Supporting Information to Accompany:

Intermolecular Cyclotrimerization of Haloketoalkynes and Internal Alkynes: Facile Access to Arenes and Phthalides

Xx and xx
Department of Chemistry, xx

Table of Contents

General Experimental Procedures S1
Mechanistic Hypothesis S2
Reaction Opitmization and Solvent Screen S3
Preparation and Characterization of Starting Materials S4
Cyclo(co)trimerization Product Characterization S11
X-ray Crystal Structures S20
References S25
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR S26

General Experimental Procedures:

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker AMX-400 and Varian Inova-400 instruments at 295 K . Chemical shifts (δ) are expressed in parts per million relative to residual CHCl_{3}, acetone or DMSO as internal standards. Proton magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra were recorded at 400 MHz . Carbon magnetic resonance (${ }^{13} \mathrm{C}$ NMR) spectra were recorded at 100 MHz . Abbreviations are: s , singlet; d, doublet; t , triplet; q , quartet; p , pentet; sex, sextet; sept, septet; app, apparent. When possible, NMR signals belonging to the major and minor isomers of inseparable mixtures or regioisomers were identified with a superscript major or minor, respectively. Infrared spectra were recorded on a ThermoNicolet Avatar 370 Fourier transform infrared spectrometer and are expressed in wavenumbers $\left(\mathrm{cm}^{-1}\right)$. Melting points (mp) were determined using a Thomas-Hoover melting point apparatus and are uncorrected. Melting points were not obtained for compounds with regioisomeric purity less than 95:05. GCMS data were recorded on an Agilent 7890A GC system with an Agilent 5975C Inert MSD system operating in electron impact ($\mathrm{EI}+$) mode. HPLC was preformed on an Agilent 1100 LC/MSD with an Agilent 1100 SL mass spectrometer (electrospray ionization, ES) eluting with 0.1% trifluoroacetic acid in H_{2}) and 0.05% trifluoroacetic acid in $\mathrm{CH}_{3} \mathrm{CN}$. Percoated Merck F-254 silica gel plates were used for thin layer analytical chromography (TLC) and visualized with short wave UV light or by potassium permanganate stain. Column chromatography was carried out employing EMD (Merck) Silica Gel $60(40-63 \mu \mathrm{~m}$).

We provide thin-layer chromatographic, infrared resonance tabulations, LRMS (ESI + or EI +) data, as well as 1 H and 13C-NMR tabulations and spectra for all new and synthesized compounds. These data, in combination with X-ray crystallographic information for select compounds, confirm the structure, regiochemistry, and homogeneity of all compounds detailed in this manuscript.

Unless otherwise noted, all starting materials were purchased from Aldrich, Acros Organics, Fisher, TCI, Alfa Aesar or Strem Chemicals and used as received. All solvents were purchased from Fisher and used as received. Dichloromethane and tetrahydrofuran were dried by passage through alumina. 1,4-Dioxane was obtained from Acros Organics as 99.5% extra dry over molecular sieves. Ethanol was purchased as 200 proof 1 pint quantities from Pharmco-AAPER and used as received. Chloro(cyclopentadienyl)-(cyclooctadiene)ruthenium [$\mathrm{CpRuCl}(\mathrm{cod})$] was prepared in four steps from $\mathrm{RuCl}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$ according to literature procedures. ${ }^{1,2}$ Alternatively, a detailed procedure can be found in supporting information of the following reference: Oakdale, J. S.; Sit, R. K.; Fokin, V. V. Chem. Eur. J. 2014, 20, 11101-11110. Cp*RuCl(cod) was purchased from Strem Chemicals and used as received.

Mechanistic Hypothesis

The mechanistic hypothesis and origins of observed diasteroselectivity and chemoselectivity are discussed.

The reaction mechanism begins with COD ligand dissociation from I and ligand association of two equivalents of halopropiolamide to generate intermediate II. Oxidative cyclization of organized and polarity-matched haloalkynes on the Ru-center generates Ru-cyclopentadiene intermediate III. The polarity-matching on the Ru-center of these ligands prior to cyclization is crucial and thought to be the origin of the observed regioselectivity. Importantly, that Cp ligand is preferred over Cp * (in terms of yield) for these cyclizations indicates that a less sterically occluded Ru-center is required for this preorganization of bulky halopropiolamide ligands. Direct cyclization of internal alkyne onto diene III then generates intermediate IV, which subsequently undergoes reductive cyclization to furnish the product arene and regenerate $\mathrm{Ru}(\mathrm{II})$ catalyst, after coordination of COD ligand. The preference for reaction between III and internal alkyne is due to the fact that III is very electron poor and the internal alkyne is electron rich. This predisposes intermediate III to reaction with internal alkyne, and not an additional equivalent of halopropiolamide, giving rise to the observed chemoselectivity of this cycloaddition.
A plausible alternative mechanism beginning from the resonance structure IIIa could be operative but less likely due to the excess coordinative saturation at the Ru-center of intermediate IVa, as well as the non-optimal bond angles present in IVa and IVb.

Table S1. Reaction Optimization and Solvent Screen

		 1		$\underset{\mathrm{RuCl}(\operatorname{cod})}{\overline{\overline{2}}} \mathrm{Ph}$	 2C				
Entry	$\begin{aligned} & \text { Eq. } \\ & \text { 1a } \end{aligned}$	$\begin{gathered} \hline \text { Eq. } \\ \mathbf{3} \end{gathered}$	$\begin{aligned} & \mathrm{Mol} \% \\ & {[\mathrm{Ru}]} \\ & \hline \end{aligned}$	Solvent	Temp	Atmosphere	Yield ${ }^{\text {a }}$	$\begin{gathered} \hline \text { LC/MS } \\ \text { Ratio } \end{gathered}$	NMR Ratio C:D (crude)[isolated]
1	1	2	8\%	Dioxane	r.t.	Ar	87\%	N/A	(N/A) [90:10]
2	2	1.9	4\%	Dioxane	r.t.	N_{2}	69\%	87:13	(88:12) [N/A]
3	1	20	4\%	Dioxane	r.t.	N_{2}	92\%	87:13	(86:14) [N/A]
4	1	1.8	4\%	Dioxane	r.t.	N_{2}	85\%	87:13	(89:11) [90:10]
5	1	1.8	4\%	DCE	r.t.	N_{2}	77\%	82:18	(85:15) [93:07]
6	1	1.8	4\%	DMF	r.t.	N_{2}	$\sim 70 \%$	85:15	(91:9) [N/A]
7	1	1.8	4\%	PhMe	r.t.	N_{2}	92\%	N/A	(89:11) [95:05]
8	1	1.8	4\%	EtOH	r.t.	N_{2}	87\%	94:06	(96:04) [97:03]
9	1	1.8	4\%	ACN	r.t.	N_{2}	<40\%	87:13	(N/A) [N/A]
10	1	1.8	4\%	EtOAc	r.t.	N_{2}	76\%	88:12	(87:13) [88:12]
11	1	1.8	4\%	$\begin{aligned} & t \text { - } \mathrm{BuOH}: \\ & \mathrm{H}_{2} \mathrm{O}: \mathrm{THF} \end{aligned}$	r.t.	N_{2}	90\%	94:06	(93:07) [95:05]
12	1	1.8	4\%	CHCl_{3}	r.t.	N_{2}	88\%	88:12	(91:09) [91:09]
13	1	1.8	4\%	THF	r.t.	N_{2}	94\%	88:12	(85:15) [86:14]
14	1	1.8	4\%	$\begin{aligned} & \text { DIEPA } \\ & \text { /DCM } \end{aligned}$	r.t.	N_{2}	<40\%	N/A	(N/A) [N/A]
15	1	1.8	4\%	Acetone	r.t.	N_{2}	80\%	85:15	(86:14) [N/A]
16	1	1.5	4\%	EtOH	$0^{\circ} \mathrm{C}$	Ar	N/A	96:04	(N/A) [N/A]
17	1	1.6	1\%	EtOH	r.t.	Ar	81\%	96:04	(N/A) [98:02]
18	1	1.6	1.8\%	EtOH	r.t.	Air	86\%	96:04	(N/A) [97:03]
19	1	1.5	0.4\%	EtOH	r.t.	Air	$59 \%{ }^{\text {b }}$	96:04	[97:03]
20	1	1.5	1\%	EtOH	r.t.	Air	82\%	96:04	[96:04]
$21^{\text {c }}$	1	1.5	$\begin{aligned} & 0.2 \% \\ & 0.2 \% \end{aligned}$	EtOH	r.t.	Air	$70 \%{ }^{\text {d }}$	96:04	[96:04]
$[\mathrm{Ru}]=\mathrm{Cp} * \mathrm{RuCl}(\mathrm{cod})$									
22	1	1.5	2\%	EtOH	r.t.	N_{2}	7\%	-	[98:02]
23	1	1.5	20\%	EtOH	r.t.	N_{2}	47\%	-	[98:02]

General Notes: The equivalents of $\mathbf{3}$ vs $\mathbf{1 a}$ impacts the reaction by suppressing the formation of $\mathbf{2 a A} / \mathbf{B}$, the result of the direct trimerization of $\mathbf{1 a}$ (see S16). 9aC and $\mathbf{9 a D}$ can be separated by column chromatography but the separation is tedious. However the isolated NMR ratio of $\mathbf{C}: \mathbf{D}$ was often better than the crude ratio indicating that some separation had occurred during purification which involved column chromatography. ${ }^{\text {a }}$ solated yield after silica gel chromatography. ${ }^{\mathrm{b}} 70 \%$ conversion or 82% yield based on recovered starting material. ${ }^{\text {c Batch-wise }}$ addition of catalyst $0.2 \mathrm{~mol} \%$ followed by $0.2 \mathrm{~mol} \%$ after 1 hour. ${ }^{\mathrm{d}} 85 \%$ conversion based on recovered starting material.

Preparation and Characterization of Starting Materials

Dimethylpropiolamide (7). A 1 L 3-neck round bottom flask equipped with a rubber septum, a glass stopper, a vacuum adaptor and a stirring bar was charged with 4-dimethylaminopyridine (DMAP; $1.71 \mathrm{~g}, 14.0 \mathrm{mmol}$). The reaction vessel was subsequently placed under argon, filled with 250 mL of dry DCM and cooled to $0^{\circ} \mathrm{C}$ with an ice bath. 100 mL dimethylamine ($9.00 \mathrm{~g}, 200 \mathrm{mmol}$) as a 2 M solution in THF was added directly to the reaction vessel, followed by N, N-dicyclohexylcarbodiimide (DCC; 42.4g, 204 mmol). Finally, propiolic acid ($12.6 \mathrm{~mL}, 14.3 \mathrm{~g}, 204 \mathrm{mmol}$) was added dropwise and the reaction mixture was allowed to warm to room temperature overnight with stirring (note 1). The crude reaction mixture was filtered to remove urea and the filtrate was concentrated onto silica gel and subjected to flash chromatography (note 2) ($\mathrm{SiO}_{2}, 40 \% \mathrm{EtOAc}$-hexanes; $R_{f}=0.15$ at 40% EtOAc-hexanes) to afford 7 as an off-white crystalline solid ($15.0 \mathrm{~g}, 77 \%$): mp 68-70 ${ }^{\circ} \mathrm{C}$; IR (neat) $v_{\max } 3176,2926,2855,2094,1627,1615,1573,1484,1442,1395,1367,1257,12031163,760,725 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.17(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{~s}, 1 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.4,79.0,75.8,38.3$, 34.1; LRMS (ESI) m/z = 98.3 [M + H] ${ }^{+}$. See S26 for NMR spectra.

Note 1: Upon addition of the propiolic acid the reaction mixture immediately became cloudy with beige precipitate (1,3 -dicyclohexylurea). The crude reaction varied between heterogeneous yellow and heterogeneous dark red/brown after stirring overnight.
Note 2: While column chromatography was effective at removing trace colored impurities, complete removal of dicyclohexyl urea was not always achieved. Propargyl-amides contaminated with urea were carried forward to the halogenation reaction where subsequent purification was often effective for removing remaining trace urea.

3-Chloro-dimethylpropiolamide (5). A 50 mL round bottom flask equipped with a stirring bar was charged with dimethylpropiolamide (7; $970 \mathrm{mg}, 10.0 \mathrm{mmol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.38 \mathrm{~g}, 10$ mmol) and placed under argon. Carbon tetrachloride (6 mL) was added to the reaction vessel and the resulting heterogeneous solution was allowed to stir for 1 min .1 mL of $1 \mathrm{M} \mathrm{Bu}{ }_{4} \mathrm{NF}$ in THF (TBAF; 1 mmol) and an additional 3 mL of dry THF were then added to the reaction mixture. Upon stirring at room temperature over 4 hr , the reaction mixture turned from clear to orange to dark red. The crude reaction mixture was placed on silica gel via rotary evaporation and subjected to flash chromatography ($\mathrm{SiO}_{2}, 40 \%$ EtOAc-hexanes; $\mathrm{R}_{\mathrm{f}}=0.15$ at 40% EtOAc-hexanes) to afford $\mathbf{5}$ as a low melting, colorless crystalline solid ($825 \mathrm{mg}, 63 \%$): IR (neat) $v_{\max } 2932,2220,1631,1494,1446,1396,1264,1172,1061$, $1009,844,725,673 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.14(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.4,79.0,75.8,38.3,34.1 ;$ LRMS (ESI) $\mathrm{m} / \mathrm{z}=132.2[\mathrm{M}+\mathrm{H}]^{+}$. See S27 for NMR spectra.

3-Bromo-dimethylpropiolamide (1).

Dimethylpropiolamide ($7 ; 6.00 \mathrm{~g}, 61.9 \mathrm{mmol}$), and a stirring bar were added to a 500 mL round bottom flask under argon and the reaction vessel was subsequently filled with 200 mL of acetone. $\mathrm{AgNO}_{3}(1.01 \mathrm{~g}, 6.19 \mathrm{mmol})$ and n-bromosuccinimide (NBS; $12.1 \mathrm{~g}, 68.0 \mathrm{mmol}$) were then added to the reaction flask by partial removal of the septum. As a precaution, the reaction vessel was wrapped in aluminum foil to protect the silver catalyst from light. The reaction mixture was stirred overnight and the resulting heterogeneous solution was then placed directly onto silica gel via rotary evaporation and subjected to flash chromatography ($\mathrm{SiO}_{2}, 30 \% \mathrm{EtOAc}$-hexanes; $\mathrm{R}_{\mathrm{f}}=0.29$ at $40 \% \mathrm{EtOAc}$-hexanes) to afford $\mathbf{1}$ as a colorless crystalline solid ($9.68 \mathrm{~g}, 89 \%$): mp $85-88^{\circ} \mathrm{C}$; IR (neat) $v_{\text {max }} 2930,2200,1757,1620,1489,1436,1395,1264,1235$, 1172, 1049, 1017, 719, $649 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.17(\mathrm{~s}, 3 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 153.2,73.7,55.3,38.2,34.2$; LRMS (ESI) $\mathrm{m} / \mathrm{z}=176.3[\mathrm{M}+\mathrm{H}]^{+}$. See S28 for NMR spectra.

