Interaction Modelling: Use Cases

Fabrizio Maria Maggi

Institute of Computer Science
(these slides are derived from the book “Object-oriented modeling and design with UML”)

Interaction Modelling

» The class model describes the objects in a system and their
relationships

» The interaction model describes how the objects interact to
produce useful results

» Interactions can be modeled at different levels of abstraction

At a high level use cases describe how a system interacts with outside
actors

Each use case represents a functionality that a system provides to the user
Use cases are helpful for capturing informal requirements

Sequence diagrams provide more detail and show the messages
exchanged among objects over time

Activity diagrams show the steps needed to implement an operation
or a business process referenced in a sequence diagram

I System modelling — Fabrizio Maria Maggi

Use Case Models: Actors

» An actor is a direct external user of a system

An object or a set of objects that communicates directly with the system but that
is not part of the system

Examples
Customer and Repair Technician are actors of a vending machine
Traveler, Agent and Airline are actors of a travel agency system
User and Administrator are actors for a computer database system

» Actors can be persons, devices and other systems (anything that interacts
directly with the system)

» An actor represents a particular facet (i.e., role) of objects in its interaction
with a system

» The same actor can represent different objects that interact similarly with a
system

E.g., many individual persons may use a vending machine but their behavior toward
the vending machine can be summarized by the actors Customer and Repair
Technician

Each actor represents a coherent set of capabilities for its objects

2 System modelling — Fabrizio Maria Maggi

Use Case Models: Actors

» Modelling the actors helps to define a system by identifying
the objects within the system and those on its boundary

» An actor is directly connected to the system

An indirectly connected object is not an actor and should not be
included as part of the system model

Any interaction with an indirectly connected object must pass
through actors
Example: the Dispatcher of repair technicians from a service bureau is
not an actor of a vending machine

Model a repair service that includes Dispatchers, Repair Technicians and
Vending Machines as actors and use a different model for the vending
machine model

3 System modelling — Fabrizio Maria Maggi

Use Case Models: Use Cases

» A use case is a coherent piece of functionality that a
system can provide by interacting with actors

B Buy a beverage. The vending machine delivers a beverage after a customer se-
lects and pays for it.

B Perform scheduled maintenance. A repair technician performs the periodic
service on the vending machine necessary to keep it in good working condition.

M Make repairs. A repair technician performs the unexpected service on the vend-
ing machine necessary to repair a problem in its operation.

B Load items. A stock clerk adds items into the vending machine to replenish its
stock of beverages.

Figure 7.1 Use case summaries for a vending machine. A use casn is a coherant piece of unctionality that a system can provide by interacting
with actors

Obfect-Orfented Modeling and Design with UML, Second Edition by Michasl Blaha
and James Aumbaugh, S8R 0-13-1-015820-4, @ 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved,

4 System modelling — Fabrizio Maria Maggi

Use Case Models: Use Cases

» Each use case involves one or more actors as well as the system itself

Examples: the use case “Buy a beverage” involves the Customer;the use
case “Perform scheduled maintenance” involves the Repair Technician;in a
telephone system the use case “Make a call” involves two actors, a Caller
and a Receiver

» An actor is not necessarily a person

Example:in an online shop the use case “Checkout” involves the Web
Customer and the Credit Payment Service

» A use case partitions the functionality of the system into a mainline
behavior sequence, variations on normal behavior, exception
conditions, error conditions, cancellations of a request

» Use cases should all be at a comparable level of abstraction

Examples: “Make telephone call” and “Record voice mail message” are at a
comparable level; “Set external speaker volume to high” is too narrow,
“Set speaker volume” or even “Set telephone parameters” would be
better

5 System modelling — Fabrizio Maria Maggi

Creating Use Case Models

» Use case models include
(Textual) use case descriptions

Use case diagrams

» Useful guidelines: Section 7.1.4 Guidelines for Use Case
Models pages 135-136 of the book “Object-oriented
modeling and design with UML”

6 System modelling — Fabrizio Maria Maggi

Use Case Descriptions

Use Case: Buy a beverage

Summary: The vending machine delivers a beverage after a customer selects and
pays for it.

Actors: Customer

Preconditions: The machine is waiting for money to be inserted.

Description: The machine starts in the waiting state in which it displays the message
“Enter coins.” A customer inserts coins into the machine. The machine displays the
total value of money entered and lights up the buttons for the items that can be pur-
chased for the money inserted. The customer pushes a button. The machine dispenses
the corresponding item and makes change, if the cost of the item is less than the mon-
ey inserted.

Exceptions:

Canceled: If the customer presses the cancel button before an item has been selected,
the customer’s money is returned and the machine resets to the waiting state.

Out of stock: If the customer presses a button for an out-of-stock item, the message
“That item is out of stock™ is displayed. The machine continues to accept coins or a
selection.

Insufficient money: If the customer presses a button for an item that costs more than
the money inserted, the message *“You must insert $nn.nn more for that item™ is dis-
played, where nn.nn is the amount of additional money needed. The machine contin-
ues to accept coins or a selection.

No change: If the customer has inserted enough money to buy the item but the ma-
chine cannot make the correct change, the message “Cannot make correct change” is
displayed and the machine continues to accept coins or a selection.

Postconditions: The machine is waiting for money to be inserted.

