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1.0 EXECUTIVE OVERVIEW

This is the second interim report for Contract No. F30602-91-C-0017, entitled

"Intelligent Use of CFAR Algorithms". The primary objective of this effort is to

demonstrate that an expert system CFAR processor, which dynamically selects

CFAR algorithms and their parameters based on the environment, can out-perform

a fixed, single algorithm processor. The primary emphasis of this report is to
document the current status of the Expert System (ES) Constant False Alarm Rate
(CFAR) system. This section provides an overview of the ES CFAR program.

Automatic detection schemes are typically employed in operational radar
systems. These circuits automatically declare and record target detections from
received signals without human interpretation and intervention. Target detections

are declared when a signal exceeds a specified threshold level. This threshold is

determined by a number of factors such as signal-to-noise (S/N) ratio, probability of
detection (Pd), probability of false alarm (Pf), and the statistics of the target and
background. For a given S/N, a higher threshold results in a lower Pf but also a
lower Pd. Conversely, a lower threshold increases Pd at the expense of more false

alarms.

Adaptive threshold techniques are usually employed to control false alarm

rates in varying background environments. The most common of these techniques

is Constant False Alarm Rate (CFAR) processing. CFAR processors are designed to

maintain a constant false alarm rate by adjusting the threshold for a cell under test
by estimating the interference in the vicinity of the test cell. A "cell" is a sample in

the domains of interest (eg: range, Doppler, angle, polarization). In general the data
operated on by the CFAR processor may be pre-filtered to improve detection

performance. This pre-filtering may include Doppler filtering, adaptive space-time
processing, pre-whitening, and channel equalization.

CFAR algorithms have been studied for many years. The first interim report
examined much of that work. A summary is provided in Appendix A. In all, more
than 125 CFAR references were considered. Each CFAR algorithm has been

designed under a specific set of assumptions, with most CFAR algorithms assuming

a Gaussian environment. For example, Cell Averaging (CA) CFAR is designed for a

homogeneous, Gaussian, independent and identically distributed (iid)



environment. In fact, CA CFAR is optimum under those conditions (provides
maximum Pd for given Pf and S/N). Because of its relative ease of implementation
and superior performance in thermal noise-limited environments, CA CFAR is one
of the most commonly used algorithms. Greatest-Of (GO) CFAR was designed to
handle clutter edges and Smallest-Of (SO) CFAR was invented to resolve two closely

spaced targets. On the other hand, ordered Statistics (OS) CFAR was designed as a
more robust processor. However, the performance of each of these algorithms
degrades significantly when the actual conditions vary from the design

assumptions. Any single, fixed CFAR is likely to perform inadequately over
significant periods of time for a wide area surveillance sensor.

The objective of this program is to demonstrate CFAR performance
improvement by applying artificial intelligence techniques. The basic concept is that
a system that dynamically selects CFAR algorithms and controls CFAR parameters
based on the environment should out-perform a single, fixed CFAR system. The ES
CFAR system is expected to have a high payoff in:

* Dynamic environments (eg: moving platforms)

* Non-Gaussian backgrounds

* Clutter edges (eg: land/sea interfaces)

A fully developed ES CFAR system would utilize a variety of "knowledge
sources" to ascertain characteristics of the radar data. Geographical maps combined
with radar location and pointing data may provide information regarding clutter

edges. Statistical distribution identification algorithms may provide information
regarding the statistical nature of the data. A tracker may provide important
information regarding multiple targets. Also, the user may supply other valuable
inputs to the system.

"Rules" of the ES CFAR system translate the above information into action.
Based on the observed state of the environment the rules- determine which CFAR

algorithm or algorithms are executed. They also dynamically determine the
appropriate CFAR parameter values (eg: window size, order number). The rules
may also infer new information from the known information.



The majority of this report describes the status of the ES CFAR system

development. Figure 1-1 shows a block diagram of the prototype/demonstration
system. The top portion of the diagram is labeled "Baseline CFAR" and represents

conventional CFAR processing. In the baseline processor the radar data passes

directly to the CFAR algorithm. In general, this radar data is pre-filtered which may
include Doppler filtering or adaptive filtering. The detections resulting from the

baseline CFAR are then passed to the output displays such as the PPI.

The lower portion of Figure 1-1 shows the ES CFAR processor. As in the
baseline processor, the radar data is passed to the CFAR algorithms. However, in

the ES path the data is also processed by a Statistical Distribution Identifier to extract

statistical features from the data. This information may be combined with user
inputs, geographical data, and radar location and pointing information and used to

classify the environment by statistical distribution, homogeneity, and terrain
features. Target information is supplied both by the user and from a tracker

feedback loop. Tracker feedback may indicate, for example, the presence of multiple

targets. Clutter and target information is then sorted and weighted to select the

CFAR algorithxi or algorithms to be executed, along with their parameters. The

outputs of the selected CFAR algorithms are then combined in the Weighting and
Fusing Circuit. In general, the actual false alarm rate will differ from the design

value since the environment is unlikely to satisfy all of the CFAR design

assumptions. The False Alarm Control block attempts to reconcile these
discrepancies. Outputs from that circuit are finally passed to the Performance

Monitoring and display functions, as well as the tracker loop which updates known

target information.

At the end of the current contract the ES CFAR system will:

* Process measured airborne radar data

* Demonstrate improved CFAR processor performance

* Demonstrate the application of AI techniques to radar signal processing

* Provide a testbed for CFAR algorithm development.
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Upon successful demonstration of the ES CFAR concept, longer range plans
include the implementation of an ES CFAR system into an operational radar for a
real-time proof-of-concept validation experiment. Several platforms are being
considered for this experiment, with emphasis being placed on airborne wide area
surveillance radars. These platforms typically have sufficient field-of-views to
ensure diverse background environments. Further, a moving airborne platform
ensures a dynamic environment to challenge the CFAR processor.

In the future, substantial performance improvements will likely not be the
result of higher power-aperture products. Larger antennas and higher peak powers
will be more difficult to achieve, especially for platforms limited in size, weight, and
power. Substantial performance gains will more likely be the result of advanced
processing techniques. These techniques will extract more information from
received signals using the available power-aperture product. One of the advanced
processing thrusts to further that goal is to transition recent artificial intelligence
advances into the radar signal processor. This contract has focused on one portion
of the radar processing chain: the CFAR processor. This is only a first step in the AI
technology transfer and one step towards sizable performance improvements
through advanced signal processing.



2.0 KBS DEVELOPMENT

The first interim report for this program discussed an initial system design for
the Al CFAR system. The proposed system design has since evolved with time.
While the overall design philosophy remains intact there have been some
modifications to the system structure. The processes previously referred to as the
Local Contrast Filter and the Clutter Classifier no longer exist as separate processors.
The functions provided by the Local Contrast Filter have been combined with new

functions and placed in the pre-processor. The pre-processor operates on the radar
data prior to the CFAR processor and is designed to filter the radar data and to
separate it into relatively homogeneous regions. In the original design the Clutter
Classifier determined the clutter type from the available information sources. A set
of rules then determined which CFAR algorithms were executed based on the
clutter type. In the current system design, however, the intermediate step of
determining clutter type is eliminated and the rules determine directly which CFAR
algorithms are executed based on the known and derived information. The derived
information includes statistical estimates. Computer code to estimate these statistics
has been partially implemented and tested and is discussed further in Section 2.3.

Changes have also been made in the implementation. It was recognized early
on that computationally intensive parts of the system would only slow down the
rule evaluation process performed by Gensym's G2 and that it made more sense to
implement these functions in remote procedures. Remote procedures refer to those

calculations which are performed outside of G2, which is the Expert System
development software. All AI components of the system remain in G2. The user
interacts exclusively with G2 which passes commands and controls to the remote
procedures. Functions such as clutter simulation, radar simulation, and actual
CFAR processing are implemented primarily in the 'C' programming language.
Every attempt has been made to create a simpler and faster system by reducing the
data transferred between these processors.

This report discusses the "System" as it is planned to be at the end of this

effort. However, the report also makes clear which parts of the system are actually
complete and which parts are either in development or will be developed in the
future. Currentiy, the Baseline and the ES CFAR paths through the system have
been completed, exclusive of the rules. That is, the framework is in place to permit

6



CFAR rule evaluation. As reported earlier, the domain data gathering process has
been completed and testing of the rules has begun. However, rule testing has not
reached the point where significant progress can be reported. Therefore, this report
discusses primarily those parts of the system which have been implemented and
tested. Parts of the system which reside in G2 will be described in G2 terminology.
Those terms may be foreign to those who have not been exposed to G2. For this
reason, background information on Expert System development and G2 is included

which will help the reader have a better feel for how the ES CFAR Knowledge Based
System (KBS) works.

2.1 Expert System Development

The evolution of computer languages is illustrated in Figure 2-1. Assembly
language was dominant between World War !I and 1960. In the late 1950s, higher

order languages (HOLs) began to emerge. FORTRAN was one of the first HOLs and
was developed as a scientific programming language.

In the early 1960s programming languages began to take two paths: symbolic
languages and algorithmic languages. Symbolic languages are oriented more
towards logic and list (eg: text) processing than numerical processing. One of the
first and most common symbolic languages was LISP. A number of algorithmic
languages were also developed between 1960 and 1985 including FORTRAN, PL1,
PASCAL, C and ADA.

Computer languages began to branch out again in the early 1980s. Symbolic
languages began to expand into PROLOG, LISP, and Object-Oriented approaches.
Meanwhile, algorithmic languages began to incorporate symbolic language features.
For example, C++ is an extension of C, based on object-oriented programming.
Also during this time, so-called "Fourth Generation" languages began to emerge.
Fourth Generation languages again raised the level of abstraction and are

commonly associated with database management systems. By 1985 the programmer
had a host of languages available in a number of varied approaches.

The emergence of Expert Systems and object-oriented environments led to

the development of Expert System Building Tools, such as Gensym's G2. This is
illustrated in Figure 2-2. Also note in Figure 2-2 that academic research into

7
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Artificial Intelligence (AI) is leading and feeding practical Al developments in
business, industry, and government. Today, some of the leading Al activities are in
the areas of distributed processing and Very Large Expert Systems, which includes
developments in "Blackboard" technologies.

Is the Object-Oriented approach "better" than other approaches? Not
necessarily. However, the object-oriented approach is appealing for a number of
problems, including the ES CFAR system. A key point being made here is that,

S~unlike 1960, the programmer today has a variety of approaches available. The
applications programmer' (eg: signal processing algorithm developer) needs to be
aware of these advances in Al in order to fully exploit the new computer
technologies.

One goal of this report is to describe the specific expert system tool being used
to build the ES CFAR application. This discussion begins with a general description
of how expert systems work, describing their components and how the components

interact.

2.1.1 Expert Systems

An expert system can be described as a computer based system that uses
reasoning techniques to automatically search, analyze, and exploit knowledge that
has been appropriately represented within the computer. With conventional
computing techniques, reasoning based search and analysis tasks must be performed
in the minds of the human expert. The success of expert systems depends on their
ability 1.) to store or represent as a computer knowledge base the domain
knowledge, associated with "human expertise", in a manner that enables logical
inference ("the knowledge representation problem") and 2.) to search, within
reasonable time constraints, through this knowledge base for solutions to
interactively posed "domain" problems ("the search problem"). While expert
system designs can vary, they all tend to have a knowledge base, an inference

engine, and an interactive user interface.

10



Knowledge Base

The knowledge base may contain fundamental generic knowledge, as well as
generic and specific knowledge from the human expert. Fundamental knowledge
for example might be rules for sorting data, independent of the domain, into
alphabetic or increasing numeric order. Within a domain, the experts are
encouraged to state their knowledge as generically as possible. This tends to increase
its applicability and also reduce the amount of knowledge to be searched. For
example, the "inverse square law" of wave propagation might be repeatedly
encoded, as rules, at the physical phenomenology level, i.e. for sound, light, and
radio waves. A better approach is to have a generic representation that can be
applied with any wave propagation phenomenology.

Nevertheless, many rules will have to deal with more specific cases in the
domain. For example, a rule that inferred that all interstate highways had a
maximum speed limit of 55 miles per hour would be too generic. Such a rule,
would have to be specialized to look at individual states and at proximity to major
populated areas within some states. Most expert systems rely primarily on rules as
their knowledge representation formalism. Rules have the form "If A then B".
This means if A is true then infer that B is true. Another rule might be "If B then
C". Once the truth of A is established the inference engine will search through two
rules to conclude that C is true. Of course, this example is overly trivial. The
complexity begins when the left and right sides of the rules have multiple parts,
such as, "If x and y then d and e." or "If x or y then d and e."

Facts are also a major ingredient of the knowledge base. A fact can be thought
of as a rule of the form "If true then pi = 3.14159". The left hand side of such rules
are always trivially true, i.e. "true is true" is a tautology. Therefore, the left side of
the rule can be deleted and the right hand side simply asserted as a fact, i.e. pi =

3.14159. The inference engine, however, processes facts as if they were rules whose
left hand conditional has already been satisfied. Facts can also be generic or specific.
The "pi" example is generic, but other facts might be more specific such as "The
Gooseneck-Radar-Frequency = 1.5 gigahertz." Facts should be items that are not
conditionally dependent on anything else within the context of the domain
problem. While a Gooseneck radar may be modified for a different frequency,

Ii



within the context of the current problem it will not be so modified Obviously,
some facts are more secure than others. The value of "pi" is a safer fact, then the
assertion of a system's radio frequency.

Inference Engine

As already implied, the inference engine is an algorithm that concludes new
truths from known truths. The process is deductive inference in that the results are
always correct. Inductive and abductive inference by contrast can only suggest
solutions that may be true, i.e. hypotheses.

