Inter-Patient Electrocardiogram Heartbeat Classification with 2-D Convolutional
Neural Network

by

Kun Ye
B.Sc., University of Victoria, 2018

A Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF APPLIED SCIENCE

in the Department of Electrical and Computer Engineering

© Kun Ye, 2021

University of Victoria

All rights reserved. This thesis may not be reproduced in whole or in part, by

photocopying or other means, without the permission of the author.

Inter-Patient Electrocardiogram Heartbeat Classification with 2-D Convolutional

Neural Network

by

Kun Ye
B.Sc., University of Victoria, 2018

Supervisory Committee

ii

Dr. Xiaodai Dong, Supervisor

(Department of Electrical and Computer Engineering)

Dr. Hong-Chuan Yang, Department Member

(Department of Electrical and Computer Engineering)

il

Supervisory Committee

Dr. Xiaodai Dong, Supervisor

(Department of Electrical and Computer Engineering)

Dr. Hong-Chuan Yang, Department Member

(Department of Electrical and Computer Engineering)

ABSTRACT

Advanced computer technologies can transform the traditional electrocardiogram
(ECG) monitoring system for better efficiency and accuracy. ECG records a heart’s
electrical activity using electrodes placed on the skin, and it has become an essential
tool for arrhythmia detection. The complexity comes from the variety of patients’
heartbeats and massive amounts of information for humans to process correctly. The
first part of the thesis presents an image based two-dimensional convolution neural
network (CNN) to classify the arrhythmia heartbeats with inter-patient paradigm. It
includes a new data pre-processing method. The inter-patient paradigm simulates the
practical use case of an ECG heartbeat classifier. Compared to the reported work in
the literature, the proposed solution achieves superior experiment results. The rest of
the thesis introduces the remote ECG monitoring system. The RESTful API design
concepts of the system are described. The proposed API supports an efficient and

secure way of interaction between each module in this remote monitoring system.

iv

Contents
Supervisory Committee ii
Abstract iii
Contents iv
List of Tables vii
List of Figures viii
List of Abbreviations X
Acknowledgements xii
Dedication xiii
1 Introduction 1
1.1 Overview 1
1.2 Summary of Contributions 3
1.3 Organizations 4
2 Neural Network Overview 5
2.1 Perceptrons)
2.1.1 Example of Perceptron 6
2.2 Multilayer Perceptron 7
2.2.1 Using Multi-Layer Perception to Classify Hand Recognize Digit 7
2.2.2 Neural Network Architecture 7
2.3 Convolution Neural Network 8
2.3.1 Kernels of Convolutional Layers 9
23.2 Pooling 9

2.3.3 Fully Connected Layer 10

3 Deep Convolutional Neural Networks in ECG Arrhythmia Beat

Classification 12
3.1 Introduction 12
3.2 Related Work 15
3.3 Methods 19
3.3.1 Paradigms 19
3.3.2 Advancement of Medical Instrumentation Standards 19
3.3.3 Database Information 21
3.3.4 ECG Data Pre-Processing 22
3.3.5 The ECG Arrhythmia Classifier 27

3.4 Experiments And Analysis 37
3.4.1 Model Evaluation 37
3.4.2 Evaluation of Approaches 38
343 Results 43

3.5 Conclusions 45
4 Remote ECG Monitoring System with API Design 46
4.1 Introduction 46
4.2 Remote ECG Monitoring System 48
4.2.1 The Central Server 49
4.2.2 API Explanation 50
4.2.3 Principles of RESTful APIs 51
4.2.4 REST Parameters 52

4.3 ECG REST API Framework Design 54
4.3.1 Login Section 54
4.3.2 Nurse Section 54
4.3.3 Patient Section 55
4.3.4 ECG Test Section 56
4.3.5 ECG Raw Data Section 56

4.4 Conclusions 57
5 Conclusions 58

5.1 Inter-Patient ECG Classification Using Deep Convolutional Neural
Networks 58

vi

5.2 ECG REST API Design 59
5.3 Future Worko 59
Bibliography 60

Appendix A Python code of Inter-patient ECG Classification Using
Deep Convolutional Neural Networks 67

Appendix B Remote ECG Monitoring Software API document 70

List of Tables

Table 3.1 Advancement of Medical Instrumentation recommended classes .
Table 3.2 Summary of MIT-BIH arrhythmia database
Table 3.3 The proposed model parameters
Table 3.4 The four classes classification result
Table 3.5 Results of SVEB and VEB classification

Table 3.6 Results of four-classes heartbeats classification

vii

21

viii

List of Figures

Figure 2.1 An example of a simple perceptron.
Figure 2.2 An overview of the neural network’s structure.
Figure 2.3 An example of an input image and a filter.

Figure 2.4 Examples of a max pooling operation and an average pooling

operation.o o oL 10
Figure 2.5 An overview of a complete CNN’s structure. 11
Figure 3.1 An ECG signal illustration [57]. 13
Figure 3.2 Segmenting a heartbeat from a series of ECG signal. 23
Figure 3.3 The processes of plotting ECG heartbeat images. 25
Figure 3.4 An original image. 26
Figure 3.5 A compressed image. 26
Figure 3.6 A compressed image (augmented). 26
Figure 3.7 The overall workflow of the proposed model. 28
Figure 3.8 The structure of a VGG block. 29
Figure 3.9 Six configurations [15] L. 30
Figure 3.10Differences between adjusted VGG blocks and original VGG-16

blocks. 31
Figure 3.11The graph of ReLU. 32
Figure 3.12The proposed model blocks. 34
Figure 3.13The proposed model layers. 35

Figure 3.14The model’s classification accuracy with respect to image reso-
lutions. 38
Figure 3.15The model’s classification accuracy with respect to learning rates. 39
Figure 3.16The model’s classification accuracy with respect to batch nor-
malization. 40
Figure 3.17Comparison of the model’s classification accuracy with two ac-

tivation functions. 41

ible

Figure 3.18The performance difference between the proposed model and the

original VGG network. 42
Figure 4.1 The ECG software flow chart. 48
Figure 4.2 The ECG software flow chart. 49
Figure 4.3 The ECG software flow chart. 50
Figure 4.4 An example of accessing a student information through URI. . 51
Figure 4.5 An example of JSON data format. 52
Figure 4.6 An example of a path parameter ina URL. 53

Figure 4.7 An example of query string parameters in a URL. 53

List of Abbreviations

ANN Artificial Neural Network

API Application Programming Interface
BiLSTM Bidirectional Long Short Term Memory
CNN Convolutional Neural Network

CVD Cardiovascular disease

DAO Data Access Object

ECG Electrocardiogram

GPU Graphics Processing Unit

GUI Graphical User Interface

HZ hertz

HTTP Hypertext Transfer Protocol

ICS Internal Covariate Shift

ILSVRC ImageNet Large Visual Perception Challenge
JSON JavaScript Object Notation

KNN K Nearest Neighbor

LSTM Long Short Term Memory

MLP Multi-layer Perceptron

QA Quality Assurance

RBFNN radial basis function neural network
RR R-peak R-peak

ReLU Rectified Linear Unit

REST Representational State Transfer

SDLC Software Development Life Cycle
SVEB Supraventricular Ectopic Beat
SVM Support Vector Machine

Ul User Interface

URI Uniform Resource Identifier
VEB Venticular Ectopic Beat

WHO World Health Organization

bl

Xii

ACKNOWLEDGEMENTS

I would like to thank:

My mother, father, and brother, for their love, caring, and sacrifices for my
graduate education. It has been a changing two years for me, also the most
meaningful. I am genuinely thankful to my parents for their understanding,
patience, and continuing support to complete my research works. They help
me when I am in low moments. I also express my special thanks to my brother

to help and care for my student life in Canada.

Supervisor Dr. Xiaodai Dong, for her patient guidance, enthusiastic encourage-
ment and useful critiques of this research work. She has continually encouraged
me to think about this research, and when I have questions, she always an-
swered patiently. Without her support, this research would not be possible. As
an undergraduate student who wants to discover more in the medical software
engineering world, she gives me the courage and confidence to keep studying

and researching.

My colleagues and my friends, for their help and support to my research work in
these two years. They provide many insightful research ideas to me and guide
me in my graduate studies. It has been an honor for me to work with these
colleagues, and I learned much useful knowledge through cooperation works

with them. Without their help, I would not complete this thesis smoothly.

Kun Ye
Victoria, BC, Canada
June, 2020

xiii

DEDICATION

To my family, my supervisor
for

All the supports that you have given to me

Chapter 1

Introduction

1.1 Overview

Health issues have always been a primary concern of society. In 2017, the world health
organization (WHO) listed cardiovascular diseases (CVDs) as the number one cause
of death in the world [30]. About 17.9 million people died from CVDs in 2016, which
counts for 31% of all deaths in the world of that year. Most of the CVDs happen in
countries with low incomes. In these countries, people are usually not covered by the
public health care system, and inadequate medical facilities cause hospitals not able
to provide proper medical treatments for patients. Practical solutions for reducing
deaths caused by CVDs are early detection and proper medical treatments. Usually,
physicians diagnose a patient’s cardiac problem based on analyzing the patients’ ECG
signal information. A physician reviews heartbeats’ morphology information and
rhythms to determine if this patient has abnormal heartbeats [37]. A long-time ECG
recording contains a complete patient’s ECG information for a long period of time,
which is useful for a doctor to precisely diagnose a patient’s heart situation. However,
the traditional way of diagnosing arrhythmia is relatively inefficient for long-term
ECG monitoring. A doctor can not analyze a massive amount of ECG information
in a limited time [43]. This brings ideas of developing computer-based arrhythmia
classification systems for helping doctors to diagnose abnormal heartbeats. There
has been a long history of algorithm based automatic ECG data analysis since 1960s
and a large amount of literature has been devoted to this area, ranging from interval
determination to beat classifications.

The rapid advancement of machine learning models has enabled their wide use for

speech and face recognition, image identification, illnesses diagnosis, and etc [1]. In
this thesis, we develop an effective two-dimensional autonomous convolutional neural
network (CNN) arrhythmia classification system that can help physician accelerate
the detection of abnormal heartbeats, thus improving early diagnosis rate to help
reduce CVDs related deaths.

In order to accurately capture abnormal heartbeats, patients are often required
for long-term ECG monitoring. During a long-term ECG monitoring period, ECG
sensors record a patient’s ECG signal information at different times of the day. Some
ECG monitoring can take several days. Moreover, it requires remote ECG monitor-
ing, and it is difficult for people who live far away from cities to get ECG monitoring.
The advancement of wireless communication technologies provides real-time data
transmission between portable devices and central servers [3]. This makes real-time
remote ECG monitoring a feasible method to be applied in clinics. To solve these
problems, our team has implemented an efficient remote ECG monitoring system.
The software system involves interactions of mobile applications, the central server,
and computer clients. We use hypertext transfer protocol (HTTP) request methods
to implement all designed interactions. Consequently, we design a robust application
programming interface (API) document to define all interface requirements for sys-
tem modules. Our proposed solution allows physicians to establish long-term ECG
remote monitoring for patients efficiently, and this system can be further developed
by integrating with our proposed ECG arrhythmia classifier. In this way, it can help

physicians diagnosing abnormal heartbeats after ECG monitoring is completed.

1.2 Summary of Contributions

In this thesis, contributions are presented in Chapters 3 and 4, which are summarized
below.

This research’s main contribution is that we improve classification accuracy on
new patients by applying a light-weight two-dimensional convolutional neural net-
work (CNN). Instead of using one-dimensional arrhythmia data, we apply the com-
puter vision approach to classify ECG arrhythmia, which is similar to physicians
diagnosing arrhythmia by reading ECG graphs. We design an algorithm to plot ECG
images from ECG signals with reduced image sizes to lower processing time. Sec-
ondly, we separate the data sources into training and testing sets, each containing
different patients’ ECG information. This way, we can accurately evaluate the model
performance when given new patients’ ECG information. We have adopted reliable
VGG network concepts for constructing our proposed model. Through various ex-
periments, the hyper-parameters of the model structure are determined. Experiment
results show that this model achieves excellent classification accuracy: 98.5% classifi-
cation accuracy in the SVEB-type heartbeat and 98.4% prediction accuracy in VEB
type heartbeat. We compare the proposed model with other arrhythmia classifiers.
Our proposed model outperforms most of the compared models based on the same
database with the inter-patient paradigm.

A second contribution of this research is the design of the remote ECG monitoring
system with the representational state transfer (REST) API design. We introduce the
essential module in our system, which is the central server that processes all requests
from other modules. Our software development team has designed and implemented
a REST-style framework. Specifically, we have built a login section, a nurse section,
a patient section, an ECG test section, and an ECG raw data section. In each
section, we define working logic and requirements for sending and receive hypertext
transfer protocol (HTTP) requests. My contribution is to help the server RESTful
API concept design. This REST framework can be further developed as an open-

source framework that can be utilized by other ECG remote monitoring systems.

1.3 Organizations

Chapter 2 first introduces the neural network concept and structure and then de-
scribes the convolutional neural network’s fundamental knowledge with a detailed
example.

