Intelligent Vehicle Systems

SwRI[®]

Southwest Research Institute

Steven W. Dellenback, Ph.D. Executive Director R&D Intelligent Systems

Automated Vehicle Technology

- Basic question:
 - $\circ~$ What is the PURPOSE of a driverless vehicle?
- Possible answers:
 - **o** Ultimate solution to the driver distraction problem
 - Should reduce accidents (although until a significant penetration the overall effect is questionable)
 - $\circ~$ Should enable a reduction in traffic fatalities
 - Make transportation systems much more efficient (more vehicles in the same space)
- Sustainability of the technology (at what functional level) consider driving levels model – expected duration of autonomy:
 - \circ 5 seconds
 - \circ 30 seconds to 1 minute
 - **> 1 hour**

Automated Vehicle Technology Evolution

Self-driving, UGV, Driverless, Autonomous, Automated, etc...

Automated/Autonomous

- First RC vehicles used in 1930s
- FHWA's Automated Highway System in the 1990s, and demo in 1997.
- DARPA Urban Challenge (on-road automated driving) in 2007.
- Demonstration on the streets of Manhattan, NYC at the 2008 World Congress
- U.S. DoD Investment
- Google's Demos/Efforts
- Aggressive Marketing Campaigns leading to announcements by OEMs of their plans for production.

NHTSA Levels of Automation

- No-Automation (Level 0)
- Function-specific Automation (Level 1)
- Combined Function Automation (Level 2)
- Limited Self-Driving Automation (Level 3)
- Full Self-Driving Automation (Level 4)

NHTSA / SAE Driving Levels

- Descriptive
- Minimum levels
- Compare to:
 - Germany
 Federal
 Highway
 Research
 Institute (BASt)
 NHTSA

					Sc	ource: S/	٩E	
SAE level	SAE name	SAE parrative definition	Execution of steering and acceleration/ deceleration	Monitoring of driving environment	Fallback performance of dynamic driving task	System capability (driving modes)	BASt level	NHTSA
Huma	n driver mon	itors the driving environment						
0	No Automation	the full-time performance by the <i>human driver</i> of all aspects of the <i>dynamic driving task</i> , even when enhanced by warning or intervention systems	Human driver	Human driver	Human driver	n/a	Driver only	0
1	Driver Assistance	the <i>driving mode</i> -specific execution by a driver assistance system of either steering or acceleration/deceleration using information about the driving environment and with the expectation that the <i>human driver</i> perform all remaining aspects of the <i>dynamic driving task</i>	Human driver and system	Human driver	Human driver	Some driving modes	Assisted	1
		the driving mode-specific execution by one or more driver assistance systems of both steering and acceleration/deceleration using information about the driving environment and with the expectation that the human driver perform all remaining aspects of the gramic driving task approximation of the state of the system ("system") monitors the driving	System Ang s	Human driver		Some driving modes	Partially automated	
	Conditional Automation	the driving mode-specific performance by an automated driving system of all aspects of the dynamic driving task with the expectation that the human driver will respond appropriately to a request to intervene	System	System	Human driver	Some driving modes	Highly	
4	High Automation	the driving mode-specific performance by an automated driving system of all aspects of the dynamic driving task, even if a human driver does not respond appropriately to a request to intervene	System	System	System	Some driving modes	Fully automated	3/
5	Full Automation	the full-time performance by an <i>automated driving</i> system of all aspects of the <i>dynamic driving task</i> under all roadway and environmental conditions that can be managed by a <i>human driver</i>	System	System	System	All driving modes		3/

Who is Developing Autonomous Vehicle Capabilities

(list may incomplete because information is not openly shared)

- US OEMs:
 - GM
 - Ford
 - Tesla

European:

BMW

Audi

Volvo

ullet

۲

Mercedes

Renault

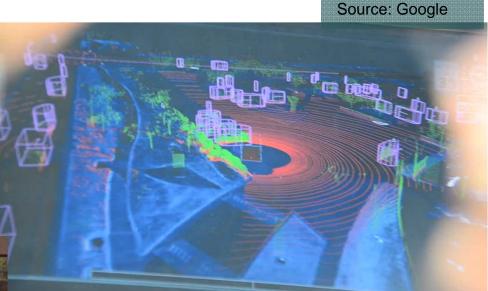
- Japan:
 - Nissan
 - Honda
 - Toyota
 - Hino
 - Isuzu
- Tier 1 Suppliers:
 - Bosch
 - Continental
 - Delphi
- Scania (trucks)
- Jaguar Landrover
- Deihl
- RUAG
- Rheinmetall Defence

