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1

This text, Intermediate Logic: Mastering Propositional Arguments, is designed as a con-
tinuation to Introductory Logic: The Fundamentals of Thinking Well. Together, these 

two textbooks should provide sufficient material for a complete course in basic logic. 
We have attempted to make this a useable workbook for the logic student. To that end 

we have included exercises for every lesson, each of which has been developed and used over 
many years of logic classes. The goal is to keep the text clear and complete, such that an 
adult could teach himself the fundamentals of logic.

A number of other logic texts were consulted throughout the writing of Intermediate Logic. 
Most helpful was Irving Copi’s invaluable Introduction To Logic (Macmillan Publishing Co., 
1978). While we did not lift material directly from it, of course, that book has so shaped our 
own understanding of this subject that Intermediate Logic undoubtedly echoes much of its 
format and contents. Intermediate Logic has also benefitted from The Art of Reasoning by David 
Kelley (W. W. Norton & Company, Inc., 1990) and The Logic Book by Bergmann, Moor, and 
Nelson (McGraw-Hill, Inc., 1990). 

Although we cannot list them here, we are indebted to many people for the completion 
of this project. We give special credit to the students throughout the years who have been 
introduced to the beauty and practicality of the world of logic found in the pages of these 
textbooks. Good students always force teachers to re-evaluate their own understanding of 
a subject, and such students have contributed more to this book than we or they realize. 

PREFACE to the F IRST EDIT ION



2

The subject of logic may be divided into two main branches: formal and informal. The 
definition of logic as “the science and the art of correct reasoning” allows us to distinguish 

these two branches. Formal logic deals directly with reasoning. Reasoning means “drawing 
conclusions from other information.” Whenever we consider how to analyze and write logical 
arguments—in which conclusions are drawn from premises—we are working in the realm of 
formal logic. Informal logic, on the other hand, deals more indirectly with reasoning. When 
we argue, we often find ourselves defining terms, determining the truth values of statements, 
and detecting spurious informal fallacies. While in none of these activities do we concentrate 
on reasoning in a formal way, we do recognize that such activities are indirectly related to and 
support the process of reasoning, and are thus best included under informal logic.

With this in mind, several changes were made in 2006 to this second edition of Intermediate 
Logic. If it’s of interest, those changes are listed below.

First, in order to present to the student a more logical progression of topics, the section on 
defining terms from the first edition has been entirely removed from this text and placed at 
the beginning of Introductory Logic, where it is taught along with other branches of informal 
logic and categorical logic. Consequently, this text now focuses solely on the branch of formal 
logic called propositional logic, of which formal proofs of validity and truth trees are subsets.

Second, review questions and review exercises have been added to each unit for every 
lesson in the text, effectively doubling the number of exercises for students to verify their 
knowledge and develop their understanding of the material. Additionally, some especially 
challenging problems which relate to the material have been included in the review exer-
cises. Students who can correctly answer all of the review questions demonstrate a sufficient 
knowledge of the important concepts. Students who can correctly solve the review exercises 
demonstrate a sufficient understanding of how to apply those concepts. 

Third, the definitions of important terms, key points made, and caution signs regarding 
common errors are now set apart in the margins of the text. This should help students to 
distinguish the most important topics, as well as aid in their review of the material. 

Fourth, every lesson has been reviewed in detail with the goal of improving the clarity of 
the explanations and correcting several minor errors that were found in the first edition. To 
all logic students and teachers goes the credit for any improvements that have been made in 
this second edition; for those remaining errors and defects we take full responsibility.

PREFACE to the SECOND EDIT ION
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Formal logic is a fascinating subject. Students are often intrigued by the concepts and 
methods of reasoning revealed in it. Truth tables, formal proofs, and other operations of 

propositional logic challenge their ability to think abstractly, and provide opportunities to 
practice and develop their puzzle solving skills. Pure logic is fun. But for students to learn 
how to reason properly, and through the process of reasoning to recognize and discover 
truth, they must learn how to apply these methods of formal logic to the world around them. 

Many teachers and parents want logic to be practical. They want their logic students to 
be able to employ symbolic logic as a tool of thinking, a tool both powerful and flexible 
enough to use in many different ways and on many different media.

With these things in mind, in 2014 we added two important sections on the practical 
applications of propositional logic to the third edition.

First, a new lesson teaches students how to apply the tools that they have learned to actual 
arguments. Lesson 28 teaches students how to analyze chains of reasoning found in writings 
such as philosophy and theology. Though some new concepts are introduced, most of this 
lesson is aimed at teaching students to employ what they have learned in the previous 27 
lessons. This one lesson therefore has three corresponding exercises, giving students the op-
portunity to work through small portions of three ancient texts: Boethius’s The Consolation 
of Philosophy, the Apostle Paul’s argument on the resurrection from 1 Corinthians 15, and a 
section on angelic will from Augustine’s City of God. The additional exercises for this lesson 
also consider Deuteronomy 22, a portion from Martin Luther’s sermon on John chapter 
1, and a witty interchange that you may have seen in the 2008 action comedy Get Smart.

Second, a longer optional unit has been added on the useful and stimulating topic of 
digital logic. Unit 5 includes twelve new lessons that unlock the logic of electronic devices. 
These lessons work through the concepts of digital displays, binary numbers, and the design 
and simplification of digital logic circuits. Many of the lessons learned earlier in the text are 
given new and intriguing applications, as students learn how to employ propositional logic to 
understand the electronic gadgets that they see and use every day. The final exercise gives stu-
dents the opportunity to design a complex circuit that can convert a binary input to a decimal 
display output. This unit has become a favorite of many logic students over the past decades.

It is our hope that these additions give students a vision of the power of propositional 
logic and fulfill teachers’ and parents’ desires to make propositional logic more practical.

 

PREFACE to the TH IRD EDIT ION





5

Logic has been defined both as the science and the art of correct reasoning. People who 
study different sciences observe a variety of things: biologists observe living organisms, 

astronomers observe the heavens, and so on. From their observations they seek to discover 
natural laws by which God governs His creation. The person who studies logic as a science 
observes the mind as it reasons—as it draws conclusions from premises—and from those 
observations discovers laws of reasoning which God has placed in the minds of people. 
Specifically, he seeks to discover the principles or laws which may be used to distinguish 
good reasoning from poor reasoning. In deductive logic, good reasoning is valid reason-
ing—in which the conclusions follow necessarily from the premises. Logic as a science 
discovers the principles of valid and invalid reasoning.

Logic as an art provides the student of this art with practical skills to construct arguments 
correctly as he writes, discusses, debates, and communicates. As an art logic also provides him 
with rules to judge what is spoken or written, in order to determine the validity of what he hears 
and reads. Logic as a science discovers rules. Logic as an art teaches us to apply those rules. 

Logic may also be considered as a symbolic language which represents the reasoning 
inherent in other languages. It does so by breaking the language of arguments down into 
symbolic form, simplifying them such that the arrangement of the language, and thus the 
reasoning within it, becomes apparent. The outside, extraneous parts of arguments are re-
moved like a biology student in the dissection lab removes the skin, muscles and organs of 
a frog, revealing the skeleton of bare reasoning inside. Thus revealed, the logical structure 
of an argument can be examined, judged and, if need be, corrected, using the rules of logic. 

So logic is a symbolic language into which arguments in other languages may be trans-
lated. Now arguments are made up of propositions, which in turn are made up of terms. 
In categorical logic, symbols (usually capital letters) are used to represent terms. Thus “All 
men are sinners” is translated “All M are S.”  In propositional logic, the branch of logic with 
which this book primarily deals, letters are used to represent entire propositions. Other sym-
bols are used to represent the logical operators which modify or relate those propositions. So 
the argument, “If I don’t eat, then I will be hungry; I am not hungry, so I must have eaten” 
may appear as ~E ⊃ H, ~H, ∴E.

Unit 1 of this book covers the translation and analysis of such propositional arguments, 
with the primary concern of determining the validity of those arguments. Unit 2 introduces 
a new kind of logical exercise: the writing of formal proofs of validity and related topics. 
Unit 3 completes propositional logic with a new technique for analyzing arguments: truth 
trees. Unit 4 considers how to apply these tools and techniques to arguments contained in 
real-life writings: philosophy, theology, and the Bible itself. Unit 5 introduces digital logic 
and helps students to unlock the logic of electronic devices.

INTRODUCTION
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INTRODUCTION TO
PROPOSITIONAL LOGIC

LESSON 1

DEFINITIONS

Propositional logic is a 
branch of formal, deductive 
logic in which the basic 
unit of thought is the 
proposition. A proposition 
is a statement.

Propositional logic is a branch of formal, deductive logic in which 
the basic unit of thought is the propositon. A proposition is a 

statement, a sentence which has a truth value. A single proposition 
can be expressed by many different sentences. The following sen-
tences all represent the same proposition:

God loves the world.
The world is loved by God.
Deus mundum amat.

These sentences represent the same proposition because they all have 
the same meaning. 

In propositional logic, letters are used as symbols to represent 
propositions. Other symbols are used to represent words which 
modify or combine propositions. Because so many symbols are used, 
propositional logic has also been called “symbolic logic.” Symbolic 
logic deals with truth-functional propositions. A proposition is 
truth-functional when the truth value of the proposition depends 
upon the truth value of its component parts. If it has only one com-
ponent part, it is a simple proposition. A categorical statement is 
a simple proposition. The proposition God loves the world is simple. 
If a proposition has more than one component part (or is modified 
in some other way), it is a compound proposition. Words which 
combine or modify simple propositions in order to form compound 
propositions (words such as and and or) are called logical operators. 

For example, the proposition God loves the world and God sent 
His Son is a truth-functional, compound proposition. The word and 
is the logical operator. It is truth functional because its truth value 
depends upon the truth value of the two simple propositions which 
make it up. It is in fact a true proposition, since it is true that God 

KEY POINT

One proposition may 
be expressed by many 
different sentences.

DEFINITIONS

A proposition is truth-
functional when its 
truth value depends upon 
the truth values of its 
component parts.

If a proposition has only 
one component part, it 
is a simple proposition. 
Otherwise, it is compound.
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loves the world, and it is true that God sent His Son. Similarly, 
the proposition It is false that God loves the world is compound, the 
phrase it is false that being the logical operator. This proposition is 
also truth-functional, depending upon the truth value of the com-
ponent God loves the world for its total truth value. If God loves the 
world is false, then the proposition It is false that God loves the world 
is true, and vice versa.

However, the proposition Joe believes that God loves the world, 
though compound (being modified by the phrase Joe believes that), 
is not truth-functional, because its truth value does not depend upon 
the truth value of the component part God loves the world. The 
proposition Joe believes that God loves the world is a self-report and 
can thus be considered true, regardless of whether or not God loves 
the world is true.

