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RNA-Seq Tutorials

e Tutorial 1

— RNA-Seq experiment design and analysis

— Instruction on individual software will be provided in other
tutorials

e Tutorial 2 — Thursday Sept. 25
— Advanced RNA-Seq Analysis topics
« Hands-on tutorials -

— Analyzing human and potato RNA-Seq data using Tophat
and Cufflinks in Galaxy

— Human: Thursday Oct. 2
— Potato: Tuesday Oct. 14
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RNA-seq Tutorial 2

Tips, Tricks and Non-Human Organisms

Part |I: Review and Considerations for Different Goals
and Biological Systems (Kevin Silverstein)

Part Il: Read Mapping Statistics and Visualization
(John Garbe)

Part Ill: Post-Analysis Processing — Exploring the
Data and Results (Ying Zhang)
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Part |

Review and Considerations
for Different Goals and
Biological Systems
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Typical RNA-seq experimental protocol and analysis

Sample
i MRNA isolation
]

Fragmentation

i/ RNA -> cDNA

]
|
|
|

Genome e

Reference Transcriptome
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Steps iIn RNA-Seg data analysis depend on
your goals and biological system

Step 1: Quality Control
|
ALA step2: —— Data prepping
' | s
—
Step 3: . Map Reads to Reference ___ @E F,i’fﬂ

Genome/Transcriptome

I Y i ——

Assemble Transcriptome

,, “microarray simulation”
) Discovery
mode
™ O Other applications: Identify Differentially
De novo Assembly Expressed Genes

Refine gene models
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Programs used in RNA-Seq data analysis
depend on your goals and biological system

FastQC
Step 1: Quality Control
l Trimmomatic, cutadapt
Step 2: Data prepping
l TopHat, GSNAP
Step 3: Map Reads to Reference

Genome/Transcriptome

__________________ ==

_ Cufflinks, Cuffmerge
Step 4. Assemble Transcriptome

.

_J Other applications: Identify Differentially =
Refine gene models Expressed Genes

IGV Cuffdiff
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Specific Note for Prokaryotes

« Cufflinks developer: d

“We don’t recommend assembling bacteria transcripts using
Cufflinks at first. If you are working on a new bacteria genome, consider
a computational gene finding application such as Glimmer.”

* For bacteria transcriptomes:
« Genome available: do genome annotation first then reconstruct

the transcriptome.
* No genome: try de novo assembly of the transcriptome, followed

by gene annotation.
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Programs used in RNA-Seq data analysis
depend on your goals and biological system

FastQC
Step 1: Quality Control
"!‘;7 X
Trimmomatic, cutadapt
B U Step 2: Data prepping
l Bowtie, BWA
Step3: ., MapReads to Reference
Genome/Transcriptome
l Cufflinks, Cuffmerge

Step 4: Assemble Transcriptome

Glimmer, GeneMark \ l
Cuffdiff

Artemis J % dentifv Dif -
Other applications: entify Differentially
— Expressed Genes

Refine gene models
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Visualizing microbial data in Artemis
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Croucher NJ and Thomson NR. Curr Opin Microbiol. (2010) 13:619-624.

M UNIVERSITY OF MINNESOTA

Driven to Discover:




Programs used in RNA-Seq data analysis
depend on your goals and biological system

FastQC
Step 1: Quality Control
l Trimmomatic, cutadapt
Step2: —— Data prepping
l TopHat, GSNAP
Step 3: 5 Map Reads to Reference

Genome/Transcriptome

_ Cufflinks, Cuffmerge
Step 4. Assemble Transcriptome

GeneMark, FGeneSH /\

Trinity, TransABySS - _
BLAT, Augustus MAKER_J Other applications: Identify Differentially
De novo Assembly Expressed Genes

Refine gene models

Cuffdiff
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Augustus creates superior gene
models using RNA-seq data

http.//augustus.gobics.de/binaries/readme.rnaseq.html

* |deal for organisms with draft genome
seguence and poor (or no) gene models

o Utilizes Intron/exon boundaries to

provide “hints” to the de novo gene
prediction

« Bonus for predictions that match boundaries
« Penalties for predictions that conflict
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Programs used in RNA-Seq data analysis
depend on your goals and biological system

