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Abstract

We describe an interactive, computer-assisted framework for com-
bining parts of a set of photographs into a single composite picture,
a process we call “digital photomontage.” Our framework makes
use of two techniques primarily: graph-cut optimization, to choose
good seams within the constituent images so that they can be com-
bined as seamlessly as possible; and gradient-domain fusion, a pro-
cess based on Poisson equations, to further reduce any remaining
visible artifacts in the composite. Also central to the framework is
a suite of interactive tools that allow the user to specify a variety
of high-level image objectives, either globally across the image, or
locally through a painting-style interface. Image objectives are ap-
plied independently at each pixel location and generally involve a
function of the pixel values (such as “maximum contrast”) drawn
from that same location in the set of source images. Typically, a
user applies a series of image objectives iteratively in order to cre-
ate a finished composite. The power of this framework lies in its
generality; we show how it can be used for a wide variety of appli-
cations, including “selective composites” (for instance, group pho-
tos in which everyone looks their best), relighting, extended depth
of field, panoramic stitching, clean-plate production, stroboscopic
visualization of movement, and time-lapse mosaics.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction Techniques; I.4.9 [Image Processing and
Computer Vision]: Applications

Keywords: Interactive image editing, image compositing, user-
guided optimization

1 Introduction

Seldom does a photograph record what we perceive with our eyes.
Often, the scene captured in a photo is quite unexpected — and
disappointing — compared to what we believe we have seen. A
common example is catching someone with their eyes closed: we
almost never consciously perceive an eye blink, and yet, there it
is in the photo — “the camera never lies.” Our higher cognitive
functions constantly mediate our perceptions so that in photogra-
phy, very often, what you get is decidedly not what you perceive.
“What you get,” generally speaking, is a frozen moment in time,
whereas “what you perceive” is some time- and spatially-filtered
version of the evolving scene.

http://grail.cs.washington.edu/projects/photomontage/

In this paper, we look at how digital photography can be used to
create photographic images that more accurately convey our sub-
jective impressions — or go beyond them, providing visualizations
or a greater degree of artistic expression. Our approach is to utilize
multiple photos of a scene, taken with a digital camera, in which
some aspect of the scene or camera parameters varies with each
photo. (A film camera could also be used, but digital photography
makes the process of taking large numbers of exposures particularly
easy and inexpensive.) These photographs are then pieced together,
via an interactive system, to create a single photograph that better
conveys the photographer’s subjective perception of the scene. We
call this process digital photomontage, after the traditional process
of combining parts of a variety of photographs to form a composite
picture, known as photomontage.

The primary technical challenges of photomontage are 1) to choose
good seams between parts of the various images so that they can
be joined with as few visible artifacts as possible; and 2) to reduce
any remaining artifacts through a process that fuses the image re-
gions. To this end, our approach makes use of (and combines) two
techniques: graph-cut optimization [Boykov et al. 2001], which we
use to find the best possible seams along which to cut the vari-
ous source images; and gradient-domain fusion (based on Poisson
equations [Pérez et al. 2003; Fattal et al. 2002]), which we use to
reduce or remove any visible artifacts that might remain after the
image seams are joined.

This paper makes contributions in a number of areas. Within the
graph-cut optimization, one must develop appropriate cost func-
tions that will lead to desired optima. We introduce several new
cost functions that extend the applicability of graph-cuts to a num-
ber of new applications (listed below). We also demonstrate a user
interface that is designed to encourage the user to treat a stack of
images as a single, three-dimensional entity, and to explore and
find the best parts of the stack to combine into a single compos-
ite. The interface allows the user to create a composite by painting
with high-level goals; rather then requiring the user to manually se-
lect specific sources, the system automatically selects and combines
images from the stack that best meet these goals.

In this paper, we show how our framework for digital photomontage
can be used for a wide variety of applications, including:

Selective composites: creating images that combine all the best el-
ements from a series of photos of a single, changing scene — for
example, creating a group portrait in which everyone looks their
best (Figure 1), or creating new individual portraits from multiple
input portraits (Figures 6 and 10).

Extended depth of field: creating an image with an extended focal
range from a series of images focused at different depths, particu-
larly useful for macro photography (Figure 2).

Relighting: interactively lighting a scene, or a portrait, using por-
tions of images taken under different unknown lighting conditions
(Figures 4 and 11).

