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Learning Objectives 
• Identify common interferences affecting POC 

testing 
• Describe cases where interfering substances 

affected patient care. 
• Describe solutions to mitigate the impact of 

interfering substances on POC testing.  
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POCT Device Formats 
Definition: POCT is defined as testing at or 
near the site of patient care 
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POCT Device Formats 
Examples: 
• Disposable 

 
• Handheld 

 
• Portable 

 
• Transportable 

 
• Benchtop 

 
• Monitoring 
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Examples: 
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• Monitoring 

 
Being FDA approved as a POCT device 
does not mean it is not susceptible to 
interfering substances!!! 
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Pre-Analytical Analytical Post-Analytical TREATMENT 

Errors in the Pre-Analytical Phase: Most frequent source of errors (up to 70%). Incorrect   

Patient preparation 
Sample collection 
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Accessioning 
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Pre-Analytical Analytical Post-Analytical TREATMENT 

Testing 
 

Total Testing Process: Sources of Error 
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Processing 
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Mislabeling of specimens 
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Improper specimen collection 
Interfering substances 
 

Errors in the Analytical Phase: Infrequent in laboratory tests, however may be higher in POCT due to non-lab 
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Pre-Analytical Analytical Post-Analytical TREATMENT 
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Pre-Analytical Analytical Post-Analytical TREATMENT 

Results interpretation 
Entry to LIS/EMR 
Contacting providers 
Sample archiving 
 

Total Testing Process: Sources of Error 
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Pre-Analytical Analytical Post-Analytical TREATMENT 

Results interpretation 
Entry to LIS/EMR 
Contacting providers 
Sample archiving 
 

Total Testing Process: Sources of Error 

Testing 
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Sample collection 
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Processing 
 

Incorrect patient ID 
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What is the significance of 
testing error in POCT? 
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Common Confounding Factors 
for Glucose Meters 

Anemia and polycythemia causes 
falsely high or falsely low results 
respectively.  
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Hematocrit Effects on BGMS Measurements 
 

Note: Bias = BGMS – Plasma Glucose 

 
Sample Size: 60 
Hematocrit Range: 19 - 60% 
Glucose Range: 90 - 296 mg/dL 
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Common Confounding Factors 
for Glucose Meters 

Oxidizing and reducing substances 
interfere with electrochemical sensors 
causing falsely high or low results. 



Drug Interferents (Oxidizing Substances)  

Tang Z, et al. Am J Clin Pathol 2000;113:75-86 
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The role of drug interferences in  
critical care BGMS accuracy 

 
Tran NK, et al. J Burn Care Res 

2014;35:72-79 
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Common Confounding Factors 
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Common Confounding Factors 
for Glucose Meters 

Specimen temp alters biosensor 
enzyme kinetics. Hypotension/shock 
affect capillary specimens.  
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Common Confounding Factors 
for Glucose Meters 

Some glucose meters cannot 
differentiate between certain non-
glucose sugars (e.g., maltose, 
galactose) 
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Non-Glucose Sugar Interferences 

• Icodextrin is a dialysis drug. It is metabolized by the body to maltose. In some 
glucose biosensors, maltose is indistinguishable from glucose.  
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FDA MAUDE Database website: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfmaude/ search.cfm,  
Accessed on August 20, 2014   

BGMS A BGMS B BGMS C 

Timeframe 1997-14 2013-14 2007-11 

Adverse Events 
(Deaths) 

28 (13) 5 (0) 0 (0) 

Erroneous Results 557 168 15 

Non-Clinical Event 387 59 21 

TOTAL 1094 232 36 

Maltose Related Deaths 
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 Similar sensor designs so susceptible 
to similar interferences (will vary 
based on manufacturer). 

 CGM based on interstitial fluid 
measurements and not plasma or 
whole blood. 

 Potential for many other sources of 
interferences. 

 CGM does not fall under CLIA and 
most devices compared against 
obsolete or poor reference methods 
such as the YSI.  

 Use WITH caution!  

Continuous Glucose Monitors? 
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Air Contamination of Blood Specimens 

Blood Gas Laboratory identified 
“air bubbles” in syringe 

Background: Anesthesia reports “impossible venous blood gas values” in one patient where 
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Air Contamination of Blood Specimens 

Background: Anesthesia reports “impossible venous blood gas values” in one patient where 
end tidal CO2 was greater than the venous blood gas (VBG).  
 
