Intensity of X-ray Diffraction

Crystal Structure Analysis Materials Science & Engineering Seoul National University CHAN PARK

Cullity Chapter 4

1 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Intensity

- > How much Intensity <u>a single electron</u> will coherently scatter?
- Interference effects due to electrons being distributed in space around atoms
- > Atoms are not stationary --- vibrate
- Intereference effects caused by <u>scattering from atoms in</u> <u>different regions of the unit cell</u>

- Structure factor
- Polarization factor
- > Multiplicity factor
- Lorentz factor
- > Absorption factor
- > Temperature factor

3 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Atomic Scattering Factor (f), Structure Factor (F)

Intensity of XRD

- > Scattering amplitude of a single electron
 - ✓ How much Intensity <u>a single e</u> will coherently scatter?
- > Scattering amplitude of a single atom \rightarrow <u>f (atomic scattering factor)</u>
 - \checkmark Interference effects due to coherent scatter of all the <u>e's in an atom</u>?
- > Scattering amplitude of a unit cell \rightarrow <u>F (structure factor)</u>
 - ✓ Interference effects caused by scattering from all the <u>atoms in different regions</u> of the unit cell

 $f = \frac{\text{amplitude scattered by an atom}}{\text{amplitude scattered by a single } e'}$

 $F = \frac{\text{amplitude scattered by all the atoms of a unit cell}}{\text{amplitude scattered by a single } \underline{e'}$

- \rightarrow polarization factor
- X-ray is electromagnetic radiation which can be seen, from a fixed point in space, as an oscillating electric field
- > This field can cause an e' to oscillate (accelerate & decelerate) → cause an e' to re-radiate the energy as a spherical wave
- > J.J. Thomson --- Intensity scattered from an e'

$I_{-}I_{0}$	e^2	$\int^2 1 + \cos^2(2\theta)$
$I = \overline{r^2}$	$m_e c^2$	2

- Incident X-ray is unpolarized
- ➢ Process of scattering polarizes X-ray → polarization factor

1	120	cos	$^{2}(2A)$
_	1	005	(20)
		2	

7 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Scattering by a single electron

Read Cullity page 123 ~ 144

 \rightarrow atomic scattering factor

- > Interference < scattering from different regions of the e' cloud
- Takes into account the influence of the atom specific e' shell on the scattering of X-rays
- Normalized in units of the amount of scattering occurring from a single e'

f = ______amplitude scattered by an atom amplitude scattered by a single electron

$$f = F(\vartheta) \qquad f(0^{\circ}) = Z$$

9 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

11 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

	$\frac{\sin\theta}{\lambda}(\mathbf{A}^{0-1})$	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1
	Н	1	0.81	0.48	0.25	0.13	0.07	0.04	0.03	0.02	0.01	0.00	0.00	-
Atomia deattanina	He	2	1.88	1.46	1.05	0.75	0.52	0.35	0.24	0.18	0.14	0.11	0.09	
Atomic scattering	Li ⁺	2	1.96	1.8	1.5	1.3	1.0	0.8	0.6	0.5	0.4	0.3	0.3	
	Li	3	2.2	1.8	1.5	1.3	1.0	0.8	0.6	0.5	0.4	0.3	0.3	
factor	Be ⁺²	2	2.0	1.9	1.7	1.6	1.4	1.2	1.0	0.9	0.7	0.6	0.5	
	Be	4	2.9	1.9	1.7	1.6	1.4	1.2	1.0	0.9	0.7	0.6	0.5	
	B^{+3}	2	1.99	1.9	1.8	1.7	1.6	1.4	1.3	1.2	1.0	0.9	0.7	
	в	5	3.5	2.4	1.9	1.7	1.5	1.4	1.2	1.2	1.0	0.9	0.7	
	С	6	4.6	3.0	2.2	1.9	1.7	1.6	1.4	1.3	1.16	1.0	0.9	
	N ⁺²	2	2.0	2.0	1.9	1.9	1.8	1.7	1.6	1.5	1.4	1.3	1.16	
	N ⁺³	4	3.7	3.0	2.4	2.0	1.8	1.66	1.56	1.49	1.39	1.28	1.17	
	N	7	5.8	4.2	3.0	2.3	1.9	1.65	1.54	1.49	1.39	1.29	1.17	
	0	8	7.1	5.3	3.9	2.9	2.2	1.8	1.6	1.5	1.4	1.35	1.26	
	O ⁻²	10	8.0	5.5	3.8	2.7	2.1	1.8	1.5	1.5	1.4	1.35	1.26	
	F	9	7.8	6.2	4.45	3.35	2.65	2.15	1.9	1.7	1.6	1.5	1.35	
	\mathbf{F}^{-}	10	8.7	6.7	4.8	3.5	2.8	2.2	1.9	1.7	1.55	1.5	1.35	
	Ne	10	9.3	7.5	5.8	4.4	3.4	2.65	2.2	1.9	1.65	1.55	1.5	
	Na ⁺	10	9.5	8.2	6.7	5.25	4.05	3.2	2.65	2.25	1.95	1.75	1.6	
	Na	11	9.65	8.2	6.7	5.25	4.05	3.2	2.65	2.25	1.95	1.75	1.6	
	Mg ⁺ "	10	9.75	8.6	7.25	5.95	4.8	3.85	3.15	2.55	2.2	2.0	1.8	
	Mg	12	10.5	8.6	7.25	5.95	4.8	3.85	3.15	2.55	2.2	2.0	1.8	
	Al ⁺³	10	9.7	8.9	7.8	6.65	5.5	4.45	3.65	3.1	2.65	2.3	2.0	
	AI	13	11.0	8.95	7.75	6.6	5.5	4.5	3.7	3.1	2.65	2.3	2.0	
	Si	10	9.75	9.15 9.4	8.25 8.2	7.15	6.05 6.1	5.05 5.1	4.2 4.2	3.4 3.4	2.95 2.95	2.6 2.6	2.3 2.3	
	P ⁺⁵	10	9.8	9.25	8 45	75	6.55	5.65	4.8	4.05	2.4	2.0	26	
	Р	15	12.4	10.0	8.45	7.45	6.5	5.65	4.8	4.05	3.4	3.0	2.6	
	P ⁻³	18	12.7	9.8	8.4	7.45	6.5	5.65	4.85	4.05	3.4	3.0	2.6	
	S ⁺⁶	10	9.85	9.4	8.7	7.85	6.85	6.05	5.25	4.5	3.9	3.35	2.9	
	S	16	13.6	10.7	8.95	7.85	6.85	6.0	5.25	4.5	3.9	3.35	2.9	
	S ⁻²	18	14.3	10.7	8.9	7.85	6.85	6.0	5.25	45	39	3 35	29	
	C1	17	14.6	11.3	9.25	8.05	7.25	6.5	5.75	5.05	4.4	3.85	3.35	
	CI	18	15.2	11.5	9.3	8.05	7.25	6.5	5.75	5.05	4.4	3.85	3.35	
	A	18	15.9	12.6	10.4	8.7	7.8	7.0	6.2	5.4	4.7	4.1	3.6	
	K^+	18	16.5	13.3	10.8	8.85	7.75	7.05	6.44	5.9	5.3	4.8	4.2	
	K	19	16.5	13.3	10.8	9.2	7.9	6.7	5.9	5.2	4.6	4.2	3.7	3
	Ca ⁺²	18	16.8	14.0	11.5	9.3	8.1	7.35	6.7	6.2	5.7	5.1	4.6	
	Ca	20	17.5	14.1	11.4	9.7	8.4	7.3	6.3	5.6	4.9	4.5	4.0	3
	Sc+5	18	16.7	14.0	11.4	9.4	8.3	7.6	6.9	6.4	5.8	5.35	4.85	
	30	21	18.4	14.9	12.1	10.3	8.9	7.7	6.7	5.9	5.3	4.7	4.3	3
Culling	TI+4	18	17.0	14.4	11.9	9.9	8.5	7.85	7.3	6.7	6.15	5.65	5.05	
Curry	n V	22	19.3	15.7	12.8	10.9	9.5	8.2	7.2	6.3	5.6	5.0	4.6	4
	v Cr	23	20.2	17.4	13.5	11.5	10.1	8.7	7.6	0.7	5.9	5.3	4.9	4
CHANDADK MSE SNIL Spring-2019 Cructo	Mn	25	22.1	18.2	14.9	12.7	11.1	9.7	8.4	7.5	6.6	6.0	5.4	4
) CRIMINEARK, MOE, SINU SPIRING-2019 CRYSTO			,								0.0	0.0		

