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Abstract

This paper applies inter-session variability modelling
and joint factor analysis to face authentication using Gaus-
sian mixture models. These techniques, originally devel-
oped for speaker authentication, aim to explicitly model and
remove detrimental within-client (inter-session) variation
from client models. We apply the techniques to face authen-
tication on the publicly-available BANCA, SCface and MO-
BIO databases. We propose a face authentication protocol
for the challenging SCface database, and provide the first
results on the MOBIO still face protocol. The techniques
provide relative reductions in error rate of up to 44%, us-
ing only limited training data. On the BANCA database,
our results represent a 31% reduction in error rate when
benchmarked against previous work.

1. Introduction
Many challenges in face authentication can be attributed

to the problem of session variability, that is, changes in en-
vironment, illumination, pose, expression, or image acqui-
sition, which cause mismatch between images of the same
client (person). While face authentication has evolved con-
siderably in the past 15 years, modern approaches still suf-
fer from increased errors in the presence of substantial ses-
sion variability [19, 1].
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One approach of particular interest uses a parts-based
topology, whereby the distribution of features extracted
from images of a client’s face is described by a Gaussian
mixture model (GMM) [20]. In [7, 6], this approach was
found to offer the best trade-off in terms of complexity, ro-
bustness and discrimination. Interestingly, a similar GMM-
based approach [17] forms the basis of state-of-the-art
speaker authentication, in which the issue of session vari-
ability has already received considerable focus [11, 24, 15].

Two of the most successful techniques in improving ro-
bustness to session variability for speaker authentication
are inter-session variability modelling (ISV) and the related
technique of joint factor analysis (JFA), which have been
shown to reduce errors by more than 30% [11, 24, 15].
ISV and JFA aim to estimate more reliable client models by
explicitly modelling and removing within-client variation
using a low-dimensional subspace. In speaker authentica-
tion, this detrimental variation is caused by different micro-
phones, acoustic environments and transmission channels.
JFA can be considered to be an extension of ISV as it also
explicitly models between-client variation.

In this paper, we apply ISV and JFA to the face authenti-
cation task. The intuition is that the sources of within-class
variation in speech have parallels in facial images. Specifi-
cally, face authentication performance is adversely affected
by the effects of variation in environment, expression, pose
and image acquisition, which we hypothesise can be mod-
elled and removed using ISV and JFA. This hypothesis is
supported by this work, as the ISV and JFA techniques re-
duce the error rate by between 11% and 44% across the
challenging BANCA, SCface and MOBIO databases.

Section 2 introduces GMM-based face authentication.
Then, ISV and JFA are described in Section 3. In Sections
4, 5 and 6, we present and discuss results on the BANCA,
SCface and MOBIO databases.
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Figure 1: The concept of a parts-based topology: dividing
the face into blocks and obtaining a feature vector from each
block.

2. GMMs for face authentication
The GMM parts-based topology was first applied to

face authentication in [20] and has since been successfully
utilised by several researchers [12, 6, 13]. The method de-
composes the face into a set of blocks that are considered to
be separate observations of the same signal (the face). An
overview of the procedure is shown in Figure 1. The main
difference between this approach and the similar GMM-
based approach to speaker authentication is the use of vi-
sual features extracted from parts of the face image, rather
than acoustic features extracted from frames of the speech
signal.

Since features are extracted from each part of the face in-
dependently, the approach is naturally robust to occlusion,
local transformation and face mis-localisation, and has been
found to offer the best trade-off in terms of complexity, ro-
bustness and discrimination [7, 6]. The rest of this section
describes the main processing stages of the framework, in-
cluding image pre-processing, feature extraction and classi-
fication.

2.1. Image pre-processing and feature extraction

Each image is rotated, cropped and registered to a 64×80
intensity image with the eyes 16 pixels from the top and sep-
arated by 33 pixels. Optionally, each cropped image is pro-
cessed using Tan & Triggs normalisation [21]. From each
normalised image we exhaustively sample B×B blocks of
pixel values by moving the sampling window one pixel at
a time. Each block is mean and variance normalised prior
to extracting the D lowest-frequency 2D-DCT coefficients.
The resulting feature vectors extracted from an image are
finally mean and variance normalised in each dimension.
Each image is thus represented by a set of K feature vec-
tors,O =

{
o1,o2, . . . ,oK

}
.

