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ABSTRACT 
Vector data represents one major category of data managed by 
GIS. This paper presents a new technique for vector-data display 
that is able to precisely and efficiently map vector data on 3D 
objects such as digital terrain models. The technique allows the 
system to adapt the visual mapping to the context and user needs 
and enables users to interactively modify vector data through the 
visual representation. It represents a basic mechanism for GIS 
interface technology and facilitates the development of visual 
analysis and exploration tools.  

Categories and Subject Descriptors 
H.5.2 [Information Interfaces and Presentation]: User 
Interfaces - graphical user interfaces, screen design, interaction 
styles. I.3.3 [Computer Graphics]: Picture/Image Generation - 
display algorithms, viewing algorithms. I.3.6 [Computer 
Graphics]: Methodology and Techniques - interaction 
techniques. I.3.7 [Computer Graphics]: Three-Dimensional 
Graphics and Realism - color, shading, shadowing, and texture. 

General Terms 
Algorithms, Performance, Design. 
Keywords 
Vector Data, 3D GIS, Geographic Visualization, Animated 
Cartography. 

1. INTRODUCTION 
Vector data represents one of the main categories of geo-data 
managed by geo-information systems (GIS). Main primitives 
include points (e.g., cities, monuments), lines (e.g., road 
networks, rivers, coastlines), and polygons (e.g., national borders, 
vegetation zones). In the following we understand vector data as 
any 2D or 3D analytically described geo data as opposed to raster 
data. 

There are two principal methods to visualize vector data by 2D 
graphics. (1) Vector data is mapped by 2D primitives such as 

points, lines, and polygons, which can be modified by varying 
point symbols, line patterns, or polygon fill-styles. (2) A set of 
vector data is rasterized at a given resolution as a 2D image and 
combined with other images (e.g., road system combined with 
topographic map) by 2D image operations.  

To display vector data in 3D, however, these methods have 
several drawbacks. Most 3D terrain representations are based on a 
level-of-detail terrain model (e.g., [10][12]), which is needed to 
handle large terrain data sets (Figure 1a), and whose geometry is 
refined according to camera position and screen size.  

We can map vector data to 3D geometric objects and integrate 
them in the 3D scenery. In this case, rendering artifacts are likely 
to occur unless vector-data is mapped consistently and exactly to 
the current level-of-detail. Rendering coplanar geometry, 
however, causes z-buffer artifacts (Figure 1b).  

Another strategy is to rasterize vector data as 2D images in a pre-
processing step. The image is used as 2D texture and projected 
onto the level-of-detail terrain geometry. Using multi-texturing, 
different rasterized vector data sets can be visually combined [4]. 
Texturing as a pixel-precise rendering technique does not produce 
the aforementioned artifacts in the image (Figure 1c). However, 
the pre-processing is time-consuming, the intermediate images 
require additional storage space, and the resolution cannot be 
changed without mapping the vector data again.  

In our approach, the visual mapping of vector data is specified by 
scene graphs [14]. They specify the visual representation of 
vector data at a high level of abstraction and in a hierarchical 
way. The scene graphs are traversed on-demand to synthesize 
actual 2D images stored at different resolutions as part of a 
texture pyramid. Elements of the texture pyramid are used to 
project the visual representation of vector data on any type of 3D 
surface. The texture generation can take place for each frame, 
allowing us, therefore, to map dynamic, time-dependent vector 
data as well as to configure the representation according to the 
viewing conditions.  

The strengths of our texture-based rendering of vector data 
include the complete decoupling of level-of-detail reference 
geometry and vector-data representation, an independent level-of-
detail management for representations of vector-data, a high 
image quality due to the pixel-precise application of textures, and 
finally its straightforward adaptation to dynamic vector data and 
its support for interactive manipulation. 

The paper is structured as follows: Section 2 discusses related 
work. Section 3 explains the displaying process. Section 4 
discusses the dynamic display of vector data. Section 5 explains 
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techniques for interactively manipulating vector-data. Section 6 
gives conclusions. 

2. RELATED WORK 
For interactive analysis and exploration of geo data, various 
applications as well as extensions to GIS have been developed, 
e.g., ESRI´s ArcView 3D Analyst. In general, they represent 
vector data by 2D and 3D geometric objects superimposed on 
terrain models. 