When the inference engine proceeds, as in the above example (from the truth
of A, to the truth of B, and finally to the truth of C), this is called "forward
chaining". In this case, each rule is applied from left to right. The rules can also be
applied in the reverse direction which is called "backward chaining".

Most expert systems use backward chaining because they are goal driven, i.e.
given that the desired solution is C, how can the system find a path to C. In this
case, the rule "if B then C" would be applied first with the conclusion that a way
must be found to show that B is true. Next, "if A then B" will be applied because the
right hand side matches with the B goal. Now, given that A is a "fact", the search is

complete. However, as mentioned above, the inference engine actually treats the
fact "A" as a rule, i.e. "if true then A." Thus, the inference engine actually backward
chains one more step, matching the left hand side of "if A then B" with the right
hand side of "if true then A." The inference engine therefore responds with "true",
meaning that the goal state C is true.

For most problems, backward chaining seems to result in more efficient,
meaning faster, searches by the inference engine. The desirability of forward versus
backward chaining depends on the forward and backward branching factors for the
rules. This relates to how many "and/or" components exist in the left and right side

of the average rule. The trick is to use the direction that generates the smaller
expansion of possible search paths. While most expert systems perform better with

backward chaining, expert systems for manufacturing control and other planning
problems, tend to perform better with forward chaining. This is because they are
constrained by their starting conditions but can accept multiple solutions or end

12



conditions. A backward chaining scheme corresponds to a constrained goal with
multiple acceptable starting conditions.

Interactive User Interface

An expert system normally has two types of interactive users: the domain

expert and a non-expert user of the domain knowledge. Through the interactive
interface, which is often a graphical user interface with easy-to-use "pull down"
menus, the expert can insert, critique, and modify the domain knowledge of the
system. The non-expert user can insert problems and receive solutions, along with
a rationale or logical explanation. The logical explanations are actually the
knowledge inserted by the domain expert. In this way, the user can go to the system
for consultative support rather than going to the expert. In this sense, the system
becomes a productivity multiplier for the human expert. The explanation capability
is a key aspect of expert systems technology. The system is not only supposed to
provide a solution, it is supposed to convince the user that the solution is correct.

Expert System Development Shell

Since the shell provides all of the deductive reasoning algorithms for the
inference engine, the system developer can concentrate or focus on the specification
of declarative domain knowledge for the knowledge base, rather than on the
development of search strategies.

Key to the development of an expert system is the description of the
knowledge an expert uses to solve a problem. There are a number of ways to
represent this knowledge in a knowledge base. While rules are the easiest to

understand from a deductive inference viewpoint, knowledge can also be
represented as frames, semantic networks, scripts, relations, or even procedures.

Various expert system environments support many of these alternatives, in

addition to rules. Some of these formalisms, however, while adding run-time
efficiency and even ease of knowledge capture are not amenable to automated
inference. In particular, a procedural representation can not be checked by the
inference engine for internal consistency--an illogical programming step ("bug")

will normally not be detected by the inference engine as it might be in a rule based
formalism. Nevertheless, procedures are pragmatically necessary.

13



The extension of knowledge representation techniques, beyond the rule
formalism, is nicely facilitated by object oriented programming (OOP) methods.
Object oriented systems provide a simple, natural way of capturing relations which
can be used to represent rules, semantic nets, and other formalisms. In object
oriented programming, the programmer defines classes of objects for an application.
Each class definition includes a programmer-provided list of attributes. Objects can
then be dynamically created as instances of the class. Each instantiated object can
have different values assigned to the attributes. The classes can and should exist

within a class hierarchy to facilitate inheritance. All attributes should be defined at
the highest possible class level in the hierarchy. This means they should be as
generic as possible. Each lower level class inherits the attributes of its superior
parent , but it can also contain its own, more specific, attributes. While classes and
class hierarchy structures are defined solely by the developer, as a rule of thumb,
most classes are defined in ways that strongly parallel their existence in the real

world. Thus, the program successfully models the real world relationships.

Using the object oriented approach gives the developer the ability to structure
and easily define a large number of facts and relationships without having to
incorporate them as rules. Rules can be reserved for those cases where they are the
more natural representational form, i.e. when the heuristic knowledge in the
domain has a natural "if.... then ..." rule format. Such heuristics, while often based
on incomplete evidence, can easily capture a human expert's "rule-of-thumb"

intuition about the domain knowledge.

Inference and Control

Expert system programming involves finding the appropriate description of
domain knowledge so that it can be represented declaratively, rather than
procedurally within the system. This means that minimal programming is required
to utilize the knowledge; the inference engine provides the programmatic logic.
The control and search strategies that the inference engines employ are pre-

developed and are not typically governed by the developer. In this way, the same
inferencing techniques can be applied for the control of many kinds of knowledge

bases and applications.

14



Inference engines are typically described by the types of inference and control
strategies that they employ. One or more inference engine control strategies may be
available in a particular expert system environment. The most common techniques
are forward and backward chaining, described above, and breadth first versus depth
first search.

The latter option addresses how the system will cope with branching factors at
each level of rule application in the inference cycle. Breadth first means that all rule
options are generated at each level before proceeding to the next level. Depth first
means that only one rule is applied at each level before proceeding to the next level.
Depth first will on average find a solution in half the search time of breadth first
search. However, depth first must know a priori how many levels exist. If it stops
one level short of a solution it won't find it. When depth first reaches the lowest
level without finding a solution, it backs up one level and tries the next matching,
but not yet tried, rule. It then proceeds down again in a depth first mode.
Eventually, the system, by backing up and going forward again, will exhaust the
available rules at all levels. i.e. That is, if it backs up and there are no more untried
rules at that level, it backs up again, eventually reaching the top before proceeding

down again. While breadth first takes twice as long on average, it does not have to
know in advance how many layers to try. It exhausts all rule applications at each
layer before proceeding to the next layer.

Other control strategies are also available such as heuristic search where
meta-rules are used to prune unlikely, though legal inferences, from the
exponentially expanding search tree. Rules can also be grouped into hierarchically
related sets so that at different levels in the tree, the number of rules that have to be
linearly checked for a match is reduced. Hashing and other specialized pattern
matching techniques can be used to increase the efficiency of the search process.

Some techniques are more closely associated with formal logic, specifically first
order logic or predicate calculus. This set of techniques is now generally known as
logic programming. The inference step for this formalism is known as resolution

and the binding from rule to rule in this inference process is controlled by
unification. A popular system for logic programming is Prolog whose resolution
based inference is equivalent to a backward chaining, depth first search.

15



In summary, inference systems can be thought of as deductive, inductive, or
abductive:

0 Deductive systems apply rules to derive absolute, but non-explicit,
hidden truths from explicitly known truths.

0 Inductive systems try to find rules by searching for correlations
between factual events over a large sample size. This process, unlike deduction, is
not fail safe. Correlating sunlight with growth can correctly lead to the rule that "if
the sun shines then the plants grow." However, other, seemingly plausible
correlations, can lead to illogical rules such as "If the sun passes over head once a
day then it circles the earth once a day."

* Abduction generally applies known rules in a backward chaining
hypothetical sense. It can not prove the truth of an earlier event, but only the
possibility that something might have occurred which caused the later event to be
true.

Expert systems have been built that address all three of these inference types.
Induction and abduction usually require a second level of abstraction in the
inference engine. Most expert systems, and virtually all applied expert systems, are
restricted to deductive logic. While the programmer and the domain expert may
practice inductive inference to find the rules, this is normally a human rather than

a machine inference process. The machine restricts itself to the deductive
application of the given rules. It may, however, challenge the validity of the
human inductive mechanism's results when two rules are found to be mutually
inconsistent, but applied systems do not normally infer their own rules. Inductively
inferring rules is actually a form of machine learning; it is currently an active and

exciting research area.

In addition to the variability of inference mechanisms, knowledge
representation techniques can also vary from a strict compliance with the rule-based
formalism to the incorporation of frames, scripts, semantic networks, and other
relational strategies. Hybrid systems are rapidly evolving that allow the advantages
of a rule based deductive inference formalism to be combined with other advanced
representational strategies as well as with conventional programming techniques.

16



Object oriented environments provided the necessary structure for 3uch
hybrid systems. In these systems, a core module can provide the rule-based
inferential control, while allowing the lower level processes, such as conventional
digital signal processing, to remain as sub-routines in conventional procedure based
languages. This facilitated by the fact that procedures and rules can all be thought of
as objects and thus easily integrated by the object oriented environment.

2.1.2 G

Gensym's G2 is an expert system tool which is being used to prototype and
develop the ES CFAR expert system. It is a complex system which uses the power of
object-oriented programming with a hybrid inference engine and the use of both
rules and procedures in order to offer one of the most flexible environments

possible for systems-development. Application development is doue in a graphical,
object-oriented environment with support tools which provide for both rapid
prototyping and full scale system development. Gensym's G2 was selected for
prototype development because of its professional-level capabilities, graphical user
interface and development environment, and its availability of support.

The first step in developing an application with G2 is defining the class of
each object in the application's knowledge domain. In the ES CFAR application, the
key class definitions include radars, clutter, targets, CFAR-processes, and detections.
Along with defining the object classes and their attributes, one must also define the

class hierarchy.

The class hierarchy identifies how certain objects are related to others and

how objects inherit attributes from their superior classes. Consider, for example, the
class of objects named clutter. The class clutter (within the ES CFAR application)

has an attribute which defines whether .he clutter is Weibull, exponential, log-
normal, etc. Each of these specific subclasses of clutter have attributes that are
descriptive of their "statistical distribution" such as mean and variance. Each
subclass also inherits the attributes of its superior class. Another example from the
ES CFAR application which describes how class definitions identify relationships
between objects can be seen in how the class of radar objects is defined. A radar has

subsystems and characteristics defined as attributes of the radar: antenna, receiver,
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transmitter, beam, and direction. Each of these subsystems is itself a unique class of
objects with unique attributes that describe each specific subsystem. By defining each
subsystem class as an attribute of the class "radar", each instance of a radar includes
an instance of each the subsystems.

Once the developer has defined the class hierarchy and all classes, a model of
the application is created. The model includes all relationships, objects, rules, and

procedures that describe the application. The developer organizes this knowledge in
the knowledge base by placing related items on a single workspace. Workspaces are
the places in the knowledge base where the items which make up the knowledge
base are located. The workspaces are also structured in a hierarchy of
subworkspaces. One way the developer may organize the items in the knowledge
base is to have a superior workspace as a menu with selections such as rules, object
definitions, procedures, user-menu-choices, etc. Each of the selection objects on the
menu have a subworkspace, where a collection of like objects are collocated.

The workspaces, objects, rules, procedures, etc., make up the knowledge base.
All this knowledge describes how the attributes of the objects are related and how

they can receive their values.

G2 offers sources which determine how attributes can uniquely receive their
values. Attributes can receive their values from the inference engine, the G2

simulator, through "real-world" sensors, and through the G2 Standard Interface
(GSI). The inference engine uses its inferencing mechanism to determine the
values of attributes. The G2 simulator produces values through the use of
simulation formulas. When attributes receive true values through "real-world"
sensors, the GSI is used to connect the G2 variables with external sensors. The GSI is

also used to connect G2 with external data sources such as with remote processes. In
the ES CFAR application, the remote procedure call (RPC) is used frequently to
obtain values for variables (through the GSI) from remote C-programs. In the ES
CFAR application, some of the key processes are numerically intense and need to be
executed in a remote environment. For instance, the radar data is processed by a

CFAR algorithm in order to report detections. In this case, G2 determines which
CFAR process should be used to process the data and sends this information

through an RPC to the CFAR process which is coded in C language. The CFAR

process or outputs detections, which are sent back to G2 through another RPC.
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In the ES CFAR application, as well as in a wide variety of other applications,
the best solution for a problem results from a combination of symbolic and
procedural programming. Knowledge engineers must analyze the problems and
decide how to distribute them between procedural code (either in G2 or remote
procedures) and expert system techniques. In the ES CFAR system the use of remote

procedures in the form of C code results in a faster system as well as the ability to use
statistical routines not provided in the expert system development shell (G2).

2.2 KBS Overview

A variety of diagrams have been developed to design and illustrate the ES

CFAR system since both procedural and symbolic aspects need to be represented.
Figure 1-1 showed an overall schematic of the current ES CFAR system that

emphasizes data flow and data displays. Beginning at the upper left of Figure 1-1,
radar data flows to the baseline CFAR and ES CFAR processes. The baseline CFAR
path represents conventional CFAR processing and is indicated by everything above
the horizontal dashed line. The radar data may be either simulated or measured. A
display of received power versus range is available by "clicking" on the POWER-
VERSUS-RANGE icon. The baseline process exercises a user selected CFAR
algorithm on the same data as the ES CFAR process for comparison purposes. The
output of the baseline process is a list of detections, which can be displayed in PPI

format ("click" on BASELINE-CFAR-PPI) and which flows to the performance
monitoring process for calculation of actual Pd and Pf. The CFAR-PROCESSING-
PERFORMANCE icon brings up a comparison display of time histories of Pf and Pd
for the baseline and ES CFAR processes.

The radar data also flows into the ES CFAR process. Prior to actual ES CFAR

processing, the radar data flows to a series of processing routines (the pre-processor)
that find discretes, classify the radial of data into relatively homogeneous clutter
regions, and integrate additional sources of information such as geographic data,
radar position information, user input and knowledge about the target. This
information is used to select the CFAR algorithm(s) to be used for the various
clutter regions. A list of clutter regions and the associated CFAR algorithms then
flows to the ES CFAR process. The ES CFAR process exercises the CFAR algorithms
on the radial of data and produces a list of detections. Currently, Cell Averaging,
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Greatest-Of, Trimmed Mean, and Ordered Statistics CFAR algorithms are being
implemented. The WEIGHTING AND FUSING and FALSE ALARM CONTROL

processes will then operate on this list of detections to produce the final list of ES
CFAR detections. These two processes have not yet been implemented. The list of
detections flows to the PERFORMANCE MONITORING circuit so the actual Pf and
Pd for the ES CFAR process can be computed and displayed. As with the baseline
process, a PPI display of detections is available from the AI-CFAR-PPI icon and the
time history of Pf and Pd is available from the CFAR-PERFORMANCE-
MONITORING icon. The TRACKER process will operate on the list of detections
and maintain a target track, when it is fully implemented.