Stroboscopic visualization of movement. automatically creating
stroboscopic images from a series of photographs or a video se-
quence in which a subject is moving (Figure 5).

1



To appear in the ACM SIGGRAPH ’04 conference proceedings

Figure 1 From a set of five source images (of which four are shown on the left), we quickly create a composite family portrait in which everyone is smiling
and looking at the camera (right). We simply flip through the stack and coarsely draw strokes using the designated source image objective over the people we
wish to add to the composite. The user-applied strokes and computed regions are color-coded by the borders of the source images on the left (middle).

Time-lapse mosaics: merging a time-lapse series into a single im-
age in which time varies across the frame, without visible artifacts
from movement in the scene (Figure 7).

Panoramic stitching: creating panoramic mosaics from multiple
images covering different portions of a scene, without ghosting ar-
tifacts due to motion of foreground objects (Figure 8).

Clean-plate production: removing transient objects (such as peo-
ple) from a scene in order to produce a clear view of the back-
ground, known as a “clean plate” (Figures 9 and 12).

1.1 Related work

The history of photomontage is nearly as old as the history of pho-
tography itself. Photomontage has been practiced at least since the
mid-nineteenth century, when artists like Oscar Rejlander [1857]
and Henry Peach Robinson [1869] began combining multiple pho-
tographs to express greater detail. Much more recently, artists like
Scott Mutter [1992] and Jerry Uelsmann [1992] have used a similar
process for a very different purpose: to achieve a surrealistic effect.
Whether for realism or surrealism, these artists all face the same
challenges of merging multiple images effectively.

For digital images, the earliest and most well-known work in image
fusion used Laplacian pyramids and per-pixel heuristics of salience
to fuse two images [Ogden et al. 1985; Burt and Kolczynski 1993].
These early results demonstrated the possibilities of obtaining in-
creased dynamic range and depth of field, as well as fused images
of objects under varying illumination. However, these earlier ap-
proaches had difficulty capturing fine detail. They also did not pro-
vide any interactive control over the results. Haeberli [1994] also
demonstrated a simplified version of this approach for creating ex-
tended depth-of-field images; however, his technique tended to pro-
duce noisy results due to the lack of spatial regularization. He also
demonstrated simple relighting of objects by adding several images
taken under different illuminations; we improve upon this work,
allowing a user to apply the various illuminations locally, using a
painting interface.

More recently, the texture synthesis community has shown that rep-
resenting the quality of pixel combinations as a Markov Random
Field and formulating the problem as a minimum-cost graph-cut al-
lows the possibility of quickly finding good seams. Graph-cut opti-
mization [Boykov et al. 2001], as the technique is known, has been
used for a variety of tasks, including image segmentation, stereo
matching, and optical flow. Kwatra et al. [2003] introduced the use
of graph-cuts for combining images. Although they mostly focused
on stochastic textures, they did demonstrate the ability to combine

two natural images into one composite by constraining certain pix-
els to come from one of the two sources. We extend this approach to
the fusion of multiple source images using a set of high-level image
objectives.

Gradient-domain fusion has also been used, in various forms, to
create new images from a variety of sources. Weiss [2001] used this
basic approach to create “intrinsic images,” and Fattal et al. [2002]
used such an approach for high-dynamic-range compression. Our
approach is most closely related to Poisson image editing, as intro-
duced by Perez et al. [2003], in which a region of a single source
image is copied into a destination image in the gradient domain.
Our work differs, however, in that we copy the gradients from
many regions simultaneously, and we have no single “destination
image” to provide boundary conditions. Thus, in our case, the Pois-
son equation must be solved over the entire composite space. We
also extend this earlier work by introducing discontinuities in the
Poisson equation along high-gradient seams. Finally, in concur-
rent work, Levin et al. [2004] use gradient-domain fusion to stitch
panoramic mosaics, and Raskar et al. [2004] fuse images in the gra-
dient domain of a scene under varying illumination to create surre-
alist images and increase information density.

Standard image-editing tools such as Adobe Photoshop can be
used for photomontage; however, they require mostly manual se-
lection of boundaries, which is time consuming and burdensome.
While interactive segmentation algorithms like “intelligent scis-
sors” [Mortensen and Barrett 1995] do exist, they are not suitable
for combining multiple images simultaneously.

