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Abstract

We consider interactive algorithms in the pool-based setting, and in the stream-based setting. In-
teractive algorithms observe suggested elements (representing actions or queries), and interactively
select some of them and receive responses. Pool-based algorithms can select elements at any or-
der, while stream-based algorithms observe elements in sequence, and can only select elements
immediately after observing them. We further consider an intermediate setting, which we term
precognitive stream, in which the algorithm knows in advance the identity of all the elements in
the sequence, but can select them only in the order of their appearance. For all settings, we as-
sume that the suggested elements are generated independently from some source distribution, and
ask what is the stream size required for emulating a pool algorithm with a given pool size, in the
stream-based setting and in the precognitive stream setting. We provide algorithms and matching
lower bounds for general pool algorithms, and for utility-based pool algorithms. We further derive
nearly matching upper and lower bounds on the gap between the two settings for the special case
of active learning for binary classification.
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1. Introduction

Interactive algorithms are algorithms which are presented with input in the form of suggested ele-
ments (representing actions or queries), and iteratively select elements, getting a response for each
selected element. The reward of the algorithm, which is application-specific, is a function of the
final set of selected elements along with their responses. Interactive algorithms are used in many ap-
plication domains, including, for instance, active learning (McCallum and Nigam, 1998), interactive
sensor placement (Golovin and Krause, 2011), summarization (Singla et al., 2016) and promotion
in social networks (Guillory and Bilmes, 2010). As a specific motivating example, consider an ap-
plication in which elements represent web users, and the algorithm should select up to ¢ users to
present with a free promotional item. For each selected user, the response is the observed behavior
of the user after having received the promotion, such as the next link that the user clicked on. The
final reward of the algorithm depends on the total amount of promotional impact it obtained, as
measured by some function of the set of selected users and their observed responses. Note that the
algorithm can use responses from previous selected users when deciding on the next user to select.

We consider two main interaction settings for interactive algorithms: The pool-based setting
and the stream-based setting. In the pool-based setting, the entire set of suggested elements is
provided in advance to the algorithm, which can then select any of the elements at any order. For
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instance, in the web promotion example, there might be a set of users who use the website for an
extended period of time, and any of them can be approached with a promotion. In the stream-
based setting, elements are presented to the algorithm in sequence, and the algorithm must decide
immediately after observing an element, whether to select it or not. In the web promotion example,
this is consistent with a setting where users access the website for single-page sessions, and so any
promotion must be decided on immediately when the user is observed. Note that in the stream-based
setting considered in this work, the only direct restriction is on the timing of selecting elements. We
do not place restrictions on storage space or other resources.

The stream-based setting is in general weaker than the pool-based setting. Nonetheless, it is
important and useful: In many real-life scenarios, it is not possible to postpone selection of ele-
ments, for instance due to storage and retrieval constraints, or because of timing constraints. This
is especially pertinent when the data stream is real-time in nature, such as in streaming document
classification (Bouguelia et al., 2013), in spam filtering (Chu et al., 2011), in web streams such as
Twitter (Smailovi¢ et al., 2014), in video surveillance (Loy et al., 2012) and with active sensors
(Krishnamurthy, 2002).

In this work, our goal is to study the relationship between these two important settings: the
pool-based setting and the stream-based setting. Both of these settings have been widely studied
in many contexts. In active learning, both the pool-based and the stream-based setting have been
studied in classic works (Cohn et al., 1994; Lewis and Gale, 1994). Works that address mainly the
stream-based setting include, for instance, Balcan et al. (2009); Hanneke (2011); Dasgupta (2012);
Balcan and Long (2013); Sabato and Munos (2014). Some theoretical results hold for both the
stream-based and the pool-based settings (e.g., Balcan and Long, 2013; Hanneke and Yang, 2015).
Several near-optimal algorithms have been developed for the pool-based setting (Dasgupta, 2005;
Golovin and Krause, 2011; Golovin et al., 2010b; Hanneke, 2007; Sabato et al., 2013; Gonen et al.,
2013; Cuong et al., 2014). The pool-based setting is also heavily studied in various active learning
applications (e.g., Tong and Koller, 2002; Tong and Chang, 2001; Mitra et al., 2004; Gosselin and
Cord, 2008; Cebron and Berthold, 2009; Guo et al., 2013). General interactive algorithms have also
been studied in both a pool-based setting (e.g., Golovin and Krause, 2011; Guillory and Bilmes,
2010; Deshpande et al., 2014) and in stream-based settings (e.g., Demaine et al., 2014; Arlotto
et al., 2016; Streeter and Golovin, 2009; Golovin et al., 2010a).

To facilitate this study, we introduce a third setting, which we term the precognitive stream-
based setting. This is an intermediate setting, which is weaker than the pool-based setting but
stronger than the stream-based setting. In the precognitive setting, as in the standard stream-based
setting, there is a sequence of elements and the algorithm must make a decision immediately after
the item is presented to it. However, unlike the standard stream-based setting, in the precognitive
setting the algorithm knows in advance the identity of items that will be presented in the future.
This intermediate setting is of interest, since it has only one of the disadvantages of the standard
stream-based setting: the requirement that elements are selected in order of their presentation in the
sequence. On the other hand, it does not have the second disadvantage: the lack of knowledge of
future possible items. Thus, studying this setting allows distinguishing the effect of the two issues
on the performance of stream-based algorithms.

To study the relationship between the pool-based setting and the stream-based setting, as well
as its precognitive variant, we assume that in all settings the suggested elements, along with their
hidden responses, are drawn i.i.d. from some unknown source distribution. We then ask under what
conditions, and at what cost, can a stream-based algorithm obtain the same output distribution as
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a given black-box pool algorithm. Such an exact emulation is advantageous, as it allows direct
application of methods and results developed for the pool-based setting, in the stream-based setting.
Especially, if a pool-based algorithm succeeds in practice, but its analysis is unknown or limited,
exact emulation guarantees that this success is reproduced in the streaming setting as well.

For discrete source distributions, any pool-based algorithm can be emulated in a stream-based
setting, simply by waiting long enough, until the desired element shows up again. The challenge for
stream-based interactive algorithms is thus to achieve the same output distribution as a pool-based
algorithm, while observing as few suggested elements as possible. Clearly, there are many cases in
which it is desirable to require less suggested elements, as this could save resources such as time,
money, and communication. In active learning as well, while examples are usually assumed cheap,
they are not usually completely free in all respects.

We study emulation of pool-based algorithms in two regimes. First, we consider the fully gen-
eral case, of emulating some unrestricted pool algorithm. We provide a stream algorithm that can
emulate any given black-box pool algorithm, and uses a uniformly bounded expected number of
observed elements. The bound on the expected number of observed elements is exponential in the
number of selected elements. We further prove a lower bound which indicates that this exponential
dependence is necessary. We also study the precognitive stream-based setting and show the follow-
ing: On the one hand, it can require a significantly smaller number of observed elements than the
standard stream-based setting. On the other hand, its worst-case performance is also exponential
in the number of selected elements, similarly to the stream-based setting. We conclude that while
knowing the sequence in advance can be helpful, it does not improve the general performance of
stream-based emulation.

Second, we consider utility-based interactive algorithm for the pool setting. We provide a stream
algorithm that emulates such pool algorithms, using repeated careful applications of solutions of the
well known “Secretary Problem” (Dynkin, 1963; Gilbert and Mosteller, 1966; Ferguson, 1989). The
expected number of observed elements for this algorithm is only linear in the number of selected
elements. In this case too we prove matching lower bounds. These results hold also for the pre-
cognitive stream setting. Our analysis shows a tradeoff between the number of observed elements
and the number of selected elements, in cases where the stream algorithm is allowed to select extra
elements over what the pool-algorithm selects.

Finally, we consider the special case of active learning for binary classification. We give nearly-
matching upper and lower bounds for stream emulation in this setting. From the lower bound, we
conclude that even in this well-studied setting, there are cases in which there exists a significant gap
between the best pool-based algorithm and the best stream-based algorithm. This result generalizes
a previous observation of Gonen et al. (2013) on the sub-optimality of CAL (Cohn et al., 1994), the
classical stream-based active learning algorithm, compared to pool algorithms.

This paper is structured as follows: In Section 2 formal definitions and notations are provided.
Section 3 discusses natural but suboptimal solutions. Section 4 considers emulating general pool
algorithms, and Section 5 addresses the case of utility-based pool algorithms. In Section 6 we study
active learning for binary classification. We conclude in Section 7.

2. Definitions

For a predicate p, denote by I[p] the indicator function which is 1 if p holds and zero otherwise.
For an integer k, denote [k] := {1,...,k} and [k]o = {0,...,k}. For a sequence S, S(7) is the
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1’th member of the sequence. Denote concatenation of sequences by o. Denote by Il the set of
permutations over [k].

For A, B which are both sequences, or one is a set and one a sequence, we use A =, B and
A C,; B to denote equality or inclusion on the unordered sets of elements in B and in A. We
sometimes omit the 7 when no other interpretation is possible.

Let X be a measurable domain of elements, and let )) be a measurable domain of responses. A
pool-based (or just pool) interactive algorithm .4, receives as input an integer ¢ < m, and a pool
of elements (z1,...,2,,) € X™. We assume that for each z; there is a response y; € ), which is
initially hidden from A;,. Denote S = ((¥i, ¥i))ic|m]- We will assume throughout this work that S
is drawn i.i.d. from a distribution over X x ). For a given S, Sx denotes the pool (z1,...,Zm).
At each round, A, selects one of the elements ¢; that have not been selected yet, and receives
its response y;,. After ¢ rounds, A, terminates. Its output is the set {(xi,, ¥i,), ..., (Ti,, ¥i,)}-
For a pool algorithm A,,, denote by sel, (5, ) the element that A, selects at round ¢, if S is the
pool it interacts with. sel,(S, ), which can be random, can depend on Sx and on y;, for k < t.
Denote by sel, (.5, [t]) the sequence of elements selected by .A,, in the first ¢ rounds. pairs,(S,t) and
pairs,(S, [t]) similarly denote the selected elements along with their responses. The final output
of A, is the set of pairs in the sequence pairs,(S,[q]). We assume that S > pairs, (S, [q]) is
measurable.

We assume for simplicity that the pool algorithm is permutation invariant. That is, for any
S,S8" C (X x Y)™,if S’ is a permutation of S then sel, (S, [q]) = sel, (5, [q]), or if A, is random-
ized then the output distributions are the same. Since the pool S is drawn i.i.d. this does not lose
generality.

A stream-based (or just stream) interactive algorithm A receives as input an integer q. We
assume an infinite stream S C (X x ), where S(t) = (¢, y¢). We will assume that this stream
is also an i.i.d. sample from a distribution over X' x )). At iteration ¢, A observes x;, and may
select one of the following actions:

e Do nothing
e Select x; and observe y;

e Terminate.

At termination, the algorithm outputs a subset of size ¢ of the set of pairs (z, y;) it observed. Denote
by sels (.S, t) the t’th element that A selects and is also in the output set. Denote by sels(S, [t]) the
sequence of first ¢ elements that A, selects and are also in the output set. Use pairs, to denote
these elements along with their responses. The output of .A; when interacting with S is the set
of the pairs in the sequence pairs,(.S, [¢]). We assume S — pairs (S, [¢]) is measurable. The
total number of elements selected by .45 when interacting with .S (including discarded elements) is
denoted Ngi(As, S, q). The number of iterations (observed elements) until A terminates is denoted
-Zviter(As; S, Q)-

We would like to have stream algorithms that emulate pool algorithms, under the assumption
that both the pool and the stream are drawn from the same distribution. We define an equivalence
between a stream algorithm and a pool algorithm as follows.

Definition 1 Let D be a distribution over X x Y and let q be an integer. Let S ~ D™, S" ~ D>®. A
pool algorithm A, and a stream algorithm A, are (q, D)-equivalent, if the total-variation distance
between the distributions of pairs, (S, [q]) and pairs,(S’, [q]) is zero.
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In the standard stream setting defined above, the algorithm can only make decisions based on
data observed in the past, that is its decision at iteration ¢ can depend on z1, ..., ¢, as well as the
responses for the elements it selected until iteration ¢ — 1. Thus, the stream setting is harder than
the pool setting in two separate aspects:

o [t must make decisions without knowing what elements will show up after the current itera-
tion; and

o [t must select elements in the order of their appearance in the stream.