7> FastQC
M ) Step 1: Quiality Control
@ : Fﬁ?’ l

Trimmomatic, cutadapt

Step2: —— Data prepping
l bowtie
Step 3: 5 Map Reads to Reference  ___

Transcriptome

Step 4
Trinity, TransABySS
— o _ RSEM, eXpress
Other applications: Identify Differentially =
De novo Assembly Expressed Genes

Refine gene models
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Programs used in RNA-Seq data analysis
depend on your goals and biological system

FastQC
Step 1: Quality Control
l Trimmomatic, cutadapt
Q@ Step2: — Data prepping
© Consider
sequencing and
assembling the TopHat, GSNAP
genome first via Step 3: > Map Reads to Reference
PacBio if <50 MB... ) Genome/Transcriptome
- l
_ Cufflinks, Cuffmerge
Step 4- Assemble Transcriptome
GeneMark, FGeneSH /\
Cuftdiff

Other applications: Identify Differentially
De novo Assembly Expressed Genes
Refine gene models

Trinity, TransABySS
BLAT, MAKER J
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Library construction and
sequencing design decisions
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Library type (SE/PE) and insert size

Sample
l MRNA isolation

_ Library preparation
Fragmentation

Size: 200-500 bp

¢ Sequence fragment end(s)

——
N
——
N

I'l

SE sequencing
PE sequencing
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Library type (Mate-pair) and insert size

S | Size: 2000-
ample | 8000 bp
Circulation
l MRNA isolation l reiat
/A .
‘ , Fragmentation — —
_ Library preparation
Fragmentation Seqguence

fragment end(s)

——
—

Mate-Pair sequencing =

:
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Optimal library size depends on goals and
organism: exon size

Arabidopsis exon size distribution
Mode: 100 bp ——>

] Median: 150 bp

0.0025 0.0030
|

0.0020
|

= <— Mean: 300 bp

Density
0.0010 0.0015
|

0.0005
|

0.0000
|
s
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Optimal library size depends on goals and
organism: exon size

Adjacent connectivity e T Insert size = exon size

Minimal connectivity —— e e .z _=="__== Insert size << exon size

Long-range connectivity Insert size >> exon size

=

One size doesn't fit all: organisms can differ in exon size distribution
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How does connectivity play into the analysis?

1. splice-align reads to the genome
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2. Build a graph representing alternative splicing events
(o = (B I ]
*\_:L: \ =
" \ el
I = = ) o == =
T\
3. Traverse the graph to assemble variants
0 —— | [ rrererrrrren R
TR = o
i e 5B

4. Assemble isoforms

[

Martin JA and Wang Z. Nat Rev Genet. (2011) 12:671-682.
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Some algorithms (e.g., tophat) exhaustively look for
candidate splices in a specified distance pegged to the
expected intron size distribution (default 70-500,000)

Arabidopsis intron size distribution

0.0015
|

0.0010
|

Density

0.0005
|

0.0000
|
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Why not just leave the defaults?
(e.g., 70-500,000 bp)

« ~3500 Arabidopsis introns < 70 bp
* Huge increase in computation time

« Will accumulate spurious long-range splice
junctions
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Many plant genomes have undergone ancient
Whole Genome Duplications (WGDs)

is lyrata

ooooo
= o
BsESfgeced3BRScl

¥ WGD event

Eurosids Il

Eurosids |

Rosids

Eudicnl_sl

giosperms
ﬁ

Any
Vascular Plants

http://genomevloution.org

 Difficulty mapping uniquely to related gene family members

« Abundance levels (e.g., FPKMs) can become skewed for members of large
gene families

« Both PE strategies and longer reads help to distinguish paralogs
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Some genomes are rife with repetitive elements
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http://genomevoloution.org

~25 million years each

«  50%, 65% of the human and maize genome are repeat elements, respectively
(repbase, Kronmiller et al., Plant Phys 2008;)

 PE, mate-pair strategies and multiple insert sizes help to uniquely map repeats
« Long reads can help for small-scale or simple repeats
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Why is PE Is crucial for repetitive genomes
and those with paralogous gene families?

