Chapter Three

Interest Rates

and Security

Valuation

Various Interest Rate Measures

- Coupon rate
- periodic cash flow a bond issuer contractually promises to pay a bond holder
- Required rate of return (rrr)
- rates used by individual market participants to calculate fair present values ($\mathbf{P V}$)
- Expected rate of return (Err)
- rates participants would earn by buying securities at current market prices (P)
- Realized rate of return (rr)
- rates actually earned on investments

Required Rate of Return

- The fair present value (PV) of a security is determined using the required rate of return (rrr) as the discount rate

$$
P V=\frac{\widetilde{C} F_{1}}{(1+r r r)^{1}}+\frac{\widetilde{C} F_{2}}{(1+r r r)^{2}}+\frac{\widetilde{C} F_{3}}{(1+r r r)^{3}}+\ldots+\frac{\widetilde{C} F_{n}}{(1+r r r)^{n}}
$$

$\boldsymbol{C} \boldsymbol{F}_{\boldsymbol{1}}=$ cash flow in period $\boldsymbol{t}(\boldsymbol{t}=1, \ldots, \boldsymbol{n})$
$\sim=$ indicates the projected cash flow is uncertain
$\boldsymbol{n}=$ number of periods in the investment horizon

Expected Rate of Return

- The current market price (\boldsymbol{P}) of a security is determined using the expected rate of return (Err) as the discount rate

$$
P=\frac{\widetilde{C} F_{1}}{(1+E r r)^{1}}+\frac{\widetilde{C} F_{2}}{(1+E r r)^{2}}+\frac{\widetilde{C} F_{3}}{(1+E r r)^{3}}+\ldots+\frac{\widetilde{C} F_{n}}{(1+E r r)^{n}}
$$

$\boldsymbol{C} \boldsymbol{F}_{1}=$ cash flow in period $\boldsymbol{t}(\boldsymbol{t}=1, \ldots, \boldsymbol{n})$
$\sim=$ indicates the projected cash flow is uncertain
$\boldsymbol{n}=$ number of periods in the investment horizon

Realized Rate of Return

- The realized rate of return ($r r$) is the discount rate that just equates the actual purchase price) $\overline{E O}$ the present value of the realized cash flows $\left(R C F_{t}\right) t(t=1, \ldots, n)$

$$
\bar{P}=\frac{R C F_{1}}{(1+r r)^{1}}+\frac{R C F_{2}}{(1+r r)^{2}}+\frac{R C F_{3}}{(1+r r)^{3}}+\ldots+\frac{R C F_{n}}{(1+r r)^{n}}
$$

Bond Valuation

- The present value of a bond $\left(\boldsymbol{V}_{b}\right)$ can be written as:

$$
\begin{aligned}
V_{b} & =\frac{I N T}{2} \sum_{i=1}^{2 T}\left(\frac{1}{\left(1+i_{d} / 2\right)}\right)^{t}+\frac{M}{\left(1+i_{d} / 2\right)^{2 T}} \\
& =\frac{I N T}{2}\left(\text { PVIFA }_{i / / 2,2 T}\right)+M\left(P F I V_{i / / 2,2 T}\right)
\end{aligned}
$$

$\boldsymbol{M}=$ the par value of the bond
$\boldsymbol{I N T}=$ the annual interest (or coupon) payment
$\boldsymbol{T}=$ the number of years until the bond matures
$\boldsymbol{i}=$ the annual interest rate (often called yield to maturity (ytm))

Bond Valuation

- A premium bond has a coupon rate (INT) greater then the required rate of return $(r r r)$ and the fair present value of the bond $\left(V_{b}\right)$ is greater than the face value (M)
- Discount bond: if $I N T<r r r$, then $V_{b}<M$
- Par bond: if $I N T=r r r$, then $V_{b}=M$

Equity Valuation

- The present value of a stock $\left(\boldsymbol{P}_{\boldsymbol{t}}\right)$ assuming zero growth in dividends can be written as:

$$
P_{t}=D / i_{s}
$$

$D=$ dividend paid at end of every year
$P_{t}=$ the stock's price at the end of year t
$i_{s}=$ the interest rate used to discount future cash flows