3-Iodo-dimethylpropiolamide
(6).

Dimethylpropiolamide ($\mathbf{1} ; 1.00 \mathrm{~g}, 10.3 \mathrm{mmol}$), and a stirring bar were added to a 100 mL round bottom flask
and the reaction vessel was placed under argon. 36 mL of acetone was added followed by the addition of AgNO_{3} ($202 \mathrm{mg}, 1.24 \mathrm{mmol}$) and n-iodosuccinimide (NIS; $2.78 \mathrm{~g}, 12.4 \mathrm{mmol}$) to the reaction flask by partial removal of the septum. As a precaution, the reaction vessel was wrapped in aluminum foil to protect the silver catalyst from light. The reaction mixture was stirred overnight and the resulting heterogeneous solution was then placed directly onto silica gel via rotary evaporation and subjected to flash chromatography $\left(\mathrm{SiO}_{2}, 1 \% \mathrm{MeOH}-\mathrm{DCM} ; \mathrm{R}_{\mathrm{f}}=0.24\right.$ at 40% EtOAc-hexanes) to afford $\mathbf{1}$ as a beige powder (note 1) (2.07 g , we will just say 65%): mp $155-156^{\circ} \mathrm{C}$; IR (neat) $v_{\text {max }} 2931,2169,1618,1479,1441,1393,1265,1168,1055,779,719,628 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.19(\mathrm{~s}, 3 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.3,88.0,38.3,34.3,16.1 ;$ LRMS (ESI) m/z=224.1 $[\mathrm{M}+\mathrm{H}]^{+}$. See S29 for NMR spectra.
Note 1: On occasion the iodoalkyne would be contaminated by succinimide after column chromatography. The succinimide contamination can be removed by washing an ethyl acetate solution of the iodoalkyne with a 1 M solution of NaOH .

3-Bromo-butylpropiolamide (8). The general procedure for the synthesis of propiolamides (see 7, dimethylpropiolamide, page S3) was employed using 6.1 mL butylamine ($4.50 \mathrm{~g}, 61.5 \mathrm{mmol}$), 3.98 mL propiolic acid ($4.5 \mathrm{~g}, 64.6 \mathrm{mmol}$), DCC (13.9 $\mathrm{g}, 67.7 \mathrm{mmol})$ and DMAP ($525 \mathrm{mg}, 4.31 \mathrm{mmol}$). The crude material was purified via flash chromatography $\left(\mathrm{SiO}_{2}, 30 \%\right.$ EtOAc-hexanes; $\mathrm{R}_{\mathrm{f}}=0.29$ at 40% EtOAc-hexanes $)$ to deliver butylpropiolamide.

The general procedure for the synthesis of bromoalkynes (see 1, 3-bromo-dimethylpropiolamide, page S3) was employed using butylpropiolamide ($1.08 \mathrm{~g}, 8.64 \mathrm{mmol}$), $\mathrm{AgNO}_{3}(141 \mathrm{mg}, 0.864 \mathrm{mmol})$ and NBS ($1.69 \mathrm{~g}, 9.50$ $\mathrm{mmol})$. The crude material was purified via flash chromatography $\left(\mathrm{SiO}_{2}, 20 \%\right.$ EtOAc-hexanes; $\mathrm{R}_{\mathrm{f}}=0.43$ at 40% EtOAc-hexanes) to afford $\mathbf{8}$ as a slightly yellow crystalline solid ($1.14 \mathrm{~g}, 65 \%$) as a $92: 08$ ratio of rotamers: $\mathrm{mp} 69-$ $71^{\circ} \mathrm{C}$; IR (neat) $v_{\max } 3300,2950,2926,2861,2199,1638,1621,1528,1441,1362,1273,697,675 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.30(\mathrm{~s}, 1 \mathrm{H}), 3.26(\operatorname{appq} \mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.48(\mathrm{p}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.33(\operatorname{sex}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.1,75.3,50.0,39.8,31.2,20.1,13.7$; LRMS (ESI) m/z $=204.2[\mathrm{M}+\mathrm{H}]^{+}$. See S30 for NMR spectra.

Methyl 3-bromopropiolate (3). The general procedure for the synthesis of bromo-alkynes (see 1, 3-bromo-dimethylpropiolamide, page S3) was employed using 1.06 mL methylpropiolate $(1.00 \mathrm{~g}, 11.9 \mathrm{mmol}), \mathrm{AgNO}_{3}(194 \mathrm{mg}, 1.19 \mathrm{mmol})$ and NBS $(2.33 \mathrm{~g}, 13.09 \mathrm{mmol})$. The crude material was purified via flash chromatography $\left(\mathrm{SiO}_{2}, 5 \%\right.$ EtOAc-hexanes; $\mathrm{R}_{\mathrm{f}}=0.38$ at 5% EtOAc-hexanes) to afford 7 as a low melting, colorless, crystalline solid (note 1) ($1.07 \mathrm{~g}, 55 \%$): IR (neat) $v_{\text {max }} 2957,2202,1709,1631,1434,1238,1013,889,745,722 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.73$ $(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.9,72.5,53.0,52.9$. See S 31 for NMR spectra.
Note 1: Methyl 3-bromopropiolate is a lachrymator.

1-p-Tolylprop-2-yn-1-ol (si_1). 8.47 mL of trimethylsilylacetylene (TMSA; $5.89 \mathrm{~g}, 59.9$ mmol) and 120 mL dry THF were added to a 250 mL round bottom flask under argon and the resulting solution was cooled to $0{ }^{\circ} \mathrm{C}$. The reaction mixture was treated with 27.2 mL of $2.2 \mathrm{M} n-\mathrm{BuLi}$ in hexanes (59.9 mmol) and allowed to stir at $0^{\circ} \mathrm{C}$ for $30 \mathrm{~min} . p$-Tolylaldehyde ($5.91 \mathrm{~mL}, 6.00 \mathrm{~g}, 49.9 \mathrm{mmol}$) was added dropwise and the solution was allowed to come to room temperature over 3 hr with stirring. The reaction mixture was diluted with 60 mL water and 40 mL MeOH and further treated with $\mathrm{K}_{2} \mathrm{CO}_{3}(13.8 \mathrm{~g}, 100 \mathrm{mmol})$. The removal of TMS was deemed complete by TLC analysis after 30 min , at which point MeOH and THF were removed by rotary evaporation. The aqueous solution was further diluted by water and extracted with EtOAc (2x). The organic extract was then washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to deliver an orange oil $(6.30 \mathrm{~g})$. The crude material was carried forward without further purification. A small amount of material was purified by flash chromatography ($\mathrm{SiO}_{2}, 10 \%$ EtOAc-hexanes; $\mathrm{R}_{\mathrm{f}}=$ 0.1 at 10% EtOAc-hexanes): IR (neat) $v_{\text {max }} 3290,2097,1647,1603,1513,1416,1260,1178,1010,946,816,760$, $638 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.41(\mathrm{app} \mathrm{s}, 1 \mathrm{H}), 2.75$ $(\mathrm{d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.4,137.3,129.4$,
129.7, 83.8, 74.7, 64.2, 21.2; LRMS (ESI) m/z = $129.3[\mathrm{M}-\mathrm{OH}]^{+}$. See S 32 for NMR spectra; note NMR spectra contains EtOAc.

1-p-Tolylprop-2-yn-1-one (si_2). To a 250 mL round bottom flask was charged with 1-p-tolylprop-2-yn-1-ol (si_1; $6.30,43 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{SO}_{4}(61.1 \mathrm{~g}, 430 \mathrm{mmol}), 180 \mathrm{~mL}$ DCM and a stirring bar. $\mathrm{MnO}_{2}(26.0 \mathrm{~g}, 302 \mathrm{mmol})$ was then added and the resulting slurry was stirred overnight and filtered to arrive at a yellow/brown filtrate. The crude material was placed on silica gel via rotary evaporation and subjected to flash chromatography ($\mathrm{SiO}_{2}, 5 \rightarrow 10 \%$ EtOAc-hexanes; $\mathrm{R}_{\mathrm{f}}=0.26$ at 10% EtOAc-hexanes) to afford the desired ketone as a yellow solid that slowly turned orange over several weeks at refrigerated temperatures ($2.37 \mathrm{~g}, 44 \%$): mp $36-38{ }^{\circ} \mathrm{C}$; IR (neat) $v_{\text {max }} 3263,2094$, $1638,1601,1569,1408,1308,1257,1174,1115,1106,831,741,682,665 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.01(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{~s}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.1$, $145.8,133.9,129.9,129.5,80.5,80.4,21.9$, LRMS (ESI) $\mathrm{m} / \mathrm{z}=145.3[\mathrm{M}+\mathrm{H}]^{+}$. See S33 for NMR spectra.

3-Bromo-1-p-tolylprop-2-yn-1-one (4). The general procedure for the synthesis of bromoalkynes (see 1, 3-bromo-dimethylpropiolamide, page S3) was employed using 1-p-tolylprop-2-yn-1-one (si_2; $780 \mathrm{mg}, 5.42 \mathrm{mmol}$), $\mathrm{AgNO}_{3}(88 \mathrm{mg}, 0.542 \mathrm{mmol})$ and NBS $(1.06 \mathrm{~g}, 5.96 \mathrm{mmol})$. The crude material was purified via flash chromatography $\left(\mathrm{SiO}_{2}\right.$, $1 \rightarrow 2 \%$ EtOAc-hexanes; $\mathrm{R}_{\mathrm{f}}=0.25$ at 2% EtOAc-hexanes) to afford 4 as a white powder ($1.05 \mathrm{~g}, 87 \%$): $\mathrm{mp} 80-83^{\circ} \mathrm{C}$; IR (neat) $v_{\text {max }} 2176,1632,1602,1570,1309,1261,1177,1120,1047,1017,841,821$, $746,731,678,602 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96$ (app s, 2H), 7.25 (app s, 2H), 2.39 (s, 3H); ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.3,145.9,134.1,130.0,129.5,79.2,58.4,22.0$; LRMS (ESI) $\mathrm{m} / \mathrm{z}=223.1[\mathrm{M}+\mathrm{H}]^{+}$. See S34 for NMR spectra.

$\mathbf{N , N - D i m e t h y l o c t - 2 - y n a m i d e ~ (1 0) . ~ T h e ~ g e n e r a l ~ p r o c e d u r e ~ f o r ~ t h e ~ s y n t h e s i s ~ o f ~ p r o p i o l a m i d e s ~ (s e e ~ 7 , ~}$ dimethylpropiolamide, page S2) was employed using 3.57 mL of a 2 M THF solution of dimethylamine (321 mg , $7.14 \mathrm{mmol}), 1.04 \mathrm{~mL}$ oct-2-ynoic acid ($1.00 \mathrm{~g}, 7.14 \mathrm{mmol}$), DCC dissolved in dry DCM ($1.52 \mathrm{~g}, 7.35 \mathrm{mmol}$) and DMAP ($65 \mathrm{mg}, 0.536 \mathrm{mmol}$). The crude material was purified via flash chromatography ($\mathrm{SiO}_{2}, 20 \rightarrow 30 \% \mathrm{EtOAc}$ hexanes; $\mathrm{R}_{\mathrm{f}}=0.25$ at 20% EtOAc-hexanes) to afford 10 as a light yellow oil ($770 \mathrm{mg}, 65 \%$): IR (neat) $v_{\text {max }} 2933$, 2865, 2245, 2223, 1626, 1494, 1466, 1393, 1268, 1187, 1051, $734 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.12$ (s, $3 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.51(\mathrm{p}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.35-1.23(\mathrm{~m}, 4 \mathrm{H}), 0.82(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.8,93.1,74.1,38.3,33.9,31.0,27.5,22.1,18.8,13.8 ;$ LRMS (ESI) $\mathrm{m} / \mathrm{z}=168.3[\mathrm{M}$ $+\mathrm{H}]^{+}$. See S35 for NMR spectra.

\mathbf{N}, \mathbf{N}-diisopropyl-3-(trimethylsilyl)propiolamide (si_3). A 100 mL round bottom flask equipped with a stirring bar and rubber septum was charged with 3-(trimethylsilyl)propiolic acid ($1.00 \mathrm{~g}, 7.04 \mathrm{mmol}$) and placed under argon. 80 mL dry DCM was added followed by hydroxybenzotriazole (HOBT; $1.05 \mathrm{~g}, 7.74 \mathrm{mmol}$) and dicyclohexyl-carbodiimide ($\mathrm{DCC} ; 1.60 \mathrm{~g}, 7.74 \mathrm{mmol}$) in that order by partial removal of the septum. The resulting slurry was stirred at room temperature for 1 h .1 .39 mL Diisopropylamine ($997 \mathrm{mg}, 9.88 \mathrm{mmol}$) was then added dropwise and the resulting reaction mixture was stirred overnight. The resulting heterogeneous solution was filtered over a büchner funnel and the filtrate was placed on silica gel via rotary evaporation and subjected to flash chromatography ($\mathrm{SiO}_{2}, 5 \rightarrow 10 \%$ EtOAc-hexanes; $\mathrm{R}_{\mathrm{f}}=0.30$ at 10% EtOAc-hexanes) to afford the desired compound
si_3 as a white crystalline solid ($1.21 \mathrm{~g}, 77 \%$): mp $67-69^{\circ} \mathrm{C}$; IR (neat) $v_{\max } 2969,2943,2175,2120,2088,1681$, $1617,1443,1369,1328,1252,1207,1133,1043,963,898,866,839,759,740,700,638 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 4.41(\mathrm{sept}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\operatorname{app}$ br s, 1 H$), 1.24(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.14(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.10$ $(\mathrm{s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.8,97.7,94.7,50.1,45.5,20.8,19.2,-0.8 ;$ LRMS (ESI) m/z $=226.3$ [M $+\mathrm{H}]^{+}$. See S36 for NMR spectra.

3-Bromo- diisopropyl-propiolamide (si_4). Diisopropyl-3-(trimethylsilyl)propiolamide (si_3; $989 \mathrm{mg}, 4.4 \mathrm{mmol}$) was dissolved in 60 mL of a 3:2:2 THF:MeOH:water solution, treated with $\mathrm{K}_{2} \mathrm{CO}_{3}(1.2 \mathrm{~g}, 8.8 \mathrm{mmol})$ and stirred for 1 h . The reaction mixture was then concentrated via rotary evaporation to remove the THF and MeOH before being further diluted with water and extracted with EtOAc (2x). The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated to deliver the terminal alkyne as a white crystalline solid (397 mg , 59\%).

