanding” and “relational understanding”,
Richard Skemp (1976) is a significant link in the chain of those who
developed notions of “meaningful learning”. Skemp, however, had
wider goals in life. For him, relational learning was part of a broader
plan of developing a “long-term learning schema” for life-long
learning (Skemp, 1962).

In his publications Understanding Mathematics (1964) for
secondary school and Structured Activities in Learning Mathematics
(1993–4) for younger children he developed learning schemas for
children’s learning over long time periods. He also developed a rich
theory of human learning that has proved significant in shedding light
on how the cognitive processes of human thinking can lead to the logic
and aesthetic beauty of formal mathematics.
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It is the purpose of this paper to consider the development of long-
term learning. The logic and rigour of mathematics is such that it
seems that a curriculum can be built in successive stages where each
stage builds on preceding learning. Indeed, the British National
Curriculum for children aged 5 to 16 is formulated in ten levels where
each level is seen as developing a coherent set of ideas building on
earlier levels. This would suggest that a well-designed curriculum
could be continuous in the sense that each stage builds smoothly on
those already experienced. Such a “self-evident truth” is, in fact, false.
This paper will show that there are many points in learning in which
cognitive discontinuities occur. Thus the building of a long-term
curriculum is likely to need to face various situations in which
difficulties arise and need to be conquered.

Skemp was aware that appropriate schemas need to be developed
that are appropriate to a given learning task:

Since new experience which fits into an existing schema is so much better
remembered, a schema has a highly selective effect on our experience.
What does not fit into it is largely not learnt at all, and what is learnt
temporarily is soon forgotten. (Skemp, 1986, p.41)

A major problem occurs when what may be highly appropriate at one
stage may be unsuitable later. Skemp formulated this in his overall
theoretical position saying:

… not only are unsuitable schemas a major handicap to our future learning,
but even schemas which have been of real value may cease to become so if
new experience is encountered, new ideas need to be acquired, which
cannot be fitted in to an existing schema. A schema can be as powerful a
hindrance as help if it happens to be an unsuitable one. (ibid. (my italics))

An example of a schema of short-term value is the use of so-called
“fruit salad” algebra, in which meaning is given to expressions such as
4a+3b by thinking of the letters as standing for actual objects such as
“4 apples plus 3 bananas”. This will give support in manipulation of
expressions such as 4a+3b+2a to give 6a+3b by simply thinking in
terms of manipulating the numbers of each fruit. However, this short-
term gain soon leads to difficulties in interpreting expressions such as
7ab. Does it mean 7 apples and bananas? Is 3 apples plus 4 bananas
equal to 7 apples and bananas? Is 3a+4b = 7ab? Initial simplistic
approaches to subjects that subsequently lead to inappropriate links
may harm long-term development. My contention takes this
observation a step further: even well-designed learning tasks can—at a
later stage—harm future understanding.
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In the remainder of this paper I begin by considering the general
problem of discontinuities in a long-term curriculum, followed by a
range of examples of discontinuities occurring at various stages of
school mathematics. Since every journey begins with a single step, I
start with what I term a cognitive root; this is a starting point having
meaning for the learner at the beginning of a learning sequence, yet
containing the possibility of long-term meaning in the later theoretical
development. I then question whether a successful beginning will
necessarily lead to long-term success, considering various aspects of
the calculus, where visuospatial ideas can act as a long-term
foundation in a range of different possible approaches.

But I also reveal that the different representations—symbolic,
algebraic and numeric—do not always have obvious links between
them. The consequence is that different parts of the subject may
benefit from different kinds of representations and pose different kinds
of problems for different students. A powerful tool to address these
problems is the willingness of the student to reflect carefully on new
ideas, to see how they are similar and how they differ from earlier
meaningful ideas. Learning by rote may allow the student to cope with
similar problems, but reflecting on the nature of the mathematics is
more likely to support flexible long-term learning.

Continuities and Discontinuities
in Long-Term Learning Schemas

On the assumption that the long-term curriculum designer should be
more concerned with ultimate coherence and successful learning than
settling for a short-term gain, a good solution would seem to be a long-
term curriculum that builds steadily and continuously on previous
experience. This seems to be the underlying aim of much curriculum
design, after all, mathematics is a
coherent and logical subject, so its
teaching should be amenable to
coherence and logic.

A quarter of a century ago I
remember, as an earnest young
mathematically oriented educator,
suggesting long-term learning
schemas based on my interpre-
tation of Skemp’s ideas. For me at
this stage the quest entailed Figure 1. 1+2+34 is half of 4 times 5.
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looking for ways in which I could present subtle mathematical ideas in
simple ways at appropriate times and revisit them later in successively
more sophisticated ways—for instance, seeing the sum of an
arithmetic sequence 1+2+3+4 as a triangular array of dots which could
be fitted to an identical array to give a rectangle of four rows and five
columns. Thus the sum 1+2+3+4 is half of 4 times 5. This could be
written as an arithmetic sum by adding 1+2+3+4 to 4+3+2+1 in pairs
to get 4 lots of 5:

Figure 2. Two lots of 1+2+3+4 give 4 lots of 5.

At a later stage this could be generalised algebraically to give

1 2 3 11
2+ + + º + = +n n n( ),

and finally proved by induction when, and if, this may be considered
appropriate.

The logical development from physical objects, through arithmetic,
algebra and formal proof seemed to me an ideal part of a continuously
developing long-term learning schema that can be revisited at
successive times in more subtle ways. However, such an “ideal”
coherent sequence of activities proves to have an Achilles’ heel.
Although the sequence of development may be apparent to an
experienced teacher, at the time of learning the links may not be so
readily apparent to the growing child.

The reality is that one must build on the ever-changing cognitive
structure of the individual. Achieving a continuous and coherent
development proves far more elusive than one might expect. The
problem is essentially that the brain works by building connections
between neuronal circuits, evoking many internal links, most of which
are unconscious:

Conscious thought is the tip of an enormous iceberg. It is the rule of thumb
among cognitive scientists that unconscious thought is 95 percent of all
thought—and that may be a serious underestimate. Moreover, the 95
percent below the surface of conscious awareness shapes and structures all
conscious thought. If the cognitive unconscious were not there doing this
shaping, there could be no conscious thought.

(Lakoff & Johnson, 1999, p. 13)
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These links, deeply embedded in our biological brain, produce a
complex mental image of concepts (termed the concept image by Tall
& Vinner, 1981), which operates in many subtle ways. Vinner (1997)
speaks of pseudo-conceptual thinking in which students learn to do the
things that give satisfactory immediate success but may not plumb
deeper conceptual issues. These deeper mathematical structures may
have no meaning or purpose for the learner at the time so that—even if
the curriculum is presented in a manner that is (to the teacher)
coherent and logical—it can fail to be understood by the learner.

Skemp was a master at formulating theories to cover such
phenomena. He referred to the difference between learning which is an
expansion of current knowledge—where new ideas fit easily with
current schemas—and reconstruction of knowledge, where the old
schemas must be reflected upon and modified to fit with the new ideas.
In a given context, conceptually well-structured learning may be based
upon mental images that “fit” the context. Yet these self-same images
may later fail in new, as yet unknown, situations.

In designing long-term learning schema, it becomes important to
consider if and where reconstruction is likely to be necessary, even in
instances where previous learning has been relational. It is my
contention that shifts of context causing cognitive conflict occur far
more widely in the mathematics curriculum than might at first be
apparent.

Cognitive Discontinuities Throughout the Curriculum

To get a sense of the kind of difficulties that occur, I begin with a
number of examples encountered personally at different points in the
mathematics curriculum.

John, a “slow learner” aged 12, could not imagine negative
numbers. In primary school his early number experience began with
counting objects and the number track consisting of distinct unit
blocks. He continued to think of number in terms of counting and
found it impossible to imagine a “minus number” of objects. How on
earth can anyone imagine minus two cows? To him, it didn’t make
sense.

My son Christopher, then aged 8, was easily able to conceive of
“minus numbers”. The temperature in the winter measured in
Centigrade often went below zero, and he enjoyed playing in the snow.
But he could not perform arithmetic with minus numbers. When his
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younger brother tried to explain to him that 5 take away minus 2 is 7,
Christopher stamped around in a temper. He refused to believe that
when something is taken away the result could be bigger.

Jane, aged 12, could not make sense of multiplication of fractions.
In particular she could not believe that the product of two fractions
could give a smaller answer. All her previous experience of whole
numbers had intimated that multiplication always leads to a (much)
larger number.

Rachel, aged 13, did well at arithmetic and could calculate
accurately and efficiently. But her first encounter with algebra was a
disaster. The teacher explained that a letter such as x could be used to
stand for a number, so that if x is a number, then x+3 is “the number
plus 3”. For instance, she explained, if x is 2, then x+3 is 5, if x is 3,
then x+3 is 6, and so on. But Rachel didn’t understand why ‘x’ had
been introduced or what it meant. If she didn’t know x, she couldn’t
calculate x+3 and if she did know x, she didn’t need algebra, it was far
easier just doing arithmetic. Why complicate things by using letters?
At a later stage when asked to simplify 3+2x+1, she wrote 6x, by
adding together all the numbers (after all, they do have an addition
sign between them) and “leaving the x” because she didn’t know what
to do with it. Algebra, for her, became a meaningless manipulation of
symbols using arbitrary rules.

Robert, aged 14, did well with arithmetic and algebra. He
understood that 3¥3 was written as 32, 3¥3¥3 as 33, 3¥3¥3¥3 as 34 and
so on. He could even see that 3n means n lots of 3 multiplied together
and xn means

 

x x x
n

¥ ¥ ¥K1 244 344
 times

From this it was a short step to see that

  

x x x
m

x x x
n

x x x
m n

¥ ¥ ¥ ¥ ¥ ¥ ¥ = ¥ ¥ ¥
+

K1 244 344 K1 244 344 K1 244 344
 times  times  times

or that
x x xm n m n¥ = + .

He had a clear relational idea about the meaning of the power notation
in the context, but when he was shown that x1/2 must be √x because

x1/2 ¥ x1/2 = x1 = x,

he suddenly became confused because he could not make sense of the
notation x1/2. If xn means “n lots of x multiplied together”, what does
“half a lot of x multiplied together” mean? For the expert, the familiar
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formula is just being “generalised” to apply to fractional exponents.
For Robert, such a strategy had no meaning whatsoever.

James was a successful fifteen year old being taught the rudiments
of calculus. First the teacher explained ideas in terms of a picture, with
a secant approaching the tangential position, then he went through
some numerical examples for y = x2, focusing first on the secant
through x = 1 and x = 2, then successively calculating slopes from 1 to
2, from 1 to 1.1 and from 1 to 1.01. He showed that these slopes get
closer and closer to 2, and then moved on to consider the ideas
algebraically using (x+dx)2 – x2 divided by dx. After calculating the

slope for y = x2 and y = x3, he revealed the general pattern of the
derivative for xn as nxn–1 and showed how the rule worked for general
polynomials. “That’s typical,” said James to the teacher after the class,
“you always show us the hard ways first before getting down to the
simple way to do it.” In James’s class all of the pupils learned to
differentiate polynomials but none could give any relational explan-
ation of the process. They knew from experience that their teacher
would always help them by teaching them a simple rule. The rest of
the performance was to please him, not them.

Alec, aged 16, never did understand all that stuff about limits, but
he knew that the derivative of 3x4+5x2 is 12x3+10x. The derivative of a
sum is just worked out by adding the resulting derivatives. He used the
“same” rule for a product such as x2(x3+x), to give the “derivative of
the product” as the “product of the derivatives”, namely 2x(3x2+1).

The incidents discussed in this section show children of various
ages finding difficulty with a variety of aspects of mathematics in new
situations. Even if children have previously been successful through
several sequences of learning they may eventually meet a situation that
makes no sense. Although these examples arise in a range of different
contexts, an underlying story can be uncovered.

Sources of Cognitive Discontinuities

Several of the examples just considered clearly involve a new context
in which previous ideas cause a conflict—for instance, John’s inability
to conceive of negative numbers, or Christopher’s ability to give them
a meaning but inability to perform arithmetic with them, or Jane’s
difficulty with a product of fractions giving an unexpected smaller
result. The reality of the growth of neuronal connections reveals a vast
complex of growing connections that operate in a range of ways to
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support our human activities. The coordination required for counting
involves seeing, pointing to the things seen, performing it in a
sequence that includes each object once and once only, saying the
number sequence at the same time. This involves a vast number of
neural connections, the majority of which are subconscious. Initially
the act of counting involves physical objects in physical situations,
linking numbers inextricably to real world referents. When a new
situation occurs which causes a dissonance with these connections, the
individual may feel confused yet be unable to pinpoint the reason for
the confusion. Negative numbers “feel wrong” because “you can’t
have less than nothing.” Even if one can envision positive and
negatives as credits and debts, or temperatures above and below
freezing point, these particular embodiments carry no sense of a full
array of arithmetic operations. One may “start at a positive
temperature +2°C and go down 3°C to end up at the negative
temperature –1°C.” This may give a sense of difference between
temperatures, perhaps even linking to a conception of subtraction. By
talking about “taking away a debt” one may even give a sense that
“taking away a minus” is the same as “adding a plus”. But these are
straining the meaning of the original neuronal links involving
combining and removing physical objects. The idea of multiplying
negative numbers is, for most, a bridge too far.

My son Christopher was able to conceive of negative numbers in
terms of temperature at the age of eight but had no sense of how to do
arithmetic with them. His younger brother Nic, then only five years
old had, without any prompting, actually asked how to multiply minus
numbers. He too knew about the concept of minus number in terms of
temperature. He reasoned that “ordinary numbers” could be added and
multiplied so why couldn’t you do the same with “minus numbers”.
On discussing the concept of lending him pocket money and putting
pieces of paper with minus numbers in his purse to record the
operation (in denominations of –10 pence), I asked him how I could
give him 50 pence if I had no money at the time. He said “you could
take away five of the ‘minus tens’.” He then thought for a moment,
smiled, and said “… oh, so two minuses make a plus.” He could then
do any sum, difference or product involving plus or minus numbers.
His one generative idea enabled him to do them all in a consistent
manner without any further teaching.

How can two children brought up in the same environment be so
different? My interpretation of this situation is that Nic happened to
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think about arithmetic by focusing his attention on the essential detail
of the symbols and operations. He probably did not link operatively to
physical reality at the time. For him, therefore, it was natural to work
in his cognitive context and seek how to do the same operations on
minus numbers. I conjecture that such a conception was not possible
for his brother Chris because of his neuronal links to physical
situations where multiplying negatives clashed with his own meanings.
Nic was faced only with a (pleasurable) task of cognitive expansion,
building on his existing manipulation of numbers. Chris was faced
with a (difficult) task of cognitive reconstruction that challenged his
very relationship with the world as he perceived it. For him new ideas
did not make sense. They did not fit.

The primitive brain has a way of reacting to perceptions that
appear strange or threatening. The lower limbic system unconsciously
produces neuro-transmitters that affect the operation of the brain,
encouraging some activities and suppressing others. The child who
finds certain concepts “do not make sense” is therefore likely to be at a
disadvantage in attempting to process the information. I conjecture
that, not only are the ideas harder because they are more diffuse and
more difficult to co-ordinate, the emotional activity of fear generated
by the limbic system suffuses the brain with neurotransmitters that
makes the contemplation of these ideas even harder.

The case of Robert reveals an individual with relational understand
of the power law for whole number powers, who is then confused
when he he is faced with the need for cognitive reconstruction in the
new context where the powers are fractional. We may hypothesise that
his relational understanding was neuronally connected to the idea that
the power represents repeated multiplication. Raising x to the power 1

2

makes no sense because he has no idea what it means to compute “half
an x multiplied together.” An idea, which an experienced mathema-
tician sees simply as a“generalisation” of a formula to apply to a larger
range of examples, is not meaningful for a learner who has meaningful
understanding of the power notation in its whole number
manifestation.

It is salutary to realise that children may develop a relational
understanding in a given context and yet encounter new contexts
where the old links no longer work and new links must be forged. This
occurs widely when a child meets an extension of the number system,
say from counting numbers to negative integers or from whole
numbers to fractions, or from real numbers to complex. Old intuitive
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rules that are part of the essential being of the individual are often
deeply embedded in the psyche. The deep belief that “you cannot have
less than nothing” in an everyday sense may prove too strong even in a
world of bank accounts and credit cards where negative quantities
become readily available. The practical solution in this case has been
to continue to use ordinary numbers but widen the system to allow the
same numbers to act separately as debts. In cognitive terms, this
practical solution permits a cognitive expansion, rather than requiring
a cognitive reconstruction.

In a long-term learning schema, such a focus on expansion rather
than reconstruction may work in the short-term, it may even work for
the life-time of a bank teller, (or at least until that teller is made
redundant by technology). But in the long-term mathematical
development towards the full deployment of real numbers, the need for
some kind of cognitive reconstruction is inevitable. Faced with a new
context which causes internal cognitive conflicts, the child must either
make a serious cognitive reconstruction or take the line of least
resistance by learning a new rule by rote to “get the right answer.” The
latter strategy leads to (temporary) survival in the mathematics class.
This is seen in the example of the student James, who was perplexed
by the teacher’s attempt to introduce the limit concept in the calculus
but realised that the teacher would later give “the simple way” to
differentiate a polynomial using the formula.

Regrettably it does not take many such set-backs before the
standard response is to learn “rules without reason” in Skemp’s
memorable phrase. When Alec learnt to “use the rules” in calculus, he
extended them in an inappropriate manner, thinking that the same rule
would work for multiplication that worked for addition.

The fall-back to “learning the rules” is widespread.
I was interviewing a number of students about how they worked
through their mathematics. What became very clear was the desire of
the students to ‘know the rule’ or ‘the way to do it’. Any attempt on my
part to provide some background development or some context was
greeted with polite indifference – ‘Don’t worry about that stuff; just tell
me how it goes.’ (Pegg, J. 1991, p. 70.)

I conjecture that the vast majority of learners reach this point at some
stage. I further suggest that the “polite indifference” not to wish to
“worry about that stuff” is not just an attitude of mind, but a sign that
the student may not be able to talk or even think about “it”, because
there is no “it”. A cognitive structure built on procedures to “do”
mathematics may not have the mental concepts to “think” about
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mathematics and therefore may not be amenable to relational
understanding.

As an example, consider a straight-line graph through (1,5) and
(–3,–3). Its gradient can be found by the formula
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which, for many students, involves using meaningless “rules” such as
“a minus over a minus is a plus”. The equation is now y = 2x+c where
c can be found by substituting one of the points. But which point is
substituted? One has minus numbers in it, the other has positive
numbers, and for students who are struggling, the latter may seem
more attractive. This gives

y = 2x+c where x = 1, y = 5,

so
5 = 2+c
c = 3

and the equation is

y = 2x+3.

Having followed such a sequence of procedures, does the student
genuinely identify this equation with “the line through (1,5), (–3,–3)”?
Are the two notions different ways of viewing the same conceptual
entity, or are they different entities, loosely connected in the brain?
Many students appear not to link them at crucial points of an
argument. When asked whether a third point, say (2,4), is on the same
line, instead of substituting this into the equation, some students, who
are struggling, go back to calculating the equation of the line through
(2,4), (1,5) to see if it gives the same equation (Crowley & Tall, 1999).

We suggest that these students do not readily see all the different
forms of a linear equation as being different versions of one mental
entity and so they have no mental entity in their minds to manipulate.
They cannot talk about “it” because, for them, there is no “it”. As long
as they remain fixated on the detail of the procedures, they may work
very hard but with little reward. For example, in their case we cannot
speak of the various ‘representations’ of the function concept for there
is no function concept to represent. All they can do in this state of
mind is to learn an increasing collection of procedures to do specific,
but limited, tasks that may grow increasingly difficult to relate in any
coherent overall structure.
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Long-term Learning Schemas and Cognitive Roots

In devising initial activities for long-term learning schemas that
encourage conceptual ideas rather than just procedural competence, I
had the privilege of being Richard Skemp’s last PhD student (Tall,
1986). Given the possibility (even probability) of discontinuities in the
learning process, a long-term learning schema needs to take into
account that cognitive reconstruction is likely to occur at various
times. At the outset, I decided that the journey should begin by
building an inner cognitive sense of the concept that carried the
potential of long-term development. I formulated the notion of a
cognitive root as a concept that a student meets at the beginning of a
period of study that is familiar to the student at this stage, yet contains
the seeds of long-term learning of the formal theory (Tall, 1989).

To start from “where the students are” to build to what you wish
them to learn is quite different from building a curriculum which
focuses on “where the students are desired to get”. Many curricula in
the calculus build towards a logical meaning of differentiation and
integration and therefore decide that they must begin with the limit
notion as this is the logical foundation of the formal theory. But it is
not a good starting point for the learning of students.

I found that few students would naturally invent the limit concept
for themselves. For instance, Tall (1986) presented a graph of the
parabola y=x2 with a line drawn through the points (1,1) and (k,k2) and
asked first to write down the gradient of the line and then to explain
how they might calculate the tangent at (1,1). Only one out of over a
hundred students produced a limiting argument as kÆ1, and he was
part of a minority who had already been taught the limiting notion.

On the contrary, every piece of research I have ever seen
underlines how difficult the limit concept is to the beginning student
(Cornu, 1991). Discussed in a dynamic sense, in terms of “getting
close” or “getting small”, it builds up intuitive notions of variable
quantities that are “arbitrarily small”, giving a number line of
constants and quantities which act like infinitesimals. This gives a
system different from the real number line that is desired by the
mathematical community.
For the first step in my own long-term learning schema for the
calculus, therefore, I decided to build on human foundations that were
widely available to all individuals, the sensori-motor facilities of
vision and action. I alighted on the notion of magnifying a small
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portion of the graph to see the gradient. Specifically I considered those
graphs which, when drawn on a computer screen and magnified highly
(maintaining the relative scales on the axes), eventually “look
straight”.

I emphasise that this is at a more fundamental cognitive level than
that adopted by many curriculum builders in the calculus reform
movement who start with “local linearity”. Local linearity already
demands a facility to handle the equation of a straight line that is the
“best” approximation to the curve at a point. Local straightness is a
direct appeal to perception, in which the limiting notion is implicit in
the action of magnification.

When the first group of students who ever used the software were
asked to draw any graph they fancied and to see what happens when it
is magnified, the first comment was that “it looks less curved as you
magnify it”. The notion of magnification to “look straight” proved an
appealing idea to everyone in the class.

At first I followed the mathematical route of “fixing x” to find the
gradient at a point, but then realised that the students were able to do
something more intuitive—to look along the graph to “see” its
changing slope.

