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Abstract—1 Planning an itinerary when traveling to a city
involves substantial effort in choosing Points-of-Interest (POIs),
deciding in which order to visit them, and accounting for the
time it takes to visit each POI and transit between them. Several
online services address different aspects of itinerary planning
but none of them provides an interactive interface where users
give feedbacks and iteratively construct their itineraries based on
personal interests and time budget. In this paper, we formalize
interactive itinerary planning as an iterative process where, at
each step: (1) the user provides feedback on POIs selected by
the system, (2) the system recommends the best itineraries based
on all feedback so far, and (3) the system further selects a new set
of POIs, with optimal utility, to solicit feedback for, at the next
step. This iterative process stops when the user is satisfied with
the recommended itinerary. We show that computing an itinerary
is NP-complete even for simple itinerary scoring functions, and
that POI selection is NP-complete. We develop heuristics and
optimizations for a specfic case where the score of an itinerary
is proportional to the number of desired POIs it contains. Our
extensive experiments show that our algorithms are efficient and
return high quality itineraries.

I. INTRODUCTION

Planning an itinerary is one of the most time-consuming
travel preparation activities. For a popular touristic city, it
involves painstakingly examining the hundreds of Points-of-
Interest (POIs) to select the POIs that one likes, figuring out
the order in which they are to be visited, and ensuring the time
it takes to visit them, and to transit from one POI to the next,
satisfies the user’s time budget. Many online services such
as Lonely Planet provide packaged itineraries to their users.
However, those itineraries suffer from two main drawbacks.
First, they are often not tailored to one’s own interests. For
example, a first-time NYC tourist is likely to be interested in
a trip to the Statue of Liberty, while a NYC regular may prefer
to check out the latest MoMA exhibit. Second, suggested
itineraries may not fit one’s particular time budget. Someone
who visits a place for a very short time frame, e.g, in the case
of a layover in a city, or a very long time frame, e.g., in the
case of a month-long backpacking trip, is unlikely to find an
itinerary suggested by those services, satisfactory.

Constructing a personalized itinerary for a user is a big
challenge because, even with a relatively small number of
POIs, the number of possible itineraries can be combinatorially
large. In this paper, we adopt an interactive process where the
user provides feedback on POIs suggested by our itinerary
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planning system and the system leverages those feedback to
suggest the next batch of POIs, as well as to recommend
the best itineraries so far. The process repeats until the user
is satisfied. In other words, instead of asking the user to
examine all the POIs before deciding on the itinerary, our
goal is to ask the user to examine only a subset of those POIs
in multiple steps, each with a small number of increasingly
relevant POIs, thereby reducing the overall efforts required
on the user to construct the itinerary. To the best of our
knowledge, this work is the first to address the question of
formalizing interactive itinerary planning and explore efficient
solutions to this problem.

More specifically, the itinerary planning process involves
the following interactions.

1) It starts with a user providing a time budget and a
starting point of the itinerary (usually corresponding to
the hotel where the user is staying);

2) At each step, the system presents the user with a small
fixed number of POIs that are most probably liked by
the user, based on feedback provided by the user so far;

3) The system also recommends highly ranked itineraries
to the user based on the feedback;

4) The user provides her feedback on suggested POIs to
indicate whether or not she is interested in them, and
the process continues;

5) The user can also choose to pick one of the recom-
mended itineraries, at which point, the process stops.

Designing such an interactive system is a non-trivial task
and raises both semantics and efficiency challenges. We pro-
vide a brief overview of those challenges here.

First, we need to define the POI Feedback Model, which
dictates how the user can specify her preference for the
individual POIs. The most generic model is the star model
where the user provides 5-star ratings for POIs she really
wants to visit and 1-star ratings for POIs she does not want to
see. Two simpler models are also common: the ternary model,
where the user specifies ‘yes′ (i.e., positive), ‘do not care′,
and ‘no′ (i.e., negative) for the POIs, and the binary model,
where the user is provided with only two feedback options
‘yes′ and ‘do not care′. We note that the star model can
often be converted into the ternary model. We will discuss
the impact of different feedback models on the complexity of
itinerary planning, and focus on the binary model within this
work.

Second, we need to define the Itinerary Scoring Seman-
tics, which dictates how an itinerary should be scored based
on the user feedback. Similarly, it can also be defined using



multiple semantics. In the set semantics, the score of an
itinerary positively correlates with the number of POIs with
a ‘yes′ feedback and negatively correlates with the number
of POIs with a ‘no′ feedback. In the strictest interpretation, a
single POI with a ‘no′ feedback can render the entire itinerary
ineligible. In the chain semantics, the score of an itinerary
will further depend on how the positive and negative POIs
are arranged in the itinerary. One such semantics could be to
rank itineraries containing consecutive POIs marked with a
‘yes′ higher than ones containing more POIs marked with a
‘yes′ none of which being consecutive. Finally, an itinerary is
only valid if it satisfies the budget constraint specified by the
user. We focus on time budget in this paper and defer other
kinds of budget for future work. We argue that during the
interactive itinerary building process, previous user feedback
has a direct impact on the score of a new itinerary. For
example, when Times Sq. has been marked ‘yes′ by the user in
previous steps, the score of an itinerary containing Times Sq.
and Madame Tussauds Wax Museum, should increase, because
those two POIs are frequently co-visited. In this work, we use
a probabilistic model to compute the expected score of valid
itineraries given user feedback using the set semantics. We
leave the chain semantics to future work.

Third, we need to efficiently solve the Optimal Itinerary
Construction Problem, i.e., how to construct the best scoring
itinerary based on a given set of POIs, along with their
feedback, and the user provided time budget. We argue that
materialization of all itineraries is not practically feasible and
design efficient algorithms for computing itineraries with the
best expected scores on the fly.

Finally, we need to efficiently solve the Optimal POI Batch
Selection Problem, i.e., how to select a fixed number of POIs
to solicit future user feedback based on the feedback received
so far. We argue that the best candidate POIs (to be suggested
to the user next) are those which maximize the expected scores
of the best itineraries. Any user feedback for those POIs is
likely to lead to itineraries with high expected scores, and
therefore satisfy user’s needs sooner. We provide a formal
definition of this problem and propose a probabilistic model to
compute the expected score of a batch of POIs. There are two
main efficiency challenges. First, selecting the optimal batch
of k POIs according to the expected itinerary scores requires
the system to go through all mCk

sets of POIs, where m is
the number of remaining POIs in the system, which can be
large. We design a heuristic algorithm that selects POIs one
by one to form partial batches, therefore significantly reducing
the candidate POI sets to be examined. Second, the number
of remaining POIs to be checked for each partial batch can
still be large. In order to reduce that number, we design an
efficient pruning strategy which accounts for the distance of
the remaining POIs from the starting point and from POIs
already in the batch.

Table I summarizes an example of a 2-step interactive
itinerary planning for a user, whose starting location is Ground
Zero, NYC and has a budget of 6 hours. At each step, the
suggested batch of 5-POIs (column-2) is shown, the POIs for

which user feedback is ‘yes′ (column-3), and the resulting
top-1 itinerary based on her feedback (column-4) are also
displayed. Note that, top-1 itinerary of step-2 considers both
step-1 and step-2 feedback.