Atomic scattering	$\frac{\sin\theta}{\lambda}(\mathbf{A}^{\circ-1})$	0.0	0.1	0.2	0.3	0.4
factor	Н	1	0.81	0.48	0.25	0.13
	He	2	1.88	1.46	1.05	0.75
	Li ⁺	2	1.96	1.8	1.5	1.3
	Li	3	2.2	1.8	1.5	1.3
	Be ⁺²	2	2.0	1.9	1.7	1.6
	Be	4	2.9	1.9	1.7	1.6
	B^{+3}	2	1.99	1.9	1.8	1.7
	в	5	3.5	2.4	1.9	1.7
	С	6	4.6	3.0	2.2	1.9
	N ⁺⁵ ,	2	2.0	2.0	1.9	1.9
	N ⁺³	4	3.7	3.0	2.4	2.0
	N	7	5.8	4.2	3.0	2.3
	О	8	7.1	5.3	3.9	2.9
	O ⁻²	10	8.0	5.5	3.8	2.7
	F	9	7.8	6.2	4.45	3.35

$\frac{\sin\theta}{\lambda} (\mathbf{A}^{\circ -1})$		0.1										100 million -	
N	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2
Fe	26	23.1	18.9	15.6	13.3	11.6	10.2	8.9	7.9	7.0	6.3	5.7	5.2
Co	27	24.1	19.8	16.4	14.0	12.1	10.7	9.3	8.3	7.3	6.7	6.0	5.5
Ni	28	25.0	20.7	17.2	14.6	12.7	11.2	9.8	8.7	7.7	7.0	6.3	5.8
Cu	29	25.9	21.6	17.9	15.2	13.3	11.7	10.2	9.1	8.1	7.3	6.6	6.0
Zn	30	26.8	22.4	18.6	15.8	13.9	12.2	10.7	9.6	8.5	7.6	6.9	6.3
Ga	31	27.8	23.3	19.3	16.5	14.5	12.7	11.2	10.0	8.9	79	73	67
Ge	32	28.8	24.1	20.0	17.1	15.0	13.2	11.6	10.4	9.3	8.3	7.6	7.0
As	33	29.7	25.0	20.8	17.7	15.6	13.8	12.1	10.8	9.7	87	79	73
Se	34	30.6	25.8	21.5	18.3	16.1	14.3	12.6	11.2	10.0	9.0	82	75
Br	35	31.6	26.6	22.3	18.9	16.7	14.8	13.1	11.7	10.4	9.4	8.6	7.8
Kr	36	32.5	27.4	23.0	19.5	17.3	15.3	13.6	12.1	10.8	9.8	8.9	81
Rb ⁺	36	33.6	28.7	24.6	21.4	18.9	16.7	14.6	12.8	11.2	9.9	89	0.1
Rb	37	33.5	28.2	23.8	20.2	17.9	15.9	14.1	12.5	11.2	10.2	9.2	84
Sr	38	34.4	29.0	24.5	20.8	18.4	16.4	14.6	12.9	11.6	10.5	9.5	87
Y	39	35.4	29.9	25.3	21.5	19.0	17.0	15.1	13.4	12.0	10.9	9.9	9.0
Zr	40	36.3	30.8	26.0	22.1	19.7	17.5	15.6	13.8	12.4	11.2	10.2	03
Nb	41	37.3	31.7	26.8	22.8	20.2	18.1	16.0	14.3	12.8	11.6	10.2	9.7
Мо	42	38.2	32.6	27.6	23.5	20.8	18.6	16.5	14.8	13.2	12.0	10.9	10.0
Tc	43	39.1	33.4	28.3	24.1	21.3	19.1	17.0	15.2	13.6	12.3	11.3	10.0
Ru	44	40.0	34.3	29.1	24.7	21.9	19.6	17.5	15.6	14.1	12.7	11.6	10.6
100	21125												
15 CHANP	ARK, MS	E, SNU S	Spring-20	19 Crysta	al Structu	ire Analys	es					Cullity	

Factors affecting the intensity of the scattering from an atom (f)