The general procedure for the synthesis of bromoalkynes (see 1, 3-bromo-dimethylpropiolamide, page S3) was employed using diisopropylpropiolamide ($341 \mathrm{mg}, 2.23 \mathrm{mmol}$), $\mathrm{AgNO}_{3}(36 \mathrm{mg}, 0.223 \mathrm{mmol})$ and NBS (436 $\mathrm{mg}, 2.45 \mathrm{mmol})$. The crude material was purified via flash chromatography $\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc}-\right.$ hexanes; $\mathrm{R}_{\mathrm{f}}=0.39$ at 20% EtOAc-hexanes) to afford the desired compound si_4 as a white powder ($491 \mathrm{mg}, 95 \%$): mp $129-131{ }^{\circ} \mathrm{C}$; IR (neat) $v_{\max } 2967,2935,2188,2091,1714,1680,1611,1439,1375,1330,1206,1136,1045,764,731,699,618$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.47(\mathrm{sept}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{sept}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $6 \mathrm{H}), 1.22(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.1,75.0,53.5,50.6,45.9,21.1,20.0$; LRMS (ESI) $\mathrm{m} / \mathrm{z}=232.2[\mathrm{M}+\mathrm{H}]^{+}$. See S37 for NMR spectra.

Dimethyl-3-(trimethyl-
silyl)propiolamide (9). The general procedure for the synthesis of propiolamides (see si_3, page S6) was employed using 5.00 mL of a 2 M THF solution of dimethylamine $(450 \mathrm{mg}, 10.0 \mathrm{mmol}), 3$-(trimethylsilyl)propiolic acid ($1.02 \mathrm{~g}, 7.14 \mathrm{mmol}$), DCC ($1.62 \mathrm{~g}, 7.85 \mathrm{mmol}$) and HOBT $(1.06 \mathrm{mg}, 7.85 \mathrm{mmol})$. The crude material was purified via flash chromatography $\left(\mathrm{SiO}_{2}, 20 \rightarrow 30 \%\right.$ EtOAc-hexanes; $\mathrm{R}_{\mathrm{f}}=0.30$ at 20% EtOAc-hexanes) to afford 9 as a white crystalline solid ($905 \mathrm{~g}, 75 \%$): mp $50-52^{\circ} \mathrm{C}$; IR (neat) $v_{\max } 2933,2119,1618,1501,1439,1394,1252,1154,981$, 862, 841, 764, 734, 707, 656, $615 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.14(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 153.9,96.9,96.1,38.3,33.9,-0.7 ;$ LRMS (ESI) m/z $=170.3[\mathrm{M}+\mathrm{H}]^{+}$. See S38 for NMR spectra.

Ethyl 1-propioloylpiperidine-4-carboxylate (si_5). The general procedure for the synthesis of propiolamides (see 7, dimethylpropiolamide, page S2) was employed using 3.92 mL ethyl isonipecotate $(4.00 \mathrm{~g}, 25.5 \mathrm{mmol}), 1.65 \mathrm{~mL}$ propiolic acid $(1.88 \mathrm{~g}, 26.8$ mmol), DCC dissolved in dry DCM ($5.52 \mathrm{~g}, 26.8 \mathrm{mmol}$) and DMAP ($311 \mathrm{mg}, 2.25 \mathrm{mmol}$). The crude material was purified via flash chromatography $\left(\mathrm{SiO}_{2}, 30 \%\right.$ EtOAc-hexanes; R_{f} $=0.15$ at 30% EtOAc-hexanes) to afford the desired alkyne as a light orange solid (3.04 g , 57%): mp $64-66^{\circ} \mathrm{C}$; IR (neat) $v_{\text {max }} 3202,2934,2099,1752,1618,1446,1368,1310,1275,1231,1203,1174,1105$, $1041,925,739 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.28-4.17(\mathrm{~m}, 3 \mathrm{H}), 4.08(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.23$ (ddd, $J=12.4$, $11.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~s}, 1 \mathrm{H}), 2.87$ (ddd, $J=12.3,11.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.46(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.86$ (m, 2H), 1.71$1.63(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.8,151,7,79.4,75.3$, $60.7,46.2,40.7,40.5,28.3,27.4,14.1$; LRMS (ESI) $\mathrm{m} / \mathrm{z}=210.3[\mathrm{M}+\mathrm{H}]^{+}$. See S 39 for NMR spectra.

Ethyl 1-(3-bromopropioloyl)piperidine-4-carboxylate (si_6). The general procedure for the synthesis of bromoalkynes (see 1, 3-bromo-dimethylpropiolamide, page S3) was employed using ethyl 1-propioloylpiperidine-4-carboxylate (si_5; 836 $\mathrm{mg}, 4.00 \mathrm{mmol}), \mathrm{AgNO}_{3}(65.2 \mathrm{mg}, 0.400 \mathrm{mmol})$ and $\mathrm{NBS}(783 \mathrm{mg}, 4.40 \mathrm{mmol})$. The crude material was purified via flash chromatography $\left(\mathrm{SiO}_{2}, 20 \rightarrow 30 \% \mathrm{EtOAc}\right.$ -
hexanes; $\mathrm{R}_{\mathrm{f}}=0.22$ at 30% EtOAc-hexanes) to afford the desired compound, si_6, as a white crystalline solid (1.03 $\mathrm{g}, 89 \%$): mp $75-7{ }^{\circ} \mathrm{C}$; IR (neat) $v_{\max } 2985,2862,2187,1730,1606,1440,1380,1320,1193,1171,1113,1043$, $727 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.28(\mathrm{dtd}, J=13.5,4.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dtd}, J=13.6,4.3,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.12(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.25(\mathrm{ddd}, J=11.3,11.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{ddd}, J=14.3,11.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{tt}, J=$ $10.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.89(\mathrm{~m}, 2), 1.76-1.66(\mathrm{~m}, 1), 1.67-1.57(\mathrm{~m}, 1), 1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.9,151.6,73.3,70.8,55.8,46.3,40.9,40.8,28.5,27.6,14.3 ;$ LRMS (ESI) $\mathrm{m} / \mathrm{z}=288.3[\mathrm{M}+$ $\mathrm{H}]^{+}$. See S40 for NMR spectra; note NMR spectrum contains DCM.

N, N-Diethylpropiolamide (si_7). The general procedure for the synthesis of propiolamides (see 7, dimethylpropiolamide, page S2) was employed using 7.00 mL diethylamine ($5.00 \mathrm{~g}, 68.0$ $\mathrm{mmol}), 4.40 \mathrm{~mL}$ propiolic acid ($5.00 \mathrm{~g}, 71.4 \mathrm{mmol}$), DCC dissolved in dry DCM ($14.8 \mathrm{~g}, 71.8$ mmol) and DMAP ($830 \mathrm{mg}, 6.8 \mathrm{mmol}$). The crude material was purified via flash chromatography ($\mathrm{SiO}_{2}, 20 \rightarrow 40 \%$ EtOAc-hexanes; $\mathrm{R}_{\mathrm{f}}=0.33$ at 30% EtOAc-hexanes) to afford the desired alkyne as a yellow semi-solid that was contaminated with 1,3-dicyclohexylurea ($6.6 \mathrm{~g}, 78 \%$): IR (neat) $v_{\text {max }} 3200,2973,2933,2856,2102,1681,1624,1572,1430,1381,1364,1274,1219,1150,1081,741 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.38(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.05(\mathrm{~s}, 1 \mathrm{H}), 1.00(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.3,77.8,75.7,43.1,38.8,13.9,12.3$; LRMS (ESI) m/z $=126.3[\mathrm{M}+\mathrm{H}]^{+}$. See S 41 for NMR spectra.

3-Bromo-N,N-diethylpropiolamide (si_8). The general procedure for the synthesis of bromo-alkynes (see 1, 3-bromo-dimethylpropiolamide, page S3) was employed using N, N diethylpropiolamide ($925 \mathrm{mg}, 7.4 \mathrm{mmol}$), $\mathrm{AgNO}_{3}(121 \mathrm{mg}, 0.74 \mathrm{mmol})$ and NBS $(1.45 \mathrm{~g}$, $8.14 \mathrm{mmol})$. The crude material was purified via flash chromatography ($\mathrm{SiO}_{2}, 30 \% \mathrm{EtOAc}-$ hexanes; $\mathrm{R}_{\mathrm{f}}=0.36$ at 40% EtOAc-hexanes) to afford the desired compound, si_8, as a colorless crystalline solid ($1.61 \mathrm{~g}, 77 \%$): $\mathrm{mp} 40-43^{\circ} \mathrm{C}$; IR (neat) $v_{\text {max }} 2973,2935,2196,1617,1475,1454,1427$, 1361, 1280, 1218, 1157, 1089, 956, 796, 726, $633 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.47(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $3.31(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.13(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.4$, $73.8,54.0,43.3,39.3,14.3,12.6$; LRMS (ESI) $\mathrm{m} / \mathrm{z}=204.2[\mathrm{M}+\mathrm{H}]^{+}$. See S 42 for NMR spectra.

1-Morpholinoprop-2-yn-1-one (si_9). The general procedure for the synthesis of propiolamides (see 7, dimethylpropiolamide, page S2) was employed using 3.00 mL morpholine $(3.00 \mathrm{~g}, 34.4 \mathrm{mmol}), 2.23 \mathrm{~mL}$ propiolic acid ($2.53 \mathrm{~g}, 36.1 \mathrm{mmol}$), DCC dissolved in dry DCM ($7.44 \mathrm{~g}, 36.1 \mathrm{mmol}$) and DMAP ($420 \mathrm{mg}, 3.44 \mathrm{mmol}$). The crude material was purified via flash chromatography $\left(\mathrm{SiO}_{2}, 20 \rightarrow 40 \%\right.$ EtOAc-hexanes; $\mathrm{R}_{\mathrm{f}}=0.25$ at 40% EtOAc-hexanes) to afford the desired alkyne, si_9, as a white powder ($3.59 \mathrm{~g}, 75 \%$): mp $72-74^{\circ} \mathrm{C}$; IR (neat) $v_{\text {max }} 3175,2980,2927,2867$, 2102 , 1612, 1440, 1430, 1359, 1272, 1111, 1038, 959, 844, 771, 745, $716 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 3.76-3.73 (m, 2H), 3.69-3.67 (m, 2H), 3.65-3.59 (m, 4H), 3.16 (s, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.9,79.9$, $75.1,66.8,66.4,47.3,41.9$; LRMS (ESI) $\mathrm{m} / \mathrm{z}=140.3[\mathrm{M}+\mathrm{H}]^{+}$. See S 43 for NMR spectra.

3-Bromo-1-morpholinoprop-2-yn-1-one (si_10). The general procedure for the synthesis of bromoalkynes (see 1, 3-bromo-dimethylpropiolamide, page S3) was employed using 1-morpholinoprop-2-yn-1-one (si_9; $760 \mathrm{mg}, 5.50 \mathrm{mmol}$), $\mathrm{AgNO}_{3}(89 \mathrm{mg}, 0.55 \mathrm{mmol})$ and NBS ($1.08 \mathrm{~g}, 6.05 \mathrm{mmol}$). The crude material was purified via flash chromatography $\left(\mathrm{SiO}_{2}\right.$, 40% EtOAc-hexanes; $\mathrm{R}_{\mathrm{f}}=0.3$ at 40% EtOAc-hexanes) to afford the desired compound as a white crystalline solid ($1.02 \mathrm{~g}, 85 \%$): mp $73-75^{\circ} \mathrm{C}$; IR (neat) $v_{\text {max }} 2968,2929,2861,2196,1615,1428,1273$, $1242,1222,1109,1069,1055,978,850,721,655,603 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.67-3.61(\mathrm{~m}, 4 \mathrm{H})$, 3.59-3.53 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.5,72.8,66.7,66.2,56.4,47.0,41.9$; LRMS (ESI) m/z $=$ $218.1[\mathrm{M}+\mathrm{H}]^{+}$. See S44 for NMR spectra.

1-tert-Butyl 4-ethyl piperidine-1,4dicarboxylate (si_11). Boc anhydride (16.7 $\mathrm{g}, 76.0 \mathrm{mmol}$) and a stirring bar was placed in a 250 mL round bottom flask, dissolved in 150 mL of dry DCM and cooled to $0^{\circ} \mathrm{C}$. 4-Dimethylaminopyridine (DMAP; $233 \mathrm{mg}, 1.91 \mathrm{mmol}$) was added to
the reaction vessel followed by the dropwise addition of piperidine ($9.8 \mathrm{~mL}, 10.0 \mathrm{~g}, 63.7 \mathrm{mmol}$). The orange reaction mixture was stirred for several hours before being diluted with water and extracted with DCM (2x). The organic layer was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to deliver a crude orange oil which was subsequently purified via flash chromatography ($\mathrm{SiO}_{2}, 40 \% \mathrm{EtOAc}$-hexanes; $\mathrm{R}_{\mathrm{f}}=0.3$ at $40 \% \mathrm{EtOAc}$-hexanes) to afford the desired ester as a colorless oil ($12.6 \mathrm{~g}, 77 \%$): IR (neat) $v_{\max } 2973,1731,1691,1422,1366,1313,1240$, $1158,1123,1041,944,868,768,733 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.04(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\operatorname{app} \mathrm{br} \mathrm{d}$, $J=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{app} \mathrm{t}, J=11.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{tt}, J=11.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.47(\mathrm{~m}, 2 \mathrm{H})$, $1.36(\mathrm{~s}, 9 \mathrm{H}), 1.16(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.4,154.6,79.4,60.4,43.0(\mathrm{br}), 41.1,28.4$, 27.9, 14.1; LRMS (ESI) $\mathrm{m} / \mathrm{z}=280.3[\mathrm{M}+\mathrm{Na}]^{+}$. See S 45 for NMR spectra.

1-(tert-Butoxycarbonyl)-piperidine-4carboxylic acid (si_12). 1-tert-butyl 4ethyl piperidine-1,4-dicarboxylate (si_11; $10.0 \mathrm{~g}, 38.9 \mathrm{mmol}$) was dissolved in 15 mL ethanol and 200 mL water. The resulting solution was warmed to $60^{\circ} \mathrm{C}$ and treated with crushed potassium hydroxide ($32.7 \mathrm{~g}, 584 \mathrm{mmol}$). The reaction mixture was stirred for 4 hours, cooled to room temperature and acidified to $\mathrm{pH} \sim 1-2$ with the addition of 1 N HCl . A white precipitate formed and was subsequently filtered and dried under reduced pressure to deliver the desired acid as a white powder (6.53, 74\%): mp $149-152{ }^{\circ} \mathrm{C}$; IR (neat) $v_{\max } 3193,2972,2930,1732,1656,1470,1450,1430,1391,1366,1280,1240,1206,1154,1130,1080,1032,923$, $860,816,765,723 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.99(\mathrm{app} \mathrm{br} \mathrm{d}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.83$ (app $\mathrm{t}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{tt}, J=10.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.2,154.9,80.0,43.2(\mathrm{br}), 40.9,28.5,27.8 ;$ LRMS (ESI) $\mathrm{m} / \mathrm{z}=252.3[\mathrm{M}+\mathrm{Na}]^{+}$. See S46 for NMR spectra.

