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Abstract

In finance, an interest rate derivative is a financial instrument where the underlying asset is an

interest rate at which payments are made based on a notional amount. A common approach to price

interest rate derivatives is through the use of interest rate models. However, a drawback with this

approach is that calibration of interest rate models does not involve the interest rate being modeled.

Hence, calibrated models may not be good representations of interest rates and may not produce

reliable derivative prices.

To deal with the issue, we propose a time series modeling approach to analyze interest rates,

specifically, the zero-coupon yield curves. In this approach, yield curves are modeled as functional

data and we introduce models that are based on the well-known autoregressive model in time series

analysis. The objective of this approach is to understand the dependency of the yield curves on

historical data and to predict future yield curves before they are observed.

The proposed models are illustrated and compared with the time series of US Treasury zero-

coupon yield curves. We explore how individual models perform during different times in an economic

cycle. We also propose a way to predict future caplet prices by combining yield curve prediction

using functional time series models and historical implied volatilities of caplets. The time series

approach that we propose are shown to work well against existing models such as the Hull-White

model.
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Chapter 1

Introduction

1.1 Motivation

In finance, an interest rate derivative is a financial instrument where the underlying asset is an

interest rate at which payments are made based on a notional amount. The price of an interest rate

derivative depends on the level of the interest rate and its expected change in the future. To price

an interest rate derivative, a common approach is to define the future evolution of the interest rates

using an interest rate model. There are three main types of interest rate models. A short rate model

describes the short rate; an HJM model describes the instantaneous forward rate; and a market

model describes the forward rate. These interest rate models are based on some parameters which

are solved by a process called calibration. Calibration makes sure that the interest rate models

produce prices that are close to the market prices of some interest rate derivatives. These model

paramters are then used to price other interest rate derivatives.

A drawback of this approach is that the interest rate that is modeled by the interest rate model

is never used in the calibration procedure. Hence, the calibrated model may not give a very good

representation of the dynamics of the interest rate, and hence the prices it produces may be unre-

liable. In this thesis, we propose a time series approach to analyze the time series of zero-coupon

yield curves. It aims to understand the dependence structure of the yield curve on past data and to

make accurate forecasts of future yield curves. In the model, yield curves are treated as functional

1



CHAPTER 1. INTRODUCTION 2

data, where each curve is regarded as a functional observation.

In Chapter 4, we illustrate the use of this modeling approach by looking at how well it can

predict the yield curve on future periods. We then propose to use these predictions in combination

with the implied volaitlities of caplets to predict the prices of future caplets. Not only is this time

series approach of predicting caplet prices shown to work well against pricing by calibrating interest

rate models, but treating yield curves as functional data is seen to have an advantage because the

forecasts of the model are also functional. When calculating caplet prices, points on the yield curve

at maturities where no observations are recorded are needed.

1.2 Functional Data

A set of data can be considered functional if observations have common underlying functional struc-

ture such as curves or surfaces. For example, the weights of an individual recorded at different times

is a functional observation because it can be considered as a function of the relationship between

weight and time. If the weight information is recorded for more than one individual, it is considered

a functional data set. A functional time series is a set of functional data where the observations

are taken at successive times. In Chapters 3 and 4, the time series of yield curves is treated as

a functional time series. We assume that the functional observations are spaced at uniform time

intervals.

Normally, functional data are collected in discrete form rather than in functional form because

it is not possible to record and store an infinite number of points. In order to analyze them in

functional form, these data are first converted into functions via means such as spline or kernel

smoothing. The time series of yield curves is treated in the same way. Section 2.2 discusses some

parametric and nonparametric methods that estimate the zero-coupon yield curve from the prices

of a number of bonds. This also makes it possible to convert the zero-coupon yield curve to the

forward rate curve, which involves taking derivatives to the curve.

Analyzing data in functional form is not a new idea. Ramsay and Silverman (2005) describe

several statistical methods that can be used to analyze functional data such as functional principal

component analysis, functional canonical correlation analysis, and functional linear regression.
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1.3 Outline of the Thesis

This thesis is organized as follows. Chapter 2 provides some background information about interest

rate markets. In particular, it describes some popular interest rate derivatives such as swaps, caps,

floors, and swaptions, and interest rate models that include short rate models, HJM models, and

market models. Chapter 3 provides functional time series models that are used to model the time

series of yield curves. The functional autoregressive model and the pointwise autoregressive func-

tional model are presented. They are solved by first assuming the functional coefficients are linear

combinations of basis functions and then using least squares method. Chapter 4 provides empirical

studies that illustrate how the functional time series models can be applied to real world data. The

first study compares the prediction accuracy of the one-day ahead out-of-sample forecast of several

time series models. The second study shows how the results of the first study can be used to predict

future caplet prices. Chapter 5 provides a summary of the main ideas and results of the thesis.



Chapter 2

Interest Rate Markets

This chapter provides some financial background of the interest rate markets. Section 2.1 provides

some basic concepts and definitions of popular interest rate derivatives including bonds, LIBOR,

forward rates, interest rate swaps, caps, floors, and swaptions. Section 2.2 describes methods that can

be used to estimate the zero-coupon yield curve (as known as the zero curve) from given default-free

bond prices. Section 2.3 describes several types of models in the literature that model the future

evolution of interest rates. Short rate models describe the short rate; HJM models describe the

instantaneous forward rate; the LIBOR market model describes the forward LIBOR. Section 2.4

discusses how the paramters in the interest rate models can be estimated.

2.1 Elements of Interest Rate Markets

2.1.1 Bond Market

In finance, a zero-coupon bond with face value 1 is a debt security that pays 1 unit of currency at the

maturity date. A coupon bond is like a zero-coupon bond but with interest payments at specified

times before the maturity. In the United States, these debt securities issued by the US Treasury are

divided into 3 categories. Treasury bills (T-bills) are zero-coupon bonds with maturity less than 1

year. Treasury notes (T-notes) are semiannual coupon bonds with maturity between 1 and 10 years.

Treasury bonds (T-bonds) are semiannual coupon bonds with maturity longer than 10 years.

4



CHAPTER 2. INTEREST RATE MARKETS 5

Denote the price at time t of a zero-coupon bond with face value 1 and maturity T by P (t, T ).

It is clear that P (T, T ) = 1. For a coupon bond with face value 1 and coupon payments ci at times

T1 < T2 < · · · < Tn = T , it can be realized as a sum of zero-coupon bonds and its price is given by

n−1∑
i=1

ciP (t, Ti) + (1 + cn)P (t, Tn). (2.1)

Under continuous compounding, the yield-to-maturity (or simply yield) y of such a bond is defined

to be the solution of the following equation

bond price =
n−1∑
i=1

cie
y(Ti−t) + (1 + cn)e−y(Tn−t).

The spot rate is the yield of a zero-coupon bond (under continuous compounding) and is given by

R(r, T ) = − logP (t, T )
T − t

.

The relationship between interest rates and their maturities is called the term structure.

2.1.2 LIBOR and Forward Rates

LIBOR stands for London InterBank Offered Rate. It is a daily reference rate based on the interest

rates that banks in the London wholesale money market charge for borrowing funds to each other. It

is an annualized, simple interest rate that will be delivered at the end of a specified period. Denote

LIBOR by F (t, T ), where t is the current time and T is the maturity. Then it is defined as

F (t, T ) =
1

T − t

(
1

P (t, T )
− 1
)
.

A forward rate agreement (FRA) is a contract today t for a loan between T1 and T2. It gives

its holder a loan at time T1, with a fixed simple interest rate for the period T2 − T1, to be paid at

time T2 in additional to the principal. The rate agreed in a FRA is called the forward rate and is
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denoted by F (t, T1, T2). Its value is defined as

F (t, T1, T2) =
1

T2 − T1

(
P (t, T1)
P (t, T2)

− 1
)
. (2.2)

The instanteneous forward rate at time t with maturity T is denoted by f(t, T ) and is given by

f(t, T ) = −∂ logP (t, T )
∂T

.

From this definition, the zero-coupon bond price P (t, T ) can be expressed as

P (t, T ) = exp

{
−
∫ T

t

f(t, u)du

}
. (2.3)

The short rate r(t) is defined as

r(t) = lim
T→t

f(t, T ) = f(t, t). (2.4)

It represents the interest rate at which a loan is made for an infinitesimally short period of time

from time t.

2.1.3 Interest Rate Swaps

An interest rate swap is a contract between two parties in which they agree to exchange one stream

of cash flows based on fixed interest rate κ with another stream based on variable interest rate,

which is usually taken to be LIBOR. Let t ≤ T0 < T1 < · · · < Tn, where t is the current time

and T1, . . . , Tn are times at which payments occur. Tn is called the maturity of the swap. Often,

Ti − Ti−1 = δ and δ can be 1, 1/2, or 1/4 year. If t < T0, then the swap is called a forward swap.

Let N be the notional of the swap. Then at each time Ti, i = 1, . . . , n, one party pays the other

party a fixed amount Nδκ and receives a floating amount NδF (Ti−1, Ti). The fixed interest rate κ

is called the swap rate. Its value at time t is denoted by rswap(t, T0, Tn) and is defined as follows:

rswap(t, T0, Tn) =
P (t, T0)− P (t, Tn)
δ
∑n
i=1 P (t, Ti)

.
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2.1.4 Caps and Floors

An interest rate caplet with reset date T and settlement date T + δ is a European call option

on LIBOR, that pays its owner at T + δ if the rate exceeds the strike rate K in the amount of

δmax(0, F (T, T + δ)−K).

An interest rate cap is a series of caplets. Let T0 < T1 < · · · < Tn be future dates and K be the

strike rate. Then at each time Ti, i = 1, . . . , n, the cap pays (Ti − Ti−1) max(0, F (Ti−1, Ti) −K).

Interest rate caps are designed to provide insurance against the interest rate of a floating rate loan

rising above a certain level K.

Floorlet and floor are European put option counterparts of caplet and cap, respectively. Using

the same notations, a floorlet pays δmax(0,K − F (T, T + δ)), and a floor is a series of floorlets and

pays δmax(0,K − F (Ti−1, Ti)) at time Ti for i = 1, . . . , n.

In the market, caplets and caps (as well as floorlets and floors) are quoted in terms of their

implied volatilities. Their prices are obtained by plugging the implied volatilities into Black (1976)

formula. Suppose the implied volatility at time t for the ith caplet is σcapleti

t . Then its price at

time t is given by

(Ti − Ti−1)P (t, Ti) Black(F (t, Ti−1, Ti),K, σ
capleti

t

√
Ti−1 − t), (2.5)

where

Black(L,K, σ) = LΦ
(

log(L/K)
σ

+
σ

2

)
−KΦ

(
log(L/K)

σ
− σ

2

)
, (2.6)

and Φ is the standard normal cumulative distribution function. The relationship between the cap

price and the cap implied volatility σcap
t is given by

n∑
i=1

(Ti − Ti−1)P (t, Ti) Black
(
F (t, Ti−1, Ti),K, σ

cap
t

√
Ti−1 − t

)
.

2.1.5 Swaptions

A swaption with strike κ is an option that grants its owner the right to enter into a swap with

fixed rate κ at the maturity T0 of the swaption. Suppose the payments of the swap occur at times

T1, . . . , Tn. The duration of the swap Tn − T0 is called the tenor of the swaption. The payoff of the
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swaption at maturity T0 is given by

δmax{0, rswap(T0, Tn)− κ}
n∑
i=1

P (T0, Ti).

2.2 Yield Curve Estimation

The term structure of interest rate can be described by the price of a zero-coupon bond with

face value 1 versus its maturity. Alternatively, it can be described by the yield curve, which is the

relationship between the yield of a zero-coupon bond and its maturity. The yield curve is usually, but

not always, an increasing function of time t. Its shape and level reveal conditions in the economy

and the financial markets, and so yield curves are monitored closely by economists and market

practitioners.

To estimate the yield curve at current time 0, one takes a set of n reference default-free bonds

such as the US Treasury bonds, which is seen in (2.1) to be dependent on the function P (0, ·). A

parametric or nonparametric model is assumed on P (0, T ) and least squares regression is used to

estimate the parameters. That is, the following quantity is minimized over the parameters of the

model:
∑n
i=1(Bi − B̂i)2, where Bi is the observed price of the ith bond, and B̂i is model price of

the ith bond.

A parametric model on P (0, T ) assumes certain form on it so that by varying the parameters,

the model is able to reproduce the the shapes seen in historical yield curves: increasing, decreasing,

flat, humped, and inverted. For example, Nelson and Siegel (1987) assume the following model on

the instanteneous forward rate.

f(0, s) = β0 + β1 exp
{
− s
τ

}
+ β2

s

τ
exp

{
− s
τ

}
,

which implies (by (2.3))

P (0, t) = exp
{
−β0t− (β1 + β2)τ(1− e−t/τ ) + tβ2e

−t/τ
}
.

Svensson (1994) generalized the Nelson-Siegel model by assuming the instantenous forward rate has
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the following form:

f(0, s) = β0 + β1 exp
{
− s

τ1

}
+ β2

s

τ1
exp

{
− s

τ1

}
+ β3

s

τ2
exp

{
− s

τ2

}
,

which is capable of producing additional U and humped shapes for P (0, t):

P (0, t) = exp
{
−β0t− (β1 + β2)τ1(1− e−t/τ1) + tβ2e

−t/τ1 − β3τ2(1− e−t/τ2) + tβ3e
−t/τ2

}
.