We introduce an additional setting, which we term precognitive stream. A precognitive stream
algorithm follows the same protocol as the standard stream algorithm defined above, but we assume
that it knows the elements in the entire stream, including those in future iterations. Formally, its
decisions in iteration ¢ for an input stream .S C (X x ))* may depend on the full (infinite) sequence
elements S'x.

Denote by Dx the marginal of D on X. For a given distribution Dx over X, let DS(Dx ) be
the set of distributions over X' x ) such that their marginal over X is equal to Dx. Below, unless
specified otherwise, we assume that the probability under Dx of observing any single z € X’ is zero.
This does not lose generality, since if this is not the case, Dx can be replaced by the distribution
Dx x Unif[0, 1], with the interactive algorithms ignoring the second element in the pair.

In some of the proofs below we use the following lemma, proved in Appendix A. This lemma
captures a relationship between the expected number of observed Bernoulli trials and the probability
of success in the last trial.

Lemma 2 Let o € (0,1),p € (0,a*/2). Let X1, Xa, ... be independent Bernoulli random vari-
ables with P[X; = 1] < p. Let I be a random integer, which can be dependent on the entire
2

sequence X1, Xo, . ... Suppose that P[X; = 1] > «. Then E[I] > o

3. Simple Equivalent Stream Algorithms

Algorithm 1 Algorithm Ay,

1: In the first m iterations, observe 1, ..., Z,, and do nothing.
20 S (1, %)y .oy (T, %))
g1, t+—m+1
4: repeat

5:  Initeration ¢, observe element x;
6:  if z; = sely(S,7) then
7: Select x; and observe y;
8: S(Y,) — ([Et, yt)
9: j—j3+1
10:  end if

11: t+—t+1

12: until j =g+ 1
13: Return the set of all the pairs (x,y) in S with y # *.
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Emulating a pool algorithm in a streaming setting can be naively done using two extremely
simple approaches, which we discuss below. However, each of these approaches is wasteful, in
either the number of iterations it requires, or the number of selections it makes.

For the first approach, let .A;, be a pool algorithm. For any discrete distribution D over X' x ),
and any g, it is easy to define a stream algorithm which is (¢, D)-equivalent to A,. Let “x” be
some value not in ), and define Ay,ic as in Alg. 1. Ay, first draws a pool of size m, and then
replicates the selections that a pool algorithm would have done for this pool, by each time waiting
until the requested element is observed again in the stream. This stream algorithm is clearly (g, D)
equivalent to A, for any discrete distribution D, and it has Ngej(Await, S’ q) = q forall §" €
(X x V). However, Eg/poo [ Niter (Await, ', ¢)] is not uniformly bounded, even for the class of
discrete distributions. For instance, if the probability of observing any x € X is some small p, then
every selection that the algorithm makes would require observing 1/p elements in expectation.

In the second approach, one can simply select the first m elements observed by the stream, as
done in the stream algorithm Ay ow,; defined in Alg. 2. This algorithm is also (¢, D) equivalent to
A,, and it requires the smallest possible number of observed elements, since Niter (Await, 575 ) = m
forall S” € (X x V), exactly the same as for the pool algorithm. However, in this case the number
of selections is large, since Nge|(Anowait, S, ¢) = m > g, regardless of ¢. This trivial algorithm is
thus again unsatisfying.

Algorithm 2 Algorithm A qwait

input Pool size m, Black-box pool algorithm .A,,.
1: In each iteration ¢t € [m], select x; and observe y;.
2: Return the pairs in pairs,, (S, q).

In the next section we consider the general pool emulation problem, and show that it is possible
to have a uniform upper bound on the number of iterations, regardless of the distribution, and
without selecting more than g elements. In addition, in Section 5, we show for utility-based pool
algorithms, that there is a tradeoff between the number of additional selected elements and the
expected number of observed elements. This tradeoff is evident also in the two simple algorithms
shown above.

4. General Pool Algorithms

In this section we consider emulating general pool algorithms. In Section 4.1 we present a stream
algorithm which can emulate any pool-based algorithm, using only black-box access to the pool
algorithm. We prove a distribution-free upper bound on its expected number of iterations. In Section
4.2 we show that the number of iterations required by the proposed algorithm cannot be significantly
improved. In Section 4.3, we study the precognitive stream setting and compare its guarantees to
the standard stream setting.

4.1 Stream Emulation for General Pool Algorithms

The stream algorithm Ay, listed in Alg. 3, emulates any pool based algorithm A, using only
black-box access to A4,. The algorithm emulates a general pool algorithm by making sure that in
each iteration, its probability of selecting an element is identical to the conditional probability of the
pool algorithm selecting the same element, conditioned on the history of elements and responses
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selected and observed so far. This is achieved by repeatedly drawing the remaining part of the pool,
and keeping it only if it is consistent with the elements that were already selected. The algorithm
further uses the partial pool draw only if the element to be selected happens to have been observed
last.

Algorithm 3 Algorithm Ay,
input Original pool size m, budget ¢ < m, black-box pool algorithm A,,.

1: Sy + ()

2: fori=1:qdo

3:  repeat

4: Draw m — ¢ + 1 elements, denote them Z; ;, . . ., Tj .

5: Sz, — ((ji,i7*)7"'7(ji,m7*))'

6:  until pairs,(S;_1 o Si,[i —1]) =« Si—1 and selp(S;—1 0 S.,7) = Tj m.
7. Select T; ,,, get the response ¥; .

8: S Sic10((ZimsTim))-

9: end for
10: Output S,.

Below we show that Ay, improves over the two stream algorithms presented above, in that it
selects exactly g elements, and has a uniform upper bound on the expected number of iterations, for
any source distribution. First, we prove that A, indeed emulates any pool-based algorithm.

Theorem 3 For any pool algorithm A, any distribution D over X X ), any integer m and q < m,
Ag = Agen(Ap) is (q, D)-equivalent to A,

Proof For simplicity of presentation, we prove the result for discrete distributions. The proof for
continuous distribution is analogous. Consider the probability space defined by the infinite sequence
S’ ~ D> which generates the input to the stream algorithm, and an independent sequence S ~ D™
which is the input to the pool algorithm. For z1,..., 2, € X x ), denote Z; = {z1,...,z;}. We
have, for every i € [q],

Plpairs, (S, [i]) = Zi] = Z]P’[(pairsp(S, i) = zj) A (pairs, (S, [i — 1]) =z Z; \ {2;})]

= ZP[pairsp(S,i) = zj | pairs, (S, [i — 1]) = Z; \ {2;}] - Plpairs, (S, [i — 1]) =x Z; \ {z;}].
j=1

The same holds for pairs,(S’,-). To show the equivalence it thus suffices to show that for all
2,2 € X X Y, 0 € [q],

Plpairs,(S', i) = 2 | pairs (S, [i—1]) = Zi_1] = Plpairs,(S, i) = z; | pairs,(S, [i—1]) =« Zi_1].
From the definition of A, we have
Plpairs,(S’,i) = z; | pairs,(S',[i — 1]) = Z;i_1]
= P[pairs,(Si—1 0 5},i) = 2z | Si—1 =« Zi—1 A pairs,(Si—1 05, [i —1]) = Z;_1]
= P[pairs, (S,1) = 2; | pairs, (S, [i — 1]) =z Zi—1].
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The last equality follows since .4,, is permutation invariant and never selects the same index twice.
This proves the equivalence. |

The next theorem provides an upper bound on the expected number of elements observed by
Agen. Unlike Ayait, this upper bound holds uniformly for all source distributions.

Theorem 4 For any pool algorithm Ay, any distribution D over X x ), any integer m and ¢ < m,
l'f.As = gen(«Ap)» NseI(A5757 Q) = Qfor any Se (X X y)oo, and

q—1
ESND"O [Niter(Asa Sv Q)] < m2 (qejl1> .

Proof First, clearly Ng(As,S,q) = ¢ for any S ~ D>. We now prove the upper bound on
the expected number of iterations of A,. Let S ~ D™. For¢ > 1, 21,...,2,-1 € X, denote
Zj = {z1,.. ., Zj}, and let

pi(Zl, e ,Zl') = P[selp(S, [l]) =r ZZ ‘ ZZ Qﬂ Sx]

Suppose that (S;—1)x = Z;—1. The expected number of times that steps 3 to 6 are repeated for
index ¢ is the inverse of the probability that the condition in 6 holds. This condition, in our notation,
is that sel, (S;—1 057, [i —1]) = Z;—1 and sel,(S;—105!,i) = Z; . We have, from the permutation
invariance of A,

Plsel,(Si—10 S, [i — 1)) =x Zi—1 | (Si=1)x = Zi—1] = pi—1(21,- - -, 2i-1)-
In addition, for every draw of S,

P[selp(Si_l o S;, Z) = Zim | selp(Si_l o Sz,’ [Z — 1]) =5 Zi_1 N\ (Si—l)X =r Zi—l] = #
m—1+1
This is since under the conditional, one of the elements in .S, must be selected by .4, in round i.
Therefore, the probability that the condition in step 6 holds is p;—1(z1,...,2i—1)/(m —i+1). The
expected number of times that steps 3 to 6 are repeated for index ¢ is the inverse of that, and in each
round m—i+1 elements are observed. Therefore the expected number of elements observed until se-
lection 7 is made conditioned on z1, . .., z;_1is (m—i-+1)%/p;_1(z1, ..., zi_1). The unconditional
expected number of elements observed until selection i is (m —i+1)%-E[1/p;_1(sels (S, [i — 1]))].
For a set of indices J, denote S|; = {S(j) | j € J}. For simplicity of presentation we give the
following derivation for discrete distributions, the proof for continuous distributions is analogous.

E[1/pi(sels (S, [i])] = E[1/pi(sel, (S, [i])]
1
= Plsely(S,[1]) =« Zi] - ———
(5102 ] CXXY pi(Zb .- wzi)
= P[Z; Cr Sx].
{21,...,Zi}gx><y
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Hence

E[1/pi(sels (", [i])] < > > PSIy)x = Zi

{z1,..,2i JCX XY JC[m],|J|=1

= > Y. PlSl)x =Zi]

JC[m],|J|=i {z1,...,2: }CX XY
1
JC[m],|J|=i

It follows that the expected number of elements observed after the ¢ — 1’th selection and until
selection i is at most (m — i + 1)?(,"™,). We conclude that

B[N (s 5.)] < $(om — i (m> < m? ( em )ql |

X 1
=0

This completes the proof. |

From the existence of Ay, we can conclude that the pool-based and the stream-based setting
are essentially equivalent, up to the number of observed elements. However, the expected number of
observed elements is exponential in g. In the next sections we show that this exponential dependence
cannot be avoided when emulating general pool algorithms in a stream setting.

4.2 A Lower Bound for the Standard Stream Setting

The upper bound in Theorem 4 is exponential in g. We next show that this dependence cannot be
eliminated in the general case for a standard stream algorithm. This result indicates that Agey, is
close to optimal in terms of expected number of iterations. The lower bound holds for a standard
stream algorithm, which does not know the identity of future elements in the stream. We consider
precognitive stream algorithms in Section 4.3.

The lower bound is proved using a construction in which some of the elements represent base
elements, and some represent permutations over base elements. The pool algorithm selects permu-
tation elements that are consistent with the base elements it selected. Since the ranking of elements
depends on the elements in the input pool, the same permutation can be consistent with different
selections in different pools. The following lemma, which is used the proof of the lower bound,
shows that nonetheless, once certain base elements have been selected, the set of permutations that
are likely consistent with them is considerably limited. The lemma is also later used in a lower
bound for the precognitive stream setting.

Lemma5 Let t < t' < | be integers such that | > 2t. Let Z = zi,...,z a set of values in
[0,1]. Let X be |l random values sampled i.i.d. from the uniform distribution on [0,1]. Denote
X =2x1,...,2; where x1 < 29 < ...x;. Let Ay(Z,X) C II; be the set of permutations o such
that {To(1), .-, Tow)} 2 {21,...,2}. For any d < | —t, there exists a set of permutations
®(Z) C 1I;, such that

|®(2)|/|TL| < (4dt' /1),
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and
PlA,(Z,X) C®(2) | Z C X] > 1 —2texp(—2d>/(I — 1)),

Where the probability is over the randomness of X. Moreover, let L(0) := Uy.oeq(2)®(Z), then
forall o € 11,
|[L(o)|/ | < (8dt'/1)*.

