
Interactive Data Visualization and Exploration
Using the Loon R package

Adrian Waddell  
PhUSE 2016, Barcelona

Motivation for new interactive visualization tools

Carefully designed, general, and extendable framework

• simple plots

• attention to high-dimensional data

• extendable

• study and compare methodologies visually

• analysis, research and teaching

• integrated in popular statistical environment such as R

Introduction of Loon with the Gapminder Data

data from grapminder.com, for year 2009

• Western World

• Long Life & Small Family

• Third World

• Short Life & Large Family

p1 <- l_plot(x=Fertility, y=LifeExpectancy,
 color=region_cols, size=pop_size,
 itemlabel=country,
 linkingGroup="world")

p2 <- l_plot(x=Income, y=LifeExpectancy,
 itemlabel=country,
 linkingGroup="world")

h <- l_hist(x=Income, linkingGroup="world")

Displays

Others in Development

• barplot
• pairs, currently

compound view
• …

Interactive Statistical Visualization Toolkit

Direct Manipulation Command Line Control

ExtendableToolkit

Widgets

::tk::button
::tk::scale

::loon::plot
::loon::plot_inspector_analysis

Point Glyphs

Statistical Graphics

Layers

Dynamic Linking Inspectors

Point Glyphs

Statistical Graphics

Layers

Dynamic Linking Inspectors

Point Glyphs

Statistical Graphics

Layers

Dynamic Linking Inspectors

Statistical Graphics

Inspectors

Point GlyphsLayers

Dynamic Linking

Inspectors

Statistical Graphics

Point GlyphsLayers

Dynamic Linking

Framework

p <- l_plot(x=Fertility, y=LifeExpectancy,
 color=region_cols, size=pop_size)

Framework

p <- l_plot(x=Fertility, y=LifeExpectancy,
 color=region_cols, size=pop_size)

x y
color size

Framework

x
y
color
size

p <- l_plot(x=Fertility, y=LifeExpectancy,
 color=region_cols, size=pop_size)

selected
active
showScales
showLabels
...

Plot States

n dimensional

1 dimensional
boolean

~ 35 other states

Example Visualizing Adverse Events

• Generate Adverse Events Data

• Analysis Data Model (ADaM) Data Structure for Adverse Event Analysis

PhUSE 2016

Paper DV03

Interactive Data Visualization and Exploration Using the Loon R Package

Adrian Waddell, F. Ho�mann-La Roche, Basel, Switzerland

ABSTRACT

Loon [1] is an open source toolkit for highly interactive data visualization with R [2]. Interactions with plots are
provided with mouse and keyboard gestures as well as via command line control and with inspectors. In this
paper, we illustrate how loon’s interactive displays and features can be used to perform an exploratory visual
analysis of adverse events data from clinical trials.

INTRODUCTION

Visualizing data is an essential part of good statistical practice. Plots are useful for revealing structure in the
data, checking model assumptions, detecting outliers and finding unanticipated patterns. Compared to static
visualization, interactive visualization adds natural and powerful ways to explore the data. With interactive
visualization an analyst can dive into the data and quickly react to visual clues by, for example, re-focusing and
creating interactive queries of the data. Further, linking visual attributes of the data points such as color and size
allows the analyst to compare di�erent visual representations of the data such as histograms and scatterplots.

Loon is a general-purpose toolkit to create interactive graphs such as scatterplots and histograms in R. The
scatterplot display provides, among other features, zooming, panning, selection and moving of points, dynamic
linking of plots, layering of visual information such as maps and regression lines, custom point glyphs (images,
text, star glyphs), and event bindings. Event bindings provide hooks to evaluate custom code at specific plot
state changes or mouse and keyboard interactions. Hence, event bindings can be used to add to or modify the
default behavior of the plot widgets.

Loon is an open source R package that works on Windows, Linux and OSX. Loon’s installation instructions and
manual can be found on the project webpage [1]. Once the package is installed the R-code provided in this paper
can be run to recreate the visualization settings we introduce. The R-code can be also found on the GitHub
repository [3].

GENERATING ADVERSE EVENTS DATA

We now present R-code to generate adverse event data for 300 patients that include a subset of the variables
defined in the ADaM data structure for adverse events [4]. That is, we only generate variables that are used for
the visualization settings presented in this paper. We also use native R data types whenever possible (e.g. Boolean
TRUE and FALSE instead of character �Y� and �N�, respectively). The variables that we generate are defined as in
[4] and are listed below.