2.2. Modelling and Classification

The distribution of feature vectors for each client is mod-
elled by a Gaussian mixture model, estimated using back-

ground model adaptation [6, 12, 17]. Background model
adaptation utilises a universal background model (UBM),
m, as a prior for deriving client models using maximum a
posteriori (MAP) adaptation [17]. We only adapt the means
of the GMM components and use diagonal covariance ma-
trices, as this requires fewer observations to perform adap-
tation [17] and has already been shown to be effective for
face authentication [12, 6].

A test image,Ot, can then be verified by scoring against
the model of the claimed client identity (si) and the UBM
(m). The two models, si and m, each produce a log-
likelihood from which a log-likelihood ratio (LLR) is cal-
culated,

h (Ot, si) =

K∑
k=1

(
log(p(okt | si))− log(p(okt |m))

)
,

(1)
to produce a single score. The image Ot is then classified
as belonging to client i if and only if h (Ot, si) is greater
than a threshold, θ.

In this work, we use a fast scoring technique known as
linear scoring [8]. This relies on using a particular rep-
resentation of a GMM called a GMM mean supervector,
which is formed by concatenating the GMM component
means. Thus, with GMMs expressed as supervectors, lin-
ear scoring approximates (1) with

hlinear (Ot, si) = s̄
>
i Σ
−1F̄ t, (2)

where s̄i = si −m, Σ is the diagonal matrix formed by
concatenating the diagonals of the UBM covariance ma-
trices, F̄ t = F t − N tm is the supervector of UBM-
centralised first order UBM statistics of the image, and N t

is the diagonal matrix formed by concatenating the zeroth
order UBM statistics of the test image. Readers are referred
to [8] for more details. Finally, the scores are normalised
using ZT-norm (Z-norm followed by T-norm) [2].

3. Session variability modelling
Inter-session variability modelling (ISV) and joint factor

analysis (JFA) are two session variability modelling tech-
niques that have been applied with success to speaker au-
thentication. This section provides a brief overview of these
techniques. Readers are referred to [11, 24, 15] for more de-
tails.

Session variability modelling aims to estimate and ex-
clude the effects of within-client variation, in order to create
more reliable client models. At enrolment time, a GMM is
trained for each client by adapting the means of a UBM, as
described in Section 2. In terms of GMM mean supervec-
tors, client enrolment can be expressed as

si =m+ di, (3)



where m is the UBM mean supervector, di is the client-
dependent offset, and si is the resulting model for client
i. Ideally, the resulting client model should be robust to
any variations within the client’s enrolment images due to,
for example, changes in illumination, expression or pose.
However, this variation is not accounted for in (3), and it
is therefore likely that this will lead to a suboptimal client
model, particularly in the case of limited enrolment data.

Session variability modelling proposes to explicitly
model the variation between different sessions of the same
client and exclude this variation from the client models dur-
ing enrolment as well as testing. In our case, we consider
that each image was acquired during a different session.
The particular conditions of a session are assumed to result
in an offset to each of the GMM component mean vectors
[24],

µi,j = si + ui,j , (4)

where ui,j is the session-dependent offset for the j’th im-
age of client i, and µi,j is the resulting mean supervector of
the GMM that best represents the image (Oi,j). The goal
of enrolment using session variability modelling is to find
the true session-independent client model, si, by jointly es-
timating this along with each ui,j . Techniques for this esti-
mation will be discussed in the following sections.

At test time, in contrast to (1), the score for an imageOt

is calculated as

h (Ot, si) =

K∑
k=1

( log(p(okt | si + ui,t))

− log(p(okt |m+ uUBM,t))) (5)

where ui,t and uUBM,t are the MAP estimates of the
session-dependent offsets for the image estimated using the
client and UBM models respectively1. In practice, this LLR
is approximated using linear scoring. By removing the es-
timated session offset from the first order statistics, (2) thus
becomes

hlinear (Ot, si) = s̄
>
i Σ
−1 (F̄ t −N tuUBM,t

)
. (6)

3.1. Inter-session variability modelling (ISV)

The ISV technique, proposed in [24], assumes that
within-client variation is contained in a linear subspace of
the GMM mean supervector space. That is,

ui,j = Uxi,j , (7)

where U is the low-dimensional subspace that contains
within-client variation, and xi,j ∼ N (0, I). The client-
dependent offset (see (3)) is set to

di =Dzi, (8)
1In practice, the session offsets are assumed to be identical both from

the client model and the UBM, so that ui,t is approximated by uUBM,t.
This is referred to as the LPT assumption in [8].

whereD is a diagonal matrix with elements

D (q, q) =

√
Σ (q, q)

τ
(9)

and zi ∼ N (0, I). Here, Σ (q, q) is the variance from the
UBM and τ is the adaptation relevance factor [17]. The
matrixD is set in this way to ensure that the MAP solution
for di in (3) is equivalent to the classical MAP mean update
rule of [17].