Proof Fix d < [ —t. Denote the expected number of elements that are smaller than z; in X,
conditioned on Z C X, by n; := (I —t)z + Z;Zl I[z; < %], and let

®(Z):={o el |3f:[t] = ['] s.t. fisone-to-one and Vi € [t],|o(f(i)) —ni| <d}. (1)

These are the permutations such that the first ¢ elements according to the permutation are mapped
from elements with ranks in [n; — d, n; + d]. It is easy to see that

2d)! 4dt"\"*
e < () o0 — < (A1)
[Ti=o(l =)
where the last inequality follows since [ > 2¢. This proves the first part of the lemma. We now show

the second part of the lemma. For x € X, let r(z) be its rank in X. By Hoeffding’s inequality, for
any ¢ < t,

Pllr(zi) —nil > d| Z € X] < 2exp(—2d°/(1 —t)).

Therefore,
PIVi <t,|r(z) —ni| <d|ZC X]>1—2texp(—2d*/(l —t)).

For any o € A, we have that for each i < t, 2; = w, ;) for some j < ¢/, that is 7(z;) = o(j).
Moreover, different values of 7 are mapped to different values of j. Therefore there is some one-
to-one function f : [t] — [t'] such that for all i < ¢, 2; = 2, (4(;)). Conditioned on the event
Vi < t,|r(z;) —ni| < d, it follows that Vi < t,|o(f(i)) — n;| < d. Thus o € ®(Z), which proves
the second claim of the lemma.

To see the last claim, observe that if 0,0’ € ¢(Z) for some Z, then there are functions f, g :
[t] — [t'] such that fori € [t], |o(f(i)) — o’(g(4))| < 2d. Therefore,

L(o) C{o’" €y | 3f,g: [t] = [t'], Vi € [t], lo(f (i) — o’(g(i))] < 2d}.

The bound on the size of L(o) in the claim directly follows, similarly to the bound on |®(Z)|.
|

The lower bound for the standard stream setting is provided below. It shows that for some pool
algorithm, any equivalent stream algorithm has an expected number of observed elements which
is exponential in g. The lower bound is worst-case over all source distributions D over X x ),
where the pool and the stream, as above, are drawn i.i.d. from the distribution. The proof involves
constructing a pool-based algorithm in which the last selected element is significantly constrained
by the identity of the previously selected elements, using the permutation construction. This type
of constraint is not an issue in a pool setting, since the algorithm has advance knowledge of all the
available elements. In a streaming setting, however, this requires a possibly long wait to obtain the
matching last element. Because the stream algorithm is allowed to select elements in a different
order than the pool algorithm, additional care is taken to make sure that in this construction, it is not
possible to circumvent the problem this way.

10
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Theorem 6 There is an integer qo, such that for ¢ > qo and m > 16¢> log(4q)+1, there exist a pool
algorithm Ay, and a marginal Dx, such that any stream algorithm As which is (q, D) equivalent to
A, for all D € DS(Dx ), and selects only q elements, has

q—1

1 m—1 \7
dD € DS(Dx), Egp|Niter (As, S, q)] > .
(D) B ik 501> 155 ( gt

Proof Let the domain of elements be X = [0, 2) and assume responses in J = {0,1}. Denote
base := [0, 1] and perm := (1,2). Call a pool Sx in which exactly one element in the pool is in
perm and the rest are in base a “good pool”.

We now define a pool algorithm as follows. On bad pools, A, always selects only elements
in base or only elements in perm. In a good pool, denote for simplicity the single element from
perm by z,,, and the elements from base by z1,...,2m,_1, where z;_1 < z; fori € [m — 1].
Define a mapping ¢ : perm — II,,_1, such that if z,, is uniform over perm, then for ¢(z,,)
all permutations in the range are equally likely. Let 0 = 1(2,,). On a good pool, A, behaves as
follows: The first ¢ — 1 elements that A, selects are 2y 4(1), - - -, 2140(¢q—1)- Lhe last element that
it selects is z,, if the response for all previous elements was 0, and z; otherwise.

Define the marginal Dx over X such that for X ~ Dx, P[X € base] =1—1/m, P[X €
perm] = 1/m, and in each range base,perm, X is uniform. The probability of a good pool
under D € DS(Dy) is (1 — 1/m)™ 1 > 1/e% =: ¢;. We now show a lower bound on the expected
number of iterations of a stream algorithm which is (g, D)-equivalent to any D € DS(Dx). Let Dy
be the distribution over X’ x ) such that for (X,Y") ~ Dy, X ~ Dx and Y = 0 with probability 1.
Let S ~ Dy’ be the input to A,,.

We apply Lemma 5 witht = = ¢ — 1,1 = m — 1,d = \/(m — q) log(4q) /2. By this lemma,

for any set Z = {21,...,24—1} C base, there exists a set of permutations ®(Z) C II,,_; such
that -
8q%(m — q)log(4g)\ ""V* _ (8¢%log(49)\ T

&(Z)|/[Mq| < < (22879 7 2

B(2))na] < (D < (B kst @

and also
1
PlY(zm) € ®(Z) | sel, (S, [qg — 1]) =« Z A S'is good] > 1 — 2(q — 1) exp(—log(4q)) > 3 3)

The theorem follows from the following two claims:

1. When A, emulates a good pool, it selects an element from perm only after selecting ¢ — 1
elements from base.

2. Therefore, when 45 emulates a good pool, the expected number of observed elements until
selecting the last element is lower bounded, and so the overall expected number is lower
bounded.

We first prove claim 1. Consider a stream algorithm which is (¢, D)-equivalent to A, for any

D € pS(Dx). Consider runs of A, with input S” ~ Dg°. Denote by E, the event that the output of

As is equal to a possible output of .4, on a good pool with S ~ Df*. Then P[Ey| > ¢;. Claim 1 is
that

Plsels(S’,[¢ — 1]) C base | Ey] = 1. 4)

11
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In other words, when simulating a good pool, the elements in base are all selected before the
element in perm.

To show claim 1, note that by the definition of .A,,, for any source distribution over X’ x ), if A,
outputs a set with elements both in base and in perm, then there is exactly one element in perm
in the output, and all the responses in the output for elements in base are 0 with probability 1.

Now, suppose that P[sels(S’, [¢ — 1]) €, base | Ey] < 1. Then P[sels(S’, q) € base | Ey] >
0, since there can be only one element in perm in the output of a good pool. But, consider running
A with a source distribution D’ € DS(Dyx) such that for (X,Y) ~ D', X ~ Dx and Py [Y =
0 X =x] = % for all x. There is a positive probability that in the first ¢ — 1 selected elements all
the responses are 0, just as for Dy. Therefore, also for S” ~ D', P[sels(S”, q) € base | Ey4] > 0.
But then there is a positive probability that the response for the last element, which is in base, is
1, contradicting the (g, D’)-equivalence of the pool and A. This proves claim 1.

We now show claim 2, which completes the proof. From claim 1 in Eq. (4), we conclude that
P[sels(S’, q) € perm | E,4] = 1. Therefore, from Eq. (3), for any Z C base with |Z| = ¢ — 1,

Pl (sely (5, 0)) € D(selo(S,[g— 1)) | ) = 1/2.

Therefore
Py (sels (5, q)) € P(sels(S", [q — 1]))] = P[Eg]/2 > e1/2.

Now, let X; ~ Dx be the i’th element observed after selecting the first ¢ — 1 elements, and let
B; =1[¢(X;) € ®(Z)], where Z is the set of ¢ — 1 selected elements. B; are independent Bernoulli
random variables, each with a probability of success at most p, where by Eq. (2)

_ @2l _ <8q2 1og<4q>>q?

p= =
|Hm,1| m—1

Let I be the number of elements that A, observes after selecting Z, until selecting element ¢q. We
have P[B; = 1] > ¢; /2. From the assumption in the theorem statement that m > 1642 log(4q) + 1,
we have that for sufficiently large ¢, p < cj/32. By Lemma 2, it follows that E[I] > ¢%/(16p) >
(1000p)~!. Hence

q—1

1 m—1 2
ElIl > .
1= 1000 <8q2 log(4q)>

Since E[Niter (A, S, ¢)] > E[I], this completes claim 2 and finalizes the proof. [

The lower bound, as well as the upper bound in Theorem 4, both show an exponential dependence
on gq. However, the exponent in the lower bound is about half that of the upper bound. Some of
this gap might be an artifact of the fact that in the lower bound, only a fixed marginal distribution is
considered. Closing this gap remains an open problem, which we leave for future work.

4.3 Emulation with a Precognitive Stream Algorithm

We next consider the precognitive setting. In the precognitive setting, the stream algorithm has the
advantage that it can plan ahead, since it knows in advance the identity of elements that will be
available for selection from the entire stream. This breaks the construction used in the lower bound
of Theorem 6, thus showing that in some cases there is a significant gap between standard stream
algorithms and precognitive stream algorithms. We prove this in the following theorem.

12
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Theorem 7 There is an integer qo, such that for ¢ > qo and m > 16¢> log(4q)+1, there exist a pool
algorithm A,, and a marginal Dx, such that any stream algorithm Ag which is (q, D) equivalent
to A, for all D € DS(Dx), and selects only q elements, requires an expected number of iterations

q/2
of Q ((qQIZ?g(q)) ) while there exists a precognitive stream algorithm that satisfies the same

equivalence, and requires only m? iterations in expectation.

Proof Consider the same construction as in the proof of Theorem 6: the same Dy, and the same
behavior of the pool algorithm on “good pools”, defined as in that proof. Assume further, consis-
tently with the definition of A, in that proof, that on bad pools, the pool algorithm checks if there
are more base element or more perm elements in the pool, and then selects the first g elements in
the pool that belong to the set with the larger number (in case of a tie, base is selected). Denote
base,perm, as in the proof of Theorem 6.

From Theorem 6 we have that the expected number of iterations of a standard stream algorithm
on this problem is {2 ((qu’ong(q)) Q/2>

Now, consider the following precognitive stream algorithm: The algorithm checks, before the
start of the iterations, whether the first m stream elements constitute a good pool. If they do not,
it checks whether there are more base or more perm elements in the first m elements. Then it
selects the first ¢ elements in the stream that belong to the majority set (tie-breaking with preference
to base as in the pool algorithm). Thus, for bad pools, the expected number of iterations by the
precognitive stream algorithm is at most m.

Now, if the first m elements in the stream constitute a good pool, then the precognitive stream
algorithm finds an integer ¢ such that z; is the smallest element from base among the previous
m — 1 base elements, using the following procedure:

1. Lettg + 1;t1 + m.
2. Let A be the set of m — 1 elements from base in x4, . .., T, .
3. If 2, is the minimum of A, set ¢ <— ¢; and terminate.

4. Otherwise, set tg <— t1 + 1, and ¢; < the smallest integer such that z,, . . ., x4, has exactly
m — 1 elements from base. Go to 2

After setting t, the algorithm identifies the earliest iteration ¢ > ¢ such that z € perm. The
algorithm then ranks the m — 1 elements from base that immediately precede x;, denoting them
z9 < ...< Zm_1, and denotes z; := xy.

The algorithm then selects 21 (1), - - -, 2145 (¢—1) in the order of their appearance in the stream,
where o := 1(xy ). Then, if all of the responses to these elements were 0, it selects . Otherwise,
it selects z7.

It is easy to see that this algorithm is equivalent to the pool algorithm defined above. Also, the
expected number of iterations of this algorithm is

E[t']| = E[t' — t] + E[t].

