
Page page 0

Intermediate MPI:Domain
Decomposition

A Tutorial with Exercises
by: Rosalinda de Fainchtein, Ph.D

CSC/NASA GSFC, Code 931

This tutorial was adapted from the class with exercises of the same
name taught to NCCS computer users on May 2001. It constitutes a
second course on MPI after "INTRODUCTION TO MPI: A Tutorial
with Exercises". (You might want to start with the introductory
tutorial if you are new to MPI programming, or if you would like a
quick review of the proper use of basic MPI routines).

As you follow this tutorial, you will explore the basic steps and
concepts involved in using domain decomposition to run your model
or simulation in parallel. You will also get acquainted with and use
MPI_CART routines, the set of MPI routines designed to manage
domain decomposition in your MPI parallel program.

Exercises (and their solutions) are provided for you to practice each
new concept. While you can review the pages of the tutorial
relatively quickly, you will derive the most benefit from it if you
solve the exercises on your own before reviewing their solutions.

Finally, although the examples and exercises are presented using
Fortran programming, C versions are also available, courtesy of Dr.
Hamid Oloso. They are stored both in jsimpson and an anonymous
ftp site on UniTree under the sub-directory "C".

Page 1

Contents

CONTENTS

Why use Domain Decomposition?

Parallelization by Domain Decomposition.

Steps and requirements of Domain Decomposition

Using MPI_CART routines for Domain Decomposition

Examples and Exercises.

Page 2

Domain Decomposition

Domain Decomposition

Question:
How do I code my model in parallel using MPI?

One Answer:
If your code lends itself to it,
divide the work among the processes through
domain decomposition.

What is Domain Decomposition?

A parallelization method
Domain portions are assigned to individual
processes

Page 3

A Typical Example - a

A Typical Example

I have a finite difference model on a 64x64x64 cell domain.

It updates the arrays:

rho(1:64,1:64,1:64)
vel(1:64,1:64,1:64)

I want to run it on a parallel machine on 8 processors.

====> Assign a portion of the domain to each
process.
...........(8 blocks, 1 block to each processor)

Page 4

A Typical Example - b

A Typical Example -- cont.
There are many ways to break up the 3D domain into blocks, not
just "cubes". You should choose the way that best suits your
code.

e.g. 8 columns of 3D data. One column to each processor*...

*This partitioning works well with many codes that have a lot of 1D computation along
the z axis -- thus requiring no communication with neighboring columns.

Page 5

A Typical Example - c

A Typical Example -- cont.
Another way to break up the 3D domain into blocks: "slices"

e.g. 8 slices of 3D data. One slice to each processor...

Page 6

D. Decomposition: Steps

Domain Decomposition

Steps:

1. Break up the domain into blocks.

2. Assign blocks to MPI-processes one-to-one.

3. Write or modify your code so it only updates a
single block.

4. Provide a "map" of neighbors to each process.

5. Insert communication subroutine calls where
needed.

6. Adjust the boundary conditions code.

7. Can your code use "guard cells"?

Note: For ease of illustration, we will use mostly 1D and 2D examples. The concepts
and techniques extend naturally to 3D, the most common type of parallel application.

Page 7

Step 1: Divide into Blocks

First Step:Break up the Domain
e.g. 4 blocks (2D):

 ny ------------------- -------------------
 ^ | | | | |
			BLOCK	BLOCK
			[0,1]	[1,1]
	D O M A I N	---->	---------	---------
			BLOCK	BLOCK
			[0,0]	[1,0]
------------------- -------------------				

 <---------nx--------> <--------->
 nx_block

In the code:

rho(nx,ny) ---------> rho(nx_block,ny_block)

Page 8

Step 2: Distribute Blocks

Second Step:Distribute Blocks
e.g. 4 processes: Assign one block to each of the 4 processes

 ^ -----------------------
 | | | |
 | | | |
 | | BLOCK | BLOCK |
 | | [0,1] | [1,1] |
 | | | |
 ny |-----------|-----------|
 | | | |
 | | | |
 | | BLOCK | BLOCK |
 | | [0,0] | [1,0] |
 | | | |
 . -----------------------
 <----------nx----------->

 |
 |
 \ /
 .

 ----------- -----------
 | | | |
 | [0,1] | | [1,1] | nx_block=nx/2
 | | | | ny_block=ny/2
 |to Proc. 1 | |to Proc. 3 |
 | | | |
 ----------- -----------
 ^ ----------- -----------
 | | | | |
 | | [0,0] | | [1,0] |
 ny_block | | | | |
 | |to Proc. 0 | |to Proc. 2 |
 | | | | |
 . ----------- -----------
 <----------->
 nx_block

Page 9

Step 3: Code for 1 Block

Third Step:Code for 1 Block

REMEMBER: Each process will run the same code to update its
block! Thus,

Adjust array dimensions to block size. e.g.:

rho(nx,ny) --> rho(nx_block,ny_block)

Code explicitly for specific blocks (i.e. processes) where
necessary. e.g.

 .
 .
 if (my_rank == 0) then

 {assign initial data for block [0,0]..}

 else if (my_rank == 1) then

 {assign initial data for block [0,1]..}

 else if (my_rank == 2) then
 .
 .
 end if

Page 10

Step 4: Map of Neighbors

Fourth Step:"Map" of
Neighbors

I am block [i,j] and I need data from my neighbors.

WHO are my neighbors?

=======> "map" of neighboring processes to each process

 | |
 | |
 | Block in |
 | |
 | Process #26 |
 | |
 | |

 ----------------- ------------------------- -------------------
		Block [i,j]		
		my_neigh_left=12		
Block in		my_neigh_right=16		Block in
		my_neigh_bottom=10		
Process #12		my_neigh_top =26		Process #16
		my_neigh_bot_left=8		
		etc.		
 ----------------- ------------------------- -------------------
 ----------------- -------------------------
Block in		Block in
Process #8		Process #10
 ----------------- -------------------------

Page 11

Step 4: 1D Example

Fourth Step:"Map" of
Neighbors - cont.

1D Example (internal block):

 .
 .
 do i=1,nx_block
 rho(i)= (v(i) - v(i-1)) *dt/dx
 end do

Need "v(0)" to update rho(1).
v(0) corresponds to v(nx_block) at my neighboring block.
Fetch v(0) from my neighbor.
..but first find out which process holds my neighbor!

 MY_NEIGHBOR MY_BLOCK
--------------------. .----------------------------------..---
 . | | . . |
 Process 12 | | . . |
 . | | . . |
 . | | . . |
 . v(nx_block)| |rho(1)~v(1)-v(0) . rho(2)~v(2)-v(1) |
 . | | | . . |
 . |__________\ v(0) . . |
 . | | / . . |
 . | | . . |
--------------------. .----------------------------------..---

 i=nx_block i=1 i=2 i=...

===> my_neigh_left=12

Page 12

 Step 5: Communication Calls

Fifth Step:Communication Calls

Examine the code/algorithm.

Does this process need data from its neighbor(s)?

Yes? ==> Insert communication calls where needed.

There are two types of MPI communications routines:

MPI collective routines (e.g. global average).

MPI Point to Point routines (see the example below).