Chapter 3 describes current solutions and challenges in the electrocardiogram
(ECG) arrhythmia classification. After the existing solutions are discussed, we com-
pare current paradigms for creating training and testing subsets. Additionally, we dis-
cuss database information with data set partition strategies adopted by this research.
ECG signals are converted to images for input to the subsequent neural network by
a designed pre-processing procedure. We then present our proposed two-dimensional
convolutional neural network (CNN) architecture by describing model layers and pa-
rameters. The experiment results are compared with other approaches. Finally, we
summarize the proposed method’s advancement and potential improvements.

Chapter 4 focuses on the ECG remote monitoring system. We introduce our ECG
monitoring system, and explain the workflow in our system. The structure of our cen-
tral server and the interactions among modules in the system. We then introduce the
representational state transfer (REST) concept and explain the advantages of apply-
ing it in our system. The REST application programming interface (API) designs
are provided with each API’s functionality and design concept. Finally, we discuss
the potential challenges in our software development process with future development
plans.

Chapter 5 concludes this research work and discusses future research directions.

Chapter 2
Neural Network Overview

An artificial neural network (ANN) is a computational model inspired by how biolog-
ical neural networks in the human brain process information, where neurons compute
output values from inputs [33]. ANN models learn by studying training data. Typ-
ically, a neural network will contain an input layer, one or more hidden layers, and

an output layer.

2.1 Perceptrons

In a neural network, an perceptron, also known as artificial neuron, is the fundamental
calculating entity that computes several inputs using weighted sum. The sum is then
compared with a threshold value to produce the output. The output can be a binary
value or a continuous value. A typical perceptron includes input values, weights, net

sum, and activation function. A perceptron works on these steps:
1. Input X = (z1, 22, ..., Tp|7; € R).

2. Each value in the input X multiplies the corresponding weight in W where
W = (wy, wa, ..., w,|w; € R).

3. Add all the multiplied values to obtain the weighted sum

Result = z": Wix;

=1

4. Input the result into the activation function and obtain the output, e.g., in a

binary classification problem,

0 >, w;z;< Threshold
1 >, wyz;> Threshold

Output =

2.1.1 Example of Perceptron

Fig. 2.1 shows the structure of a simple perceptron.

Y

Weighted Step
w2 Sum Function
(52 A A
\X2) \Z) <, Output
w3

_.63
Figure 2.1: An example of a simple perceptron.

For example, let X = (2,1,2),W = (0.25,0.5,0.1), and the threshold equals to

one, we have:

3
Sum:Zwixi:2*0.25+1*O.5+2>x<().1: 1.2
i=1

Since 1.2 > 1, the output is one.

2.2 Multilayer Perceptron

After understanding what is a perceptron, we can start to learn about multi-layer
perceptron (MLP) [62]. The MLP is a type of artificial neural network (ANN), and

it is explained with the example of classification digits.

2.2.1 Using Multi-Layer Perception to Classify Hand Recog-
nize Digit
Each node in the output layer outputs a vector the size of total number of classes.
For example, for classifying handwritten integer numbers ranging from 0 to 9, the
output for an image i can be [0.05, 0.05, 0.6, 0.09, 0.01, 0.07, 0,03, 0.03, 0.06, 0.01].
Since the third element (0.6) in the sample vector is the largest, the image is classified
to the number 2 and the label that corresponds to this image i is [0, 0, 1, 0, 0, 0,
0,0, 0, 0]. Ideally, we want the output as close to the label as possible. The model

performance is measured based on errors calculated using cross-entropy. Here is the

cross-entropy formula for the distributions p and g over a given set:
H(p,q) == p(x)log(q(x)),

where p is the expected output probability and ¢ is the actual output probability. In

our neural network, the error (cost) function of classifying one image is:

H(A,B)=-> A;log(By),
=1

where B is the predicted label of the input image, and A is the actual label of the
input image. The goal of training this ANN model is then to minimize the cost of

classifying each image in the training set.

2.2.2 Neural Network Architecture

Before constructing a neural network, we can only know the number of input training
features and samples and output classes. However, the number of neurons in hidden
layers are unknown, thus requiring much adjustments in the training process. For

example, we know there are m training samples for classifying handwritten numbers

and each of them is a 28 x 28 pixels gray-scale image. The goal is to identify each pic-
ture from a category of integer numbers from 0 to 9. Therefore, this is a classification
problem with ten different classes.

Although determining the number of neurons and hidden layers of the neural
network is mainly based on experiences, the number of neurons should be consistent
with dimensions of input and output data. For example, an input image of 28 x 28
pixels can be converted to a one-dimensional column vector with 784 pixels, which
corresponds to 784 features. If m images are fed in simultaneously, it is equivalent to

have an input of size 784 x m and Fig. 2.2 shows the neural network’s structure.

784 features

j neurons

10 classes outputs

Ny
()

\

784 x m input

Vo

Layer 3 output layer

784

O
O
o
\

Layer 2 hidden layer

Layer 1 input layer

Figure 2.2: An overview of the neural network’s structure.

2.3 Convolution Neural Network

The convolution neural network (CNN) consists of a sequence of layers [10]. Specifi-
cally, it includes convolutional layers, pooling layers, and fully connected layers. The

majority of layers are convolution layers that execute convolutional mathematical

operations. In order to understand this neural network, it is essential to understand
the concepts of CNN.

2.3.1 Kernels of Convolutional Layers

A convolutional layer contains a group of kernels (filters). These kernels are two-
dimensional matrices that include specific integers, and Fig. 2.3 is an example of an
input image and a filter. The left input image contains pixel values, and the right

image is a filter with random weights.

56 68 56 67 66
22 65 82 1 2 1 0 1 238 | -35 | -87
52 26 92 2 61 2 0 2 201 | 17 | -53
1 1 185 3
72 0 61 68 27 0 135
3X3 filter 3X3 output
71 66 51 22 92
5X5 image

Figure 2.3: An example of an input image and a filter.

In a convolution operation, we put the filter on the left-top of the image, and we
multiply values of filter cells with the corresponding pixel value in the input image.
These steps are repeated for all input image pixel values and all multiplied values are
summed to obtain the final output.

Usually, the output matrix should be the same size as the input matrix. To keep
the identical size, zeros are added around the input image to increase the input size. In
this way, an output matrix is kept the same size as an input matrix without changing

any information in an input matrix.

2.3.2 Pooling

A pixel value in the input image tends to have a similar value to its neighboring
pixels. This feature can cause a cell in a convolutional layer output being similar to

its neighboring pixels, which means the output contains redundant information. This

10

redundancy makes critical feature extraction from an input image difficult. Therefore,
pooling layers are applied to solve this problem. A pooling layer extracts feature value
from a group of cells repeatedly, which are either the max value or the average value.
By doing so, an input matrix size is reduced, which helps a model extract critical
information from input images. Fig 2.4 shows an example of the max pooling and

average pooling operations.

56 68 56 67 Max pooling 68 | 82

72 92
22 65 82 1

52 26 92 2
56 51

72 0 61 68 Average pooling 37 | es

Figure 2.4: Examples of a max pooling operation and an average pooling operation.

2.3.3 Fully Connected Layer

Fully connected layers are the last part of CNN. In this section, the output matrix
that comes from the pooling layer is flattened to a one-dimensional vector and used as
input for the fully connected layers. The fully connected layers work the same as the
multi-layer perceptron (MLP). The processed input is put into MLP and classified
into a particular class. After combining all the layers, we can obtain a complete CNN,

which is shown in Fig. 2.5 for the complete structure of a CNN.

Flatten Fully connected
layer

Input image Convolutional Pooling layer
layer

__\\\:

0 1 lLlj

Figure 2.5: An overview of a complete CNN’s structure.

11

12

Chapter 3

Deep Convolutional Neural
Networks in ECG Arrhythmia

Beat Classification

3.1 Introduction

In recent years, the quickened advancement in deep learning to solve various medical
science problems is providing unprecedented assistance to medical field profession-
als [32]. There are a wide variety of potential applications to healthcare in terms
of disease diagnostics, early detection, monitoring, etc. The machine learning tech-
nologies are currently adopted in image recognition, natural language processing, and
self-driving automobile [33]. In general, a neural network is efficient in solving tasks
with a massive amount of training data [34]. In the electrocardiogram (ECG) heart-
beat recognition field [35], the classical way of monitoring a patient’s heartbeat is
by analyzing an ECG signal’s morphological information manually. However, this
approach is time-consuming and experience-based. When there are a large amount
of ECG recordings, automatic data analysis through signal processing algorithms be-
comes the standard operation. The medical device industry has long utilized software
to classify ECG data, the results of which reviewed and confirmed by cardiologists.
To improve the accuracy of automatic classification has been continuously studied
in the literature [19]-[28]. In recent years, the advancement of machine learning and
deep learning has attracted significant attention in the field to achieve classification

accuracy comparable to that of experts.

13

ECG is mainly used for cardiac abnormality identification [36]. As shown in Fig.
3.1, a typical ECG signal consists of three primary waves: P wave, QRS complex,
and T wave [37]. An arrhythmia heartbeat is incurred by an abnormal heart which
is usually caused by abnormal impulse information or transmission. By reading ECG
information, a physician can diagnose a variety of arrhythmia heartbeats. Physicians
make judgments based on the interval and morphological information of an ECG
signal, such as the shape of these three original waves and the heartbeat’s rhythm

38).

QRs

Complex
R
S
T—— 5T
. PR . Segment T
egmen:
- /_
PR Interval Q
T e e A P
S

QT Interval

Figure 3.1: An ECG signal illustration [57].

In general, an ECG arrhythmia can be categorized as hazardous and the non-
dangerous type. In order to detect hazardous arrhythmia heartbeats, a long-term
ECG recording is required. However, it is relatively hard for a doctor to observe and
analyze all the morphological information from long-term ECG records in limited
amount of time. If a dangerous arrhythmia is detected, proper treatments needs to
be applied immediately and any delay can negatively affect a patient’s cardiac health.
Therefore it is essential to establish an efficient arrhythmia detection solution for fast-
paced arrhythmia heartbeat identification. Along with the development of portable
sensor devices, many portable ECG devices are provided to patients [39]-[41].

Portable ECG recorders can help the clinics obtain efficient cardiac monitoring
[42]. However, a physician needs to diagnose several patients simultaneously for an
extended period. It is an impossible task for a physician to analyze the morphological

information of a massive amount of patients’ heartbeats in a limited time. This high

14

demand for quick arrhythmia heartbeat diagnosing can be fulfilled by computer-based
ECG arrhythmia heartbeats diagnosis systems. However, there are several challenges
in automatic ECG signal diagnosing because each patient has different morphological
and temporal characteristics of ECG heartbeats. Therefore, it is relatively hard to
define precise rules that can define all the arrhythmia types for all patients, and a pa-
tient’s heartbeats have various morphological shapes when this patient participates in
activities, such as exercising, relaxing, and sleeping. All these factors about patients’
ECG morphological information uncertainty lead to automatic ECG classification is
hard to achieve satisfying classification results. Currently, there are many research
studies on computer-based ECG arrhythmia classification, such as RR interval-based
classification system [43], SVM based classification system [44], ANN-based classifi-
cation system [48], KNN-based classification system [45], swarm optimization with
radial basis classification system [46], and conditional random fields classification sys-
tem [47].

The most crucial part of ECG classification is feature extraction. Reported works
introduce different approaches for feature extraction and feed these feature informa-
tion into their proposed models. However, feature extractions can not obtain all the
information of all patients’ heartbeats. Since patients have different heartbeat shapes,
existing models have relatively low classification accuracy for classifying a new pa-
tient. We develop a two-dimensional CNN abnormal heartbeats classification system
to solve these challenging issues for automatic ECG arrhythmia detection. CNN is
the most popular type of deep learning approach for image classification, and many
ECG classification algorithms are based on one-dimensional CNN [27][49][50].

In this chapter, we construct a two-dimensional CNN system for ECG abnormal
heartbeats classification. We use the MIT-BIH arrhythmia database [9] to evaluate
the proposed model’s performance. We first convert ECG signals to ECG heartbeat
images; then, we feed the segmented heartbeat images into the proposed 2D CNN
model for training and testing. In the experiments, detailed results are obtained to
prove that our approaches for the proposed solution are effective, and we compare
the proposed model with other reported works to evaluate this model’s performance.
This solution can be further developed and implemented in the remote ECG system
to monitor many patients simultaneously.

The rest of this paper is organized as follows. Section 3.2 introduces reported
works on automatic ECG arrhythmia classifications. Next, Section 3.3 explains par-

tition paradigms, data labeling, database information, data pre-processing processes,

15

and detailed information about the proposed CNN model. Subsequently, Section 3.4
shows evaluation and validation progress for approaches and provides experiment re-
sults. Lastly, Section 3.5 presents the conclusion and discusses future research plans

for the proposed model.

3.2 Related Work

The ECG waveform reflects a heart’s electrical activity, and it is used for various
heart conditions’ detection. In long-term ECG monitoring, accurate ECG signals
play an essential role in diagnosing a patient’s present cardiac abnormality. With
the development of algorithms in machine learning, many researchers focus on de-
veloping advanced machine learning algorithms to detect ECG abnormal heartbeats
automatically. An review of the ECG arrhythmia classification is summarized next.