> Anomalous scattering (anomalous dispersion)

$$|f|^{2} = (f_{0} + \Delta f')^{2} + (\Delta f'')^{2}.$$

> Thermal motion

$$f = f_0 \exp\left[-\frac{B\sin^2\theta}{\lambda^2}\right]$$

 $|f|^{2} = (f_{0} + \Delta f')^{2} + (\Delta f'')^{2}$

 $f(E,Q) = f_o(Q) + f'(E) + if''(E)$

17 CHANPARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Absorption & anomalous scattering

f' is intimately related to the absorption coefficient $(2) \int_{-\infty}^{\infty} Ef''(E)$

$$f'(E) = \left(\frac{2}{\pi}\right)^{T} \frac{Ef''(E)}{(E_0^2 - E^2)} dE$$

f" "mirrors" the absorption coefficient

$$f''(E) = \left(\frac{2\pi mc \varepsilon_0}{e^2 h}\right) E \mu_a$$

Polarization factor

> Multiplicity factor

Lorentz factor

> Absorption factor

> Temperature factor

19 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Temperature factor

Thermal motion

- \succ Thermal vibration of atoms \rightarrow
 - ✓ Unit cell expands → inteplanar spacing (d) changes → 2θ position changes
 - ✓ Intensity of diffraction lines decreases
 - Degrades the periodicity of the lattice
 - ✓ Intensity of background scattering increases

> effective size of atom is larger \rightarrow destructive interference increases with increasing 20

21 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

> Atomic vibration → effective size of atom is larger → interference effects larger

Debye-Waller temperature factor B Mean-square displacement of atom vibration U² Mean displacement = 0

$$B = 8\pi^2 U^2$$

$$f = f_0 \exp\left[-\frac{B\sin^2\theta}{\lambda^2}\right]$$
$$f = f_0 \exp\left[-\frac{B\mathbf{d}^{*2}}{4}\right]$$

23 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Jenkins & Snyder page 68

2

Thermal motion

 Isotropic temp factor B, U_{iso}

$$B = 8\pi^2 U^2$$
 Anisotropic temp factor B, U_{iso}
 $f = f_0 \exp\left[-\frac{B\sin^2\theta}{\lambda^2}\right]$
 $f = f_0 \exp\left[-\frac{Bd^{*2}}{4}\right]$
 $f = f_0 \exp\left[-\frac{1}{4}(B_{11}h^2\mathbf{a}^{*2} + B_{22}k^2\mathbf{b}^{*2} + B_{33}l^2\mathbf{c}^{*2} + 2B_{12}hk\mathbf{a}^*\mathbf{b}^* + 2B_{13}hl\mathbf{a}^*\mathbf{c}^* + 2B_{23}kl\mathbf{b}^*\mathbf{c}^*)$
 $f = f_0 \exp\left[-2\pi^2(U_{11}h^2\mathbf{a}^{*2} + U_{22}k^2\mathbf{b}^{*2} + U_{33}l^2\mathbf{c}^{*2} + 2U_{12}hk\mathbf{a}^*\mathbf{b}^* + 2U_{13}hl\mathbf{a}^*\mathbf{c}^* + 2U_{23}kl\mathbf{b}^*\mathbf{c}^*)$
 $f = f_0 \exp\left[-2\pi^2(U_{11}h^2\mathbf{a}^{*2} + U_{22}k^2\mathbf{b}^{*2} + U_{33}l^2\mathbf{c}^{*2} + 2U_{12}hk\mathbf{a}^*\mathbf{b}^* + 2U_{13}hl\mathbf{a}^*\mathbf{c}^* + 2U_{23}kl\mathbf{b}^*\mathbf{c}^*)$

 Temp factor; B, U_{iso}, B_{ij}, U_{ij}, \beta_{ij}

Thermal motion

Figure 3.14. The effect of atomic thermal motion on the copper scattering factor.

25 CHANPARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Jenkins & Snyder page 69

Temperature factor

> Thermal vibration of atoms

\rightarrow decrease of <u>intensity</u> of diffraction lines

✓ Effect increases with 2q

→ thermal diffuse scattering

- ✓ Thermal vibration causes general coherent scattering in all directions
- ✓ Contributes to background (BKG)
- ✓ BKG intensity increases with 2q

➢ Polarization factor

> Multiplicity factor

Lorentz factor

> Absorption factor

> Temperature factor

27 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Structure factor

Unpolarized incident X-ray becomes polarized after diffraction

Every time a ray is diffracted, it undergoes a phase shift of $\pi/2$ relative to the incident beam

29 CHANPARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Path difference b/w 2' & 1' $\delta_{2'1'} = MCN = 2d_{h00} \sin \theta = \lambda$ $d_{h00} = AC = \frac{a}{h}$ The effect of 3' on 1' & 2' ? Path difference b/w 3' & 1' $\delta_{3'1'} = RBS = \frac{AB}{AC}(\lambda) = \frac{x}{a/h}(\lambda)$ Phase difference f $\phi = \frac{\delta}{\lambda}(2\pi)$ $\phi_{3'1'} = \frac{\delta_{3'1'}}{\lambda}(2\pi) = \frac{2\pi hx}{a}$

Position of atom B, u = x/a $\rightarrow \phi_{3'1'} = 2\pi hu$ Position of atom B, uvw $\rightarrow \phi = 2\pi (hu + kv + lw)$

Phase difference for the hkl reflection b/w waves scattered by B & that scattered by A at origin

Atomic scattering factors are represented with phase angles with respect to a wave scattered from the origin

 $F = \frac{\text{amplitude scattered by all the atoms of a unit cell}}{\text{amplitude scattered by a single electron}}$

$$F_{hkl} = \sum_{n=0}^{n=N} f_n \exp 2\pi i(hu_n + kv_n + lw_n) \qquad I_{hkl} \sim \left|F_{hkl}\right|^2$$

Intensity of any hkl reflection from a knowledge of atomic positions can be calculated

u_n, v_n, w_n, f_n
$$\rightarrow$$
 F_{hkl} can be obtained \rightarrow can get I_{hkl}
Positions of atoms in unit cell, atomic scattering factors
(kind of atoms) \rightarrow F & I

Read Hammond Chap 9.1, 9.2, 9.3 Read Cullity Chap 4.4

33 CHANPARK, MSE, SNU Spring-2019 Crystal Structure Analyses

$$F_{hkl} = \sum_{n=0}^{n=N} f_n \exp 2\pi i(hu_n + kv_n + lw_n)$$

> Positions of atoms in unit cell, atomic scattering factors

- ➤ I_{hkl} from several sets of planes → atom positions ; crystal structure determination
- $\succ F \rightarrow I \text{ vs. } I \rightarrow F$

✓ $F \rightarrow I$ (structure \rightarrow diff pattern); $I \rightarrow F$ (D pattern \rightarrow structure)

Phase info in going from F_{hkl} to I_{hkl} is lost

\rightarrow phase problem

 \checkmark We do not know in which direction the vector F_{hkl} points

Phase problem

We would be better off if diffraction measured phase of scattering rather than amplitude! Unfortunately, nature did not oblige us. A graphic illustration of phase problem

(a) & (b) : the original images.