Equity Valuation

- The present value of a stock $\left(\boldsymbol{P}_{\boldsymbol{t}}\right)$ assuming constant growth in dividends can be written as:

$$
P_{t}=\frac{D_{0}(1+g)^{t}}{i_{s}-g}=\frac{D_{t+1}}{i_{s}-g}
$$

$D_{0}=$ current value of dividends
$D_{t}=$ value of dividends at time $\mathrm{t}=1,2, \ldots, \infty$
$g=$ the constant dividend growth rate

Equity Valuation

- The return on a stock with zero dividend growth, if purchased at price $\boldsymbol{P}_{\mathbf{0}}$, can be written as:

$$
i_{s}=D / P_{0}
$$

- The return on a stock with constant dividend growth, if purchased at price $\boldsymbol{P}_{\mathbf{0}}$, can be written as:

$$
i_{s}=\frac{D_{0}(1+g)}{P_{0}}+g=\frac{D_{1}}{P_{0}}+g
$$

Relation between Interest Rates and Bond Values

Impact of Maturity on Interest Rate Sensitivity

Absolute Value of Percent Change in a Bond's Price for a Given Change in Interest Rates

Time to Maturity

Impact of Coupon Rates on Interest Rate Sensitivity

Bond Value
 High-Coupon Bond
 Low-Coupon Bond

Duration

- Duration is the weighted-average time to maturity (measured in years) on a financial security
- Duration measures the sensitivity (or elasticity) of a fixed-income security's price to small interest rate changes

Duration

- Duration (D) for a fixed-income security that pays interest annually can be written as:

$$
D=\frac{\sum_{t=1}^{T} \frac{C F_{t} \times t}{(1+R)^{t}}}{\sum_{t=1}^{T} \frac{C F_{t}}{(1+R)^{t}}}=\frac{\sum_{t=1}^{T} P V_{t} \times t}{\sum_{t=1}^{T} P V_{t}}
$$

$\boldsymbol{t}=1$ to \boldsymbol{T}, the period in which a cash flow is received
$\boldsymbol{T}=$ the number of years to maturity
$\boldsymbol{C F} \boldsymbol{F}_{\boldsymbol{t}}=$ cash flow received at end of period \boldsymbol{t}
$\boldsymbol{R}=$ yield to maturity or required rate of return
$\boldsymbol{P} \boldsymbol{V}_{\boldsymbol{t}}=$ present value of cash flow received at end of period \boldsymbol{t}

Duration

- Duration (D) (measured in years) for a fixedincome security in general can be written as:

$$
D=\frac{\sum_{t=1 / m}^{T} \frac{C F_{t} \times t}{(1+R / m)^{m t}}}{\sum_{t=1 / m}^{T} \frac{C F_{t}}{(1+R / m)^{m t}}}
$$

$\boldsymbol{m}=$ the number of times per year interest is paid

Duration

- Duration and coupon interest
- the higher the coupon payment, the lower the bond's duration
- Duration and yield to maturity
- the higher the yield to maturity, the lower the bond's duration
- Duration and maturity
- duration increases with maturity at a decreasing rate

Duration and Modified Duration

- Given an interest rate change, the estimated percentage change in a (annual coupon paying) bond's price is found by rearranging the duration formula:

$$
\frac{\Delta P}{P}=-D\left[\frac{\Delta R}{1+R}\right]=-M D \times \Delta R
$$

$M D=\boldsymbol{m o d i f i e d}$ duration $=D /(1+R)$

Figure 3-7

Convexity

- Convexity (CX) measures the change in slope of the price-yield curve around interest rate level R
- Convexity incorporates the curvature of the priceyield curve into the estimated percentage price change of a bond given an interest rate change:

$$
\frac{\Delta P}{P}=-D\left[\frac{\Delta R}{1+R}\right]+\frac{1}{2} C X(\Delta R)^{2}=-M D \times \Delta R+\frac{1}{2} C X(\Delta R)^{2}
$$