An effective linear discriminant classification system for identifying abnormal
beats is reported in [43]. The authors obtained RR interval information by applying
feature extraction techniques, and they use wavelet analysis and linear prediction
modeling to extract morphological features. After that, the extracted features are
combined with a discriminant classifier to classify arrhythmia heartbeats. The model
is evaluated against the MIT-BIH arrhythmia database [9]. Based on the experi-
ment results, the authors argue that the combination of wavelet and linear prediction
features can improve the proposed model’s classification accuracy.

A robust evidential k-nearest neighbors algorithm is presented in [45]. The au-
thors followed the concept of Dempster Shafer Theory for classifying ECG irregular
heartbeats [13]. The RR interval features are captured and fed into the proposed
algorithm. The model was evaluated against the MIT-BIH arrhythmia database, and
the model was compared with the traditional KNN method. Considering the error
rates, the author argued that the proposed system outperforms the original KNN
based classification system.

An effective SVM classifier is introduced in [51]. In this solution, the authors first
detect and segment the QRS complexes. They then collect the frequency information,
RR intervals information, and QRS information to characterize each beat. These
features are fed into the SVM for classification. In the proposed model, the decision
rule consists of dynamic reject thresholds with the cost of misclassifying or rejecting
a sample. The model has a significant performance improvement when the model is

evaluated in the MIT-BIH arrhythmia database. They obtain an average accuracy of

16

97.2% with no rejection.

The particle swarm optimization and radial basis function neural network were
presented in [46]. The authors extracted four morphological features for each heart-
beat. In the proposed model, the RBFNN structure with particle swarm optimization
was used for the extracted features. They use the MIT-BIH arrhythmia database to
test this model’s performance. After several experiments, the proposed model ob-
tains a relatively high classification performance, and the model’s performance can
be increased by applying additional feature extraction methods.

A useful one-dimensional CNN model for 17 classes of cardiac arrhythmia de-
tection is presented in [49]. The proposed solution is based on extracting features
from 10 second ECG signal fragments. The authors develop a specialized end-to-end
structure for feature extraction instead of using classical segmentation methods. The
proposed model is a one-dimensional CNN model, and the model’s performance is
evaluated in the MIT-BIH arrhythmia database. This solution is efficient and quick
in the task of classifying the various classes of ECG arrhythmia. Also, the model’s
structure is straightforward, and the implementation of the solution is relatively sim-
ple. This model achieves an overall accuracy of 91.33% for 17 cardiac arrhythmia
classes with a relatively short 0.015s classification time per single sample.

An effective generative adversarial network is presented in [52]. In the proposed
model, the authors design a generator section and a discriminator section. The gen-
erator contains several layers of a bidirectional long short-term memory (LSTM) net-
work, and the discriminator is the structure of CNN. The proposed model is trained
and tested by the MIT-BIH arrhythmia database. The model’s performance is evalu-
ated by comparing with recurrent neural network autoencoder and the recurrent neu-
ral network variational autoencoder. The experiment results show that this model’s
loss function has the fastest speed for converging to zero, and the BiLSTM-CNN
generative adversarial network can generate the ECG data that is morphologically
similar to real ECG data.

A powerful 16-layer one-dimensional CNN for classifying atrial fibrillation is pre-
sented in [53]. The proposed model is specifically designed for detecting atrial fib-
rillation. In this model, the skip connections technique improves the CNN model’s
feature learning capabilities and reduces the training time. The model is trained by
8528 ECG samples and tested by 3685 ECG samples, and each sample has a range
from nine seconds to sixty seconds. The authors also implement RNN and spectro-

gram learning to compare with this model. After several experiments, the model

17

achieves 90% accuracy for identifying normal rhythm, 82% for identifying atrial fib-
rillation, and 75% for identifying other rhythms. The authors argue that this model
can help diagnose the patient’s heartbeats in real-time.

A relevant CNN that can identify arrhythmia based on different intervals of tachy-
cardia ECG samples is introduced in [54]. The authors develop a computer-aided di-
agnosis system based on CNN, and the proposed model consists of an 11-layer CNN
with an output layer that contains four neurons. The authors use ECG samples from
range two seconds and five seconds without any QRS detection. The proposed model
is evaluated in several databases, and this model achieves accuracy 92.50%, sensitiv-
ity 98.09%, and specificity 93.13% for two-second samples. Also, the model obtains
relatively high accuracy for five-second samples. The authors argue that the proposed
solution can be a useful tool to help clinicians for diagnosing the patient’s abnormal
heartbeats.

A useful attention-based time-incremental CNN is presented in [55]. The authors
integrate CNN with recurrent cells and attention modules to combine the spatial
and temporal information from ECG signals. This approach optimizes features in-
put length and reduces a significant amount of parameters. The authors argue that
this method reduces 90% of computation in real-time processing comparing with the
original CNN model. The proposed model is evaluated in several data sources. The
experiment results show that this model achieves an overall accuracy of 81.2%. Also,
they compare this model with the original VGG network. This model’s average accu-
racy is 7.7% higher than the VGG model, and the paroxysmal arrhythmias classifying
accuracy is 26.8% higher than the VGG model. The authors argue that the proposed
solution is a concrete example of all different length signal processing problems.

An efficient two-dimensional CNN for classifying ECG arrhythmia with infor-
mation fusion and one-hot encoding techniques is presented in [56]. The authors
combine the morphology information and rhythm information of heartbeats into a
two-dimension vector, and the processed vectors are fed into the proposed CNN that
contains specialized learning rate and dropout methods. The proposed model is eval-
uated in the MIT-BIH arrhythmia database, and this model has a better performance
than other compared methods for classifying five and eight heartbeat categories. The
proposed model has better performance in terms of the sensitivity and positive pre-
dictive rate for V-type beats and S-types beats than other solutions. The author
argues that the proposed system is useful for classifying abnormal heartbeat, and it

is an effective system that can be implemented on mobile devices for monitoring heart

18

health situations.

However, all these reported solutions do not perform well in some particular sce-
narios. Most of the solutions have inconsistent performance when classifying a new
patient’s ECG signals. In other words, if the patient’s ECG heartbeats are not in the
training set, these models obtain a decreased classification accuracy for this patient.
The majority of models are tested on MIT-BIH arrhythmia database. However, many
of the models do not follow the recommendation of AAMI [8] for ECG sample label-
ing. The ECG signal noise reduction process may lose important information about
the patient’s heartbeat and increasing the data pre-processing work. In this thesis,
we convert the ECG signal classification task into a computer vision problem. We
propose a two dimensional CNN system to solve the challenging issues not solved in

the existing research works.

19

3.3 Methods

3.3.1 Paradigms

Many research studies dedicate to automatic ECG arrhythmia classification. Among
all these studies, the intra-patient and inter-patient paradigms are the two mainly

used data partition schemes.

e The intra-patient partitions methods randomly mix all the patients’ heartbeats
into a complete set and split it into a training subset and testing subset. There-
fore, a patient’s heartbeats can be in the training set and testing set simulta-
neously [5]. By applying this partitioning method, the model can obtain opti-
mistic results. However, in the clinic, the classifier usually needs to predict a
new patient’s heartbeats. Therefore, this partition scheme can not evaluate the

model’s real classification accuracy for classifying a new patient’s heartbeats.

o The inter-patient partitions method provides a more practical way of building
the training subset and testing subset. Philip de Chazal proposes the inter-
patient paradigm [7]. In this scheme, the training set comes from one group
of patients’ records, and the testing set comes from another group of patients’
records. Therefore, it avoids the scenario that a patient’s ECG information
exists in training and testing subsets. The intra-patient method usually achieves
a better result than the inter-patient method because the training and testing
data can come from the same patient; therefore, the intra-patient scheme leads

to model overfitting in the practical application scenarios.

After studying on other researchers’ current achievements [50]-[52], we find that
most reported works applied the intra-patient paradigm in their ECG classification
systems. We adopt the inter-patient scheme as it is more suitable for real-life diag-
nosing scenarios. Although it is challenging to achieve high results, the experiment
results are more reliable and meaningful because this paradigm is similar to when a

physician diagnoses arrhythmia for a new patient.

3.3.2 Advancement of Medical Instrumentation Standards

A patient’s heartbeats are categorized into five classes that are defined in the Advance-
ment of Medical Instrumentation (AAMI) standard (IEC 60601-2-47:2012): normal

20

(N), supraventricular ectopic beat (SVEB), ventricular ectopic beat (VEB), fusion
beat (F), and unknown beat (Q) [8]. Details of these classes are shown in Table 3.1.
The standard recommends the training set labeled as DS1 (consisting of patients’
record 101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122, 124, 201, 203, 205, 207,
208, 209, 215, 220, 223, and 230) and the testing set labeled as DS2 (consisting of
record numbers 100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210, 212, 213, 214,
219, 221, 222, 228, 231, 232, 233, and 234). The standard also emphasizes that SVEB
and VEB are the two most critical arrhythmia categories. For a given classification
algorithm, the AAMI outlines the necessity to use a performance matrix that reveals
classification performances for each of these four classes: N, SVEB, VEB, and F. We
ignore the classification performances for the QQ class because this class contains a
few samples only, and classification results of this class are not suitable for evaluating
proposed model’s performance. We evaluate the model’s performance using SVEB
and VEB heartbeat classification results in the test. We also provide a confusion

matrix to show the models’ performance on classifying each of these four classes.

21

Normal beat

Left bundle branch block
beat

Right bundle branch
block beat

Atrial escape beat

Normal N

Nodal (junctional) escape
beat

Atrial premature beat
Aberrated atrial

premature beat

Supraventricular Nodal (junctional)

SVEB
Ectopic Beat premature beat
Supraventricular
premature or ectopic beat

(atrial or nodal)

Premature ventricular
VEB contraction

Ventricular escape beat

Venticular Ectopic
Beat

) Fusion of ventricular and
Fusion beat F
normal beat
Paced beat

Fusion of paced and

Unknown beat Q

normal beat
Unclassifiable beat

Table 3.1: Advancement of Medical Instrumentation recommended classes

3.3.3 Database Information

In the thesis, the MIT-BIH arrhythmia database is used to evaluate the proposed
model [9]. The MIT-BIH arrhythmia database contains 48 recordings of two-channel
ambulatory ECG. These records are obtained from 47 subjects studied by the BIH ar-

22

rhythmia laboratory between 1975 and 1979. Digitized ECG signals in the recordings
are 360 Hz per channel with an 11-bit resolution over a 10 mV range. In total, there
are approximately 110,000 beats in this database. There is an annotation record for
each ECG record that contains QRS positions and the heartbeats’ types, verified by
at least two cardiologists. Therefore, the QRS detection process is applied to this
database. These heartbeats are labeled along with their R peaks. A summary of the
MIT-BIH arrhythmia database is listed in Table 3.2.

Group name Labels Number of beats DS1 DS2
Normal N 90042 45824 44218
Ventricular Ectopic VEB 7007 3788 3219
Supraventricular Ectopic SVEB 2779 943 1836
Fusion F 802 414 388
Total: 100630 50969 49661

Table 3.2: Summary of MIT-BIH arrhythmia database

3.3.4 ECG Data Pre-Processing

The two-dimensional CNN requires image inputs. We convert ECG signals into ECG
images by plotting each ECG heartbeat as an individual 150 x 150 pixels gray-scale
image. In the MIT-BIH arrhythmia database, every ECG beat is sliced based on R-R
interval information, which is the time between QRS complexes. More specifically, the
ECG heartbeat is labeled along with the heartbeat’s R peak time. Thus, we determine
a single ECG heartbeat by centering the heartbeat’s R peak while excluding each
record’s first heartbeat and last heartbeat. These two heartbeats are not complete
because of the ECG monitoring restriction. We also define each image only containing
one heartbeat with this heartbeat label as the image’s name. The data files from the
MIT-BIH arrhythmia database are time-series data. So we apply data pre-processing
methods for segmenting and converting the ECG signals to individual ECG heartbeat

images.

Extracting individual ECG heartbeat from a time-series data

In ECG data files, every heartbeat is extracted based on the distance between the

target heartbeat’s R-peak and its adjacent heartbeats’ R-peaks. Since each annota-

23

tion is located near each R-peak in the ECG data annotation file, we can easily find
R-peaks of all heartbeats in the MIT-BIH database. The target heartbeat’s starting
point is the middle point between the target heartbeat’s R-peak with the previous
heartbeat’s R-peak. The target heartbeat’s ending point is the middle point between
the target heartbeat’s R-peak with the next heartbeat’s R-peak. We store all the
values between the starting pointing and ending point into an array. Here is the

formula for calculating the starting and ending points:

Starting point: (Rpeak(n) — Rpeak(n — 1))/2 + Rpeak(n — 1)
Ending point: (Rpeak(n + 1) — Rpeak(n))/2 + Rpeak(n)

Fig. 3.2 is the visual representation of this segmentation process. In this way, we
can keep the heartbeat’s R interval information. The R interval-based segmentation is
also relatively simple to implement and it saves pre-processing time and computation

resources.