(c) : Fourier reconstruction which has the Fourier phases of (a) and Fourier amplitude of (b).

(d) : reconstruction with the phase of (b) and the amplitude of (a).

35 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Picture by courtesy of D. Sivia

Fourier transform

>
$$F_{hkl} = \int_{V} e^{xyz} e^{xyz} (2\pi i(hx+ky+lz)) dV$$

$$F_{hkl} = \sum_{n=0}^{n=N} f_n \exp 2\pi i (hu_n + kv_n + lw_n)$$

$$r_{xyz}$$
 = (1/V) Σ Σ Σ F_{hkl} exp (-2πi(hx+ky+lz))
h k l

- > e' density \leftarrow Fourier transform \rightarrow diffraction pattern
- > I is related to e' density through Fourier transform
- > Xtal structure \leftarrow Fourier transform \rightarrow diffraction pattern

 \checkmark EXAFS pattern \leftarrow Fourier transform \rightarrow radial distribution function (rdf)

- > r space = real space diffraction space = reciprocal space
- Reciprocal space always has centrosymmetry even though there is no centrosymmetry in real space
- > Diffraction pattern always gives Laue group pattern

Inverse Transform

Diffraction pattern
$$F(\mathbf{k}) = \int_{\text{all } \mathbf{r}} f(\mathbf{r}) e^{i \mathbf{k} \cdot \mathbf{r}} d\mathbf{r}$$

F(k) is Fourier transform of f(r)

Inverse transform
$$f(\mathbf{r}) = \int_{\text{all } \mathbf{k}} F(\mathbf{k}) e^{-i \mathbf{k} \cdot \mathbf{r}} d\mathbf{k}$$

 $F(\mathbf{k})$; contains info on the spatial distribution of diffraction pattern $f(\mathbf{r})$; contains info on the structure of obstacle

$f(\mathbf{r}) vs. F(\mathbf{k})$

- If the structure is known
- \rightarrow f(r) is known
- \rightarrow diffraction pattern F(k) can be computed
- If the diffraction pattern is known
- \rightarrow F(k) is known
- \rightarrow f(r) can be computed

The act of diffraction = taking Fourier transform of the obstacle

Diffraction pattern of an obstacle described by $f(\mathbf{r})$ is the Fourier transform of $f(\mathbf{r})$, which is $F(\mathbf{k})$

Experimental Limitation

> Information is contained in all space.

- > It is impossible to scan all space to collect all the information
 - \rightarrow some info is lost

 \rightarrow reconstruction of the obstacle from the diffraction data will be incomplete

> PHASE PROBLEM

> Diffraction pattern from a non-centrosymmetric crystal is centrosymmetric → Friedel's law

$$face-centered cell 000, \frac{1}{2}\frac{1}{2}0, \frac{1}{2}0\frac{1}{2} \& 0\frac{1}{2}\frac{1}{2} \\ F_{hkl} = \sum_{1}^{N} f_n e^{2\pi i (hu_n + kv_n + lw_n)},$$

$$F = fe^{2\pi i(0)} + fe^{2\pi i(h/2 + k/2)} + fe^{2\pi i(k/2 + l/2)} + fe^{2\pi i(h/2 + l/2)}$$
$$= f [1 + e^{\pi i(h+k)} + e^{\pi i(k+l)} + e^{\pi i(h+l)}].$$

F = 4f for unmixed indices; $F^2 = 16f^2$

F = 0 for mixed indices;