Page 13

 Step 5: 1D Example

Fifth Step:Communication Calls - cont.

Example (internal block):

 .
 .
 do i=1,nx_block
 rho(i)= (v(i) - v(i-1)) *dt/dx
 end do

Need "v(0)" to update rho(1).
v(0) corresponds to v(nx_block) at my neighboring block.
Fetch v(0) from my neighbor.

 MY_NEIGHBOR MY_BLOCK
--------------------. .----------------------------------..---
 . | | . . |
 Process # = 12 | | Process # = 13 . |
 . | | . . |
 . | | . . |
 . | | . . |
 . | | . . |
 . v(nx_block)| |rho(1)~v(1)-v(0) . rho(2)~v(2)-v(1) |
 . | | | . . |
 . |__________\ v(0) . . |
 . | | / . . |
 . | | . . |
 . | | . . |
 . | | . . |
--------------------. .----------------------------------..---

 i=nx_block i=1 i=2 i=...

Pseudocode:

 if (my_rank==12) call mpi_send(v(nx-block),....,13...)
 if (my_rank==13) then
 call mpi_recv(v(0),........,12,.....)
 do i=1,nx_block
 rho(i)=.....

 .
 .
 end do
 end if

Page 14

1D Example Pseudocode

Pseudocode:
The very simplified advection code of our example may proceed
as follows:

1. Identify my neighbor’s process (my_neighbor_left)

2. Post an mpi_receive of v(0) from my_neighbor_left:

3. My_neighbor_left posts a corresponding mpi_send to me of
v(nx_block)

4. Update rho(1:nx_block)

 do i=1,nx_block
 rho(i)=(v(i) - v(i-1)) *dt/dx
 end do

5. Update v(1:nx_block)

6. Repeat for next time step -- Return to step 2.

Page 15

1D Example:Update all Blocks

Coordinate Update of all Blocks:

All blocks send v(nx_block) to the right, and receive v(0) from the
left.

 [i-2,j] [i-1,j] [i,j] [i+1,j]

 ---------- ---------- ---------- ---------- ----
send		receive		send		receive	
v(nx_block)--> v(0)		v(nx_block)--> v(0)					
		send		receive		send	
		v(nx_block)--> v(0)		v(nx_block)-->			
 ---------- ---------- ---------- ---------- ----

 call mpi_sendrecv(v(nx_block),1,...my_neighbor_right,... &
 v(0), 1,........,my_neighbor_left,...)

Note:

The choice of dimensioning v(0:nx_block) is arbitrary, a special case of:
v(start_block : start_block+nx_block)

with start_block=0

....what if my block is at a physical boundary?

Page 16

Step 6:Domain Boundaries

Domain Boundaries

What if my block is at a physical boundary?

In addition to "knowing" who its neighbors are, each process
needs to "know" whether any of its boundaries is in fact a
physical boundary.

Why?

1. To avoid programming errors.
2. To apply boundary conditions correctly.

We will discuss the two cases:

Periodic Boundary Conditions

Non-Periodic Boundary Conditions

Page 17

Periodic Bdry. Cond.

Domain Boundaries:

Periodic Boundary Conditions:
The "map" of neighbors should reflect the periodic boundary
conditions.

 | | | | | | | |
 ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ----------
 | | | | | | | |
 | Proc. 0 | | Proc. 4 | | Proc. 8 | | Proc. 12 |
 | | | | | | | |
my_neighbor_left | | | |my_neighbor_right
 | =12 | | | | | | =0 |
 | | | | | | | |
 ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ----------
 | | | | | | | |

Under periodic boundary conditions, the blocks
at the ends are treated as any other "internal"
block by just defining the correct map of
neighbors:

For process 12, my_neighbor_right=0
For process 0, my_neighbor_left=12

Page 18

Non-Periodic Bdry. Cond.

Domain Boundaries:

Non-Periodic Boundaries

On a physical boundary you should:

1. Avoid sending or receiving data from a non-existent block.
2. Apply boundary conditions.

A simple way to accomplish both tasks is by using the MPI
constant handle:

MPI_PROC_NULL .

Let us illustrate with an example:

e.g. suppose process 12 corresponds to a right boundary block:

 | | | | | | | |
 ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ----------
Proc. 0		Proc. 4		Proc. 8		Proc. 12
					my_neighbor_right	
						=MPI_PROC_NULL
 ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ----------
 | | | | | | | |

1. Avoid sending (or receiving) data from a bdry.

 if (my_rank == 12) &
 my_neighbor_right = MPI_PROC_NULL
 .
 .
 call mpi_send(......my_neighbor_right...)
 !no data is sent by proc. 12*

2. Boundary conditions.... e.g. (Pseudocode)

 if (my_neighbor_right == MPI_PROC_NULL) &
 [APPLY APPROPRIATE BOUNDARY CONDITIONS]

* When mpi_send is called with MPI_PROC_NULL as a "destination" argument, the
mpi_send routine does nothing.

Page 19

Step 7: Guard Cells

Guard Cells:

What are "Guard Cells"?
Guard cells are variables, arrays, or array sections that
are defined with the sole purpose of storing data from a
neighboring block.

How are guard cells used?
They avoid repeated "fetching" of data from a

neighboring block, when that data is needed more than
once before it is updated by the neighbor.
They allow for more "tidy" coding, as in our simple 1D
advection example:

In our ID advection example:

 do i=1,nx_block
 rho(i)=(v(i) - v(i-1)) *dt/dx
 end do

 MY_NEIGHBOR MY_BLOCK
----------------. .-----.--------------------------.
 . | |GUARD| . . . |
 . | | | . . . |
 . | |CELL | . . . |
 . | | | . . . |
 . | | | . . . |
 . | | | . . . |
 .v(nx_block)| | | . . . |
 . | | | | . . . |
 . |________\v(0) |v(1) .v(2) .v(3) . |
 . | / | . . . |
 . | | | . . . |
 . | | | . . . |
 . | | | . . . |
----------------. .-----.--------------------------.

v(0) is a guard cell.

Page 20

MPI_CART Routines

MPI_CART Routines

In principle, you are ready to write your code in parallel using
domain decomposition. You now know the basic issues to
consider when writing a parallel code using domain
decomposition. Together with basic MPI communication routines
(e.g. mpi_send mpi_recv, etc) you have all the tools you need to
write your parallel code.

If you ask:

Do I have to design a "map" of neighbors for
each process/block?

The answer is: Not Necessarily.

You can use MPI_CART routines to manage domain
decomposition for you.

Minimal set of routines:

MPI_CART_CREATE
MPI_CART_GET
MPI_CART_RANK

Very Useful MPI_CART routines:

MPI_CART_SHIFT
MPI_CART_COORDS

Page 21

MPI_CART Routines - 2

MPI_CART Routines - 2

How does it work?

1. MPI_CART_CREATE creates a new communicator with
Cartesian topology according to the programmer’s
specifications.

(All processes in an existing communicator make an
identical call to MPI_CART_CREATE)

The new communicator (e.g. comm_cart) "stores" all the
necessary information about the "grid" --- size, shape,
map of processes to blocks,etc. -- in each process.

2. Each process can then access grid information about
comm_cart by calling an assortment of local MPI_CART
routines, e.g.