While the basic data flow through the ES CFAR system can be seen in Figure
1-1, another diagram is needed to show where these processes are implemented and
how the data is transferred between them. Figure 2-3 presents this kind of
information. As noted earlier, several software tools are being used in the ES CFAR

system. The user interface, process control, and inferencing are performed by G2
and include the following items in Figure 2-3:

"* Overall Process Control

"* Radar Parameter User Interface
"* CFAR Parameter User Interface
"* Data Weighting

"* CFAR Selection
"* Detection - Weighting-a nd-Fusing
"* False-Alarm Control

"* Performance Monitor
"I Pd - Pf - Statistics

Computationally intensive processes are implemented using remote
procedures, called through GSI. These remote procedures are being developed in C

and include the following functions in Figure 2-3:

"* Radar Data Generator
"* Statistical Distribution Identifier
"* Clutter Classifier
". Baseline CFAR Process
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* ES CFAR Process
* Tracker

Processes that need a quality graphical display capability are implemented
using a commercial graphics package called PV-WAVE. These processes include:

* Target User Interface
* Clutter Map User Interface
* Radar Data Plot
• PPI Plot

The remaining items include various data transfer items needed for inter-

process communication.

Examples of G2 subworkspaces are shown in Figures 2-4 through 2-7. The
user begins the simulation from the G2 main menu by selecting "Get Workspace"
and then selecting the "Welcome" workspace, shown in the upper left panel of
Figure 2-4. Desired subworkspaces then appear automatically or are user selectable

as the user sets up the simulation. The source for the radar can be selected (i.e.,
simulated or real), although the "actual I-Q data" selection has not yet been
implemented. Figure 2-5 shows the subworkspaces and menus for setting up the
radar. Predefined radars can be selected and radar parameters can be modified
through the radar subsystems tables. Next the CFAR selection menu appears as

shown in Figure 2-6. One CFAR algorithm can be chosen for the baseline CFAR.
Any or all of the CFAR's can be chosen as candidates for the ES CFAR selection
rules. Currently, simple rules only for testing purposes are being used (e.g., always

choose OS). Next the subworkspace of "Simulation Map" appears as shown in
Figure 2-7. The user can place targets on the map and change clutter attributes by
clicking on the CFAR-TESTING-CONTROL button. The actual simulation begins
when the "Simulation On" button is selected.

G2 begins the radar simulation process by calling the appropriate remote
procedures. As the user defines the simulation via menus in G2, data is sent to the

remote procedures and is stored in global variables. For example, when the radar
has been defined by selecting a predefined radar and perhaps changing some of its
parameters (as shown in Figure 2-5), the information is passed to the remote
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procedures by calling the remote procedure SEND-RADAR-PARAMS, which stores
the information in a global data structure. The radar parameters are thus made
available to the other remote procedures. The user can select clutter regions and set
various attributes of the clutter, such as statistical distribution, backscatter
coefficient, and distribution shape parameters from the "Simulation Map"
subworkspace shown in Figure 2-7. The clutter region information is passed to the
remote procedures by calling SEND-CLUTTER-PARAMS for each of the clutter
regions. The clutter regions are stored in a linked-list structure. Similarly, the user
can create targets and place them relative to the radar location. The list of targets is
sent to the remote procedures where it is stored as a linked list. The target attributes
that are currently passed are range, azimuth, and radar cross section, as shown in the
lower right panel of Figure 2-7.

Workspaces contain logically related objects. It is convenient for the user of
the ES CFAR system to also provide documentation on the workspace. A
documentation tool, shown in Figure 2-8, was written to help the KB developer
document items on the workspace. A sample of documentation on a subworkspace
is shown in Figure 2-9.

2.3 Simulated Data

The current set of remote procedures contains functions to generate

statistically independent random variates with exponential, Weibull, and log-
normal distributions. During the course of the ES CFAR system development,
many tests have been run to verify the correct performance of the functions in the
remote procedures. The gen raddata function generates received power data and
stores it in an array for subsequent processing. The data is currently stored in a disc
file for interfacing to PV-WAVE for plotting. (With the new version of PV-WAVE,
this disc file will be eliminated because disc access is relatively slow for inter-process
communication.) Figure 2-10 shows received power versus range for a noise-only
environment. The data follows an exponential distribution. Figure 2-11 shows the
corresponding received power histogram for the noise-only radial, with amplitude
converted to dB. A radial of data with a segment of Weibull-distributed clutter
added to the noise is shown in Figure 2-12. The clutter extends from range cell 333
through range cell 665 with a backscatter coefficient of 10-7. A received power
histogram of this data is shown in Figure 2-13. In addition to clutter, gen_rad_data
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current show radar instances

radar (show radar definition)
parameters

cho! rdar rules•

All info describing g2 radar parameters which might
need to be input to remote procedures can be found by
using the action buttons shown above.

Output to radar data generator.
1) the radar attributes of radar-in-use

Input to g2 from radar data generator.
1) current bore-sight SEND-RADAR-PARAMETERS

The rule to send the radar-in-use data to the g2
procedure, send-radar-data, is highlited in blue on the
workspace shown by the following action button.

(show rule workspace)'

RPC-RETURN-STATUS

declare remote radarýparams (integer,
integer, integer, float, float, float, float,
float, float, float) = (integer)

Figure 2-9: Subworkspace of current-radar-parameters, with associated

documentation and links to other related workspaces.
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Figure 2-10: Representative noise-only radial of radar received power.
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Figure 2-11: Histogram of received power in noise-only radial.
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Radial Octo Plot
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Figure 2-12: Radial of received power including noise and a segment of Weibull

clutter. The clutter extends from range cell 333 to range cell 665.
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Figure 2-13: Histogram of radial con aining noise and a Weibull clutter segment.
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can add targets and discretes. This is illustrated in Figure 2-14. The largest return in
Figure 2-14, at range cell 400, is the target. Additional high values of received power

are mainly discretes, which have been added every 20 km. Figure 2-15 shows the
histogram of the radial with noise, clutter, discretes and a target included.

A number of statistics are computed on the clutter segments. These statistics

are sent from the remote procedures to G2 by a call to send-clutter-regions. It is
anticipated that these statistics will be used in selecting the CFAR algorithm for a
given clutter region. Figure 2-16 shows G2 tables of statistics for two clutter

segments. The statistics are the mean, median, minimum, maximum, standard
deviation, skewness, kurtosis, and the autocorrelation at lags (delays) 1, 2 and 3.

2.4 Implementation of CFAR Algorithms

Four CFAR algorithms have been selected for use in the ES CFAR knowledge
base: Cell averaging (CA), greatest of (GO), ordered statistics (OS), and trimmed
mean (TM). These algorithms were coded in C, using the description in Gandhi

and Kassam [1]. The C functions are designed to operate on a sliding window, with
the test cell at some location within the sliding window. For the baseline
implementation, the calling function moves the sliding window through the radial
of data, with the test cell centered in the window. Tests are not performed for the
first n/2 range cells or the last n/2 range cells, where n is the number of values used

for the sliding window, since a full window is not available for averaging in those

cases.

In the AI implementation, the radial is divided into segments of relatively
homogeneous clutter, based on the clutter edges. The ES CFAR module receives a
list of segments from G2 and then exercises the appropriate CFAR algorithm in a

given clutter segment. Since the radial is divided into multiple segments, the

baseline method of applying the sliding window would result in excessive gaps in
range cell processing at the transition regions between segments. Therefore, a

different sliding window method is used for the ES CFAR. In the ES CFAR
function, the first range cell is also the first test cell. The sliding window is

composed of n range cells at farther ranges as shown in Figure 2-17 (a). The window
remains fixed while the test cell advances until the test cell is centered in the

window. The window and test cell then advance together, keeping the test cell
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Figure 2-14: Received power for a radial containing noise, clutter, a target, and
discretes. The target is located at range cell 400. Discretes are located
every 20 range cells.
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Figure 2-15: Histogram of radial containing noise, clutter, a target, and discretes.

33



Description of TRUE-CLUT-83OUND-LIST.

The following Items are members of this boundary-list:

dary

User restrictions none User restrictions none

Names none Names none

Begin cell 0 Begin cell 333
End cell 332 End cell 666

Clutter type noise Clutter type log-normal

* Dlscretes 0 Discretes 1

Clut stat a stats Clut stat a stats

*Notes OK Notes OK
User restrictio~ns none User restrictions none

Names none Names none
Mean 1 .63652e- 14 Mean, 7.71798e- 11

Median 1.12963e-14 Median 7.58401ea-13
Min 7.3772ge- 18 Min 3.64301a- 15

Max 13.791941 e-14 Max 2.22742e-8

Sdev 1.56025e- 14 Sdev 1,22144e-9
Skew__1__55_ Skew 17.974

Curt__Z.484_ Curt 323.554

_____3.08943e-2 Lagi -3,4986ge-3

Lag2 2.4414e-2Lag2 -3,22977e-3

Lag -4025e-2Lag3 -3.01805e-3

Figure 2-16: Two instances of the object "boundary". The left represents a segment
of noise. The right represents a segment of Weibull clutter, a target,
and discretes. The attribute "a stats" is itself an object with attributes
that define the statistics of the segment.
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Figure 2-17 (a): Sliding window and test cell for processing the first cell in a

clutter segment (expert system path).
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Figure 2-17 (b): Sliding window and test cell for processing the second cell in a
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centered, until the leading edge of the window reaches the end of the processing
segment. At that point the window remains fixed while the test cell advances
through the window. The various test cell and window states are illustrated in
Figure 2-17 (a-e).

When the first processing segment within the radial is completed, the
window is positioned at the start of the next segment with the test cell designated as

the first range cell of the new segment. Processing continues as before until all
segments in the radial have been processed.

Implementation of the CA and GO algorithms is straightforward. Processing
is mainly the accumulation of sums. However, for the OS and TM algorithms the
data needs to be sorted and then either a value is picked (OS) or the smallest and
largest values are censored (TM). Sorting is accomplished by a heap sort [2] of the

pointers to range cells in the radial of data. The data in the radial is therefore
undisturbed for processing adjacent test cells.

In making detection decisions, a threshold multiplier is needed for
calculation of the threshold from the appropriate test statistic from the data. The
threshold multipliers are computed based on the Gaussian assumption as in Gandhi
and Kassam [1]. These equations are solved by bisection numerical techniques in a
separate program for several values of Pf and the values are inserted in the

functions that implement the sliding window. The solution of these equations will
be added to the remote procedures of the ES CFAR system and provide threshold
multipliers that can be updated for any radial.

2.5 Performance Measures

The performance measures implemented in the current ES CFAR system are
the actual Pf and Id for the baseline and ES CFAR processes. Since the target
locations are known for the simulated data, the list of detections can be divided into
true detections and false alarms. These numbers are accumulated along with the
number of test cells and the actual Pf and Pd are computed as:

P= (number of false alarms)/(number of test cells without targets)
Pd = (number of true detections)/(number of actual targets)
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Figure 2-17 (c): Sliding window and test cell when the test cell is far from a

clutter boundary (expert system path).
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Figure 2-17 (d): Sliding window and test cell for the second to the last test cell in
a clutter segment (expert system path).
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Figure 2-17 (e): Sliding window and test cell for the last test cell in a clutter
segment (expert system path).
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The Pf and Pd for both the baseline and ES CFAR processes are sent to G2

using GSI, the G2 Standard Interface. GSI is used to build interfaces between G2 and

external applications. Currently, the display of Pf and Id on the time history plot

causes data-seeking for values of Pf and Pd. That is, when the display realizes it

needs a value for the variable Pf or Pd, it searches for it. Sample time histories of Pf

and Pd are shown in section 2.6.

2.6 Testing and Verification of CFAR Algorithms

Several different tests were performed on the CFAR algorithms during their

development and integration into the ES CFAR system. The CFAR algorithms were

developed on a 486 computer using Borland C++. A 486 was used so that the SUN

SparcStation could be used for other work that required its graphical capabilities.

While a CFAR algorithm was being developed, a test program was used to generate

a radial of exponentially distributed clutter to exercise the CFAR algorithm. The test
routine computed an actual Pf, which could be compared to the value used to set the

threshold for the CFAR routine (ie: the design Pf). When a CFAR routine passed

this test, it was then ported to the Sun SparcStation.

To assure that the CFAR routines were correctly incorporated into the ES

CFAR system, several test runs were performed. A test case was constructed by

inserting a Swerling I target of known radar cross section at a specified range. The

test was constructed in this manner to perform a sensitive test of CFAR function

logic, threshold calculations, and the distribution of the simulated radar data. To

construct the test case, the "AK" radar, which is one of the representative radars
included in the ES CFAR system, was selected. For a known SNR, the Pd for a

Swerling I target can be computed for exponential clutter or noise using the

equations found in Gandhi and Kassam. A SNR of 10 dB was selected since it

provides a Pd of approximately 0.5. For the "AK" radar parameters, a target with a

radar cross section of -20 dBsm at 74.87 km will give a 10 dB SNR, using the standard

radar equation.