The nonparametric approach to estimate the yield curve is to express the function P (0, T ) using

spline basis functions. The regression parameters can then be estimated using ordinarily least squares

method. We will use this approach in Chapter 4 with a spline function called B-spline. Details of

B-spline is given in Appendix A.

2.3 Stochastic Interest Rate Models

Interest rate models are mathematical models that describe the dynamics of interest rates in the

future. These models are used to price interest rate derivatives that depend on future interest rates.

The quantities that are modeled can be different in different interest rate models. This section gives

a brief description of three kinds of interest rate models: short rate models, HJM framework, and

LIBOR market model, where the quantities of interest are short rate, instantaneous forward rate,

and forward LIBOR, respectively.

2.3.1 Short Rate Models

Short rate models are stochastic models that prescribe the dynamics of the short rate rt, which was

defined in (2.4). It can be shown that in the absence of arbitrage, under some technical conditions,

the price of a zero-coupon bond is related to short rate by the following formula:

P (t, T ) = E

[
exp

{
−
∫ T

t

rsds

}∣∣∣∣∣ rt = r

]
.
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Hence, future bond prices can be calculated if the dynamics of the short rate is specified. Interest rate

models with different forms have been proposed in the literature and this section describes some

of them. In the following models, Wt denotes a standard Brownian motion under a risk-neutral

probability measure.

Vasicek Model

Under the Vasicek model (Vasicek, 1977), the short rate rt is modeled as

drt = a(b− rt)dt+ σdWt.

The Vasicek model was the first one to capture the mean-reverting property of the interest rate.

Mean reversion refers to the fact that interest rate flutuates around some level and this property is

what sets interest rates apart from other financial prices such as stock prices. In the model, b is the

long-term mean level of rt, a is the speed of reversion, and σ is the volatility.

Under the Vasicek model, the price of a zero-coupon bond has the following closed-form expres-

sion:

P (t, T ) = α(t, T )e−β(t,T )rt ,

α(t, T ) = exp
{(

b− σ2

2a2

)
[β(t, T )− (T − t)]− σ2

4a
β2(t, T )

}
,

β(t, T ) =
1
a

(
1− e−a(T−t)

)
.

Cox-Ingersoll-Ross (CIR) Model

Cox, Ingersoll, and Ross (1985) modify the Vasicek model due to the fact that the short rate process

rt in the Vasicek model can become negative. The CIR model assumes the following dynamics for

the short rate rt:

drt = a(b− rt)dt+ σ
√
rtdWt.

This model is also a mean-reverting process. The square root ensures that rt stays nonnegative.
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Under the CIR model, the price of a zero-coupon bond has the following closed-form expression:

P (t, T ) = α(t, T )e−β(t,T )rt ,

α(t, T ) =
[

2he(a+h)(T−t)/2

2h+ (a+ h)[e(T−t)h − 1]

]2ab/σ2

,

β(t, T ) =
2
(
e(T−t)h − 1

)
2h+ (a+ h)[e(T−t)h − 1]

,

where h =
√
a2 + 2σ2.

Hull-White Model

Vasicek and CIR models have only a few number of paramters and they usually can not reproduce

the initial term structure exactly. A model that can fit the initial term structure perfectly is the

Hull-White model, which was introduced by Hull and White (1990) and has a more general form

than the Vasicek model:

drt = (bt − art)dt+ σdWt. (2.7)

Under this model, the price of a zero-coupon bond is given by

P (t, T ) = α(t, T )e−β(t,T )rt ,

α(t, T ) =
P (0, T )
P (0, t)

exp
{
−β(t, T )

∂

∂t
logP (0, t)− σ2(1− e−2at)

4a
β2(t, T )

}
,

β(t, T ) =
1
a

(
1− e−a(T−t)

)
.

Also, the price of a caplet at current time 0 with strike K on the LIBOR F (T, T + δ) is given by

(1 + δK)P (0, T )
[

1
1 + δK

Φ(−d2)− P (0, T + δ)
P (0, T )

Φ(−d1)
]
, (2.8)



CHAPTER 2. INTEREST RATE MARKETS 12

where

d1 =
log
[
P (0,T+δ)
P (0,T ) (1 + δK)

]
Σ
√
T

+
1
2

Σ
√
T ,

d2 = d1 − Σ
√
T ,

Σ = σ
1− e−aδ

a

√
1− e−2aT

2aT
.

Some Other Short Rate Models

The Vasicek, CIR, and Hull-White models belong to a more general type of models called affine

models. Affine models consist of the class of diffusion models for rt which have the nice property

that the zero-coupon bond price P (t, T ) has explicit solutions as P (t, T ) = e−A(t,T )−B(t,T )rt . Duffie

and Kan (1996) showed that a necessary and sufficient condition for a model to be affine is that it

has the following form:

drt = (bt + βtrt)dt+
√
at + αtrtdWt,

where b, β, a, α are deterministic functions of time. It can be shown that A(t, T ) and B(t, T ) satisfy

the following system of two ordinary differential equations:

B′(t, T ) = −βtB(t, T ) +
αt
2
B2(t, T )− 1,

A′(t, T ) = btB(t, T ) +
1
2
atB

2(t, T ),

with terminal conditions B(T, T ) = 0 and A(T, T ) = 0. In order to solve for A and B, the strategy

is to first solve for B and integrate it into A’s differential equation to get A. However, in general

there are no closed-form solutions for A and B. Numerical methods are needed to solve for these

ordinary differential equations.

Some examples of affine models are given below:

• Ho-Lee model: drt = θtdt+ σdWt.

• Extended CIR model: drt = (bt − βrt)dt+ σ
√
rtdWt.
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2.3.2 Heath-Jarrow-Morton (HJM) Framework

The HJM framework was proposed by Heath, Jarrow, and Morton (1992). It is a general frame-

work that models the dynamics the instantaneous forward rate f(t, T ). The motivation behind the

development of the framework is that while short rate models which prescribe the dynamics of the

instantaneous spot rate rt is a natural way of modeling interest rates, these models have short-

comings. First, short rate models such as the Vasicek and CIR models have only a few number

of paramters and they are not able to reproduce the initial yield curve exactly. Second, short rate

models do not capture the full dynamics of the forward rate curve; it only captures the dynamics of

a point on the curve.

In the HJM framework, the instantaneous forward rate f(t, T ) is modeled as follows by the

following k-factor model:

df(t, T ) =
k∑
i=1

σi(t, T )si(t, T )dt+
k∑
i=1

σi(t, T )dWi(t), (2.9)

where (W1(t),W2(t), . . . ,Wk(t))T is a k-dimensional Brownian motion. They showed that under an

equivalent martingale measure, the condition of no-arbitrage implies that

si(t, T ) =
∫ T

t

σi(t, u)du.

Since the drift term in (2.9) is a function of the volatility, once the volatility is given, the drift is

constrained to be the given expression and no drift estimation is needed. However, models developed

under the general HJM framework are usually non-Markovian, which makes it difficult to use tree

methods when pricing interest rate derivatives because it leads to non-recombining trees. In these

cases, Monte Carlo simulations are used instead (Brigo and Mercurio, 2006).

2.3.3 LIBOR Market Model

The LIBOR market model is an interest rate model that prescribes the dynamics of forward LIBOR

rates. It was developed by Brace, Gatarek, and Musiela (1997) and is also known as the BGM

model.
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Section 2.1.4 describes the connection between the caplet price and its Black implied volatility

through Black (1976) formula. In fact, this formula was an extension of the work of Black and

Scholes (1973) on option pricing theory on equity options. It replaces the volatility of the spot price

in the Black-Scholes formula with that of the forward price.

The Black formula for caplets assumes that the forward LIBOR follows a geometric Brownian

motion with constant volatility. It is the formula used by the market to quote caps and floors.

However, it can be shown that Gaussian HJM models, which are HJM models with deterministic

volatility function σi(t, T ) in (2.9), are not able to reproduce the Black formula for caplets used

by the market. The incompatibility on the caplet pricing formula leads to the development of the

LIBOR market model.

Consider times T0 < T1 < · · · < Tn, where Ti’s are reset dates and Ti+1’s are settlement dates

for i = 0, 1, . . . , n − 1. Denote QTi to be the Ti-forward measure, which is the forward risk-neutral

measure with respect to the numeraire P (t, Ti). Let Fi(t) = F (t, Ti, Ti+1). The LIBOR market

model models a set of n forward LIBOR Fi(t), i = 0, . . . , n− 1 under QTi as lognormal processes

dFi(t)
Fi(t)

= µi(t)dWTi
t ,

where µi(t) is a deterministic function, and WTi
t is a Brownian motion under QTi .

Under the LIBOR market model, the price of the ith caplet is given by

(Ti − Ti−1)P (t, Ti)[F (t, Ti−1, Ti)Φ(d1i)−KΦ(d2i)],

where

d1i =
log(F (t, Ti−1, Ti)/K)

νi
√
Ti−1 − t

+
1
2
νi
√
Ti−1 − t,

d2i = d1i − νi
√
Ti−1 − t,

ν2
i =

1
Ti−1 − t

∫ Ti−1

t

µi−1(u)du. (2.10)

Therefore, it is seen that this recovers the caplet pricing formula of Black model used in the market.

For this reason, it is named with the term “market model”.
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2.4 Parameter Estimation in Interest Rate Models

Currently, the market practice in the financial industry to estimate the parameters of an interest rate

model is to calibrate it to certain interest rate products which are called calibrating instruments.

The goal of calibration is to be ensure that the model is able to produce prices that are close to the

prices of the calibrating instruments. A standard way of doing this is to minimize the sum of squares

between the observed prices and the model prices over the calibrating instruments. In Section 2.2,

the estimation of model parameters of the parametric models is an example of calibrating to bond

data.

Calibrating instruments are usually taken to be similar to the derivatives that are being valued.

Hence, caps, floors, and swaptions, which are the most popular interest rate derivatives, are often

taken as calibrating instruments.

To calibrate the LIBOR market model to caplet implied volatilities σi, the νi’s in (2.10) is taken

to be σi’s. The µi(t) are assumed to have the form µi(t) = µ(t, Ti). Define µ2
i,k by

µ2
i,k =

∫ Tk

Tk−1

µ(u, Ti)du, 1 ≤ k ≤ i,

and let T0 be the current time t. Then (2.10) becomes (Ti−1 − t)σ2
i =

∑i−1
k=1 µ

2
i,k. Rebonato (2002)

proposes the following form for µ(t, T ) = ξ(t)η(T )ρ(T − t), where ξ(t) is the purely time-dependent

component, η(T ) is the purely forward-rate-specific component, and ρ(T−t) is the time-homogeneous

component. Rebonato (2002) and Brigo and Mercurio (2006) also recommend using parametric

models for these three building blocks when estimating these functions.

An alternative way to fit the term structure models is to use multivariate time series of bond

yields instead of the prices of financial instruments. For one-factor short-rate models, discrete-time

approximations of the continuous-time stochastic models of rt are used. Short-maturity Treasury

bills are taken as proxies for rt. Lai and Xing (2008, Section 9.7.3) illustrates this approach to esti-

mate the parameters and to test the validity of different short-rate models using generalized method

of moments by Chan et al. (1992). Aı̈t-Sahalia (1996) and Stanton (1997) proposed nonparametric

model to estimate the drift and volatility functions of drt = µ(rt)dt+ σ(rt)dWt through the use of

its stationary distribution.



Chapter 3

A Functional Time Series

Approach to Interest Rate

Modeling

In the last chapter, we saw several types of interest rate models that prescribe the dynamics of the

short rate, instantaneous forward rate, and the forword LIBOR. Each of the models can be seen as

modeling the evolution of some time series. For example, in short rate models, rt can be thought of

as a continuous-time time series. The calibration procedure attempts to resemble the dynamics of

the interest rate defined by the model and the dynamics of the interest rate observed in the market.

It is done by looking for model paramters so that the model produces prices that are close to the

market prices of certain calibrating instruments. In a sense, the calibrated model defines how the

interest rate should evolve based on hisorical or present data. In fact, this is exactly what time series

models attempt to do, namely, understanding the underlying structure which allows one to explore

how the time series is generated, and also making forecasts of future points based on historical data

before the actual data is measured.

The price of an interest rate derivative depends on the future evolution of interest rates, which

can be defined by an interest rate model. However, the assumptions made by an interest rate

16
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model might be unrealistic. Also, during the calibration procedure, the interest rate modeled by

the interest rate model is never used. Hence, the model calibrated to financial instruments may not

provide accurate dynamics of the interest rate, and as a result, the prices of interest rate derivatives it

produces may be unrealiable. In addition, since there are so many interest rate models and different

models may have different assumptions about interest rates. These assumptions need to be justified

before pricing can be done.

While interest rate models use stochastic different equations to define the dynamics of interest

rates, a statistical counterpart that can be used to analyze time series of interest rates is time series

models. In this section, we propose a time series approach to analyze yield curve data. It has two

advantages. First, interest rate data are actually used to analyze its own structure. Second, the

model is more flexible in terms of assumptions on the interest rate. An interest rate model uses

Brownian motion and sometimes requires mean-reverting property, which may not may not hold in

reality; the proposed model has no such restriction. In these time series model, the yield curve data

are treated as functional data. This is motivated by Carmona and Tehranchi (2006), who proposed

an infinite-dimensional HJM model that replaces
∑k
i=1 in (2.9) by

∑∞
i=1.