Software was designed the student to move a “magnifying glass”
along a curve to see the locally straight gradient change (Tall et al,
1990). This aided students to get a gestalt idea of the gradient function
using a sensori-motor feeling of “tracing along the graph” of a “locally
straight” function.

The visual computer approach drew a numerical chord from x to
x+h for fixed h and to plot the gradient of the curve as x moves along
the curve. For small h the gradient graph can be seen to stabilise. This
can be linked directly to the symbolism. For instance, in the case of
f(x) = x2, the gradient of the segment between x and x+h is

f x h f x

h

x h x

h
x h

( ) ( ) ( )+ - = + - = +
2 2

2  (since h ≠ 0).

The graph drawn for the gradient is y  = 2x+h. For small h, this is
indistinguishable from the graph y = 2x. Thus at a sensori-motor level,
the student has the opportunity to sense that the gradient of the
parabola f(x) = x2 is indistinguishable from 2x. The subtleties of
mathematics are linked to deep primitive modules in the brain that are
part of the essential being of the human psyche.

At the time I remember being very pleased with myself, but was
surprised that the students simply took up the idea as if it were
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“obvious”. In one school I set up the computer software on a single
computer intending to demonstrate it to the students studying calculus.
I ended up sitting alone in the corner of the room, completely
neglected by a large group of students standing round the computer to
“see” how to do their homework. I found to my surprise that many
students found it to seem so simple as to be “obvious”. It was as
though my great discovery (which was largely unused by the
mathematical community) was evident to the student mind. The
explanation, to me, is that it is obvious, because it links with deep
cognitive structure that is part of the essential being of the individual.

To compare the mental imagery generated with that of students
following a more traditional course, both kinds of student were asked
to sketch the derivatives of various graphs, including those in Figure 3.

There are at least two possible routes to a solution. One is to
proceed symbolically by guessing the formula, differentiating it, and
drawing the derivative. This is easier for graph (a) (which looks like
the familiar y=x2) than for graph (b) whose formula is not familiar to
the student. A second approach is to proceed visually, looking along
the graph to see its changing gradient. For instance, graph (b) starts
with a positive gradient decreasing to zero and then stays zero.

It is reasonable to hypothesise that students with less visual insight
would find problem (b) significantly more difficult and this is
supported by the statistics (table 1). Three experimental classes in
school (A, B, C) using computer software to visualise the gradient
succeed in both problems significantly better than control classes D, E,
F, G) following a standard text. The difference in problem (b) was
even greater. The experimental classes also perform better than control
group H of highly able students studying double mathematics, and on
a par with first year university students, group I.

Figure 3. Sketching the gradient graphs for given graphs.
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Table 1
 Student Responses to Sketching Derivative Graphs

Experimental Groups (a) (b)

School 1, group A 100% 70%

School 2, group B 99% 87%

School 2, group C 92% 89%

Control Groups (a) (b)

School 1, group D 82% 31%

School 2, group E 73% 16%

School 2, group F 47% 3%

School 2, group G 39% 0%

Others (non-experimental) (a) (b)
School 2 (double math), group H 91% 56%

University year 1, group I 91% 89%

Not only did the idea of “local straightness” help many students to
build a richer concept image of the idea of derivative, it can also be
used later on in differential
equations—“knowing the steep-
ness of the function at each
point, and requiring to build a
function with that slope.” Again,
computer software was designed
to allow the student to imagine
physically building a solution of
a (first order) differential
equation by placing short line
segments of the appropriate
gradient end to end (Figure 4).

These ideas again provide a visual conception of the solution
process, based on sensori-motor activity. They also provide a sense of
existence and uniqueness of solutions. Everywhere that the gradient
dy/dx is defined, the direction of the solution is given as a small
segment. This supports the sense that, through every point where there
is a defined direction there is one, and only one solution. Thus the

Figure 4. Enactively building a solution
of a differential equation.
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existence and uniqueness of solutions can be conceptualised before
any techniques of solution have been introduced. It allows conceptual
links to be formed in an intuitive sensori-motor sense which may later
motivate the formal aspects of the theory when and if it is studied.

Does a Cognitive Root Guarantee Long-Term Success?

Having found a starting point that seems to be able to provide some
motivation for later theory, the question arises as to whether this will
necessarily lead to later success. The answer is that although a
cognitive root has a potential for development into a long-term formal
theory, it does not guarantee that such a foundation will lead to the
later formalism for all those who attempt to study it. The cognitive
root operates in a sensori-motor manner that can be visualised,
verbalised and discussed. But this does not provide a basis for all
possible formal links.

As an example, consider the symbolic rules for differentiation and
integration. The derivative of a product f(x)g(x) is not easily seen by
looking at the visual notions of the derivatives of f(x) and g(x). For
instance, if one can visualise the derivative of sinx by looking along its
graph to see its changing gradient as cosx, and can similarly “see” the
gradient of the graph of ex  how does this allow one to “see” the
gradient of their product e xx sin ? It is certainly not obvious by looking
at the graphs of the two functions and “seeing” an easy relationship
with the graph of the product function.

The usual visual method is to look at the product uv of two
quantities as an area and to see the increment in the area caused by
increas-ing u to u+du and v to v+dv as being two strips area vdu+udv

and a rectangle in the corner of area dudv (Figure 5).

u

dv
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vdu
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Figure 5. The change in uv is vdu+udv +dudv.
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This visual representation corresponds precisely to the following
symbolic manipulation:
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There is therefore a direct link between this rectangular representation
and the symbolism, but no simple visual link between the locally
straight graphs and the gradient of their product function.

The School Mathematics Project asked me to provide such a
graphical link for the product function. I could not see one. I did
provide a graphical link for the composite of two functions, by seeing
y = f(g(x)) in terms of the functions u = f(x), y = g(u) and plotting the
three graphs in three dimensions with axes x, u, y. Figure 6 shows the
software I developed to show this idea (Tall, 1991) in the case using

u = x2,  y = sin u ( = sin(x2)).

There are four different windows: the x-u plane in the bottom right
corner, with u = x2, the u-y plane in the bottom left corner, with
 y= sin u, and the x-y plane in the top right, with y = sin(x2). Each of
these is a projection of the curve in three dimensions in which u = x2

and y = sin(x2).
Seen as a static picture in a book this may be quite difficult to

visualize, but an option to turn the three dimensional graph around
gives a sensation of space, making it easier to visualise it as a three
dimensional object.

The tangent to the curve has components dx, du, dy in directions x,
u, y and the chain rule for differentiation becomes:

dy

dx

dy

du

du

dx
= .

as a relationship between the lengths of the components of the tangent
(Figure 7).
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Figure 6. A composite function represented in three dimensions.

Figure 7. The gradient box for the composite of two functions.
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This idea is best seen as a perspex model of a cuboid sides dx, du, dy.
Such a model could be turned by hand to see the projection of the
diagonal onto each of the sides where the latter have gradients dy/dx,
dy/du and du/dx respectively.

These examples reveal that, although the various “rules of the
calculus” can all be handled in a similar symbolic manner, each one
has various visual images providing support which do not have simple,
direct links between them.

The symbolic differentiation procedures themselves operate on the
symbolism seen as a sequence of steps of evaluation (such as sums,
products, quotients, composites etc). This calculation is not
represented in the gestalt visual picture of the graph. Thus the
processes of “seeing” the relationships between the differentials and
the procedures of symbolic use of rules focus on totally different
aspects of the activity.

This difference between the use of symbols and visualisation and
the failure of one representation to link easily with the other is
widespread and goes back to the earliest operations on functions. For
instance, to express the line through (5,3) with gradient 5 in the form
y=mx+c begins with

y – 3 = 5(x – 4)

then the brackets is multiplied out and 3 added to both sides to get:

y – 3 = 5x – 20
y = 5x – 17.

We found that students remarked that, when manipulating symbols,
they could not “see” what is going on (Crowley & Tall, 1999).
Reflection on what is happening reveals that, as the symbols change,
the graph remains the same. In a very real sense, a student would not
be able to “see what is going on” because nothing is happening
visually to the graph. Of course, to an expert, the fact that nothing is
happening to the graph has real meaning because the line remains
invariant under the symbolic manipulations. But for the student who
lacks the conceptual links between disparate cognitive structures, the
situation may be meaningless.

In each of these examples we see that the desired coherence of
different ways of looking at a particular mathematical activity do not
necessarily fit together in a precise correspondence. Some
representations represent some aspects better than others, and some
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processes in one representation may not be mirrored in a one-to-one
way to processes in the others.

The corollary of this discussion is that the cognitive development
of the calculus cannot ever hope to lead to a totally coherent theory
without encountering the need for various cognitive reconstructions on
the way. To cope with the meaning of the calculus requires the student
to reflect on the various situations to understand them in their own
terms and to fit them together in a way which “makes sense”. If this
does not happen, then the default position is liable to involve
instrumental learning of procedures without supporting conceptual
links.

However, the cognitive root of local straightness can be used for a
wide range of students to provide a platform with the potential to lead
to various different approaches to the calculus. It can provide sensori-
motor support for applications in physics, biology, economics and so
on, including a mental image of notions such as the solution of a
differential equation. It can be used as a based for the theory of formal
analysis, either in terms of the standard “epsilon-delta” definition or in
terms of an alternative “non-standard” theory using infinitesimals
(Tall, 1981).

It may not be possible for all students to come to terms with all of
the mathematics, but it may certainly prove possible for students who
have great difficulty with some parts of the theory (eg symbol
manipulation) to have conceptual insight into the nature of the theory.
For instance I have had experiences with students who are not strong
in mathematics being able to imagine functions that are continuous
everywhere but differentiable nowhere, or to visualise functions that
were differentiable everywhere once but nowhere twice, based on the
notion of “local straightness” (Tall, 1995). But these self-same
students were not necessarily able to cope with complicated symbol
manipulation or to make the transition to fluent use of formal proof.

In this sense a cognitive root cannot guarantee that all students will
understand all the theory which is to come. However, an idea such as
local straightness is a “cognitive root” that appears to make sense to
most learners, and also has the potential to be used as an introduction
to various highly subtle aspects of formal theory encountered later on.
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Pandora’s Box

One feature of the use of local straightness as a cognitive root showed
a profound difference between the conceptual structures of those that
used this approach and those that followed a traditional course.

The idea of a tangent to a
curve has long been known to
contain cognitive conflicts
requiring reconstruction. For
instance, in the geometry of a
circle, it is a line which touches
a circle just once and it is often
envisaged as a line which
“touches” a curve but does not
cross it. When a curve with an
inflection point is encountered,
students often misconceive the
notion of tangent. For instance, the tangent to y=x2 at the origin is seen
by many, not as a horizontal line through the origin, but as a line that
“touches but does not cross”. This gives what is sometimes termed a
“generic tangent” as reported by Vinner (1991), (Figure 8).

A B C D E

The right
answer

A generic
tangent

two tangents Another
drawing

No
drawing

18% 38% 6% 10% 28%

Figure 8. Drawing the tangent to y = x2 at the origin (Vinner 1991).

The “locally straight” visual approach did not completely eliminate the
belief in a generic tangent, for instance, the graph:
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presents a cognitive problem at the origin. A tangent exists but it
coincides with the graph to the left and therefore does not intuitively
“touch” the graph. A generic tangent is drawn a little to the right to
show it as “touching” the curve. (Figure 9.)

Figure 9. A generic tangent.
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The students responded as in Table 2. This reveals that the
experimental students are significantly more likely to link the nature of
the tangent to its standard form with less influence from the earlier
concept image of “touching” the graph.

Table 2
Responses to the Tangent in Figure 9

Yes No

Standard Generic Other  2 0

Experimental (N=41) 31 8 0  2 0

Control (N=65) 22 30 2 15 1

University (N=47) 29 14 0 4 0

In terms of developing a long-term learning schema, it is helpful for
the imagery to be developed in a way that encourages manageable
reconstruction at a later stage. An example of this is to look forward to
the existence of left and right derivatives, which is usually considered
far too technical to discuss in a first course. However, zooming in to
see a “corner” with different left and right gradients is available using
the graphical software. This allowed discussion of different left and
right gradients to occur simply and naturally. To test the effect of this
introduction, experimental and control students were asked to consider
the graph of the function

y x x x= - + +2 1

given also in the alternative form:
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Formally it has no tangent and the slope and derivative are undefined
at x=1. The students were asked to say (with reasons) how many
tangents, derivatives, slopes the graph has at x = 1 from the following
possibilities: 0, 1, 2, more than two, other (e.g. “infinity”). The
response deemed formally correct was zero in each case. In addition
there were many other reasons that were possible to give, say “two”
(to refer to the different cases on left and right) or even “infinity”
tangents which are capable of touching and not crossing through the
point (1,1).
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In Table 3 we see that, although
only 6 out of 14 students in
experimental group A gave the
accepted answer (none), in the
other two groups there were 9
out of 12 and 13 out of 16.
However, in the control groups,
only 6 out of a total of 52 gave
the accepted answer.

The amazing statistic is that,
in three out of four control
groups, there were almost as
many different responses as there were students. Pandora’s box opens
and reveals all the variety of possibilities in the students’ minds. In
experimental group A the teacher (myself) had encouraged discussion
and participated actively, but had not given explicit instruction.

Table 3

Student Responses to Tangents, Derivatives, Slopes
at a “Corner” Point

Experimental Groups none two
Other

solutions
Total number of

different solutions

School 1, group A (N=14) 6 1 7 9
School 2, group B (N=12) 9 0 3 3
School 2, group C (N=16) 13 0 3 4

Control Groups

School 1, group D (N=9) 0 0 9 8
School 2, group E (N=13) 2 2 9 9
School 2, group F (N=17) 3 4 10 10
School 2, group G (N=13) 1 1 11 13

Others (non-experimental)

School 2, group H (N=12) 5 0 7 8
University year 1, (N=57) 14 8 35 14

Figure 10. The graph of
y = abs(x(x–1))+x+1.
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There was a combination of discussion and more explicit instruction in
Group C leading to a greater uniformity in (correct) response. We thus
see the power of the software to encourage discussion and the value of
the directed participation of the teacher. By teaching in the traditional
way the students had been left with a wide variety of possible
connections as yet unassigned. The response of the university students
shows the consequences of this. Some students had discussed left and
right derivatives in class and 8 gave a response consistent with this, in
addition to the 14 giving the response “none” to all three parts. But
there were still 14 different possibilities given in total, leaving a wide
range of beliefs to be brought together in teaching the notion of
differentiability and non-differentiability at university.

Conclusions

In this paper we have looked at the long-term building of learning
schemas. Many examples have been given of discontinuities in the
curriculum in which a change in context requires considerable
cognitive reconstruction from many children which may prove too
difficult for many of these. These include many contexts which occur
in the English National Curriculum which provoke difficulties for
children and cause many of them to take the line of least resistance and
learn ideas which are meaningless to them by rote.

Even when long-term curricula are carefully designed using a
cognitive approach, some of the conflicts persist. If they are directly
addressed by the teacher as mentor in a meaningful context then it is
possible to give a wider spectrum of students more coherent insights
into the nature of the mathematics. A standard curriculum which takes
things in a steady order, avoiding difficulties till later can create a
Pandora’s box of different ideas that need to be rationalised (but are
more probably, ignored) later on.

In all this development of long-term learning schemas, it becomes
eminently clear that individual children make cognitive links in a wide
variety of ways. To address this requires mutual activity on the part of
the teacher and learner. The learner must become increasingly aware
of his or her own part in reflective thinking about the concepts and
helped to grow in confidence in dealing with the mismatches that
occur in new contexts. The teacher, as mentor, must be aware of
several different facets that may not be so clear to the pupil. One is the
pupil’s need in cognitive growth, the second is an awareness of those
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things that are mutually agreed in the mathematical community and
the third is the balance between pupil need and the focus on those
aspects of mathematics that give long-term power.

I do not believe it is sensible or practical to attempt to design a
smooth long-term curriculum in which each idea builds easily on
previous ones. New contexts will always demand new ways of looking
at things and often require significant cognitive reconstruction.

Awareness of the essential nature of cognitive reconstruction is
vital in long-term curriculum design. The National Curriculum for
England and Wales, for instance, consists of a sequence of ten levels
which are to be taught successively over the years of schooling from
the age of five to the age of sixteen. It is expected that some children
will move quicker and more effectively through the levels whilst
others may take it at a slower pace. The aim of the British government
is to “raise standards” by getting a greater percentage of children to a
given level. There is even a concept of “value added” namely the
average improvement in grade level of the children in a given school.
This metaphor of development presupposes a sequence of successively
more subtle ideas and a naïve assumption that less successful children
can move through the same sequence of ideas but at a slower pace.

However, the notion of discontinuity suggests an impediment to
such progress. If a child meets a point requiring cognitive
reconstruction and this reconstruction does not occur, then any later
developments are hampered by subsequent misconceptions. These
misconceptions arise not only from mistakes or misunderstandings in
earlier mathematics, but also in the failure to adapt to new contexts
where the old ideas are no longer completely appropriate. Far from
being an occasional problem in learning, I claim that discontinuities in
development are widespread in the curriculum and must be taken into
account so that more children are able to succeed in personal
reconstruction of the powerful mathematical ideas that may bear fruit
in later life.
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Versatile Learning of Mathematics

Michael O. J. Thomas
The University of Auckland

It was many years ago now, in 1971, that as a young undergraduate in
mathematics at Warwick University, I was first introduced to Richard
Skemp’s ideas by a young lecturer named David Tall. I read the
paperback The Psychology of Learning Mathematics with great
interest. It was not until I was a graduate student of mathematics
education, in 1983, (once again working with David) that I re-read some
of Richard’s work, and yet, as a teacher of mathematics in schools it
had remained with me. I read Intelligence, Learning and Action and was
struck by the power of the ideas expressed in it and the simplicity of
the language in which they were presented, especially in comparison
with other texts I read. I learned the valuable lesson that powerful ideas
can be communicated in simple terms and do not require a facade of
convoluted definitions and expressions in their presentation.

Another educationist, Ausubel (1968, p. iv), well-known for his
concept of meaningful learning, said, “If I had to reduce all of
educational psychology to just one principle I would say this: The
most important single factor influencing learning is what the learner
already knows. Ascertain this and teach him accordingly.” Similarly,
today, many constructivist mathematics educators would maintain as a
central tenet that the mathematics children know should be the basis on
which to teach mathematics (e.g. Steffe, 1991). Skemp, agreed,
remarking that “our conceptual structures are a major factor of our
progress” (1979c, p. 113). Since our existing schemas serve either to
promote or restrict the association of new concepts, then the quality of
what an individual already knows is a primary factor affecting their
ability to understand. The existence of a wide level of agreement on this
point indicates very strongly that it is something which mathematics
educators should take to heart. However, one does not have to have
been a teacher for very long before being faced with a dilemma. Many
of us will have experienced the reaction of students when, after we
have spent some considerable time trying to develop the ideas and
concepts of differentiation, we introduce the rule for antidifferentiation
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of xn . They may say “well why didn’t you just tell us that was how
to do it?” Too often it seems, the students’ focus is on how ‘to do’
mathematics rather than on what mathematics is about, what its objects
and concepts are. This procedural view of mathematics is, sadly, often
reinforced by teachers who succumb to the pressure and only tell
students how to do the mathematics.

I am particularly interested in the way in which our conceptual
structures enable us to relate the procedural/process aspects of
mathematics with the conceptual ideas, such as why the formula is
correct. The essentially sequential nature of algorithms often contrast
with the more global or holistic nature of conceptual thinking, and, the
ways in which we, as individuals, construct schemas which enable us
to relate the two in a versatile way is of great importance. The full
meaning of the term ‘versatile’, as used here will emerge during this
discussion but, suffice it to say at this stage, that it will be used in a
way which will have the essence of the usual English meaning, but, will
take on a more precise technical sense, which will be explained during a
discussion of the nature of our conceptual structures.

Having acknowledged the importance of our mental schemas in
building mathematical understanding, some questions worth consider-
ing in any attempt to encourage versatile learning of mathematics
include:

∑ How are schemas constructed?
∑ How can we identify and describe the quality of our

constructions?
∑ How do our schemas influence our perception of the objects

and procedures in mathematics, and their relationship?
∑ What experiences will help us improve the quality of our

constructions so that we can build a versatile view of
mathematics?

Skemp’s theory has much to offer towards building answers to these
sorts of questions, and in the rest of this paper I will seek to show how
valuable it is. First we will consider his model of intelligence and its
implications for improving the quality of learning and understanding.
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Skemp’s Model of Intelligence

The basis of Skemp’s theory of learning (Skemp 1979c, p. 89) is a
model which describes intelligence as an activity in which learning is “a
goal-directed change of state of a director system towards states which,
for the assumed environment, make possible optimal functioning.”
According to this model of intelligence, we all engage in mental
construction of reality by building and testing a schematic knowledge
structure (Skemp, 1985). For Skemp (1979c, p. 219), a schema is “a
conceptual structure existing in its own right, independently of
action.”, and he describes (ibid, p. 163) three modes which each of us
may use to build and test such structures:

Reality building: from our own encounters with actuality; from the realities
of others; from within.

Reality testing: against expectation of events in actuality; comparison with
the realities of others; comparison with one’s own existing knowledge and
beliefs.

This process of mental construction involves two director systems,
which Skemp describes as delta-one (D1) and delta-two (D2). The

former is a kind of sensori-motor system which “receives information
… compares this with a goal state, and with the help of a plan which it
constructs from available schemas, takes the operand from its present
state to its goal state.” (Skemp, 1979b, p. 44). Delta-two on the other
hand is a goal directed mental activity, whose operands are in delta-one,
and its job is to optimise the functioning of delta-one (Skemp, 1979a).
Hence the construction of concepts in a schema, or knowledge
structure, may be by abstraction via direct sensory experience from
actuality (primary concepts) using delta-one, or by derivation from
other concepts (secondary concepts), using delta-two. In turn, the
acquisition of new concepts may require expansion or re-construction
of the relevant schema, altering it to take account of a concept for
which it is relevant but not adequate (Skemp, 1979c, p. 126). Factors
such as the frequency of contributory experiences, the existence of
noise (irrelevant input) and the availability of lower order concepts,
may affect one’s ability to form concepts using the director systems.

Skemp (1979b, p. 48) outlines two modes of mental or ‘intelligent’
activity which take place in the context of delta-one and delta-two,
namely intuitive and reflective:
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In the intuitive mode of mental activity, consciousness is centred in delta-
one. In the reflective mode, consciousness is centred in delta-two. ‘Intuitive’
thus refers to spontaneous processes, those within delta-one, in which delta-
two takes part either not at all, or not consciously. ‘Reflective’ refers to
conscious activity by delta-two on delta-one.