To test the CFAR routines in. the ES CFAR system, additional rules were

added to the knowiedge base to conveniently set up the test. These rules generate

targets with a user selected RCS and insert them in the list of targets at azimuths
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that are one beamwidth apart. This setup gives a sufficiently large number of actual
targets within a reasonable amount of run time to compute actual Pd. In setting up
the test cases, the Pf is set to a rather large value, 0.001, so that many false alarms
occur for calculation of actual Pf. In addition, the four CFAR algorithms were tested

separately , so rules were added to select only a predetermined CFAR for the ES
CFAR path. The same CFAR algorithm was selected for both the baseline and ES
CFAR paths. The ES CFAR system was then run long enough to generate at least

300 detected targets.

One of the workspaces in the ES CFAR system allows the user to monitor
actual Pf and Pd. The GSI returns values of actual Pf and Pd for both the baseline

and the ES CFAR paths. The history-keeping attribute is set so that the previous 200
values can be shown on a graph. Time history performance measures were
produced during the test runs by saving values to disk and post-plotting them using
Microsoft Excel. These are shown in Figures 2-18 (a-h). The first four figures are the
baseline and ES CFAR actual Pf's for CA, GO, OS and TM CFARs. The Pf's for the

baseline and ES CFAR paths are slightly different (even though they used the same
CFAR algorithm) due to the ES CFAR sliding window procedures discussed in
Section 2.4. The last four figures show the actual Pds for the baseline and ES CFAR
paths. Idoally, these Pd's should be identical for the baseline and ES CFAR paths
since all of the targets are within the range cells processed by the baseline CFAR.
Since both paths operate on the same data, results should be identical.

The operation of the CFARs is a statistical process and the outcome of the
application of a CFAR has some uncertainty. The logic of the algorithm can be (and
was) tested deterministically. However, to assess actual Pfs and Pds, statistical tests
must be used. The actual Pf's and Pd's are random variables whose dci,tributions are

approximately Normal [3] when np (l-p) >9, where n is the number ot data points
used to estimate the probability and p is the probability being estimated. The
uncertainty or standard error of an estimated probability is approximately SQRT
[(p(1-p)/n]. A standard statistical test can be used to determine if the Pf and Pd from

a test run are acceptably close to their design value (for Pf) or to their calculated
value (for Pd). Tables 2-1 and 2-2 show the actual and expected values of Pf and Pd at

the end of the test run. The approximate confidence intervals have been computed
and are shown in the tables. All estimates of Pf and Pd are within 2 standard errors
of their expected values. There is thus no evidence to reject the hypothesis that the
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Figure 2-18 (a): Time history comparison of actual Pf for baseline and expert
system processing when the CA algorithm is used for both. Pf's

vary slightly since the ES processing is different near edges.

Results are for exponential (power) background only.
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Figure 2-18 (b): Time history comparison of actual Pf for baseline and expert
system processing when the GO algorithm is used for both. Pf's

vary slightly since the ES processing is different near edges.

Results are for exponential (power) background only.
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Figure 2-18 (c): Time history comparison of actual Pf for baseline and expert
system processing when the OS algorithm is used for both Pf's
vary slightly since the ES processing is different near edges.
Results are for exponential (power) background only.
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Figure 2-18 (d): Time history comparison of actual Pf for baseline and expert
system processing when the TM algorithm is used for both. Pf's

vary slightly since the ES processing is different near edges.
Results are for exponential (power) background only.
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Figure 2-18 (e): Time history comparison of actual Pd for baseline and expert
system processing when the CA algorithmn is used for both. The
RCS of the Swerling I target is set to provide an average SNR
of 10 dB.
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Figure 2-18 (f): Time history comparison of actual Pd for baseline and expert

system processing when the GO algorithm is used for both. The

RCS of the Swerling I target is set to provide an average SNR

of 10 d[B.
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Figure 2-18 (g): Time history comparison of actual Pd for baseline and expert
system processing when the OS algorithm is used for both. The
RCS of the Swerling I target is set to provide an average SNR
of 10dB.
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Baseline TMV CFAR
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Figure 2-18 (h): Time history comparison of actual Pd for baseline and expert
system processing when the TM algorithm is used for both. The
RCS of the Swerling I target is set to provide an average SNR
of 10 dB.
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Table 2-1. False Alarm Probability Comparison.

CFAR Specified Baseline AI-CFAR # of data Confidence
Interval

CA 0.001 0.00104 0.00103 419 4.88E-05
GO 0.001 0.00105 0.00103 452 4.7E-05

OS 0.001 0.00102 0.00101 321 5.58E-05

TM 0.001 0.00097 0.00096 383 5.11E-05

Table 2-2. Detection Probability Comparison.

CFAR Calculated Baseline AI-CFAR # of data ConfidenceInterval

CA 0.5 0.537 0.537 419 0.024427

GO 0.49 0.527 0.527 452 0.023513

0S 0.42 0.474 0.474 321 0.027548

TM 0.49 0.517 0.517 383 0.025544
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estimated Pf and Pd are equal to their expected values. It was therefore concluded

that the CFAR algorithms, the exponential random number generation, the
operation of the CFAR algorithms through the baseline and ES CFAR paths, and the

threshold value calculations were operating correctly.
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3.0 CFAR EVALUATION

In parallel to the development of the ES CFAR system, individual CFAR

algorithms are being evaluated against a variety of environments. The backgrounds

that are being considered include both Gaussian and non-Gaussian as well as both

homogeneous and non-homogeneous conditions. In each case, however, the CFAR

algorithms are designed for the Gaussian condition. The development of CFAR

algorithms for the non-Gaussian case was determined to be outside the scope of this

effort. However, some exploratory work was performed in that area.

When using the Gaussian assumption on non-Gaussian data, CFAR
performance degrades. Specifically, the actual Pf generally exceeds the design Pf. It is

not always possible to force the actual Pf to equal the design Pf by raising the

threshold, but even when this is possible detection performance drops dramatically.

Nonetheless, some CFAR algorithms do perform better than others in non-

Gaussian conditions. This section summarizes the results of the analysis of

individual CFAR algorithms in various environments. These results will be used

to form some of the rules for the expert system.

3.1 Introduction

In Constant False Alarm Rate (CFAR) radar systems, the aim is to

automatically detect a target in a non stationary noise and clutter background while

maintaining a constant probability of false alarm. "'Clutter" refers to any undesired

radar signal echo that is reflected back to the receiver by the scatterers that are not of

interest to the radar user. Examples of unwanted echoes, or clutter, in radar signal

detection are reflections from buildings, sea, rain, birds, chaff etc. The classical

detection with a matched filter, followed by a fixed threshold cannot be used for this

purpose. This is because when the threshold is fixed, depending on the varying

characteristics of the background, either the false alarm probability increases or

detection probability decreases intolerably. Therefore, adaptive threshold techniques

are needed to maintain a constant false alarm rate (CFAR). For the adaptive

threshold setting, information (estimates of the mean level of clutter-plus-noise) is

obtained from the local environment of the test cMll. This local environment

consists of the surrounding range cells and can be defined as a reference window

around the radar test cell [4]. In the conventional cell averaging constant false alarm
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rate detector, (CA-CFAR), the threshold is obtained from the arithmetic mean of the
reference window cell samples (5]. When the background is homogeneous and the
reference window contains independent and identically Jistributed (1ID)
observations governed by the exponential distribution, the CA-CFAR processor
maximizes the detection probability, Pd [6, 7]. As the length of the reference window
increases, the detection probability, of this system approaches that of the classical

Neyman-Pearson optimum detector where the background interference
information is known a priori. For the CA-CFAR, the main assumptions are that
the reference window is Gaussian, homogeneous and the Ltatistics of interference in
the reference window cells are the same as the statistics of interference in the test
cell. When this assumption is violated the processor performance degrades
significantly. There are two well-known situations in which this assumption does
not hold. These are when clutter-edges and multiple target returns are in the
reference window.

In the CFAR processor, the square-law detected video range samples are sent
serially into a shift register of length (N+1) as shown in Figure 3-1. The leading N/2
samples and the lagging N/2 samples form the reference window cells which are
then processed to get the statistic Z, the estimate of the total noise power. To
maintain the probability of false alarm, Pf, at a desired constant value when the total
background noise is homogeneous, the statistic Z is multiplied by a scale factor T for
a given reference window size N. The product TZ is the resulting adaptive
threshold. The test cell sample, Y, from the center tap is then compared with this
adaptive threshold in order to make a decision. In the design of most systems, the
noise samples and target-plus-noise samples are assumed to be Gaussian random
variables and the threshold is obtained from the background noise samples which
are assumed to be homogeneous, i.e. the samples are independent identically
distributed (iid) random variables [5, 7].

Each sample of the received signal from the noisy background has two
components, namely the in-phase and the quadrature-phase components. These
components are iid Gaussian random variables when the environment is Gaussian.
At the square-law detector in the receiver, the square of each component of the
received signal samples are summed. The noise sample Xi in the reference window

is obtained as
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Figure 3-1: A typical CFAR processor configuration.
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X, = Vi + i .. (3-1)

where Vjl and V12 are the two components of the returned signal and are
independent zero mean Gaussian random variables with the same variance of a,.

In this case, Xj is an exponentially distributed random variable with a single
parameter 2o'a.

The tes' cell sample, Y, is also a Gaussian randorm variable and is defined as:

y = { )(', + (V + Y2)2,when there is a target (3-2)
Vl1 + V2 ,when there is no target

where VI and V2 are noise sample components, Yj and Y2 are target sample
components, and all variables are zero-mean Gaussian random variables with
variances tj for noise sample components and o'7 for target sample components.

Trhe random variable Y is also exponentially distributed with parameter 2(o' +a 2)

when there is a target and with parameter 2a', when there is no target. All samples

(reference window cells and test cell) are independent.

The power of the noise samples in the homogeneous Gaussian environment is
equal to 2o' , that is

E[X,]=2a' (3-3)

which is the parameter of the exponential distribution. So the CFAR processor
estimates the parameter of the exponential distribution and uses this estimate in the

decision process. Probability of false alarm and probability of detection are defined as

PF = Pr(say "H, :there is target"J"H,,: there is no target") (3-4)

Pd-Pr(soy "lI :there is target"I"HI1 : there is target") (3-5)
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In general, the noise power level transition from a clear to a clutter
environment is not smooth and can be represented by a step function. This type of
transition in the reference window is called a clutter edge. Clutter-edges can affect
the system performance in two different ways [4,8]: In the first case, if the test cell is
in the clear region but some of the reference cells are covered by clutter, then a
masking effect arises. The average of the samples from clear and clutter reference
cells increases and raises the threshold. This results in reduced detection and false
alarm probabilities even though there is a high signal-to-noise ratio (SNR) in the
cell of interest. In the second case, the test cell is immersed in the clutter, but some
of the reference cells are in the clear region. Then the threshold becomes relatively
low for a test cell sample covered by clutter. The false-alarm probability increases
intolerably as the discontinuity between the clear area and the clutter area noise
power levels increases [4, 8, 9].

When there is another target (known as an interfering target) within the
reference cells, the threshold rises and the detection of the target in the test cell
(known as the primary target), seriously degrades [10, 11].

Some modifications have been proposed to deal with the problems of the non
homogeneous background. These new schemes do not have the most powerful
estimation procedures for the homogeneous background, but they are more
resistant to "outliers" and are robust in a non homogeneous background. Due to
these modifications some performance loss of detection in a homogeneous
background is introduced, but the improved detection in a non homogeneous
background is obtained when compared with CA-CFAR.

In some of these modified schemes, the reference window is divided into two
subwindows, known as the leading and the lagging windows, symmetrically around
the test cell. In order to regulate the severe increases in the probability of false alarm
in the region of clutter-edges, Hansen [8] has proposed the selection of the greater-of
(GO) the sums in the leading and lagging windows for the estimation of noise
power. The additional detection loss introduced by CAGO-CFAR in the
homogeneous background is found to be quite small (0.1-0.3 dB) [9, 121. Although
CAGO-CFAR outperforms the CA-CFAR in the region of clutter edges, it is unable
to resolve the closely spaced targets. Weiss [11] has shown that when there is an
interfering target in the reference window with magnitude equal to the primary
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target, the detection probability of CAGO-CFAR degrades severely. Rohling [13] has
demonstrated this result by doing simulation. He has also shown that in the case of
different magnitudes, the target with the smaller magnitude is frequently

"masked" by the other one.

In order to detect two closely spaced targets, Trunk [14] has proposed the
selection of the smaller-of (SO) the sums in the leading and lagging windows for the
estimation of noise power. He has shown by simulation that this scheme resolves
two closely spaced targets very well. Weiss (11] has shown that in a homogeneous
background CASO-CFAR has a small detection loss over CA-CFAR as long as the
size of the reference window is kept large, e.g., for Pf = 10-6 and Swerling I targets, it
is 11 dB for N=4 and only 0.7 dB for N=32. However, as shown by Gandhi and
Kassam [1] the detection performance of the CASO-CFAR detector degrades
considerably if interfering targets are located in both the leading and the lagging
windows. This is because at least one interfering target will raise the threshold
value which then leads to masking of the primary target. In addition to this, the

CASO-CFAR does not maintain a constant false alarm rate at clutter-edges.

As discussed above, the conventional CFAR schemes can not handle all
situations occurring in the background. The drawbacks of these schemes motivate
the design of new CFAR schemes which should have the advantages of the already
known schemes but avoid their disadvantages. In other words the new CFAR
schemes should be robust with respect to interfering multiple target signal returns
and/or clutter edges.

Recently a CFAR processing scheme which uses ordered statistics has been
introduced by Rohling [13]. It is called the ordered statistics CFAR (OS-CFAR) and is

considered to be a robust processor.

The OS-CFAR scheme estimates the noise power level by picking the kth
smallest sample in the reference window of size N. Rohling [13] has shown that for
the exponential noise model, the false alarm probability is independent of the total
noise power . Gandhi and Kassam [1] have shown that with a little degradation in
detection probability, the OS-CFAR scheme in exponential homogeneous noise
background resolves closely spaced targets effectively for k different from the
maximum. However, it is unable to prevent excessive false alarm rate at clutter-
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edges, unless for the threshold estimate it uses the ordered sample near the
maximum, that is unless k is very close to N. But in this case the detection
performance of the scheme degrades.