This chapter is organized as follows. Section 3.1 introduces the notion of functional data. In

analyzing interest rate data, the data are treated as functional time series. Section 3.2 gives a brief

review of time series models. Section 3.3 introduces a time series model that we will use to analyze

interest rate data in functional form. The model is based on autoregressive model and is called

the autoregressive functional time series model. Section 3.4 discusss two ways to approximate the

coefficient functions. One is via discretizing the functions, and the other is via assuming that the

coefficients are linear combinations of a common set of predefined basis functions. After the coef-

ficients are estimated, Section 3.5 explains the procedure of forecasting future observations based

on historical data. Section 3.6 describes an algorithm to select a subset of basis functions in order

to obtain a better representation of the coefficient functions and achieve better prediction perfor-

mance. Section 3.7 describes an extension of the autoregressive functional model which incorporates

exogenous time series. Section 3.8 introduces the pointwise autoregressive functional model which

is an alternative model for functional time series.
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3.1 Yield Curves as Functional Data

The interest rate that we attempt to model is the yield curve of zero-coupon bonds. In reality, the US

Treasury releases bills, notes, and bonds with some specific maturities such as 0.25, 0.5, 1, 2, . . . , 10

years. Hence, at each time, we are only able to obtain a set of points on the yield curves from the

bonds. The time series of bond yields can be considered as a multivariate time series. Clearly, one

way to model this multivariate time series is to apply some time series models such as the vector

autoregressive moving-average model. However, suppose we consider the HJM model in Section

2.3.2 that models the instantaneous forward rate. Once the model parameters is determined by

calibration, the future dynamics of the forward curve f(t, T ) is given. Then zero-coupon prices

and their yields can be obtain by P (t, T ) = exp{−
∫ T
t
f(t, u)du} and R(t, T ) = 1

T−t
∫ T
t
f(t, u)du.

Transformation between bond prices and forward rates can be done because for each time t, the

entire forward curve f(t, T ) is known. On the other hand, this kind of transformation is not possible

with multivariate time series and multivariate models. This motivates us to first consider the time

series of yield curves as a functional time series.

In Section 2.2, we describe parametric and nonparametric methods to estimate yield curves.

These methods are very useful now in our analysis of the yield curves as functional time series

because they transform the multivariate bond yield data into functional yield curve data. Also, in

cases where the multivariate bond yield data have missing data, or when the bond yields are recorded

at different maturities at different times, then multivariate time series models are not applicable,

but the methods in Section 2.2 are still able to produce a functional time series for us to analyze. As

a result, transformations between different rates which require derivatives or integrals are possible.

In particular, we will use the nonparametric splines method to estimate yield curves in the empirical

study of the US Treasury zero-coupon bond yield data in Chapter 4. Figure 3.1 shows some of the

zero-coupon bond yield curves obtained by the nonparametric splines approach.

3.2 Review of Time Series Models

There are numerous time series models and they take on different forms and represent different

stochastic processes. Three broad classes of time series models are autoregressive (AR), integrated
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Figure 3.1: U.S. Treasury zero-coupon bond yield curve on the first trading day of each of years
2005-2009 obtained by the nonparametric splines approach.

(I), and moving average (MA) models. These models assume linear relationships between present

information and past information. In particular, an AR model assumes a linear relationship between

each observation and a number of past observations, an I model assumes that the kth difference of

the time series is a white noise process, and an MA model assumes that every observation is a linear

combination of previous (unobserved) white noise terms. These ideas can be combined to form

autoregressive moving average (ARMA) and autoregressive integrated moving average (ARIMA)

models.

One can also incorporate external time series into any of the above time series models when the

observed time series is driven by it. Hence, we could have models denoted by ARMAX or ARIMAX,

where the “X” represents “exogenous”.

The univariate time series models above can be generalized to deal with vector-valued time

series data. A “V”, which stands for “vector”, is added to the front of the acroynms. For example,

a multivariate ARMA model is called a vector autoregressive moving average model and is denoted

by VARMA.
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3.3 Autoregressive Functional Time Series Models

The autoregressive model is a basic and intuitive model that is used to analyze time series. The

idea behind the model is that every observation is dependent on some past observations, and the

dependency is linear. Since the model is linear, the problem is treated as a linear regression problem

and it has a closed-form solution. Because of the usefulness of the autoregressive model, we will

generalize its idea to the functional case. In this section, we give the autoregressive model for

functional time series, which is based on the univariate and multivariate autoregressive models.

Given a univariate time series x1, x2, . . ., the autoregressive model with order p is given by

xt = α0 +
p∑
i=1

αixt−i + εt,

where εt are the error terms. In the model, every observation xt is a linear combination of the past

p observations xt−i, i = 1, . . . , p. When solving for the solutions α̂i’s, the problem is regarded as

a multiple linear regression, and the sum of the squared errors is minimized. It can be generalized

to the multivariate case where we have a k-dimensional time series x1,x2, . . .. The autoregressive

model becomes

xt = α0 +
p∑
i=1

Aixt−i + εt.

This model is called the vector autoregressive model with order p. α0 is the intercept, which is now

a k-dimensional vector. Each of the coefficients Ai is a k× k matrix. Hence, the model relates each

dimension of the observation xt with every dimension of the past p observations xt−i, i = 1, . . . , p,

linearly. When solving for least squares estimates, the problem is regarded as a multivariate linear

regression, and the sum of the squared Euclidean norms of the error vectors εt is minimized.

Consider a functional time series xt(θ), where t = 1, 2, . . . denotes the time and we assume

that the series has common domain θ ∈ Θ. Θ is assumed to be a closed interval for practical

applications. Following the definitions of the autoregressive models given above, the autoregressive

functional model for xt(θ) with order p is given by

xt(θ) = α0(θ) +
p∑
i=1

∫
αi(ϑ, θ)xt−i(ϑ)dϑ+ εt(θ), (3.1)
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where εt(θ) is a sequence of uncorrelated random processes that satisfies

1. E(εt(θ0)) = 0 for θ0 ∈ Θ.

2. E(εt(θ1)εt(θ2)) = σ(θ1, θ2) for θ1, θ2 ∈ Θ (covariance function).

3. E(εt1(θ1)εt2(θ2)) = 0 for t1 6= t2 and θ1, θ2 ∈ Θ.

In this model, each functional observation xt(θ) is related to the p most recent past observations

xt−i(θ), i = 1, . . . , p, in a linear fashion. The coefficients are the intercept function α0(θ) and

the two-dimensional αi(ϑ, θ)’s; they are analogous to the α0 and Ai’s in the vector autoregressive

model. Definite integrals, which are taken over Θ, are used in order for the linear relationship

to make sense. It can also be viewed as a linear operator Ti, which is the integral transform

Tix(θ) =
∫
αi(ϑ, θ)x(ϑ)dϑ.

The assumptions made on the error functions εt(θ) can be seen as extensions of the assumptions

on the error vectors in the vector autoregressive model. We require that the errors have mean 0;

their covariance does not depend on time; and errors at different times are uncorrelated. Also, we

require that the covariance function σ to be positive definite, which means that for any sequences

θ1, . . . , θn ∈ Θ and ξ1, . . . , ξn ∈ C, the sum

n∑
i=1

n∑
j=1

σ(θi, θj)ξiξ̄j

is real-valued and nonnegative.

3.4 Estimation of the Solutions

Suppose we have observations xt(θ) for t = 1, . . . , T . Then model (3.1) can be written in the

following form in matrix notation:

X0(θ) = α0(θ)1 +
p∑
i=1

∫
Xi(ϑ)αi(ϑ, θ)dϑ+ εt(θ), (3.2)
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where

Xi(θ) =



xT−i(θ)

xT−1−i(θ)
...

xp+1−i(θ)


, i = 0, 1, . . . , p,

and 1 is a vector of 1’s. In order to solve for the α̂i’s, we minimize the sum of squares of the errors

terms, integrated over Θ. Mathematically, the criterion C is

C =
∫ ∥∥∥∥∥X0(θ)− α0(θ)1−

p∑
i=1

∫
Xi(ϑ)αi(ϑ, θ)dϑ

∥∥∥∥∥
2

dθ.

This is an infinite-dimensional problem because unknown functions are needed to be solved. In order

to deal with the situation, we will impose restrictions to reduce the problem into a finite-dimensional

one. This can be done in one of the two following ways: discretizing the functional data, or reducing

the dimemsions using basis functions. However, subsequent parts of this thesis will be based on

the basis functions approach because of the drawbacks of the first approach which will be discussed

later.

3.4.1 Discretizing the Domain of Definition of the Functions

One way of approximating the solutions is to discretize the interval Θ into subintervals. For the

sake of simplicity, we will assume the intervals are defined by equally-spaced points θ1, . . . , θm with

∆θ = θi+1 − θi. Discretizing model (3.2) gives

X0(θk) = α0(θk) +
p∑
i=1

m∑
j=1

Xi(θj)αi(θj , θk)∆θ + εt(θk), k = 1, . . . ,m.

This corresponds to a multivariate linear regression and can be represented in matrix form as

Y = ZA + E,

where

Y =
[

X0(θ1) · · · X0(θm)

]
,
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Z = ∆θ
[

1 X1(θ1) · · · X1(θm) X2(θ1) · · · Xp(θm)

]
,

A =



α0(θ1) α0(θ2) · · · α0(θm)

α1(θ1, θ1) α1(θ1, θ2) · · · α1(θ1, θm)
...

...
. . .

...

α1(θm, θ1) α1(θm, θ2) · · · α1(θm, θm)

α2(θ1, θ1) α2(θ1, θ2) · · · α2(θ1, θm)
...

...
. . .

...

αp(θm, θ1) αp(θm, θ2) · · · αp(θm, θm)



,

E =
[

εt(θ1) · · · εt(θm)

]
.

The discretized version of the criterion C is

m∑
k=1

X0(θk)− α0(θk)−
p∑
i=1

m∑
j=1

Xi(θj)αi(θj , θk)∆θ

2

∆θ.

The solution Â is the least squares solution which is given by

Â = (ZTZ)−1ZTY.

Since Â contains only the values of the coefficient functions at discrete points, to recover the functions

α̂0(θ) and α̂i(ϑ, θ), one could interpolate the values α̂0(θk) and α̂i(θj , θk) in Â.

3.4.2 Basis Functions Approach

A drawback of the previous approach is that if the functional data are sufficiently smooth, then one

cannot discretize the functions into too many intervals; otherwise, it will cause the discretized time

series to be nearly linearly dependent, which leads to inaccuracies in the inversion of the matrix

ZTZ. On the other hand, there also cannot be too few intervals that would result in low resolution

of the data.

In this section we introduce the basis function approach. It is common in the literature to use



CHAPTER 3. A FUNCTIONAL TIME SERIES APPROACH 24

basis functions when dealing with functional data. For example, Cont and Fonseca (2002) use basis

functions to solve for functional principal components of time series of implied volatility surfaces of

European options, Ramsay and Silverman (2005) use basis functions to perform regression analysis

of functional data.

The idea of the approach is to assume that the unknown functional coefficients αi are finite linear

combinations of some pre-defined basis functions such as splines. By making this assumption, the

goal now is to solve for the coefficients of the basis functions. As we shall see, we have transformed

an infinite-dimensional problem into a finite-dimensional problem.

Suppose the αi have the following expansions in terms of basis functions:

α0(θ) =
∑L
l=1 a0lhl(θ) = aTh(θ),

αi(ϑ, θ) =
∑K
k=1

∑L
l=1 aiklgk(ϑ)hl(θ) = gT (ϑ)Aih(θ), i = 1, . . . , p,

(3.3)

where Ai is a matrix with kl-th entry given by aikl, h(θ) = [h1(θ), . . . , hL(θ)]T , g(ϑ) = [g1(ϑ), . . . , gK(ϑ)]T ,

and L and K are the number of basis functions in h(θ) and g(ϑ), respectively. From this definition,

h(θ) is the basis of the intercept function α0(θ). The basis of the two-dimensional functions αi(ϑ, θ),

i = 1, . . . , p, is the tensor product of two sets of one-dimensional basis g(ϑ) and h(θ). The model

now becomes

X0(θ) = aTh(θ) +
p∑
i=1

∫
Xi(ϑ)gT (ϑ)Aih(θ)dϑ+ εt(θ)

= aTh(θ) +
p∑
i=1

GiAih(θ) + εt(θ)

= GAh(θ) + εt(θ), (3.4)

where Gi, G and A are defined by

Gi =
∫

Xi(ϑ)gT (ϑ)dϑ,

G =
[

1 G1 · · · Gp

]
,



CHAPTER 3. A FUNCTIONAL TIME SERIES APPROACH 25

A =



aT

A1

...

Ap


=



a01 · · · a0L

a111 · · · a11L

...
. . .

...

a1K1 · · · a1KL

a211 · · · a21L

...
. . .

...

apK1 · · · apKL



.

The minimizing criterion C can now be written as

C =
∫
‖εt(θ)‖2 dθ =

∫
‖X0(θ)−GAh(θ)‖2 dθ.

