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ABSTRACT: Optical microscopy is used to measure trans-
lational and rotational diffusion of colloidal rods near a single
wall, confined between parallel walls, and within quasi-2D
porous media as a function of rod aspect ratio and aqueous
solution ionic strength. Translational and rotational diffusiv-
ities are obtained as rod particles experience positions closer to
boundaries and for larger aspect ratios. Models based on
position dependent hydrodynamic interactions quantitatively
capture diffusivities in all geometries and indicate particle−wall
separations in agreement with independent estimates based on
electrostatic interactions. Short-time translational diffusion in
quasi-2D porous media is insensitive to porous media area
fraction, which appears to arise from a balance of hydrodynamic hindrance and enhanced translation due to parallel alignment
along surfaces. Findings in this work provide a basis to interpret and predict interfacial and confined colloidal rod transport
relevant to biological, environmental, and synthetic material systems.

■ INTRODUCTION

Anisotropic colloidal particles are present in biological, medical,
environmental, and synthetic material systems. Transport of
anisotropic particles in interfacial and confined geometries is
important to problems involving, for example, biological1−4 and
drug5,6 particle transport within tissues, nanoparticle fate within
environmental porous media,7−12 and deposition and assembly
on substrates of particle-based surface coatings.13−15 Colloidal
particle transport near surfaces in general depends on
conservative colloidal forces (e.g., electrostatic, van der Waals,
gravity) and nonconservative hydrodynamic forces (e.g., Stokes
drag, lubrication). Conservative colloidal forces determine how
close particles get to surfaces, which determines position
dependent hydrodynamic forces that govern how much a
particle’s motion is impeded by fluid friction. For anisotropic
particles, and rod shaped particles, the situation becomes more
complex; conservative forces determine both position and
orientation, which controls net hydrodynamic interactions as
well as coupling between translational and rotational motion.16

Colloidal rod diffusion in bulk systems is reasonably well
understood based on close correspondence between mod-
els17−20 and measurements.21−24 Likewise, position dependent
diffusion of spherical colloids adjacent to surfaces has also been
shown in high resolution measurements25−29 to agree with
models that self-consistently consider conservative and non-
conservative colloidal forces.30,31 However, analysis of meas-
ured colloidal rod diffusion near boundaries3,32−35 has been
restricted based on the limitations of available models. For
example, many studies have used numerical results for bulk rod
diffusion17−20 modified by approximate lubrication corrections
for cylinders adjacent to single planar wall surfaces.36 Models of
colloidal rods as “chains-of-spheres” more accurately consider
position and orientation dependent hydrodynamic interactions,

but the results are limited to a single aspect ratio and a single
wall surface.37 In short, easy-to-use, parametric, experimentally
validated models are not currently available to interpret and
predict boundary effects on colloidal rod diffusion.
In this work, we use optical microscopy to measure

translational and rotational diffusion of colloidal rods versus
aspect ratio, solution ionic strength, and geometries (Figure 1).
We investigate gold (Au) rods with cross-sectional diameters of
d = 2a = 300 nm and lengths of L ≈ 2−6 μm to probe aspect
ratios of p = L/d ≈ 7−20. Rod-wall geometries studies include
(1) particles levitated above single planar wall surfaces via a
balance of gravity and electrostatic repulsion, (2) particles
confined in a quasi-two-dimensional gap between two
nominally parallel walls in a slit pore geometry, and (3)
particles confined within a quasi-two-dimensional porous media
that is formed by 2 μm spherical silica colloid spacers in
random amorphous configurations at different area fractions.
The solution ionic strength is varied from the minute ionic
strength of deionized water (0.03 mM) up to 5 mM NaCl, to
mediate electrostatic repulsion and the average rod−wall
separation distance (without causing deposition or contact).
Measured diffusivities are compared to a recent model
developed by us38 using a Stokesian dynamic method of
computing diffusion tensors for rigid chains-of-spheres near
surfaces. In particular, closed-form expressions fit to computa-
tional simulations for translational and rotational diffusivities
are compared to experimental measurements as a function of
rod−wall separation and rod aspect ratio.
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■ THEORY
Bulk Translational and Rotational Diffusion. The translational

diffusivity of an isolated rod particle far from any boundaries with long
axis, L, and diameter, d = 2a, can be expressed in terms of its aspect
ratio, p = L/d (Figure 1). Expressions reported here, for the bulk
diffusion of chains-of-spheres,38 agree with established models of
Tirado and co-workers for cylindrical particles.19,39,40 The diffusion
coefficient for translational diffusion parallel to the long axis is given
by38

πη=D p kT L f p( ) ( /2 ) ( )t,b t,b
(1)

where

= +
− − +

+ +
f p p

p p
p p

( ) ln( )
0.4536 1.772 41.5

34.38 18.96
t,b

2

2 (2)

and the coefficient for translational diffusion perpendicular to the long
axis is given by