Insert siz_(_e distribution

o —d1

Al

2 X 50 bp is better than 1 X 100 bp for most applications and systems.
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Sequencing depth needed depends on
transcriptome size and the project goals

Sequencing Depth is the average read coverage of target
seguences

Sequencing depth = total number of reads X read length / estimated target
sequence length

Example, for a 5MB transcriptome, if 1Million 50 bp reads are produced,
the depthis1 M X 50 bp/5M ~ 10 X

Average coverage may be misleading, since expression levels
can vary more than 5 orders of magnitude!

Differential expression requires less depth than assembly, gene
model refinement and structural variant discovery.
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Polyploidy Is particularly
problematic

/‘Tri‘pjlc!ifi_(Brr\-l? \‘ vTe»t—raplqiq‘ (4N) = l}-_kﬁe)'(\aploi_d.(.
I | F K |
il ] LS

 Difficult to distinguish alleles from paralogs
« Genome assembly often intractable
* Need care in design of transcriptome experiment

o)
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Certain applications and biological
systems will require special design
considerations for maximal resolution

c G A X G T
X 6 T C T A
e A cC T a >
X
C {c T |

 Polyploid genomes may require long reads, multiple insert
sizes and custom software to distinguish among highly
similar alleles at each locus.

« Ditto for those who wish to interrogate allele-specific
differential expression (e.g., maternal or paternal impriting).
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Genome size characteristics (IGenomes)

Species Number Transcriptome Mode| Intron % % genes
of size (Mbp) Avg size genome in
genes exon range repetitive  families*
size  (1%]99%)
Homo sapiens 29230 70.1 100|300 77|107000 47 20
Mus musculus 24080 61.4 100300 78|100000 44 NA
Gallus gallus** 4906 11.1 100J230 73]|120000 10 NA
Drosophila melanogaster 18436 30.1 150|450 30|25000 32 7
Caenorhabditis elegans 23933 28.0 110|220  43|8000 4 24
Arabidopsis thaliana 27278 51.1 70|300 46|4900 9 35
Saccharomyces cerevisiae 6692 8.9 75|1200  20|2600 1 36
Escherichia coli*** 4290 0.6 NA NA 3 52

* 9% genes with at least one paralog in the COG database (unicellular) or included in the COG lineage specific expansion (LSE)
list. (These percentages are likely systematic underestimates)

** Poor annotation is suspected for iGenomes UCSC-based Gallus gallus (galGal3)

*** http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/E/Esch.coli.html; ecocyc; Gur-Arie, Genome Res 2000;.
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Summary of Library Construction and
Sequencing Decisions

1 2 3 4
Project De novo Assembly Refine gene model Differential Gene Identification of
Goals: of transcriptome Expression structural variants
Library PE, Mated PE PE, SE PE PE, Mated PE
Type:
Sequencing Extensive Extensive Moderate Extensive
Depth: (> 50 X) (10 X ~ 30 X)

« SE may be OK for (3) DGE if you have a good annotation and a simple genome.

« Strand-specific library creation may be necessary for organisms with a large
percentage of genes that overlap on opposite strands (e.g., yeast, bacteria), or if
you're interested in antisense regulation.

« Consider PacBio sequencing for goals #1, #2 and #4 above!
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Sample Replicates and Pooling Decisions

1 2 3 4
Project De novo Assembly Refine gene model Differential Gene Identification of
Goals of transcriptome Expression structural variants
Pooling No Yes No Yes, for discovery
OK?
Biological Yes Yes, if not pooling  Yes Yes, if not pooling
Replicates?

—

L\m&@ \J] Lw =5 /l b ==

« Pooling may be advisable if RNA is limited T
or if not interested in biological variability.