MPI_CART_GET

MPI_CART_RANK
MPI_CART_SHIFT
MPI_CART_COORDS

Page 22

MPI_CART Routines - 3

MPI_CART Routines - 3

In other words...

I start with an existing communicator
(MPI_COMM_WORLD) with n processes.

I call MPI_CART_CREATE and:

It logically arranges the n processes on an
ndims-dimensional Cartesian grid of dimensions:
dims(1:ndims)

Each process knows the position of all of the processes in
this Cartesian grid.

To access this and other Cartesian grid information, a
process needs to call the "inquiring" MPI_CART
routines.

Page 23

MPI_CART Routines - 4

MPI_CART Routines -- 4

1. Information available through comm_cart on each process,
includes:

Coordinate parameters* of each process.
Type of boundaries (periodic or non-periodic).
Topological dimension of the grid.
How many processes in each dimension.
etc.

2. Information can be accessed by calling:

MPI_CART_GET
MPI_CART_RANK
MPI_CART_SHIFT
MPI_CART_COORDS

*Note that the coordinate parameters are the coordinates of each process
on the grid of processes. Not to be confused with the physical coordinates
of the cells or grid points in the model or simulation.

Page 24

MPI_CART_CREATE

MPI_CART_CREATE

MPI_CART_CREATE(comm_old,ndims,dims,periods,reorder,

comm_cart,ierror)

comm_old =input communicator (handle)

ndims = # of dimensions of Cartesian grid (integer)

dims(ndims) = # of processes in each dimension (int.
array)

periods = are boundaries periodic? (logical)

reorder = ranks may be reordered (true) or not (false)
(logical)

comm_cart =communicator with new Cartesian
topology(handle)

ierror =return error code (integer)

NOTE: The only return argument -- other than ierror -- is
the handle to the new Cartesian communicator
(comm_cart)!

Page 25

MPI_CART_CREATE: An Example

MPI_CART_CREATE: An Example

In order to obtain the Cartesian topology for domain
decomposition of our example (4 blocks):

 ny ------------------- -------------------
 ^ | | | Proc. 1 | Proc. 3 |
			BLOCK	BLOCK
			[0,1]	[1,1]
	D O M A I N	---->	---------	---------
			Proc. 0	Proc. 2
			BLOCK	BLOCK
			[0,0]	[1,0]
------------------- -------------------				
 <---------nx--------> <--------->
 nx_block

 .
 .
 .

 ndims=2
 dims(1:ndims)=2
 periods(1:ndims)=.true.

 call MPI_CART_CREATE(MPI_COMM_WORLD,ndims, &
 dims,periods,.false., &
 COMM_CART,ierror)

Page 26

Other MPI_CART Routines

Other MPI_CART Routines

MPI_CART_CREATE returns a handle (comm_cart).
Each process can use comm_cart to inquire:

What are my coords in the grid? ==>
MPI_CART_GET(comm_cart....

MPI_CART_COORDS(comm_cart....

What are the coords of any other process in the grid?
MPI_CART_COORDS(comm_cart....

Who are my neighbors? ==>
MPI_CART_SHIFT(comm_cart....
MPI_CART_RANK(comm_cart....

Number of dimensions of the grid (1D,2D,3D..)? ==>
MPI_CARTDIM_GET(comm_cart....

What are the dimensions of the grid? ==>
MPI_CART_GET(comm_cart....

etc.

Page 27

MPI_CART_COORDS

Inquiring MPI_CART Routines:
MPI_CART_COORDS

Q:Which block was assigned to process with
rank=some_rank?
A:Call MPI_CART_COORDS and get the block’s
coordinate parameters.

MPI_CART_COORDS(comm_cart,rank,maxdims,
coords,ierror)

comm_cart =Cartesian communicator (handle)

rank = rank of process we are inquiring
about(integer)

maxdims = length of vector coords in the calling
program

(integer)

coords(1:maxdims) = coordinate parameters of the the
specified

process (integer)

ierror =return error code (integer)

Page 28

MPI_CART_COORDS:Illustration

MPI_CART_COORDS: Illustration

In our example of a 2D nx x ny domain decomposed into 4
blocks:

 ny ------------------- -------------------
 ^ | | | Rank 1 | Rank 3 |
			BLOCK	BLOCK
			[0,1]	[1,1]
	D O M A I N	---->	---------	---------
			Rank 0	Rank 2
			BLOCK	BLOCK
			[0,0]	[1,0]
------------------- -------------------				
 <---------nx--------> <--------->
 nx_block

call MPI_CART_COORDS(comm_cart,....rank=0,..) ==> coords(1:2) = 0,0

call MPI_CART_COORDS(comm_cart,....rank=1,..) ==> coords(1:2) = 0,1

call MPI_CART_COORDS(comm_cart,....rank=2,..) ==> coords(1:2) = 1,0

call MPI_CART_COORDS(comm_cart,....rank=3,..) ==> coords(1:2) = 1,1

Page 29

MPI_CART_COORDS:Example 1

MPI_CART_COORDS: Example 1

Create a 2x2 2D Cartesian communicator
(COMM_CART)
Print out the coordinate parameters of each process in
COMM_CART.

 .
 parameter(ndims=2)
 .
!--How many processes in the global group?
 call MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)

!--Create a Cartesian topology

 dims(1:ndims)=2 ! 2x2 grid of sub-domains
 periods(1)=.true. ! periodic bdry. cond. along x
 periods(2)=.false. ! non-periodic bdry. cond. along y

 call MPI_CART_CREATE(MPI_COMM_WORLD,ndims, &
 dims,periods,.false., &
 COMM_CART,ierror)

! --Find and print the coordinate parameters of each process in the
! Cartesian topology

 call MPI_CART_COORDS(COMM_CART,my_rank,2,coords,ierror)
 write(*,*)’The coords of process ’,my_rank,’ are: ’,coords

 .
 .

The code above is an excerpt from example1.f90.
The full program can be copied from jsimpson at:
/scr/mpi-class2/example1.f90.
It can also be downloaded by anonymous ftp to
UniTree.

(In this example, each process finds and prints its own
coordinate parameters. Keep in mind that any single
process could have printed all the coordinate parameters
-- see exercise 1)

Page 30

MPI_CART_COORDS:Exercise I

MPI_CART_COORDS: Exercise 1

a. Copy and run example1.f90
You can find it in jsimpson at /scr/mpi-class2, or
It can also be downloaded by anonymous ftp to
UniTree.

Note that each process "produces" its own coordinate
parameters in the Cartesian group.

Output (if running 4 MPI processes):

jsimpson% mpirun -np 4 example1
 The coords of process 1 are: 0, 1

 The coords of process 0 are: 2*0
 The coords of process 3 are: 2*1
 The coords of process 2 are: 1, 0

Note that processes might be assigned different
coordinate parameters on different computers.

b. Modify example1.f90 so that process 0 "finds" and
prints the Cartesian parameters of each of the
processes in the Cartesian grid. (Find a solution in
exercise1.f90 at /scr/mpi-class2, or download it by
anonymous ftp to UniTree.

Page 31

Data Decomposition

Defining and Assigning Data to Arrays
after Domain Decomposition

Suppose you have a 2D domain of 4x4 cells.