 $F^{2} = 0$

$$\begin{split} & \text{NaCl} \\ & \text{Na } 000, \frac{1}{2} \frac{1}{2} 0, \frac{1}{2} 0 \frac{1}{2} & 0 \frac{1}{2} \frac{1}{2} \\ & \text{Cl} \frac{1}{2} \frac{1}{2} \frac{1}{2}, 00 \frac{1}{2}, 0 \frac{1}{2} 0, \frac{1}{2} 00 \\ \hline & F_{hkl} = \sum_{1}^{N} f_{n} e^{2\pi i (hu_{n} + kv_{n} + lw_{n})} \\ & F_{hkl} = \sum_{1}^{N} f_{n} e^{2\pi i (hu_{n} + kv_{n} + lw_{n})} \\ & F_{hkl} = \sum_{1}^{N} f_{n} e^{2\pi i (hu_{n} + kv_{n} + lw_{n})} \\ & F_{hkl} = \sum_{1}^{N} f_{n} e^{2\pi i (hu_{n} + kv_{n} + lw_{n})} \\ & F_{hkl} = \sum_{1}^{N} f_{n} e^{2\pi i (hu_{n} + kv_{n} + lw_{n})} \\ & F_{hkl} = \sum_{1}^{N} f_{n} e^{2\pi i (hu_{n} + kv_{n} + lw_{n})} \\ & F_{hkl} = \sum_{1}^{N} f_{n} e^{2\pi i (hu_{n} + kv_{n} + lw_{n})} \\ & F_{hkl} = \sum_{1}^{N} f_{n} e^{2\pi i (hu_{n} + kv_{n} + lw_{n})} \\ & F_{hkl} = \sum_{1}^{N} f_{n} e^{2\pi i (hu_{n} + kv_{n} + lw_{n})} \\ & F_{hkl} = \sum_{1}^{N} f_{n} e^{2\pi i (hu_{n} + kv_{n} + lw_{n})} \\ & F_{hkl} = \sum_{1}^{N} f_{n} e^{2\pi i (hu_{n} + kv_{n} + lw_{n})} \\ & F_{hkl} = \sum_{1}^{N} f_{n} e^{2\pi i (hu_{n} + kv_{n} + lw_{n})} \\ & F_{hkl} = \sum_{1}^{N} f_{n} e^{2\pi i (hu_{n} + kv_{n} + lw_{n})} \\ & F_{hkl} = \sum_{1}^{N} f_{n} e^{2\pi i (hu_{n} + kv_{n} + lw_{n})} \\ & F_{hkl} = \sum_{1}^{N} f_{n} e^{2\pi i (hu_{n} + kv_{n} + lw_{n})} \\ & F_{hkl} = \sum_{1}^{N} f_{n} e^{2\pi i (hu_{n} + kv_{n} + lw_{n})} \\ & F_{hkl} = \sum_{1}^{N} f_{n} e^{2\pi i (hu_{n} + kv_{n} + lw_{n})} \\ & F_{hkl} = \sum_{1}^{N} f_{n} e^{2\pi i (hu_{n} + kv_{n} + lw_{n})} \\ & F_{hkl} = \sum_{1}^{N} f_{n} e^{2\pi i (hu_{n} + kv_{n} + lw_{n})} \\ & F_{hkl} = \sum_{1}^{N} f_{n} e^{2\pi i (hu_{n} + kv_{n} + lw_{n})} \\ & F_{hkl} = \sum_{1}^{N} f_{n} e^{2\pi i (hu_{n} + kv_{n} + lw_{n})} \\ & F_{hkl} = \sum_{1}^{N} f_{n} e^{2\pi i (hu_{n} + kv_{n} + lw_{n})} \\ & F_{hkl} = \sum_{1}^{N} f_{n} e^{2\pi i (hu_{n} + kv_{n} + lw_{n})} \\ & F_{hkl} = \sum_{1}^{N} f_{n} e^{2\pi i (hu_{n} + kv_{n} + lw_{n})} \\ & F_{hkl} = \sum_{1}^{N} f_{n} e^{2\pi i (hu_{n} + kv_{n} + lw_{n})} \\ & F_{hkl} = \sum_{1}^{N} f_{n} e^{2\pi i (hu_{n} + kv_{n} + lw_{n})} \\ & F_{hkl} = \sum_{1}^{N} f_{n} e^{2\pi i (hu_{n} + kv_{n} + lw_{n})} \\ & F_{hkl} = \sum_{1}^{N} f_{n} e^{2\pi i (hu_{n} + kv_{n} + lw_{n})} \\ & F_{hkl} = \sum_{1}^{N} f_{n} e^{2\pi i$$

43 CHANPARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Read Cullity Chap 4.6

Structure Factor - CsCl

$$(\frac{1}{2}\frac{1}{2}\frac{1}{2}) \text{ for Cs} \quad (000) \text{ for Cl}$$

$$F_{hkl} = \int_{n=0}^{n=N} f_n \exp 2\pi i (hu_n + kv_n + lw_n)$$

$$F_{hkl} = f_{Cl} \exp 2\pi i (h0 + k0 + l0) + f_{Cs} \exp 2\pi i (h\frac{1}{2} + k\frac{1}{2} + l\frac{1}{2})$$

$$= f_{Cl} + f_{Cs} \exp \pi i (h + k + l).$$

$$F_{hkl} = f_{Cl} + f_{Cs} \quad (h + k + l) = \text{ even}$$

$$F_{hkl} = f_{Cl} - f_{Cs} \quad (h + k + l) = \text{ odd}$$

$$f_{Cs} \quad f_{Cs} \quad f_{Cs} \quad r_{Cs} \quad r_{Cs}$$

Structure Factor - CsCl

$$F_{hkl} = \sum_{n=0}^{n=N} f_n \exp 2\pi i (hu_n + kv_n + lw_n)$$

Example 1: CsCl structure (Fig. 1.12). The $(u_n v_n w_n)$ values are (000) for Cl, atomic scattering factor f_{Cl} and $(\frac{1}{2}\frac{1}{2}\frac{1}{2})$ for Cs, atomic scattering factor f_{Cs} . Substituting these two terms in the equation:

$$F_{hkl} = f_{Cl} \exp 2\pi i(h0 + k0 + l0) + f_{Cs} \exp 2\pi i \left(h\frac{1}{2} + k\frac{1}{2} + l\frac{1}{2}\right)$$

= $f_{Cl} + f_{Cs} \exp \pi i(h + k + l).$

Two situations may be identified: when (h + k + l) = even integer, exp πi (even integer) = 1, hence $F_{hkl} = f_{Cl} + f_{Cs}$ and when (h + k + l) = odd integer, exp πi (odd integer) = -1, hence $F_{hkl} = f_{Cl} - f_{Cs}$. These two situations may be simply represented on the Argand diagram as shown in Fig. 9.4. Note that in both cases F_{hkl} is a real number; the imaginary component is zero. This arises because CsCl has a centre of symmetry at the origin, as explained below.

45 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Structure Factor - hcp

 $(000) \left(\frac{1}{3}\frac{2}{3}\frac{1}{2}\right)$ $F_{hkl} = f \exp 2\pi i(h0 + k0 + l0) + f \exp 2\pi i\left(h\frac{1}{3} + k\frac{2}{3} + l\frac{1}{2}\right)$ $= f \left(1 + \exp 2\pi i\left(h\frac{1}{3} + k\frac{2}{3} + l\frac{1}{2}\right)\right).$ $[(h + 2k)/3 + l/2] = g \qquad F = f(1 + e^{2\pi ig})$ $|F|^2 = f^2(1 + e^{2\pi ig})(1 + e^{-2\pi ig})$ $= f^2(2 + e^{2\pi ig} + e^{-2\pi ig}).$ $|F|^2 = f^2(2 + 2\cos 2\pi g)$ $= f^2[2 + 2(2\cos^2 \pi g - 1)]$ $= f^2(4\cos^2 \pi g)$ $= 4f^2\cos^2 \pi \left(\frac{h + 2k}{3} + \frac{l}{2}\right)$ = 0 when (h + 2k) is a multiple of 3 and l is odd.