- US non-OEMs:
 - Lockheed Martin
 - Southwest Research Institute (SwRI)
 - Smaller Defense Contractors:
 - TORC, GDRS, ASI, etc.
 - University Research
 - CMU, Stanford. Virginia Tech
 - California PATH, VTTI
 - Google

• Government (non DoD)

- US:
 - Human Factors for Vehicle Highway
 Automation
 - USDOT Automation Program
- European Union:
 - CitiMobil and CyberCars
 - Safe Road Trains for the Environment (SARTE)
- Energy ITS Project (Japan)

Autonomy Examples


- Commercial Space:
 - Google / Auto OEMs
 - **o** PEVs (Personal Electrical Vehicles)
 - Agricultural
 - Mining
- Military space (major programs in last 5 years):
 - o AMAS Army
 - **o GUSS Marine Corps / Navy**
 - SMSS Army
 - SUMET Marine Corps / Navy
 - o DSAT Army
 - Long term success: blending Connected Vehicle and Automated Vehicle:
 - Cooperative Vehicles
 - Cooperative Automation

State of the Practice (commercial): Google

• Pros

- Well funded
- Previously only freeway, adding arterial capability

Cons

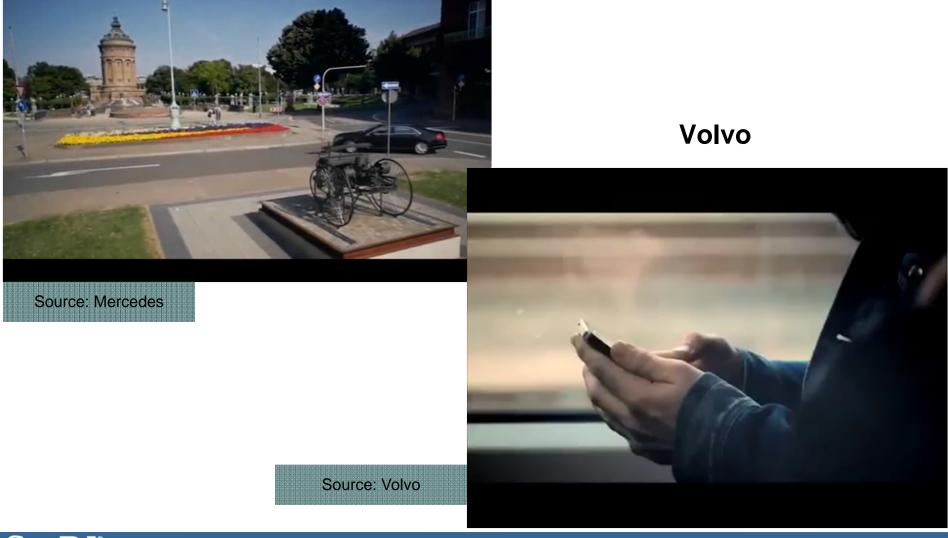
- Expensive sensor suite
- \circ Must pre-drive route
- Requires high precision map database
- For the U.S. only 3,200 km of the 6.4M kms of highway "mapped"

Source: Google

Google: Newest Announcement - PEVs

- In May 2014 Google has revealed a prototype of its latest driverless car:
 - o No steering wheel
 - No braking or acceleration pedals
 - A stop and go button.
- Platform developed from scratch not based on existing chassis:
 - No need to accommodate a driver
 - o Two passengers
 - Maximum speed of 25 miles per hour
- Google says the car's most important feature is its safety:
 - Sensors that remove blind spots
 - "...can detect objects out to a distance of more than two football fields in all directions..." (note: unknown sensor technology).
- Visually appealing
- Development timeframe:
 - ~100 prototypes
 - Testing in summer of 2014
 - Available for purchase by 2020