You want to initialize the array A(4,4) as some
function of the physical coordinates:

x(4,4)
y(4,4)

e.g. A(i,j)=x(i,j)**2 + y(i,j)**2

After domain decomposition (e.g. into 4 blocks), you
will need to define local arrays on each block:

x(2,2)
y(2,2)
A(2,2)

Page 32

Data Decomposition: Example 2

Defining and Assigning Data to Arrays
after Domain Decomposition: Example 2

Given a 4x4 regular domain of cells, we will do domain
decomposition into 4 processes.

Before decomposition:

The coordinate arrays are:
x(1:4,j)= (0.1, 0.3, 0.5, 0.7)
y(i,1:4)= (0.1, 0.3, 0.5, 0.7)

The cell size is dx=dy=0.2

Page 33

Example2 - 1.cont.

Defining and Assigning Data to Arrays
after Domain Decomposition: Example

2-cont.

We choose to decompose the 4x4 domain into 4 blocks as
shown in the figure below:

Page 34

Example2 - 2.cont.

Defining and Assigning Data to Arrays
after Domain Decomposition: Example 2 -

cont.

After decomposition:

The coordinate arrays become x(1:2,1:2), y(1:2,1:2)

x(1:2,1:2), y(1:2,1:2) are different on each block:
Block [0,0]:

x(1:2,j)=(0.1, 0.3)
y(i,1:2)=(0.1, 0.3)

Block [0,1]:
x(1:2,j)=(0.1, 0.3)
y(i,1:2)=(0.5, 0.7)

etc.

Page 35

Data Decomposition: Exercise 2

Domain Decomposition: Exercise 2.

1. Using example1.f90 as a template, have each process
compute its own physical coordinate* arrays [
x(1:2,1:2), y(1:2,1:2)].

2. Have each process print its process #, its Cartesian
coordinate parameters, and its x and y arrays.

3. Verify your results. Do they correspond to the
previous figure?

HINT: Define the physical coordinates of the left-bottom
corner of each process first.

! --The physical coordinates of the left-bottom corner of my block
 x_corner= float(nx/dims(1) * coords(1)) * dx
 y_corner= float(ny/dims(2) * coords(2)) * dy

nx=number of cells along x on the whole domain
ny=number of cells along y on the whole domain
dims(1)=number of blocks along x
dims(2)=number of blocks along y
coords(1:2)=coord. parameters of this block.

SUGGESTION: Use the following output statements:

 write(*,"(’my rank.=’,i2,’, my coords=[’,2i2,’] ,&
 & x= ’,4f4.1)") &
 & my_rank, coords, x

 write(*,"(’my rank.=’,i2,’, my coords=[’,2i2,’] ,&
 & y= ’,4f4.1)") &
 & my_rank, coords, y

*Do not confuse the physical coordinate arrays (x,y), with the coordinate
parameters of each block. The coordinate parameters are a pair of integers
that "locate" the block within the Cartesian grid of blocks. The physical
coordinate arrays (x,y) are the coordinates of the cells or points where
physical data is defined.

Page 36

Output from Exercise 2

Output from Exercise 2.

mpirun -np 4 exercise2
my rank.= 0, my coords=[0 0] , x= 0.1 0.3 0.1 0.3
my rank.= 0, my coords=[0 0] , y= 0.1 0.1 0.3 0.3
my rank.= 2, my coords=[1 0] , x= 0.5 0.7 0.5 0.7
my rank.= 2, my coords=[1 0] , y= 0.1 0.1 0.3 0.3
my rank.= 1, my coords=[0 1] , x= 0.1 0.3 0.1 0.3
my rank.= 1, my coords=[0 1] , y= 0.5 0.5 0.7 0.7
my rank.= 3, my coords=[1 1] , x= 0.5 0.7 0.5 0.7
my rank.= 3, my coords=[1 1] , y= 0.5 0.5 0.7 0.7

Page 37

Solution to Exercise 2

Excerpt from exercise2.f90

Note that this "solution" is not unique!

 .
 .

 nx=ny=4
 dims(1)=dims(2)=2

 .

 call MPI_CART_COORDS(COMM_CART,my_rank,2,coords,&
 & ierror)

!--The physical coordinates of my left-bottom corner:
 dx=0.2
 dy=0.2
 x_corner= float(nx/dims(1) * coords(1)) * dx
 y_corner= float(ny/dims(2) * coords(2)) * dy

!--Use my corner coordinates to compute the cell
! coordinates in my block

 do i=1,2
 x(i,:)=x_corner+(float(i)-0.5)*dx
 end do

 do j=1,2
 y(:,j)=y_corner+(float(j)-0.5)*dy
 end do
 .
 .
 .

(See the full program at /scr/mpi-class2/exercise2.f90 in jsimpson, or use
anonymous ftp to UniTree to retrieve exercise2.f90)

Page 38

More Decomposition Exercises

Exercises 2a-d

Below is a list of the next four exercises you will be
working through. In all of them, cell sizes are

dx=dy(=dz)=0.2. To begin (and get some hints), please go
to the next page .

2a. Modify exercise2.f90 so it decomposes an 8x8 grid
into 4 blocks (along x and y).

2b. Modify exercise2.f90 so it decomposes an 8x8 grid
into 16 blocks (along x and y).

2c. Modify exercise2.f90 to do 3D decomposition of a
4x4x4 grid into 8 blocks (along x, y, and z).

2d. Modify exercise2.f90 to do 2D decomposition of a
4x4x4 grid into 4 blocks (along x and y).

Page 39

Exercise 2a

Exercise2a.f90

2a. Modify exercise2.f90 so it decomposes an 8x8 grid into
4 blocks (along x and y).

HINT: The grid of blocks is identical as that on exercise 2
(2x2). Only the data on each block will change.

Array dimension and values of x and y.
Values of nx and ny
do loop parameters
(output format...)

You can check your output against the next page --- note that the line
order of output coming from different processes is bound to be different.

Page 40

Output from Exercise 2a

Output from exercise2a.f90

mpirun -np 4 exercise2a
my rank.= 3, my coords=[1 1] , x= 0.9 1.1 1.3 1.5 0.9 1.1 1.3
 1.5 0.9 1.1 1.3 1.5 0.9 1.1 1.3 1.5
my rank.= 2, my coords=[1 0] , x= 0.9 1.1 1.3 1.5 0.9 1.1 1.3
 1.5 0.9 1.1 1.3 1.5 0.9 1.1 1.3 1.5
my rank.= 3, my coords=[1 1] , y= 0.9 0.9 0.9 0.9 1.1 1.1 1.1
 1.1 1.3 1.3 1.3 1.3 1.5 1.5 1.5 1.5
my rank.= 1, my coords=[0 1] , x= 0.1 0.3 0.5 0.7 0.1 0.3 0.5
 0.7 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7
my rank.= 0, my coords=[0 0] , x= 0.1 0.3 0.5 0.7 0.1 0.3 0.5
 0.7 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7
my rank.= 2, my coords=[1 0] , y= 0.1 0.1 0.1 0.1 0.3 0.3 0.3
 0.3 0.5 0.5 0.5 0.5 0.7 0.7 0.7 0.7
my rank.= 1, my coords=[0 1] , y= 0.9 0.9 0.9 0.9 1.1 1.1 1.1
 1.1 1.3 1.3 1.3 1.3 1.5 1.5 1.5 1.5
my rank.= 0, my coords=[0 0] , y= 0.1 0.1 0.1 0.1 0.3 0.3 0.3
 0.3 0.5 0.5 0.5 0.5 0.7 0.7 0.7 0.7
 STOP (PE 1) executed at line 89 in Fortran routine ’MAIN’
 STOP (PE 0) executed at line 89 in Fortran routine ’MAIN’
 STOP (PE 2) executed at line 89 in Fortran routine ’MAIN’
 STOP (PE 3) executed at line 89 in Fortran routine ’MAIN’
jsimpson%