Finally, image fusion has also been used, in one form or another, in
a variety of specific applications. Salient Stills [Massey and Bender
1996] use image fusion for storytelling. Multiple frames of video
are first aligned into one frame of reference and then combined into
a composite. In areas where multiple frames overlap, simple per-
pixel heuristics such as a median filter are used to choose a source.
Image mosaics [Szeliski and Shum 1997] combine multiple, dis-
placed images into a single panorama; here, the primary techni-
cal challenge is image alignment. However, once the images have
been aligned, moving subjects and exposure variations can make
the task of compositing the aligned images together challenging.
These are problems that we address specifically in this paper. Ak-
ers et al. [2003] present a manual painting system for creating pho-
tographs of objects under variable illumination. Their work, how-
ever, assumes known lighting directions, which makes data acquisi-
tion harder. Also, the user must manually paint in the regions, mak-
ing it difficult to avoid artifacts between different images. Shape-
time photography [Freeman and Zhang 2003] produces compos-
ites from video sequences that show the closest imaged surface to
the camera at each pixel. Finally, in microscopy and macro pho-
tography of small specimens such as insects and flowers, scientists
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Figure 2 A set of macro photographs of an ant (three of eleven used shown on the left) taken at different focal lengths. We use a global maximum contrast
image objective to compute the graph-cut composite automatically (top left, with an inset to show detail, and the labeling shown directly below). A small
number of remaining artifacts disappear after gradient-domain fusion (top, middle). For comparison we show composites made by Auto-Montage (top, right),
by Haeberli’s method (bottom, middle), and by Laplacian pyramids (bottom, right). All of these other approaches have artifacts; Haeberli’s method creates
excessive noise, Auto-Montage fails to attach some hairs to the body, and Laplacian pyramids create halos around some of the hairs.

struggle with a very limited depth of field. To create focused im-
ages of three-dimensional specimens, it is common for scientists to
combine multiple photographs into a single extended-depth-of-field
image. The commercial software package Auto-Montage [Syn-
croscopy 2003] is the most commonly used system for this task.

Thus, most of the applications we explore in this paper are not new:
many have been explored, in one form or another, in previous work.
While the results of our framework compare favorably with — and
in certain cases actually improve upon — this previous work, we
believe that it is the convenience with which our framework can
produce comparable or improved output for such a wide variety of
applications that makes it so useful. In addition, we introduce a few
new applications of image fusion, including selective composites
and time-lapse mosaics.

In the next section, we present our digital photomontage frame-
work. Sections 3 and 4 discuss the two main technical aspects of
our work: the algorithms we use for graph-cut optimization, and for
gradient-domain fusion, respectively. Section 5 presents our results
in detail, and Section 6 suggests some areas for future research.

2 The photomontage framework

The digital photomontage process begins with a set of source im-
ages, or image stack. For best results, the source images should gen-
erally be related in some way. For instance, they might all be of the
same scene but with different lighting or camera positions. Or they
might all be of a changing scene, but with the camera locked down
and the camera parameters fixed. When a static camera is desired,
the simplest approach is to use a tripod. Alternatively, in many cases
the images can be automatically aligned after the fact using one of a
variety of previously published methods [Szeliski and Shum 1997;
Lucas and Kanade 1981].

Our application interface makes use of two main windows: a source
window, in which the user can scroll through the source images; and
a composite window, in which the user can see and interact with the
current result. New, intermediate results can also be added to the

set of source images at any time, in which case they can also be
viewed in the source window and selected by the various automatic
algorithms about to be described.

Typically, the user goes through an iterative refinement process to
create a composite. Associated with the composite is a labeling,
which is an array that specifies the source image for each pixel in
the composite.

2.1 Objectives

After loading a stack, the user can select an image objective that
can be applied globally to the entire image or locally to only a few
pixels through a “painting”-style interface. The image objective at
each pixel specifies a property that the user would like to see at
each pixel in the designated area of the composite (or the entire
composite, if it is specified globally). The image objective is com-
puted independently at each pixel position p, based on the set of
pixel values drawn from that same position p in each of the source
images. We denote this set the span at each pixel.

The general image objectives that may be applied in a variety of
applications include:

Designated color: a specific desired color to either match or avoid
(Figures 4 and 11).

Minimum or maximum luminance: the darkest or lightest pixel in
the span (Figures 4 and 11).

Minimum or maximum contrast: the pixel from the span with the
lowest or highest local contrast in the span (Figures 2 and 9).

Minimum or maximum likelihood: the least or most common pixel
value in the span (subject to a particular histogram quantization
function, Figures 5 and 12).