Name Description
USUBJID Unique Subject ID
SEX Gender
AGE Age
ARM Study Arm
DISCDEAT Discontinued Study due to Death
TRTSDT Treatment Start
TRTEDT Treatment End
AESEQ Sequence Number
AETERM Reported Term for the Adverse Event
AESEVN Analysis Severity/Intensity (N)
ASTDT Analysis Start Date
AENDT Analysis End Date
ADURN Duration of Adverse Event

1

Example Visualizing Adverse Events

live demo

Example Visualizing Adverse Events

The loon inspector provides a graphical user interface for modifying and overseeing the scatterplot. For example,
to display the x and y scales on the scatterplot display one can check the “scales” check-box in the loon inspector.
The scatterplot display supports a number of direct interactions such as mouse-scrolling for zooming, right-click
dragging for panning and left-click dragging for selecting points. Selected points can be modified with the tools
provided in the “Modify” section of the loon inspector (e.g. point color, point size and point glyph). The return
value of l_plot, here assigned to p, is a plot handle to access and modify the scatterplot via the command line.
For example, p[�color�] returns a vector with the hexadecimal encoded color representation of each of the 300
points, and p[�size�] <- 5 sets the size of every point to 5.

One issue with the above scatterplot is the over-plotting of the point glyphs, that is, it is not possible to distinguish
all 300 points. One way to deal with over-plotting is to jitter the points, that is, to add a small amount of noise to
the point locations. In loon, this can be done by first selecting all the points and then by pressing the button
on the inspector. Jittering might move the points outside the current plotting area of the scatterplot. In order to
adjust the plotting area to include all points, one option is to press the scale to world button on the inspector. In
addition to jittering the points, one can also choose a point glyph with an outline so that the individual points
are better distinguished from each other. One way to do that is to press the button on the inspector while
the points are still selected. After deselecting the points by pressing select none on the inspector, the scatterplot
will then look similar to the following plot. Note that the seed in R does not influence the random jittering noise
for loon as loon is implemented in Tcl and Tk. Therefore, the plots with jittering are not perfectly reproducible
here and that is the case with the third next scatterplot.

From the above jittered scatterplot we note that, for example, more patients were sampled from the center of the
age range. Next, we encode gender and study arm as visual attributes onto the scatterplot. Our goal here is to
check whether there is an obvious relation between age, study arm, gender and the number of adverse events. To
do so, we encode gender with di�erent point glyphs and the study arm as glyph colors in the scatterplot of the
number of adverse events vs. age from above.

p[�glyph�] <- ifelse(sapply(l.aae, function(x)x$SEX)==�F�, �ccircle�, �csquare�)
p[�color�] <- ifelse(sapply(l.aae, function(x)x$ARM)==�ARM A�, �tan�, �steelblue�)

4

The loon inspector provides a graphical user interface for modifying and overseeing the scatterplot. For example,
to display the x and y scales on the scatterplot display one can check the “scales” check-box in the loon inspector.
The scatterplot display supports a number of direct interactions such as mouse-scrolling for zooming, right-click
dragging for panning and left-click dragging for selecting points. Selected points can be modified with the tools
provided in the “Modify” section of the loon inspector (e.g. point color, point size and point glyph). The return
value of l_plot, here assigned to p, is a plot handle to access and modify the scatterplot via the command line.
For example, p[�color�] returns a vector with the hexadecimal encoded color representation of each of the 300
points, and p[�size�] <- 5 sets the size of every point to 5.

One issue with the above scatterplot is the over-plotting of the point glyphs, that is, it is not possible to distinguish
all 300 points. One way to deal with over-plotting is to jitter the points, that is, to add a small amount of noise to
the point locations. In loon, this can be done by first selecting all the points and then by pressing the button
on the inspector. Jittering might move the points outside the current plotting area of the scatterplot. In order to
adjust the plotting area to include all points, one option is to press the scale to world button on the inspector. In
addition to jittering the points, one can also choose a point glyph with an outline so that the individual points
are better distinguished from each other. One way to do that is to press the button on the inspector while
the points are still selected. After deselecting the points by pressing select none on the inspector, the scatterplot
will then look similar to the following plot. Note that the seed in R does not influence the random jittering noise
for loon as loon is implemented in Tcl and Tk. Therefore, the plots with jittering are not perfectly reproducible
here and that is the case with the third next scatterplot.

