
Interactive 3D Visualization of Vector Data in GIS
Oliver Kersting

University of Potsdam
Hasso-Plattner-Institute

Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam, Germany

oliver.kersting@hpi.uni-potsdam.de

Jürgen Döllner
University of Potsdam

Hasso-Plattner-Institute
Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam, Germany

juergen.doellner@hpi.uni-potsdam.de

ABSTRACT
Vector data represents one major category of data managed by
GIS. This paper presents a new technique for vector-data display
that is able to precisely and efficiently map vector data on 3D
objects such as digital terrain models. The technique allows the
system to adapt the visual mapping to the context and user needs
and enables users to interactively modify vector data through the
visual representation. It represents a basic mechanism for GIS
interface technology and facilitates the development of visual
analysis and exploration tools.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces - graphical user interfaces, screen design, interaction
styles. I.3.3 [Computer Graphics]: Picture/Image Generation -
display algorithms, viewing algorithms. I.3.6 [Computer
Graphics]: Methodology and Techniques - interaction
techniques. I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism - color, shading, shadowing, and texture.

General Terms
Algorithms, Performance, Design.
Keywords
Vector Data, 3D GIS, Geographic Visualization, Animated
Cartography.

1. INTRODUCTION
Vector data represents one of the main categories of geo-data
managed by geo-information systems (GIS). Main primitives
include points (e.g., cities, monuments), lines (e.g., road
networks, rivers, coastlines), and polygons (e.g., national borders,
vegetation zones). In the following we understand vector data as
any 2D or 3D analytically described geo data as opposed to raster
data.

There are two principal methods to visualize vector data by 2D
graphics. (1) Vector data is mapped by 2D primitives such as

points, lines, and polygons, which can be modified by varying
point symbols, line patterns, or polygon fill-styles. (2) A set of
vector data is rasterized at a given resolution as a 2D image and
combined with other images (e.g., road system combined with
topographic map) by 2D image operations.

To display vector data in 3D, however, these methods have
several drawbacks. Most 3D terrain representations are based on a
level-of-detail terrain model (e.g., [10][12]), which is needed to
handle large terrain data sets (Figure 1a), and whose geometry is
refined according to camera position and screen size.

We can map vector data to 3D geometric objects and integrate
them in the 3D scenery. In this case, rendering artifacts are likely
to occur unless vector-data is mapped consistently and exactly to
the current level-of-detail. Rendering coplanar geometry,
however, causes z-buffer artifacts (Figure 1b).

Another strategy is to rasterize vector data as 2D images in a pre-
processing step. The image is used as 2D texture and projected
onto the level-of-detail terrain geometry. Using multi-texturing,
different rasterized vector data sets can be visually combined [4].
Texturing as a pixel-precise rendering technique does not produce
the aforementioned artifacts in the image (Figure 1c). However,
the pre-processing is time-consuming, the intermediate images
require additional storage space, and the resolution cannot be
changed without mapping the vector data again.

In our approach, the visual mapping of vector data is specified by
scene graphs [14]. They specify the visual representation of
vector data at a high level of abstraction and in a hierarchical
way. The scene graphs are traversed on-demand to synthesize
actual 2D images stored at different resolutions as part of a
texture pyramid. Elements of the texture pyramid are used to
project the visual representation of vector data on any type of 3D
surface. The texture generation can take place for each frame,
allowing us, therefore, to map dynamic, time-dependent vector
data as well as to configure the representation according to the
viewing conditions.

The strengths of our texture-based rendering of vector data
include the complete decoupling of level-of-detail reference
geometry and vector-data representation, an independent level-of-
detail management for representations of vector-data, a high
image quality due to the pixel-precise application of textures, and
finally its straightforward adaptation to dynamic vector data and
its support for interactive manipulation.

The paper is structured as follows: Section 2 discusses related
work. Section 3 explains the displaying process. Section 4
discusses the dynamic display of vector data. Section 5 explains

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GIS'02, November 8-9, 2002, McLean, Virginia, USA.
Copyright 2002 ACM 1-58113-591-2/02/0011 … $5.00.