When a given proposition is analyzed as part of a compound 
proposition or argument, it is usually abbreviated by a capital letter, 
called a propositional constant. Propositional constants commonly 
have some connection with the propositions they symbolize, such as 
being the first letter of the first word, or some other distinctive word 
within the proposition. For example, the proposition The mouse ran 
up the clock could be abbreviated by the propositional constant M. 
On the other hand, The mouse did not run up the clock may be ab-
breviated ~M (read as not M). Within one compound proposition 
or argument, the same propositional constant should be used to 
represent a given proposition. Note that a simple proposition cannot 
be represented by more than one constant. 

When the form of a compound proposition or argument is being 
emphasized, we use propositional variables. It is customary to use 
lowercase letters as propositional variables, starting with the letter p 
and continuing through the alphabet (q, r, s, . . .). Whereas a propo-
sitional constant represents a single, given proposition, a proposi-
tional variable represents an unlimited number of propositions.

It is important to realize that a single constant or variable can 
represent not only a simple proposition but also a compound propo-
sition. The variable p could represent God loves the world or it could 
represent God loves the world but He hates sin. The entire compound 

A propositional constant 
or variable can represent 
a simple proposition or a 
compound proposition.

Logical operators are 
words that combine or 
modify simple propositions 
to make compound 
propositions.

A propositional constant 
is an uppercase letter that 
represents a single, given 
proposition.

A propositional variable 
is a lowercase letter that 
represents any proposition.

KEY POINT

DEFINITIONS
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proposition It is false that if the mouse ran up the clock, then, if the 
clock did not strike one, then the mouse would not run down could 
be abbreviated by a single constant F, or it could be represented 
by symbolizing each part, such as ~(M ⊃ (~S ⊃ ~D)). The decision 
concerning how to abbreviate a compound proposition depends on 
the purpose for abbreviating it. We will learn how to abbreviate 
compound propositions in the next few lessons.

A proposition is a statement. Propositions are truth-functional when 
the truth value of the proposition depends upon the truth value of its 
component parts. Propositions are either simple or compound. They 
are compound if they are modified or combined with other proposi-
tions by means of logical operators. Propositional constants are capi-
tal letters which represent a single given proposition. Propositional 
variables are lower case letters which represent an unlimited number 
of propositions.

SUMMARY
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E X ERCISE 1  (25 points)

What are two main differences between propositional constants and propositional variables?
1.  ______________________________________________________________
2.  ______________________________________________________________

Modify or add to the simple proposition We have seen God to create the following:
3. A truth-functional compound proposition: 

 ______________________________________________________________
4. A proposition which is not truth-functional: 

 ______________________________________________________________

Circle S if the given proposition is simple. Circle C if it is compound.
5. The Lord will cause your enemies to be defeated before your eyes. S    C

6. There is a way that seems right to a man but in the end it leads to death. S    C

7. The fear of the Lord is the beginning of wisdom. S    C

8. If we confess our sins then He is faithful to forgive us our sins. S    C

9. It is false that a good tree bears bad fruit and that a bad tree bears good fruit. S    C

10. The Kingdom of God is not a matter of talk but of power. S    C

Given that B means The boys are bad M means The man is mad
 G means The girls are glad S means The students are sad
Translate the following compound propositions:
11. It is false that B. _________________________________________________
12. B or G. ________________________________________________________
13. B and M. _______________________________________________________
14. If M then S. ____________________________________________________
15. If not M and not S then G. _________________________________________

 ______________________________________________________________
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DEFINITIONS

Negation (~, not) is the 
logical operator that denies 
or contradicts a proposition.

A truth table is a listing 
of the possible truth values 
for a set of one or more 
propositions. A defining 
truth table displays the 
truth values produced by a 
logical operator modifying 
a minimum number of 
variables.

NEGATION, CONJUNCTION, 
AND DISJUNCTION

LESSON 2

We will begin our study of abbreviating and analyzing com-
pound propositions by learning about three fundamental 

logical operators: negation, conjunction, and disjunction. As we do, 
we will be answering three questions for each logical operator: What 
words in English are abbreviated by it? What is its symbol? How is 
the truth value of the compound proposition affected by the truth 
values of the component parts?

Negation
Negation is the logical operator representing the words not, it is false 
that, or any other phrase which denies or contradicts the proposition. As 
we have already seen, the symbol ~ (called a tilde) represents negation. 
If the proposition All roads lead to Rome is represented by the proposi-
tional constant R, then ~R means Not all roads lead to Rome or It is false 
that all roads lead to Rome. Note that the negation of a proposition is 
the contradiction of that proposition. Thus ~R could also be translated 
Some roads do not lead to Rome. If a proposition is true, its negation is 
false. If a proposition is false, its negation is true. This can be expressed 
by the following truth table, where T means true and F means false:

 p  ~p 
 T  F
 F  T

Truth tables show how the truth value of a compound proposition 
is affected by the truth value of its component parts. The table above 
is called the defining truth table for negation because it completely 
defines its operations on a minimum number of variables (in this 
case, one). The defining truth table for an operator that joins two 
propositions would require two variables.

Three fundamental logical 
operators are negation, 
conjunction, and 
disjunction.

KEY POINT
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Conjunction
When two propositions are joined by and, but, still, or other similar 
words, a conjunction is formed. The conjunction logical operator 
is symbolized by • (called, of course, a dot). If Main Street leads to 
home is represented by the constant H, then All roads lead to Rome, 
but Main Street leads to home could be represented by R • H (read as 
R dot H, or R and H).

The conjunction is true if and only if its components (called con-
juncts) are both true. If either conjunct is false, the conjunction as a 
whole is false. The defining truth table for conjunction is therefore:

 p q  p • q 
 T T  T
 T F  F
 F T  F
 F F  F

Thus if All roads lead to Rome is false and Main Street leads to home 
is true, then the entire conjunction All roads lead to Rome but Main 
Street leads to home is false, as seen on the third row down.

In ordinary English, the conjunction is not always placed between 
two distinct sentences. For example, Paul and Apollos were apostles 
could be symbolized P • A, where P means Paul was an apostle and A 
means Apollos was an apostle. Similarly, the proposition Jesus is both 
God and man could be represented by G • M.

Disjunction
A disjunction is formed when two propositions are joined by the 
logical operator or, as in Paul was an apostle or Apollos was an apostle. 
The symbol for disjunction is ∨ (called a vee). The foregoing disjunc-
tion would thus be symbolized P ∨ A (read simply P or A).

In English, the word or is ambiguous. In one sense it can mean 
“this or that, but not both” (called the exclusive or). For example, in 
the sentence The senator is a believer or an unbeliever, the word or must 
be taken in the exclusive sense; nobody could be both a believer and 
an unbeliever at the same time in the same way. However, the word 
or can also mean “this or that, or both” (called the inclusive or). This 
is how it should be taken in the sentence Discounts are given either 

DEFINITIONS

Conjunction (•, and) is 
a logical operator that 
joins two propositions 
and is true if and only 
if both the propositions 
(conjuncts) are true.

DEFINITIONS

Disjunction (∨, or) is a 
logical operator that joins 
two propositions and is 
true if and only if one or 
both of the propositions 
(disjuncts) is true.
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to senior citizens or war veterans. If you were a senior citizen or a war 
veteran or both, you would be allowed a discount.

In Latin, the ambiguity is taken care of by two separate words: 
aut, meaning the “exclusive or,” and vel, meaning the “inclusive or.” 
Although it may seem like the exclusive sense of the word or is the 
more natural sense, in logic the disjunction is always taken in the 
inclusive sense. This is seen in the fact that the symbol ∨ is derived 
from the Latin vel. 

The defining truth table for disjunction is therefore:

 p q p ∨ q    
 T T T
 T F T
 F T T
 F F F

A disjunction is thus considered to be false if and only if both 
components (called disjuncts) are false. If either disjunct is true, the 
disjunction as a whole is true.

If the context of an argument requires that the word or be repre-
sented in the exclusive sense, as in The senator is either a Republican 
or a Democrat, it may be translated with the more complicated 
(R ∨ D) • ~(R • D)—that is, “The senator is either a Republican or a 
Democrat, but not both a Republican and a Democrat.” However, 
you should assume that or is meant in the more simple inclusive 
sense unless instructed otherwise.

As you can see, logic may use parentheses in symbolizing com-
plicated compound propositions. This is done to avoid ambiguity. 
The compound proposition A ∨ B • C could mean A or B, and C or 
it could mean A, or B and C. Parentheses remove the ambiguity, as 
in (A ∨ B) • C, which represents A or B, and C. This is similar to how 
parentheses are used in mathematics. Assuming there are no rules 
about which operation should be performed first, the mathemati-
cal expression 5 + 6 × 4 could equal either 44 or 29, depending on 
whether one adds first or multiplies first. But parentheses would 
make it clear, as in (5 + 6) × 4. Logic uses parentheses in the same 
way. Generally, in a series of three or more connected propositions, 
parentheses should be used. 

Though in English 
grammar the word or 
is called a conjunction, 
in logic only and (and 
equivalent words) is a 
conjunction. Or is always 
called a disjunction.

CAUTION

The logical operator for 
disjunction is always 
understood in the inclusive 
sense:  “this or that, or 
both.” If you intend the 
exclusive or, you must 
specify it explicitly.

KEY POINT

Generally, in a series of 
three or more connected 
propositions, parentheses 
should be used to avoid 
ambiguity.

KEY POINT
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The word both is often an indicator of how parentheses are to be 
placed when using conjunctions. The symbolized exclusive or in the 
paragraph above could be read R or D, but not both R and D, the 
word both telling us to place parentheses around R • D. 

A proper use of parentheses can also help us to distinguish be-
tween not both and both not propositions. For example, the proposi-
tion Cats and snakes are not both mammals (which is true) would be 
symbolized as ~(C • S). The not comes before the both, so the tilde 
is placed before the parenthesis. However, Both cats and snakes are 
not mammals (which is false) would be symbolized as (~C • ~S). Note 
that this second proposition could also be translated Neither cats nor 
snakes are mammals.

When symbolizing compound propositions which use negation, 
it is standard practice to assume that whatever variable, constant, 
or proposition in parentheses the tilde immediately precedes is 
the one negated. For example, the compound proposition ~p ∨ q 
is understood to mean (~p) ∨ q, because the tilde immediately pre-
cedes the variable p. This is different from ~(p ∨ q). Negation is used 
in the same way that the negative sign is used in mathematics. The 
mathematical expression 5 + 6 means (5) + 6, which equals 1. This 
is different from (5 + 6), which equals 11. So when negating a 
single variable or constant, you need not use parentheses. But when 
negating an entire compound proposition, place the tilde in front of 
the parentheses around the proposition.