Step POI batch ‘yes′ feedback Top-1 Itinerary
1 Trinity Church.; Brooklyn

Bridge; NYC Stock Ex;
Battery Park ; Statue of
Liberty

Trinity Church.;
NYC Stock Ex;
Battery Park

1. Ground Zero -
Trinity Church -
NYC Stock Ex -
Battery Park

2 Times Square ; Grand
Central Terminal ;
Chrysler Building ;
UN Head Quarter ;
Rockefeller Center

Times Square ;
Grand Central
Terminal

1. Ground Zero
- Trinity Church
- NYC Stock Ex
- Battery Park
- Times Square
- Grand Central
Terminal

TABLE I
3-STEP ITERATIVE ITINERARY PLANNING

In summary, we make the following contributions.
(1) We introduce and formalize the novel approach of

interactive itinerary planning based on user feedback and
itinerary expected scores.

(2) We formally define the optimal itinerary construction
problem, which is one of the two core problems in interactive
itinerary planning. We prove NP-completeness of this prob-
lem and design an efficient real-time heuristic algorithm for
computing itineraries based on user feedback and time budget.

(3) We formally define the optimal POI batch selection
problem, which is the other core problem, and propose a
probabilistic model based on the notion of expected itinerary
score given user feedback on a POI batch. We prove NP-
completeness of this problem and design efficient heuristics
for selecting a good batch of POIs.

Finally, we run extensive experiments validating our ap-
proach on real datasets. Quality experiments confirm the ef-
fectiveness of our algorithms for interactive itinerary planning
and performance experiments demonstrate their efficiency.

The paper is organized as follows. Section II contains a
formalization of the interactive itinerary planning approach.
Section III describes the algorithms. Our experiments are
reported in Section V. The related work is summarized in
Section VI. We conclude with future directions in Section VII.

II. FORMALISM AND PROBLEM STATEMENT

In this section, we discuss the formal data model of in-
teractive itinerary planning. We begin by describing different
notations and their corresponding interpretations to be used
throughout the paper. A summary of those notations is listed
in Table II for easy reference.
Data Model: The underlying data model is a directed complete
graph G = (M, E). Each node m ∈M represents a POI and
each edge (mi,mj) in E represents a transit between the two
nodes and is annotated with an edge cost transit(mi,mj).
The edge cost is not always symmetric. For example, traveling
time between two POIs can be different because it is downhill
in one direction and uphill in another. Each POI mi is
also annotated with visit(mi), which represents the cost



associated with visiting the POI. For example, it takes about
3 hours to visit the Statue of Liberty.

Itinerary: An itinerary is a path in the input graph starting
from the start POI. Each itinerary τ has a total visit time
totalVisit(τ) = Σmi∈τvisit(mi), and a total transit
time, totalTransit(τ) = Σ(mi,mj)∈τtransit(mi,mj).
A valid itinerary is one such that totalVisit(τ) +
totalTransit(τ) ≤ B, where B is a user provided budget
constraint.

Notation Interpretation
M set of all POIs in a city
Mseen set of POIs for which feedback has been

received
Mremain =M−Mseen

transit(mi,mj) transit time from POI mi to mj
visit(mi) time to visit POI mi
FeedbackOptions set of different feedback values

a user can assign a POI (e.g.,
{‘yes′, ‘no′, ‘do not care′})

n number of feedback options
〈id, feedback〉 a POI as an ordered pair of id and

feedback option
I a POI batch
k number of POIs in a batch
B total budget
AllFeedbacks(I) = {I1, . . . , Ink}, i.e., set of all possi-

ble feedback combinations of I
Ij = {< id1, feedback

j
1 >, . . . , <

idk, feedback
j
k >}, i.e., j-th feedback

combination for the POI batch I
τ an itinerary, expressed as a sequence of

POIs
τIj

best itinerary corresponding to j-th
feedback combination for the POI batch
I

SIj
score of the best itinerary, given Ij , B
and Mseen

ExpScore(τ |Mseen) expected score of itinerary, given feed-
back Mseen

ExpBatchScore(I|Mseen) expected value (over all Ij ) of SIj

TABLE II
NOTATIONS AND THEIR CORRESPONDING INTERPRETATIONS

A. System Overview
The input to the system is the graph G that obeys metric

properties, a budget B (e.g., the user has 8 hours to spend in
the city), and a starting POI (e.g., an airport or a hotel). The
task of the system is to interact with the user and gather her
preferences, and build the best possible itinerary for her via
this iterative feedback process. In each iteration, the system
suggests a batch of k POIs to the user, and the user provides
feedback on these POIs, i.e., her preference for including them
in her itinerary. Based on the feedbacks, the valid itineraries
are re-ranked according to the scoring semantics and the top
itineraries are suggested to the user. Since G is complete,
therefore the POIs that the user has preferred to have included
in the itinerary can always be connected with each other
with direct edges based on their shortest transit time paths
subject to the budget constraints, and does not need to involve
any POI that she has not chosen. At each step, the user is
shown the next batch of POI suggestions from the system.
This interactive process ends when the user is satisfied with

the top itineraries suggested by the system and decides not to
proceed with the next batch.

Two computational problems form the heart of the system.
The first is the Optimal POI Batch Selection Problem, where
the system has to determine at every iteration the next batch
of k POIs to be shown to the user. Once these POIs have been
presented and user feedback collected and updated, the system
then has to solve the Optimal Itinerary Construction Problem,
which re-ranks all itineraries and presents the top-ranked ones
to the user. In fact, the Optimal POI Batch Selection Problem
also requires solutions to multiple instances of the Optimal
Itinerary Construction Problem, as each candidate set of k
POIs have to be considered and top itineraries have to be
computed for each possible combination of user feedback.
In the rest of this section we develop formal notations and
definitions of both problems. We begin by describing the
feedback models that we consider.

POI Feedback Model: When one (or more) POIs are shown
to the user, the user expresses her preference for them ac-
cording to a specific feedback model. Let FeedbackOptions
be the set of different ways in which a user can show her
preference to a POI. As an example, for the ternary feedback
model, FeedbackOptions = {‘yes′, ‘no′, ‘do not care′}.
A simpler model binary feedback model has the options
{‘yes′, ‘do not care′}. An alternate binary feedback model
may have the options {‘yes′, ‘no′}.