$$F_{hkl} = \sum_{n=0}^{n=N} f_n \exp 2\pi i (hu_n + kv_n + lw_n)$$

Hammond

When (h + 2k) is a multiple of 3 and 1 is even

$$\left(\frac{h+2k}{3} + \frac{l}{2}\right) = n$$
, where *n* is an integer;
 $\cos \pi n = \pm 1$,
 $\cos^2 \pi n = 1$,

$$|F|^2 = 4f^2.$$

h + 2k	1	$ F ^2$
3 m	odd	0
3 m	even	$4f^{2}$
$3 \text{ m} \pm 1$	odd	$3f^2$
$3 \text{ m} \pm 1$	even	f^2

Read Cullity Chap 4.6

Example 2: hcp metal structure. We have a choice of unit cells (Fig. 5.8); it is best to refer to the primitive hexagonal cell, Fig. 5.8(a), which contains two identical atoms, atomic scattering factor f, with fractional coordinates (000) (the A layer atoms) and $(\frac{12}{3}\frac{1}{2})$ (the B layer atoms). Substituting these two terms in the equation:

Structure Factor hcp

$$F_{hkl} = f \exp 2\pi i (h0 + k0 + l0) + f \exp 2\pi i \left(h\frac{1}{3} + k\frac{2}{3} + l\frac{1}{2}\right)$$
$$= f \left(1 + \exp 2\pi i \left(h\frac{1}{3} + k\frac{2}{3} + l\frac{1}{2}\right)\right).$$

Now let us apply this to some particular (*hkl*) planes, e.g. (002) \equiv (0002); (100) \equiv (1010) and (101) \equiv (1011).

$$F_{002} = f(1 + \exp 2\pi i) = 2f$$

$$F_{100} = f(1 + \exp \frac{2}{3}\pi i) = f\left(1 + \cos \frac{2}{3}\pi + i \sin \frac{2}{3}\pi\right) = f(0.5 + i0.866)$$

$$F_{101} = f(1 + \exp 2\pi i (\frac{1}{3} + \frac{1}{2})) = f\left(1 + \cos \frac{5}{3}\pi + i \sin \frac{5}{3}\pi\right) = f(1.5 - i0.866).$$

These results are shown graphically in Fig. 9.5. Note that F_{100} and F_{101} are complex numbers.

The intensities I_{hkl} of X-ray beams are proportional to their amplitudes squared, or F_{hkl} multiplied by its complex conjugate F_{hkl}^* (see Appendix 5). For the hcp metal examples above:

$$I_{002} = 2f \cdot 2f = 4f^2$$

$$I_{100} = f(0.5 + i0.866)f(0.5 - i0.866) = f^2$$

$$I_{101} = f(1.5 - i0.866)f(1.5 + i0.866) = 3f^2.$$

Read Cullity Chap 4.6 Hammond Chap 9

47 CHANPARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Structure Factor - hcp

$$F_{002} = f(1 + \exp 2\pi i) = 2f$$

$$F_{100} = f(1 + \exp \frac{2}{3}\pi i) = f(1 + \cos \frac{2}{3}\pi + i \sin \frac{2}{3}\pi) = f(0.5 + i0.866)$$

$$F_{101} = f(1 + \exp 2\pi i (\frac{1}{3} + \frac{1}{2})) = f(1 + \cos \frac{5}{3}\pi + i \sin \frac{5}{3}\pi) = f(1.5 - i0.866).$$

Example 3: A crystal with a centre of symmetry at the origin. This is an important case because the structure factor for all reflections is real. For every atom with fractional coordinates (*uvw*) and phase angle $+\phi$ there will be an identical one on the *opposite* side of the origin with fractional coordinates ($\bar{u}\bar{v}\bar{w}$ and phase angle $-\phi$. For these two atoms:

$$F_{hkl} = f \exp 2\pi i(hu + kv + lw) + f \exp 2\pi i(h\bar{u} + k\bar{v} + l\bar{w})$$
$$= f \exp 2\pi i(hu + kv + lw) + f \exp -2\pi i(hu + kv + lw).$$

The second term is the complex conjugate of the first, hence the sine terms cancel and

$$F_{hkl} = 2f\cos 2\pi(hu + kv + lw)$$

as shown graphically in Fig. 9.6.

Fig. 9.6. The <u>Argand diagram for a centrosymmetric crystal</u>. The phase angle $+\phi$ for the atom at (uvw) is equal and opposite to the phase angle $-\phi$ for the atom at $(\overline{u}\overline{v}\overline{w})$, hence F_{hkl} is real.

49 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Friedel's law

- Diffraction pattern from a centrosymmetric crystal is centrosymmetric

$$I_{hkl} = F_{hkl} \cdot F_{hkl}^* = f \exp 2\pi i(hu + kv + lw) f \exp -2\pi i(hu + kv + lw)$$
$$= f \exp 2\pi i(hu + kv + lw) f \exp 2\pi i(\bar{h}u + \bar{k}v + \bar{l}w)$$
$$I_{\bar{h}\bar{k}\bar{l}} = F_{\bar{h}\bar{k}\bar{l}} \cdot F_{\bar{h}\bar{k}\bar{l}}^* = f \exp 2\pi i(\bar{h}u + \bar{k}v + \bar{l}w) f \exp -2\pi i(\bar{h}u + \bar{k}v + \bar{l}w)$$
$$= f \exp 2\pi i(\bar{h}u + \bar{k}v + \bar{l}w) f \exp 2\pi i(hu + kv + lw).$$

$$F_{hkl} = F_{\bar{h}\bar{k}\bar{l}}^*$$
 and $F_{hkl}^* = F_{\bar{h}\bar{k}\bar{l}}$, hence $I_{hkl} = I_{\bar{h}\bar{k}\bar{l}}$

Hammond Chap 9

11 Laue groups

Crystal system	Laue point group and centrosymmetric point group	Non-centrosymmetric point groups belonging to the Laue point grou							
Cubic (two Laue point groups)	m3m m3	432 23	ā3m						
Tetragonal (two Laue point groups)	4/mmm 4/m	422 4	4 <i>mm</i> 4	42 <i>m</i>					
Orthorhombic	mmm	222	mm2						
Trigonal (two Laue point groups)	$\frac{\overline{3}m}{\overline{3}}$	32 3	3 <i>m</i>						
Hexagonal (two Laue point groups)	6/mmm 6/m	622 6	6 <i>mm</i> 6	<u>6</u> m2					
Monoclinic	2 <i>Im</i>	2	m						
Triclinic	ī	1							