N-(3-Isopropoxypropyl)-piperidine-4-carboxamide (si_13). A 100 mL round bottom flask equipped with a stirring bar and rubber septum was charged with 1-(tert-butoxycarbonyl)piperidine-4-carboxylic acid ($2.00 \mathrm{~g}, 8.73 \mathrm{mmol}$) and placed under argon. 65 mL dry DCM was added followed by the addition of hydroxybenzotriazole (HOBT; $1.30 \mathrm{~g}, 9.60 \mathrm{mmol}$) and $N, N^{\prime}-$ dicyclohexylcarbodiimide ($\mathrm{DCC} ; 1.99 \mathrm{~g}, 9.60 \mathrm{mmol}$) in that order by partial removal of the septum. The resulting slurry was stirred at room temperature for 30 min . 1.82 mL 3 -isopropoxypropan-1-amine ($1.53 \mathrm{~g}, 13.1 \mathrm{mmol}$) was then added dropwise and the reaction mixture was stirred overnight. The resulting heterogeneous solution was then filtered over a büchner funnel and the filtrate was placed on silica gel via rotary evaporation and subjected to flash chromatography $\quad\left(\mathrm{SiO}_{2}, \quad 60 \rightarrow 80 \%\right.$ EtOAc-hexanes) to afford tert-butyl 4-(3-isopropoxypropyl-carbamoyl)piperidine-1-carboxylate as a crude oil.

Tert-butyl 4-(3-isopropoxypropylcarbamoyl)piperidine-1-carboxylate ($\sim 2.86,8.73 \mathrm{mmol}$) was dissolved in 100 DCM and treated with trifluoroacetic acid (TFA, $6.53 \mathrm{~mL}, 9.95 \mathrm{~g}, 80.7$). the reaction mixture was stirred overnight, concentrated by rotary evaporation and made alkaline with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$. (Note 1) The aqueous solution was then concentrated via rotary evaporation to deliver a white solid, which was subsequently stirred with DCM for 1 hour and filtered. The DCM filtrate was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to deliver a clear oil, si_13, that slowly solidified ($1.32 \mathrm{~g}, 66 \%$ over two steps): IR (neat) $v_{\max } 3288,2973,2938,2866,1642,1534,1470,1428$, $1368,1334,1284,1230,1147,1129,1080,941,813,683,645,619 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.45$ (app br s, 1H), $3.50(\mathrm{sept}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.29(\mathrm{app} \mathrm{dd}, J=6.9,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.08(\mathrm{app} \mathrm{dt}, J=$ $12.4,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.64-2.54(\mathrm{~m}, 3 \mathrm{H}), 2.14(\mathrm{tt}, J=11.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{p}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H})$ $1.58-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.10(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.6,71.8,67.6,45.9,43.5,38.6$, 29.7, 29.2, 22.2; LRMS (ESI) m/z $=229.5[\mathrm{M}+\mathrm{H}]^{+}$. See S 47 for NMR spectra; note NMR spectrum contains DCM.
Note 1. The aqueous solution was extracted by both EtOAc and DCM, however both extractions yielded very little organic material upon concentration.

N -(3-Isopropoxypropyl)-1-propioloylpiperidine-4-carboxamide (si_14). The general procedure for the synthesis of propiolamides (see 7, dimethylpropiolamide, page S2) was employed using N-(3-isopropoxypropyl)piperidine-4-carboxamide ($1.20 \mathrm{~g}, 5.25 \mathrm{mmol}$), 0.356 mL propiolic acid ($404 \mathrm{mg}, 5.77 \mathrm{mmol}$), DCC dissolved in dry DCM $(1.19 \mathrm{~g}$, 5.77 mmol) and DMAP ($64 \mathrm{mg}, 0.525 \mathrm{mmol}$). The crude material was purified via flash chromatography $\left(\mathrm{SiO}_{2}, 90 \rightarrow 100 \%\right.$ EtOAc-hexanes; $\mathrm{R}_{\mathrm{f}}=$ 0.15 at 90% EtOAc-hexanes) to afford the desired alkyne as a beige solid ($1.22 \mathrm{~g}, 83 \%$): mp $76-78{ }^{\circ} \mathrm{C}$; IR (neat) $v_{\max } 3257,3200,2972,2945,2929,2863,2106,1654,1628,1608,1561,1449,1366,1333,1282,1209,1144$, $1095,1013,984,939,765,727,705 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.69$ (br t, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.46 (dt, $J=$ $13.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dt}, J=13.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{sept}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.23(\mathrm{app} \mathrm{q}$, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.16(\mathrm{~s}, 1 \mathrm{H}), 3.10(\operatorname{app} \mathrm{ddd}, J=16.3,11.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{tt}, J=11.2,3.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.84-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{p}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}) 1.60-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.3,151.6,79.5,75.2,71.6,67.1,46.5,42.6,40.7,38.3,29.2,28.9,28.1,22.0$; LRMS (ESI) m / z $=281.3[\mathrm{M}+\mathrm{H}]^{+}$. See S 48 for NMR spectra.

1-(3-Bromopropioloyl)-N-(3-isopropoxypropyl)piperidine-4carboxamide (si_15). The general procedure for the synthesis of bromoalkynes (see 1, 3-bromo-dimethylpropiolamide, page S3) was employed using N-(3-isopropoxypropyl)-1-propioloylpiperidine-4carboxamide ($961 \mathrm{mg}, 3.40 \mathrm{mmol}$), $\mathrm{AgNO}_{3}(55 \mathrm{mg}, 0.34 \mathrm{mmol})$ and NBS ($666 \mathrm{mg}, 3.74 \mathrm{mmol}$). The crude material was purified via flash chromatography ($\mathrm{SiO}_{2}, 4 \% \mathrm{MeOH}-\mathrm{DCM} ; \mathrm{R}_{\mathrm{f}}=0.15$ at $4 \% \mathrm{MeOH}-\mathrm{DCM}$) to afford the desired compound as a white powder that was still contaminated by n-hydrosuccinimide. The solids were redissolved in EtOAc, washed5with $1 \mathrm{M} \mathrm{NaOH}(2 \mathrm{x})$ and brine (1 x), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to deliver a white powder ($1.02 \mathrm{~g}, 85 \%$): mp $113-115^{\circ} \mathrm{C}$; IR (neat) $v_{\max } 3277,3093,2946,2870,2184,1663,1632,1614,1561,1462,1438,1371,1343,1279$, 1217, 1150, 1125, 1077, 1041, 953, 723, 668, $642 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.56$ (br s, 1H), 4.41 (dt, J $=13.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dt}, J=13.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{sept}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.31(\mathrm{app}$ $\mathrm{q}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.18-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.79-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{tt}, J=11.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.70$ $(\mathrm{p}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}) 1.65-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.11(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.3,151.5,73.3$, $71.9,67.7,55.8,46.5,42.9,41.0,38.9,29.2,29.1,28.2,22.2$; LRMS (ESI) $\mathrm{m} / \mathrm{z}=359.3[\mathrm{M}+\mathrm{H}]^{+}$. See S49 for NMR spectra.

Cyclo(co)trimerization Product Characterization

3,5,6-Tribromo-hexamethylbenzene-1,2,4-tricarboxamide (1A). A 15 mL round bottom flask was charged with 3-bromodimethylpropiolamide, [1] ($88 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 3 mL DCE. $1.5 \mathrm{~mol} \% \mathrm{CpRuCl}$ (cod) was added as $0.5 \mathrm{~mol} \%$ (CpRuCl (cod); $0.8 \mathrm{mg}, 0.0025 \mathrm{mmol}$) additions of catalyst every 2 h to complete the reaction. The crude reaction mixture was concentrated onto silica gel via rotary evaporation and subjected to flash chromatography $\left(\mathrm{SiO}_{2}, 4 \% \mathrm{MeOH}-\mathrm{DCM} ; \mathrm{R}_{\mathrm{f}}\right.$ $=0.14$ at $4 \% \mathrm{MeOH}-\mathrm{DCM}$) to afford $\mathbf{1 A} / \mathbf{B}$ as a beige solid (81 $\mathrm{mg}, 92 \%$) favoring the $3,5,6$-tribromo isomer in $91: 09$ ratio (Note 1) (Note 2): IR (neat) $v_{\max } 2926,1657,1649$, 1640, 1632, 1613, 1402, 1336, 1263, 1189, 1148, 1074, $674 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.13$ (s, 1 H), 3.01 $(\mathrm{s}, 1 \mathrm{H}), 3.00(\mathrm{~s}, 1 \mathrm{H}), 2.86(\mathrm{~s}, 1 \mathrm{H}), 2.84(\mathrm{~s}, 1 \mathrm{H}), 2.84(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.2,165.9,165.4$, $141.3,138.8,136.8,123.8,123.0,116.3,38.2,37.9,37.3,34.7,34.6,34.6 ;$ LRMS (ESI) $\mathrm{m} / \mathrm{z}=292.3[M+H]^{+}$. See S50 for NMR spectra.
Note 1: The regioisomeric ratio of $\mathbf{1 A : B}(91: 09)$ was determined by NMR and GC/MS analysis.

2,4-Dibromo- $N^{1}, N^{1}, N^{3}, N^{3}$-5,6-hexamethylisophthalamide (1C). 3-bromodimethylpropiolamide ($1 ; 264 \mathrm{mg}, 1.50 \mathrm{mmol}$) and 2-butyne ($88 \mu \mathrm{~L}, 61 \mathrm{mg}, 1.13 \mathrm{mmol}$) were dissolved in 15 mL EtOH and $3 \mathrm{~mol} \% \mathrm{CpRuCl}$ (cod) was added as $2 \mathrm{~mol} \%$ ($\mathrm{CpRuCl}(\mathrm{cod}) ; 4.6 \mathrm{mg}, 0.015 \mathrm{mmol}$) additions of catalyst every 2 h to complete the reaction as determined by thin layer chromatography. The crude reaction mixture was concentrated onto silica gel via rotary evaporation and subjected to flash chromatography $\left(\mathrm{SiO}_{2}\right.$, $50 \rightarrow 90 \%$ EtOAc-Hexanes; $\mathrm{R}_{\mathrm{f}}=0.12$ at 80% EtOAc-hexanes) to afford $\mathbf{1 C}$ as a white solid $(256 \mathrm{mg}, 84 \%): \mathrm{mp} 175-178^{\circ} \mathrm{C}$; IR (neat) $v_{\max } 1644,1501,1408,1384,1259,1145,1128$, $1051,675,662,614 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.00(\mathrm{~s}, 6 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}) 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.14$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 167.9,167.1,137.9,137.6,137.5,135.7,122.4,113.3,37.3,37.1,34.2$, 34.1, 19.8, 18.3; LRMS (ESI) m/z = 407.1 [M + H]+. See S51 for NMR spectra.

3,6-Dibromo- $N^{1}, N^{1}, N^{3}, N^{3}-4,5-h e x a m e t h y l i s o p h t h a l a m i d e ~(1 D) . ~ A ~ 50 ~ m L ~ r o u n d ~ b o t t o m ~$ flask was charged with 3-bromo-dimethylpropiolamide (1; $352 \mathrm{mg}, 2.00 \mathrm{mmol}$) and 2butyne ($156 \mu \mathrm{~L}, 108 \mathrm{mg}, 2.00 \mathrm{mmol}$) were dissolved in 20 mL 1,2-dichloroethane (DCE gives an 82:18 mixture of regio-isomers, as opposed to EtOH , which gives a 96:04 ratio of isomers) followed by the addition of $4.0 \mathrm{~mol} \% \mathrm{CpRuCl}(\mathrm{cod})(12.3 \mathrm{mg}, 0.04 \mathrm{mmol})$. The reaction was allowed to stir at room temperature overnight before being placed on silica gel via rotary evaporation and subjected to flash chromatography $\left(\mathrm{SiO}_{2}, 60 \rightarrow 80 \% \mathrm{EtOAc}\right.$ hexanes) to afford pure minor isomer 1D as a white crystalline solid ($45 \mathrm{mg}, 11 \%$, rerunning this reaction and collecting both isomers, $\mathbf{1 C} / \mathbf{D}$, in 87% combined yield): $\mathrm{mp} 170-173{ }^{\circ} \mathrm{C}$; IR (neat) $v_{\text {max }}$ $2925,1635,1494,1398,1380,1263,1198,1130,1057,1034,1004,797,689 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $3.03(\mathrm{~s}, 6 \mathrm{H}), 2.86(\mathrm{~s}, 6 \mathrm{H}), 2.49(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.4,138.7,135.1,121.7,38.2,34.6,21.5 ;$ LRMS (ESI) $\mathrm{m} / \mathrm{z}=407.1[\mathrm{M}+\mathrm{H}]^{+}$. See S 52 for NMR spectra.

2,4-Dibromo-5,6-diphenyl- $N^{1}, N^{1}, N^{3}, N^{3}-$
tetramethylisophthalamide (2C/D). A 250 mL round bottom flask was charged with 3-bromo-dimethylpropiolamide (1, 1.76 $\mathrm{g}, 10.0 \mathrm{mmol})$ and diphenylacetylene $(1.34 \mathrm{~g}, 7.50 \mathrm{mmol}) .100$ mL EtOH was added followed by addition of $1 \mathrm{~mol} \%$ chloro(1,5-cyclooctadiene)cyclopentadienyl)-ruthenium(II) (CpRuCl(cod); $15.0 \mathrm{mg}, 0.05 \mathrm{mmol})$. The reaction was allowed to stir at room, during which time a portion of the desired product (2C/D) precipitated out of solution as a white powder. The reaction was confirmed complete by thin layer chromatography
after several hours. The crude reaction mixture was filtered to deliver (1.43 g) of pure $\mathbf{2 C} / \mathbf{D}$ as a white powder. The filtrate was then placed on silica gel via rotary evaporation and subjected to flash chromatography $\left(\mathrm{SiO}_{2}, 80 \%\right.$ EtOAc-hexanes; $\mathrm{R}_{\mathrm{f}}=0.20$ at 80% EtOAc-hexanes) to afford the remaining $\mathbf{2 C} / \mathbf{D}$ as a beige solid ($744 \mathrm{mg}+1.43$ $\mathrm{g}, 82 \%$). The samples isolated by filtration and column were combined and characterized: $\mathrm{mp} 284-287^{\circ} \mathrm{C}$; IR (neat) $v_{\max } 1639,1555,1531,1404,1157,1076,761,717,703,696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24-7.20(\mathrm{~m}$, 2H), 7.16-7.12 (m, 3H), 7.09-7.05 (m, 2H), 7.00-6.97 (m, 1H), 6.80-6.78 (m, 1H), 6.76-6.75 (m, 1H), 3.17 (s, 3H), 3.07 (s, 3H), $2.71(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.1,166.8,143.0,141.3,139.7$, 138.7, $138.6,136.8,130.5,130.3,130.0,128.7,128.1,127.9,127.6,127.5,127.4,127.0,121.8,116.1,37.7,37.5,34.6$, 34.1; LRMS (ESI) m/z = 531.1 [M + H] ${ }^{+}$. See S53 for NMR spectra.