Interestingly, since in this paper we consider recommending
itineraries only for a single user, the specific feedback model
is irrelevant. We only need to be concerned with the POIs
marked as ‘yes′ by the user, as the POIs marked as ‘no′ or
‘do not care′ are never considered by the recommendation
algorithm. This is because the underlying graph is a complete
graph, and the recommended itinerary should try to visit as
many ‘yes′ POIs as the budget allows, and will never need to
visit any a POI marked as ‘no’ or ‘do not care’. The different
feedback models only differ in their “user friendliness”, and
do not impact the underlying solution. 2

In our system, a POI may be regarded as an ordered pair
〈id, feedback〉, where id identifies the POI (e.g., ‘Statue of
Liberty). Initially each POI’s feedback is set to the value
‘unseen’, and, after the POI is seen by the user, is set to
a value from FeedbackOptions. At any stage during the
interactive process, let Mseen (respectively, Mremain) be
the set of POIs that have currently been seen (respectively,
remain to be seen) by the user; thus initially M =Mremain.
At every step of the iteration, the system selects a batch
I of k POIs from Mremain and shows them to the user.
The user provides feedback for each POI in I indicating
her preference for including the POIs in the output itinerary.
Let n = |FeedbackOptions|. We note that there can be nk

2However, if an itinerary has to be shared by a group of users (e.g., a set of
people sharing a tour bus), then a POI marked as ‘no’ by some users may be
marked as ‘yes’ by other users, and the recommendation algorithm will have
to carefully consider the impact of visiting a POI with conflicting preferences
by the user group. Recommending itineraries for user groups is left for future
work.



feedback combinations, each of which represents a possible
user feedback for POIs in I. The following notation will
be convenient: AllFeedbacks(I) = {I1, I2, . . . , Ink}, where
each Ij represents a specific combination of feedback by
the user for each POI. Thus for the ternary model there are
3k feedback combinations, whereas the simpler binary model
leads to 2k feedback combinations.

B. Probability Model
For any candidate set I of k POIs considered during an

iteration, it is crucial that the system be able to derive the prob-
ability distribution of these nk feedback combinations. Such
a probability distribution will be useful in steering the system
towards choosing the subset I that maximizes the chances
of getting highly ranked itineraries. We adopt probabilistic
models that are intended to combine users’ general preferences
(e.g., statistics derived from past query logs may reveal that
most users who wish to visit the Status of Liberty would also
like to visit the Empire State Building) with personalization
(e.g., the specific feedback obtained from the user on previous
batches of POIs may reveal that this particular user prefers art
related places). We describe our models in more details below.

Generic Probability Model: A generic probability model
can be used to compute the probability of j-th feedback
combination: Pr(Ij |Mseen). This probability model can be
learned from two training sources: the past activities (e.g., past
itineraries accepted by other users of the system), and current
ongoing activities (i.e., the POIs that have been seen and
marked by the current user). Several classical machine learning
solutions can be used for this purpose, e.g., graphical models
such as Bayesian Networks or Markov Random fields [1].

Specific Probability Model: In this paper, however, instead of
relying on complex solutions involving a generic probability
model, we adopt a much simpler probability model using the
assumption of a limited form of conditional independence3.
We assume the POIs in Ij are not totally independent but
rather are conditionally independent.

Under the conditional independence assumption, we have:

Pr(Ij |Mseen) =
∏
mi∈Ij

Pr(mi|Mseen)

Using Bayes’ Theorem [2], this can be rewritten as:

Pr(Ij |Mseen) =
∏
mi∈Ij

Pr(Mseen|mi)×Pr(mi)
Pr(Mseen)

Since Pr(Mseen) is a constant for that particular iteration,
we therefore have:

Pr(Ij |Mseen) ∝
∏
mi∈Ij

Pr(Mseen|mi)× Pr(mi)

Applying conditional independence again:

Pr(Ij |Mseen) ∝
∏
mi∈Ij

∏
ml∈Mseen

Pr(ml|mi)× Pr(mi)

Even though the probability formula is a proportionality
formula, it suffices for our purpose as it is used in the scoring

3Conditional independence assumption is used in building Naive Bayes
classifiers [2]

function for ranking itineraries, since all we need to know is
whether one itinerary has a higher score than the other—the
exact score is irrelevant. Computing the probability formula
requires us to know the value of quantities such as Pr(ml|mi)
and Pr(mi) where mi and ml are POIs. However, singleton
and pairwise probabilities can be computed in a preprocessing
step from itineraries chosen by previous users. For example,
Pr(ml|mi) can be estimated as the fraction of previous
itineraries containing mi that also contain ml, and Pr(mi)
can be estimated as the fraction of itineraries that contain mi.

C. Itinerary Scoring Semantics
An itinerary consists of two sets of POIs: the seen POIs

for which user feedback has already been collected, and
the remaining POIs for which we can only estimate the
user feedback. Thus the score of an itinerary should be a
combination of the score of the seen part, as well as the
expected score of the remaining part, where the expectation is
over the probability distribution of all possible user feedback.
The probability model proposed earlier can be used to model
the expected score of the unseen part.

Generic Scoring Function: Consider an itinerary τ as τseen∪
τremain. A generic scoring function has the form:
ExpScore(τ |Mseen) =
Combine(Score(τseen), ExpScore(τremain|Mseen))

where the two parts may be combined using any meaningful
operation (such as addition, weighted or un-weighted). There
can be numerous ways of defining reasonable forms of the
function Score(τseen). For example, a reasonable function
is positively correlated with the number of ‘yes’ POIs, or a
sophisticated scoring function may even consider the sequence
of the ‘yes’ POIs in the overall itinerary score.

Specific Scoring Function: While we do not advocate for a
specific scoring function in this paper, we illustrate several
optimization opportunities in conjunction with a specific scor-
ing function in Section IV. This scoring function is related to
the binary feedback model, and has a simple but compelling
form—the score of an itinerary is the expected number of POIs
that will be marked as ‘yes′ by the user.

D. Problem Definitions

We are now ready to describe the two fundamental problems
that our system needs to solve.

Optimal Itinerary Construction Problem: Given B,Mseen,
and Ij (i.e., a specific batch of k POIs with their feed-
backs from the user), compute the valid itinerary τ such that
ExpScore(τ |Mseen ∪ Ij) is maximized.

We next introduce some useful notation. Let τIj
be the

output of the Optimal Itinerary Construction Problem, i.e.,
the valid itinerary with the maximum expected score, and let
its expected score be SIj

. Next, given B, Mseen, and a batch
of k unseen POIs I (i.e., without any specific user feedback
combination), let ExpBatchScore(I|Mseen) be the expected
value (over all possible user feedback combinations Ij) of the
random variable SIj .



Optimal POI Batch Selection Problem: Given B and
Mseen, compute the batch of k unseen POIs that maximizes
ExpBatchScore(I|Mseen).

Intuitively, we wish to select a batch of k unseen POIs such
that, no matter how the user responds with her preferences to
these POIs, the expected score of the top ranked itinerary over
all possible user feedback is maximized.

As will be discussed in the next sections, the choice of
the itinerary scoring function as well as the probability model
affects the efficiency of our solutions to these problems. We
discuss a general solution framework for these problems in
Section III, and more efficient solutions tailored to a specific
scoring function and the simpler probability model in Sec-
tion IV. Our solutions are designed to solve one iteration step
in the interactive itinerary planning problem.