Other companies are developing also – names are proprietary



Mercedes

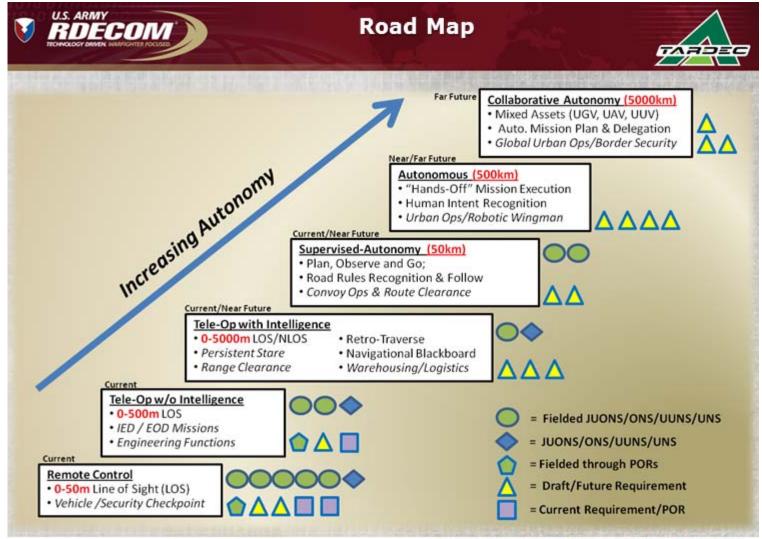
State of the Practice (agricultural/mining): John Deere / Komatsu

- Deere
 - Agriculture
 - Constrained environment

Source: John Deere

- Komatsu
 - Fixed route
 - Very dirty conditions

Work Zone Safety: Automated Attenuator Truck


- Pilot Texas DOT Project
 Moving work convoys:
 - Linear spacing
 - Lateral offsets
 - $\circ~$ Static: reposition with hand signals

TARDEC Roadmap

TARDEC is the R&D Center for the Army

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

On-Road and Off-road are Very Different...

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

GUSS (Ground Unmanned Support Surrogate)

- Reducing exposure to unsafe
 Automate external re-supply. environments and to lethal enemy actions.
- Lighten soldier's loads by carrying supplies.

- Reduce time in-between missions. by not having to return to their base to retrieve and return items.

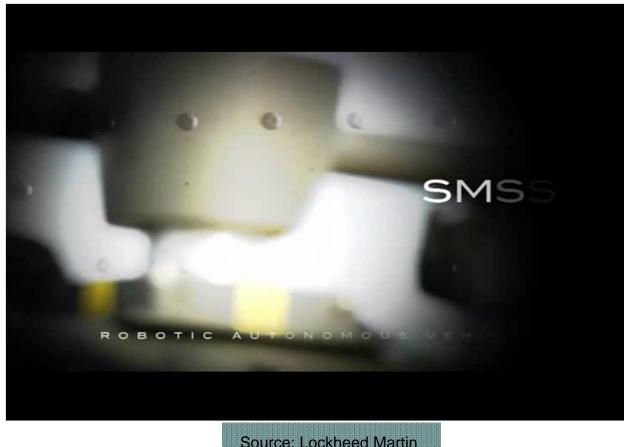
Lockheed Martin K-MAX

- Marine Corps
 program
- Capable of delivering a full 6,000 lb of cargo at sea level and more than 4,000 lb at an altitude of 15,000 feet.
- First mission in Afghanistan on December 17, 2011.

• Still being used.

State of the Practice (military): AMAS (LM)

- Autonomous Mobility Appliqué System (AMAS)
- Portable Autonomy:
 - A-kit (autonomy)
 - B-kit (vehicle interface)
 - C-kit (payload)



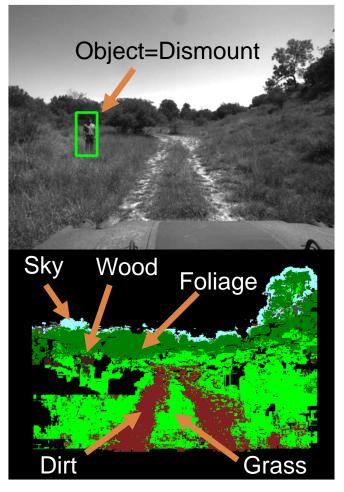
State of the Practice (military):