105107

techniques for interactively manipulating vector-data. Section 6
gives conclusions.

2. RELATED WORK
For interactive analysis and exploration of geo data, various
applications as well as extensions to GIS have been developed,
e.g., ESRI´s ArcView 3D Analyst. In general, they represent
vector data by 2D and 3D geometric objects superimposed on
terrain models.

Frequently, maps [13] serve as tools used to communicate spatial
information between GIS and users. The map metaphor has been
extended to 3D [8][5]; main requirements for these 3D maps
include multiresolution and multi-view representations, real-time
rendering, interactivity, and high visual quality [15]. Algorithms
and data structures for efficient terrain display have been
extensively studied in the past (e.g., multiresolution geometry
modeling [10][12] and multiresolution texture modeling [2][4]).
These approaches do not offer dedicated techniques for vector-
data display: Commonly, vector data is rasterized in a pre-
processing step and displayed by terrain textures.

Recently, approaches towards multiresolution modeling of vector
data have been emerged [1] and applied, for example, to
progressively transmit or compress vector data. They do not
concentrate on the display of vector data, but can substantially
support the design and implementation of visual multiresolution
representations of vector data.

In the field of vector-data display, the Scalable Vector Graphics
language (SVG) [6], a web standard for vector-based 2D graphics,
describes 2D graphics based on XML. It defines a wide variety of
2D graphics objects and styles, and concentrates on high-quality,
device-independent, scalable output. SVG primarily represents a
description standard but not a rendering technique. SVG does not
generalize to 3D graphics, which is our main focus. SVG
documents, of course, can be translated into a representation
suitable for our mapping technique.

In real-time 3D computer graphics, texturing emerges as a
fundamental graphics operation; applications include projective
textures [7], shadows and reflections [11], multi-texturing [17],
near-realistic lighting and shading [9]. Wynn [18] describes off-
screen 3D rendering implemented by the OpenGL P-buffer. The
P-buffer enables applications to use the full range of OpenGL for
synthesizing images in an internal, non-visible framebuffer. It

represents the technical basis of our approach for dynamically
generating vector-data textures. In general, texture-based
rendering techniques improve drastically visual quality,
exactness, and expressiveness of real-time renderings.

3. DISPLAYING VECTOR DATA IN 3D
Mapping vector data to 3D requires 3D surfaces having the role of
a geo-reference surface. In the following, we assume that a
multiresolution terrain model is used as geo-reference surface.

3.1 Geometry-Based Mapping
If we represent vector data by geometric objects (e.g., 2D line
segments), these objects must be linked to the geo-reference
surface. In general, multiresolution modeling is necessary for
representing geo-reference surfaces in order to reduce their
geometric complexity and to achieve real-time rendering.

(a) (b)

 (c)

Figure 1. Vector data projected as polygons onto a level-of-detail terrain model, rendered in wire-frame style (a). Rendered
with filled polygons: z-buffer artifacts are introduced since vector-data polygons tend to be coplanar with terrain polygons (b).

Texture-based vector-data mapping does not produce artifacts (c).

(a)

(b)

(c)

(d)

Figure 2. Geometry-based mapping of vector data and its
pitfalls (a-c). Texture-based mapping of vector data (d).

106108

However, for the vector-data mapping it is difficult (sometimes
impossible) to get access to the current state of the geo-reference
surface and to install callbacks that could transform and adapt
geometric objects representing vector data so that they correspond
to that state. Without this kind of callbacks changes in the level-
of-detail terrain model would lead to visual artifacts.

Figure 2 illustrates the limitations of geometry-based mapping. A
pipeline, defined by two geo-referenced end-points, should be
visualized on top of a digital terrain model. The pipeline is
represented by a line segment, which interferes with the level-of-
detail terrain model (Figure 2a). We can crack pipeline segments
to ensure that the visual pipeline representation tightly follows the
terrain surface (Figure 2b), but the surface varies depending on
viewer position and screen resolution (Figure 2c). If we would
like to adapt pipeline segments to the surface, non-trivial analytic
calculations would become necessary.