III. GENERAL ALGORITHMS FOR ITINERARY PLANNING

In this section we shall develop the framework of a generic
algorithm for solving the Optimal POI Batch Selection Prob-
lem. We refer to this as a “generic” algorithm because it is
essentially a framework that assumes any arbitrary scoring
function for itineraries, as well as any arbitrary probabilistic
model for predicting user preferences for the remaining unseen
POIs, given the current user feedback. We also develop a
generic subroutine to solve the Optimal Itinerary Construction
Problem. We analyze the computational complexity of the
problems as well as the proposed algorithms. In the next
section, we show how a specific probabilistic model (based
on conditional independence), as well as a specific scoring
function (based on user feedback restricted to only ‘yes’ and
‘do not care’ for POIs), can be leveraged, along with sev-
eral algorithmic optimizations, to achieve extremely efficient
approximate solutions to these problems.

A. A Generic Optimal POI Batch Selection Algorithm
Our generic algorithm for the Optimal POI Batch Selection

Problem is shown in Algorithm 1. As can be seen, the main
body consists of generating all possible k-sized batches of
potential POIs from the remaining unseen POIs, and for each
potential batch, computing the expected score of the optimal
itinerary—where the expectation is over the probability dis-
tribution of all possible user feedback to those k POIs. This
calculation is performed by the ExpBatchScore subroutine
(which will be discussed next). The set of k POIs selected are
those that maximize this expected optimal score.

Algorithm 1 Algorithm OptPOIBatchSelection
Require: Mseen, Mremain, batch size k, budget B;

1: RS = {I | I ⊆ Mremain, |I| = k};
2: Imax = argmax∀I∈RSExpBatchScore(I|Mseen,B);
3: return Imax;
We next discuss the ExpBatchScore subroutine as de-

scribed in Algorithm 2, which computes the expected score
of the top itinerary given the POI batch (I), conditioned
upon the feedback of the seen POIs (Mseen). For each of
the nk possible user feedback combinations Ij , we need to
recompute the scores of all valid itineraries, and determine

Algorithm 2 Subroutine ExpBatchScore
Require: Mseen, I ⊆Mremain, budget B;

1: AllFeedbacks(I) = {I1, I2, . . . Ink};
2: # each Ij is a possible feedback combination on I
3: ExpBatchScore = Pr(Ij |Mseen)×

Σ1≤j≤nkExpScore(OptIt(Mseen, Ij ,B)|Mseen);
4: return ExpBatchScore;

Algorithm 3 Subroutine OptItn
Require: Mseen, Ij , budget B;

1: T = {τ | totalVisit(τ) + totalTransit(τ) ≤ B}, where τ
is an itinerary

2: τmax = argmaxτ∈T ExpScore(τ |Mseen ∪ Ij);
3: return τmax;

the one with the highest score. This is achieved by repeated
calls to the OptItn subroutine (which will be discussed
next). Finally, the expected value of the score of the optimal
itinerary is returned (where the expectation is computed over
the probability distribution of the user feedback Ij).

The OptItn subroutine solves the Optimal Itinerary Con-
struction Problem. It takes as input the user feedbacks from
previous batches (Mseen, along with a candidate user feed-
back combination Ij), and computes the valid itinerary with
the highest expected score. As can be seen from Algorithm 3,
one straightforward (but inefficient) way of doing this is to first
compute all valid itineraries, compute the expected scores of
each of them (conditioned by the user feedback in previous
batches and candidate user feedback combination), and return
the one with the highest score.

In summary, the general algorithms discussed above do
appear rather inefficient. However, in what follows, we show
that the problems are NP-complete in general, and one may
not be able to improve over such naive approaches in the
generic case. To improve efficiency, one has to resort to
specific scoring functions, approximation heuristics, and other
optimizations—such approaches are discussed in Section IV.

B. Complexity Analysis
The generic Optimal POI Batch Selection algorithm de-

scribed above is very inefficient. The inefficiency stems from
three sources:

1) There are
(|Mremain|

k

)
= O(|Mremain|k) possible

batches of k POIs that need to be considered.
2) For a given batch I, all possible nk user feedback need

to be considered.
3) For a given user feedback (i.e., a potential user feedback

for a given batch, in conjunction with the user feedback
for earlier batches), the itinerary with the highest ex-
pected score needs to be computed.

Thus, if we assume that the cost of a single optimal
itinerary computation is T , then the total time taken by the
OptPOIBatchSelection algorithm is O(|Mremain|k ×
nk × T ). Unfortunately, as the following arguments show, it
appears impossible to improve this in general, as even the
third task in the list above, i.e., the problem of computing



the itinerary with the optimal expected score for a given
user feedback (essentially the Optimal Itinerary Construction
Problem), is NP-complete.

Theorem 1: The Optimal Itinerary Construction Problem is
NP-complete.

Proof: (sketch) We can reduce the NP-complete Rooted
Orienteering Problem [3] to this problem. The rooted ori-
enteering problem is defined as follows: Given a complete
weighted graph (in a metric sense, i.e., satisfying the triangle
inequality), a start node, and a length budget, determine a
path from the start node that visits as many nodes as possible
without going over the length budget.

The reduction proceeds as follows. Consider a very simple
scenario where:
• the original POIs are connected by a complete weighted

graph where each edge weight represents the transit time
to go from one vertex to the other along the edge,

• the visit times of all POIs are 0,
• there is no prior probability model: thus all possible user

feedback for the next batch are equally likely,
• the user feedback is restricted to ‘yes’/‘do not care’ for

each POI that is shown to her,
• the score of a valid itinerary is simply the number of

POIs that have been marked as ‘yes’ by the user in her
feedback, and

• we are considering the very first batch, i.e. user feedback
has not been collected for any POI yet.

Let I be any subset of k POIs. Let I ′ be any subset of
I, representing a specific subset of the batch that the user
may potentially mark as ‘yes′. Consider the induced complete
subgraph graph over I ′. Let this induced graph be isomorphic
to the input graph of the rooted orienteering problem. It is
easy to see that computing the valid itinerary with the highest
score is equivalent to solving the rooted orienteering problem
whose length does not exceed the budget.

The above theorem shows that computing itinerary with the
optimal expected score is NP-complete even for a simple scor-
ing function. Moreover, since the Optimal POI Batch Selection
Problem is more general than the Optimal Itinerary Construc-
tion Problem, the former is also easily seen to be NP-complete.
Also, as can be seen, the OptItn subroutine is called inside
the innermost loop of the overall OptPOIBatchSelection
algorithm, and is therefore called numerous times, making the
overall algorithm extremely inefficient. In the next section, we
consider several ways to avoid these sources of intractability.

IV. EFFICIENT ALGORITHMS FOR ITINERARY PLANNING

In this section we discuss more efficient solutions to the
itinerary planning problems, by focusing on the simple but
practice scoring function (discussed in Section II) based on
the binary feedback model, and the simple probabilistic model
for scoring itineraries based on the assumption of conditional
independence. Our solutions are based on fast heuristics to
compute optimal itineraries approximately, thus overcoming
the intractability of OptItn. We also assume that the batch

size k is reasonably small (which is true in practice as the
value of k is limited by the screen size used to display the
selected POIs to the end user), thus making the nk factor in
the running time of ExpBatchScore small. We also use
a greedy approach to construct the k POIs, thus eliminating
having to examine all |Mremain|k subsets of POIs. Finally
we develop several other algorithmic and data structure op-
timizations to achieve very efficient overall performance of
OptPOIBatchSelection in practice. In the rest of this
section we provide more details of our techniques.