• POC Venous Blood Gas: pH = 7.54, pCO2 = 17.5, pO2 = 168.5 

 
• POC VBG#2: pH = 7.56, pCO2 = 12.7, pO2 = 165.9 

 
• End tidal CO2 = 28 

 
• Lab Venous Blood Gas: pH 7.54, pCO2 = 19.2, pO2 = 161.5 

 
• Air bubbles can quickly (<5 mins) cause the specimen to  

equilibrate atmospheric air (1 atm = 760 mmHg = 0.21 x 760 =  
150 mmHg for pO2!!!)  
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INTERFERENCES IN BLOOD GAS ANALYSIS 

Air Contamination 

Delayed Testing 

Hemolysis 

Hemodilution/Hemoconcentration 
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Pre-Analytical 
• Transportation delays Analysis should be performed within 20 to 

30 minutes—Faster is better! 

  
   Specimen Processing Delays and Lactate 
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Pre-Analytical 
• Transportation delays 

Seymour CW, et al. BMC 
Research Notes 2011;4:169 

  
   Specimen Processing Delays and Lactate 
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Pre-Analytical 
• Transportation delays 
• Inadequate inhibition of 

glycolysis 

If delays are expected, using a grey top 
tube may be appropriate, however it may 
take up to 15 minutes to achieve 
inhibition! 

  
   Specimen Processing Delays and Lactate 
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Pre-Analytical 
• Transportation delays 
• Inadequate inhibition of 

glycolysis 

Astles R, et al. Clin Chem 
1994;404:1327 
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Pre-Analytical 
• Transportation delays 
• Inadequate inhibition of 

glycolysis 
• Specimens not placed on ice 

False elevations of lactate could be 
mitigated by placing samples on ice. Iced 
samples exhibit similar results to those 
tested immediately at up to 6 hours.  

  
   Specimen Processing Delays and Lactate 
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• Spectrophotometric (Non-Cyanohemoglobin) 

Contemporary Hemoglobinometric Techniques 

• Measurement of hemoglobin is based on 
the absorption spectra 

  
• Oxy- and deoxyhemoglobin exhibit 

different absorption in the red to IR 
wavelengths. 
 

• Measurement based on Beer’s Law  
(A = elc).  
 

• Some methods require lysis and reacting 
with non-cyanide-based reagents.   
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Conductance (Impendance) 
 
 
 
 

 
 

 

Contemporary Hemoglobinometric Techniques 

Electrode 

VS.  

• Red blood cell membranes are not conductive.  
 

High Resistance Low Resistance 
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Conductance (Impendance) 
 
 
 
 

 
 

 

Contemporary Hemoglobinometric Techniques 

Electrode 

VS.  

• Red blood cell membranes are not conductive.  
 

• The number of red blood cells is proportional to the change in conductance and conforms to 
Ohm’s Law (V = IR) 
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Conductance (Impendance) 
 
 
 
 

 
 

 

Contemporary Hemoglobinometric Techniques 

Electrode 

VS.  

• Red blood cell membranes are not conductive.  
 

• The number of red blood cells is proportional to the change in conductance and conforms to 
Ohm’s Law (V = IR) 
 

• Conductance-based methods measure hematocrit. The hematocrit can then be used to calculate 
hemoglobin based on a conversion factor (estimated hemoglobin = hematocrit / 3.4)* 
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Contemporary Hemoglobinometric Techniques 

Electrode 

VS.  
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evaluation. Isolation protocols were in effect.  
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Case Study 2: Hemoconcentration 

Background: Patient with suspected Ebola Virus symptoms admitted for 
evaluation. Isolation protocols were in effect. A handheld blood gas chemistry 
analyzer served as the primary chemistry analyzer. 
 
0853 hrs – Specimens collected for chemistry and CBC testing.  

Hct = 43% 
Hb = 13.8 g/dL  

Handheld Results 
Hct = 68% 
Hb = 21.9 g/dL 
 
RE-MIXING! 

CBC Results 
Hct = 41% 
Hb = 13.2 g/dL 
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Case Study 2: Hemoconcentration 

Background: Patient with suspected Ebola Virus symptoms admitted for 
evaluation. Isolation protocols were in effect. A handheld blood gas chemistry 
analyzer served as the primary chemistry analyzer. 
 
0853 hrs – Specimens collected for chemistry and CBC testing.  

Hct = 43% 
Hb = 13.8 g/dL  

Inadequate mixing may result in 
artificial changes in total 
hemoglobin measurements.  