3.2 Texture-Based Mapping
To overcome the limitations of a geometry-based representation,
we represent vector data by 2D textures that are projected onto
the reference geometry. The textures result from rendering a
scene graph [14] that describes the visual mapping of the vector
data, called vector-data scene graph.

A vector-data scene graph consists of nodes. The nodes can
contain 2D geometry objects (e.g., points, lines, polygons,
curves), graphics attributes (e.g., color, material, textures, line
style, facet style etc.), and child nodes. Subgraphs can be shared,
i.e., a node can have more than one parent node. This way,
complex scene objects, for example, glyphs and symbols, can be
designed in a hierarchical and reusable way. Vector-data scene
graphs mostly contain 2D graphics. In our implementation, we
use the scene graph of the Virtual Rendering System (VRS) [3].
As the primary difference to a regular scene graph, the vector-data
scene graph is attached to a P-buffer canvas.

In the example, we represent the pipeline by a vector-data scene
graph that consists of a 2D line, attributed by a red color, and two
2D points, attributed by a blue color. It is rendered into a 2D
texture that is projected onto the terrain surface (Figure 2d). The
texture-based visual mapping of the pipeline is independent from
the level-of-detail of the reference geometry, lines and points are

drawn perspectively correct, and no rendering artifacts due to co-
planarity and surface intersections occur.

3.3 Multiresolution Texturing
The texture-based approach can be optimized with respect to its
visual quality in the case of a level-of-detail terrain model as
reference geometry. We assume that the terrain model has a quad-
tree structure. Each level of detail consists of terrain patches, each
covering the area of all its four child patches (Figure 3b) and
having higher resolution than its parent patch. The rendering
algorithm determines visible patches according to the view
frustum and selects patches according to quality criteria such as
camera distance (Figure 3a).

3.3.1 Static Texture Pyramid
The idea is to visually map vector data at different levels of detail.
Vector data is mapped into a possibly very large 2D texture in a
pre-processing step. Then, the original 2D texture is down scaled
at various resolutions, building a (static) texture pyramid [16].

Each patch of the multiresolution terrain surface corresponds to a
subregion (called texture patch) of each 2D texture contained in
the texture pyramid. To render a terrain patch, the rendering
algorithm activates the associated texture patch (Figure 3c).

Displaying vector data based on a static texture pyramid has the

(c) (b) (a)

Figure 3. Texture-based mapping of vector data. (a) Top-view. The gray area indicates the current view-frustum seen by
the camera. (b) Quad-tree-based decomposition of the terrain geometry. Patches near the camera have higher resolution

than patches far away from the camera. The currently used patches are colored gray. (c) Corresponding collection of
applied textures, derived from the same texture pyramid.

Figure 4. Differences in visual quality between static and on-
demand texture pyramids. Using the static texture pyramid

based on a 40962-sized image (left); using the on-demand texture
pyramid (right).

107109

following limitations with respect to quality, speed, and hardware
resources: The pre-processing of the pyramid is generally not
hardware-accelerated, resolution and visual quality is fixed
(Figure 4 left), the content of a selected layer cannot be changed
dynamically, and memory requirements are high. The total
amount of memory sums up to the original texture size plus 33%.

3.3.2 On-Demand Texture Pyramid
The on-demand texture pyramid has been developed to overcome
the limitations of traditional texture pyramids for visual mappings
of vector data. The pyramid is derived from a vector-data scene
graph. If a specific texture patch is requested from the terrain
rendering algorithm, the vector-data scene graph is rendered for
that region. Note that for each patch, regardless of its quad-tree
level, the same texture size is used, i.e., the resolution of the
visual mappings of vector data increases with the level of the
quad-tree.