R-R interval R-R interval

Heartbeat n

Figure 3.2: Segmenting a heartbeat from a series of ECG signal.

Plotting ECG heartbeat image

After obtaining all processed array objects, we use Python [58] to convert ECG signals
into heartbeat images. We also find it essential to properly set a maximum x-axis value
to plot the image through experiments. The image plotting function automatically
fits the heartbeat’s shape into the entire image, making all heartbeats appear to be
the same length. This mechanism leads to heartbeat-length-information loss during
the feature extraction process because it changes a heartbeat’s R interval. In real life,

the heartbeat’s length is not the same and everyone has a different heartbeat shape.

24

For this reason, it is essential to set up the proper maximum x-axis value for each
patient’s ECG image. If it is too large, the heartbeat shape is hard to identify. If
it is too small, the image does not cover the entire heartbeat interval. We develop
a formula that can calculate the maximum value for each record, which provides the

best model performance, as
S=A+Ax%x0.3

1 n
A=— l th(i
n*; ength(i)

where n is the number of heartbeats of a patient’s ECG record, length(i) is the number
of samples of each heartbeat, A is the average number of samples of a patients’ record,
and S is the maximum x-axis value for plotting heartbeats of a patients’ record.
After feeding the patient’s record to the proposed function, we can obtain the
maximum x-axis value to plot this patient’s ECG image. Fig. 3.3 shows the complete
process of calculating the maximum value and applying it to plot the ECG heartbeat

image.

25

Set the maximum value for x-axis, and
plot the shape of the ECG heartbeat

Patient 1 Record based on the input samples

Heartbeat1: [-0.320,-0.315,-0.340,, 0.115] 210 samples

Heartbeat 2: [-0.322,-0.326, -0.328,-, 0.116] 300 samples

- - >
Heartbeat 3: [-0.321,-0.312,-0.341,,0.118] 310 samples — 0 Maximum Value

Heartbeat n: [-0.325,-0.331,-0.329++,0.122] 280 samples

Calculate the average number
of samples in a patient’s
heartbeat

l

Input this value into the
proposed equation and record
the maximum value for x-axis

Figure 3.3: The processes of plotting ECG heartbeat images.

Augmenting the ECG heartbeat image

The matplotlib function [59] outputs ECG heartbeat images, and the default image
resolution is 600 x 400 pixels, such as Fig. 3.4. However, due to computer memory
limit, images need to be compressed. Since we only focus on the ECG heartbeat’s
morphological information, we can use gray-scale images. By converting colored im-
ages to gray-scale images, we can reduce the model’s parameters and improve the
model’s training efficiency. The processed image resolution is 150 x 150 pixels, which
is a massive drop-off for image resolution and the image’s quality is relatively low as
shown in Fig. 3.5. The reason is that the primary pixels representing the heartbeat
shapes are also compressed which causes the compressed image to lose important in-
formation. We can see that the ECG heartbeat’s shape is hard to recognize and the
low-quality input images would lead to a significant drop in the model’s classification

accuracy. To solve this technical issue, we implement a method that can augment

26

the picture’s heartbeat shape. The idea is to emphasize the shape of the heartbeat
while compressing an ECG heartbeat image. When we convert heartbeat signals to
images, we add one extra parameter that makes the plotted line thicker. Fig. 3.6
shows the augmented heartbeat image after the compressing process and we can see
that the augmented image keeps most of the ECG heartbeat’s shape. We can then

obtain most of the ECG heartbeat’s original information while reducing image size.

-
"t r -
N AP -f‘ | ..-'__.-\._-.__-___.___._ 5
L ¢

Figure 3.4: An original image. Figure 3.5: A compressed image.

e

Figure 3.6: A compressed image

(augmented).

27

3.3.5 The ECG Arrhythmia Classifier

The proposed solution uses a specifically designed two-dimensional CNN as the auto-
ECG arrhythmia classifier. In 1989, LeCun brought a new type of neural network:
the CNN model [10]. Comparing the performance differences between ANN and
CNN in image classification tasks, the classical feed-forward neural network is not
efficient when processing vast amounts of images since there are too many parame-
ters. Therefore, we adopted the CNN as the proposed solution for ECG arrhythmia
heartbeat classification. CNN can successfully capture the critical spatial and tem-
poral connections in an image by applying relevant filters. For this reason, CNN
architecture performs better in a image data set due to its reduced parameters. In
other words, the network can be better trained to understand the content of a im-
age. Most machine learning solutions for classifying ECG arrhythmia heartbeats are
one-dimensional CNN [6][11][12]. We implement a two-dimensional CNN by con-
verting the ECG signals into ECG images. The two-dimensional convolutional and
pooling layers are more suitable for classifying the image-type data. Accordingly,
we can obtain a higher accuracy of ECG arrhythmia classification. It is also similar
to a doctor-diagnosing scenario because a doctor analyses the patient’s ECG signal
through two-dimensional measurement, i.e. analyzing a image. We decide to simulate
a computer vision solution, which applies the two-dimensional CNN model to classify
ECG heartbeats images.

Currently, the development of CNN has accomplished many outstanding achieve-
ments. There are many validated and effective CNN models in the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC). It is a competition that evaluates
algorithms for object detection and image classifications with millions of images. In
2014 ILSVRC, GoogLeNet takes first place [14], and VGG network takes second place
[15]. Although GoogLeNet has better performance than VGG network, the VGG has
a straightforward architecture and fewer layers than GoogleNet. VGG can achieve
relatively similar performance as the GooglLeNet in image classification; therefore,
VGG network is often used for image recognition tasks. In the ECG arrhythmia
classification task, the model only needs to classify 150 x 150 pixels grayscale images
into several classes, which are much simpler than the classification task in ILSVRC.
Consequently, the efficient and less complicated VGG-style network is a desirable
solution for this classification work. We adopt the VGG network concepts for con-

structing our proposed model, and we modify parameters and layers of the proposed

28

model to achieve improved performance in ECG abnormal heartbeat classification.

Fig. 3.7 is an overview of all the processes of proposed solution.

Figure 3.7: The overall workflow of the proposed model.

29

VGG network introduction

The VGG network is introduced in the paper [15], and VGG is the abbreviation of
the visual geometry group that invents the VGG network. The VGG is a type of
CNN structure, and it provides practical concepts to help developers build efficient
CNN models for image classification. The fundamental idea of the VGG network is
the VGG block, and a typical VGG block contains a sequence of convolutional layers,
max-pooling layers, and activation functions. In the VGG paper, the original network
includes 3 x 3 convolution kernels with padding of 1 and 2 x 2 max-pooling with a
stride of 2. Fig. 3.8 is the visual representation of a VGG block.

3x3 convolution layer, padding 1, stride 1

3x3 convolution layer, padding 1, stride 1

2x2 max-pooling layer, stride 2

Figure 3.8: The structure of a VGG block.

Configurations of VGG

In general, there are six configurations for VGG networks, and each of them has a
different size of convolution kernels. Fig. 3.9 is the summary graph of these configu-
rations. All the configurations have five VGG blocks. Usually, the 16 weight layers
and 19 weight layers are the most used VGG network structures. Although the VGG
network has a straightforward structure, the model has numerous parameters that
can cost many computation resources for training. For example, configuration D has
138 million parameters. Therefore, it is essential to add decent numbers of VGG
blocks and adjust the proposed model’s convolution layers. Through many studies

and experiments, we construct the effective structure of our proposed model.

30

ConvNet Configuration
A A-LRN B C D E
11 weight [11 weight | 13 weight | 16 weight | 16 weight | 19 weight
layers layers layers layers layers layers
input (224 x 224 RGB image)

conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64

maxpool
conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128
conv3-128 | conv3-128 | conv3-128 | conv3-128

maxpool
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
convl-256 | conv3-256 | conv3-256
conv3-256

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool

FC-4096

FC-4096

FC-1000

soft-max

Figure 3.9: Six configurations [15]

Adjusted VGG blocks

The proposed model is developed based on the VGG network. Although the proposed
model’s structure follows the same patterns as the VGG network, we apply many
methods and modify the convolution layers to obtain the model’s high performance.
The original VGG network is used to classify millions of pictures into many categories.

The ECG

heartbeat classification problem has a small number of heartbeat categories. If we

Therefore, the network has a deep structure with massive parameters.

apply the original model to our problem, it can easily lead to model overfitting. It also
wastes computation resources and long model training time. Therefore, we design a
specialized network structure for the problem at hand. The following methods are
the approaches for our proposed model.

The original VGG network includes five VGG blocks and these blocks make the
VGG network a deep structure. In the ECG heartbeat classification, we decide to

reduce the number of VGG blocks to improve model performance. After many ex-

31

periments, we conclude that the proposed model has the best performance with three
VGG blocks. We also adjust the convolutional layers in the third VGG block. The
difference between the modified VGG blocks and the original VGG blocks is shown

in Fig. 3.10.

—— Block 1

Block 2

—— Block 3

FC-2048
FC-2048

The adjusted blocks

conv3-64
conv3-64

conv3-128
conv3-128

conv3-256
conv3-256
conv3-256

conv3-512
conv3-512
conv3-512

conv3-512
conv3-512
conv3-512

The ariginal VGG-16 blocks

Block 1

Block 2

Block 3

Block 4

Block 5

Figure 3.10: Differences between adjusted VGG blocks and original VGG-16 blocks.

Activation function

The activation function is an essential part of a neural network, which is a non-linear

function that determines whether and how much to fire up the neuron output given

the input. We adopt rectified linear unit (ReLU) as the activation function for our

proposed model [55]. ReLU is the most commonly used activation function in CNN

32

models, given by

y = maz(0,x)

The ReLU reduces the model’s training time. The linearity of the ReLU makes it
a fast converging algorithm because the slope remains the same when x increases,
and Fig. 3.11 shows the graph of this function. With this feature, ReLU avoids
the vanishing gradient problem during the model’s training [2]. However, there is a
disadvantage of using ReLU: it outputs zeros for all negative values. Since it outputs
zeros for all negative values, it is unlikely for a neuron to change to other values
if it has a negative value. Because the ReLLU has a zero slope when neurons have
negative values, neurons are stuck on the negative side and ReLu always outputs
zero. Eventually, this property leads to many useless neurons in a neuron network,
which lowers model classification accuracy. The existing solutions are lower learning
rate or using exponential linear unit (ELU) as the activation function. We conclude
that a lower learning rate can obtain better classification accuracy for this application.
ELU does not improve the model’s performance. For the above reasons, we apply

ReLU as our activation function.

—> yx

y=0

Figure 3.11: The graph of ReL.U.

Batch normalization

In a deep CNN with many hidden layers, the hidden layer parameters are dependent
on its previous layer. Therefore, even a small change in the last layer’s parameters can
strongly influence the next layer’s input distribution. The changes in the input distri-

butions of hidden layers in a neural network are technically named internal covariate

33

shift (ICS). It slows down the model training speed. Since we have a considerable
amount of heartbeat images with limited computational resources, we adopt batch
normalization for improving the training speed of our proposed model. Batch normal-
ization reduces training time. It standardizes layer inputs. It does normalization on
the output of a previous layer by calculating the batch mean and variance, and this
will shift and scale the output of the layer. The batch normalization can apply before
the active function of after it. Although the author who brought the idea of batch
normalization puts this method before the active function [16], some people have
reported better performance when placing the batch normalization after the active
function. After many experiments, we conclude that the model can achieve a better

classification result by placing the batch normalization before the active function.

Cost function

The softmax is a type of logistic regression that normalizes input data into a vector
of probabilities, and the sum of probabilities is equal to 1. Softmax is implemented to
compute costs in the proposed model’s training process, and we use tensorflow.keras
to implement the softmax layer [31]. In the neural network, the cost function measures
the performance of the proposed model prediction accuracy. There are many types
of cost functions, and we choose to use cross-entropy as our proposed model’s cost
function. Usually, the model outputs a probability value between 0 and 1. If the
output value close to the actual label, we obtain a small cross-entropy loss. Otherwise,
cross entropy-loss increases significantly. Here is the mathematical expression of cross-

entropy [63]:

Proposed model architecture

34

The proposed model structure adopts the VGG network. We apply the above ap-

proaches to improve the proposed model’s performance, and Fig. 3.12 is the modified

model’s structure.

Input image

Convolution layer 64
Batch normalization
Activation RelLU

Convolution layer 64
Batch normalization
Activation RelLU

MaxPooling

Convolution layer 128
Batch normalization
Activation ReLU

Convolution layer 128
Batch normalization
Activation ReLU

MaxPooling

Convolution layer 256
Batch normalization
Activation ReLU

MaxPooling

Flatten layer

Fully Connected layer 2048

Batch normalization
Activation ReLU

Fully Connected layer 2048

Batch normalization
Activation ReLU

Softmax layer

——— Block 1

——— Block 2

——— Block 3

Block 4

Figure 3.12: The proposed model blocks.

Basing on our input data’s attributes, we modified the VGG structure to make

it more efficient for solving our problem. We cut down the unnecessary VGG blocks

and layers. Table 3.3 is the proposed CNN parameters.