Page 41

Solution to Exercise 2a

Solution of exercise2a.f90
A solution code is available at jsimpson in:

/scr/mpi-class2/exercise2a.f90,
or by fetching exercise2a.f90 through anonymous ftp to UniTree

Only modifications pertaining to the data in each block
are necessary:

jsimpson% diff exercise2.f90 exercise2a.f90
22c22
< real x(2,2),y(2,2),dx,dy

> real x(4,4),y(4,4),dx,dy
36,37c36,37
< nx=4
< ny=4

> nx=8
> ny=8
67c67
< do i=1,2

> do i=1,4
71c71
< do j=1,2

> do j=1,4
78c78
< & x= ’,4f4.1)") &

> & x= ’,16f4.1)") &
82c82
< & y= ’,4f4.1)") &

> & y= ’,16f4.1)") &
jsimpson%

Page 42

Exercise 2b

Exercise2b

2b. Modify exercise2.f90 so it decomposes an 8x8 grid into
16 blocks (along x and y).

HINT: The grid of blocks is larger than that on exercise 2
(4x4). The size of the x and y arrays in each block are the
same as in exercise2. The variables and arrays that
change are:

Values of x and y. -- although you won’t need to make
modifications
Values of nx and ny
Values of array dims

Page 43

Output from exercise2b.f90

Output from exercise2b.f90

jsimpson% mpirun -np 16 exercise2b

my rank.=12, my coords=[3 0] , x= 1.3 1.5 1.3 1.5
my rank.=12, my coords=[3 0] , y= 0.1 0.1 0.3 0.3
my rank.= 5, my coords=[1 1] , x= 0.5 0.7 0.5 0.7
my rank.= 5, my coords=[1 1] , y= 0.5 0.5 0.7 0.7
my rank.= 8, my coords=[2 0] , x= 0.9 1.1 0.9 1.1
my rank.= 8, my coords=[2 0] , y= 0.1 0.1 0.3 0.3
my rank.= 6, my coords=[1 2] , x= 0.5 0.7 0.5 0.7
my rank.= 6, my coords=[1 2] , y= 0.9 0.9 1.1 1.1
my rank.= 3, my coords=[0 3] , x= 0.1 0.3 0.1 0.3
my rank.= 3, my coords=[0 3] , y= 1.3 1.3 1.5 1.5
my rank.=15, my coords=[3 3] , x= 1.3 1.5 1.3 1.5
my rank.=15, my coords=[3 3] , y= 1.3 1.3 1.5 1.5
my rank.=13, my coords=[3 1] , x= 1.3 1.5 1.3 1.5
my rank.=13, my coords=[3 1] , y= 0.5 0.5 0.7 0.7
my rank.=10, my coords=[2 2] , x= 0.9 1.1 0.9 1.1
my rank.=10, my coords=[2 2] , y= 0.9 0.9 1.1 1.1
my rank.= 0, my coords=[0 0] , x= 0.1 0.3 0.1 0.3
my rank.= 0, my coords=[0 0] , y= 0.1 0.1 0.3 0.3
my rank.=14, my coords=[3 2] , x= 1.3 1.5 1.3 1.5
my rank.=14, my coords=[3 2] , y= 0.9 0.9 1.1 1.1
my rank.=11, my coords=[2 3] , x= 0.9 1.1 0.9 1.1
my rank.= 2, my coords=[0 2] , x= 0.1 0.3 0.1 0.3
my rank.=11, my coords=[2 3] , y= 1.3 1.3 1.5 1.5
my rank.= 2, my coords=[0 2] , y= 0.9 0.9 1.1 1.1
my rank.= 4, my coords=[1 0] , x= 0.5 0.7 0.5 0.7
my rank.= 4, my coords=[1 0] , y= 0.1 0.1 0.3 0.3
my rank.= 1, my coords=[0 1] , x= 0.1 0.3 0.1 0.3
my rank.= 7, my coords=[1 3] , x= 0.5 0.7 0.5 0.7
my rank.= 9, my coords=[2 1] , x= 0.9 1.1 0.9 1.1
my rank.= 1, my coords=[0 1] , y= 0.5 0.5 0.7 0.7
my rank.= 7, my coords=[1 3] , y= 1.3 1.3 1.5 1.5
my rank.= 9, my coords=[2 1] , y= 0.5 0.5 0.7 0.7
.
.

Page 44

Solution to Exercise 2b

Solution of exercise2b

A solution code is available at jsimpson in: /scr/mpi-class2/exercise2b.f90
or by fetching exercise2b.f90 through anonymous ftp to UniTree

Only parameters nx,ny, and dims need to be modified:

jsimpson% diff exercise2.f90 exercise2b.f90
< integer, parameter :: dims_x=2, dims_y=2 !same as dims(1:2)

> integer, parameter :: dims_x=4, dims_y=4 !same as dims(1:2)
36,37c36,37
< nx=4
< ny=4

> nx=8
> ny=8
39a40
> ! dims(1:ndims)=(dims_x,dims_y) ! 2x2 grid of sub-domains
52a54
>
jsimpson%

Page 45

Exercise 2c

Exercise 2c

2c. Modify exercise2.f90 to do 3D decomposition of a
4x4x4 grid into 8 blocks (along x, y, and z).

HINTS:
Modify the calling parameters for
MPI_CART_CREATE to correspond to a 3D
decomposition.
Make the x and y arrays 3 dimensionsal.
Define a third array: z=third coordinate.

Compute z following the steps for x and y.
You will have a 2x2x2 topology of blocks
Each block (process) will hold 2x2x2 arrays.