πη=⊥ ⊥D p kT L f p( ) ( /2 ) ( )t,b t,b
(3)

where

= +
− + +

+ +⊥f p p
p p

p p
( ) ln( )

0.3604 28.36 72.63
36.29 34.9

t,b
2

2 (4)

and η is the fluid medium viscosity, k is Boltzmann’s constant, and T is
absolute temperature. The three-dimensional center of mass transla-
tional diffusion coefficient is given by

= + ⊥D p D p D p( ) (1/3) ( ) (2/3) ( )t,b t,b t,b
(5)

The rotational diffusivity of an isolated rod particle perpendicular its
long axis is given by

πη=⊥ ⊥D p kT L f p( ) (3 / ) ( )r,b 3 r,b
(6)

= +
− − − +

+ + −⊥f p p
p p p

p p p
( ) ln( )

1.373 19.39 148.1 265.2
56.43 54.35 268.4

r,b
3 2

3 2

(7)

Interfacial Translational and Rotational Diffusion. Here we
summarize expressions for diffusion of chains of spheres as a function
of distance relative to a planar interface when the chain’s long axis is
oriented parallel to the interface.38 The results converge to the bulk
diffusivities in eqs 1−7 for large separations, and to asymptotic results
for infinitely long cylinders near a wall36 at vanishing separations. The

translational diffusivity of a rod particle parallel to its long axis and
parallel to a no-slip planar interface, for h < a and 6 < p < 16, is given
by

=D p h D p g h( , ) ( ) ( )t,i t,b t,i
(8)

where using the definition for z = h + a (see Figure 1), the function
g(h) is given as

= + − −
+ − −

g h
z a z a z a

z a z a z a
( )

0.9909( / ) 0.3907( / ) 0.1832( / ) 0.001815
( / ) 2.03( / ) 0.3874( / ) 0.07533

t,i
3 2

3 2

(9)

and the coefficient for translational diffusion perpendicular to the long
axis, again for h < a and 6 < p < 16, is given by

=⊥ ⊥ ⊥D p h D p g h( , ) ( ) ( )t,i t,b t,i
(10)

where

= + − −
+ − −⊥g h

z a z a z a
z a z a z a

( )
0.9888( / ) 0.788( / ) 0.207( / ) 0.004766

( / ) 3.195( / ) 0.09612( / ) 0.1523
t,i

3 2

3 2

(11)

and the two-dimensional center of mass translation diffusion
coefficient at a given surface to surface separation is given by

= + ⊥D p h D p h D p h( , ) (1/2) ( , ) (1/2) ( , )t,i t,i t,i
(12)

The rotational diffusivity of a rod shaped particle perpendicular its
long axis as a function of its aspect ratio and height above the planar
surface, interface, for h < a and 6 < p < 16, is given by

=⊥ ⊥ ⊥D p h D p g h( , ) ( ) ( )r,i r r,i
(13)

where

= + + +
+ + +⊥g h

z a z a z a
z a z a z a

( )
0.998( / ) 131.1( / ) 21.25( / ) 0.01275

( / ) 128.7( / ) 121.1( / ) 2.897
r,i

3 2

3 2

(14)

Confined Translational and Rotational Diffusion. For a single
colloid confined between two parallel planar surfaces with separation,
δ, the hydrodynamic hindrance to lateral diffusion can be described
using

δ δ=D z a D f z a( , , ) ( , , )w2 b 2w (15)

where a number of approximate solutions exist for f 2w(z,a,δ). The
simplest of these is the linear superposition approximation (suggested

Figure 1. Rod-wall schematics, image analysis, and raw trajectories. Schematics of colloidal rod particle adjacent to planar surface with defined
variables from (A) side and (B) top views. Representative images of Au colloidal rods and depiction of key image analysis steps showing (C) raw
transmitted light image, (D) inversion, (E) binary thresholding, and (F) center and end point labeling. Plots of magnitude of displacement of center
of mass position (G) and angular orientation (H) with respect to origin in laboratory coordinates for a single rod particle, corresponding to labels
from (F).
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by Oseen),41 which includes hydrodynamic hindrance of each wall
from the single wall results as given by

δ δ= + − −− − −f z a f z a f z a( , , ) [ ( , ) ( , ) 1]2w 1w 1 1w 1 1 (16)

which can be applied with any of the separation-dependent diffusivities
in eqs 1−14.
Measured Average Diffusion Coefficients. Measurements of

average diffusivities can be obtained via mean squared positional
displacements (MSPD), in one-dimension, ⟨x2⟩ (or ⟨y2⟩), as