35

Layers Kernal Size Stride Channels
Conv2d 3x3 1 64
Conv2d 3x3 1 64
Max-Pooling 2 x 2 2

Conv2d 3x3 1 128
Conv2d 3x3 1 128
Max-Pooling 2x 2 2

Conv2d 3x3 1 256
Max-Pooling 2x 2 2
Fully-Connect 2048
Fully-Connect 2048
Softmax

Table 3.3: The proposed model parameters

Also, we apply the batch normalization into the model. With this method, we
solve the internal covariate shift problem. It increases the proposed model’s clas-
sification accuracy and reduces the model’s training time. We conclude that when
the batch normalization process starts earlier than the activation function process,
the model can achieve better performance through many experiments. We use the
cross-entropy as our model’s loss function. The cross-entropy is often used in the
deep learning model for categorical classification, and we obtain excellent classifica-
tion results by applying cross-entropy as the loss function. Fig. 3.13 shows the visual

representation of all the layers in the proposed model.

[~
| e
‘.11
Convolution, Relu, and Fully connected and
batch normalization Relu
Max pooling Softmax

Figure 3.13: The proposed model layers.

36

We implement the proposed model using the TensorFlow framework [31]. We use
tensorflow.keras.models to build the neural network structure. Here are the proposed

model’s training and evaluation steps.

1. Loading training set and testing set by ImageDataGenerator

2. Applying tensorflow.keras.models to construct the proposed CNN. We use this
package to add convolution layers, batch normalization layers, max-pooling

layers, and fully connected layers.
3. Loading the training data and testing data to the model by model.fit _generator
4. Recording the classification accuracy by model.evaluate__generator

5. Using model.predict__generator to obtain the prediction labels, and we compare
the predicted outputs with the true labels of the images. Also, we build the

confusion matrix of classification results.

37

3.4 Experiments And Analysis

3.4.1 Model Evaluation

The proposed ECG arrhythmia heartbeat classifier’s performance has been evaluated
under the inter-patient paradigm along with the AAMI standard. In the experiments,
we train the proposed model with DS1, and we evaluate the model’s performance by
classifying the images in DS2. We run 120 epochs for model training, and we record
the highest values among all the epochs’ results. The model’s classification accuracy
becomes relative stables after 120 epochs. Therefore, we only train the model with this
number of epochs for saving the experiment’s time and computation resources. The
model performance evaluation is calculated based on the sensitivity (SE), specificity
(SP), the positive predictive value (PPV), and accuracy (ACC) defined as:

TP

E=—""
E = Tp N

SP =TN/(TN + FP)
PPV =TP/(TP + FP)

ACC=(TP+TN)/(TP+ TN+ FP+ FN)

where TP (True Positive) is the number of heartbeats correctly classified, TN (True
Negative) is the number of heartbeats not belonging to the target class and not
classified to target class, FP (False Positive) is the number of heartbeats that in-
correctly classified into the target class, and FN (False Negative) is the number of
target class heartbeats classified to a different class. After obtaining the model’s
output label, we calculate the result and analyze the model output. We also use the
classification__report function from scikit-learn to evaluates the models’ multi-class
classification results [64]. In each experiment, model parameters are recorded with
the model classification accuracy, and we keep adjusting the model parameters and
optimizing the model structure to obtain the best classification accuracy that can be
achieved. We also compare our model’s performance with other reported models. In
this way, we can evaluate the model’s performance more accurately. The following

table outlines testing environment for the experiment.

38

CPU GPU
Processor Name | AMD Ryzen 3600 | GeForce RTX 2070
Clock frequency | 4,200MHz 1,612MHz
Memory 16GB 8GB

3.4.2 Evaluation of Approaches
Impact of the input image resolution

The input image resolution can significantly affect the model’s classification accuracy.
The low-level image resolution can lose important information of the ECG heartbeat,
and the high-level image resolution can take a relatively long training time or even
run out of GPU’s memory. Therefore, it is essential to determine the input image
resolution size for achieving the best model’s performance. We test various image
resolution sizes in the experiments, and Fig. 3.14 shows the classification results of

SVEB and VEB that correspond to different image resolutions.

0.988

— SVEB
0.986 | VEB

- E ,\/
F —
0982 |

098 |

Accurcy

0.978
0.976

0.974

0.972 b
100x 100 110x110 120x120 130x 130 140x 140 150x150 160x160 170x 170 180x 180

Resolution (pixels)

Figure 3.14: The model’s classification accuracy with respect to image resolutions.

From on the experiment results, we can see that when the image resolution is 150
x 150 pixels, the model obtains the highest accuracy in both SVEB classification and
VEB classification. Therefore, we set 150 x 150 pixels as the image resolution size for
training images and testing images. We do not test image resolution that below 100
x 100 pixels because the image can not show the complete heartbeat’s shape. Also,

we do not test the image size above 190 x 190 pixels because it runs out of the GPU

39

memory, and the experiment results show that a higher image resolution does not

necessarily increase classification accuracy.

Impact of the learning rate parameters

The proposed model is trained based on the stochastic gradient descent optimization
algorithm, and the learning rate is the hyperparameter that controls the changes in the
model’s weights in the model training process. The learning rate decides how sensitive
the model responds to the estimated error. A high learning rate means larger step
size, and hence faster convergence but may be trapped to a local minimum, and a low
learning rate makes the model insensitive to the error, so the model’s weight does not
change much, even the estimated error is big. A non-optimal learning rate can lower
the model’s performance or increase the model’s training time. In the experiment, we

test different learning rates, and Fig. 3.15 shows the model’s classification accuracy

1

0.001 0.0001 0.00001

with different learning rates.

0.9900
0.9800 " SVEB
W VEB
0.9700
0.9600
0.9500
0.9400
0.9300
0.9200
0.9100
0.1 0.01

Figure 3.15: The model’s classification accuracy with respect to learning rates.

Accuracy

Learning Rate

Based on the experiment results, the proposed model achieves the highest classifi-
cation result in both SVEB and VEB when the learning rate is 0.001. In the proposed
model, we apply the ReLLU as the activation function; the “stuck neurons” issue lowers
the model’s performance. The low learning rate is one of the satisfactory solutions
for this problem. It is reasonable that the model achieves the best classification result
with 0.001 as the learning rate value. Therefore, we set the model’s learning rate to

0.001 for improving the model’s training efficiency and classification performance.

40

Impact of batch normalization

We compare the model’s performance difference between the model with batch nor-
malization layers and without batch normalization layers in the experiment. Also,
we record the experiment results of placing the batch normalization layer before the
activation function and placing the batch normalization layer after the activation

function. Fig. 3.16 shows the results of these cases.

Without BN BN before activation BN after activation
Batch Normalization (BN)

0.9900 [

- M SVEB

0.9800 |
[M VEB

0.9700 [
0.9600

0.9500

Accurcy

0.9400

0.9300

0.9200

0.9100

Figure 3.16: The model’s classification accuracy with respect to batch normalization.

We can see that adding batch normalization layers into the proposed model can
significantly improve the model’s performance. In the previous section, we discuss the
advantages of applying the batch normalization layer in the model. The experiment
result proves that batch normalization layers can improve the model’s classification
accuracy. However, the order of a batch normalization layer is not fixed. It depends
on the dataset, the model’s parameters, and the model’s structure. We can achieve
a higher classification accuracy when we place the batch normalization layer before

the activation function in the experiment.

Impact of activation functions

In the previous section, we discuss the proposed model’s activation function, and
there are two commonly used activation functions for CNN. We evaluate the model’s
performance with these two activation functions to determine the proposed model’s

activation function. Fig. 3.17 shows the results of using these two activation func-

41

tions. Basing on the experiment results, the model has similar classification accuracy
when applying these two activation functions. However, the model has a higher clas-
sification accuracy in SVEB using ReLLU than using ELU. Therefore, we choose to

use ReLLU as the activation function for the proposed model.

0.9855

0.985 W SVEB

0.9845 N VEB
0.984

0.9835

Accuracy

0.983
0.9825
0.982
0.9815

0.981

RelU L . ELU
Activation Function

Figure 3.17: Comparison of the model’s classification accuracy with two activation

functions.

Comparison with VGG network

We compare the proposed model with the configuration A VGG network, and Fig.
3.18 shows the accuracy differences between these two networks. We can see that the
proposed model outperforms the VGG model in the ECG arrhythmia classification
task. The VGG model has relatively deep layers with a massive amount of parame-
ters. Our experiments have relatively small samples with limited labels in the ECG
arrhythmia heartbeats classification, so the VGG classifier suffers from overfitting
issues. Eventually, this VGG model lowers the classification accuracy of abnormal
heartbeats. Our proposed model removes unnecessary layers and reduces the model’s
parameters. We also apply batch normalization layers to obtain better classification
results, and experiments validate that our approaches on the model’s structure and
parameters can significantly increase the classification accuracy compared with the
original VGG model.

Accuracy

0.99

0.98

0.97

0.96

0.95

0.94

0.93

0.92

0.91

Proposed Model VGG
Model

42

Figure 3.18: The performance difference between the proposed model and the original

VGG network.

43

3.4.3 Results

The complete classification assessment results are presented in Table 3.4, and we
can see that the proposed classifier shows a 93.7% overall heartbeat classification
accuracy. The model achieves outstanding results in classifying N-type and VEB-
type heartbeats. However, the classification accuracy of other types of heartbeats
are relatively low. In compliance with the AAMI recommendations, we focus on
assessing an algorithm’s ability to discriminate VEB beats from non-VEB beats and
SVEB beats from non-SVEB beats. Other reported works in [7], [19]-[27] also apply

this performance assessment.

Predicted class

F N SVEB | VEB | Total
F 1 366 1 20 388
N 583 | 42848 339 448 | 44218
True
SVEB | 2 819 984 31 1836
Class

VEB 3 476 33 2707 | 3219
Total | 589 | 44509 | 1357 | 3206 | 49661
Accuracy = 93.7%

Table 3.4: The four classes classification result

We compare the proposed model and other classification models. In Table 3.5, we
can see the proposed model obtains better classification results in the inter-patient
paradigm, with a 98.4% overall accuracy in VEB-type heartbeat and a 98.5% overall
accuracy in SVEB-type heartbeat. Notably, a 98.5% positive predict value of SVEB
indicates that the proposed model has an outstanding performance in identifying
SVEB-type heartbeats. Also, the 75.8% sensitivity of SVEB is higher than most
of the other solutions. These results prove that the proposed model can effectively
distinguish SVEB heartbeats from non-SVEB heartbeats and VEB from non-VEB
heartbeats. The comparison results of the four-class heartbeat classification are pre-
sented in Table 3.6. We compare the results of sensitivity and positive predict value
with other existing solutions. Since there are few F-type heartbeats samples, we only
show the classification accuracy of N, SVEB, and VEB. We can see that the proposed
model achieves the highest overall classification accuracy among all compared models.
It obtains the highest sensitivity in the N-type and highest positive predictive value
in SVEB type. By comparing with other solutions, we argue that converting the

44

ECG signals to ECG heartbeat images and using two-dimensional CNN for classify-

ing is a practical approach for ECG arrhythmia classification under the inter-patient

paradigm.
Method SVEB VEB
ACC(%) Sen(%) Spe(%) Ppv(%) ACC(%) Sen(%) Spe(%) Ppv(%)
Proposed 98.5 75.8 99.3 81.1 98.4 84.6 99.3 89.9
Chazel et al. [7] 94.6 | 759 | N/A | 385 974 | 777 | N/A | 819
Ye et al. [19] 97.4 56.4 98.6 55.1 94.6 84.7 95.4 59.5
Alvarado et al. [20] 97.0 86.2 97.5 56.7 99.1 92.4 99.5 93.4
Mar et al. [21] 93.3 83.2 93.7 33.5 97.4 86.8 98.1 75.9
Rahlal et al. [22] 94.9 37.8 97.5 40.5 97.8 90.1 98.6 87.1
Garcia et al. [23] 96.6 62.0 97.9 53.0 95.4 87.3 95.9 59.4
Zhang et al. [24] 93.3 79.1 93.9 36.0 98.6 85.5 99.5 92.7
Kan Luo et al. [25] 96.2 15.4 99.3 47.3 95.5 60.4 97.9 66.8
L. Zaor alek et al. [26] 96.0 6.0 99.5 33.5 99.0 91.6 99.5 93.2
Ince et al. [27] 96.1 62.1 98.5 56.7 97.6 83.4 98.1 87.4
Table 3.5: Results of SVEB and VEB classification
Methods Accuracy N SVEB VEB
Se(%) Ppv(%) Se(%) Ppv(%) Se(%) Ppv(%)
Proposed 93.7 96.9 | 96.3 53.6 | 72.5 84.1 84.4
Mar et al. [21] 89.0 94.2 99.2 86.2 56.7 92.4 93.4
Alvarado et al. [20] | 93.6 94.2 99.2 86.2 56.7 92.4 93.4
Ye et al. [19] 88.2 90.0 | 98.2 56.4 55.1 84.7 | 59.5
Zhang et al. [24] 88.3 88.9 | 99.0 79.1 36.0 85.5 92.8

Table 3.6: Results of four-classes heartbeats classification

45

3.5 Conclusions

In conclusion, we have proposed a lightweight two-dimensional CNN ECG abnormal
heartbeat classifier. We have developed algorithms to generate the proper ECG beat
images during the ECG signal pre-processing stage. Instead of using the intra-patient
paradigm to obtain overly optimistic results, we have implemented the inter-patient
paradigm for partitioning the data set to evaluate the model’s relatively real classifi-
cation performance when given a new patient.