Now, E[t' — t] is the expected wait time until observing an element from perm. Since for X ~ Dy,
P[X € perm] = 1/m, we have E[t'—t] = m. In addition, by Wald’s identity, E[¢] is equal to the ex-
pected number of rounds of the procedure for setting ¢ above, which is m—1, times the expected size

13
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of t; —to+1in each round, which is P[X € base]-(m—1). Thus, E[t] = (m—1)3/m < (m—1)m.
It follows that the expected number of iterations of the precognitive stream algorithm is E[t'] < m2.
|

This result shows that the precognitive setting has a significant advantage in some cases. Nonethe-
less, we show a lower bound, indicating that its worst-case performance cannot be much better than
the worst-case performance of a standard stream algorithm. The proof of the lower bound shares
some techniques with the proof of Theorem 6, especially the use of permutations. It additionally
relies on the observation that while the stream algorithm knows in advance what elements will be
available for selection and when, it is still constrained to selecting the elements in the order that they
are provided by the stream. It also must keep to a certain order of selections to emulate the pool
algorithm, since the pool algorithm makes decisions based on previously observed responses. Thus,
in the proof of the lower bound, we construct a pool algorithm that might select two permutation
elements, but the order in which they would be selected depends on the responses to selected base
elements. As a result, the precognitive algorithm cannot tell in advance in which order the two
elements must be selected. The probability of both orders appearing early enough in the stream is
low, so that even when the whole stream is taken into account, an exponential dependence cannot
be avoided, though this dependence is weaker than the one shown in Theorem 6 for standard stream
algorithms.

The proof of the lower bound employs the following lemma, which states that after partially
observing two sequences of fair coin tosses, there is a positive probability that both sequences share
the majority outcome, as well as a positive probability that their majority outcome is different. In
the lower bound below, this lemma is used to show that the precognitive algorithm must commit to
a small set of permutations before finding out in which order they must be selected.

Lemma 8 Consider n i.i.d. tosses of two fair coins, where n is an odd number. Denote the tosses
of the first coin by Ay,..., A, € {0,1}, and the second by By,...,B, € {0,1}. Let K €
{n/2,...,n} be a stopping time for the sequence By, ..., By, which can depend also on A :=
(A1,..., Ay 5). Denote B(K) := (By, ..., Bk).

There exists some integer ng and constants ¢ = 0.68, ¢’ = 0.15 such that for all odd n > ny,
with a probability at least c over the values of A, K, B(K),

P[H[zn: A >nj2) = H[zn: B; > n/2] ‘ AK, B(K)} eld,1-¢]
=1 =1

Proof Denote for brevity Aé- = Zi: ; Ai and similarly for Bé-. First note that

P {H[A’; > n/2) = [[BY > n/2] | K, A, B(K)}
—P[B} > n/2 | K, B(K)] - P[A? > n/2 | A + BB} < n/2 | K, B(K)] - P[AT < n/2 | 4]

Thus it suffices to prove that with a probability at least ¢ over the values of A, P[AT > n/2| A] €
[/, 1 — ], which implies the same for P[A} < n/2 | A], leading to the claim of the lemma.

We first consider the limit case n — oo. In this case A?/Q ~ N(n/4,1/n/8). Thus, with a
probability of erf(1/+/2) > 0.68 =: c,

AV € [n/a—/nj8,n/4+ /n]8)].
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If this is the case, then
Ay o <n/d—+/n/8 = Al <n/2, and
Ay o >n/d+/n/8 = AT >n/2.

Since A7 5. ~ N (n/4,/n/8), each of the above events occurs with a probability at least 3 —
erf(1/4/2)/2 > 0.15 =: ¢’. Thus, with a probability at least c over the values of A,

PIAT > n/2 | A, P[AT < n/2 | A] € [¢,1-¢].

The same holds for any large enough finite value of n. The statement of the lemma directly follows.
[ |

The lower bound for the precognitive setting is given below. It is exponential in g, like the lower
bound for the standard stream setting in Theorem 6, however the dependence is slightly weaker.

Theorem 9 There is an integer qo such that for any q > qo and m > 2q + 1 there exist a pool
algorithm Ay, and a distribution D, such that any precognitive stream algorithm Ag which is (q, D)
equivalent to A,, and selects only q elements, has

) m a/8
E oo Ni r L) S? Z 600 \ 8¢2log(2q) '
S~ [Niter (A q)] 600 <8q2 log(2q)>

Proof Assume for simplicity that 4 divides ¢ and m. Let the domain of elements be X' = [0, 4)U{*}
and assume responses in ) = {0, 1}. Denote basel := [0, 1], base2 := [2, 3], perml := (1,2)
and perm2 := (3,4). Denote base = basel Ubase2 and perm = perml U perm2.

We define the pool algorithm A, as follows. Call a pool Sx a “good pool” if it includes
at least m /4 elements from each of basel and base2, and at least one element from each of
perml, perm2, . In a good pool Sx, the pool algorithm A, behaves as follows. For ¢ € {1,2},
let X; C Sx Nbase(i) be a subset of size m/4, selected uniformly at random from Sx Nbase(7).
Let z,,(;) be a random element from Sx Nperm(i). Let o1 = (1) — 1), 02 = P (2p(2) — 3). For
J € [m/4], let 2 be the j-th largest value in X;. Define a mapping v : (0,1) — IL,, /4, such that if
Z is uniform over (0, 1), then for ¢)(Z) all permutations in the range are equally likely.

The first ¢ — 2 elements that .A,, selects are X; := mfn_(l), .. ’mfn(q/2—l)’ for each of i € {1,2}.
The last 2 elements that A, selects are determined as follows: Let r; € {0, 1} be the value of the
majority of responses received for the elements in X;. Denote s = 1+1[r; = ro] and 5 = 1+1[r; #
72]. The second-to-last element that A, selects is z,s). The last element that A, selects is x5 if
the response for z,,(,) is 0, and % otherwise. See illustration in Figure 1.

Define the distribution D such that its marginal Dy over X satisfies, for X ~ Dx, P[X €
basel] = P[X € base2] = 1/3, P[X € perml] = P[X € perm2] = P[X = ] = 1/9,
and in each range basel,base2, perml, perm2, X is conditionally uniform. In addition, for
(X,Y) ~D,PlY = 0|X = 2] = ; forall z € X. Assume a large enough m such that the
probability of a good pool under Dx is at least 1 — e for some very small ¢ > 0. We sete = 0
below for simplicity, noting that any small enough choice will lead to the same lower bound due to
rounding down of constants. Thus we assume all pools are good pools.

Consider running the (g, D)-equivalent algorithm A, with the source distribution D. We derive
a lower bound on Eg.pe [Niter (As, S, ¢)] via the following sequence of arguments.
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Figure 1: A tree describing the possible selections made by the pool algorithm on a good pool in
the proof of Theorem 9.

1. We show that .4, selects at least ¢/4 elements from each of basel and base?2 before it
selects any element from perm.

2. Using the previous claim, we show that there is a positive probability over runs of A, on
S ~ D®° that there is an iteration in the run such that the following hold:

e Before this iteration at least ¢/4 elements from each of basel and base2 have
been selected.

e Conditioned on the run until this iteration, and on the entire S'x, the probability that
at some time after this iteration an element from perml is selected, and an element
from perm? is selected at some time after that, is larger than a constant.

e The same property holds for the reverse order: selecting first an element from
perm?2 and then an element from perml.

3. We conclude that the expected number of iterations of A, depends on the probability to
have, in a single stream Sx, two elements that are both mapped to permutations in a single
small subset. We then show that this implies a lower bound on the number of iterations of

As.

We start by showing the claim in item 1. Consider a run of A, with input S ~ D, Since the
output must be equivalent to an output of 4, on a good pool, this implies that for i € {1,2}, an
element from perm(7) is selected if and only if s = i (where s is defined as done above for the
pool algorithm) or the response for an element selected from perm(s) is 0. Denote the iteration in
which an element from perm is first selected by I. Suppose for contradiction that before iteration
I, less than ¢/4 elements from either basel or base?2 have been selected. Thus, for at least one of
basel, base?2, less than half of the elements to be selected from this set during this run are selected
until iteration /. It follows that at iteration I the majority of the responses for at least one of the
sets X; is yet unknown. Therefore the value of s is also unknown and there is a positive probability
that it will be each of 1,2. There is also a positive probability that, if an additional element from
permn is selected later, its response will be 1. Thus, there is a positive probability that the output of
this run does not correspond to any output of A, contradicting the equivalence of A, and \A,,. This
proves the claim in item 1.

We now prove the claim in item 2. Let 7" be the smallest integer such that until iteration 7’
(non-inclusive), at least /4 elements from each of basel and base?2 have been selected, and no
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element from perm has been selected yet. 7" exists by item 1 above. An element from perm(s),
where s depends on the majority of responses in each of X;, must be selected before an element
from perm(3s) is selected (if at all). Consider the distribution of s, conditioned on the run of A
until iteration 7 and on Sy. We have s = 2 if the majority of responses on X7 is equal to the
majority of responses on X5. Out of these responses, at least ¢/4 — 1 of at least one of X1, Xo, are
yet unknown at iteration 7". Thus, by Lemma 8, for a large enough ¢ we have that for any Sx, there
is a probability of at least ¢ = 0.68 over the responses until iteration 7" that

IP[s = 2 | the responses until iteration 7', Sx] € [¢/, 1 — ¢/],

where ¢ = 0.15. The same holds for s = 1.

To finalize the proof of the claim in item 2, observe that if the response for the element selected
from perm(s) is 0, then an element from perm(s) will also be selected later. This occurs with a
probability of % Consider the event B; := “an element from perm(1) is selected at some point in
the run and an element from perm(2) is selected some time later”. Let B be the symmetric event.
We conclude that with a probability of at least c,

Vi € {1,2}, P[B; | the responses until iteration T, Sx] > ¢/ /2. )

This proves the claim in item 2. Denote the event that Eq. (5) holds by E),.

We now turn to the third and last part of the proof. Denote by Z;, for i € {1, 2}, the first ¢/4
elements selected by Ag from base(i). We apply Lemma 5 with ¢t = ¢/4,t = ¢/2 — 1,1 =
m/4,d = \/mlog(q/c)/8, to obtain that if the pool algorithm has Z; C X, fori € {1,2}, then
there is a probability of at least 1 — % exp(—8d?/(m—gq)) > 1—c¢/2 that the element that A, selects
from perm(i) for i € {1,2} (if it exists) is in a given set of permutations ®(Z;) that satisfies'

12(Z)] _ (&dq)q/“.

‘Hm/4‘ N m

Thus, this holds also for As. Since this holds with probability 1 — ¢/2, and Eq. (5) holds with a
probability at least ¢, there is a probability at least ¢/2 that both events hold simultaneously. That
is, denoting the event G; := “an element from ¢(Z;) is selected at some point in the run and an
element from ¢(Z2) is selected some time later” and symmetrically for G, we have that with a
probability at least ¢/2 over the responses until iteration 7" and Sy,

Vi € {1,2}, P[G; | the responses until iteration T', Sx] > /2.

Denote the event that this holds E¢. Abbreviate Niter := Niter(As, S, ¢). It follows that

E[Nier | Sx, B6] 2 ¢/2- (Ez,.2 [ElNer | G1, g, Sx, 21, 2] + ElNieer | Ga, g, Sx, 21, 23] )
Z C,/2 énlél (E[]Viter ’ GlaEGv‘SXv Zlv ZQ] + IE[]\fiter | G27EG75X7Z17ZQ])

1,42

Letting Sx = x1,z2,..., denote by Ny = N;(Sx, Z1, Z2) the length of the shortest prefix
of zp,xp41,. .. that includes an element from ®(Z;) and at some later point an element from

1. We abuse notation and let ¢ denote a mapping from base(i) to perm(z) for both of ¢ € {1, 2}, using the obvious
isomorfisms.
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®(Zs), and by No = Na(Sx, Z1, Z2) the length of the shortest prefix that includes the reverse
order. Clearly, the number of iterations under G; is at least V;. Therefore

E[Niter | Sx, Ec] > /2 énin (N1(Sx, Z1, Z2) + No(Sx, Z1, Z2)).

1,22

Let N = N(Sx, Z1,Zs2) := max(N1(Sx, Z1, Z2), Na(Sx, Z1, Z3)). Observe that in the subse-
quence zr,...,T74+N, there is an element from ®(Z;) followed by one from ®(Z3) some time
later, and also the reverse order. It follows there are at least two elements from ®(Z;) for at least
one of ¢ € {1,2} in this subsequence. Let N’ = N'(Sx, Z1, Z>) be the smallest integer such that
xr, ..., rro N includes at least one of the two options. Then N’ < N, and so

E[Niter | Sx,Eg] Z C//2 gnin (N/(Sx,Zl,Zz)).