∑⟨ ⟩ = − = ⟨ ⟩ + Δ
=

x
N

x t x D t
1

[ ( ) (0)] 2
i

N

i i
t2

p 1

2 2
p

(17)

or in polar coordinates, ⟨r2⟩ (where r2 = x2 + y2), as

∑⟨ ⟩ = − = ⟨ ⟩ + Δ
=

r
N

r t r D t
1

[ ( ) (0)] 4
i

N

i i
t2

p 1

2 2
p

(18)

and for mean squared angular displacements (MSAD), ⟨θ2⟩, as

∑θ θ θ⟨ ⟩ = − = ⟨ ⟩ + Δ
=N

t D t
1

[ ( ) (0)] 2
i

N

i i
r2

p 1

2 2
p

(19)

where Np is the number of particles, and Δ2 is related to the square of
the uncertainty in either the particle center position or long-axis
orientation due to limited spatial resolution (i.e., the CCD camera
pixel size is approximately equal to Δ).
Potential Energy Profiles. The potential energy for an isolated

rod particle with L parallel to an underlying planar surface can be
calculated by the sum of contributing potentials as

= +U z U z U z( ) ( ) ( )G E (20)

where the subscripts refer to the gravitational (G) and electrostatic (E)
interactions, z = h + a is the particle center to the wall surface (Figure
1), h is the particle surface to wall surface separation, and a is the rod
short-axis radius. van der Waals attraction is expected to be negligible
based on our previous studies of Au−silica interactions.42
The gravitational potential energy of each rod depends on its

buoyant weight, G, as the product of particle volume and density
mismatch with the medium as given by

π ρ ρ= = + = − +U z Gz mg h a a L g h a( ) ( ) ( ) ( )G
2

p f (21)

where m is buoyant mass, g is acceleration due to gravity, and ρp and ρf
are particle and fluid densities, respectively. For rods where the
potential energy associated with elevating one end relative to the other
is >5kT, the long axis will remain parallel to the underlying wall. For
this orientation, the rod−wall electrostatic interaction depends on the
nondimensional double layer thickness. In particular, for thin double
layers (κa ≫ 1) and a 1:1 electrolyte, we consider a solution based on
the nonlinear Poison−Boltzmann equation to model the electrostatic
double layer on flat plates. Used with the Derjaguin approximation for
geometry correction, this gives a potential as43

π κ π κ= −U z LB a z( ) 64 ( /2 ) exp[ ]E
ND 0.5 (22)

where

ε
ψ ψ

= ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠B

kT
e

e

kT
e
kT

tanh
4

tanh
4

2
p w

(23)

and

∑κ
ε

=
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

e N
kT

C
i

2
A

i

1/2

(24)

where κ is the inverse Debye screening length, ε is the solvent
dielectric constant, e is the elemental charge, ψp and ψw are the surface
potentials of the particle and the wall, respectively, NA is Avogadro’s
number, and Ci is electrolyte molarity.

For thick double layers (κa ≈ 1) and a 1:1 electrolyte, we
approximate the interaction by considering a chain of touching
spheres, each of radius, a, and total number of L/a, and use the linear
superposition approximation for sphere−plate interactions44 to give

π κ

π κ

=

= −

= −

U z L a U h

L a aB z

LB z

( ) ( /2 ) ( )

( /2 )16 exp( )

8 exp( )

E
LS

E,PW
LS

(25)

Average Particle−Wall Separation and Diffusivities. Colloidal
rods experience Brownian motion and sample a range of heights
relative to underlying wall surfaces in the presence of the colloidal
interactions and gravity given in eqs 20−25. By considering the
balance of electrostatic and gravitational interactions, the rod’s most
probable elevation, hm, can be determined where the gradient of the
potential vanishes (i.e., where the sum of the forces is zero). Using the
potential in eq 22, the value of hm is

κ κ π
ρ ρ

=
−

−
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥h

a B
a g

ln
64( /2 )

( )m
ND 1

3 0.5

2
p f (26)

whereas using the potential in eq 25 gives the value of hm as

κ κ
ρ ρ

=
−

−
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥h

B
a g

ln
8

( )m
LS 1

2
p f (27)

For comparison, it is also possible to compute the average elevation,
⟨h⟩, from the particle−wall interactions by considering the Boltzmann
weighted integral average as

∫
∫

⟨ ⟩ =h
hp h h

p h h

( ) d

( ) d (28)

where p(h) is the probability of rod−wall separations given by a
Boltzmann distribution as

= − −p h p h U h U h kT( ) ( )exp[ ( ( ) ( ))/ ]m m (29)

While the position dependent diffusivities in eqs 1−16 can be
evaluated at discrete elevations such as hm or ⟨h⟩ in eqs 26−28, the
average diffusivity, ⟨D⟩, for each diffusion mode is accurately predicted
as an average over the equilibrium distribution of heights sampled by
confined particles as given by25,30,42

∫
∫

⟨ ⟩ =D
D h p h h

p h h

( ) ( ) d

( ) d (30)

■ MATERIALS AND METHODS
Colloids and Surfaces. Hydrochloric acid, potassium hydroxide,

sodium chloride, and colloidal SiO2 (2.34 μm) were used as received
without further purification. Au rods were electrochemically grown to
prescribed lengths in 300 nm pores of anodic aluminum oxide
membranes (that determine the Au rod diameter from SEM45). The
alumina template was dissolved in base, and rods were freed from a
thin film using nitric acid.45 Rods were dispersed in deionized water.
Zeta potential (ζ) was used as an estimation of the surface potential
for the Au rods (ψp), and was measured at four ionic strength
conditions using electrophoretic mobility.