We have adopted VGG network concepts and VGG block as the core element of
the proposed model. We have also applied methods that add batch normalization lay-
ers to the model, reduce unnecessary layers, and adjust the model’s hyper-parameters.
We have compared with other reported arrhythmia classification solutions. Exper-
iment results show that our proposed classifier achieves outstanding classification
accuracy: 98.5% classification accuracy in SVEB-type heartbeat and 98.4% classifi-
cation accuracy in VEB-type heartbeat. The proposed model’s performance is better
than most of the models in SVEB-type and VEB-type classification based on the same
database with the inter-patient paradigm. The proposed model has a significant per-
formance improvement than the configuration-A VGG network in the same testing
environment. We plan to modify the model’s structure and parameters to achieve

better classification results for various abnormal heartbeats in future research.

46

Chapter 4

Remote ECG Monitoring System
with API Design

4.1 Introduction

Internet technology development and high-speed wireless networks have provided
many new potentials in the medical field [3]. Researches on medical software devel-
opment have contributed to our society significantly. The remote electrocardiogram
(ECG) monitoring is one application of the advanced computer technology to pro-
vide better medical treatments [40]. Some clinics plan to monitor patients’ cardiac
health remotely now that steady wireless internet services are widely available [42].
In long-term ECG monitoring, physicians can collect patients’ ECG information re-
motely. Our team develops an effective system for physicians to monitor patients’
ECG information remotely. Since this system will be used in hospitals and clinics,
primary goals in developing this system are to be reliable and secure.

The entire system consists of four modules: mobile applications (APP), the central
server, ECG sensors, and clients. The proposed system relies heavily on interactions
among modules, making it a challenge to implement interaction methods that support
stable and secure data transmissions between modules. We adopt the hypertext
transfer protocol (HTTP) to implement interactions between modules in our system.
The application programming interface (API) that uses HT'TP plays an essential
role in the interaction. Hence, it is critical to design secure and secure APIs to
accomplish software development goals. We adopt the representational state transfer
(REST) style as our API design guideline. REST APIs have unique and advanced

47

resource focusing techniques [29], which can connect the web framework, servers, and
clients in a modern practical way. It also presents a secure and straightforward web
service structure. In our software development team, Linfeng Xu works on front-end
development, Zhilun Liu works on back-end development, and I work on APIs design.

In this chapter, We first explain the modules and workflows in our proposed
system. The central server structure is then discussed in detail. After which the
REST-style web structure for ECG monitoring is defined to cover all essential com-
ponents of the ECG monitoring. Specifically, the considerations during the design
stage are clearly explained and discussed. This chapter aims to provide a compre-
hensive overview of the proposed system and the ECG APIs design concepts.

The chapter is organized as follows: Section 4.2 introduces the remote ECG mon-
itoring system. Section 4.3 shows all details of the proposed REST APIs. Lastly, the

conclusions of the proposed work are given in Section 4.4.

48

4.2 Remote ECG Monitoring System

The remote electrocardiogram monitoring system provides an efficient way for doctors
to establish remote long-term ECG monitoring for patients. In this system, doctors
set up a monitoring appointment through a proposed client software, and patients
pick up ECG sensor devices and smartphones with ECG application (APP) installed
in the hospital or specific appointed locations. When patients arrive home, they start
the video call to their physicians, and they follow physicians’ instructions to set up an
ECG hookup connection. It includes wearing the ECG sensors, pairing the sensors
with the proposed APP, testing the connection with the server, and checking the
ECG signal transfer by reading the ECG signal images in the APP. After patients
complete all these processes, patients wear ECG sensors during the entire monitoring
period. Eventually, physicians analyze patients’ ECG information in the proposed
client software, and they use this software to generate a diagnosing report. This
report sends to the patient by mail or email. Fig. 4.2 is an overview of the proposed

system’s workflow.

After the patient completes the hook-
up phase, the physician checks
connection stability and data transition
quality between the client software
and the APP.

The physician sets up
an appointment for
the patient

The patient picks up
the ECG sensors and
smarphone

The physician starts the ECG
recording, and the patient keeps
wearing the ECG sensors during the
entire monitoring period

The patient picks up
the ECG sensors and
smartphone

| After the ECG monitoring complete, the
doctor generates the diagnosing report
and sent it by email or mail. The patient
will return all the equipment to the
hospital or specific locations.

The patient starts the
video call with the
doctor to obtain the ———
instruction for hook-
up processes

Figure 4.1: The ECG software flow chart.

49

The proposed system involves several modules: ECG sensor, portable APP, the
central server, database, and client software. The ECG sensor is wearable equipment
that collects the patients’ ECG signal information, and it sends the ECG data through
the bluetooth connection with the smartphone. The smartphone’s APP receives ECG
signals that come from the sensors. After the APP obtains ECG information, it starts
plotting ECG signal graphs. At the same time, it sends the ECG data to the central
server. The server receives ECG data from APPs. Subsequently, the server processes
and stores the ECG data in the database. The server is also responsible for processing
all requests from the front-end, such as user login, user account registration, creating
an appointment for a patient, and related requests. The client software provides a
graphical user interface (GUI) for physicians to control ECG monitoring processes.
It provides several functions to help physicians to establish an ECG monitoring test
for a patient. The software’s primary goals are creating appointments, arranging the
appointments, and receiving the ECG data. The complete system can be separated
into two parts, the front-end section and the back-end section. Fig. 4.3 is the visual

presentation of these two sections.

Front-end Section Back-end Section

ECG sensors

A

Y

Mobile APP

Y

A

Central Server | Database

Client Software

[
[
[
[
[
[
[
[
[
[
[
[
[
[

Y I
[
[
T
[
[
[
[
|
[
[
[
[
[

Figure 4.2: The ECG software flow chart.

4.2.1 The Central Server

The most important part of the proposed system is the central server, and it is the
engine that keeps the whole system running functionally. All modules in the front-

end operate request sending and receiving functions. Without the central server

50

process these requests, these modules are isolated units, and the system stops running.
Therefore, it is essential to design a solid structure for the server to process all the
requests from the front-end consistently [18]. We apply the industry-standard spring
framework for building our proposed server program [17]. This framework reduces
the coding works for developing functions in the server program. In this way, it
saves the back-end developer’s valuable time. The proposed server consists of the
data access object (DAO) tier, the service tire, and the controller tire. The DAO
is responsible for interactions between the server functions and databases. In this
layer, functions perform data interactions with databases, such as input data to the
database, receive data from the database, and update the database’s information. The
proposed database is implemented in MySQL [60]. The service layer is responsible
for processing all requests from the front-end. The back-end developer uses Java [61]
to implement all the service functions. For each request, there is a corresponding
function to process this request. The controller layer responsible for receiving the
front-end’s requests, and it analyzes the received request and communicates with the
corresponding functions in the service layer. After that, it returns specific values to

this request’s sender. Fig. 4.4 shows the structure of the back-end.

Server Program Central Server

|
e — — |

Lv|

i
/ Service Layer
i

’ > Database

Clinet A Controller Layer

Clinet B

DAO Layer

A

Figure 4.3: The ECG software flow chart.

4.2.2 API Explanation

Another essential part of the ECG remote monitoring system is the application pro-
gramming interface design. The proposed system consists of various modules, and we
use the hypertext transfer protocol requests to implement interaction among these

modules. Proper API designs can help server programs process requests efficiently,

51

and a well-written API document is a software development guide for front-end devel-
opers and back-end developers. The document defines each API’s requirements and
structure. Accordingly, software developers can follow these requirements to write
corresponding functions. A well-designed API is always straightforward to use and
improves developers’ work efficiency. The API can be considered as a graphical user
interface (GUI) for developers. Consequently, they can quickly know the require-
ments for implementing different HT'TP requests in the system. Usually, the API
documentation is designed ahead of the actual development of the software.
Representational state transfer provides design concepts for building efficient APIs
between multi-platforms in decentralized systems [29]. A REST API defines the
results of an interaction between applications that satisfies the REST standards.
Also, REST is an open concept that is not restricted by any specific implementation
methods. REST APIs are mainly used for defining HTTP request methods that
interact between different modules in a system, and they have a straightforward
structure with practical concepts. Applying REST APIs in software development can
significantly reduce works between front-end developers and back-end development

developers.

4.2.3 Principles of RESTful APIs

o The important part of a REST API is the resource. Resources are data that
can be accessed by clients. REST APIs focus on methodologies of accessing
these resources. All resources have a unique identifier corresponding to them.
Practically, we use uniform resource identifiers (URI) as the unique identifier

of the resource. Fig. 4.5 is an example of accessing a student’s information
through URI.

GET v https://example_school.com/student/1

Figure 4.4: An example of accessing a student information through URI.

o Clients interact with a server program by exchanging representations of re-
sources. Many web APIs use javascript object notations (JSON) as the ex-
changed data format [4], and Fig. 4.6 is an example of JSON format data in a

request.

52

Response (application/json)

1
"lastname": s
"midname": R
"firstname": R
"studentId": 1,
“email":

¥

Figure 4.5: An example of JSON data format.

o In REST APIs, interactions between the server program and clients are defined
by HTTP methods. These methods determine the proposed actions of HT'TP
requests. Usually, standard actions are GET, POST, PUT, and DELETE [61].
By applying these approaches, interactions between the server program and

clients are more efficient.

o REST is stateless, which means each request between server and client can only
contain the necessary information for this request. The server program can not
use information that comes from previous requests. Therefore, clients need to
store all the state information and provide sufficient information for sending an

HTTP request to the server program.

4.2.4 REST Parameters

In an HTTP request, we have options to specify the requirements of the request.
Commonly, there are three parameters: header parameters, path parameters, and
query parameters. By defining these parameters, we can make sure a request contains

all the proposed request information to the server program.

Header parameters

Header parameters should only be contained in the request header section. A header
parameter defines the authorization information. Usually, it shows the authorization
type. It can also include the user’s unique token for accessing the specific resource in

a Server prograin.

53

Path parameters
Path parameters are part of the URI itself and are not optional. Fig. 4.7 shows a
path parameter in a URI. In this example, studentld is the required path parameter.

GET v http://example_school/student_list/{studentld}

Figure 4.6: An example of a path parameter in a URI.

Query string parameters

In a URI, query string parameters are placed after a question mark. When a request
contains multiple query string parameters, we use a special annotation to connect
these parameters. Fig 4.8 is query string parameters in a URI. We can see these two

parameters are connected by the annotation & in this URI.

Figure 4.7: An example of query string parameters in a URI.

54

4.3 ECG REST API Framework Design

4.3.1 Login Section

The nurse logins to the software

Instead of using GET as the HT'TP request method, the POST has better security
for this request because it can prevent the information from being accessed by other
users during the process of sending the request information to the server. This request
contains the user’s email and password; then, this request is sent to the server by
POST method. If the email and password are correct, a success status code 200
is sent back to the client; otherwise, an error status code 400 with specific error

information is returned to the client.

4.3.2 Nurse Section
The nurse registers to the software

The goal of this request is to process creating a new user account. The request
contains nurses’ required information for creating a new account; then, this request is
sent to the nurses resource in the server program by the POST method. If a new user
account is successfully created, a success status code 200 is sent back to the client;
otherwise, an error status code 400 with the specific error information is returned to
the client.

The nurse resets password

The goal of this request is to reset the user account password. The request contains
the user’s email address; then, the request is sent to nurses resource in the server
program by the POST method. If the email is registered, a success status code 200
and reset password information is sent back to the client; otherwise, an error status

code 400 with specific error information is returned to the client.

The nurse starts recording device

The goal of this request is to start ECG recording with an ECG device. The request
contains the ECG device id; then, the request is sent to the nurses resource in the

server program by the PATCH method. If the device starts recording, a success status

5}

code 200 and ECG data is sent back to the client; otherwise, an error status code 400

with the specific error information is returned to the client.

The nurse stops recording device

The goal of this request is to stop an ECG recording device. The request contains the
ECG device id; then, the request is sent to the nurses resource in the server program
by the PATCH method. If the device stops recording and sending data, a success
status code 200 is sent back to the client; otherwise, an error status code 400 with

specific error information is returned to the client.

4.3.3 Patient Section
Searching a patient’s record

The goal of this request is to search for a patient’s record. The request contains
required search terms; then, the request is sent to the patients resource in the server
program by the GET method. If the target patient’s information is successfully
found, a success status code 200 and the patient’s record information is sent back
to the client; otherwise, an error status code 400 with specific error information is

returned to the client.