1,42

Taking expectation over Sx conditioned on Fg, it follows that

E[]Viter | EG] Z C,/2 ']ESX [énlél (N,(SX)ZDZQ)) | EG]

1,42

therefore, since P[Eg] > ¢/2,

ElNua] = ¢ - ¢/4- Esy [min (N'(Sx, Z1, 22)) | Ecl. ©)

1,22

We now lower-bound the RHS of this inequality. Let K be an integer. We have

Egy [min N' | Eg] > K(P[min N’ > K] — (1 — P[Eg])) > K(c¢/2 — P[min N’ < K]). (7)
Z1,Z2 Z1,Z2 Zl,ZZ
We have left to upper-bound P[ming, z, N’ < K] for a non-trivial value of K. Denoting
Sx = x1,x9,..., we have
P[éniél N' < K] =P[Ji € {1,2},Z; Cbase(i),j < j' < K, s.t. |Z;| = q/4,zj, x5 € P(Z;)]
1,42
< 2]1)[321 C basel,j < j/ < K, s.t. ‘Zly = q/4,xj,xj/ S (I)(Zl)].

The last inequality follows from a union bound and the symmetry between the cases ¢ = 1, ¢ = 2.
For x € perml, denote L(z) := Uzcpaser:|z|=q/azca(2)P(Z). For x ¢ pernml, let L(z) := (.
We have

P[Zy Cbasel,j <j < K, st. |Z| = q/4, 2,z € ®(Z1)]
<P3Ej<j < Kstxjy€ L(xj)]
< K? max Px.p,[X € L(z)]

rE€perml

< K? max |L(z)|/|TLy 4l

rEperml

< K2(8dg/m)/?,

where the last inequality follows from the last part of Lemma 5. Substituting for the value of d, it
follows that .
P[N < K] < K? (8¢ log(q/c)/m)Q/ .
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/8
Setting K = /c/2 - (m)q , we get that PIN < K] < ¢/4, therefore by Eq. (6) and
Eq. (7),

q/8
E[Nuer] > ¢ - c/4-K(c/d) > ¢ - /232 (") |
[ ltel’] ZcC C/ (C/ ) Zzc-C / 86]2 log(q/c)
Substituting ¢’ = 0.15, ¢ = 0.68 and rounding downward, we get the statement of the lemma.
|

The lower bounds above indicate that to improve the dependence on ¢, one must consider a
more restricted class of pool algorithms. This is the topic of the next section.

5. Utility-Based Pool Algorithms

In Section 4 we provided an algorithm with a uniform guarantee on the expected number of itera-
tions. However, this guarantee was exponential ¢, and as our lower bounds show, this dependence
cannot be removed for a general pool algorithm. We now consider a more restricted class of pool
algorithms, which we term utility-based pool algorithms, and show that it allows stream emula-
tion with an expected number of iterations linear in ¢. Utility-based pool algorithms are defined in
Section 5.1. In Section 5.2 an algorithm that emulates utility-based pool algorithms in a streaming
setting is proposed, and it is shown that for this algorithm, the expected number of iterations is at
most linear in ¢, in contrast to the exponential dependence required in the general case. In Section
5.3 two lower bounds are proved, showing that a quasi-linear dependence of the number of iterations
on g cannot be avoided when emulating utility-based pool algorithms.

5.1 Defining Utility-Based Algorithms

A common approach for designing pool-based interactive algorithms is to define a utility function
that scores each element depending on the history of selected elements and their responses so far
(e.g., Seung et al., 1992; Lewis and Gale, 1994; Tong and Koller, 2002; Guo and Greiner, 2007;
Golovin et al., 2010b; Guillory and Bilmes, 2010; Golovin and Krause, 2011; Gonen et al., 2013;
Cuong et al., 2014). In each round, the algorithm selects the element that maximizes the current
utility function. For example, the score can estimate the marginal benefit of selecting an element
based on the current information on the source distribution, as gleaned from the previous elements
and their responses. We consider black-box emulation for this class of pool-based algorithms.

Formally, a utility-based interactive pool algorithm is defined by a utility function ¢/, of the form
U: U2 X x (X x V)" — Rsg. The value of U(x, S;—1) represents the score of element x given
history S;—1. The pool algorithm selects, in each round, the element that is assigned the maximal
score by the utility function given the history. We assume for simplicity that there are no ties in U
and that all its outputs are positive. The general form of a utility-based interactive pool algorithm
for U, denoted AZI;’ ,is given in Alg. 4.

Our goal when emulating a pool algorithm is not to maximize ¢/ on the selected elements, but
to exactly emulate the behavior of the pool algorithm .Ag. This is because we do not assume any
specific relationship between the value of the utility function and the reward of the algorithm. For
instance, the utility-based pool algorithm might be empirically successful, while its analysis is not
fully understood (e.g. Tong and Koller, 2002).
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Algorithm 4 AZ

input Elements x1, ..., x,,, budget ¢ < m.
1: Sy + ()
2: My < [m]
3:fort=1:¢qdo

4 g < argmaxcyy,  U(zj, Si-1).

5:  Select z;,, get y;,.

6

7

8

9

St — St—l o (xiwyit)'
Mt <— Mt,1 \ {’Lt}
: end for
: Output the set of all pairs in Sj,.

5.2 Stream Emulation for Utility-Based Pool Algorithms

We propose a stream algorithm that emulates a utility-based pool algorithm using a black-box so-
lution to the well-known secretary problem (Dynkin, 1963; Gilbert and Mosteller, 1966; Ferguson,
1989). We first present this classical riddle and discuss its possible solutions in Section 5.2.1. The
stream algorithm and its analysis are presented in Section 5.2.2.

5.2.1 THE SECRETARY PROBLEM WITH A BI-CRITERION

In the classical formulation of the secretary problem, an algorithm sequentially observes a stream
of n different real numbers, and selects a single number. The goal of the algorithm is to select the
unique maximal number out of the n numbers, but it can only select a number immediately after it
is observed, before observing the rest of the numbers. It is assumed that the n numbers in the stream
are unknown and selected by an adversary, but their order of appearance is uniformly random.

The classical goal is to select the maximal number with a maximal probability, where n is known
to the algorithm. This task can be optimally solved by a simple deterministic algorithm, achieving
a success probability which approaches 1/e in the limit of n — oo (Dynkin, 1963; Gilbert and
Mosteller, 1966; Ferguson, 1989). The optimal algorithm observes the first ¢(n) numbers, and then
selects the next observed number which is at least as large as the maximal in the first ¢(n). The limit
of t(n)/n forn — cois 1/e.

In the next section we show how any secretary problem strategy can be used to emulate a utility-
based pool algorithm in a streaming setting. However, while the classical formulation of the secre-
tary problem is concerned only with the probability of success, in our context an additional criterion
is important. Thus for a given strategy, we consider the following two criteria:

1. The probability of success—the probability that the strategy selects the maximal element out
of n, assuming a random ordering of the input sequence. This is the single criterion of the
classical secretary problem.

2. The success/select ratio—the conditional probability that a number is maximal, given that the
strategy selected it.

For the second criterion to be meaningful, we allow the strategy to decide not to select any number.
For instance, in the classical optimal solution to the secretary problem, the strategy should not select
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any number if after the first ¢(n) numbers, all the other numbers are smaller than the maximal in
the first t(n). As we see in Section 5.2.2, we would optimally like the strategy to have both a
high success probability and a high success/select ratio. This is because a high success probability
leads to a lower number of observed elements N, required by the stream algorithm, while a high
success/select ratio leads to a lower number of selections of elements Ngg.

The classical solution maximizes the success probability, but does not optimize for the suc-
cess/select ratio. Another extreme can be found in the following strategy, which sets the suc-
cess/select ratio at one, at the expense of the success probability: Wait for the last number, and
then select it only if it is the maximal out of all the observed items. This strategy never selects a
non-maximal number, hence its success/select ratio is one, however its success probability is only
1/n. Denote this strategy SecPr[last].

In general, consider strategies of the following form: For a given M > 1, observe the first M —1
numbers. Then select the first number which is larger than the maximal in the first A/ — 1 numbers.
If no such number is observed, avoid selecting a number. Denote this strategy SecPr[M]. Denote by
ps(M) the success probability of this strategy, and by sr(M) its success/select ratio. The analysis
of ps(M) (see Ferguson, 1989) gives ps(1) = 1/n, and for M > 1,

M-—-1
ps(M) = n (anl - HM*I)»

where H; is the 7’th harmonic number H; := 22:1 %
To calculate sr(M), note that the event that some number is selected occurs exactly when the

maximal number is in the last n — (M — 1) observed numbers. Therefore the probability of selecting
M—1

anumberis 1 — = and so
ps(M)
st(M) = 1_8 Sy}
n
Setting v := % and considering large n, we have H,_1 — Hy—1 ~ In(£=%) ~ In(1/a).
Therefore lox(1
ps(M) ~ alog(l/a), and sr(M)= Oé(l)g(ﬁw).
-«

For a € (0,1), ps(M) is concave with a single maximum at &« = 1/e, while sr()) is monotonic
increasing. Since we wish for both criteria to be large, the Pareto frontier includes only and all the
solutions with o« > 1/e. See Figure 2 and Figure 3 for the trade-off between pg (M) and sr(M) as
a changes between 1/e and 1.

In the implementation of the stream algorithm shown in the following section, the secretary
problem strategy is executed multiple times, for sequences of different lengths. Given any secretary
problem strategy for length m, we apply it for any length up to m, using the procedure in Alg. 5.

When running SecPrVar, the subset I should be drawn uniformly at random from all possible
subsets. This way, clearly the success probability and the success/select ratio for SecPrVar, for any
sequence of positive numbers of length m’ < m, are at least as high as those for SecPr with a
sequence of length m.

We also consider stream emulation using precognitive stream algorithms. In this case, the secre-
tary problem can easily be perfectly solved: it may be assumed that the algorithm knows in advance
all the numbers in the sequence and thus it can select the maximal number with probability 1. We
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Figure 2: The success probability and the success/select ratio for large n, as a function of a.
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Figure 3: The trade-off between the success probability and the success/select ratio for large n, in
the Pareto frontier of « values, for strategies of the form SecPr[an|. On the Pareto frontier
« ranges between 1/e (largest success probability) and 1 (smallest success probability).
The labels on the points indicate the value of a.
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Algorithm 5 SecPrVar(m, m’, I,SecPr): Secretary problem for sequences of variable length

input Integers m, m’ < m, I C [m], a secretary problem strategy SecPr for sequence length m.
I R+ ()
2: fori =1:mdo
3:  if i ¢ I then

4: R <+ Ro(0) # Addadummy zero to sequence
5:  else
6: Get next number r from input
7 R+ Ro (1")
8: if » should be selected according to SecPr on R then
9: Select r and terminate.
10: end if
11:  end if
12: end for

will denote this strategy SecPr[precog]. It has success probability and success/select ratio both
equal to 1.

We next present and analyze the stream emulation algorithm for utility-based pool algorithms,
which uses a secretary problem strategy via SecPrVar.

5.2.2 THE STREAM EMULATION ALGORITHM

We propose the stream emulation algorithm A%, listed in Alg. 6. This algorithm repeatedly applies
a secretary problem strategy to decide which elements to select. Because the secretary problem
strategy might fail to select the maximal number, repeated applications of the strategy might be nec-
essary. This trial-and-error approach means that A% might select more than ¢ elements. However,
the expected number of selected elements is a constant factor over q. The trade-off between the
number of iterations and number of selected elements is controlled by the probability of success
and the success/select ratio of the selected strategy SecPr, which is provided to .AY as input.

AY is equivalent to AY, as Theorem 10 below shows. In order to guarantee this equivalence,
AY never selects an element that could not have been in a pool in which the previous elements
were selected. This is achieved by discarding such elements in each round: The set & is the set
of elements that are allowed in round ¢, and is defined to include only elements that could not have
been selected by the pool algorithm before round i. To bound the expected number of iterations, we
show in Theorem 11 that the probability mass of AX; can be controlled in expectation, which leads
to a bound on the expected number of discarded elements.

Theorem 10 For any utility function U, any distribution D over X X ), any integer m and g < m,
A is (q, D)-equivalent to AIL,‘.