The concept of reflective intelligence was one of the earliest which
Skemp illuminated (see Skemp, 1961, 1978), and while acknowledging
that the term is Piaget’s, Skemp views his model of the concept
differently, saying “When the concept of reflective intelligence was
first introduced...I acknowledged that this term was borrowed from
Piaget, and noted also that my model was not the same as his.”
(Skemp, 1979c, p. 218). For Skemp reflective intelligence involves the
awareness of our own concepts and schemas, examining and improving
them, thereby increasing our ability to understand. The methods
available for doing so include physical and mental experimentation,
generalisation and systematising knowledge, by looking for conceptual
connections. It is this conscious, reflective mental activity which
Skemp (1961) considered vital for successful building of mathematical
knowledge structures, and it is this which he believes increases
mathematical performance. He (Skemp, 1961, p. 49) illustrates this
with reference to algebra, commenting:

The transition to algebra, however, involves deliberate generalisation of the
concepts and operations of arithmetic...Such a process of generalisation does
require awareness of the concepts and operations themselves. Since these are
not physical objects, perceivable by the external senses, but are mental, this
transition requires the activity of reflective thought. And further, the
generalisation requires not only awareness of the concepts and operations
but perceptions of their inter-relations. This involves true reflective
intelligence.

Thus, for Skemp, the change in the quality of thinking involved in the
transition from arithmetic to algebra is brought about by ‘awareness of’
and ‘deliberate generalisation of’ the concepts and operations of
arithmetic; that is by reflective intelligence.

The Qualitative Nature of Mathematical Understanding

Having briefly discussed Skemp’s view of the construction of mental
schemas, we now ask, ‘what about the qualitative nature of these
schemas?’ One of the first of Skemp’s ideas I encountered, and which
has stayed with me, was a strikingly simple, but extremely useful,
definition of understanding, a term which is often used, but less
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commonly defined or explained. According to Skemp (1979c, p. 148),
“to understand a concept, group of concepts, or symbols is to connect
it with an appropriate schema.” Skemp further clarified what he saw as
understanding by describing two types, now well known in
mathematics education, as instrumental and relational. This
appreciation of the qualitative nature of understanding is no doubt one
of the most valuable insights provided by Skemp’s model of
intelligence. In his landmark paper (Skemp, 1976) he described
instrumental understanding as learning ‘how to’, involving learning by
rote, memorising facts and rules. In contrast, relational learning, or
learning ‘why to’, consists primarily of relating a task to an
appropriate schema. Whilst this has received wide acceptance as a
valuable insight, there were attempts to extend and re-shape some of
the ideas he presented, and following this Skemp (1979b) created
another category of understanding, akin to formal understanding, thus
increasing them to three; instrumental, relational and logical. This last
type he describes (Skemp, 1979b, p. 47) in these terms:

Logical understanding is evidenced by the ability to demonstrate that what
has been stated follows of logical necessity, by a chain of inferences, from
(i) the given premises, together with (ii) suitably chosen items from what is
accepted as established mathematical knowledge (axioms and theorems).

Hence the acquiring of logical understanding implies that the individual
not only has relational understanding but is able to demonstrate
evidence of such understanding to others by means of “a valid sequence
of logical inferences” (Skemp, 1979a, p. 200).

The qualitative differences in understanding proposed in Skemp’s
model of intelligent learning are clarified through his use of a metaphor
for mental schemas. Figure 1 is an example of the kind of network
Skemp introduced as a metaphor for the understanding of a mental
schema.

Figure 1. Skemp’s schema metaphor.
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It should be remembered that such diagrams are not intended to be in
any sense a physical representation of the structure of the brain or the
way in which it stores data, but are simply a metaphor to assist our
perception of the cognitive structures of the mind and our discussion of
the storage and manipulation of concepts affecting our thinking,
learning and understanding. The qualitative differences in understanding
of Skemp’s model of intelligent learning are represented in this
diagrammatic metaphor through references to associative, or A-links,
between concepts where one has instrumental understanding, and
conceptual, or C-links, for relational understanding. To justify the idea
of concept links Skemp argues (1979c, p. 131) that since “activation of
one concept can activate, or lower the threshold for, others.” then there
must be connections between them, and he adds:

This idea has been developed to include a dimension of strong or weak
connections, whereby activation of a particular concept results in the
activation of others within quite a large neighbourhood, or within only a
small one. Recently I have become interested in another difference which is
not quantitative as above, but qualitative. This is between two kinds of
connection which I call associative and conceptual: for short A-links and C-
links.

He illustrates the difference between the two types of connections
with number sequences. The numbers 2, 5, 7, 0, 6 are concepts which
are connected by A-links; there is “no regularity which can give a
foothold for the activity of intelligence.” (ibid, p. 187). In contrast the
numbers 2, 5, 8, 11, 14, 17 have a conceptual connection – a common
difference of 3 – and so have a common C-link. Clearly, a link may be
either associative or conceptual for any given person depending on
whether they have formed the connecting concept. I have sometimes
illustrated this by asking students whether they could remember, for a
week, the following sequence:

7, 8, 5, 5, 3, 4, 4, 6, 9, 7, 8, 8

Most immediately decide, on the basis of A-links, that they could not,
but once they are given the concept that these are the number of letters
in the months of the year, the C-link is formed and they agree that they
could. This demonstrates the principle that A-links can change to C-
links, through the use of reflective intelligence, and such changes are
accompanied by reconstruction of the appropriate schemas. One of
Skemp’s endearing teaching points is his use of personal experience and
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I have identified in my own experience, something exemplifying this
transition. Like many of us, no doubt, I have committed to memory,
using A-links, certain results in mathematics. One in particular which I
had trouble remembering was from the trigonometric results, namely,
which of tan ( )- ÷1 3  and tan ( / )- ÷1 1 3  was 30˚ and which 60˚. My A-
link was in a state of constant degeneration. I can remember now my
feelings of stupidity when one day I formed the C-link that since
( / )1 3 1 3÷ < < ÷ , then tan ( / ) tan ( ) tan ( )- - -÷ < < ÷1 1 11 3 1 3 , and since
tan ( )- ∞ =1 45 1 was already a C-link for me, from a 45˚ isosceles triangle,
the rest followed instantly. It seems to me that consciously capturing
such moments of insight brought about by reflective intelligence is
quite rare, but especially valuable.

As the above example illustrates, a disadvantage of A-links is that
they have to be memorised by rote, whereas for a C-link “we can put a
name to it, communicate it, and make it an object for reflective
intelligence: with all the possibilities which this opens up.” (ibid, p.
188). Unsurprisingly, the quality of our schemas is a key determinant
of our success in mathematics and Skemp (ibid, p. 189) observes the
importance of C-links in this:

But the larger the proportion of C-links to A-links in a schema, the better it
is in several closely related ways. It is easier to remember, since there is
only one connection to learn instead of many. Extrapolation is often
possible and even inviting, as some will find in the cases of sequences of
C-linked numbers. And the schema has an extra set of points at which
assimilation, understanding, and thus growth can take place.

Thus, according to Skemp’s theory of intelligent learning, a key
objective of mathematics teaching should be to provide experiences
which encourage and promote the formation of knowledge structures
which, wherever possible, comprise conceptual links (C-links)
corresponding to relational learning. It is exactly these types of
knowledge structures which are necessary to promote versatile
thinking since it is only through conceptual links that the global and
sequential aspects of mathematics, and the different representations of
concepts, can be properly related. What may not be so clear is what
activities in the mathematics classroom we can use to encourage the
formation of such schemas.
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Developing Versatility of Mathematical Thought

The relationship between processes (which I shall try to use as a
generic term, reserving procedure for a specific algorithm for a given
process) and objects has been the subject of much scrutiny by a
number of researchers in recent years. Skemp’s (1961 p. 47) insight
that:

For the algebraist will continue, in due course, to develop concepts of new
classes of numbers (e.g., complex numbers) and new functions (e.g.,
gamma functions) by generalising the field of application of certain
operations (taking square roots, taking the factorial of a number); and will
study the application of the existing set of operations to the new concepts.

describes the construction of new mathematical objects (concepts) by
generalising operations. Davis (1984, pp. 29–30) formulated a similar
idea:

When a procedure is first being learned, one experiences it almost one step
at time; the overall patterns and continuity and flow of the entire activity are
not perceived. But as the procedure is practised, the procedure itself
becomes an entity – it becomes a thing. It, itself, is an input or object of
scrutiny. . . . The procedure, formerly only a thing to be done – a verb –
has now become an object of scrutiny and analysis; it is now, in this sense,
a noun.

Describing here how a procedure becomes an object he strikes at a key
distinction between the two when he mentions the ‘one step at a time’
nature of procedures when they are first encountered, in contrast with
‘the overall. . . flow of the entire activity’, or the holistic, object-like
nature which they can attain for an individual. More recently others
have spoken of how an individual encapsulates or reifies the process so
that it becomes for them an object which can be symbolised as a
procept (Dubinsky & Lewin, 1986; Dubinsky, 1991, Cottrill et al.,
1997; Sfard, 1991, 1994; Gray & Tall, 1991, 1994). However, it seems
that there are at least two qualitatively different types of processes in
mathematics; those object-oriented processes from which mathematical
objects are encapsulated (see Tall et al. in press) and those solution-
oriented processes which are essentially algorithms directed at solving
‘standard’ mathematical problems. An example of the first would be
the addition of terms to find the partial sums of a series, which leads to
the conceptual object of limit and the second could be exemplified by
procedures to solve linear algebraic equations. Much mathematics



187

teaching in schools has concentrated on solution-oriented processes to
the exclusion of object-oriented processes. However solution-oriented
processes usually operate on the very objects which arise from the
object-oriented processes. Hence ignoring these is short sighted and will
prove counter-productive in the long term. Failure to give students the
opportunity to encapsulate object-oriented processes as objects may
lead them to engage in something similar to the pseudo-conceptual
thinking described by Vinner (1997, p. 100) as exhibiting “behaviour
which might look like conceptual behaviour, but which in fact is
produced by mental processes which do not characterize conceptual
behaviour.” In this case students may appear to have encapsulated
processes as objects but this turns out on closer inspection to be what
we will call a pseudo-encapsulation. For example, in arithmetic
students may appear to be able to work with a fraction such as 4

5  as if
they have encapsulated the process of division of integers as fractions.
However, many have not done so. I am still intrigued by the first time I
encountered such a perception. It was in 1986 (see Thomas, 1988; Tall
& Thomas, 1991) when I discovered that 47% of a sample of 13 year-
old students thought that 6÷2 1x + 7 and 6

7  were not the same, because,

according to them, the first was a ‘sum’ but the second was a
‘fraction’. Such students are at a stage where they think primarily in
terms of solution-oriented processes, and in this case they had not
encapsulated division of integers as fractions. Instead they had
constructed a pseudo-encapsulation of fraction as an object, but not
one arising from the encapsulation of division of integers.

Similarly in early algebra many students may work with symbolic
literals in simplifying expressions like 3 2 2a b a b+ - +  as if they view
them as procepts. However, rather than having encapsulated the
process of variation as a procept, symbolised by a or b, they are
actually thinking of them as pseudo-encapsulations, concrete objects
similar to ‘apples’ and ‘bananas’. When dealing with expressions such
as 2 1x + , a common perspective enables students to work with it but
see it as a single arithmetic result not as a structural object representing
the generalisation of adding one to two times any number x. When they
move on to equations these students can use their pseudo-
encapsulations to solve equations such as 2 1 7x + = . They may appear
to be using algebraic methods to get their answer but they are actually
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thinking arithmetically, and given the answer 7, either use trial and
error, or work backwards numerically, to find x. This becomes clear
when they are unable to solve equations similar to 2 1 7 3x x+ = -
(Herscovics & Linchevski, 1994).

It is possible that students might be assisted to avoid engaging in
the construction of pseudo-encapsulations by approaching the learning
of mathematics (in different representations) in the following way.

Experience the object-oriented process
 Ø

Encapsulate the conceptual object
Ø

Learn solution-oriented processes using the object

This may be illustrated by the learning of the derivative of a function,

¢f x( ) or 
dy

dx
. Students should first experience the limiting process of

f x h f x

h

( ) ( )+ -
 (or equivalent) tending to a limit as h tends to 0 in the

symbolic representation, and the gradient of a chord tending to the limit
of the gradient of a tangent in the graphical representation. Then they
will be able to encapsulate the derived function as an object
encapsulated from this process. This will mean that they are able to

operate on it, enabling them to understand the meaning of 
d
dy
dx
dx

( )
 in

terms of rates of change, which otherwise will prove very difficult.
Many students, who learn the derivative as a solution-oriented
process, or algorithmic rule, are in precisely the position of having no
meaning for the second derivative and are left having to apply it as a
repeated process, probably devoid of any other meaning in any
representation.

The versatile approach to the learning of mathematics which is
being espoused here recognises the importance of each of the three
stages of the recurring trilogy above and stresses the importance of
experiencing each step in as many different representations as possible
in order to promote the formation of conceptual or C-links across those
representations. Students need personal experience of object-oriented
processes so that they can encapsulate the objects. The versatile
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learner gains the ability to think in a number of representations both
holistically about a concept or object, and sequentially about the
process from which it has been encapsulated. A major advantage of a
versatile perspective is that, through encapsulation, one may attain a
global view of a concept, be able to break it down into components, or
constituent processes, and conceptually relate these to the whole,
across representations, as required. Without this one often sees only
the part in the context of limited, often procedural, understanding and
in a single representation.

How though does one encourage versatile thinking? What
experiences should students have so that they may build such thinking
and conceptual links? We have seen that reflective intelligence is a key
to the transition from process to object, and hence to progress in
mathematics (although this is not the only way objects may be formed
in mathematics – see Davis, Tall & Thomas, 1997; Tall et al, 1999) and
my contention is that representation-rich environments which allow
investigation of the object-oriented processes which give rise to
mathematical objects will encourage reflective thinking.

Skemp (1971, p. 32) appreciated that “Concepts of a higher order
than those which a person already has cannot be communicated to him
by a definition, but only by arranging for him to encounter a suitable
collection of examples.” Whilst this is a valuable principle, it somewhat
oversimplifies the situation. Many higher order concepts are not
abstracted from examples but, as we have discussed above, have to be
encapsulated by the individual from object-oriented processes (see Tall
et al., 1999). Hence the examples which the student needs are not
simply those embodying the finished concept itself, but also the
processes which give rise to it.

A Newton-Raphson Example

Many of the points made in the above discussion can be well
exemplified by the Newton-Raphson method for calculating the zeroes
of a differentiable function. Given the formula:

x x
f x

f x2 1
1

1

= -
¢
( )
( )

,

students may have no difficulty working in a solution-oriented manner
to calculate the zeroes of a function, such as a polynomial, to any
required accuracy. However, asking them questions about what it is
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they are doing, and why it works, is likely to elicit blank stares. They
might reason that doing the mathematics and getting the right answer is
the main thing, so why would one want to know anything further?

Furthermore, it is of interest that the formula above, in the usual
form it is given, is that best suited to a procedural calculation of x2,
given x1. To emphasise understanding rather than convenience of
calculation a better form, which follows directly from a graphical
representation, such as Figure 1 where x2 can be seen to be a better
approximation to the zero than x1, would be:

    
¢ =

-
f x

f x

x x
( )

( )
1

1

1 2

.

This can then easily be rendered in the usual procedural form for
calculations. This version equates two symbolic representations of the
gradient of a tangent, which are easily linked via the graphical format.
The versatile approach in this case is to look at the object-oriented or
concept-oriented processes first, especially in a visually rich graphical
representation, before a consideration of the solution-oriented process.
This can be accomplished by allowing students to experience graphs of
functions, such as sine and cubic curves (for example using a graphic
calculator or suitable computer graphing package), and to construct
meaning for the process of ‘zooming in’ on a zero by drawing
successive tangents at points on the curve. A few minutes experience
with diagrams such as that in Figures 2 and 3 can provide tremendous
insight into when and why this method works, and where the formula
comes from.

Figure 2. A diagram illustrating a successful search for a function’s zeroes.

In this way students can reflect on what the process is doing, where
the formula for finding a zero comes from, and most importantly under
what conditions it may succeed or fail, emphasising, for example, the
importance of the first approximation.
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Figure 3. An example of what can go wrong with the Newton-Raphson method.

Thus they may visually conceptualise the process of finding the
zeroes. Once this is established the students can begin to learn how to
calculate values of zeroes of functions using a symbolically based
solution-oriented process.

Other Examples

In arithmetic children become accustomed to working in an environ-
ment where they solve problems by producing a specific numerical
“answer” and this leads to the expectation that the same will be true for
algebra. It isn’t. Such pupils face a number of conceptual obstacles to
their progress in algebra (see e.g. Tall & Thomas, 1991; Linchevski &
Herscovics, 1996). The concept of variable forms one major barrier
between arithmetic and algebra, and yet it is a concept not often
explicitly addressed in teaching which focuses on solution-oriented
processes. Skemp (1971, p. 227) expressed the same point,
commenting that, “The idea of a variable is in fact a key concept in
algebra – although many elementary texts do not explain or even
mention it.” A versatile approach to the learning of variables seeks to
build experience of the mathematical process of variation in a manner
which blends personal investigation with the incorporation of visual
representations. In a study to investigate this (Graham and Thomas,
1997, 2000) a graphic calculator was used to help students to a
versatile view of variable, as both a varying process and an object
symbolised by a letter. The 13 year-old children were encouraged to
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‘see’ the calculator as storing numbers in its lettered stores, with each
store comprising a location for the value and a name, a letter. A major
advantage of the graphic calculator in this work is that it preserves
several of these operations and their results in the view of the student,
prolonging their perception time, and the opportunity to reflect on
what they have done and hence form C-links. A feature of the research
which encouraged such reflective thinking was the use of screensnaps,
such as that in Figure 4. Here one is required to reproduce the given
screen on the graphic calculator. This is a valuable exercise which
students attempt, not by using algebraic procedures, but by assigning
values to the variables and predicting and testing outcomes.

A+B
11

A–B
–3

Figure 4: Example of a screensnap from graphic calculator algebra research.

Exercises such as this have the advantage of encouraging beginning
algebra students to engage in reflective thinking using variables,
requiring them to: reflect on their mental model of variable; ‘see’ the
variable’s value as a changeable number; physically change the value of
a variable; and relate the values of two variables.

These experiences significantly improved understanding of the way
students understood the use of letters as specific unknown and
generalised number in algebra. For example, when asked a question
similar to that used by Küchemann (1981) in his research, namely:

Does x y z y- = -  — always, never or sometimes ... when?,
30% of a graphic calculator group of 130 answered ‘sometimes when x
= z’, compared with 16% of the 129 controls (c2 = 7.73, p < 0.01),

who had learned algebra in a traditional, procedural, solution-oriented
way. Correspondingly, one of the students who had used the graphic
calculators was asked on interview:

Int: Did you have any previous knowledge of algebra?

N: Yeah, we did some in form 2, a little bit, but I didn’t really understand
much of it.

... Int: L+M+N=L+P+N. Now what would be the answer there do you
think? [ie Are they equal always, never or sometimes ... when?]
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N: Sometimes, if M and P are the same value.

Int: OK good. What about the next one, A+B=B?

N: Um, sometimes if A=0.

Such questions cannot easily be answered by students who, having
constructed a pseudo-encapsulation, see letters as concrete objects,
since they will not appreciate that two different objects can be the
same. Rather they require one to understand that the letters represent
values, which may coincide. N had seen this, was happy to let different
letters have the same value and could pick out the correct value 0 for A
in the second example. It was apparent that the model had assisted in
the attainment of this view, since one student remarked:

I think the STORE button really helped, when we stored the numbers in the
calculator. I think it helped and made me understand how to do it and the
way the screen showed all the numbers coming up I found it much easier
than all the other calculators which don’t even show the numbers.

The power of a representation which promotes visualisation is seen
here. The way the calculator screen preserves several computations on
the variables has assisted this student to build ideas about the use of
letters in algebra to represent numbers. These results and comments
demonstrate that these students had not only gained the flexibility of
insight where they could see two letters as representing a range of
numbers which could sometimes coincide, but, as their simplification
results showed, they could operate on these encapsulated objects at
least as well as students who had spent their time on manipulation
techniques. They had a more versatile conception of variable.

Many students carry forward a procedural, arithmetic perspective
into their acquaintance with expressions and equations in algebra.
Substitution of a value into an expression or function is not a problem
for such students because they have an arithmetic procedure they can
follow. However, many students have not encapsulated expression as a
variable-based object and so when faced with simplification of
expressions or solving equations they build meaning based on concrete
objects and then engage in solution-oriented processes. This view of
equation is a real problem when they are required to solve linear
algebraic equations of the form ax + b = cx + d. For the student who is
thinking sequentially and looking for the result of a calculation, such a
problem is telling them that two procedures give the same result, but
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they are not told what that result is. Thus, unable to work either
backwards from the answer, or forwards to a known answer, many fall
at this obstacle, which has been called the didactic cut (Filloy and
Rojano, 1984) or cognitive gap (Herscovics and Linchevski, 1994).

A versatile view of equation can be promoted by a computer
environment such as that of the Dynamic Algebra program (see Figure
5), which encourages students to construct equations in terms of
variable and expression objects which can be simultaneously evaluated
(Thomas & Hall, 1998).

Figure 5. A screen from the Dynamic Algebra program.

The representation employed in this approach emphasises the visual
aspects of variable mentioned above (as a location and label) and
equation (as two equal expression boxes) in an environment where a
number of processes for equation solving, including trial and error
substitution and balancing can be investigated. The trial and error
experiences combine the visual model of variable with the idea of
substitution in an expression (or function) and equivalence of
expression (or function). Students investigate solutions by entering
values for the variable, here u, until both sides are seen to be equal in
value, that is the difference between the two sides is zero. This
reinforces in the student’s experience, the results of evaluating the
expressions constituting each side of the equation. In this way students
can conceptualise equation before embarking on solution-oriented
processes. One student, who used guess and substitution to solve
linear equations before using this program, when interviewed about
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questions with more than one n, such as 2 6n n= + , showed little
conceptual appreciation of equation asking, “Does n have a variety of
numbers or are they the same?” After investigating equations using the
computer environment she appeared to have no problem with this and
her solution to the equation 5 12 3 24n n+ = +  was written as:

The computer program was structured by this procedure of performing
the same operation on each side of the equation, although the students
were not taught it explicitly but had to build up their own
understanding. This student had progressed through an investigation of
object-oriented processes to an encapsulation of equation as a
statement of equality of expressions and hence was able to operate on
it using a solution-based procedure. To improve in ability to the point
where she could solve such equations after a few hours reflective
activity is no small achievement, and indicates the possible value of a
versatile approach to the learning of expression and equation.