In a more generalized OS-CFAR, ordering can be combined with an
arithmetic mean. This combined procedure is known as trimmed mean (TM)
filtering. CA-CFAR and OS-CFAR are special cases of the general TM-CFAR. In the
TM-CFAR, the samples in the reference window are ordered and then trimmed
(censored) from both upper and lower ends. The remaining samples are summed.
Trimming can be symmetric or asymmetric at the ends. Gandhi and Kassam [1]
have analyzed the TM-CFAR processor. It is shown that by choosing appropriate
trimming parameters for asymmetric trimming, in regions of clutter transitions, it
is possible to have the false alarm rate of TM-CFAP. better than that of OS-CFAR for
the same number of reference cells, while also maintaining marginally better
detection performance in the homogeneous noise background.

3.2 Performance Analysis of CFAR Processors in K-Distributed Clutter

This section investigates the behavior of CA-, CAGO- and OS-CFAR
algorithms in non-Gaussian environments, when the algorithms are designed for
Gaussian conditions.

The design of a CFAR processor depends on the given specifications of the

system. For the CA-CFAR and CAGO-CFAR processors, these specifications include
the false alarm rate, Pf, the reference window size, N, and based on these two
parameters the corresponding constant scale factor, T. For the OS-CFAR, in addition
to PF and N, the order number of the sorted reference window sample, k, must be
specified before calculating the :,rresponding constant scale factor T. It should be
noted that the value of T is different for each CFAR algorithm.

As typical values for the false alarm rate and reference window size, this
analysis uses Pf = 10-3, 10"4,...,10-6, N = 16, 24, & 32 for the CA-CFAR and CAGO-

CFAR processors and Pf = 10-3, 10-4,...,10"6; N = 16,24, & 32 ; k = (8, 9,...,16), (12, 13,...,

24), (16, 17,..., 32) respectively for OS-CFAR processor. For each case, the
corresponding scale factor T is calculated assuming a Gaussian noise environment

when a square-law detector is used. The operation of the algorithm in Gaussian
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environment is verified for each processor. The number of Monte Carlo simulation
runs for each case has been selected as 100/Pf or 1000/Pf.

As an example of the non-Gaussian environment, the K-distribution has
been selected as the clutter model. In general, the probability density function (pdf)

of the K-distribution is given by

41.
p(x) -(cx) K,,.-1 (2cx) (0 : x < C,)

where

K,(x) is a modified Bessel function

a is the shape parameter

c is the scale parameter

The 'spikiness' of the K-distributed clutter is heavily dependent on the value
of the shape parameter a [15, 16, 17, 18]. The value of a generally lies between 0.1
for very spiky clutter and cc for overall Rayleigh clutter where its probability density

function becomes

X2

X ' X

g(x)= -e 20 ,x>(> (3-6)

with parameter 9. In Figure 3-2, the K-distributed pdf is plotted for several values of
the shape parameter.

In the Gaussian environment, the scale factors of the CFAR processors have
been calculated with the assumption of a square law detector preceding the
processor. The envelope magnitude of the received signal has been modeled as
having a K-distribution So, in order to have K-distributed samples in the reference
window, the receiver needs to use a linear detector. However, a linear detector has a

scale factor value for the CFAR processor that is different from the square-law
detector.
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Figure 3-2: The K-distribution pdf for several values of the shape parameter. As

the shape parameter increases, the K-distribution approaches the

Gaussian condition (Rayleigh amplitude).
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In general, it is difficult to analytically calculate the scale factor of a CFAR
processor with a linear detector. As an exception, for the OS-CFAR processor, a
simple relation exists between scale factor values of linear and square-law detectors
which makes it possible to find the scale factor of the linear detector without delving
into analytical calculation. For the OS-CFAR detector the relation between these
two values is given as

Tuin =-" •T'S-L

where Tlin is the scale factor for the linear detector and TSL is for the square-law
detector.

The OS-CFAR processor was simulated with a linear detector in a K-
distributed clutter-only environment while the parameters were set for a Gaussian
environment.

The false alarm rate simulation results of OS-CFAR processor in K-distributed

homogeneous clutter are shown in Table 3-1.

a P, (l00,0runs)

0.1 0.09017
0.25 0,05056

0.5 0.03034
1.0 0.01720
5.0 0.00457

50 0.00130

500 0.00103

Table 3-1: Simulation results of the OS-CFAR processor in K-distributed
clutter. Design Pf = 10-3, T = 2.138, N = 32, k = 27.

From this table we observe that the OS-CFAR processor is not able to
maintain a constant false alarm rate in a spiky clutter environment (a < 5).
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This simulation result is also in agreement with the result of the work done

by Armstrong and Griffiths [18]. In their analysis, they have also assumed a linear
detector and have shown that among CA-, CAGO- and OS-CFAR processors, the OS-
CFAR processor is the most susceptible of the three to the effects of spiky clutter. In
the homogeneous spiky K-distributed clutter environment, the CA-CFAR processor
outperforms the other two and the CAGO-CFAR processor lies between the CA and
OS processors in terms of performance. But for the ultimate choice of the type of
CFAR processor to be used, other factors, such as the susceptibility to clutter edges
and interfering targets must be evaluated.

In the rest of this analysis, it is assumed that the CFAR processor is preceded
by a square-law detector so that the sample magnitudes are squared before they are
sent to the CFAR processor.

In Section 3.2.1, the simulation procedure is explained. In Section 3.2.2 ,the
simulation results are given for homogeneous and non homogeneous background

conditions. In the homogeneous K-distributed clutter-only environment case, the
simulation error Confidence Interval curves are shown for both Pd and Pf versus
the shape parameter of the K-distribution.

3.2.1 Simulation Procedure

In the design of a CFAR processor, the threshold multiplier, T, is calculated in
terms of the given reference window size, N, false alarm probability, Pf, for the CA-
CFAR and the CAGO-CFAR processors and in addition to the parameters given

above, the order number, k, for the OS-CFAR processor. A look-up table is made for
the threshold multiplier, T, for several values of the parameters given above.

Initially, assume that the clutter returns are much stronger than the Gaussian
noise so the samples from background consist only of K-distributed clutter returns.

The in-phase and quadrature-phase components of the complex low-pass K-
distributed clutter signal is defined as

2= Zc +.jZs (3-7)
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where the real part, Zc, is the in-phase component and the imaginary part, Zs is the

quadrature-phase component of the signal. It can be rewritten as

Z =(X. +,±Xs)S (3-8)
= XC.S +jixS

Then we have

Zc = XcS (3-9)

Zs = XsS (3-10)

where Xc and Xs are Gaussian random variables with zero mean and variance 1. S is
a generalized Chi distributed random variable, The probability density function

(pdf) of the generalized Chi distributed random variable is obtained from the
Gamma pdf by the transformations = V2y/c. The Gamma pdf is given by

.fy0) = - y>O (3-11)
F(ca)

where a is the shape parameter and F(.) is the Gamma function Hence, the pdf of S
is found as

2 •,2-2 -ILL
f(s)(a) , s > 0 (3-12)

where a is the shape parameter and c is the scale parameter.. The magnitude of the
complex variable Z gives

Il=P.S (3-13)

where P = �2 + 2 and has Rayleigh distribution, and S has the generalized Chi

distribution. Let's denote the product PS by W, then the density function of K-
distributed random variable W is
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,lfLw)=-2 ._ 2 K,,-,(cw) , w >() (3-14)

where a is the shape parameter, c is the scale parameter and Kv(x) is the modified

Bessel function of the second kind.

As seen above, the magnitude of the clutter is a K-distributed random
variable. In CFAR processors the magnitude of the sample is squared and then fed
to the shift register.

In the simulation analysis, we have generated the K-distributed random
variables, for a given shape parameter a, by generating Rayleigh and generalized

Chi distributed random variables arid then multiplying them as explained above.
One of the features of CFAR structure is that the false alarm probability is
independent of the scale parameter of the homogeneous background distribution.

The target is modeled as a slowly fluctuating target, in which case the

magnitude of the signal returned from the target fluctuates from sample to sample.
It is modeled as a Gaussian random variable. In the low-pass signal representation
it becomes a complex Gaussian random variable. At the test cell, the sample is due
to the target-plus-clutter return. So

U=Uc +.jUs (3-15)
= (Xct + JXst)+ (Xc +.Xs)S

where Xct and Xst are target signal components and are Gaussian random variables
with zero mean and variance a,;X,.X, and S, are clutter return components and are

the same variables as defined before. Then we have

U: = X,", + X,.S (3-16)

Us = Xst + X(S (3-17)
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In simulation of detection performance, the clutter samples in the reference

window are generated from I 2 and the test cell sample from 101".

Probability of detection is defined for a given power ratio of target and clutter

signal returns. The power, P, can be defined as 4[0U2I when there is only target

signal or when there is only clutter. Hence, we get

P,,41.1] l = 2a-'" (3-18)

and

P'Itu,.r = E[I01 4a (3-19)

Then the signal to clutter power ratio, SCR, is given by

2 2
SCR = 2 (3-20)2a

As a rule of thumb, the number of trials in Monte Carlo simulations is picked
as 100 /Pf but in order to minimize the fluctuations in Pd versus a (shape
parameter) plot, the number of trials is 10 times larger, i.e., it is picked as 1000/Pf.

In the simulation, for each run, define Di and Fi as

=I ifdecision is H, when H, is true (3-21)
0i= . otherwise3-1

and

I .f decision is H, when H, is true (3-22)Fi 0 , otherwise3-2

So the unbiased estimates of Pd and P( are:

l= ()~i (3-23)
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'1

Of Fi(3-24)
i=1

where n is the total number of trials. Since the true values of Pd and Pf, are
unknown, in order to see how good the estimates are for a given n, we have
calculated the 95% Confidence Interval. For this the sample variance, C^7,2, is

obtained by

" .-"L , k = 1.,2 (3-25)

where p, = P,. andp. =, . Then the 95% Confidence Interval for the estimates

Pf and Pj are approximately given by [191:

(p, - 20.,,.p, + 2a",,), k = 1,2 (3-26)

By plotting these confidence intervals we have observed whether the differences in
performance among the algorithms are real or could be random variations.

The uniformly distributed random number generator used in the
simulations is described by [20):

xi+l = 16807xi (mod231 - 1) (3-27)

This generator was used with two different initial seed values. The first seed
value was picked to be an odd number. The simulation was run and at the end of
the simulation, the last value of the seed was stored. Then the simulation was
repeated for the same algorithm parameters with this new initial seed value. The

simulation results have been analyzed to determine if there is any significant
difference between performance.

Another generator was also used which is described as

Xi+l = 950706376xi (mod231 _ I) (3-28)
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In all cases, the variations in the simulation results were found to be within
the confidence intervals given before.

When the power level of the background Gaussian noise is comparable to
that of the clutter, the noise+clutter samples are generated by adding the in.-phase
and quadrature-phase components of a complex valued Gaussian random variable
to the respective components of a complex valued K-distributed random variable.
The test cell sample with a target can be generated by adding a complex valued

Gaussian random variable to the complex valued random variable given above. If
Pptarget, Pitarget, Pclutter and Pnoise are the mean-square power levels of the primary
target, interfering target, clutter, and noise respectively, then we define signal
(primary target) to clutter power ratio, SCR, clutter to noise power ratio, CNR, and
signal to interfering target power ratio, SIR, as:

SNR = Ppt arg et / Pclutter (3-29)

CNR = Pelutter i Pnoise (3-30)

SIR = Ppt arget / Pitarget (3-31)

In the simulations the system parameter values have been selected as

Pf = 10- 3  (3-32)

N = 32 (3-33)

SCR = 10dB (3-34)

CNR = 5dB (3-35)

k =27 (for OS- CFAR) (3-36)

and the number of trials as

n = 1OO0/Pf = 1,000,000
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3.2.2 5irnulatisn Results

In all performance plots in this section, the same legend was used for a given
CFAR processor. These legends are as follows:

lgn CFAR Processor

"square" OS(27)-CFAR

"star" CA-CFAR

"plus" GO-CFAR

"diamond" OS(32)-CFAR(iised only in non homogeneous
clutter cases)

where 27 and 32 are the order numbers used for the OS-CFAR. In Pf performance
plots, the horizontal straight line without a legend on it shows the design Pf value
for a Gaussian environment. Eight shape parameter values were selected to run the
simulations. These values are 0.10, 0.25, 0.50, 1.50, 2.50, 5.00, 10.00, 50.00 . The
smaller values of the shape parameter correspond to spiky clutter and the larger
values correspond to nearly Gaussian clutter.

3.2.2.1 Homogeneous Background

In Figures 3-3 through 3-6, the Pf and Pd performance versus shape parameter
of K-distributed clutter are shown for K-distributed clutter-only and K-distributed

clutter-plus-Gaussian noise homogeneous background conditions. SCR was chosen
to be 10 dB and CNR was equal to 5 dB.

In Figures 3-7 and 3-8, the 95% simulation error Confidence Intervals of the Pf

and Pd performance curves are shown for all CFAR processors.
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Figure 3-4: Probability of detection in homogeneous K-distributed clutter as a

function of shape parameter.
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Figure 3-5: Actual probability of false alarm in homogeneous K-distributed clutter
plus Gaussian thermal noise as a function of shape parameter. The
design Pf is 0.001.
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Figure 3-6: Probability of detection in homogeneous K-distributed clutter plus
Gaussian thermal noise as a function of shape parameter.
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3.2.2.2 Non homogeneovs Background

In this section, two cases of non homogeneous bac.kground conditions have
been considered: multiple targets and non homogeneous clutter

Multiple Targets

In Figures 3-9 through 3-14, the Pf and Pd performances versus shape
parameter a of K-distributed clutter are shown for a K-distributed clutter-only
background condition with an embedded interfering target in it. As before, SCR was
chosen to be 10 dB and CNR was equal to 5 dB. Three primary to interfering target
power levels were considered: SIR = 5 dB, 0 dB and • I dB.