Three common logical operators are negation (not, symbolized ~), 
conjunction (and, symbolized •), and disjunction (or, symbolized ∨). 
These logical operators can be defined by means of truth tables. 
Negation reverses the truth value of a proposition, conjunction is 
true if and only if both conjuncts are true, and disjunction is false if 
and only if both disjuncts are false.

SUMMARY

Do not confuse the 
propositional meaning of 
the phrases not both and 
both not. Use parentheses to 
distinguish between them.

CAUTION

In the absence of 
parentheses, assume that 
negation attaches only 
to the proposition it 
immediately precedes.

KEY POINT
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E X ERCISE 2  (26 points)

Given: J means Joseph went to Egypt F means There was a famine 
 I means Israel went to Egypt S means The sons of Israel became slaves
Translate the symbolic propositions.
1. F • I     _________________________________________________________                                                                                               
2. ~J ∨ S   _________________________________________________________                                                                                               
3. ~(J ∨ I) _________________________________________________________
4. J • ~S   _________________________________________________________

Symbolize the compound propositions.
5. Joseph and Israel went to Egypt.  ___________________
6. Israel did not go to Egypt.  ___________________
7. Israel went to Egypt, but his sons became slaves.  ___________________
8. Either Joseph went to Egypt, or there was a famine.  ___________________
9. Joseph and Israel did not both go to Egypt.  ___________________           
10. Neither Joseph nor Israel went to Egypt.  ___________________
11. Joseph and Israel went to Egypt; however, there was 

a famine, and the sons of Israel became slaves.  ___________________
12. Israel went to Egypt; but either Joseph did not go to 

Egypt, or there was a famine.  ___________________
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So far we have seen that truth tables help define logical operators. 
Truth tables also serve other functions, one of which is to help us 

determine the truth value of compound propositions. The truth value 
of elementary negations, conjunctions and disjunctions can be immedi-
ately determined from their defining truth tables. But what about com-
pound propositions like ~p ∨ (~q • r)? To find the truth values for such 
complicated propositions, the following procedure may be followed:

1. Draw a line, and on the leftmost part of the line place the 
variables (or constants) which are used in the proposition. Under 
these, put all the possible combinations of true and false. This will 
require four rows for two variables, eight rows for three variables, 
and in general 2n rows for n variables. Under the first variable, place 
a T for each of the first half of the rows, then an F for each of the 
second half. Under the next variable, place half again as many Ts, 
half again as many Fs, then repeat this. The final column should 
have alternating single Ts and Fs, as follows:

 p q  r 
 T T T
 T T F
 T F T
 T F F
 F T T
 F T F
 F F T
 F F F

You can verify for yourself that all the possible combinations of 
true and false are found in these eight rows.

TRUTH TABLES 
FOR DETERMINING 

TRUTH VALUES

LESSON 3

KEY POINT

Truth tables help 
determine the truth value 
of compound propositions, 
given the truth value of 
their component parts. 
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2. If any variables are negated, these should be added next, with the 
corresponding truth values under them (specifically, under the operator):

 ↓	 ↓
 p q r   ~p   ~q   
 T T T F F
 T T F F F
 T F T F T
 T F F F T
 F T T T F
 F T F T F
 F F T T T
 F F F T T

Here arrows are placed over p and q to show that those basic 
variables are being used to build more complicated propositions on 
the right-hand side of the table. Whenever p is true, ~p is false, and 
vice versa, just as the defining truth table for negation shows. This 
is also the case for q and ~q.

3. Continue to the next level of complexity in the proposition. 
As in mathematics, whatever is in parentheses should be completed 
before going outside the parentheses. In our example, the proposi-
tion in parentheses is ~q • r. This is placed on the line, and whenever 
both ~q and r are true, the conjunction ~q • r is true, according to 
the defining truth table for conjunction. Thus we now have:

	 	 	 ↓	 	 			↓
 p q r   ~p   ~q (~q • r)  
 T T T F F F
 T T F F F F
 T F T F T T
 T F F F T F
 F T T T F F
 F T F T F F
 F F T T T T
 F F F T T F

4. Continue with the same procedure, adding on to the truth 
table until the entire compound proposition is filled out. In our ex-
ample, the propositions ~p and (~q • r) are disjuncts. Thus, whenever 

KEY POINT

When completing a 
truth table, start with the 
standard truth values for 
the variables (or constants), 
then find the truth values 
for the negated variables 
(or constants).

KEY POINT

After determining truth 
values for negations, 
complete the truth values 
for compound propositions 
within parentheses.
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either is true, the whole disjunction is true. We fill in those values 
and finish the truth table:

    ↓  ↓
 p q r   ~p   ~q (~q • r)  ~p ∨ (~q • r) 
 T T T F F F F
 T T F F F F F
 T F T F T T T
 T F F F T F F
 F T T T F  F T
 F T F T F F T
 F F T T T T T
 F F F T T F T

We see from the first row that whenever p, q, and r are all true, 
the compound proposition ~p ∨ (~q • r) is false, and so on down the 
truth table. As you get more familiar with this procedure, you will 
be able to dispense with the initial guide columns of true and false, 
working only with the compound proposition and placing the truth 
values directly beneath the variables in it.

Sometimes, the truth values of constants in a compound proposi-
tion are already known. In that case finding the truth value of the 
compound proposition requires only one row. For instance, assume 
that A is true, and X and Y are false. Finding the truth value of 
(A ∨ X) • ~Y requires this:

 A X Y  (A ∨ X)   ~Y    (A ∨ X) • ~Y 
 T F F      T   T              T

The truth values of a compound proposition may be determined by 
placing all possible combinations of true and false under the vari-
ables or constants, then using the definitions of the logical operators 
to determine the corresponding truth values of each component of 
the proposition.

KEY POINT

Finish the truth table for a 
compound proposition by 
finding out the truth tables 
for all of its component 
parts and then putting 
them together.

KEY POINT

When you make a truth 
table for propositions that 
use only constants with 
known truth values, you 
need just one row.

SUMMARY





25

u n i t  o n e :  t r u t h  t a b l e s

E X ERCISE 3  (26 points)

1. Fill in the following truth table to determine the truth values for the exclusive or. 
The truth values for p and q are filled out for you on this first one.
 p q ( p ∨ q ) ( p • q ) ~ ( p • q ) ( p ∨ q ) • ~ ( p • q )   
 T T
 T F
 F T
 F F

2. Determine the truth values for ~(J • R) and ~J • ~R to prove that they are different 
propositions. The initial truth values of J and R should follow the same pattern as 
the truth values of p and q in Problem 1.
 J R ~J ~R ( J • R ) ~( J • R ) ~ J • ~ R   

3. Write sentences in English (using both and not) corresponding to the two compound 
propositions in Problem 2, using Joe is a student for J and Rachel is a student for R.
~(J • R) _________________________________________________________
~J • ~R _________________________________________________________

Determine the truth value for the compound propositions. Assume that propositions A 
and B are true, while X and Y are false. Circle T if the entire compound proposition is 
true. Circle F if it is false. Use the space at the right for showing any work.

4. ~A	∨ B T F

5. X ∨ ~B T F

6. ~(A ∨ B) T F

7. (A • X) ∨ (B • Y) T F

8. ~[X ∨ (Y • ~A)] T F

Continued on next page.



Identify the truth value of each sentence by circling T or F. (Note that Jonah, Isaiah, and 
Jeremiah were all prophets.)
9. Jonah was a prophet or Isaiah was a prophet. T        F
10. Jeremiah was not a prophet but Isaiah was a prophet. T        F
11. It is not true that both Jeremiah was a prophet and

Isaiah was not a prophet. T        F
12. Jonah was not a prophet or both Jeremiah and Isaiah 

were not prophets. T        F
13. A false proposition is not true. T        F
14. It is false that a true proposition is not false. T        F
15. It is true that it is false that a true proposition is not false. T        F
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A very useful logical operator is the conditional (also called hy-
pothetical or material implication). The conditional is an if/

then-type proposition: “If it is raining then I will take my umbrella.” 
The proposition following the if is called the antecedent, and the 
proposition following the then is the consequent. In the preceding 
example, “It is raining” is the antecedent; “I will take my umbrella” 
is the consequent. 

Conditionals can take many forms. All of the following propo-
sitions can be considered as conditionals, because they can all be 
translated into if/then form:

1. If I move my rook then he will put me in check.
2. The diode will light if the switch is closed.
3. Fido is a dog implies that Fido is a mammal.
4. When you finish your dinner I will give you dessert.
5. Cheating during a test is a sufficient condition for your suspension.

Can you determine the antecedent and the consequent for each 
of those statements?

The symbol for the conditional logical operator is ⊃ (called a 
horseshoe). “If I move my rook then he will put me in check” could 
be symbolized R ⊃ C (read as If R then C).

In a conditional proposition, the antecedent is said to imply the 
consequent. That is, for a true conditional, if the antecedent is 
considered to be true (whether or not it actually is true), then the 
consequent must also be true. Like the disjunction, the concept of 
implication is somewhat ambiguous. Example one above shows that 
it can apply to the likelihood of behavior. The person is stating the 
likelihood of his opponent’s behavior when certain conditions are 

THE CONDITIONAL

LESSON 4

DEFINITIONS

The conditional operator 
(⊃, if/then) asserts that one 
component (the antecedent) 
implies the other (the 
consequent). It is false if 
and only if the antecedent 
is true and the consequent 
is false.

CAUTION

Conditionals can take many 
forms other than the basic  
“if x, then y” structure.
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met. Some proverbs are of this type: “If a ruler pays attention to lies, 
all his servants become wicked” (Prov. 29:12). Example two above is 
a cause/effect relationship. The closing of the switch causes the diode 
to light. Example three is an implication by definition; all dogs are 
mammals. Example four refers to a promise, such as that of a parent 
to a child. Example five refers to a sufficient condition, in this case, 
the condition for a student’s suspension. 

Propositional logic deals with this ambiguity by recognizing that 
each of the given examples are false when the antecedent is true and 
the consequent is false. If he moves his rook but his opponent does 
not put him in check, example one is false. If the switch is closed 
and the diode doesn’t light, example two is false, and so on. All 
other combinations of true and false in the conditional are consid-
ered to be true.