Dimethyl 2,4-dibromo-5,6-diphenylisophthalate and Dimethyl 3,6-dibromo-4,5-diphenylisophthalate (3C/D). A 50 mL round bottom flask was charged with methyl 3bromopropiolate (7 see page $\mathrm{S} 4,285 \mathrm{mg}, 1.75 \mathrm{mmol}$) and diphenylacetylene ($250 \mathrm{mg}, 1.40 \mathrm{mmol}$). 17 mL EtOH was added followed by addition of $2.0 \mathrm{~mol} \%$ chloro(1,5-cyclooctadiene)cyclopentadienyl)-ruthenium(II) ($\mathrm{CpRuCl}(\mathrm{cod})$; $5.4 \mathrm{mg}, 0.018 \mathrm{mmol}$) and allowed to stir at room temperature overnight. The reaction was confirmed complete by thin layer chromatography and the crude mixture was then placed on silica gel via rotary evaporation and subsequently subjected to flash chromatography ($\mathrm{SiO}_{2}, 5 \rightarrow 20 \%$ EtOAc-hexanes; $\mathrm{R}_{\mathrm{f}}=0.12$ at 5% EtOAc-hexanes) to afford 3C/D as a beige solid ($388 \mathrm{mg}, 88 \%$): IR (neat) $v_{\max } 1731,1630,1441,1258,1215,1179,1074,993,886,756,700,655,604 \mathrm{~cm}^{-1}$; (major/minor isomer) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.19-6.15(\mathrm{~m}, 8 \mathrm{H}), 7.12-7.10(\mathrm{~m}, 4), 6.98-6.93(\mathrm{~m}, 8 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 4.6 \mathrm{H}), 3.52(\mathrm{~s}$, $3 \mathrm{H})$; (major/minor isomer) ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.8,166.5,166.2,146.3,142.8,142.5,139.4,138.3$, $138.1,136.9,136.7,134.9,129.9,129.5,129.5,127.9,127.8,127.8,127.7,127.7,127.6,122.5,121.2,115.2,53.4$, 53.4, 52.6; LRMS (ESI) m/z = $505.0[\mathrm{M}+\mathrm{H}]^{+}$. See S54 for NMR spectra.

(2,4-Dibromo-5,6-diphenyl-1,3-phenylene)bis(ptolylmethanone) (4C/D). A 50 mL round bottom flask was charged with 3-bromo-1-p-tolylprop-2-yn-1-one (4 see page $\mathrm{S} 5,268 \mathrm{mg}, \quad 1.2 \mathrm{mmol}$) and diphenylacetylene ($161 \mathrm{mg}, 0.90 \mathrm{mmol}$). 12 mL EtOH was added followed by addition of $2 \mathrm{~mol} \%$ chloro($1,5-$ cyclooctadiene)cyclopentadienyl)ruthenium(II)
($\mathrm{CpRuCl}(\mathrm{cod}) ; 3.7 \mathrm{mg}, 0.012 \mathrm{mmol})$ and the reaction was allowed to stir at room temperature overnight. The crude reaction mixture was then placed on silica gel via rotary evaporation and subjected to flash chromatography $\left(\mathrm{SiO}_{2}, 5 \rightarrow 20 \%\right.$ EtOAc-hexanes; $\mathrm{R}_{\mathrm{f}}=0.05$ at $5 \% \mathrm{EtOAc}$ hexanes) to afford $\mathbf{4 C} / \mathbf{D}$ as a tan solid ($368 \mathrm{mg}, 96 \%$): IR (neat) $v_{\text {max }} 1665,1062,1442,1312,1258,1221,1175$, $1028,1010,934,828,752,701,604 \mathrm{~cm}^{-1}$; (major/minor isomer) ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1.7 \mathrm{H}), 7.69(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1.7 \mathrm{H}), 7.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.09-$ $7.01(\mathrm{~m}, 9 \mathrm{H}), 6.97-6.95(\mathrm{~m}, 3 \mathrm{H}), 6.84-6.78(\mathrm{~m}, 2 \mathrm{H}), 6.61(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 0.7 \mathrm{H}), 2.34(\mathrm{~s}$, $3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H})$; (major/minor isomer) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.7,193.8,193.6,145.8$, $145.3,145.1,145.1,143.1,142.4,141.9,141.2,140.6,139.2,138.2,136.4,133.5,132.2,130.9,130.5,130.1,130.4$, $130.3,130.0,129.9,129.8,129.6,129.4,127.9,127.8,127.7,127.6,127.6,127.6,127.5,127.2,122.1,120.7,115.1$, 22.1, 22.0, 21.9; LRMS (ESI) $\mathrm{m} / \mathrm{z}=625.2[\mathrm{M}+\mathrm{H}]^{+}$. See S55 for NMR spectra.

2,4-Dichloro-5,6-diphenyl- $N^{1}, N^{1}, N^{3}, N^{3}-$
tetramethylisophthalamide (5C/D). A 100 mL round bottom flask was charged with 3-chloro-dimethylpropiolamide [5] (393 $\mathrm{mg}, 3.0 \mathrm{mmol}$) and diphenylacetylene ($401 \mathrm{mg}, 2.25 \mathrm{mmol}$). 30 mL EtOH was added followed by addition of $2 \mathrm{~mol} \%$ chloro($1,5-$ cyclooctadiene)cyclopentadienyl)-ruthenium(II) ($\mathrm{CpRuCl}(\mathrm{cod})$; $9.3 \mathrm{mg}, 0.03 \mathrm{mmol}$) and the reaction was allowed to stir at room temperature overnight. The reaction was confirmed complete by
thin layer chromatography and was then placed on silica gel via rotary evaporation and subjected to flash chromatography $\left(\mathrm{SiO}_{2}, 4 \% \mathrm{MeOH}-\mathrm{DCM} ; \mathrm{R}_{\mathrm{f}}=0.33\right.$ at $4 \% \mathrm{MeOH}-\mathrm{DCM}$) to afford $\mathbf{5 C} / \mathbf{D}$ as a beige solid (449 mg , 69%): mp 263-265 ${ }^{\circ} \mathrm{C}$; IR (neat) $v_{\max } 1648,1638,1502,1400,1368,1262,1152,1086,1064,759,726,699,608$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 2 \mathrm{H})$, $7.03(\operatorname{app}$ br s, 1H), $6.83(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\operatorname{app} \mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{~s}$, 3 H) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.9,165.2,141.4,140.4,136.4,136.4,135.8,135.5,131.2,130.4,130.4$, $130.2,128.7,128.1,127.9,127.7,127.5,127.4,127.1,126.8,37.6,37.5,34.6,34.1$; LRMS (ESI) $\mathrm{m} / \mathrm{z}=441.2$ [M $+\mathrm{H}]^{+}$. See S56 for NMR spectra.

2,4-Diiodo-5,6-diphenyl- $N^{1}, N^{1}, N^{3}, N^{3}-$
tetramethylisophthalamide (6C/D). A 100 mL round bottom flask was charged with 3-iodo-dimethylpropiolamide (6; 892 mg , 4.0 mmol) and diphenylacetylene ($534 \mathrm{mg}, 3.00 \mathrm{mmol}$). 40 mL EtOH was added followed by addition of $1.0 \mathrm{~mol} \%$ chloro($1,5-$ cyclooctadiene)cyclopentadienyl)-ruthenium(II) ($\mathrm{CpRuCl}(\operatorname{cod})$; $15.0 \mathrm{mg}, 0.05 \mathrm{mmol}$) and the reaction was allowed to stir at room temperature overnight. During the course of the reaction, the desired product ($\mathbf{6 C} / \mathbf{D}$) precipitated out of solution as a white powder and was subsequently filtered to deliver (432 g) of pure $\mathbf{6 C} / \mathbf{D}$ as a white powder. The filtrate was then placed on silica gel via rotary evaporation and subjected to flash chromatography ($\mathrm{SiO}_{2}, 80 \rightarrow 100 \%$ EtOAc-hexanes; $\mathrm{R}_{\mathrm{f}}=0.25$ at 80% EtOAc-hexanes) to afford the remaining $\mathbf{6 C} / \mathbf{D}$ as a beige solid ($432 \mathrm{mg}+609 \mathrm{mg}, 84 \%$). The samples isolated by filtration and column were combined and characterized: $\mathrm{mp} 254-256^{\circ} \mathrm{C}$; IR (neat) $v_{\text {max }} 2980,1639,1623,1518,1496,1400,1377,1344,1263$, $1153,1075,767,737,715,698,686 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.07(\mathrm{~m}, 3 \mathrm{H})$, 7.07-7.01 (m, 2H), 6.98-6.94 (m, 1H), 6.76-6.72 (m, 2H), 3.16(s, 3H), 2.99(s, 3H), 2.71 (s, 3H), 2.67 (s, 3 H$) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.8,168.6,147.8,147.8,143.7,142.6,139.3,137.4,130.3,130.2,129.6,128.6,128.0$, $127.7,127.5,127.5,127.3,126.8,99.0,90.0,37.8,37.8,34.7,34.1$; LRMS (ESI) m/z $=525.1[M+H]^{+}$. See S57 for NMR spectra.

2,4-Dibromo- N^{1}, N^{3}-dibutyl-5,6-diphenylisophthalamide (8C/D). 3-Bromo-butylpropiolamide ($\mathbf{8} ; 102 \mathrm{mg}, 0.5 \mathrm{mmol}$) and diphenylyacetylene ($68 \mathrm{mg}, 0.4 \mathrm{mmol}$) were dissolved in 5 mL EtOH. $\mathrm{CpRuCl}(\mathrm{cod})(15 \mathrm{mg}, 0.05 \mathrm{mmol})$ was added to the solution and the reaction mixture was stirred overnight. The dark brown reaction mixture was concentrated onto silica gel and subjected to flash chromatography $\left(\mathrm{SiO}_{2}, 30 \rightarrow 40 \% \mathrm{EtOAc}-\right.$ hexanes; $\mathrm{R}_{\mathrm{f}}=0.15$ at 20% EtOAc-hexanes) to yield a brown solid that was then resubjected to chromatography ($\mathrm{SiO}_{2}, 5 \rightarrow 30 \% \mathrm{EtOAc}$-hexanes) to finally deliver $\mathbf{8 C / D}$ as a beige solid ($73 \mathrm{mg}, 49 \%$): mp $234-236{ }^{\circ} \mathrm{C}$; IR (neat) $v_{\text {max }} 3230,2956,1639,1561,1442,1360,1287,1225,1148,753$, $697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.14-6.79(\mathrm{~m}, 10 \mathrm{H}), 6.16(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.47$ (q, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.07(\operatorname{app} \mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.99(\operatorname{app} \mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.67-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.05-0.98(\mathrm{~m}$, $4 \mathrm{H}), 0.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.72(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.7,166.6,142.9,142.0$, $140.4,139.6,139.0,137.3,129.9,127.8,127.6,127.5,122.5,116.6,39.9,39.4,31.2,31.0,20.3,19.9,13.8,13.8$; LRMS (ESI) m/z = $587.2[\mathrm{M}+\mathrm{H}]^{+}$. See S58 for NMR spectra.

2,4-Dibromo-5,6-dibutyl- $N^{1}, N^{1}, N^{3}, N^{3}$-tetramethylisophthalamide (11C). 3-bromodimethylpropiolamide ($1,528 \mathrm{mg}, 3.00 \mathrm{mmol}$) and 5 -decyne ($400 \mu \mathrm{~L}, 310 \mathrm{mg}, 2.25 \mathrm{mmol}$) were dissolved in 30 mL EtOH and treated with a total of $4 \mathrm{~mol} \% \mathrm{CpRuCl}(\mathrm{cod})$. The catalyst was added as $2 \mathrm{~mol} \%(\mathrm{CpRuCl}(\mathrm{cod}) ; 9.3 \mathrm{mg}, 0.03 \mathrm{mmol})$ additions every 2 h to complete the reaction as determined by thin layer chromatography. The crude reaction mixture was concentrated onto silica gel via rotary evaporation and subjected to flash chromatography ($\mathrm{SiO}_{2}, 50 \rightarrow 80 \%$ EtOAc-Hexanes; $\mathrm{R}_{\mathrm{f}}=0.25$ at 60% EtOAc-hexanes) to afford 11C as a tan solid ($478 \mathrm{mg}, 65 \%$): $\mathrm{mp} 100-103{ }^{\circ} \mathrm{C}$; IR (neat) $\mathrm{v}_{\text {max }}$ 2925, 2929, 1633, 1546, 1495, 1460, 1396, 1364, 1263, 1145, 1130, 1091, $672 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right) \delta 2.96(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 2.61-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.22(\mathrm{~m}$, $1 \mathrm{H}), 1.52-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.28(\mathrm{~m}, 4 \mathrm{H}), 1.27-1.19(\mathrm{~m}, 3 \mathrm{H}), 0.80(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.76(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.6,167.1,141.4,140.3,137.9,137.8,122.3,113.8,37.5,37.0,34.1,34.0,32.5$, $32.2,31.4,31.2,22.9,22.7,13.5,13.4 ;$ LRMS (ESI) $\mathrm{m} / \mathrm{z}=491.1[\mathrm{M}+\mathrm{H}]^{+}$. See S59 for NMR spectra.

2,4-Dibromo- $N^{1}, N^{1}, N^{3}, N^{3}$-tetramethylisophthalamide (12C). 3-Bromo-dimethyl propiolamide ($\mathbf{1 a} ; 176 \mathrm{mg}, 1.0 \mathrm{mmol}$) was dissolved in 9 mL EtOH in a 25 mL round bottom flask equipped with a rubber septum. Acetylene gas was then bubbled through the solution via a syringe connected to a balloon and a syringe outlet. After several minutes, $\mathrm{CpRuCl}(c o d)$ ($3.0 \mathrm{mg}, 0.1 \mathrm{mmol}$), dissolved in 0.5 mL EtOH , was added to the reaction mixture and the syringe outlet was removed. Additional $\mathrm{CpRuCl}(\operatorname{cod})$ was added every 1.5 hr as necessary to completely consume $\mathbf{1 a}$. Once $10 \mathrm{~mol} \%$ catalyst had been added the reaction was deemed complete by TLC analysis and was subsequently concentrated onto silica gel via rotary evaporation and subjected to flash chromatography $\left(\mathrm{SiO}_{2}, 80 \%\right.$ EtOAc-Hexanes; $\mathrm{R}_{\mathrm{f}}=0.08$ at 80% EtOAc-hexanes) to afford $\mathbf{1 2 C}$ as a brown solid ($116 \mathrm{mg}, 61 \%$): mp 173-176 (decomp) ${ }^{\circ} \mathrm{C}$; IR (neat) $v_{\max } 1638,1626,1577,1509,1435,1396,1366,1265,1157$, $1126,1058,862,769,754,731,686,652 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{~s}, 3 \mathrm{H}), 2.83(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.9,166.7,140.4,138.8$, $132.3,128.4,120.2,116.9,38.3,37.5,34.8,34.6 ;$ LRMS (ESI) $\mathrm{m} / \mathrm{z}=379.2[\mathrm{M}+\mathrm{H}]^{+}$. See S60 for NMR spectra.