From the above jittered scatterplot we note that, for example, more patients were sampled from the center of the
age range. Next, we encode gender and study arm as visual attributes onto the scatterplot. Our goal here is to
check whether there is an obvious relation between age, study arm, gender and the number of adverse events. To
do so, we encode gender with di�erent point glyphs and the study arm as glyph colors in the scatterplot of the
number of adverse events vs. age from above.

p[�glyph�] <- ifelse(sapply(l.aae, function(x)x$SEX)==�F�, �ccircle�, �csquare�)
p[�color�] <- ifelse(sapply(l.aae, function(x)x$ARM)==�ARM A�, �tan�, �steelblue�)

4

We can now see that patients from arm A (tan colored) tend to have more adverse events than the ones from arm
B (steelblue colored), which is not surprising given the way we generated the number of adverse events for each
arm. Also, gender seems to be evenly distributed among the two study arms, age and the number of adverse
events. Note that, instead of modifying one plot state at a time as done in the above code chunk, we can also use
the l_configure function to modify multiple scatterplot states in one function call. It is also possible to attach
a label to each scatterplot point that can be queried with the mouse pointer resulting in a “tool-tip” with the
itemlabel. For example, the itemlabel could be the patient USUBJID with a table of the adverse events, as seen
below.

t.label <- unlist(Map(function(x) {
t.x <- table(xaesAETERM)
paste(c(

paste0(�Patient �, x$USUBJID,�:�),
apply(cbind(t.x, names(t.x)), 1, function(x)paste(x, collapse = � �))

), collapse = �\n�)
}, l.aae))

l_configure(p, itemlabel=t.label, showItemlabels=TRUE)

Next, we plot a histogram with the number of headaches per patient.

h <- l_hist(
x = sapply(l.aae, function(x)sum(xaesAETERM == �HEADACHE�)),
xlabel = �Number of Headaches per Patient�,
yshows = �density�,
showScales = TRUE,
binwidth = 1

)

5

We can now see that patients from arm A (tan colored) tend to have more adverse events than the ones from arm
B (steelblue colored), which is not surprising given the way we generated the number of adverse events for each
arm. Also, gender seems to be evenly distributed among the two study arms, age and the number of adverse
events. Note that, instead of modifying one plot state at a time as done in the above code chunk, we can also use
the l_configure function to modify multiple scatterplot states in one function call. It is also possible to attach
a label to each scatterplot point that can be queried with the mouse pointer resulting in a “tool-tip” with the
itemlabel. For example, the itemlabel could be the patient USUBJID with a table of the adverse events, as seen
below.

t.label <- unlist(Map(function(x) {
t.x <- table(xaesAETERM)
paste(c(

paste0(�Patient �, x$USUBJID,�:�),
apply(cbind(t.x, names(t.x)), 1, function(x)paste(x, collapse = � �))

), collapse = �\n�)
}, l.aae))

l_configure(p, itemlabel=t.label, showItemlabels=TRUE)

Next, we plot a histogram with the number of headaches per patient.

h <- l_hist(
x = sapply(l.aae, function(x)sum(xaesAETERM == �HEADACHE�)),
xlabel = �Number of Headaches per Patient�,
yshows = �density�,
showScales = TRUE,
binwidth = 1

)

5

For l_hist, the yshows argument specifies that the histogram displays the density rather than the frequency
and the binwidth argument specifies a particular bin width for the binning algorithm. The element in the
histogram display can be used to adjust the binning origin and the bin width on the histogram interactively. This
histogram of headaches count per person becomes particularly interesting when linking it with the information
shown on the scatterplot above. That is, loon synchronizes certain states automatically for linked displays. For
example, for a linked scatterplot and histogram, some of the linked states include color, selected and size. In
the following code, we link the scatterplot of the number of adverse events vs. age with the histogram of number
of headaches per patient. Next, we select all the patients in the scatterplot that have more than 15 adverse
events and are older than 46. This selection will propagate to the histogram display as it is now linked with the
scatterplot. By default, selected points are highlighted in magenta in loon’s displays.

p[�linkingGroup�] <- "aes"
l_configure(h, linkingGroup="aes", sync="pull", showStackedColors=TRUE)
p[�selected�] <- naes > 15 & age > 46

In the above code we have to specify the sync argument so that loon knows how to initially align the linked
states between the linked displays. We also set the showStackedColors to TRUE so that the color state of the
histogram gets visually encoded.

We end this short introduction of loon with a plot that shows the individual adverse events on a time line for each
patient that is selected in the scatterplot or histogram displays. The adverse events are colored orangered if they
are of severity 3 and dodgerblue otherwise. We also encode the treatment period with a rectangle that is colored
lemonchi�on1 if the patient discontinued the study due to death and gray otherwise. This plot can be useful in
investigating whether there are any patterns within the adverse events data such as an increase in frequency and
severity of adverse event preceding a patient’s death. This visualization uses some advanced loon features such as
event bindings and layers. More information about these features can be found in the loon manual [1].

createAEplot <- function() {
pae <- l_plot(showItemlabels=TRUE, xlabel="Treatment Relative Day", showScales=TRUE)

rectHeight <- 4
y <- 0

scale01 <- function(x) {
dx <- diff(range(x))
if (dx == 0) rep(0, length(x)) else (x-min(x))/dx