Page 46

Output from Exercise 2c

Output from exercise2c.f90

A solution to exercise2c can be found at
/scr/mpi-class2/exercise2c.f90
It can also be downloaded through anonymous ftp to
UniTree

jsimpson% mpirun -np 8 exercise2c
my rank.= 5, my coords=[1 0 1] , x= 0.5 0.7 0.5 0.7 0.5 0.7
0.5 0.7
my rank.= 5, my coords=[1 0 1] , y= 0.1 0.1 0.3 0.3 0.1 0.1
0.3 0.3
my rank.= 5, my coords=[1 0 1] , z= 0.5 0.5 0.5 0.5 0.7 0.7
0.7 0.7
my rank.= 0, my coords=[0 0 0] , x= 0.1 0.3 0.1 0.3 0.1 0.3

0.1 0.3
my rank.= 0, my coords=[0 0 0] , y= 0.1 0.1 0.3 0.3 0.1 0.1
0.3 0.3
my rank.= 0, my coords=[0 0 0] , z= 0.1 0.1 0.1 0.1 0.3 0.3
0.3 0.3
my rank.= 2, my coords=[0 1 0] , x= 0.1 0.3 0.1 0.3 0.1 0.3
0.1 0.3
my rank.= 6, my coords=[1 1 0] , x= 0.5 0.7 0.5 0.7 0.5 0.7
0.5 0.7
my rank.= 2, my coords=[0 1 0] , y= 0.5 0.5 0.7 0.7 0.5 0.5
0.7 0.7
my rank.= 6, my coords=[1 1 0] , y= 0.5 0.5 0.7 0.7 0.5 0.5
0.7 0.7
my rank.= 2, my coords=[0 1 0] , z= 0.1 0.1 0.1 0.1 0.3 0.3
0.3 0.3
my rank.= 3, my coords=[0 1 1] , x= 0.1 0.3 0.1 0.3 0.1 0.3
0.1 0.3
my rank.= 7, my coords=[1 1 1] , x= 0.5 0.7 0.5 0.7 0.5 0.7
0.5 0.7
my rank.= 6, my coords=[1 1 0] , z= 0.1 0.1 0.1 0.1 0.3 0.3
0.3 0.3
my rank.= 1, my coords=[0 0 1] , x= 0.1 0.3 0.1 0.3 0.1 0.3
0.1 0.3
my rank.= 3, my coords=[0 1 1] , y= 0.5 0.5 0.7 0.7 0.5 0.5
0.7 0.7
my rank.= 4, my coords=[1 0 0] , x= 0.5 0.7 0.5 0.7 0.5 0.7
0.5 0.7
my rank.= 7, my coords=[1 1 1] , y= 0.5 0.5 0.7 0.7 0.5 0.5
0.7 0.7
my rank.= 1, my coords=[0 0 1] , y= 0.1 0.1 0.3 0.3 0.1 0.1
0.3 0.3
my rank.= 3, my coords=[0 1 1] , z= 0.5 0.5 0.5 0.5 0.7 0.7
0.7 0.7
my rank.= 4, my coords=[1 0 0] , y= 0.1 0.1 0.3 0.3 0.1 0.1
0.3 0.3
my rank.= 7, my coords=[1 1 1] , z= 0.5 0.5 0.5 0.5 0.7 0.7
0.7 0.7
my rank.= 1, my coords=[0 0 1] , z= 0.5 0.5 0.5 0.5 0.7 0.7
0.7 0.7
my rank.= 4, my coords=[1 0 0] , z= 0.1 0.1 0.1 0.1 0.3 0.3
0.3 0.3
.

Page 47

Exercise 2d

Exercise 2d

2d. Modify exercise2.f90 to do 2D decomposition of a
4x4x4 grid into 4 blocks (along x and y).

HINTS:
The calling parameters for MPI_CART_CREATE
should be the same.
Make the x and y arrays 3-dimensional -- each
(2x2x4).
Define a third array: z=third coordinate.
Compute z following the steps for x and y.
You will have a 2x2 topology of blocks
Each block (process) will hold 2x2x4 arrays.

Page48

Output from Exercise 2d

Output from exercise2d.f90

A solution to exercise2d can be found at
/scr/mpi-class2/exercise2d.f90
It can also be downloaded through anonymous ftp to
UniTree.

jsimpson% !!
mpirun -np 4 exercise2d
my rank.= 2, my coords=[1 0] , x= 0.5 0.7 0.5 0.7 0.5 0.7 0.5
 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7
my rank.= 2, my coords=[1 0] , y= 0.1 0.1 0.3 0.3 0.1 0.1 0.3
 0.3 0.1 0.1 0.3 0.3 0.1 0.1 0.3 0.3
my rank.= 2, my coords=[1 0] , z= 0.1 0.1 0.1 0.1 0.3 0.3 0.3
 0.3 0.5 0.5 0.5 0.5 0.7 0.7 0.7 0.7
my rank.= 3, my coords=[1 1] , x= 0.5 0.7 0.5 0.7 0.5 0.7 0.5
 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7
my rank.= 1, my coords=[0 1] , x= 0.1 0.3 0.1 0.3 0.1 0.3 0.1
 0.3 0.1 0.3 0.1 0.3 0.1 0.3 0.1 0.3
my rank.= 3, my coords=[1 1] , y= 0.5 0.5 0.7 0.7 0.5 0.5 0.7
 0.7 0.5 0.5 0.7 0.7 0.5 0.5 0.7 0.7
my rank.= 0, my coords=[0 0] , x= 0.1 0.3 0.1 0.3 0.1 0.3 0.1
 0.3 0.1 0.3 0.1 0.3 0.1 0.3 0.1 0.3
my rank.= 1, my coords=[0 1] , y= 0.5 0.5 0.7 0.7 0.5 0.5 0.7
 0.7 0.5 0.5 0.7 0.7 0.5 0.5 0.7 0.7
my rank.= 3, my coords=[1 1] , z= 0.1 0.1 0.1 0.1 0.3 0.3 0.3
 0.3 0.5 0.5 0.5 0.5 0.7 0.7 0.7 0.7
my rank.= 0, my coords=[0 0] , y= 0.1 0.1 0.3 0.3 0.1 0.1 0.3
 0.3 0.1 0.1 0.3 0.3 0.1 0.1 0.3 0.3
my rank.= 1, my coords=[0 1] , z= 0.1 0.1 0.1 0.1 0.3 0.3 0.3
 0.3 0.5 0.5 0.5 0.5 0.7 0.7 0.7 0.7
my rank.= 0, my coords=[0 0] , z= 0.1 0.1 0.1 0.1 0.3 0.3 0.3
 0.3 0.5 0.5 0.5 0.5 0.7 0.7 0.7 0.7
 STOP (PE 3) executed at line 100 in Fortran routine ’MAIN’
 STOP (PE 0) executed at line 100 in Fortran routine ’MAIN’
 STOP (PE 1) executed at line 100 in Fortran routine ’MAIN’
 STOP (PE 2) executed at line 100 in Fortran routine ’MAIN’

Page49

Communication

Communication within the Cartesian
"Grid"

Regroup:
You know how to decompose your data into a
Cartesian grid of blocks.

If you have an embarrassingly parallel program --
where processes contain all the data they need in local
memory -- you are done.

Otherwise, you will need to do inter-block
communication.

Most programs require inter-block communications.

When a process needs to send or receive data from a
neighboring process, the first thing needed is to find that
neighbor’s rank...

Page50

Finding a Neighbor’s Rank

Finding a Neighbor’s Rank

I am a process of rank=my_rank

I need to send/receive data to/from a neighbor.

One way to do it:

1. Figure out my coordinates using:
MPI_CART_GET, or
MPI_CART_COORDS

2. Figure out the coordinates of the neighbor process
e.g. If my coords are [i,j], my RHS neighbor is
[i+1,j]

3. Use those coordinates to obtain the rank (e.g.
n_rank) of the neighbor.

MPI_CART_RANK
(described on the next page)

4. Send/receive the data to/from process with rank
n_rank.

Page51

MPI_CART_RANK

Inquiring MPI_CART Routines:

MPI_CART_RANK

Q:What is the rank of the process with coordinates
parameters=coords?
A:Call MPI_CART_RANK and get the process’s rank.