Minimization of this criterion is done by taking derivative to C with respect to A and setting it to

zero. The resulting equation is called the normal equation and is given by

GTGÂ
∫

h(θ)hT (θ)dθ = GT

∫
X0(θ)hT (θ)dθ. (3.5)

Hence, the solution Â is given by

Â = (GTG)−1GT

∫
X0(θ)hT (θ)dθ

(∫
h(θ)hT (θ)dθ

)−1

Equivalently, the above can be expressed in terms of Kronecker product.

[∫
h(θ)hT (θ)dθ ⊗ (GTG)

]
vec(Â) = vec

(
GT

∫
X0(θ)hT (θ)dθ

)

vec(Â) =
[∫

h(θ)hT (θ)dθ ⊗ (GTG)
]−1

vec
(
GT

∫
X0(θ)hT (θ)dθ

)
The estimate Â is composed of matrices âT and Âi, i = 1, . . . , p, which are the estimates of aT

and Ai. Then the estimates of the coefficient functions, α̂0(θ) and α̂i(ϑ, θ), can be calculated by

plugging â and Âi into equations (3.3).
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3.5 Forecasting

Forecasting is an important aspect of time series analysis. Suppose that we have a functional time

series x1(θ), . . . , xT (θ) and we are now at time T . The goal is to use the functional autoregressive

model to predict the outcome of the time series at some time index T + l in the future, based on

historical data. The time index T is called the forecast origin, and the time index l is called the

forecast horizon. Denote the l-step ahead forecast of the time series by x(l)
T . Forecasting is done in

a similar fashion as in the univariate and multivariate autoregressive models.

1-Step Ahead Forecast

From the functional autoregressive model (3.1) with order p, we have

xT+1(θ) = α0(θ) +
∫
α1(ϑ, θ)xT (ϑ)dϑ+ · · ·+

∫
αp(ϑ, θ)xT−p+1(ϑ)dϑ+ εT+1(θ).

After obtaining the estimates of the coefficients α̂i, the 1-step ahead forecast can be calculated as

x
(1)
T (θ) = α̂0(θ) +

∫
α̂1(ϑ, θ)xT (ϑ)dϑ+ · · ·+

∫
α̂p(ϑ, θ)xT−p+1(ϑ)dϑ

= âTh(θ) +
∫

gT (ϑ)Â1h(θ)xT (ϑ)dϑ+ · · ·+
∫

gT (ϑ)Âph(θ)xT−p+1(ϑ)dϑ

= G̃Âh(θ),

where

G̃ =
[

1
∫
xT (ϑ)gT (ϑ)dϑ · · ·

∫
xT−p+1(ϑ)gT (ϑ)dϑ

]
.

Multistep Ahead Forecast

Again from the functional autoregressive model (3.1), we have

xT+l(θ) = α0(θ) +
∫
α1(ϑ, θ)xT+l−1(ϑ)dϑ+ · · ·+

∫
αp(ϑ, θ)xT+l−p(ϑ)dϑ+ εT+l(θ).

The idea is to replace the xT+l−i(θ), i = 1, . . . , p, on the right hand side of the above equation by

its forecast if it is an observation in the future. Mathematically, an l-step ahead forecast x(l)
T (θ) for
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l ≥ 2 can be obtained as

x
(l)
T (θ) = α̂0(θ) +

∫
α̂1(ϑ, θ)x(l−1)

T (ϑ)dϑ+ · · ·+
∫
α̂(ϑ, θ)x(l−p)

T (ϑ)dϑ

= ḠÂh(θ),

where

Ḡ =
[

1
∫
x

(l−1)
T (ϑ)gT (ϑ)dϑ · · ·

∫
x

(l−p)
T (ϑ)gT (ϑ)dϑ

]
,

and x
(i)
T (θ) is taken to be xT+i(θ) if i ≤ 0. The above formula provides a recursive relation for

multistep ahead forecast. The l-step ahead forecast can be computed by repeatedly applying the

1-step ahead forecast procedure to obtain the forecasts x(1)
T (θ), x(2)

T (θ), . . . , x(l)
T (θ) in order.

3.6 Basis Selection

In Section 3.4, we approximate the solutions of the functional autoregressive model (3.1) by assuming

the coefficient functions are linear combinations of basis functions (3.3). This reduces the model to

(3.4), which can be treated as a multivariate regression problem. L 1-dimensional basis functions

are used for α0(θ), and KL basis functions are used for each of αi(ϑ, θ), i = 1, . . . , p, where K is

the number of basis functions of g, L is the number of basis functions of h, and p is the order of the

model. Hence, the total number of basis functions used to describe the αi’s is equal to KLp + L.

It is also the number of entries of A. We see that this number increases with K, L, and p. When

numerous basis functions are used, it is possible that some are less important and including them

might lead to overfitting of the model.

One way to overcome the problem is that instead of assuming that α0 is a linear combination

of the hl’s and each αi, i = 1, . . . , p, is a linear combination of gkhl’s, we assume α0 is a linear

combination of a subset of all hl’s and each αi, i = 1, . . . , p, is a linear combination of a subset of

all gkhl’s. Different αi’s will then be represented by different sets of basis functions. In this section

we will discuss how the basis function representations of the αi’s are chosen.

We start from the matrix representation (3.4): X0(θ) = GAh(θ) + εt(θ). In this representation,

each entry of A represents the coefficient of a basis function. Suppose that we restrict an entry of A
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to be zero. This is equivalent to dropping the basis function corresponding to that entry. Hence, if

we are given the set of basis functions (which is a subset of the original set of basis functions) that

is used to explain each αi, the solution can be obtained by performing a constrained minimization

of the criterion C, with the constraints being the entries of A corresponding to the unused basis

functions are 0. Before we discuss how the basis functions are chosen, it is necessary to understand

how to solve for A when such constraints exist.

Consider a slightly more general problem where we have constraints of the form uTi Avi = γi,

with ui being (1 + pK1)-vectors, vi being K2-vectors, for i = 1, . . . , I. In particular, if γi = 0,

ui = ek, and vi = el, where ej is a vector with a 1 at the jth entry and 0 elsewhere, then the

constraint eTkAel = 0 corresponds to the kl-entry of A is 0. We are interested in Â∗ which is the

solution of the following optimization problem:

Â∗ = arg min
A

uT
i Avi=γi,1≤i≤I

∫
‖(X0(θ)−GAh(θ)‖2 dθ.

The derivative of the criterion with respect to A is given by

d

dA

∫
(X0(θ)−GAh(θ))T (X0(θ)−GAh(θ))dθ

=
d

dA

∫
−2XT

0 (θ)GAh(θ) + hT (θ)ATGTGAh(θ)dθ

= −2GT

∫
X0(θ)hT (θ)dθ + 2GTGA

∫
h(θ)hT (θ)dθ.

Then the normal equations for the above optimization are given by

GTGÂ∗
∫

h(θ)hT (θ)dθ +
I∑
j=1

ujλjvTj = GT

∫
X0(θ)hT (θ)dθ, (3.6)

uTi Â∗vi = γi, i = 1, . . . , I, (3.7)

where λj are the Lagrange multipliers. Equation (3.6) can be expressed in terms of the solution Â
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of the unconstrained model in the following way:

Â∗ = Â− (GTG)−1
I∑
j=1

ujλjvTj

(∫
h(θ)hT (θ)dθ

)−1

.

Plugging it into equation (3.7), we obtain

I∑
j=1

λj ·

[
uTi (GTG)−1ujvTj

(∫
h(θ)hT (θ)dθ

)−1

vi

]
= uTi Âvi − γi,

for i = 1, . . . , I. This is a system of linear equations with I equations and I unknowns. Assuming

that the λj can be solved, the solution Â∗ of the constrained optimization is given by

Â∗ = Â−
I∑
j=1

λj ·

[
(GTG)−1ujvTj

(∫
h(θ)hT (θ)dθ

)−1
]
.

We can check that this solution indeed satisfies the constraints by observing that

uTi Â∗vi = uTi Âvi −
I∑
j=1

λj ·

[
uTi (GTG)−1ujvTj

(∫
h(θ)hT (θ)dθ

)−1

vi

]
= uTi Âvi − (uTi Âvi − γi)

= γi.

The goal now is to decide which basis functions to use for each αi. We will do it in two stages.

Let N be the number of elements in A. As mentioned before, N = KLp + L is the total number

of basis functions used to describe the αi since each entry A is the coefficient of a basis function.

Firstly, for each 1 ≤ n ≤ N , we pick the n basis functions that best fit the data and constrain the

coefficients that correspond to unchosen basis functions to have zero values in A. These n basis

functions are chosen in a forward stepwise fashion. Secondly, we choose the optimal number of basis

functions according to prediction errors through a learning technique.

We will now describe our iterative algorithm to select n basis functions for each 1 ≤ n ≤ N . Let

Â∗n be the solution calculated using our algorithm for each n. Since n basis functions are selected

for Â∗n, this matrix has n non-zero entries and the other N − n entries are restricted to be zero. In
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particular, Â∗0 is the zero matrix that can be viewed as the solution with constraints that all entries

are zero, or that none basis functions are chosen. The algorithm is given as follows.

1. For n = 0, 1, . . . , N − 1, do the following two steps.

2. Start from Â∗n. For each of its zero entries, say Aij , remove the constraint that Aij = 0 and

calculate the solution Â∗(n+1)ij .

3. Let Â∗n+1 be the Â∗(n+1)ij that minimizes the integral of the squared residual function. That

is,

Â∗n+1 = arg min
Â∗(n+1)ij

∫ ∥∥∥X0(θ)−GÂ∗(n+1)ijh(θ)
∥∥∥2

dθ.

The idea behind the above algorithm is that at each step, we look for the basis function which,

if included, would result in the smallest fitting error. The algorithm is done in a forward stepwise

fashion: the choices of the basis functions for all 1 ≤ n ≤ N are found in one pass. Theoretically, one

can of course search for the subset of n basis functions that results in the smallest fitting error by

looking at all N !/(n!(N − n)!) combinations. However, in functional autoregression N(= KLp+L)

is generally not a small number that calculating the solutions of all combinations is not easy.

It now remains to choose the total number of basis functions n to be used in the model. This

number will be chosen by looking at a measure of the prediction performance when different numbers

of basis functions are used. The algorithm depends on two parameters: r and δ. r is the number

of (historical) periods in which we would assess the prediction performance. δ is a small positive

constant which will be described below. Recall that T is the number of time periods of the data (or

the index of the last period). The algorithm is given below.

1. Set n = 0.

2. For each time t = T, T − 1, . . . , T − r + 1, do steps 3 and 4.

3. Use a moving window (or data from the beginning) of historical data relative to time t (not

including itself) to get a 1-step ahead forecast x(1)
t−1,n(θ) of xt(θ) using the functional autore-

gressive model with n basis functions chosen using the method described above.
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4. Evaluate the out-of-sample squared perdiction error

ρn =
T∑

t=T−r+1

∫ (
xt(θ)− x(1)

t−1,n(θ)
)2

dθ.

5. If ρn > ρn−1 + δ or ρn > ρn−1(1 + δ), where δ is a small positive number, set the optimal

number of basis functions to be n− 1; otherwise, increment n by 1 and repeat steps 2 to 4.

In the above algorithm, our measure of the prediction error is the 1-step ahead prediction error of

the model. This is similar to cross-validation in that the data is divided into training and test sets;

the model is applied to the training set and is assessed on the test set. If r = 1, then the model is

applied on the data in all but the last period; a 1-step ahead perdiction is obtained and is compared

with the data in the last period. The sequence ρ1, . . . , ρN is expected to be first decreasing, and

then after some point, it will either increase or fluctuate. One can strategically choose the optimal

n by looking at the sequence ρn, and we have provided two ways in point 5 above. The idea behind

this algorithm comes from the intuition that the optimal number of basis functions used for data

x1(θ), . . . , xT (θ) and for data x1(θ), . . . , xT−1(θ) should be similar. Therefore, if we are able to get

the optimal number of basis functions for the latter set of data, we can use that as an estimate of

the optimal number of basis functions for the former set of data.

3.7 Autoregressive Functional Exogenous Model (ARFX)

In this section we introduce the autoregressive functional exogenous model (FARX). This model

relates every observation not only with past observations of the same series (autoregressive), but

also with present and past observations of another time series (exogenous series). An application of

the model is given in the next chapter, where we try to model the time series of yield curves, with

the federal funds rate as the exogenous time series.

For simplicity, we will only incorporate the present value of the exogenous time series into the

model. It is straightforward to generalize it to include past values of the exogenous time series. The

way that we include the exogenous time series into the model depends on whether it is univariate,

multivariate, or functional. In all three cases, the exogenous time series is included into the model
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in a linear fashion.

3.7.1 Models

Univariate Exogenous Variables

Let yt be a univariate time series. The autoregressive model with exogenous variable yt is given by

xt(θ) = α0(θ) +
p∑
i=1

∫
αi(ϑ, θ)xt−i(ϑ)dϑ+ β1(θ)yt + εt(θ).