2,4-Dibromo-5,6-bis(methoxymethyl)- $N^{1}, N^{1}, N^{3}, N^{3}$-tetramethylisophthalamide (13C). 3-Bromo-dimethylpropiolamide ($\mathbf{1 a} ; 440 \mathrm{mg}, 2.50 \mathrm{mmol}$) and 1,4-dimethoxybut-2-yne $(214 \mathrm{mg}, 1.88 \mathrm{mmol})$ were dissolved in 25 mL EtOH and $4 \mathrm{~mol} \% \mathrm{CpRuCl}(c o d)$ was added as $2 \mathrm{~mol} \% ~(\mathrm{CpRuCl}(\mathrm{cod}) ; 7.7 \mathrm{mg}, 0.025 \mathrm{mmol})$ additions of catalyst every 2 h to complete the reaction as determined by thin layer chromatography. The crude reaction mixture was concentrated onto silica gel via rotary evaporation and subjected to flash chromatography $\left(\mathrm{SiO}_{2}, 60 \rightarrow 100 \%\right.$ EtOAc-Hexanes; $\mathrm{R}_{\mathrm{f}}=0.05$ at $80 \% \mathrm{EtOAc}$-hexanes) to afford $\mathbf{1 3 C}$ as a brown sticky semi-solid ($425 \mathrm{mg}, 73 \%$): IR (neat) $v_{\max } 2930,2816,1638,1547,1498,1458$, $1401,1360,1263,1190,1143,1126,1091,950,673 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $4.69(\operatorname{app~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.56(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.15$ $(\mathrm{s}, 3 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.2,166.7,140.3,139.5,137.3$, $137.3,123.8,116.8,69.9,69.2,59.0,58.4,37.8,37.1,34.3,34.3 ;$ LRMS (ESI) m/z=467.1[M+H].See S61 for NMR spectra.

2,4-Dibromo-5,6-bis(fluoromethyl)- $N^{1}, N^{1}, N^{3}, N^{3}$-tetramethyl-isophthalamide (14C). 3-bromo-dimethylpropiolamide (1a; $176 \mathrm{mg}, 1.00 \mathrm{mmol}$) and 1,4-difluorobut-2-yne ${ }^{2}$ (90 $\mathrm{mg}, 1.00 \mathrm{mmol} ; \sim 80 \%$ pure by NMR) were dissolved in 5 mL EtOH and treated with 4 $\mathrm{mol} \% \mathrm{CpRuCl}(\mathrm{cod})$. The catalyst was added as $2 \mathrm{~mol} \%$ ($\mathrm{CpRuCl}(\mathrm{cod}) ; 3.1 \mathrm{mg}, 0.03 \mathrm{mmol})$ additions of catalyst every 2 h to complete the reaction. The crude reaction mixture was concentrated onto silica gel via rotary evaporation and subjected to flash chromatography $\left(\mathrm{SiO}_{2}, 80 \% \mathrm{EtOAc}-\right.$ Hexanes; $\mathrm{R}_{\mathrm{f}}=0.12$ at $80 \% \mathrm{EtOAc}$-hexanes) to afford $\mathbf{1 4 C}$ as a beige solid ($162 \mathrm{mg}, 69 \%$): mp 152-155 ${ }^{\circ} \mathrm{C}$; IR (neat) $v_{\max } 2924,1638,1548,1498,1402,1362$, $1260,1147,1126,1044,1005,983,862,699,671 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.70$ $(\mathrm{s}, 1 \mathrm{H}), 5.60(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.59(\mathrm{~s}, 1 \mathrm{H}), 5.48(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.42(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.30(\mathrm{~d}$, $J=11.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.12(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{~s}, 3 \mathrm{H}), 2.83(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.3$, $166.2,142.3,142.3,142.3,140.4,140.4,140.4,135.7,135.7,134.9,134.8,134.7,134.7,124.1,124.0,124.0,124.0$, $118.8,118.8,118.7,118.7,80.9,80.2,80.2,79.2,78.5,78.5,37.9,37.2,34.6,34.5 ; \mathrm{F}^{19} \mathrm{NMR}(400 \mathrm{MHz}, \mathrm{CDCl} 3)$ $\delta-205.1,-205.1,-208.7,-208.7$; LRMS (ESI) $m / z=443.1[M+H]^{+}$. See S 62 for NMR spectra.

2,4-Dibromo-5,6-bis(chloromethyl)- $N^{1}, N^{1}, N^{3}, N^{3}$-tetramethyl-isophthalamide (15C). 3-bromo-dimethylpropiolamide (1a; $352 \mathrm{mg}, 2.00 \mathrm{mmol}$) and 1,4-dichlorobut-2-yne (195 $\mu \mathrm{L}, 246 \mathrm{mg}, 2.00 \mathrm{mmol}$) were dissolved in 20 mL EtOH and $5 \mathrm{~mol} \% \mathrm{CpRuCl}(\mathrm{cod})$ was added as $2 \mathrm{~mol} \%$ ($\mathrm{CpRuCl}(\mathrm{cod}) ; 6.2 \mathrm{mg}, 0.02 \mathrm{mmol})$ additions of catalyst every 2 h to
complete the reaction as determined by thin layer chromatography. The crude reaction mixture was concentrated onto silica gel via rotary evaporation and subjected to flash chromatography $\left(\mathrm{SiO}_{2}, 50 \rightarrow 80 \%\right.$ EtOAc-Hexanes; R_{f} $=0.18$ at 70% EtOAc-hexanes) to afford 15 C as a yellow solid ($295 \mathrm{mg}, 62 \%$): mp $150-152{ }^{\circ} \mathrm{C}$; IR (neat) $v_{\max }$ $1633,1547,1501,1443,1402,1364,1260,1134,1112,1057,937,854,723,709,671,614 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.87(\mathrm{app} \mathrm{dd}, J=20.1,12.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.73(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{~s}, 6 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H}), 2.84(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.3,166.2,141.6,140.1,137.4,136.1,124.0,117.9,41.5,40.1,38.2,37.4$, 34.7, 34.6; LRMS (ESI) m/z $=475.1[\mathrm{M}+\mathrm{H}]^{+}$. See S 63 for NMR spectra.

2,4-dibromo-5-(4'-methoxy)phenyl-6-phenyl$N^{1}, N^{1}, N^{3}, N^{3}$-tetramethyl-isophthalamide (16C). 3-Bromo-dimethylpropiolamide (1a; $616 \mathrm{mg}, 3.50$ mmol) and 1-methoxy-4-(phenylethynyl)benzene ${ }^{4}$ ($546 \mathrm{mg}, 2.63 \mathrm{mmol}$) were dissolved in 35 mL EtOH followed by the addition of $2 \mathrm{~mol} \% \mathrm{CpRuCl}$ (cod) (10.8 $\mathrm{mg}, 0.035 \mathrm{mmol}$). After stirring overnight, the crude reaction mixture was filtered to deliver 238 mg of $\mathbf{1 6 C}$ as a white powder and the filtrate was then concentrated onto silica gel via rotary evaporation and subjected to flash chromatography $\left(\mathrm{SiO}_{2}, 50 \rightarrow 80 \%\right.$ EtOAc-Hexanes; $\mathrm{R}_{\mathrm{f}}=0.2$ at 80% EtOAc-hexanes) to afford the remaining 16 as a beige solid ($587 \mathrm{mg}+238 \mathrm{mg}$, 84%) The products isolated by filtration and column were combined and characterized: IR (neat) $v_{\max }$ 2987, 1637, $1609,1513,1403,1395,1247,1177,1147,1078,1046,1021,840,702,616 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.28-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.07(\mathrm{~m}, 7 \mathrm{H}), 6.82-6.80(\mathrm{~m}, 3 \mathrm{H}), 6.74-6.73(\mathrm{~m}, 3 \mathrm{H}), 6.63-6.58(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.69$ $(\mathrm{s}, 3 \mathrm{H}), 3.21(\mathrm{~s}, 6 \mathrm{H}), 3.06(\mathrm{~s}, 6 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{~s}, 6 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.9$, $166.8,166.6,158.4,158.4,142.9,142.4,141.2,140.8,139.4,139.2,138.6,138.5,138.3,136.7,131.4,131.2,130.8$, $130.7,130.6,130.1,130.0,129.5,128.7,128.5,127.8,127.5,127.3,127.2,127.2,126.9,122.1,121.5,115.7,115.5$, $113.0,112.7,54.8,54.8,37.5,37.4,37.3,34.3,33.8,33.8 ;$ LRMS (ESI) $\mathrm{m} / \mathrm{z}=561.1[\mathrm{M}+\mathrm{H}]^{+}$. See S64 for NMR spectra.

2,4-dibromo-5-(4'-cyano)phenyl-6-phenyl$N^{1}, N^{1}, N^{3}, N^{3}$-tetramethyl-isophthalamide (17C). 3-Bromo-dimethylpropiolamide (1a; $50 \mathrm{mg}, 0.284$ mmol) and 1-cyano-4-(phenylethynyl)benzene ${ }^{4}$ (57 $\mathrm{mg}, 0.284 \mathrm{mmol}$) were dissolved in 4 mL EtOH followed by the addition of $4 \mathrm{~mol} \% \mathrm{CpRuCl}$ (cod) $(1.7 \mathrm{mg}, 0.0057 \mathrm{mmol})$ and the reaction was stirred overnight. The crude reaction mixture was then concentrated onto silica gel via rotary evaporation and subjected to flash chromatography $\left(\mathrm{SiO}_{2}\right.$, $50 \rightarrow 80 \%$ EtOAc-Hexanes; $\mathrm{R}_{\mathrm{f}}=0.23$ at 80% EtOAchexanes) to afford the remaining $\mathbf{1 7 C}$ as a slightly yellow solid ($69 \mathrm{mg}, 88 \%$): IR (neat) $v_{\max } 1641,1610,1532$, $1502,1402,1386,1358,1263,1149,1080,851,808,731,702,610 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{dd}$, $J=8.0,1.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.46(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.37(\mathrm{app} \mathrm{dd}, J=8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{app} \mathrm{dd}, J=7.91 .3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.2-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.09(\mathrm{~m}, 1.5 \mathrm{H}), 7.01(\mathrm{app} \mathrm{t}, J=7.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.92(\mathrm{dd}, J=8.01 .2 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.88(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.76(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.70(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 2.74(\mathrm{~s}, 1.5 \mathrm{H})$, $2.73(\mathrm{~s}, 1.5 \mathrm{H}), 2.70(\mathrm{~s}, 3.0 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.8,166.7,166.4,166.3,143.4,142.7,141.7,141.0$, $140.9,140.6,140.1,139.1,138.9,138.2,137.9,136.0,131.9,131.7$ (br), 131.6 (br), 131.3, 131.2, 130.9, 130.9 (br), $130.4,130.0,129.8,129.4$ (br), 128.4, 128.3 (br), 128.2, 128.1, 127.7, 127.4, 122.2, 120.9, 118.5, 118.3, 117.2,
116.3, 111.6, 111.5, 37.6, 37.6, 37.5, 37.5, 34.6, 34.2, 34.1; LRMS (ESI) m/z = $556.1[M+H]^{+}$. See S65 for NMR spectra.

2,4-Dibromo- $N^{1}, N^{1}, N^{3}, N^{3}$-tetramethyl-5,6,7,8,9,10,11,12,13,14-decahydrobenzo-[12]annulene-1,3-dicarboxamide (18C). 3-Bromo-dimethylpropiolamide (1a; 40 mg , 0.227 mmol) and cyclododecyne ${ }^{4}(74 \mathrm{mg}, 0.45 \mathrm{mmol})$ [excess internal alkyne was used as GC/MS analysis of the laboratory sample of this alkyne indicated purity to be $\sim 60 \%$] were dissolved in 4 mL EtOH and $4 \mathrm{~mol} \% \mathrm{CpRuCl}(\mathrm{cod})$ was added as $2 \mathrm{~mol} \%$ ($\mathrm{CpRuCl}(\mathrm{cod}) ; 1.7 \mathrm{mg}, 0.0045 \mathrm{mmol})$ additions of catalyst every 2 h to complete the reaction. The crude reaction mixture was concentrated onto silica gel via rotary evaporation and subjected to flash chromatography $\left(\mathrm{SiO}_{2}, 50 \rightarrow 80 \%\right.$ EtOAc-Hexanes; R_{f} $=0.35$ at 80% EtOAc-hexanes) to afford $\mathbf{1 8 C}$ as a white ($65 \mathrm{mg}, 90 \%$): mp 201-203 ${ }^{\circ} \mathrm{C}$; IR (neat) $v_{\text {max }} 2924,2858,1641,1479,1443,1402,1362,1265,1120,1089,729,676 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.12(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{~s}, 3 \mathrm{H}), 2.92-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.83(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{~s}, 3 \mathrm{H}), 2.41-2.35$ $(\mathrm{m}, 1 \mathrm{H}), 1 . .87-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.47(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.2,167.5,141.9,141.0,138.6$, $138.2,123.4,114.2,37.7,37.4,34.5,34.5,31.4,31.3,29.0,28.7,28.2,28.1,27.5,26.5,22.6,22.3$; LRMS (ESI) $\mathrm{m} / \mathrm{z}=517.2[\mathrm{M}+\mathrm{H}]^{+}$. See S66 for NMR spectra.