Eraser: the color most different from that of the current composite
(Figure 12).

Minimum or maximum difference: the color least or most similar
to the color at position p of a specific source image in the stack
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Figure 3 A flow diagram of a typical interaction with our photomontage
framework. In this example, the user starts with a set of six source im-
ages (top) taken under different lighting conditions and attempts to create
a final composite with attractive lighting. Initially, the first source image is
used as the current composite and labeling (the labeling, shown beneath the
composite, is initially constant everywhere since all pixels of the compos-
ite come from the same source image). The user then modifies the current
composite and labeling by iteratively painting with the single-image brush
(described in Section 2.2) with various image objectives. Finally, gradient-
domain fusion is applied in order to remove any remaining visible seams.

(Figure 5).

Designated image: a specific source image in the stack (Fig-
ures 1, 5, 6, and 10).

For some photomontage applications we design custom image ob-
jectives (e.g., Figures 7 and 8). There is also a second type of objec-
tive that can be specified by the user, which we call a seam objec-
tive. The seam objective measures the suitability of a seam between
two image regions. Unlike the image objective, it is always speci-
fied globally across the entire image. The types of seam objectives
we have implemented include:

Colors: match colors across seams (Figures 5, 6, and 10).

Colors & gradients: match colors and color gradients across seams
(Figures 2, 7, 8, 9, and 12).

Colors & edges: match colors across seams, but prefer seams that
lie along edges (Figures 1, 4, and 11).

The designated image objective was originally introduced by Kwa-
tra et al. [2003] to interactively merge image regions. Many of the
other objectives that we introduce do not require the selection of a
specific source, thus allowing the user to specify high-level goals
for which the system automatically selects the most appropriate
sources. The colors and colors & edges seam objectives were also
introduced by Kwatra et al..

The relative importance of the image vs. seam objectives must be
chosen by the user. However, the effect of this importance can be
seen very naturally in the result. A relatively low-importance seam
objective results in many small regions, and thus many seams. A
higher-importance seam objective results in fewer, larger regions.
Since different applications call for different amounts of spatial reg-
ularization vs. adherence to the image objective, we have found the
ability to control this trade-off to be quite useful in practice.

Typically, a seam objective is chosen just once for the entire iter-
ative process, whereas a new image objective is specified at each
iterative step. Once an image objective and seam objective are cho-
sen, the system performs a graph-cut optimization that incorporates
the relative importance of the image and seam objectives.

2.2 Brushes

If the image objective is specified globally across the space of the
composite, then the optimization considers all possible source im-
ages and fuses together a composite automatically. To specify an
image objective locally, the user can paint with one of two types of
brushes. If the multi-image brush is used, then the framework pro-
ceeds as if a global objective had been specified: all possible source
images are fused together in order to best meet the requirements
of the locally-specified image objective and the globally-specified
seam objective. However, this operation can take significant time to
compute.

Thus, more frequently the single-image brush is used; in this case
graph-cut optimization is performed between the current compos-
ite and each of the source images independently. This process is
depicted in Figure 3. After painting with the brush, a subset of the
source images that best satisfy the locally-specified image objective
is presented to the user, along with a shaded indication of the region
that would be copied to the composite, in a new window, called the
selection window. The source images are ordered in this window
according to how well they meet the image objective. As the user
scrolls through the source images in the selection window, the com-
posite window is continually updated to show the result of copying
the indicated region of the current source to the current composite.
The user can “accept” the current composite at any time.

Alternatively, the user can further refine the automatically selected
seam between the selected source image and the current composite
in one of two ways. First, the user can enlarge the portion of the
selected source image by painting additional strokes in the results
window. In this case, any pixels beneath these new strokes are re-
quired to come from the source image. Second, the user can adjust
an “inertia” parameter: the higher the inertia setting, the smaller
the region of the source image that is automatically selected. Since
graph-cuts are a global optimization method, a brush stroke can
have surprising, global effects. This parameter allows the user to
specify that only pixels close to the brush stroke should be affected
by the stroke.
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Figure 4 Four of a set of five images (left) of a bronze sculpture under different lighting conditions (taken by waving a desk lamp in front of the sculpture).
The user begins with a single source image, and then creates the lighting of the final composite by painting a series of strokes with various image objectives.
Strokes using the maximum and minimum luminance objectives are used to remove and add both highlights and shadows. Strokes using the designated color
objective are used to select the color of the statue’s base, and to create an evenly lit table surface (the colors of the strokes shown indicate the source image
chosen by the image objective). The supplemental video shows the process of creating this result.