To summarise, each image is represented by a GMM
mean supervector

µi,j =m+Uxi,j +Dzi. (10)

Thus, by explicitly modelling the session-dependent offsets
ui,j = Uxi,j , the aim is to exclude these effects of session
variability from the resulting client models, si =m+Dzi.

3.2. Estimation of subspaces and latent variables

To use the ISV framework we need to be able to (i) es-
timate the latent variables, xi,j and zi, and (ii) train the
subspace U . In general, MAP estimation is used to solve
problem (i) and maximum likelihood (ML) is used to solve
problem (ii).

Our approach is based on the algorithms described
in [24]. The latent variables, xi,j and zi, are jointly es-
timated using MAP estimation. First, define the set of la-
tent variables for client i’s J enrolment images as λ̄i =
{zi,xi,1,xi,2, . . . ,xi,J}, then

λ̄i = argmax
λi

p(λi | Oi,1,Oi,2, . . . ,Oi,J), (11)

= argmax
λi

p(zi)

J∏
j=1

p(Oi,j | xi,j , zi)p(xi,j). (12)

This is solved using the Gauss-Seidel approximation
method of [24]. The subspace U is trained on background
data using the ML-based iterative method described in Sec-
tion 5.2 of [24], which alternates between ML updates of
U and MAP estimation of the latent variables, as described
above.

3.3. Joint factor analysis (JFA)

The JFA modelling technique [11] can be seen as an ex-
tension of ISV. Specifically, in contrast to (8), the client-
dependent offset is defined as

di = V yi +Dzi, (13)

whereV is a rectangular matrix of low rank, yi ∼ N (0, I),
and di is thus distributed with covariance matrix D2 +
V V >. The assumption of this model is that most between-
client variability is contained within a low-dimensional sub-
space V , which is in fact the assumption of the well-known



eigenvoice [22] and eigenface [23] modelling techniques.
One of the motivations for using JFA is to improve enrol-
ment with limited data, by allowing a client model to be
approximately represented by only the small number of fac-
tors in yi. To summarise, in contrast to (10), for JFA each
image is modelled as

µi,j =m+Uxi,j + V yi +Dzi. (14)

In this case, both V and D are learnt from training data,
in addition to U , using maximum likelihood [11]. As with
ISV, JFA aims to exclude the effects of session variability,
such that the resulting client models are si = m + V yi +
Dzi.

4. Experimental protocols
To assess face authentication accuracy, scores were first

generated on a development set, from which a global de-
cision threshold was found that minimised the equal error
rate (EER). This threshold was then applied to a test set of
completely separate clients to find the half total error rate
(HTER), that is, the average of false acceptance and false re-
jection rates. Thus the threshold, as well as all other hyper-
parameters, were tuned prior to seeing the test set. This is
a critical requirement if such technology is to be applied to
real applications [5].

In the past, a wide variety of databases have been used
for evaluation of face authentication techniques. To prop-
erly evaluate ISV and JFA, we chose to use images taken
in challenging conditions causing substantial within-client
variation. Furthermore, we chose to restrict ourselves to
publicly-available databases with separate training, devel-
opment and test sets to allow for unbiased evaluation. Un-
fortunately, some popular databases such as FRGC [16] and
LFW [10] were thus not applicable, as they do not include
separate development and test sets2. We therefore chose
to evaluate the ISV and JFA techniques on the challeng-
ing BANCA, SCface and MOBIO databases. The BANCA
and MOBIO databases already have well-defined protocols,
while a suitable face authentication protocol for SCface is
proposed in this work.

4.1. BANCA

Results are reported for the Pooled test (P) on the En-
glish subset of the BANCA database [3]. While BANCA
is actually a multi-modal database of videos, we used the 5
pre-selected still images from each video and treated each
image independently, as specified in the protocol. Images
were captured in three different scenarios, referred to as

2In the FRGC database, 153 clients occur in both the training set as
well as the test set, and there is no publicly-available development set. In
the LFW database, 758 image pairs in the training/development set (View
1) are exactly repeated in the test set (View 2).