In Figures 3-15 through 3-20, the same cases were considered as in Figures 3-9
through 3-14, but this time the background was filled with K-distributed clutter-
plus-Gaussian noise instead of K-distributed clutter only.

Non homogeneous Clhtter

In this section, two different order numbers were used for each case of the OS-
CFAR processor. That is k1=27 and k2=32.

In Figures 3-21 through 3-26, the Pf performances are shown versus a. In
these cases, while some of the reference window cells were filled with point K-
distributed clutter plus Gaussian noise, the rest were filled with only Gaussian
noise. This may happen if the clutter starts to occupy the reference window cells
one by one from one side. This scenario was assumed to be happening in these
simulations which was important for GO-CFAR. For CA-CFAR and OS-CFAR, the
location of the clutter within the reference window is not important. The test cell
(TC) was assumed to be filled with only Gaussian-noise . CNR was equal to 10 dB.

The performances are shown fora values: 0.10, 0.25, 0.50, 1.50, 2.50, 5.00.

In Figures 3-27 through 3-32, the same conditions were repeated as in above,
but this time the test cell (TC) was assumed to be filled with K-distributed clutter-
plus-Gaussian noise.
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Figure 3-9: - Actual probability of false alarm in K-distributed clutter with one
interfering target (S/SI = 5 dB). Design Pf is 0.001.
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Figure 3-10: Probability of detection in K-distributed clutter with one interfering
target(S/SI = 5 dB)
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Figure 3-11: Actual probability of false alarm in K-distributed clutter with one
interfering target (S/SI = 0 dB). Design Pf is 0.001.
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Figure 3-12: Probability of detection in K-distributed clutter with one interfering

target(S/Si = 0 dB)
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Figure 3-13: Actual probability of false alarm in K-distributed clutter with one
interfering target (S/SI = -5 dB). Design Pf is 0.001.
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Figure 3-14: Probability of detection in K-distributed clutter with one interfering

target(S/Sl = -5 dB)
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Figure 3-15: Actual probability of false alarm in K-distributed clutter plus Gaussian
noise with one interfering target (S/SI = 5 dB).
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Figure 3-16: Probability of detection in K-distributed clutter plus Gaussian noise
with one interfering target (S/SI = 5 dB).
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Figure 3-17: Actual probability of false alarm in K-distributed clutter plus Gaussian
noise with one interfering target (S/SI = 0 dB).
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Figure 3-18: Probability of detection in K-distributed clutter plus Gaussian noise
with one interfering target (S/SI = 0 dB).
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Figure 3-19: Actual probability of false alarm in K-distributed clutter plus Gaussian
noise with one interfering target (S/SI = -5 dB).
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Figure 3-20: Probability of detection in K-distributed clutter plus Gaussian noise

with one interfering target (S/SI = -5 dB).

86



PROBABILITY OF
FAt.LBE AL.ARM

... 
O...O 

.. .. ...

-• ,~~~~~~'I/") • ".i,'..

/

G o. 4..

0.01I II

NUMBER OF CELLS IN CLUTTER

CFAR PP IN PT CLUT. ENV..TCwN. SHP-O.1O. CLUT-K+N CL.AR-N, CNR-1O 09

Figure 3-21: Probability of false alarm as a function of the number of cells in K-

distributed clutter. Shape parameter is 0.10. CNR is 10 dB. Test cell is

in Gaussian noise only.
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Figure 3-22: Probability of false alarm as a function of the number of cells in K-
distributed clutter. Shape parameter is 0.25. CNR is 10 dB. Test cell is

in Gaussian noise only.

88



PROBABZLZTY OF
FALSE ALARM

0. 001000

0.000100

0,000010.

0.000001•

1- -

S • -

NUM4BER OF CELLS IN CLUTTER

WIAR PF IN PT CLUT. ENV.. TC-,N, SHP-0.50. CLUT-K+N CLEAR-N. CNA-10 016

Figure 3-23: Probability of false alarm as a function of the number of cells in K-
dis00ibuted clutr. Shape parametr is 0.50. CNR is 10 dB. Test cell is

in G~aussian noise only.
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Figure 3-24: Probability of false alarm as a function of the number of cells in K-0 distributed clutter. Shape parameter is 1.50. CNR is 10 dB. Test cell is

in Gaussian noise only.
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Figure 3-25: Probability of false alarm as a function of the number of cells in K-

distributed clutter. Shape parameter is 2.50. CNR is 10 d8. Test cell is

in G~aussian noise only.
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Figure 3-26: Probability of false alarm as a function of the number of cells in K-
distributed clutter. Shape parameter is 5.00. CNR is 10 dB. Test cell is
in Gaussian noise only.
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Figure 3-27: Probability of false alarm as a function of the number of cells in K-

distributed clutter. Shape parameter is 0.10. CNR is 10 dB. Test cell is

in clutter plus Gaussian noise.
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Figure 3-28: Probability of false alarm as a function of the number of cells in K-

distributed clutter. Shape parameter is 0.25. CNR is 10 dB. Test cell is

in clutter plus Gaussian noise.
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Figure 3-29: Probability of false alarm as a function of the number of cells in K-
distributed clutter. Shape parameter is 0.50. CNR is 10 dB. Test cell is
in clutter plus Gaussian noise.
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Figure 3-30: Probability of false alarm as a function of the number of cells in K-
distributed clutter. Shape parameter is 1.50. CNR is 10 dB. Test cell is
in clutter plus Gaussian noise.
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Figure 3-31: Probability of false alarm as a function of the number of cells in K-

distributed clutter. Shape parameter is 2.50. CNR is 10 dB. Test cell is
in clutter plus Gaussian noise.
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Figure 3-32: Probability of false alarm as a function of the number of cells in K-
distributed clutter. Shape parameter is 5.00. CNR is 10 dB. Test cell is

in clutter plus Gaussian noise.
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Next, it was assumed that some of reference window cells were filled with K-
distributed clutter plus Gaussian noise (K1+N) with CNR1=15 dB eind the rest were
also filled with K-distributed clutter plus Gaussiaii noise (K2+N') but with CNR2=5
dB. The test cell (TC) was assumed to be in K1+N The Pf perforninces in this
environment condition are shown in Figures 3-33 through 3-40 for all eight shape
parameter.

3.2.2.3 Homogeneous Background with Different PF Design Values

in an attempt to bring down the Pf level of the CFAR processors in K-
distributed clutter-only environment down to the desigced level (Pf = 10-3), scale
factors were varied for CFAR processcrs. These scale factors were calculated based
on a Gaussian-only environment assumption, for PF levels at 1)-3, 10-4,...,10-18.
With these scale factors, the PF and PD performance versus shape parameter, in K-
distributed clutter-only homogeneous background condition are shown in Figures
3-41 through 3-46. SCR was equal to 10 dB. The results indicate that for small
values of a , extremely low design Pf rates must be used to achieve the moderate Pf
rates obtained in a Gaussian environment. Unfortunately, this causes Pd to degrade
to unacceptably low levels. In other words, it is not practical to vary the threshold in
a non-Gaussian environment to achieve the same false alarm rate achieved in a
Gaussian environment, if the CFAR is designed using a Gaussian assumption.

These simulation results will be used to develop the decision rules for the ES
CFAR system, to select the best CFAR processor with its parameters set at optimum
values to maintain the desired constant false alarm probability while obtaining the
highest possible probability of detection.
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Figure 3-33: Probability of false alarm in an environment of two clutter regions plus
thermal noise. Plotted as a function of the number of cells in clutter

level 1. Test cell contains clutter level 1 plus noise. Shape parameter is

0.10. C1NR is 15 dB. C2NR is 5 dB
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Figure 3-34: Probability of false alarm in an environment of two clutter regions plus

thermal noise, plotted as a function of the number of cells in clutter

level I. Test cell contains clutter level I plus noise. Shape parameter is

0O25. CNR is 15 dB. C2NR is 5 dB.
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Figure 3-35: Probability of false alarm in an environment of two clutter regions plus
thermal noise. Plotted as a function of the number of cells in clutter
level 1. Test cell contains clutter level 1 plus noise. Shape parameter is
0.50. C1NR is 15 dB. C2NR is 5 dB.
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Figure 3-36: Probability of false alarm in an environment of two clutter regions plus
thermal noise. Plotted as a function of the number of cells in clutter
level 1. Test cell contains clutter level 1 plus noise. Shape parameter is
1.50. C1NR is 15 dB. C2NR is 5 dB.
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Figure 3-37: Probability of false alarm in an environment of two clutter regions plus

thermal noise. Plotted as a function of the number of cells in clutter

level 1. Test cell contains clutter level 1 plus noise. Shape parameter is
2.50. C1NR is 15 dB. C2NR is 5 dB.
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Figure 3-38: Probability of false alarm in an environment of two clutter regions plus

thermal noise. Plotted as a function of the number of cells in clutter
level 1. Test cell contains clutter level 1 plus noise. Shape parameter is
5.00. C1NR is 15 dB. C2NR is 5 dB.
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Figure 3-39: Probability of false alarm in an environment of two clutter regions plus
thermal noise. Plotted as a function of the number of cells in clutter
level 1. Test cell contains clutter level 1 plus noise. Shape parameter is

10.00. C1NR is 15 dB. C2NR is 5 dB.
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Figure 3-40: Probability of false alarm in an environment of two clutter regions plus
thermal noise. Plotted as a function of the number of cells in clutter
level 1. Test cell contains clutter level 1 plus noise. Shape parameter is

50.00. C1NR is 15 dB. C2NR is 5 dB.
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Figure 3-41: Actual probability of false alarm of CA CFAR in K-distributed clutter,
parametric on the design value of Pf.
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Figure 3-42: Probability of detection of CA CFAR in K-distributed clutter,
parametric on the design value of Pf.
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Figure 3-43: Actual probability of false alarm of GO CFAR in K-distributed clutter,

parametric on the design value of Pf.
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Figure 3-44: Probability of detection of GO CFAR in K-distributed clutter,
parametric on the design value of Pf.
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Figure 3-45: Actual probability of false alarm of OS CFAR in K-distributed clutter,
parametric on the design value of Pf.
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Figure 3-46: Probability of detection of OS CFAR in K-distributed clutter,
parametric on the design value of Pf.
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4.0 SUMMARY OF TECHNICAL PROGRAM STATUS

This section summarizes the current program status and identifies near term

and longer range goals. In the long term this is a rather ambitious program which

uses Al techniques in virtually all aspects of radar signal data processing. As these

techniques become more widespread and the results become more accepted, many

approaches will evolve into (more or less) fixed algorithms. Others may remain in

the Al realm for quite some time since there will always be a need to operate in a

dynamic environment which can never be fully anticipated or characterized. It is
this ever changing environment, which normally requires human interaction, that

gives impetus to AT techniques. Whenever the environment is known

(deterministic) or can be completely characterized statistically, optimal strategies

either exist or can be developed. As always, near optimal strategies may actually be

of more value from an efficiency standpoint.

At the end of this current effort an expert system framework will be
implemented with an example system which focuses on CFAR processing. This

system will automatically examine the radar clutter environment, in ways similar

to what a human would do, and then select the optimal or near-optimal CFAR
which is judged most likely to be applicable. Notice that if the environment is

classified correctly and the proper CFAR algorithms are available then the goal of

maximizing the probability of detection while maintaining a constant false alarm
rate will be achieved. It is unlikely that clutter will be classified correctly 100% of the

time, partly because some environments are too similar and partly because
environments exist that do not fit into any of the pre-determined classes. An ideal

system would include all possible environments but this is obviously not practical.

An appropriate CFAR algorithm needs to be included in the CFAR library for each

anticipated environment. Currently, this library contains four algorithms: CA, GO,

OS, and TM. These four, with variations in their respective parameters, can be

utilized effectively in a large number of environments. At this time, additional

CFARs will probably not be added under the existing contract. However, it is very
likely that other CFARs will be added in the long term. The composition of the

software under this contract is being decided based on a compromise which attempts
to implement the most effective system given the available resources. The rest of

this section discusses the various compromises envisioned for each software area.
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Radar Data Sources. To evaluate various heuristics the system must be capable of

creating the appropriate environment consisting of receiver noise, external noise,
mixed clutter, and targets. Currently, receiver noise, Weibull clutter, log-normal

clutter, discrete clutter and Swerling I targets can be generated. By the end of this
contract K-distributed clutter will also be included. This data is currently generated

in azimuth/range space. By the end of this contract Doppler space will also be
added. In the long term, the need for other clutter and target types is anticipated,
including dynamic high fidelity RCS target models which would enable the system

to evaluate the use of adaptive waveforms for matched target illuminations. This
should be a very effective technique for detecting low RCS targets in heavy mixed

clutter.

In addition, by the end ot this contract recorded data will be injected into the
system. In the long term it is likely that more types of recorded data as well as real-
time data will be needed. Additionally, the capability to utilize multi-dimensional
CFAR's in range, azimuth, elevation and Doppler, would be desirable. The system

which will be completed under this contract, will perform CFAR processing in the
range domain only.

Environmental Inp4utj. Currently no environmental inputs have been
implemented. Under this contract the user is expected to be capable of specifying
regions of the simulated data to be area clutter such as land, trees, sea, etc. In the

long term, information pertinent to weather should be incorporated. This would be
useful in locating weather clutter, anomalous propagation, atmospheric layers,

ducting environments, etc. Also the addition of topographical data, while complex,
may become feasible at some point in the future.