This painting process is repeated iteratively. At each step, the user
can choose a new image objective and apply it either globally or
locally, by painting new strokes. Finally, in some cases the resulting
composite may have a few, lingering visible artifacts at seams. If so,
the user can perform a final gradient-domain fusion step to improve
the result.

The next two sections describe the graph-cut optimization and
gradient-domain fusion steps in detail.

3 Graph-cut optimization

We use graph-cut optimization to create a composite that satisfies
the image and seam objectives specified by the user.

Suppose we have n source images S1, . . . ,Sn. To form a composite,
we must choose a source image Si for each pixel p. We call the
mapping between pixels and source images a labeling and denote
the label for each pixel L(p). We say that a seam exists between two
neighboring pixels p,q in the composite if L(p) �= L(q).

Boykov et al. [2001] have developed graph-cut techniques to opti-
mize pixel labeling problems; we use their approach (and software).
The algorithm uses “alpha expansion” to minimize a cost function.
Although a full description of this algorithm is beyond the scope of
this paper, it essentially works as follows. The t’th iteration of the
inner loop of the algorithm takes a specific label α and a current la-
beling Lt as input and computes an optimal labeling Lt+1 such that
Lt+1(p) = Lt(p) or Lt+1(p) = α . The outer loop iterates over each
possible label. The algorithm terminates when a pass over all labels
has occurred that fails to reduce the cost function. If the cost func-
tion is a metric, the labeling computed is guaranteed to be within a
factor of two of the global minimum.

In our case, we define the cost function C of a pixel labeling L as
the sum of two terms: a data penalty Cd over all pixels p and an
interaction penalty Ci over all pairs of neighboring pixels p,q:

C(L) = ∑
p

Cd(p, L(p)) + ∑
p,q

Ci(p, q, L(p), L(q)) (1)

For our application, the data penalty is defined by the distance to
the image objective, whereas the interaction penalty is defined by
the distance to the seam objective.

Specifically, we define the data penalty Cd(p, L(p)) in the following
ways as selected by the user:

Designated color (most or least similar): the Euclidean distance in
RGB space of the source image pixel SL(p)(p) from a user-specified
target color. We supply a user interface for the selection of a pixel
in the span that is used as the color target.

Minimum (maximum) luminance: the distance in luminance from
the minimum (maximum) luminance pixel in a pixels span.

Minimum (maximum) likelihood: the probability (or one minus
the probability) of the color at SL(p)(p), given a probability distri-
bution function formed from the color histogram of all pixels in the
span (the three color channels are histogrammed separately, using
20 bins, and treated as independent random variables).

Eraser: the Euclidean distance in RGB space of the source image
pixel SL(p)(p) from the current composite color.

Minimum (maximum) difference: the Euclidean distance in RGB
space of the source image pixel SL(p)(p) from Su(p), where Su is a
user-specified source image.

Designated image: 0 if L(p) = u, where Su is a user-specified
source image, and a large penalty otherwise.

Contrast: a measure created by subtracting the convolution of two
Gaussian blur kernels computed at different scales [Reinhard et al.
2002].

We define the seam objective to be 0 if L(p) = L(q). Otherwise, we
define the objective as:

Ci(p, q, L(p), L(q)) =




X if matching “colors”
Y if matching “gradients”

X +Y if matching “colors & gradients”
X/Z if matching “colors & edges”

where

X = ‖SL(p)(p)−SL(q)(p)‖ + ‖SL(p)(q)−SL(q)(q)‖
Y = ‖∇SL(p)(p)−∇SL(q)(p)‖ + ‖∇SL(p)(q)−∇SL(q)(q)‖
Z = EL(p)(p,q) + EL(q)(p,q))

and ∇Sz(p) is a 6-component color gradient (in R, G, and B) of
image z at pixel p, and Ez(p,q) is the scalar edge potential between
two neighboring pixels p and q of image z, computed using a Sobel
filter.