¢~ As a general rule, the following biological ‘, ‘, "_/ \/

e replicates are advisable for DGE:

« 3+ for cell lines and pooled samples

« 5+ for inbred lines (e.g., BL6 mice,
NILs, RILS)

e 20+ for human samples

istockphoto.com
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Part Il

Read Mapping Statistics
and Visualization

John Garbe, PhD
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Mapping Statistics

How well did my sequence library align to my
reference?
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Mapping Statistics

« Mapping Output
— SAM (text) / BAM (binary) alignment files

— Summary statistics (per read library)
* % reads with unique alignment
* % reads with multiple alignments
* % reads with no alignment
* % reads properly paired (for paired-end libraries)
* Mean and standard deviation of insert size

SAM specification: http://samtools.sourceforge.net/SAM1.pdf
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Mapping Statistics

« SAM Tools
* Tophat
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Mapping StatistiCS - samtools

« Galaxy
— NGS: SAM Tools -> flagstat
« MSI Command line

— Module load samtools
— samtools flagstat accepted_hits.bam
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Mapping StatistiCS - samtools
« SAMtools output

% samtools flagstat accepted_hits.bam

31443374 + 0O in total (QC-passed reads + QC-failed reads)
0 + O duplicates

31443374 + 0 mapped (100.00%:-nan%)

31443374 + 0 paired in sequencing

15771038 + 0 readl

15672336 + 0 read?2

15312224 + O properly paired (48.70%:-nan%)
29452830 + 0 with itself and mate mapped

1990544 + 0 singletons (6.33%:-nan%)

0 + 0 with mate mapped to a different chr

0 + 0 with mate mapped to a different chr (mapQ>=5)
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Mapping StatistiCS - tophat

« Galaxy
— MSI -> tophat
« Command line

— module load tophat
— tophat_out/align_summary.txt
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Mapping StatistiCS - tophat

 align_summary.txt output (paired-end reads)

Left reads:
Input: 12000000
Mapped: 11392868 (94.9% of input)
of these: 4329227 (38.0%) have multiple alignments (111 have >20)
Right reads:
Input: 12000000
Mapped: 11211546 (93.4% of input)
of these: 4231651 (37.7%) have multiple alignments (105 have >20)
94.2% overall read alignment rate.

Aligned pairs: 10982574
of these: 3246926 (29.6%) have multiple alignments
and: 313704 ( 2.9%) are discordant alignments
88.9% concordant pair alignment rate.
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Mapping Visualization

* Integrative Genomics Viewer (IGV)
— Fast genome browser

— Supports array-based and next-generation
sequence data, and genomic annotations

— Free Java program

Integrative

190Vl Genomics  NEtP://www.broadinstitute.org/igv/home

Viewer
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Mapping Visualization

File View Tracks Help

test_data w | |test_chromosome w | [test_chromosome |G0 it @ s e W = T T

- 649 bp 4
100 bp 200 bp 300 bp 400 bp 500 bp B00 bp

o-m@

accepted_hits.bam

. I |
ENSSSCT00000015628

Bam file viewed with IGV
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Causes of poor mapping

« Poor quality sequence library

« Contaminated sequence library

« Poor quality reference

« Divergence between sequenced population and reference
« Corrupted files

« Poor choice of mapping software

« Bug in mapping software

* Improper alignment parameters
* Repetitive genome

* Mislabeled samples

« Short read length (< 50op)
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Poor Quality Library

Quality scares across all bases (llumina 1.5 encoding)

Good

I_-
I T
1T 1
[ T |
[T ]
[ [ |
T ]
T ]
[ [ ]

Poor quality read library
decreases mapping performance

Quality scores across all bases {lllumina 1.5 encoding)

34
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Contaminated seqguence library

Overrepresented sequences

I S 0 rossve Soue

GTATTACAGATCGGAAGAGCGGTTCAGCAGGAATCCCGAGACCCGATCTCG 820428 .8366639370528275 Illumina Paired PCR Primer 2 (100% over 43bp)