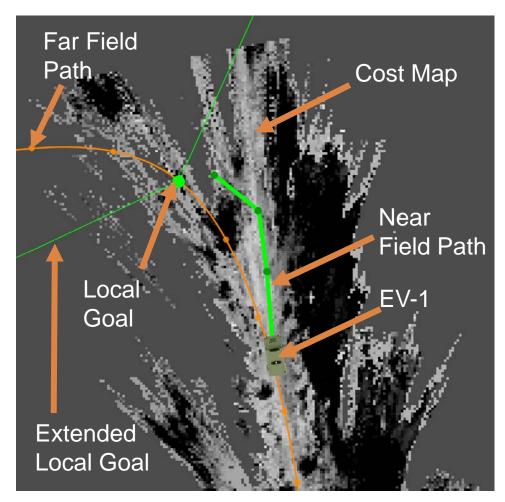
(mules and support tools)

- Squad Mission **Support System** (SSMS)
 - Active sensor technology
 - Carry loads over difficult terrain

Source: Lockheed Martin

State of the Practice (military) Oshkosh TerraMax


TERRA AX.



SUMET EO-Only Perception and Autonomy Path Planning

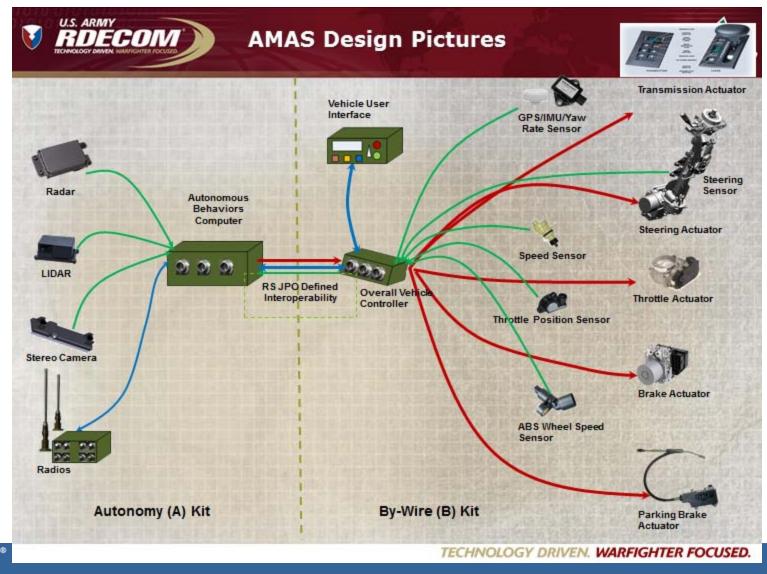
Material Classification

Cost Map and Path Planners

Sample Unmanned Demo Video: Marine Corps SUMET Program

Office of Naval Research – Code 30 Ground Vehicle Autonomy Program: Small Unit Mobility Enhancement Technology (SUMET)

SUMET v2.0 Experimentation


SwRI – San Antonio, TX 29 November 2012

SwRI

AMAS (Autonomous Mobility Applique System) Retrofitting Existing Fleet

SWR

Army: DSAT (Dismounted Solider Autonomy Tools) ATEC Tested and Deployed System

Capability Video

State of the Practice (defense): RUAG

Source: RUAG

- Material classification
- Snow and ice environments
- "New" environment to the system

Where will we see Autonomy First?

- Lots of press and widely spread articles about on-road projects....
- Domains other than passenger vehicles have experienced success:
 - Agriculture
 - \circ Mining
 - o Military
- Common thread in these areas include:
 - **o** Constrained environments
 - Can accept some level of "collateral damage" (with no legal implications)
- However, we keep hearing "they will be here in 2017 (or 2020")....

Automated Vehicles Forecast (AVS14) Data courtesy of AVS14 (held in California, July 2014)