For quasi-2D porous media experiments, dilute silica spacer particle
dispersions were prepared by adding 0.5 μL of the stock to 4 mL of DI
water, whereas concentrated dispersions for spin coating were
prepared by diluting 100 μL of stock silica in 1 mL of 0.1 mM
NaCl. The addition of NaCl aided in adhering the silica particles to the
coverslips during spin coating. Au rod dispersions were prepared by
diluting 60 μL of stock into 136 μL of electrolyte solution and 4 μL
silica particle spacers. For two-wall experiments, this dispersion was
used as is to confine the rods, and for one-wall experiments the
dispersion was diluted to achieve the desired ionic strength. The silica
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spacer particles have previously been shown to have a diameter of 2.1
μm,46,47 which then also sets the two-wall experiment gap dimension.
Sample Cells. Glass microscope coverslips (24 mm × 60 mm)

were wiped clean with lens paper, and then sonicated for 30 min in
acetone and 30 min in isopropanol before being soaked in Nochromix
overnight. Small glass coverslips (18 mm × 18 mm) were wiped with
lens paper and placed directly into Nochromix. All coverslips were
rinsed with deionized (DI, 18.3 MΩ) water and soaked in 0.1 M KOH
for 30 min, and then rinsed with DI water again and dried with
nitrogen before use.
O-Ring sample cells for one-wall experiments were constructed by

using vacuum grease to adhere a 5 mm ID O-ring to a clean long
coverslip. Afterward, dilute Au rod dispersions were pipetted into the
O-ring, a small coverslip was placed on top and then sealed with
vacuum grease. Confined cells were created by adding 10 μL of the
Au/silica spacer particle mixture onto the center of a coverslip. A
coverslip was placed on top of the droplet to confine particles between
the two walls. Lens paper was used to wick away extraneous solution
from between the coverslips until interference patterns were observed.
The two coverslips were sealed together using epoxy.
Porous media sample cells were prepared by spin coating 100 μL of

concentrated silica particle dispersion onto a long glass coverslip at
1000 rpm for 40 s. After spin coating, the coverslip was placed on a hot
plate and dried overnight at 50 °C. Silica colloid coated coverslips were
gently rinsed with DI water three to five times to remove any
crystallized salt and then dried for 10 min on a hot plate. After drying,
12 μL of the Au rod stock was deposited onto the center of the coated
coverslip and sealed in the same manner as the confined sample cells.
Microscopy. The two-wall experiments were performed using

transmitted light on an upright microscope with a 63× objective (NA
= 0.75). The one-wall and quasi-2D porous media experiments were
performed on an inverted microscope with a 63× objective (NA =
0.75) using transmitted light and dark field, respectively. A dry dark
field condenser attachment (NA = 0.8/0.95) was used to image
experiments performed with concentrated porous media. Particle
trajectories were monitored with a 12bit CCD camera in 4-binning
mode for 30 000 frames at ≈27.6 fps for one-wall and two-wall
experiments and at ≈10 fps for porous media experiments.
Particle Tracking. A new image analysis algorithm coded in

FORTRAN 77 and MATLAB 2015a was developed to track particle
translation and rotation. Rods appear dark on a bright background in
transmitted light illumination (Figure 1C), and subsequent inversion
(Figure 1D) and binary thresholding (Figure 1E) to identify all pixels
comprising the rod. After identification of the coordinates of all pixels
comprising a rod, xi and yi, the coordinates of the center of mass (red
points in Figure 1F) of each rod, xcm and ycm, can be calculated as

∑= −x n x
i

n

icm
1

(31)

∑= −y n y
i

n

icm
1

(32)

Rod end points (green points in Figure 1F) were identified as the
maximum distance from the center-of-mass coordinates and used to
track the distance, Ri, and angle, θi, of each end point as

= − + −R x x y y[( ) ( ) ]i i icm
2

cm
2 0.5

(33)

θ = − −y y x xarctan[( )/( )]i i icm cm (34)

which were used to compute MSPD and MSAD curves using the eqs
17−19 and the multiple time origin method.30 Figure 1G, H shows the
magnitude of the center-of-mass position displacement and angular
displacement vs time for a single rod. The instantaneous length of each
rod is obtained by calculating the distance between the center and each
end point and summing the two radii. The reported rod lengths are
the most probable values obtained from histograms of all measured
lengths for each particle.