Handheld Results 
Hct = 68% 
Hb = 21.9 g/dL 
 
RE-MIXING! 

CBC Results 
Hct = 41% 
Hb = 13.2 g/dL 
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Electrode 

Conductance (Impendence) 
 

Contemporary Hemoglobinometric Techniques 

• Plasma protein content contributes to hematocrit measurements for conductance-based systems.  
 

 

= Plasma Protein 

High Resistance 
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Electrode 

Conductance (Impendence) 
 
 
 
 

 
 

 

Contemporary Hemoglobinometric Techniques 

= Plasma Protein 

• Plasma protein content contributes to hematocrit measurements for conductance-based systems.  
 

• Conductance-based systems assumes a relatively fixed protein concentration. Therefore, during 
hemodilution, hematocrit may be falsely lower and causing an underestimation of total 
hemoglobin. 
 

 
 

 

Low Resistance from low plasma protein concentration! 
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Contemporary Hemoglobinometric Techniques 

= Plasma Protein 

• Plasma protein content contributes to hematocrit measurements for conductance-based systems.  
 

• Conductance-based systems assumes a relatively fixed protein concentration. Therefore, during 
hemodilution, hematocrit may be falsely lower and causing an underestimation of total 
hemoglobin. 
 

• UCDMC Study: Comparison of a handheld blood gas analyzer using conductance-based 
measurement of hemoglobin versus a benchtop blood gas analyzer using a spectrophotometric-
based method for hemoglobinometry. 
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• Sixty patients requiring cardiac surgery 
were evaluated.  
 

• Paired specimens were tested using a 
handheld POC analyzer and 
spectrophotometric methods through the 
core laboratory. 
 

• Mean (SD) bias was -1.4 (1.1) g/dL,  
P = 0.011. 
 

• Based on core laboratory results 12 
patients would have received unnecessary 
transfusions.  

Clinical Impact of Hemodilution for Point-of-
Care Hemoglobin Measurements 
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• Sixty patients requiring cardiac surgery 
were evaluated.  
 

• Paired specimens were tested using a 
handheld POC analyzer and 
spectrophotometric methods through the 
core laboratory. 
 

• Mean (SD) bias was -1.4 (1.1) g/dL,  
P = 0.011. 
 

• Based on core laboratory results 12 
patients would have received unnecessary 
transfusions.  

Clinical Impact of Hemodilution for Point-of-
Care Hemoglobin Measurements 

= $219 

$219 x 12 = $2,628 
POTENTIALLY WASTED 

Toner RW, et al. Appl Health Econ Health Policy 2011;9:29-37 
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Case Study 3: Hemodilution 
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Case Study 3: Hemodilution 

Background: FDA MAUDE database reports a case (03P76-25) of a neonatal 
patient with discrepant point-of-care (POC) hemoglobin values compared to the 
laboratory. The POC device used a conductance-based method of hemoglobin 
measurement, while the laboratory used a spectrophotometric method.  
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blood based on the POC result. 
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Case Study 3: Hemodilution 

Background: FDA MAUDE database reports a case (03P76-25) of a neonatal 
patient with discrepant point-of-care (POC) hemoglobin values compared to the 
laboratory. The POC device used a conductance-based method of hemoglobin 
measurement, while the laboratory used a spectrophotometric method.  
 
• POC device reported a hematocrit of 22%. Physician administered 7 mL of 

blood based on the POC result. 
 

• Transfusion was stopped halfway after the laboratory reported a hematocrit of 
40% and hemoglobin of 11.7 g/dL.  
 

• Post-transfusion POC and lab hematocrit values were 45 and 50% 
respectively.  
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Analytical Performance of Optical vs. 
Conductance-Based Hemoglobinometry 
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Analytical Performance of Optical vs. 
Conductance-Based Hemoglobinometry 
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Analytical Performance of Optical vs. 
Conductance-Based Hemoglobinometry 
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Analytical Performance of Optical vs. 
Conductance-Based Hemoglobinometry 

Notes: Reference Method = Beckman LH hematology analyzer 
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Analytical Performance of Optical vs. 
Conductance-Based Hemoglobinometry 

Notes: Reference Method = Beckman LH hematology analyzer 

Median (IQR) Bias: 0.78 (0.78) g/dL  
P < 0.001 
N = 50 
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Analytical Performance of Optical vs. 
Conductance-Based Hemoglobinometry 