 Table 9.1
 The eleven Laue point groups or crystal classes

- Non-centrosymmetric point groups cannot be distinguished from centrosymmetric groups from diffraction
- > <u>11 centrosymmetric point groups (Laue group)</u> → diffraction pattern can <u>have 11 symmetries</u>
- 51 CHANPARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Read Hammond Chap 9.1, 9.2, 9.3

Systematic absence (extinction)

Systematic absence (extinction)

- The condition that structure factor becomes zero <u>due to a</u> <u>systematic symmetry condition</u>
- Presence of reflections with zero intensity caused by the <u>space</u> <u>group (symmetry) of unit cell</u>
- Arise from <u>centering of unit cell</u> and/or the <u>presence of</u> <u>translational symmetry elements</u> - screw axes, glide planes
 ✓ Can get info on these elements from the extinction of peaks

53 CHANPARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Structure factor & Extinction conditions $F = f e^{2\pi i (0)} + f e^{2\pi i (h/2 + k/2 + l/2)}$ Body-centered cell $= f [1 + e^{\pi i (h+k+l)}].$ $000 \& \frac{1}{2} \frac{1}{2} \frac{1}{2}$ F = 2fwhen (h + k + l) is even; $F = 4f^{2}$. F = 0when (h + k + l) is odd; $F^2 = 0.$ Table 3.2. Example of Conditions for the Extinction of **Reflections Due to Translational Symmetries** Symmetry **Extinction Conditions** Р none C*hkl*; h + k = oddI *hkl*; h + k + l = oddF hkl; h, k, l mixed even and odd 0k0: k = odd $2_1 \| b$ $c \perp b$ h0l: l = odd

54 CHANPARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Hammond Appendix 6

$$hkl; h + k + l = odd$$

55 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Hammond Appendix 6

Systematic absence (extinction)

Hammond Appendix 6

	Lattice or symmetry element type	Symbol	Class of reflections	Condition for presence
	Lattice type:		hkl	
	primitive	Р	117.1	none
	body-centred	·		h+k+l=2
Curtomotio abaarse	centred on the C face	C		h+k = 2
Systematic adsence	centred on the A face	Ā		k + l = 2
	centred on the B face	В		h + l = 2
(extinction)				h, k, l
	centred on all faces	F		all $= n \text{ (odd)}$
				or all = $2n$ (ever
	rhombohedral, obverse	R		-h+k+l=3
	rhombohedral, reverse	R		h-k+l=3
	Glide plane (001)	а	hk0	h = 2
	1 0 2 2	b		k = 2
		n		h+k = 2
		d		h+k = 4
	Glide plane (100)	b	Okl	k = 2
	Contraction Brancher III Accounty	c		l = 2
		n		k + l = 2
		d		k + l = 4
	Glide plane (010)	a	hOl	h = 2
		С		l = 2
		d		h + l = 2
		n		h + l = 4
	Glide plane (110)	с	hhl	l = 2
		п		h+k = 2
		d		2h + l = 4
	Screw axis $\ c$	21, 42, 63	00/	l = 2
		31, 32, 62, 64		l = 3
		41,42		l = 4
		$6_1, 6_5$		l = 6
	Screw axis a	21,42	<i>h</i> 00	h = 2
		41,43		h = 4
	Screw axis b	21,42	0k0	k = 2
		41,43		k = 4
	Screw axis [110]	21	hh0	h = 2

Factors affecting the relative intensity of Bragg reflections

- > Structure factor
- ➢ Polarization factor
- > Multiplicity factor
- ≻Lorentz factor
- > Absorption factor
- > Temperature factor

Multiplicity

59 CHANPARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Multiplicity

- # of permutations of position and sign of ±h, ±k, ±l for planes having same d and F² (Cullity)
- > # of equivalent planes cutting a unit cell in a particular hkl family (Jenkins & Snyder)
- # of equivalent orientations that a unit cell can have for a given crystallographic direction (Krawitz)
- Cubic
 - ✓ (100), (010), (001), (-100), (0-10), (00-1) → 6
 - $\checkmark (111), (-111), (1-11), (11-1), (-1-1), (-1-11), (-1-11), (-1-1-1) \rightarrow 8$
 - \checkmark (Intensity of 111) x 3 = (Intensity of 100) x 4, when other things are equal
- > Tetragonal
 - ✓ (100), (010), (-100), (0-10) → 4
 - ✓ (001), (00-1) \rightarrow 2
 - ✓ (111), (-111), (1-11), (11-1), (1-1-1), (-11-1), (-1-11), (-1-1-1) $\rightarrow 8$
 - \checkmark (Intensity of 111) = (Intensity of 100) \times 2, when other things are equal
 - \checkmark (Intensity of 111) = (Intensity of 001) x 4, when other things are equal

Multiplicity

Index	Triclinic	Monoclinic	Orthorhombic	Hexagonal Trigonal	Tetragonal	Cubic
hkl	2	4	8	24*	16*	48*
hhl	2	4	8	12*	8	24
hh0	2	4	8	6	4	12
0kk	2	4	8	12	8	12
hhh	2	4	8	12	8	8 -
hk0	2	4	8	12*	8*	24*
h01	2	2	4	12*	8	24*
0kl	2	4	4	12*	8	24*
h00	2	2	2	6	4	6
0k0	2	2	2	6	4	6
001	2	2	2	2	2	6

Table 6.1. Multiplicities for the Seven Crystal Systems

Note: For some space groups within the crystal systems, indexes marked with * are half the indicated values. A complete listing may be found in Table 3.5.1 in the *International Tables for X-Ray Crystallography*, Vol. 1, pp. 32–33.