CFAR Selection Rules. Only a few rudimentary rules currently exist. This area is

the current focus of the effort and as such is not ready to be included in this report.
By the end of this contract a comprehensive set of rules is expected to be
implemented, based on the extensive literature search completed earlier in the
program and the simulations that have been performed. In the long term, as more
CFARs are added and after various experts have been exposed to this program, it is
reasonable to assume that the CFAR selection rules data base will grow.
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C.AR Pre-processot. Currently the CFAR pre-processor segments each radial into
regions made up of contiguous range samples which are similar statistically. This
allows different CFARs to operate on different parts of each radial of data. Several
edge detection algorithms have been identified, including some used in digital
image processing, and these are currently being tested. Spot detection algorithms
from digital image processing are also being considered to identify and tag isolated
discontinuities which arise from targets, discrete clutter, noise glitches, etc. These
points will be ignored by the CFARs except when they are actually in a test cell.
Additionally, the pre-processor currently computes a list of statistics for each region
including mean, variance, skewness, kurtosis, mode, and correlation coefficient.
These statistical estimates are used by the CFAR selection rules to help select the
appropriate CFAR. In the long term the pre-processor can be expanded to
implement other non-linear transformations to facilitate optimal detection for
specific environments.

CFAR Library. The status of the CFAR library was summarized at the beginning of
this section. In addition to those comments, any of the CFARs can be selected as the
baseline CFAR. All CFARs are currently designed assuming an exponential (power)
clutter distribution. Under this contract the necessary code will be implemented to
adjust the desired false alarm rate which is input to the ES CFARs to simulate other
tail shapes. This empirically-derived adjustment will be based on the tail estimator
which is part of the CFAR pre-processor. In the long term, as additional optimal
receivers and clutter classification schemes are developed, the CFAR library is
expected to expand to include CFARs which assume a variety of tail shapes (ie: not
just the Gaussian assumption).

CFAR Post-processor. This is the software area where data fusion occurs and where
the resultant candidate detections are processed using Al techniques to further
control false alarms. The pre-processor attempts to standardize the radar data into
manageable environments. The CFAR selection rules then attempt to select the
most applicable CFAR. When the environment adequately matches the CFAR
design assumptions, a constant false alarm rate will be maintained. In general,
perfect knowledge is not available and perfect decisions are not always made (experts
make mistakes), so as a result the false alarm rate will vary. By monitoring the
actual false alarm rate and by utilizing confidence levels estimated in the pre-
processor, the post-processor will trim the candidate detections when necessary to
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better maintain a constant false alarm rate. Currently the post-processor is
essentially a stub. First-order false alarm reconciliation is expected to be included by
the end of the contract. In the long term, the post-processor would include such

functions as track feedback, target library correlation, false alarm library correlation,
and further tests to separate targets from false alarms.

Performance Measure. Currently, procedures are implemented to estimate Pd and
Pf for both the baseline and ES CFAR paths. For selected environments and
recorded data the desired Pf for the baseline CFAR can be adjusted until the actual Pf

for the baseline and ES CFARs are equal. Target RCS cart then be adjusted until the
Pd is equal for both. The dB change in target RCS will provide the desired quantified
performance measure. Of course the Pf for both channels prior to any adjustment
will also serve as a performance measure, but it is not considered to be a stand-alone
measure since it does not take into account the Pd. This process is expected to be
automated under this contract. In the long term it is expected that other
performance measures would be put forth as more people become exposed to this

program.

Displays. Displays which are currently implemented include PPIs for both the
baseline CFAR channel and the ES CFAR channel, as well as a comparison PPI.
Current displays also include the current radial of radar data vs. range, the estimated
Pd and Pf for both channels vs. time, and the simulated clutter map. While its
graphical user interface is elaborate, G2 has limited display capability for plotting

data. PV-WAVE 44 is being used to produce the power versus range plots as

shown in Section 2. Newer versions of G2 and PV-WAVE will be evaluated in
coming weeks to automate the various displays. In the long term, additional
displays that illustrate variations with altitude should be included as well as target

track displays.
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CFAR ALGORITHMS

The literature survey, discussed in the previous section, provided numerous
references for many CFAR articles. A list of the abbreviations for the CFAR algorithms

encountered in the literature search is given in Table 1. For convenience in associating
an author or citation with a CFAR algorithm, a cross reference table is presented in
Table 2. In the following subsections, a synopsis of CFAR algorithms is presented and a

candidate set of CFAR algorithms for selection by Al logic is derived.

SUMMARY OF IMPORTANT CFAR ALGORITHMS

The typical CFAR processing algorithm is shown in Figure 1. For pulsed Doppler

applications, the reference cells in a sliding window are used to estimate a background
noise/clutter level. The power in the test cell is compared to a threshold, determined from
the background clutter level and the desired false alarm rate. If the power in the test cell
exceeds the threshold, a detection is declared. The sliding window can incorporate data
from adjacent ranges, Doppler cells, or adjacent azimuths. In some CFARs, the cells
adjacent to the test cell (guard cells) are not used in the CFAR processing to avoid
masking effects that could occur in multiple target situations or when the target extends

through several range gates. For convenience, few references are given in the following
subsections. The cross reference Table 2 can be used to determine literature citations
for each type of CFAR.

Binary Integration

Binary integration (also called binary detection) is a simple detection method with
relatively good performance. Binary integration has the advantage of good performance

in non-Gaussian clutter environments. A set of N radar pulses are used in a double

threshold process. In the first threshold, the amplitude is compared to a threshold. In thea

second threshold, the number of times the first threshold was exceeded is compared to a
value M, less than N. If the sum of first threshold crossings exceeds M, a target is
declared. The clutter envelopes Di, i = 1,2...,N are assumed to be independent and
identically distributed. An optimal value of M can be taken to be about 11.5NO.5 for a wide
variety of conditions. Given M and the desired Pf, the threshold T can be determined if the

pdf of the D0 is known. The pdl is assumed to be exactly known. A Rayleigh pdf is often
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Table 1. List of CFAR algorithm abbreviations.

Abbreviation Alias CFAR Algorithm

BI Binary Integration
CA Cell Averaging
CAGO GO Cell Averaging Greatest Of
CCA Censored (excision) Cell Averaging
CGO Censored Greatest Of
CM Clutter Map

CMLD Censored Mean Level Detector
CVI Censored Video Integrator
DDL-GLR " Doppler Domain Localized Generalized Likelihood Ratio

DF NP Distribution Free
GCA Generalized Cell Averaging
GLR Generalized Likelihood Ratio

GO Greatest Of

GST Generalized Sign Test

GTL-CMLD Generalized Two-Level Censored Mean Level Detector
HCE Heterogeneous Clutter Estimating

LOG Logarithmic
Log-t Log-t detector

MGO Modified Greatest Of

MGST Modified Generalized Sign Test

MLD Mean Level Detector
MW Mann-Whitney

MX-CMLD Censored Mean Level Detector
MX-LCD Maximum Linear Combination Detector

MX-MLD GO Maximum Mean Level Detector
MX-OSD Ordered Statistic Detector
NP DF Nonparametric
OS OSD Ordered Statistic

OSo OS Ordered Statistic Detector
P Polarimetric
SLC Side Lobe Cancelling
SMI Sample Matrix Inversion

SO Smallest Of
SSA Scan by Scan Averaging

TM Trimmed Mean
WH Weber-Haykin

A-3



Table 2. Cross reference table between CFAR algorithms and literature references.

CFAR Author Year
8l Trunk 1983
BI Dillard 1974
CA Shore, et al. 1991
CA Himonas, et al 1990
CA Sekine, et al. 1989
CA Gandhi, et al. 1988
CA Conte, et al. 1988
CA Bucciarelli 1987
CA Trunk 1983
CA Weiss, et al. 1982
CA Trunk 1978
CA Trunk, et al. 1970
CA Finn, et al. 1968
CA -muit. bgd. est. Barkat, et al. 1988
CA -mutt, sensor Barkat, et al. 1991
CCA Shor, et al, 1991
CCA Conte, et al. 1989
CCA Trunk 1978
CCA Rickard, et al. 1974
CGO At-Hussaini 1988b
CM Nitzberg 1986
CM Trunk 1983
CMLD Ritcey 1986
CVI Levanon 1990
DDL-GLR Wang, et al. 1991
DDL-GLR Wang, et al. 1990
DF Trunk 1983
OF Dillard, et al. 1970
Excision Goldman 1990
Excision Goldman, et al. 1988
GCA Himonas, et al. 1990
GCMLD Himonas, et al. 1989
GLR Wang, et al. 1991
GLR Cai, et al. 1991
GO Ritcey 1990
GO Elias-Fuste, et al. 1990
GO AI-Hussaini 1988b

GO AI-Hussainm 1988a

GO Gandhi, et at. 1988
GO Bucciaretli 1987
G0 Weiss, et al. 1982
GO Hansen, et al. 1980
GO -mult. b•d. est. Barkat, et al 1988
GLR Kelly 1986
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Table 2. Cross reference table between CFAR algorithms and literature references.
(Continued)

CFAR Author Year
GST Trunk, et al. 1974
GST Hansen, et al. 1971
GTL.CMLD Himonas, et al. 1990
HCE Finn 1986
LOG Novak 1980
LOG Hansen, et al. 1972
Log-t Goldstein 1972
MGO Bucciarelli 1987a

MGO Bucciarelli 1987b
-"MGST Trunk, et al. 1974

MLD Ritcey, et al. 1991
MLD Rickard, et al. 1977
MLD Dillard 1974
MLD Steenson 1968
MSMI Cai, et al. 1991
MW Hansen, et al. 1971
MX-CMLD Ritcey, et al 1991
MX-LCD Ritcey, et al. 1991

MX-OSD Ritcey, et al. 1991

OS Shor, et al. 1991
OS Elias-Fuste, et al. 1990
DOS Levanon, et al. 1990

OS Sanile, et al. 1990
OS Levanon, et al. 1990
OS Lei, et al. 1989
OS AI-Hussaini 1988c
OS Blake 1988
OS Rohling 1983
Polarimetric Wanielik, et al. 1990b
Polarimetric Wanielik, et al. 1990a
Polynomial Nitzberg 1973
Range-azimuth Martin 1976
SMI Cai, et al. 1991
SMI Wang, et al. 1990
SO At-Hussaini 1988a
SO Gandhi, et al. 1988
SO Weiss, at al. 1982
SO -muit. bgd. est. Barkat, et al. 1988
SSA Lops, et at. 1989
Sign test Hansen, et al. 1971
TM Gandhi, et al. 1988
WH Levanon, et al. 1990
WH Weber, et al 1985
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used, although other pdr's (Weibull, log-normal) can be used to determine an appropriate

threshold.

Cell Averaging (CA)

For CA CFAR, an average value over the sliding window is used to determine the

background level for setting a decision threshold. The typical assumptions in CA are that

the clutter is homogeneous over the sliding window and that the power values form a

random sample [i.e., an independent, identically distributed (iid) collection of random

variables]. Various distributions can be used to model the background clutter distribution,

such as Rayleigh, Weibull, log-normal, or K-distributed. When the underlying assumptions

are met, CA has the lowest CFAR loss. However, when the background clutter does not

meet the assumptions, for example, due to inhomogeneities in the clutter power, the false

alarm rate can be substantially higher than the desired Pr.
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Censored CA (CCA)

Censored CA is a variation of the basic cell averaging (CA) CFAR, proposed by

Rickard and Dillard (1974) to address the problem of masking by multiple targets. The

envelope values D, are ranked and the k largest values are censored from the sliding

window. The normal cell averaging procedure is then followed on the censored sample.

The excision CFAR procedure, described by Goldman and Bar-David (1988) is not

significantly different than CCA is its processing or assumptions.

Censored Greatest Of (CGO)

The Greatest Of (GO) CFAR is described in later section. The CGO is a variation of

GO, suggested by Weiss (1982). GO works well for clutter edges but suffers when

interfering targets are present. In CGO, the k largest values are censored from each side

of the split sliding window. As long as the number of interfering targets in each window is

less than k, CGO works better than GO. However, additional losses are incurred due to

the smaller sample size.

Clutter Map (CM)

The sliding window commonly used for CFAR consists of adjacent range and

Doppler cells. Clutter map CFAR uses previous values at the same range cell for the

sliding window. This is appropriate when the envelope data are inhomogeneous in range

or in adjacent Doppler cells. To reduce memory requirements, the method proposed by

Nitzberg (1986) uses a exponentially smoothed estimate from previous scans. CFAR loss

decreases with longer memory in the exponential filter. Losses vary from about 0.3 dB for

a weight of 0.98 to over 15 dB for a weight of 0.125.

Censored Mean Level Detector (CMLD)

The censored mean level detector (CMLD) is a variation of MLD that uses censoring

to reduce the effects of a nonhomogeneous clutter/noise environment. In CMLD, the k

largest noise samples are discarded prior to sample averaging.
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Censored Video Integratcr (CVI)

Video integration is a noncoherent averaging of radar signal amplitudes. In

censored video integration, only the k smallest samples are included in the average. The

first k-1 are given unit weight while the kth sample is weighted by N - k + 1 to give a
unbiased, minimum variance estimate of the average. CVI was proposed as a
compromise to the complication of ordered statistics. Censoring incurs additional CFAR
losses, on the order of several dB. CVI performance degrades if the number of interfering

targets is larger than the number of censored cells.

Doppler Domain Localized Generalized Likelihood Ratio (DDL-GLR)

Doppler domain localized generalized likelihood ratio (DDL-GLR) is a CFAR
algorithm to efficiently detect moving targets in strong clutter with a complicated spectrum.