Frequently, maps [13] serve as tools used to communicate spatial 
information between GIS and users. The map metaphor has been 
extended to 3D [8][5]; main requirements for these 3D maps 
include multiresolution and multi-view representations, real-time 
rendering, interactivity, and high visual quality [15]. Algorithms 
and data structures for efficient terrain display have been 
extensively studied in the past (e.g., multiresolution geometry 
modeling [10][12] and multiresolution texture modeling [2][4]). 
These approaches do not offer dedicated techniques for vector-
data display: Commonly, vector data is rasterized in a pre-
processing step and displayed by terrain textures.  

Recently, approaches towards multiresolution modeling of vector 
data have been emerged [1] and applied, for example, to 
progressively transmit or compress vector data. They do not 
concentrate on the display of vector data, but can substantially 
support the design and implementation of visual multiresolution 
representations of vector data. 

In the field of vector-data display, the Scalable Vector Graphics 
language (SVG) [6], a web standard for vector-based 2D graphics, 
describes 2D graphics based on XML. It defines a wide variety of 
2D graphics objects and styles, and concentrates on high-quality, 
device-independent, scalable output. SVG primarily represents a 
description standard but not a rendering technique. SVG does not 
generalize to 3D graphics, which is our main focus. SVG 
documents, of course, can be translated into a representation 
suitable for our mapping technique.  

In real-time 3D computer graphics, texturing emerges as a 
fundamental graphics operation; applications include projective 
textures [7], shadows and reflections [11], multi-texturing [17], 
near-realistic lighting and shading [9]. Wynn [18] describes off-
screen 3D rendering implemented by the OpenGL P-buffer. The 
P-buffer enables applications to use the full range of OpenGL for 
synthesizing images in an internal, non-visible framebuffer. It 

represents the technical basis of our approach for dynamically 
generating vector-data textures. In general, texture-based 
rendering techniques improve drastically visual quality, 
exactness, and expressiveness of real-time renderings. 

3. DISPLAYING VECTOR DATA IN 3D 
Mapping vector data to 3D requires 3D surfaces having the role of 
a geo-reference surface. In the following, we assume that a 
multiresolution terrain model is used as geo-reference surface. 

3.1 Geometry-Based Mapping 
If we represent vector data by geometric objects (e.g., 2D line 
segments), these objects must be linked to the geo-reference 
surface. In general, multiresolution modeling is necessary for 
representing geo-reference surfaces in order to reduce their 
geometric complexity and to achieve real-time rendering. 

(a) (b) 

 

 (c) 

Figure 1. Vector data projected as polygons onto a level-of-detail terrain model, rendered in wire-frame style (a). Rendered 
with filled polygons: z-buffer artifacts are introduced since vector-data polygons tend to be coplanar with terrain polygons (b). 

Texture-based vector-data mapping does not produce artifacts (c).  

 
(a) 

(b) 

(c) 

(d) 

 
Figure 2. Geometry-based mapping of vector data and its 
pitfalls (a-c). Texture-based mapping of vector data (d). 
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However, for the vector-data mapping it is difficult (sometimes 
impossible) to get access to the current state of the geo-reference 
surface and to install callbacks that could transform and adapt 
geometric objects representing vector data so that they correspond 
to that state. Without this kind of callbacks changes in the level-
of-detail terrain model would lead to visual artifacts.  

Figure 2 illustrates the limitations of geometry-based mapping. A 
pipeline, defined by two geo-referenced end-points, should be 
visualized on top of a digital terrain model. The pipeline is 
represented by a line segment, which interferes with the level-of-
detail terrain model (Figure 2a). We can crack pipeline segments 
to ensure that the visual pipeline representation tightly follows the 
terrain surface (Figure 2b), but the surface varies depending on 
viewer position and screen resolution (Figure 2c). If we would 
like to adapt pipeline segments to the surface, non-trivial analytic 
calculations would become necessary. 

3.2 Texture-Based Mapping 
To overcome the limitations of a geometry-based representation, 
we represent vector data by 2D textures that are projected onto 
the reference geometry. The textures result from rendering a 
scene graph [14] that describes the visual mapping of the vector 
data, called vector-data scene graph.  