The defining truth table for the conditional is thus:

 p q  p ⊃	q   
 T T  T
 T F  F
 F T  T
 F F  T

The last two rows may cause some problems. How can if false 
then true be considered true? Worse yet, how can if false then 
false be true? These are good questions to ask, though the answer 
may be hard to grasp. But consider the following examples of such 
propositions:

If a poodle is a tiger, then a poodle is a mammal.
     F      T

If a poodle is a tiger, then a poodle is a feline.
     F      F

Both of these conditional propositions are true. If a poodle really 
was a tiger (i.e., if the antecedent, though false, was considered to 
be true), then a poodle would be a mammal (which of course it is). 
You see that it is possible for an if false then true proposition to be 
true. Similarly, if a poodle really was a tiger, then it really would be 
a feline. This if false then false proposition is true.

KEY POINT

Though it may seem 
counterintuitive, a 
conditional is always true 
if the antecedent is false.

KEY POINT

The conditional includes 
many types of implication: 
cause/effect, definition, 
promises, conditions, and 
so on.
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Now, it is equally possible to develop if false then true condition-
als and if false then false conditionals which are false. Try substi-
tuting “dog” for “mammal,” and “lizard” for “feline” in the above 
conditionals. This gives us the following propositions:

If a poodle is a tiger, then a poodle is a dog.
  F   T

If a poodle is a tiger, then a poodle is a lizard.
  F   F

Those propositions are both false. This shows that conditional 
propositions, as they are commonly used in everyday English, are 
not really truth-functional when the antecedent is false. How then 
are we to understand conditionals?

Another way of thinking about this is to consider p ⊃ q as mean-
ing ~(p • ~q). So the proposition If I move my rook then he puts me in 
check is considered logically equivalent to It is false that I move my 
rook and he does not put me in check. Another example: If you study 
then you will pass is equivalent to It is false that you study but you 
don’t pass. Consider these carefully and you should see how they 
are equivalent.

The following truth table development of ~(p • ~q) shows that it 
has the same pattern as p ⊃ q:

 p q ~q   ( p • ~q)  ~(p • ~q) 
 T T F  F    T
 T F T  T    F
 F T F  F    T
 F F T  F    T

Other equivalent compound propositions could be developed 
which show this same T F T T pattern, as we shall see in the exercise.

As noted earlier, conditionals can take many forms. Let’s look at 
how to best symbolize them.

First, the proposition The diode will light if the switch is closed 
places the antecedent after the consequent. This proposition means 
the same as If the switch is closed then the diode will light. In general, 
p if q means If q then p. However, the superficially similar proposi-
tion p only if q means the same as If p then q. This is not immediately 
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obvious, so consider this true proposition as an example: A polygon 
is a square only if it has four sides. This proposition does not mean 
“If a polygon has four sides, then it is a square” (which is false), but 
rather “If a polygon is a square then it has four sides.” 

Second, Fido is a dog implies that Fido is a mammal is clearly just 
another way of saying that If Fido is a dog then Fido is a mammal. 
Similarly, When you finish your dinner I will give you dessert means If 
you finish your dinner then I will give you dessert. So both p implies q 
and When p, q are equivalent to If p then q.

Third, Cheating during a test is a sufficient condition for your sus-
pension means that if one cheats during a test, then one will be sus-
pended (since if one cheats during a test but is not suspended, then 
cheating during a test apparently is not sufficient). Thus, p is sufficient 
for q is equivalent to If p then q. On the other hand, p is a necessary 
condition for q is equivalent to If q then p. For example, The presence 
of water is necessary for life to exist there is best translated If life exists 
there then water is present.

Fourth, consider the proposition p unless q. How is this to be 
translated? Well, what does You will starve unless you eat sometime 
mean? A reasonable translation is “If you do not eat sometime, then 
you will starve.” Note, however, that this proposition is not equiva-
lent to If you eat sometime then you will not starve since a person could 
eat something, but still starve later. So p unless q should be translated 
as If not q then p. However, we must be careful: When the “unless” 
appears at the beginning of the sentence, the translated proposition 
gets turned around as well. Unless you repent, you too will perish 
means “If you do not repent, then you too will perish.” So unless p, 
q is equivalent to If not p then q.

Finally, note that If p then q is equivalent to If not q then not p. 
This equivalence is called the rule of transposition, which we will 
see later. It is similar to the contrapositive of a categorical statement. 
So the proposition If a whale is a mammal, then a whale breathes air 
is logically equivalent to If a whale does not breathe air, then a whale 
is not a mammal.

CAUTION

Translating conditionals 
can be tricky. The 
proposition p only if q 
means  If p then q; p is 
sufficient for q is equivalent 
to If p then q; p is a 
necessary condition for q 
is equivalent to If q then 
p; and finally, p unless q 
means If not q then p.

KEY POINT

If p then q is equivalent to 
If not q then not p. 
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The following table summarizes the above information:

 Proposition Translation    
 If p then q p ⊃ q
 p implies q p ⊃ q
 p only if q p ⊃ q
 When p, q p ⊃ q
 p is sufficient for q p ⊃ q
 p if q q ⊃ p
 p is necessary for q q ⊃ p
 p unless q ~q ⊃ p
 Unless p, q ~p ⊃ q

 Rule of transposition:  (p ⊃ q) ≡ (~q ⊃ ~p)

The conditional is an important logical operator. It represents if/then 
propositions and has the symbol ⊃. The conditional is considered 
false if and only if the antecedent is true and the consequent is 
false. Thus, p ⊃	q can be considered equivalent to ~(p • ~q). Many 
different propositions can be translated as conditional propositions. 
They are summarized in the table above.

SUMMARY
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E X ERCISE 4  (16 points)

1. Develop the truth table for the compound proposition ~p ∨ q on the line below.
 p q ~p ~p ∨ q    

 T T 
 T F 
 F T 
 F F 

2. What other compound proposition has the same truth table as ~p ∨ q?
__________________

If A, B, and C represent true propositions and X, Y, and Z represent false propositions, 
determine whether each compound proposition is true or false, and circle the appropri-
ate letter.
3. A ⊃ B T        F
4. B ⊃ Z T        F
5. X ⊃ C T        F
6. (A ⊃ B) ⊃ Z T        F
7. X ⊃ (Y ⊃ Z) T        F
8. (A ⊃ Y) ∨ (B ⊃ ~C) T        F
9. [(X ⊃ Z) ⊃ C] ⊃ Z T        F
10. [(A • X) ⊃ Y] ⊃ [(X ⊃ ~Z) ∨ (A ⊃ Y)] T        F

If S represents I will go swimming and C represents The water is cold, symbolize each 
statement:
11. If the water is not cold then I will go swimming.  ___________
12. I will go swimming if the water is cold.  ___________
13. I will go swimming unless the water is cold.  ___________
14. I will go swimming only if the water is not cold.  ___________
15. When the water is cold I will go swimming.  ___________





35

The final logical operator we will consider is the biconditional. 
Biconditionals represent if and only if propositions, such as 

Skyscrapers are buildings if and only if it is false that skyscrapers are 
not buildings. The symbol for biconditional is ≡. If Skyscrapers are 
buildings is represented by the constant B, the proposition could be 
symbolized as B ≡ ~~B (read as B if and only if not not B).

What does if and only if mean? Recall that p only if q means the 
same as If p then q, while p if q means If q then p. Putting these to-
gether, p if and only if q means If p then q and if q then p. The bicondi-
tional can thus be considered as the conjunction of a conditional and 
its converse. Taking p ⊃ q as the conditional and q ⊃ p as its converse, 
this means that p ≡ q is logically equivalent to (p ⊃ q) • (q ⊃ p). You 
can see why it is called the biconditional. We can use this equivalent 
proposition to develop the defining truth table for the biconditional:

 p q p ⊃ q q ⊃ p (p ⊃ q) • (q ⊃ p) 
 T T T T  T
 T F F T  F
 F T T F  F
 F F T T  T

Thus the biconditional is true when both parts are true or when 
both parts are false. In other words, the biconditional is true if and 
only if the truth values of both parts are the same. 

We can simplify the defining truth table for the biconditional 
like this:

 p q p ≡ q    
 T T T
 T F F
 F T F
 F F T

THE BICONDITIONAL

LESSON 5

DEFINITIONS

The biconditional operator 
(≡, “if and only if”) is true 
when both component 
propositions have the same 
truth value, and is false 
when their truth values 
differ.
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The biconditional represents if and only if propositions, and has the 
symbol ≡. The biconditional is true when both parts have the same 
truth value; otherwise it is false.

SUMMARY
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E X ERCISE 5  (25 points)

Given: A means Apples are fruit  C means Carrots are fruit
 B means Bananas are fruit  D means They are delicious

Translate each symbolic proposition
1. A • D  _________________________________________________________
2. B ∨ C __________________________________________________________
3. ~C ⊃ ~D  _______________________________________________________
4. A ≡ B  _________________________________________________________
5. (A • B) ≡ ~C _____________________________________________________

 ______________________________________________________________

Symbolize each compound proposition.
6. Apples and bananas are both fruit, but carrots are not fruit.   ______________
7. Bananas are fruit implies that they are delicious.  ______________
8. Carrots are fruit if and only if bananas are not fruit.  ______________
9. Either bananas or carrots are fruit, but they are not both fruit.  ______________
10. Apples are not fruit if and only if it is false that apples are fruit.  ______________
11. Apples are fruit is a necessary and sufficient condition for 

bananas being fruit.  ______________
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LOGICAL EQUIVALENCE 
AND CONTRADICTION

LESSON 6

DEFINITION

Two propositions are 
logically equivalent if and 
only if they have identical 
truth values in a truth table. 

A tautology is a 
proposition that is always 
true due to its logical 
structure. 

A self-contradiction is a 
proposition that is false by 
logical structure.

The biconditional has another useful function beyond translat-
ing “if and only if” propositions. Since the biconditional is true 

whenever the truth values of the component parts are the same, the 
biconditional can be used to determine whether or not two proposi-
tions are logically equivalent; that is, it can show if two proposi-
tions have identical truth values.

Consider the example from the previous lesson, in which it was 
stated that B ≡ ~~B. The truth table for this is:

 B ~B ~~B     B ≡ ~~B 
 T F T T
 F T F T

This biconditional is always true, so B and ~~B are seen to be 
logically equivalent. 

A proposition that is true for every row in the truth table is called 
a tautology. In other words, tautologies are propositions that are 
true by logical structure. The compound proposition B ≡ ~~B is thus 
a tautology. Other important tautologies are p ⊃ p and p ∨ ~p. So we 
can now say more briefly that the biconditional of logically equiva-
lent propositions is a tautology.

When a proposition is false for every row in the truth table, you 
have a self-contradiction. Self-contradictions are propositions that 
are false by logical structure, such as p • ~p. 