Multivariate Exogenous Variables

Let yt be a m-dimensional multivariate time series. The autoregressive model with exogenous

variable yt is given by

xt(θ) = α0(θ) +
p∑
i=1

∫
αi(ϑ, θ)xt−i(ϑ)dϑ+

m∑
i=1

βi(θ)yit + εt(θ). (3.8)

Functional Exogenous Variables

Let yt(θ) be a functional time series. The autoregressive model with exogenous variable yt(θ) is

given by

xt(θ) = α0(θ) +
p∑
i=1

∫
αi(ϑ, θ)xt−i(ϑ)dϑ+

∫
β(ϑ, θ)yt(ϑ)dϑ+ εt(θ). (3.9)

3.7.2 Solving for the Solutions

In all of the above cases, the solutions can be solved using basis functions approach similar to the

one we saw in the last chapter. We assume the same basis function expansions for α0(θ) and αi(ϑ, θ),

i = 1, . . . , p, and the same definitions for A, X, and G. Since the univariate case is just a specific

case of the multivariate, we will only solve the cases where the exogenous time series is multivariate

or functional.
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Solutions for the Multivariate Case

Suppose each yt is m-dimensional and denote yt = [y1t, . . . , ymt]T . Define Yi to be the following

vector:

Yi =



yi,T

yi,T−1

...

yi,p+1


,

and assume βi(θ) = bTi h(θ) has the same basis function expansions as α0(θ). Then model (3.8) can

be written as

X0(θ) = GAh(θ) +
m∑
i=1

YibTi h(θ) + εt

= F1C1h(θ) + εt,

where

F1 =
[

G Y1 · · · Ym

]
, C1 =



A

bT1
...

bTm


.

Hence, the model is reduced into the same form that we had for the autoregressive functional model

in (3.4). It could then be solved by the same approach. The solution is give by

Ĉ1 =
(
FT1 F1

)−1
∫

Xt(θ)hT (θ)dθ
(∫

h(θ)hT (θ)dθ
)−1

.

Solutions for the Functional Case

Define Y0(θ) by

Y0(θ) =



yT (θ)

yT−1(θ)
...

yp+1(θ)


,
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and assume β(ϑ, θ) = gT (ϑ)Bh(θ) has similar basis function expansions as αi for i ≥ 1. Then model

(3.9) can be written as

X0(θ) = GAh(θ) +
∫

Y0(ϑ)gT (ϑ)dϑBh(θ) + εt

= F2C2h(θ),

where

F2 =
[

G
∫

Y0(ϑ)gT (ϑ)dϑ

]
, C2 =

 A

B

 .
Again, Ĉ2 is obtained in a similar way:

Ĉ2 =
(
FT2 F2

)−1
∫

X0(θ)hT (θ)dθ
(∫

h(θ)hT (θ)dθ
)−1

.

3.7.3 Forecasting

The forecasting of the time series at a time in the future for the functional autoregressive exogenous

model is just the same as the forecasting for the functional autoregressive model. The only difference

is that we must assume that future values of the exogenous time series is known when doing predic-

tions. Of course, we can also apply a time series model on the exogenous time series independently

to obtain estimates of its future values, and then use them to get forecasts of the time series xt(θ).

Alternatively, we can model the functional exogenous model so that it uses only past values of the

exogenous time series. Mathematically, the 1-step ahead forecast is given by

x
(1)
T (θ) = F̃Ĉh(θ),

where in the case when the exogenous time series is univariate or multivariate,

F̃ = [ G̃ y1T · · · ymT ], Ĉ = Ĉ1,
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and in the case when the exogenous time series is functional,

F̃ = [ G̃
∫
yT (ϑ)gT (ϑ)dϑ ], Ĉ = Ĉ2.

G̃ in both cases is the same as before. Multistep ahead forecasts are obtained in the same way by

repeatedly applying the 1-step ahead forecast procedure.

3.8 Pointwise Autoregressive Functional Model (PARF)

While the functional autoregressive model can be considered to be a more general version of the

vector autoregressive model, in this section we develop an alternate time series model for functional

time series xt(θ). The model is again a linear relationship between each observation and past

observations, but the linearity is expressed in a different way that for θ0 ∈ Θ, xt(θ0) is related only

to xt−j(θ0) for a number of positive j. This model is referred to as the pointwise autoregressive

functional model (PARF).

3.8.1 Model

A pointwise autoregressive model for functional data with order p is given by

xt(θ) = α0(θ) +
p∑
s=1

αs(θ)xt−s(θ) + εt(θ), (3.10)

where εt(θ) is a sequence of uncorrelated random processes that satisfies the following conditions:

1. E(εt(θ0)) = 0 for every θ ∈ Θ.

2. E(εt(θ1)εt(θ2)) = σ(θ1, θ2) for θ1, θ2 ∈ Θ (covariance function).

3. E(εt1(θ1)εt2(θ2)) = 0 for t1 6= t2 and θ1, θ2 ∈ Θ.

One can think of the model as having a univariate autoregressive model for every θ0 ∈ Θ. Since

there is no interaction between different values of θ, the coefficients αi, i = 1, . . . , p, are functions

of one paraemters in our case, as opposed to functions of two parameters in the autoregressive

functional model. Also, integrals are not involved. In fact, this pointwise model is a special case
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of the functional autoregressive model. Let the coefficients of the the two models be αFARi (ϑ, θ)

and αPFARi (θ). If αFARi (ϑ, θ) = αPFARi (θ)δ(ϑ− θ), where δ(·) is the Dirac delta function with the

property that
∫∞
−∞ f(x)δ(x−x0)dx = f(x0) for any continuous function f on R, then then the FAR

becomes a PFAR since

∫
αFARi (ϑ, θ)xt−i(ϑ)dϑ = αPFARi (θ)

∫
xt−i(ϑ)δ(ϑ− θ)dϑ = αPFARi (θ)xt−i(θ).

While the Dirac delta can be considered to be a measure which places a point mass at 0, it is not

a true function. The solutions of this model can not be solved using the same procedure as in the

autoregressive functional model. Hence, it is worth to look at this model separately.

3.8.2 Solving for the Solutions

Given functional observations x1(θ), . . . , xT (θ), model (3.10) can be expressed in matrix form

y(θ) = X(θ)α(θ) + ε(θ),

where

y(θ) =



xT (θ)

xT−1(θ)
...

xp+1(θ)


,X(θ) =



1 xT−1(θ) xT−2(θ) · · · xT−p(θ)

1 xT−2(θ) xT−3(θ) · · · xT−p−1(θ)
...

...
...

. . .
...

1 xp(θ) xp−1(θ) · · · x1(θ)


, ε(θ) =



εT (θ)

εT−1(θ)
...

εp+1(θ)


.

The goal is to minimize the sum of the squares of the error functions, integrated over Θ:

C =
∫
‖y(θ)−X(θ)α(θ)‖2 dθ.

One way of solving the solutions of this model is to discretize it into points θ1 < θ2 < · · · < θn

and then treat it as a univariate autoregressive model for each θi to solve for the coefficients.

The functional coefficients can be recovered by applying any convenient methods such as splines

approximation or interpolation. However, a drawback of this approach is that n, which is the
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number of points we have discretized the interval into, is the number of equations we have to solve.

Hence, using larger values of n means that more computational efforts are needed. Also, while we

expect that the contribution of xt−s(θ) on xt(θ) does not change a lot for a small change in θ, or

that the coefficients αs(θ) are smooth, it may not always be the case if discretization is used. An

alternative way of estimating the solutions is to use the basis functions approach. This approach is

less computational intensive, and it will ensure that the coefficients are smooth.

Suppose the αs have the form

αs(θ) =
Ns∑
i=1

asihsi(θ) = hTs (θ)as,

and define a and H by

a =



a0

a1

...

ap


, H =



hT0 0 · · · 0

0 hT1 · · · 0
...

...
. . .

...

0 0 · · · hTp


.

Then y(θ) can be written as

y(θ) = X(θ)H(θ)a + ε(θ),

and the solution is obtained by taking derivative to C with respect to a and then set it to zero. It

is given by

â =
[∫

HT (θ)XT (θ)X(θ)H(θ)dθ
]−1 [∫

HT (θ)XT (θ)y(θ)dθ
]
.

3.8.3 Forecasting

Following the same idea as the autoregressive models introduced earlier, the 1-step ahead forcast

x
(1)
T (θ) is given by

x
(1)
T (θ) = α̂0(θ) +

p∑
s=1

α̂s(θ)xT+1−s(θ)

= xT (θ)α̂(θ) = xT (θ)H(θ)â,
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where xT (θ) is given by

xT (θ) =
[

1 xT (θ) xT−1(θ) · · · xT+1−p(θ)

]
.

The l-step ahead forcast x(l)
T (θ) is obtained by repeatedly applying the 1-step ahead forecast proce-

dure above.



Chapter 4

Empirical Study

4.1 Yield Curve Data

The time series of yield curves that we will analyze consists of daily U.S. Treasury zero-coupon yield

curves for each of the 1227 trading days between 6/28/2004 to 3/10/2009 with maturities 0.25, 0.5,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10 years. Every curve gives the relationship between the yields of zero-

coupon bonds and their maturities. The zero-coupon yield curves, which are obtained directly from

Bloomberg, are bootstrapped from the coupon yield curves. Bootstrapping is an iterative process

that solves for the prices of zero-coupon bonds one-by-one from coupon bonds. This procedure is

needed because in the market, bonds with long maturities (for example, longer than 1 year) generally

have coupon payments.

Applying the nonparametric splines method described in Section 2.2, we transform the yield

curves from multivariate to functional form. The splines are taken to be B-spline basis functions of

order 3 with two internal knots {3, 7} years and boundary knots at 0 and 10 years.

When a time series model is used to analyze a time series, it is often required that the time

series is weakly stationary. Such a time series has mean and autocorrelation that do not vary with

respect to time. However, many financial time series such as stock prices or interest rates tend to

be nonstationary (which is called unit-root nonstationary). One method that is used to convert a

nonstationary time series to a stationary one is by differencing. We apply the same idea to our data.

39
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That is, we consider a first difference to the time series of yield curves in the time dimension. The

augmented Dickey-Fuller test, which is a statistical test for a unit-root in a time series sample, with

lag 2 is applied to the differenced yield curves at maturities 0.25, 0.5, 1, . . ., 10 years. All 12 tests

are rejected at 1% level. This suggests that no unit-root is present in each of the 12 time series.

Figure 4.1 shows the yield curve data and Figure 4.2 shows the differenced yield curve data.

The yield curve starts out from a low level in mid 2004; it increases to a high level in around 2006

before it decreases again afterwards. The zero-coupon yield curve level is affected by the federal

funds rate, which is the interest rate that banks charge for each other for overnight loans of reserve

balances. The level of the federal funds rate reflects the economic condition. In the past, the Federal

Reserve responded to potential slow-down during recessions by lowering the target federal funds rate

to stimulate economic growth, and for opposite reasons, it raised the target federal funds rate during

boom to slow down economic growth. There is a close relationship between the federal funds rate

and the yield curve. The low level of the yield curve in around mid-2004 is the consequence of the

global economic recession between 2000-2003, during which the target federal funds rate was reduced

from 6.5% to 1%. The economy recovers from the recession afterwards and the target federal funds

rate was gradually increased to 5.25% in 2007, which is where the yield curve reaches its highest

level. Due to the financial crisis in 2007-2010 which was triggered by the subprime mortgage crisis,

the target federal funds rate was reduced to 0 − 0.25% in late 2008; this is where yield curve level

dropped again.

Apart from the general level of the yield curve across all maturities, yields with different matu-

rities do show different characteristics. Yields with longer maturities tend to be more stable than

yields with shorter maturities.

4.2 Yield Curve Prediction Performance

In this section, we look at the prediction performance of the functional time series models compared

with the performance of some benchmark models on the differenced yield curve data. To do this,

the data is divided into 39 disjoint moving windows. Each window consists of 30 trading days of

functional data. For each of the moving windows, every time series model is fitted to the data

to obtain estimates of the coefficients. Using these estimates, one-day ahead forecasts x(1)
t (θ) are
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Figure 4.1: U.S. Treasury zero-coupon bond yield curves from Jun 28, 2004 to Mar 10, 2009. The
top graph is the original data and the bottom graph is obtained by applying nonparametric splines
method on the original data.
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Figure 4.2: Differenced U.S. Treasury zero-coupon bond yield curves from Jun 28, 2004 to Mar 10,
2009. Obtained by differencing the smoothed yield data of Figure 4.1.

calculated and are compared with the actual observation xt+1(θ) on the day after the end of the

window. Instead of calculating the error as the integral of the absolute difference between x
(1)
t (θ)

and xt+1(θ) integrated over the interval [0, 10] (which is a natural choice to compare two differenced

yield curves over all maturities), we will use a discretized version of this error because some of the

benchmark models are univariate or multivariate models.

error =
12∑
i=1

∣∣∣xt+1(θi)− x(1)
t (θi)

∣∣∣ , (4.1)

where (θ1, . . . , θ12) = (0.25, 0.5, 1, 2, . . . , 10) years. That is, the sum is taken over the maturities

where the data are originally available. Since these maturities span the interval [0, 10] quite evenly,

using this discretized error over the integrated error should not have significant impact on the relative

performance of the time series models.

The prediction performance of the following 7 models are compared:

• “Naive”: A prediction approach that takes the current observation as the 1-day ahead forecast.

• ARF: Autoregressive functional model of order 2.
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• ARF (B.S.): Autoregressive functional model of order 2 with basis selection. The number of

basis functions is determined separately for each moving window using the algorithm described

in Section 3.6 with r = 1.