For porous media experiments, a separate algorithm in MATLAB
was used to identify silica microsphere positions and perimeters in
dark field microscopy images using algorithms adapted for tracking
cells.48,49 The scheme is created by thresholding the silica particles
based on a “solidity” factor (based on a percentage of white pixels).
The solidity factor distinguishes the spheres, which appear as white
halos around darker centers, from the much brighter Au rods.
Boundaries were drawn around the silica particles that met the
required solid percentage (but not around Au rods), which were
overlaid in images and videos. The area fraction (ϕ) of the image
contained within the silica particle boundaries was also calculated.

■ RESULTS AND DISCUSSION
Measuring Rod Translational and Rotation Diffusion.

Figure 2 shows mean squared positional displacements

(MSPD) and mean squared angular displacements (MSAD)
versus time from analyzing optical microscopy videos of ≈10
Au rods in 0.1 mM NaCl. Results are obtained for particles near
a single wall, where they are confined by gravity, and for
particles confined between two parallel walls separated by ≈2
μm diameter silica spacers. Each curve is fit via linear regression
to eqs 18 and 19 to obtain Dt,i and Dr,i. The measured values of
Dt,i and Dr,i in Figure 2 show that shorter rods translate and
rotate more quickly than longer rods having the same short-axis
diameter (300 nm), consistent with expectations.
Deviations from the expected monotonic trends in Figure 2

may be the result of irregularities in the cylindrical rod shape,
heterogeneities on the surfaces of the gold or silica, and
spatiotemporal resolution limits in the experimental recordings.
For example, blue triangles in Figure 2B correspond to a rod

Figure 2. Mean square displacement date vs rod length and wall
geometry. Mean squared (A, C) positional and (B, D) angular
displacement vs time for Au colloidal rod particles with cross-sectional
diameters of d = 2a = 300 nm. Results are reported for [NaCl] = 0.1
mM and varying rod lengths (see legend) adjacent to one wall (A, B)
or confined between parallel walls separated by ≈2 μm (C, D).
Symbols show particle tracking data, and lines are fits using eqs 18 and
19.
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having L = 5.11 μm with a higher than expected rotational
diffusion. In this specific instance, a slight curve to the rod
shape may produce rolling motion at the rod ends that appears
as faster rotation. In another case, the 4.02 and 4.05 μm rods
are simply two different rods, with lengths that are not
significantly different relative to the image pixel size, and as
such, differences in their measured diffusivities are also
attributed to nonuniformities. Finally, the red circles for the
shortest ∼2 μm rod in Figure 2 show an inadequate
combination of spatial and temporal resolution necessary to
capture the fast rotation of the smallest rod in this study. The
last case is perhaps also most susceptible to out-of-plane 3D
motion that could also make the apparent projected 2D
rotation appear faster.
When comparing the two experimental geometries (one-wall

versus two-walls) in Figure 2, the rods in the one-wall
experimental system (Figure 2A) display faster translational
diffusion than in the two-wall experiments (Figure 2C). The
second confining wall (≈2 μm separation) introduces an
additional drag that can be expected to slow diffusion,
consistent with expectations, results for spherical nanoparticles
and nanotubes,26,27,35 and simulations of anisotropic particles.38

However, this effect is much less pronounced for rotational
diffusion, which shows comparable rates for similar sized rods
in both geometries (Figure 2B, D). Previous experiments have
also observed limited effects of confinement on rotational
diffusion.34

Diffusivity vs Aspect Ratio, Ionic Strength, and
Geometry. Many measurements of particle diffusion for one-
wall and two-wall configurations, like the ones reported in
Figure 2, were performed versus ionic strength to vary how
particles sample positions near the wall surface via differing
strengths of electrostatic interactions.26,27,35 Figure 3 reports
diffusivities versus aspect ratio, p = L/d, from p ≈ 10 to 20
(where d = 2a = 300 nm) and ionic strengths corresponding to
deionized water (≈ 0.03 mM NaCl) up to 5 mM NaCl.
Diffusivities for each of the four cases in Figure 3 were fit using
the expressions in eqs 8−16, where the only adjustable
parameter for each ionic strength was the elevation, h, of the
Au rod above the surface. For the translational diffusivities in
Figure 3A and C, the solid lines are least squared error fits, and
the two types of dashed lines capture the maximum and
minimum values necessary to enclose all data for each ionic
strength. For the rotational diffusivities in Figure 3B and D, the
theoretical curves are relatively insensitive to elevation and
aspect ratio. As such, given the error bars in the measured data,
we plot theoretical curves using the elevations fit to the
translational diffusivities (rather than performing an independ-
ent least-squares fit to the measured rotational diffusivities).
Using this approach, there is good agreement between the
measurements and predictions. The fit values of h for each case
are reported in Figure 4.
The translational diffusion of rods is faster for shorter aspect