DDL-GLR assumes that measurements are available to estimate unknown clutter

statistics. DDL-GLR operates on the Fourier transform of the I and Q samples. For DDL-
GLR, areas where the spectrum is rapidly changing are delineated [termed regions of
detection improvement (RODIs)]. A GLR algorithm is then applied within these regions.
DDL-GLR assumptions are identical to those for GLR, i.e., the data is divided into primary

and secondary sets. The secondary data are assumed to have noise and clutter only (no
targets) while the primary data set could have a target. The covariance matrix is

estimated from ihe secondary data set. The noise plus clutter is assumed to have a
complex Gaussian distribution.

Distribution Free (DF)

Distribution free detectors are usually equivalent to nonparametric detectors in the
engineering literature (Kassam, 1980). The discussion of these methods is in the &ection

on nonparametric methods.

Generalized Cell Averaging (GCA)

Generalized cell averaging (GCA) is a variat in on the ubiquitous CA CFAR. A basic
assumption under CA is that the data in the r.ference (sliding) window are independent

and identically distributed. For the practical situations of weather clutter or chaff, the
samples may be correlated. When the samples in the reference window are correlated,
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the normal CA procedure estimates a threshold that is too high. In the GCA study by

Himonas, et al. (19901, the elfects of spatial correlation of the samples in the reference is

modeled as a first-order Markov process. The covariance matrix is estimated from the

reference window, GCA can thus adapt to the actual correlation structure of the clutter.

Generalized Censored Mean Level Detector (GCMLD)

The presence of interfering targets in the reference windows can raise the threshold

too high in many CFAR algorithms and result in masking of targets. GCMLD is a

modification of CMLD that estimates the number of interfering targets and censors them

from the reference sample. A Swerling 2 target in a white Gaussian background is

assumed. A sequential censoring procedure is applied to the leading and lagging

windows to remove the samples from the interfering targets.

Generalized Likelihood Ratio (GLR)

Generalized likelihood ratio (GLR) is an adaptive procedure for detecting targets.

Two sets of input data are considered. First, the primary data set may contain a signal;

the secondary data set is assumed to contain only noise or clutter. The covariance matrix

for both data sets are assumed to be the same. A likelihood ratio is then formed of the

maximum likelihood function under the hypothesis of no target to the maximum likelihood

function under the hypothesis of a target. If the ratio exceeds some threshold, a target is

declared. The primary and secondary data are assumed to iid complex Gaussian

variates. GLR was found by Cai and Wang (1991) to offer more robust performance than

SMI when the background was colored Weibull or log-normally distributed.

Greatest Of (GO)

Greatest Of (GO) CFAR is a modification of CA to minimize effects of clutter edges.

The cells in the reference window is split into leading and trailing sets. The average value

is estimated for both sets. The parameter for determining the clutter distribution and the

CFAR threshold is selected as the maximum of the two averages from the leading and

trailing haif-windows. GO thus provides some control of Pf in clutter edges with relatively

small CFAR !oss over that of CA. However, an interfering target in one of the half-windows

decreases Pd intolerably and the target is masked.
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Generalized Sign Test (GST)

The generalized sign test (GST) counts the number ot times the value in the test cell

exceeds the M values in the reference window during the N observation intervals in a CPL.

The number of times the N test cells exceeded the M reference cells is compared to a

threshold and a detection declared if it exceeds the threshold. The threshold value can

be set to provide the required Pf. GST assumes the N test cell values and the NxM

reference cell values are independent and identically distributed.

Generalized Two-Level Censored Mean Level Detector (GTL-CMLD)

GTL-CMLLJ is an extension of CMLD to model both nonhomogeneous clutter and
interfering targets. The data from the reference cells are ranked by magnitude and then

processed by a two-level censoring algorithm. For the first censoring level, a

determination is made whether the test cell is in the noise or the clutter. The other type is

censored from the reference cells. For the second level of censoring, the number of

interfering targets is determined and censored from the reference cells. The remaining

cells form the estimate of the clutter/noise level in the test cell.

Heterogeneous Clutter Estimating (HCE)

The heterogeneous clutter estimating CFAR is a modification of CA and assumes

that a heterogeneous clutter field can be represented as two homogeneous clutter fields

with different levels. The transition cell between the fields and the clutter levels in the two

fields is estimated. Research on the use of HCE showed that inevitable errors in the

location of the transition cell can place the test cell in the wrong clutter field and lead to

false alarms or missed detections. A biased version, that favors placing the test cell in

the more intense clutter field, appears to help.

Logarithmic (LOG)

Generally, LOG CFAR applies the cell averaging technique to samples from a

logarithmic detector, The advantages of logarithmic detection are the larger dynamic

range and normalization of data by subtraction rather than division. The disadvantage of

LOG CFAR is that the CFAR loss is higher than linear for the same number of cells in the

reference window.
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Log-t Detection

The log-t detector maintains a constant false alarm rate when the clutter cells are

distributed log-normally or Weibull. The clutter is assumed to be homogeneous (identically
distributed) and independent. As with most CFAR algorithms, the reference window can
include range and/or Doppler cells. A test statistic, based on the difference between the

test cell and the average over the reference window in log space, is compared to a
threshold. If the test statistic exceeds the threshold, a detection is declared. The log-t
name is suggested because of the log transformation and the fact that it has a Student.t

distribution when the clutter is log-normal. Goldstein (1971) shows that the log-t statistic is
independent of the scale and shape parameters of the Weibull distribution.

Modified Greatest Of (MGO)

The modified greatest of (MGO) CFAR uses the standard GO technique but with an

estimated value of the Weibull shape factor from the reference window.

Modified Generalized Sign Test (MGST)

MGST is a modification of GST to control the false alarm rate in correlated and
nonhomogeneous clutter. The first part of the CFAR processor, as described by Trunk. et
al., (1971), is similar to the GST, described above, but implemented in hardware. A two
threshold technique is used to control false alarm rate. The first threshold is set for a Pf of
10-6 when the clutter data are actually independent and identically distributed. The
second threshold is claimed to estimate the standard deviation of the cells in the
reference window and to remove extraneous targets from the reference window. The

summary of the Trunk article notes that preliminary results are encouraging but that no

quantitative statements can be made yet.

Mean Level Detector (MLD)

The mean level detector provides an adaptive estimate of the background noise
level by the sample mean of surrounding reference samples. MLD was originally
implemented as a thresholding circuit for a short pulse noncoherent radar. MLD assumes

a homogeneous reference channel, consisting of square-law detected Gaussian noise

samples, all with the same variance as the test cell.
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Modified Sample Matrix Inversion (MSMI)

In MSMI, the sample matrix inversion technique is modified to allow for colored

Gaussian clutter. An analysis by Cai and Wang (1991) shows that MSMI and GLR offer

the same performance when the clutter has a Gaussian distribution. MSMI is easier to

implement than GLR. However, GLR has better performance when the clutter has a non-

Gaussian distribution, such as Weibull or log-normal.

Mann-Whitney (MW) Detector (Two Sample Wilcoxoli)

The Mann-Whitney detector is similar to GST and counts the number of times the

value in the test cell exceeds values in the reference cells. However, the Mann-Whitney

detector compares a given test cell to all of the reference cells in the CPI. The total count

is compared to a threshold and a detection declared if it exceeds the threshold. The

threshold value can be set to provide the required Pl. The Mann-Whitney detector

assumes the M test cell values and the NxM reference cell values are independent and

identically distributed. The Mann-Whitney detector has better performance than GST but

with a more complex design.

Maximum Family (MX) of CFAR Detectors

Several types of CFAR detectors that use a maximum of 2 local clutter level

estimates have been considered by Ritcey, et al. (1991) for false alarm control at clutter

edges. MX mean level detection (MX-MLD) is equivalent to GO. In MX censored mean

level detection (MX-CMLD), winsorized (Ritcey, op.cit, Eq. 5) mean estimates are used for

the 2 reference half-windows. For MX ordered statistic detection (MX-OSD), the maximum

of the quartiles for the two half-windows is used to treat interfering targets. Collectively,

these detectors are referred to as MX linear combination detectors (MX-LCD). The local

estimates for the two hall-windows are weighted linear combinations of the data in the

reference cells. The reference cell samples are assumed to be iid A simulation

comparison shows that MX-CMLD and MX-OSO are similar in performance. MX-OSD is

more complicated because of the need for sorting and has slightly higher loss.
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Nonparametric Detectors (NP)

Nonparametric CFAR techniques are used to provide a constant false alarm rate

when the clutter or background noise statistics are unknown. Nonparametric and

distribution-tree techniques are taken to be equivalent in the CFAR literature, although this
is not strictly true. As with most CFARs, NP methods involve computing a detection

statistic from the reference cells, which is then compared to a threshold. Typically, NP

methods make only weak assumptions about the clutter, such as that the samples are
independent, identically distributed with known median. Two NP methods are the sign test

and the Wilcoxon detector. These can't be applied to radar detection because of
practical considerations (i.e., the median level and the phase are unknown). For CFAR,

the generalized sign test and the Mann-Whitney detector are used. These CFARs are

described in their separate sections.

Ordered Statistic (OS)

Ordered statistic (OS) CFAR uses ordered statistics to improve performance with

clutter edges and interfering targets. The data in the reference cells are ranked and the
kth largest sample is used for forming the detection threshold. For large values of k, OS

can control the false alarm rate similarly to GO but with lower detection efficiency. The

performance of OS with interfering targets is similar to SO. For determining the threshold,
the samples from the reference cells are assumed to be independent, identically
distributed. Various distributions have been considered, such as exponential (for square
law detection), Rayleigh, and Weibull. Typical CFAR losses as compared to CA are

small, about 0.5 dB.

Polarimetric

The typical CFAR algorithm processes the amplitude of the radar return. Additional

information is contained in the complete scattering matrix for the target or clutter. Since

measurements of the scattering matrix are not available for the AI-CFAR program, this

method is not considered.
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Polynomial

In some instances, the clutter power can vary tremendously over a few kilometers.
In polynomial CFAR, it is assumed that the logarithm of the clutter power varies as a low

order polynomial. CFAR losses can be 10 to 20 dB if a small number of samples (less

than about 16) are used for fitting the polynomial. CFAR losses also increase as the

degree of the fitted polynomial increases.

Range-Azimuth

A study by Martin (1976) considered the use of reference cells in both range and

azimuth for a CA CFAR algorithm. An experiment measured the improvement in detection

peri4armance for S and L band land-based radar. A typical improvement in detection was

about 5 dB.

Sample Matrix Inversion (SMI)

The sample matrix inversion CFAR is similar in operation to the GLR. The input

data are divided into the primary and secondary data sets. The primary may contain a

target while the secondary is assumed to composed of clutter and noise only. The

covariance matrix of the clutter/noise is estimated from the secondary data set. A weight

vector is computed from the secondary data and the inverse of the sample covariance

matrix. A test statistic is formed from the weight vector and the primary data. When the

test statistic exceeds some threshold, a detection is declared. SMI assumes that the

primary and secondary data are independent, identically distributed complex Gaussian

random variables with the same covariance matrix.

Smallest Of (SO)

Smallest Of (SO) CFAR is a modification of CA to minimize the effects of interfering

targets. The cells in the reference window are split into leading and trailing sets. The

average value is estimated for both sets. The parameter for determining the clutter

distribution and the CFAR threshold is selected as the minimum of the two averages from

the leading and trailing half-windows. SO thus provides better performance over CA with

interfering targets in a homogeneous background. However, SO shows severe

degradation in the presence of a clutter edge.
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Scan by Scan Averaging (SSA)

Scan by scan averaging (SSA) CFAR uses reference cells in a homogeneous clutter
area, called a map cell. Data from several scans are used, so an assumption of time
invariant statistics on a scale of several seconds is implied. With the additional data from

previous scans, the spatial window can be much smaller for the same CFAR loss, so that

the assumption of homogeneous clutter is more likely to hold. The normal CA algorithm is

used on the data in this expanded reference window. However, targets that remain in the

same range cell are self-masking and present a problem for SSA. SSA does show some

improved performance over CA in nonhomogeneous clutter environments.

Trimmed Mean (TM)

Trimmed mean CFAR is a generalization of OS. The samples in the reference
window are ordered as in OS. The smallest and largest values are censored and the

remaining cells averaged together. TM performance is thus comparable to OS for clutter

edges and for interfering targets. TM has a very slight improvement over OS for a single

target in homogeneous background.

Weber-Haykin (WH)

The Weber-Haykin CFAR algcrithm is an extension of OS CFAR for two parameter
distributions. The samples from the reference window are assumed to be independent,

identically distributed. The power and skewness parameters of the Weibull distribution are

estimated from ranked samples and a threshold determined. The CFAR loss for WH is
larger than that for a single parameter OS, where the skewness is known a priori. The

single parameter CFAR (OS) should be used when the skewness is close to some a priori
value and the number of sample is small. The CFAR loss is also affected by the rank of

the samples used for parameter estimation. The lowe3t CFAR loss occurs when the
smallest and largest ranks aie used; however, if these are used the robustness to clutter

edges and interfering targets will be lost.
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MISSION

OF

ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-

search, development, test, and technology transition in support of Air

Force Command, Control, Communications and Intelligence (C3 1) activities

for all Air Force platforms. It also executes selected acquisition programs

in several areas of expertise. Technical and engineering support within

areas of competence is provided to ESD Program Offices (POs) and other

ESD elements to perform effective acquisition of C3 1 systems. In addition,

Rome Laboratory's technology supports other AFSC Product Divisions, the

Air Force user community, and other DOD and non-DOD agencies. Rome

Laboratory maintains technical competence and research programs in areas

including, but not limited to, communications, command and control, battle

management, intelligence information processing, computational sciences

and software producibility, wide area surveillance/sensors, signal proces-

sing, solid state sciences, photonics, electromagnetic technology, super-

conductivity, and electronic reliability/maintainability and testability.