Creating a patient’s information

The goal of this request is to create a patient’s record. The request contains the
patient’s information; then, the request is sent to the patients resource in the server
program by the POST method. If the patient’s record is successfully created, a success
status code 200 is sent back to the client; otherwise, an error status code 400 with

specific error information is returned to the client.

Updating a patient’s record

The goal of this request is to update a patient’s record. The request contains the
new patient’s information; then, the request is sent to the patients resource in the
server program by the PUT method. If the patient’s record is successfully updated,
a success status code 200 is sent back to the client; otherwise, an error status code

400 with specific error information is returned to the client.

26

4.3.4 ECG Test Section
Searching all ECG tests of a patient

The goal of this request is to search for all ECG tests of a patient. The request
contains the patient id; then, the request is sent to the ECG resource in the server
program by the GET method. If the patient’s tests are successfully found, a success
status code 200 and the ECG tests are sent back to the client; otherwise, an error

status code 400 with specific error information is returned to the client.

Searching the ECG test of a patient

The goal of this request is to search for an ECG test of a patient. The request contains
the patient ID and test ID; then, the request is sent to the ECG resource in the server
program by the GET method. If the patient’s test is successfully found, a success
status code 200 and the ECG test is sent back to the client; otherwise, an error status

code 400 with specific error information is returned to the client.

4.3.5 ECG Raw Data Section

Obtaining ECG raw data sets from ECG test resource

The goal of this request is to obtain a patient’s ECG raw data. The request contains
the patient id and test id; then, the request is sent to the patients resource in the
server program by the GET method. If the patient’s test is successfully found, a
success status code 200 and ECG raw data is sent back to the client; otherwise, an

error status code 400 with specific error information is returned to the client.

Mobile APP sends ECG raw data to the server

The goal of this request is that the server receives ECG raw data from a mobile APP.
The request contains the patient id and test id; then, the request is sent to the data
resource in the server program by the POST method. If the data is successfully sent
to the server, a success status code 200 is sent back to the APP; otherwise, an error

status code 400 with specific error information is returned to the APP.

S7

4.4 Conclusions

In this chapter, we explain our proposed model’s details, and present the workflow in
this system. The server’s structure and layers are illustrated with a specific diagram.
We explain the functionalities of each layer and how the central server keeps the
system running functionally. After that, we emphasize the importance of designing
APIs to implement interactions in the server. We introduce the REST concepts
and how these concepts can improve our APIs quality, and we provide examples to
explain REST standards. Eventually, we present our proposed REST APIs design.
We discuss the idea, requirements, and return information of each HT'TP request.
Our proposed system is still in the development phase, so the APIs may change in
the future to meet new users’ requirements. However, our proposed APIs’ core design
ideas are properly introduced in this chapter. The proposed API framework can also
be implemented in other remote ECG monitoring systems to help the development
of ECG remote monitoring software. Some aspects of our API design document are

available in the Appendix section.

o8

Chapter 5
Conclusions

This thesis studies deep learning approaches for electrocardiogram arrhythmia clas-
sifications and API design for constructing a remote ECG monitoring system. We
have proposed a two-dimensional convolutional neural network solution for classify-
ing patients’ abnormal ECG heartbeats using the inter-patient paradigm. We have
introduced our remote ECG monitoring system with the proposed application pro-
gramming interface design. This chapter concludes the research results of these topics

and discusses some future research works.

5.1 Inter-Patient ECG Classification Using Deep

Convolutional Neural Networks

Many existing solutions are based on one-dimensional convolutional neural network
due to difficulties in pre-processing. This thesis has proposed a two-dimensional
CNN-based ECG arrhythmia heartbeat classifier using the inter-patient scheme. The
inter-patient scheme, where patients in training set differ from patients in testing
set, has ensured the proposed model closely reassembles real life applications. The
proposed pre-processing algorithm has successfully generated input images from one-
dimensional ECG recordings, which mimics doctors’ diagnosing processes. By ad-
justing CNN layers and hyper-parameters based on input images and output classes,
the proposed model has improved classification rates. With careful handle of pre-
processing, two-dimensional CNN has been proved to be an effective solution for

ECG arrhythmia classification.

29

5.2 ECG REST API Design

In this section, we have proposed the remote ECG monitoring system. The practical
structure of the server program has been shown to be able to correctly process all
requests from clients. The REST APIs have provided a straightforward approach for
implementing interactions between modules in the system. We have observed that a
well-designed APIs documentation can improve software development efficiency and

present clear requirements for programs.

5.3 Future Work

These are future research plans.

o The proposed model has relatively low performance on four-class classifications.
In the future, we will keep modifying the model’s structure to achieve better
classification results on four-class classifications. We will test the model with
more databases accurately evaluate our model’s performance by comparing dif-

ferent experimental results.

o The remote ECG monitoring system will connect to more clients in the future.
The server will process more HT'TP requests from different applications. There-
fore, URIs naming will need to be carefully determined and we will carefully
design APIs to avoid conflicts between different requests. User feedback will be

collected to improve our system.

60

Bibliography

[1] I. E. Naga and M. J. Murphy. What Is Machine Learning?. Machine Learning in
Radiation Oncology, pages 3-11, 2015.

[2] S. Hochreiter. The vanishing gradient problem during learning recurrent neural
nets and problem solutions. World Scientific Publishing Co., Inc., vol. 2, pages
107-116, 1998.

[3] M. Shafi. et al. 5G: A Tutorial Overview of Standards, Trials, Challenges, Deploy-
ment, and Practice. IEEFE Journal on Selected Areas in Communications, vol.5, no.
6, pages 1201-1221, 2017.

[4] L. Bassett. ntroduction to JavaScript object notation: a to-the-point guide to
JSON. O’Reilly Media, Inc, 2015.

[5] L. Zaoralek, J. Platos, and V. Snasel. PATIENT-ADAPTED AND INTER-
PATIENT ECG CLASSIFICATION USING NEURAL NETWORK AND GRA-
DIENT BOOSTING. Neural Network World, vol. 28, pages 241-254, 2018.

[6] Li Guo, Gavin Sim, and Bogdan Matuszewski. Inter-Patient ECG Classification
with Convolutional and Recurrent Neural Networks. Biocybernetics and Biomedical
Engineering, vol. 39, pages 868-879, 2019.

[7] P.de Chazal, M. O’Dwyer, and R.B. Reilly. Automatic Classification of Heartbeats
Using ECG Morphology and Heartbeat Interval Features. IEEFE transactions on
bio-medical engineering, vol. 51, pages 1196-1206, 2004.

[8] Association for the Advancement of Medical Instrumentation and American Na-
tional Standards Institute. Testing and reporting performance results of cardiac
rhythm and st segment measurement algorithms, ANSI/AAMI EC57:2012.

61

9] A. Goldberger, L. Amaral, L. Glass, J. Hausdorff, PC. Ivanov, R. Mark, JE. Mi-
etus, GB. Moody, CK. Peng, HE. Stanley. PhysioBank, PhysioToolkit, and Phy-
sioNet: Components of a new research resource for complex physiologic signals.
Circulation [Online]. vol. 101, pages €215-¢220.

[10] A. Khan, A. Sohail, U. Zahoora. et al. A survey of the recent architectures of

deep convolutional neural networks. Artif Intell Rev, 2020.

[11] J. Takalo-Mattila, J. Kiljander and J. Soininen. Inter-Patient ECG Classification
Using Deep Convolutional Neural Networks. 21st Furomicro Conference on Digital
System Design (DSD), pages 421-425, 2018.

[12] S. Kiranyaz, T. Ince, R. Hamila and M. Gabbouj. Convolutional Neural Networks
for patient-specific ECG classification. 37th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society (EMBC), pages 2608-2611,
2015.

[13] J. Gordon and E. H. Shortliffe. The Dempster-Shafer theory of evidence. Readings

m uncertain reasoning, pages 529-539, 1990.

[14] C. Szegedy et al. Going deeper with convolutions. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1-9, 2015.

[15] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-
Scale Image Recognition. CoRR, 2014.

[16] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015

[17] C. Walls, R and Breidenbach. Spring in action. Dreamtech Press, 2005.

[18] A. M. Magdaleno, C. M. L. Werner and R. M. de Araujo. Reconciling software
development models: A quasi-systematic review. Journal of Systems and Software.
vol. 85, issue. 2, pages 351-369, 2012.

[19] C. Ye, B. V. K. Vijaya Kumar and M. T. Coimbra. Heartbeat Classification
Using Morphological and Dynamic Features of ECG Signals. IEEE Transactions
on Biomedical Engineering, vol. 59, no. 10, pages 2930-2941, 2012.

62

[20] A.S. Alvarado, C. Lakshminarayan and J. C. Principe. Time-Based Compression
and Classification of Heartbeats. IEEE Transactions on Biomedical Engineering,
vol. 59, no. 6, pages 1641-1648, 2012.

[21] T. Mar, S. Zaunseder, J. P. Martinez, M. Llamedo and R. Poll. Optimization of
ECG Classification by Means of Feature Selection. IEEFE Transactions on Biomed-
ical Engineering, vol. 58, no. 8, pages 2168-2177, 2011.

[22] M. M. Al Rahhal, Y. Bazi, H. AlHichri, N. Alajlan, F. Melgani, and R. R. Yager.
Deep learning approach for active classification of electrocardiogram signals. Inf.
Sci, vol. 345, pages 340-354, 2016.

23] G. Garcia, G. Moreira, D. Menotti. et al. Inter-Patient ECG Heartbeat Classi-
fication with Temporal VCG Optimized by PSO. Scientific Reports, pages 10543,
2017.

[24] Z. Zhang, J. Dong, X. Luo, KS. Choi, X. Wu. Heartbeat classification using
disease-specific feature selection. Comput Biol Med, vol. 46, pages 79-89, 2014.

[25] K. Luo, J. Li, Z. Wang, and A. Cuschieri. Patient-Specific Deep Architectural
Model for ECG Classification. Journal of Healthcare Engineering, 2017.

[26] L. Zaoralek, J. Platos, and V. Snésel. Patient-adapted and inter-patient ecg
classification using neural network and gradient boosting. Neural Network World,
vol. 28, pages 241-254, 2018.

[27] S. Kiranyaz, T. Ince and M. Gabbouj. Real-Time Patient-Specific ECG Classifi-
cation by 1-D Convolutional Neural Networks. IEEE Transactions on Biomedical
Engineering, vol. 63, no. 3, pages 664-675, 2016.

[28] M. Llamedo, JP. Martinez. Heartbeat classification using feature selection driven
by database generalization criteria. I[EEFE Trans Biomed Eng, vol. 58, no. 3, pages
616-625. 2011.

[29] S. Tilko. A brief introduction to REST. Dec 10, 2007.

[30] World ~ Health Organization. Cardiovascular ~ diseases ~ (CVDs).
https://www.who.int /news-room /fact-sheets/detail /cardiovascular-diseases-
(cvds), May 2017. Last accessed on 2020-09-19.

63

[31] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. Corrado,
A. Davis, J. Dean, M. Devin, et al. Tensorflow: Large-scale machine learning on

heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

[32] G. Litjens, T. Kooi. et al. A survey on deep learning in medical image analysis.
Medical Image Analysis, vol. 42, pages 60-88, 2017.

[33] S. Shanmuganathan. Artificial Neural Network Modelling: An Introduction. Ar-
tificial Neural Network Modelling, pages 1-14, 2016.

[34] F. Jia, Y. Lei, J. Lin, X. Zhou and N. Lu. Deep neural networks: A promising
tool for fault characteristic mining and intelligent diagnosis of rotating machinery
with massive data. Mechanical Systems and Signal Processing, vol. 72-73, pages
303-315, 2016.

[35] 1. Odinaka, P. Lai, A.D, Kaplan, J. A. O’Sullivan, E. J. Sirevaag and J. W.
Rohrbaugh. ECG Biometric Recognition: A Comparative Analysis. IEEE Trans-
actions on Information Forensics and Security, vol. 7, no. 6, pages 1812-1824,
2012.

[36] Jen Hong Tan, Yuki Hagiwara, Winnie Pang, Ivy Lim, Shu Lih Oh, Muhammad
Adam, Ru San Tan, Ming Chen, U. Rajendra Acharya. Application of stacked
convolutional and long short-term memory network for accurate identification of
CAD ECG signals. Computers in Biology and Medicine, vol. 94, pages 19-26, 2018.
37

[37] I. Odinaka, P. Lai, A. D. Kaplan, J. A. O’Sullivan, E. J. Sirevaag and J. W.
Rohrbaugh. ECG Biometric Recognition: A Comparative Analysis. IEEE Trans-
actions on Information Forensics and Security, vol. 7, no. 66, pages 1812-1824,
2012.

[38] S. Sachin Kumar, Neethu Mohan, P. Prabaharan, K.P. Soman. Total Variation
Denoising Based Approach for R-peak Detection in ECG Signals. Procedia Com-
puter Science, vol. 93, pages 697-705, 2016.

[39] D. Lucani, G. Cataldo, J. Cruz, G. Villegas, S. Wong. A portable ECG moni-
toring device with Bluetooth and Holter capabilities for telemedicine applications.

