Chapter Three

Interest Rates

and Security

Valuation

Various Interest Rate Measures

• Coupon rate

periodic cash flow a bond issuer contractually promises to pay a bond holder

• Required rate of return (rrr)

rates used by individual market participants to calculate fair present values (PV)

• Expected rate of return (Err)

- rates participants would earn by buying securities at current market prices (P)
- Realized rate of return (rr)
 - rates actually earned on investments

Required Rate of Return

The fair present value (*PV*) of a security is determined using the required rate of return (*rrr*) as the discount rate

$$PV = \frac{\widetilde{C}F_1}{\left(1 + rrr\right)^1} + \frac{\widetilde{C}F_2}{\left(1 + rrr\right)^2} + \frac{\widetilde{C}F_3}{\left(1 + rrr\right)^3} + \dots + \frac{\widetilde{C}F_n}{\left(1 + rrr\right)^n}$$

 CF_1 = cash flow in period t (t = 1, ..., n) ~ = indicates the projected cash flow is uncertain n = number of periods in the investment horizon

McGraw-Hill/Irwin

Expected Rate of Return

The current market price (P) of a security is determined using the expected rate of return (*Err*) as the discount rate

$$P = \frac{\widetilde{C}F_1}{\left(1 + Err\right)^1} + \frac{\widetilde{C}F_2}{\left(1 + Err\right)^2} + \frac{\widetilde{C}F_3}{\left(1 + Err\right)^3} + \dots + \frac{\widetilde{C}F_n}{\left(1 + Err\right)^n}$$

 CF_1 = cash flow in period t (t = 1, ..., n) ~ = indicates the projected cash flow is uncertain n = number of periods in the investment horizon

Realized Rate of Return

The realized rate of return (*rr*) is the discount rate that just equates the actual purchase price) to the present value of the realized cash flows (*RCF_t*) t (t = 1, ..., n)

$$\overline{P} = \frac{RCF_1}{(1+rr)^1} + \frac{RCF_2}{(1+rr)^2} + \frac{RCF_3}{(1+rr)^3} + \dots + \frac{RCF_n}{(1+rr)^n}$$

Bond Valuation

• The present value of a bond (V_b) can be written as:

$$V_{b} = \frac{INT}{2} \sum_{t=1}^{2T} \left(\frac{1}{(1+i_{d}/2)} \right)^{t} + \frac{M}{(1+i_{d}/2)^{2T}}$$
$$= \frac{INT}{2} (PVIFA_{i_{d}/2,2T}}) + M(PFIV_{i_{d}/2,2T})$$

M = the par value of the bond

- *INT* = the annual interest (or coupon) payment
- T = the number of years until the bond matures
- *i* = the annual interest rate (often called **yield to maturity (ytm)**)

Bond Valuation

- A premium bond has a coupon rate (*INT*) greater then the required rate of return (*rrr*) and the fair present value of the bond (V_b) is greater than the face value (*M*)
- **Discount bond:** if INT < rrr, then $V_b < M$
- **Par bond:** if INT = rrr, then $V_b = M$

Equity Valuation

• The present value of a stock (P_t) assuming zero growth in dividends can be written as:

$$P_t = D / i_s$$

D = dividend paid at end of every year $P_t =$ the stock's price at the end of year t $i_s =$ the interest rate used to discount future cash flows

Equity Valuation

• The present value of a stock (P_t) assuming constant growth in dividends can be written as:

$$P_{t} = \frac{D_{0}(1+g)^{t}}{i_{s}-g} = \frac{D_{t+1}}{i_{s}-g}$$

 D_0 = current value of dividends D_t = value of dividends at time t = 1, 2, ..., ∞ g = the constant dividend growth rate

Equity Valuation

• The return on a stock with zero dividend growth, if purchased at price P_0 , can be written as:

$$i_s = D / P_0$$

• The return on a stock with constant dividend growth, if purchased at price P_0 , can be written as:

$$\dot{a}_s = \frac{D_0(1+g)}{P_0} + g = \frac{D_1}{P_0} + g$$

McGraw-Hill/Irwin

Relation between Interest Rates and Bond Values

3-11

©2009, The McGraw-Hill Companies, All Rights Reserved

Impact of Maturity on Interest Rate Sensitivity

Absolute Value of Percent Change in a Bond's Price for a Given Change in Interest Rates

Impact of Coupon Rates on Interest Rate Sensitivity

- **Duration** is the weighted-average time to maturity (measured in years) on a financial security
- **Duration** measures the sensitivity (or elasticity) of a fixed-income security's price to small interest rate changes

• **Duration** (*D*) for a fixed-income security that pays interest annually can be written as:

$$D = \frac{\sum_{t=1}^{T} \frac{CF_{t} \times t}{(1+R)^{t}}}{\sum_{t=1}^{T} \frac{CF_{t}}{(1+R)^{t}}} = \frac{\sum_{t=1}^{T} PV_{t} \times t}{\sum_{t=1}^{T} PV_{t}}$$

t = 1 to T, the period in which a cash flow is received T = the number of years to maturity $CF_t =$ cash flow received at end of period t R = yield to maturity or required rate of return $PV_t =$ present value of cash flow received at end of period t

• **Duration** (*D*) (measured in years) for a fixedincome security in general can be written as:

$$D = \frac{\sum_{t=1/m}^{T} \frac{CF_{t} \times t}{(1+R/m)^{mt}}}{\sum_{t=1/m}^{T} \frac{CF_{t}}{(1+R/m)^{mt}}}$$

m = the number of times per year interest is paid

• Duration and coupon interest

the higher the coupon payment, the lower the bond's duration

• Duration and yield to maturity

the higher the yield to maturity, the lower the bond's duration

• Duration and maturity

- duration increases with maturity at a decreasing rate

Duration and Modified Duration

 Given an interest rate change, the estimated percentage change in a (annual coupon paying) bond's price is found by rearranging the duration formula:

$$\frac{\Delta P}{P} = -D\left[\frac{\Delta R}{1+R}\right] = -MD \times \Delta R$$

MD =**modified duration** = D/(1 + R)

Figure 3-7

McGraw-Hill/Irwin

3-19

Convexity

- **Convexity (***CX***)** measures the change in slope of the price-yield curve around interest rate level *R*
- **Convexity** incorporates the curvature of the priceyield curve into the estimated percentage price change of a bond given an interest rate change:

$$\frac{\Delta P}{P} = -D\left[\frac{\Delta R}{1+R}\right] + \frac{1}{2}CX(\Delta R)^2 = -MD \times \Delta R + \frac{1}{2}CX(\Delta R)^2$$