A. Efficient Approximation Algorithm for POI Batch Selection
One of the main bottleneck in the

OptPOIBatchSelection algorithm is that a large
number of candidate POI batches need to be considered
and the best one chosen from among them. Instead, we
follow a greedy approach where we construct a POI batch
one POI at a time, thus trading off batch quality (i.e.,
ExpBatchScore(I|Mseen)) for efficiency, with the hope
that small quality degradation can bring in huge performance
improvements.

Consider the algorithm GreedyPOIBatchSelection
shown in Algorithm 4. The first step is to prune from
consideration those POIs in Mremain that are simply too far
away from the start POI to be involved in valid itineraries. For
tight budgets, this can be a very effective step in practice. Next,
the batch of k POIs are constructed greedily in k iterations.
In each iteration i, each of the remaining POIs in Mpruned

are considered as candidate for adding to the batch, and the
one that creates a batch with i POIs with the maximum batch
score is selected for inclusion in the batch.

Thus, unlike the OptPOIBatchSelection algorithm in
the previous section which makes O(|Mremain|k) calls to
subroutine ExpBatchScore (which evaluates each candi-
date batch), the new GreedyPOIBatchSelection only
makes at most O(|Mremain| × k) calls to subroutine
FastExpBatchScore (which itself is a more efficient
subroutine than the earlier ExpBatchScore subroutine for
evaluating each candidate batch, to be discussed later). Since
the value of k is small is practice, the number of calls to
FastExpBatchScore is acceptably small.

B. Efficient Computation of a Batch Score

We next discuss the subroutine FastExpBatchScore
which is shown in Algorithm 5. This subroutine takes as
input a candidate batch, and evaluates its “expected score”,
i.e., for the distribution of all possible user feedback for the
candidate batch, the expected score of the optimal itinerary
according to the specific scoring function being used. The
structure of this subroutine is very similar to that of the
corresponding subroutine ExpBatchScore in Section III,
because it also enumerates all possible user feedback com-
binations to the candidate batch, and makes a total of n|I|

calls to another subroutine to determine the optimal itineraries
for each possible user feedback combination (this subroutine,
called ApproxItn, will be discussed later). Since we assume



Algorithm 4 Algorithm GreedyPOIBatchSelection
Require: Mseen consisting of ‘yes’ and ‘do not care’ feedback,
Mremain, batch size k, budget B;

1: Mpruned = {m|m ∈ Mremain, transit(StartPOI,m) +
visit(m) ≤ B}; {prune Mremain by removing POIs that are
very far away from the start POI}

2: Imax = {};
3: i = 0;
{construct POI batch greedily by adding POIs one by one to
initially empty batch}

4: while i 6= k do
5: m = argmaxmj∈MprunedFastExpBatchScore(Imax ∪

{mj}|Mseen);
6: Imax = Imax ∪ {m};
7: Mpruned = Mpruned − {m};
8: i++;
9: end while

10: return Imax;

that k is small, and |I| ≤ k, the total number of user feedback
combinations will be reasonably small.

Algorithm 5 Subroutine FastExpBatchScore
Require: Mseen consisting of ‘yes’ and ’do not care’ feedbacks,

a set I of ≤ k POIs from Mremain;
1: AllFeedbacks(I) = {I1, I2, . . . I2|I|}
{above sequence should correspond to Hamiltonian path in I-
dim hypercube}

2: FastExpBatchScore = Σ1≤j≤2|I|(Pr(Ij |Mseen)×
ExpScore(ApproxItn(Mseen, Ij)|Mseen)); {above calcula-
tion should be run in Hamiltonian path sequence to enable
incremental computation of ApproxItn and Pr(Ij |Mseen)}

3: return FastExpBatchScore;

Hamiltonian Paths in Hypercubes: However, there is
scope for optimizing ExpBatchScore even further. The
crucial difference between FastExpBatchScore and the
earlier generic ExpBatchScore is the order in which all the
user feedback combinations are processed. ExpBatchScore
processes the user feedback combinations in any arbitrary
order, but we observe that certain specific orders can be lever-
aged to improve overall efficiency. Since we are considering
the specific binary feedback model, for a given candidate
batch I, there are 2|I| different user feedback combinations.
Consider any specific user feedback combination Ij . If we
consider I as an ordered set (in any order) of POIs, then Ij
can be considered as a Boolean vector of length |I|, in which
a 1 implies that the corresponding POI has been potentially
marked as ‘yes’, and a 0 implies that the corresponding POI
has been marked as a ‘do not care’. Thus the set of 2|I| user
combinations can be viewed as the vertices (i.e., corners) of a
|I|-dimensional hypercube.

The subroutine FastExpBatchScore’s order for pro-
cessing all user feedback combinations is as follows: it finds
a Hamiltonian path in the hypercube, and then processes each
user feedback combination in the order in which it appears in
this path. For example, consider the 3-dimensional hypercube
in Figure 1, where a Hamiltonian path is shown traversing the

8 vertices.
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Fig. 1. Hamiltonian paths in hypercubes.

The reason for using a Hamiltonian path for ordering the
user feedback combinations is because the Hamming distance
between any pair of consecutive vertices on this path is
exactly 1, i.e., the corresponding subsets of ‘yes’ POIs differ
by exactly one POI. This has important efficiency implica-
tions. For every user feedback combination Ij , the subroutine
FastExpBatchScore has to perform two computations
(see line 2 in Algorithm 5) (a) it has to call a subroutine
ApproxItn, and (b) it has to compute Pr(Ij |Mseen), i.e.,
the probability that the user will give this specific feedback
combination, given her earlier feedbacks. We defer the details
of ApproxItn till later. However, Pr(Ij+1|Mseen) can be
incrementally computed very efficiently from Pr(Ij |Mseen)
if they differ by only one ‘yes’ POI—as can be seen
from the specific probability model formula in Section II,
Pr(Ij+1|Mseen) can be computed from Pr(Ij |Mseen) in
O(|Mseen|) time rather than in O(|Mseen|×|I|) time, which
would be required if Pr(Ij+1|Mseen) had to be computed
from scratch.

The following lemma shows that all d-dimensional hyper-
cubes have Hamiltonian paths, and moreover they are easy to
construct.

Lemma 1: Each d-dimensional hypercube has a Hamilto-
nian path, and such a path can be computed in O(2d) time.