While introductory algebra finds its place at one end of the
secondary school curriculum, the definite (or Riemann) integral is
firmly at the other. However, here too, it is not uncommon to find
students who are instrumentally engaged in following set solution-
oriented procedures for calculating integrals with little idea of what the
integrals are or represent. They are process-oriented (Thomas, 1994),
locked into a mode of calculating answers using antiderivatives without
the directing influence of a holistic, structural understanding. The
inability of such students to deal with questions which do not appear
to have an explicit solution procedure was highlighted in another study
(Hong & Thomas, 1997, 1998). For example, a generalised function
notation proved particularly difficult for many of these students to
cope with, since it did not fit into their process-oriented framework. In
the question:

If f (t)dt = 8.6
1

3

Ú , write down the value of f (t - 1)dt
2

4

Ú ,
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a number of students who were unable to see how to apply a known
procedure to deal with f t( )-1 , used a number of different procedural
ways to surmount the obstacle including taking f as a constant, using
f t( )-1  or attempting to integrate the t -1 and obtaining t t2 -  or

( )t - 1

2

2

.

The students were introduced to visually rich computer
environments, using Maple and Excel which combined symbolic,
tabular and graphical representations. Students could calculate upper
and lower area sums (in more than one representation), find the limits
of these sums, relate the sign of the definite integral to the area under
the graph of the function, consider the effect of transformations on
areas, and begin to think of area as a function. In this way these
computer experiences allowed a personal cross-representation investi-
gation of the processes lying behind these concepts of integration,
assisting the students to construct conceptual objects associated with
Riemann sums and integrals.

Having investiagted the area under the functions x2, x2 + 2 and
(x – 2)2 they were able to extend their understanding to cope with the
question,

If f (x)dx = 10
1

5

Ú , then write down the value of f (x) + 2( )
1

5

Ú dx ,

which considered a transformation parallel to the y-axis for a general
function f(x). 44% of the school students were able to deal with
integrating f(x) + 2 after their computer experiences, compared with
only 11% before. A student unable to make any attempt at the pre-
test, drew a post-test diagram showing clearly that he understood this
question visually in terms of the creation of an extra area by the
transformation parallel to the y-axis.
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When the transformation (see the question above) was parallel to the x-
axis, and involved a general function f(t–1), the computer group’s
performance improved from 11%, to a success rate of 50%. One
student demonstrated that she was now thinking in terms of conser-
vation of area and was able to relate this to the procepts by writing:

her reason for the equality being ‘[because] Area the same’. Another
student who gave no response at the pre-test showed her improved
conception that the translation of the graph leaves the area unchanged
when in the post-test she was able to visualise that after the
transformation parallel to the x-axis the area would not be changed.
This understanding was manifest through her working, when she drew
the following diagrams as part of her solution:

These examples show the value of the linking of graphical, visual
experiences with other representations, and their effect on the form of
some of the students’ reasoning and answers. In contrast other
students were able to symbolise the relationship very precisely in

terms of procepts by writing f (t - 1)2
4Ú dt = f (y)1

3Ú dy , and hence give
the solution as 8.6. There was evidence of a versatility in approach
from the students who had worked on the computer.

The Role of Visual Representation:
Extending Skemp’s Model

The research projects and ideas outlined above relied heavily on the use
of representations of concepts using visual imagery; for the graphs of
functions, for a variable, as a store with a value and a label, for
equations, and for the way in which areas relate to integration. The
importance of visual representations to encapsulation of conceptual
objects is one which I believe is at the core of learning and one which
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intrinsically involves the formation of conceptual structures, with their
C-links and A-links. Secondly, I believe that imagery plays a far more
important part in all our thinking than we are, literally, aware of. Much
of our thinking (for example the processing of the majority of data from
our visual field) appears to be unconscious, as Johnson-Laird (1993, p.
354) comments “… there are also many benign unconscious processes
that underlie perception and cognition.”

The majority of such unconscious processing appears to be holistic
in nature and extremely fast, compared with the generally sequential
and slower processing of the conscious mind (Gazzaniga, 1985).
Imaginal input, is unlikely to be randomly stored in the brain but, along
with other holistic data, such as aural input, for example voices and
music, is also formed into schemas, similar to those of our logical and
verbal thinking.

I have designated the consciously accessible schemas as higher level
thinking, and the unconscious as lower level thinking, more to
emphasise their qualitatively different natures than to elevate one
above the other. Rather than being formed into two totally separate and
distinct schematic structures there is much circumstantial evidence that
the two are linked.

I believe that there is a cognitive integration (Thomas, 1988) of the
schemas at these two levels of thinking with both C-links and A-links
between concepts etc. at the two levels which can be encouraged and
enhanced. For example one may see a face in a crowd or hear a piece of
music which one appears to recognise but is unable to relate to in any
other way, such as by naming. This may signify that an image of the
face or music pattern in the lower level schemas is linked associatively
(A-link) to those at the higher level which mediate recognition. In
contrast one may see the face and exclaim “Hi, uncle John” or hear the
music and comment that, “I prefer von Karajan’s version of this
Beethoven symphony.” Such remarks are evidence of conceptual links
(C-links) between the schemas at the lower and higher levels. Figure 6,
building on Skemp’s diagram, is a metaphor for the relationship
between the two qualitatively different modes of thinking.

The ‘vertical’ links between the two levels allow the mental
imagery schemas to influence the higher level cognitive functions of the
mind. This approach leads to some valuable insights about why we
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find some intellectual goals hard to achieve and yet others, which we
may not wish, seem to thrust themselves upon our consciousness.

Higher level schemas

Lower level schemas

C–links and
A–links

Directed

Figure 6. A simplified model for Cognitive Integration.

How may this be explained? In the mental process of finding a path
from a present state P, to a goal state G, there will be at virtually every
stage of the path, different possibilities for the route, many (if not all)
of which will involve unconscious processing. It is likely that much of
the unconscious processing will occur simultaneously and across repre-
sentations, where the C-link connections exist.

At any nodal point, the path most likely to be taken is that which
has the highest strength factor. Thus these tend to dominate our
thinking process at each stage. This is not to say that we must take this
particular route, but simply that it is more prominent and thus more
likely to be taken.

To illustrate, if we travel from one place to another in a car and
wish to get to our destination in the most efficient way we may likely
travel along the motorway, if there is one. Periodically we will
approach junctions, with roads of varying size leaving the motorway,
ranging from small country roads to other motorways. Given a choice,
and the desire for the most efficient journey, we will probably choose
to use the major route at each junction. We do however have a choice,
and other factors may influence our decision, such as our level of
tiredness, boredom, interest in a passing feature of the landscape, likely
traffic jams etc.
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With intelligent learning, just as with this illustration, it is often the
case that, in order to follow the most efficient route, indeed sometimes
in order to gain access to any major route at all, we must first avail
ourselves of minor routes. In the context of our thought processes, to
make a positive decision to choose a path of lower strength factor
rather than one of a higher factor requires reflective intelligence, since it
is this which makes us aware of the choices. A mathematical example
which illustrates the problem students may have with finding what for
them is often a minor cognitive pathway is given by this question:

Solve the equation ( )2 3 92x + = .

Many students immediately link this question to quadratic equations
(which it is of course), but these in turn are often very strongly linked
to the ‘standard’ form

ax bx c2 0+ + =
which is in turn strongly linked to the ‘formula’, a solution-oriented
procedure for solving such an equation. Hence they may be pushed
along the procedural route of multiplying out the brackets, collecting
like terms, simplifying and then using this formula. In doing so they
miss the ‘minor’ cognitive path which, via the step

2 3 3x + = ± ,

leads much more directly to the goal state of a solution to the equation.
Finding this minor path can be facilitated by versatile thinking. A global
view, promoted by suitable imagery, can enable one to see the structure
A B2 2=   in the question, leading to A B= ± .

How may students be encouraged to think in this versatile way?
One necessary initiative is for teachers to copy the example of the
esoteric, boutique tour guide who sees it as his job not only to make
sure that the coach party is taken down the small country roads but
that they get to stop off at all the places of interest on the way, take
photographs (images) as reminders, observe the structural form of
buildings etc. and receive a commentary on why they are of interest.
Sadly many teachers who would love to teach in this versatile way on
their mathematical ‘tour’, visiting a number of available representations
of each concept they introduce, do not have the luxury of the time to
do so. They are constrained by the ‘directors’ of the tour company
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who insist that schedules are strictly kept to and standards and
deadlines are met.

How then does the concept of cognitive integration help us to
address the vital question of what may be done to help the solution
process-oriented student gain a versatile conception of algebra and
other branches of mathematics? In view of the above model, two
possible measures, which are not mutually exclusive, have been
stressed here. First we may argue that students are best helped to a
versatile view of mathematics by an approach which emphasises
experience and use of processes leading to mathematical constructs
before being presented with finished mathematical objects and
corresponding solution processes. The second conclusion is that more
emphasis should be given to the global/holistic view of the mathematics
by promoting different representations and the links between them at
all stages. As educators, the more we incorporate these into our
mathematics teaching the more we make available links, which are often
visual, to assist understanding and learning, with the possibility that
versatile thinking may result. However, one should be conscious to
introduce the representations in a way which encourages conceptual or
C-links between the symbolic, the procedural and the visual, as in the
Newton-Raphson example we started with. Such conceptually linked
imagery will increase the possibility of a student being able to vary
their cognitive focus in a given mathematical situation from a
sequential, left-to-right process-led perspective to a global/holistic
concept-driven mode, or vice-versa.

These ideas on versatile learning have been firmly based on the
pioneering insights of Richard Skemp. The quality of his thinking and
the presentation of his ideas continue to move mathematics education
forward even today. The day that Richard died, I later found out, I had
spent discussing mathematics education with David Tall, and somehow
that seemed very appropriate.
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As Though the Thinking is Out There on the Table

Kaye Stacey and Mollie MacGregor1

University of Melbourne

“It is as though the children’s thinking is out there on the table.”
A teacher quoted by Richard Skemp.

This quote from Richard Skemp is taken from the Horizon television
program “Twice Five Plus the Wings of a Bird” (Campbell-Jones,
1986). The program was made after the influential Cockcroft Report of
1982, and brought together the work of many of Britain’s most
prominent mathematics educators, painting a picture of how their
insights into children’s ways of learning could improve the teaching of
mathematics. Richard Skemp was filmed in a class of upper primary
children who were working on various mathematics games. One of the
games, devised by Skemp, was to make rectangular arrays out of
various numbers of counters. One child chose a number of counters
(say 12) and challenged a partner to make the array (say 2 by 6 or 4 by
3). When they played the game, the children began to see the patterns
in the numbers and began to be able to predict when counters could be
made into an array and when not. Children began to discover for
themselves the role of factors and the special properties of prime
numbers. As he watched the children talking to each other and with
him, Skemp commented that for children the benefits of games are in
the way in which they require the use of intelligence and in the positive
features of learning together. However, for teachers, he identified the
major benefit was that games give a much enhanced insight into
children’s thinking. He recalled a teacher who had said, “it is as though
the children’s thinking is out there on the table.”

                                                
1 The research referred to in this chapter was funded by a grant to Kaye Stacey from
the Australian Research Council. We thank the teachers and students who
contributed their time generously to the project.
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One of Skemp’s legacies to mathematics education is his
contribution to the recognition of the importance of having children’s
thinking “out there on the table”. At a time when most research in
mathematics education was concerned mainly with performance, he
appreciated the need for a psychology of understanding, learning and
thinking about mathematical ideas. This helped bring about the
“cognitive revolution” that in turn supported the ideas for a new vision
of mathematics teaching put forward in the Horizon program and in so
many other places. As Skemp described it in the program, it is a style
of mathematics teaching where children are both able and encouraged to
bring their intelligence into action for the learning of mathematics.

Skemp’s interest in the psychology of learning mathematics was
driven by a desire to make mathematics teaching in schools more
interesting and beneficial for all the participants, by promoting better
understanding. He wanted to have the thinking “out there on the table”
to improve teaching. In the first sections of this chapter, we will
summarise his reasons for this and how subsequently this quest has
been taken up by others. Then we consider Skemp’s illustration in the
domain of elementary algebra of how insights into thinking and a focus
on mathematics as “intelligent” rather than habit learning changes
teaching. We then move on to consider how the views that he
expressed have evolved in more recent research on algebra learning.
Skemp showed the need to analyse the content of mathematics from a
psychological as well as from a mathematical point of view.

Why is Knowledge of Students’ Thinking Important?

In his book “The Psychology of Learning Mathematics”, Skemp
(1986) outlined his theories of learning and understanding. This second
edition was a substantial revision of the 1971 version, reflecting the
development of Skemp’s work. He identified the most important style
of learning for mathematics as intelligent learning: the formation of
conceptual structures communicated and manipulated by symbols (p.
16). For Skemp, the main task of the teacher is therefore to help
students acquire concepts.

Mathematical concepts are highly abstract and highly general. This gives
mathematics its power – because it is about nothing it can be about
everything – but it also makes it hard to learn. Because they are several
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layers removed from reality, mathematical concepts cannot be learned
directly from the environment but instead have to be built up from other
concepts. Two principles of learning mathematics follow from this fact:

(i) Concepts of a higher order than those that people already have cannot
be communicated to them by a definition, but only by arranging for
them to encounter a suitable collection of examples.

(ii) Since in mathematics these examples are almost invariably other
concepts, it must first be ensured that these are already formed in the
mind of the learner. (p. 30)

Here then we have a central problem of designing and delivering
teaching of mathematics for understanding: firstly to select a suitable
collection of examples for pupils, so that they can abstract from them
new concepts, and secondly to do it with concepts that are already
adequately formed in the mind of the learner. This then is the reason
for Skemp’s interest in having the thinking out on the table.

As a psychologist studying learning, Skemp (1986, p.68) would
have been frustrated and challenged that ideas are “invisible, inaudible
and perishable”. He noted that the difficulty of observing thinking is
compounded in mathematics teaching because it is hard to distinguish
the early stages of conceptual learning from merely learning to
manipulate symbols to obtain an approved answer. “All the teachers
can see (or hear) are the symbols. Not being thought-readers, they have
no direct knowledge of whether or not the right concepts, or any at all
are being attached” (ibid, p. 48). He therefore valued the mechanisms
that a teacher or researcher can use to tap into thinking. In the Horizon
program, he notes that children’s working together on games is one of
these mechanisms.

Mechanisms for Getting Thinking Out on the Table

Following the work of Skemp and others, mathematics educators have
been extremely interested in exploring classroom techniques where the
chances of children displaying their thinking are increased. For
example, co-operative activity of many types has been extensively
studied for many reasons, some of which are relevant here (Good,
Mulryan and McCaslin, 1992). A more recent trend is to explore new
computer environments for their capacity to provide a catalyst for the
sharing of ideas in a collaborative environment. Geiger & Goos (1996)
give a current example of these new perspectives. Education
development can design teaching methods to assist a teacher to observe
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each individual student’s thinking so that the student can be taught
most effectively. Accomplishing this task in real time is clearly a major
challenge for teachers, and one that they can hope at best to only
partially achieve. The possibility of students helping each other
alleviates this, but only to some extent.

However, there is another way in which thinking can be out on the
table. This is by researchers documenting typical thinking of children
learning a topic, so that teachers are forewarned about what sorts of
ideas they may encounter in the classroom and can better work with
individuals in limited class time. Putting thinking out on the table in
this second way has been a major contribution of the research that has
followed from pioneers such as Richard Skemp. Researchers have the
opportunity to interact with individual students; watching, asking
questions and listening, to a depth which is impossible in day-to-day
teaching. Commonalities in the written work of large numbers of
students can be discovered by careful analysis. This accumulated
knowledge about “typical” students is not the same as the knowledge
that a teacher may find out about one of his or her own students and
therefore cannot inform action in the same way. It can however, be
useful by priming teachers to know what to look for in the few short
moments that they do have with each child.

There is a growing body of empirical evidence that teachers who
understand about students’ thinking teach differently and more
effectively than teachers who do not. Moreover, it is now clear that the
experience of teaching of itself does not generally produce sufficient
understanding to make a difference. Several empirical studies of
teaching have shown these results. For example, the Cognitively
Guided Instruction Project (Carpenter, Fennema, Peterson, Chiang &
Loef, 1989) gave teachers information about research results on the
way in which children approach elementary addition and subtraction
problems. Teachers learned, for example, about the different types of
situations that are modelled by subtraction and how children find some
of these types much easier than others. Before the project, the teachers
had a good understanding of addition and subtraction, but their
knowledge was not organised in a way that helped them to understand
children’s thinking. To teach, an understanding of content and of
children’s thinking need to go hand in hand.
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 Students’ Thinking About Algebra
Variables and Unknowns

Skemp worked from what is now called a constructivist point of view.
For him it was axiomatic that the actual construction of a conceptual
system is something that individuals have to do for themselves (p. 27),
although, as discussed above, he sees the teacher as having a critical
role in this. Skemp also appreciated the need for teaching to be based
on a psychological analysis of the content as well as a mathematical
analysis and began pioneering work in this field. In the remainder of
this chapter we will consider some of the ways in which subsequent
research has developed from this beginning and how deeper analysis of
students’ thinking has changed some of the perspectives.

We will illustrate this by examining Skemp’s proposals for
elementary algebra as outlined in The Psychology of Learning
Mathematics. The first part of the book outlines a theory of learning
mathematics as primarily the learning of conceptual structures. The
second section illustrates his principles with reference to several
topics, one of which is introductory algebra, up to solving equations.
The Editorial Foreword to the book describes this second part as a
textbook based on the psychological ideas developed in the first half.
“It is a bold step and one which is calculated to give those who already
know a little mathematics new insights into their own thinking and into
the subject itself”.

Skemp identifies algebra as beginning with the generalisation of the
number schema in a new direction (1979, p. 211) and identifies the
concept of variable as its root. He aims “to show how the number
schema, when combined with the idea of variable, leads straight into
algebra” (ibid., p. 222). As was common in the new mathematics
tradition, he takes the idea of a set as the basic concept in mathematics
and aims to build the concept of variable from there. To bring the idea
of variable from the intuitive to the reflective level, he provides a
number of examples. In doing so, he is following his own two
principles of concept learning, quoted above.

Skemp draws on everyday knowledge to give examples of the idea
of variable. He notes how when we talk about “a car” we mean an
unspecified element of the set of all motor cars, (ibid., p. 213). He
notes that talking about “a car” is useful:
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(i) if it doesn’t matter which car we are referring to (as in “I want
to hire a car”)

(ii) if we want to make statements that are true for all cars (“a car
must be registered”) or

(iii) when we do not know which car we are referring to, although
we may wish to know (e.g. “a car was involved in the hit-and-
run accident”).

In this way, with several everyday examples (a car, a handkerchief, a
pickpocket) and some geometric ones (a number, a circle etc.) Skemp
builds up the mathematical concept of variable from its pre-
mathematical precursors, illustrating the theory proposed earlier in the
book. The variety of examples also illustrates his principle that it is
important that the examples have nothing in common except the
concept to be abstracted from them. When he does define a variable in
words, it is as “an unspecified element of a given set”. We find this
definition very unsatisfactory – the meaning of unspecified is itself
unspecified yet without this the definition cannot distinguish a variable
from a value – but this only serves to illustrate the impossibility of
defining root concepts such as variable in words. This is one of the
general points that Skemp himself emphasised.

How does identifying algebra as springing from the number concept
with the basic concept of variable added appear from a nineties point
of view? Seeing the key concept of being a variable as its unspecified
nature is clearly insightful. The analysis of how being unspecified is
dealt with in everyday speech, and how it is applied for three different
purposes, is very apt. It is sad that insights such as this are not very
widely used in textbooks today. None of the explanations of variable
we have seen in the textbooks widely used in our schools capture this
essential characteristic.

In the new mathematics movement, there was a desire to reduce to
a minimum the number of undefined terms like variable (which are
basic to the subject despite being high up the conceptual hierarchy).
Possibly for this reason, Skemp’s analysis coalesces the ideas of
variable and unknown. However, modern research is tending to
separate these ideas once more. Variable is the label applied to the first
two aspects in Skemp’s list of being unspecified whereas unknown is
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applied to the third (when there is a definite car but the speaker does
not know which one). In effect research into student’s thinking has
reinstated the idea of an unknown, which the new mathematics
movement saw as unnecessary. Although clear distinctions cannot
always be made, most researchers would now agree that there is a
significant psychological distinction, apparent in the way in which
students approach tasks, between situations which involve a fixed but
unknown quantity and situations which involve a quantity which is
inherently varying. Skemp puts these ideas together in his notion of
variable – it has several different aspects – but learners may be better
to meet these ideas separately.

Another difference between Skemp’s introduction to the idea of
variable and the more recent approach is related to the purpose of the
activity. Again in accordance with the spirit of the new mathematics
movement, Skemp’s first illustration of the use of a variable in algebra
is to record the commutative law: If a and b are any numbers, then
a + b = b + a. The current terminology in Australia is “expressing
generality” (AEC, 1991) but the generality which common teaching
approaches to algebra in English speaking countries seek to express in
the nineties are more concrete. For example, a common approach is to
introduce the idea of variables by considering the relationship between
the length of a row of squares and the number of unit line segments
used to make it. Provided the generality obtained is used to answer
some questions about the pattern (for example, how many line
segments are needed to make a row of 100 squares) then this has a
more obvious use for most young teenagers than Skemp’s suggestion
that algebra is used to record properties of numbers (the field laws for
the real numbers). We have ourselves stressed the importance of deep
understanding of the properties of numbers for understanding algebra
and for it to be better recognised in today’s curriculum (Stacey &
MacGregor, 1997). However, showing students the purpose of algebra
can be accomplished – in part – by showing them how it can be used to
express general statements. It is important that the generalisations that
are expressed seem worthwhile and interesting to the students.
Situations that appeal to young adolescent learners are more out on the
table today.
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Learners Bring More Knowledge to New Learning than was Thought

One of the main insights arising from the study of students’ thinking
since Skemp’s work is that learners bring more – ideas, concepts,
habits, assumptions, misconceptions, knowledge – to the task of
learning than was appreciated earlier. This is illustrated by looking at
the way in which the next part of Skemp’s chapter on elementary
algebra tackles some issues of notation. He notes the use of the rules of
order of operation in making algebraic expressions easier to read and
write (for example a b c+ ¥  means a b c+ ¥( ), not ( )a b c+ ¥  and that
conjoining (placing symbols adjacent to each other) is used to indicate
multiplication (i.e. that b c¥  is written as bc). In this discussion he
notes the conflict of this notation with Hindu-Arabic numeration: if
a=2 and b = 7, then a b¥  can be written as 14, ab, ba, 2b, a7 or 7a,
but not as 27 or 72.