Notes: Reference Method = Beckman LH hematology analyzer 

Median (IQR) Bias: 0.73 (0.60) g/dL  
P < 0.001 
N = 50 
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Analytical Performance of Optical vs. 
Conductance-Based Hemoglobinometry 

Notes: Reference Method = Beckman LH hematology analyzer 

Median (IQR) Bias: 0.22 (0.20) g/dL  
P = 0.510 
N = 50 
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Analytical Performance of Optical vs. 
Conductance-Based Hemoglobinometry 

Notes: *** P<0.001, Central Lab = Spectrophotometric Method, n = 20 patients 
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Serial Testing Performance at 7 and 8 g/dL 
• Serial testing revealed significant analytical 

bias between spectrophotometry vs. 
conductance-based measurements.  
 

*** Spectrophotometric-based Methods 
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Analytical Performance of Optical vs. 
Conductance-Based Hemoglobinometry 

Notes: *** P<0.001, Central Lab = Spectrophotometric Method, n = 20 patients 
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• Serial testing revealed significant analytical 

bias between spectrophotometry vs. 
conductance-based measurements.  
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Conductance-based Methods 
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Analytical Performance of Optical vs. 
Conductance-Based Hemoglobinometry 
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Time Point 

Serial Testing Performance at 7 and 8 g/dL 
• Serial testing revealed significant analytical 

bias between spectrophotometry vs. 
conductance-based measurements.  
 

• Conductance-based devices would have 
prompted unnecessary transfusions at time 
point #5 for patients using the 7 g/dL cutoff.  
 
 
 
 
 

Unnecessary Transfusion Risk 

*** 

Notes: *** P<0.001, Central Lab = Spectrophotometric Method, n = 20 patients 
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Analytical Performance of Optical vs. 
Conductance-Based Hemoglobinometry 
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Time Point 

Serial Testing Performance at 7 and 8 g/dL 
• Serial testing revealed significant analytical 

bias between spectrophotometry vs. 
conductance-based measurements.  
 

• Conductance-based devices would have 
prompted unnecessary transfusions at time 
point #5 for patients using the 7 g/dL cutoff. 
 

• All serial conductance measurements were 
at risk for potential transfusions if the 8 
g/dL cutoff was used.  
 

Unnecessary Transfusion Risk 

*** 

Notes: *** P<0.001, Central Lab = Spectrophotometric Method, n = 20 patients 
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Analytical Performance of Optical vs. 
Conductance-Based Hemoglobinometry 
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Time Point 

Serial Testing Performance at 7 and 8 g/dL 
• Serial testing revealed significant analytical 

bias between spectrophotometry vs. 
conductance-based measurements.  
 

• Conductance-based devices would have 
prompted unnecessary transfusions at time 
point #5 for patients using the 7 g/dL cutoff. 
 

• All serial conductance measurements were 
at risk for potential transfusions if the 8 
g/dL cutoff was used.  
 

Unnecessary Transfusion Risk 

*** 

Notes: *** P<0.001, Central Lab = Spectrophotometric Method, n = 20 patients 
 



94  

Manufacturer and User Facility Device 
Experience (MAUDE) Database Summary 

Device 1 Device 2 Device 3 
Timeframe 2011-2016 2011-2016 2014-2016* 
Erroneous Results 8 0 0 
Improper 
Transfusions 

5 0 0 

https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfmaude/results.cfm, Accessed on July 19, 2016 

https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfmaude/results.cfm


95  

 

 

 

 

 

 
INTERFERENCES IN WHOLE BLOOD ANALYSIS 

Air Contamination 

Delayed Testing 

Hemolysis 

Hemodilution/Hemoconcentration 



96  

 

 

 

 

 

 
INTERFERENCES IN WHOLE BLOOD ANALYSIS 

Air Contamination 

Delayed Testing 

Hemolysis 

Hemodilution/Hemoconcentration 
Pseudohyperkalemia 



97  

 

 

 

 

 

 
INTERFERENCES IN WHOLE BLOOD ANALYSIS 

Air Contamination 

Delayed Testing 

Hemolysis 

Hemodilution/Hemoconcentration 
Pseudohyperkalemia 
“Pseudonormokalemia” 



98  

 

 

 

 

 

 
INTERFERENCES IN WHOLE BLOOD ANALYSIS 

Air Contamination 

Delayed Testing 

Hemolysis 

Hemodilution/Hemoconcentration 
Pseudohyperkalemia 
“Pseudonormokalemia” 

No current FDA approved integrated 
solutions for detecting hemolysis at 
the point-of-care 
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Biotin: The “Snake Oil” of 2018? 
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 Biotin and Cardiac Troponin Testing 



102  

Mumma B, et al. AACC Poster Presentation 2018 

• 1,443 Gen 5 troponin T samples tested (0-hour,  
n = 797; 3-hour, n=646) from 850 patients.  
 