(a) BANCA database: controlled, degraded, and adverse scenarios.

(b) SCface database: enrolment/mugshot image; test images from close,
medium and far distances.

(c) MOBIO database.

Figure 2: Example images showing a wide range of within-
client variation (session variability).

controlled, degraded and adverse. As shown in Figure 2a,
significant session variation exists between images of the
same client.

The g1 and g2 groups of clients (26 each) were used as
the development and test sets respectively. For both sets,
each client model was enrolled with 5 images from the con-
trolled scenario. Then, a total of 2,730 scores (1,170 tar-
get trials, 1,560 impostor trials) were generated using im-
ages across all three scenarios. The UBM was trained from
200 images of 20 clients in the separate world data set. All
world data was used to train U , V , and D (300 images of
30 clients). As score normalisation is more effective when
using a set of clients disjoint from those in the UBM train-
ing set, g1 was used to normalise the scores for g2, and
vice-versa. Images were cropped using either manually an-
notated eye locations, or automatic face localisation based
on the detector of [18]3.

4.2. SCface

The Surveillance Cameras face database (SCface) [9] is
particularly interesting from a forensics point-of-view be-
cause images were acquired using commercially available
surveillance equipment, in a range of challenging but realis-
tic conditions. As could be imagined in a real-life scenario,
for authentication, these surveillance images are compared
to a single high-resolution mugshot image.

3Implemented with Torch3vision (http://torch3vision.idiap.ch).



While [9] suggested a protocol for face identification,
it did not include a world data set or a development data
set, and no protocol was suggested for face authentica-
tion. Therefore, we propose the following face authentica-
tion protocol for SCface based on the DayTime tests sce-
nario [9]4. The database was divided into subsets based
on client ID such that clients 1–43, 44–87, and 88–130
were allocated to world data, development, and test sets,
respectively. Each client model was enrolled using a sin-
gle mugshot image. Then, test images were taken from
the 5 surveillance cameras at 3 different distances: close,
medium and far. Each client model was tested against the
15 surveillance images from each client in the same subset.
This resulted in 645 target trials and 27,090 impostor trials
in the test set. Unless otherwise noted, results are reported
for a combined protocol, in which each test image was as-
sumed to originate from an unknown camera at an unknown
distance. Two-thirds of the world data was used for UBM
training, the other third was used for score normalisation,
while all world data was used to train U , V , and D (688
images of 43 clients). During pre-processing, manually an-
notated eye locations were used for cropping, and low reso-
lution images were upsampled where necessary.

Example mugshot and surveillance images are provided
in Figure 2b. From the figure, considerable session varia-
tion in terms of quality, pose and illumination can be ob-
served. It is this variation that we attempt to explicitly
model and remove in the following experiments.

4.3. MOBIO

The MOBIO database is a large and challenging biomet-
ric database. It contains videos of 150 participants captured
in challenging real-world conditions on a mobile phone
camera over a one and a half year period [14]. Figure 2c
shows example images, demonstrating session variability
due to variation in pose and illumination. For this work,
one image was extracted from each of the videos and was
manually annotated with eye locations. Using manual face
localisation allows us to evaluate face authentication accu-
racy separately from the choice of face detection algorithm.
These images and annotations will be made available to fa-
cilitate future benchmarking5.

The MOBIO protocol is supplied with the database and
defines three non-overlapping partitions: training, devel-
opment and testing. The development and testing parti-
tions are defined in a gender-dependent manner, such that
clients’ models are only tested against images from clients
of the same gender. We chose to use the training data in a
gender-independent manner to be consistent with the other
databases, though future work could investigate gender-
dependent training. For male clients, the test set contains

4http://scface.org/
5http://www.idiap.ch/dataset/mobio

3,990 target trials and 147,630 impostor trials. For female
clients, there are 2,100 target trials and 39,900 impostor tri-
als. All of the training data was used to train U , V , and D
(9,579 images of 50 clients). A subset of 1,224 images of 34
clients (36 images each) was used for UBM training, while
the other 16 clients were used for score normalisation.