GTATACAGATCGGAAGAGCGGTTCAGCAGGAATGCCCAGACCCGATCTCGT 749728 2.5922157461699773 Illumina Paired End PCR Primer 2 (100% over 44bp)
CGGTTCAGCAGGAATGCCCAGATCGCGAAGAGCGCTTCAGCAGCAATGCCG 648852 2.243432780066747 Illumina Paired End Adapter 2 (100% over 31bp)
GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGATCGGAAGAGCGGTTCAG 176765 0.6111723403310748 Illumina Paired End PCR Primer 2 (97% over 36bp)
ACGTCGTAGATCGGAACAGCGGTTCAGCAGGAATGCCGAGACCGATCTCG 143840 0.4973327832615156 Illumina Paired End PCR Primer 2 (100% over 43bp)
GTATTCAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCGT 124281 0.42970672717272257 Illumina Paired End PCR Primer 2 (100% over 44bp)
GTATCAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCGTA 99207 0.34301232917842867 Illumina Paired End PCR Primer 2 (100% over 45bp)
GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCGTATGCCGT 96289 0.33292322279941655 Illumina Paired End PCR Primer 2 (100% over 50bp)
CGGAAGAGCGGTTCAGCAGGAATGCCGAGATCGGAAGAGCGGTTCAGCAG 93842 0.3244626185124245 TIllumina Paired End PCR Primer 2 (96% over 33bp)
CGTTACGACGATCGCGAACGAGCGGTTCAGCAGGAATGCCCGAGACCCGATCTCG 75370 0.26059491013918545 Illumina Paired End PCR Primer 2 (100% over 43bp)
CGTACGAGATCGGAAGAGCGCGTTCAGCAGCGAATGCCGAGACCCGATCTCGT 63691 0.22021428183196043 Illumina Paired End PCR Primer 2 (100% over 44bp)
ACGTAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCGTAT 56765 0.19626734873359242 Illumina Paired End PCR Primer 2 (100% over 46bp)

TACTGTAACATCGCGAACAGCGGTTCAGCAGGAATGCCCAGACCCGATCTCG 42991 0.14864317078139472 Illumina Paired End PCR Primer 2 (100% over 43bp)

FastQC output showing ~10% adapter contamination
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Poor Quality Reference

Sus scrofa 9.2 Sus scrofa 10.2
46% 48% mapped, properly paired
17% 20% mapped, wrong insert size
9% 9% singleton
26% 22% no mapping

Mapping performance improves due
to improvement in Pig genome build
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Divergence between sequenced
population and reference

gggggggggg

5] [chr8 [%) |chr8:144,988,617-145,028658 (Go T <« » & [ = 2

07-2151_...Covera ge

07-2151_BANK_Lang
3.sorted.bam

222222

11-06601...Coverar ge

11-06601_R_Lanes1
sorted.bam

RefSeq Genes

Large and small sequence divergence between two human samples and the
human reference genome
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Corrupted files
R1.fastg R2.fastq

Readl Read 1
Read 2 Read 2
Read 3 Read 4
Read 4 Read 5
Correct fastq file Corrupted fastq file

48% 22% mapped, properly paired

20% 46% mapped, wrong insert size

9% 10% singleton

22% 22% no mapping

Unsynchronized paired-end fastq file decreases
percentage of properly-paired reads
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Poor choice of mapping software

aaaaaaaaaaaaaaaaaaaaaa

Poor junction mapping _
BWA (not splice aware)
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Good junction mapping

GSNAP (splice aware)
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Bug In software

Tophat 2.0.0 Tophat 2.0.1
35% 48% mapped, properly paired
33% 20% mapped, wrong insert size
10% 9% singleton
22% 22% no mapping

New “bugfix” release of Tophat
Improves mapping performance
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Improper alignment parameters

Correct inner Incorrect inner

distance (60) distance (220)
48% 43% mapped, properly paired
20% 25% mapped, wrong insert size
9% 10% singleton
22% 22% no mapping

Incorrect “inner mate pair distance” parameter
decreases mapping performance
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Part |l

Post-Analysis Processing -
Exploring the Data and
Results

Ying Zhang, PhD
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Workflow of a typical NGS project

Step 1: Design NGS experiment |4+ Whataré my goals?
2. What are the characteristics of my system?
- 1. [lllumina/ SOLID / 454 / lon Torrent / Helicos /
. Sequencing Process :
Step 2: q g ) e
- 1. Sequence contamination
uality control _
Step 3: Ang Datz PrenDi 2. Low quality reads
pping 3 Trimmi o .
3. Trimming / Filtering / Synchronization
- . 1. Which program to use?
: In silico Anal
Step 4: > Ml SHICO ANAYSIS 2. How to measure performance?
_V _ 1. Explore results, verify controls
Step 5 Post-Analysis Processing 12, Data grouping behavior
< 3. Pathway analysis
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Widely-used Tools for Data Exploration