In drawing attention to this conflict, Skemp is illustrating how
prior concepts that students bring to a topic may not be helpful.
However, this is not a strong theme in his work. Skemp began looking
at mathematical content from a psychological perspective as well as a
mathematical perspective, but thought mainly about mathematical
prior concepts. Subsequent research has shown that as well as the
conflict that some students will find with Hindu-Arabic notation, there
are many other ways in which the prior experiences of students make
standard algebraic notation seem a strange thing. Research that exposes
students’ thinking about how they perceive notation gives some
practical guidance for teachers but in a broader sense it also helps them
see the task of learning about algebraic notation from the point of view
of a learner rather than that of an expert.

In our research (MacGregor & Stacey, 1997) we have found that
students’ thinking about algebraic notation is influenced by a great deal
of prior knowledge, much of which is not recognised by teachers as
being relevant. In particular, we have found students’ difficulties in
learning to use algebraic letters are influenced by:

(a) intuitive assumptions and sensible pragmatic reasoning about
an unfamiliar symbol system;

(b) analogies with other symbol systems used in everyday life, in
other parts of mathematics and in other school subjects;
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(c) poorly-designed and misleading teaching materials, causing
sometimes long-lasting errors (which will not be discussed
here).

Large numbers of students from a representative sample of secondary
schools across Melbourne, seemed to interpret and write algebra by
making analogies with other symbol systems. The analogy with Hindu-
Arabic notation that Skemp highlighted was present, although rare in
our sample. A range of other analogies were found, some of which have
also been identified in research in other countries. For example, some
students associated the values of letters with their alphabetical
position. There are various ways in which this analogy is used. In a
problem asking for a height 10 cm greater than h cm, students might
give 18 cm or r cm. This is because h is the eighth letter of the alphabet
and r is eighteenth. Another example is giving the answer x for one less
than y. We found this analogy in beginners and also clustered in several
schools at later year levels, which enabled us to trace it back to
students’ experience with codes and puzzles, often as part of
mathematics. When we brought this misunderstanding to the attention
of the teachers (who were unaware that it was common in their
schools), it was easily corrected. This is an instance where, once
teachers are alerted to the thinking of their students, they can quickly
act to address misunderstanding, with good chances of success.

The association of letters with values deriving from the position in
the alphabet is probably not just from codes and puzzles. In fact, it
goes much deeper than this. Evidence is the historical use of letters for
numbers by the Greeks (who used alpha as the symbol for one, beta,
the second letter, as the symbol for two etc). The mapping of the
alphabet onto counting numbers is used implicitly in the way in which
we “number” questions in text books as 1(a), 1(b), 1(c) etc or as we
“numbered” the points in the list two paragraphs ago. The point that
we wish to make is that since Skemp’s book was published, there has
been a recognition that there are many sign systems, formal and
informal, from which students may draw analogies with algebra. What
children bring to the learning of mathematics from their previous
learning and experiences matters a great deal, and has positive and
negative effects. Recent research has shown how many aspects of their
previous experience, not just in mathematics, affects new learning.
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 Schemas and Misconceptions

In seeing the major task of the teacher as assisting students to build
conceptual structures, Skemp was concerned with the communication
of mathematics, a theme that has recently been given increased
attention internationally. In The Psychology of Learning Mathematics
(1986, p. 76), he points out three reasons why explanations might be
unsuccessful:

1) The wrong schema may be in use. … Failure of understanding
could result from attaching a different meaning from that
intended. In this case the explanation needed is simply to
activate the appropriate schema.

2) The gap between the new idea and the existing schema may be
too great. The explanation here would be to supply more
intervening steps, thereby bridging the gap.

3) The existing schema may not be capable of assimilating the new
idea without itself undergoing expansion or restructuring. In
this case, an explanation is to help the subjects to reflect on
their schemas, to detach them from their original sets of
examples, which are now having a restrictive effect, and to
modify them appropriately.

In this section, we will contrast two misconceptions about the use of
letters in algebra, which are superficially similar, but on closer analysis
seem to be very different. In one case, it seems that for most students
the wrong schema is in use and another schema can be activated, as in
the first alternative above. In the second case, the schema seems
incapable of expansion, restructuring and sometimes of replacement.

As discussed in the previous section, Skemp pointed out how the
algebraic notation of conjoining symbols (placing them alongside each
other) for multiplication conflicts with place value notation in
arithmetic. In doing this, he was illustrating one of the reasons why
explanations might be unsuccessful. It is likely that in pointing out the
conflict with Hindu-Arabic place value notation, Skemp is writing to
guard against his explanation being unsuccessful for the first of the
reasons above. He is concerned that some readers may use or interpret
algebraic notation inappropriately because they confuse it with place
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value numeration, possibly without knowing. Placing letters with
numerical values alongside each other and asking for the value of the
combination is likely to activate the wrong schema: in this case a
number schema. As commented above, our empirical research has
shown that there are indeed a small number of children who are
confused on this point, but this misinterpretation is quite rare and
apparently not long lasting. This provides some support for the idea
that simply telling (in Skemp’s words, simply activating the
appropriate schema) may be an effective way of eliminating this error.

Our study of students’ thinking indicates other errors may behave
quite differently. One instance which may look as simple as the
previous two but is apparently deeper (MacGregor and Stacey, 1997)
is the interpretation of a letter as standing for an object, rather than a
number. This error has been well documented in studies around the
world. In our study, we used a modified version of an item from the
CSMS study (Küchemann, 1981) in Figure 1.

A blue card costs 5 cents and a red card costs 6 cents. I buy some blue cards
and some red cards. The total cost is 90 cents.
If b stands for the number of blue cards and r stands for the number of red
cards, which if the following is correct?
[Tick your choice or choices]

(a) b = 5, r = 6
(b) 5b +6r = 90
(c) b + r = 90
(d) b + r = 11
(e) 6b + 10r = 90
(f) 12b + 5r = 90
(g) b + r = $0.90
(h) none of these

Figure 1. Item examining “letter as object” misconception.

The correct answer (b) 5b + 6r = 90, apparently so simple, was given
by only 7% of 188 Year 10 students from two secondary schools in
our research project. The wrong answers were based on results of
previous studies which indicated that students thought of b standing
for the blue cards, rather than the number of blue cards. For example,
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(c) could be read as “the blue cards and the red cards together cost 90
cents” and (e) and (f) incorporate possible numbers of cards into the
equations (i.e. solutions to the equation appearing in its formulation – a
not uncommon phenomenon). Six blue cards and 10 red cards would
cost 90 cents: 6b + 5r = 90. The striking thing about the answers given
by the students was not that so few were correct – this was expected –
but that most students ticked quite a few of the wrong answers (e.g.
(e), (f), (c) and (g)). They could make an imprecise sense from several
of them and this was enough to tick them as correct.

As with the error patterns discussed above, there are many
instances in everyday life which relate to this use of letters. People use
their initials instead of their names. We use abbreviations when we
write quick notes or in small spaces (MTWTF, J F M A M J J A S O
N D) and for common or technical items (TV, CD, RAM, DNA).
Many teachers stress that algebra is a shorthand for writing
mathematical statements concisely, as indeed it is. Unfortunately, this
may accidentally further strengthening the link between abbreviations
and algebraic letters. Algebra is indeed a “shorthand” for writing
mathematical statements. Before our notation was invented, words
were used in rhetorical algebra. Great progress became possible as soon
as the “shorthand” was developed. One of the obstacles for students
learning to use algebra is to realise that it may be a shorthand, but it is
far from a personal set of abbreviations. Algebraic notation has highly
constrained meanings and has to be used in a very precise way – unlike
other languages. Precise distinction of meaning, for example between
the blue cards and the number of blue cards, is required for learning
algebra.

As with the alphabetical analogies, our data has showed that
misinterpretation of letters as standing for objects or labelling in a
general way also clusters in particular schools. In those schools which
we have been able to investigate further, we have found use of teaching
materials which deliberately introduce this misconception – the so-
called “fruit-salad algebra”. They introduce this misconception for
short term gain to make several aspects of learning notation easy,
because it avoids any need to think about the properties of number
operations. Thinking of c as cat and d as dog, for example, makes it
easy to add 5c and 3c to get 8c; easy to see that 5 2c d+  might not
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have a simple answer (although students might suggest 7cd); and easy
to picture a bracketed expression such as 8 5 2¥ +( )c d  and calculate it
as 40 16c d+ . As an introduction to algebra this is certainly easy and
even attractive. One year 7 girl told us that she liked algebra better than
other parts of mathematics at school because “it is about animals and
flowers and things and not numbers”.

The evidence that we have been able to piece together about the
aetiology of the “letter as object” error indicates that it behaves
differently from the earlier two. Even though they similarly cluster in
schools and seem to be sometimes actively taught as well as receiving
indirect support from other experiences, this error seems much harder
to cure. Straightforward attempts by the teachers to eliminate this
seemed much less effective. (MacGregor & Stacey, 1977). Simply
alerting students to the fact that they are using the wrong schema as
was done with the alphabetical errors was not enough.

In this case, it is probable that the third of Skemp’s reasons for
failure of an explanation may be operating. These students have been
allowed or encouraged to develop a schema of letters in algebra that
does not link them tightly to numbers. It is then quite likely that this
existing schema may not be capable of assimilating the new idea
without itself undergoing expansion or restructuring, as Skemp
suggests, or possibly dismantling, as we suggest. In this case, detaching
the idea of letters from the original sets of examples, which are having a
restrictive or misleading effect would be a major task.

The low incidence of the “letter-as-object” error at other schools
indicates to us that it is not an inevitable naive misinterpretation.
However, once it is established as a part of a student’s schema, there is
possibly sufficient reinforcement of the idea from analogy with other
symbol and sign systems and reinforcement from the fact that it
sometimes works satisfactorily, for the incorrect schema to be very
deeply established. Through these studies of student thinking, it has
become clear to us that teachers and students very often use algebraic
symbols in ways which looks the same on the surface, but which have
very different meanings. Uncovering some of these meanings in order
that teachers can be better equipped to identify instances of
mismatched meaning is our contribution to getting the thinking out on
the table.
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Conclusion

In this chapter, it has only been possible to pick up several small ways
in which ideas expounded by Skemp have developed from the original.
Going back to look at how Skemp had analysed elementary algebra has
been an interesting case study, offering instances where perspectives
have changed significantly and instances where there has been a steady
accumulation of data filling out the original ideas. Sometimes, in
education, new insights into learning are not actually new, but come in
and out of the collective consciousness.

We began by recalling how Skemp had valued insights into
students’ thinking and had therefore advocated teaching methods that
exposed them to teachers. The emphasis in the chapter has not been on
exposing the thinking of individual children as they work, which
Skemp identified as – and we agree is – one of the major tasks for a
teacher. Instead we see the contribution of research as providing an
understanding of children’s ideas, knowledge which teachers can use to
help them quickly identify how a task is perceived from a child’s point
of view.

Skemp expounded the need to analyse the content of mathematics
from a psychological as well as from a mathematical point of view and
he made great strides in doing this. From today’s point of view,
however, his analysis seems to be predominantly mathematical. This is
evidence of how far work has been carried out in his quest to put the
thinking out on the table.
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Teaching and Learning Mathematics by
Abstraction

Paul White Michael Mitchelmore
Australian Catholic University Macquarie University

We learn a lot about teaching and learning mathematics from student
comments. For example, one of us was attempting to explore the
principles underlying differential calculus with a first year university
calculus class when a number of students complained, “You’re not
explaining it clearly enough,” and “I used to understand it properly, but
now I don’t,” (White, 1991). In his famous 1976 paper, Skemp
ascribes this reaction to a mis-match between the teacher’s desire for
relational understanding and the student’s preference for instrumental
understanding:

The pupils just “won’t want to know” all the careful ground-work given for
whatever is to be learnt next. ... All they want is some kind of rule for getting
the answer. As soon as this is reached, they latch on to it and ignore the rest.
... By many, probably a majority, attempts to convince them that being able
to use the rule is not enough will not be well received. “Well is the enemy of
better”, and if pupils can get the right answers by the kind of thinking they are
used to, they will not take kindly to suggestions that they should try for
something beyond this. (pp. 21–22 in the original paper).

In the calculus class above, we discussed Skemp’s ideas. A more
peaceful journey ensued, with students writing comments on their
assigned tasks such as “please be kind, I’m an instrumental.” We were
fortunate enough to be able to discuss this incident with Richard
Skemp in 1992, when he was guest speaker at the annual conference of
the Mathematics Education Research Group of Australasia. His reply
was that he was delighted that his influence had been “instrumental” in
forming better “relationships” between teacher and students.

This story can be taken to highlight the difficulties both students
and teachers face when confronting abstract concepts. Given that
abstract concepts occur throughout mathematical development, from
the earliest encounters with numbers to advanced topics such as
calculus, it is vital to our understanding of the learning and teaching of
mathematics that we study the process of abstraction. In this area,
Richard Skemp has made a major contribution, which has been built
upon with gratitude by many researchers—including ourselves.
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Skempian Abstraction Theory

Abstraction and Procepts

Skemp (1986) provided a definitive treatment of how concepts are
formed through an abstraction process. He defined abstracting as “an
activity by which we become aware of similarities ... among our
experiences” and a concept as “some kind of lasting change, the result
of abstracting, which enables us to recognise new experiences as having
the similarities of an already formed class” (p. 21). This definition
emphasises three important characteristics of concept formation by
abstraction:

∑ its function is to allow more efficient classification of experience;
∑ it depends on recognising similarities between different contexts;

but
∑ it is qualitatively different from simply identifying patterns in a

set of examples.

We shall use the term base contexts to denote the contexts from which
a concept is abstracted. Abstraction may be seen as a many-to-one
function where generalisations about the base contexts are synthesised
to form a new abstraction. Dreyfus (1991) summarises the process as a
sequence of generalising Æ synthesising Æ abstracting.

Several authors have applied abstraction theory to the development
of mathematical concepts from mathematical operations. Sfard (1991)
describes a three-phase model similar to the sequence of Dreyfus:
interiorisation Æ condensation Æ reification. The interiorisation phase

occurs when some process is performed on familiar mathematical
objects. The condensation phase occurs when the process is condensed
into more manageable units. Both of these phases are said to be
operational because they are process-orientated. Reification is the leap
from an operational mode to a structural mode where a process
becomes an object in its own right. Dubinsky (1991) also describes this
leap from a dynamic process to a static object as a form of reflective
abstraction; he calls the leap encapsulation.

Gray and Tall (1994) take the process/object transition further by
observing that in mathematics the same symbols are commonly used to
represent both process and object. For example, 2+3x can be
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considered as the process of adding 2 to the product of 3 and x and also
as the object which is the result of the process. Gray and Tall define
the amalgam of the process, the resultant object, and the symbol used
to represent both, as an elementary procept. They hypothesise that
successful mathematical thinkers can think proceptually, that is, they
can comfortably deal with symbols as either process or object. An
operational orientation would thus interpret 2( )a b+  and 2 2a b+  quite
differently, whereas proceptually the two expressions would be seen
as identical.

The proceptual approach to mathematical abstraction flows
naturally from Skemp’s work and has strong support from subsequent
empirical research. However, it must be noted that not all mathematical
abstractions are procepts—geometry provides some obvious examples.
The concept “triangle”, for example, embodies the similarities of closed
figure, plane figure, and three straight sides. The abstraction “triangle”
depends on recognising these similarities among a range of otherwise
different objects, not on proceptualising a triangle process into a
triangle object.

Abstraction and Connectedness

Skemp distinguished between primary and higher-order concepts,
explaining that higher-order concepts are abstractions of earlier
abstractions and so progressively “removed from experience of the
outside world”, (1986, p. 24). He gives the example of “red”, which is a
primary concept because it is formed from sensory experience, and
“colour”, which is a secondary concept abstracted from red, blue, and
so on. We note that the higher-order concept encompasses wider
experience than does each primary concept.

Once an abstraction has occurred, the generalising Æ synthesising

Æ abstracting sequence can be repeated. The sequence certainly occurs

in concept formation at all levels in mathematics (as well as in most
other areas of life), but it is a feature of advanced concepts that they
are based on several repetitions. Each repetition has led to a higher level
of abstraction and a further removal from primary concepts. Successive
abstraction leads to “abstract” being increasingly seen to mean
“removed from reality” or “context free”. Nevertheless, the higher-
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order concepts are connected to all the lower-level concepts in a
complex hierarchy of abstractions.
By contrast, many students believe that mathematics consists of a large
set of rules with little or no connection to each other and hardly any
relevance to their everyday lives (Graeber, 1993; Schoenfeld, 1989).
The following is typical of how our student teachers describe their

school mathematics:

When given a situation . . . that relates to a real-life situation, we tended to
get confused and have difficulty in responding. We were only happy when
given an abstract problem like those given in the school textbooks.

The student seems to be using the term “abstract problem” to mean an
exercise in symbolic form which does not refer to any concrete context.
Many educators also seem to be referring to disconnectedness when
they use the term “abstract”. For example, Nickson (1992, p. 103) calls
the heavy emphasis on computational skills in US elementary schools a
concentration on “the abstract manipulation of number”, and Brown,
Collins, and Duguid (1989, p. 32) characterise most school teaching as
“the transfer of ... abstract, decontextualized formal concepts”.

Practitioners clearly intend that abstract ideas should be applied to
contextualised problems. Word problems appear consistently at the
end of the chapter in both primary and secondary textbooks.
Syllabuses are often explicit about the issue. The New South Wales
Mathematics in Society course for school years 11 and 12 (introduced in
1982 and still current at the time of writing) states that “the
mathematics of the core would receive general treatment and then be
applied to a variety of situations” (Board of Senior School Studies,
1980, p. 9). The worldwide New Mathematics movement of the 1960s
was also predicated on the assumption that the learning of abstract
structures would allow their correct usage later (Moon, 1986).

Mathematics teachers also seem to accept the abstract Æ concrete

order of learning. It has been reported that many teachers believe that
procedures should be learnt before conceptual understanding (Stein-
bring, 1989) and that they teach in a corresponding manner (Porter,
1989). Another student teacher’s comment encapsulates this belief. She
had been exploring 9-year-old Andrew’s understanding of area, and
found that he could calculate the area of a rectangle using the formula
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but could not explain what the result meant. She wrote, “Andrew
understands area in the abstract but cannot yet apply it in practice.”
The problem is that applications are often not reached or are dismissed
as too difficult. Our student teachers frequently ask, “How can we
teach mathematics through applications when we have never learnt it
that way?” The separation of mathematics from reality would seem to
be a historical fact.

The Two Faces of Abstraction

There thus appear to be two usages of the term “abstract “. Much
curriculum and instruction treats mathematical concepts in isolation
from their base contexts, whereas Skemp had stressed the essential
dependence of abstract concepts on these contexts. To understand the
distinction, we sought help from the Webster Dictionary (1977):

Abstract (adj): Apart from the concrete; general as opposed to particular;
expressed without reference to particular examples (e. g. numbers).
Abstract idea: Mental representation or concept that isolates and generalises
an aspect of an object or group of objects from which relationships may be
perceived.
Abstract (verb): To consider apart from particular instances; to form a
general notion of.

Two key words appear in these definitions: apart and general. We have
therefore found it useful to view abstract mathematical concepts in two
ways:

(1) Concepts formed in the Skempian manner we call abstract-general.
There are degrees of generality, depending on the range of contexts
which are recognised as similar. Many concepts start with a
restricted range of base contexts and gradually become more
general as further contexts are recognised as similar.

(2) Concepts formed in isolation from the contexts in which they
occur we call abstract-apart. Such concepts are formed by
definition rather than abstraction, and, because “concepts of higher
order … cannot be communicated by a definition” (Skemp, 1986,
p. 30), are no more or less abstract than other concepts.

Figure 1, inspired by Skemp (1986, p. 20), is intended to illustrate the
difference between abstract-general and abstract-apart ideas. The word
“idea” here is to be interpreted in the broadest sense; it could refer to
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any mathematical object such as a concept, an operation or a relation.
The base contexts Ci could involve concrete objects or mathematical

ideas. The arrows depicting an abstract-general idea indicate that two-
way links exist between the idea and the Ci. These links enable the

learner both to recognise the idea in each Ci and to call up a variety of

contexts in which the abstract idea is found. In other words, the idea is
general to all the Ci. The absence of the arrows in the case of an

abstract-apart idea indicates that the mathematical idea is separated and
apart from any of the possible base contexts.

(a) Abstract-general (b) Abstract-apart

IDEA IDEA

C1 C2 C3 Cn C 1 C2 C3 Cn
F

Figure 1. The difference between an abstract-general and an abstract-apart idea.

The arrows in Figure 1(a) also have another interpretation. The upward
arrows can be taken to represent the process of abstracting a common
property from the base contexts as a result of the recognition of a
similarity and the formation of a new object at a higher level of
abstraction. These arrows therefore define the meaning of the idea. The
downward arrows in Figure 1(a) can be taken to represent the process
of relating any reference to the idea (such as relationships to other
ideas) back to the contexts Ci. These links serve two purposes. Firstly,
by allowing the learner to interpret new and unfamiliar relations at the
higher level of abstraction in terms of the more familiar base contexts
Ci, they allow the learner to make sense of the more abstract relations.
Secondly, they allow procedures developed for manipulating ideas at
the higher level to be applied to the solution of problems in the base
contexts.

In the case of an abstract-apart idea, there are no links to any base
contexts and therefore no meaning in terms of those contexts. An
abstract-apart concept cannot be applied to any of the possible base
contexts, but only to situations (usually entirely symbolic) which look
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superficially similar to the form in which it was originally learnt. There
is a sense in which an abstract-apart idea is meaningless and useless.
The only possible meaning or use for the idea is in terms of its links to
other ideas at the same level of abstraction.