Proof: The proof is by induction. Assume that all hyper-
cubes up to dimension d have Hamiltonian paths. Consider
a Hamiltonian path v1, v2, . . . , v2d−1, v2d . Now, consider a
(d + 1)-dimensional hypercube. It is easy to see that the
path 0v1, 0v2, . . . , 0v2d−1, 0v2d , 1v2d , 1v2d−1, . . . , 1v2, 1v1 is
a Hamiltonian path in the (d + 1)-dimensional hypercube.
Figure 1 illustrates this construction for the case d = 2, and
d + 1 = 3. Clearly, this also implies a simple linear time
recursive construction of such Hamiltonian paths.

What if we did not use a Hamiltonian path ordering? If we
use any arbitrary ordering, the changes between successive
user feedback combinations may be quite large, thus making
probability calculations expensive. For example, suppose we
used a random ordering (i.e., a random permutation of all
user feedback combinations). Then between successive user
feedback combinations in such an ordering, it is easy to see
that the expected Hamming distance may be O(|I|). Thus
every time ApproxItn is called, the incremental probability
computation may take O(|Mseen| × |I|) time rather than
O(|Mseen|) time if the Hamiltonian path ordering was used.



The Hamiltonian path order is also crucial in the efficient
execution of ApproxItn, which shall be discussed next.

C. Approximation Algorithm for Itinerary Construction

The ApproxItn subroutine solves the Itinerary Construc-
tion Problem using approximation heuristics. It takes as input
a certain set of user inputs marked as ‘yes’ (Mseen, enhanced
with a candidate feedback combination Ij), and computes
the valid itinerary with the (approximate) highest expected
score. Since this problem was shown to be NP-complete in
Section III, we use a “Best-Benefit” approximation heuristic
to solve this problem approximately.

The subroutine is shown in Algorithm 6, which adopts a
greedy approach. Starting from the start POI, at every iteration,
the algorithm adds the POI (chosen from the remaining POIs,
i.e., those not yet in the partially constructed itinerary) that has
the best benefit, as defined in line 5. Intuitively, the benefit
correlates positively with the probability that the user will
mark the POI as ‘yes’, and negatively with the time needed
(transit plus visit) to reach this POI from the last POI added
to the itinerary.

Algorithm 6 Subroutine ApproxItn
Require: Mseen, and a candidate user feedback combination Ij

1: Mtempseen =Mseen ∪ Ij
2: τmax = StartPOI
3: RemainB = B − visit(StartPOI)
{Construct itinerary greedily using a “best benefit” heuristic}

4: while RemainB > 0 do
5: NextPOI =

argmaxmi∈Mprune−τmax

Pr(mi.feedback=yes|Mtempseen)

transit(mi,τmax.LastPOI)+visit(mi)
;

6: RemainB = RemainB−
transit(NextPOI, τmax.LastPOI) + time(NextPOI);

7: if RemainB > 0 then
8: τmax = τmax ∪ {NextPOI};
9: end if

10: end while
11: return τmax;

Heap Data Structures for Maintaining Benefits: For the
ApproxItn subroutine to be efficient, at every iteration it
needs to be able to quickly determine, from the remaining
POIs in M4 that are not a part of the partially constructed
itinerary, the POI with the best benefit with regard to the last
POI added to the itinerary. A naive way of doing so is to
pre-compute, before each execution of ApproxItn, for all
pairs of POIs mx,my ∈ M the benefit of reaching my from
mx. Then, while ApproxItn is executing, the benefit of
reaching each POI in M from the last POI of the itinerary
can be compared and the POI with the best benefit can be
selected. Clearly this approach takes at least O(|M|2) time,
not accounting for the pre-computation time.

We can reduce the execution time of ApproxItn from
O(|M|2) to O(|M| log(|M|)), using the data structuring
techniques described below. Since ApproxItn is called in

4Actually, this should beMpruned, but in this discussion we assume that
in the worst case there may not be any pruning, and Mpruned =M.

the innermost loop of our overall itinerary planning algorithms,
this can be a substantial savings in practice.

Pre-Computation: Two data structures are prepared before
each call to ApproxItn:

1) The first is ProbOrder, an ordered list of the POIs
in M, in decreasing order of Pr(mi.feedback =
yes|Mtempseen) for each POI mi. Note that these quan-
tities are the numerators of the benefit of each POI (see
line 5 in Algorithm 6). Instead of naively constructing
ProbOrder from scratch every time ApproxItn is
called, we can leverage the fact that the calls are made
in sequence along the Hamiltonian path ordering of the
user feedback combinations. Thus for each POI mi, we
update Pr(mi.feedback = yes|Mtempseen) from its
previous value in constant time, since Mtempseen has
changed by only one POI since the last execution. Thus
ProbOrder can be updated and re-sorted in overall
O(|M| log(|M|)) time.

2) The second is a set of priority queues/heaps [4]
H1, H2, . . . HM, one for each POI in M. For each
POI, the corresponding heap contains the time (transit
plus visit) needed to reach every other POI in M. Note
that these quantities correspond to the denominators of
the benefit of each POI (see line 5 in Algorithm 6).
These heaps allow the operation find best time POI
to be performed in constant time, and the operations
delete best time POI and insert POI to be performed
in O(log(|M|)) time. Although it may appear that the
total size of all the heaps is O(|M|2), these heaps are
constructed only once by the FastExpBatchScore
subroutine. During each of the 2|I| executions of
ApproxItn, these heaps change due to delete best
time POI operations, but are restored to their original
status before the next execution of ApproxItn by
undoing the delete operations with corresponding insert
POI operations, as shall be discussed next.

In-Computation: During the execution of ApproxItn, the
main task at each iteration is to determine, for the last
added POI, the POI from the remaining with the best benefit.
However, as described above, we do not store the benefits
of each POI directly in any data structure (since that will be
expensive to maintain), but rather store the numerators and
denominators in separate data structures. Thus to find the
POI with the best benefit, we have to simultaneously scan
both data structures in a round-robin manner, ProbOrder
as well as HLastPOI (the latter is done by repeated delete
best time POI operations), until we determine the remaining
POI with the best benefit. This is essentially an application
of the popular Threshold Algorithm (TA) [5]. While in the
worst case it can take O(|M|) if both data structures need
to be completely scanned, in practice, it is expected to stop
very early. Once the next best POI has been determined,
then the heap HLastPOI can be restored by undoing the
delete best time POI operations with corresponding insert POI
operations. Thus the in-computation cost of each execution



of ApproxItn takes O(|M| log(|M|)) time, assuming that
the TA algorithm only goes to a constant depth on each data
structure on average.

In summary, in this section we presented efficient approxi-
mation heuristics for the POI Batch Selection Problem as well
as the Itinerary Construction Problem. We leveraged a simple
itinerary scoring function based on the binary feedback model,
assumed that the batch size k is reasonably small, and applied
a greedy strategy for constructing the batch of k POIs. This is
facilitated by making calls to an approximation algorithm for
itinerary construction that is based on the best benefit heuristic.
Moreover, we employ interesting algorithmic and data struc-
ture optimizations, such as using the heap data structure for
indexing the POI benefits, and maintaining the heaps as well
as the probability quantities efficiently by following update
strategies based on Hamiltonian path ordering in hypercubes.