A vector-data scene graph consists of nodes. The nodes can 
contain 2D geometry objects (e.g., points, lines, polygons, 
curves), graphics attributes (e.g., color, material, textures, line 
style, facet style etc.), and child nodes. Subgraphs can be shared, 
i.e., a node can have more than one parent node. This way, 
complex scene objects, for example, glyphs and symbols, can be 
designed in a hierarchical and reusable way. Vector-data scene 
graphs mostly contain 2D graphics. In our implementation, we 
use the scene graph of the Virtual Rendering System (VRS) [3]. 
As the primary difference to a regular scene graph, the vector-data 
scene graph is attached to a P-buffer canvas.  

In the example, we represent the pipeline by a vector-data scene 
graph that consists of a 2D line, attributed by a red color, and two 
2D points, attributed by a blue color. It is rendered into a 2D 
texture that is projected onto the terrain surface (Figure 2d). The 
texture-based visual mapping of the pipeline is independent from 
the level-of-detail of the reference geometry, lines and points are 

drawn perspectively correct, and no rendering artifacts due to co-
planarity and surface intersections occur. 

3.3 Multiresolution Texturing 
The texture-based approach can be optimized with respect to its 
visual quality in the case of a level-of-detail terrain model as 
reference geometry. We assume that the terrain model has a quad-
tree structure. Each level of detail consists of terrain patches, each 
covering the area of all its four child patches (Figure 3b) and 
having higher resolution than its parent patch. The rendering 
algorithm determines visible patches according to the view 
frustum and selects patches according to quality criteria such as 
camera distance (Figure 3a).  

3.3.1 Static Texture Pyramid 
The idea is to visually map vector data at different levels of detail. 
Vector data is mapped into a possibly very large 2D texture in a 
pre-processing step. Then, the original 2D texture is down scaled 
at various resolutions, building a (static) texture pyramid [16].  

Each patch of the multiresolution terrain surface corresponds to a 
subregion (called texture patch) of each 2D texture contained in 
the texture pyramid. To render a terrain patch, the rendering 
algorithm activates the associated texture patch (Figure 3c).  

Displaying vector data based on a static texture pyramid has the 

(c) (b) (a) 
 

Figure 3. Texture-based mapping of vector data. (a) Top-view. The gray area indicates the current view-frustum seen by 
the camera. (b) Quad-tree-based decomposition of the terrain geometry. Patches near the camera have higher resolution 

than patches far away from the camera. The currently used patches are colored gray. (c) Corresponding collection of 
applied textures, derived from the same texture pyramid. 

  
Figure 4. Differences in visual quality between static and on-
demand texture pyramids. Using the static texture pyramid 

based on a 40962-sized image (left); using the on-demand texture 
pyramid (right). 
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following limitations with respect to quality, speed, and hardware 
resources: The pre-processing of the pyramid is generally not 
hardware-accelerated, resolution and visual quality is fixed 
(Figure 4 left), the content of a selected layer cannot be changed 
dynamically, and memory requirements are high. The total 
amount of memory sums up to the original texture size plus 33%. 

3.3.2 On-Demand Texture Pyramid 
The on-demand texture pyramid has been developed to overcome 
the limitations of traditional texture pyramids for visual mappings 
of vector data. The pyramid is derived from a vector-data scene 
graph. If a specific texture patch is requested from the terrain 
rendering algorithm, the vector-data scene graph is rendered for 
that region. Note that for each patch, regardless of its quad-tree 
level, the same texture size is used, i.e., the resolution of the 
visual mappings of vector data increases with the level of the 
quad-tree. 

This technique does not require pre-processing because textures 
are generated on the fly. Hence, memory requirements are lower 
because no texture pyramid must be kept in memory. The 
generation of a texture patch can take place for each frame, 
allowing us, therefore, to map dynamic, time-dependent data as 
well as to configure the mapping according to the viewing 
conditions. This way, resolution and visual quality can be 
adjusted to screen resolution and user needs (Figure 4 right).  

3.4 Real-Time Rendering of Texture-Mapped 
Vector Data 
The visual representation of the vector data consists of collections 
of graphics shapes and graphics attributes that are hierarchically 
arranged by scene graphs. Since scene graphs can be constructed, 
modified, and rendered in real-time, our approach is applicable to 
dynamic vector data as well and, furthermore, enables interactive 
manipulation of vector data (see Section 5). 