The two meanings of “abstract” rest comfortably with Skemp’s
descriptions of instrumental and relational understanding and the
resulting mismatches identified in the introduction to this chapter.
Students who have formed abstract-apart concepts would clearly
favour an instrumental approach to mathematics and be uncomfortable
when ideas at different levels of abstraction are introduced. However,
our approach extends Skemp’s original description by suggesting that
there might be degrees of relational thinking. For example, consider a
student who can add fractions and can explain the procedure using
equivalent fractions. This is certainly relational—one procedure (adding
fractions) is related to another (finding equivalent fractions). However,
it is a relation within one level of abstraction, and therefore only draws
on abstract-apart ideas. By contrast, a student with an abstract-general
concept of fractions can draw on the meaning of fractions, their
addition and their equivalence to provide a concrete explanation of the
addition procedure. By being able to make connections across levels of
abstraction, the second student not only has a deeper understanding
but is in a better position to cope with non-routine problems.

Teaching for Abstraction

We argued above that the common approach to mathematics curriculum
and instruction follows the abstract Æ concrete sequence. It starts with

definitions, may or may not reach applications, and tends to lead to
disconnected, abstract-apart concepts. What approach to teaching
would be more likely to lead to abstract-general concept formation? We
suggest that it is necessary to follow more closely the
generalising Æ synthesising Æ abstracting process, observing the

aphorism “concrete before abstract”. In this approach teaching would
be deliberately directed at the recognition and abstraction of
similarities, and definitions would only appear as a means of making
these similarities explicit. We call such an approach teaching for
abstraction. It may be seen as an extension of the teaching methods
advocated by Dienes (1963).
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For example, a common approach to teaching the identity am ∏ an =

am–n is to analyse the abstract form 
a a a m

a a a n

¥ ¥ ¥
¥ ¥ ¥

. ..

.. .

 (  times)

 (  times)
. This often

leads students to happily say that m5 ∏ m3 = m2 but also to believe

that 65 ∏ 63 = 12. One interpretation of this misconception is that

students do not link the abstract relation to a pattern in the base
contexts (numbers) which it is supposed to summarise. An alternative
teaching method is to begin with the numerical examples, to allow
students to “encounter a suitable collection of examples” (Skemp,
1986, p. 32), and to help them recognise the pattern relating the indices
and the bases. The identity am ∏ an = am–n would be used to formulate

and clarify the pattern. Abstract manipulations such as m5 ∏ m3 = m2

should be constantly linked back to the base contexts—for example, by
requiring students to give a numerical example for each simplification.
Students would gradually move from a process orientation to am as the
multiplication of a number by itself m times to a structural orientation
in which am becomes a mathematical object which can be operated on.

We shall describe further examples of teaching for abstraction in the
next section.

Abstraction as a Research Framework

Skempian abstraction theory can provide a valuable framework for
interpreting and designing research on mathematics learning and
teaching. We have applied it to the interpretation of the literature on
multiplication and fractions (Mitchelmore, 1994) and the use of letters
in algebra (Mitchelmore & White, 1995). More importantly, it has been
the foundation of our own research program: Our research on angle
focuses on young children’s recognition of similarities across
superficially different angle contexts, and suggests a three-stage
abstraction hierarchy. The focus of our work on rate of change is
tertiary students’ ability to link rate of change contexts to symbolic
calculus, and involves the procepts of variables and derivatives. In both
areas, we have confirmed the wide-spread existence of abstract-apart
concepts and designed methods of teaching for abstraction. The
following sections describe some of our results in these two areas in
more detail.
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Angles

The angle concept is fundamental to the whole of high school
geometry, but several large-scale surveys in the USA (Usiskin, 1987;
Kouba et al., 1988) and the UK (Foxman & Ruddock, 1984) have
demonstrated poor understanding of angles topics among 11–15 year
olds. Close’s claim, as a secondary teacher, that “the large number of
children possessing misconceptions about angle is immediately
apparent when the topic is discussed in class” (1982, p. 2) has been
confirmed in interview studies by herself and others (eg., Krainer,
1989; Davey & Pegg, 1991). For example, it has been found that 30-
60% of secondary students judge angle size on the basis of such
features as the length and orientation of the arms and the radius of the
arc marking the angle. It would appear that children are not leaving
primary school with an angle concept which is adequate for starting
high school geometry.

We have identified the definition of angle commonly used in
primary school as a possible source of this problem. From a Skempian
abstraction point of view, a definition of any given concept should be a
succinct description of the predominant similarities in all the different
situations from which the concept is abstracted. In New South Wales,
the curriculum defines angle as “the amount of turning between two
lines about a common point” (New South Wales Department of
Education, 1989, p.79). This definition derives from the argument that
the development of the angle concept consists of establishing a
particular relationship between the two arms of the angle; and a turn is
a familiar, physical action which relates the two arms (Wilson &
Adams, 1992). However, consider a sloping hillside. To interpret this
situation in terms of angles, a student must visualise a turning
movement between the horizontal and a line giving the slope of the hill.
Given that a hill does not involve physical turning and the horizontal
line is not visible, this may not be an easy task. Much research
(Clements & Battista, 1989; Close, 1982; Scally, 1987) confirms that
children have great difficulty coordinating different angle contexts. As a
result, we claim, students tend to form an abstract-apart concept of
angle which is restricted to angle diagrams—a concept which is
inflexible and inapplicable.

Our research has taken a radical Skempian approach. We regard an
abstract-general understanding of the angle diagram to be the end-
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product of a long-term abstraction process by which children interpret
and make sense of their angle-related physical experiences. We have
therefore investigated the long-term path of development—all the way
from early childhood experiences through to a mature, mathematically
viable angle concept—looking specifically for factors which help or
hinder the recognition of similarities between different angle contexts
and therefore the recognition of abstract angles in those contexts. We
believe we have found a viable model, consisting of three overlapping
stages at increasing levels of abstraction, for describing the
development of an abstract-general angle concept (Mitchelmore, 1997;
Mitchelmore & White, 1997a). Briefly, the three stages are as follows.

(1) Well before coming to school, children classify physical angle
experiences which are superficially similar into physical angle
situations and abstract from each situation a primary concept
which we call a situated angle concept. Three examples are hills,
roofs and cranes. Initially, children see no connection between
different angle situations.

(2) At some stage, children recognise geometrical similarities between
physical angle situations and classify them into physical angle
contexts. For example, they might see that hills, roofs and crane
arms all slope and then gradually extend the idea to include other
examples of sloping objects. From each angle context, children
abstract a secondary concept which we call a contextual angle
concept. Some examples of contextual angle concepts are slopes,
turns and corners.

(3) Later, children become aware of deeper similarities between
physical angle contexts. For example, by constructing a fixed
(probably horizontal) reference line for the slopes and focussing
on the edges of the corners, they may see that slopes and corners
are similar. We call such a class of similar angle contexts an
abstract angle domain and the corresponding concept an abstract
angle concept. Students appear to form several abstract angle
domains (a point, a single sloping line, and the standard angle
concept consisting of two lines through a point), some of which
only apply to a restricted set of contexts. The mature, standard
angle concept includes all angle contexts in a single domain.
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Our research on angle conceptual understanding among schoolchildren
(Mitchelmore, 1997; Mitchelmore & White, 1997a, 1998; White &
Mitchelmore, 1997) has confirmed the general outline of the above
theory. It has also shown conclusively that—except in obvious turning
situations—children rarely recognise the dynamic similarity (turning)
implied by the generally accepted definition of an angle as “an amount
of turning between two lines meeting at a point “. Students more easily
recognise the static similarity (two lines meeting at a point), the facility
depending on the salience of the two lines which form the angle in each
context. Over 90% of Grade 2 children in our samples readily
recognised the angular similarity between situations such as corners,
junctions and scissors, but it was not until Grade 6 that a similar
percentage included hand fans and leaning signposts in the same
category. Students found it even more difficult to incorporate
situations where one or both lines have to be imagined (hills, doors and
wheels); even at Grade 8, about one-third of students could not
identify the two arms of the angle implied in these situations. The
gradual expansion of children’s angle concepts to include more and
more contexts similar to an initial “core “ may be summarised in the
following diagram, derived from facet theory (Levy, 1985):

Walls
Junction

Tile

Scissors

Fan

Signpost

Door

Hill

Wheel

Figure 2. Facet model of developing angle concept.
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“Teaching for abstraction “ in the case of angles means helping children
to recognise the similarities between different angle contexts and then
reifying the similarities. Our findings suggest that a focus on identifying
the two arms of an angle would allow similarity recognition across a
wider range of angle contexts than a focus on visualising turning, and is
therefore likely to be more effective. The result is a teaching model
which might be summarised as follows:

identification of two lines Æ similarity recognition

Æ angle concept by abstraction.

Working outwards from the core in Figure 2 suggests the following
approach.

(1) Develop an agreed language (both graphic and verbal) for describing
and comparing various corners—situations, like walls, junctions
and tiles, where both arms of the angle are fixed and clearly visible.

(2) Do the same for what we call V-hinges—situations, like scissors
and fans, consisting of two arms pivoting about their point of
intersection.

(3) Explore the similarity between corners & V-hinges, and develop an
abstract angle language which applies to both contexts.

(4) Explore what we call I-hinges—situations, like doors and lids,
where a single arm rotates about an end-point—and link them to
V-hinges and hence to corners.

(5) Explore various slope situations and link them to I-hinges and
hence to V-hinges and corners.

(6) Explore various turn situations and link them to I-hinges, V-hinges
and corners.

(7) Extend in a similar way to other angle contexts such as bends,
directions and rebounds. Introduce angle measurement.

Because we wanted to assess current understanding, our research to
date has avoided any attempt to teach children about angles (even
when, for example, it seemed that a child might well have recognised a
similarity if it had been pointed out). A large-scale experiment to test
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the suggested method of teaching for abstraction is currently at the
planning stage.

Rates of Change and Derivative

Earlier [page 3] we quoted a student comment supporting what every
teacher knows: “applied” problems are more difficult than routine
symbolic exercises. Further support comes from a study of calculus
understanding among first year university students (White &
Mitchelmore, 1996). Test items were administered in four versions
which varied systematically from a typical contextual problem to a
symbolic form which involved exactly the same procedural
manipulation. The average success rate on the items rose from 15% for
the most contextual to nearly 60% for the most symbolic form. Our
explanation for this difference relied on several ideas from Skempian
abstraction theory, in particular the ideas of abstract-apart and
abstract-general concepts.

Poor performance on contextual items was often attributable to
abstract-apart thinking. For example, one item was as follows:

If the edge of a contracting cube is decreasing at a rate of 2 centimetres per
minute, at what rate is the volume contracting when the volume of the cube is
64 cubic centimetres?

The solution basically consists of the following six steps.

1.
dx

dt
= -2 , 2. V x= 3, 3. 

dV

dt

dV

dx

dx

dt
= ◊ ,

4. 
dV

dx
x= 3 2 5, V = 64 , so x = 4, 6. 

dV

dt
= ◊ ◊ - = -3 4 2 962( ) ( ) .

Many students did not see any connection between derivative and
instantaneous rate of change and fell back on to some notion of average
rate. Common answers were -8  and 18 , where students had apparently
tried to find the average decrease in one second. Such responses suggest
that students’ concepts of rate of change had been abstracted from a
severely restricted set of contexts and was not general enough to cope
with variable rates of change.

Other responses show how an abstract-apart concept of variable
can thwart attempts to solve rate of change items even when some
degree of abstract-general notion of rate of change concept is evident.
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For example, in the above item, some students who realised 
dV

dt
 was

required wrote “V x= 3, therefore ¢ =V x3 2”. No thought of the
appropriate independent variable was evident. Others who correctly

interpreted the item and even correctly wrote 
dV

dt

dV

dx

dx

dt
x= ◊ = -6 2

could not finish because they were confused by V = 64 . The confusion
arose because the students saw no connection between V x= 3 and
V = 64 . Some students even gave two answers: -6 2x  and 0. Each
equation was seen apart from the other, so that there was no general
view of 64 being a specific value of a varying x 3. This is a clear
example of an abstract-apart concept of variable.

The confusion between V = 64  and V x= 3 by students who
correctly stated the chain rule suggests that the chain rule can also be an
abstract-apart concept. In fact, several responses showed clearly that
students based their decisions on which derivatives to use in the chain
rule on which variables were visible and could be “cancelled out” to get

the desired 
dV

dt
. Apparently, no meaning was attached to the symbols.

There were many other responses which indicated a focus on
visible symbols. Several occurred in response to the following item.

In the special theory of relativity, the mass of a particle moving at velocity v

is given bym
m

v

c

=

-

0

2

2
1

 where c is the speed of light and m0 is the rest mass.

Find the rate of change of the mass when v c= 1
2

 and the acceleration is 0.01c

per sec.

The solution involves first finding 
dm

dv
, then substituting v c= 1

2  for v,

and finally obtaining 
dm

dt
 using the chain rule. However, a large number

of students first substituted 1
2 c  for v and were surprised when

dm

dt

turned out to be zero. Others interpreted the item as requiring 
dm

dv
 or

dm

dc
 because they “could not see any t’s”. Their decisions about how

to proceed were based on the visible letters which were available as
input to manipulation rules—regardless of whether such rules were
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appropriate. Such a reliance on visible cues seems to be typical of
abstract-apart thinking. The concepts used are superficial, with no
connection to any base contexts. In such circumstances, the only
connections that can be made are those suggested by the appearance of
the symbols.

An abstract-apart concept—often the result of learning superficial
rules with no connection to the appropriate underlying contexts—can
be virtually useless. Responses to the following item illustrate this
point:

Find the area of the largest rectangle with its lower base on the x-axis and

upper vertices on the curve y x= -12 2 .

Instead of using an expression for the area of the rectangle based on the
x and y coordinates of a general point, many students inappropriately

solved 
dy

dx
= 0. When asked why, several claimed to be simply

“following the rule”. Their view of the calculus procedure for finding
maxima was apparently restricted to contexts in which the variables
were called x and y. These students appeared to have no general
concept of a function having a zero rate of change at its maximum
value.

We also found that abstract-apart concepts could be adequate for
solving simple contextual problems but not more complex ones. For
example, all the items required as their first step the symbolisation of
appropriate derivatives. In the relativity item, only 8 out of 40

responses correctly symbolised 
dm

dt
 and 

dv

dt
 and 7 of these gave a fully

correct response. However, in the shrinking cube item, 36 correctly

symbolised 
dV

dt
 and 

dx

dt
 but only 22 gave fully correct responses. The

reason would seem to be the differing structural complexity of the two
items. In the shrinking cube item, it is easy to identify the appropriate
independent and dependent variables; there is only one obvious
derivative to choose. Correct answers can therefore be obtained by
manipulating the symbols without regard to their meaning—that is,
using abstract-apart thinking. In the relativity item, on the other hand,
several letters must be given meaning in order to identify the
independent and dependent variables and to distinguish between
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constants, variables, and specific values of variables. Correctly
symbolising derivatives in such complex situations requires an abstract-
general concept of a variable.

A further example of the power of an abstract-general concept is
given by some data on responses to the parabola item: Only 8 out of
40 students correctly symbolised the appropriate derivatives but all 8
went on to give a fully correct response. The main difficulty in this
item is translating the given information into a form in which
differentiation can be applied, and the crucial first step is to identify
the area as the critical variable and assign it a letter. This skill is clearly
only available with an abstract-general concept of variable. Other
evidence suggests that students who can create their own variables in
this way have in fact reified the concept of variable.

It is noticeable from the results for the relativity and parabola items
that almost all those students with a sufficiently abstract-general
concept of variable to translate the given problem correctly into
derivatives also completed the manipulations without error. Although
the numbers are small, the implication is clear. We have already argued
that abstract-apart concepts are adequate for decontextualised
problems but useless for contextual problems; now it would appear
that abstract-general concepts are adequate for both contextual and
decontextualised problems. In other words: If you understand the
concepts, the procedures will look after themselves.

Can introductory calculus be taught by the principles of “teaching
for abstraction”? If genuine abstraction is to occur, rates of change need
to be investigated in different contexts at the beginning of a
course—not at the end as applications, as so often happens. The
derivative then becomes an embodiment of the similarities between all
rate of change situations (White, 1993). A high school introduction to
calculus which focuses on symbolic definitions and manipulations
results in an abstract-apart concept of derivative, and students have no
sense as to what calculus is about. Moreover, it does not seem possible
to remedy this situation by enlightened teaching later. For example, the
40 students involved in the study reported above subsequently studied
a 24-hour course intended to make the concept of rate of change more
meaningful—but almost the only detectable result was an increase in
the number of errors in symbolising a derivative. The most serious
block appeared to be students’ abstract-apart concepts of variable. One
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could conclude that an abstract-general concept of variable at or near
the point of reification is a prerequisite for studying calculus
meaningfully. “Teaching for abstraction” may need to be directed at
variables before it can be directed at rate of change (White &
Mitchelmore, 1993).

Conclusion

The discussion presented has shown that the notions of abstract-apart
and abstract-general ideas, derived from Skemp’s abstraction theory,
have considerable potential for clarifying the interpretation and
planning of research and practice in mathematics teaching and learning.

We have shown that there is a great deal of misunderstanding about
the nature of abstraction in mathematics. Mathematical ideas are not
abstract because they are not concrete; they are abstract because they
are general. Also, mathematical ideas are not difficult because they are
abstract; they are difficult because they are often taught as abstract-
apart when their understanding requires abstract-general thinking. We
have identified aspects of traditional mathematics teaching which
contribute to the development of abstract-apart concepts, and
proposed teaching strategies ( “teaching for abstraction”) which would
be more likely to lead to abstract-general concepts.

We believe that the abstract-apart/abstract-general distinction is
more crucial than the distinction variously referred to as procedural/
conceptual or skills/understanding. Procedures and skills are not
separate from concepts and understanding, so it is not productive to
differentiate them. The fundamental difference is between abstract-
general procedures and skills, which are based on and almost
indistinguishable from conceptual understanding, and abstract-apart
procedures, which are purely superficial manipulations. The former are
the stuff of which mathematics is made; the latter are mindless and
useless.

Teaching for abstraction in mathematics would look very different
from traditional mathematics teaching, completely reversing the
standard abstract Æ concrete order. Unfortunately, although some

articles on teaching for abstraction are appearing in professional
journals (e.g., Mitchelmore & White, 1997b; White, 1993; White &
Mitchelmore, 1993) and at least one textbook has been written to
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incorporate teaching for abstraction (Sattler & White, 1997, 1998),
there is as yet no firm research evidence to support its efficacy. That is
the next great challenge.
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The Symbol is and is Not the Object

David Pimm
Michigan State University

Anecdotal Beginnings
I first met the symbol ‘Skemp’ before I met the referent. While in
secondary school in London in the late 1960s, with mine being the last
year throughout the school doing what came to be known as the ‘old
maths’ (but which of course was then simply called ‘maths’), I would
come across ‘Skemp is mad’, ‘Skemp is hard’, ‘Skemp is impossible’
scrawled on wooden desks. I, of course, had no idea what a ‘Skemp’
was, nor once I had met him how involved our life trajectories would
become for a while.

I was also unaware of the rhetorical term ‘metonymy’, a general
linguistic process based on associative substitution including that
whereby the name of the author of a book becomes a substitute for the
name of the book itself (in this case, ‘Skemp’ for the Understanding
Mathematics text series written by Richard Skemp a few years earlier).
Yet it is metonymy in a core sense which is the undoubted theme of
this chapter.

It was only later, during 1973-4 – my final year as a mathematics
undergraduate at Warwick University in England – that a new
professor of education arrived, one Richard Skemp, whom I got to
know through his teaching of a general year-long course entitled Human
Learning. As well as some examples from the learning of mathematics,
including his then still-recent work on symbolic learning, one specific
element that stayed with me to become part of me was his inclusion of
a set of six lectures on Freud, whom Skemp non-standardly framed as
the quintessential learning theorist.

This course was actually not my first introduction to issues in
mathematics education, for the previous year I had taken a mathematics
department option course on this topic, taught and originated by David
Tall, whose readings alongside works of Piaget and Dienes included
Skemp’s recently published book The Psychology of Learning
Mathematics (1971), one of the early, accessible accounts of
mathematics education. From time to time, I look back and recognise
how many of my own emerging interests have been shaped by the
concerns and attentions of Richard Skemp and David Tall.
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In 1979, I returned from the U.S.A. where I had been doing graduate
work both in mathematics education and the history of
science/mathematics, to take up a two-and-a-bit year position with
Richard as his Research Associate on a Leverhulme Trust-funded
research project on primary mathematics. (He and I had kept in
periodic touch during this intervening period, and I was delighted to be
offered a job out of the blue during a return visit home in 1978.)

In fact, my first job on my re-arrival back in England in June 1979
was to help him to organise the 3rd International Group for the
Psychology of Mathematics Education conference to be held at
Warwick the following month (PME is a group with which I have
retained strong links over the past twenty years). I had left England in
mathematics and had returned in mathematics education. Sitting on the
registration desk, meeting and talking to delegates about organisational
matters indirectly provided me with an extraordinary entrée as a
neophyte into the area in which I have subsequently made my career.

During those two years as his research associate, I worked with
Richard on teaching an M.A. by research course whose participants
comprised some ten primary teachers working through a manuscript
versions of his second book Intelligence, Learning and Action (which
was to be published in 1981), who then undertook substantial projects
in their own classrooms. He and I also carried out our research work in
the classrooms of these teachers. Among the teachers on that course
was Janet Ainley, who succeeded me as Richard’s new research
associate (with project funding now provided by the Nuffield
Foundation) when I left for a position at the University of Nottingham
Shell Centre for Mathematics Education. During this time, and later as
Richard’s colleague at Warwick University in the newly-formed Dept
of Science Education there, Janet also contributed an immense amount
of her own experience, time, knowledge, creativity, ingenuity and
thought into the development of classroom tasks and materials, which
appeared in Skemp (1989a) and particularly in Structured Activities for
Primary Mathematics (Skemp, 1989b).

Opening Observations: Fluency and Understanding

Over time, I have increasingly felt that Richard’s attempted
discrimination between ‘instrumental’ and ‘relational’ understanding
(Skemp, 1976), arising from an observation of Stieg Mellin-Olsen’s,
has been mis-taken, literally, by certain others who have misread him.
Firstly, he had a lot of respect for efficient, fluent mathematical
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practice and the role of symbols within it. Next, his specification of
these as two different forms of understanding (and that alone is
something that I feel has been lost, or at least mislaid) was not
oppositional (and certainly was not the same discrimination as that
which later came unhelpfully to be labelled ‘rote’ and ‘meaningful’
learning). One is included in the other: to have relational understanding
is to have instrumental understanding plus something more!