5. Results
In this section, results are reported for each database

independently. A GMM parts-based system, as described
in Section 2, without ISV or JFA is used as the baseline
system for comparison. Hyper-parameters were tuned on
the development set for each database, including the block
size used during feature extraction, and the dimensional-
ity of subspaces U and V . UBMs were trained with 512-
components6, and a relevance factor of τ = 4 was used for
client model adaptation. For experiments on SCface only,
cropped images were not pre-processed using Tan & Triggs
normalisation [21], as it did not improve performance in
that case. ISV and JFA were implemented based on the
JFA cookbook7. Subspaces V , U and D were trained us-
ing 10 EM iterations, in that order for JFA. For ISV, only
U was trained. Latent variables were estimated in the or-
der yi (JFA only), xi,j , then zi, using one Gauss-Seidel
iteration [24]. Manual face localisation was utilised unless
otherwise noted.

For evaluating the statistical significance of improve-
ments in HTER, we used the methodology proposed by
equation (15) and Figure 2 of [4], with a one-tailed test.

5.1. Feature extraction and score normalisation

Firstly, the size of the blocks used during feature extrac-
tion was tuned on development data. The number of DCT
coefficients for a given block size, D, was initially tuned
on BANCA. As shown in Table 1, the optimal block sizes
were 12 × 12 and 20 × 20 pixels for the BANCA and SC-
face databases, respectively. For MOBIO, across male and
female clients, a block size of 12× 12 was chosen.

Table 2 illustrates that ZT-norm score normalisation was
very effective for BANCA and SCface, with relative reduc-
tions in test set HTER of 45% and 35% respectively. For
MOBIO, ZT-norm had little effect.

This system, with tuned block size and ZT-norm score
normalisation but without ISV or JFA, is referred to as the
baseline system for the following session variability mod-
elling experiments.

5.2. Session variability modelling on BANCA

Table 3 compares the ISV and JFA session variability
modelling techniques to the baseline approach on BANCA.

6Using the Torch3vision library (http://torch3vision.idiap.ch/)
7Available at: http://speech.fit.vutbr.cz/en/software/joint-factor-

analysis-matlab-demo



B D
BANCA SCface MOBIO (male) MOBIO (female)

Dev Test Dev Test Dev Test Dev Test

8 28 9.3% 8.2% 23.8% 25.7% 10.8% 11.1% 10.6% 19.5%
12 45 7.8% 6.1% 20.2% 20.6% 9.2% 10.5% 10.7% 20.4%
16 66 7.8% 6.5% 18.5% 17.7% 9.6% 11.7% 12.3% 23.3%
20 66 8.6% 7.6% 16.7% 16.4% 11.0% 13.3% 15.4% 24.8%
24 91 8.6% 7.2% 17.4% 16.4% 11.0% 13.7% 16.5% 25.3%

Table 1: Results on BANCA, SCface and MOBIO (EER on Dev set, HTER on Test set) showing the effect of block size
during feature extraction (B ×B pixel blocks with D DCT coefficients retained).

BANCA SCface
Dev Test Dev Test

No score norm. 11.0% 11.1% 23.9% 25.1%
ZT-norm 7.8% 6.1% 16.7% 16.4%

Table 2: Results on BANCA and SCface (EER on Dev set,
HTER on Test set) showing the effect of ZT-norm score nor-
malisation.

System Man. face loc. Auto. face loc.
Dev Test Dev Test

Baseline 7.8% 6.1% 9.2% 6.7%
ISV 6.6% 5.4% 7.5% 6.0%
JFA 7.6% 6.3% 9.1% 7.0%

Table 3: Results on BANCA (EER on Dev set, HTER on
Test set) comparing different session variability modelling
techniques, when using manual or automatic face localisa-
tion.

On both the development and test sets, the best performance
was achieved using the ISV approach, which improved test
set HTER by 11% relative. These improvements are statisti-
cally significant at a level of 95% and 85% for development
and test sets respectively. Table 4 shows that using 50 to 100
dimensions in U was optimal on the development set, and
this generalised well to the test set. It is encouraging that
these results do not appear overly sensitive to the choice of
subspace dimension.

Our results are compared to recently published work in
Table 5. For comparison, we report the HTER on the test set
(g2), development set (g1)8, and the average. Note that Rua
et al. [19] used automatic face extraction from the BANCA
videos, while Ahonen et al. [1] used the 5 pre-selected im-
ages from each video as in this work. Our results represent

8This is obtained by applying the EER threshold from g2.