(2,4-Dibromo-5,6-dimethyl-1,3-phenylene)bis(morpholine-methanone) (19C). 3-Bromo-1-morpholinoprop-2-yn-1-one ($410 \mathrm{mg}, 1.64 \mathrm{mmol}$) and 2-butyne ($118 \mu \mathrm{~L}, 81$ $\mathrm{mg}, 1.5 \mathrm{mmol}$) were dissolved in 18 mL EtOH and $2 \mathrm{~mol} \% \mathrm{CpRuCl}(\mathrm{cod})(5.0 \mathrm{mg}, 0.016$ mmol) was added. The crude reaction mixture was determined complete by thin layer chromatography and subsequently filtered to deliver 125 mg of 19 C as a white powder. The filtrate was then concentrated onto silica gel via rotary evaporation and subjected to flash chromatography $\left(\mathrm{SiO}_{2}, 60 \rightarrow 80 \%\right.$ EtOAc-Hexanes; $\mathrm{R}_{\mathrm{f}}=0.19$ at 80% EtOAchexanes) to afford the remaining 19 C as a beige solid ($125 \mathrm{mg}+301 \mathrm{mg}, 93 \%$). The samples isolated by filtration and column were combined and characterized: mp 205-207 ${ }^{\circ} \mathrm{C}$; IR (neat) $v_{\text {max }} 2981$, 2859, 1642, 1626, 1547, 1462, 1441, 1305, 1274, 1238, 1213, 1112, 1069, 1043, 1024, 954, 855, $613 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.90-3.80(\mathrm{~m}, 3 \mathrm{H}), 3.80-3.74(\mathrm{~m}, 3 \mathrm{H}), 3.72-3.66(\mathrm{~m}, 5 \mathrm{H}), 3.55-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.22-3.11$ ($\mathrm{m}, 4 \mathrm{H}$), $2.28(\mathrm{~s}, 3), 2.21(\mathrm{~s}, 3) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.5,165.6,138.1,137.1,137.0,136.4,123.2$, 113.7, 66.6, 66.6, 66.5, 66.5, 46.5, 46.5, 41.8, 41.7, 20.1, 18.7; LRMS (ESI) $\mathrm{m} / \mathrm{z}=491.1[\mathrm{M}+\mathrm{H}]^{+}$. See S67 for NMR spectra.

2,4-dibromo-5,6-diphenyl- $N^{1}, N^{1}, N^{3}, N^{3}$-tetraisopropylisophthalamide (20C). 3-Bromo- N, N-diisopropylpropiolamide ($209 \mathrm{mg}, 0.90 \mathrm{mmol}$) and diphenylacetylene ($121 \mathrm{mg}, 0.68 \mathrm{mmol}$) were dissolved in 9 mL EtOH and $4 \mathrm{~mol} \% \mathrm{CpRuCl}(\mathrm{cod})$ was added as $2 \mathrm{~mol} \%(2.8 \mathrm{mg}, 0.009 \mathrm{mmol})$ additions of catalyst every 2 h to complete the reaction. The crude reaction mixture was concentrated onto silica gel via rotary evaporation and subjected to flash chromatography ($\mathrm{SiO}_{2}, 15 \rightarrow 20 \%$ EtOAc-Hexanes; $\mathrm{R}_{\mathrm{f}}=0.12$ at 20% EtOAc-hexanes) to afford $\mathbf{2 0 C}$ as a yellow solid ($272 \mathrm{mg}, 94 \%$): mp $119-123{ }^{\circ} \mathrm{C}$; IR (neat) $v_{\text {max }} 2975,1641,1629,1469,1442,1369,1334,1317,1265$, $1210,1156,1139,1037,708,697,615 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.13(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{sept}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{sept}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{sept}, J=6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.16(\operatorname{sept}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.60(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.48(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $1.36(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.56(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.9,165.8,142.6,140.6,139.8,139.5,139.2,136.7,131.7,131.1$, 130.7, 130.0, 128.2, 127.8, 127.4, 127.4, 127.0, 126.7, 121.4, 116.8, 52.0, 51.0, 46.6, 46.0, 21.3, 20.8, 20.7, 20.6, 20.2, 20.2, 20.0, 19.8; LRMS (ESI) m/z=643.2 [M + H] ${ }^{+}$. See S68 for NMR spectra.

2,4-dibromo- $N^{1}, N^{1}, N^{3}, N^{3}$-tetraethyl-5,6-di(thiophen-3-yl)isophthalamide (21C). 3 -Bromo- N, N-diethylpropiolamide ($203 \mathrm{mg}, 1.00 \mathrm{mmol}$) and 1,2-di(thiophen-3yl)ethyne ${ }^{5}$ ($143 \mathrm{mg}, 0.75 \mathrm{mmol}$) were dissolved in 8 mL EtOH and $2 \mathrm{~mol} \%$ $\mathrm{CpRuCl}(\mathrm{cod})(3.0 \mathrm{mg}, 0.01 \mathrm{mmol})$ was added. After 2 hours, the crude reaction mixture was concentrated onto silica gel via rotary evaporation and subjected to flash chromatography ($\mathrm{SiO}_{2}, 40 \% \mathrm{EtOAc}$-Hexanes; $\mathrm{R}_{\mathrm{f}}=0.24$ at $50 \% \mathrm{EtOAc}$-hexanes) to afford 21 C as a beige solid ($274 \mathrm{mg}, 92 \%$): mp $154-156^{\circ} \mathrm{C}$; IR (neat) $v_{\max } 2980,2935$, $1645,1629,1459,1438,1378,1304,1270,1217,1143,1078,856,784,771,680 \mathrm{~cm}^{-}$ ${ }^{1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.17(\mathrm{dd}, J=3.0,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{dd}, J=5.0,3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.94(\mathrm{br} \operatorname{app} \mathrm{s}, 1 \mathrm{H}), 6.82(\mathrm{br} \operatorname{app} \mathrm{s}, 1 \mathrm{H}), 6.64(\mathrm{dd}, J=5.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-$ $3.55(\mathrm{~m}, 3 \mathrm{H}), 3.38-3.23(\mathrm{~m}, 2 \mathrm{H}), 3.10-2.97(\mathrm{~m}, 2 \mathrm{H}), 2.81-2.72(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=6.7$ $\mathrm{Hz}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.1,166.0,139.9$, $138.8,138.1,138.2,136.4,136.3,129.0,128.7,125.7,125.3,124.6,124.3,121.9,116.7,42.7,42.3,38.8,38.2$, $13.6,13.2,12.1,11.7 ;$ LRMS (ESI) $m / z=599.1[M+H]^{+}$. See S69 for NMR spectra.

Diethyl-1,5-(4,6-dibromo-2,3-bis(methoxymethyl)benzoyl)-bispiperidine-4carboxylate (22C). Ethyl 1-(3-bromopropioloyl)piperidine-4-carboxylate (471 $\mathrm{mg}, 1.64 \mathrm{mmol}$) and 1,4-dimethoxybut-2-yne ($187 \mathrm{mg}, 1.64 \mathrm{mmol}$) were dissolved in 16 mL EtOH and $4 \mathrm{~mol} \% \mathrm{CpRuCl}(\mathrm{cod})$ was added as $2 \mathrm{~mol} \% ~(5.0 \mathrm{mg}, 0.016$ mmol) additions of catalyst every 2 h to complete the reaction. The crude reaction mixture was concentrated onto silica gel via rotary evaporation and subjected to flash chromatography $\left(\mathrm{SiO}_{2}, 80 \%\right.$ EtOAc-Hexanes; $\mathrm{R}_{\mathrm{f}}=0.16$ at $80 \% \mathrm{EtOAc}-$ hexanes) to afford 22 C as a tan solid ($407 \mathrm{mg}, 72 \%$) and as a mixture of atropisomers: mp 59-62 ${ }^{\circ} \mathrm{C}$; IR (neat) $v_{\max } 2988,2933,1726,1640,1548,1444$, $1377,1318,1272,1175,1093,1039,945,862,666,615 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 4.56(\mathrm{app} \mathrm{s}, 2 \mathrm{H}), 4.49-4.40(\mathrm{~m}, 2 \mathrm{H}), 4.38-4.28(\mathrm{~m}, 2 \mathrm{H}), 4.07-4.01(\mathrm{~m}$, $4 \mathrm{H}), 3.32(\mathrm{~s}, 1.5 \mathrm{H}), 3.30(\mathrm{~s}, 1.5 \mathrm{H}), 3.30(\mathrm{~s}, 1.5 \mathrm{H}), 3.28(\mathrm{~s}, 1.5 \mathrm{H}), 3.25-3.22(\mathrm{~m}, 2 \mathrm{H}), 3.10-2.93(\mathrm{~m}, 3 \mathrm{H}), 2.92-2.81$ $(\mathrm{m}, 1 \mathrm{H}), 2.51-2.42(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.54(\mathrm{~m}, 6 \mathrm{H}), 1.17-1.12(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right)$ $\delta 173.9,173.9,173.8,173.8,173.7,173.7,173.6,173.6,165.4,165.4,165.3,165.3,164.8,164.8,164.8,164.8$, $140.0,139.9,139.9,139.3,139.2,139.1,139.0,137.5,137.4,137.4,137.2,124.0,123.9,123.9,123.9,116.9,116.9$, $116.9,116.9,69.9,69.9,69.2,69.1,69.9,69.9,69.2,69.1,60.6,60.5,60.5,60.5,60.5,59.0,58.9,58.4,46.3,46.2$, $45.3,45.3,45.2,45.1,40.8,40.6,40.6,40.5,40.4,40.4,40.3,27.9,27.7,27.7,27.6,27.5,27.4,27.3,27.3,27.2$, 27.2, 14.0; LRMS (ESI) m/z=691.2 [M+H]+. See S70 for NMR spectra.

1,2-(4,6-Dibromo-2,3-dimethylbenzoyl)- N, N-(di-3-
isopropoxypropyl)bispiperidine-4-carboxamide (23C). 1-(3-Bromopropioloyl)- N-(3-isopropoxypropyl)piperidine-4-carboxamide (539 $\mathrm{mg}, 1.5 \mathrm{mmol})$ and 2-butyne $(94 \mu \mathrm{~L}, 65 \mathrm{mg}, 1.2 \mathrm{mmol})$ were dissolved in 25 mL EtOH followed by the addition of $2 \mathrm{~mol} \% \mathrm{CpRuCl}$ (cod) $(9.3 \mathrm{mg}, 0.03$ mmol). After stirring for 2 hr , the crude reaction mixture was concentrated onto silica gel via rotary evaporation and subjected to flash chromatography $\left(\mathrm{SiO}_{2}, 4 \% \mathrm{MeOH}-\mathrm{DCM} ; \mathrm{R}_{\mathrm{f}}=0.19\right.$ at $\left.5 \% \mathrm{MeOH}-\mathrm{DCM}\right)$ to afford 23 C as a light brown solid ($387 \mathrm{mg}, 67 \%$) and as a mixture of atropisomers: mp N/A ${ }^{\circ} \mathrm{C}$; IR (neat) $v_{\max } 3325,1628,1542,1446,1369,1327,1274,1202,1148$, $1127,1083,1010,938,753,668,648 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87-7.84(\mathrm{~m}, 1 \mathrm{H}), 6.77-6.71(\mathrm{~m}, 1 \mathrm{H})$, $4.52-4.42(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{sept}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.33-3.31(\mathrm{~m}, 4 \mathrm{H}), 3.26-3.23(\mathrm{~m}, 2 \mathrm{H}), 3.15-3.09(\mathrm{~m}, 4 \mathrm{H}), 2.89-2.81$ $(\mathrm{m}, 2 \mathrm{H}), 2.78-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{app} \mathrm{s}, 3 \mathrm{H}), 2.15(\mathrm{app} \mathrm{s}, 3 \mathrm{H}), 2.10(\mathrm{app} \mathrm{s}, 2 \mathrm{H}), 1.78-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.42(\mathrm{~m}$, $10 \mathrm{H}), 0.98-0.97(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.6,173.5,173.5,173.4,173.4,173.4,173.2,173.2$, $166.1,166.1,166.0,165.9,165.3,165.3,165.2,165.1,137.8,137.7,137.6,137.6,137.5,137.4,137.4,137.4,137.3$, $137.2,135.9,135.9,135.7,122.5,122.4,122.4,122.4,113.3,113.3,113.3,113.2,71.4,71.4,71.3,71.3,66.8,66.8$, $66.7,66.6,66.5,66.5,45.7,45.7,45.6,45.5,45.5,45.3,45.3,45.2,45.2,42.4,42.4,42.2,42.2,42.1,40.5,40.57$, $50.5,50.5,40.4,40.4,38.0,37.9,37.8,37.8,37.8,37.7,29.3,29.2,29.2,29.1,28.8,28.8,28.6,28.5,28.2,28.2$, $28.0,27.9,27.9,21.9,19.8,19.8,19.8,19.7,18.6,18.5,18.3 ;$ LRMS (ESI) m/z $=773.4[\mathrm{M}+\mathrm{H}]^{+}$. See S71 for NMR spectra.

microwave vial equipped with a stir bar there was added $53 \mathrm{mg}(0.10 \mathrm{mmol}, 1.0$ equiv.) aryl bromide $\mathbf{2 C}$ and 43 $\mathrm{mg}(0.040 \mathrm{mmol}$ Pd, 0.40 equiv. by Pd content) 10% palladium on carbon. Anhydrous DCE (1.0 mL) was added, followed by $320 \mu \mathrm{~L}(233 \mathrm{mg}, 2.00 \mathrm{mmol}, 20$ equiv.) triethylsilane. Hydrogen evolution was observed and the vial was immediately capped. A needle was introduced for approximately 15 seconds and upon shaking, the residual air in the reaction headspace was displaced. The needle was removed and the vial placed in an oil bath at $90^{\circ} \mathrm{C}$ for 72 hours. The reaction mixture was then cooled, concentrated, dissolved in EtOAc, and passed through a plug of celite. The resulting yellow residue was analyzed by LC/MS and was observed to consist almost entirely of a species with mass corresponding to aryl silane 24; m/z $457.2[\mathrm{M}-\mathrm{Et}]+; \mathrm{m} / \mathrm{z} 487.3[\mathrm{M}+\mathrm{H}]^{+}$. This product was not purified further, but subjected to 2.0 mL ($2.0 \mathrm{mmol}, 20$ equiv.) of a 1 M THF solution of tetrabutylammonium fluoride directly. After 24 hours at RT under air, $623 \mathrm{mg} \mathrm{CaCO}_{3}, \mathrm{MeOH}(4.5 \mathrm{~mL})$, and 1.87 g DOWEX 50WX8-400 resin were added. This mixture was stirred for 2 hours at RT under air and filtered through celite using MeOH as eluent thereby removing excess TBAF. ${ }^{6}$ This residue was concentrated and purified by flash column chromatography (100% DCM to remove excess silane, then switching to $1 \% \mathrm{MeOH}$ in DCM to elute product) to afford $38 \mathrm{mg}(0.10$ mmol, quantitative yield) of the title compound as a white solid, $\mathbf{2 5} ;(38 \mathrm{mg}, 0.10 \mathrm{mmol}$, quantitative yield, white solid). $\mathrm{Rf}=0.49(1 \% \mathrm{MeOH}$ in DCM$) .1 \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.60(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, \mathrm{~J}=1.7$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.34 ($\mathrm{s}, 1 \mathrm{H}$), 7.25 (dd, J = 6.1, $2.6 \mathrm{~Hz}, 6 \mathrm{H}$), $7.18-7.13$ (m, 3H), 3.21 (s, 3H), 3.15 (s, 3H), 2.82 ($\mathrm{s}, 3 \mathrm{H}$), 2.52 (s, 3H). 13C NMR ($126 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 170.67$, 170.43, 141.99, 140.36, 138.20, 138.16, 137.65, 136.18, $130.36,129.93,129.67,129.15,128.34,128.03,127.45,127.01,124.50,39.92,38.39,35.54,34.46$. LRMS (ESI): $\mathrm{m} / \mathrm{z} 373.2[\mathrm{M}+\mathrm{H}]^{+}$. See S72 for NMR spectra.