Note that all of these seam objectives are metrics, except X/Z which
is a semi-metric since it does not always satisfy the triangle inequal-

5



To appear in the ACM SIGGRAPH ’04 conference proceedings

Figure 5 To capture the progression of time in a single image we generate this stroboscopic image from a video sequence. Several video frames are shown in
the first column. We first create a background image using the maximum likelihood objective (second column, top) and then add it to the stack. Then, we use
the maximum difference objective to compute a composite that is maximally different from the background (second column, bottom). A lower weight for the
image objective results in fewer visible seams but also fewer instances of the girl (third column, top). Beginning with the first result, the user removes the other
girls by brushing in parts of the background and one of the sources using the designated source objective (third column, bottom) to create a final result (right).

ity. When this seam penalty is used, many of the theoretical guaran-
tees of the “alpha expansion” algorithm are lost. However, in prac-
tice we have found it still gives good results. Kwatra et al. [2003]
also successfully use alpha expansion with this interaction penalty.

Finally, the “inertia” control, described in the previous section,
is implemented by calculating an approximate Euclidean distance
map [Danielsson 1980] D(p) that describes the distance from the
painted area at each point p. (This distance is 0 within the area.)
A weighted version of this distance is added to the overall cost
function being minimized by the graph-cut optimization whenever
Lt+1(p) �= Lt(p). The “inertia” parameter is precisely this weight.
Thus, the higher the inertia, the less likely the graph-cut is to select
a new label for regions that are far from the painted area.

4 Gradient-domain fusion

For many applications the source images are too dissimilar for a
graph-cut alone to result in visually seamless composites. If the
graph-cut optimization cannot find ideal seams, artifacts may still
exist.

In these cases, it is useful to view the input images as sources of
color gradients rather than sources of color. Using the same graph-
cut labeling, we copy color gradients to form a composite vector
field. We then calculate a color composite whose gradients best
match this vector field. Doing so allows us to smooth out color dif-
ferences between juxtaposed image regions. We call this process
gradient-domain fusion.

The composite color image is computed separately in the three
color channels. The details of this task have been well described
by other researchers [Fattal et al. 2002; Pérez et al. 2003]. As they
noted, unless the gradient field is conservative, no image exists
whose gradient exactly matches the input. Instead, a best-fit image
in a least-squares sense can be calculated by solving a discretization
of the Poisson equation.

For a single color channel, we seek to solve for the pixel values
I(x,y). We re-order these values into a vector v, but, for convenience
here, we still refer to each element vx.y based on its corresponding
(x,y) pixel coordinates. An input gradient ∇I(x,y) specifies two lin-

ear equations, each involving two variables:

vx+1,y − vx,y = ∇Ix(x,y) (2)

vx,y+1 − vx,y = ∇Iy(x,y) (3)

Like Fattal et al. [2002], we employ Neumann boundary conditions,
equivalent to dropping any equations involving pixels outside the
boundaries of the image. In addition, because the gradient equations
only define v up to an additive constant, we ask the user to choose
a pixel whose color will be constrained to the color in its source
image and then add this constraint to the linear system.

The resulting system of equations is over-constrained. We solve for
the least-squares optimal vector v using conjugate gradients applied
to the associated normal equations [Meyer 2000]. This algorithm
can be slow; however, we generally compute this image only once
as a final stage of the process. As discussed by Fattal et al. [2002]
and others, a solution can be computed very quickly using multigrid
methods, at the cost of a more complex implementation.

One additional complication can arise when using gradient-domain
fusion with a seam cost that cuts along high-gradient edges. Blend-
ing across these seams may result in objectionable blurring arti-
facts, since strong edges may be blended away. We solve this prob-
lem by simply dropping the linear constraints wherever the edge
strength, as measured by a Sobel operator, exceeds a certain thresh-
old.

5 Results

We now demonstrate how our system can be applied to a variety
of tasks. Depending on the specific task, a different set of image
and seam objectives will be used to achieve the goal. Some results
(Figures 2, 7, 8,and 9) do not require painting by the user; they
are computed automatically by applying an image objective glob-
ally over the whole image. Other results are created by user-painted
image objectives (Figures 1, 4, 6, 10, and 11). Finally, the user may
choose to begin with a globally-computed composite, and then in-
teractively modify it (Figures 5 and 12).