For a range of reasons, both personal and cultural in terms of the
external forces operating on mathematics curricula and practice
(including the UK Cockcroft report – DES, 1982 – the various UK
national curricula for mathematics and their revisions from 1988
onwards, and developments in technological instruments for carrying
out mathematical processes ‘instrumentally’), Skemp’s concern for
fluency and understanding (which, I believe, was the intended message
of his term ‘relational understanding’) as the necessary twin goals of
mathematics education (and not simply ‘understanding’ or ‘conceptual
understanding’ as sometimes seems the case today) have stayed with
me.

My interest in the importance of language in mathematics date back
to these early encounters with Skemp. In 1987, I published my first
book Speaking Mathematically: Communication in Mathematics
Classrooms, which took a language focus on a variety of aspects of
mathematics classrooms. It was not until 1995, however, with Symbols
and Meanings in School Mathematics, that I attempted to explore the
mathematics curriculum systematically in terms of symbolic demand
and the diversity of symbolic practices. The main theme is quite
specifically there about the centrality of the metaphor of
‘manipulation’ for doing mathematics and how mathematics has
problems with its objects. And taking the symbol for the object (a
central metonymy lying at the heart of mathematical practice) is an
essential mathematical phenomenon and not an epistemological
aberration as some would have it. This intentional mis-taking of the
‘shadow of the object’ (Bollas, 1987) for the object itself is what
makes much mathematics possible.

I became growingly aware of the fact that in many different parts of
mathematics education there are surface forms (which are public and
hence observable, such as spoken or written language) and other
phenomena of interest (which are not, such as thinking or learning). At
the time, it was these unobservables which were mostly sought after
and written about, and the surface forms – what was actually said or
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written or aspects of notational systems in mathematics – were not
considered so important (possibly linked to a belief in deep over
surface structures, emanating from the Chomskyan linguistic
paradigm). Perhaps the most mathematically telling instance of this
occurs with the use of symbols themselves.

Symbols and Mathematics

Civilisation advances by extending the number of important operations we
can perform without thinking about them.

(Whitehead, 1925, p. 59; my emphasis)

Of all that I learnt from working alongside Richard, his focus on and
interest in the role of symbols in the doing, teaching and learning of
mathematics is that aspect of his work which has primarily served to
shape my own. He wrote a lot about different functions of symbols in
the service of mathematics, and in the chapter on symbols in The
Psychology of Learning Mathematics, he lists (on p. 68) ten distinct
functions, perhaps an attempt at writing down everything he could
conceive of symbols being used for. Sitting in Richard’s list is the
mathematically-significant number 8, ‘making routine manipulations
automatic’, and this is the one I wish to attend to here.

This chapter developed from a talk (entitled ‘The symbol is the
object’) which I gave at Richard’s 60th birthday celebration in 1986,
immediately following the 10th PME conference in London. It had
struck me that one of the insistences present in the then ‘new’
mathematics writing was that of maintaining and reiterating the
distinction between symbol and object, symbol and referent (most
particularly between number and numeral, but also, for instance,
between subtraction and a negative number). And, in addition, there
was a desire to mark the distinction in the surface form (rather than
rely on what mathematician Jean Dieudonné has termed an ‘abus de
notation’). So, for instance, differentially distinguishing – both by size
and vertical height – the symbol for subtraction and that of a negative
number.

Many symbol systems are sub-minimal for learners, in the sense of
not marking all the distinctions that could helpfully be made. But what
users eventually need to be able to do is to contend with the
conventional system. During the 1960s and 1970s, the Initial Teaching
Alphabet was offered as a symbolic ‘manipulative’, that is a device to
assist with the learning of conventional English orthography, based on
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the fact that there are 44 different sounds (phonemes) in English but
only some 26 letters. (The use of written dots to indicate vowels in
semitic languages as an aid to novice readers, where they are not
conventionally marked in the surface form, is a continuing practice of
this type.)

The intent of the ITA was to be able to enhance the acquisition of
spelling through an extensive period of work with a non-standard form,
one with a one-to-one match between oral and written discriminations,
before condensing down to the conventional written form of English.
The ITA is no longer used in schools (different arguments rage about
learning to read and explicit attention to genre features currently, as
well as ‘phonics’ versus ‘whole language’, another unhelpful
opposition), but the general issue underlying it remains. Some of the
discussions about the role of physical manipulatives in mathematics
teaching bear a striking similarity. Elsewhere (Pimm, 1995), I have
written about Dave Hewitt’s school practice in beginning algebra
teaching of making sure there is a complete correspondence between
what is said – including operations – and what is written in moving
from ‘spoken equations’ (verbally-posed problems of a think-of-a-
number kind) to written counterparts.

The distinction between symbol and object (and use of additional
differential markings) is, in some sense, an ‘of course’ observation and
some persistent errors when working and thinking about different
mathematical objects and forms can be avoided by maintaining an
awareness of the difference. Confusion between symbol and object can
even be found in the conventional nomenclature for different types of
numbers, whereby attributes of the symbols are talked about as if they
were attributes of the objects themselves. Are there different types of
numbers called binary, decimal and fractional, in the same way that
there are prime, whole and triangular numbers? Or are the former
categorisations based on surface phenomena, namely certain aspects of
the written forms of the conventional symbols used rather than
involving a property of the number per se?

Certainly some current mathematical usage suggests that there is a
particular type or class of numbers called binary, rather than this being
a particular means of representing whole numbers. Precisely the same
form of expression is employed for decimal or fractional numbers,
whereby the adjective seems to be modifying the numbers, rather than
referring to a characteristic of the representation. 7/4 is a fraction, 1.75
is a decimal: what is being described and differentiated is the form of
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symbolic representation rather than a property of the number itself.
Numbers being prime or composite, on the other hand, refer to inherent
properties of the numbers themselves, invariant across any
representation.

However, over time, I began to think about what the pulls were
towards their confusion, including those embodied and held in language.
What fusion was there between symbol and object? I began to think
anew about fluency with mathematical symbols, what made it possible
and how it might be worked on in schools. I believe to work fluently
(most particularly when working algebraically) the symbol is or at least
for a while must become the object (or at least be seen as
indistinguishable from it). And that part of the efficiency and economy
that comes from such symbolic practice is available precisely because
of this confusion, the not paying of attention to this distinction,
rendering it simply a possible rather than insistently and always an
actual distinction.

Richard wrote about ‘same and different’ and about equivalence,
most tellingly about functional equivalence, something I drew on in my
later work on mathematical metaphor (see e.g. Pimm, 1981, 1988). The
very term ‘functional equivalence’ reminds us that it is always a choice
(I see or treat these as the same for my current purposes), and about
perceived sameness: and that the choice can be profitably rescinded and
another one taken. I might take the symbol to be the object for a while,
stressing equivalence and gaining from the fluency that can arise from
this identification. I might later choose to maintain the difference
between symbol and object and think hard and long about the nature of
mathematical objects and their link to the conventional symbolic form
(and even conceive and imagine how it might be different).

Most tellingly, many mathematical theorems and definitions arise
from a relation between mathematical form and mathematical meaning,
asserting the professional subordination of the latter to the former,
despite the immense difficulty that this can lead to for learners. At a
very basic level:

A whole number is even, if it ends in a 2, 4, 6, 8, or 0.

A whole number is even, if it can be divided exactly into two equal whole
numbers.

It is a certain theorem (almost never discussed) that relates the latter to
the former (creating another equivalence), thereby allowing the surface
functionality of the former to be used. Young children can accurately
distinguish between odd and even numbers, using this surface criterion,
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but when asked why may only make reference to the final digit. And
some will confuse adding odd or even numbers with properties of the
component digits of a number: for instance, saying that 73 is even
because both 7 and 3 are odd and an odd plus an odd is even (where
adding numbers is seen as juxtaposition). Or that 57 is odd, because
both 5 and 7 are odd.

Algorithms too are frequently taught in terms of operations to be
carried out on the surface form, with injunctions such as: ‘To multiply
be ten add a nought’, ‘Take it over to the other side and change the
sign’ or ‘Invert and multiply’. ‘To divide by a fraction, invert and
multiply’ provides an example of a precept which purports to indicate
how to carry out a numerical operation on numbers, namely division, in
terms of an operation on the symbolic form. But that is the desired
practice which leads to fluency of functioning. (I recently observed a
girl offering the ‘rule’, to divide two fractions, divide the tops and
divide the bottoms: in other words, a/b ÷ c/d = a÷c/c÷d. It took me a
while to think this through, even though the corresponding ‘rule’ for
multiplication of fractions, is something I use ‘unthinkingly’.)

‘Inversion’ is an operation which can be performed on a symbol
where there is an inherent orientation of up and down (as well as a
notation which makes use of it by breaking with the customary left-
right order of writing symbols). However, the numbers represented
symbolically by a/b and b/a are intimately connected, in that they are
mutual inverses with respect to the operation of multiplication.

Thus ‘inverse’ has two meanings:

(i) to do with ‘turning upside down’;
(ii) to do with obtaining 1 from a product.

It is possible however, merely by following the operations on the
symbols, to obtain a correct representation of the numerical answer.
Fluent users, who actually want to be able to confuse symbol and
object when calculating (because it is so much quicker and more
efficient) frequently forget that this mode of operation is, in some
sense, a pathology, one potentially lethal to many learners. Yet they
became fluent users precisely by ignoring this distinction.

Counterparts and Signs
I have come to realise that mathematics has a problem with its objects,
namely what the symbols of mathematics ‘point to’. Personally, I find
I have less and less grip on what a ‘number’ is. Robert Schmidt (1986),
a historian of mathematics, makes a helpful and for me novel
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distinction between symbols serving as signs and as counterparts. A
sign names or points to something else, but bears no necessary relation
to the thing named. A counterpart stands for something else, but does
not name or point to it (an indicative function): however, there is an
actual relation, a resemblance or connection, between the object and its
counterpart. These two functions can coalesce on the same symbol, but
there may be confusion when this occurs.

Schmidt uses the example of lines drawn on a nautical chart to
illustrate the notion of a counterpart: a nautical chart in no way names
what it stands for, but it allows computations and actions to be made
upon it which can be directly transferred to actions on the actual object
represented. Technical drawings, as opposed to geometric diagrams, are
counterparts, though when teachers invite pupils to use rulers and
protractors on geometric drawings they are shifting the drawing’s
status to that of a counterpart. Counterparts are to be acted on, and
then the results interpreted via the connection. Counterpart forms can
also provide substitute images. Schmidt claims:

It is also the nature of counterparts to draw attention to themselves, while it
is in the nature of signs to lead our attention away from themselves and
towards the thing signified. [...] Furthermore, it is in the nature of
counterparts to turn their object into themselves, while it is the nature of
signs to disclose their objects. (p. 1)

I see the signification and counterpart functions of symbols as
complementary; neither one suffices by itself for mathematics, yet
they seem to conflict with one another, pulling in opposite directions.
As Richard Skemp himself drew attention to, mathematical symbols
have more than one function: signification and counterpart are two
central ones I believe. Counterparts offer visible or tangible substitutes
which are then available for ‘manipulation’, for acting on as if they
were the object itself. Counterparts seem secular, of this sensible
world; signs are often taken as spiritual, that is, other-worldly.

Manipulatives such as Cuisenaire rods or Dienes apparatus are
undoubtedly offered as physical counterparts for numbers. Or is it that
Cuisenaire rods offer a counterpart for number, while Dienes blocks are
actually confusingly used both as a counterpart for numbers and a sign
for the place-value numeration system? Written numerical algorithms
are seldom identical either in form or structure to the ‘corresponding’
manipulations with the blocks, in part because the former frequently
draw on specific properties of the decimal, place-value numeration
system. (In passing, Dienes Blocks provide at least as good a model for
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the ancient Egyptian numerals, which are non-place-value in nature, as
Hindu-Arabic numerals – in consequence, one cannot simply ‘read’
place value out of the blocks – it has to be induced arbitrarily.) The
apparatus allows or encourages certain ways of operation, and this
needs to be transformed before the ‘traditional’ algorithm can come to
be seen as a ‘mere’ record of operations with the apparatus. Thus,
records can be seen as relics of actions. (It can be an interesting
mathematical question as to whether the residue is sufficient to
reconstruct the process.)

Ironically, in order to see connections, pupils must already
understand to some degree that which the blocks are supposedly
helping them to learn. The operations with the written symbols are
what is to be learned and that is what is guiding the way the equipment
is being used. Who is in control of the apparatus, and, in particular, the
interpretation of the meaning? This is one reason why there seems such
a difference between asking about the ‘meaning’ of a geoboard and the
‘meaning’ of Dienes blocks. Once again, the danger is that the wrong
thing is being seen as primary.1 One practice that is the hallmark of
mathematics occurs when symbols start being used as if they were the
objects themselves, namely as counterparts.

With algebra, ‘manipulation’ comes into its own, with symbols as
counterparts very much to the fore; the ‘true’ nature of the algebraic
object becomes ever more confused. Fluent users report two
awarenesses when working with algebraic expressions: being able to see
them as structured strings of symbols (and hence symbolic objects in
their own right) and seeing them as descriptions connected with some
‘reality’ or situation they are concerned with. Maintaining this dual
perspective, of substituting counterpart and indicating sign, is of
central concern when working on mathematical symbols at whatever
level, and places a heavy burden on novices. As Schmidt points out,
algebra offers both a calculus and a language.

Transformation is a key power of algebra, the most important
means for gaining knowledge. Operation symbols in algebra are virtual
and not actual as they seem to be in arithmetic. What is transformed is
the expressions, viewed as counterparts and not just as descriptions,
and different forms reveal different aspects. Algebra invokes forces that
transform: algebraic expressions are shape-shifters. But what else is
being transformed as I manipulate the symbols? Counterpart algebra
involves an echo, a shadow.
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Currently, when working on algebraic forms, I am encouraged to
suppress ‘meaning’ in order to automate and become an efficient
symbol manipulator. In other words, I am encouraged to ignore the
signification function and to see the symbols as counterparts until the
very end of a computation. I learn to associate aspects of the forms
with aspects of the situation (for instance, the numerical value of the
discriminant in order to discriminate among various types of conic
section), and work with them instead. This displacement of attention is
a mathematical commonplace, and can also lead to very powerful
theorems.

How do actions on symbols connect to actions on the actual
objects? How do arguments involving symbols relate to arguments
about their counterparts? Seeing the symbol as part of the whole
produces a reason for the link. Do we ever argue about the whole from
the part in mathematics? Despite much turning up of intellectual noses
at such an apparent mathematical solecism, there are a number of
occasions when such generic arguments are used. Here are three:

• in Euclid’s proof of the unlimited nature of primes, where he shows that
if there were three primes, then he knows how to construct another one –
and doesn’t even make the remark that the proof goes likewise for any
other number of primes;

• when working on particular elements of equivalence classes, in order to
show what happens to the classes as a whole (usually with a general
theorem in the background that the operations are well-behaved with
regard to class boundaries);

• when deciding where a derivative is positive or negative over an interval
by finding the zeros and then testing an individual point (similarly for
points in the plane satisfying inequalities).

The key feature here in all of these instances is that the argument
presented is a particular argument that apparently does for all. (See
Balacheff, 1988, for a discussion of similar modes of thinking in
adolescent provers.)

With algebra, the symbol used is not an actual instance of what is
being talked about, a letter is not a number in the main (pace e and i,
and perhaps ). So there is more of a question about the relationship –
and relating principle – between the symbol and the referent, as well as
how an argument conducted on the symbols bears any relation (be it
one of mimicry or something else) to what is the case for the actual
members of the set. The Greek mathematician Diophantos’ symbol for
an unknown was a Greek letter s-like mark that is plausibly a relic of
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the last letter of the word arithmos (“number”), and a common choice
of variable name is to use the first letter of the corresponding word
name (r for radius, t for time). So here it is a part of the word symbol
rather than part of the actual object that is used.

With arithmetic, early number symbols were either pictographic
(using three strokes or objects for three) or used a residue principle
based on the natural language word. (Attic Greek numerals, for
instance, had  for five, the first letter of the Greek word pente.) It is
possible to see numbers both as bearing the same relation to referent
experiences as with algebra (e.g. Martin Hughes’ (1986) interviews
with young pupils who baulk at intransitive, non-adjectival use of
number words as things to be added), but also as individual numbers in
their own right. (Try to make sensible use of ‘6’ as an algebraic
symbol; for instance, ‘Let 6 be a group’.)

Generic examples of computations with simple surds such as
2 can sometimes be more illustrative than with an algebraic variable,

in that they partake of particular number status without being easily
reducible in computations, so it is possible also to gain from the
structural, placeholder function that algebraic variables serve in
highlighting every occurrence of the particular number in focus.

What about geometry? The same duality of symbol relation occurs.
A geometric figure is symbolic of the general often, but is perceivable
also a particular element. I have wondered whether the ease of
transformation of Cabri-géomètre or Geometer’s Sketchpad drawings
encouraged viewing a diagram only as an actual particular rather than as
a general symbolic? And what of the singular perspective that it is not
a single figure being transformed, but a continuous highlighting into
attended awareness of distinct figures all equally present in
potentiality. The continuity of deformation by the mouse again can act
against this perception.

With any general argument in mathematics, there is an additional
need for symbolisation. The relationship between the symbols and the
things symbolised needs to be established (whether by synecdoche or
some other means). Does one of the differences between geometry and
algebra lie in the difference in relation between symbol and referent, and
hence, in the different symbolic nature of arguments that are used to
justify general claims?
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Mathematics and the Unconscious

In conclusion, I want to say a few words about the other strand to my
work that has certain roots in what I learnt from Richard. His
insistence on seeing Freud as a learning theorist, one who’s work has
much to say about the practice of schools and learning and teaching,
attuned me to this sense of the psychological at a time when I was
finding other theories of learning (each apparently claiming itself to be
universal, covering all forms of learning as an apparently monolithic
activity) too remote or unhelpful.

My year spent at Cambridge University in 1974–5, just after first
meeting Richard, had produced in me (admittedly, not unaided) some
significant destruction of meaning and a sense of being left with the
symbolic forms which no longer spoke to me. And that experience has
remained with me, and while it does not keep me awake at nights, a
residual curiosity exists as a personal desire to explore – one reason
why I do the particular work I do. (Mathematics educators are
notoriously bad at proclaiming and insisting theirs to be an utterly
selfless endeavour focused solely on the other, those mathematics
teachers and learners on whose (often unasked) behalf they ceaselessly
toil. Not the whole story, I reckon.)

So a second Richard-inspired thread to the work I do lies in
providing occasional psychological accounts for certain, usually
invisible, classroom events. In a chapter ‘Another psychology of
mathematics education’ (Pimm, 1994), I wrote of a classroom ‘slip’, a
child saying ‘fidelity’ instead of ‘infinity’ in response to a teacher’s
question. Such symbolic slippage, ‘along the chain of signifiers’, from
one sound or mark to another is the stuff of mathematics, and adds
richness to why mathematics is seldom viewed as a neutral subject, one
to which it is possible to be indifferent.

A hundred years ago mathematician Paul Souriau queried the
feasibility (and I, now, the desirability) of remaining fully in touch with
the ‘meaning’ of algebraic expressions and manipulations.

Does the algebraist know what becomes of his ideas when he introduces
them, in the form of signs, into his formulae? Does he follow them
throughout every stage of the operations he performs? Undoubtedly not; he
immediately loses sight of them. (cited in Hadamard, 1945/1954, p. 64)

And these two strands of work are actually related, though a
psychoanalytically-informed account of the processes of metaphor and
metonymy and the corresponding psychodynamic ones of conden-
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sation and displacement. And the best account I know of these links in
relation to mathematics education can be found in Tahta (1991).

On Symbols, Metaphor and Metonymy:
Holding the Tension of Opposites2

In a Symbol there is concealment and yet revelation …
(Carlyle, 1836; 1987, p. 166)

What is the origin of the word ‘symbol’ itself? Literary critic Northrop
Frye (1987) writes of the Greek verb symballein meaning “to put or
throw together”, but also draws attention to the noun symbolon, which
he glosses as:

a token or counter, something that could be broken in two and recognized by
the identity of the break. (p. 3)

Symbols and the gap, the separation, between symbol and object are
fundamental to the very possibility of mathematics. Frye goes on with
his etymological discussion:

A symbolon is something that is not complete in itself, but needs something
else, or another half of itself, to make it complete. A symbolos, in contrast,
links us to something too complex or mysterious to grasp all at once. (p. 4)

We symbolise when we want something that is absent or missing in
some way – and then we work on or with the symbol as a substitute,
and on occasion as a consolation. Through working with the symbol,
we also gain experience of the thing substituted for. In the process, we
can often lose sight of the fact that what we have is a symbol, and not
the thing we originally desired. But Aldous Huxley (1956), like the
‘modern’ mathematicians of the same period, is at pains to remind us:
“However expressive, symbols can never be the things they stand for”
(p. 29).

So at the end of this piece I am left with a tension of opposites, the
one that constitutes my title. A path to fluency and understanding, to
relational understanding, lies in being able to hold in productive tension
the two, oppositional claims implicit within it, both accepting and
rejecting the identification at different times. I think it would not have
surprised Richard that such an ability requires a considerable
sophistication in the use of symbols.
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Richard Skemp’s Fractions In-Service Course
for Teachers

Bruce Harrison
Professor Emeritus, The University of Calgary

From 1987 through 1994, Richard Skemp designed and instructed
twelve in-service courses for teachers of elementary school
mathematics. No ordinary university summer courses, these unique
embodiments of his theory of intelligent learning were enthusiastically
received by more than 700 teachers, primarily at The University of
Calgary but also at The University of Alberta, The University of
Regina, and several rural centres in Canada.

While exploring and preparing ready-to-use, practical learning
activities, the teachers were introduced to a theory whereby children
can bring their intelligence to bear on the learning of mathematics, the
very theory embodied in the activities themselves. Skemp’s mathe-
matics learning activities were developed using a mental model
beyond common sense to enable teachers to cumulatively nurture the
mental processes of growing children. Without such a mental model
one can only have instrumental understanding, whereas relational
understanding is necessary for the complex task of teaching and
learning mathematics intelligently.