ratios, lower ionic strength solutions, and one-wall config-
urations as shown by the theoretical curves in Figure 3A and C.
For example, the DI and 0.1 mM diffusivities are ≈30% higher
for the one-wall than for the two-wall geometry, and the 1 and
5 mM conditions are ≈20% higher for one-wall than two-wall
configurations. There is also a decrease in the spread of the
diffusivities measured, and thus the heights sampled by the
rods, with the more confined geometry as is observed for both
Dt and Dr. As Figure 2 shows, the rotational diffusivities in
Figure 3 exhibit a relative insensitivity to the one- or two-wall

configurations, but show a clear dependence on rod aspect
ratio, as well as ionic strength.
The decreasing diffusivities for increasing ionic strength are

the result of decreasing electrostatic repulsion that allows
particles to approach wall surfaces more closely, and thus
increases hydrodynamic resistance on particle motion. The
decrease in translational diffusion is greater than the decrease in
rotational diffusion, with particle−wall separation mediated by
the solution ionic strength. This observed insensitivity in Dr is
consistent with a prior modeling study of rods as chains of
spheres,50 which is similar to the hydrodynamic model
developed in our work.38 The explanation for the difference
between the separation dependence of the translational and
rotational diffusivities can be explained by considering the rods
as chains-of-spheres. Translation of chains-of-spheres are
governed by the collective diffusion of the spheres comprising
the chain, which decrease significantly with decreasing particle−
wall separation. In contrast, rotation of chains-of-spheres
depends on the diffusion of spheres relative to each other,
which is insensitive to particle−wall separation for the
elevations probed in this study.

Measured vs Modeled Diffusivities. The predicted
diffusivities show good correspondence with the measured
diffusivities for a single adjustable parameter, h. To test the
accuracy of the fit separation estimates, and hence the
elevation-dependent diffusivity models, we compare fits to
predictions based on the conservative forces acting on the rods.
Figure 4 shows the values of the rod particle−wall surface-to-
surface separation from experiment and theory. Rod separations

Figure 3. Rod diffusion vs solution ionic strength and wall geometry.
Translational (A, C) and rotational (B, D) diffusion coefficients versus
aspect ratio (abscissa) and ionic strength (see inset legend). The data
points are the initial slopes of measured mean squared positional and
angular displacements shown in Figure 2. For the translational
diffusivities (A, C), the solid lines are least squared error fits to the Dt

using particle−wall separation, h, as the sole adjustable parameter in eq
12 for one wall and eq 15 for two walls; the dashed and dot-dot-
dashed lines are the same equations fit to enclose the maximum and
minimum values, respectively, within each ionic strength data set. For
the rotational diffusivities (B, D), the lines are computed using the
values of h fit to translational diffusion data as input into eq 13 for one
wall and eq 15 for two walls. Error bars are for each rod measured and
are obtained as one pixel length at binning 4 (385 nm) for p, and the
standard deviation of the slope in Figure 2 for Dt and Dr.
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from fits to translational diffusion experiments, hexpt, for the
one-wall and two-wall cases in Figure 3 are plotted on the x-
axis, and separations from theoretical models, htheory, using eqs
26 and 27 are shown on the y-axis.
Values of hexpt are indicated as single points in Figure 4 and

represent the best-fit separation for each Dt,i versus p curve for
each ionic strength in Figure 3. The error bars in Figure 4 are
taken from the extreme (dashed, dot-dot-dashed) curves of
Figure 3. Values of htheory are computed using eq 26 for the
higher ionic strengths ([NaCl] = 1 mM, 5 mM) and eq 27 for
lower ionic strengths ([NaCl] = 0.03 mM, 0.1 mM), based on
constraints determined by the relative thickness of the double
layer to the rod radius, κa, and rod−wall separation, κh, as
noted in the Theory section.53 The points for htheory are based
on wall surface potentials of ψw = −50 mV, obtained from prior
measurements,52 and error bars are based on more extreme
surface potentials of ψw = −10 mV and ψw = −100 mV (with
the rest of the model parameters reported in Table 1).
Agreement is good between the rod−wall separations

inferred from model fits to translational diffusion data and
predictions based on a balance of electrostatic repulsion and
gravity (within error bars in Figure 4). This agreement is
excellent at higher ionic strengths where the rod is closer to the
bottom wall for both the one-wall and two-wall configurations.
The agreement is worse (error bars do not account for
discrepancies) for the systematically higher elevations predicted
for the two-wall configuration at low ionic strengths. This could
occur for a variety of reasons including (1) the electrostatic
repulsion exerted by the top-wall is neglected in eq 27 and
could cause particles to sample lower elevations than predicted,
(2) the Brownian rotation perpendicular to the wall increases as