Figure 7.2 Use case description. A use case brings togather all of the behavior ralevant to a slice of system functionality.

Object-Orented Modeling and Design with UML, Second Edition by Michae! Blaha
and James Rumbaugh, ISBN 0-13-1-015920-4. © 2005 Pearson Education, Inc., Upper Saddle River, M., All rights reserved

7 System modelling — Fabrizio Maria Maggi

5&/;\ =
| s [l 2
S 1632 &
Use Case Diagrams
» UML has a graphical notation for
summarizing use cases into use case VB MecHine
diagrams _
A rectangle contains the use cases for L@.,——ﬁ—c—%
a system with the actors listed on the
outside —
The name of the system is written — S e
near a side of the rectangle = /
A name within an ellipse denotes a use /r;akereuﬂfrs_
case
A “stick man” icon denotes an actor @ x-
with the name placed below the icon
Solid lines connect use cases to

participating actors

8 System modelling — Fabrizio Maria Maggi

Actor Generalization

» The child actor inherits all use case associations from the
parent

» Actor generalization should be used if the specific actor
has more responsibility than the generalized one (i.e.,
associated with more use cases)

Example: Look at the requirements
management use case diagram in the
picture and you will see there is
duplicate behavior in both the buyer
and seller which includes “Create an
account” and “Search listings”

Rather than having all of this
duplication, we will have a more
general user that has this behavior and
then the actors will “inherit” this
behavior from the general user

9 System modelling — Fabrizio Maria Maggi

Use Case Relationships

» For large applications complex use cases can be built from
smaller pieces
» Linking enables flexibility in requirements specification
Isolating functionality
Enabling functionality sharing
Breaking functionality into manageable chunks
» Three mechanism are used:
Include

Extend
Generalization

» Useful guidelines: Section 8.1.5 Guidelines for Use Case
Relationships pages 150-151 of the book “Object-oriented
modeling and design with UML”

10 System modelling — Fabrizio Maria Maggi

Use Case Relationships: Include

» Include Relationship
A use case can make use of other smaller use cases

The include relationship incorporates the behaviour of another
use case (e.g., subroutines)

» Factoring a use case into pieces is appropriate when the
pieces represent significant behaviour units

|l System modelling — Fabrizio Maria Maggi

4

»’&
—
!_':
S

'\00

(’st15 ‘

Use Case Relationships: Include

The UML notation for an include relationship is a dashed arrow
from the source (including) to the target (included) use case.The
keyword <<include>> annotates the arrow

e
take
customer
order

- zincludes

|

Sy ———
% identify
Sales 'ass'rstant\/ gincludes _ customer
e —— = o
return faulty e
goods

12 System modelling — Fabrizio Maria Maggi

Use Case Relationships: Extend

» Extend Relationship
Adds an “extra behaviour” to a base use case
Is used in the situation in which some initial capability is defined
and later features are added modularly

» Base use case is meaningful on its own, it is independent of
the extension. Extension typically defines optional behavior
that is not necessarily meaningful by itself

13 System modelling — Fabrizio Maria Maggi

Use Case Relationships: Extend

The UML notation for an extend relationship is a dashed arrow
from the extension to the base use case.The keyword
<<extend>> annotates the arrow

Use case “trade stocks” is

meaningful on its own. It could

be optionally extended with

“margin trading” T

Extension Points: specify the trade stocks B

location at which the behavior | afertne Sstomer has astes for

of the base use case may be R higiian

extended. Extension points LR G

.

can have a condition attached. | oy =N
. . {after the customer haz asked for a margin purchase) f .]
The extension behaviour (w
. . . . -\.
occurs only if the condition is

true when the control reaches
the extension point

| 4 System modelling — Fabrizio Maria Maggi

Use Case Relationships: Generalization

» Generalization Relationship

Can show specific variations of a general use case, analogous to
generalization among classes

A parent use case represents a general behaviour
A child use case specializes the parent by inserting additional
steps or by refining existing steps

» The child use case inherits the behavior of the parent use case

The interaction (described in the textual description)

Use case links (associations, include, extend, generalization)

» The child use case can substitute the parent use case

Overriding occurs through the textual description

I5 System modelling — Fabrizio Maria Maggi

Use Case Relationships: Generalization

The UML notation for an generalization relationship is an arrow
with its tail on the child use case and a triangular arrowhead on
the parent use case (the same notation that is used for classes)

Use case “make trade” can
be specialized into child use
cases “‘trade bonds”,“trade
stocks” and “trade options”
(based on different types of

financial items)

The parent use case contains e
steps that are performed for
any kind of trade

Each child contains additional
steps that are particular to a
specific kind of trade

System modelling — Fabrizio Maria Maggi

I'.'.“-z HI

| trade bonds

\ 4
=, Il

p

-~

—

—

s,
-L

!
f |
: [trade options
\
trade stocks \,
J .\"'\-\“__‘_'

@,,'7

Combinations of Use Case Relat10nsh1ps

Stock Brokerage System

Secure session

| cincludes ~
-

T .

] ~ _«includes
- e
Customer

|
- ; I =
— zincludes B
- I -
|
|

- =

—
validate password

zincludes _ — —

ﬁmi:)rder

— — s&xtends

—_—
-_

trade bonds trade options

trade stocks

/
gextends
zextends .

-

margin trading

short sale

17 System modelling — Fabrizio Maria Maggi