• ARFX: Autoregressive functional exogenous model of order 2. The exogenous time series is

the univariate time series of differenced effective federal funds rate.

• PARF (B): Pointwise autoregressive functional model of order 2. Basis functions approach is

used to solve for the coefficients.

• PARF (D): Pointwise autoregressive functional model of order 2. Discretization approach is

used to solve for the coefficients.

• VAR: Vector autoregressive model of order 2.

The reason that the orders are all chosen to be 2 is to keep the number of parameters low. In

particular, a VAR(p) model applied on a 12-dimensional data has 300 parameters.

4.2.1 Benchmark Models

Errors of one-day ahead forecasts for the models in each of the 39 moving windows are reported

in Table 4.1. Among the 7 time series models, the “naive”, PARF (D), and VAR models serve as

benchmark models because they are existing models applied on the data set. The “naive” model is

the most basic among all because it does not require any sophiscated model or parameter estimation

method. The idea behind this approach is that in order to predict the observation on the next

day, the most basic guess is to use the observation on the present day. One can of course take a

weighted average of the observations in the past few days as the forecast, which would possibly do a

better job in predicting the next observation. However, determining the length of the period and the

weight function may not be easy. The “naive” model would work well if changes in the differenced

yield curves between consecutive days are not significant, and it would not work so well otherwise.

Alternatively, by looking at the errors produced by this model, one can see when the changes in

the differenced yield curves are large. From Table 4.1, it can be seen clearly that the data can be

divided into two periods according to the volatility of the differenced yield curves. From window 1
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to window 25 (July 2004 to July 2007), the errors are mostly in the order of 10−1. Occasional spikes

exist but it drops to normal level fairly quickly. However, its error in window 26 jumps to 2.0610

and this level of error occur quite frequently in subsequent moving windows. High volatility in yield

curve movement can occur in unstable economic or political enviroment in which the economy faces

more uncertainty. In fact, as mentioned before, the latter period corresponds to the financial crisis

in 2007-2010 which was triggered by the subprime mortgage crisis.

Models perform differently in windows 1-25, which we will refer to as the stable economy period,

and in windows 26-39, which we will refer to as the unstable economy period. Errors tend to be

larger in unstable period then in stable period. Table 4.2 gives a summary of the prediction errors

in windows 1-25 and Table 4.3 gives a summary of the prediction errors in windows 26-39.

The VAR model is another benchmark model that is considered in this study. In the litera-

ture, VAR has been a popular model for interest rate data. For example, Tsay (2002) applied a

VARMA(2,1) to a bivariate time series of US monthly interest rate with maturities 1 and 3 years

from April 1953 to January 2001. They observed a unidirectional linear relationship from the 3-

year rate to the 1-year rate. The application of VAR to interest rate data in our study is different

from Tsay’s work in nature because we are concerned with the prediction performance. We applied

VAR(2) model to the original 12-dimensional multivariate time series of bond yields. Although one

would not expect it to perform badly, its results shown in Table 4.1 are quite disappointing. It

produces the largest errors among the models in more then three-fourth of the times and its error

is usually about at least 5 to 6 times the errors of the next largest error. It is rather surprising it

does not do as good as the “naive” prediction. However, its bad prediction performance does not

imply that there is no autoregressive structure in the difference yield curve data because there are

other autoregressive models that do better. One explanation is that it has too many parameters

in its model and bad prediction performance is the result of overparametrization. It is mentioned

earlier that the VAR(2) model has 300 parameters. Another possible explanation is due to high

dimensionality of the data. Since every functional observation of differenced yield curve is smooth,

the univariate time series of data at two adjacent maturities (for example, 0.25 and 0.5 years) could

be nearly identical. Since VAR is solved by applying least squares method to a linear regression

model, if the regression matrix is given by X, then having two or more dimensions of the time series
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to be nearly linearly dependent would mean that the matrix XTX is nearly singular. This could

result in inaccuracy in its inversion. Hence, the solutions of the VAR model are affected. This could

be a reason why VAR performs badly against other models.

The solutions of PARF (D) are obtained by discretizing the interval [0,10] into the 12 maturities

0.25, 0.5, 1, . . . , 10 and then applying a univariate autoregressive model of order 2 to the time series

at each maturity. It has the simplicity of not having to consider the covariance structure of different

dimensions of the multivariate time series of differenced bond yields which saves a lot of parameters

from models such as the VAR model. However, its performance is still not as good as the “naive”

model. This is more apparent in unstable economy period, where the error of PARF (D) is often 2 to

3 times the error of the “naive” model. This suggests that treating the multivariate bond yield data

as 12 univariate time series may not be appropriate, especially during times of unstable economy.

4.2.2 Autoregressive Functional Models

We start by discussing PARF (B), which is the same model as PARF (D), but it uses basis functions

approach instead of discretization approach to solve for model parameters. Although the PARF

model (3.10) is stated so that yields of different maturities have no interaction with each other, when

basis functions approach is used, the time series of the differenced yield curves at each maturity is

influenced by those at neighboring maturities. This is because the basis functions are assumed to

have certain forms and can not move completely free across different maturities when they are being

solved. It is seen from Table 4.1 that the prediction performance of PARF (B) is better than that

of the benchmark models by substantial amounts in terms of the summary statistics. In particular,

it is interesting to see that all of its errors are very close to half of the errors of PARF (D) in same

windows. This suggests that correlations between yields with different maturities do exist and one

should include them in modeling the yield data.

The fact that correlations between yields with different maturities exist can be seen from the

differenced yield data shown in Figure 4.2. Particular patterns are observed. For example, many of

the differenced yield curves do not cross the zero level. That is, either the whole differenced yield

curve is positive or the whole curve is negative, which corresponds to a positive or negative change

to the whole yield curve. This type of change is common and could be due to news, economic events
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or policies such as change in the expected inflation rate that affect the market in both short and long

runs. In fact, many of the differenced yield curves, especially during stable economic period, are

close to constant across all maturities, not only having the same sign. These correspond to parallel

shifts in the yield curve.

The prediction performance of PARF (B) depends on which period it is predicting. During stable

economic period, it is the clear winner among all models in terms of all five summary statistics. Its

average error is approximately two-third of the next largest average error. However, during unstable

economic period, its performance is similar to that of the “naive” model, and it does not perform

as good as other autoregressive functional models.

In general, ARF does have a better prediction performance than the benchmark models, but

similar to other models, its performance varies depending on which period it predicts. During stable

economic period, it is seen from Table 4.2 that although ARF gives a slightly better overall prediction

performance than the “naive” model, no evidence suppports that the former consistently outperforms

the latter in all moving windows. However, the unstable economic period is where it stands out from

the benchmark models. During this period, it produces small errors quite consistently with error

standard deviation 0.3970, which is the smallest among all models, and maximum error 1.8801,

which is also the smallest. Although it might not be the best model in terms of prediction during

the unstable period, its performance is acceptable given the high volatility of the differenced yield

curves.

The ARF model is meant to be the primitive model where more sophisticated methods, ARF

(B.S) and ARFX, are based on. We did not expect it to be the best performing model, but it is

enough to see it does no worse than the benchmark models and better during some times. ARF (B.S.)

is the same model as ARF but it aims to improve prediction performance by choosing only a subset

of the basis functions used for ARF in a forward stepwise fashion. We can see that during stable

economic period, selecting basis using the algorithm provided in Section 3.6 improves prediction

accuracy by a notable amount over ARF in many moving windows. However, it is still slightly

behind PARF (B) if we consider the mean, 0.3359 vs 0.2614, and the standard deviation, 0.2371 vs

0.2038. During unstable economic period, unfortunately, ARF (B.S.) does not carry any prediction

improvements to ARF. It produces some large prediction errors and the maximum error is 3.8953
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compared to ARF’s 1.8801. One explanation to this phenomenon is to recall that the idea behind

chooing the number of basis functions comes from the intuition that the optimal number of basis

functions used for data x1(θ), . . . , xT−1(θ) and for data x1(θ), . . . , xT (θ) should be similar. However,

this could be violated during times of high volatility.

The ARFX model is an ARF model with an exogenous time series which is the differenced

effective federal funds rate. As mentioned previously, the federal funds rate is the interest rate at

which banks lend federal balance at the Federal Reserve to each other overnight. Since banks can

negotiate with each other about the interest rate when loans are made, the actual interest rate

used might be different in different transactions, and the weighted average of this rate across all

transactions is called the effective federal funds rate. The motivation behind incorporating this

exogenous time series into the model is that it is known to have significant impact on short-term

yields. This is because banks usually use borrowed funds to hold inventory of notes and bonds, which

they plan to re-sell to customers. Hence, in general, banks are unwilling to hold these securities if

the securities yield less than the federal funds rate. Besides the federal funds rate, of course there

are other factors such as news, economic events, or investors’ psychology that affect the level of the

yield curve. However, these factors are hard to quantify. Relatively speaking, the federal funds rate

is given as numbers and is easily obtained. That is why it is used in this study.

It can be seen from Table 4.1 that using federal funds rate as an exogenous variable does not

always give better prediction performance than ARF. During stable economic period, it performs

worse than ARF by a slight amount. While its errors behave similarly to that of the “naive” model

(Table 4.2), one can argue that ARFX is worse than the “naive” model because ARFX has a larger

error standard deviation. In contrast, the federal funds rate becomes more useful in the unstable

economic period. In this period, FARX can be considered as the best model because it produces the

smallest error mean 0.7445 and median 0.6596 among all models. Also, it is able to produce small

errors consistently due to its small standard deviation 0.4221 (second smallest).

To conclude this section, we compared prediction performance of 7 models by looking at 1-day

ahead prediction error. we noted that models perform differently during stable economic period and

during unstable economic period. Models that perform well during stable period does not mean that

it performs well in unstable period, and vice versa.
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The stable economic period is from July 2004 to July 2007. This period is characterized by the

differenced yield curves having small magnitude across all maturities and small volatility between

days. In terms of summary statistics in Table 4.2, PARF (B) is the best model. This suggests that

during the stable period, the market can be treated as an autonomous system, where exogenous

shocks rarely exist and do not have much impact on the yield curve. The time series of yield curves

can be explained well by an autoregressive functional model which models each curve only using the

curves in the past few days. Also, it does not require a complicated model in this period because

models such as ARF with more paramters tend to overfit the data and result in higher prediction

error.

This unstable economic period is from July 2007 to February 2009, which corresponds to the

financial crisis triggered by the subprime mortgage crisis. The differenced yield curves in this period

tend to have larger magnitude across maturities and larger volatility between days. The curves often

have irregular shapes. In terms of summary statistics in Table 4.3, the best performing model is

ARFX, where the exogenous time series is the univariate time series of differenced effective federal

funds rates. This suggests that this period can not be treated as an autonomous system. The market

is affected by exogenous factors and one has to include them when modeling the yield curve data.

Also, models with more paramters such as ARF and ARFX tend to perform better, possibly because

a more complicated covariance structure exists in the data.

Table 4.1: One-day ahead prediction error of the yield curve of

several models. Error is calculated as the sum of the absolute dif-

ference between the forecast and the observed yield curves over

maturities 0.25, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. ARF (B.S.) is the

ARF model with basis selection. PARF (B) and PARF (D) corre-

spond to the PARF model where the coefficients are approximated

by the basis function or discretization approaches, respectively.

“Naive” ARF ARF (B.S.) ARFX PARF (B) PARF (D) VAR

1 1.0120 0.2280 0.2275 0.2951 0.2209 0.4964 2.7454

Continued on next page
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Table 4.1 – continued from previous page

“Naive” ARF ARF (B.S.) ARFX PARF (B) PARF (D) VAR

2 0.8660 0.7073 0.7073 0.7082 0.6064 1.2119 1.3043

3 0.2800 0.3218 0.1214 0.2410 0.1626 0.3278 2.0547

Jan 05 4 0.4538 0.4350 0.2300 0.4530 0.2001 0.3997 1.0421

5 0.6601 0.1865 0.1958 0.1942 0.1586 0.3209 1.0503

6 0.7065 0.5517 0.5620 0.4799 0.5267 1.0473 7.4892

7 0.1287 0.1337 0.0372 0.1087 0.0748 0.1535 0.7603

8 0.1850 0.3766 0.1846 0.3725 0.1918 0.3887 0.9123

9 0.3530 0.5049 0.3712 0.5400 0.1140 0.1734 0.4808

10 0.2723 0.4220 0.4774 0.5175 0.4915 0.9903 0.3887

11 0.6240 0.4987 0.6195 0.4784 0.5097 1.0009 0.2947

12 0.2677 1.1373 0.6671 1.4314 0.0653 0.1432 1.3569

Jan 06 13 0.5560 0.7282 0.7251 0.8302 0.2448 0.4817 0.5828

14 0.3610 0.1585 0.1642 0.1519 0.1997 0.3784 0.4882

15 1.2810 1.0328 0.8606 1.1043 0.4792 0.9598 1.3600

16 0.3960 0.4189 0.3593 0.3108 0.2118 0.4114 1.6564

17 0.1591 0.1081 0.0725 0.1532 0.0855 0.1712 1.1491

18 0.1730 0.2562 0.1704 0.2033 0.1171 0.2373 0.8787

19 0.6430 0.0495 0.1946 0.1302 0.2573 0.5075 0.5543

20 0.1535 0.2289 0.2403 0.6929 0.2231 0.4445 1.2531

21 0.4610 0.4457 0.4537 0.3881 0.1072 0.2148 1.2690

Jan 07 22 0.1779 0.0762 0.0497 0.0953 0.0368 0.0690 0.6924

23 0.1099 0.1979 0.0802 0.1465 0.2070 0.4216 0.8116

24 0.3089 0.2302 0.2729 0.2234 0.1699 0.3273 0.8913

25 0.3890 0.3607 0.3529 0.3171 0.8734 1.7857 1.9551

26 2.0610 0.6500 0.5090 0.6629 0.9339 1.8178 1.5501

27 0.6557 0.3609 0.4787 0.4268 0.6195 1.3543 1.6064

Continued on next page
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Table 4.1 – continued from previous page