it gets further away from the bottom wall; this effect is
neglected (because it is nontrivial to include) both in terms of
its influence on rod elevation as well as rod transport in the
plane parallel to the bottom wall, and (3) the two-wall
hydrodynamic correction in eq 16 based on one-wall is
approximate (as discussed for spheres26,35,54,55), and could
introduce some uncertainty in the elevation inferred from
translational diffusion measurements.
As a final note, a rigorous consideration of the separation-

dependent diffusion should include an average over all
elevations25,30 (eq 30) rather than a single elevation (e.g.,
most probable (eqs 26, 27) or average elevation (eq 28)).
Although evaluation of D(h) at a fixed elevation appears
sufficient to generate agreement for most results in Figure 4,
the potential energy (U(h) in eq 29) could become asymmetric
versus separation and include angular dependence (e.g.,
U(h,θ,ϕ)). A significantly different rod−wall interaction
potential could cause the average over the probability (p(h)
in eq 29) to produce a value of ⟨D⟩ that is different from
evaluating D(h) at the mode or mean of p(h). Such an effect
could become more pronounced as particles move further from
the bottom wall and also interact with the top wall. In any case,
further efforts to test this idea by constructing models for a
possible U(h,θ,ϕ) are beyond the scope of the present work,
and ultimately do not appear necessary to explain the
agreement observed for the majority of the data in Figure 4.
In short, diffusivities from evaluating the position dependent
expressions at the most probable or average elevation, or by
computing an average diffusivity over all sampled elevations, are
all practically the same, with the exception of the low ionic
strength cases.

Translational Diffusion in Quasi-2D Porous Media.
Based on the agreement between experiments and models for
rod diffusion near one and two walls, an experiment was
designed to measure diffusion in quasi-2D porous media
(Figure 5). These experiments measured short-time diffusion
specifically as a probe of hydrodynamic interactions,28,31,56,57

which are the main interest of this paper, without probing the
role of pore microstructure on long-time diffusion (e.g., as
studied by others58,59). Figure 5 shows trajectories and MSPD
for translational diffusion of Au rods in very low ionic strength
solution within a randomly oriented 2D porous media
consisting of silica particles spin-coated onto a bottom coverslip
and acting as spacers between a top coverslip. Similar to the
two-wall case in Figures 2−4 (which is practically the infinitely
dilute case for the experiments in Figure 5), the gap space is
determined by the silica spacer particles to be ≈2.1 μm. Dark
field microscopy was used to obtain contrast to simultaneously

Figure 4. Rod−wall separations from measured diffusivity analysis vs
colloidal force predictions. Values of particle−wall surface-to-surface
separation from experiments, hexpt, in Figures 2 and 3 and from
theoretical models, htheory, using eqs 26 and 27. Values of hexpt were
obtained by fitting translational diffusivities near one wall (circles) to
eq 12 and between two walls (squares) to eq 15. Error bars on hexpt
were obtained from the limiting lines in Figure 3 that contain all data
points for each ionic strength. Values of htheory were obtained for
double layers that are thin relative to the rod radius (κa ≫ 1; 1−5
mM, filled points) using eq 26 and for double layers that are
comparable to the rod radius and particle separation (κa ≈ κh ≈ 1;
0.03−0.1 mM, open points) using eq 27 (based on conditions for most
accurate models for electrostatic interactions between spheres51).
Surface potentials used to compute htheory were chosen as ψp = ζp for
the rod based on ionic strength dependent measurements in Figure 3
and as ψw = −50 mV for the glass slide with error bars based on low
and high estimates of −10 and −100 mV.52

Table 1. Constants Used in Theoretical Fits

variable (units) value

d = 2a (μm) 0.3
ρp (g/cm

3) 19.3
ρf (g/cm

3) 1.00
εw 78
T (K) 294
η (Pa·s) 1.002 × 10−3

δ (μm) 2.1
NaCl (mM) ≈0.03, 0.1, 1, 5
κ−1 (nm) 55, 27, 9.3, 4.3
ψp = ζp (mV) −24, −24, −20, −15
ψw (mV) −50
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track Au particle diffusion and silica particle porous media
boundaries.
Figure 5A−C shows trajectories for diffusion in quasi-2D

porous media with area fractions of 0.085, 0.156, and 0.245.
Overlaid in different colors are trajectories for individual rods
for 50 min. Figure 5D shows short-time limit MSPDs for three
rods with comparable lengths of ≈3.4 μm in Figure 5A−C
designated by blue trajectories. For all three porous media area
fractions tested, the resulting translational diffusivity is ≈D = 2
μm2/ms, which is essentially the same as the two-wall results in
Figure 3 for p = l/d = 3.4 μm/0.3 μm ≈ 11 and deionized water
(where again, the results in Figure 3 are a quasi-2D porous
media experiment with an area fraction near zero). Figure 5E
shows short-time limit MSADs for the same three rods in
Figure 5D. The resulting rotational diffusivities are near the
two-wall results for the lowest area fraction but drop by a factor
of ∼3 for the highest area fraction investigated here. In short,
the translational diffusivities for the three porous medium area
fractions are not obviously distinguishable from each other,
whereas the rotational diffusivities show a clear decrease with
increasing area fraction.
The short-time translational diffusivity (Figure 5D) exhibits