Consider the two propositions p ⊃ q and p • ~q, along with their 
biconditional. We will do this truth table (and every one from now 
on) without guide columns, simply placing the truth values imme-
diately below the variables p and q and working out the truth value 
of the compound propositions, finishing with the ≡	sign.

KEY POINT

The biconditional can be 
used to test for equivalence. 
If the biconditional of two 
statements is a tautology, 
then the statements are 
equivalent.
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 ( p ⊃ q )  ≡  ( p  •  ~q )   
 T T T F T F F T
 T F F F T T T F
 F T T F F F F T
 F T F F F F T F

Because this biconditional is a self-contradiction, we can say that 
p ⊃ q contradicts p • ~q.

When the biconditional of two propositions is a tautology, the prop-
ositions are logically equivalent. When it is a self-contradiction, the 
propositions are contradictory. A tautology is a proposition that is 
true by logical structure. A self-contradiction is a proposition that is 
false by logical structure.

The biconditional can be 
used to test for contradic-
tion. If the biconditional 
of two statements is 
a self-contradiction, 
then the statements are 
contradictory.

KEY POINT

SUMMARY
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E X ERCISE 6 (30 points)

Set up the biconditional between each pair of propositions (as in the lesson) to deter-
mine if they are logically equivalent, contradictory, or neither. In this exercise, do not use 
guide columns. Rather, place the truth values immediately beneath the variables and 
work through the proposition to determine its truth value. Problem 4 has three vari-
ables, so it will require eight rows.

1.  

3. 4. 

2.    ~  ( p  ∨  q)       ~  p  ∨  ~  q   

   ~ ( ~ p  ∨  q )  	      p  ⊃  q  

   p   ⊃   q       ~  q   ⊃   ~  p

    p  ⊃  ( q  ⊃  r )  	 	    ( p  ⊃  q )  ⊃  r   

5. Write a set of propositions in English which could be represented by the symbolic 
propositions in Problem 2.
 ______________________________________________________________
 ______________________________________________________________
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DEFINITIONS

Recall that in a valid 
argument, if the premises 
are true, the conclusion 
must be true. If the 
premises can be true and 
the conclusion false, the 
argument is invalid.

TRUTH TABLES FOR 
DETERMINING VALIDITY

LESSON 7

So far we have seen three uses for truth tables: determining the 
truth values of compound propositions, defining logical opera-

tors, and determining logical equivalence. Another use for truth 
tables, and perhaps the most practical (and thus the most interest-
ing), is that of determining the validity of propositional arguments.

Before we look at how truth tables do this, we first need to con-
sider what is meant by validity. When an argument is valid, the 
conclusion follows necessarily from the premises. In other words, 
if the premises are assumed to be true, then in a valid argument the 
conclusion must also be true. If an argument has true premises with a 
false conclusion, it is invalid.

To use truth tables to determine the validity of an argument, 
the argument is translated into symbolic form (if it is not already 
symbolic) then placed above a line, with the symbol ∴ (meaning 
“therefore”) in front of the conclusion. Then the truth values are 
placed below the propositions, just like we have done before. These 
steps are completed for the modus ponens argument shown:

 p ⊃ q  p  ∴ q 
 T  T  T
 F  T  F
 T  F  T
 T  F  F

Notice that p and q (and thus p ⊃ q) have the same pattern of T 
and F that we have seen up to this point. 

Now consider again the definition of validity. How does the truth 
table show that this argument is valid? Well, the argument must be 
either valid or invalid. If it was invalid, there would be a horizontal 

The symbol ∴ means 
“therefore” and signals the 
conclusion of an argument.

KEY POINT
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row which showed true premises with a false conclusion. No such row 
exists; the argument is not invalid. So it must be valid.

Consider this another way. Look at each of the four rows for the 
above argument. For every row in which all the premises show T, 
does the conclusion also show T? Yes it does; the first row above is 
the only row with all true premises, and it also shows a true conclu-
sion. The argument is thus valid. If any row showed premises with 
all Ts and a conclusion with F, it would be invalid, even if other rows 
had premises with all Ts and a conclusion with a T.

For an example of an argument shown to be invalid by truth 
table, consider the denying the antecedent argument here:

 p ⊃ q   ~p ∴~q 
 T F  F
 F F  T
 T T  F  ← invalid
 T T  T

The truth values have been completed for the premises and con-
clusion (with the initial truth values for p and q removed for the sake 
of clarity). Now, notice that the third row has true premises with 
a false conclusion. This argument is thus invalid (even though the 
fourth row shows true premises with a true conclusion). To mark it 
as invalid, identify the row (or rows) with true premises and a false 
conclusion and write Invalid near it, as shown above.

Let’s look at two more examples of truth tables for validity, one 
valid and one invalid. On the first one we will show the step-by-step 
procedure. Consider, just for fun, the argument above: “The argu-
ment must be either valid or invalid. If it is invalid then there will 
be a row of true premises with a false conclusion. There is no row 
of true premises with a false conclusion. Therefore the argument 
is valid.” We symbolize this argument as V ∨ I, I ⊃ R, ~R,- ∴V, and 
complete the truth table. First, write out the argument in symbolic 
form, placing the truth values under the three constants V, I, and R 
in the same pattern as we used before:

If a truth table shows at 
least one row in which the 
premises of an argument 
are true but the conclusion 
is false, then the argument 
is invalid. Otherwise, it is 
valid.

KEY POINT
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 V  ∨  I I  ⊃  R ~R ∴V 
 T  T   T
 T  T   F
 T  F   T
 T  F   F
 F  T   T
 F  T   F
 F  F   T
 F  F   F

From these truth values, determine the other values until the en-
tire argument is completed. You may find it easier to start from the 
right and work your way left.

 V  ∨  I I  ⊃  R ~R ∴V 
 T T T T T T F T T
 T T T T F F T F T
 T T F F T T F T T
 T T F F T F T F T
 F T T T T T F T F
 F T T T F F T F F
 F F F F T T F T F
 F F F F T F T F F

Then the unnecessary columns of T and F may be removed (by 
erasing or marking out), leaving only the patterns for the premises 
and the conclusion, as shown:

 V  ∨  I I  ⊃  R ~R ∴V 
  T   T  F  T
  T   F  T  T
  T   T  F  T
  T   T  T  T  ← valid
  T   T  F  F
  T   F  T  F
  F   T  F  F
  F   T  T  F

The only row with all true premises is the fourth row down, and it 
also shows a true conclusion. Thus the argument is valid, as marked.

Now for one more example of an invalid argument before we go 
on to the assignment. “If we stop here then I will be lost. If we stop 
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here then you will be lost. So either I will be lost, or you will.” This 
can be symbolized S ⊃ I, S ⊃ Y, ∴ I ∨ Y. 

The truth table can be developed as before (you should do so on 
your own), resulting in the following patterns:

 S ⊃ I S ⊃ Y ∴ I ∨ Y 
 T T T
 T F T
 F T T
 F F F
 T T T
 T T T
 T T T
 T T F   ← invalid

Although there are many rows which have true premises with a 
true conclusion (namely rows one, five, six and seven), the eighth 
row shows true premises with a false conclusion. Thus the entire 
argument has been shown to be invalid, and is marked as such.

We have the following procedure for determining the validity of 
arguments using truth tables.

The Truth Table Method for Validity
1. Write the argument in symbolic form on a line.
2. Under the variables, place the columns of T and F.
3. Determine the columns of T and F for the propositions follow-

ing the defining truth tables.
4. Remove any unnecessary columns of T and F, leaving only the           

columns for the premises and conclusion.
5. Examine the rows. If any row has all true premises with a false 

conclusion, the argument is invalid. Otherwise it is valid. Mark 
the row(s) showing valid or invalid.

SUMMARY
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10. 9.   p 	≡  ~ q      ~ q       ∴ p    p 	∨  q      ~ p      ∴ q  

  p 	•  q ∴  p 	∨  q  

E X ERCISE 7a  (48 points)

Determine the truth value of each compound proposition. Assume that propositions A 
and B are true, X and Y are false, and P and Q are unknown. Circle T if the proposition 
is true, F if it is false, and ? if the truth value cannot be determined. (Hint: There are 
two of each.)
1. P ∨ ~P T F  ?
2. (P ⊃ P) ⊃ ~A T F  ?
3. (Y ⊃ P) ⊃ Q T F  ?
4. P ≡ (X ∨ Y) T F  ?
5. ~Q • [(P ∨ Q) • ~P] T F  ?
6. ~[P ∨ (B • Y)] ∨ [(P ∨ B) • (P ∨  Y)] T F  ?

Use truth tables to determine the validity of each argument. Identify each as either 
valid or invalid, and identify the rows that show this.
7. 8.   p  ⊃  q ∴	 p 	⊃  ( p  •	 q )  

Continued on next page.



48

i n t e r m e d i a t e  l o g i c

Translate the arguments into symbolic form using the given constants, and then use 
truth tables to determine their validity as in the previous problems.
11. If Jesus was John the Baptist raised from the dead, then He could do miracles. Jesus 

did miracles, so He was John the Baptist raised from the dead. (J means Jesus was 
John the Baptist raised from the dead, M means He could do miracles.) 

12. If Jeff studies then he will get good grades. If Jeff does not study then he will play. 
So Jeff will either get good grades or he will play. (S means Jeff studies, G means He 
will get good grades, P means He will play.) 

13. If Jesus is not God then He was a liar or He was insane. Jesus was clearly not a liar. 
He certainly was not insane. We conclude that Jesus is God. (G means Jesus is God, 
L means He was a liar, I means He was insane.) 

Continued on next page.
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14. If taxes increase then the public will complain, but if the deficit increases then the 
public will complain. Either taxes or the deficit will increase. Thus the public is 
bound to complain. (T means Taxes increase, P means The public will complain, D 
means The deficit increases.) 
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E X ERCISE 7b  (30 points)

Use truth tables to determine the validity of the propositional arguments below. (Prob-
lems 4 and 5 require eight rows each; Problem 6 requires sixteen!)

1. p        ∴ ~p ∨ q     2.   p ⊃ q        ∴ ~q ⊃ ~p         _______________                                       ___________________

3. p ⊃ q         ~q        ∴ p ≡ q        _______________________

4. p ⊃ (q ⊃ r)         q       ∴ r ⊃ p         __________________________

5. p ⊃ (~q ⊃ r)         p        ∴ ~r ⊃ q        ____________________________
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6. (p ⊃ q) • [(p • q) ⊃ r]                p ⊃ (r ⊃ s)           ∴ p ⊃ s          ________________________________________
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In the last exercise, you found that you needed to write hundreds 
of Ts and Fs because of the number of variables. And each time a 

new variable is added, the size of the truth table doubles. With this 
level of complexity it is easy to get confused or make careless errors. 
Surely there must be a shorter method!