Selective composites. Photomontage allows us to interactively se-
lect and assemble the best fragments of a set of images. Pho-
tographs of a group of people are a good example; it is difficult
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Figure 6 We use a set of portraits (first row) to mix and match facial features, to either improve a portrait, or create entirely new people. The faces are first
hand-aligned, for example, to place all the noses in the same location. In the first two images in the second row, we replace the closed eyes of a portrait with the
open eyes of another. The user paints strokes with the designated source objective to specify desired features. Next, we create a fictional person by combining
three source portraits. Gradient-domain fusion is used to smooth out skin tone differences. Finally, we show two additional mixed portraits.

to capture a group portrait without a few closed eyes or awkward
expressions. In Figure 1, we merge several group portraits into one
that is better than any of the originals. Even portraiture of a single
person can be challenging and can be aided by assembling a com-
posite (Figure 6). We can also push the photomontage paradigm
to create entirely fictional but surprisingly realistic (and sometimes
funny) composite portraits of different people (Figures 6 and 10).

Image-based relighting. Photography is the art of painting with
light; our next application of photomontage demonstrates this point.
Studio portraiture (Figure 11) and product photography (Figure 4)
typically involve a complex lighting setup. Instead, we allow a user
to literally paint light, and simulate complex lighting with just a few
brush strokes. After capturing a set of images taken under various
lighting conditions, we quickly relight a subject, both with real-
istic and non-physically realizable lighting. This allows photogra-
phers to experiment with a wide range of lighting possibilities after
a shoot, instead of carefully planning a desired effect in advance.
Note that several of the image objectives can be thought of as high-
light or shadow brushes that indicate the desired placement of these
lighting effects in a scene. The user can paint with the color image
objective using a bright, highlight color or a dark, shadow color to
find highlights or shadows in a specific location in the set of source
images. Alternatively, the maximum or minimum luminance objec-
tives can also be used to find highlights or shadows, respectively,
and add them to the composite.

Extended depth-of-field. In microscopy and macro photography of
small specimens such as insects and flowers, scientists struggle with
a very limited depth of field. To create focused images of three-
dimensional specimens, it is common for scientists to combine mul-
tiple photographs into a single, extended depth-of-field image. The
commercial software package Auto-Montage [Syncroscopy 2003]
is the most commonly used system for this task. This problem has
also been addressed using Laplacian pyramids [Ogden et al. 1985;
Burt and Kolczynski 1993]. Finally, Haeberli [1994] demonstrates
a simplification of this approach that uses per-pixel heuristics of
contrast to select a source. We similarly use a measure of contrast
to select sources, but do so with the spatial consistency afforded
by graph-cut optimization. This application requires no user input
since the objectives are global over the full image. To demonstrate

our system we obtained a stack of images of an ant from an ento-
mologist. Figure 2 shows a comparison of the results using previous
algorithms to our approach. Our result has fewer seam artifacts and
more regions in focus.

Image mosaics. Image mosaics [Szeliski and Shum 1997] combine
multiple, displaced images into a single panorama; here, the pri-
mary technical challenge is image alignment. However, once the
images have been aligned, moving objects and exposure variations
can make the task of compositing the aligned images together chal-
lenging. If people in a scene move between images, simple linear
blending of source images results in ghosts (Figure 8). An ideal
composite will integrate these different moments of time into one,
natural still. Davis [1998] addresses this problem by finding op-
timal seams with Dijkstra’s algorithm; however it cannot handle
many overlapping images. Uyttendaele et al. [2001] use a vertex
cover algorithm and exposure compensation to compute mosaics.
We have tested our approach on the same data set used in their pa-
per in Figure 8, and our results compare favorably.

Background reconstruction. In many cases it can be difficult to
capture an image of a scene free of unwanted obstructions, such as
passing people or power lines. We demonstrate the application of
our system to reconstructing a background image free of obstruc-
tion. Figure 12 shows how we can remove people from a crowded
town square in front of a cathedral by merging several images of
the scene taken on a tripod. We also show that our results improve
upon common alternate approaches. In Figure 9, we use multiple
photographs taken from offset positions of a mountain scene that is
obstructed with power lines, to create an image free of wires.

Visualizing motion. Artists have long used a variety of techniques
to visualize an interval of time in a single image. Photographers like
Jules-Etienne Marey [Braun 1992] and Eadward Muybridge [1955]
have created compelling stroboscopic visualizations of moving hu-
mans and other types of motion. Traditional stroboscopy depicts
multiple instances, or sprites, of a moving subject at regular inter-
vals of time. Using graph-cut optimization and a video sequence
as input, we are able to produce a similar effect (Figure 5). The
optimization goes beyond what is possible with regular intervals by
choosing sprites that appear to flow seamlessly into each other. This
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Figure 7 A few frames of a video sequence depicting the collapse of a
building (top row). Using a custom image objective that encourages linear
time variation across the space of the composite, we depict time flowing
right to left, and then left to right (middle row). Time can also flow bottom
to top, or top to bottom (bottom row).

effect would be very difficult to create manually. Simply averaging
the selected images would result in a series of ghosts superimposed
on the background.