the hydrodynamic effects of the confining walls, but is
insensitive to the local environments determined by the porous
medium area fraction. This effect could arise from simply from
averaging over rod positions far from the porous media surfaces
that contribute to the net average diffusivity similar to the case
without porous media. However, the reduced short-time
rotational diffusivity (Figure 5E) with increasing area fraction
indicates that interactions between rods and porous media
surfaces do hinder rotational motion, which is perhaps to be
expected. To explain both translational and rotational diffusivity
trends in a self-consistent manner, electrostatic repulsion
between the rod and porous media may produce alignment
of the rod’s long-axis parallel to the porous medium surface. As
a result, rotation will be hindered, but the resulting translation

is dominated by this fastest diffusion mode for these
configurations (eq 8).60 This may be an example of how
position and orientation are correlated, and how translational
and rotational diffusion can be coupled,16 as determined by
interactions with the local porous media structure. This effect
appears to produce about the same translational diffusivity in
Figure 5 as confinement between two walls without porous
media (Figure 3) (where the average motion parallel and
perpendicular to the major axes determine the net diffusivity).
The long-time diffusivity for the trajectories in Figure 5A−C

varies for the different quasi-2D porous media area fractions.
However, in this initial study, we focused on the short-time
behavior that is dominated by hydrodynamic interactions,
which are relevant to the models being explored in this work.
Practically, much more temporal and spatial sampling is
required to obtain sufficient statistics and averaging of rod
trajectories over locally heterogeneous media to obtain more
general results for long-time diffusion.61 It is also important to
note that the short-time diffusivity investigated in this work, by
necessity, always has a critical role in long-time diffusion; i.e.,
diffusion over longer times and distances necessarily requires
many diffusive steps over short times and distances. For
example, diffusion in dense suspensions57 or porous media62

includes a short-time diffusion term (accounting for local
hydrodynamic interactions) multiplied by a term associated
with long-time diffusion through surrounding microstructures
(accounting for global energy landscapes). Our findings in this
work on the role of hydrodynamic interactions in interfacial and
confined diffusion of rod shaped colloidal particles can
eventually be incorporated into more complex models for
long-time diffusion that consider additional complexities of
porous media microstructure (e.g., as studied by others58,59).

■ CONCLUSIONS
Measurements and models of interfacial and confined diffusion
show agreement for different confinement geometries, rod
aspect ratios, and electrostatic interactions. Measurements of
translational and rotational diffusion of rods with aspect ratios
of p = l/d ≈ 10−20 near one wall and confined between two
walls agree quantitatively within the limits of uncertainty with
models we developed to include position dependent hydro-
dynamic interactions. Significant reductions in translational and
rotational diffusivities are observed as rod particles experience
positions closer to boundaries. Aqueous solution ionic strength
was investigated to mediate electrostatic repulsion between
rods and surfaces. Ionic strength dependent diffusivities show
that rod−wall separations predicted by theories for electrostatic
repulsion (balanced by gravity) show good correspondence
with separations inferred by fitting measured diffusivities to
separation dependent models.
Finally, we show that short-time translational diffusion in

quasi-2D porous media produces results nearly independent of
porous media area fraction (whereas long-time diffusion is
expected to be sensitive to porous media microstructure). In
contrast, the short-time rotational diffusivity decreases with
increasing porous media area fraction presumably due to rod
interactions with porous media surfaces. The net neutral effect
of porous media on short-time translation diffusion may be
explained by hydrodynamic hindrance being compensated by
faster translational diffusion along rod particles’ long axes due
to parallel alignment along porous media surfaces. Future
studies will incorporate findings from this work on the role of
hydrodynamic interactions on interfacial and confined diffusion

Figure 5. Short-time rod diffusion in quasi-2D porous media.
Processed images from dark field microscopy experiments of Au rod
diffusion in quasi-2D porous media with area fractions of (A) 0.085,
(B) 0.156, and (C) 0.245. Colored trajectories of different Au rods
illustrate translational diffusion in the course of the 50 min observation
time. (D) MSPDs and (E) MSADs for the three blue trajectories in
(A)−(C), which all correspond to rods of L = 3.3−3.4 μm with points
indicating area factions of (circles) 0.085, (squares) 0.156, and
(triangles) 0.245.
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of rod particles into models for long-time diffusion that
consider porous media microstructure. Ultimately, findings
from this work provide a basis to interpret and predict colloidal
rod transport in numerous applications relevant to biological,
environmental, and synthetic material systems.
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