This technique does not require pre-processing because textures
are generated on the fly. Hence, memory requirements are lower
because no texture pyramid must be kept in memory. The
generation of a texture patch can take place for each frame,
allowing us, therefore, to map dynamic, time-dependent data as
well as to configure the mapping according to the viewing
conditions. This way, resolution and visual quality can be
adjusted to screen resolution and user needs (Figure 4 right).

3.4 Real-Time Rendering of Texture-Mapped
Vector Data
The visual representation of the vector data consists of collections
of graphics shapes and graphics attributes that are hierarchically
arranged by scene graphs. Since scene graphs can be constructed,
modified, and rendered in real-time, our approach is applicable to
dynamic vector data as well and, furthermore, enables interactive
manipulation of vector data (see Section 5).

The on-demand texture pyramid uses a caching mechanism to
speed up the texture-patch generation process: If vector-data
content of a texture patch has not changed from one frame to
another, the cached texture patch is re-used.

In our implementation, the on-demand rendering of textures is
based on the OpenGL pixel buffer [18]. The P-buffer is a fully
functional frame-buffer, i.e., it consists of color buffer, a z-buffer,
and optionally a stencil-buffer. Rendering to the P-buffer is as fast
as rendering to an on-screen canvas; there is no restriction with
respect to hardware acceleration. The P-buffer contents can be
copied directly to a 2D texture. The P-buffer resides on graphics
hardware; no texture data must be transferred to the application
memory during that copy action.

Hence, copying P-buffer contents into 2D textures (also resident
on graphics hardware) is extremely fast. Since P-buffer rendering
allows us to rasterize vector data within real-time, on-demand
generation of textures becomes practicable.

To achieve a given screen-space texture resolution, most notably,
the memory requirements are drastically lower using an on-
demand texture pyramid compared to a static texture pyramid. In
Table 1, memory requirements of both approaches are compared.
We assume that vector data is rendered with an average number
of 10-25 equally sized 2D textures, which are generated on

demand. In comparison, a static texture pyramid for a four level
quad-tree and a source image size of 8192×8192 pixels would
require 268 MB of memory to store all mip-map levels; the
equally resolved on-demand texture pyramid requires 11 MB
(Table 1).

4. DYNAMIC DISPLAY OF VECTOR
DATA
Each texture patch of an on-demand texture pyramid can be
rebuilt for each frame. Consequently, we are able to dynamically
adapt visual mappings to user’s needs, camera settings, or screen-
space quality criteria. This enables a wide range of dynamic
visualization strategies, including:

 Enabling/Disabling of Vector Data. Each node component
of a vector-data scene graph can be enabled respectively
disabled. That way, users and applications can select which
vector-data elements to be mapped, or reduce/increase the
visual complexity of a mapping.

 Animated Display of Vector Data. Vector data resulting
from or controlled by geo-processes or simulations (time-
dependent vector data) can be represented in an animated
way.

 View-Dependent Displaying of Vector Data. While
rasterizing vector data we can take into account the graphics
context such as camera settings (distance, orientation), view-
frustum culling, screen-space extension etc. to control visual
appearance and design of vector data (Figure 5).

 Mixing Texture-Based and Geometry-Based Mapping of
Vector Data. There are two basic strategies for selecting 2D
or 3D representations: We can opt for a mixed representation
(1) when vector-data elements come close to the viewer to

Table 1. Resource usage for different texture pyramids.

Texture
Resolution

Quad-
tree

Levels

Min/Avg
Number of

Patches

Min/Avg
Memory

Usage MB

Resolution
of Pre-Built
2D Images

Memory
Usage

MB

2562 4 10/14 2.0/2.8 40962 66
5122 4 10/14 7.9/11 81922 268
2562 6 16/20 3.1/3.9 163842 1073
5122 6 16/20 12.6/15.7 327682 4295
2562 8 22/25 4.3/4.9 655362 17180
5122 8 22/25 17.3/19.7 1310722 68719

Figure 5. Visual mapping of a pipeline at low level-of-detail
(left). When the camera gets closer to one pipeline segment,
details, such as capacity and name, become visible (right).