 

 
 
 
 
 

Estimating the Probability of Biotin Interference 
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• 1,443 Gen 5 troponin T samples tested (0-hour,  
n = 797; 3-hour, n=646) from 850 patients.  
 

• Biotin not detectable in 471 (59%) and 399 (62%) 3-
hour samples.  
 

• Only one 0-hour sample and one 3-hour sample 
had biotin >20 ng/mL (0.13% [95% CI: 0-0.7%]).  
 

 
 
 
 
 

Mumma B, et al. AACC Poster Presentation 2018 

Estimating the Probability of Biotin Interference 



105  

Mumma B, et al. AACC Poster Presentation 2018 

Estimating the Probability of Biotin Interference 
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Estimating the Probability of Biotin Interference 
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Adult ED Patients with  
Unknown Biotin Status:          540 
Average Plasma Biotin: 1.15 (0.97) ng/mL 

Specimens collected as part of clinical validation 

UC Davis Cardiac Troponin Patients 
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Adult ED Patients with  
Unknown Biotin Status:          540 
Average Plasma Biotin: 1.15 (0.97) ng/mL 
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Gen 5 TnT Biotin Interference 
Threshold is 20 ng/mL  

Biotin quantified by GC-TOF-MS 

BIOTIN IS LESS LIKELY TO BE A PROBLEM IN 
CARDIAC TROPONIN TESTING AND IS 
POPULATION SPECIFIC! 

UC Davis Cardiac Troponin Patients 
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Biotin and Urine Pregnancy Testing 
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Biotin Interference with Urine Pregnancy Tests 

• Recent studies show some point-of-
care urine pregnancy tests were 
affected by biotin. 
 

• Biotin is cleared by the kidneys. 
 

• In this study, the QuickVue urine 
pregnancy test exhibited 
interference as low as 6 
microgram/mL of urine biotin! 
 
 
 
 
 

Williams G, et al. Clin Biochem 2018;53:168-170 
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Best POCT Practices for Mitigating  
Interfering Substances  
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• Education: The laboratory must be the leader in educating providers and patients of potential 
test interferences. Go to grand rounds, build partnerships, and provide multi-modality means to 
disseminate knowledge.  

POCT Best Practices for Interferences 



114  

• Education: The laboratory must be the leader in educating providers and patients of potential 
test interferences. Go to grand rounds, build partnerships, and provide multi-modality means to 
disseminate knowledge.  

POCT Best Practices for Interferences 



115  

• Education: The laboratory must be the leader in educating providers and patients of potential 
test interferences. Go to grand rounds, build partnerships, and provide multi-modality means to 
disseminate knowledge.  
 

• Surveillance: Know your population! Collect data and determine if your local population may be 
be at risk for certain interferences (e.g., biotin, vitamin C, etc). MAUDE database is also helpful! 
 
 
 
 
 

POCT Best Practices for Interferences 



116  

• Education: The laboratory must be the leader in educating providers of potential test 
interferences. Go to grand rounds, build partnerships, and provide multi-modality means to 
disseminate knowledge.  
 

• Surveillance: Know your population! Collect data and determine if your local population may be 
be at risk for certain interferences (e.g., biotin, vitamin C, etc). MAUDE database is also helpful! 
 

• Electronic Early-Warning Systems: Leverage electronic solutions. Ordering of susceptible 
tests could flag both on the provider and laboratory side certain substances are identified. 
 
 
 
 
 

POCT Best Practices for Interferences 
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Conclusions 
• Interfering substances are out there and 

impact POC testing as much as traditional lab 
testing! 

• Interferences in common POC devices such 
as glucose meters have resulted in injury and 
death. 

• Interferences in whole blood analysis have 
resulted in inappropriate treatment decisions. 

• Medications and supplements may also affect 
POC immunoassays such as urine pregnancy 
tests. 

• Education and awareness is critical to 
minimizing errors associated with interfering 
substances. 
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Questions? 
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