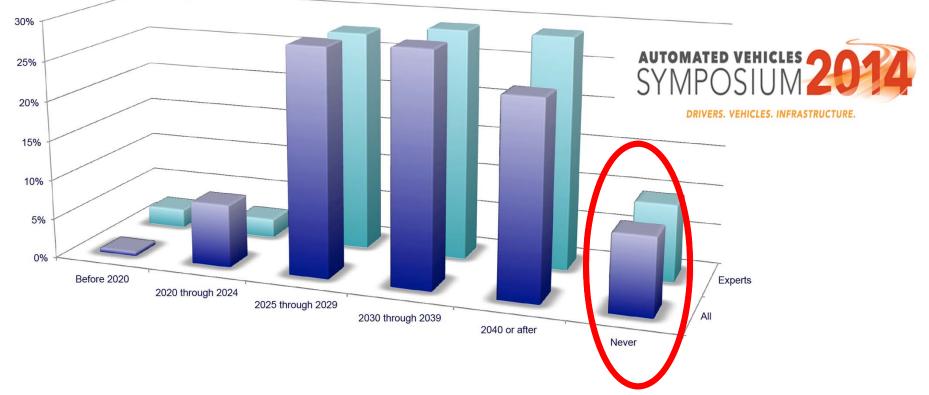
- What do the industry professionals think (as opposed the media looking for an interesting story or a self-serving company promotion):
- At industry event in California in July 2014 some polling was done:
 - ~250 responses, 80% MS+ degree
 - 64% EE/ME/CS/HF, 24% CE
 - 31% Univ/Research Inst, 24% Auto Ind, 17% Govt
 - 80% US, 44% CA and MI
- Results were insightful....

Automated Vehicles Forecast (AVS14)

Data courtesy of AVS14 (held in California, July 2014)

- Top 3 barriers:
 - 1. Legal
 - 2. Regulations
 - 3. Cost
- Equal number rated Technology highest and lowest
- Level of safety compared to today
 - 56%: as-safe to 2x
 - 36%: 10x to perfect safety
- 73%: Society will accept some automation-caused accidents
- 46%/54%: Level 3 practical/not practical (driver expected to respond)
- 67%: V2V essential for Level 5

Automated Vehicles Forecast (AVS14) Data courtesy of AVS14 (held in California, July 2014)


When do you expect to be able to trust a fully automated taxi to take <u>YOUR</u> elementary school-age child or grandchild to their school (with no licensed driver onboard)?

What do the Experts (collectively) Say? Data courtesy of AVS14 (held in California, July 2014)

Q16: When do you expect to be able to trust a fully automated taxi to take your elementaryschool-age child or grandchild to their school (with no licensed driver onboard)?

Economic Driver: What Would People Pay...

• Surveys or economists suggest (~\$3,000):

Public opinion surveys [edit]

According to a survey of 17,400 vehicle owners conducted by J.D. Power and Associates^[when?], 37 percent of all survey responders initially said they would be interested in purchasing a fully autonomous car. However, that figure dropped to 20 percent once they learned the technology would cost an additional \$3,000. With an additional cost of \$3,000, 25% of the male vehicle buyers were willing to pay for a fully autonomous vehicle, while only 14 percent of women wanted the feature.^[73] According to a 2011 online survey of 2,006 consumers in the US and the UK conducted by Accenture, 49 percent of all survey responders said they would be comfortable using a "driverless car".^[74]

- Sources:
 - Economist Technology Quarterly (2012) Look, No Hands.
 September 1 issue: 17-19.http://www.economist.com/node/21560989
 - J.D. Powers: <u>http://www.jdpower.com/content/press-</u> release/xOOFcYK/2013-u-s-automotive-emerging-technologies-<u>study.htm</u>
- Today's cost of hardware on 'operational vehicles':
 - **\$110K to \$280K**
 - Mass production should help lower this number but how much?

Punchline: Perception/Behaviors are Challenging

• "Deer in the headlights"

- "Realistic" driving
 - $\circ~$ June 2014 in DC
 - o Taxi "strike"
 - How to "nose" into traffic

Looking out to the Horizon: What is Next?,

- Next 3 to 20 years:
 - Don't expect to see automated vehicles regularly used on public roads
 - Military operations can accept collateral damage
 - Closed operations (such as mining, agriculture) have less unpredictability:
 - No teenage / crazy drivers
 - Limited obstacles
 - Very well known environment (that does not change much)
 - Possible areas:
 - Ports / freight yards
 - Retirement communities
 - Potential game changed: dedicated transit or truck or "technology lanes
- Need "connected" to get "automated"
- Holy grails:
 - Perception (sensors) / Behaviors
 - o Cost
 - "Use of technology": generational (millennials may be more accepting)

Intelligent Vehicle Systems Southwest Research Institute

Thank You

Steve Dellenback sdellenback@swri.org +1.210.522.3914