One of Richard’s twelve teacher in-service courses covered
everything an elementary school child needs to know about fractions.
Designed to develop relational understanding of key concepts and
processes, the fractions in-service course explored the entire Fractions
Network found in Structured Activities for Primary Mathematics
(Skemp, 1989b) and SAIL through Mathematics (Skemp, 1993, 1994).
It was conducted over five days in four-hour morning or afternoon
sessions, including a 20-minute break. Each day began with a 35-
minute Plenary session in which: relevant concept maps were explored
as a means of integrating children’s long term learning of the topic at
hand; the learning activities to be worked with that day were
introduced and discussed in terms of the underlying theory and
classroom application; occasional videotaped activity demonstrations
with children were viewed and discussed; and responses were given to
comments and questions from the in-service course participants. Then,
having read designated chapters from Mathematics in the Primary
School (Skemp, 1989a), the participants would engage in 40-minute
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Small group discussions of aspects of Skemp’s theory of intelligent
learning and its embodiments in the activities. These were followed by
Making the day’s activity materials from printed, coloured card and
other supplied materials (50 minutes) and Doing the activities by
following the activity instructions and discussing how the activities
would likely be received by children in a classroom (50 minutes).
Finally, a half-hour Plenary discussion in which Richard answered
questions raised by the teachers would round out the events for the
day.

What follows is a brief day-by-day summary of the concepts,
processes, and insights shared with teachers who participated in the
Fractions in-service courses led by Richard Skemp (assisted by educa-
tors who counted themselves particularly privileged). The learning
activities in the Fractions Network are described in general terms
here but can be found in detail elsewhere (Skemp, 1989b, 1993, 1994).

Fractions In-Service, Day 1

Many children have difficulty with fractions. They are difficult. Many
programs start the teaching of fractions too early and go too far, too
quickly. Furthermore, authors of many textbooks confuse the three
meanings of fractions. Skemp’s Fractions Network was designed to
remedy these and other problems. It is the result of a thorough
conceptual analysis of what is needed for understanding and using
fractions by children up to the age of about twelve years. The
Fractions concept map (see Figure 1) schematically summarises a
structured progression of learning activities from beginning physical
actions through creative extrapolations to operations with decimal
fractions as numbers, considering fractions as quotients, and rounding
decimal fractions.
Topic 1 in the Fractions Network is making equal parts (shown on
the extreme left in the concept map above). There are five learning
activities in Topic 1, of which the first three facilitate Mode 1 schema
building via the physical experience of making Plasticine objects and
cutting them into equal parts. Fractions are not talked about as such.
Rather, children physically cut wholes into parts (just the first stage in
building the concept of a fraction). Mode 1 schema building (physical
experience) enables the learner to abstract the mathematical operation
of division from the physical action of cutting up a whole thing into
equal parts (Skemp, 1994, pp. 219–223).
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Figure 1. Num 7 Fractions (as a double operation, as numbers, as quotients)

(Skemp, 1994, p. 42)

Topic 1 in the Fractions Network is making equal parts (shown on
the extreme left in the concept map above). There are five learning
activities in Topic 1, of which the first three facilitate Mode 1 schema
building via the physical experience of making Plasticine objects and
cutting them into equal parts. Fractions are not talked about as such.
Rather, children physically cut wholes into parts (just the first stage in
building the concept of a fraction). Mode 1 schema building (physical
experience) enables the learner to abstract the mathematical operation
of division from the physical action of cutting up a whole thing into
equal parts (Skemp, 1994, pp. 219–223).

Emphasis on Mode 2 learning, building via communication and
testing predictions through discussion, occurs in the last two activities
in Topic 1, with progress to pictorial representations of the physical
actions experienced in the earlier activities. Traditionally, textbooks
have started with the diagrams, but such diagrams, which typically
contain a condensation of no less than 6 ideas, are likely to be helpful
if and only if the children already have the appropriate foundational
schema to which these can be assimilated. Communication and
discussion come to the fore in the last activity in Topic 1, a fraction-
diagram classification game: Match and mix: parts. This activity
consolidates the notions of equal parts of an object and their names,
using a variety of pictorial representations, as illustrated following. A
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10-minute videoclip of Richard Skemp introducing the activity to four
children is available (Skemp, Edison & Morris, 1991, Video Volume
II).

Figure 2. Sample cards from Sorting parts & Match and Mix parts

(Skemp, 1994, p. 224)

Three related concepts emerge from the making equal parts activities:

∑ the whole of an object (a special part of an object – not the
object itself),

∑ part of an object,
∑ equal parts of an object and their names.

At this point the activities do not involve fractions, as such, just
objects, and parts of objects, and the idea that the parts must be of
equal size.

Fractions In-Service, Day 2

Accurate concepts are easier to grasp than woolly ones. To be accurate
and simple is not always easy. A concept cannot be learned with
understanding unless the learner has the appropriate schema to which it
can be attached. Basic to the concept of a fraction is the notion of
carrying out an operation on an object (the operand) and then carrying
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out another operation on the result. For example, ‘taking two-thirds of
something’ can be illustrated in the following way:

Operand

Three equal parts

Take 2 of the 3 equal parts

The Day 1 fraction activities deal with the denominator. The Day 2
activities are from Topics 2 and 3 and focus on the numerator and the
notion of a fraction as a mathematical operation.

The three activities in Topic 2, take a number of like parts, have
the pupils engaged in a zoo microworld in which they are responsible
for feeding various animals specified numbers of parts of appropriate
“foods” like “eels,” “slabs of meat,” and “biscuits.” They begin by
physically forming and cutting up Plasticine “foods.” Then they
assemble the parts needed to feed certain collections of animals. In the
process they experience fractions below and above “one” in a very
natural way. These activities continue to build towards the concept of a
fraction by combining physical actions and social interaction in the
contexts of interesting activities related to feeding the animals in an
imaginary zoo. In the last activity in Topic 2 the children are brought a
step closer to fractions as mental operations by requiring them to think
about and describe the physical actions of making equal parts, and
then taking a given number of these (to feed a particular group of
animals), instead of actually doing these actions (Skemp, 1994, pp.
223–231).

Topic 3, fractions as a double operation, develops the concept of a
fraction as a mathematical operation which corresponds to two actions:
making a given number of equal parts, and putting together a given
number of these. The first activity, Expanding the diagram, relates
conventional fraction diagrams to the six concepts which they
combine, as illustrated in the activity board in Figure 3.
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Figure 3. Activity board for two-thirds from Expanding the diagram

(Skemp, 1994, p. 234).

The second activity in Topic 3 links the fraction diagrams to
conventional bar notation, and fractions begin to be treated
independently of any particular embodiment (the same operator can act
on a variety of operands). In this topic, the children are introduced to a
notation by which to communicate, manipulate and record the mental
concepts that they have learned about fractions. Assimilating the
notation and the transition to the concept of a fraction as a combined
operation essentially involves (for the child) inventing a new kind of
number and testing these for internal consistency with the numbers
they already know … Mode 3 schema construction, building using
creativity and testing in accordance with existing knowledge (Skemp,
1989a, p. 74).

Schematic learning is essential for intelligent learning. To be able
to use what one has learned on future occasions, abstraction and
conceptualization are also necessary. Concepts and schemas cannot be
communicated directly but must be constructed individually in the
learner’s mind (Skemp, 1989a, p. 72).

Because so many children (and adults) have difficulty with
fractions, it is important to return to using physical embodiments of
both the actions and the operands in order to establish a solid Mode 1
foundation for the concept of a fraction. The fraction diagrams and
notation introduced in Topic 3 exemplify the extremely concentrated
nature of mathematical knowledge and representation (symbolism). To

A plasticine
slab

Cut it along these
lines

3 third parts
of a slab

Discard what
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2 third parts
of a slab

START FIRST ACTION FIRST RESULT
SECOND ACTION

Take 2 of these COMBINED
RESULT
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facilitate communication and manipulation of the purely mental
concepts and operations underlying fractions, traditional ‘bar notation’
is introduced to record the underlying fraction concepts (which are
invisible and intuitive). The ‘denominator’ of the fraction indicates
what kind of parts are being represented and the ‘numerator’ indicates
how many of those parts.

Fractions In-Service, Day 3

The concept of equivalent fractions is a prerequisite for understanding
decimal fractions. If two different fractions of the same operand
(object) give the same amount, they are equivalent (e.g., two fourth-
parts of a cookie and one-half of the cookie give the same amount,
although they do not ‘look’ alike). It is important to be able to
recognize when this is the case, i.e., to match equivalent fractions.

Equivalence, an important idea throughout mathematics, facilitates
making the bridge between fractions as a double operation (Topic 3)
and fractions as numbers (Topic 7). Since it is the idea that is
important, the concept of equivalent fractions is constructed with
simple examples at three levels:

∑ concrete objects [e.g., fruit bars],
∑  diagrams (half way to the abstract) [e.g., pictures or

drawings evocative of a fruit bar],
∑  notation (writing, written symbols … not particularly

evocative) [e.g., is notation, a numeral, when written (not
spoken)].

The activities in Topic 4 introduce the concept of equivalent fractions
by the partitioning of Plasticine “fruit bars” in a candy store context
and then extend the concept to the more abstract representation of
fractions by diagrams and notation. The concepts are consolidated in a
match-and-mix game. Topics 4 and 5, simple equivalent fractions and
decimal fractions and equivalents, refresh earlier Mode 1 work with
physical materials and extend the Mode 2 discussion and
representations of fractions in pictorial and notational forms. Mode 3
thinking comes into play in the process by which the fraction concepts
are detached from any particular physical embodiment and the
groundwork is laid for decimal fractions in place-value notation
(Topic 6). Richard maintained that decimal fractions can’t really be
understood until equivalent fractions are understood in bar notation.
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The first two activities in Topic 5, decimal fractions and equivalents,
introduce decimal fractions, meaning ‘related to ten,’ first in verbal
form and then in the context of “equivalent fraction diagrams,” as
illustrated in Figure 4.

Figure 4. Equivalent fraction diagrams (decimal) (Skemp, 1994, p. 242).

By using the diagrams singly or together and shading appropriate
combinations of equal parts, equivalences can be seen, for example,
between “2 fifth-parts” and “4 tenth-parts,” between “1 fifth-part” and
“20 hundredth-parts,” …

When participants posed questions like: “How can learners be
helped to construct their own knowledge structures?” and “How is the
theory embodied in the activities?” Richard responded in terms of
Modes 1, 2 and 3 schema construction using analogies like “building a
brick wall” and activities like Missing stairs (Skemp, 1993, pp. 76,
77), Shrinking and growing (Skemp, 1994, pp. 376–378), and Make
a set. Make others which match. (Skemp, 1993, pp. 243, 244). A set
of VHS videocassettes have been produced at the University of
Calgary containing responses from Richard to questions like these
(Skemp, Fountain & Edison, 1992, Video Volume V) and containing
model introductions to schoolchildren of many of the activities in
Structured Activities for Primary Mathematics (Skemp, 1989b) and
SAIL through Mathematics (Skemp, 1993; 1994).

Fractions In-Service, Day 4

The final two activities in Topic 5, decimal fractions and equivalents,
deal entirely with symbols, consolidating the new concepts of
equivalent decimal fractions, detached from any particular physical
embodiment.
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Topic 6, decimal fractions in place-value notation, develops the idea
that different notational forms can be used to express the same fraction
concept. For example, 0.5 and are two different ways of writing the
same fraction. The two notations, place-value notation and bar
notation, are useful for different purposes. While many computations
are facilitated by the use of place-value notation, the understanding of
multiplication of decimal fractions (e.g., 0.1 ¥ 0.1) is especially facil-

itated with bar notation (to cite only one example). Since the concern
here is with notation rather than concepts, it is important that the
underlying concepts are well formed, which has been the aim of the
preceding fraction activities.

Three number line topics need to be covered before Topic 5,
decimal fractions and equivalents (as shown at the bottom of the
Fractions concept map shown earlier in this chapter). Similarly,
experience with metres and decimetres as encountered in the Length
network (Skemp, 1994, pp. 385–393) is also prerequisite. The first
number line topic needed is unit intervals: the number line (Skemp,
1994, pp. 359–362) which treats the number line as an infinite mental
object that can be represented by points on a line using the notion of a
unit interval. The second is interpolation between points; fractional
numbers (decimal) (Skemp, 1994, pp. 368–372) in which points are
located marking tenth-parts of a unit interval, and decimal fraction
names (tenth-parts) are applied to these points. Here children begin to
form the concept of a new number, a decimal fraction, in the context of
the number line. They already have spoken names for these new
numbers and now they learn how to write them, first in headed column
notation. The third number line topic, extrapolation of place-value
notation (Skemp, 1994, pp. 373–379), extends place-value notation to
include tenth-parts and hundredth-parts for writing mixed numbers, as
represented by points on the number line. A 21.5-minute video in
which four eleven-year-olds creatively explore the Shrinking and
growing activities that form the culmination of this topic is available
(Skemp & Edison, 1992, Video Volume IIIa).

When asked by the teachers where to start when introducing
fraction activities part way through a year or in later grades, Richard
recommended that they begin with activities in topics that should
already be known, according to the curriculum, and that they use
mathematical content that the pupils are already familiar with to help
them learn the new approach. A concept map can be used to identify
topic areas that need more work. “Projects” can help one to see
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concepts in different contexts and are valuable for extending, adapting,
and applying the mathematics curriculum. True “problem solving,”
while generally not useful for developing concepts, is certainly
valuable for applying, adapting, and extending well-formed concepts
and processes. In fact, intelligent mathematical problem solving
requires a background of well-structured mathematical concepts.

Fractions In-Service, Day 5

“Fractions are often treated as numbers right from the start. This
almost guarantees confusion for the children, since they are seldom
told that we are expanding our concept of number to include a new
kind of number. Place-value notation makes this transition smoother
[in fact it greatly simplifies addition of fractions], but does not remove
the need to explain what is going on, so that children have a chance to
adjust their thinking.” (Skemp, 1994, p. 250)

The first activity in Topic 7, fractions as numbers, shows that
fractions, in place-value notation, may be added in the same way as
whole numbers; and that the results make sense … behaving like the
numbers with which the children are already familiar (Skemp, 1994,
pp. 251). The second activity explores the question “How do we know
that our method [for addition] is still correct?” by means of a teacher-
led discussion, with Mode 3 testing for the more able. In this topic,
place-value notation is used to extrapolate the idea of number, from
familiar whole numbers to a new kind called fractional numbers. The
word “fraction” has now acquired a second meaning as a number that
behaves like the familiar whole numbers when added to another
number (whole or fractional).

Regarding Topic 8, fractions as quotients, Richard has pointed out
that one of the ways in which many textbooks have created
unnecessary difficulties for children is to confuse fractions as quotients
with the other aspects of fractions [as a double operation and as a
number]. He argued as follows:

If we read as ‘two-fifths,’ short for ‘two fifth-parts,’ the corresponding

physical actions are: start with an object, make five equal parts, take

two of these parts, result two fifth-parts.

Now, however, we are going to think of in a different way, as the

result of division. The corresponding physical actions are: take two

objects, share equally among five, each share is how much?
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At a physical level, these are quite different, just as physically 3 sets

of 5 objects and 5 sets of 3 objects are quite different, and mathe-

matically 3(5) and 5(3) are different; although the results are the same.

So we should be more surprised than we are that the division 2 ÷ 5

gives as a result. And to teach that is just another way of writing 2 ÷ 5

is to beg the whole question. 2 ÷ 5 is a mathematical operation, a

division. is the result of this operation, a quotient. The distinction

becomes even sharper if we write this quotient as 0.4. To put this

another way: would we say that 45 was just another way of writing
5 ¥ 9? (Skemp, 1994, p. 254).

The first activity in Topic 8, fractions as quotients, returns to Mode 1
to relate a new meaning of fractions to a physical situation in which
Plasticine “fruit bars” are shared equally among certain numbers of
recipients, the result of which (what each person receives) can be
expressed as a fraction of a “fruit bar.” Another three activities use
calculators to consolidate the relation between fractions in bar notation
and in place-value notation, regarding the latter as quotients and
developing a critical attitude with respect to whether or not quotient
results obtained by calculator give sensible results in the real world.

Finally, Topic 9, rounding decimal fractions in place-value
notation, extends “rounding whole numbers” to “rounding decimal
fractions in place-value notation,” to the nearest tenth or hundredth.
Richard was certainly in favour of “project work” and “real life”
problem solving but often pointed out that these cannot be relied on
alone for building mathematical structures, concepts, and operations.
Mathematics is knowledge which is in our minds, not just out there in
the environment around us, waiting to be discovered. It is not enough
to say that you can get a lot of mathematics from observing the
gyroscopic effects of a spinning bicycle wheel, for example, but,
rather, you need a lot of mathematics in your head to understand what
is happening. Often in “projects” the mathematics is very dilute … a
lot of time can be invested with only a little math coming into play.
(Also see pp. 174, 175 in Mathematics in Primary School (Skemp,
1989a) on the importance of ‘low noise’ while building mathematical
structures.) On this topic he also liked to quote Pasteur: “Discoveries
come to the prepared mind.” Problem solving is valuable and
important, of course, but it will only be successful to the extent that the
child has the appropriate structured knowledge to bring to bear on the
problem.
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Participant Perspective

What was it like to take an in-service course on the teaching and
learning of fractions from Richard Skemp? The following teacher-
participant comments are typical of the overwhelmingly positive
feedback given in the course evaluations.

It has been a delight to be in Dr. Skemp’s classes. He is a scholar and

a gentleman. The introduction to his writings and activities has been

one of enlightenment for me personally. I am eagerly looking forward

to using the material in my classroom.

The format of the course seems to fit right in with Dr. Skemp’s

schema construction. There is experimenting (playing the

games/activities), discussion (within discussion and do groups), and

internalizing (as we read and then work with the concepts).

Those of us fortunate enough to assist Richard in the delivery of the in-
service courses held him in great esteem not only for his impeccable
scholarship, for the power of his theory, and for the excellence of the
activities that he had developed as embodiments of his theory, but also
for his friendship, generosity, and the wonderfully kind and
encouraging way that he had with all of us, colleagues and students,
alike.

References
Skemp, R. R. (1989a). Mathematics in the Primary School. London:

Routledge.

Skemp, R. R. (1989b). Structured Activities for Primary Mathematics,
Volumes 1, 1a, 2, 2a. London: Routledge.

Skemp, R. R. (1993). SAIL through Mathematics, Volume 1:
Structured Activities for Intelligent Learning. Activities for the
early years (Age 5–7). Calgary, Canada: EEC Ltd.

Skemp, R. R. (1993pm). SAIL through Mathematics, Volume 1a:
Structured Activities forIintelligent Learning. Photomasters for
the early years (Age 5–7). Calgary, Canada: EEC Ltd.

Skemp, R. R. (1994). SAIL through Mathematics, Volume 2:
Structured Activities for Intelligent Learning. Activities for the
later years (Age 8–12). Calgary, Canada: EEC Ltd.

Skemp, R. R. (1994pm). SAIL through Mathematics, Volume 2a:
Structured Activities for Intelligent Learning. Photomasters for
the later years (Age 8–12). Calgary, Canada: EEC Ltd.



285

Skemp, R. R. (Author, Teacher) & Edison, L. (Producer/Director).
(1992). Mathematics Learning Activities: Skemp videocassette
series, Volume IIIa. [VHS videocassette]. Calgary, Canada:
Department of Communications Media, The University of
Calgary.

Skemp, R. R. (Author, Teacher), Edison, L., & Morris, P.
(Producer/Director). (1991). Mathematics Learning Activities:
Skemp videocassette series, Volume II. [VHS videocassette].
Calgary, Canada: Department of Communications Media, The
University of Calgary.

Skemp, R. R. (Author, Teacher), Fountain, F. & Edison, L.
(Producers). (1992). Mathematics Learning Activities: Skemp
videocassette series, Volume V: Question Time with Richard
Skemp. [VHS videocassette]. Calgary, Canada: Department of
Communications Media, The University of Calgary.



287

The Silent Music of Mathematics

Richard R. Skemp
University of Warwick, Department of Education

The thoughts which follow result from a combination of two events
which took place last Christmas. One of these was a visit from a niece
of mine who has two bright children aged seven and eight. She was
worried because all the mathematics they did at school was pages of
sums. Shortly before this, we had heard and seen a performance of
Benjamin Britten’s beautiful Ceremony of Carols. This was introduced
by Britten’s lifelong friend Peter Pears, who related how it had been
composed by Britten at sea, in a cramped cabin with no piano or other
musical instrument on which Britten could hear what he was
composing. Afterwards, I began to wonder how such music could be
composed under these conditions. How could he know how wonderful
it would sound in performance? Maybe he sang it to himself, some of
it. But he could only sing one part at a time, and what about the harp?
My answer cannot be more than a conjecture; but I think we may
assume that like many other composers he was able to write music
directly from his head onto paper because he could hear the music in
his mind. The musical notation represented for him patterns of sound,
sequential and simultaneous.

There are others besides composers who can hear music in their
minds, and who (we are told) can get pleasure from reading a score in
the same way as others enjoy reading a book. But most of us are not
like this. We need to hear music performed, better still to sing or play it
ourselves, alone or with others, before we can appreciate it.

We would not think it sensible to teach music as a pencil and paper
exercise, in which children are taught to put marks on paper according
to certain rules of musical notation, without ever performing music, or
interacting with others in making music together. To start with,
children are not taught to read or write music at all - they sing, listen,
and move their bodies to the sounds of music. And when they do learn
musical notation, it is closely linked with the performance of music,
using their voices, or instruments on which they can play without too
much difficulty.
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If we were to teach children music the way we teach mathematics,
we would only succeed in putting most of them off for life. It is by
hearing musical notes, melodies, harmonies and rhythms that even the
most musical are able to reach the stage of reading and writing music
silently in their minds.

So why are children still taught mathematics as a pencil and paper
exercise which is usually somewhat solitary? For most of us
mathematics, like music, needs to be expressed in physical actions and
human interactions before its symbols can evoke the silent patterns of
mathematical ideas (like musical notes), simultaneous relationships
(like harmonies) and expositions or proofs (like melodies).

Regretfully I hold Mathematicians (with a capital M) largely to
blame for this. They are so good at making silent mathematics on paper
for themselves and each other that they have put this about as what
mathematics is supposed to be like for everyone.

We are all the losers. Music is something which nearly everyone
enjoys hearing at a pop, middle-brow or classical level. Those who feel
they would like to learn to perform it are not frightened to have a go,
and those who perform it well in any of these varieties are sure of
appreciative audiences. But Mathematicians have only minority
audiences, consisting mostly or perhaps entirely of other
Mathematicians. The majority have been turned off it in childhood. For
these, the music of mathematics will always be altogether silent.

May I finish by asking a question? I am hopeful that many,
probably most, readers of Mathematics Teaching will be in agreement
with this general line of thinking. But can anyone tell me how we may
get this message to those who need it most? By this, I mean the many
who teach mathematics to children in their early years almost entirely
as pages of ‘sums’ on paper; and who - because they think that it is for
specialist teachers of mathematics, or for some other reason - do not
read this journal. I ask this urgently: how?
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