 Direct visualization of “positive controls”:
— IGV viewer
— UCSC Genome Browser
 Statistical checks of data structure:
— PCA: principle component analysis
— MDS: multi-dimension scaling
— Unsupervised clustering and Heatmap
« System-level Analysis:
— IPA: ingenuity pathway analysis
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Integrative Genomics Viewer (IGV)

Fast genome browser

Supports array-based and next-generation
seguence data, and genomic annotations

Free Java program

Launch:
* From Galaxy
- From Desktop: allocate enough memory @

Integrative

L0\ Genomics  hitp: //www.broadinstitute.org/igv/home

Viewer
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UCSC Genome Browser
(http://genome.ucsc.edu/cgi-bin/hgGateway)

Home Genomes Blat Tables Gene Sorter PCR Session FAQ Help

Mouse (Mus musculus) Genome Browser Gateway

The UCSC Genome Browser was created by the Genome Bioinformatics Group of UC Santa Cruz.
Software Copyright (c) The Regents of the University of California. All rights reserved.

clade genome assembly position or search term gene

Mammal : || Mouse + || July 2007 (NCBI37 /mm3) * | |INM_007393 submit

Click here to reset the browser user interface settings to their defaults.

track search add custom tracks track Qubs

configure tracks and display clear position

Ho vy Genomes Genome Browser Blat Tables Gene Sorter PCR Session FAQ Help
Add Custom Tracks

clade | Mammal = genome | Mouse = assembly | July 2007 (NCBI37/mm3) =

Display your own data as custom annotation tracks in the browser. Data must be formatted in BED, bigBed, bedGraph, GFF, GTF, WIG, bigWig, MAF,
BAM, BED detail, Personal Genome SNP, VCF, or PSL formats. To configure the display, set frack and browser line attributes as described in the User's

Guide. URLs for data in the bigBed, bigWig, BAM and VCF formats must be embedded in a track line in the box below. Publicly available custom tracks
are listed here. Examples are here.

Paste URLSs or data: Or upload: Browse.. Submit
Clear
A
Optional track documentation: Or upload: Browse..
Clear
A

Click here for an HTML document template that may be used for Genome Browser track descriptions.
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No. 1 in your Check-List

"‘Does my data behave as
expected?”
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Visualizing results—
Example I: no reads mapped at knock-out site
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Data Courtesy of Dr. Mike Farrar and Dr. Lynn Harris (unpublished data)



Example IlI: Housekeeping genes should
behave similarity across multiple samples
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Example Ill: review of known biomarkers,
for example, known SNPs and indels

Heterozygous deletion of ‘“T" with 46% penetrance
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Data Courtesy of Dr. John Ohlfest and Dr. Flavia Popescu (unpublished data) Driven to Discover



Example IV: Try different tools/parameters to
identify limitations of software
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Data courtesy of Dr. Steve Gantt and Dr. Karen Tang (unpublished data)
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Warning: don’t throw the baby out with the bathwater...

Cuftdiff: “Min Alignment Count” must be satisfied in all
‘ samples — too high a value will remove genes not
expressed in one condition but strongly expressed in

another!
Mut Rep 2 | . |
WtRep1l - ﬂ
Wt Rep 2 |

This gene was reported as DE with “Min Alignment Count” = 10, but not with 100.
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No. 2 In your Check-LIst

“What is the global behavior
of my data?”
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Explore the global distribution of data

N Global gene expression

|

Very few
genes have
an usually
high
expression.

Many genes will
have little or no
expression.

A set of genes
have a high
expression.

UNIVERSITY OF MINNESOTA
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Global gene expression

expressed genes for ‘
(—highly-unbalanced ‘
expression between
conditions.