108110

show more details by 3D objects, or (2) when vector data
elements move far away from the viewer to ensure that they
remain visible by 3D objects. The first strategy can be
applied to complex 3D objects (e.g., building models), which
can be abstracted in the 2D representation. The latter can be
preferred in the case of objects that would become invisible
(e.g., labels in Figure 6).

 Cartographic Generalization. As an immediate application
of on-demand rasterization, applications can implement
generalization schemes such as defined by cartography.

4.1 Display of Labels
Labels are frequently used elements in geo-visualizations.
Commonly, labels are represented as part of a static terrain
texture. They keep, therefore, orientation and resolution
independently from the viewing situation. Labels as elements of
an on-demand texture, however, should always be oriented
towards the viewer and their font size must stay within a certain
range to ensure readability (Figure 6). Also, labels could be
represented as 2D text placed parallel to the view plane once the

terrain surface is seen below a certain viewing angle at a far
distance from the camera (Figure 7). This strategy ensures an
optimal visibility of labels.

4.2 Display of Time-Dependent Vector Data
In the case of time-dependent vector data, we must update their
corresponding elements in the vector-data scene graph. In general,
it will not be necessary to rebuild the whole scene graph. Thus
dynamic phenomena like flooding scenarios, air pollution
processes, or traffic simulations can be modeled in a
straightforward way.

5. INTERACTIVE MANIPULATION OF
VECTOR DATA
Interaction with vector data is necessary to let the user manipulate
that data. Since vector data is given in an analytic form (not
rasterized), the semantics of the data is directly available for any
kind of interactive editing, direct manipulation, and exploration
tools.

5.1 Picking Operation
In common 3D libraries, 3D interaction is supported by picking
operations. One kind of picking implementation consists in
constructing a 3D ray that is sent through a point in the view-
plane into the 3D viewing frustum, and testing the ray for
intersection with scene objects.

The picking operation starts with a primary ray test: a 3D ray
passes the view-plane through the perspective view-frustum.
Along its way, the picking request can hit none, one, or several
3D scene objects. If scene objects are hit, the intersection point,
together with the object-id is recorded. The picking operation, in
general, returns a list of all objects hit together with the
intersection points.

If the ray hits the terrain surface, we check for vector-data
elements. For it, we send a new, redirected ray through the virtual
(2D) scene described by the vector-data scene graph to check for
intersections with the visual representations of vector data
(Figure 8). The identifiers of hit shapes are returned and can be
traced back to vector-data elements. Note that vector-data scene
graphs can contained and their pick even invisible vector-data
elements such as groups or regions.

Figure 6. Hybrid representation of labels inside 2D texture

and as 2D text objects. Far-away labels are displayed as
billboards, they are not contained as elements of the terrain

texture.

Figure 7. Texture-based, automatically oriented labels contained in a terrain texture.

109111

5.2 Manipulation of Vector Data
Direct manipulation of visualized vector data represents a
powerful technique to enable interaction of users with visually
mapped vector data. The interaction requirement – to react in real-
time to user actions – is fulfilled because of the real-time ability
of on-demand texture pyramids.

2D graphics editing operations such as selecting, moving,
resizing, rotating, and scaling can be implemented for geo-objects
described by vector data. In general, it is necessary to add visual
handles to the vector-data scene graph (or main scene graph). The
user can directly manipulate the handles and, thereby, control the
corresponding operation. In addition, an interaction mechanism
can apply the picking operation of vector-data scene graphs to
determine which objects the user selects. For example, to edit a
polygon, its vertices are represented by 3D spheres, which the
user can move over the terrain surface. The application is
responsible for synchronizing vector data, vector-data scene
graphs, and visual handles.

6. CONCLUSIONS
In our approach, we specify the visual mapping of vector data by
scene graphs, render them in 2D textures, and project these
textures onto geo-reference geometry such as terrain surfaces on a
per-frame basis. The approach benefits from texturing as a
fundamental high-quality and hardware-accelerated graphics
operation as well as from the analytic specification of the visual
representation of vector data using the whole capabilities of
modern scene graph libraries.