U dimensions Man. face loc. Auto. face loc.
Dev Test Dev Test

None 7.8% 6.1% 9.2% 6.7%

10 7.0% 5.8% 8.1% 6.3%
50 6.6% 5.4% 8.1% 6.1%
100 6.7% 5.5% 7.5% 6.0%
150 6.7% 5.3% 7.7% 5.4%

Table 4: Results on BANCA (EER on Dev set, HTER on
Test set) showing the effect of tuning the dimensionality of
the session variability subspace, U , when using manual or
automatic face localisation.

System Dev Test Average

Rúa et al. [19] 10.6% 9.8% 10.2%
Ahonen et al. [1] - - 9.1%
ISV (man.) 7.1% 5.4% 6.3%
ISV (auto.) 7.7% 6.0% 6.8%

Table 5: A comparison to previously published results (half
total error rate) for the P protocol of the BANCA English
database, on the Dev (g1) and Test (g2) sets, when using
manual (man.) or automatic (auto.) face localisation.

a 31% reduction in average HTER when compared to pre-
vious work.

5.3. Session variability modelling on SCface

On the SCface database, as shown in Table 6, both of
the proposed session variability modelling techniques out-
performed the baseline. JFA offered consistently improved
performance over the baseline and ISV systems, resulting
in a relative reduction in test set HTER of 18% over base-
line results. The dimensionalities of V and U were tuned
on the development set to values of 10 and 40, respectively.
On the test set, the improvements provided by ISV and JFA



System Dev Test

Baseline 16.7% 16.4%
ISV 15.5% 14.3%
JFA 12.0% 13.5%

Table 6: Results on SCface (EER on Dev set, HTER on
Test set) comparing different session variability modelling
techniques.

System Male Female
Dev Test Dev Test

Baseline 9.2% 10.5% 10.7% 20.4%
ISV 4.0% 8.3% 6.1% 11.4%
JFA 4.0% 7.3% 7.7% 13.0%

Table 7: Results on MOBIO, for males and females, com-
paring different session variability modelling techniques.

over the baseline are statistically significant at levels greater
than 98% and 99% respectively.

In Table 8, results are further analysed by separating the
scores into three separate groups, i.e. those from test images
taken at the 3 different distances, close, medium and far.
For this analysis only, the dataset used for Z-norm score
normalisation was matched to the distance of the test im-
age. Table 8 shows that the JFA approach provided substan-
tial improvements for close and medium images, however,
recognising far images remains particularly difficult.

5.4. Session variability modelling on MOBIO

On the MOBIO database, as shown in Table 7, both ISV
and JFA substantially reduced the error rate compared to
the baseline, with improvements statistically significant at
a level greater than 99.99%. For the male tests, JFA out-
performed ISV, providing a relative improvement over the
baseline of 30%, using dimensionalities of 30 and 50 for
V and U respectively. For female clients, the ISV tech-
nique performed the best, providing a relative improvement
of 44% with 250 dimensions in U .

6. Discussion
ISV consistently improved accuracy across all databases.

JFA generally outperformed the baseline and was some-
times preferable to ISV, but not always. In particular, for
BANCA, JFA was not helpful. In this case, we suspect that
the world data of only 300 images of 30 clients was insuffi-
cient to accurately estimate V and D. For MOBIO, much
more training data was used. For ISV, this provided substan-
tial improvements over the baseline, however, JFA did not

outperform ISV for the female clients. In this case, we note
that there was a significant gender imbalance in the MOBIO
training data, with a male to female ratio of about 3:1, while
the JFA training was conducted in a gender-independent
manner. It is thus possible that the performance of JFA for
female clients was disadvantaged by this imbalance. There-
fore, future work should investigate gender-dependent sub-
space training for JFA, as well as training with additional
data.

7. Conclusions

This work showed that session variability modelling can
be used to improve face authentication accuracy. The tech-
niques of inter-session variability modelling (ISV) and joint
factor analysis (JFA), previously only applied to speaker
authentication, were evaluated on several face authentica-
tion databases and were found to improve accuracy by up to
44% using limited training data. Our results on the BANCA
database represent a 31% reduction in average HTER when
compared to previous work. We found that ISV offered con-
sistent improvements, while the results using JFA were less
conclusive. In future work we plan to use additional train-
ing data to improve estimation of the subspaces, particularly
for JFA, and also apply the proposed techniques to more
databases. Further analysis may also give insights into the
kind of information that is captured by the model, for ex-
ample, the extent to which it captures describable sources
of image variations.
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