}

draw_patient <- function(x) {
patient_label <- paste("Patient", x$USUBJID)
g <- l_layer_group(pae, label=patient_label)
l_layer_rectangle(

pae, parent=g,
x = c(1, x$TRTEDT - x$TRTSDT + 1), y = c(y, y+rectHeight),
color = if(x$DISCDEAT) "lemonchiffon1" else "gray80",
linecolor = "",

6

For l_hist, the yshows argument specifies that the histogram displays the density rather than the frequency
and the binwidth argument specifies a particular bin width for the binning algorithm. The element in the
histogram display can be used to adjust the binning origin and the bin width on the histogram interactively. This
histogram of headaches count per person becomes particularly interesting when linking it with the information
shown on the scatterplot above. That is, loon synchronizes certain states automatically for linked displays. For
example, for a linked scatterplot and histogram, some of the linked states include color, selected and size. In
the following code, we link the scatterplot of the number of adverse events vs. age with the histogram of number
of headaches per patient. Next, we select all the patients in the scatterplot that have more than 15 adverse
events and are older than 46. This selection will propagate to the histogram display as it is now linked with the
scatterplot. By default, selected points are highlighted in magenta in loon’s displays.

p[�linkingGroup�] <- "aes"
l_configure(h, linkingGroup="aes", sync="pull", showStackedColors=TRUE)
p[�selected�] <- naes > 15 & age > 46

In the above code we have to specify the sync argument so that loon knows how to initially align the linked
states between the linked displays. We also set the showStackedColors to TRUE so that the color state of the
histogram gets visually encoded.

We end this short introduction of loon with a plot that shows the individual adverse events on a time line for each
patient that is selected in the scatterplot or histogram displays. The adverse events are colored orangered if they
are of severity 3 and dodgerblue otherwise. We also encode the treatment period with a rectangle that is colored
lemonchi�on1 if the patient discontinued the study due to death and gray otherwise. This plot can be useful in
investigating whether there are any patterns within the adverse events data such as an increase in frequency and
severity of adverse event preceding a patient’s death. This visualization uses some advanced loon features such as
event bindings and layers. More information about these features can be found in the loon manual [1].

createAEplot <- function() {
pae <- l_plot(showItemlabels=TRUE, xlabel="Treatment Relative Day", showScales=TRUE)

rectHeight <- 4
y <- 0

scale01 <- function(x) {
dx <- diff(range(x))
if (dx == 0) rep(0, length(x)) else (x-min(x))/dx

}

draw_patient <- function(x) {
patient_label <- paste("Patient", x$USUBJID)
g <- l_layer_group(pae, label=patient_label)
l_layer_rectangle(

pae, parent=g,
x = c(1, x$TRTEDT - x$TRTSDT + 1), y = c(y, y+rectHeight),
color = if(x$DISCDEAT) "lemonchiffon1" else "gray80",
linecolor = "",

6

This adverse events plot supports itemlabels for the individual adverse events. Notice that the adverse events lines
are stacked in a space-e�cient manner.

CONCLUSION
In this paper, we illustrate some of loon’s displays and features in the context of adverse events data. We generate
the data to closely match the AdAM data structure specifications for adverse events [4]. Therefore, it should be
possible to use the code provided in this paper to analyze adverse events data from actual clinical trials without
too much additional work. The tools and techniques used for our visualization settings include jittering, encoding
information with glyph color and shape, interactive querying using tool-tips, linking, layering, and bindings. We
encourage the reader to run this visual analysis on a local installation of R and loon and further explore loon’s
features. Loon is a powerful interactive visualization toolkit that has many more features and capabilities to
visually explore high-dimensional data.

REFERENCES
[1] Loon’s website with installation instructions and user manual: http://waddella.github.io/loon/
[2] R Core Team (2016). R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing. Vienna, Austria.
[3] GitHub repository with R-code for PhUSE 2016 adverse events paper by Adrian Waddell: http://github.com/
waddella/phuse2016_adverse_events
[4] Analysis Data Model (ADaM) Data Structure for Adverse Event Analysis: http://www.cdisc.org/system/files/
all/standard_category/application/pdf/adam_ae_final_v1.pdf

ACKNOWLEDGEMENTS
Loon is joint work with Prof. R. Wayne Oldford from the University of Waterloo, Waterloo, Canada.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Please contact the author at:
Adrian Waddell
F. Ho�mann-La Roche
Grenzacherstrasse 124
4070 Basel
+41 61687 47 33
adrian.waddell@roche.com
http://adrian.waddell.ch

8

waddella.github.io/loon