Proof Consider the probability space defined by S ~ D™ and S’ ~ D>, where S, S’ are indepen-

dent. We prove the equivalence by showing that for any j € [¢] and L; = ((%i;, Yik;))ie]; that
could have been selected by the pool algorithm,

dPlpairs, (S, j + 1) | pairs, (S, [j]) = L;] = dP[pairs,(S’,j + 1) | pairs,(S’, [5]) = Lj].
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Algorithm 6 AY Stream-emulation for utility-based pool algorithms
input Integers m, ¢ < m, a secretary problem strategy SecPr for sequences of length m.

1: Lo+ ()
2 =X
3: fori=1:qgdo
4:  repeat
5 Draw a random subset I C [m)] of size m’
6: forj=1:m—-—i+1do
7: Repeatedly draw elements from Dy, until drawing an element in X;.
Denote it i j, and let Tij < U(:Ei,j, Lifl).
8: if SecPrVar(m, m — i+ 1, I,SecPr) would select the last element in the sequence prefix
Tily---5Ti5 then
9: k< 3j
10: Select x; i, get its response y; k.
11: end if
12: end for
13: wuntil 7y, = max{7;1,..., 7 m—it1}
14: k; < k

15: L+~ L;_ 10 (LEZ‘J%, yz,kl)

16: Xip1 {l" e A ’ L{(x,Li_l) < u(xi,k‘ivLi—l)}
17: end for

18: Output the set of pairs in L.

For a given L;, denote by D; the distribution generated by drawing (X,Y") ~ D conditioned on
X € Xj41, where X1 depends on L;. Denote by G all the finite sequences of pairs such that when
the optimal secretary problem solution is applied to the sequence, it succeeds. That is, the optimal
value under the score (x,y) — U(z, L;) is indeed selected. From the definition of .A7,, we have

dPpairs (5", j 4+ 1) | pairs (', [j]) = Lj] = dPg_m-i[argmaxU(x, L;) | S € G].

It (zy)eS

For a given sequence S = ((Zi, i))icpm—j]- let o(S) : [m — j] — [m — j] be a permutation such
that for all ¢ < m — j, T,(;) < To(;41)- The success of the optimal secretary problem algorithm
depends only on the ordering of ranks in its input sequence, hence there is a set of permutations
G’ such that S € G if and only if 0(S) € G’. Now, argmax, ,c5U(x, L;) depends only on the
identity of pairs in S, while o(S) depends only on their order. Since the elements in S are i.i.d.,
these two properties are independent. Therefore

dIF’gND;le [argmax U (z,L;) | S € G] = dPgpr.le [argmax U (z, L;)].
(z,y)eS J (z,y)€S
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Therefore

dP[pairs,(S’, 7 + 1) | pairs,(S', [§]) = L;]
= dPyg [argmax U (z, L;)]
(z,y)eS

- dPSNDm—j [argmanZ/{(x’Lj) | S C (XjJrl % y)m—]]

(zy)es

= dPy_pm—;largmaxiU(z, L) | V(z,y) € S,i € [j], U(w, Li—1) <U(wig;, Li1)]
(z,y)esS
fargmaxt(z, L;) | pairs,(L; o $, [j]) = L;]
(z,y)e8
= dPs~pn| argmax U(z, L;) | pairs,(S, [j]) = L]
(z.y)eS\L;

= APy [pairs, () (j + 1) | pairs, (5. [j]) = L]

Here L; is the prefix of length ¢ of L;. Since this equality holds for all j € [¢—1], dP[pairs (S, [¢])] =
dP[pairs,, (S, [q])]- [

m—j
~Dji1

= dPg pm-;

The following theorem gives the expected number of selected elements and the expected number
of observed elements used by .AY. Both of these values depend on the properties of the secretary
problem strategy SecPr that AY receives as input.

Theorem 11 Suppose that Aﬁ’ is run with m,q < m and a secretary problem strategy SecPr for
sequences of size m with success probability ps and success/select ratio sr. Then, for any utility
function U and any distribution D over X x Y

ESN'DOO [Nsel(AZ;{7 S7 q)] = q/sr

and
ESND"O []Viter(AZ;[a S? Q)] = mq/pS

To observe the implications of these upper bounds, consider for instance the classical secretary
problem strategy SecPr[t(n)], as defined in Section 5.2.1, which has p; ~ 1/e and sr ~ m
for large m. It follows that for m — oo, the expected number of selected elements by AY is eq, and
the expected number of observed elements is egm. Other choices of parameters for the secretary
problem lead to other points on the Pareto frontier in Figure 3. All the points on the Pareto frontier
give a constant factor over g for the expected number of selected elements, and a factor linear in ¢
over m for the expected number of iterations. To get an algorithm that selects exactly ¢ elements,
one can use the strategy SecPr[last], which gives p; = 1/m and sr = 1, leading to an expected
number of iterations of gm?. In the precognitive setting, one can use SecPr[precog], which gives
an expected number of selections exactly g, and an expected number of iterations mgq.

Proof [of Theorem 11] Call a full run of the loop starting at step 6 an attempt for the ¢’th element. In
each attempt for the ¢’th element, m — ¢ + 1 elements from X are observed. The expected number
of element selection attempts for each successful element selection is S—lr Thus,

1
ESN'DOO [Nsel(-AZ;{v Sa Q)] = ; q.
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For the second part of the statement, we need to bound Eg.ps [Nier (AY, S, ¢)]. The total expected
number of attempts of running the secretary problem for each successful selection of an element is
pis, and the expected number of elements from X; observed in each attempt is m — ¢ + 1. Thus the

expected number of elements from X; observed until z; is selected is - - (m — i + 1). However,
drawing a single element from &; might require several draws from X'. To bound the total expected
number of observed elements, we now consider the definition of X;.

Denote by f; the utility function U(-, L;—1). Let x; := x;1,, be the ¢’th element added to L;.
Then X; = {z € X;_1 | fi—1(x) < fi—1(xi—1)}. Consider the probability space defined by the
input to the stream algorithm S ~ D, and let Z;, Z! ~ Dx for i € [q] such that these random
variables and S are all independent. Denote

plai) :=Plfi(Zi) < a | Zi € Xi].

p(a, i) is a random variable since X; depends on S. Let U; := p(fi(Z]),4). Since we assume no
ties in ¢, and no single x has a positive probability in Dx, then conditioned on A}, U; is distributed
uniformly in [0, 1]. Hence Uy, . .., U, are statistically independent.

For i > 1, define the random variable M; := p(fi—1(zi—1),7 — 1). Then M; = P[X;]/P[X;_1].
The expected number of elements that need to be drawn from D to get a single element from A& is
1/PX;] = (1_[;-:1 M;)~L. Therefore,

Ps —z—i—l)
E[Niter(AZs/{aSa q) | Ma,..., M, Z 5
=1 H] lM

The element x; maximizes the function = — f;(x) over m—i+1 independent draws of elements
x from Dx conditioned on = € X}, hence it also maximizes x — p(f;(x), ). Therefore, for i > 1,
M; is the maximum of m — ¢ 4+ 2 independent copies of U;, hence P[M; < p] = pm_’+2. Hence

q q
d]P)[MQa s an](an s 7pq)/dp2 Tt dpq = HdP[M'L < pz]/d]% = H(m -1+ 2)p£nil+l-

i=2 =2
We have
1
E[]Viter(AZ;{vSa Q)] :/ / Iter As 75 Q) | Mlv" . 7Mq}dP[M17"'>Mq]
My= M=
_ m—it+1y _
—psl/ / H( m — 1+ 2)M" " dM,
Msy= Mq= H] 1 M; 1=2

q
— S m—i+ 1)/ / — 1+ 2)M M,
i=1 Mz= Mq=0;_9

. H( — 1+ 2)M" " a,
I=i+1
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Therefore
_ 4 : m—1+2
E[Niter (AY, S, q)] = p! Z(m —i+1)]] P
z:l 1=2
22051;;(771—2""1)‘m_i+1 = mq/ps.
This concludes the proof. |

5.3 Lower Bounds

The following lower bounds show that the number of iterations required by any stream emulator
for utility-based algorithms must be at least quasi-linear in g. We provide two results. The first
result considers a stream algorithm that selects exactly ¢ elements, and it allows q to be large with
respect to m. The second result considers stream algorithms that are allowed to select more than ¢
elements. In this case, the lower bound is smaller, but it is reduced only linearly in the number of
selections. It follows that a constant factor increase in the number of selections cannot overcome
the quasi-linear dependence on g in the number of iterations. The proofs of the lower bounds are
based on constructing a utility function which in effect allows only one set of selected elements for
a given distribution, and forces the stream algorithm to select them in the same order as the pool
algorithm. The first lower bound considers stream emulation with exactly ¢ selections. The bound
holds for both standard streaming algorithms and precognitive streaming algorithms.

Theorem 12 For any integer m, q < m/2, there exists a utility-based pool algorithm, and a
marginal Dx, such that any stream algorithm As which is (q, D) equivalent to the pool algorithm
forall D € DS(Dx), and selects only q elements, has

q m
3D € pS(Dx), Egpoe [Niter(As, S, q)] > 32 {210g(4Q)J

The result holds even if A is a precognitive stream algorithm.

Proof Letn = [#@M)J’ and let Dx be a uniform distribution over X = {a; | i € [n]}. Assume

Y = {0,1}. A pool of size m then includes all elements in A := {a; | i € [2¢ — 1]} with a
probability of at least & > 1 — (2¢ — 1) exp(—m/n) > 1 — 4—1(1.

Consider a utility function U such that given a history of the form ((a1,y1),..., (at, y)) for
t € [¢ — 1], assigns a maximal score in X to a;41 if Vi < ¢,y; = 0, and a maximal score to aq if
Ji < t,y; = 1. In addition, if the history is ((a1,y1), ..., (at, Y¢), (Ggrt, Ye41), - - - (Qgiers Yr+1))
for some t € [q — 1],t' € [¢ — 2], then I assigns a maximal score to @, +1. Then, in a pool that
includes all elements az, ..., az,—1, the pool algorithm based on U/ behaves as follows: In every
round, if all selected elements so far received the response 0, it selects at round ¢ the element a;.
Otherwise, it selects the element a4+ and then continues to select ag4¢41,. .., a2q—1.

Let Dy be a distribution in which the response is deterministically zero. If the distribution is
Dy, As selects Zy = {ai, ..., a,} with a probability at least c. Denote Dy for ¢ € [g], in which the
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response is deterministically zero for X € {a1,...,aq} \ {a:} and 1 for a;. For this distribution,
the algorithm must select the elements in Z; = {a1, ..., as, Gg+¢, - - -, a24—1} With a probability at
least a.

Consider the probability space defined by the input sequence S ~ Dg° and the randomness of
As. Let Ey be the event in this space that A selects {a1,...,a,}, and let Ey be the event in this
space that A; selects (aj ... ,a,) in order. We have P[Ey] > «. Denote 3 = P[Ep]. We show a
lower bound on S.

Let T be a random variable in the same probability space, such that 7" = 0 if Fy does not
hold. If Ey does hold, then T is the smallest round in which the algorithm selects some ay, for
t" > T, or T = 0 if no such round exists. If A selects {a1, ..., aq} but not in order, then T" € [g].
Therefore, P[T' € [¢]] > o — 3, hence there exists some t* € [q] such that P[T = t*] > (a — ) /q.
Now, consider the distribution D;«. Define a sequence of pairs (.5) such that S and ~(S) have the
same elements in the same order, and the responses in y(S) are determined by Dy~ instead of by
Do. Clearly, v(S) is distributed according to Dg°. Consider a run of the algorithm on S in which
Ey holds, and a parallel run (with the same random bits) on y(.5). The algorithm selects the same
elements for both sequences until the 7”th selection, inclusive. By the definition of 7, the 7”th
selection is some element in {a741,...,aq}. If T = t*, then an element not in Z;- is selected
in round 7. But this same element would be selected by A; in the parallel run on ~(S). Since
under (5) ~ D, A, selects exactly the set Z;~ with a probability of at least c, and so we have
P[T = t*] < 1 — «. This holds also for the precognitive stream algorithm since it is required from
the emulation of the pool algorithm. It follows that (o — 8) /¢ < P[T' = *] < 1—a. Hence 3 > 3.