Krawitz

61 CHANPARK, MSE, SNU Spring-2019 Crystal Structure Analyses

 $P2_{1}/c$ No. 14 CONTINUED Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3) Positions Multiplicity, Coordinates Reflection conditions Wyckoff letter, Site symn Positions 4 e Multiplicity Coordinates Multiplicity, Wyckoff letter, Number of equivalent points in a unit cell Site symmetry 2 d 2 с (1) x, y, z (2) $\overline{x}, y + \frac{1}{2}, \overline{z} + \frac{1}{2}$ (3) $\overline{x}, \overline{y}, \overline{z}$ (4) $x, \overline{y} + \frac{1}{2}, z + \frac{1}{2}$ 1 2 ь 4 e 2 a 1 đ 2 1,0,1 1,1,0 ī $\mathbf{2}$ C. 0,1,0 $0, 0, \frac{1}{2}$ ī 2 b $\frac{1}{2}, 0, 0$ $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ ī 2 0, 0, 0 $0, \frac{1}{2}, \frac{1}{2}$ a International Table 62 CHANPA

- Structure factor
- ➢ Polarization factor
- > Multiplicity factor
- Lorentz factor
- > Absorption factor
- > Temperature factor

63 CHANPARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Absorption

Absorption factor > Hull/Debye-Scherrer

Extinction

67 CHANPARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Extinction

- > Diffracted intensity; perfect xtal << ideally imperfect xtal
- Decrease in intensity as the crystal becomes more perfect (large mosaic blocks, oriented)
- Ideally imperfect crystal consists of very small mosaic blocks, uniformly disoriented; no extinction
- Kinematical theory/dynamical theory
- > Powder specimens should be ground as fine as possible
- > Grinding → reduce crystal size, increase # of diffraction cones, decrease mosaic block size, disorient mosaic blocks, strain the crystals non-uniformly

Mosaic structure

- > Not perfectly regular lattice \rightarrow collection of tiny blocks each slightly disoriented one from the other
- > Angle of disorientation between the blocks is e (< 1 degree) \rightarrow diffraction occurs at all angles between θ_B and θ_B + ϵ
- > Increases the integrated intensity relative to that obtained (or calculated) for an ideally perfect crystal \leftarrow strains & strain gradients associated with the groups of dislocations

71 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Factors affecting the relative intensity of Bragg reflections

- > Structure factor
- > Polarization factor
- > Multiplicity factor
- >Lorentz factor
- > Absorption factor
- > Temperature factor

Mosaic structure

- > Not perfectly regular lattice → collection of tiny blocks each slightly disoriented one from the other
- > Angle of disorientation between the blocks is ϵ (< 1 degree) \rightarrow diffraction occurs at all angles between θ_B and $\theta_B + \epsilon$

75 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Cullity page 174~176

76 CHANPARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Cullity page 145~147

 $I_{max} \propto 1/sin \; \theta_B$

 $B \propto 1/\cos \theta_B$ Size & strain broadening

77 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Cullity page 146~148

Geometrical factor - 2

- > Intensity of a reflection at θ_B depends on <u>the # of crystals oriented</u> <u>at or near θ_B </u>
- This # is not constant even when the crystals are oriented completely at random
 - Powder specimen at O
 - ON; normal to hkl plane in one crystal of the powder
 - Dq; range of θ near θ_B over which diffraction is appreciable

- > Geometrical factors decrease intensity of reflections @ intermediate angles compared to those in forward or backward directions
- > Lp factor decreases the intensity at intermediate 2θ angles

- In powder technique, accurate sampling & homogeneous mixing are critical
- Factors affecting observed intensity to depart from the theoretical one (important in quantitative phase analysis)
 - ✓ Preferred orientation (texture)
 - ✓ Microabsorption
 - \checkmark Extinction

83 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Microabsorption

- \succ Mixture of α & β
- > When $\mu_{\alpha} \approx \mu_{\beta}$, and particle size of $\alpha \& \beta$ is different \rightarrow microabsorption can make I(calculated) deviate from I(observed)
- > If $\mu_{\alpha} \gg \mu_{\beta}$, or particle size of $\alpha \gg$ size of $\beta \rightarrow$ Intensity diffracted from a crystals will be much less than calculated intensity
- > Can be negligible when (1) $\mu_{\alpha} \approx \mu_{\beta}$, and particle size of $\alpha \& \beta$ is same, or (2) particle size of $\alpha \& \beta$ is very small
- \rightarrow Powder samples should be finely ground

Microabsorption

- Largest source of residual error in QPA by XRD due to microabsorption
- Occurs when sample contains a mix of low & highly absorbing phases
- A disproportionate amount (more or less) of observed intensity comes from individual grains relative to what would be expected for the average absorption of the sample
- High absorbers
 - Beam absorbed in surface of grain
 - Only a fraction of the grain diffracting (
 - Intensity under-overestimated low QPA
- Low absorbers
 - Beam penetrates further into grain
 - Greater likelihood of 'volume diffraction' occurring
 - Intensity over-estimated high QPA

85 CHANPARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Ian Madsen, CSIRO

High absorber

🔍 Low absorber

Microabsorption

- When dealing with a new sample, it is difficult to determine whether a correction for microabsorption is required without first obtaining additional information
- > The Brindley model is most frequently applied correction
 - $\checkmark\,$ Requires knowledge of absorption contrast and particle sizes
 - The latter is not easily achieved in 'real' samples
- > The Brindley model assumes spherical particles of uniform size
 - $\checkmark\,$ Assumption is unrealistic in real samples
 - ✓ Even when particle size is measured by e.g. laser-sizing or SEM, the best form of correction can still be unclear
- > Many applications suffer from unnecessary and/or excessive correction
 - \checkmark Largely overcorrected when addressed
- Better results achieved through care in sample preparation than in application of correction
- > Microabsorption is virtually absent for neutrons
 - ✓ Neutron diffraction based results can act as a 'benchmark' for X-ray studies

Sample Related Factors Affecting Accuracy Microabsorption (cont'd)

- Brindley devised criteria for assessing whether microabsorption is likely to present a problem
 - μD = (linear absorption coefficient X particle diameter)

Intensity diffracted by a single phase powder specimen in a diffractometer

$$I(hkl) = \left(\frac{I_o A\lambda^3}{32\pi r}\right) \left[\left(\frac{\mu_o}{4\pi}\right)^2 \frac{e^4}{m^2}\right] \left(\frac{1}{v^2}\right) \left[|F(hkl)|^2 p \left(\frac{1+\cos^2 2\theta}{\sin^2 \theta \cos \theta}\right)\right] \left(\frac{e^{-2M}}{2\mu}\right).$$

- > I(hkl) = integrated intensity per unit length of diffraction line
- > I₀ = intensity of incident beam
- > A = crosssectional area of incident beam
- > r = radius of diffractometer circle
- V = volume of unit cell
- > F(hkl) = structure factor
- > p = multiplicity factor
- > e^{-2M}; temperature factor
- $> \mu$ = linear absorption coefficient
- 89 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Electron density distribution

nickel phthalocyanine

Protein myoglobin

Amorphous & partially crystalline samples