The on-demand generation of visual mappings drastically reduces
the required amount of memory compared to pre-rasterizing
vector data, can adapt quality to viewing conditions, and enables
mapping of dynamic vector data. The scene graph representation
keeps the semantics of vector data accessible in 3D, which is
required for any kind of interactive 3D editing and direct
manipulation of vector data. As future work, we want to integrate
mechanisms for coupling 2D and 3D representations more tightly
and to develop a visual mapping language.

Acknowledgement

We would like to thank Konstantin Baumann for his collaboration
and work in the LandExplorer project.

REFERENCES
[1] Bertolotto, M., and Egenhofer, M.J. Progressive Vector

Transmission. Proceedings ACM GIS '99, 152-157, 1999.

[2] Cline, D., and Egbert, P. Interactive Display of Very Large
Textures. Proceedings IEEE Visualization '98, 343-350,
1998.

[3] Döllner, J., and Hinrichs, K. A Generic 3D Rendering
System. IEEE Transactions on Visualization and Computer
Graphics, 8(2):99-118, 2002.

[4] Döllner, J., Baumann, K., and Hinrichs, K. Texturing
Techniques for Terrain Visualization. Proceedings IEEE
Visualization 2000, 227-234, 2000.

[5] Döllner, J., and Kersting, O. Dynamic 3D Maps as Visual
Interfaces for Spatio-Temporal Data. Proceedings ACM GIS
2000, 115-120, 2000.

[6] Eisenberg, J.D. SVG Essentials. O’Reilly, 2002.

[7] Haeberli, P., and Segal, M. Texture Mapping as a
Fundamental Drawing Primitive. Proceedings of the 4th
Eurographics Workshop on Rendering, M. Cohen, C. Puech,
F. Sillion (Eds.), 259-266, 1993.

[8] Haeberling, C. Symbolization in Topographic 3D Maps:
Conceptual Aspects for User-Oriented Design. 19th
International Cartographic Conference, 1037-1044, 1999.

[9] Heidrich, W., and Seidel, H.P. Realistic, Hardware-
accelerated Shading and Lighting. Computer Graphics (Proc.
SIGGRAPH '99), 171-178, 1999.

[10] Hoppe, H. Smooth View-Dependent Level-of-Detail Control
and Its Application to Terrain Rendering. IEEE
Visualization '98, 35-42, 1998.

[11] Kilgard, M.J. Improving Shadows and Reflections via the
Stencil Buffer. NVIDIA White Paper, 2000.

[12] Lindstrom, P., and Pascucci, V. Visualization of Large
Terrains Made Easy. Proceedings of IEEE Visualization
2001, 363-370, 2001.

[13] MacEachren, A.M. How Maps Work: Representation,
Visualization, and Design. Guilford Press, New York, 1995.

[14] Sowizral, H. Scene Graphs in the New Millennium. IEEE
Computer Graphics and Applications, 20(1):56-57, 2000.

[15] Terribilini, A. Maps in Transition: Development of
Interactive Vector-Based Topographic 3D-Maps. 19th
International Cartographic Conference, 993-1001, 1999.

[16] Williams, L. Pyramidal Parametrics. Proceedings of
SIGGRAPH '83, 17(3):1-11, 1983.

[17] Woo, M., Neider, J., Davis, T., and Shreiner, D. OpenGL
Programming Guide - 3rd ed. Addison-Wesley, 1999.

[18] Wynn, C. Using P-Buffers for Off-Screen Rendering in
OpenGL. NVidia Technical Paper, 2002.

P1

2D View-Plane Main 3D Scenery

Vector-Data Scenery Results

P2

P3

P4

P1

P2

P3

P4

Primary
Ray
Test

Ray Test
Results

Secondary
Ray
Test

Texture Depths
Figure 8. Picking of vector data in their visual

representation: 3D-Ray tests are re-directed from the main
scene graph to the vector-data scene graph.

110112