Fortunately, there is. All the work in a truth table can (for most 
arguments) be compressed into only one row. That’s right, just one. 
In this lesson we will see how it works.

Remember that an argument is proved invalid whenever the 
premises can be shown to be true and the conclusion false. With 
the shorter truth table, you start by assuming the argument to be in-
valid. You assume each premise is true and the conclusion is false. 
Then, you work backwards along the argument, trying to make this 
assumption work without any contradictions. If you succeed, you 
have proved the argument to be invalid. However, if assuming the 
argument to be invalid results in an unavoidable contradiction, then 
your assumption is wrong and the argument must be valid.

Take, for example, one of the arguments from the last chapter. We 
start by assigning the premises the value T and the conclusion the 
value F. Notice that the Ts and F are placed under those parts of the 
propositions which would be filled in last in the longer truth table.

 S ⊃ I S ⊃ Y ∴ I ∨ Y 
    T    T        F

Now, for the disjunction I ∨ Y to be false as assumed, both dis-
juncts must be false, according to the defining truth table. But if I 
and Y are false in the conclusion, they must be false in the premises. 
Thus we obtain this table:

SHORTER TRUTH TABLES 
FOR DETERMINING VALIDITY

LESSON 8

KEY POINT

The validity of most argu-
ments can be determined 
with a truth table having 
only one row. Assume the 
conclusion is false and the 
premises true, then work 
backward looking for 
unavoidable contradictions.
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S ⊃ I S ⊃ Y ∴ I ∨ Y 
   T F    T F     F F F

A true conditional with a false consequent must also have a false 
antecedent (check the defining truth table for the conditional). Thus 
we assign the antecedents S in the above conditionals the value of 
F, as shown:

 S ⊃ I S ⊃ Y ∴ I ∨ Y 
F T F F T F     F F F invalid

We are now finished. We assumed the argument was invalid, 
every truth value was determined, and no contradiction was found. 
Thus we conclude the argument is indeed invalid. 

Now we will look at the valid argument from the last chap-
ter. Again, we start by assuming the argument to be invalid (true 
premises, false conclusion), then work backward to see if we get a 
contradiction.

 V ∨ I I ⊃ R ~R ∴ V 
    T   T T      F

If V	is false in the conclusion, it must be false everywhere else. 
Write F under the V in the first premise. Also, if ~R is true, then 
R must be false. We write F under the Rs and get

 V ∨ I I ⊃ R ~R ∴	V 
F T   T  F TF F

Now, look at I ⊃ R. For this conditional to be true with a false 
consequent, the antecedent I must be false. And if I is false there, 
then it is false in	V ∨ I. Filling these in gives us

 V ∨ I I 	⊃ R ~R ∴ V 
F T F F T F T F      F  valid

         ↑ contradiction

We see that V	and I are both found to be false. But this would im-
ply the disjunction V ∨ I is false. However, we assigned it as a premise 
the value of true. This contradiction means that it is impossible to 
make the argument invalid. Thus it must be valid.
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Now for two familiar examples. First, consider the modus tollens 
argument p ⊃ q, ~q, ∴~p. We will assume it to be invalid, like this:

 p ⊃ q ~q ∴	~p 
    T T     F

Start with the conclusion. If ~p is false as assumed, then p is true. 
Filling that in gives us

 p ⊃ q ~q ∴	~p 
 T T T     FT

But if ~q is true, q must be false:

 p ⊃ q ~q ∴ ~p 
 T T F TF      FT valid
           ↑ contradiction

We see the contradiction in the first premise, mark it as a contra-
diction and write “valid.”

For a final example, let’s look at affirming the consequent. We as-
sume it to be invalid:

 p ⊃ q q ∴ p 
    T T     F

We see that p is false and q is true, and write those values in. 

 p ⊃ q q ∴ p 
 F T T T     F invalid

There is no contradiction. The argument is invalid, with true 
premises and a false conclusion.

When a shorter truth table is completed for an invalid argument 
as above, you should discover that the truth values found for the 
variables (or constants) are the same truth values from one of the 
rows showing the argument invalid on the longer truth table. In this 
case, the argument was seen to be invalid when p is false and q is 
true. Compare this with the longer truth table:

KEY POINT

When a shorter truth table 
is completed for an invalid 
argument, the truth values 
found for the variables (or 
constants) are the same 
truth values from a row 
showing the argument to 
be invalid on the longer 
truth table.
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  p ⊃ q q ∴ p 
      T T     T
      F F     T
      T T     F ← invalid
      T F     F

We see that the longer truth table also shows the argument to be 
invalid when p is false and q is true.

Thus we have the following procedure for determining the valid-
ity of arguments using the shorter truth table:

The Shorter Truth Table Method for Validity
1. Write the argument in symbolic form on a line.
2. Assume the argument is invalid by assigning the premises the 

value T and the conclusion the value F.
3. Work backwards along the argument, determining the remain-

ing truth values to be T or F as necessary, avoiding contradic-
tion if possible.

4. If the truth values are completed without contradiction, then 
the argument is invalid as assumed.

5. If a contradiction is unavoidable, then the original assumption 
was wrong and the argument is valid.

SUMMARY
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E X ERCISE 8  (48 points)

Determine the validity of each argument using the shorter truth-table method. Use the 
constants given in order of appearance in the argument to symbolize each proposition.
1. If I study for my test tonight then I am sure to pass it, but if I watch TV then I will 

get to see my favorite show. So if I study for the test and watch TV, then I will either 
pass the test or I will see my favorite show. (S, P, W, F)

2. If Caesar had been a benevolent king, then all Romans would have received their 
full rights under the law. The Roman Christians were persecuted for their faith. If 
all Romans had received their full rights, then the Roman Christians would not 
have been persecuted. Therefore Caesar was not a benevolent king. (B, R, P)

3. If a composition has both meter and rhyme, then it is a poem. It is not the case that 
this composition has meter or rhyme. Therefore this composition is not a poem. 
(M, R, P)

4. If the book of Hebrews is Scripture then it was written by Paul or Apollos. If Paul 
wrote anonymously to the Hebrews then he wrote anonymously in some of his let-
ters. If Hebrews was written by Paul then he wrote anonymously to the Hebrews. 
Paul did not write anonymously in any of his letters. The book of Hebrews is Scrip-
ture. Therefore Hebrews was written by Apollos. (S, P, A, H, L)

Continued on next page.
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5. If you sin apart from the law then you will perish apart from the law, but if you sin 
under the law then you will be judged by the law. If you sin, then you either sin 
apart from the law or you sin under the law. You do sin. Therefore you will either 
perish apart from the law or you will be judged by the law. (A, P, U, J, S)

6. If you obey the law then you will not be condemned. You have not obeyed the law. 
Thus, you will be condemned. (O, C)

Determine the validity of each argument from Exercise 7b using the shorter truth-table 
method.
7.   p    ∴ ~ p 	∨  q   8.   p  ⊃  q    ∴ ~ q  ⊃	 ~ p

9.   p 	⊃  q    ~ q    ∴ p 	≡  q   10.   p  ⊃	 (q  ⊃	 r)    q    ∴ r 	⊃	 p  

11.   p 	⊃	 (~ q 	⊃  r)         p        ∴ ~ r 	⊃	 q  

12.   (p  ⊃  q) 	•  [(p 	•	 q) 	⊃	 r]         p 	⊃  (r 	⊃  s)       ∴ p  ⊃  s  
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The propositional arguments which have been examined so far 
have avoided one difficulty which may arise while using the 

shorter truth-table method. To understand what that difficulty is, 
we will analyze the following argument: “It is false that both read-
ing and skiing are dangerous activities. Therefore neither reading 
nor skiing is dangerous.” This argument follows the form ~(p • q), 
∴~(p ∨ q). If we begin using the shorter truth table to determine va-
lidity we get to this point:

 ~(p • q) ∴~(p ∨ q) 
 T  F  F  T

Now we are stuck. For the conjunction to be false, either p or q 
could be false, and for the disjunction to be true, either p or q could 
be true. For this situation, in which there are no “forced” truth val-
ues, we must assume a truth value. In other words, we need to guess. 
Looking at the conclusion, we will guess that p is true. Working this 
out leads us to this:

 ~(p • q) ∴~(p ∨ q) 
 T T F F F T T F   invalid
 	 	 		 	 	 ↑ guess

Our guess allowed us to find a way to make the premises true 
and the conclusion false, and thus determine that the argument 
is invalid, without having to go any further. In fact, any guess we 
could have made would have worked with this example. Try another 
guess before you go on.

Let’s look at a different example. Consider this argument:

USING ASSUMED TRUTH 
VALUES IN SHORTER 

TRUTH TABLES

LESSON 9

KEY POINT

In some cases, shorter 
truth tables may not be 
completed in only one 
row—you might be faced 
with a choice in assigning 
truth values. In this case, 
you must guess at truth 
values until you obtain the 
desired result.
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 p ≡ q q ⊃ r ∴ p ≡ r 
  T    T    F

After taking the first step we are already stuck. There are two 
ways the biconditional can be true, two ways it can be false, and 
three ways for the conditional to be true. So we must guess. Like 
before, we will guess that p is true. Following the procedure leads 
us to obtain this:

 p ≡ q q ⊃ r ∴ p ≡ r 
 T T F F T F T F F
  ↑ contradiction ↑ guess

We get a contradiction in the first premise, which appears to im-
ply that the argument is valid. However, it may simply mean that 
we made a bad assumption. Whenever a contradiction is reached 
after the first guess, we must then try the other way. So we will now 
assume that p is false, which leads to us this:

 p ≡ q q ⊃ r ∴ p ≡ r 
 F T F F T T F F T invalid
       ↑ guess

This second guess gave us no contradiction. This means that, in 
fact, the argument is invalid. You see the importance of guessing 
both truth values for the variable if a contradiction is found the 
first time.

Since the examples in this section have been found invalid, you 
may get the mistaken notion that any time you have to guess a truth 
value, the argument is necessarily invalid. This is not true. Consider 
this argument: p ⊃ q, q ⊃ p, ∴	p ≡ q. The shorter truth table requires 
one to guess a truth value. Let’s start by guessing that p is true. This 
leads to the following result:

 p ⊃ q q ⊃ p ∴ p ≡ q 
 T T F F T T T F F
	 	 ↑ contradiction ↑ guess

The guess of p as true lead us to a contradiction. So we must try 
guessing that p is false. That leads to this result:

CAUTION

If you reach a contradiction 
after an initial guess, you 
still must try other possible 
guesses before concluding 
that an argument is valid.
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 p ⊃ q q ⊃ p ∴ p ≡ q 
 F T T T T F F F T
contradiction↑  ↑ guess

After some experience with this method, you should find that 
your guesses become less random and more educated, and that you 
are able to determine invalid arguments to be invalid after the first 
guess. This may take some careful thought and practice, so don’t get 
discouraged on the way.