Let WW; be the number of elements that .4 observes after selecting element ¢ — 1, until observing
the next element. Let X1, X5, ... be the sequence of elements observed after selecting the first ¢ — 1

elements, and for integers j, let B; = 1[X; = a;]. By, Bo, ... are independent Bernoulli random
variables with P[B; = 1] = 1/n, and P[By, = 1] > P[Eo] = 8 > 1. By Lemma 2, if 1 < &,
E[W;] > {§. It follows that the expected number of iterations for making ¢ selections is at least
15 if n > 32. Since it is also at least ¢, a lower bound of £ = 5 L#(M)J holds for all n. This
analysis holds also for the precognitive stream algorithm, since it also must select the same set of
elements in the given order. |

The second lower bound considers stream emulation with possibly more than ¢ selections. This
lower bound also holds for both standard and precognitive stream algorithms.

Theorem 13 For any integers m,q such that m > 29+ 1og(2q) there exists a utility-based pool
algorithm, and a marginal Dx, such that for any 3 > 1, any stream algorithm As which is (g, D)
equivalent to the pool algorithm for all D € DS(Dx ), and selects at most 3q elements, has

. q : m
3D € pS(Dx), Bsnp [Nieer(As: 5.9)] 2 5555 Log(%J)J '

This result holds also for precognitive stream algorithms.

Proof Letn = L%J, and let Dx be a uniform distribution over X = {a, | v € {0,1}!,t €

[q—1]o}UX", where X" includes arbitrary elements so that | X| = n. Note that X includes a, which
stands for a zero-length vector. Assume ) = {0,1}. Let v € {0,1}7 be a binary vector of length
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g, and let v(1 : t) be its prefix of length ¢ € [¢ — 1]g. Consider distributions D, s for v € {0,1}4
and f : Ugepg_1],{0,1}* — {0,1}, such that D, has a uniform marginal over X, and for every
t€lg—1]o, P[Y = v(t +1) | X = ay.)] = 1. In other words, the label of any element which is
a prefix of v is the next bit in v. In addition, for any other element ap, P[Y =1 | X = ap] = f(ap).
Denote the elements representing prefixes of v by A, := {a, 1) [t € [¢ — 1o}

Assume a utility function I such that for any b € {0,1}! of length t < ¢, if the last element
selected so far was a;, and its response was ¥, the function assigns the maximal score to ayo,. Under
this utility function, if the distribution is D, ; and A, Cr Sy, then the pool algorithm selects
exactly the elements in A,. This happens with probability at least 1 — g exp(—m/n) > %

Let A; be a stream-based algorithm which is equivalent to the pool algorithm A]LD’. Let V be a
random variable drawn uniformly at random from {0, 1}9, and let F' be a random variable drawn
uniformly over all functions f : Uyefq—1],{0,1}* — {0, 1}. Consider the probability space defined
by V,F, S ~ D{°, and the run of A, on S. Let I; be a random variable that is equal to 1 if the ¢’th
selection of A, is an element from Ay that has not been selected in previous rounds. Since A; is
equivalent to AY, then ]P’[Zf:ql I, =q] > % By the reverse Markov’s inequality, there are at least
q/4 rounds t such that E[;] > ﬁ. This holds also for a precognitive stream algorithm due to its
emulation of the pool algorithm.

Consider one such round ¢. Let Z = pairs, (S, [t — 1]). We have ﬁ < E[L] = EZ[E[L | Z]].
By the reverse Markov’s inequality, with a probability of at least #, the value of Z is some z that
satisfies E[I; | Z = z] > %. Let z such that E[I; | Z = z] > %. Denote by B, the (random)
index of the element ap, selected in round ¢. By the reverse Markov’s inequality, the probability
that By = b for some bsuch that P[[; =1 | Z =z, B, = b| > ﬁ is at least ﬁ. In other words,

P(b,t) :=Play € Ay | Z =2,B, =b] > 65"
We now upper bound the number of vectors b such that this inequality holds and they do not already
appear in Z. Call such vectors “admissible”.

Let Z', 2’ be the prefixes of length ¢t — 2 of Z, z respectively, and denote P(b,t — 1) := P[ay, €
Ay | Z' = Z']. Let (w,y) be the last pair in z, and assume without loss of generality that (w, y)
is absent from 2’. The relationship between P(b,t — 1) and P (b, t) can be described based on the
relationships between w, y, b, by distinguishing into cases.

1. bis a (weak) prefix of w.

2. woyis a (weak) prefix of b.

3. wo (1 —y)isa(weak) prefix of b.

4. Neither of the cases above hold. In this case, b and w are incompatible.

In cases 1 and 4, the distribution of y is uniform on {0, 1} conditioned on b being a prefix of V.
It is uniform also conditioned on b not being a prefix of V. Hence, in these cases conditioning
on (w,y) does not affect the probability that b is a prefix of V, hence P(b,t) = P(b,t — 1). In
case 3, P(b,t) = 0. We are left with case 2, in which w o y is a (weak) prefix of b. In this case
we have that P(b,t) = 2P(b,t — 1). By induction, we can conclude that if P(b,t) # 0, then
P(b,t) = 271tl . 2N(®) \where N(b) is the number of pairs in Z of the form (w,y) where w o y is a
prefix of b.

29



SABATO AND HESS

To bound the number of admissible vectors, let us show a one-to-one mapping between such vec-
tors and binary vectors with a bounded length. For any such b, we have N (b)—|b| = logy(P(b,t)) >
logQ(ﬁ). Denote k = [logy(163)]. Then k > |b| — N(b). b can be encoded as a vector of length
at most k as follows: Go over the bits in b from first to last. For each bit ¢ in b, copy it to the output
vector in the next available location only if the prefix b(1 : (i — 1)) does not match some w such
that (w,y) € Z. Clearly, N(b) bits are skipped this way, so that the total number of bits in the
output is no more than k. Moreover, the mapping is one-to-one, since the only possible ambiguity
in decoding is how many bits to decode; but whenever (w,y) € Z, b cannot be equal to w, since w
has appeared in Z. Therefore the decoding should stop only when it is not possible to infer more
bits. It follows that the number of admissible vectors is at most 21 — 1 < 644.

Therefore, the probability of observing such an element in each iteration after round ¢ — 1 is at
most 64/3/|X|. Since there are ¢/4 such iterations, the expected total number of iterations is at least

2gg 5 = 25‘16 3 - logTQq)J' This result holds also for a precognitive stream algorithm, since it also
must select admissible vectors due to the same analysis. |

6. Active Learning for Binary Classification

Lastly, we consider a special case of interactive algorithms, active learning for binary classification.
Recent works provide for this setting relatively tight label complexity bounds, that hold for both the
stream-based and the pool-based settings. In Balcan and Long (2013), tight upper and lower bounds
for active learning of homogeneous linear separators under isotropic log-concave distributions are
provided. The bounds hold for both the stream-based and the pool-based setting, and assume the
same budget of unlabeled examples. In Hanneke and Yang (2015), tight minimax label complexity
bounds for active learning are provided for several classes of distributions. These bounds also hold
for both the stream-based and the pool-based setting. No explicit restriction is placed on the number
of unlabeled examples.

The upper bound in Theorem 11 for utility-based pool algorithms can be applied to several
pool-based active-learning algorithms which use a utility function (e.g., Golovin and Krause, 2011;
Gonen et al., 2013; Cuong et al., 2014). The upper bound shows that when the label budget g is
relatively small, the gap between the stream and the pool settings is not significant. For instance,
consider an active learning problem in which a utility-based pool active learner achieves a label
complexity close to the information-theoretic lower bound for the realizable setting (Kulkarni et al.,
1993), so that ¢ € ©(log(1/¢€)). The passive learning sample complexity in the realizable setting
is at most m € ©(1/¢). Therefore, a stream-based active learner with the same properties needs at
most O(log(1/€)/¢) unlabeled examples. Therefore, in this case the difference between the pool-
based setting and the stream-based setting can be seen as negligible.

Here, we study the general question: what is the possible gap between pool-based and stream
based active learning? We study this question in the realizable setting, where the distribution is
consistent with some hypothesis in a given finite hypothesis class # C ). We give an upper
bound and a lower bound on this gap, which hold for a large class of pool-based algorithms.

First, we show the upper bound. This upper bound is derived by showing that any pool-based
active learner for the realizable setting with a finite hypothesis class can be approximated by a
utility-based pool algorithm. This in turn implies, using Theorem 11, that a stream algorithm with
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similar guarantees can emulate the pool-based algorithm with a bounded approximation factor on
the number of iterations and queries.

To show that any pool-based active learner can be approximated by a utility-based pool al-
gorithm, we use the machinery of submodular function maximization for active learning. The
challenge is that a successful pool-based active learner might not fully identify the true hypothe-
sis consistent with the distribution, since it suffices that it identifies a hypothesis which is e-close
to the true one. Thus, we define a submodular function that allows taking this into account. Our
construction combines ideas from Guillory and Bilmes (2010); Golovin et al. (2010b); Dasgupta
(2006).

Let f : U2, (X x V)" — N be an objective function which maps any set of labeled examples
to a non-negative value. For a given pool of examples, let OPT be the smallest number of queries
that are required (in the worst-case over all possible labelings of the pool that are consistent with )
to obtain an S such that f(.S) = @ for some fixed integer (). Guillory and Bilmes (2010) show that
if f is monotone non-decreasing and submodular, then there exists a utility-based active learning
algorithm which requires at most O(log(Q|H|)) - OPT queries in the worst case to obtain an S such
that f(S) = Q.

We define a function f which will allow proving the existence of a utility-based pool active
learner in our setting. For a given set of labeled examples S C X x ), the version space induced
by S on H is defined by VS(S) := {h € H | ¥(z,y) € S, h(z) = y}. Define a fixed set of pairs of
hypotheses £ C H x H. Let E(S) := (VS(S) x VS(S)) N E. This is the set of pairs from E such
that none of the hypotheses in the pair are disqualified by the labels in .S.

Given F, define the objective function f by

f(S) = |E| = |E(S)].

Let @ = |E|. The following lemma shows that the objective-function requirements above hold for
this definition of f.

Lemma 14 Forany E C H X H, f as defined above is monotone and submodular.

Proof Monotonicity is trivial here since if S C S’ then |E(S)| < |E(S’)|. f is submodular (see
e.g., Fujishige 2005) if and only if for any S, S’ such that S C S’, and any (z,y) ¢ 5,

FSU{(z,y)}) = £(9) = f(S"U{(z.9)}) — f(S). ®)
Denote S := SU{(z, y)} for brevity, and similarly for S’, . It is easy to see that VS(.S) D> VS(5’).
In addition, VS(S) \ VS(S4) 2 VS(S') \ VS(S’,), since any h € VS(S’) \ VS(S,) is consistent
with all the pairs in S’ but not with (z, y), implying that h € VS(S) \ VS(S4).
It follows that
VS(S) x VS(S) \ (VS(54) x VS(S4)) 2 VS(S') x VS(5') \ (VS(S%}) x VS(S5,)).
Therefore,

(VS(S)xVS(S)NE)\((VS(S4)x VS(S4))NE) D (VS(S)xVS(S)NEN\((VS(S,) xVS(S,))NE).

It follows that |E(S)| — [E(S4)| > |E(S")| — |E(S’,)|, which implies Eq. (8). [
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We use this construction in the proof of the upper bound on the gap between pool-based and stream-
based active learning, which we presently state and prove.

A somewhat technical issue is that the results of Guillory and Bilmes (2010) hold only under
the assumption that whenever the optimal pool-based algorithm succeeds, it knows that it has suc-
ceeded. In other words, it has “proof™ that its answer is e-good. This is known as a self-certifying
algorithm Golovin et al. (2010b). Our results thus apply to pool-based active learning algorithm that
have this property as well. This property is related, though not completely equivalent, to the concept
of “verifiable active learning algorithms” studied in Balcan et al. (2010). In that work it is shown
that non-verifiable active learning algorithms sometime require fewer labels than verifiable active
learning algorithms. Characterizing the gap between pool-based and stream-based algorithms for
non-verifiable active learning algorithms is an open question which we leave for future work.

For a fixed distribution Dy over X, denote A(h, 1) := P[h(X) # W' (X)].