“Naive” ARF ARF (B.S.) ARFX PARF (B) PARF (D) VAR

28 0.2463 0.3108 0.3052 0.3023 0.2933 0.5554 2.2618

29 0.6439 0.3672 0.7041 0.3483 1.4399 2.9565 3.1354

Jan 08 30 0.3843 0.6324 0.3728 0.6563 0.2460 0.4857 5.9915

31 2.4315 0.7281 0.6666 0.6492 1.0083 2.2129 2.5678

32 1.4193 0.3180 0.2654 0.2579 0.2750 0.5654 3.4211

33 0.8022 0.7572 0.2715 0.7572 0.2383 0.5327 4.1148

34 0.8560 1.1265 0.8904 1.1314 0.8641 1.7216 2.2567

35 0.3675 0.6863 0.5151 0.7534 0.5810 1.2159 0.3984

36 4.6860 1.0035 3.8953 0.9821 4.1799 8.3194 2.0886

37 1.8760 0.9723 0.7686 0.5857 0.7430 1.4918 4.7551

38 0.4395 0.9816 0.7323 1.0290 0.9826 2.0282 1.6626

Jan 09 39 0.8567 1.7679 1.4673 1.8801 1.1487 2.2865 2.7443

Minimum 0.1099 0.0495 0.0372 0.0953 0.0368 0.0690 0.2947

Mean 0.7360 0.5246 0.5190 0.5382 0.5151 1.0412 1.8455

Median 0.4538 0.4220 0.3712 0.4530 0.2460 0.5075 1.3569

Maximum 4.6860 1.7679 3.8953 1.8801 4.1799 8.3194 7.4892

SD 0.8422 0.3669 0.6279 0.3910 0.6954 1.3934 1.5619

Table 4.2: A Summary of windows 1-25 (stable economic period) of Table 4.1.
“Naive” ARF ARF (B.S.) ARFX PARF (B) PARF (D) VAR

Minimum 0.1099 0.0495 0.0372 0.0953 0.0368 0.0690 0.2947
Mean 0.4391 0.3918 0.3359 0.4227 0.2614 0.5226 1.3369
Median 0.3610 0.3607 0.2403 0.3171 0.2001 0.3997 1.0421
Maximum 1.2810 1.1373 0.8606 1.4314 0.8734 1.7857 7.4892
SD 0.2969 0.2767 0.2371 0.3268 0.2038 0.4130 1.4036
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Table 4.3: A Summary of windows 26-39 (unstable economic period) of Table 4.1.
“Naive” ARF ARF (B.S.) ARFX PARF (B) PARF (D) VAR

Minimum 0.2463 0.3108 0.2654 0.2579 0.2383 0.4857 0.3984
Mean 1.2661 0.7616 0.8459 0.7445 0.9681 1.9674 2.7539
Median 0.8291 0.7072 0.5908 0.6596 0.8035 1.6067 2.4148
Maximum 4.6860 1.7679 3.8953 1.8801 4.1799 8.3194 5.9915
SD 1.1994 0.3970 0.9323 0.4221 0.9960 1.9798 1.4518

4.3 Principal Component Analysis on the Yield Curves

It is documented in the literature that when principal component analysis is applied to time series

of differenced yield curves, then the first few principal components represent certain characteristics

of the yield curves:

1. The first principal component is called the parallel shift component. The factor loadings are

roughly constant over different maturities. As its name suggests, this corresponds to a parallel

shift in the yield curve.

2. The second principal component is called the tilt component. The factor loadings have a

monotone change over the maturities, and loadings with short-maturity and long-maturity

have opposite signs.

Table 4.4 gives the loadings of the first 2 principal components when principal component anal-

ysis is applied to 3 periods of the differenced yield curve data: 5/26/2006-9/1/2006, 8/15/2008-

11/21/2008, 11/21/2008-2/27/2008.

During the period 5/26/2006-9/1/2006, when the economy is stable, the principal components

conform to the characteristics of the parallel shift, and tilt components mentioned above. However,

the principal components deviates from what is observed in the literature during the unstable eco-

nomic period. The period 8/15/2008-11/21/2008 corresponds to the financial crisis when Lehman

Brothers declared bankruptcy and Merrill Lynch was acquired by Bank of America. It is seen that

the loadings of the first principal component tend to have a trend going towards 0. In the subsequent

period 11/21/2008-2/27/2009, the first principal component has a trend going away from 0, and the

second principal component does not have a monotone trend.
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In addition, the variation explained by the first principal component in the three periods are

quite different. This number is 92% for the stable period, and is 74% and 87% in order for the two

unstable periods. A low percentage suggests that the differenced yield curves tend to have irregular

shapes in that period and so it is not easy to capture these shapes using one principal component.

The cumulative variation explained by the first two principal components is 97% for the stable

period, and is 92% and 92% for the two unstable periods.

These observations reinforce our observation in Section 4.2 that the differenced yield curves are

more volatile during the unstable period. High volatility in yield curves could be due to external

shocks, which makes it harder to perform predictions based only on historical yield curves.

Table 4.4: Loadings of the first 3 principal components when PCA is applied to the differenced yield
curves during 3 periods.

5/26/2006-9/1/2006 8/15/2008-11/21/2008 11/21/2008-2/27/2009
Maturity (Year) PC1 PC2 PC1 PC2 PC1 PC2

0.25 -0.077 0.820 -0.359 -0.621 -0.006 -0.046
0.5 -0.161 0.415 -0.284 -0.512 0.025 -0.048
1 -0.282 0.148 -0.274 -0.176 0.046 -0.210
2 -0.321 0.143 -0.302 0.019 0.165 -0.547
3 -0.331 0.051 -0.312 0.057 0.237 -0.527
4 -0.333 -0.030 -0.298 0.127 0.307 -0.227
5 -0.326 -0.037 -0.298 0.155 0.314 -0.246
6 -0.323 -0.083 -0.296 0.217 0.354 -0.033
7 -0.320 -0.122 -0.294 0.282 0.395 0.183
8 -0.301 -0.156 -0.262 0.227 0.382 0.227
9 -0.292 -0.178 -0.234 0.240 0.384 0.300
10 -0.277 -0.173 -0.227 0.206 0.378 0.293

4.4 Caplet Data

In Section 2.1.4, it is mentioned that a caplet is a European call option on forward LIBOR and a

cap is a collection of caplets with different maturities. Caps and caplets provide insurance against

LIBOR rising above certain level. These interest rate derivatives are traded actively in the market.

Between this section and Section 4.6, we propose to use the results of the yield curve prediction to

obtain one-day ahead prediction of caplet prices.

The data consist of the implied volatilities of daily cap data with strike 4% and maturities 1, 2,

3, 4, 5 years for every trading day from 6/28/2004 to 3/10/2009. The caps are based on 3-month
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LIBOR. That is, the 1-year cap has 3 caplets maturing in 6, 9, and 12 months, the 2-year cap has 4

additional caplets maturing in 1.25, 1.5, 1.75, and 2 years, and so on. The data are obtained from

Bloomberg.

It is mentioned briefly in Section 4.1 that zero-coupon bond yields can be obtained from coupon

bond yields via bootstrapping. Using the same procedure, one can derive caplet prices from cap

prices. The idea of this method is that to calculate the price of a caplet, one takes the difference

between two caps which differ in only this caplet. However, in our data, caps with adjacent matu-

rities differ by 4 caplets. In order to solve for caplet prices, we assume that caps with maturities

0.5, 0.75, 1, . . . , 4.75, 5 years exist (in addition to 1, 2, 3, 4, 5). The implied volatilities of caps with

maturities 0.5 and 0.75 year are assumed to be the same as that with maturity 1 year, and the im-

plied volatilities of other caps are interpolated linearly between caps with nearest-integer maturities.

For each day, there are 19 caplets with different maturities and they are plotted in Figure 4.3.
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Caplet Price

Date
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Figure 4.3: Daily caplet price data with strike 4% and maturities less than or equal to 5 years from
Jun 28, 2004 to Mar 10, 2009.
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4.5 Caplet Pricing Formula

Since different interest rate models define the dynamics differently, the caplet price formula inferred

by them is also different. In this section we investigate how accurate these pricing formulas can

produce market caplet prices based on historical interest rates. If the assumptions of these models

are accurate descriptions of the market, then we expect that models can produce caplet prices that

are close to the prices observed in the market.

The error measure is taken to be the root mean square error between the observed caplet price

Ci,t+1 at time t+ 1 and the caplet price inferred by the model C(1)
i,t based on historical interest rate

data at or before time t, where i ∈ {1, . . . , 19} denotes the ith caplet. The RMSE is defined as

√√√√ 1
19

19∑
i=1

(
Ci,t+1 − C(1)

i,t

)2

.

4.5.1 Methodology

Formula (2.5) gives the price of a caplet on F (T, T + δ) under Black model:

δP (t, T + δ) Black(F (t, T, T + δ),K, σcaplet
t

√
T − t),

where the function “Black” is defined by (2.6). In this model, the implied volatility σcaplet
t represents

the volatility of the forward LIBOR F (t, T, T + δ). A standard way of estimating the volatility is

to take the standard deviation of the returns of a historical series F (t− 1, T, T + δ), F (t− 2, T, T +

δ), . . . , F (t− l, T, T + δ), multiplied by
√

252 to convert it to a time horizon of 1 year. l is the width

of each moving window and is equal to 30 in our study. The forward LIBOR F (t − j, T, T + δ),

j > 0, may not be observed but can be obtained by interpolating between other forward LIBOR’s at

the same time. Once the implied volatility is estimated, it is plugged into the caplet price formula

above as the caplet price under Black model.

Formula (2.8) gives the price of a caplet under Hull-White model:

(1 + δK)P (0, T )
[

1
1 + δK

Φ(−d2)− P (0, T + δ)
P (0, T )

Φ(−d1)
]
.
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This formula depends on model parameters a and σ, which can be estimated by matching the

variance of the historical yields to the variance
(

1−e−aT

aT

)2
σ2

2a under the Hull-White model. Model

parameters are estimated by minimizing

∑
T∈{0.25,0.5,1,...,10}

[(
1− e−aT

aT

)2
σ2

2a
− vT

]2

,

where vT is the sample variance of historical yields with maturity T . Estimated parameters are

plugged into the caplet price formula above as the caplet price under Hull-White model.

4.5.2 Results

The first two columns of Table 4.5 give the RMSE of the two pricing formulas. It is seen that

the error that Hull-White model produces is larger than the error of Black model in most moving

windows. However, Although both models use the fluctuations in interest rate to calculate the caplet

price (Black uses standard deviation of LIBOR, and Hull-White uses variance of zero-coupon bond

yields), Hull-White model is not affected as hard as Black model during the unstable period. In

terms of the change in mean RMSE from stable to unstable period, Black model increases by 6 times,

but Hull-White model increases by less than 2 times. Compared to the prediction errors produced by

calibrating the models to caplet data (which is discussed in the next section), the errors produced by

these pricing formulas are considered to be unacceptably large. An explanation of its performance

is that the model assumptions may not be accurate descriptions of the market. For example, the

Black model assumes that the forward rate is a geometric Brownian motion with constant volatility.

If this assumption does not hold, then the standard deviation of returns of forward rates might not

be a good estimate of the implied volatility.

4.6 Caplet Price Prediction

4.6.1 Methodology

Although the pricing formulas described in the last section provide an idea of what the caplet prices

should be based on historical interest rates, the approach used by the market to price financial
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derivatives is to calibrate an interest rate model to financial instruments similar in nature. In this

section, we compare several methods that use this approach to predict caplet prices, some of which

involve applications of yield curve prediction done in Section 4.2. The error measure is taken to be

the same RMSE defined in the last section.

Predicting Yield Curve

Consider the price of a caplet (2.5) under the Black model. Suppose the strike rate and the time to

maturity are given. Then under this model, the price of such caplet at time t + 1 depends on the

forward rate F (t + 1, Ti−1, Ti) and the implied volatility σcapleti

t+1 . A prediction of the price of this

caplet can be obtained by predicting the levels of the forward rate and the implied volaility at time

t+ 1.

In Section 4.2, we apply functional time series models on moving windows of yield curves and

obtain 1-day ahead predictions. These predictions can be used in combination with formula (2.2),

which expresses the forward rate in terms of zero-coupon bond prices, to predict the forward rate.

The implied volatility σcapleti

t+1 is estimated using the implied volatility σcapleti

t of the present day.