Time-lapse mosaics. Time-lapse photography allows us to witness
events that occur over too long an interval for a human to perceive.
Creating a time-lapse image can be challenging, as there is typically
large-scale variation in lighting and transient scene elements in a
time-lapse sequence. Our photomontage framework is well suited
for this task as shown in Figure 7.

6 Conclusions and future work

We have presented a framework that allows a user to easily and
quickly create a digital photomontage. We have demonstrated a sys-
tem that combines graph-cut optimization and a gradient domain
image-fusion algorithm with an intuitive user interface for defin-
ing local and global objectives. Our work on digital photomontage
suggests a number of areas for future work.

Our system has been shown to be applicable to a wide range of pho-
tomontage applications; however, we strongly suspect that there are
many more. In the process of conducting this research we have dis-
covered that a surprising array of beautiful, useful, and unexpected
images can arise from an image stack. An exciting opportunity for
future work is to discover more applications of photomontage. This
would involve finding new types of image stacks than the ones pre-
sented here, and possibly new image objectives that would be used
to find the best parts of a stack to retain in a composite.

Several of the applications we present require user guidance in se-
lecting the best parts of images (e.g., image-based relighting and
selective composites); more sophisticated image objectives could
be defined that automatically find the best parts of images. For ex-
ample, the group portrait in Figure 1 could created by automatically
finding the best portrait of each person.

Finally, it may be possible to apply our approach to other types of
data, such as 2.5D layered images, video sequences, 3D volumes,
or even polygonal models. Such data sets would probably require
new image and seam objectives that consider the relationships be-
tween the additional dimensions of the data, and an interface for
controlling optimization in these higher dimensional spaces.
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Figure 8 Simple linear blending of panoramic source images (top, with
each registered source outlined in blue) can result in ghosting artifacts if the
scene contains movement; our framework can eliminate this ghosting (bot-
tom). Each aligned source image is extended to cover the full panorama;
pixels not originally present in the source image are marked as invalid. A
custom image objective is designed that returns a large penalty for pixel la-
bels that point to invalid source pixels, and zero otherwise. Finally, gradient-
domain fusion is very effective at compensating for differences in brightness
and hue caused by exposure variation between stack images.

Figure 9 Three of a series of nine images of a scene that were captured
by moving the camera to the left, right, up, and down in increments of
a few feet. The images were registered manually to align the background
mountains. A minimum contrast image objective was then used globally to
remove the wires.

Figure 10 Fictional researchers created by combining portraits of graphics
pioneers Andries Van Dam and Jim Kajiya, using the same approach used
in Figure 6.

Figure 11 We apply our relighting tools to an image stack (first row) ac-
quired with the aid of a spherical gantry or a light stage. With just a few
strokes of the luminance objectives we simulate complex studio lighting. To
create a glamorous Hollywood portrait (middle row, left) we simulate a key
light to the left of the camera, two fill lights for the left cheek and right side
of the hair, and an overhead light to highlight the hair (bottom row, left). The
graph-cut introduces a slight artifact in the hair; gradient domain fusion re-
moves the sharp edges (middle row, middle). Note this result is quite distinct
from simply averaging the source images (bottom row, middle). We create
a completely different and frightening look (middle row, right) by adding
a key light from below and a fill light from above. Using the multi-image
brush we quickly produce a strong specular halo around her head (bottom
row, right).

Figure 12 From a set of five images (top row) we create a relatively clean
background plate using the maximum likelihood objective (middle row, left).
The next two images to the right show that our result compares favorably to
a per-pixel median filter, and a per-pixel maximum likelihood objective, re-
spectively. An inset of our result (bottom row, left) shows several remaining
people. The user paints over them with the eraser objective, and the system
offers to replace them with a region, highlighted in blue, of the fourth input
image. The user accepts this edit, and then applies gradient-domain fusion
to create a final result (bottom row, middle). Finally, using a minimum like-
lihood image objective allows us to quickly create a large crowd (bottom
right).
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