Conf Proc IEEE Eng Med Biol Soc, pages 5244-5247, 2006.

64

[40] T. Jeon, B. Kim, M. Jeon, et al. Implementation of a portable device for real-time
ECG signal analysis. BioMed Eng OnLine, 13(1):160, 2014.

[41] L. Kai. et al. A system of portable ECG monitoring based on Bluetooth mobile
phone. 2011 IEEE International Symposium on IT in Medicine and FEducation,
Cuangzhou, pages 309-312, 2011.

[42] A. Bansal, R. Joshi. Portable out-of-hospital electrocardiography: A review of
current technologies. J Arrhythm, pages 129-138, 2018.

[43] C. C. Lin and C. M. Yang. Heartbeat Classification Using Normalized RR In-
tervals and Morphological Features. Mathematical Problems in Engineering, pages
1-11, 2014.

[44] A. Khazaee and A. E. Zadeh. ECG beat classification using particle swarm opti-
mization and support vector machine. Frontiers of Computer Science, vol. 8, pages
217-231, 2014.

[45] S. Faziludeen and P. Sankaran. ECG Beat Classification Using Evidential K
-Nearest Neighbours. Procedia Computer Science, vol. 89, Pages 499-505, 2016

[46] M. Koriirek and B. Dogan. ECG beat classification using particle swarm opti-
mization and radial basis function neural network. Ezpert Systems with Applica-
tions, vol. 37, issue. 12, pages 7563-7569, 2010.

[47] G. de Lannoy, D. Francois, J. Delbeke and M. Verleysen. Weighted conditional
random fields for supervised interpatient heartbeat classification. IEEE Trans
Biomed Eng, vol. 59, no. 1, pages 241-247, 2012.

[48] T. Mar, S. Zaunseder, J. P. Martinez, M. Llamedo and R. Poll. Optimization of
ECG Classification by Means of Feature Selection. IEEFE Transactions on Biomed-
ical Engineering, vol. 58, no. 8, pages 2168-2177, 2011.

[49] O. Yildirim, P. Plawiak, R. Tan and U. R. Acharya. Arrhythmia detection using
deep convolutional neural network with long duration ECG signals. Computers in
Biology and Medicine, vol. 102, pages 411-420, 2018.

[50] M. Zubair, J. Kim and C. Yoon. An Automated ECG Beat Classification System
Using Convolutional Neural Networks. 2016 6th International Conference on IT
Convergence and Security, pages 1-5, 2016.

65

[51] Z. Zidelmal, A. Amirou, D. O. Abdeslam, J. Merckle. ECG beat classification
using a cost sensitive classifier. Comput Methods Programs Biomed, vol. 111, no. 3,

pages 570-577, 2013.

[52] F. Zhu, F. Ye, Y. Fu. et al. Electrocardiogram generation with a bidirectional
LSTM-CNN generative adversarial network. Scientific Reports, vol. 9, 2019.

[53] Z. Xiong, M. K. Stiles and J. Zhao. Robust ECG signal classification for detection
of atrial fibrillation using a novel neural network. 2017 Computing in Cardiology,
pages 1-4, 2017.

[54] U. R. Acharya, H. Fujita, O. S. Lih, Y. Hagiwara, J. H. Tan and M. Adam.
Automated detection of arrhythmias using different intervals of tachycardia ECG
segments with convolutional neural network. Information Sciences, vol. 405, pages
81-90, 2017.

[55] Q. Yao, R. Wang, X. Fan, J. Liu and Y. Li. Multi-class Arrhythmia detection
from 12-lead varied-length ECG using Attention-based Time-Incremental Convo-
lutional Neural Network. Information Fusion, vol. 53, pages 174-182, 2020.

[56] J. Li, Y. Si, and T. Xu. Deep Convolutional Neural Network Based ECG Clas-
sification System Using Information Fusion and One-Hot Encoding Techniques.

Mathematical Problems in Engineering, pages 1-10, 2018.

[57] A. Sheetal, H. Singh and A. Kaur. A. QRS detection of ECG signal using hybrid
derivative and MaMeMi filter by effectively eliminating the baseline wander. Analog

Integr Circ Sig Process, vol. 98, pages 1-9, 2019.

[58] G. Van Rossum and FL. Drake. Python 3 Reference Manual.Scotts Valley, CA:
CreateSpace; 2009.

[59] J. D. Hunter. Matplotlib: A 2D graphics environment. Computing in Science &
amp; Engineering, vol.9, pages 90-95, 2007.

[60] M. Widenius, D. Axmark and P. DuBois. Mysql Reference Manual, 2002.

[61] K. Arnold, J. Gosling, D. Holmes. The Java programming language. Addison
Wesley Professional, 2005.

66

[62] M. W. Gardneral and S. R. Dorling. Artificial neural networks (the multilayer
perceptron)—a review of applications in the atmospheric sciences. Atmospheric

environment, vol. 32, pages 14-15, 1998.

[63] A. Thomas. An introduction to entropy, cross entropy and KL diver-
gence in machine learning. https://machinelearningmastery.com /cross-entropy-for-
machine-learning/, October 2019. Last accessed on 2020-09-19.

[64] Pedregosa. et. al. Scikit-learn: Machine learning in Python. Journal of machine

learning research, pages 2825-2830, 2011.

Appendix A

Python code of Inter-patient ECG
Classification Using Deep

Convolutional Neural Networks

for i in range(num_images):
current_length =len(signals[i])
total_length=current_length+total_length

avg_length=math.ceil(total_length/num_images)
avg_length=math.ceil(avg_length*6.3)+avg_length

for i in range(num_images):
if labels[i] in N :

fig = plt.figure(frameon=False)

plt.plot(signals[i],linewidth=3.9)

plt.xticks([]), plt.yticks([])

for spine in plt.gca().spines.values():
spine.set_visible(False)

imgIndex=get_image_num_by_ type('N"')
filename = path_name+'/'+'N'+'/"+'N'+str(imgIndex)+'.png’

fig.savefig(filename)
plt.close(fig)

67

if labels[i] in SVEB :

fig = plt.figure(frameon=False)

plt.plot(signals[i],linewidth=3.9)

plt.x1im([-1, (avg_length+1)])

plt.xticks([]), plt.yticks([])

for spine in plt.gca().spines.values():
spine.set_visible(False)

imgIndex=get_image_num_by_type('SVEB')

filename = path_name+'/'+'SVEB'+'/'+'SVEB '+str(imgIndex)+' .png’
fig.savefig(filename)
plt.close(fig)

if labels[i] in VEB :

fig = plt.figure(frameon=False)

plt.plot(signals[i],linewidth=3.9)

plt.xlim([-1, (avg_length+1)])

plt.xticks([]), plt.yticks([])

for spine in plt.gca().spines.values():
spine.set_visible(False)

imgIndex=get_image_num_by_type('VEB")
filename = path_name+'/'+'VEB'+'/'+'VEB'+str(imgIndex)+'.png’

fig.savefig(filename)
plt.close(fig)

68

model
model
model
model
model

model
model
model
model

model

model

model

model.
model.,
.add(Activation('relu'))

model

model
model
model

model.

model.
model.
model.

model.
model.
model.

model.

model

model

= Sequential()

add(Conv2D(64, (3, 3), input_shape=input_shape))
add(BatchNormalization())

.add(Conv2D(64, (3, 3)))
.add(BatchNormalization())
.add(Activation('relu'))

add(MaxPooling2D(pool_size=(2, 2)))

add(Conv2D(128, (3, 3)))
add(BatchNormalization())
add(Activation('relu'))

add(Conv2D(128, (3, 3)))
add(BatchNormalization())
add(Activation('relu'))

add(MaxPooling2D(pool_size=(2, 2)))

.add(Conv2D(256, (3, 3)))
model.
model.

add(BatchNormalization())
add(Activation('relu'))

.add(MaxPooling2D(pool_size=(2, 2)))

.add(Flatten())
.add(Dense(2048))
.add(BatchNormalization())
.add(Activation('relu'))
.add(Dropout(0.5))

.add(Dense(2048))
.add(BatchNormalization())
.add(Activation('relu'))
.add(Dropout(©.5))

.add(Dense(2, activation='softmax'))

.compile(loss="categorical_crossentropy"’,

optimizer=tf.keras.optimizers.Adam(©.001), metrics=["accuracy'])

69

70

Appendix B

Remote ECG Monitoring Software
API document

clinic Refers to the clinic’'s name that uses the ecq software

Required JSON Body

email String

password String

Response Body

Http status code-200

{
"success": “the user has successfully logged into the software”
nurse-id™ 2

clinic Refers to the clinic's name that uses the ecg software
Request body

lastname String

midname String

firstname String

phone Integer

clinic-id Integer

password String

email(username) String

Response Body(email= username)

Http status code-201

"success" “the new nurse account has successfully created”,

"nurse id": 2
}
clinic Refers to the clinic’s name that uses the ecg software
Request body
email String

Response Body

Http status code-200
{

——

"The nurse email address has successfully sent to the server, the server will send
a reset password link to the nurse email

71

clinic

Refers to the clinic’'s name that uses the ecg software

Query parameter

lastname

The last name of the patient

birth

The birthday of the patient, format:YYYYMMDD

phn(optional)

The patient’s personal health insurance number

Response Body

Http status code-200
[{
“patient-id™: 1,
“lastname”
‘midname™ 7,

“irstname™ “Kin",

Steve”,

“pirthday™ “1882/03/227,
“address1™ “122 Test Ave”,

“province™ “BC",
“city™ “Victoria®,
“email”

‘test1@gmail.com”

‘phn™ “5123456789",

“phone-numhbe
“work-number”:
“nome-number”

“gender” “male”,

" "2501234567,

“postcode™ “T1R BV2",

“deleted™ fasle,
“clinic_id™: 1,
“pacemaker” 1,

“supervising_physician™ “content”,

‘age™ 19,

“weight™: “weight”,

“height™ “height”,

“indications™ “content’,
‘medications™ “content”,
“referring_physician™: “content”,
‘remark”: “content”,

h

72

clinic

Refers to the clinic's name that uses the ecg software

Request Body

patient-id Integer
lastname String
midname String
firsthname String
birthday String
address1 String
postcode String
province String
city String
email String
phn String
phone-number String
work-number String
home-number String
gender String
Response Body

Hitip status code-201

"success". “the pafient's information has successfully created”,

‘patient-id™ 2

73

clinic

Refers to the clinic’'s name that uses the ecg software

patient-id

The patient’s id

Request Body

patient-id Integer
lastname String
midname String
firstname String
birthday String
address1 String
postcode String
province String
city String
email String
phn String
phone-number String
work-number String
home-number String
gender String
Response Body

Hitp status code-201

‘success”. “the patient's information has successfully created”,

‘patient-id™ 2

74

clinic

Refers to the clinic's name that uses the ecg software

patient-id

The patient id

Response Body

Htip status code-200

[
i

“ecg-test-id™ 1,

“start-time™ “6 May 2019 22:41:09 UTC &,
“scheduled-end-time™ 7 May 2019 22:42:09 UTC &
“actual-end-ime™ 7 May 2015 22:42:05 UTC 8",

“deleted”: false

p

atient-id":1

“device_id™: 1

“c

linic_id™ 1

“comment”: “comment on the ecg test”

clinic

Refers to the clinic’s name that uses the ecg software

patient-id

The patient id

ecg-test-id

The ecg test id

Response Body

Hitp status code-200

[
{

“ecg-testid”
“start-time™ “6 May 2019 22:41:09 UTC &",
“scheduled-end-time™: *7 May 2019 22:42:09 UTC 8",

“actual-end-time™ *7 May 2019 22:42:09 UTC 8",

“deleted™ false
“patient-id":1
“nurse-id":1
“phone-id"1
“device_id™: 1
“clinic_id™ 1
“‘comment™ “comment on the ecg test”

75

clinic Refers to the clinic’s name that uses the ecg software

patient-id The patient id

ecg-test-id The ecg test id

Query Parameter

patient-id The patient id.

page Divide the data set into each individual pages, The default is 1
if no page number indicated in the URI. Page size 50

page-size The number of entries to return. The default value is 50 if no
page_size number indicated in the URI. If page-size greater
than 50, automatically convert the page_size value to 50

Response Body

Htip status code-200
[
{

“ecg-raw-data-id” 1
“ecg_test_id™1,
“received-time” “6 May 2019 22:41:08 UTC &7,
“ecg-raw-data™ (the ecg raw data that is received from ecg devices),
“deleted”: false
“start-time™: “6 May 2019 22:41:00 UTC &7,
“end-time™: “6 May 2019 22:42:09 UTC &"
“clinic-id": 1

clinic Refers to the clinic's name that uses the ecg software

Request Header
Authorization uses verification code

Request Body

[

{
“startTime™ “2019-07-27712:00:00.000-08",
‘endTime™: "2019-07-27712:00:00.000-08",
}
(object) file

The ecg raw data file

*** Time format: “yyyy-mm-ddThh:mm:ss.S88+xx" and “+xx” or “-xx" is the time zone difference
between local and UTC; for example, PST is -087*