Exclude the highly-

@ 13 7 (11
2 Set “yes” to “Perform
° quartile normalization”.
Perform quartile normalization:
Yes +
o = Removes top 25% of genes from FPKM denominator
o 1 2 L A to improve accuracy of differential expression calls
for low abundance transcripts.

log10(FPKM)

Example: red cell blood compared to other tissue
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Statistical Checks of data structure —
Multi-Variable Analysis

 Biological replicates should show grouping behavior
In multi-variable analysis:

— Innate consistency between samples
A hypothetical PCA plot A hypothetical PCA plot

%

m UNIVERSITY OF MINNESOTA

PC 2
PC 2

PC1 PC1
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Within-group variation: non-biological variations

« Source of non-biological variation:

— Batch effect

« How were the samples collected and processed? Were the samples
processed as groups, and if so what was the grouping?

— Non-synchronized cell cultures

« Were all the cells from the same genetic backgrounds and growth
phase?

— Use of the technical replicates (not recommended!) rather
than biological replicates

m UNIVERSITY OF MINNESOTA
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How to check for data variation?

Principle Component Analysis (PCA)
— Uses an orthogonal transformation

— The first principle component has the largest possible
variance

Multi-Dimensional Scaling (MDS)
— Computes Euclidean distances among all pairs of samples

Unsupervised Clustering / heatmap
— ldentify the hidden structure in “unlabeled” data

Tools:

— Galaxy
— Statistical Package: R, SPSS, MatLab
— Partek and Genedata Expressionist (Analyst)

m UNIVERSITY OF MINNESOTA
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Steps in PCA analysis

1. Construct the multiple variable Mmatrix  ———— 2. Run PCA analysis and explore the result

e.g. tables of FPKM values

PCA analysis
N
Sample A | Sample V | Sample O | bample E | Sample | | Sample U *
6.18 6.64 . . 6.58 6.54 S U
5.48 0.11 . . 0.02 0.68
20.53 18.93 . . 18.00 18.26
55.47 52.71 . . 49.15 44.68 ® -
7.28 8.09 . . 8.29 9.38
14.65 13.88 . . 14.72 12.47
1641 | 13.80 . . 14.39 | 13.50 S .1 \U
6.17 6.79 . . 8.42 7.26
25.83 24.24 . . 22.18 23.09
38.04 30.39 . . 28.72 27.28 - |
195.06 | 179.88 . . 179.01 | 155.15
32.82 32.04 . . 31.06 29.46
18.41 16.75 . . 16.32 16.87
24.00 . . 22.08 22.45 T
T T T T T
6 7 8 9 10

PC1

Group 2

UNIVERSITY OF MINNESOTA
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Heatmap: Unsupervised clustering

1. Construct the multiple variable matrix - 2. Run Unsupervised Clustering and generate Heatmap

e.g. tables of FPKM values

Sample A | Sample V - Sample | | Sample U
6.18 6.64 . . 6.58 6.54
5.48 0.11 . . 0.02 0.68
20.53 18.93 . . 18.00 18.26
55.47 52.71 . . 49.15 44.68
7.28 8.09 . . 8.29 9.38
14.65 13.88 . . 14.72 12.47
16.41 13.80 . . 14.39 13.50
6.17 6.79 . . 8.42 7.26
25.83 24.24 . . 22.18 23.09
38.04 30.39 . . 28.72 27.28

195.06 | 179.88 . . 179.01 | 155.15
32.82 32.04 . . 31.06 29.46
18.41 16.75 . . 16.32 16.87
24.00 . . 22.08 22.45

Group 2

UNIVERSITY OF MINNESOTA
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Exploring data at system-level:
Ingenuity Pathway analysis

* Using the differentially expressed genes
» Connecting the genes with known knowledge

« Testing for the significance of the identified
network

 Check the detalls at:
— http://ingenuity.com/products/pathways analysis.html

* Primarily for mammalian systems

« Consider MapMan for plants
— http://mapman.gabipd.org/web/guest/mapman

m UNIVERSITY OF MINNESOTA
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http://ingenuity.com/products/pathways_analysis.html
http://ingenuity.com/products/pathways_analysis.html
http://ingenuity.com/products/pathways_analysis.html
http://mapman.gabipd.org/web/guest/mapman
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Discussion and Questions?

* Get Support at MSI:
— Email: help@msi.umn.edu

— General Questions:
* Subject line: "RISS:...”

— Galaxy Questions:
« Subject line: “Galaxy:...”
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