The on-demand texture pyramid uses a caching mechanism to 
speed up the texture-patch generation process: If vector-data 
content of a texture patch has not changed from one frame to 
another, the cached texture patch is re-used.  

In our implementation, the on-demand rendering of textures is 
based on the OpenGL pixel buffer [18]. The P-buffer is a fully 
functional frame-buffer, i.e., it consists of color buffer, a z-buffer, 
and optionally a stencil-buffer. Rendering to the P-buffer is as fast 
as rendering to an on-screen canvas; there is no restriction with 
respect to hardware acceleration. The P-buffer contents can be 
copied directly to a 2D texture. The P-buffer resides on graphics 
hardware; no texture data must be transferred to the application 
memory during that copy action.  

Hence, copying P-buffer contents into 2D textures (also resident 
on graphics hardware) is extremely fast. Since P-buffer rendering 
allows us to rasterize vector data within real-time, on-demand 
generation of textures becomes practicable.  

To achieve a given screen-space texture resolution, most notably, 
the memory requirements are drastically lower using an on-
demand texture pyramid compared to a static texture pyramid. In 
Table 1, memory requirements of both approaches are compared. 
We assume that vector data is rendered with an average number 
of 10-25 equally sized 2D textures, which are generated on 

demand. In comparison, a static texture pyramid for a four level 
quad-tree and a source image size of 8192×8192 pixels would 
require 268 MB of memory to store all mip-map levels; the 
equally resolved on-demand texture pyramid requires 11 MB 
(Table 1).  

4. DYNAMIC DISPLAY OF VECTOR 
DATA 
Each texture patch of an on-demand texture pyramid can be 
rebuilt for each frame. Consequently, we are able to dynamically 
adapt visual mappings to user’s needs, camera settings, or screen-
space quality criteria. This enables a wide range of dynamic 
visualization strategies, including: 

 Enabling/Disabling of Vector Data. Each node component 
of a vector-data scene graph can be enabled respectively 
disabled. That way, users and applications can select which 
vector-data elements to be mapped, or reduce/increase the 
visual complexity of a mapping.  

 Animated Display of Vector Data. Vector data resulting 
from or controlled by geo-processes or simulations (time-
dependent vector data) can be represented in an animated 
way.  

 View-Dependent Displaying of Vector Data. While 
rasterizing vector data we can take into account the graphics 
context such as camera settings (distance, orientation), view-
frustum culling, screen-space extension etc. to control visual 
appearance and design of vector data (Figure 5). 

 Mixing Texture-Based and Geometry-Based Mapping of 
Vector Data. There are two basic strategies for selecting 2D 
or 3D representations: We can opt for a mixed representation 
(1) when vector-data elements come close to the viewer to 

Table 1. Resource usage for different texture pyramids. 

Texture 
Resolution 

Quad-
tree 

Levels 

Min/Avg 
Number of 

Patches 

Min/Avg 
Memory 

Usage MB 

Resolution 
of Pre-Built 
2D Images 

Memory 
Usage 

MB 

2562 4 10/14 2.0/2.8 40962 66 
5122 4 10/14 7.9/11 81922 268 
2562 6 16/20 3.1/3.9 163842 1073 
5122 6 16/20 12.6/15.7 327682 4295 
2562 8 22/25 4.3/4.9 655362 17180 
5122 8 22/25 17.3/19.7 1310722 68719 

  
Figure 5. Visual mapping of a pipeline at low level-of-detail 
(left). When the camera gets closer to one pipeline segment, 
details, such as capacity and name, become visible (right). 
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show more details by 3D objects, or (2) when vector data 
elements move far away from the viewer to ensure that they 
remain visible by 3D objects. The first strategy can be 
applied to complex 3D objects (e.g., building models), which 
can be abstracted in the 2D representation. The latter can be 
preferred in the case of objects that would become invisible 
(e.g., labels in Figure 6). 

 Cartographic Generalization. As an immediate application 
of on-demand rasterization, applications can implement 
generalization schemes such as defined by cartography.  