Sometimes when using the shorter truth-table method for validity, 
no forced truth values occur before you finish. When this happens, 
you must guess the truth value of one variable or constant, then 
continue with the same method. If no contradiction appears, the 
argument is invalid. If a contradiction does appear, you must guess 
the other truth value for that variable or constant.

SUMMARY
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E X ERCISE 9  (20 points)

Use the shorter truth table method to determine the validity of the following argu-
ments. Most of these (but not all) will require you to guess a truth value.
1.    p 	≡  q       q 	≡  r       ∴  p 	≡  r    

2.    p  ∨  q       ∴ p 	•  q    

3.    p  ⊃  q      q 	≡  r        ∴ p  ⊃  r    

4.    ( p 	⊃  q ) 	∨  ( r  ⊃  s )       p  ∨  r      ∴ q 	∨  s    

5.    p 	∨  q       ~ [ q  •	 ( r  ⊃  p ) ]      ∴ ~ ( p 	≡  q )    

6.    p  ⊃	 ( q  ⊃  r )      q 	⊃  ( p 	⊃	 r )       ∴ ( p  ∨  q ) 	⊃  r     
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We have seen that the shorter truth table is a powerful tool for 
quickly determining the validity of even relatively complex 

arguments. Shorter truth tables may also be used to determine the 
consistency of sets of propositions and the equivalence of two propo-
sitions. Let’s look at consistency first.

To say that propositions are consistent simply means that they 
can be true at the same time. Assuming consistent propositions all 
to be true will result in no logical contradiction. 

For example, consider these two propositions. “It is false that in-
creasing inflation implies a thriving economy”; “If inflation is not 
increasing then the economy is not thriving.” Are these propositions 
consistent? Can they both be true at the same time? How can we 
use the shorter truth table to find out? Try to answer these questions 
before you read on.

These two propositions can be abbreviated this way: ~(I ⊃ E), ~I ⊃ ~E. 
If they are consistent, then assuming that they are both true should 
result in no contradiction. So let’s do that. As before, the propositions 
are symbolized and placed above a line. Then below each proposition 
place a T, implying that both propositions are true, like this:

 ~(I ⊃ E) ~I ⊃ ~E    
 T      T

Now, will this assumption run us into a contradiction? To find 
out, we determine the forced truth values. Since the second proposi-
tion is a conditional which can be true for three out of four combina-
tions of true and false, we can’t really do anything with it. But if the 
first proposition is true, then the conditional I ⊃ E must be false. This 
would imply that I is true and E is false. Carry these truth values 

SHORTER TRUTH TABLES 
FOR CONSISTENCY

LESSON 10

KEY POINT

If you get a contradiction 
when assuming that two 
or more propositions are 
all true, then they are not 
consistent.
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over to the other proposition and continue this procedure, and you 
should end up with this:

 ~(I ⊃ E) ~I ⊃ ~E    
 T T F F F T T T F

Assuming that the propositions were all true resulted in no contra-
diction. Thus they are consistent; they can all be true at the same time.

Now, suppose an attorney at first declared, “My client did not 
take those papers. The secretary took them.” Then later he admitted, 
“It is false that the secretary took the papers if my client did not.” 
Can his statements all be true? Let’s find out. These propositions can 
be symbolized as follows:

 ~C S ~(~C ⊃ S) 
 T T T

We assume the attorney’s propositions are consistent. Does this 
lead us to a contradiction? Follow the shorter truth table procedure, 
and you should end up here:

 ~C S ~(~C ⊃ S) 
 T T T T T T inconsistent
   ↑	contradiction

If ~C ⊃ S is true, then the third proposition must be false. Thus 
they cannot all be true; the propositions are inconsistent.

Propositions are consistent when assuming them all to be true in-
volves no contradiction. Thus the shorter truth table can be used to 
determine consistency by making this assumption and checking for 
a contradiction. 

SUMMARY
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E X ERCISE 10  (25 points)

Problems 1–5: Use the shorter truth table method to determine the consistency of each 
proposition set.
1. 

5. 

Symbolize the propositions using the constants given, and then determine their consistency.
6. Mr. Copia owns a Porsche and a mansion. If he owns a mansion then either he 

owns a Porsche or I am imagining things. I am not imagining things. (P, M, I)

7. If I can use rhetoric then I learned grammar and logic. I did not learn logic but I 
can use rhetoric. (R, G, L)

    p  ≡  q  q  ≡  r  p      ~r  

3.      p  ⊃  q  p        ~ q   4. 

2.  p  ~ p  ⊃  r  ~ ~ p    ~ p  •  q 

     p ∨ q  ~ p 
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The shorter truth table for equivalence works in a similar way as 
the shorter truth table for validity. In this method, we assume 

the two propositions are not logically equivalent, then check to see 
if that assumption runs us into a contradiction or not. If it does 
not, then our assumption is correct and they are not equivalent. 
However, if assuming they are not equivalent always results in a 
contradiction, then they must be equivalent.

Consider these two propositions: “If salt is dissolved in water then 
if an egg is placed in the salty water then it will float.” “If salt is dis-
solved in water and an egg is placed in it, then the egg will float.” 
Are they equivalent? 

We symbolize the propositions and place them on a line. Then we 
assume they are not equivalent. How? By assuming one is true and 
the other false, as such:

    S ⊃ (E ⊃ F)   (S • E) ⊃ F    
  T       F 

Now determine the forced truth values and check for a contradic-
tion. Doing so results in

    S ⊃ (E ⊃ F)   (S • E) ⊃ F    
 T T T F F T T T F F
  ↑	contradiction

The contradiction seems to imply that our assumption of non-
equivalence was wrong. However, we also need to check the other 
combination of true and false for non-equivalence. That is, we now 
should assume the first proposition is false and the second is true. 
Such an assumption leads us to this point:

SHORTER TRUTH TABLES 
FOR EQUIVALENCE

LESSON 11

KEY POINT

To test equivalence using 
shorter truth tables, assume 
the two propositions are 
not logically equivalent, 
then check to see if that 
leads to an unavoidable 
contradiction.
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    S ⊃ (E ⊃ F)   (S • E) ⊃ F    
 T F T F F T T T T F
         ↑	contradiction

We tried both possibilities for the propositions to not be equiva-
lent: the first proposition true and the second false, and vice versa. 
Both attempts wound up in a contradiction, so the assumption was 
wrong and the propositions are equivalent.

For another example, consider these propositions: “If the lock is 
broken then the door won’t open.” “The lock is not broken and the 
door opens.” To determine their equivalence we symbolize them and 
assume one to be true and the other false. Try to figure out which 
you should assume true and which false first.

If we first assume that the conditional is false and the conjunc-
tion is true, we end up with a contradiction (try it!). However, if we 
assume the conditional is true and the conjunction false, we can get 
to this point:

 L ⊃ ~O ~L • O 
 F T  T F T F F F

The truth values are all assigned and there are no contradictions. 
The conditional is true and the conjunction is false, thus they are 
not equivalent.

The following procedure summarizes our method for testing the 
equivalence of two propositions using shorter truth tables.

The Shorter Truth Table Method for Equivalence:
1. Write the two propositions in symbolic form on a line.
2. Assume the propositions are not equivalent by assigning one to 

be T and the other F.
3. If no contradiction occurs, the propositions are not equivalent.
4. If a contradiction is unavoidable, then switch the assigned 

truth values and try again.
5. If a contradiction is still unavoidable, then they are equivalent. 

However, if it is possible to avoid a contradiction, the proposi-
tions are not equivalent.

SUMMARY
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E X ERCISE 11  (20 points)

Use the shorter truth table method to determine the equivalence of each pair of propositions.
1. 

5. If Christ’s righteousness is not imputed to you, then you are condemned. Christ’s 
righteousness is imputed to you or you are condemned. 

3.     p  ∨  ( p  ⊃  q )   q  ⊃  p     4. 

2.     ~ ( p  •  q )   ~ p  ∨  ~ q         p  ⊃  q   p  ⊃  ( p  •  q )     

    p  p  ∨  ( p  •  q )     





73

Any argument presenting two alternatives, either of which when 
chosen leads to certain conclusions, may be called a dilemma. 

The dilemma is often used to trap an opponent in debate. It is also a 
common way of thinking when we are trying to decide what course 
to take between two apparently opposing options.

For example, you might find yourself reasoning like this: “If I go 
to college then I delay making money, but if I go straight into busi-
ness then I will get a low-paying job. I will either go to college or 
straight into business, so I will either delay making money or I will 
get a low-paying job.” This argument follows the general form of a 
constructive dilemma: 

 (p ⊃ q) • (r ⊃ s)       p ∨ r       ∴ q ∨ s

A similar type of argument is the destructive dilemma, which 
follow this form:

 (p ⊃ q) • (r ⊃ s)       ~q ∨ ~s       ∴ ~p ∨ ~r

Here is an example of such a destructive dilemma: “If something 
can be done, then it is possible, and if it can be done easily, then it 
is likely. Faster-than-light travel is either impossible or unlikely, so it 
either cannot be done, or it cannot be done easily.” 

You can see that constructive dilemmas are sort of an extended 
modus ponens, while destructive dilemmas are like modus tollens.

Let’s look at a few specific dilemma types. In one constructive 
type, the antecedent of one conditional is the negation of the ante-
cedent of the other:

 (p ⊃ q) • (~p ⊃ r)       p ∨ ~p       ∴ q ∨ r

THE DILEMMA

LESSON 12

DEFINITIONS

A dilemma is a valid 
argument which presents 
a choice between two 
conditionals.

KEY POINT

Constructive dilemmas 
work like modus ponens, 
while destructive dilemmas 
work like modus tollens.
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Because the second premise is a tautology, it is often left unstated. 
Here is such an argument, the premises of which come from Proverbs 
26:4–5: “If you answer a fool according to his folly, then you will be like 
him. However, if you do not answer a fool according to his folly, then 
he will be wise in his own eyes. Therefore no matter how you answer 
a fool, you will either be like him or he will be wise in his own eyes.”

In another type of constructive dilemma, the consequent of each 
conditional is the same, resulting in the following argument:

(p ⊃ q) • (r ⊃ q)       p ∨ r       ∴ q ∨ q

In this case the conclusion q ∨ q is equivalent to q, and is usually 
stated that way. For example: “If Congressman Jones lied about the 
sale of arms then he should not be re-elected. Neither should he be re-
elected if he honestly couldn’t remember something so important. He 
either lied or he couldn’t remember, so he should not be re-elected.”