MPI_CART_RANK(comm_cart,coords,rank

comm_cart = Cartesian communicator (handle)

coords = coords of process we are inquiring
about(integer array)

rank = rank of the process with the specified
coords (integer)

ierror =return error code (integer)

Pag52

MPI_CART_RANK:Example 2

MPI_CART_RANK: Example 2

On a 2D Cartesian Grid of 4 Processes, each process finds
the rank of its RHS neighbor (along x).

Excerpts from example2.f90 located at jsimpson in:
/scr/mpi-class2/example2.f90

! --Given my rank (my_rank), find what my coords are.
 call MPI_CART_COORDS(COMM_CART,my_rank,ndims, &
 &coords,ierror)
 .

!--Who is my RHS neighbor?
! Well... Since my coords. are [coords(1),coords(2)]
! my RHS neighbor’s coords are:

 r_coords(1)=coords(1)+1
 r_coords(2)=coords(2)

!--Get its rank (r_rank):
 call MPI_CART_RANK(COMM_CART,r_coords, &
 & r_rank,ierror)

Page53

Output from Example 2

Output from Example 2

jsimpson% mpirun -np 4 example2
 my_rank= 2 my coordinates, coords, are 1, 0
 my_rank= 2 my RHS neighbor is: 0
 my_rank= 1 my coordinates, coords, are 0, 1
 my_rank= 1 my RHS neighbor is: 3
 my_rank= 3 my coordinates, coords, are 2*1

 my_rank= 0 my coordinates, coords, are 2*0
 my_rank= 3 my RHS neighbor is: 1
 my_rank= 0 my RHS neighbor is: 2
 STOP (PE 0) executed at line 80 in Fortran routine ’MAIN’
 STOP (PE 3) executed at line 80 in Fortran routine ’MAIN’
 STOP (PE 2) executed at line 80 in Fortran routine ’MAIN’
 STOP (PE 1) executed at line 80 in Fortran routine ’MAIN’
jsimpson%

Page54

MPI_CART_RANK:Exercises 3

MPI_CART_RANK: Exercise 3

Copy and modify example2.f90 to:
3a.Find the nearest neighbor along y+ of each process.

Verify your answers. Do they make sense? Note the
value of periods in the code.

3b.Change the value of periods(2) to .false. and rerun
exercise 3a. (The code will break -- do you know
why?)

3c.Find the nearest neighbor diagonally along the
(x+,y+) direction (use periods=.true.).
Verify your answers.

Page55

Soln. and output:exercise 3a

Solution of exercise 3a

Modify the r_coords array:
r_coords(1)=coords(1)
r_coords(2)=coords(2)+1

Output from Exercise 3a

jsimpson% mpirun -np 4 exercise3a
 my_rank= 0 my coordinates, coords, are 2*0
 my_rank= 0 my TOP neighbor is: 1
 my_rank= 1 my coordinates, coords, are 0, 1
 my_rank= 1 my TOP neighbor is: 0
 my_rank= 3 my coordinates, coords, are 2*1
 my_rank= 3 my TOP neighbor is: 2
 my_rank= 2 my coordinates, coords, are 1, 0
 my_rank= 2 my TOP neighbor is: 3
 STOP (PE 2) executed at line 80 in Fortran routine ’MAIN’
 STOP (PE 3) executed at line 80 in Fortran routine ’MAIN’
 STOP (PE 0) executed at line 80 in Fortran routine ’MAIN’
 STOP (PE 1) executed at line 80 in Fortran routine ’MAIN’
jsimpson%

Page56

Soln. and output:exercise 3c

Solution to Exercise 3c

Modify the r_coords array:
r_coords(1)=coords(1)+1
r_coords(2)=coords(2)+1

Output from Exercise 3c

jsimpson% f90 -o exercise3c exercise3c.f90
jsimpson% mpirun -np 4 exercise3c
 my_rank= 2 my coordinates, coords, are 1, 0
 my_rank= 2 my TOP-RIGHT neighbor is: 1
 my_rank= 0 my coordinates, coords, are 2*0
 my_rank= 0 my TOP-RIGHT neighbor is: 3
 my_rank= 1 my coordinates, coords, are 0, 1
 my_rank= 3 my coordinates, coords, are 2*1
 my_rank= 1 my TOP-RIGHT neighbor is: 2
 my_rank= 3 my TOP-RIGHT neighbor is: 0
 STOP (PE 1) executed at line 80 in Fortran routine ’MAIN’
 STOP (PE 2) executed at line 80 in Fortran routine ’MAIN’
 STOP (PE 0) executed at line 80 in Fortran routine ’MAIN’
 STOP (PE 3) executed at line 80 in Fortran routine ’MAIN’
jsimpson%

Page57

Send-Receive along a Coordinate

Send-Receive along a
Coordinate Direction

On a 1D domain decomposition*, all processes (blocks)
will be sending v(nx_block) to their neighbor to the right
[x+], and receiving v(0) from their neighbor to the left
[x-].

 [i-2] [i-1] [i] [i+1]

 --------- --------- --------- --------- ----
send		receive		send		receive	
v(nx_block)--> v(0)		v(nx_block)--> v(0)					
		send		receive		send	
		v(nx_block)--> v(0)		v(nx_block)-->			
 --------- --------- --------- --------- ----

 call mpi_sendrecv(v(nx_block),1,......my_neighbor_right,..... &
 v(0), 1,...........,my_neighbor_left,.....)

Each process needs the dest (my_neighbor_right) and
source (my_neighbor_left) arguments for mpi_sendrecv.
How can it get them?

Option 1: Use MPI_COORDS and MPI_RANK as
explained before.

(somewhat cumbersome), or

Option 2: Use MPI_SHIFT:
get source and dest arguments along a coordinate
direction with a single subroutine call!

*In a 2D decomposition, a similar sendrecv exchange would take place

along the y coordinate as well [e.g. v(:,ny_block) --> v(:,0)].

Page58

MPI_CART_SHIFT

Inquiring MPI_CART Routines:
MPI_CART_SHIFT

Send-Receive Communication along a Cartesian
Coordinate
Use the MPI_SHIFT routine to obtain the source (e.g.
my_neighbor_left), and the dest (e.g. my_neighbor_right)
argument for the MPI_SENDRECV call.