4.1 Display of Labels 
Labels are frequently used elements in geo-visualizations. 
Commonly, labels are represented as part of a static terrain 
texture. They keep, therefore, orientation and resolution 
independently from the viewing situation. Labels as elements of 
an on-demand texture, however, should always be oriented 
towards the viewer and their font size must stay within a certain 
range to ensure readability (Figure 6). Also, labels could be 
represented as 2D text placed parallel to the view plane once the 

terrain surface is seen below a certain viewing angle at a far 
distance from the camera (Figure 7). This strategy ensures an 
optimal visibility of labels.  

4.2 Display of Time-Dependent Vector Data 
In the case of time-dependent vector data, we must update their 
corresponding elements in the vector-data scene graph. In general, 
it will not be necessary to rebuild the whole scene graph. Thus 
dynamic phenomena like flooding scenarios, air pollution 
processes, or traffic simulations can be modeled in a 
straightforward way. 

5. INTERACTIVE MANIPULATION OF 
VECTOR DATA 
Interaction with vector data is necessary to let the user manipulate 
that data. Since vector data is given in an analytic form (not 
rasterized), the semantics of the data is directly available for any 
kind of interactive editing, direct manipulation, and exploration 
tools. 

5.1 Picking Operation 
In common 3D libraries, 3D interaction is supported by picking 
operations. One kind of picking implementation consists in 
constructing a 3D ray that is sent through a point in the view-
plane into the 3D viewing frustum, and testing the ray for 
intersection with scene objects.  

The picking operation starts with a primary ray test: a 3D ray 
passes the view-plane through the perspective view-frustum. 
Along its way, the picking request can hit none, one, or several 
3D scene objects. If scene objects are hit, the intersection point, 
together with the object-id is recorded. The picking operation, in 
general, returns a list of all objects hit together with the 
intersection points.  

If the ray hits the terrain surface, we check for vector-data 
elements. For it, we send a new, redirected ray through the virtual 
(2D) scene described by the vector-data scene graph to check for 
intersections with the visual representations of vector data  
(Figure 8). The identifiers of hit shapes are returned and can be 
traced back to vector-data elements. Note that vector-data scene 
graphs can contained and their pick even invisible vector-data 
elements such as groups or regions.  

 
Figure 6. Hybrid representation of labels inside 2D texture 

and as 2D text objects. Far-away labels are displayed as 
billboards, they are not contained as elements of the terrain 

texture. 

   
Figure 7. Texture-based, automatically oriented labels contained in a terrain texture. 
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5.2 Manipulation of Vector Data 
Direct manipulation of visualized vector data represents a 
powerful technique to enable interaction of users with visually 
mapped vector data. The interaction requirement – to react in real-
time to user actions – is fulfilled because of the real-time ability 
of on-demand texture pyramids.  

2D graphics editing operations such as selecting, moving, 
resizing, rotating, and scaling can be implemented for geo-objects 
described by vector data. In general, it is necessary to add visual 
handles to the vector-data scene graph (or main scene graph). The 
user can directly manipulate the handles and, thereby, control the 
corresponding operation. In addition, an interaction mechanism 
can apply the picking operation of vector-data scene graphs to 
determine which objects the user selects. For example, to edit a 
polygon, its vertices are represented by 3D spheres, which the 
user can move over the terrain surface. The application is 
responsible for synchronizing vector data, vector-data scene 
graphs, and visual handles.  

6. CONCLUSIONS 
In our approach, we specify the visual mapping of vector data by 
scene graphs, render them in 2D textures, and project these 
textures onto geo-reference geometry such as terrain surfaces on a 
per-frame basis. The approach benefits from texturing as a 
fundamental high-quality and hardware-accelerated graphics 
operation as well as from the analytic specification of the visual 
representation of vector data using the whole capabilities of 
modern scene graph libraries. 

The on-demand generation of visual mappings drastically reduces 
the required amount of memory compared to pre-rasterizing 
vector data, can adapt quality to viewing conditions, and enables 
mapping of dynamic vector data. The scene graph representation 
keeps the semantics of vector data accessible in 3D, which is 
required for any kind of interactive 3D editing and direct 
manipulation of vector data. As future work, we want to integrate 
mechanisms for coupling 2D and 3D representations more tightly 
and to develop a visual mapping language.  
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Figure 8. Picking of vector data in their visual 
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