Consider this dilemma: “If this bill is to become a law then it 
must pass the Congress and the President must sign it. But either 
it will not make it through Congress or the President will not sign 
it. Therefore this bill will not become a law.” In symbolic form this 
follows the pattern

 p ⊃ (q • r)       ~q ∨ ~r       ∴ ~p

You should be able to show that this is equivalent to a destructive 
dilemma which has the same antecedent p for both conditionals.

The ability to produce a good dilemma is useful in debate, as is 
the ability to get out of a dilemma being used against you. Using the 
shorter truth table, we can easily prove these various dilemmas to be 
valid. How can we avoid the conclusion of a valid argument? One 
way is to claim that, though valid, the argument is not sound; that 
is, one or both of the premises is false. Another way is to produce a 
similar argument that may be used to prove something else. 

Facing a dilemma has been picturesquely referred to as being “im-
paled on the horns of a dilemma,” as if it were a charging bull. Three 
main options are usually presented for escaping the horns of a dilemma:

1. You could go between the horns, meaning you could deny the 
disjunctive premise and provide a third alternative, somewhere in 

CAUTION

Dilemmas can appear in 
many special forms—make 
sure you understand the 
differences between them.
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the middle. In the first example, someone could reply, “The choice 
isn’t between college or a full-time business. You could go to college 
part time and work part time.” The disjunction is charged with be-
ing an either/or fallacy (i.e., a false dilemma).

2. You could grasp it by the horns. This is done by rejecting 
one of the conditionals in the conjunctive premise. For example, 
with the dilemma about the bill above you could reply, “Even if the 
president refuses to sign it, the Congress could still override his veto 
with a two-thirds majority.” And if one conjunct is false then the 
entire conjunction is false.

3. Finally, you could rebut the horns with a counter-dilemma. A 
counter-dilemma which is made up of the same components as the 
original dilemma is usually the most rhetorically effective. Consider 
the dilemma about answering a fool. One possible counter-dilemma 
is, “If you answer a fool according to his folly, then he will not be 
wise in his own eyes. And if you do not answer a fool according to 
his folly, then you will not be like him. Therefore he will either not 
be wise in his own eyes or you will not be like him.” Notice that the 
counter-dilemma does not claim that the original dilemma is false 
or invalid. It simply is another way of looking at the facts in order 
to arrive at a different conclusion. 

Let’s consider one more example, and see how all three of these 
methods could be used against it. Suppose your friend complained, 
“If I study for the test then I’ll miss my favorite show. But if I don’t 
study then I’ll fail the test. I will either study or not study, so I’ll either 
miss my favorite show or I’ll fail the test.” How could you answer him?

First, you could go between the horns by saying, “You could study 
for the test a little while before your show comes on, then study a 
little before class tomorrow.” Second, you could grasp his dilemma 
by the horns, saying “If you don’t study you won’t necessarily fail, 
not if you have been paying attention in class.” Third, you could 
confront him with this counter-dilemma: “If you study for the test 
then you will surely pass, and if you don’t study then you’ll get to see 
your favorite show. Either you will study or not, so you will either 
pass the test or you will get to see your favorite show!”

KEY POINT

There are three main ways 
to escape the horns of a 
dilemma:  go between the 
horns, grasp the horns, or 
rebut the horns.
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A dilemma is an argument presenting a choice between two condi-
tionals joined by conjunction. The two main types of the dilemma 
are constructive and destructive. There are three means of avoiding 
being impaled on the horns of a dilemma: go between the horns by 
denying the disjunction, grasp it by the horns by denying a condi-
tional, or rebut the horns by means of a counter-dilemma.

SUMMARY
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E X ERCISE 12  (18 points)

Symbolize the dilemma from the end of this lesson about studying or watching your fa-
vorite show. Then symbolize the counter-dilemma below it. In the space below the lines, 
use shorter truth tables to demonstrate the validity of both arguments.

1. The dilemma:   __________________________________________

2. The counter-dilemma:  __________________________________________

Refute each of the following dilemmas using the given methods.

3. If angels are material, then they cannot all simultaneously fit on the head of a pin. If 
angels are immaterial, then they can neither dance nor be in contact with the head 
of a pin. Angels are either material or immaterial. Either way, all the angels that ex-
ist cannot simultaneously dance on the head of a pin. (Grasp the horns.)
 ______________________________________________________________
 ______________________________________________________________

4. If Congressman Jones lied about the sale of arms then he should not be re-elected. 
Neither should he be re-elected if he honestly couldn’t remember something so 
important. He either lied or he couldn’t remember, so he should not be re-elected. 
(Go between the horns.)
 ______________________________________________________________
 ______________________________________________________________

5. If you sin apart from the law then you will perish apart from the law, but if you sin 
under the law then you will be judged by the law. You either sin apart from the law 
or you sin under the law. Therefore you will either perish apart from the law or you 
will be judged by the law. (Grasp the horns.)
 ______________________________________________________________
 ______________________________________________________________

Continued on next page.
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6. If God were perfectly good then He would always be willing to prevent evil, and 
if God were infinitely powerful then He would always be able to prevent evil. But 
God is either unwilling or unable to prevent evil. Therefore He is either not per-
fectly good or He is not infinitely powerful. (Grasp the horns.)
 ______________________________________________________________
 ______________________________________________________________
 ______________________________________________________________

7. If teachers cover more material, the students will be more confused. If teachers 
cover less material, the students will not learn as much. Teachers will cover more 
or less material, so either students will be confused or they will not learn as much. 
(Rebut the horns.)
 ______________________________________________________________
 ______________________________________________________________
 ______________________________________________________________
 ______________________________________________________________

8. If taxes increase then the public will complain, but if the deficit increases then the 
public will complain. Either taxes or the deficit will increase. Thus the public is 
bound to complain. (Use any or all three methods.)
 ______________________________________________________________
 ______________________________________________________________
 ______________________________________________________________
 ______________________________________________________________
 ______________________________________________________________
 ______________________________________________________________
 ______________________________________________________________
 ______________________________________________________________
 ______________________________________________________________
 ______________________________________________________________
 ______________________________________________________________
 ______________________________________________________________
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Introduction
How is logic a science? How is it an art? How is it a symbolic language? What becomes 
more apparent about an argument when it is symbolized? How does propositional logic 
differ from categorical logic?

Lesson 1: Introduction to Propositional Logic
What is a proposition? What is a truth-functional proposition? Why is a self-report not 
truth-functional? What is a logical operator? How does a simple proposition differ from a 
compound proposition? What is a propositional constant? What is a propositional variable? 

Lesson 2: Negation, Conjunction, and Disjunction
How is negation expressed in a sentence in regular English? What is the symbol for 
negation? How does negation affect the truth value of the negated proposition? What is 
a defining truth table? What English words express a conjunction? What is the symbol 
for conjunction? When is a conjunction true? How is a disjunction expressed in regular 
English? What is the difference between “inclusive or” and “exclusive or”? How is each 
of them symbolized? When is a disjunction true? When should parentheses be used in 
symbolizing compound propositions?

Lesson 3: Truth Tables for Determining Truth Values
How many rows are needed to express all combinations of true and false for two vari-
ables? for three variables? for n variables? What is the general method for determining the 
truth values of a compound proposition? How does this method differ for propositions 
using constants with known truth values?

Lesson 4: The Conditional
What type of sentence does the conditional represent? Which part of a conditional is the 
antecedent? Which part is the consequent? What is the symbol for conditional? When is 

REVIEW QUESTIONS
Answers can be found in the lesson under which the questions are listed.

UNIT 1  REVIEW
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a conditional considered false? Are conditionals in English with false antecedents actu-
ally truth functional? What other compound proposition is by definition equivalent to 
the conditional? What are several different ways of expressing conditionals in English? 
What is the rule of transposition?

Lesson 5: The Biconditional
What type of sentence does the biconditional represent? What is the symbol for bicon-
ditional? What other compound proposition is equivalent to the biconditional? When is 
a biconditional true, and when is it false? 

Lesson 6: Logical Equivalence
When are two propositions logically equivalent? What is a tautology? What is a self-con-
tradiction? How is the biconditional used to determine if two propositions are logically 
equivalent? How is it used to determine if two propositions are contradictory? 

Lesson 7: Truth Tables for Determining Validity
What is a valid argument? How can a truth table be used to show that an argument is 
invalid? How can a truth table be used to show that an argument is valid? Can an invalid 
argument ever have true premises and a true conclusion? 

Lesson 8: Shorter Truth Tables for Determining Validity
What should be initially assumed about an argument when using a shorter truth table 
to determine the argument’s validity? Explain the procedure for determining validity 
using a shorter truth table.

Lesson 9: Using Assumed Truth Values in Shorter Truth Tables
Can all propositional arguments be analyzed for validity using a shorter truth table of 
only one line? What must be done when a truth table has no “forced” truth values? If 
a contradiction appears when a truth value is guessed while using a shorter truth table, 
what must then be done? Why?

Lesson 10: Shorter Truth Tables for Consistency
What does it mean that a set of propositions are consistent? How can a shorter truth table 
be used to determine the consistency of a set of propositions?
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Lesson 11: Shorter Truth Tables for Equivalence
What does it mean that two propositions are equivalent? What is the method for using 
a shorter truth table to determine the equivalence of a pair of propositions? How is this 
similar to using truth tables to determine validity?

Lesson 12: The Dilemma
What is a dilemma? How is a standard constructive dilemma symbolized? How does a 
destructive dilemma differ from a constructive dilemma? What are the three methods for 
escaping the horns of a dilemma? Is it possible to use all three methods on every dilemma?
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A DDITIONA L E X ERCISES FOR LESSON 1

1. Are simple propositions truth-functional? Why or why not?
 ______________________________________________________________
 ______________________________________________________________
 ______________________________________________________________
 ______________________________________________________________

2. Is a tautology a truth-functional proposition? Is a self-contradiction truth-func-
tional? Explain your answers. 
 ______________________________________________________________
 ______________________________________________________________
 ______________________________________________________________
 ______________________________________________________________
 ______________________________________________________________
 ______________________________________________________________
 ______________________________________________________________

3. Note which propositions are simple, and which are compound.
Something is rotten in the state of Denmark. simple compound
If it assume my noble father’s person, I’ll speak to it. simple compound
I did love you once. simple compound
I loved you not. simple compound
The lady doth protest too much. simple compound
It is not nor it cannot come to good. simple compound
Rosencrantz and Guildenstern are dead. simple compound

REVIEW EXERCISES
Students may do these exercises for further review of this unit.

UNIT 1  REVIEW
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