MPI_CART_SHIFT(comm_cart,direction,disp,
rank_source,rank_dest,ierror)

comm_cart =Cartesian communicator (handle)

direction = coordinate dimension of shift (integer)
direction=0 --> shift along "x"
direction=1 --> shift along "y"
etc.

disp = displacement (>0: Up shift, <0: Down shift)
(Integer)

disp=1 --> dest=nearest neighbor to the "right" (source=nearest
neighbor to the "left")
disp=-1 --> dest=nearest neighbor to the "left" (source=nearest
neighbor at "right")
disp=2 --> dest=second nearest neighbor to the "right"

etc.

rank_source = rank of source process (integer)

rank_dest = rank of destination process (integer)

ierror =return error code (integer)

Page 59

MPI_CART_SHIFT:Example 4

MPI_CART_SHIFT: Example 4
On a 1D Cartesian grid of 4 blocks. Each block stores 2
cells, and 1 guard cell.
Update guard cell data (v0) for array vel(0:2)

Excerpt from example4.f90:

 parameter (ndims=1)
 .
 dims(1:ndims)=4
 .
!--Find the coordinates of this block
 call MPI_CART_COORDS(comm_cart,my_rank,
 &ndims,coords,ierror)

!--Assign some values to vel(0:2)
 do i=0,2
 vel(i)=float(i+100*coords(1))
 end do

!--Find rank of neighbors along x
 direction=0 !(along x)
 disp=1 !immediate neighbors

 call MPI_CART_SHIFT(comm_cart,direction, &
 &disp,source,dest,ierror)

!--Send vel(2) to the block to my right and receive
! v0 from my left
 sendtag=1
 recvtag=1
 call MPI_SENDRECV(vel(2),1,MPI_REAL, &
 &dest,sendtag, &
 &v0,1, &
 &MPI_REAL,source,recvtag, &
 &comm_cart,status,ierror)

Page 60

Output from Example 4

Output from Example 4

Copy example4 from /scr/mpi_class2/example4.f90 in
jsimpson and run it on 4 processes.
You can also get example4.f90 through anonymous ftp to
UniTree.

The output should look like this:

jsimpson% f90 -o example4 example4.f90
jsimpson% mpirun -np 4 example4
 Process 3 of 4 is alive
 Process 2 of 4 is alive
 Process 0 of 4 is alive
 Process 1 of 4 is alive
 my_rank= 0 source= 3 dest= 1
 my_rank= 2 source= 1 dest= 3
 my_rank= 3 source= 2 dest= 0
 my_rank= 1 source= 0 dest= 2

 MPI_PROC_NULL= -1
 my coords are: 3 v0= 202.
 my coords are: 2 v0= 102.
 my coords are: 0 v0= 302.
 my coords are: 1 v0= 2.
 STOP (PE 1) executed at line 84 in Fortran routine ’MAIN’
 STOP (PE 0) executed at line 84 in Fortran routine ’MAIN’
 STOP (PE 2) executed at line 84 in Fortran routine ’MAIN’
 STOP (PE 3) executed at line 84 in Fortran routine ’MAIN’
jsimpson%

Page 61

Exercise 4

Exercise 4

Modify example4.f90 to update RHS guard cells.

Hints:
Get "v3" from RHS neighbor.
Modify "disp" in MPI_CART_SHIFT

Output from Exercise4:

jsimpson% f90 -o exercise4 exercise4.f90
jsimpson% mpirun -np 4 exercise4
 Process 3 of 4 is alive
 Process 0 of 4 is alive
 Process 2 of 4 is alive
 Process 1 of 4 is alive
 my_rank= 3 source= 0 dest= 2
 my_rank= 0 source= 1 dest= 3

 my_rank= 2 source= 3 dest= 1
 my_rank= 1 source= 2 dest= 0
 my coords are: 3 v3= 1.
 my coords are: 2 v3= 301.
 my coords are: 0 v3= 101.
 my coords are: 1 v3= 201.
 STOP (PE 1) executed at line 81 in Fortran routine ’MAIN’
 STOP (PE 2) executed at line 81 in Fortran routine ’MAIN’
 STOP (PE 3) executed at line 81 in Fortran routine ’MAIN’
 STOP (PE 0) executed at line 81 in Fortran routine ’MAIN’
jsimpson%

Page 62

Solution to Exercise 4

Solution to Exercise 4

Excerpt from exercise4.f90*:

.

.
 disp=-1 !MODIFIED!
 call MPI_CART_SHIFT(comm_cart,direction,disp,source, &
 & dest,ierror)
.
.
!--Send vel(1) to the block to my left and receive v3 from
! my right -->Modified
 sendtag=1
 recvtag=1
 call MPI_SENDRECV(vel(1),1,MPI_REAL,dest,sendtag, & !MODIFIED!
 v3,1,MPI_REAL,source,recvtag, & !MODIFIED!
 comm_cart,status,ierror)

!--Print out the updated v3
 write(*,*)’my coords are: ’,coords,’ v3= ’,v3 !MODIFIED!

*The full code of exercise4.f90 can be found in jsimpson at
/scr/mpi-class2/exercise4.f90, or through anonymous ftp
to UniTree

Page 63

Exercise 4a

Exercise 4a

Make the following change in example4.f90:

 periods=.false.

And run the program.

Compare the output you get for v0 to the periodic case
of example4.

Note how MPI_PROC_NULL is output by
MPI_CART_SHIFT

Note the effect of having

 source=MPI_PROC_NULL

and

 dest=MPI_PROC_NULL

on the physical boundary blocks.

Page 64

Output from Exercise 4a

Output from Exercise 4a

Output....

 .
 dest=MPI_PROC_NULL at proc 3
 my coords are: 2 v0= 3.
 source=MPI_PROC_NULL at proc 0
 my coords are: 3 v0= 4.
 my coords are: 0 v0= 0.E+0
 my coords are: 1 v0= 2.
 .

Page 65

"Echo" MPI_CART Routines

"Echo" MPI_CART
Routines

"Echo" routines inquire about the definition parameters
of a Cartesian communicator, such as:

ndims: Is the topology 1D,2D, ...?,
periods(ndims): periodic?
dims(ndims): Dimensions along each coordinate
direction

There are two "echo" routines: MPI_CARTDIM_GET
and MPI_CART_GET.

1.What is the Number of Dimensions in the Cartesian
communicator comm_cart?

MPI_CARTDIM_GET(comm_cart, ndims,ierror)

comm_cart =communicator with Cartesian
topology(handle)

ndims = # of dimensions of Cartesian grid (integer)

ierror =return error code (integer)

Page 66

MPI_CART_GET

MPI_CART_GET

2.Number of processes and periodicity along each
Cartesian direction. Also, coordinate parameters of the
calling process.

MPI_CART_GET(comm_cart,maxdims, dims,

periods,coords, ierror)

comm_cart =communicator with Cartesian
topology(handle)

maxdims = length of vectors dims, periods, coords
(integer)

dims = # of processes in each dimension (int. array)

periods = are boundaries periodic? (logical array)

coords =coords of calling process (int. array)

ierror =return error code (integer)

Page 67

CONCLUSIONS

CONCLUSIONS

We covered the essentials of Domain Decomposition Using
MPI_CART routines:

What is Domain Decomposition?

Basics of a Domain Decomposition Code.

Using MPI_CART Routines for Managing Domain
Decomposition.

Explained the various MPI_CART routines available.

Examples and Exercises of Domain Decomposition
into 1D, 2D, 3D Cartesian Topologies of "blocks".

2D Decomposition of a 3D Domain.

Page 68 Previous Page

REFERENCES

REFERENCES
m.Snir et.al., "MPI -- The Complete Reference", 2nd Edition, 1998.

Argonne Natl. Lab MPI web-site

Compendium of MPI tutorials’ web-sites at NCCS User Pages