Theorem 15 Let X be a finite instance domain and let Y be a finite label domain. Let Dx be a
marginal distribution over X. Let H C V¥ be a hypothesis class. Suppose that there is a pool-
based active learning algorithm such that for any D € DS(Dx) which is consistent with some
h* € H, with a probability at least 1 — § over i.i.d. pools of size m, it outputs h € H such that
A(iz, h*) < efor (X,Y) ~ D, using q label queries. We also assume that the pool algorithm is self-
certifying: the algorithm also outputs an indicator I € {0,1} where P[A(h,h*) < e |I=1] =1,
and P[I =1] > 1 —0.

Under these assumptions, there exists a stream-based active learner that with a probability of
at least 1 — |H|6 outputs a hypothesis h such that A(iz, h*) < 2e. The expected number of queries
requested by the stream-based active learner is at most O(log(|H])) - q, and its expected number of
iterations is at most O(log(|H|)) - mg.

Proof Define F := {(h,h’) | A(h,h') > 2¢}. Denote an e-ball around a hypothesis h € H by
B(h,e) :={h' € H | A(h, 1) < €.

Fix a D € Ds(Dx) which is consistent with some h* € H. Any pool algorithm with the
guarantees assumed by the theorem statement, outputs an [ = 1 with a probability at least 1 — 4,
and has P[h € B(h*,e) | I = 1] = 1. Thus, for any pool with I = 1, h* € B(h,e€). Let S be
the set of labeled examples that the pool algorithm obtained during its entire run. Since any of the
hypotheses in VS(.S) could be the true h*, it follows that for any k € VS(S), A(h,h) < €, hence
forany h, h' € VS(S), A(h, ") < 2e. Therefore, (h,h') ¢ E. It follows that E(S) = (.

There are || possible distributions D € DS(Dy ) which are consistent with some h* € H. It
follows that with a probability of 1 — || over pools, at the end of the run E(.S) = (). For any such
pool, we have that g queries suffice to certifiably obtain f(.S) = @, thus OPT < q.

We now apply the results cited above from Guillory and Bilmes (2010), which imply that there
exists a utility-based pool algorithm that obtains f(.S) = @ with at most O(log(|#|)q) queries. By
Theorem 11, we conclude that there exists a stream algorithm which requires at most O (log(|H|))-¢
queries and O(log(|#|)) - mq iterations to obtain f(S) = Q.

Since f(S) = @ at the end of the run of the stream algorithm, then F(S) = (), which implies
that for any (h, h’) such that A(h,h') > 2e, at least one of h, k' is not in VS(S). Therefore, the
diameter of VS(S) is at most 2¢. The stream algorithm may therefore return any i € VS(S), and it
holds that A(h, h*) < 2e. |
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Next, we provide a lower bound, showing that in the general case Q(mq) iterations are required
for emulating pool-based active learning in a stream setting. The lower bound, which holds also for
the precognitive setting, employs the following example and is presented in Theorem 16.

Example 1 For given integers m and ¢ < m, and T < gq, define X = {ay; | k € [q],] €
{0,...,2min(eT)=1 _ 1V} U X/, where X' includes arbitrary elements so that |X| = n, for some
n > q27 /2. Define the following hypothesis class H C Y.

I[i mod 2% = j] kE<T,

I[i/27=%| mod 27 = j]. k>T. ®

H:={h;|i€{0,...,29 — 1}}, where h;(a ;) = {
Essentially, for k < T, hi(ay ;) = 1 if the k least significant bits in the binary expansion of i are

equal to the binary expansion of j to T bits. For k > T, hi(ay ;) = 1 if T consecutive bits in 1,
starting from bit T' — k, are equal to the binary expansion of j.

Theorem 16 Let ¢ > 22 and m > 81og(2q)q? be integers. Consider Example 1 with m, q, setting
T = [logy(q)] and n = |m/Tlog(2q)|. Consider H as defined in Eq. (9). There exist 6,¢ € (0,1)
such that there is a pool-based active learning algorithm that uses a pool of m unlabeled examples
and q labels, such that for any distribution D which is consistent with some h* € H and has a

uniform marginal over X, with a probability of at least 1 — §, P[h(X) # h*(X)] < €. On the other
hand, for q > 22, any stream-based active learning algorithm with the same guarantee, including a

precognitive stream algorithm, requires at least % unlabeled examples in expectation.

___m
7log(2q)

Proof Let Dy be uniform over X. Let E be the event that X ¢ Sx, and define ¢ := Pspy [E].
Define € = 1/n, so that P[A(X) # h*(X)] < e if and only if & = h*. Let i* such that h* = h«.

First, a pool-based algorithm can achieve the required accuracy as follows: Let j; := i* mod 2!
fort < T, and j; := [i*/277t] mod 27 for t > T. If E holds, then t’th element selected by the
pool algorithm is a; j, where j is obtained as follows: If ¢t < T', j = jy_1. If t > T, j = [ ji—1/2].
In round 1, j = 0 and the selected element is a1 o. Inductively, in this strategy the algorithm finds
the t’th least significant bit in the binary expansion of ¢* in round ¢, thus it can use j;_1 to set j for
round ¢. Under F, after g labels ¢* is identified exactly. This happens with a probability of 1 — § for
any D with the uniform marginal Dy .

Now, let Dy, be a distribution with a uniform marginal over A’ with labels consistent with h € .
Consider a stream-based algorithm .Ag which is equivalent to the pool algorithm. Denote its output
by h and its input by S ~ Dp:. Let I be a random variable drawn uniformly at random from
{0,...,27 — 1}. Let H = h; be a hypothesis chosen uniformly at random from #. Consider the
probability space defined by I, .S ~ D%, and the run of As on S. Let (Z1,Y)),...,(Z,,Y,) be the
examples that A, receives and the labels it gets, in order. Let Y = (Y7,...,Y}). Let « = P[Z; =
a0 | Sx). If Z1 = a1, then P[Y; = 0| Sx] = 1. If Z; # a1, then P[Y; = 0 | Sx] > 3/4. Let
H be the base-2 entropy, and H, be the binary entropy. Then Hy (Y7 | Sx) = Hp((«w 4+ 1)/4), and
o)

H(H | Y,Sx) = H(H,Y | Sx) — H(Y1 | Sx) — H(Y4,...,Y, | Y1,Sx)
> q—Hy((a+1)/4) = (¢—1)
=1—Hy((a+1)/4).
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From the Taylor expansion of the binary entropy around 1/2, Hy(p) <1 — (1 — 2p)? /2, therefore
H(H | Y,Sx) > (1 — «)?/8. Since Ay is equivalent to AY, we have P[h # H] < 4§, hence
Py [P[h # H | Sx] < 26] > %. By Fano’s inequality, for any Sx such that P[h # H | Sx] < 26,

1
(1—)?/8 <H(H | Y, Sx) < Hy(20) +20q < 20(loga() + 2+ q)-

Where the last inequality follows from Hj(p) < plogy(1/p) + 2p. From the definition of J, we
have § < |X|exp(—m/n). Setting T = [logy(q)], and noting that |X| < ¢27/2 < ¢? and so

m > nlog(128¢3|X|), we have § < ﬁ. Therefore, for g > 22,1 —a < 2%]. It follows that
Psy [P[Z1 # aro | Sx] < &] > 1/2.

Now, the same argument holds for any round ¢ conditioned on I mod 2! = 0 and Z; =
ai,0,---, 24t = a0, since in this case after ¢ labels, the algorithm has ¢ — ¢ queries lefE, and needs

to select from #H’, which is equivalent to #, with ¢ — ¢ instead of ¢. Moreover, P[h = H | I
mod 2! = 0] < 1 — ¢ as well, since this holds for every H individually. We conclude that for every
t < g, with a probability at least % over Sx,

1
P[Z; # aspo | Sx, H = ho] < %

It follows that with a probability at least % over Sy, P[Zy = a1p,...,Zy = aq0 | Sx, H = ho] >
1/2 Hence P[Zl = a1,0,---, Zq = Qq,0 ‘ H= ho] > 1/4

Finally, suppose H = hg. Let W, be the number of elements that .45 observes after selecting
element ¢ — 1, until observing the next element. Let X; ~ Dx be the j’th element observed after
selecting the first ¢ — 1 elements, and let B; = I[.X; = a;o]. B; are independent Bernoulli random
variables with P[B; = 1] = 1/n, and P[By, = 1] > P[E] = 8 > 1. By Lemma 2, if 2 < -}

512°
then E[WW;] > ;. It follows that the expected number of iterations over ¢ selections is at least Z7 if
n > 512. Since it is also at least g, a lower bound of £f% holds for all 7. [ |

This lower bound shows that a gap between the stream-based and the pool-based settings ex-
ists not only for general interactive algorithms, but also specifically for active learning for binary
classification. The gap is the most significant when ¢ = é(\/m), in which case the stream algo-
rithm requires Q(m3/ 2) unlabeled examples, compared to only m for the pool algorithm. It has
been previously observed (Gonen et al., 2013) that in some cases, the ALuMA algorithm, which
is a pool-based active learning algorithm for halfspaces, is superior to the classical stream-based
algorithm CAL (Cohn et al., 1994). Theorem 16 shows that this is not a limitation specifically of
CAL, but of any stream-based active learning algorithm. On the other hand, Theorem 15 shows that
this gap cannot be very large, at least for self-certifying active learning algorithms.

7. Conclusions

In this work we studied the relationship between the stream-based and the pool-based interactive
settings, by designing algorithms that emulate pool-based behavior in a stream-based setting, and
proving upper and lower bounds on the stream sizes required for such emulation. Our results con-
cern mostly the case where the budget of the stream algorithm is similar or identical to that of the
pool algorithm. We expect that as the budget grows, there should be a smooth improvement in
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the expected stream length, which should approach m as the budget approaches m. It is an open

problem to quantify this tradeoff in the various settings we considered.
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Appendix A. Proof of Lemma 2

The proof of Lemma 2, defined in Section 2, is provided below.

Proof [of Lemma 2] E[I] is minimized under the constraint when P[X; = 1] = p. Therefore
assume this equality holds. Let W be the random variable whose value is the smallest integer such

that Xy = 1. Let T be the largest integer such that P[IWV < T < a.

The expectation of [ is subject to P[X; = 1] > « is smallest if [ is defined as follows: P[] =
WIW<T|=1L,PIl=W|W=T+1] = a—P[W < T, and in all other cases, I = 0.

Therefore,
E[I] > E[W - I[W < T]].
We have
; — B[W] = E[W - I[W < T]] + E[W - I[W > TJ]
_EW W < T]] + (; + 1)1 —p)T.
Therefore

El1] > E[W - IW < T]] = ; - <; +T)(1-p)".

From the definition of 7', T is the largest integer such that 1 — (1 — p)” < «a. Hence 1 —
exp(—pT), so T < log(1/(1=a)) " 1y addition, since 1 — (1 —p)T*! > a, we have (1 — p)T

(1 —«)/(1 — p). Therefore

1
Emzp_( l-p p

D D 1—p

To show that E[I] > a?/(4p), for p < a*/2 and « € (0, 1), we show that

(1 —a) +1og(1/(1 —a)))
I—-p

1-— > a?/4.

It suffices to show that

(1-a)d +10g(1/A ~) _

1—a?/4—
o/ 1—a4/2 =

Multiplying the LHS by 1 — a*/2, we have

Ala) = (1—a?/4)(1 —a*/2) — (1 — a)(1 +log(1/(1 — a)))
—a—a’/4—a’/2+a%/8 — (1 —a)log(1/(1 — a)).
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By the Taylor expansion of the natural logarithm around 1 —

n an—l—l

(1 -a)log(1/1—a) =3 T -3 % :a—l—Za”(%—nil).
n=1 n=1 n=2

Therefore
> 1 1
Ala) =a—a?/4—at/24+a8/8 — n g
() =a—a*/ a*/2+a”/ a—l—ga (n—l n)
> 1 1

n 2 4 6

= _ ) - 4 — 2 8

nEZQQ (n—l n) a’/4—a” /24 a’/

— ian(nil — %) + (@?/4 —a*/2) +ab/4 > 0.
n=3

It follows that A(a)/(1 — a*/2) > 0, implying Eq. (10), and concluding that E[I] > o2/(4p). B
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