We compare the caplet prediction performance of 5 out of the 7 models that are considered in

Section 4.2: “naive”, ARF, ARF (B.S.), ARFX, and PARF (B). These 5 models are capable of

producing yield curve forecasts in functional form, which can be used to calculate forward rates of

the form F (0, T, T + 0.25).

A Reference

To assess the caplet price prediction performance of the 5 time series models mentioned above, we

need to know the portion of the RMSE due to using the present implied volatilities as estimates of

the implied volatilities of the next day. It can be obtained by using the term structure of the next

day (assuming it is known) and calculate the caplet prices using the present implied volatilities.

It is referred to as the “reference” in later discussions. We are interested in how close the RMSE

produced by other time series methods can get to the RMSE of the reference, although there is no

guarantee that the latter must be smaller than the former.
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Hull-White Model

In addition to the above models, we also consider the performance of prediction using the Hull-White

model (2.7). For every moving window, we calibrate the model to all the caplets in the window by

minimizing the sum of squared difference between the observed caplet prices and model caplet prices

(2.8) over the parameters σ and a. Then the 1-day ahead caplet prediction is calculated using (2.8)

with the estimated values σ̂ and â.

4.6.2 Prediction Performance

RMSE of the prediction methods in each of the 39 moving windows is reported in Table 4.5. Tables

4.6 and 4.7 give summaries of the RMSE in the stable and unstable periods, respectively.

It can be seen from Table 4.5 that better yield curve prediction tends to result in better caplet

prediction since the model that has the best overall yield curve prediction performance in the sta-

ble/unstable period also has the best overall caplet prediction performance in the same period.

During stable economic period, PARF (B) can be considered as the best model because all 4 sum-

mary statistics in this period are the smallest among the 5 time series models. In particular, its

mean is 0.7158 while others are more than 0.9. It offers a great reduction of mean RMSE from

0.9184 of the “naive” model towards 0.5836 of the reference. During the unstable economic period,

the ARFX model with differenced effective federal funds rate as the exogenous variable has the best

overall performance. 3 out of its 4 statistics shown in Table 4.7 are the smallest among the 5 time

series models, with its “maximum” statistic 3.0899 only slightly above that of PARF (B) which is

3.0035.

The fact that better overall yield curve prediction results in better overall caplet prediction is

reasonable, but there are times when a better yield curve prediction does not result in a better caplet

prediction. For example, consider window 33. It is seen in Table 4.1 that the yield curve prediction

error of ARF (B.S.), 0.2715, is much smaller than that of ARF, 0.7572. However, from Table 4.5, the

caplet RMSE of ARF (B.S.), 0.7485, is larger than the RMSE of ARF, 0.6740. This phenomenon

could be due to one of the following three reasons. First, the transformation from zero-coupon bond

prices to caplet prices is not linear. In particular, formula (2.2) is used to convert bond prices to

forward LIBOR. Second, the caplet implied volatilities on the next day are not known and are taken
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as the implied volatilities on the present day. This creates an uncertainty in our prediction. During

days where implied volatilities have large fluctuations, a better estimate of the forward LIBOR can

actually cause a worse estimate of the caplet prices. Third, the yield curve prediction error (4.1) is an

aggregate measure of the difference between the observed yield curve and the predicted yield curve

over 12 maturities. It is possible that variations exist in the difference at different maturities. Hence,

a yield curve prediction with a large prediction error might give a more accurate prediction for the

caplets. However, having a more accurate prediction of the yield curve is definitely advantageous

because, as we mentioned earlier, it tends to give a more accurate prediction of caplets.

Tables 4.6 and 4.7 reveal that the overall level of RMSE increases from the stable period to the

unstable period. The median increases by about 0.5 quite uniformly across all models including the

reference. This suggests that the implied volatilities of caplets have larger fluctuations in unstable

period and this causes larger errors in predicting caplet prices. In contrast, the mean increases

differently for different models, ranging between 0.4 to 1. This is because some time series models

have larger variations when predicting the yield curve. Since a large yield curve prediction error can

induce a large caplet price prediction error, some models also have larger variations when predicting

caplet prices.

The Hull-White model is provided as an alternative way of predicting caplet prices. The summary

statistics show that although it is on a par with prediction using time series models, a careful

examination reveals that it is slightly behind the autoregressive models in both stable and unstable

economic period. Hence, analyzing yield curves using functional time series models is indeed useful

in predicting caplet prices.
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Chapter 5

Summary

This thesis proposes a functional time series approach to analyzing time series of interest rate data,

and in particular, time series of yield curves. The motivation of the research is that the common

market practice of using an interest rate model to price interest rate derivatives does not involve the

interest rate being modeled. This is because normally interest rate models are calibrated to financial

instruments that are close in nature to the derivatives being priced. However, if the interest rate

being modeled is not used during calibration, then the calibrated model may not give a very good

representation of the dynamics of the interest rate, and hence the prices that it produces may be

unreliable.

A functional time series approach is therefore suggested to analyze the time series of yield curves.

Yield curves are treated as functional data in the model because it allows derivatives/integrals to

be taken, which are needed in the tranformation between the yield curve and the forward curve.

Also, in cases where the multivariate bond yield data have missing data, or when the bond yields

are recorded at different maturities at different times, then multivariate models are not applicable.

Two functional time series models are proposed: the autoregressive functional model (ARF)

and the pointwise autoregressive model (PARF). ARF can be considered as a generalization of

the vector autoregressive model (VAR) to the functional case, and PARF can be considered as

having a univariate autoregressive model at each maturity of the yield curve time series. The

autoregressive functional exogenous (ARFX) model is also proposed which incorporates an exogenous
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time series into ARF. In all of these models, the coefficient functions are approximated by finite

linearly combinations of basis functions, and the basis function coefficients are solved by least squares

method.

Empirical studies are carried out to illustrate how the proposed models can be applied to real

world data. In the first study, yield curve prediction performance of functional time series models as

well as several benchmark models are investigated. It is noted that the data can be divided into two

periods based on the behavior of the data. The first period is from July 2004 to July 2007 and is

referred to as the stable economic period, and the second period is from July 2007 to February 2009

and is referred to as the unstable economic period. While an apparent difference between the two

periods is that yield curves are more volatile in the unstable period, it is concluded that the stable

period can be treated as an autonomous system because yield curves are explained well by PARF,

and the unstable period is affected by external factors because the yield curves are explained well

by ARFX, where the exogenous variable is the federal funds rate.

In the second empirical study, we consider a time series of caplet prices with fixed strike and

different maturities. We propose a way to predict future caplet prices by combining yield curve

prediction using functional time series models and historical implied volatilities of caplets. It is seen

that models which have better yield curve prediction tend to have better caplet price prediction.

The best time series model in each of the two economic periods is shown to be superior to the

Hull-White model in caplet price prediction in the same period.



Appendix A

Splines

In this section, we review the spline method that is used for data smoothing or interpolation for

one-dimensional data. A spline is a piecewise polynomial function over a domain partition on an

interval [a, b]. Denote a spline function by f : [a, b]→ R. We partition the interval [a, b] into K + 1

disjoint subintervals [ti, ti+1], i = 0, 1, . . . ,K, where a = t0 ≤ t1 ≤ · · · ≤ tK ≤ tK+1 = b. On each of

these K + 1 subintervals, we define a polynomial qi so that

f(x) =



q0(x), t0 ≤ t < t1

q1(x), t1 ≤ t < t2
...

qK(x), tK ≤ t < tK+1

The points ti are called knots. Since each subinterval is represented by a separate polynomial, f is

typical not analytic at the knots, which means the kth derivative of f is not continuous for some

non-negative integer k. Smoothness constraints are sometimes imposed to ensure that a spline has

continuous derivatives at its knots up to certain order. We say that a spline is of order M if it

is a piecewise polynomial of order M (degree at most M − 1), and is M − 2 times continuously

differentiable. In particular, a spline of order 1 is a step function; a spline of order 2 is a continuous

linear piecewise function.

A commonly used spline is the cubic spline. It is a spline of order 4 (cubic piecewise polynomials)
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and with 2-times continuous derivatives at the knots. Mathematically, qi’s are cubic polynomials

qi(t) = ai0 + ai1t+ ai2t
2 + ai3t

3

that satisfy

qi−1(ti) = qi(ti), i = 1, . . . ,K,

q
′

i−1(ti) = q
′

i(ti), i = 1, . . . ,K,

q
′′

i−1(ti) = q
′′

i (ti), i = 1, . . . ,K.

In general, an order-M spline can be represented by the following set of basis functions:

Bj(x) = xj−1, j = 1, . . . ,M,

BM+l = (x− tl)M−1
+ , l = 1, . . . ,K,

where s+ denotes the positive part.

A natural cubic spline is another commonly used spline. It is a cubic spline with additional

constraints that the second derivatives of the function are 0 at the two boundaries. Namely,

q
′′

0 (a) = 0, q
′′

K(b) = 0.

The constraints attempt to regulate the behavior of the spline near the boundaries by setting the

boundaries to be inflection points, so that the function is linear beyond the boundary knots. A

natural cubic spline with K knots is represented by K basis functions:

B1(x) = 1, , B2(x) = x, ,Bk+2(x) = dk(x)− dK−1(x),

where

dk(x) =
(x− tk)3+ − (x− tK)3+

tK − tk
.
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A.1 B-splines

B-splines, which stand for basis splines, provide an alternative set of spline basis functions. It has

the property that every spline function of given degree and knot placements can be represented as

a linear combination of B-spline basis functions of that same degree and knot placements, while

B-spline has an additional property that each of its basis functions has minimal support. A B-spline

is defined as follows. Suppose we have a knot sequence τ1 < τ2 < · · · < τn and two boundary knots

τ0 and τn+1, where τ0 < τ1 and τn < τn+1. We first define an augmented knot sequence t which

satisfy

• t1 ≤ t2 ≤ · · · ≤ tK ≤ τ0.

• tj+K = τj , j = 1, . . . , n.

• τn+1 ≤ tn+K+1 ≤ tn+K+2 ≤ · · · ≤ tn+2K .

While the values of the augmented knots beyond the boundary knots are not defined strictly, one

normally would take them to equal to the boundary knots τ0 and τn+1. Denote the ith B-spline

basis function of order p by Bi,p(t). Then these basis functions are defined by the following recursive

relations

Bi,0(t) =

 1 if ti ≤ t < ti+1

0 otherwise

for i = 1, . . . , n+ 2K − 1, and

Bi,p(t) =
t− ti

ti+p−1 − ti
Bi,p−1(t) +

ti+p − t
ti+p − ti+1

Bi+1,p−1(t),

for i = 1, . . . , n+ 2K − p. In order to avoid division by 0, we let Bi,1 = 0 if ti = ti+1. This implies

Bi,p = 0 if ti = ti+1 = · · · = ti+p. From the recursive relations, we see that for a knots sequence with

n knots, a B-spline with order p has n + p basis functions. Each basis function is a polynomial of

degree p and is always non-negative. In particular, a cubic B-spline refers to the B-spline with order

3. Bi,p has local support only on the interval [ti, ti+p+1). On any interval [ti, ti+1), at most p + 1

basis functions of degree p are non-zero, and they are Bi−p,p(t), Bi−p+1,p(t), . . . , Bi,p(t). At a knot

with tj which is repeated r times, the basis function Bi,p(t) is p−r times continuously differentiable.
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The local support property of B-spline basis functions has important computational implications.

To illustrate it using an example in this thesis, suppose we need to calculate the matrix whose ij-

entries are
∫
Bi,p(t)Bj,p(t)dt. Then this matrix will be a band matrix, whose non-zero entries

are confined to a diagonal band. Since we know exactly where this matrix is zero (or non-zero),

calculations at these entries can be omitted.

Figure A.1 shows the order 1 and 2 B-spline basis functions on the interval [0,10] with knot

placements at 1, 2, . . . , 9.
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Figure A.1: B-spline basis functions on the interval [0,10] with knots 1, 2, . . . , 9. Left figure shows
linear (order=2) basis functions; right figure shows quadratic (order=3) basis functions.

A.2 Spline Smoothing

Given data (xi, yi), i = 1, . . . , n, and spline basis functions Bj(x), j = 1, . . . , J , we can smooth the

data into the function f(x) =
∑
j αjBj(xi) by minimizing the criterion

n∑
i=1

(yi − f(xi))
2 =

n∑
i=1

yi − J∑
j=1

αjBj(xi)

2

.
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A.3 Spline Smoothing in Higher Dimensions

We have reviewed a few one-dimensional spline functions that can be used to smooth data (xi, yi),

where each xi is a scalar, into a one-dimensional function. Suppose now each xi is a two-dimensional

vector, and we are again interested in an estimate of the data in a functional form. The one-

dimensional splines that we have reviewed above can be extended to this case easily. Assume the

domain of f is [a1, b1]× [a2, b2]. Suppose we have two sets of one dimensional splines basis functions

gj : [a1, b1] → R and hl : [a2, b2] → R, where j = 1, . . . , J and l = 1, . . . , L. Then we can construct

two-dimensional basis functions by taking the tensor product of gj and hl. The new basis are

fjl(u, v) = gj(u)hl(v), j = 1, . . . , J, l = 1, . . . , L.

There are a total of JL basis functions and f can be represented as

f(u, v) =
J∑
j=1

L∑
l=1

ajlfjl(u, v) =
J∑
j=1

L∑
l=1

ajlgj(u)hl(v).
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