V. EXPERIMENTS

We conduct a set of comprehensive experiments for popular
travel destinations using real world datasets extracted from
Lonely Planet5 and Flickr6. In this section, we describe our
experimental set-up, data generation and explain our quality
and performance results.

We implemented our prototype using JDK 5.0. All perfor-
mance experiments were conducted on a 2.66GHz Intel Core
i7 processor, 4GB Memory, and 500GB HDD, running OS X.
The Java Virtual Memory size is set to 512MB. All numbers
are obtained as the average of three runs.
A. Data Generation

City Names and POI Generation: We consider popular
tourist destinations and their POIs for our itinerary planning
problem. 12 geographically distributed cities are considered
and the popular POIs of those cities are extracted using the
Lonely Planet dataset. City names, corresponding number of
POIs in each city and some example POIs are shown in
table III. For each POI, we used Wikipedia7 to extract latitude
and longitude information associated with it.

Transit Time, Visit Time Generation: Given a city, we
generate the transit time between every pair of POIs in that
city. We use Google Maps8 to calculate the transit time by car
between a pair of POIs using the underlying road network.
This process gives rise to a POI graph, one for each city and
each of these generated graphs are complete and directed. Note
that, in general, the pairwise transit times generated in this
process are asymmetric, which is usually true for any road
network. Visit time of each POI is generated using the Flickr
log.

Atomic and Pair-wise Probability Generation using
Flickr Log: We use the publicly available Flickr data9 to
generate atomic and pair-wise probabilities of POIs. Flickr
data captures user itineraries in the form of photo streams,

5http://www.lonelyplanet.com/
6http://www.flickr.com/services/api/
7http://en.wikipedia.org/
8http://maps.google.com/
9http://www.flickr.com/services/api/

where the photos are tagged with corresponding POI names
and the respective date/time associated with the photos define
the set of possible itineraries (such as, a set of POIs visited
on the same day). Given a Flickr log of a particular city, each
row in that log corresponds to a user itinerary that is visited
in a 12 hour window. We use this log to generate the atomic
probabilities of the POIs, and the pair-wise probabilities of
every POI pair for a particular city. Using three years worth of
Flickr logs, the atomic probability of a POI is the fraction that
a POI appears out of the total number of itineraries in the query
log. The conditional pair-wise probabilities, Pr(POIi|POIj)
are calculated as the fraction that POIi was also visited out
of the total number of times POIj was visited.

City Name Number of POIs Example POIs
Amsterdam 118 Diamond Museum, Museum Am-

stelkring, Oosterpark
Bangkok 48 Phayathai Palace, Siam Ocean

World, Wat Traimit
Barcelona 73 Arc de Triomf, Museu Picasso,

Plaza Reial
Chicago 91 Flat Iron Building, Lincoln Park,

Soldier Field
London 163 Brick Lane, Buckingham Palace,

Hyde Park
New Orleans 35 French Quarter, Pitot House, St

Roch Cemetery
New York 119 Chelsea Art Museum, Lincoln Cen-

ter, Russian & Turkish Baths
Paris 114 Bois de Vincennes, Jardin des Tu-

ileries, Petit Palais
Rome 134 Arco di Costantino, Colosseum,

Gianicolo
San Francisco 78 Alcatraz, Mission Dolores Park,

Union Square
Sydney 96 Bondi Beach, Customs House,

Taronga Zoo
Toronto 48 Cn Tower, Ontario Place, Spadina

Museum

TABLE III
EXAMPLE CITIES AND POIS

The Flickr log may be considered as a collection of
itineraries selected by prior users. This enables us to perform
quality experiments evaluating the effectiveness of interactive
itinerary planning, without requiring a user study involving
actual users. Our interactive approach chooses the next batch
of POIs suggestions based on the probabilistic model learned
from Flickr itineraries. User response is also simulated by the
same probabilistic model.

B. Summary of Experimental Results

We conduct quality and performance experiments by vary-
ing the number of POIs, the budget and the size of the
suggested POI batch. Each of these parameters impacts the
running time and the score of the returned results. We consider
a starting POI for each experiment that provides the starting
point for the itinerary. All performance experiments are re-
ported for a running time of a single batch. We argue that
pre-computation of itineraries is not possible. We observe in
our dataset, that, for a budget of 6 hours, any set of 5 POIs
are permissible and can form a valid itinerary. Given a city
that consists of about 150 POIs, roughly the number of valid
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Fig. 2. Expected Score of GreedyPOIBatchSelection and
OptPOIBatchSelection.

itineraries that consist of all 5 POIs could be in the range
of 0.5 billion (the total number of itineraries would be much
more), which certainly is not feasible to pre-compute.

In short, our experimental results substantiate our claim
that the greedy algorithm for interactive itinerary planning
is a feasible solution for interactive itinerary planning, both
quality and performance wise. In addition, we propose several
optimizations of the greedy algorithm and our results accord-
ingly corroborate our theoretical analysis, by generating faster
running times for the optimized variants.

C. Quality Experiments

In this subsection, we discuss and report the results of our
quality experiments.

Greedy Interactive Itinerary Planning Algorithm: In
this experiment, we vary the budget and observe the ex-
pected score of the optimal itinerary in one step of the
interactive itinerary planning process. We compare the optimal
itinerary scores produced by OptPOIBatchSelection
and GreedyPOIBatchSelection. Both of these algo-
rithms use the greedy best benefit heuristic to obtain the best
itinerary. Input to these algorithms is a set of user feedbacks
(‘yes′ to 3 different POIs) and a batch size (3). This experiment
is run on New York City, which has 119 POIs.

Figure 2 shows the output of this experiment. We note
that with increased budget, since more POIs can be added to
the optimal itinerary, its expected score increases. The figure
corroborates the fact that GreedyPOIBatchSelection is
comparable in the quality of its optimal itinerary, to the more
expensive OptPOIBatchSelection.

Effectiveness of Interactive Itinerary Planning: In this
experiment, we select prior Flickr-based 25 static itineraries
(we refer to this as OfflineItinerary) instead of ac-
tual users, where each itinerary consists of 10 POIs, and is
visited in 12 hours. We consider a simpler scoring function
to assign score in each of them - the score of an itinerary
is the number of POIs in it. For each static itinerary, we
apply our interactive itinerary planning algorithm (known
as InteractiveItnPlanning), where the next batch of
POIs suggestion is based on the probabilistic model learned
from those Flickr itineraries. InteractiveItnPlanning
calls GreedyPOIBatchSelection to select a POI batch
at each iteration. In each batch, user response is akin to the
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Fig. 3. Effectiveness of Itinerary Planning Algorithm
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Fig. 4. Running time of GreedyPOIBatchSelection and
OptPOIBatchSelection.

actual POIs present in that itinerary,i.e., response is ‘yes’ for
those POIs which actually surface in that static itinerary.

Figure 3 records the average itinerary score in each batch. It
shows that InteractiveItnPlanning reaches the same
score of offline itineraries in 4 batches on an average. Thus this
result demonstrates that our interactive approach effectively
generates itineraries that are liked by prior Flickr users .

D. Performance Experiments

In this subsection, we discuss the efficiency aspects of the
interactive itinerary planning algorithms, describe the running
time attained by performing proposed optimizations and com-
pare that with the optimal brute-force algorithm. Performance
is recorded by mainly varying 3 parameters - budget, batch
size and number of POIs.

Feasibility of the Optimal Algorithm: We record
the running time of OptPOIBatchSelection and
GreedyPOIBatchSelection, for varying batch
sizes k in Figure 4. The number of POIs is set to
119 for this experiment, whereas the budget is fixed
at 6 hours. OptPOIBatchSelection algorithm runs
in seconds, whereas GreedyPOIBatchSelection
runs in milliseconds. Also, beyond batch-size 4,
OptPOIBatchSelection does not terminate within
10 hours, whereas GreedyPOIBatchSelection scales
well with increasing batch size. This observation confirms
that GreedyPOIBatchSelection is an efficient solution
for interactive itinerary planning.
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Fig. 5. Running time Varying Batch Size.
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Fig. 6. Running Time Varying Budget.

Varying Batch Size: In this set of experiments, we
vary the batch size k and profile the running time of
the different optimizations performed in combination with
GreedyPOIBatchSelection. This algorithm is com-
pared with its optimized variants - greedy that uses a heap
to calculate best time POI and processes user feedback com-
binations in the heap following the Hamiltonian path computa-
tion(HeapGreedyPOI), and the the most optimized variant,
(HeapPrunGreedyPOI), which in addition to efficient heap
processing, also prunes the set of remaining POIs, subject to
the budget.

The number of POIs is set to 119 for this experiment,
while the budget is fixed at 6 hours. Figure 5 records
the running time of this experiment. We observe that
with an increasing batch size, the most optimized variant
HeapPrunGreedyPOI performs substantially better than
GreedyPOIBatchSelection. This confirms that our pro-
posed optimizations are important to improve the overall
performance.

Varying Budget: We vary the budget constraints and
keep the batch size and the number of POIs (10 and 119
respectively) fixed, and record the running time of different
variants of the greedy algorithm in Figure 6. The figure
shows that with the increasing budget, the running time in-
creases in general for all variants. The most optimized variant
HeapPrunGreedyPOI outperforms others in all cases. One
interesting observation here is, the running time does not
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Fig. 7. Running time Varying Number of POIs.

increase linearly with the budget. This phenomenon is due
to the fact, that, for a large enough budget (while everything
else is fixed), there cannot be any pruning based on budget
and hence it does not impact performance anymore.

Varying Number of POIs: We vary the number of POIs
for a fixed budget (6 hours) and batch size (10). The running
time of different variants are recorded in Figure 7. With the
increase in POIs, the running time increases in general. This
can be explained since the greedy algorithm has to probe
more POIs for selecting the k best POIs in each batch. The
most optimized variant HeapPrunGreedyPOI, outperforms
the rest in all cases. One noteworthy observation here is, the
running time of HeapPrunGreedyPOI increases the least
with the increase in the number of POIs. The role of pruning
becomes significant in this case, hence with the increase in the
number of POIs, HeapPrunGreedyPOI effectively prunes
the remaining POIs in a batch, and becomes the winner.

VI. RELATED WORK

Our work of interactive itinerary planning is an effort to-
wards returning complex objects (i.e., an itinerary constructed
of several POIs) to the user based on user interaction, subject
to the constraints. In a recent work, we first propose the notion
of composite items [6] towards that goal. However, an itinerary
is not any arbitrary ordering of a set of POIs, but it renders
a strict ordering between the POIs, subject to the constraints.
The ordering imposes a complex relationship between POIs
and makes this problem significantly different from our earlier
model [6].

The interactive itinerary planning facilitates effective nav-
igation through the information space. Our interactive POI
selection strategy is akin to exploratory browsing interfaces
such as faceted search [7]. However, the interaction here is on
the suggested set of POIs.

Existing work related to travel itineraries can be classified
into touristic data analysis and touristic information synthesis.
Regarding the former, there are a number of studies on ana-
lyzing POI visitation patterns from geo-spatial and temporal
evidences left by travelers [8], [9], [10], [11], [12]. However,
those works generally do not synthesize POIs into itineraries
and instead focus solely on the analysis itself. In the context of
touristic information synthesis, a number of works construct



and recommend tourist itineraries at various granularities [13],
[14], [15], [16], [17] but none of them provides the ability
to query constructed itineraries. Our work is tangentially
related to other vast fields such as visualizing geo-spatial
data, tracking movements based on sensor networks, and
constraint optimization. The closest works to ours are [18]
and [19] which merge touristic data analysis and synthesis to
recommend itineraries based on user’s input. However, none
of them does so in an interactive manner.

A recent work proposes interactive route search in the
presence of order constraints [20]. The proposed approach
is different from our work in that it does not consider user
budget, does not synthesize user’s previous feedback to learn
future probability of user preferences, and more importantly,
tries to build an itinerary POI by POI, whereas we consider
a navigational approach that starts with all possible valid
itineraries, which is then iteratively narrowed by suggesting
POIs in batches based on highest expected itinerary scores.

Our optimal itinerary construction problem is akin to the
vehicle routing problem and traveling salesman problem [4],
[21], widely studied in the field of Computer Science and Op-
eration Research. These problems and several of their variants
are known to be NP-complete. One variant of vehicle routing
problem is the Orienteering problem, which and many of its
variants are also known to be NP-complete [22], [23], [24]. In
particular, we deal with the Rooted Orienteering problem in
non-Euclidean asymmetric metric space. Efficient polynomial
time approximation scheme is known for this problem problem
in the plane [3]. Unfortunately, to the best of our knowledge,
there are no known approximation algorithms with provable
bounded factors for its non-Euclidean asymmetric variant.

Our greedy solution to the itinerary construction problem
requires efficient searching for the next best time POI. We
resort to a heap data structure [4] for that, which facilitates
efficient look up operation for the next best time node. The
next benefit POI is retrieved by performing a threshold style [5]
computation on ProbOrder lists and heaps.

Our greedy algorithm for POI selection problem processes
feedback combinations in a current batch such that the heap
requires only one update between subsequent combinations.
We leverage on computing a Hamiltonian Path on a hypercube
graph [4] to accomplish that task.

VII. CONCLUSION
In this paper, we formalized interactive itinerary planning,

showed that it is an NP-complete problem and developed
intuitive optimizations for the case where the score of an
itinerary is proportional to the number of Points Of Interest
(POIs) desired by the user. In order to do so, we reduced our
problem to the rooted orienteering problem. Our optimizations
are based on computing a Hamiltonian path in a hypercube and
on using an efficient heap-based data structure to efficiently
prune POIs. In the future, we are planning to explore opti-
mizations for more sophisticated itinerary scoring functions
such as the chain semantics, and to consider more complex
budget constraints which incorporate both time and price. Our
algorithms would need to be revisited for that purpose.
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