4,6-dibromo-7-(hydroxymethyl)-dimethyl-3-oxo-1,3-dihydro-isobenzofuran-5-
carboxamide (27). A 50 mL round bottom flask was charged with 5.1 ($1.5 \mathrm{~g}, 8.5 \mathrm{mmol}$), commercially available 1,4-diol-but-2-yne ($1.1 \mathrm{~g}, 12.8 \mathrm{mmol}$) and 25 mL ethanol. The reaction vessel was placed into a $50{ }^{\circ} \mathrm{C}$ oil bath and treated with $\mathrm{CpRuCl}(\mathrm{cod})(50 \mathrm{mg}, 0.17 \mathrm{mmol})$. After 1 h , the reaction was analyzed by TLC, deemed incomplete and treated with an additional portion of $\mathrm{CpRuCl}(\operatorname{cod})(50 \mathrm{mg}, 0.17 \mathrm{mmol})$. The reaction was stirred for 3 more hours at which point TLC analysis indicated the reaction was complete. The crude mixture was concentrated directly onto silica gel and subjected to column chromatography ($\mathrm{SiO}_{2}, 80 \rightarrow$ 100% EtOAc-Hexanes). The only fraction that eluted ($\mathrm{R}_{\mathrm{f}}=0.28$ at 100% EtOAc-hexanes) was determined by ${ }^{1} \mathrm{H}$ NMR to be $27(\sim 600 \mathrm{mg})$. At this point, the solvent phase was changed from EtOAc to $2 \rightarrow 15 \% \mathrm{MeOH} / \mathrm{DCM}$. Several additional fractions eluted: The first was determined to be $\mathbf{1 A} / \mathbf{B}(\sim 50 \mathrm{mg})$, next impure 27 eluted (~ 400 500 mg) and finally $26(\sim 450 \mathrm{mg})$.
Isolated 27 was found to have margin solubility in EtOAc and better solubility in DCM. After a period of one week, all of the fractions eluted with DCM would collected, re-concentrated on silica gel and subjected to a second round of column chromatography ($\left.\mathrm{SiO}_{2}, 2 \rightarrow 3 \% \mathrm{MeOH}-\mathrm{DCM}\right)$ to arrive again at $27(\sim 700 \mathrm{mg})$. Combined isolated yield of 27 was $\sim 1.3 \mathrm{~g} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.67(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 1 \mathrm{H})$, 4.57 (q, $J=16.8 \mathrm{~Hz}, 2 \mathrm{H}$), $3.18(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.3$, 167.1, 148.1, 141.0, 137.7, 124.7, 123.1, 115.9, 69.2, 64.7, 37.8, 35.0. See S73 for NMR spectra.

2,4-dibromo-5,6-bis(hydroxymethyl)-tetramethylisophthalamide (26). 26 was isolated from the above reaction mixture as a slightly yellow foam-solid. An ${ }^{1} \mathrm{H}$ NMR spectra was obtained shortly after isolation and the remaining material was allowed to rest at room temperature, as a solid, in a 100 mL round bottom flask. After 1 week, the cap on the flask was removed and a strong amine smell was apparent. Subsequent ${ }^{1} \mathrm{H}$ NMR analysis revealed 26 has a completely converted to $27 .{ }^{1} \mathrm{H}$ NMR characterization of crude 26 is as follows: ${ }^{1} \mathrm{H}$ NMR

X-ray Crystal Structures

Atomic coordinates for compounds 1C, 1D, 2C and 27 were obtained by Curtis Moore and Arnie Rheingold of the UCSD Crystallography Facility, University of California, San Diego.

Crystal data and structure refinement for xx (1C).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
xx
C14 H18 Br2 N2 O2
406.12

100(2) K
0.71073 Å

Orthorhombic
Pnma

Unit cell dimensions	$a=16.1663(14) \AA$	$\alpha=90^{\circ}$
	$\mathrm{b}=14.2630(12) \AA$	$\beta=99.5080(10)^{\circ}$
	$\mathrm{c}=6.9159(6) \AA$	$\gamma=90^{\circ}$
Volume	1572.8(2) \AA^{3}	
Z	4	
Density (calculated)	$1.715 \mathrm{~g} / \mathrm{cm}^{3}$	
Absorption coefficient	$5.157 \mathrm{~mm}^{-1}$	
F(000)	808	
Crystal size	$0.30 \times 0.26 \times 0.16 \mathrm{~mm}^{3}$	
Theta range for data collection	1.92 to 25.39°	
Index ranges	-15<=h<=19, -17<=k<=16, -8<=1<=7	
Reflections collected	6982	
Independent reflections	1457 [R (int) $=0.0261]$	
Completeness to theta $=25.00^{\circ}$	99.9 \%	
Absorption correction	Multi-scan	
Max. and min. transmission	0.4925 and 0.3068	
Refinement method	Full-matrix least-squares on F2	
Data / restraints / parameters	1457 / 0 / 94	
Goodness-of-fit on F2	1.074	
Final R indices [$1>2$ sigma(I)]	$\mathrm{R} 1=0.0214, \mathrm{wR} 2=0.0553$	
R indices (all data)	$\mathrm{R} 1=0.0219, \mathrm{wR} 2=0.0556$	
Largest diff. peak and hole	0.375 and $-0.527 \mathrm{e} \AA^{-3}$	

Crystal data and structure refinement for xx 2 (2C).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength

C24 H22 Br2 N2 O2
530.25
100.0 K
$0.71073 \AA$

Crystal system
Space group
Unit cell dimensions

Monoclinic
P 1 21/n 1
$a=6.0728(8) \AA \quad \square=90^{\circ}$.
$\mathrm{b}=24.305(2) \AA \quad \square=98.929(4)^{\circ}$.
$\mathrm{c}=15.0006(14) \AA \quad \square=90^{\circ}$.
Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$1>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
2187.2(4) \AA^{3}

4
$1.610 \mathrm{Mg} / \mathrm{m}^{3}$
$3.730 \mathrm{~mm}^{-1}$
1064
$0.24 \times 0.1 \times 0.07 \mathrm{~mm}^{3}$
2.167 to 25.390°.
$-7<=\mathrm{h}<=7,-29<=\mathrm{k}<=23,-15<=1<=18$
9162
4022 [R (int) $=0.0393$]
99.9 \%

Semi-empirical from equivalents
0.0570 and 0.0297

Full-matrix least-squares on F^{2}
4022 / 0 / 275
1.013
$\mathrm{R} 1=0.0346, \mathrm{wR} 2=0.0701$
$R 1=0.0496, w R 2=0.0745$
n/a
0.616 and -0.380 e. \AA^{-3}

Table 1. Crystal data and structure refinement for xx 3 (27).

Identification code
Empirical formula
Formula weight
xx3
C12 H11 Br2 N O4
393.04

Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$1>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
100.0 K
$0.71073 \AA$
Triclinic
P-1
$a=8.5662(6) \AA \quad \square=96.065(2)^{\circ}$.
$\mathrm{b}=8.5847(6) \AA \quad \square=102.093(2)^{\circ}$.
$\mathrm{c}=9.5341(6) \AA \quad \square=95.978(2)^{\circ}$.
675.95(8) \AA^{3}

2
$1.931 \mathrm{Mg} / \mathrm{m}^{3}$
$6.005 \mathrm{~mm}^{-1}$
384
$0.3 \times 0.3 \times 0.22 \mathrm{~mm}^{3}$
2.406 to 31.281°.
$-12<=\mathrm{h}<=12,-12<=\mathrm{k}<=12,-13<=\mathrm{l}<=9$
11041
3881 [$\mathrm{R}(\mathrm{int})=0.0406]$
100.0 \%

Semi-empirical from equivalents
0.1011 and 0.0535

Full-matrix least-squares on F^{2}
3881/0/177
1.025
$\mathrm{R} 1=0.0302, \mathrm{wR} 2=0.0625$
$\mathrm{R} 1=0.0490, \mathrm{wR} 2=0.0684$
n/a
0.653 and -0.517 e. \AA^{-3}

References

(1) Ashworth, T.V.; Singleton, E.; Hough, J. J. J. Chem. Soc., Dalton Trans. 1977, 1809.
(2) Albers, M. O.; Robinson, D. J.; Shaver, A.; Singleton, E. Organometallics 1986, 5, 2199.
(3) (a) Pattison, F. L. M.; Norman, J. J. J. Am. Chem. Soc. 1957, 79, 2311
(4) Cyclododecyne, 1-methoxy-4-(phenylethynyl)benzene, and 1-cyano-4-(phenylethynyl)benzene were from the laboratory of Professor Barry K. Sharpless, The Scripps Research Institute. The purity of cyclododecyne by GC/MS analysis was approximately 65%.
(5) Park, K.; Bae, G.; Moon, J.; Choe, J.; Song, K. H.; Lee, S. J. Org. Chem. 2010, 75, 6244.
(6) As addapted from: Org. Lett. 2007, 9, 723.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR

Dimethylpropiolamide (7)

$400 \mathrm{Mhz}, \mathrm{CDCl} 3$

$$
1
$$

3-Chloro-dimethylpropiolamide (5)

3-Bromo-dimethylpropiolamide (1)

3-Iodo-dimethylpropiolamide (6)

3-Bromo-butylpropiolamide (8)

Methyl 3-bromopropiolate (3)

1-p-Tolylprop-2-yn-1-ol (si_1)

1-p-Tolylprop-2-yn-1-one (si_2)

3-Bromo-1-p-tolylprop-2-yn-1-one (4)
(1300

N, N-Dimethyloct-2-ynamide (10)

N, N-Diisopropyl-3-(trimethylsilyl)propiolamide (si_3)

3-Bromo-N,N-diisopropiolamide (si_4)

N,N-Dimethyl-3-(trimethylsilyl)propiolamide (9)

Ethyl 1-propioloylpiperidine-4-carboxylate (si_5)

Ethyl 1-(3-bromopropioloyl)piperidine-4-carboxylate (si_6)

N, N-Diethylpropiolamide (si_7)

3-Bromo- N, N-diethylpropiolamiden (si_8)

(10)

1-Morpholinoprop-2-yn-1-one (si_9)

3-Bromo-1-morpholinoprop-2-yn-1-one (si_10)
(

1-tert-Butyl 4-ethyl piperidine-1,4-dicarboxylate (si_11)

1-(tert-Butoxycarbonyl)piperidine-4-carboxylic acid (si_12)

N-(3-Isopropoxypropyl)piperidine-4-carboxamide (si_13)

N-(3-isopropoxypropyl)-1-propioloylpiperidine-4-carboxamide (si_14)

1-(3-Bromopropioloyl)- N-(3-isopropxypropyl)piperidine-4-carboxamide (si_15)

3,5,6-Tibromo-hexamethylbenzene-1,2,4-tricarboxamide (1A/B)

$400 \mathrm{MHz}, \mathrm{CDCl} 3$

2,4-Dibromo- $N, N, N, N-5,6$-hexamethylisophthalamide (1C)

2,4-Dibromo-5,6-diphenyl- N, N, N, N-tetramethylisophtalamide (2C/D)
(

Dimethyl 2,4-dibromo-5,6-diphenylisophthalate and Dimethyl 3,6-dibromo-4,5-diphenylisophthalate (3C/D)

[^0](2,4-Dibromo-5,6-diphenyl-1,3-phenylene)bis(p-tolylmethanone) (4C/D)

2,4-Dichloro-5,6-diphenyl- N, N, N, N-tetramethylisophtalamide (5C/D)

$400 \mathrm{MHz}, \mathrm{CDCl} 3$

 h
88 웅 mi in ì

2,4-Diiodo-5,6-diphenyl- N, N, N, N-tetramethylisophtalamide (6C/D)

$400 \mathrm{MHz}, \mathrm{CDCl} 3$

2,4-Dibromo- N, N-dibutyl-5,6-diphenylisophthalamide (8C/D)

2,4-Dibromo-5,6-dibutyl- N, N, N, N-tetramethylisophthalamide (11)

2,4-Dibromo- $\mathrm{N}, \mathrm{N}, \mathrm{N}, \mathrm{N}$-tetramethylisophthalamide (12)

$400 \mathrm{MHz}, \mathrm{CDC13}$

$$
\begin{array}{r}
\quad \begin{array}{r}
38.34 \\
-37.52 \\
-34.77 \\
-34.56
\end{array}
\end{array}
$$

2,4-Dibromo-5,6-bis(methoxymethyl)-N,N,N,N-tetramethylisophthalamide (13)

2,4-Dibromo-5,6-bis(fluoromethyl)-N,N,N,N-tetramethylisophthalamide (14)

2,4-Dibromo-5,6-bis(chloromethyl)- N, N, N, N-tetramethylisophthalamide (15)

2,4-Dibromo-5-(4'-methoxy)phenyl-6-phenyl- N, N, N, N-tetramethylisophtalamide (16)

2,4-Dibromo-5-(4'-cyano)phenyl-6-phenyl- N, N, N, N-tetramethylisophtalamide (17)

2,4-Dibromo-tetramethyl-decahydrobenzo[12]annulene-1,3-dicarboxamide (18)

(2,4-Dibromo-5,6-dimethyl-1,3-phenylene)bis(morpholine-methanone) (19)

$400 \mathrm{MHz}, \mathrm{CDCl} 3$

$400 \mathrm{MHz}, \mathrm{CDCl} 3$

2,4-Dibromo-5,6-phenyl- N, N, N, N-tetraisopropylisophtalamide (20)

2,4-Dibromo- N, N, N, N-tetraethyl-5,6-di(thiophen-3-yl)isophtalamide (21)

Diethyl-1,5-(4,6-dibromo-2,3-bis(methoxymethyl)benzoyl)-bispiperidine-4-carboxylate (22)

1,2-(4,6-dibromo-2,3-dimethylbenzoyl)-N,N-(di-3-isopropoxypropyl)bispiperidine-4-carboxamide (23)

5,6-diphenyl- $N^{1}, N^{1}, N^{3}, N^{3}$-tetramethylisophthalamide (25)
H-1 Routine, DRX-500, BBO Probe

2,4-dibromo-5,6-bis(hydroxymethyl)-tetramethylisophthalamide (26)

4,6-dibromo-7-(hydroxymethyl)-dimethyl-3-oxo-1,3-dihydro-isobenzofuran-5-carboxamide (27)

[^0]:

