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PREFACE

Q

ECONOMETRIC ANALYSIS

Econometric Analysis provides a broad introduction to the field of econometrics. This
field grows continually—a list of journals devoted at least in part, if not completely,
to econometrics now includes The Journal of Applied Econometrics, The Journal of
Econometrics, The Econometrics Journal, Econometric Theory, Econometric Reviews,
Journal of Business and Economic Statistics, Empirical Economics, Foundations and
Trends in Econometrics, The Review of Economics and Statistics, and Econometrica.
Constructing a textbook-style survey to introduce the topic at a graduate level has
become increasingly ambitious. Nonetheless, I believe that one can successfully seek
that objective in a single textbook. This text attempts to present, at an entry level, enough
of the topics in econometrics that a student can comfortably move from here to practice
or more advanced study in one or more specialized areas. The book is also intended as
a bridge for students and analysts in the social sciences between an introduction to the
field and the professional literature.

NEW TO THIS EDITION

This seventh edition is a major revision of Econometric Analysis. Among the most
obvious changes are

• Reorganization of the early material that is taught in the first-semester course,
including
— All material on hypothesis testing and specification presented in a single

chapter
— New results on prediction
— Greater and earlier emphasis on instrumental variables and endogeneity
— Additional results on basic panel data models

• New applications and examples, with greater detail
• Greater emphasis on specific areas of application in the advanced material
• New material on simulation-based methods, especially bootstrapping and Monte

Carlo studies
• Several examples that explain interaction effects
• Specific recent applications including quantile regression
• New applications in discrete choice modeling
• New material on endogeneity and its implications for model structure

33
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THE SEVENTH EDITION OF ECONOMETRIC ANALYSIS

The book has two objectives. The first is to introduce students to applied econometrics,
including basic techniques in linear regression analysis and some of the rich variety
of models that are used when the linear model proves inadequate or inappropriate.
Modern software has made complicated modeling very easy to do, and an understanding
of the underlying theory is also important. The second objective is to present students
with sufficient theoretical background so that they will recognize new variants of the
models learned about here as merely natural extensions that fit within a common body
of principles. This book contains a substantial amount of theoretical material, such as
that on GMM, maximum likelihood estimation, and asymptotic results for regression
models.

This text is intended for a one-year graduate course for social scientists. Prereq-
uisites should include calculus, mathematical statistics, and an introduction to econo-
metrics at the level of, say, Gujarati’s (2002) Basic Econometrics, Stock and Watson’s
(2006) Introduction to Econometrics, Kennedy’s (2008) Guide to Econometrics, or
Wooldridge’s (2009) Introductory Econometrics: A Modern Approach. I assume, for ex-
ample, that the reader has already learned about the basics of econometric methodology
including the fundamental role of economic and statistical assumptions; the distinctions
between cross-section, time-series, and panel data sets; and the essential ingredients of
estimation, inference, and prediction with the multiple linear regression model. Self-
contained (for our purposes) summaries of the matrix algebra, mathematical statistics,
and statistical theory used throughout the book are given in Appendices A through
D. I rely heavily on matrix algebra throughout. This may be a bit daunting to some
early on but matrix algebra is an indispensable tool and I hope the reader will come
to agree that it is a means to an end, not an end in itself. With matrices, the unity of a
variety of results will emerge without being obscured by a curtain of summation signs.
All the matrix algebra needed in the text is presented in Appendix A. Appendix E and
Chapter 15 contain a description of numerical methods that will be useful to practicing
econometricians (and to us in the later chapters of the book).

Contemporary computer software has made estimation of advanced nonlinear mod-
els as routine as least squares. I have included five chapters on estimation methods used
in current research and five chapters on applications in micro- and macroeconometrics.
The nonlinear models used in these fields are now the staples of the applied economet-
rics literature. As a consequence, this book also contains a fair amount of material that
will extend beyond many first courses in econometrics. Once again, I have included this
in the hope of laying a foundation for study of the professional literature in these areas.

One overriding purpose has motivated all seven editions of this book. The vast
majority of readers of this book will be users, not developers, of econometrics. I be-
lieve that it is simply not sufficient to recite the theory of estimation, hypothesis testing,
and econometric analysis. Although the often-subtle theory is extremely important,
the application is equally crucial. To that end, I have provided hundreds of numerical
examples. My purpose in writing this work, and in my continuing efforts to update it,
is to show readers how to do econometric analysis. I unabashedly accept the unflatter-
ing assessment of a correspondent who once likened this book to a “user’s guide to
econometrics.”



Greene-2140242 A01˙GREE3568˙07˙GE˙FM January 19, 2011 20:15

Preface 35

PLAN OF THE BOOK

The arrangement of the book is as follows:
Part I begins the formal development of econometrics with its fundamental pillar,

the linear multiple regression model. Estimation and inference with the linear least
squares estimator are analyzed in Chapters 2 through 6. The nonlinear regression model
is introduced in Chapter 7 along with quantile, semi- and nonparametric regression, all
as extensions of the familiar linear model. Instrumental variables estimation is developed
in Chapter 8.

Part II presents three major extensions of the regression model. Chapter 9 presents
the consequences of relaxing one of the main assumptions of the linear model, ho-
moscedastic nonautocorrelated disturbances, to introduce the generalized regression
model. The focus here is on heteroscedasticity; autocorrelation is mentioned, but a de-
tailed treatment is deferred to Chapter 20 in the context of time-series data. Chapter 10
introduces systems of regression equations, in principle, as the approach to modeling
simultaneously a set of random variables and, in practical terms, as an extension of the
generalized linear regression model. Finally, panel data methods, primarily fixed and
random effects models of heterogeneity, are presented in Chapter 11.

The second half of the book is devoted to topics that will extend the linear regression
model in many directions. Beginning with Chapter 12, we proceed to the more involved
methods of analysis that contemporary researchers use in analysis of “real-world” data.
Chapters 12 to 16 in Part III present different estimation methodologies. Chapter 12
presents an overview by making the distinctions between parametric, semiparametric
and nonparametric methods. The leading application of semiparametric estimation in
the current literature is the generalized method of moments (GMM) estimator presented
in Chapter 13. This technique provides the platform for much of modern economet-
rics. Maximum likelihood estimation is developed in Chapter 14. Monte Carlo and
simulation-based methods such as bootstrapping that have become a major compo-
nent of current research are developed in Chapter 15. Finally, Bayesian methods are
introduced in Chapter 16.

Parts IV and V develop two major subfields of econometric methods, microecono-
metrics, which is typically based on cross-section and panel data, and macroeconomet-
rics, which is usually associated with analysis of time-series data. In Part IV, Chapters 17
to 19 are concerned with models of discrete choice, censoring, truncation, sample selec-
tion, duration, treatment effects, and the analysis of counts of events. In Part V, Chap-
ters 20 and 21, we consider two topics in time-series analysis, models of serial correlation
and regression models for nonstationary data—the usual substance of macroeconomic
analysis.

REVISIONS

I have substantially rearranged the early part of the book to produce what I hope is a
more natural sequence of topics for the graduate econometrics course. Chapter 4 is now
devoted entirely to point and interval estimation, including prediction and forecasting.
Finite sample, then asymptotic properties of least squares are developed in detail. All
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of the material on hypothesis testing and specification search is moved into Chapter 5,
rather than fragmented over several chapters as in the sixth edition. I have also brought
the material on instrumental variables much farther forward in the text, from after the
development of the generalized regression model in the sixth edition to Chapter 8 in this
one, immediately after full development of the linear regression model. This accords
with the greater emphasis on this method in recent applications. A very large number
of other rearrangements of the material will also be evident. Chapter 7 now contains
a range of advanced extensions of the linear regression model, including nonlinear,
quantile, partially linear, and nonparametric regression. This is also a point at which the
differences between parametric, semiparametric, and nonparametric methods can be
examined. One conspicuous modification is the excision of the long chapter on linear
simultaneous equations models. Some of the material from this chapter appears else-
where. Two-stage least squares now appears with instrumental variables estimation.
Remaining parts of this chapter that are of lesser importance in recent treatments, such
as rank and order conditions for identification of linear models and 3SLS and FIML
estimation, have been deleted or greatly reduced and placed in context elsewhere in the
text. The material on discrete choice models has been rearranged to orient the topics
to the behavioral foundations. Chapter 17 now broadly introduces discrete choice and
random utility models, and then builds on variants of the binary choice model. The
analysis is continued in Chapter 18 with unordered, then ordered choice models and,
finally, models for counts. The last chapter of the section studies models for continu-
ous variables in the contexts of particular data-generating mechanisms and behavioral
contexts.

I have added new material and some different examples and applications at numer-
ous points. Topics that have been expanded or given greater emphasis include treat-
ment effects, bootstrapping, simulation-based estimation, robust estimation, missing
and faulty data, and a variety of different new methods of discrete choice analysis in
microeconometrics. I have also added or expanded material on techniques recently of
interest, such as quantile regression and stochastic frontier models.

I note a few specific highlights of the revision: In general terms, I have increased the
focus on robust methods a bit. I have placed discussions of specification tests at several
points, consistent with the trend in the literature to examine more closely the fragility
of heavily parametric models. A few of the specific new applications are as follows:

• Chapter 15 on simulation-based estimation has been considerably expanded. It
now includes substantially more material on bootstrapping standard errors and
confidence intervals. The Krinsky and Robb (1986) approach to asymptotic
inference has been placed here as well.

• A great deal of attention has been focused in recent papers on how to understand
interaction effects in nonlinear models. Chapter 7 contains a lengthy application
of interaction effects in a nonlinear (exponential) regression model. The issue is
revisited in Chapter 17.

• As an exercise that will challenge the student’s facility with asymptotic
distribution theory, I have added a detailed proof of the Murphy and Topel (2002)
result for two-step estimation in Chapter 14.

• Sources and treatment of endogeneity appear at various points, for example an
application of inverse probability weighting to deal with attrition in Chapter 17.
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The seventh edition is a major revision of Econometric Analysis both in terms of
organization of the material and in terms of new ideas and treatments. I hope that
readers will find the changes helpful.

SOFTWARE AND DATA

There are many computer programs that are widely used for the computations described
in this book. All were written by econometricians or statisticians, and in general, all
are regularly updated to incorporate new developments in applied econometrics. A
sampling of the most widely used packages and Internet home pages where you can
find information about them are

EViews www.eviews.com (QMS, Irvine, CA)
Gauss www.aptech.com (Aptech Systems, Kent, WA)
LIMDEP www.limdep.com (Econometric Software, Plainview, NY)
MATLAB www.mathworks.com (Mathworks, Natick, MA)
NLOGIT www.nlogit.com (Econometric Software, Plainview, NY)
R www.r-project.org/ (The R Project for Statistical Computing)
RATS www.estima.com (Estima, Evanston, IL)
SAS www.sas.com (SAS, Cary, NC)
Shazam econometrics.com (Northwest Econometrics Ltd., Gibsons, Canada)
Stata www.stata.com (Stata, College Station, TX)
TSP www.tspintl.com (TSP International, Stanford, CA)

A more extensive list of computer software used for econometric analysis can be
found at the resource Web site, http://www.oswego.edu/∼economic/econsoftware.htm.

With only a few exceptions, the computations described in this book can be carried
out with any of the packages listed. NLOGIT was used for the computations in the ap-
plications. This text contains no instruction on using any particular program or language.
(The author’s Web site for the text does provide some code and data for replication
of the numerical examples.) Many authors have produced RATS, LIMDEP/NLOGIT,
EViews, SAS, or Stata code for some of our applications, including, in a few cases,
the documentation for their computer programs. There are also quite a few volumes
now specifically devoted to econometrics associated with particular packages, such as
Cameron and Trivedi’s (2009) companion to their treatise on microeconometrics.

The data sets used in the examples are also available on the Web site for the
text, http://pages.stern.nyu.edu/∼wgreene/Text/econometricanalysis.htm. Throughout
the text, these data sets are referred to “Table Fn.m,” for example Table F4.1. The
“F” refers to Appendix F at the back of the text which contains descriptions of the data
sets. The actual data are posted in generic ASCII and portable formats on the Web
site with the other supplementary materials for the text. There are now thousands of
interesting Web sites containing software, data sets, papers, and commentary on econo-
metrics. It would be hopeless to attempt any kind of a survey here. One code/data site
that is particularly agreeably structured and well targeted for readers of this book is
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the data archive for the Journal of Applied Econometrics. They have archived all the
nonconfidential data sets used in their publications since 1988 (with some gaps before
1995). This useful site can be found at http://qed.econ.queensu.ca/jae/. Several of the
examples in the text use the JAE data sets. Where we have done so, we direct the reader
to the JAE’s Web site, rather than our own, for replication. Other journals have begun
to ask their authors to provide code and data to encourage replication. Another vast,
easy-to-navigate site for aggregate data on the U.S. economy is www.economagic.com.
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1

ECONOMETRICS

Q
1.1 INTRODUCTION

This book will present an introductory survey of econometrics. We will discuss the fun-
damental ideas that define the methodology and examine a large number of specific
models, tools and methods that econometricians use in analyzing data. This chapter will
introduce the central ideas that are the paradigm of econometrics. Section 1.2 defines
the field and notes the role that theory plays in motivating econometric practice. Sec-
tion 1.3 discusses the types of applications that are the focus of econometric analyses. The
process of econometric modeling is presented in Section 1.4 with a classic application,
Keynes’s consumption function. A broad outline of the book is presented in Section 1.5.
Section 1.6 notes some specific aspects of the presentation, including the use of numer-
ical examples and the mathematical notation that will be used throughout the book.

1.2 THE PARADIGM OF ECONOMETRICS

In the first issue of Econometrica, Ragnar Frisch (1933) said of the Econometric Society
that

its main object shall be to promote studies that aim at a unification of the
theoretical-quantitative and the empirical-quantitative approach to economic
problems and that are penetrated by constructive and rigorous thinking similar
to that which has come to dominate the natural sciences. But there are sev-
eral aspects of the quantitative approach to economics, and no single one of
these aspects taken by itself, should be confounded with econometrics. Thus,
econometrics is by no means the same as economic statistics. Nor is it identical
with what we call general economic theory, although a considerable portion of
this theory has a definitely quantitative character. Nor should econometrics be
taken as synonomous [sic] with the application of mathematics to economics.
Experience has shown that each of these three viewpoints, that of statistics,
economic theory, and mathematics, is a necessary, but not by itself a sufficient,
condition for a real understanding of the quantitative relations in modern eco-
nomic life. It is the unification of all three that is powerful. And it is this unifi-
cation that constitutes econometrics.

The Society responded to an unprecedented accumulation of statistical information.
They saw a need to establish a body of principles that could organize what would
otherwise become a bewildering mass of data. Neither the pillars nor the objectives
of econometrics have changed in the years since this editorial appeared. Econometrics
concerns itself with the application of mathematical statistics and the tools of statistical

41
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inference to the empirical measurement of relationships postulated by an underlying
theory.

The crucial role that econometrics plays in economics has grown over time. The
Nobel Prize in Economic Sciences has recognized this contribution with numerous
awards to econometricians, including the first which was given to (the same) Ragnar
Frisch in 1969, Lawrence Klein in 1980, Trygve Haavelmo in 1989, James Heckman
and Daniel McFadden in 2000, and Robert Engle and Clive Granger in 2003. The 2000
prize was noteworthy in that it celebrated the work of two scientists whose research
was devoted to the marriage of behavioral theory and econometric modeling.

Example 1.1 Behavioral Models and the Nobel Laureates
The pioneering work by both James Heckman and Dan McFadden rests firmly on a theoretical
foundation of utility maximization.

For Heckman’s, we begin with the standard theory of household utility maximization over
consumption and leisure. The textbook model of utility maximization produces a demand for
leisure time that translates into a supply function of labor. When home production (work in
the home as opposed to the outside, formal labor market) is considered in the calculus, then
desired “hours” of (formal) labor can be negative. An important conditioning variable is the
“reservation” wage—the wage rate that will induce formal labor market participation. On the
demand side of the labor market, we have firms that offer market wages that respond to such
attributes as age, education, and experience. What can we learn about labor supply behavior
based on observed market wages, these attributes and observed hours in the formal market?
Less than it might seem, intuitively because our observed data omit half the market—the data
on formal labor market activity are not randomly drawn from the whole population.

Heckman’s observations about this implicit truncation of the distribution of hours or
wages revolutionized the analysis of labor markets. Parallel interpretations have since guided
analyses in every area of the social sciences. The analysis of policy interventions such as
education initiatives, job training and employment policies, health insurance programs, mar-
ket creation, financial regulation and a host of others is heavily influenced by Heckman’s
pioneering idea that when participation is part of the behavior being studied, the analyst
must be cognizant of the impact of common influences in both the presence of the interven-
tion and the outcome. We will visit the literature on sample selection and treatment/program
evaluation in Chapter 18.

Textbook presentations of the theories of demand for goods that produce utility, since
they deal in continuous variables, are conspicuously silent on the kinds of discrete choices
that consumers make every day—what brand of product to choose, whether to buy a large
commodity such as a car or a refrigerator, how to travel to work, whether to rent or buy a
home, where to live, what candidate to vote for, and so on. Nonetheless, a model of “random
utility” defined over the alternatives available to the consumer provides a theoretically sound
plateform for studying such choices. Important variables include, as always, income and
relative prices. What can we learn about underlying preference structures from the discrete
choices that consumers make? What must be assumed about these preferences to allow
this kind of inference? What kinds of statistical models will allow us to draw inferences
about preferences? McFadden’s work on how commuters choose to travel to work, and on
the underlying theory appropriate to this kind of modeling, has guided empirical research
in discrete consumer choices for several decades. We will examine McFadden’s models of
discrete choice in Chapter 18.

The connection between underlying behavioral models and the modern practice
of econometrics is increasingly strong. A useful distinction is made between microe-
conometrics and macroeconometrics. The former is characterized by its analysis of cross
section and panel data and by its focus on individual consumers, firms, and micro-level
decision makers. Practitioners rely heavily on the theoretical tools of microeconomics in-
cluding utility maximization, profit maximization, and market equilibrium. The analyses
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are directed at subtle, difficult questions that often require intricate formulations. A few
applications are as follows:

• What are the likely effects on labor supply behavior of proposed negative income
taxes? [Ashenfelter and Heckman (1974).]

• Does attending an elite college bring an expected payoff in expected lifetime in-
come sufficient to justify the higher tuition? [Kreuger and Dale (1999) and Kreuger
(2000).]

• Does a voluntary training program produce tangible benefits? Can these benefits
be accurately measured? [Angrist (2001).]

• Do smaller class sizes bring real benefits in student performance? [Hanuschek
(1999), Hoxby (2000), Angrist and Lavy (1999).]

• Does the presence of health insurance induce individuals to make heavier use of
the health care system—is moral hazard a measurable problem? [Riphahn et al.
(2003).]

Macroeconometrics is involved in the analysis of time-series data, usually of broad ag-
gregates such as price levels, the money supply, exchange rates, output, investment,
economic growth and so on. The boundaries are not sharp. For example, an application
that we will examine in this text concerns spending patterns of municipalities, which
rests somewhere between the two fields. The very large field of financial econometrics
is concerned with long time-series data and occasionally vast panel data sets, but with
a sharply focused orientation toward models of individual behavior. The analysis of
market returns and exchange rate behavior is neither exclusively macro- nor microe-
conometric. (We will not be spending any time in this book on financial econometrics. For
those with an interest in this field, I would recommend the celebrated work by Campbell,
Lo, and Mackinlay (1997) or, for a more time-series–oriented approach, Tsay (2005).)
Macroeconomic model builders rely on the interactions between economic agents and
policy makers. For examples:

• Does a monetary policy regime that is strongly oriented toward controlling inflation
impose a real cost in terms of lost output on the U.S. economy? [Cecchetti and Rich
(2001).]

• Did 2001’s largest federal tax cut in U.S. history contribute to or dampen the con-
current recession? Or was it irrelevant?

Each of these analyses would depart from a formal model of the process underlying the
observed data.

1.3 THE PRACTICE OF ECONOMETRICS

We can make another useful distinction between theoretical econometrics and applied
econometrics. Theorists develop new techniques for estimation and hypothesis testing
and analyze the consequences of applying particular methods when the assumptions
that justify those methods are not met. Applied econometricians are the users of these
techniques and the analysts of data (“real world” and simulated). The distinction is far
from sharp; practitioners routinely develop new analytical tools for the purposes of the
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study that they are involved in. This book contains a large amount of econometric theory,
but it is directed toward applied econometrics. I have attempted to survey techniques,
admittedly some quite elaborate and intricate, that have seen wide use “in the field.”

Applied econometric methods will be used for estimation of important quantities,
analysis of economic outcomes such as policy changes, markets or individual behavior,
testing theories, and for forecasting. The last of these is an art and science in itself that
is the subject of a vast library of sources. Although we will briefly discuss some aspects
of forecasting, our interest in this text will be on estimation and analysis of models.
The presentation, where there is a distinction to be made, will contain a blend of mi-
croeconometric and macroeconometric techniques and applications. It is also necessary
to distinguish between time-series analysis (which is not our focus) and methods that
primarily use time-series data. The former is, like forecasting, a growth industry served
by its own literature in many fields. While we will employ some of the techniques of
time-series analysis, we will spend relatively little time developing first principles.

1.4 ECONOMETRIC MODELING

Econometric analysis usually begins with a statement of a theoretical proposition.
Consider, for example, a classic application by one of Frisch’s contemporaries:

Example 1.2 Keynes’s Consumption Function
From Keynes’s (1936) General Theory of Employment, Interest and Money:

We shall therefore define what we shall call the propensity to consume as the func-
tional relationship f between X , a given level of income, and C, the expenditure on
consumption out of the level of income, so that C = f ( X ) .

The amount that the community spends on consumption depends (i) partly on
the amount of its income, (ii) partly on other objective attendant circumstances, and
(iii) partly on the subjective needs and the psychological propensities and habits of
the individuals composing it. The fundamental psychological law upon which we are
entitled to depend with great confidence, both a priori from our knowledge of human
nature and from the detailed facts of experience, is that men are disposed, as a rule
and on the average, to increase their consumption as their income increases, but not
by as much as the increase in their income. That is, . . . dC/dX is positive and less
than unity.

But, apart from short period changes in the level of income, it is also obvious that
a higher absolute level of income will tend as a rule to widen the gap between income
and consumption. . . . These reasons will lead, as a rule, to a greater proportion of
income being saved as real income increases.

The theory asserts a relationship between consumption and income, C = f ( X ) , and claims
in the second paragraph that the marginal propensity to consume (MPC), dC/dX , is between
zero and one.1 The final paragraph asserts that the average propensity to consume (APC),
C/X , falls as income rises, or d(C/X ) /dX = (MPC − APC) /X < 0. It follows that MPC <
APC. The most common formulation of the consumption function is a linear relationship,
C = α + Xβ, that satisfies Keynes’s “laws” if β lies between zero and one and if α is greater
than zero.

These theoretical propositions provide the basis for an econometric study. Given an
appropriate data set, we could investigate whether the theory appears to be consistent with

1Modern economists are rarely this confident about their theories. More contemporary applications generally
begin from first principles and behavioral axioms, rather than simple observation.
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FIGURE 1.1 Aggregate U.S. Consumption and Income Data,
2000–2009.

the observed “facts.” For example, we could see whether the linear specification
appears to be a satisfactory description of the relationship between consumption and
income, and, if so, whether α is positive and β is between zero and one. Some issues
that might be studied are (1) whether this relationship is stable through time or whether
the parameters of the relationship change from one generation to the next (a change in the
average propensity to save, 1−APC, might represent a fundamental change in the behavior
of consumers in the economy); (2) whether there are systematic differences in the relation-
ship across different countries, and, if so, what explains these differences; and (3) whether
there are other factors that would improve the ability of the model to explain the relationship
between consumption and income. For example, Figure 1.1 presents aggregate consump-
tion and personal income in constant dollars for the U.S. for the 10 years of 2000–2009. (See
Appendix Table F1.1.) Apparently, at least superficially, the data (the facts) are consistent with
the theory. The relationship appears to be linear, albeit only approximately, the intercept of a
line that lies close to most of the points is positive and the slope is less than one, although
not by much. (However, if the line is fit by linear least squares regression, the intercept is
negative, not positive.)

Economic theories such as Keynes’s are typically sharp and unambiguous. Models
of demand, production, labor supply, individual choice, educational attainment, income
and wages, investment, market equilibrium, and aggregate consumption all specify pre-
cise, deterministic relationships. Dependent and independent variables are identified, a
functional form is specified, and in most cases, at least a qualitative statement is made
about the directions of effects that occur when independent variables in the model
change. The model is only a simplification of reality. It will include the salient features
of the relationship of interest but will leave unaccounted for influences that might well
be present but are regarded as unimportant.

Correlations among economic variables are easily observable through descriptive
statistics and techniques such as linear regression methods. The ultimate goal of the
econometric model builder is often to uncover the deeper causal connections through
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elaborate structural, behavioral models. Note, for example, Keynes’s use of the behavior
of a “representative consumer” to motivate the behavior of macroeconomic variables
such as income and consumption. Heckman’s model of labor supply noted in Exam-
ple 1.1 is framed in a model of individual behavior. Berry, Levinsohn, and Pakes’s (1995)
detailed model of equilibrium pricing in the automobile market is another.

No model could hope to encompass the myriad essentially random aspects of eco-
nomic life. It is thus also necessary to incorporate stochastic elements. As a consequence,
observations on a variable will display variation attributable not only to differences in
variables that are explicitly accounted for in the model, but also to the randomness
of human behavior and the interaction of countless minor influences that are not. It
is understood that the introduction of a random “disturbance” into a deterministic
model is not intended merely to paper over its inadequacies. It is essential to examine
the results of the study, in an ex post analysis, to ensure that the allegedly random,
unexplained factor is truly unexplainable. If it is not, the model is, in fact, inadequate.
[In the example given earlier, the estimated constant term in the linear least squares
regression is negative. Is the theory wrong, or is the finding due to random fluctuation
in the data? Another possibility is that the theory is broadly correct, but the world
changed between 1936 when Keynes devised his theory and 2000–2009 when the data
(outcomes) were generated. Or, perhaps linear least squares is not the appropriate
technique to use for this model, and that is responsible for the inconvenient result (the
negative intercept).] The stochastic element endows the model with its statistical prop-
erties. Observations on the variable(s) under study are thus taken to be the outcomes
of a random processes. With a sufficiently detailed stochastic structure and adequate
data, the analysis will become a matter of deducing the properties of a probability dis-
tribution. The tools and methods of mathematical statistics will provide the operating
principles.

A model (or theory) can never truly be confirmed unless it is made so broad as to
include every possibility. But it may be subjected to ever more rigorous scrutiny and,
in the face of contradictory evidence, refuted. A deterministic theory will be invali-
dated by a single contradictory observation. The introduction of stochastic elements
into the model changes it from an exact statement to a probabilistic description about
expected outcomes and carries with it an important implication. Only a preponder-
ance of contradictory evidence can convincingly invalidate the probabilistic model, and
what constitutes a “preponderance of evidence” is a matter of interpretation. Thus, the
probabilistic model is less precise but at the same time, more robust.2

The techniques used in econometrics have been employed in a widening variety of
fields, including political methodology, sociology [see, e.g., Long (1997) and DeMaris
(2004)], health economics, medical research (how do we handle attrition from medi-
cal treatment studies?) environmental economics, economic geography, transportation
engineering, and numerous others. Practitioners in these fields and many more are all
heavy users of the techniques described in this text.

The process of econometric analysis departs from the specification of a theoretical
relationship. We initially proceed on the optimistic assumption that we can obtain

2See Keuzenkamp and Magnus (1995) for a lengthy symposium on testing in econometrics.
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precise measurements on all the variables in a correctly specified model. If the ideal
conditions are met at every step, the subsequent analysis will be routine. Unfortunately,
they rarely are. Some of the difficulties one can expect to encounter are the following:

• The data may be badly measured or may correspond only vaguely to the variables
in the model. “The interest rate” is one example.

• Some of the variables may be inherently unmeasurable. “Expectations” is a case in
point.

• The theory may make only a rough guess as to the correct form of the model, if
it makes any at all, and we may be forced to choose from an embarrassingly long
menu of possibilities.

• The assumed stochastic properties of the random terms in the model may be
demonstrably violated, which may call into question the methods of estimation
and inference procedures we have used.

• Some relevant variables may be missing from the model.
• The conditions under which data are collected leads to a sample of observations

that is systematically unrepresentative of the population we wish to study.

The ensuing steps of the analysis consist of coping with these problems and attempting
to extract whatever information is likely to be present in such obviously imperfect data.
The methodology is that of mathematical statistics and economic theory. The product
is an econometric model.

1.5 PLAN OF THE BOOK

Econometrics is a large and growing field. It is a challenge to chart a course through
that field for the beginner. Our objective in this survey is to develop in detail a set of
tools, then use those tools in applications. The following set of applications is large and
will include many that readers will use in practice. But, it is not exhaustive. We will
attempt to present our results in sufficient generality that the tools we develop here can
be extended to other kinds of situations and applications not described here.

One possible approach is to organize (and orient) the areas of study by the type
of data being analyzed—cross section, panel, discrete data, then time series being the
obvious organization. Alternatively, we could distinguish at the outset between micro-
and macroeconometrics.3 Ultimately, all of these will require a common set of tools,
including, for example, the multiple regression model, the use of moment conditions
for estimation, instrumental variables (IV) and maximum likelihood estimation. With
that in mind, the organization of this book is as follows: The first half of the text develops

3An excellent reference on the former that is at a more advanced level than this book is Cameron and
Trivedi (2005). As of this writing, there does not appear to be available a counterpart, large-scale pedagogical
survey of macroeconometrics that includes both econometric theory and applications. The numerous more
focused studies include books such as Bårdsen, G., Eitrheim, �., Jansen, E., and Nymoen, R., The Econo-
metrics of Macroeconomic Modelling, Oxford University Press, 2005 and survey papers such as Wallis, K.,
“Macroeconometric Models,” published in Macroeconomic Policy: Iceland in an Era of Global Integration
(M. Gudmundsson, T.T. Herbertsson, and G. Zoega, eds), pp. 399–414. Reykjavik: University of Iceland Press,
2000 also at http://www.ecomod.net/conferences/ecomod2001/papers web/Wallis Iceland.pdf
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fundamental results that are common to all the applications. The concept of multiple
regression and the linear regression model in particular constitutes the underlying plat-
form of most modeling, even if the linear model itself is not ultimately used as the
empirical specification. This part of the text concludes with developments of IV esti-
mation and the general topic of panel data modeling. The latter pulls together many
features of modern econometrics, such as, again, IV estimation, modeling heterogeneity,
and a rich variety of extensions of the linear model. The second half of the text presents
a variety of topics. Part III is an overview of estimation methods. Finally, Parts IV and
V present results from microeconometrics and macroeconometrics, respectively. The
broad outline is as follows:

I. Regression Modeling
Chapters 2 through 6 present the multiple linear regression model. We will
discuss specification, estimation, and statistical inference. This part develops the
ideas of estimation, robust analysis, functional form, and principles of model
specification.

II. Generalized Regression, Instrumental Variables, and Panel Data
Chapter 7 extends the regression model to nonlinear functional forms. The method
of instrumental variables is presented in Chapter 8. Chapters 9 and 10 introduce
the generalized regression model and systems of regression models. This section
ends with Chapter 11 on panel data methods.

III. Estimation Methods
Chapters 12 through 16 present general results on different methods of estimation
including GMM, maximum likelihood, and simulation based methods. Various es-
timation frameworks, including non- and semiparametric and Bayesian estimation
are presented in Chapters 12 and 16.

IV. Microeconometric Methods
Chapters 17 through 19 are about microeconometrics, discrete choice modeling,
and limited dependent variables, and the analysis of data on events—how many
occur in a given setting and when they occur. Chapters 17 to 19 are devoted to
methods more suited to cross sections and panel data sets.

V. Macroeconometric Methods
Chapters 20 and 21 focus on time-series modeling and macroeconometrics.

VI. Background Materials
Appendices A through E present background material on tools used in econo-
metrics including matrix algebra, probability and distribution theory, estimation,
and asymptotic distribution theory. Appendix E presents results on computation.
Appendices A through E are chapter-length surveys of the tools used in econo-
metrics. Because it is assumed that the reader has some previous training in each
of these topics, these summaries are included primarily for those who desire a
refresher or a convenient reference. We do not anticipate that these appendices
can substitute for a course in any of these subjects. The intent of these chapters
is to provide a reasonably concise summary of the results, nearly all of which
are explicitly used elsewhere in the book. The data sets used in the numerical
examples are described in Appendix F. The actual data sets and other supple-
mentary materials can be downloaded from the author’s web site for the text:
http://pages.stern.nyu.edu/∼wgreene/Text/.
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1.6 PRELIMINARIES

Before beginning, we note some specific aspects of the presentation in the text.

1.6.1 NUMERICAL EXAMPLES

There are many numerical examples given throughout the discussion. Most of these
are either self-contained exercises or extracts from published studies. In general, their
purpose is to provided a limited application to illustrate a method or model. The reader
can, if they wish, replicate them with the data sets provided. This will generally not entail
attempting to replicate the full published study. Rather, we use the data sets to provide
applications that relate to the published study in a limited, manageable fashion that
also focuses on a particular technique, model or tool. Thus, Riphahn, Wambach, and
Million (2003) provide a very useful, manageable (though relatively large) laboratory
data set that the reader can use to explore some issues in health econometrics. The
exercises also suggest more extensive analyses, again in some cases based on published
studies.

1.6.2 SOFTWARE AND REPLICATION

As noted in the preface, there are now many powerful computer programs that can
be used for the computations described in this book. In most cases, the examples pre-
sented can be replicated with any modern package, whether the user is employing a
high level integrated program such as NLOGIT, Stata, or SAS, or writing their own
programs in languages such as R, MatLab, or Gauss. The notable exception will be
exercises based on simulation. Since, essentially, every package uses a different random
number generator, it will generally not be possible to replicate exactly the examples
in this text that use simulation (unless you are using the same computer program we
are). Nonetheless, the differences that do emerge in such cases should be attributable
to, essentially, minor random variation. You will be able to replicate the essential results
and overall features in these applications with any of the software mentioned. We will
return to this general issue of replicability at a few points in the text, including in Sec-
tion 15.2 where we discuss methods of generating random samples for simulation based
estimators.

1.6.3 NOTATIONAL CONVENTIONS

We will use vector and matrix notation and manipulations throughout the text. The
following conventions will be used: A scalar variable will be denoted with an italic
lowercase letter, such as y or xnK, A column vector of scalar values will be denoted

by a boldface, lowercase letter, such as β =

⎡
⎢⎢⎢⎣

β1

β2
...

βk

⎤
⎥⎥⎥⎦ and, likewise for, x, and b. The

dimensions of a column vector are always denoted as those of a matrix with one column,
such as K × 1 or n × 1 and so on. A matrix will always be denoted by a boldface
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uppercase letter, such as the n×K matrix, X =

⎡
⎢⎢⎢⎣

x11 x12 · · · x1K

x21 x22 · · · x2K
...

...
. . .

...

xn1 xn2 · · · xnK

⎤
⎥⎥⎥⎦. Specific elements

in a matrix are always subscripted so that the first subscript gives the row and the
second gives the column. Transposition of a vector or a matrix is denoted with a prime.
A row vector is obtained by transposing a column vector. Thus, β ′ = [β1, β2, . . . , βK].
The product of a row and a column vector will always be denoted in a form such as
β ′x = β1x1 + β2x2 + · · · + βKxK. The elements in a matrix, X, form a set of vectors.
In terms of its columns, X = [x1, x2, . . . , xK]—each column is an n × 1 vector. The one
possible, unfortunately unavoidable source of ambiguity is the notation necessary to
denote a row of a matrix such as X. The elements of the ith row of X are the row vector,
x′

i = [xi1, xi2, . . . , xi K]. When the matrix, such as X, refers to a data matrix, we will
prefer to use the “i” subscript to denote observations, or the rows of the matrix and “k”
to denote the variables, or columns. As we note unfortunately, this would seem to imply
that xi , the transpose of x′

i would be the ith column of X, which will conflict with our
notation. However, with no simple alternative notation available, we will maintain this
convention, with the understanding that x′

i always refers to the row vector that is the ith
row of an X matrix. A discussion of the matrix algebra results used in the book is given
in Appendix A. A particularly important set of arithmetic results about summation and
the elements of the matrix product matrix, X′X appears in Section A.2.7.
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THE LINEAR REGRESSION
MODEL

Q
2.1 INTRODUCTION

Econometrics is concerned with model building. An intriguing point to begin the in-
quiry is to consider the question, “What is the model?” The statement of a “model”
typically begins with an observation or a proposition that one variable “is caused by”
another, or “varies with another,” or some qualitative statement about a relationship
between a variable and one or more covariates that are expected to be related to the
interesting one in question. The model might make a broad statement about behavior,
such as the suggestion that individuals’ usage of the health care system depends on,
for example, perceived health status, demographics such as income, age, and education,
and the amount and type of insurance they have. It might come in the form of a verbal
proposition, or even a picture such as a flowchart or path diagram that suggests direc-
tions of influence. The econometric model rarely springs forth in full bloom as a set of
equations. Rather, it begins with an idea of some kind of relationship. The natural next
step for the econometrician is to translate that idea into a set of equations, with a notion
that some feature of that set of equations will answer interesting questions about the
variable of interest. To continue our example, a more definite statement of the rela-
tionship between insurance and health care demanded might be able to answer, how
does health care system utilization depend on insurance coverage? Specifically, is the
relationship “positive”—all else equal, is an insured consumer more likely to “demand
more health care,” or is it “negative”? And, ultimately, one might be interested in a
more precise statement, “how much more (or less)”? This and the next several chapters
will build up the set of tools that model builders use to pursue questions such as these
using data and econometric methods.

From a purely statistical point of view, the researcher might have in mind a vari-
able, y, broadly “demand for health care, H,” and a vector of covariates, x (income, I,
insurance, T), and a joint probability distribution of the three, p(H, I, T ). Stated in this
form, the “relationship” is not posed in a particularly interesting fashion—what is the
statistical process that produces health care demand, income, and insurance coverage.
However, it is true that p(H, I, T ) = p(H|I, T )p(I, T ), which decomposes the proba-
bility model for the joint process into two outcomes, the joint distribution of insurance
coverage and income in the population and the distribution of “demand for health care”
for a specific income and insurance coverage. From this perspective, the conditional dis-
tribution, p(H|I, T ) holds some particular interest, while p(I, T ), the distribution of
income and insurance coverage in the population is perhaps of secondary, or no interest.
(On the other hand, from the same perspective, the conditional “demand” for insur-
ance coverage, given income, p(T|I), might also be interesting.) Continuing this line of

51
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thinking, the model builder is often interested not in joint variation of all the variables
in the model, but in conditional variation of one of the variables related to the others.

The idea of the conditional distribution provides a useful starting point for thinking
about a relationship between a variable of interest, a “y,” and a set of variables, “x,”
that we think might bear some relationship to it. There is a question to be considered
now that returns us to the issue of “what is the model?” What feature of the condi-
tional distribution is of interest? The model builder, thinking in terms of features of the
conditional distribution, often gravitates to the expected value, focusing attention on
E[y|x], that is, the regression function, which brings us to the subject of this chapter.
For the preceding example, above, this might be natural if y were “doctor visits” as in
an example examined at several points in the chapters to follow. If we were studying
incomes, I, however, which often have a highly skewed distribution, then the mean
might not be particularly interesting. Rather, the conditional median, for given ages,
M[I|x], might be a more interesting statistic. On the other hand, still considering the
distribution of incomes (and still conditioning on age), other quantiles, such as the 20th

percentile, or a poverty line defined as, say, the 5th percentile, might be more interest-
ing yet. Finally, consider a study in finance, in which the variable of interest is asset
returns. In at least some contexts, means are not interesting at all––it is variances, and
conditional variances in particular, that are most interesting.

The point is that we begin the discussion of the regression model with an understand-
ing of what we mean by “the model.” For the present, we will focus on the conditional
mean which is usually the feature of interest. Once we establish how to analyze the re-
gression function, we will use it as a useful departure point for studying other features,
such as quantiles and variances. The linear regression model is the single most useful
tool in the econometricians kit. Although to an increasing degree in contemporary re-
search it is often only the departure point for the full analysis, it remains the device used
to begin almost all empirical research. And, it is the lens through which relationships
among variables are usually viewed. This chapter will develop the linear regression
model. Here, we will detail the fundamental assumptions of the model. The next sev-
eral chapters will discuss more elaborate specifications and complications that arise in
the application of techniques that are based on the simple models presented here.

2.2 THE LINEAR REGRESSION MODEL

The multiple linear regression model is used to study the relationship between a depen-
dent variable and one or more independent variables. The generic form of the linear
regression model is

y = f (x1, x2, . . . , xK) + ε

= x1β1 + x2β2 + · · · + xKβK + ε,
(2-1)

where y is the dependent or explained variable and x1, . . . , xK are the independent
or explanatory variables. One’s theory will specify f (x1, x2, . . . , xK). This function is
commonly called the population regression equation of y on x1, . . . , xK. In this set-
ting, y is the regressand and xk, k= 1, . . . , and K are the regressors or covariates. The
underlying theory will specify the dependent and independent variables in the model.
It is not always obvious which is appropriately defined as each of these—for example,
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a demand equation, quantity = β1 + price × β2 + income × β3 + ε, and an inverse
demand equation, price = γ1 + quantity × γ2 + income × γ3 + u are equally valid
representations of a market. For modeling purposes, it will often prove useful to think
in terms of “autonomous variation.” One can conceive of movement of the independent
variables outside the relationships defined by the model while movement of the depen-
dent variable is considered in response to some independent or exogenous stimulus.1.

The term ε is a random disturbance, so named because it “disturbs” an otherwise
stable relationship. The disturbance arises for several reasons, primarily because we
cannot hope to capture every influence on an economic variable in a model, no matter
how elaborate. The net effect, which can be positive or negative, of these omitted factors
is captured in the disturbance. There are many other contributors to the disturbance
in an empirical model. Probably the most significant is errors of measurement. It is
easy to theorize about the relationships among precisely defined variables; it is quite
another to obtain accurate measures of these variables. For example, the difficulty of
obtaining reasonable measures of profits, interest rates, capital stocks, or, worse yet,
flows of services from capital stocks, is a recurrent theme in the empirical literature.
At the extreme, there may be no observable counterpart to the theoretical variable.
The literature on the permanent income model of consumption [e.g., Friedman (1957)]
provides an interesting example.

We assume that each observation in a sample (yi , xi1, xi2, . . . , xi K), i = 1, . . . , n, is
generated by an underlying process described by

yi = xi1β1 + xi2β2 + · · · + xi KβK + εi .

The observed value of yi is the sum of two parts, a deterministic part and the random
part, εi . Our objective is to estimate the unknown parameters of the model, use the
data to study the validity of the theoretical propositions, and perhaps use the model to
predict the variable y. How we proceed from here depends crucially on what we assume
about the stochastic process that has led to our observations of the data in hand.

Example 2.1 Keynes’s Consumption Function
Example 1.2 discussed a model of consumption proposed by Keynes and his General Theory
(1936). The theory that consumption, C, and income, X , are related certainly seems consistent
with the observed “facts” in Figures 1.1 and 2.1. (These data are in Data Table F2.1.) Of
course, the linear function is only approximate. Even ignoring the anomalous wartime years,
consumption and income cannot be connected by any simple deterministic relationship.
The linear model, C = α + βX , is intended only to represent the salient features of this part
of the economy. It is hopeless to attempt to capture every influence in the relationship. The
next step is to incorporate the inherent randomness in its real-world counterpart. Thus, we
write C = f ( X, ε) , where ε is a stochastic element. It is important not to view ε as a catchall
for the inadequacies of the model. The model including ε appears adequate for the data
not including the war years, but for 1942–1945, something systematic clearly seems to be
missing. Consumption in these years could not rise to rates historically consistent with these
levels of income because of wartime rationing. A model meant to describe consumption in
this period would have to accommodate this influence.

It remains to establish how the stochastic element will be incorporated in the equation.
The most frequent approach is to assume that it is additive. Thus, we recast the equation

1By this definition, it would seem that in our demand relationship, only income would be an independent
variable while both price and quantity would be dependent. That makes sense—in a market, price and quantity
are determined at the same time, and do change only when something outside the market changes
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FIGURE 2.1 Consumption Data, 1940–1950.

in stochastic terms: C = α + βX + ε. This equation is an empirical counterpart to Keynes’s
theoretical model. But, what of those anomalous years of rationing? If we were to ignore
our intuition and attempt to “fit” a line to all these data—the next chapter will discuss
at length how we should do that—we might arrive at the dotted line in the figure as our best
guess. This line, however, is obviously being distorted by the rationing. A more appropriate
specification for these data that accommodates both the stochastic nature of the data and
the special circumstances of the years 1942–1945 might be one that shifts straight down
in the war years, C = α + βX + dwaryearsδw + ε, where the new variable, dwaryears equals one in
1942–1945 and zero in other years and δw < 0.

One of the most useful aspects of the multiple regression model is its ability to identify
the independent effects of a set of variables on a dependent variable. Example 2.2
describes a common application.

Example 2.2 Earnings and Education
A number of recent studies have analyzed the relationship between earnings and educa-
tion. We would expect, on average, higher levels of education to be associated with higher
incomes. The simple regression model

earnings = β1 + β2 education + ε,

however, neglects the fact that most people have higher incomes when they are older than
when they are young, regardless of their education. Thus, β2 will overstate the marginal
impact of education. If age and education are positively correlated, then the regression model
will associate all the observed increases in income with increases in education. A better
specification would account for the effect of age, as in

earnings = β1 + β2 education + β3 age + ε.

It is often observed that income tends to rise less rapidly in the later earning years than in
the early ones. To accommodate this possibility, we might extend the model to

earnings = β1 + β2 education + β3 age + β4 age2 + ε.

We would expect β3 to be positive and β4 to be negative.
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The crucial feature of this model is that it allows us to carry out a conceptual experi-
ment that might not be observed in the actual data. In the example, we might like to (and
could) compare the earnings of two individuals of the same age with different amounts of
“education” even if the data set does not actually contain two such individuals. How edu-
cation should be measured in this setting is a difficult problem. The study of the earnings
of twins by Ashenfelter and Krueger (1994), which uses precisely this specification of the
earnings equation, presents an interesting approach. [Studies of twins and siblings have
provided an interesting thread of research on the education and income relationship. Two
other studies are Ashenfelter and Zimmerman (1997) and Bonjour, Cherkas, Haskel, Hawkes,
and Spector (2003).] We will examine this study in some detail in Section 8.5.3.

The experiment embodied in the earnings model thus far suggested is a comparison of
two otherwise identical individuals who have different years of education. Under this interpre-
tation, the “impact” of education would be ∂E [Earnings|Age, Education]/∂Education = β2.
But, one might suggest that the experiment the analyst really has in mind is the truly unob-
servable impact of the additional year of education on a particular individual. To carry out the
experiment, it would be necessary to observe the individual twice, once under circumstances
that actually occur, Educationi , and a second time under the hypothetical (counterfactual)
circumstance, Educationi + 1. If we consider Education in this example as a treatment,
then the real objective of the experiment is to measure the impact of the treatment on the
treated. The ability to infer this result from nonexperimental data that essentially compares
“otherwise similar individuals will be examined in Chapter 19.

A large literature has been devoted to another intriguing question on this subject. Edu-
cation is not truly “independent” in this setting. Highly motivated individuals will choose to
pursue more education (for example, by going to college or graduate school) than others. By
the same token, highly motivated individuals may do things that, on average, lead them to
have higher incomes. If so, does a positive β2 that suggests an association between income
and education really measure the effect of education on income, or does it reflect the result of
some underlying effect on both variables that we have not included in our regression model?
We will revisit the issue in Chapter 19.2

2.3 ASSUMPTIONS OF THE LINEAR
REGRESSION MODEL

The linear regression model consists of a set of assumptions about how a data set will
be produced by an underlying “data generating process.” The theory will specify a de-
terministic relationship between the dependent variable and the independent variables.
The assumptions that describe the form of the model and relationships among its parts
and imply appropriate estimation and inference procedures are listed in Table 2.1.

2.3.1 LINEARITY OF THE REGRESSION MODEL

Let the column vector xk be the n observations on variable xk, k = 1, . . . , K, and as-
semble these data in an n × K data matrix, X. In most contexts, the first column of X is
assumed to be a column of 1s so that β1 is the constant term in the model. Let y be the
n observations, y1, . . . , yn, and let ε be the column vector containing the n disturbances.

2This model lays yet another trap for the practitioner. In a cross section, the higher incomes of the older
individuals in the sample might tell an entirely different, perhaps macroeconomic story (a “cohort effect”)
from the lower incomes of younger individuals as time and their incomes evolve. It is not necessarily possible
to deduce the characteristics of incomes of younger people in the sample if they were older by comparing the
older individuals in the sample to the younger ones. A parallel problem arises in the analysis of treatment
effects that we will examine in Chapter 19.
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TABLE 2.1 Assumptions of the Linear Regression Model

A1. Linearity: yi = xi1β1 + xi2β2 + · · · + xi KβK + εi . The model specifies a linear relationship
between y and x1, . . . , xK.

A2. Full rank: There is no exact linear relationship among any of the independent variables
in the model. This assumption will be necessary for estimation of the parameters of the model.
A3. Exogeneity of the independent variables: E [εi | xj1, xj2, . . . , xj K] = 0. This states that
the expected value of the disturbance at observation i in the sample is not a function of the
independent variables observed at any observation, including this one. This means that the
independent variables will not carry useful information for prediction of εi .
A4. Homoscedasticity and nonautocorrelation: Each disturbance, εi has the same finite vari-
ance, σ 2, and is uncorrelated with every other disturbance, ε j . This assumption limits the
generality of the model, and we will want to examine how to relax it in the chapters to follow.
A5. Data generation: The data in (xj1, xj2, . . . , xj K) may be any mixture of constants and ran-
dom variables. The crucial elements for present purposes are the strict mean independence
assumption A3 and the implicit variance independence assumption in A4. Analysis will be
done conditionally on the observed X, so whether the elements in X are fixed constants or
random draws from a stochastic process will not influence the results. In later, more advanced
treatments, we will want to be more specific about the possible relationship between εi and x j .
A6. Normal distribution: The disturbances are normally distributed. Once again, this is a con-
venience that we will dispense with after some analysis of its implications.

The model in (2-1) as it applies to all n observations can now be written

y = x1β1 + · · · + xKβK + ε, (2-2)

or in the form of Assumption 1,

ASSUMPTION: y = Xβ + ε. (2-3)

A NOTATIONAL CONVENTION
Henceforth, to avoid a possibly confusing and cumbersome notation, we will use a
boldface x to denote a column or a row of X. Which of these applies will be clear from
the context. In (2-2), xk is the kth column of X. Subscripts j and k will be used to denote
columns (variables). It will often be convenient to refer to a single observation in (2-3),
which we would write

yi = x′
i β + εi . (2-4)

Subscripts i and t will generally be used to denote rows (observations) of X. In (2-4), xi

is a column vector that is the transpose of the ith 1 × K row of X.

Our primary interest is in estimation and inference about the parameter vector β.
Note that the simple regression model in Example 2.1 is a special case in which X has
only two columns, the first of which is a column of 1s. The assumption of linearity of the
regression model includes the additive disturbance. For the regression to be linear in
the sense described here, it must be of the form in (2-1) either in the original variables
or after some suitable transformation. For example, the model

y = Axβeε
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is linear (after taking logs on both sides of the equation), whereas

y = Axβ + ε

is not. The observed dependent variable is thus the sum of two components, a deter-
ministic element α + βx and a random variable ε. It is worth emphasizing that neither
of the two parts is directly observed because α and β are unknown.

The linearity assumption is not so narrow as it might first appear. In the regression
context, linearity refers to the manner in which the parameters and the disturbance enter
the equation, not necessarily to the relationship among the variables. For example, the
equations y = α +βx + ε, y = α +β cos(x)+ ε, y = α +β/x + ε, and y = α +β ln x + ε

are all linear in some function of x by the definition we have used here. In the examples,
only x has been transformed, but y could have been as well, as in y = Axβeε, which
is a linear relationship in the logs of x and y; ln y = α + β ln x + ε. The variety of
functions is unlimited. This aspect of the model is used in a number of commonly used
functional forms. For example, the loglinear model is

ln y = β1 + β2 ln x2 + β3 ln x3 + · · · + βK ln xK + ε.

This equation is also known as the constant elasticity form as in this equation, the
elasticity of y with respect to changes in x is ∂ ln y/∂ ln xk = βk, which does not vary
with xk. The loglinear form is often used in models of demand and production. Different
values of β produce widely varying functions.

Example 2.3 The U.S. Gasoline Market
Data on the U.S. gasoline market for the years 1953–2004 are given in Table F2.2 in
Appendix F. We will use these data to obtain, among other things, estimates of the income,
own price, and cross-price elasticities of demand in this market. These data also present an
interesting question on the issue of holding “all other things constant,” that was suggested
in Example 2.2. In particular, consider a somewhat abbreviated model of per capita gasoline
consumption:

ln(G/pop) = β1 + β2 ln( Income/pop) + β3 ln priceG + β4 ln Pnewcars + β5 ln Pusedcars + ε.

This model will provide estimates of the income and price elasticities of demand for gasoline
and an estimate of the elasticity of demand with respect to the prices of new and used cars.
What should we expect for the sign of β4? Cars and gasoline are complementary goods, so if
the prices of new cars rise, ceteris paribus, gasoline consumption should fall. Or should it? If
the prices of new cars rise, then consumers will buy fewer of them; they will keep their used
cars longer and buy fewer new cars. If older cars use more gasoline than newer ones, then
the rise in the prices of new cars would lead to higher gasoline consumption than otherwise,
not lower. We can use the multiple regression model and the gasoline data to attempt to
answer the question.

A semilog model is often used to model growth rates:

ln yt = x′
tβ + δt + εt .

In this model, the autonomous (at least not explained by the model itself) proportional,
per period growth rate is ∂ ln y/∂t = δ. Other variations of the general form

f (yt ) = g(x′
tβ + εt )

will allow a tremendous variety of functional forms, all of which fit into our definition
of a linear model.
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The linear regression model is sometimes interpreted as an approximation to some
unknown, underlying function. (See Section A.8.1 for discussion.) By this interpretation,
however, the linear model, even with quadratic terms, is fairly limited in that such
an approximation is likely to be useful only over a small range of variation of the
independent variables. The translog model discussed in Example 2.4, in contrast, has
proved far more effective as an approximating function.

Example 2.4 The Translog Model
Modern studies of demand and production are usually done with a flexible functional form.
Flexible functional forms are used in econometrics because they allow analysts to model
complex features of the production function, such as elasticities of substitution, which are
functions of the second derivatives of production, cost, or utility functions. The linear model
restricts these to equal zero, whereas the loglinear model (e.g., the Cobb–Douglas model)
restricts the interesting elasticities to the uninteresting values of –1 or +1. The most popular
flexible functional form is the translog model, which is often interpreted as a second-order
approximation to an unknown functional form. [See Berndt and Christensen (1973).] One
way to derive it is as follows. We first write y = g( x1, . . . , xK ) . Then, ln y = ln g( . . .) = f ( . . .) .
Since by a trivial transformation xk = exp( ln xk) , we interpret the function as a function of the
logarithms of the x’s. Thus, ln y = f ( ln x1, . . . , ln xK ) .

Now, expand this function in a second-order Taylor series around the point x = [1, 1, . . . , 1]′

so that at the expansion point, the log of each variable is a convenient zero. Then

ln y = f (0) +
K∑

k=1

[∂ f ( ·)/∂ ln xk]| ln x=0 ln xk

+ 1
2

K∑
k=1

K∑
l=1

[∂2 f ( ·)/∂ ln xk∂ ln xl ]| ln x=0 ln xk ln xl + ε.

The disturbance in this model is assumed to embody the familiar factors and the error of
approximation to the unknown function. Since the function and its derivatives evaluated at
the fixed value 0 are constants, we interpret them as the coefficients and write

ln y = β0 +
K∑

k=1

βk ln xk + 1
2

K∑
k=1

K∑
l=1

γkl ln xk ln xl + ε.

This model is linear by our definition but can, in fact, mimic an impressive amount of curvature
when it is used to approximate another function. An interesting feature of this formulation
is that the loglinear model is a special case, γkl = 0. Also, there is an interesting test of the
underlying theory possible because if the underlying function were assumed to be continuous
and twice continuously differentiable, then by Young’s theorem it must be true that γkl = γl k.
We will see in Chapter 10 how this feature is studied in practice.

Despite its great flexibility, the linear model will not accommodate all the situations
we will encounter in practice. In Example 14.10 and Chapter 18, we will examine the
regression model for doctor visits that was suggested in the introduction to this chapter.
An appropriate model that describes the number of visits has conditional mean function
E[y|x] = exp(x′β). It is tempting to linearize this directly by taking logs, since ln E[y|x] =
x′β. But, ln E[y|x] is not equal to E[ln y|x]. In that setting, y can equal zero (and does for
most of the sample), so x′β (which can be negative) is not an appropriate model for ln y
(which does not exist) nor for y which cannot be negative. The methods we consider
in this chapter are not appropriate for estimating the parameters of such a model.
Relatively straightforward techniques have been developed for nonlinear models such
as this, however. We shall treat them in detail in Chapter 7.
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2.3.2 FULL RANK

Assumption 2 is that there are no exact linear relationships among the variables.

ASSUMPTION: X is an n × K matrix with rank K. (2-5)

Hence, X has full column rank; the columns of X are linearly independent and there
are at least K observations. [See (A-42) and the surrounding text.] This assumption is
known as an identification condition. To see the need for this assumption, consider an
example.

Example 2.5 Short Rank
Suppose that a cross-section model specifies that consumption, C, relates to income as
follows:

C = β1 + β2 nonlabor income + β3 salary + β4 total income + ε,

where total income is exactly equal to salary plus nonlabor income. Clearly, there is an exact
linear dependency in the model. Now let

β ′
2 = β2 + a,

β ′
3 = β3 + a,

and
β ′

4 = β4 − a,

where a is any number. Then the exact same value appears on the right-hand side of C if
we substitute β ′

2, β ′
3, and β ′

4 for β2, β3, and β4. Obviously, there is no way to estimate the
parameters of this model.

If there are fewer than K observations, then X cannot have full rank. Hence, we make
the (redundant) assumption that n is at least as large as K.

In a two-variable linear model with a constant term, the full rank assumption means
that there must be variation in the regressor x. If there is no variation in x, then all our
observations will lie on a vertical line. This situation does not invalidate the other
assumptions of the model; presumably, it is a flaw in the data set. The possibility that
this suggests is that we could have drawn a sample in which there was variation in x,
but in this instance, we did not. Thus, the model still applies, but we cannot learn about
it from the data set in hand.

Example 2.6 An Inestimable Model
In Example 3.4, we will consider a model for the sale price of Monet paintings. Theorists and
observers have different models for how prices of paintings at auction are determined. One
(naïve) student of the subject suggests the model

ln Pr i ce = β1 + β2 ln Size + β3 ln Aspect Ratio + β4 ln Height + ε
= β1 + β2x2 + β3x3 + β4x4 + ε,

where Size = Width×Height and Aspect Ratio = Width/Height. By simple arithmetic, we can
see that this model shares the problem found with the consumption model in Example 2.5—
in this case, x2–x4 = x3 + x4. So, this model is, like the previous one, not estimable—it is not
identified. It is useful to think of the problem from a different perspective here (so to speak).
In the linear model, it must be possible for the variables to vary linearly independently. But,
in this instance, while it is possible for any pair of the three covariates to vary independently,
the three together cannot. The “model,” that is, the theory, is an entirely reasonable model
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as it stands. Art buyers might very well consider all three of these features in their valuation
of a Monet painting. However, it is not possible to learn about that from the observed data,
at least not with this linear regression model.

2.3.3 REGRESSION

The disturbance is assumed to have conditional expected value zero at every observa-
tion, which we write as

E [εi | X] = 0. (2-6)

For the full set of observations, we write Assumption 3 as

ASSUMPTION: E [ε | X] =

⎡
⎢⎢⎢⎣

E [ε1 | X]
E [ε2 | X]

...

E [εn | X]

⎤
⎥⎥⎥⎦ = 0. (2-7)

There is a subtle point in this discussion that the observant reader might have
noted. In (2-7), the left-hand side states, in principle, that the mean of each εi condi-
tioned on all observations xi is zero. This conditional mean assumption states, in words,
that no observations on x convey information about the expected value of the distur-
bance. It is conceivable—for example, in a time-series setting—that although xi might
provide no information about E [εi |·], x j at some other observation, such as in the next
time period, might. Our assumption at this point is that there is no information about
E [εi | ·] contained in any observation x j . Later, when we extend the model, we will
study the implications of dropping this assumption. [See Wooldridge (1995).] We will
also assume that the disturbances convey no information about each other. That is,
E [εi | ε1, . . . , εi–1, εi+1, . . . , εn] = 0. In sum, at this point, we have assumed that the
disturbances are purely random draws from some population.

The zero conditional mean implies that the unconditional mean is also zero, since

E [εi ] = Ex[E [εi | X]] = Ex[0] = 0.

Since, for each εi , Cov[E [εi | X], X] = Cov[εi , X], Assumption 3 implies that Cov[εi , X]=
0 for all i . The converse is not true; E[εi ] = 0 does not imply that E[εi |xi ] = 0. Exam-
ple 2.7 illustrates the difference.

Example 2.7 Nonzero Conditional Mean of the Disturbances
Figure 2.2 illustrates the important difference between E [εi ] = 0 and E [εi |xi ] = 0. The overall
mean of the disturbances in the sample is zero, but the mean for specific ranges of x is
distinctly nonzero. A pattern such as this in observed data would serve as a useful indicator
that the assumption of the linear regression should be questioned. In this particular case,
the true conditional mean function (which the researcher would not know in advance) is
actually E [y|x] = 1 + exp(1.5x) . The sample data are suggesting that the linear model is not
appropriate for these data. This possibility is pursued in an application in Example 6.6.

In most cases, the zero overall mean assumption is not restrictive. Consider a two-
variable model and suppose that the mean of ε is μ �= 0. Then α + βx + ε is the same as
(α + μ) + βx + (ε – μ). Letting α′ = α + μ and ε′ = ε–μ produces the original model.
For an application, see the discussion of frontier production functions in Chapter 18.
But, if the original model does not contain a constant term, then assuming E [εi ] = 0
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FIGURE 2.2 Disturbances with Nonzero Conditional Mean and Zero
Unconditional Mean.

could be substantive. This suggests that there is a potential problem in models without
constant terms. As a general rule, regression models should not be specified without con-
stant terms unless this is specifically dictated by the underlying theory.3 Arguably, if we
have reason to specify that the mean of the disturbance is something other than zero,
we should build it into the systematic part of the regression, leaving in the disturbance
only the unknown part of ε. Assumption 3 also implies that

E [y | X] = Xβ. (2-8)

Assumptions 1 and 3 comprise the linear regression model. The regression of y on X is
the conditional mean, E [y | X], so that without Assumption 3, Xβ is not the conditional
mean function.

The remaining assumptions will more completely specify the characteristics of the
disturbances in the model and state the conditions under which the sample observations
on x are obtained.

2.3.4 SPHERICAL DISTURBANCES

The fourth assumption concerns the variances and covariances of the disturbances:

Var[εi | X] = σ 2, for all i = 1, . . . , n,

3Models that describe first differences of variables might well be specified without constants. Consider yt – yt–1.
If there is a constant term α on the right-hand side of the equation, then yt is a function of αt , which is an
explosive regressor. Models with linear time trends merit special treatment in the time-series literature. We
will return to this issue in Chapter 21.
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and

Cov[εi , ε j | X] = 0, for all i �= j.

Constant variance is labeled homoscedasticity. Consider a model that describes the
profits of firms in an industry as a function of, say, size. Even accounting for size, mea-
sured in dollar terms, the profits of large firms will exhibit greater variation than those
of smaller firms. The homoscedasticity assumption would be inappropriate here. Survey
data on household expenditure patterns often display marked heteroscedasticity, even
after accounting for income and household size.

Uncorrelatedness across observations is labeled generically nonautocorrelation. In
Figure 2.1, there is some suggestion that the disturbances might not be truly independent
across observations. Although the number of observations is limited, it does appear
that, on average, each disturbance tends to be followed by one with the same sign. This
“inertia” is precisely what is meant by autocorrelation, and it is assumed away at this
point. Methods of handling autocorrelation in economic data occupy a large proportion
of the literature and will be treated at length in Chapter 20. Note that nonautocorrelation
does not imply that observations yi and yj are uncorrelated. The assumption is that
deviations of observations from their expected values are uncorrelated.

The two assumptions imply that

E [εε′ | X] =

⎡
⎢⎢⎢⎣

E [ε1ε1 | X] E [ε1ε2 | X] · · · E [ε1εn | X]
E [ε2ε1 | X] E [ε2ε2 | X] · · · E [ε2εn | X]

...
...

...
...

E [εnε1 | X] E [εnε2 | X] · · · E [εnεn | X]

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

σ 2 0 · · · 0
0 σ 2 · · · 0

...

0 0 · · · σ 2

⎤
⎥⎥⎥⎦,

which we summarize in Assumption 4:

ASSUMPTION: E [εε′ | X] = σ 2I. (2-9)

By using the variance decomposition formula in (B-69), we find

Var[ε] = E [Var[ε | X]] + Var[E [ε | X]] = σ 2I.

Once again, we should emphasize that this assumption describes the information about
the variances and covariances among the disturbances that is provided by the indepen-
dent variables. For the present, we assume that there is none. We will also drop this
assumption later when we enrich the regression model. We are also assuming that the
disturbances themselves provide no information about the variances and covariances.
Although a minor issue at this point, it will become crucial in our treatment of time-
series applications. Models such as Var[εt | εt–1] = σ 2 + αε2

t−1, a “GARCH” model (see
Chapter 20), do not violate our conditional variance assumption, but do assume that
Var[εt | εt–1] �= Var[εt ].
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Disturbances that meet the assumptions of homoscedasticity and nonautocorrela-
tion are sometimes called spherical disturbances.4

2.3.5 DATA GENERATING PROCESS FOR THE REGRESSORS

It is common to assume that xi is nonstochastic, as it would be in an experimental
situation. Here the analyst chooses the values of the regressors and then observes yi .
This process might apply, for example, in an agricultural experiment in which yi is yield
and xi is fertilizer concentration and water applied. The assumption of nonstochastic
regressors at this point would be a mathematical convenience. With it, we could use
the results of elementary statistics to obtain our results by treating the vector xi sim-
ply as a known constant in the probability distribution of yi . With this simplification,
Assumptions A3 and A4 would be made unconditional and the counterparts would now
simply state that the probability distribution of εi involves none of the constants in X.

Social scientists are almost never able to analyze experimental data, and relatively
few of their models are built around nonrandom regressors. Clearly, for example, in
any model of the macroeconomy, it would be difficult to defend such an asymmetric
treatment of aggregate data. Realistically, we have to allow the data on xi to be random
the same as yi , so an alternative formulation is to assume that xi is a random vector and
our formal assumption concerns the nature of the random process that produces xi . If xi

is taken to be a random vector, then Assumptions 1 through 4 become a statement about
the joint distribution of yi and xi . The precise nature of the regressor and how we view
the sampling process will be a major determinant of our derivation of the statistical
properties of our estimators and test statistics. In the end, the crucial assumption is
Assumption 3, the uncorrelatedness of X and ε. Now, we do note that this alternative
is not completely satisfactory either, since X may well contain nonstochastic elements,
including a constant, a time trend, and dummy variables that mark specific episodes
in time. This makes for an ambiguous conclusion, but there is a straightforward and
economically useful way out of it. We will assume that X can be a mixture of constants
and random variables, and the mean and variance of εi are both independent of all
elements of X.

ASSUMPTION: X may be fixed or random. (2-10)

2.3.6 NORMALITY

It is convenient to assume that the disturbances are normally distributed, with zero mean
and constant variance. That is, we add normality of the distribution to Assumptions 3
and 4.

ASSUMPTION: ε | X ∼ N[0, σ 2I]. (2-11)

4The term will describe the multivariate normal distribution; see (B-95). If � = σ 2I in the multivariate normal
density, then the equation f (x) = c is the formula for a “ball” centered at μ with radius σ in n-dimensional
space. The name spherical is used whether or not the normal distribution is assumed; sometimes the “spherical
normal” distribution is assumed explicitly.
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In view of our description of the source of ε, the conditions of the central limit
theorem will generally apply, at least approximately, and the normality assumption will
be reasonable in most settings. A useful implication of Assumption 6 is that it implies that
observations on εi are statistically independent as well as uncorrelated. [See the third
point in Section B.9, (B-97) and (B-99).] Normality is sometimes viewed as an unneces-
sary and possibly inappropriate addition to the regression model. Except in those cases
in which some alternative distribution is explicitly assumed, as in the stochastic frontier
model discussed in Chapter 18, the normality assumption is probably quite reasonable.

Normality is not necessary to obtain many of the results we use in multiple regression
analysis, although it will enable us to obtain several exact statistical results. It does prove
useful in constructing confidence intervals and test statistics, as shown in Section 4.5
and Chapter 5. Later, it will be possible to relax this assumption and retain most of the
statistical results we obtain here. (See Sections 4.4 and 5.6.)

2.3.7 INDEPENDENCE

The term “independent” has been used several ways in this chapter.
In Section 2.2, the right-hand-side variables in the model are denoted the indepen-

dent variables. Here, the notion of independence refers to the sources of variation. In
the context of the model, the variation in the independent variables arises from sources
that are outside of the process being described. Thus, in our health services vs. income
example in the introduction, we have suggested a theory for how variation in demand
for services is associated with variation in income. But, we have not suggested an expla-
nation of the sample variation in incomes; income is assumed to vary for reasons that
are outside the scope of the model.

The assumption in (2-6), E[εi |X] = 0, is mean independence. Its implication is that
variation in the disturbances in our data is not explained by variation in the indepen-
dent variables. We have also assumed in Section 2.3.4 that the disturbances are uncor-
related with each other (Assumption A4 in Table 2.1). This implies that E[εi |ε j ] = 0
when i �= j—the disturbances are also mean independent of each other. Conditional
normality of the disturbances assumed in Section 2.3.6 (Assumption A6) implies that
they are statistically independent of each other, which is a stronger result than mean
independence.

Finally, Section 2.3.2 discusses the linear independence of the columns of the data
matrix, X. The notion of independence here is an algebraic one relating to the column
rank of X. In this instance, the underlying interpretation is that it must be possible
for the variables in the model to vary linearly independently of each other. Thus, in
Example 2.6, we find that it is not possible for the logs of surface area, aspect ratio, and
height of a painting all to vary independently of one another. The modeling implication
is that if the variables cannot vary independently of each other, then it is not possible to
analyze them in a linear regression model that assumes the variables can each vary while
holding the others constant. There is an ambiguity in this discussion of independence
of the variables. We have both age and age squared in a model in Example 2.2. These
cannot vary independently, but there is no obstacle to formulating a regression model
containing both age and age squared. The resolution is that age and age squared, though
not functionally independent, are linearly independent. That is the crucial assumption
in the linear regression model.
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E(y|x)
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FIGURE 2.3 The Classical Regression Model.

2.4 SUMMARY AND CONCLUSIONS

This chapter has framed the linear regression model, the basic platform for model build-
ing in econometrics. The assumptions of the classical regression model are summarized
in Figure 2.3, which shows the two-variable case.
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3

LEAST SQUARES

Q
3.1 INTRODUCTION

Chapter 2 defined the linear regression model as a set of characteristics of the pop-
ulation that underlies an observed sample of data. There are a number of different
approaches to estimation of the parameters of the model. For a variety of practical and
theoretical reasons that we will explore as we progress through the next several chap-
ters, the method of least squares has long been the most popular. Moreover, in most
cases in which some other estimation method is found to be preferable, least squares
remains the benchmark approach, and often, the preferred method ultimately amounts
to a modification of least squares. In this chapter, we begin the analysis of this important
set of results by presenting a useful set of algebraic tools.

3.2 LEAST SQUARES REGRESSION

The unknown parameters of the stochastic relationship yi = x′
iβ + εi are the objects

of estimation. It is necessary to distinguish between population quantities, such as β

and εi , and sample estimates of them, denoted b and ei . The population regression is
E [yi | xi ] = x′

iβ, whereas our estimate of E [yi | xi ] is denoted

ŷi = x′
i b.

The disturbance associated with the ith data point is

εi = yi − x′
iβ.

For any value of b, we shall estimate εi with the residual

ei = yi − x′
i b.

From the definitions,

yi = x′
iβ + εi = x′

i b + ei .

These equations are summarized for the two variable regression in Figure 3.1.
The population quantity β is a vector of unknown parameters of the probability

distribution of yi whose values we hope to estimate with our sample data, (yi , xi ), i =
1, . . . , n. This is a problem of statistical inference. It is instructive, however, to begin by
considering the purely algebraic problem of choosing a vector b so that the fitted line
x′

i b is close to the data points. The measure of closeness constitutes a fitting criterion.

66
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y
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a � bx
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� � �x

ŷ � a � bx

FIGURE 3.1 Population and Sample Regression.

Although numerous candidates have been suggested, the one used most frequently is
least squares.1

3.2.1 THE LEAST SQUARES COEFFICIENT VECTOR

The least squares coefficient vector minimizes the sum of squared residuals:
n∑

i=1

e2
i0 =

n∑
i=1

(yi − x′
i b0)

2, (3-1)

where b0 denotes the choice for the coefficient vector. In matrix terms, minimizing the
sum of squares in (3-1) requires us to choose b0 to

Minimizeb0 S(b0) = e′
0e0 = (y − Xb0)

′(y − Xb0). (3-2)

Expanding this gives

e′
0e0 = y′y − b′

0X′y − y′Xb0 + b′
0X′Xb0 (3-3)

or
S(b0) = y′y − 2y′Xb0 + b′

0X′Xb0.

The necessary condition for a minimum is

∂S(b0)

∂b0
= −2X′y + 2X′Xb0 = 0.2 (3-4)

1We have yet to establish that the practical approach of fitting the line as closely as possible to the data by
least squares leads to estimates with good statistical properties. This makes intuitive sense and is, indeed, the
case. We shall return to the statistical issues in Chapter 4.
2See Appendix A.8 for discussion of calculus results involving matrices and vectors.
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Let b be the solution. Then, after manipulating (3-4), we find that b satisfies the least
squares normal equations,

X′Xb = X′y. (3-5)

If the inverse of X′X exists, which follows from the full column rank assumption
(Assumption A2 in Section 2.3), then the solution is

b = (X′X)−1X′y. (3-6)

For this solution to minimize the sum of squares,

∂2S(b0)

∂b0 ∂b′
0

= 2X′X

must be a positive definite matrix. Let q = c′X′Xc for some arbitrary nonzero vector c.
Then

q = v′v =
n∑

i=1

v2
i , where v = Xc.

Unless every element of v is zero, q is positive. But if v could be zero, then v would be a
linear combination of the columns of X that equals 0, which contradicts the assumption
that X has full column rank. Since c is arbitrary, q is positive for every nonzero c, which
establishes that 2X′X is positive definite. Therefore, if X has full column rank, then the
least squares solution b is unique and minimizes the sum of squared residuals.

3.2.2 APPLICATION: AN INVESTMENT EQUATION

To illustrate the computations in a multiple regression, we consider an example based on
the macroeconomic data in Appendix Table F3.1. To estimate an investment equation,
we first convert the investment and GNP series in Table F3.1 to real terms by dividing
them by the CPI and then scale the two series so that they are measured in trillions of
dollars. The other variables in the regression are a time trend (1, 2, . . .), an interest rate,
and the rate of inflation computed as the percentage change in the CPI. These produce
the data matrices listed in Table 3.1. Consider first a regression of real investment on
a constant, the time trend, and real GNP, which correspond to x1, x2, and x3. Inserting
the specific variables of the example into (3-5), we have

b1n + b2�i Ti + b3�i Gi = �i Yi ,

b1�i Ti + b2�i T2
i + b3�i Ti Gi = �i Ti Yi ,

b1�i Gi + b2�i Ti Gi + b3�i G2
i = �i Gi Yi .

A solution can be obtained by first dividing the first equation by n and rearranging it to
obtain

b1 = Ȳ − b2T̄ − b3Ḡ

= 0.20333 − b2 × 8 − b3 × 1.2873. (3-7)
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TABLE 3.1 Data Matrices

Real Real Interest Inflation
Investment Constant Trend GNP Rate Rate

(Y) (1) (T) (G) (R) (P)

0.161 1 1 1.058 5.16 4.40
0.172 1 2 1.088 5.87 5.15
0.158 1 3 1.086 5.95 5.37
0.173 1 4 1.122 4.88 4.99
0.195 1 5 1.186 4.50 4.16
0.217 1 6 1.254 6.44 5.75
0.199 1 7 1.246 7.83 8.82

y = 0.163 X = 1 8 1.232 6.25 9.31
0.195 1 9 1.298 5.50 5.21
0.231 1 10 1.370 5.46 5.83
0.257 1 11 1.439 7.46 7.40
0.259 1 12 1.479 10.28 8.64
0.225 1 13 1.474 11.77 9.31
0.241 1 14 1.503 13.42 9.44
0.204 1 15 1.475 11.02 5.99

Note: Subsequent results are based on these values. Slightly different results are obtained if the raw data in
Table F3.1 are input to the computer program and transformed internally.

Insert this solution in the second and third equations, and rearrange terms again to yield
a set of two equations:

b2�i (Ti − T̄ )2 + b3�i (Ti − T̄ )(Gi − Ḡ ) = �i (Ti − T̄ )(Yi − Ȳ ),

b2�i (Ti − T̄ )(Gi − Ḡ ) + b3�i (Gi − Ḡ )2 = �i (Gi − Ḡ )(Yi − Ȳ ).
(3-8)

This result shows the nature of the solution for the slopes, which can be computed
from the sums of squares and cross products of the deviations of the variables. Letting
lowercase letters indicate variables measured as deviations from the sample means, we
find that the least squares solutions for b2 and b3 are

b2 = �i ti yi�i g2
i − �i gi yi�i ti gi

�i t2
i �i g2

i − (�i gi ti )2
= 1.6040(0.359609) − 0.066196(9.82)

280(0.359609) − (9.82)2
= −0.0171984,

b3 = �i gi yi�i t2
i − �i ti yi�i ti gi

�i t2
i �i g2

i − (�i gi ti )2
= 0.066196(280) − 1.6040(9.82)

280(0.359609) − (9.82)2
= 0.653723.

With these solutions in hand, b1 can now be computed using (3-7); b1 = −0.500639.

Suppose that we just regressed investment on the constant and GNP, omitting the
time trend. At least some of the correlation we observe in the data will be explainable
because both investment and real GNP have an obvious time trend. Consider how this
shows up in the regression computation. Denoting by “byx” the slope in the simple,
bivariate regression of variable y on a constant and the variable x, we find that the slope
in this reduced regression would be

byg = �i gi yi

�i g2
i

= 0.184078. (3-9)
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Now divide both the numerator and denominator in the expression for b3 by �i t2
i �i g2

i .
By manipulating it a bit and using the definition of the sample correlation between G
and T, r2

gt = (�i gi ti )2/(�i g2
i �i t2

i ), and defining byt and btg likewise, we obtain

byg·t = byg

1 − r2
gt

− byt btg

1 − r2
gt

= 0.653723. (3-10)

(The notation “byg·t ” used on the left-hand side is interpreted to mean the slope in
the regression of y on g “in the presence of t .”) The slope in the multiple regression
differs from that in the simple regression by including a correction that accounts for the
influence of the additional variable t on both Y and G. For a striking example of this
effect, in the simple regression of real investment on a time trend, byt = 1.604/280 =
0.0057286, a positive number that reflects the upward trend apparent in the data. But, in
the multiple regression, after we account for the influence of GNP on real investment,
the slope on the time trend is −0.0171984, indicating instead a downward trend. The
general result for a three-variable regression in which x1 is a constant term is

by2·3 = by2 − by3b32

1 − r2
23

. (3-11)

It is clear from this expression that the magnitudes of by2·3 and by2 can be quite different.
They need not even have the same sign.

In practice, you will never actually compute a multiple regression by hand or with a
calculator. For a regression with more than three variables, the tools of matrix algebra
are indispensable (as is a computer). Consider, for example, an enlarged model of
investment that includes—in addition to the constant, time trend, and GNP—an interest
rate and the rate of inflation. Least squares requires the simultaneous solution of five
normal equations. Letting X and y denote the full data matrices shown previously, the
normal equations in (3-5) are

⎡
⎢⎢⎢⎢⎣

15.000 120.00 19.310 111.79 99.770
120.000 1240.0 164.30 1035.9 875.60

19.310 164.30 25.218 148.98 131.22
111.79 1035.9 148.98 953.86 799.02

99.770 875.60 131.22 799.02 716.67

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

b1

b2

b3

b4

b5

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

3.0500
26.004

3.9926
23.521
20.732

⎤
⎥⎥⎥⎥⎦

.

The solution is

b = (X′X)−1X′y = (−0.50907, −0.01658, 0.67038, −0.002326, −0.00009401)′.

3.2.3 ALGEBRAIC ASPECTS OF THE LEAST SQUARES SOLUTION

The normal equations are

X′Xb − X′y = −X′(y − Xb) = −X′e = 0. (3-12)

Hence, for every column xk of X, x′
ke = 0. If the first column of X is a column of 1s,

which we denote i, then there are three implications.
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1. The least squares residuals sum to zero. This implication follows from x′
1e = i′e =

�i ei = 0.
2. The regression hyperplane passes through the point of means of the data. The first

normal equation implies that ȳ = x̄′b.
3. The mean of the fitted values from the regression equals the mean of the actual values.

This implication follows from point 1 because the fitted values are just ŷ = Xb.

It is important to note that none of these results need hold if the regression does not
contain a constant term.

3.2.4 PROJECTION

The vector of least squares residuals is

e = y − Xb. (3-13)

Inserting the result in (3-6) for b gives

e = y − X(X′X)−1X′y = (I − X(X′X)−1X′)y = My. (3-14)

The n × n matrix M defined in (3-14) is fundamental in regression analysis. You can
easily show that M is both symmetric (M = M′) and idempotent (M = M2). In view of
(3-13), we can interpret M as a matrix that produces the vector of least squares residuals
in the regression of y on X when it premultiplies any vector y. (It will be convenient
later on to refer to this matrix as a “residual maker.”) It follows that

MX = 0. (3-15)

One way to interpret this result is that if X is regressed on X, a perfect fit will result and
the residuals will be zero.

Finally, (3-13) implies that y = Xb + e, which is the sample analog to (2-3). (See
Figure 3.1 as well.) The least squares results partition y into two parts, the fitted values
ŷ = Xb and the residuals e. [See Section A.3.7, especially (A-54).] Since MX = 0, these
two parts are orthogonal. Now, given (3-13),

ŷ = y − e = (I − M)y = X(X′X)−1X′y = Py. (3-16)

The matrix P is a projection matrix. It is the matrix formed from X such that when a
vector y is premultiplied by P, the result is the fitted values in the least squares regression
of y on X. This is also the projection of the vector y into the column space of X. (See
Sections A3.5 and A3.7.) By multiplying it out, you will find that, like M, P is symmetric
and idempotent. Given the earlier results, it also follows that M and P are orthogonal;

PM = MP = 0.

As might be expected from (3-15)

PX = X.

As a consequence of (3-14) and (3-16), we can see that least squares partitions the
vector y into two orthogonal parts,

y = Py + My = projection + residual.
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y

ŷ

x1

x2

e

FIGURE 3.2 Projection of y into the Column Space of X.

The result is illustrated in Figure 3.2 for the two variable case. The gray shaded plane is
the column space of X. The projection and residual are the orthogonal dotted rays. We
can also see the Pythagorean theorem at work in the sums of squares,

y′y = y′P′Py + y′M′My

= ŷ′ŷ + e′e.

In manipulating equations involving least squares results, the following equivalent
expressions for the sum of squared residuals are often useful:

e′e = y′M′My = y′My = y′e = e′y,

e′e = y′y − b′X′Xb = y′y − b′X′y = y′y − y′Xb.

3.3 PARTITIONED REGRESSION AND
PARTIAL REGRESSION

It is common to specify a multiple regression model when, in fact, interest centers on
only one or a subset of the full set of variables. Consider the earnings equation discussed
in Example 2.2. Although we are primarily interested in the association of earnings and
education, age is, of necessity, included in the model. The question we consider here is
what computations are involved in obtaining, in isolation, the coefficients of a subset of
the variables in a multiple regression (for example, the coefficient of education in the
aforementioned regression).

Suppose that the regression involves two sets of variables, X1 and X2. Thus,

y = Xβ + ε = X1β1 + X2β2 + ε.
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What is the algebraic solution for b2? The normal equations are

(1)

(2)

[
X′

1X1 X′
1X2

X′
2X1 X′

2X2

][
b1

b2

]
=

[
X′

1y
X′

2y

]
. (3-17)

A solution can be obtained by using the partitioned inverse matrix of (A-74). Alterna-
tively, (1) and (2) in (3-17) can be manipulated directly to solve for b2. We first solve
(1) for b1:

b1 = (X′
1X1)

−1X′
1y − (X′

1X1)
−1X′

1X2b2 = (X′
1X1)

−1X′
1(y − X2b2). (3-18)

This solution states that b1 is the set of coefficients in the regression of y on X1, minus
a correction vector. We digress briefly to examine an important result embedded in
(3-18). Suppose that X′

1X2 = 0. Then, b1 = (X′
1X1)

−1X′
1y, which is simply the coefficient

vector in the regression of y on X1. The general result is given in the following theorem.

THEOREM 3.1 Orthogonal Partitioned Regression
In the multiple linear least squares regression of y on two sets of variables X1 and
X2, if the two sets of variables are orthogonal, then the separate coefficient vectors
can be obtained by separate regressions of y on X1 alone and y on X2 alone.
Proof: The assumption of the theorem is that X′

1X2 = 0 in the normal equations
in (3-17). Inserting this assumption into (3-18) produces the immediate solution
for b1 = (X′

1X1)
−1X′

1y and likewise for b2.

If the two sets of variables X1 and X2 are not orthogonal, then the solution for b1

and b2 found by (3-17) and (3-18) is more involved than just the simple regressions
in Theorem 3.1. The more general solution is given by the following theorem, which
appeared in the first volume of Econometrica:3

THEOREM 3.2 Frisch–Waugh (1933)–Lovell (1963) Theorem
In the linear least squares regression of vector y on two sets of variables, X1 and
X2, the subvector b2 is the set of coefficients obtained when the residuals from a
regression of y on X1 alone are regressed on the set of residuals obtained when
each column of X2 is regressed on X1.

3The theorem, such as it was, appeared in the introduction to the paper: “The partial trend regression method
can never, indeed, achieve anything which the individual trend method cannot, because the two methods lead
by definition to identically the same results.” Thus, Frisch and Waugh were concerned with the (lack of)
difference between a regression of a variable y on a time trend variable, t, and another variable, x, compared
to the regression of a detrended y on a detrended x, where detrending meant computing the residuals of the
respective variable on a constant and the time trend, t. A concise statement of the theorem, and its matrix
formulation were added later, by Lovell (1963).
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To prove Theorem 3.2, begin from equation (2) in (3-17), which is

X′
2X1b1 + X′

2X2b2 = X′
2y.

Now, insert the result for b1 that appears in (3-18) into this result. This produces

X′
2X1(X′

1X1)
−1X′

1y − X′
2X1(X′

1X1)
−1X′

1X2b2 + X′
2X2b2 = X′

2y.

After collecting terms, the solution is

b2 = [
X′

2(I − X1(X′
1X1)

−1X′
1)X2

]−1[X′
2(I − X1(X′

1X1)
−1X′

1)y
]

= (X′
2M1X2)

−1(X′
2M1y). (3-19)

The matrix appearing in the parentheses inside each set of square brackets is the “resid-
ual maker” defined in (3-14), in this case defined for a regression on the columns of X1.
Thus, M1X2 is a matrix of residuals; each column of M1X2 is a vector of residuals in the
regression of the corresponding column of X2 on the variables in X1. By exploiting the
fact that M1, like M, is symmetric and idempotent, we can rewrite (3-19) as

b2 = (X∗′
2 X∗

2)
−1X∗′

2 y∗, (3-20)

where

X∗
2 = M1X2 and y∗ = M1y.

This result is fundamental in regression analysis.
This process is commonly called partialing out or netting out the effect of X1.

For this reason, the coefficients in a multiple regression are often called the partial
regression coefficients. The application of this theorem to the computation of a single
coefficient as suggested at the beginning of this section is detailed in the following:
Consider the regression of y on a set of variables X and an additional variable z. Denote
the coefficients b and c.

COROLLARY 3.2.1 Individual Regression Coefficients
The coefficient on z in a multiple regression of y on W = [X, z] is computed as
c = (z′Mz)−1(z′My) = (z∗′z∗)−1z∗′y∗ where z∗ and y∗ are the residual vectors from
least squares regressions of z and y on X; z∗ = Mz and y∗ = My where M is
defined in (3-14).
Proof: This is an application of Theorem 3.2 in which X1 is X and X2 is z.

In terms of Example 2.2, we could obtain the coefficient on education in the multiple
regression by first regressing earnings and education on age (or age and age squared)
and then using the residuals from these regressions in a simple regression. In a classic
application of this latter observation, Frisch and Waugh (1933) (who are credited with
the result) noted that in a time-series setting, the same results were obtained whether
a regression was fitted with a time-trend variable or the data were first “detrended” by
netting out the effect of time, as noted earlier, and using just the detrended data in a
simple regression.4

4Recall our earlier investment example.
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As an application of these results, consider the case in which X1 is i, a constant term
that is a column of 1s in the first column of X. The solution for b2 in this case will then be
the slopes in a regression that contains a constant term. Using Theorem 3.2 the vector
of residuals for any variable in X2 in this case will be

x∗ = x − X1(X′
1X1)

−1X′
1x

= x − i(i′i)−1i′x

= x − i(1/n)i′x (3-21)

= x − i x̄

= M0x.

(See Section A.5.4 where we have developed this result purely algebraically.) For this
case, then, the residuals are deviations from the sample mean. Therefore, each column
of M1X2 is the original variable, now in the form of deviations from the mean. This
general result is summarized in the following corollary.

COROLLARY 3.2.2 Regression with a Constant Term
The slopes in a multiple regression that contains a constant term are obtained
by transforming the data to deviations from their means and then regressing the
variable y in deviation form on the explanatory variables, also in deviation form.

[We used this result in (3-8).] Having obtained the coefficients on X2, how can we
recover the coefficients on X1 (the constant term)? One way is to repeat the exercise
while reversing the roles of X1 and X2. But there is an easier way. We have already
solved for b2. Therefore, we can use (3-18) in a solution for b1. If X1 is just a column of
1s, then the first of these produces the familiar result

b1 = ȳ − x̄2b2 − · · · − x̄KbK

[which is used in (3-7)].
Theorem 3.2 and Corollaries 3.2.1 and 3.2.2 produce a useful interpretation of the

partitioned regression when the model contains a constant term. According to Theorem
3.1, if the columns of X are orthogonal, that is, x′

kxm = 0 for columns k and m, then the
separate regression coefficients in the regression of y on X when X = [x1, x2, . . . , xK]
are simply x′

ky/x′
kxk. When the regression contains a constant term, we can compute

the multiple regression coefficients by regression of y in mean deviation form on the
columns of X, also in deviations from their means. In this instance, the “orthogonality”
of the columns means that the sample covariances (and correlations) of the variables
are zero. The result is another theorem:
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THEOREM 3.3 Orthogonal Regression
If the multiple regression of y on X contains a constant term and the variables in
the regression are uncorrelated, then the multiple regression slopes are the same as
the slopes in the individual simple regressions of y on a constant and each variable
in turn.
Proof: The result follows from Theorems 3.1 and 3.2.

3.4 PARTIAL REGRESSION AND PARTIAL
CORRELATION COEFFICIENTS

The use of multiple regression involves a conceptual experiment that we might not be
able to carry out in practice, the ceteris paribus analysis familiar in economics. To pursue
Example 2.2, a regression equation relating earnings to age and education enables
us to do the conceptual experiment of comparing the earnings of two individuals of
the same age with different education levels, even if the sample contains no such pair
of individuals. It is this characteristic of the regression that is implied by the term
partial regression coefficients. The way we obtain this result, as we have seen, is first
to regress income and education on age and then to compute the residuals from this
regression. By construction, age will not have any power in explaining variation in these
residuals. Therefore, any correlation between income and education after this “purging”
is independent of (or after removing the effect of) age.

The same principle can be applied to the correlation between two variables. To
continue our example, to what extent can we assert that this correlation reflects a direct
relationship rather than that both income and education tend, on average, to rise as
individuals become older? To find out, we would use a partial correlation coefficient,
which is computed along the same lines as the partial regression coefficient. In the con-
text of our example, the partial correlation coefficient between income and education,
controlling for the effect of age, is obtained as follows:

1. y∗ = the residuals in a regression of income on a constant and age.
2. z∗ = the residuals in a regression of education on a constant and age.
3. The partial correlation r∗

yz is the simple correlation between y∗ and z∗.

This calculation might seem to require a formidable amount of computation. Using
Corollary 3.2.1, the two residual vectors in points 1 and 2 are y∗ = My and z∗ = Mz
where M = I–X(X′X)−1X′ is the residual maker defined in (3-14). We will assume that
there is a constant term in X so that the vectors of residuals y∗ and z∗ have zero sample
means. Then, the square of the partial correlation coefficient is

r∗2
yz = (z′

∗y∗)2

(z′∗z∗)(y′∗y∗)
.

There is a convenient shortcut. Once the multiple regression is computed, the t ratio in
(5-13) for testing the hypothesis that the coefficient equals zero (e.g., the last column of
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Table 4.1) can be used to compute

r∗2
yz = t2

z

t2
z + degrees of freedom

, (3-22)

where the degrees of freedom is equal to n–(K +1). The proof of this less than perfectly
intuitive result will be useful to illustrate some results on partitioned regression. We will
rely on two useful theorems from least squares algebra. The first isolates a particular
diagonal element of the inverse of a moment matrix such as (X′X)−1.

THEOREM 3.4 Diagonal Elements of the Inverse
of a Moment Matrix

Let W denote the partitioned matrix [X, z]—that is, the K columns of X plus an
additional column labeled z. The last diagonal element of (W′W)−1 is (z′Mz)−1 =
(z′

∗z∗)−1 where z∗ = Mz and M = I − X(X′X)−1X′.
Proof: This is an application of the partitioned inverse formula in (A-74) where
A11 = X′X, A12 = X′z, A21 = z′X and A22 = z′z. Note that this theorem
generalizes the development in Section A.2.8, where X contains only a constant
term, i.

We can use Theorem 3.4 to establish the result in (3-22). Let c and u denote the
coefficient on z and the vector of residuals in the multiple regression of y on W = [X, z],
respectively. Then, by definition, the squared t ratio in (3-22) is

t2
z = c2

[
u′u

n − (K + 1)

]
(W′W)−1

K+1,K+1

where (W′W)−1
K+1,K+1 is the (K+1) (last) diagonal element of (W′W)−1. (The bracketed

term appears in (4-17). We are using only the algebraic result at this point.) The theorem
states that this element of the matrix equals (z′

∗z∗)−1. From Corollary 3.2.1, we also have
that c2 = [(z′

∗y∗)/(z′
∗z∗)]2. For convenience, let DF = n − (K + 1). Then,

t2
z = (z′

∗y∗/z′
∗z∗)2

(u′u/DF)/z′∗z∗
= (z′

∗y∗)2 DF
(u′u)(z′∗z∗)

.

It follows that the result in (3-22) is equivalent to

t2
z

t2
z + DF

=
(z′

∗y∗)
2

DF
(u′u)(z′∗z∗)

(z′∗y∗)
2

DF
(u′u)(z′∗z∗)

+ DF
=

(z′
∗y∗)

2

(u′u)(z′∗z∗)

(z′∗y∗)
2

(u′u)(z′∗z∗)
+ 1

=
(
z′
∗y∗

)2

(
z′∗y∗

)2 + (u′u)
(
z′∗z∗

) .

Divide numerator and denominator by (z′
∗z∗) (y′

∗y∗) to obtain

t2
z

t2
z + DF

= (z′
∗y∗)2/(z′

∗z∗)(y′
∗y∗)

(z′∗y∗)2/(z′∗z∗)(y′∗y∗) + (u′u)(z′∗z∗)/(z′∗z∗)(y′∗y∗)
= r∗2

yz

r∗2
yz + (u′u)/(y′∗y∗)

.

(3-23)
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We will now use a second theorem to manipulate u′u and complete the derivation. The
result we need is given in Theorem 3.5.

THEOREM 3.5 Change in the Sum of Squares When a Variable is
Added to a Regression

If e′e is the sum of squared residuals when y is regressed on X and u′u is the sum
of squared residuals when y is regressed on X and z, then

u′u = e′e − c2(z′
∗z∗) ≤ e′e, (3-24)

where c is the coefficient on z in the long regression of y on [X, z] and z∗ = Mz is
the vector of residuals when z is regressed on X.
Proof: In the long regression of y on X and z, the vector of residuals is u = y −
Xd − zc. Note that unless X′z = 0, d will not equal b = (X′X)−1X′y. (See Section
4.3.2.) Moreover, unless c = 0, u will not equal e = y−Xb. From Corollary 3.2.1,
c = (z′

∗z∗)−1(z′
∗y∗). From (3-18), we also have that the coefficients on X in this

long regression are

d = (X′X)−1X′(y − zc) = b − (X′X)−1X′zc.

Inserting this expression for d in that for u gives

u = y − Xb + X(X′X)−1X′zc − zc = e − Mzc = e − z∗c.

Then,

u′u = e′e + c2(z′
∗z∗) − 2c(z′

∗e)

But, e = My = y∗ and z′
∗e = z′

∗y∗ = c(z′
∗z∗). Inserting this result in u′u immedi-

ately above gives the result in the theorem.

Returning to the derivation, then, e′e = y′
∗y∗ and c2(z′

∗z∗) = (z′
∗y∗)2/(z′

∗z∗). Therefore,

u′u
y′∗y∗

= y′
∗y∗ − (z′

∗y∗)2/z′
∗z∗

y′∗y∗
= 1 − r∗2

yz .

Inserting this in the denominator of (3-23) produces the result we sought.

Example 3.1 Partial Correlations
For the data in the application in Section 3.2.2, the simple correlations between investment
and the regressors, r yk, and the partial correlations, r ∗

yk, between investment and the four
regressors (given the other variables) are listed in Table 3.2. As is clear from the table, there is
no necessary relation between the simple and partial correlation coefficients. One thing worth
noting is the signs of the coefficients. The signs of the partial correlation coefficients are the
same as the signs of the respective regression coefficients, three of which are negative. All
the simple correlation coefficients are positive because of the latent “effect” of time.
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TABLE 3.2 Correlations of Investment with Other Variables

Simple Partial
Correlation Correlation

Time 0.7496 −0.9360
GNP 0.8632 0.9680
Interest 0.5871 −0.5167
Inflation 0.4777 −0.0221

3.5 GOODNESS OF FIT AND THE ANALYSIS
OF VARIANCE

The original fitting criterion, the sum of squared residuals, suggests a measure of the
fit of the regression line to the data. However, as can easily be verified, the sum of
squared residuals can be scaled arbitrarily just by multiplying all the values of y by the
desired scale factor. Since the fitted values of the regression are based on the values
of x, we might ask instead whether variation in x is a good predictor of variation in y.
Figure 3.3 shows three possible cases for a simple linear regression model. The measure
of fit described here embodies both the fitting criterion and the covariation of y and x.

FIGURE 3.3 Sample Data.
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(xi, yi)

yi � ŷi ei

yi

ŷi � ȳ

x

y

ȳ

ŷi

yi � ȳ

xi � x̄

x̄ xi

b(xi � x̄)

FIGURE 3.4 Decomposition of yi .

Variation of the dependent variable is defined in terms of deviations from its mean,
(yi − ȳ ). The total variation in y is the sum of squared deviations:

SST =
n∑

i=1

(yi − ȳ )2.

In terms of the regression equation, we may write the full set of observations as

y = Xb + e = ŷ + e.

For an individual observation, we have

yi = ŷi + ei = x′
i b + ei .

If the regression contains a constant term, then the residuals will sum to zero and the
mean of the predicted values of yi will equal the mean of the actual values. Subtracting
ȳ from both sides and using this result and result 2 in Section 3.2.3 gives

yi − ȳ = ŷi − ȳ + ei = (xi − x̄)′b + ei .

Figure 3.4 illustrates the computation for the two-variable regression. Intuitively, the
regression would appear to fit well if the deviations of y from its mean are more largely
accounted for by deviations of x from its mean than by the residuals. Since both terms
in this decomposition sum to zero, to quantify this fit, we use the sums of squares
instead. For the full set of observations, we have

M0y = M0Xb + M0e,

where M0 is the n × n idempotent matrix that transforms observations into deviations
from sample means. (See (3-21) and Section A.2.8.) The column of M0X corresponding
to the constant term is zero, and, since the residuals already have mean zero, M0e = e.
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Then, since e′M0X = e′X = 0, the total sum of squares is

y′M0y = b′X′M0Xb + e′e.

Write this as total sum of squares = regression sum of squares + error sum of squares, or

SST = SSR + SSE. (3-25)

(Note that this is the same partitioning that appears at the end of Section 3.2.4.)
We can now obtain a measure of how well the regression line fits the data by

using the

coefficient of determination:
SSR
SST

= b′X′M0Xb
y′M0y

= 1 − e′e
y′M0y

. (3-26)

The coefficient of determination is denoted R2. As we have shown, it must be between
0 and 1, and it measures the proportion of the total variation in y that is accounted for
by variation in the regressors. It equals zero if the regression is a horizontal line, that
is, if all the elements of b except the constant term are zero. In this case, the predicted
values of y are always ȳ, so deviations of x from its mean do not translate into different
predictions for y. As such, x has no explanatory power. The other extreme, R2 = 1,
occurs if the values of x and y all lie in the same hyperplane (on a straight line for a
two variable regression) so that the residuals are all zero. If all the values of yi lie on a
vertical line, then R2 has no meaning and cannot be computed.

Regression analysis is often used for forecasting. In this case, we are interested in
how well the regression model predicts movements in the dependent variable. With this
in mind, an equivalent way to compute R2 is also useful. First

b′X′M0Xb = ŷ′M0ŷ,

but ŷ = Xb, y = ŷ + e, M0e = e, and X′e = 0, so ŷ′M0ŷ = ŷ′M0y. Multiply
R2 = ŷ′M0ŷ/y′M0y = ŷ′M0y/y′M0y by 1 = ŷ′M0y/ŷ′M0ŷ to obtain

R2 = [�i (yi − ȳ)(ŷi − ˆ̄y)]2

[�i (yi − ȳ)2][�i (ŷi − ˆ̄y)2]
, (3-27)

which is the squared correlation between the observed values of y and the predictions
produced by the estimated regression equation.

Example 3.2 Fit of a Consumption Function
The data plotted in Figure 2.1 are listed in Appendix Table F2.1. For these data, where y is
C and x is X , we have ȳ = 273.2727, x̄ = 323.2727, Syy = 12,618.182, Sxx = 12,300.182,
Sxy = 8,423.182 so SST = 12,618.182, b = 8,423.182/12,300.182 = 0.6848014, SSR =
b2Sxx = 5,768.2068, and SSE = SST − SSR = 6,849.975. Then R2 = b2Sxx/SST =
0.457135. As can be seen in Figure 2.1, this is a moderate fit, although it is not particu-
larly good for aggregate time-series data. On the other hand, it is clear that not accounting
for the anomalous wartime data has degraded the fit of the model. This value is the R2 for
the model indicated by the dotted line in the figure. By simply omitting the years 1942–1945
from the sample and doing these computations with the remaining seven observations—the
heavy solid line—we obtain an R2 of 0.93697. Alternatively, by creating a variable WAR which
equals 1 in the years 1942–1945 and zero otherwise and including this in the model, which
produces the model shown by the two solid lines, the R2 rises to 0.94639.

We can summarize the calculation of R2 in an analysis of variance table, which
might appear as shown in Table 3.3.
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TABLE 3.3 Analysis of Variance

Source Degrees of Freedom Mean Square

Regression b′X′y − nȳ2 K − 1 (assuming a constant term)
Residual e′e n − K s2

Total y′y − nȳ2 n − 1 Syy/(n − 1) = s2
y

Coefficient of R2 = 1 − e′e/(y′y − nȳ2)
determination

TABLE 3.4 Analysis of Variance for the Investment Equation

Source Degrees of Freedom Mean Square

Regression 0.0159025 4 0.003976
Residual 0.0004508 10 0.00004508
Total 0.016353 14 0.0011681

R2 = 0.0159025/0.016353 = 0.97245

Example 3.3 Analysis of Variance for an Investment Equation
The analysis of variance table for the investment equation of Section 3.2.2 is given in
Table 3.4.

3.5.1 THE ADJUSTED R-SQUARED AND A MEASURE OF FIT

There are some problems with the use of R2 in analyzing goodness of fit. The first
concerns the number of degrees of freedom used up in estimating the parameters.
[See (3-22) and Table 3.3] R2 will never decrease when another variable is added to a
regression equation. Equation (3-23) provides a convenient means for us to establish
this result. Once again, we are comparing a regression of y on X with sum of squared
residuals e′e to a regression of y on X and an additional variable z, which produces sum
of squared residuals u′u. Recall the vectors of residuals z∗ = Mz and y∗ = My = e,
which implies that e′e = (y′

∗y∗). Let c be the coefficient on z in the longer regression.
Then c = (z′

∗z∗)−1(z′
∗y∗), and inserting this in (3-24) produces

u′u = e′e − (z′
∗y∗)2

(z′∗z∗)
= e′e

(
1 − r∗2

yz

)
, (3-28)

where r∗
yz is the partial correlation between y and z, controlling for X. Now divide

through both sides of the equality by y′M0y. From (3-26), u′u/y′M0y is (1 − R2
Xz) for the

regression on X and z and e′e/y′M0y is (1 − R2
X). Rearranging the result produces the

following:

THEOREM 3.6 Change in R2 When a Variable Is Added
to a Regression

Let R2
Xz be the coefficient of determination in the regression of y on X and an

additional variable z, let R2
X be the same for the regression of y on X alone, and

let r∗
yz be the partial correlation between y and z, controlling for X. Then

R2
Xz = R2

X + (
1 − R2

X

)
r∗2

yz . (3-29)
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Thus, the R2 in the longer regression cannot be smaller. It is tempting to exploit
this result by just adding variables to the model; R2 will continue to rise to its limit
of 1.5 The adjusted R2 (for degrees of freedom), which incorporates a penalty for these
results is computed as follows6:

R̄2 = 1 − e′e/(n − K)

y′M0y/(n − 1)
. (3-30)

For computational purposes, the connection between R2 and R̄2 is

R̄2 = 1 − n − 1
n − K

(1 − R2).

The adjusted R2 may decline when a variable is added to the set of independent variables.
Indeed, R̄2 may even be negative. To consider an admittedly extreme case, suppose that
x and y have a sample correlation of zero. Then the adjusted R2 will equal −1/(n − 2).
[Thus, the name “adjusted R-squared” is a bit misleading—as can be seen in (3-30),
R̄2 is not actually computed as the square of any quantity.] Whether R̄2 rises or falls
depends on whether the contribution of the new variable to the fit of the regression
more than offsets the correction for the loss of an additional degree of freedom. The
general result (the proof of which is left as an exercise) is as follows.

THEOREM 3.7 Change in R̄2 When a Variable Is Added
to a Regression

In a multiple regression, R̄2 will fall (rise) when the variable x is deleted from the
regression if the square of the t ratio associated with this variable is greater (less)
than 1.

We have shown that R2 will never fall when a variable is added to the regression.
We now consider this result more generally. The change in the residual sum of squares
when a set of variables X2 is added to the regression is

e′
1,2e1,2 = e′

1e1 − b′
2X′

2M1X2b2,

where we use subscript 1 to indicate the regression based on X1 alone and 1,2 to indicate
the use of both X1 and X2. The coefficient vector b2 is the coefficients on X2 in the
multiple regression of y on X1 and X2. [See (3-19) and (3-20) for definitions of b2 and
M1.] Therefore,

R2
1,2 = 1 − e′

1e1 − b′
2X′

2M1X2b2

y′M0y
= R2

1 + b′
2X′

2M1X2b2

y′M0y
,

5This result comes at a cost, however. The parameter estimates become progressively less precise as we do
so. We will pursue this result in Chapter 4.
6This measure is sometimes advocated on the basis of the unbiasedness of the two quantities in the fraction.
Since the ratio is not an unbiased estimator of any population quantity, it is difficult to justify the adjustment
on this basis.
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which is greater than R2
1 unless b2 equals zero. (M1X2 could not be zero unless X2 was a

linear function of X1, in which case the regression on X1 and X2 could not be computed.)
This equation can be manipulated a bit further to obtain

R2
1,2 = R2

1 + y′M1y
y′M0y

b′
2X′

2M1X2b2

y′M1y
.

But y′M1y = e′
1e1, so the first term in the product is 1 − R2

1 . The second is the multiple
correlation in the regression of M1y on M1X2, or the partial correlation (after the effect
of X1 is removed) in the regression of y on X2. Collecting terms, we have

R2
1,2 = R2

1 + (
1 − R2

1

)
r2

y2·1.

[This is the multivariate counterpart to (3-29).]
Therefore, it is possible to push R2 as high as desired just by adding regressors.

This possibility motivates the use of the adjusted R2 in (3-30), instead of R2 as a
method of choosing among alternative models. Since R̄2 incorporates a penalty for
reducing the degrees of freedom while still revealing an improvement in fit, one pos-
sibility is to choose the specification that maximizes R̄2. It has been suggested that
the adjusted R2 does not penalize the loss of degrees of freedom heavily enough.7

Some alternatives that have been proposed for comparing models (which we index
by j) are

R̃
2
j = 1 − n + Kj

n − Kj

(
1 − R2

j

)
,

which minimizes Amemiya’s (1985) prediction criterion,

PCj = e′
j e j

n − Kj

(
1 + Kj

n

)
= s2

j

(
1 + Kj

n

)

and the Akaike and Bayesian information criteria which are given in (5-43) and
(5-44).8

3.5.2 R-SQUARED AND THE CONSTANT TERM IN THE MODEL

A second difficulty with R2 concerns the constant term in the model. The proof that
0 ≤ R2 ≤ 1 requires X to contain a column of 1s. If not, then (1) M0e �= e and
(2) e′M0X �= 0, and the term 2e′M0Xb in y′M0y = (M0Xb + M0e)′(M0Xb + M0e)

in the expansion preceding (3-25) will not drop out. Consequently, when we compute

R2 = 1 − e′e
y′M0y

,

the result is unpredictable. It will never be higher and can be far lower than the same
figure computed for the regression with a constant term included. It can even be negative.

7See, for example, Amemiya (1985, pp. 50–51).
8Most authors and computer programs report the logs of these prediction criteria.
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Computer packages differ in their computation of R2. An alternative computation,

R2 = b′X′M0y
y′M0y

,

is equally problematic. Again, this calculation will differ from the one obtained with the
constant term included; this time, R2 may be larger than 1. Some computer packages
bypass these difficulties by reporting a third “R2,” the squared sample correlation be-
tween the actual values of y and the fitted values from the regression. This approach
could be deceptive. If the regression contains a constant term, then, as we have seen, all
three computations give the same answer. Even if not, this last one will still produce a
value between zero and one. But, it is not a proportion of variation explained. On the
other hand, for the purpose of comparing models, this squared correlation might well be
a useful descriptive device. It is important for users of computer packages to be aware
of how the reported R2 is computed. Indeed, some packages will give a warning in the
results when a regression is fit without a constant or by some technique other than linear
least squares.

3.5.3 COMPARING MODELS

The value of R2 of 0.94639 that we obtained for the consumption function in Ex-
ample 3.2 seems high in an absolute sense. Is it? Unfortunately, there is no absolute
basis for comparison. In fact, in using aggregate time-series data, coefficients of deter-
mination this high are routine. In terms of the values one normally encounters in cross
sections, an R2 of 0.5 is relatively high. Coefficients of determination in cross sections
of individual data as high as 0.2 are sometimes noteworthy. The point of this discussion
is that whether a regression line provides a good fit to a body of data depends on the
setting.

Little can be said about the relative quality of fits of regression lines in different
contexts or in different data sets even if they are supposedly generated by the same data
generating mechanism. One must be careful, however, even in a single context, to be
sure to use the same basis for comparison for competing models. Usually, this concern
is about how the dependent variable is computed. For example, a perennial question
concerns whether a linear or loglinear model fits the data better. Unfortunately, the
question cannot be answered with a direct comparison. An R2 for the linear regression
model is different from an R2 for the loglinear model. Variation in y is different from
variation in ln y. The latter R2 will typically be larger, but this does not imply that the
loglinear model is a better fit in some absolute sense.

It is worth emphasizing that R2 is a measure of linear association between x and y.
For example, the third panel of Figure 3.3 shows data that might arise from the model

yi = α + β(xi − γ )2 + εi .

(The constant γ allows x to be distributed about some value other than zero.) The
relationship between y and x in this model is nonlinear, and a linear regression would
find no fit.

A final word of caution is in order. The interpretation of R2 as a proportion of
variation explained is dependent on the use of least squares to compute the fitted



Greene-2140242 book January 19, 2011 20:46

86 PART I ✦ The Linear Regression Model

values. It is always correct to write

yi − ȳ = (ŷi − ȳ) + ei

regardless of how ŷi is computed. Thus, one might use ŷi = exp(l̂nyi ) from a loglinear
model in computing the sum of squares on the two sides, however, the cross-product
term vanishes only if least squares is used to compute the fitted values and if the model
contains a constant term. Thus, the cross-product term has been ignored in computing
R2 for the loglinear model. Only in the case of least squares applied to a linear equation
with a constant term can R2 be interpreted as the proportion of variation in y explained
by variation in x. An analogous computation can be done without computing deviations
from means if the regression does not contain a constant term. Other purely algebraic
artifacts will crop up in regressions without a constant, however. For example, the value
of R2 will change when the same constant is added to each observation on y, but it
is obvious that nothing fundamental has changed in the regression relationship. One
should be wary (even skeptical) in the calculation and interpretation of fit measures for
regressions without constant terms.

3.6 LINEARLY TRANSFORMED REGRESSION

As a final application of the tools developed in this chapter, we examine a purely alge-
braic result that is very useful for understanding the computation of linear regression
models. In the regression of y on X, suppose the columns of X are linearly transformed.
Common applications would include changes in the units of measurement, say by chang-
ing units of currency, hours to minutes, or distances in miles to kilometers. Example 3.4
suggests a slightly more involved case.

Example 3.4 Art Appreciation
Theory 1 of the determination of the auction prices of Monet paintings holds that the price
is determined by the dimensions (width, W and height, H) of the painting,

ln P = β1(1) + β2 ln W + β3 ln H + ε

= β1x1 + β2x2 + β3x3 + ε.

Theory 2 claims, instead, that art buyers are interested specifically in surface area and aspect
ratio,

ln P = γ1(1) + γ2 ln(WH) + γ3 ln(W/H) + ε

= γ1z1 + γ2z2 + γ3z3 + u.

It is evident that z1 = x1, z2 = x2 + x3 and z3 = x2 − x3. In matrix terms, Z = XP where

P =
[

1 0 0
0 1 1
0 1 −1

]
.

The effect of a transformation on the linear regression of y on X compared to that
of y on Z is given by Theorem 3.8.
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THEOREM 3.8 Transformed Variables
In the linear regression of y on Z = XP where P is a nonsingular matrix that
transforms the columns of X, the coefficients will equal P−1b where b is the vector
of coefficients in the linear regression of y on X, and the R2 will be identical.
Proof: The coefficients are

d = (Z′Z)−1Z′y = [(XP)′(XP)]−1(XP)′y = (P′X′XP)−1P′X′y

= P−1(X′X)−1P′−1P′y = P−1b.

The vector of residuals is u = y−Z(P−1b) = y−XPP−1b = y−Xb = e. Since the
residuals are identical, the numerator of 1− R2 is the same, and the denominator
is unchanged. This establishes the result.

This is a useful practical, algebraic result. For example, it simplifies the analysis in the
first application suggested, changing the units of measurement. If an independent vari-
able is scaled by a constant, p, the regression coefficient will be scaled by 1/p. There is
no need to recompute the regression.

3.7 SUMMARY AND CONCLUSIONS

This chapter has described the purely algebraic exercise of fitting a line (hyperplane) to a
set of points using the method of least squares. We considered the primary problem first,
using a data set of n observations on K variables. We then examined several aspects of
the solution, including the nature of the projection and residual maker matrices and sev-
eral useful algebraic results relating to the computation of the residuals and their sum of
squares. We also examined the difference between gross or simple regression and corre-
lation and multiple regression by defining “partial regression coefficients” and “partial
correlation coefficients.” The Frisch–Waugh–Lovell theorem (3.2) is a fundamentally
useful tool in regression analysis that enables us to obtain in closed form the expres-
sion for a subvector of a vector of regression coefficients. We examined several aspects
of the partitioned regression, including how the fit of the regression model changes
when variables are added to it or removed from it. Finally, we took a closer look at the
conventional measure of how well the fitted regression line predicts or “fits” the data.

Key Terms and Concepts

• Adjusted R2

• Analysis of variance
• Bivariate regression
• Coefficient of determination
• Degrees of Freedom
• Disturbance
• Fitting criterion

• Frisch–Waugh theorem
• Goodness of fit
• Least squares
• Least squares normal

equations
• Moment matrix
• Multiple correlation

• Multiple regression
• Netting out
• Normal equations
• Orthogonal regression
• Partial correlation

coefficient
• Partial regression coefficient
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• Partialing out
• Partitioned regression
• Prediction criterion
• Population quantity

• Population regression
• Projection
• Projection matrix
• Residual

• Residual maker
• Total variation

Exercises

1. The two variable regression. For the regression model y = α + βx + ε,

a. Show that the least squares normal equations imply �i ei = 0 and �i xi ei = 0.
b. Show that the solution for the constant term is a = ȳ − bx̄.
c. Show that the solution for b is b = [

∑n
i=1(xi − x̄)(yi − ȳ)]/[

∑n
i=1(xi − x̄)2].

d. Prove that these two values uniquely minimize the sum of squares by showing
that the diagonal elements of the second derivatives matrix of the sum of squares
with respect to the parameters are both positive and that the determinant is
4n[(

∑n
i=1 x2

i ) − nx̄2] = 4n[
∑n

i=1(xi − x̄ )2], which is positive unless all values of
x are the same.

2. Change in the sum of squares. Suppose that b is the least squares coefficient vector
in the regression of y on X and that c is any other K × 1 vector. Prove that the
difference in the two sums of squared residuals is

(y − Xc)′(y − Xc) − (y − Xb)′(y − Xb) = (c − b)′X′X(c − b).

Prove that this difference is positive.
3. Partial Frisch and Waugh. In the least squares regression of y on a constant and X,

to compute the regression coefficients on X, we can first transform y to deviations
from the mean ȳ and, likewise, transform each column of X to deviations from the
respective column mean; second, regress the transformed y on the transformed X
without a constant. Do we get the same result if we only transform y? What if we
only transform X?

4. Residual makers. What is the result of the matrix product M1M where M1 is defined
in (3-19) and M is defined in (3-14)?

5. Adding an observation. A data set consists of n observations on Xn and yn. The least
squares estimator based on these n observations is bn = (X′

nXn)
−1X′

nyn. Another
observation, xs and ys , becomes available. Prove that the least squares estimator
computed using this additional observation is

bn,s = bn + 1
1 + x′

s(X′
nXn)−1xs

(X′
nXn)

−1xs(ys − x′
sbn).

Note that the last term is es , the residual from the prediction of ys using the coeffi-
cients based on Xn and bn. Conclude that the new data change the results of least
squares only if the new observation on y cannot be perfectly predicted using the
information already in hand.

6. Deleting an observation. A common strategy for handling a case in which an ob-
servation is missing data for one or more variables is to fill those missing variables
with 0s and add a variable to the model that takes the value 1 for that one ob-
servation and 0 for all other observations. Show that this “strategy” is equivalent
to discarding the observation as regards the computation of b but it does have an
effect on R2. Consider the special case in which X contains only a constant and one
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variable. Show that replacing missing values of x with the mean of the complete
observations has the same effect as adding the new variable.

7. Demand system estimation. Let Y denote total expenditure on consumer durables,
nondurables, and services and Ed, En, and Es are the expenditures on the three
categories. As defined, Y = Ed + En + Es . Now, consider the expenditure system

Ed = αd + βdY + γdd Pd + γdn Pn + γds Ps + εd,

En = αn + βnY + γnd Pd + γnn Pn + γns Ps + εn,

Es = αs + βsY + γsd Pd + γsn Pn + γss Ps + εs .

Prove that if all equations are estimated by ordinary least squares, then the sum
of the expenditure coefficients will be 1 and the four other column sums in the
preceding model will be zero.

8. Change in adjusted R2. Prove that the adjusted R2 in (3-30) rises (falls) when
variable xk is deleted from the regression if the square of the t ratio on xk in the
multiple regression is less (greater) than 1.

9. Regression without a constant. Suppose that you estimate a multiple regression first
with, then without, a constant. Whether the R2 is higher in the second case than
the first will depend in part on how it is computed. Using the (relatively) standard
method R2 = 1 − (e′e/y′M0y), which regression will have a higher R2?

10. Three variables, N, D, and Y, all have zero means and unit variances. A fourth
variable is C = N + D. In the regression of C on Y, the slope is 0.8. In the regression
of C on N, the slope is 0.5. In the regression of D on Y, the slope is 0.4. What is the
sum of squared residuals in the regression of C on D? There are 21 observations
and all moments are computed using 1/(n − 1) as the divisor.

11. Using the matrices of sums of squares and cross products immediately preceding
Section 3.2.3, compute the coefficients in the multiple regression of real investment
on a constant, real GNP and the interest rate. Compute R2.

12. In the December 1969, American Economic Review (pp. 886–896), Nathaniel Leff
reports the following least squares regression results for a cross section study of the
effect of age composition on savings in 74 countries in 1964:

ln S/Y = 7.3439 + 0.1596 ln Y/N + 0.0254 ln G − 1.3520 ln D1 − 0.3990 ln D2,

ln S/N = 2.7851 + 1.1486 ln Y/N + 0.0265 ln G − 1.3438 ln D1 − 0.3966 ln D2,

where S/Y = domestic savings ratio, S/N = per capita savings, Y/N = per capita
income, D1 = percentage of the population under 15, D2 = percentage of the popu-
lation over 64, and G = growth rate of per capita income. Are these results correct?
Explain. [See Goldberger (1973) and Leff (1973) for discussion.]

Application

The data listed in Table 3.5 are extracted from Koop and Tobias’s (2004) study of
the relationship between wages and education, ability, and family characteristics. (See
Appendix Table F3.2.) Their data set is a panel of 2,178 individuals with a total of 17,919
observations. Shown in the table are the first year and the time-invariant variables for
the first 15 individuals in the sample. The variables are defined in the article.
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TABLE 3.5 Subsample from Koop and Tobias Data

Mother’s Father’s
Person Education Wage Experience Ability education education Siblings

1 13 1.82 1 1.00 12 12 1
2 15 2.14 4 1.50 12 12 1
3 10 1.56 1 −0.36 12 12 1
4 12 1.85 1 0.26 12 10 4
5 15 2.41 2 0.30 12 12 1
6 15 1.83 2 0.44 12 16 2
7 15 1.78 3 0.91 12 12 1
8 13 2.12 4 0.51 12 15 2
9 13 1.95 2 0.86 12 12 2

10 11 2.19 5 0.26 12 12 2
11 12 2.44 1 1.82 16 17 2
12 13 2.41 4 −1.30 13 12 5
13 12 2.07 3 −0.63 12 12 4
14 12 2.20 6 −0.36 10 12 2
15 12 2.12 3 0.28 10 12 3

Let X1 equal a constant, education, experience, and ability (the individual’s own
characteristics). Let X2 contain the mother’s education, the father’s education, and the
number of siblings (the household characteristics). Let y be the wage.

a. Compute the least squares regression coefficients in the regression of y on X1.
Report the coefficients.

b. Compute the least squares regression coefficients in the regression of y on X1 and
X2. Report the coefficients.

c. Regress each of the three variables in X2 on all the variables in X1. These new
variables are X∗

2. What are the sample means of these three variables? Explain the
finding.

d. Using (3-26), compute the R2 for the regression of y on X1 and X2. Repeat the
computation for the case in which the constant term is omitted from X1. What
happens to R2?

e. Compute the adjusted R2 for the full regression including the constant term. Inter-
pret your result.

f. Referring to the result in part c, regress y on X1 and X∗
2. How do your results

compare to the results of the regression of y on X1 and X2? The comparison you
are making is between the least squares coefficients when y is regressed on X1 and
M1X2 and when y is regressed on X1 and X2. Derive the result theoretically. (Your
numerical results should match the theory, of course.)
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THE LEAST SQUARES
ESTIMATOR

Q
4.1 INTRODUCTION

Chapter 3 treated fitting the linear regression to the data by least squares as a purely
algebraic exercise. In this chapter, we will examine in detail least squares as an estimator
of the model parameters of the linear regression model (defined in Table 4.1). We begin
in Section 4.2 by returning to the question raised but not answered in Footnote 1,
Chapter 3—that is, why should we use least squares? We will then analyze the estimator
in detail. There are other candidates for estimating β. For example, we might use the
coefficients that minimize the sum of absolute values of the residuals. The question of
which estimator to choose is based on the statistical properties of the candidates, such
as unbiasedness, consistency, efficiency, and their sampling distributions. Section 4.3
considers finite-sample properties such as unbiasedness. The finite-sample properties
of the least squares estimator are independent of the sample size. The linear model is
one of relatively few settings in which definite statements can be made about the exact
finite-sample properties of any estimator. In most cases, the only known properties
are those that apply to large samples. Here, we can only approximate finite-sample
behavior by using what we know about large-sample properties. Thus, in Section 4.4,
we will examine the large-sample or asymptotic properties of the least squares estimator
of the regression model.1

Discussions of the properties of an estimator are largely concerned with point
estimation—that is, in how to use the sample information as effectively as possible to
produce the best single estimate of the model parameters. Interval estimation, con-
sidered in Section 4.5, is concerned with computing estimates that make explicit the
uncertainty inherent in using randomly sampled data to estimate population quanti-
ties. We will consider some applications of interval estimation of parameters and some
functions of parameters in Section 4.5. One of the most familiar applications of interval
estimation is in using the model to predict the dependent variable and to provide a
plausible range of uncertainty for that prediction. Section 4.6 considers prediction and
forecasting using the estimated regression model.

The analysis assumes that the data in hand correspond to the assumptions of the
model. In Section 4.7, we consider several practical problems that arise in analyzing
nonexperimental data. Assumption A2, full rank of X, is taken as a given. As we noted
in Section 2.3.2, when this assumption is not met, the model is not estimable, regardless
of the sample size. Multicollinearity, the near failure of this assumption in real-world

1This discussion will use our results on asymptotic distributions. It may be helpful to review Appendix D
before proceeding to this material.

91
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TABLE 4.1 Assumptions of the Classical Linear Regression Model

A1. Linearity: yi = xi1β1 + xi2β2 + · · · + xi KβK + εi .

A2. Full rank: The n × K sample data matrix, X, has full column rank.
A3. Exogeneity of the independent variables: E [εi | xj1, xj2, . . . , xj K] = 0, i, j = 1, . . . , n.
There is no correlation between the disturbances and the independent variables.
A4. Homoscedasticity and nonautocorrelation: Each disturbance, εi , has the same finite
variance, σ 2, and is uncorrelated with every other disturbance, ε j , conditioned on X.
A5. Stochastic or nonstochastic data: (xi1, xi2, . . . , xi K) i = 1, . . . , n.
A6. Normal distribution: The disturbances are normally distributed.

data, is examined in Sections 4.7.1 to 4.7.3. Missing data have the potential to derail
the entire analysis. The benign case in which missing values are simply manageable
random gaps in the data set is considered in Section 4.7.4. The more complicated case
of nonrandomly missing data is discussed in Chapter 18. Finally, the problem of badly
measured data is examined in Section 4.7.5.

4.2 MOTIVATING LEAST SQUARES

Ease of computation is one reason that least squares is so popular. However, there are
several other justifications for this technique. First, least squares is a natural approach
to estimation, which makes explicit use of the structure of the model as laid out in the
assumptions. Second, even if the true model is not a linear regression, the regression
line fit by least squares is an optimal linear predictor for the dependent variable. Thus, it
enjoys a sort of robustness that other estimators do not. Finally, under the very specific
assumptions of the classical model, by one reasonable criterion, least squares will be
the most efficient use of the data. We will consider each of these in turn.

4.2.1 THE POPULATION ORTHOGONALITY CONDITIONS

Let x denote the vector of independent variables in the population regression model and
for the moment, based on assumption A5, the data may be stochastic or nonstochas-
tic. Assumption A3 states that the disturbances in the population are stochastically
orthogonal to the independent variables in the model; that is, E [ε | x] = 0. It follows that
Cov[x, ε] = 0. Since (by the law of iterated expectations—Theorem B.1) Ex{E [ε | x]} =
E [ε] = 0, we may write this as

Ex Eε[xε] = Ex Ey[x(y − x′β)] = 0

or

Ex Ey[xy] = Ex[xx′]β. (4-1)

(The right-hand side is not a function of y so the expectation is taken only over x.) Now,
recall the least squares normal equations, X′y = X′Xb. Divide this by n and write it as
a summation to obtain (

1
n

n∑
i=1

xi yi

)
=

(
1
n

n∑
i=1

xi x′
i

)
b. (4-2)



Greene-2140242 book January 19, 2011 20:48

CHAPTER 4 ✦ The Least Squares Estimator 93

Equation (4-1) is a population relationship. Equation (4-2) is a sample analog. Assuming
the conditions underlying the laws of large numbers presented in Appendix D are
met, the sums on the left-hand and right-hand sides of (4-2) are estimators of their
counterparts in (4-1). Thus, by using least squares, we are mimicking in the sample the
relationship in the population. We’ll return to this approach to estimation in Chapters 12
and 13 under the subject of GMM estimation.

4.2.2 MINIMUM MEAN SQUARED ERROR PREDICTOR

As an alternative approach, consider the problem of finding an optimal linear predictor
for y. Once again, ignore Assumption A6 and, in addition, drop Assumption A1 that
the conditional mean function, E [y | x] is linear. For the criterion, we will use the mean
squared error rule, so we seek the minimum mean squared error linear predictor of y,
which we’ll denote x′γ . The expected squared error of this predictor is

MSE = Ey Ex [y − x′γ ]2.

This can be written as

MSE = Ey,x
{

y − E [y | x]
}2 + Ey,x

{
E [y | x] − x′γ

}2
.

We seek the γ that minimizes this expectation. The first term is not a function of γ , so
only the second term needs to be minimized. Note that this term is not a function of y,
so the outer expectation is actually superfluous. But, we will need it shortly, so we will
carry it for the present. The necessary condition is

∂ Ey Ex
{

[E(y | x) − x′γ ]2
}

∂γ
= Ey Ex

{
∂[E(y | x) − x′γ ]2

∂γ

}

= −2Ey Ex
{

x[E(y | x) − x′γ ]
} = 0.

Note that we have interchanged the operations of expectation and differentiation in
the middle step, since the range of integration is not a function of γ . Finally, we have
the equivalent condition

Ey Ex[xE(y | x)] = Ey Ex[xx′]γ .

The left-hand side of this result is Ex Ey[xE(y | x)] = Cov[x,E(y | x)] +E [x]Ex[E(y | x)] =
Cov[x, y] + E [x]E [y] = Ex Ey[xy]. (We have used Theorem B.2.) Therefore, the nec-
essary condition for finding the minimum MSE predictor is

Ex Ey[xy] = Ex Ey[xx′]γ . (4-3)

This is the same as (4-1), which takes us to the least squares condition once again.
Assuming that these expectations exist, they would be estimated by the sums in
(4-2), which means that regardless of the form of the conditional mean, least squares
is an estimator of the coefficients of the minimum expected mean squared error lin-
ear predictor. We have yet to establish the conditions necessary for the if part of the
theorem, but this is an opportune time to make it explicit:
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THEOREM 4.1 Minimum Mean Squared Error Predictor
If the data generating mechanism generating (xi , yi )i=1,...,n is such that the law of
large numbers applies to the estimators in (4-2) of the matrices in (4-1), then the
minimum expected squared error linear predictor of yi is estimated by the least
squares regression line.

4.2.3 MINIMUM VARIANCE LINEAR UNBIASED ESTIMATION

Finally, consider the problem of finding a linear unbiased estimator. If we seek the one
that has smallest variance, we will be led once again to least squares. This proposition
will be proved in Section 4.3.5.

The preceding does not assert that no other competing estimator would ever be
preferable to least squares. We have restricted attention to linear estimators. The pre-
ceding result precludes what might be an acceptably biased estimator. And, of course,
the assumptions of the model might themselves not be valid. Although A5 and A6 are
ultimately of minor consequence, the failure of any of the first four assumptions would
make least squares much less attractive than we have suggested here.

4.3 FINITE SAMPLE PROPERTIES
OF LEAST SQUARES

An “estimator” is a strategy, or formula for using the sample data that are drawn from a
population. The “properties” of that estimator are a description of how that estimator
can be expected to behave when it is applied to a sample of data. To consider an
example, the concept of unbiasedness implies that “on average” an estimator (strategy)
will correctly estimate the parameter in question; it will not be systematically too high
or too low. It seems less than obvious how one could know this if they were only going
to draw a single sample of data from the population and analyze that one sample.
The argument adopted in classical econometrics is provided by the sampling properties
of the estimation strategy. A conceptual experiment lies behind the description. One
imagines “repeated sampling” from the population and characterizes the behavior of
the “sample of samples.” The underlying statistical theory of the the estimator provides
the basis of the description. Example 4.1 illustrates.

Example 4.1 The Sampling Distribution of a Least Squares Estimator
The following sampling experiment shows the nature of a sampling distribution and the
implication of unbiasedness. We drew two samples of 10,000 random draws on variables
wi and xi from the standard normal population (mean zero, variance 1). We generated a
set of εi ’s equal to 0.5wi and then yi = 0.5 + 0.5xi + εi . We take this to be our popula-
tion. We then drew 1,000 random samples of 100 observations on (yi , xi ) from this popu-
lation, and with each one, computed the least squares slope, using at replication r , br =[
�100

j =1( xi r − x̄r ) yi r

]
/
[
�100

j =1( xi r − x̄r ) 2
]
. The histogram in Figure 4.1 shows the result of the ex-

periment. Note that the distribution of slopes has a mean roughly equal to the “true value”
of 0.5, and it has a substantial variance, reflecting the fact that the regression slope, like any
other statistic computed from the sample, is a random variable. The concept of unbiasedness
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FIGURE 4.1 Histogram for Sampled Least Squares Regression
Slopes

relates to the central tendency of this distribution of values obtained in repeated sampling
from the population. The shape of the histogram also suggests the normal distribution of the
estimator that we will show theoretically in Section 4.3.8. (The experiment should be replica-
ble with any regression program that provides a random number generator and a means of
drawing a random sample of observations from a master data set.)

4.3.1 UNBIASED ESTIMATION

The least squares estimator is unbiased in every sample. To show this, write

b = (X′X)−1X′y = (X′X)−1X′(Xβ + ε) = β + (X′X)−1X′ε. (4-4)

Now, take expectations, iterating over X;

E [b | X] = β + E [(X′X)−1X′ε | X].

By Assumption A3, the second term is 0, so

E [b | X] = β. (4-5)

Therefore,

E [b] = EX
{

E [b | X]
} = EX[β] = β. (4-6)

The interpretation of this result is that for any particular set of observations, X, the least
squares estimator has expectation β. Therefore, when we average this over the possible
values of X, we find the unconditional mean is β as well.
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You might have noticed that in this section we have done the analysis conditioning
on X—that is, conditioning on the entire sample, while in Section 4.2 we have con-
ditioned yi on xi . (The sharp-eyed reader will also have noticed that in Table 4.1, in
assumption A3, we have conditioned E[εi |.] on x j , that is, on all i and j, which is, once
again, on X, not just xi .) In Section 4.2, we have suggested a way to view the least squares
estimator in the context of the joint distribution of a random variable, y, and a random
vector, x. For the purpose of the discussion, this would be most appropriate if our data
were going to be a cross section of independent observations. In this context, as shown
in Section 4.2.2, the least squares estimator emerges as the sample counterpart to the
slope vector of the minimum mean squared error predictor, γ , which is a feature of the
population. In Section 4.3, we make a transition to an understanding of the process that
is generating our observed sample of data. The statement that E[b|X] = β is best under-
stood from a Bayesian perspective; for the data that we have observed, we can expect
certain behavior of the statistics that we compute, such as the least squares slope vector,
b. Much of the rest of this chapter, indeed much of the rest of this book, will examine the
behavior of statistics as we consider whether what we learn from them in a particular
sample can reasonably be extended to other samples if they were drawn under similar
circumstances from the same population, or whether what we learn from a sample can
be inferred to the full population. Thus, it is useful to think of the conditioning operation
in E[b|X] in both of these ways at the same time, from the purely statistical viewpoint
of deducing the properties of an estimator and from the methodological perspective of
deciding how much can be learned about a broader population from a particular finite
sample of data.

4.3.2 BIAS CAUSED BY OMISSION OF RELEVANT VARIABLES

The analysis has been based on the assumption that the correct specification of the
regression model is known to be

y = Xβ + ε. (4-7)

There are numerous types of specification errors that one might make in constructing
the regression model. The most common ones are the omission of relevant variables
and the inclusion of superfluous (irrelevant) variables.

Suppose that a corrrectly specified regression model would be

y = X1β1 + X2β2 + ε, (4-8)

where the two parts of X have K1 and K2 columns, respectively. If we regress y on X1

without including X2, then the estimator is

b1 = (X′
1X1)

−1X′
1y = β1 + (X′

1X1)
−1X′

1X2β2 + (X′
1X1)

−1X′
1ε. (4-9)

Taking the expectation, we see that unless X′
1X2 = 0 or β2 = 0, b1 is biased. The well-

known result is the omitted variable formula:

E [b1 | X] = β1 + P1.2β2, (4-10)

where

P1.2 = (X′
1X1)

−1X′
1X2. (4-11)
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FIGURE 4.2 Per Capita Gasoline Consumption vs. Price, 1953–2004.

Each column of the K1 × K2 matrix P1.2 is the column of slopes in the least squares
regression of the corresponding column of X2 on the columns of X1.

Example 4.2 Omitted Variable
If a demand equation is estimated without the relevant income variable, then (4-10) shows
how the estimated price elasticity will be biased. The gasoline market data we have examined
in Example 2.3 provides a striking example. Letting b be the estimator, we obtain

E [b|price, income] = β + Cov[price, income]
Var[price]

γ

where γ is the income coefficient. In aggregate data, it is unclear whether the missing co-
variance would be positive or negative. The sign of the bias in b would be the same as this
covariance, however, because Var[price] and γ would be positive for a normal good such as
gasoline. Figure 4.2 shows a simple plot of per capita gasoline consumption, G/Pop, against
the price index PG. The plot is considerably at odds with what one might expect. But a look
at the data in Appendix Table F2.2 shows clearly what is at work. Holding per capita income,
Income/Pop, and other prices constant, these data might well conform to expectations. In
these data, however, income is persistently growing, and the simple correlations between
G/Pop and Income/Pop and between PG and Income/Pop are 0.938 and 0.934, respectively,
which are quite large. To see if the expected relationship between price and consumption
shows up, we will have to purge our data of the intervening effect of Income/Pop. To do so,
we rely on the Frisch–Waugh result in Theorem 3.2. In the simple regression of log of per
capita gasoline consumption on a constant and the log of the price index, the coefficient is
0.29904, which, as expected, has the “wrong” sign. In the multiple regression of the log of
per capita gasoline consumption on a constant, the log of the price index and the log of per
capita income, the estimated price elasticity, β̂, is −0.16949 and the estimated income elas-
ticity, γ̂ , is 0.96595. This conforms to expectations. The results are also broadly consistent
with the widely observed result that in the U.S. market at least in this period (1953–2004), the
main driver of changes in gasoline consumption was not changes in price, but the growth in
income (output).
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In this development, it is straightforward to deduce the directions of bias when there
is a single included variable and one omitted variable. It is important to note, however,
that if more than one variable is included, then the terms in the omitted variable formula
involve multiple regression coefficients, which themselves have the signs of partial, not
simple, correlations. For example, in the demand equation of the previous example, if
the price of a closely related product had been included as well, then the simple corre-
lation between price and income would be insufficient to determine the direction of the
bias in the price elasticity.What would be required is the sign of the correlation between
price and income net of the effect of the other price. This requirement might not be ob-
vious, and it would become even less so as more regressors were added to the equation.

4.3.3 INCLUSION OF IRRELEVANT VARIABLES

If the regression model is correctly given by

y = X1β1 + ε (4-12)

and we estimate it as if (4-8) were correct (i.e., we include some extra variables), then it
might seem that the same sorts of problems considered earlier would arise. In fact, this
case is not true. We can view the omission of a set of relevant variables as equivalent
to imposing an incorrect restriction on (4-8). In particular, omitting X2 is equivalent
to incorrectly estimating (4-8) subject to the restriction β2 = 0. Incorrectly imposing a
restriction produces a biased estimator. Another way to view this error is to note that it
amounts to incorporating incorrect information in our estimation. Suppose, however,
that our error is simply a failure to use some information that is correct.

The inclusion of the irrelevant variables X2 in the regression is equivalent to failing
to impose β2 = 0 on (4-8) in estimation. But (4-8) is not incorrect; it simply fails to
incorporate β2 = 0. Therefore, we do not need to prove formally that the least squares
estimator of β in (4-8) is unbiased even given the restriction; we have already proved it.
We can assert on the basis of all our earlier results that

E [b | X] =
[
β1
β2

]
=

[
β1
0

]
. (4-13)

Then where is the problem? It would seem that one would generally want to “overfit”
the model. From a theoretical standpoint, the difficulty with this view is that the failure
to use correct information is always costly. In this instance, the cost will be reduced
precision of the estimates. As we will show in Section 4.7.1, the covariance matrix in
the short regression (omitting X2) is never larger than the covariance matrix for the
estimator obtained in the presence of the superfluous variables.2 Consider a single-
variable comparison. If x2 is highly correlated with x1, then incorrectly including x2 in
the regression will greatly inflate the variance of the estimator of β1.

4.3.4 THE VARIANCE OF THE LEAST SQUARES ESTIMATOR

If the regressors can be treated as nonstochastic, as they would be in an experimental
situation in which the analyst chooses the values in X, then the sampling variance

2There is no loss if X′
1X2 = 0, which makes sense in terms of the information about X1 contained in X2

(here, none). This situation is not likely to occur in practice, however.
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of the least squares estimator can be derived by treating X as a matrix of constants.
Alternatively, we can allow X to be stochastic, do the analysis conditionally on the
observed X, then consider averaging over X as we did in obtaining (4-6) from (4-5).
Using (4-4) again, we have

b = (X′X)−1X′(Xβ + ε) = β + (X′X)−1X′ε. (4-14)

Since we can write b = β + Aε, where A is (X′X)−1X′, b is a linear function of the
disturbances, which, by the definition we will use, makes it a linear estimator. As we
have seen, the expected value of the second term in (4-14) is 0. Therefore, regardless
of the distribution of ε, under our other assumptions, b is a linear, unbiased estimator of
β. By assumption A4, Var[ε|X] = σ 2I. Thus, conditional covariance matrix of the least
squares slope estimator is

Var[b | X] = E [(b − β)(b − β)′ | X]

= E [(X′X)−1X′εε′X(X′X)−1 | X]

= (X′X)−1X′ E [εε′ | X]X(X′X)−1 (4-15)

= (X′X)−1X′(σ 2I)X(X′X)−1

= σ 2(X′X)−1.

Example 4.3 Sampling Variance in the Two-Variable Regression Model
Suppose that X contains only a constant term (column of 1s) and a single regressor x. The
lower-right element of σ 2(X′X)−1 is

Var [b | x] = Var [b− β | x] = σ 2

∑n
i =1 ( xi − x) 2

.

Note, in particular, the denominator of the variance of b. The greater the variation in x, the
smaller this variance. For example, consider the problem of estimating the slopes of the two
regressions in Figure 4.3. A more precise result will be obtained for the data in the right-hand
panel of the figure.

FIGURE 4.3 Effect of Increased Variation in x Given the Same Conditional and Overall
Variation in y.

xx

y y



Greene-2140242 book January 19, 2011 20:48

100 PART I ✦ The Linear Regression Model

4.3.5 THE GAUSS–MARKOV THEOREM

We will now obtain a general result for the class of linear unbiased estimators of β.

THEOREM 4.2 Gauss–Markov Theorem
In the linear regression model with regressor matrix X, the least squares estimator
b is the minimum variance linear unbiased estimator of β. For any vector of con-
stants w, the minimum variance linear unbiased estimator of w′β in the regression
model is w′b, where b is the least squares estimator.

Note that the theorem makes no use of Assumption A6, normality of the distribution
of the disturbances. Only A1 to A4 are necessary. A direct approach to proving this
important theorem would be to define the class of linear and unbiased estimators (bL =
Cy such that E[bL|X] = β) and then find the member of that class that has the smallest
variance. We will use an indirect method instead. We have already established that b is
a linear unbiased estimator. We will now consider other linear unbiased estimators of
β and show that any other such estimator has a larger variance.

Let b0 = Cy be another linear unbiased estimator of β, where C is a K × n matrix.
If b0 is unbiased, then

E [Cy | X] = E [(CXβ + Cε) | X] = β,

which implies that CX = I. There are many candidates. For example, consider using
just the first K (or, any K) linearly independent rows of X. Then C = [X−1

0 : 0], where
X−1

0 is the inverse of the matrix formed from the K rows of X. The covariance matrix of
b0 can be found by replacing (X′X)−1X′ with C in (4-14); the result is Var[b0 | X] =
σ 2CC′. Now let D = C − (X′X)−1X′ so Dy = b0 − b. Then,

Var[b0 | X] = σ 2[(D + (X′X)−1X′)(D + (X′X)−1X′)′].

We know that CX = I = DX + (X′X)−1(X′X), so DX must equal 0. Therefore,

Var[b0 | X] = σ 2(X′X)−1 + σ 2DD′ = Var[b | X] + σ 2DD′.

Since a quadratic form in DD′ is q′DD′q = z′z ≥ 0, the conditional covariance matrix
of b0 equals that of b plus a nonnegative definite matrix. Therefore, every quadratic
form in Var[b0 | X] is larger than the corresponding quadratic form in Var[b | X], which
establishes the first result.

The proof of the second statement follows from the previous derivation, since the
variance of w′b is a quadratic form in Var[b | X], and likewise for any b0 and proves that
each individual slope estimator bk is the best linear unbiased estimator of βk. (Let w be all
zeros except for a one in the kth position.) The theorem is much broader than this, how-
ever, since the result also applies to every other linear combination of the elements of β.

4.3.6 THE IMPLICATIONS OF STOCHASTIC REGRESSORS

The preceding analysis is done conditionally on the observed data. A convenient method
of obtaining the unconditional statistical properties of b is to obtain the desired results
conditioned on X first and then find the unconditional result by “averaging” (e.g., by
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integrating over) the conditional distributions. The crux of the argument is that if we
can establish unbiasedness conditionally on an arbitrary X, then we can average over
X’s to obtain an unconditional result. We have already used this approach to show the
unconditional unbiasedness of b in Section 4.3.1, so we now turn to the conditional
variance.

The conditional variance of b is

Var[b | X] = σ 2(X′X)−1.

For the exact variance, we use the decomposition of variance of (B-69):

Var[b] = EX[Var[b | X]] + VarX[E [b | X]].

The second term is zero since E [b | X] = β for all X, so

Var[b] = EX[σ 2(X′X)−1] = σ 2 EX[(X′X)−1].

Our earlier conclusion is altered slightly. We must replace (X′X)−1 with its expected
value to get the appropriate covariance matrix, which brings a subtle change in the
interpretation of these results. The unconditional variance of b can only be described
in terms of the average behavior of X, so to proceed further, it would be necessary to
make some assumptions about the variances and covariances of the regressors. We will
return to this subject in Section 4.4.

We showed in Section 4.3.5 that

Var[b | X] ≤ Var[b0 | X]

for any linear and unbiased b0 �= b and for the specific X in our sample. But if this
inequality holds for every particular X, then it must hold for

Var[b] = EX[Var[b | X]].

That is, if it holds for every particular X, then it must hold over the average value(s)
of X.

The conclusion, therefore, is that the important results we have obtained thus far
for the least squares estimator, unbiasedness, and the Gauss–Markov theorem hold
whether or not we condition on the particular sample in hand or consider, instead,
sampling broadly from the population.

THEOREM 4.3 Gauss–Markov Theorem (Concluded)
In the linear regression model, the least squares estimator b is the
minimum variance linear unbiased estimator of β whether X is stochastic or
nonstochastic, so long as the other assumptions of the model continue to hold.

4.3.7 ESTIMATING THE VARIANCE OF THE LEAST
SQUARES ESTIMATOR

If we wish to test hypotheses about β or to form confidence intervals, then we will require
a sample estimate of the covariance matrix, Var[b | X] = σ 2(X′X)−1. The population
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parameter σ 2 remains to be estimated. Since σ 2 is the expected value of ε2
i and ei is an

estimate of εi , by analogy,

σ̂ 2 = 1
n

n∑
i=1

e2
i

would seem to be a natural estimator. But the least squares residuals are imperfect
estimates of their population counterparts; ei = yi −x′

i b = εi −x′
i (b−β). The estimator

is distorted (as might be expected) because β is not observed directly. The expected
square on the right-hand side involves a second term that might not have expected
value zero.

The least squares residuals are

e = My = M[Xβ + ε] = Mε,

as MX = 0. [See (3-15).] An estimator of σ 2 will be based on the sum of squared residuals:

e′e = ε′Mε. (4-16)

The expected value of this quadratic form is

E [e′e | X] = E [ε′Mε | X].

The scalar ε′Mε is a 1 × 1 matrix, so it is equal to its trace. By using the result on cyclic
permutations (A-94),

E [tr(ε′Mε) | X] = E [tr(Mεε′) | X].

Since M is a function of X, the result is

tr
(
ME [εε′ | X]

) = tr(Mσ 2I) = σ 2tr(M).

The trace of M is

tr[In − X(X′X)−1X′] = tr(In) − tr[(X′X)−1X′X] = tr(In) − tr(IK) = n − K.

Therefore,

E [e′e | X] = (n − K)σ 2,

so the natural estimator is biased toward zero, although the bias becomes smaller as the
sample size increases. An unbiased estimator of σ 2 is

s2 = e′e
n − K

. (4-17)

The estimator is unbiased unconditionally as well, since E [s2] = EX
{

E [s2 | X]
} =

EX[σ 2] = σ 2. The standard error of the regression is s, the square root of s2. With s2,
we can then compute

Est. Var[b | X] = s2(X′X)−1.

Henceforth, we shall use the notation Est. Var[·] to indicate a sample estimate of the
sampling variance of an estimator. The square root of the kth diagonal element of
this matrix,

{
[s2(X′X)−1]kk

}1/2, is the standard error of the estimator bk, which is often
denoted simply “the standard error of bk.”
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4.3.8 THE NORMALITY ASSUMPTION

To this point, our specification and analysis of the regression model are semiparametric
(see Section 12.3). We have not used Assumption A6 (see Table 4.1), normality of ε,
in any of our results. The assumption is useful for constructing statistics for forming
confidence intervals. In (4-4), b is a linear function of the disturbance vector ε. If we
assume that ε has a multivariate normal distribution, then we may use the results of
Section B.10.2 and the mean vector and covariance matrix derived earlier to state that

b | X ∼ N[β, σ 2(X′X)−1]. (4-18)

This specifies a multivariate normal distribution, so each element of b | X is normally
distributed:

bk | X ∼ N
[
βk, σ

2(X′X)−1
kk

]
. (4-19)

We found evidence of this result in Figure 4.1 in Example 4.1.
The distribution of b is conditioned on X. The normal distribution of b in a finite

sample is a consequence of our specific assumption of normally distributed disturbances.
Without this assumption, and without some alternative specific assumption about the
distribution of ε, we will not be able to make any definite statement about the exact
distribution of b, conditional or otherwise. In an interesting result that we will explore at
length in Section 4.4, we will be able to obtain an approximate normal distribution for b,
with or without assuming normally distributed disturbances and whether the regressors
are stochastic or not.

4.4 LARGE SAMPLE PROPERTIES OF THE LEAST
SQUARES ESTIMATOR

Using only assumptions A1 through A4 of the classical model listed in Table 4.1, we have
established the following exact finite-sample properties for the least squares estimators
b and s2 of the unknown parameters β and σ 2:

• E[b|X] = E[b] = β—the least squares coefficient estimator is unbiased
• E[s2|X] = E[s2] = σ 2—the disturbance variance estimator is unbiased
• Var[b|X] = σ 2(X′X)−1 and Var[b] = σ 2 E[(X′X)−1]
• Gauss – Markov theorem: The MVLUE of w′β is w′b for any vector of constants, w.

For this basic model, it is also straightforward to derive the large-sample, or asymp-
totic properties of the least squares estimator. The normality assumption, A6, becomes
inessential at this point, and will be discarded save for discussions of maximum likeli-
hood estimation in Section 4.4.6 and in Chapter 14.

4.4.1 CONSISTENCY OF THE LEAST SQUARES ESTIMATOR OF β

Unbiasedness is a useful starting point for assessing the virtues of an estimator. It assures
the analyst that their estimator will not persistently miss its target, either systematically
too high or too low. However, as a guide to estimation strategy, it has two shortcomings.
First, save for the least squares slope estimator we are discussing in this chapter, it is
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relatively rare for an econometric estimator to be unbiased. In nearly all cases beyond
the multiple regression model, the best one can hope for is that the estimator improves
in the sense suggested by unbiasedness as more information (data) is brought to bear on
the study. As such, we will need a broader set of tools to guide the econometric inquiry.
Second, the property of unbiasedness does not, in fact, imply that more information
is better than less in terms of estimation of parameters. The sample means of random
samples of 2, 100, and 10,000 are all unbiased estimators of a population mean—by this
criterion all are equally desirable. Logically, one would hope that a larger sample is
better than a smaller one in some sense that we are about to define (and, by extension,
an extremely large sample should be much better, or even perfect). The property of
consistency improves on unbiasedness in both of these directions.

To begin, we leave the data generating mechanism for X unspecified—X may be
any mixture of constants and random variables generated independently of the process
that generates ε. We do make two crucial assumptions. The first is a modification of
Assumption A5 in Table 4.1;

A5a. (xi , εi ) i = 1, . . . , n is a sequence of independent observations.

The second concerns the behavior of the data in large samples;

plim
n→∞

X′X
n

= Q, a positive definite matrix. (4-20)

[We will return to (4-20) shortly.] The least squares estimator may be written

b = β +
(

X′X
n

)−1(X′ε
n

)
. (4-21)

If Q−1 exists, then

plim b = β + Q−1plim
(

X′ε
n

)

because the inverse is a continuous function of the original matrix. (We have invoked
Theorem D.14.) We require the probability limit of the last term. Let

1
n

X′ε = 1
n

n∑
i=1

xiεi = 1
n

n∑
i=1

wi = w. (4-22)

Then

plim b = β + Q−1 plim w.

From the exogeneity Assumption A3, we have E [wi ] = Ex[E [wi | xi ]] = Ex[xi E [εi | xi ]]
= 0, so the exact expectation is E [w] = 0. For any element in xi that is nonstochastic,
the zero expectations follow from the marginal distribution of εi . We now consider the
variance. By (B-70), Var[w] = E [Var[w | X]] + Var[E[w | X]]. The second term is zero
because E [εi | xi ] = 0. To obtain the first, we use E [εε′ | X] = σ 2I, so

Var[w | X] = E [w w′ | X] = 1
n

X′ E [εε′ | X]X
1
n

=
(

σ 2

n

)(
X′X

n

)
.
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TABLE 4.2 Grenander Conditions for Well-Behaved Data

G1. For each column of X, xk, if d2
nk = x′

kxk, then limn→∞ d2
nk = +∞. Hence, xk does not

degenerate to a sequence of zeros. Sums of squares will continue to grow as the sample size
increases. No variable will degenerate to a sequence of zeros.
G2. Limn→∞x2

ik/d2
nk = 0 for all i = 1, . . . , n. This condition implies that no single observation

will ever dominate x′
kxk, and as n → ∞, individual observations will become less important.

G3. Let Rn be the sample correlation matrix of the columns of X, excluding the constant term
if there is one. Then limn→∞ Rn = C, a positive definite matrix. This condition implies that the
full rank condition will always be met. We have already assumed that X has full rank in a finite
sample, so this assumption ensures that the condition will never be violated.

Therefore,

Var[w] =
(

σ 2

n

)
E

(
X′X

n

)
.

The variance will collapse to zero if the expectation in parentheses is (or converges to)
a constant matrix, so that the leading scalar will dominate the product as n increases.
Assumption (4-20) should be sufficient. (Theoretically, the expectation could diverge
while the probability limit does not, but this case would not be relevant for practical
purposes.) It then follows that

lim
n→∞ Var[w] = 0 · Q = 0. (4-23)

Since the mean of w is identically zero and its variance converges to zero, w converges
in mean square to zero, so plim w = 0. Therefore,

plim
X′ε

n
= 0, (4-24)

so

plim b = β + Q−1 · 0 = β. (4-25)

This result establishes that under Assumptions A1–A4 and the additional assumption
(4-20), b is a consistent estimator of β in the linear regression model.

Time-series settings that involve time trends, polynomial time series, and trending
variables often pose cases in which the preceding assumptions are too restrictive. A
somewhat weaker set of assumptions about X that is broad enough to include most of
these is the Grenander conditions listed in Table 4.2.3 The conditions ensure that the
data matrix is “well behaved” in large samples. The assumptions are very weak and
likely to be satisfied by almost any data set encountered in practice.4

4.4.2 ASYMPTOTIC NORMALITY OF THE LEAST
SQUARES ESTIMATOR

As a guide to estimation, consistency is an improvement over unbiasedness. Since we
are in the process of relaxing the more restrictive assumptions of the model, includ-
ing A6, normality of the disturbances, we will also lose the normal distribution of the

3Judge et al. (1985, p. 162).
4White (2001) continues this line of analysis.
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estimator that will enable us to form confidence intervals in Section 4.5. It seems that
the more general model we have built here has come at a cost. In this section, we will
find that normality of the disturbances is not necessary for establishing the distribu-
tional results we need to allow statistical inference including confidence intervals and
testing hypotheses. Under generally reasonable assumptions about the process that
generates the sample data, large sample distributions will provide a reliable foundation
for statistical inference in the regression model (and more generally, as we develop
more elaborate estimators later in the book).

To derive the asymptotic distribution of the least squares estimator, we shall use
the results of Section D.3. We will make use of some basic central limit theorems, so in
addition to Assumption A3 (uncorrelatedness), we will assume that observations are
independent. It follows from (4-21) that

√
n(b − β) =

(
X′X

n

)−1( 1√
n

)
X′ε. (4-26)

Since the inverse matrix is a continuous function of the original matrix, plim(X′X/n)−1 =
Q−1. Therefore, if the limiting distribution of the random vector in (4-26) exists, then
that limiting distribution is the same as that of

[
plim

(
X′X

n

)−1
](

1√
n

)
X′ε = Q−1

(
1√
n

)
X′ε. (4-27)

Thus, we must establish the limiting distribution of
(

1√
n

)
X′ε = √

n
(
w − E [w]

)
, (4-28)

where E [w] = 0. [See (4-22).] We can use the multivariate Lindeberg–Feller version of
the central limit theorem (D.19.A) to obtain the limiting distribution of

√
nw.5 Using

that formulation, w is the average of n independent random vectors wi = xiεi , with
means 0 and variances

Var[xiεi ] = σ 2 E [xi x′
i ] = σ 2Qi . (4-29)

The variance of
√

nw is

σ 2Qn = σ 2
(

1
n

)
[Q1 + Q2 + · · · + Qn]. (4-30)

As long as the sum is not dominated by any particular term and the regressors are well
behaved, which in this case means that (4-20) holds,

lim
n→∞ σ 2Qn = σ 2Q. (4-31)

Therefore, we may apply the Lindeberg–Feller central limit theorem to the vector
√

n w,

as we did in Section D.3 for the univariate case
√

nx. We now have the elements we
need for a formal result. If [xiεi ], i = 1, . . . , n are independent vectors distributed with

5Note that the Lindeberg–Levy version does not apply because Var[wi ] is not necessarily constant.
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mean 0 and variance σ 2Qi < ∞, and if (4-20) holds, then
(

1√
n

)
X′ε d−→ N[0, σ 2Q]. (4-32)

It then follows that

Q−1
(

1√
n

)
X′ε d−→ N[Q−10, Q−1(σ 2Q)Q−1]. (4-33)

Combining terms,
√

n(b − β)
d−→ N[0, σ 2Q−1]. (4-34)

Using the technique of Section D.3, we obtain the asymptotic distribution of b:

THEOREM 4.4 Asymptotic Distribution of b with Independent
Observations

If {εi } are independently distributed with mean zero and finite variance σ 2 and xik

is such that the Grenander conditions are met, then

b
a∼ N

[
β,

σ 2

n
Q−1

]
. (4-35)

In practice, it is necessary to estimate (1/n)Q−1 with (X′X)−1 and σ 2 with e′e/(n − K).
If ε is normally distributed, then result (4-18), normality of b/X, holds in every

sample, so it holds asymptotically as well. The important implication of this derivation
is that if the regressors are well behaved and observations are independent, then the
asymptotic normality of the least squares estimator does not depend on normality of
the disturbances; it is a consequence of the central limit theorem. We will consider other,
more general cases in the sections to follow.

4.4.3 CONSISTENCY OF s2 AND THE ESTIMATOR OF Asy. Var[b]

To complete the derivation of the asymptotic properties of b, we will require an estimator
of Asy. Var[b] = (σ 2/n)Q−1.6 With (4-20), it is sufficient to restrict attention to s2, so
the purpose here is to assess the consistency of s2 as an estimator of σ 2. Expanding

s2 = 1
n − K

ε′Mε

produces

s2 = 1
n − K

[ε′ε − ε′X(X′X)−1X′ε] = n
n − k

[
ε′ε
n

−
(

ε′X
n

)(
X′X

n

)−1(X′ε
n

)]
.

The leading constant clearly converges to 1. We can apply (4-20), (4-24) (twice), and
the product rule for probability limits (Theorem D.14) to assert that the second term

6See McCallum (1973) for some useful commentary on deriving the asymptotic covariance matrix of the least
squares estimator.
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in the brackets converges to 0. That leaves

ε2 = 1
n

n∑
i=1

ε2
i .

This is a narrow case in which the random variables ε2
i are independent with the same

finite mean σ 2, so not much is required to get the mean to converge almost surely to
σ 2 = E [ε2

i ]. By the Markov theorem (D.8), what is needed is for E [| ε2
i |1+δ] to be finite,

so the minimal assumption thus far is that εi have finite moments up to slightly greater
than 2. Indeed, if we further assume that every εi has the same distribution, then by
the Khinchine theorem (D.5) or the corollary to D8, finite moments (of εi ) up to 2 is
sufficient. Mean square convergence would require E [ε4

i ] = φε < ∞. Then the terms in
the sum are independent, with mean σ 2 and variance φε −σ 4. So, under fairly weak con-
ditions, the first term in brackets converges in probability to σ 2, which gives our result,

plim s2 = σ 2,

and, by the product rule,

plim s2(X′X/n)−1 = σ 2Q−1.

The appropriate estimator of the asymptotic covariance matrix of b is

Est. Asy. Var[b] = s2(X′X)−1.

4.4.4 ASYMPTOTIC DISTRIBUTION OF A FUNCTION OF b:
THE DELTA METHOD

We can extend Theorem D.22 to functions of the least squares estimator. Let f(b) be
a set of J continuous, linear, or nonlinear and continuously differentiable functions of
the least squares estimator, and let

C(b) = ∂f(b)

∂b′ ,

where C is the J × K matrix whose jth row is the vector of derivatives of the jth function
with respect to b′. By the Slutsky theorem (D.12),

plim f(b) = f(β)

and

plim C(b) = ∂f(β)

∂β ′ = �.

Using a linear Taylor series approach, we expand this set of functions in the approxi-
mation

f(b) = f(β) + � × (b − β) + higher-order terms.

The higher-order terms become negligible in large samples if plim b = β. Then, the
asymptotic distribution of the function on the left-hand side is the same as that on the
right. Thus, the mean of the asymptotic distribution is plim f(b) = f(β), and the asymp-
totic covariance matrix is

{
�[Asy. Var(b−β)]�′}, which gives us the following theorem:
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THEOREM 4.5 Asymptotic Distribution of a Function of b
If f(b) is a set of continuous and continuously differentiable functions of b
such that � = ∂f(β)/∂β ′ and if Theorem 4.4 holds, then

f(b)
a∼ N

[
f(β), �

(
σ 2

n
Q−1

)
�′

]
. (4-36)

In practice, the estimator of the asymptotic covariance matrix would be

Est. Asy. Var[f(b)] = C[s2(X′X)−1]C′.

If any of the functions are nonlinear, then the property of unbiasedness that holds
for b may not carry over to f(b). Nonetheless, it follows from (4-25) that f(b) is a
consistent estimator of f(β), and the asymptotic covariance matrix is readily available.

Example 4.4 Nonlinear Functions of Parameters: The Delta Method
A dynamic version of the demand for gasoline model in Example 2.3 would be used to
separate the short- and long-term impacts of changes in income and prices. The model
would be

ln(G/Pop) t = β1 + β2 In PG,t + β3 In( Income/Pop) t + β4 InPnc,t

+β5 In Puc,t + γ ln(G/Pop) t−1 + εt ,

where Pnc and Puc are price indexes for new and used cars. In this model, the short-run
price and income elasticities are β2 and β3. The long-run elasticities are φ2 = β2/(1 − γ )
and φ3 = β3/(1 − γ ) , respectively. To estimate the long-run elasticities, we will estimate
the parameters by least squares and then compute these two nonlinear functions of the
estimates. We can use the delta method to estimate the standard errors.

Least squares estimates of the model parameters with standard errors and t ratios are
given in Table 4.3. The estimated short-run elasticities are the estimates given in the table.
The two estimated long-run elasticities are f2 = b2/(1 − c) = −0.069532/(1 − 0.830971) =
−0.411358 and f3 = 0.164047/(1 − 0.830971) = 0.970522. To compute the estimates of
the standard errors, we need the partial derivatives of these functions with respect to the six
parameters in the model:

g′
2 = ∂φ2/∂β ′ = [0, 1/(1 − γ ) , 0, 0, 0, β2/(1 − γ ) 2] = [0, 5.91613, 0, 0, 0, −2.43365],

g′
3 = ∂φ3/∂β ′ = [0, 0, 1/(1 − γ ) , 0, 0, β3/(1 − γ ) 2] = [0, 0, 5.91613, 0, 0, 5.74174].

Using (4-36), we can now compute the estimates of the asymptotic variances for the two
estimated long-run elasticities by computing g′

2[s2(X′X)−1]g2 and g′
3 [s2(X′X)−1]g3. The results

are 0.023194 and 0.0263692, respectively. The two asymptotic standard errors are the square
roots, 0.152296 and 0.162386.

4.4.5 ASYMPTOTIC EFFICIENCY

We have not established any large-sample counterpart to the Gauss–Markov theorem.
That is, it remains to establish whether the large-sample properties of the least squares
estimator are optimal by any measure. The Gauss–Markov theorem establishes finite
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TABLE 4.3 Regression Results for a Demand Equation

Sum of squared residuals: 0.0127352
Standard error of the regression: 0.0168227

R2 based on 51 observations 0.9951081

Variable Coefficient Standard Error t Ratio

Constant −3.123195 0.99583 −3.136
ln PG −0.069532 0.01473 −4.720
ln Income / Pop 0.164047 0.05503 2.981
ln Pnc −0.178395 0.05517 −3.233
ln Puc 0.127009 0.03577 3.551
last period ln G / Pop 0.830971 0.04576 18.158

Estimated Covariance Matrix for b (e − n = times 10−n)

Constant ln PG ln(Income/Pop) ln Pnc ln Puc ln(G/Pop)t−1

0.99168
−0.0012088 0.00021705
−0.052602 1.62165e–5 0.0030279

0.0051016 −0.00021705 −0.00024708 0.0030440
0.0091672 −4.0551e–5 −0.00060624 −0.0016782 0.0012795
0.043915 −0.0001109 −0.0021881 0.00068116 8.57001e–5 0.0020943

sample conditions under which least squares is optimal. The requirements that the es-
timator be linear and unbiased limit the theorem’s generality, however. One of the
main purposes of the analysis in this chapter is to broaden the class of estimators in
the linear regression model to those which might be biased, but which are consistent.
Ultimately, we shall also be interested in nonlinear estimators. These cases extend be-
yond the reach of the Gauss–Markov theorem. To make any progress in this direction,
we will require an alternative estimation criterion.

DEFINITION 4.1 Asymptotic Efficiency
An estimator is asymptotically efficient if it is consistent, asymptotically normally
distributed, and has an asymptotic covariance matrix that is not larger than the
asymptotic covariance matrix of any other consistent, asymptotically normally
distributed estimator.

We can compare estimators based on their asymptotic variances. The complication
in comparing two consistent estimators is that both converge to the true parameter
as the sample size increases. Moreover, it usually happens (as in our example 4.5),
that they converge at the same rate—that is, in both cases, the asymptotic variance of
the two estimators are of the same order, such as O(1/n). In such a situation, we can
sometimes compare the asymptotic variances for the same n to resolve the ranking.
The least absolute deviations estimator as an alternative to least squares provides an
example.
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Example 4.5 Least Squares vs. Least Absolute Deviations—A Monte
Carlo Study

We noted earlier (Section 4.2) that while it enjoys several virtues, least squares is not the only
available estimator for the parameters of the linear regresson model. Least absolute devia-
tions (LAD) is an alternative. (The LAD estimator is considered in more detail in Section 7.3.1.)
The LAD estimator is obtained as

bLAD = the minimizer of
∑n

i =1
|yi − x′

i b0|,

in contrast to the linear least squares estimator, which is

bLS = the minimizer of
∑n

i =1
( yi − x′

i b0) 2.

Suppose the regression model is defined by

yi = x′
i β + εi ,

where the distribution of εi has conditional mean zero, constant variance σ 2, and conditional
median zero as well—the distribution is symmetric—and plim(1/n)X′ε = 0. That is, all the
usual regression assumptions, but with the normality assumption replaced by symmetry of
the distribution. Then, under our assumptions, bLS is a consistent and asymptotically normally
distributed estimator with asymptotic covariance matrix given in Theorem 4.4, which we will
call σ 2A. As Koenker and Bassett (1978, 1982), Huber (1987), Rogers (1993), and Koenker
(2005) have discussed, under these assumptions, bLAD is also consistent. A good estimator
of the asymptotic variance of bLAD would be (1/2)2[1/f(0)]2A where f(0) is the density of ε
at its median, zero. This means that we can compare these two estimators based on their
asymptotic variances. The ratio of the asymptotic variance of the kth element of bLAD to the
corresponding element of bLS would be

qk = Var(bk,LAD)/Var(bk,LS) = (1/2)2(1/σ 2) [1/ f (0) ]2.

If ε did actually have a normal distribution with mean (and median) zero, then

f (ε) = (2πσ 2)−1/2 exp(−ε2/(2σ 2) )

so f (0) = (2πσ 2)−1/2 and for this special case qk = π /2. Thus, if the disturbances are normally
distributed, then LAD will be asymptotically less efficient by a factor of π/2 = 1.573.

The usefulness of the LAD estimator arises precisely in cases in which we cannot assume
normally distributed disturbances. Then it becomes unclear which is the better estimator. It
has been found in a long body of research that the advantage of the LAD estimator is most
likely to appear in small samples and when the distribution of ε has thicker tails than the
normal — that is, when outlying values of yi are more likely. As the sample size grows larger,
one can expect the LS estimator to regain its superiority. We will explore this aspect of the
estimator in a small Monte Carlo study.

Examples 2.6 and 3.4 note an intriguing feature of the fine art market. At least in some
settings, large paintings sell for more at auction than small ones. Appendix Table F4.1 contains
the sale prices, widths, and heights of 430 Monet paintings. These paintings sold at auction
for prices ranging from $10,000 up to as much as $33 million. A linear regression of the log
of the price on a constant term, the log of the surface area, and the aspect ratio produces
the results in the top line of Table 4.4. This is the focal point of our analysis. In order to study
the different behaviors of the LS and LAD estimators, we will do the following Monte Carlo
study:7 We will draw without replacement 100 samples of R observations from the 430. For
each of the 100 samples, we will compute bLS,r and bLAD,r . We then compute the average of

7Being a Monte Carlo study that uses a random number generator, there is a question of replicability. The
study was done with NLOGIT and is replicable. The program can be found on the Web site for the text.
The qualitative results, if not the precise numerical values, can be reproduced with other programs that allow
random sampling from a data set.
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TABLE 4.4 Estimated Equations for Art Prices

Constant Log Area Aspect Ratio

Standard Standard Standard
Full Sample Mean Deviation Mean Deviation Mean Deviation

LS −8.42653 0.61184 1.33372 0.09072 −0.16537 0.12753
LAD −7.62436 0.89055 1.20404 0.13626 −0.21260 0.13628

R = 10
LS −9.39384 6.82900 1.40481 1.00545 0.39446 2.14847
LAD −8.97714 10.24781 1.34197 1.48038 0.35842 3.04773

R = 50
LS −8.73099 2.12135 1.36735 0.30025 −0.06594 0.52222
LAD −8.91671 2.51491 1.38489 0.36299 −0.06129 0.63205

R = 100
LS −8.36163 1.32083 1.32758 0.17836 −0.17357 0.28977
LAD −8.05195 1.54190 1.27340 0.21808 −0.20700 0.29465

the 100 vectors and the sample variance of the 100 observations.8 The sampling variability
of the 100 sets of results corresponds to the notion of “variation in repeated samples.” For
this experiment, we will do this for R = 10, 50, and 100. The overall sample size is fairly
large, so it is reasonable to take the full sample results as at least approximately the “true
parameters.” The standard errors reported for the full sample LAD estimator are computed
using bootstrapping. Briefly, the procedure is carried out by drawing B—we used B = 100—
samples of n (430) observations with replacement, from the full sample of n observations. The
estimated variance of the LAD estimator is then obtained by computing the mean squared
deviation of these B estimates around the full sample LAD estimates (not the mean of the B
estimates). This procedure is discussed in detail in Section 15.4.

If the assumptions underlying our regression model are correct, we should observe the
following:

1. Since both estimators are consistent, the averages should resemble the preceding main
results, the more so as R increases.

2. As R increases, the sampling variance of the estimators should decline.
3. We should observe generally that the standard deviations of the LAD estimates are larger

than the corresponding values for the LS estimator.
4. When R is small, the LAD estimator should compare more favorably to the LS estimator,

but as R gets larger, the advantage of the LS estimator should become apparent.

A kernel density estimate for the distribution of the least squares residuals appears in Fig-
ure 4.4. There is a bit of skewness in the distribution, so a main assumption underlying our
experiment may be violated to some degree. Results of the experiments are shown in Ta-
ble 4.4. The force of the asymptotic results can be seen most clearly in the column for the
coefficient on log Area. The decline of the standard deviation as R increases is evidence of
the consistency of both estimators. In each pair of results (LS, LAD), we can also see that the
estimated standard deviation of the LAD estimator is greater by a factor of about 1.2 to 1.4,
which is also to be expected. Based on the normal distribution, we would have expected this
ratio to be

√
1.573 = 1.254.

8Note that the sample size R is not a negligible fraction of the population size, 430 for each replication.
However, this does not call for a finite population correction of the variances in Table 4.4. We are not
computing the variance of a sample of R observations drawn from a population of 430 paintings. We are
computing the variance of a sample of R statistics each computed from a different subsample of the full
population. There are a bit less than 1020 different samples of 10 observations we can draw. The number of
different samples of 50 or 100 is essentially infinite.
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FIGURE 4.4 Kernel Dansity Estimator for Least Squares Residuals.

4.4.6 MAXIMUM LIKELIHOOD ESTIMATION

We have motivated the least squares estimator in two ways: First, we obtained Theorem
4.1, which states that the least squares estimator mimics the coefficients in the minimum
mean squared error predictor of y in the joint distribution of y and x. Second, Theorem
4.2, the Gauss–Markov theorem, states that the least squares estimator is the minimum
variance linear unbiased estimator of β under the assumptions of the model. Neither
of these results relies on Assumption A6, normality of the distribution of ε. A natural
question at this point would be, what is the role of this assumption? There are two. First,
the assumption of normality will produce the basis for determining the appropriate
endpoints for confidence intervals in Sections 4.5 and 4.6. But, we found in Section 4.4.2
that based on the central limit theorem, we could base inference on the asymptotic
normal distribution of b, even if the disturbances were not normally distributed. That
would seem to make the normality assumption no longer necessary, which is largely
true but for a second result.

If the disturbances are normally distributed, then the least squares estimator is
also the maximum likelihood estimator (MLE). We will examine maximum likelihood
estimation in detail in Chapter 14, so we will describe it only briefly at this point. The
end result is that by virtue of being an MLE, least squares is asymptotically efficient
among consistent and asymptotically normally distributed estimators. This is a large
sample counterpart to the Gauss–Markov theorem (known formally as the Cramér–
Rao bound). What the two theorems have in common is that they identify the least
squares estimator as the most efficient estimator in the assumed class of estimators.
They differ in the class of estimators assumed:

Gauss–Markov: Linear and unbiased estimators
ML: Based on normally distributed disturbances, consistent and asymp-

totically normally distributed estimators
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These are not “nested.” Notice, for example, that the MLE result does not require
unbiasedness or linearity. Gauss–Markov does not require normality or consistency.
The Gauss–Markov theorem is a finite sample result while the Cramér–Rao bound
is an asymptotic (large-sample) property. The important aspect of the development
concerns the efficiency property. Efficiency, in turn, relates to the question of how best
to use the sample data for statistical inference. In general, it is difficult to establish
that an estimator is efficient without being specific about the candidates. The Gauss–
Markov theorem is a powerful result for the linear regression model. However, it has no
counterpart in any other modeling context, so once we leave the linear model, we will
require different tools for comparing estimators. The principle of maximum likelihood
allows the analyst to assert asymptotic efficiency for the estimator, but only for the
specific distribution assumed. Example 4.6 establishes that b is the MLE in the regression
model with normally distributed disturbances. Example 4.7 then considers a case in
which the regression disturbances are not normally distributed and, consequently, b is
less efficient than the MLE.

Example 4.6 MLE with Normally Distributed Disturbances
With normally distributed disturbances, yi |xi is normally distributed with mean x′

i β and vari-
ance σ 2, so the density of yi |xi is

f ( yi |xi ) = exp
[− 1

2 ( yi − x′
i β) 2

]
√

2πσ 2
.

The log likelihood for a sample of n independent observations is equal to the log of the joint
density of the observed random variables. For a random sample, the joint density would be
the product, so the log likelihood, given the data, which is written lnL(β, σ 2|y,X) would be the
sum of the logs of the densities. This would be (after a bit of manipulation)

lnL (β, σ 2|y,X) = −(n/2) [ln σ 2 + ln 2π + (1/σ 2) 1
n �i ( yi − x′

i β) 2].

The values of β and σ 2 that maximize this function are the maximum likelihood estimators of
β and σ 2. As we will explore further in Chapter 14, the functions of the data that maximize this
function with respect to β and σ 2 are the least squares coefficient vector, b, and the mean
squared residual, e′e/n. Once again, we leave for Chapter 14 a derivation of the following
result,

Asy.Var
[
β̂ML

] = −E [∂2 ln L/∂β∂β ′]−1 = σ 2 E [(X′X)−1],

which is exactly what appears in Section 4.3.6. This shows that the least squares estimator
is the maximum likelihood estimator. It is consistent, asymptotically (and exactly) normally
distributed, and, under the assumption of normality, by virtue of Theorem 14.4, asymptotically
efficient.

It is important to note that the properties of an MLE depend on the specific dis-
tribution assumed for the observed random variable. If some nonnormal distribution
is specified for ε and it emerges that b is not the MLE, then least squares may not be
efficient. The following example illustrates.

Example 4.7 The Gamma Regression Model
Greene (1980a) considers estimation in a regression model with an asymmetrically distributed
disturbance,

y = (α + σ
√

P) + x′β + (ε − σ
√

P) = α∗ + x′β + ε∗,
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where ε has the gamma distribution in Section B.4.5 [see (B-39)] and σ = √
P/λ is the

standard deviation of the disturbance. In this model, the covariance matrix of the least squares
estimator of the slope coefficients (not including the constant term) is

Asy. Var[b | X] = σ 2(X′M0X)−1,

whereas for the maximum likelihood estimator (which is not the least squares estimator),9

Asy. Var[β̂ML ] ≈ [1 − (2/P) ]σ 2(X′M0X)−1.

But for the asymmetry parameter, this result would be the same as for the least squares
estimator. We conclude that the estimator that accounts for the asymmetric disturbance
distribution is more efficient asymptotically.

Another example that is somewhat similar to the model in Example 4.7 is the stochastic
frontier model developed in Chapter 18. In these two cases in particular, the distribution
of the disturbance is asymmetric. The maximum likelihood estimators are computed in
a way that specifically accounts for this while the least squares estimator treats observa-
tions above and below the regression line symmetrically. That difference is the source
of the asymptotic advantage of the MLE for these two models.

4.5 INTERVAL ESTIMATION

The objective of interval estimation is to present the best estimate of a parameter with
an explicit expression of the uncertainty attached to that estimate. A general approach,
for estimation of a parameter θ , would be

θ̂ ± sampling variability. (4-37)

(We are assuming that the interval of interest would be symmetic around θ̂ .) Follow-
ing the logic that the range of the sampling variability should convey the degree of
(un)certainty, we consider the logical extremes. We can be absolutely (100 percent)
certain that the true value of the parameter we are estimating lies in the range θ̂ ± ∞.
Of course, this is not particularly informative. At the other extreme, we should place no
certainty (0 percent) on the range θ̂ ± 0. The probability that our estimate precisely hits
the true parameter value should be considered zero. The point is to choose a value of
α – 0.05 or 0.01 is conventional—such that we can attach the desired confidence (prob-
ability), 100(1−α) percent, to the interval in (4-13). We consider how to find that range
and then apply the procedure to three familiar problems, interval estimation for one of
the regression parameters, estimating a function of the parameters and predicting the
value of the dependent variable in the regression using a specific setting of the indepen-
dent variables. For this purpose, we depart from Assumption A6 that the disturbances
are normally distributed. We will then relax that assumption and rely instead on the
asymptotic normality of the estimator.

9The matrix M0 produces data in the form of deviations from sample means. (See Section A.2.8.) In Greene’s
model, P must be greater than 2.
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4.5.1 FORMING A CONFIDENCE INTERVAL FOR A COEFFICIENT

From(4-18), we have that b|X ∼ N[β,σ 2(X′X)−1]. It follows that for any particular
element of b, say bk,

bk ∼ N[βk, σ
2Skk]

where Skk denotes the kth diagonal element of (X′X)−1. By standardizing the variable,
we find

zk = bk − βk√
σ 2Skk

(4-38)

has a standard normal distribution. Note that zk, which is a function of bk, βk, σ 2 and
Skk, nonetheless has a distribution that involves none of the model parameters or the
data; zk is a pivotal statistic. Using our conventional 95 percent confidence level, we
know that Prob[−1.96 < zk < 1.96]. By a simple manipulation, we find that

Prob
[
bk − 1.96

√
σ 2Skk ≤ βk ≤ bk + 1.96

√
σ 2Skk

]
= 0.95. (4-39)

Note that this is a statement about the probability that the random interval bk± the
sampling variability contains βk, not the probability that βk lies in the specified interval.
If we wish to use some other level of confidence, not 95 percent, then the 1.96 in (4-39)
is replaced by the appropriate z(1−α/2). (We are using the notation z(1−α/2) to denote the
value of z such that for the standard normal variable z, Prob[z < z(1−α/2)] = 1 − α/2.
Thus, z0.975 = 1.96, which corresponds to α = 0.05.)

We would have our desired confidence interval in (4-39), save for the complication
that σ 2 is not known, so the interval is not operational. It would seem natural to use s2

from the regression. This is, indeed, an appropriate approach. The quantity

(n − K)s2

σ 2
= e′e

σ 2
=

( ε

σ

)′
M

( ε

σ

)
(4-40)

is an idempotent quadratic form in a standard normal vector, (ε/σ). Therefore, it has a
chi-squared distribution with degrees of freedom equal to the rank(M) = trace(M) =
n− K. (See Section B11.4 for the proof of this result.) The chi-squared variable in (4-40)
is independent of the standard normal variable in (14). To prove this, it suffices to show
that

(
b − β

σ

)
= (X′X)−1X

( ε

σ

)

is independent of (n − K)s2/σ 2. In Section B.11.7 (Theorem B.12), we found that a suf-
ficient condition for the independence of a linear form Lx and an idempotent quadratic
form x′Ax in a standard normal vector x is that LA = 0. Letting ε/σ be the x, we find that
the requirement here would be that (X′X)−1X′M = 0. It does, as seen in (3-15). The
general result is central in the derivation of many test statistics in regression analysis.
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THEOREM 4.6 Independence of b and s2

If ε is normally distributed, then the least squares coefficient estimator b is sta-
tistically independent of the residual vector e and therefore, all functions of e,

including s2.

Therefore, the ratio

tk = (bk − βk)/
√

σ 2Skk
√

[(n − K)s2/σ 2]/(n − K)
= bk − βk√

s2Skk
(4-41)

has a t distribution with (n − K) degrees of freedom.10 We can use tk to test hypotheses
or form confidence intervals about the individual elements of β.

The result in (4-41) differs from (14) in the use of s2 instead of σ 2, and in the pivotal
distribution, t with (n – K) degrees of freedom, rather than standard normal. It follows
that a confidence interval for βk can be formed using

Prob
[
bk − t(1−α/2),[n−K]

√
s2Skk ≤ βk ≤ bk + t(1−α/2),[n−K]

√
s2Skk

]
= 1 − α, (4-42)

where t(1−α/2),[n−K] is the appropriate critical value from the t distribution. Here, the
distribution of the pivotal statistic depends on the sample size through (n – K), but,
once again, not on the parameters or the data. The practical advantage of (4-42) is that
it does not involve any unknown parameters. A confidence interval for βk can be based
on (4-42).

Example 4.8 Confidence Interval for the Income Elasticity of Demand
for Gasoline

Using the gasoline market data discussed in Examples 4.2 and 4.4, we estimated the following
demand equation using the 52 observations:

ln(G/Pop) = β1 + β2 In PG + β3 In( Income/Pop) + β4 In Pnc + β5 In Puc + ε.

Least squares estimates of the model parameters with standard errors and t ratios are given
in Table 4.5.

TABLE 4.5 Regression Results for a Demand Equation

Sum of squared residuals: 0.120871
Standard error of the regression: 0.050712

R2 based on 52 observations 0.958443

Variable Coefficient Standard Error t Ratio

Constant −21.21109 0.75322 −28.160
ln PG −0.021206 0.04377 −0.485
ln Income/Pop 1.095874 0.07771 14.102
ln Pnc −0.373612 0.15707 −2.379
ln Puc 0.02003 0.10330 0.194

10See (B-36) in Section B.4.2. It is the ratio of a standard normal variable to the square root of a chi-squared
variable divided by its degrees of freedom.
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To form a confidence interval for the income elasticity, we need the critical value from the
t distribution with n − K = 52 − 5 = 47 degrees of freedom. The 95 percent critical value
is 2.012. Therefore a 95 percent confidence interval for β3 is 1.095874 ± 2.012 (0.07771) =
[0.9395,1.2522].

4.5.2 CONFIDENCE INTERVALS BASED ON LARGE SAMPLES

If the disturbances are not normally distributed, then the development in the previous
section, which departs from this assumption, is not usable. But, the large sample results
in Section 4.4 provide an alternative approach. Based on the development that we used
to obtain Theorem 4.4 and (4-35), we have that the limiting distribution of the statistic

zn =
√

n(bk − βk)√
σ 2

n Qkk

is standard normal, where Q = [plim(X′X/n)]−1 and Qkk is the kth diagonal ele-
ment of Q. Based on the Slutsky theorem (D.16), we may replace σ 2 with a consistent
estimator, s2 and obtain a statistic with the same limiting distribution. And, of course,
we estimate Q with (X′X/n)−1. This gives us precisely (4-41), which states that under the
assumptions in Section 4.4, the “t” statistic in (4-41) converges to standard normal even
if the disturbances are not normally distributed. The implication would be that to em-
ploy the asymptotic distribution of b, we should use (4-42) to compute the confidence
interval but use the critical values from the standard normal table (e.g., 1.96) rather
than from the t distribution. In practical terms, if the degrees of freedom in (4-42) are
moderately large, say greater than 100, then the t distribution will be indistinguishable
from the standard normal, and this large sample result would apply in any event. For
smaller sample sizes, however, in the interest of conservatism, one might be advised to
use the critical values from the t table rather the standard normal, even in the absence
of the normality assumption. In the application in Example 4.8, based on a sample of
52 observations, we formed a confidence interval for the income elasticity of demand
using the critical value of 2.012 from the t table with 47 degrees of freedom. If we chose
to base the interval on the asymptotic normal distribution, rather than the standard
normal, we would use the 95 percent critical value of 1.96. One might think this is a bit
optimistic, however, and retain the value 2.012, again, in the interest of conservatism.

Example 4.9 Confidence Interval Based on the Asymptotic Distribution
In Example 4.4, we analyzed a dynamic form of the demand equation for gasoline,

ln(G/Pop) t = β1 + β2 ln PG,t + β3 ln( Income/Pop) + · · · + γ ln(G/POP) t−1 + εt .

In this model, the long-run price and income elasticities are θP = β2/(1−γ ) and θI = β3/(1−γ ) .
We computed estimates of these two nonlinear functions using the least squares and the
delta method, Theorem 4.5. The point estimates were −0.411358 and 0.970522, respectively.
The estimated asymptotic standard errors were 0.152296 and 0.162386. In order to form
confidence intervals for θP and θI , we would generally use the asymptotic distribution, not
the finite-sample distribution. Thus, the two confidence intervals are

θ̂P = −0.411358 ± 1.96(0.152296) = [−0.709858, −0.112858]

and

θ̂I = 0.970523 ± 1.96(0.162386) = [0.652246, 1.288800].
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In a sample of 51 observations, one might argue that using the critical value for the limiting nor-
mal distribution might be a bit optimistic. If so, using the critical value for the t distribution with
51 − 6 = 45 degrees of freedom would give a slightly wider interval. For example, for the the
income elasticity the interval would be 0.970523±2.014(0.162386) = [0.643460, 1.297585].
We do note this is a practical adjustment. The statistic based on the asymptotic standard
error does not actually have a t distribution with 45 degrees of freedom.

4.5.3 CONFIDENCE INTERVAL FOR A LINEAR COMBINATION
OF COEFFICIENTS: THE OAXACA DECOMPOSITION

With normally distributed disturbances, the least squares coefficient estimator, b, is
normally distributed with mean β and covariance matrix σ 2(X′X)−1. In Example 4.8,
we showed how to use this result to form a confidence interval for one of the elements
of β. By extending those results, we can show how to form a confidence interval for a
linear function of the parameters. Oaxaca’s (1973) and Blinder’s (1973) decomposition
provides a frequently used application.11

Let w denote a K × 1 vector of known constants. Then, the linear combination
c = w′b is normally distributed with mean γ = w′β and variance σ 2

c = w′[σ 2(X′X)−1]w,
which we estimate with s2

c = w′[s2(X′X)−1]w. With these in hand, we can use the earlier
results to form a confidence interval for γ :

Prob[c − t(1−α/2),[n−k]sc ≤ γ ≤ c + t(1−α/2),[n−k]sc] = 1 − α. (4-43)

This general result can be used, for example, for the sum of the coefficients or for a
difference.

Consider, then, Oaxaca’s (1973) application. In a study of labor supply, separate
wage regressions are fit for samples of nm men and n f women. The underlying regression
models are

ln wagem,i = x′
m,iβm + εm,i , i = 1, . . . , nm

and

ln wage f, j = x′
f, jβf + εf, j , j = 1, . . . , n f .

The regressor vectors include sociodemographic variables, such as age, and human cap-
ital variables, such as education and experience. We are interested in comparing these
two regressions, particularly to see if they suggest wage discrimination. Oaxaca sug-
gested a comparison of the regression functions. For any two vectors of characteristics,

E [ln wagem,i |xm,i ] − E [ln wage f, j |x f,i ] = x′
m,iβm − x′

f, jβf

= x′
m,iβm − x′

m,iβf + x′
m,iβf − x′

f, jβf

= x′
m,i (βm − βf ) + (xm,i − x f, j )

′βf .

The second term in this decomposition is identified with differences in human capital
that would explain wage differences naturally, assuming that labor markets respond
to these differences in ways that we would expect. The first term shows the differential
in log wages that is attributable to differences unexplainable by human capital; holding
these factors constant at xm makes the first term attributable to other factors. Oaxaca

11See Bourgignon et al. (2002) for an extensive application.
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suggested that this decomposition be computed at the means of the two regressor vec-
tors, xm and x f , and the least squares coefficient vectors, bm and b f . If the regressions
contain constant terms, then this process will be equivalent to analyzing ln ym − ln yf .

We are interested in forming a confidence interval for the first term, which will
require two applications of our result. We will treat the two vectors of sample means as
known vectors. Assuming that we have two independent sets of observations, our two
estimators, bm and b f , are independent with means βm and β f and covariance matrices
σ 2

m(X′
mXm)−1 and σ 2

f (X
′
f X f )

−1. The covariance matrix of the difference is the sum of
these two matrices. We are forming a confidence interval for x′

m d where d = bm − b f .
The estimated covariance matrix is

Est. Var[d] = s2
m(X′

mXm)−1 + s2
f (X

′
f X f )

−1. (4-44)

Now, we can apply the result above. We can also form a confidence interval for the
second term; just define w = xm − x f and apply the earlier result to w′b f .

4.6 PREDICTION AND FORECASTING

After the estimation of the model parameters, a common use of regression modeling
is for prediction of the dependent variable. We make a distinction between “predic-
tion” and “forecasting” most easily based on the difference between cross section and
time-series modeling. Prediction (which would apply to either case) involves using the
regression model to compute fitted (predicted) values of the dependent variable, ei-
ther within the sample or for observations outside the sample. The same set of results
will apply to cross sections, panels, and time series. We consider these methods first.
Forecasting, while largely the same exercise, explicitly gives a role to “time” and often
involves lagged dependent variables and disturbances that are correlated with their
past values. This exercise usually involves predicting future outcomes. An important
difference between predicting and forecasting (as defined here) is that for predicting,
we are usually examining a “scenario” of our own design. Thus, in the example below
in which we are predicting the prices of Monet paintings, we might be interested in
predicting the price of a hypothetical painting of a certain size and aspect ratio, or one
that actually exists in the sample. In the time-series context, we will often try to forecast
an event such as real investment next year, not based on a hypothetical economy but
based on our best estimate of what economic conditions will be next year. We will use
the term ex post prediction (or ex post forecast) for the cases in which the data used
in the regression equation to make the prediction are either observed or constructed
experimentally by the analyst. This would be the first case considered here. An ex ante
forecast (in the time-series context) will be one that requires the analyst to forecast the
independent variables first before it is possible to forecast the dependent variable. In
an exercise for this chapter, real investment is forecasted using a regression model that
contains real GDP and the consumer price index. In order to forecast real investment,
we must first forecast real GDP and the price index. Ex ante forecasting is considered
briefly here and again in Chapter 20.
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4.6.1 PREDICTION INTERVALS

Suppose that we wish to predict the value of y0 associated with a regressor vector x0.
The actual value would be

y0 = x0′β + ε0.

It follows from the Gauss–Markov theorem that

ŷ0 = x0′b (4-45)

is the minimum variance linear unbiased estimator of E[y0|x0] = x0′β. The prediction
error is

e0 = ŷ0 − y0 = (b − β)′ x0 + ε0.

The prediction variance of this estimator is

Var[e0|X, x0] = σ 2 + Var[(b − β)′x0|X, x0] = σ 2 + x0′[σ 2(X′X)−1]x0. (4-46)

If the regression contains a constant term, then an equivalent expression is

Var[e0|X, x0] = σ 2

⎡
⎣1 + 1

n
+

K−1∑
j=1

K−1∑
k=1

(
x0

j − x̄ j
) (

x0
k − x̄k

) (
Z′M0Z

) jk

⎤
⎦, (4-47)

where Z is the K − 1 columns of X not including the constant, Z′M0Z is the matrix of
sums of squares and products for the columns of X in deviations from their means [see
(3-21)] and the “jk” superscript indicates the jk element of the inverse of the matrix.
This result suggests that the width of a confidence interval (i.e., a prediction interval)
depends on the distance of the elements of x0 from the center of the data. Intuitively, this
idea makes sense; the farther the forecasted point is from the center of our experience,
the greater is the degree of uncertainty. Figure 4.5 shows the effect for the bivariate
case. Note that the prediction variance is composed of three parts. The second and third
become progressively smaller as we accumulate more data (i.e., as n increases). But,
the first term, σ 2 is constant, which implies that no matter how much data we have, we
can never predict perfectly.

The prediction variance can be estimated by using s2 in place of σ 2. A confidence
(prediction) interval for y0 would then be formed using

prediction interval = ŷ0 ± t(1−α/2),[n−K]se
(
e0) (4-48)

where t(1−α/2),[n–K] is the appropriate critical value for 100(1 − α) percent significance
from the t table for n − K degrees of freedom and se(e0) is the square root of the
estimated prediction variance.

4.6.2 PREDICTING y WHEN THE REGRESSION MODEL
DESCRIBES LOG y

It is common to use the regression model to describe a function of the dependent
variable, rather than the variable, itself. In Example 4.5 we model the sale prices of
Monet paintings using

ln Price = β1 + β2 ln Area + β3AspectRatio + ε.
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FIGURE 4.5 Prediction Intervals.

(Area is width times height of the painting and aspect ratio is the height divided by
the width.) The log form is convenient in that the coefficient provides the elasticity of
the dependent variable with respect to the independent variable, that is, in this model,
β2 = ∂ E[lnPrice|lnArea,AspectRatio]/∂lnArea. However, the equation in this form is
less interesting for prediction purposes than one that predicts the price, itself. The
natural approach for a predictor of the form

ln y0 = x0′b

would be to use

ŷ0 = exp(x0′b).

The problem is that E[y|x0] is not equal to exp(E[ln y|x0]). The appropriate conditional
mean function would be

E[y|x0] = E[exp(x0′β + ε0)|x0]

= exp(x0′β)E[exp(ε0)|x0].

The second term is not exp(E[ε0|x0]) = 1 in general. The precise result if ε0|x0 is
normally distributed with mean zero and variance σ 2 is E[exp(ε0)|x0] = exp(σ 2/2).
(See Section B.4.4.) The implication for normally distributed disturbances would be
that an appropriate predictor for the conditional mean would be

ŷ0 = exp(x0′b + s2/2) > exp(x0′b), (4-49)

which would seem to imply that the naı̈ve predictor would systematically underpredict
y. However, this is not necessarily the appropriate interpretation of this result. The
inequality implies that the naı̈ve predictor will systematically underestimate the condi-
tional mean function, not necessarily the realizations of the variable itself. The pertinent
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question is whether the conditional mean function is the desired predictor for the ex-
ponent of the dependent variable in the log regression. The conditional median might
be more interesting, particularly for a financial variable such as income, expenditure, or
the price of a painting. If the distribution of the variable in the log regression is symmet-
rically distributed (as they are when the disturbances are normally distributed), then
the exponent will be asymmetrically distributed with a long tail in the positive direction,
and the mean will exceed the median, possibly vastly so. In such cases, the median is
often a preferred estimator of the center of a distribution. For estimating the median,
rather then the mean, we would revert to the original naı̈ve predictor, ŷ0 = exp(x0′b).

Given the preceding, we consider estimating E[exp(y)|x0]. If we wish to avoid the
normality assumption, then it remains to determine what one should use for E[exp(ε0)|
x0]. Duan (1983) suggested the consistent estimator (assuming that the expectation is a
constant, that is, that the regression is homoscedastic),

Ê[exp(ε0)|x0] = h0 = 1
n

∑n

i=1
exp(ei ), (4-50)

where ei is a least squares residual in the original log form regression. Then, Duan’s
smearing estimator for prediction of y0 is

ŷ0 = h0 exp(x0′b ).

4.6.3 PREDICTION INTERVAL FOR y WHEN THE REGRESSION
MODEL DESCRIBES LOG y

We obtained a prediction interval in (4-48) for ln y|x0 in the loglinear model lny =
x′β + ε,

[
ln ŷ0

LOWER, ln ŷ0
UPPER

] =
[

x0′b − t(1−α/2),[n−K]se
(

e0
)

, x0′b + t(1−α/2),[n−K]se
(
e0)

]
.

For a given choice of α, say, 0.05, these values give the 0.025 and 0.975 quantiles of
the distribution of ln y|x0. If we wish specifically to estimate these quantiles of the
distribution of y|x0, not lny|x0, then we would use:
[
ŷ0

LOWER, ŷ0
UPPER

]= {
exp

[
x0′b − t(1−α/2),[n−K]se

(
e0)], exp

[
x0′b + t(1−α/2),[n−K]se

(
e0)]}.

(4-51)
This follows from the result that if Prob[ln y ≤ ln L] = 1 − α/2, then Prob[ y ≤ L] =
1−α/2. The result is that the natural estimator is the right one for estimating the specific
quantiles of the distribution of the original variable. However, if the objective is to find
an interval estimator for y|x0 that is as narrow as possible, then this approach is not
optimal. If the distribution of y is asymmetric, as it would be for a loglinear model
with normally distributed disturbances, then the naı̈ve interval estimator is longer than
necessary. Figure 4.6 shows why. We suppose that (L, U) in the figure is the prediction
interval formed by (4-51). Then, the probabilities to the left of L and to the right of U
each equal α/2. Consider alternatives L0 = 0 and U0 instead. As we have constructed
the figure, the area (probability) between L0 and L equals the area between U0 and U.
But, because the density is so much higher at L, the distance (0, U0), the dashed interval,
is visibly shorter than that between (L, U). The sum of the two tail probabilities is still
equal to α, so this provides a shorter prediction interval. We could improve on (4-51) by
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using, instead, (0, U0) where U0 is simply exp[x0′b + t(1−α),[n−K]se(e0)] (i.e., we put the
entire tail area to the right of the upper value). However, while this is an improvement,
it goes too far, as we now demonstrate.

Consider finding directly the shortest prediction interval. We treat this as an opti-
mization problem:

Minimize(L, U) : I = U − Lsubject to F(L) + [1 − F(U)] = α,

where F is the cdf of the random variable y (not lny). That is, we seek the shortest interval
for which the two tail probabilities sum to our desired α (usually 0.05). Formulate this
as a Lagrangean problem,

Minimize(L, U, λ) : I∗ = U − L+ λ[F(L) + (1 − F(U)) − α].

The solutions are found by equating the three partial derivatives to zero:

∂ I∗/∂L = −1 + λ f (L) = 0,

∂ I∗/∂U = 1 − λ f (U) = 0,

∂ I∗/∂λ = F(L) + [1 − F(U)] − α = 0,

where f (L) = F ′(L) and f (U) = F ′(U) are the derivtives of the cdf, which are the
densities of the random variable at L and U, respectively. The third equation enforces
the restriction that the two tail areas sum to α but does not force them to be equal. By
adding the first two equations, we find that λ[ f(L) − f(U)] = 0, which, if λ is not zero,
means that the solution is obtained by locating (L∗, U∗) such that the tail areas sum to
α and the densities are equal. Looking again at Figure 4.6, we can see that the solution
we would seek is (L∗, U∗) where 0 < L∗ < L and U∗ < U0. This is the shortest interval,
and it is shorter than both [0, U0] and [L, U]

This derivation would apply for any distribution, symmetric or otherwise. For a
symmetric distribution, however, we would obviously return to the symmetric inter-
val in (4-51). It provides the correct solution for when the distribution is asymmetric.

FIGURE 4.6 Lognormal Distribution for Prices of Monet Paintings.
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In Bayesian analysis, the counterpart when we examine the distribution of a parameter
conditioned on the data, is the highest posterior density interval. (See Section 16.4.2.)
For practical application, this computation requires a specific assumption for the dis-
tribution of y|x0, such as lognormal. Typically, we would use the smearing estimator
specifically to avoid the distributional assumption. There also is no simple formula to
use to locate this interval, even for the lognormal distribution. A crude grid search
would probably be best, though each computation is very simple. What this derivation
does establish is that one can do substantially better than the naı̈ve interval estimator,
for example using [0, U0].

Example 4.10 Pricing Art
In Example 4.5, we suggested an intriguing feature of the market for Monet paintings, that
larger paintings sold at auction for more than than smaller ones. In this example, we will
examine that proposition empirically. Table F4.1 contains data on 430 auction prices for
Monet paintings, with data on the dimensions of the paintings and several other variables
that we will examine in later examples. Figure 4.7 shows a histogram for the sample of sale
prices (in $million). Figure 4.8 shows a histogram for the logs of the prices.

Results of the linear regression of lnPrice on lnArea (height times width) and Aspect Ratio
(height divided by width) are given in Table 4.6.

We consider using the regression model to predict the price of one of the paintings, a 1903
painting of Charing Cross Bridge that sold for $3,522,500. The painting is 25.6” high and 31.9”
wide. (This is observation 60 in the sample.) The log area equals ln(25.6 × 31.9) = 6.705198
and the aspect ratio equals 25.6/31.9 = 0.802508. The prediction for the log of the price
would be

ln P|x0 = −8.42653 + 1.33372(6.705198) − 0.16537(0.802508) = 0.383636.

FIGURE 4.7 Histogram for Sale Prices of 430 Monet Paintings
($million).
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FIGURE 4.8 Histogram of Logs of Auction Prices for Monet
Paintings.

TABLE 4.6 Estimated Equation for Log Price

Mean of log Price 0.33274
Sum of squared residuals 519.17235
Standard error of regression 1.10266
R-squared 0.33620
Adjusted R-squared 0.33309
Number of observations 430

Standard Mean
Variable Coefficient Error t of X

Constant −8.42653 0.61183 −13.77 1.00000
LogArea 1.33372 0.09072 14.70 6.68007
AspectRatio −0.16537 0.12753 −1.30 0.90759

Estimated Asymptotic Covariance Matrix

Constant LogArea AspectRatio

Constant 0.37434 −0.05429 −0.00974
LogArea −0.05429 0.00823 −0.00075
AspectRatio −0.00974 −0.00075 0.01626

Note that the mean log price is 0.33274, so this painting is expected to sell for roughly
5 percent more than the average painting, based on its dimensions. The estimate of the
prediction variance is computed using (4-47); sp = 1.104027. The sample is large enough
to use the critical value from the standard normal table, 1.96, for a 95 percent confidence
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interval. A prediction interval for the log of the price is therefore

0.383636 ± 1.96(1.104027) = [−1.780258, 2.547529].

For predicting the price, the naı̈ve predictor would be exp(0.383636) = $1.476411M, which is
far under the actual sale price of $3.5225M. To compute the smearing estimator, we require
the mean of the exponents of the residuals, which is 1.813045. The revised point estimate
for the price would thus be 1.813045 × 1.47641 = $2.660844M—this is better, but still fairly
far off. This particular painting seems to have sold for relatively more than history (the data)
would have predicted.

To compute an interval estimate for the price, we begin with the naı̈ve prediction by simply
exponentiating the lower and upper values for the log price, which gives a prediction interval
for 95 percent confidence of [$0.168595M, $12.77503M]. Using the method suggested in
Section 4.6.3, however, we are able to narrow this interval to [0.021261, 9.027543], a range
of $9M compared to the range based on the simple calculation of $12.5M. The interval divides
the 0.05 tail probability into 0.00063 on the left and 0.04937 on the right. The search algorithm
is outlined next.

Grid Search Algorithm for Optimal Prediction Interval [LO, UO]
x0 = (1, l og(25.6 × 31.9) , 25.6/31.9) ′;
μ̂0 = exp(x0′b) , σ̂ 0

p =
√

s2 + x0′[s2(X′X)−1]x0;
Confidence interval for logP|x0: [Lower, Upper] = [μ̂0 − 1.96σ̂ 0

p , μ̂0 + 1.96σ̂ 0
p ];

Naı̈ve confidence interval for Price|x0: L1 = exp(Lower) ; U1 = exp(Upper);
Initial value of L was .168595, LO = this value;
Grid search for optimal interval, decrement by � = .005 (chosen ad hoc);
Decrement LO and compute companion UO until densities match;
(*) LO = LO − � = new value of LO;
f(LO) = [

L Oσ̂ 0
p

√
2π

]−1
exp

[
− 1

2

(
( ln L O − μ̂0)/σ̂ 0

p

)2
]
;

F(LO) = �((ln(LO) – μ̂0) / σ̂ 0
p ) = left tail probability;

UO = exp(σ̂ 0
p�−1 [F(LO) + 0.95] + μ̂0) = next value of UO;

f(UO) = [
U Oσ̂ 0

p

√
2π

]−1
exp

[
− 1

2

(
( ln U O − μ̂0)/σ̂ 0

p

)2
]
;

1 − F(UO) = 1 − �((ln(UO) – μ̂0) /σ̂ 0
p ) = right tail probability;

Compare f(LO) to f(UO). If not equal, return to (∗). If equal, exit.

4.6.4 FORECASTING

The preceding discussion assumes that x0 is known with certainty, ex post, or has been
forecast perfectly, ex ante. If x0 must, itself, be forecast (an ex ante forecast), then the
formula for the forecast variance in (4-46) would have to be modified to incorporate the
uncertainty in forecasting x0. This would be analogous to the term σ 2 in the prediction
variance that accounts for the implicit prediction of ε0. This will vastly complicate
the computation. Many authors view it as simply intractable. Beginning with Feldstein
(1971), derivation of firm analytical results for the correct forecast variance for this
case remain to be derived except for simple special cases. The one qualitative result
that seems certain is that (4-46) will understate the true variance. McCullough (1996)
presents an alternative approach to computing appropriate forecast standard errors
based on the method of bootstrapping. (See Chapter 15.)
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Various measures have been proposed for assessing the predictive accuracy of fore-
casting models.12 Most of these measures are designed to evaluate ex post forecasts, that
is, forecasts for which the independent variables do not themselves have to be forecast.
Two measures that are based on the residuals from the forecasts are the root mean
squared error,

RMSE =
√

1
n0

∑
i

(yi − ŷi )
2,

and the mean absolute error,

MAE = 1
n0

∑
i

|yi − ŷi |,

where n0 is the number of periods being forecasted. (Note that both of these, as well as
the following measures, below are backward looking in that they are computed using the
observed data on the independent variable.) These statistics have an obvious scaling
problem—multiplying values of the dependent variable by any scalar multiplies the
measure by that scalar as well. Several measures that are scale free are based on the
Theil U statistic:13

U =
√

(1/n0)
∑

i (yi − ŷi )
2

(1/n0)
∑

i y2
i

.

This measure is related to R2 but is not bounded by zero and one. Large values indicate
a poor forecasting performance. An alternative is to compute the measure in terms of
the changes in y:

U� =
√√√√ (1/n0)

∑
i (�yi − �ŷi )

2

(1/n0)
∑

i

(
�yi

)2

where �yi = yi – yi−1 and �ŷi = ŷi − yi−1, or, in percentage changes, �yi = (yi –
yi−1)/yi−1 and �ŷi = (ŷi − yi−1)/yi−1. These measures will reflect the model’s ability to
track turning points in the data.

4.7 DATA PROBLEMS

The analysis to this point has assumed that the data in hand, X and y, are well measured
and correspond to the assumptions of the model in Table 2.1 and to the variables
described by the underlying theory. At this point, we consider several ways that “real-
world” observed nonexperimental data fail to meet the assumptions. Failure of the
assumptions generally has implications for the performance of the estimators of the

12See Theil (1961) and Fair (1984).
13Theil (1961).



Greene-2140242 book January 19, 2011 20:48

CHAPTER 4 ✦ The Least Squares Estimator 129

model parameters—unfortunately, none of them good. The cases we will examine are

• Multicollinearity: Although the full rank assumption, A2, is met, it almost fails.
(“Almost” is a matter of degree, and sometimes a matter of interpretation.)
Multicollinearity leads to imprecision in the estimator, though not to any systematic
biases in estimation.

• Missing values: Gaps in X and/or y can be harmless. In many cases, the analyst
can (and should) simply ignore them, and just use the complete data in the sam-
ple. In other cases, when the data are missing for reasons that are related to the
outcome being studied, ignoring the problem can lead to inconsistency of the esti-
mators.

• Measurement error: Data often correspond only imperfectly to the theoretical con-
struct that appears in the model—individual data on income and education are
familiar examples. Measurement error is never benign. The least harmful case is
measurement error in the dependent variable. In this case, at least under probably
reasonable assumptions, the implication is to degrade the fit of the model to the
data compared to the (unfortunately hypothetical) case in which the data are ac-
curately measured. Measurement error in the regressors is malignant—it produces
systematic biases in estimation that are difficult to remedy.

4.7.1 MULTICOLLINEARITY

The Gauss–Markov theorem states that among all linear unbiased estimators, the least
squares estimator has the smallest variance. Although this result is useful, it does not
assure us that the least squares estimator has a small variance in any absolute sense.
Consider, for example, a model that contains two explanatory variables and a constant.
For either slope coefficient,

Var[bk | X] = σ 2
(
1 − r2

12

) ∑n
i=1(xik − xk)2

= σ 2
(
1 − r2

12

)
Skk

, k = 1, 2. (4-52)

If the two variables are perfectly correlated, then the variance is infinite. The case of
an exact linear relationship among the regressors is a serious failure of the assumptions
of the model, not of the data. The more common case is one in which the variables
are highly, but not perfectly, correlated. In this instance, the regression model retains
all its assumed properties, although potentially severe statistical problems arise. The
problem faced by applied researchers when regressors are highly, although not per-
fectly, correlated include the following symptoms:

• Small changes in the data produce wide swings in the parameter estimates.
• Coefficients may have very high standard errors and low significance levels even

though they are jointly significant and the R2 for the regression is quite high.
• Coefficients may have the “wrong” sign or implausible magnitudes.

For convenience, define the data matrix, X, to contain a constant and K − 1 other
variables measured in deviations from their means. Let xk denote the kth variable, and
let X(k) denote all the other variables (including the constant term). Then, in the inverse
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matrix, (X′X)−1, the kth diagonal element is
(
x′

kM(k)xk
)−1 = [

x′
kxk − x′

kX(k)

(
X′

(k)X(k)

)−1X′
(k)xk

]−1

=
[

x′
kxk

(
1 − x′

kX(k)

(
X′

(k)X(k)

)−1X′
(k)xk

x′
kxk

)]−1

= 1(
1 − R2

k.

)
Skk

,

(4-53)

where R2
k. is the R2 in the regression of xk on all the other variables. In the multiple

regression model, the variance of the kth least squares coefficient estimator is σ 2 times
this ratio. It then follows that the more highly correlated a variable is with the other
variables in the model (collectively), the greater its variance will be. In the most extreme
case, in which xk can be written as a linear combination of the other variables, so that
R2

k. = 1, the variance becomes infinite. The result

Var[bk | X] = σ 2
(
1 − R2

k.

) ∑n
i=1(xik − xk)2

, (4-54)

shows the three ingredients of the precision of the kth least squares coefficient estimator:

• Other things being equal, the greater the correlation of xk with the other variables,
the higher the variance will be, due to multicollinearity.

• Other things being equal, the greater the variation in xk, the lower the variance will
be. This result is shown in Figure 4.3.

• Other things being equal, the better the overall fit of the regression, the lower
the variance will be. This result would follow from a lower value of σ 2. We have
yet to develop this implication, but it can be suggested by Figure 4.3 by imagining
the identical figure in the right panel but with all the points moved closer to the
regression line.

Since nonexperimental data will never be orthogonal (R2
k. = 0), to some extent

multicollinearity will always be present. When is multicollinearity a problem? That is,
when are the variances of our estimates so adversely affected by this intercorrelation that
we should be “concerned”? Some computer packages report a variance inflation factor
(VIF), 1/(1 − R2

k.), for each coefficient in a regression as a diagnostic statistic. As can
be seen, the VIF for a variable shows the increase in Var[bk] that can be attributable to
the fact that this variable is not orthogonal to the other variables in the model. Another
measure that is specifically directed at X is the condition number of X′X, which is the
square root of the ratio of the largest characteristic root of X′X (after scaling each
column so that it has unit length) to the smallest. Values in excess of 20 are suggested
as indicative of a problem [Belsley, Kuh, and Welsch (1980)]. (The condition number
for the Longley data of Example 4.11 is over 15,000!)

Example 4.11 Multicollinearity in the Longley Data
The data in Appendix Table F4.2 were assembled by J. Longley (1967) for the purpose of as-
sessing the accuracy of least squares computations by computer programs. (These data are
still widely used for that purpose.) The Longley data are notorious for severe multicollinearity.
Note, for example, the last year of the data set. The last observation does not appear to
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TABLE 4.7 Longley Results: Dependent Variable is Employment

1947–1961 Variance Inflation 1947–1962

Constant 1,459,415 1,169,087
Year −721.756 143.4638 −576.464
GNP deflator −181.123 75.6716 −19.7681
GNP 0.0910678 132.467 0.0643940
Armed Forces −0.0749370 1.55319 −0.0101453

be unusual. But, the results in Table 4.7 show the dramatic effect of dropping this single
observation from a regression of employment on a constant and the other variables. The last
coefficient rises by 600 percent, and the third rises by 800 percent.

Several strategies have been proposed for finding and coping with multicollinear-
ity.14 Under the view that a multicollinearity “problem” arises because of a shortage
of information, one suggestion is to obtain more data. One might argue that if ana-
lysts had such additional information available at the outset, they ought to have used
it before reaching this juncture. More information need not mean more observations,
however. The obvious practical remedy (and surely the most frequently used) is to
drop variables suspected of causing the problem from the regression—that is, to im-
pose on the regression an assumption, possibly erroneous, that the “problem” variable
does not appear in the model. In doing so, one encounters the problems of specification
that we will discuss in Section 4.7.2. If the variable that is dropped actually belongs in the
model (in the sense that its coefficient, βk, is not zero), then estimates of the remaining
coefficients will be biased, possibly severely so. On the other hand, overfitting—that is,
trying to estimate a model that is too large—is a common error, and dropping variables
from an excessively specified model might have some virtue.

Using diagnostic tools to “detect” multicollinearity could be viewed as an attempt
to distinguish a bad model from bad data. But, in fact, the problem only stems from
a prior opinion with which the data seem to be in conflict. A finding that suggests
multicollinearity is adversely affecting the estimates seems to suggest that but for this
effect, all the coefficients would be statistically significant and of the right sign. Of course,
this situation need not be the case. If the data suggest that a variable is unimportant in
a model, then, the theory notwithstanding, the researcher ultimately has to decide how
strong the commitment is to that theory. Suggested “remedies” for multicollinearity
might well amount to attempts to force the theory on the data.

4.7.2 PRETEST ESTIMATION

As a response to what appears to be a “multicollinearity problem,” it is often difficult
to resist the temptation to drop what appears to be an offending variable from the
regression, if it seems to be the one causing the problem. This “strategy” creates a
subtle dilemma for the analyst. Consider the partitioned multiple regression

y = X1β1 + X2β2 + ε.

14See Hill and Adkins (2001) for a description of the standard set of tools for diagnosing collinearity.
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If we regress y only on X1, the estimator is biased;

E[b1|X] = β1 + P1.2β2.

The covariance matrix of this estimator is

Var[b1|X] = σ 2(X′
1X1)

−1.

(Keep in mind, this variance is around the E[b1|X], not around β1.) If β2 is not actually
zero, then in the multiple regression of y on (X1, X2), the variance of b1.2 around its
mean, β1 would be

Var[b1.2|X] = σ 2(X′
1M2X1)

−1

where

M2 = I − X2(X′
2X2)

−1X′
2,

or

Var[b1.2|X] = σ 2[X′
1X1 − X′

1X2(X′
2X2)

−1X′
2X1]−1.

We compare the two covariance matrices. It is simpler to compare the inverses. [See
result (A-120).] Thus,

{Var[b1|X]}−1 − {Var[b1.2|X]}−1 = (1/σ 2)X′
1X2(X′

2X2)
−1X′

2X1,

which is a nonnegative definite matrix. The implication is that the variance of b1 is not
larger than the variance of b1.2 (since its inverse is at least as large). It follows that
although b1 is biased, its variance is never larger than the variance of the unbiased
estimator. In any realistic case (i.e., if X′

1X2 is not zero), in fact it will be smaller. We
get a useful comparison from a simple regression with two variables measured as de-
viations from their means. Then, Var[b1|X] = σ 2/S11 where S11 = ∑n

i=1 (xi1 − x̄1)
2 and

Var[b1.2|X] = σ 2/[S11(1 − r2
12)] where r2

12 is the squared correlation between x1 and x2.
The result in the preceding paragraph poses a bit of a dilemma for applied re-

searchers. The situation arises frequently in the search for a model specification. Faced
with a variable that a researcher suspects should be in the model, but that is causing a
problem of multicollinearity, the analyst faces a choice of omitting the relevant variable
or including it and estimating its (and all the other variables’) coefficient imprecisely.
This presents a choice between two estimators, b1 and b1.2. In fact, what researchers usu-
ally do actually creates a third estimator. It is common to include the problem variable
provisionally. If its t ratio is sufficiently large, it is retained; otherwise it is discarded. This
third estimator is called a pretest estimator. What is known about pretest estimators is
not encouraging. Certainly they are biased. How badly depends on the unknown pa-
rameters. Analytical results suggest that the pretest estimator is the least precise of the
three when the researcher is most likely to use it. [See Judge et al. (1985).] The conclu-
sion to be drawn is that as a general rule, the methodology leans away from estimation
strategies that include ad hoc remedies for multicollinearity.

4.7.3 PRINCIPAL COMPONENTS

A device that has been suggested for “reducing” multicollinearity [see, e.g., Gurmu,
Rilstone, and Stern (1999)] is to use a small number, say L, of principal components
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constructed as linear combinations of the K original variables. [See Johnson and Wichern
(2005, Chapter 8).] (The mechanics are illustrated in Example 4.12.) The argument
against using this approach is that if the original specification in the form y = Xβ + ε

were correct, then it is unclear what one is estimating when one regresses y on some
small set of linear combinations of the columns of X. For a set of L < K principal com-
ponents, if we regress y on Z = XCL to obtain d, it follows that E[d] = δ = C′

Lβ. (The
proof is considered in the exercises.) In an economic context, if β has an interpretation,
then it is unlikely that δ will. (E.g., how do we interpret the price elasticity minus twice
the income elasticity?)

This orthodox interpretation cautions the analyst about mechanical devices for cop-
ing with multicollinearity that produce uninterpretable mixtures of the coefficients. But
there are also situations in which the model is built on a platform that might well in-
volve a mixture of some measured variables. For example, one might be interested in a
regression model that contains “ability,” ambiguously defined. As a measured counter-
part, the analyst might have in hand standardized scores on a set of tests, none of which
individually has any particular meaning in the context of the model. In this case, a mix-
ture of the measured test scores might serve as one’s preferred proxy for the underlying
variable. The study in Example 4.12 describes another natural example.

Example 4.12 Predicting Movie Success
Predicting the box office success of movies is a favorite exercise for econometricians. [See,
e.g., Litman (1983), Ravid (1999), De Vany (2003), De Vany and Walls (1999, 2002, 2003), and
Simonoff and Sparrow (2000).] The traditional predicting equation takes the form

Box Office Receipts = f(Budget, Genre, MPAA Rating, Star Power, Sequel, etc.) + ε.

Coefficients of determination on the order of 0.4 are fairly common. Notwithstanding the
relative power of such models, the common wisdom in Hollywood is “nobody knows.” There
is tremendous randomness in movie success, and few really believe they can forecast it
with any reliability.15 Versaci (2009) added a new element to the model, “Internet buzz.”
Internet buzz is vaguely defined to be Internet traffic and interest on familiar web sites such
as RottenTomatoes.com, ImDB.com, Fandango.com, and traileraddict.com. None of these
by itself defines Internet buzz. But, collectively, activity on these Web sites, say three weeks
before a movie’s opening, might be a useful predictor of upcoming success. Versaci’s data
set (Table F4.3) contains data for 62 movies released in 2009, including four Internet buzz
variables, all measured three weeks prior to the release of the movie:

buzz1 = number of Internet views of movie trailer at traileraddict.com
buzz2 = number of message board comments about the movie at ComingSoon.net
buzz3 = total number of “can’t wait” (for release) plus “don’t care” votes at Fandango.com
buzz4 = percentage of Fandango votes that are “can’t wait”

We have aggregated these into a single principal component as follows: We first com-
puted the logs of buzz1 – buzz3 to remove the scale effects. We then standardized the four
variables, so zk contains the original variable minus its mean, z̄k, then divided by its standard
deviation, sk. Let Z denote the resulting 62 × 4 matrix (z1, z2, z3, z4) . Then V = (1/61)Z′Z
is the sample correlation matrix. Let c1 be the characteristic vector of V associated with
the largest characteristic root. The first principal component (the one that explains most of
the variation of the four variables) is Zc1. (The roots are 2.4142, 0.7742, 0.4522, 0.3585, so

15The assertion that “nobody knows” will be tested on a newly formed (April 2010) futures exchange
where investors can place early bets on movie success (and producers can hedge their own bets). See
http://www.cantorexchange.com/ for discussion. The real money exchange was created by Cantor Fitzgerald,
Inc. after they purchased the popular culture web site Hollywood Stock Exchange.
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TABLE 4.8 Regression Results for Movie Success

Internet Buzz Model Traditional Model
e′e 22.30215 35.66514
R2 0.58883 0.34247

Variable Coefficient Std.Error t Coefficient Std.Error t

Constant 15.4002 0.64273 23.96 13.5768 0.68825 19.73
ACTION −0.86932 0.29333 −2.96 −0.30682 0.34401 −0.89

COMEDY −0.01622 0.25608 −0.06 −0.03845 0.32061 −0.12
ANIMATED −0.83324 0.43022 −1.94 −0.82032 0.53869 −1.52

HORROR 0.37460 0.37109 1.01 1.02644 0.44008 2.33
G 0.38440 0.55315 0.69 0.25242 0.69196 0.36

PG 0.53359 0.29976 1.78 0.32970 0.37243 0.89
PG13 0.21505 0.21885 0.98 0.07176 0.27206 0.26

LOGBUDGT 0.26088 0.18529 1.41 0.70914 0.20812 3.41
SEQUEL 0.27505 0.27313 1.01 0.64368 0.33143 1.94

STARPOWR 0.00433 0.01285 0.34 0.00648 0.01608 0.40
BUZZ 0.42906 0.07839 5.47

the first principal component explains 2.4142/4 or 60.3 percent of the variation. Table 4.8
shows the regression results for the sample of 62 2009 movies. It appears that Internet buzz
adds substantially to the predictive power of the regression. The R2 of the regression nearly
doubles, from 0.34 to 0.58 when Internet buzz is added to the model. As we will discuss in
Chapter 5, buzz is also a highly “significant” predictor of success.

4.7.4 MISSING VALUES AND DATA IMPUTATION

It is common for data sets to have gaps, for a variety of reasons. Perhaps the most
frequent occurrence of this problem is in survey data, in which respondents may simply
fail to respond to the questions. In a time series, the data may be missing because they
do not exist at the frequency we wish to observe them; for example, the model may
specify monthly relationships, but some variables are observed only quarterly. In panel
data sets, the gaps in the data may arise because of attrition from the study. This is
particularly common in health and medical research, when individuals choose to leave
the study—possibly because of the success or failure of the treatment that is being
studied.

There are several possible cases to consider, depending on why the data are missing.
The data may be simply unavailable, for reasons unknown to the analyst and unrelated
to the completeness or the values of the other observations in the sample. This is the
most benign situation. If this is the case, then the complete observations in the sample
constitute a usable data set, and the only issue is what possibly helpful information could
be salvaged from the incomplete observations. Griliches (1986) calls this the ignorable
case in that, for purposes of estimation, if we are not concerned with efficiency, then
we may simply delete the incomplete observations and ignore the problem. Rubin
(1976, 1987) and Little and Rubin (1987, 2002) label this case missing completely at
random, or MCAR. A second case, which has attracted a great deal of attention in
the econometrics literature, is that in which the gaps in the data set are not benign but
are systematically related to the phenomenon being modeled. This case happens most
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often in surveys when the data are “self-selected” or “self-reported.”16 For example, if
a survey were designed to study expenditure patterns and if high-income individuals
tended to withhold information about their income, then the gaps in the data set would
represent more than just missing information. The clinical trial case is another instance.
In this (worst) case, the complete observations would be qualitatively different from a
sample taken at random from the full population. The missing data in this situation are
termed not missing at random, or NMAR. We treat this second case in Chapter 19 with
the subject of sample selection, so we shall defer our discussion until later.

The intermediate case is that in which there is information about the missing data
contained in the complete observations that can be used to improve inference about
the model. The incomplete observations in this missing at random (MAR) case are also
ignorable, in the sense that unlike the NMAR case, simply using the complete data does
not induce any biases in the analysis, as long as the underlying process that produces the
missingness in the data does not share parameters with the model that is being estimated,
which seems likely. [See Allison (2002).] This case is unlikely, of course, if “missingness”
is based on the values of the dependent variable in a regression. Ignoring the incomplete
observations when they are MAR but not MCAR, does ignore information that is in the
sample and therefore sacrifices some efficiency. Researchers have used a variety of data
imputation methods to fill gaps in data sets. The (by far) simplest case occurs when the
gaps occur in the data on the regressors. For the case of missing data on the regressors,
it helps to consider the simple regression and multiple regression cases separately. In
the first case, X has two columns: the column of 1s for the constant and a column with
some blanks where the missing data would be if we had them. The zero-order method of
replacing each missing x with x̄ based on the observed data results in no changes and is
equivalent to dropping the incomplete data. (See Exercise 7 in Chapter 3.) However, the
R2 will be lower. An alternative, modified zero-order regression fills the second column
of X with zeros and adds a variable that takes the value one for missing observations
and zero for complete ones.17 We leave it as an exercise to show that this is algebraically
identical to simply filling the gaps with x̄. There is also the possibility of computing fitted
values for the missing x’s by a regression of x on y in the complete data. The sampling
properties of the resulting estimator are largely unknown, but what evidence there is
suggests that this is not a beneficial way to proceed.18

These same methods can be used when there are multiple regressors. Once again, it
is tempting to replace missing values of xk with simple means of complete observations
or with the predictions from linear regressions based on other variables in the model
for which data are available when xk is missing. In most cases in this setting, a general
characterization can be based on the principle that for any missing observation, the

16The vast surveys of Americans’ opinions about sex by Ann Landers (1984, passim) and Shere Hite (1987)
constitute two celebrated studies that were surely tainted by a heavy dose of self-selection bias. The latter was
pilloried in numerous publications for purporting to represent the population at large instead of the opinions
of those strongly enough inclined to respond to the survey. The former was presented with much greater
modesty.
17See Maddala (1977a, p. 202).
18Afifi and Elashoff (1966, 1967) and Haitovsky (l968). Griliches (1986) considers a number of other
possibilities.
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“true” unobserved xik is being replaced by an erroneous proxy that we might view
as x̂ik = xik + uik, that is, in the framework of measurement error. Generally, the least
squares estimator is biased (and inconsistent) in the presence of measurement error such
as this. (We will explore the issue in Chapter 8.) A question does remain: Is the bias
likely to be reasonably small? As intuition should suggest, it depends on two features
of the data: (a) how good the prediction of xik is in the sense of how large the variance
of the measurement error, uik, is compared to that of the actual data, xik, and (b) how
large a proportion of the sample the analyst is filling.

The regression method replaces each missing value on an xk with a single prediction
from a linear regression of xk on other exogenous variables—in essence, replacing
the missing xik with an estimate of it based on the regression model. In a Bayesian
setting, some applications that involve unobservable variables (such as our example
for a binary choice model in Chapter 17) use a technique called data augmentation to
treat the unobserved data as unknown “parameters” to be estimated with the structural
parameters, such as β in our regression model. Building on this logic researchers, for
example, Rubin (1987) and Allison (2002) have suggested taking a similar approach in
classical estimation settings. The technique involves a data imputation step that is similar
to what was suggested earlier, but with an extension that recognizes the variability in
the estimation of the regression model used to compute the predictions. To illustrate,
we consider the case in which the independent variable, xk is drawn in principle from a
normal population, so it is a continuously distributed variable with a mean, a variance,
and a joint distribution with other variables in the model. Formally, an imputation step
would involve the following calculations:

1. Using as much information (complete data) as the sample will provide, linearly
regress xk on other variables in the model (and/or outside it, if other information
is available), Zk, and obtain the coefficient vector dk with associated asymptotic
covariance matrix Ak and estimated disturbance variance s2

k.
2. For purposes of the imputation, we draw an observation from the estimated asymp-

totic normal distribution of dk, that is dk,m = dk + vk where vk is a vector of random
draws from the normal distribution with mean zero and covariance matrix Ak.

3. For each missing observation in xk that we wish to impute, we compute, xi,k,m =
d′

k,mzi,k + sk,mui,k where sk,m is sk divided by a random draw from the chi-squared
distribution with degrees of freedom equal to the number of degrees of freedom in
the imputation regression.

At this point, the iteration is the same as considered earlier, where the missing values
are imputed using a regression, albeit, a much more elaborate procedure. The regres-
sion is then computed using the complete data and the imputed data for the missing
observations, to produce coefficient vector bm and estimated covariance matrix, Vm.
This constitutes a single round. The technique of multiple imputation involves repeat-
ing this set of steps M times. The estimators of the parameter vector and the appropriate
asymptotic covariance matrix are

β̂ = b̄ = 1
M

∑M

m=1
bm,

V̂ = V̄ + B = 1
M

∑M

m=1
Vm +

(
1 + 1

M

) (
1

M − 1

) ∑M

m=1

(
bm − b̄

) (
bm − b̄

)′
.
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Researchers differ on the effectiveness or appropriateness of multiple imputation.
When all is said and done, the measurement error in the imputed values remains. It
takes very strong assumptions to establish that the multiplicity of iterations will suffice
to average away the effect of this error. Very elaborate techniques have been developed
for the special case of joint normally distributed cross sections of regressors such as those
suggested above. However, the typical application to survey data involves gaps due to
nonresponse to qualitative questions with binary answers. The efficacy of the theory is
much less well developed for imputation of binary, ordered, count or other qualitative
variables.

The more manageable case is missing values of the dependent variable, yi . Once
again, it must be the case that yi is at least MAR and that the mechanism that is
determining presence in the sample does not share parameters with the model itself.
Assuming the data on xi are complete for all observations, one might consider filling
the gaps in the data on yi by a two-step procedure: (1) estimate β with bc using the
complete observations, Xc and yc, then (2) fill the missing values, ym, with predictions,
ŷm = Xmbc, and recompute the coefficients. We leave as an exercise (Exercise 17) to
show that the second step estimator is exactly equal to the first. However, the variance
estimator at the second step, s2, must underestimate σ 2, intuitively because we are
adding to the sample a set of observations that are fit perfectly. [See Cameron and
Trivedi (2005, Chapter 27).] So, this is not a beneficial way to proceed. The flaw in
the method comes back to the device used to impute the missing values for yi . Recent
suggestions that appear to provide some improvement involve using a randomized
version, ŷm = Xmbc + ε̂m, where ε̂m are random draws from the (normal) population
with zero mean and estimated variance s2[I+Xm(X′

cXc)
−1X′

m]. (The estimated variance
matrix corresponds to Xmbc + εm.) This defines an iteration. After reestimating β with
the augmented data, one can return to re-impute the augmented data with the new β̂,
then recompute b, and so on. The process would continue until the estimated parameter
vector stops changing. (A subtle point to be noted here: The same random draws should
be used in each iteration. If not, there is no assurance that the iterations would ever
converge.)

In general, not much is known about the properties of estimators based on using
predicted values to fill missing values of y. Those results we do have are largely from
simulation studies based on a particular data set or pattern of missing data. The results
of these Monte Carlo studies are usually difficult to generalize. The overall conclusion
seems to be that in a single-equation regression context, filling in missing values of
y leads to biases in the estimator which are difficult to quantify. The only reasonably
clear result is that imputations are more likely to be beneficial if the proportion of
observations that are being filled is small—the smaller the better.

4.7.5 MEASUREMENT ERROR

There are any number of cases in which observed data are imperfect measures of their
theoretical counterparts in the regression model. Examples include income, education,
ability, health, “the interest rate,” output, capital, and so on. Mismeasurement of the
variables in a model will generally produce adverse consequences for least squares
estimation. Remedies are complicated and sometimes require heroic assumptions. In
this section, we will provide a brief sketch of the issues. We defer to Section 8.5 a more
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detailed discussion of the problem of measurement error, the most common solution
(instrumental variables estimation), and some applications.

It is convenient to distinguish between measurement error in the dependent variable
and measurement error in the regressor(s). For the second case, it is also useful to
consider the simple regression case and then extend it to the multiple regression model.
Consider a model to describe expected income in a population,

I∗ = x′β + ε (4-55)

where I* is the intended total income variable. Suppose the observed counterpart is I,
earnings. How I relates to I* is unclear; it is common to assume that the measurement
error is additive, so I = I* + w. Inserting this expression for I into (4-55) gives

I = x′β + ε + w

= x′β + v, (4-56)

which appears to be a slightly more complicated regression, but otherwise similar to
what we started with. As long as w and x are uncorrelated, that is the case. If w is a
homoscedastic zero mean error that is uncorrelated with x, then the only difference
between the models in (4-55) and (4-56) is that the disturbance variance in (4-56)
is σ 2

w + σ 2
ε > σ 2

ε . Otherwise both are regressions and, evidently β can be estimated
consistently by least squares in either case. The cost of the measurement error is in the
precision of the estimator, since the asymptotic variance of the estimator in (4-56) is
(σ 2

v /n)[plim(X′X/n)]−1 while it is (σ 2
ε /n)[plim(X′X/n)]−1 if β is estimated using (4-55).

The measurement error also costs some fit. To see this, note that the R2 in the sample
regression in (4-55) is

R2
∗ = 1 − (e′e/n)/(I∗′M0I∗/n).

The numerator converges to σ 2
ε while the denominator converges to the total variance

of I*, which would approach σ 2
ε + β ′Qβ where Q = plim(X′X/n). Therefore,

plimR2
∗ = β ′ Qβ/[σ 2

ε + β ′ Qβ].

The counterpart for (4-56), R2, differs only in that σ 2
ε is replaced by σ 2

v > σ 2
ε in the

denominator. It follows that

plimR2
∗ − plimR2 > 0.

This implies that the fit of the regression in (4-56) will, at least broadly in expectation,
be inferior to that in (4-55). (The preceding is an asymptotic approximation that might
not hold in every finite sample.)

These results demonstrate the implications of measurement error in the dependent
variable. We note, in passing, that if the measurement error is not additive, if it is
correlated with x, or if it has any other features such as heteroscedasticity, then the
preceding results are lost, and nothing in general can be said about the consequence of
the measurement error. Whether there is a “solution” is likewise an ambiguous question.
The preceding explanation shows that it would be better to have the underlying variable
if possible. In the absence, would it be preferable to use a proxy? Unfortunately, I is
already a proxy, so unless there exists an available I′ which has smaller measurement
error variance, we have reached an impasse. On the other hand, it does seem that the
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outcome is fairly benign. The sample does not contain as much information as we might
hope, but it does contain sufficient information consistently to estimate β and to do
appropriate statistical inference based on the information we do have.

The more difficult case occurs when the measurement error appears in the inde-
pendent variable(s). For simplicity, we retain the symbols I and I* for our observed and
theoretical variables. Consider a simple regression,

y = β1 + β2 I∗ + ε,

where y is the perfectly measured dependent variable and the same measurement equa-
tion, I = I∗ + w applies now to the independent variable. Inserting I into the equation
and rearranging a bit, we obtain

y = β1 + β2 I + (ε − β2w)

= β1 + β2 I + v. (4-57)

It appears that we have obtained (4-56) once again. Unfortunately, this is not the case,
because Cov[I, v] = Cov[I∗ + w, ε − β2w] = −β2σ

2
w . Since the regressor in (4-57) is

correlated with the disturbance, least squares regression in this case is inconsistent.
There is a bit more that can be derived—this is pursued in Section 8.5, so we state it
here without proof. In this case,

plim b2 = β2[σ 2
∗ /(σ 2

∗ + σ 2
w)]

where σ 2
∗ is the marginal variance of I*. The scale factor is less than one, so the least

squares estimator is biased toward zero. The larger is the measurement error variance,
the worse is the bias. (This is called least squares attenuation.) Now, suppose there are
additional variables in the model;

y = x′β1 + β2 I∗ + ε.

In this instance, almost no useful theoretical results are forthcoming. The following fairly
general conclusions can be drawn—once again, proofs are deferred to Section 8.5:

1. The least squares estimator of β2 is still biased toward zero.
2. All the elements of the estimator of β1 are biased, in unknown directions, even

though the variables in x are not measured with error.

Solutions to the “measurement error problem” come in two forms. If there is outside
information on certain model parameters, then it is possible to deduce the scale factors
(using the method of moments) and undo the bias. For the obvious example, in (4-57),
if σ 2

w were known, then it would be possible to deduce σ 2
∗ from Var[I] = σ 2

∗ + σ 2
w and

thereby compute the necessary scale factor to undo the bias. This sort of information is
generally not available. A second approach that has been used in many applications is
the technique of instrumental variables. This is developed in detail for this application
in Section 8.5.

4.7.6 OUTLIERS AND INFLUENTIAL OBSERVATIONS

Figure 4.9 shows a scatter plot of the data on sale prices of Monet paintings that were
used in Example 4.10. Two points have been highlighted. The one marked “I” and noted
with the square overlay shows the smallest painting in the data set. The circle marked
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FIGURE 4.9 Log Price vs. Log Area for Monet Paintings.

“O” highlights a painting that fetched an unusually low price, at least in comparison
to what the regression would have predicted. (It was not the least costly painting in
the sample, but it was the one most poorly predicted by the regression.) Since least
squares is based on squared deviations, the estimator is likely to be strongly influenced
by extreme observations such as these, particularly if the sample is not very large.

An “influential observation” is one that is likely to have a substantial impact on the
least squares regression coefficient(s). For a simple regression such as the one shown in
Figure 4.9, Belsley, Kuh, and Welsh (1980) defined an influence measure, for observa-
tion i,

hi = 1
n

+ (xi − x̄n)
2

�n
j=1(xj − x̄n)2

(4-58)

where x̄n and the summation in the denominator of the fraction are computed without
this observation. (The measure derives from the difference between b and b(i) where
the latter is computed without the particular observation. We will return to this shortly.)
It is suggested that an observation should be noted as influential if hi > 2/n. The de-
cision is whether to drop the observation or not. We should note, observations with
high “leverage” are arguably not “outliers” (which remains to be defined), because the
analysis is conditional on xi . To underscore the point, referring to Figure 4.9, this obser-
vation would be marked even if it fell precisely on the regression line—the source of the
influence is the numerator of the second term in hi , which is unrelated to the distance of
the point from the line. In our example, the “influential observation” happens to be the
result of Monet’s decision to paint a small painting. The point is that in the absence of
an underlying theory that explains (and justifies) the extreme values of xi , eliminating
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such observations is an algebraic exercise that has the effect of forcing the regression
line to be fitted with the values of xi closest to the means.

The change in the linear regression coefficient vector in a multiple regression when
an observation is added to the sample is

b − b(i) = �b = 1

1 + x′
i

(
X′

(i)X(i)
)−1 xi

(
X′

(i)X(i)
)−1 xi

(
yi − x′

i b(i)
)

(4-59)

where b is computed with observation i in the sample, b(i) is computed without observa-
tion i and X(i) does not include observation i. (See Exercise 6 in Chapter 3.) It is difficult
to single out any particular feature of the observation that would drive this change. The
influence measure,

hii = x′
i

(
X′

(i)X(i)
)−1 xi

= 1
n

+
K−1∑
j=1

K−1∑
k=1

(
xi, j − x̄n, j

) (
xi,k − x̄k

) (
Z′

(i)M
0Z(i)

) jk
, (4-60)

has been used to flag influential observations. [See, once again, Belsley, Kuh, and Welsh
(1980) and Cook (1977).] In this instance, the selection criterion would be hii > 2(K−1)/n.
Squared deviations of the elements of xi from the means of the variables appear in hii ,
so it is also operating on the difference of xi from the center of the data. (See the
expression for the forecast variance in Section 4.6.1 for an application.)

In principle, an “outlier,” is an observation that appears to be outside the reach of
the model, perhaps because it arises from a different data generating process. Point “O”
in Figure 4.9 appears to be a candidate. Outliers could arise for several reasons. The
simplest explanation would be actual data errors. Assuming the data are not erroneous,
it then remains to define what constitutes an outlier. Unusual residuals are an obvi-
ous choice. But, since the distribution of the disturbances would anticipate a certain
small percentage of extreme observations in any event, simply singling out observa-
tions with large residuals is actually a dubious exercise. On the other hand, one might
suspect that the outlying observations are actually generated by a different population.
“Studentized” residuals are constructed with this in mind by computing the regression
coefficients and the residual variance without observation i for each observation in the
sample and then standardizing the modified residuals. The ith studentized residual is

e(i) = ei

(1 − hii )

/√
e′e − e2

i /(1 − hii )

n − 1 − K
(4-61)

where e is the residual vector for the full sample, based on b, including ei the residual
for observation i. In principle, this residual has a t distribution with n − 1 − K degrees
of freedom (or a standard normal distribution asymptotically). Observations with large
studentized residuals, that is, greater than 2.0, would be singled out as outliers.

There are several complications that arise with isolating outlying observations in
this fashion. First, there is no a priori assumption of which observations are from the
alternative population, if this is the view. From a theoretical point of view, this would
suggest a skepticism about the model specification. If the sample contains a substan-
tial proportion of outliers, then the properties of the estimator based on the reduced
sample are difficult to derive. In the next application, the suggested procedure deletes
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TABLE 4.9 Estimated Equations for Log Price

Number of observations 430 410
Mean of log Price 0.33274 0.36043
Sum of squared residuals 519.17235 383.17982
Standard error of regression 1.10266 0.97030
R-squared 0.33620 0.39170
Adjusted R-squared 0.33309 0.38871

Coefficient Standard Error t

Variable n = 430 n = 410 n = 430 n = 410 n = 430 n = 410

Constant −8.42653 −8.67356 0.61183 0.57529 −13.77 −15.08
LogArea 1.33372 1.36982 0.09072 0.08472 14.70 16.17
AspectRatio −0.16537 −0.14383 0.12753 0.11412 −1.30 −1.26

4.7 percent of the sample (20 observations). Finally, it will usually occur that obser-
vations that were not outliers in the original sample will become “outliers” when the
original set of outliers is removed. It is unclear how one should proceed at this point.
(Using the Monet paintings data, the first round of studentizing the residuals removes
20 observations. After 16 iterations, the sample size stabilizes at 316 of the original 430
observations, a reduction of 26.5 percent.) Table 4.9 shows the original results (from
Table 4.6) and the modified results with 20 outliers removed. Since 430 is a relatively
large sample, the modest change in the results is to be expected.

It is difficult to draw a firm general conclusions from this exercise. It remains likely
that in very small samples, some caution and close scrutiny of the data are called for.
If it is suspected at the outset that a process prone to large observations is at work,
it may be useful to consider a different estimator altogether, such as least absolute
deviations, or even a different model specification that accounts for this possibility. For
example, the idea that the sample may contain some observations that are generated
by a different process lies behind the latent class model that is discussed in Chapters 14
and 18.

4.8 SUMMARY AND CONCLUSIONS

This chapter has examined a set of properties of the least squares estimator that will
apply in all samples, including unbiasedness and efficiency among unbiased estimators.
The formal assumptions of the linear model are pivotal in the results of this chapter. All
of them are likely to be violated in more general settings than the one considered here.
For example, in most cases examined later in the book, the estimator has a possible
bias, but that bias diminishes with increasing sample sizes. For purposes of forming
confidence intervals and testing hypotheses, the assumption of normality is narrow,
so it was necessary to extend the model to allow nonnormal disturbances. These and
other “large-sample” extensions of the linear model were considered in Section 4.4. The
crucial results developed here were the consistency of the estimator and a method of
obtaining an appropriate covariance matrix and large-sample distribution that provides
the basis for forming confidence intervals and testing hypotheses. Statistical inference in
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the form of interval estimation for the model parameters and for values of the dependent
variable was considered in Sections 4.5 and 4.6. This development will continue in
Chapter 5 where we will consider hypothesis testing and model selection.

Finally, we considered some practical problems that arise when data are less than
perfect for the estimation and analysis of the regression model, including multicollinear-
ity, missing observations, measurement error, and outliers.

Key Terms and Concepts

• Assumptions
• Asymptotic covariance

matrix
• Asymptotic distribution
• Asymptotic efficiency
• Asymptotic normality
• Asymptotic properties
• Attrition
• Bootstrap
• Condition number
• Confidence interval
• Consistency
• Consistent estimator
• Data imputation
• Efficient scale
• Estimator
• Ex ante forecast
• Ex post forecast
• Finite sample properties
• Gauss–Markov theorem
• Grenander conditions
• Highest posterior density

interval
• Identification
• Ignorable case
• Inclusion of superfluous

(irrelevant) variables
• Indicator
• Interval estimation

• Least squares attenuation
• Lindeberg–Feller Central

Limit Theorem
• Linear estimator
• Linear unbiased estimator
• Maximum likelihood

estimator
• Mean absolute error
• Mean square convergence
• Mean squared error
• Measurement error
• Method of moments
• Minimum mean squared

error
• Minimum variance linear

unbiased estimator
• Missing at random
• Missing completely at

random
• Missing observations
• Modified zero-order

regression
• Monte Carlo study
• Multicollinearity
• Not missing at random
• Oaxaca’s and Blinder’s

decomposition
• Omission of relevant

variables

• Optimal linear predictor
• Orthogonal random

variables
• Panel data
• Pivotal statistic
• Point estimation
• Prediction error
• Prediction interval
• Prediction variance
• Pretest estimator
• Principal components
• Probability limit
• Root mean squared error
• Sample selection
• Sampling distribution
• Sampling variance
• Semiparametric
• Smearing estimator
• Specification errors
• Standard error
• Standard error of the

regression
• Stationary process
• Statistical properties
• Stochastic regressors
• Theil U statistic
• t ratio
• Variance inflation factor
• Zero-order method

Exercises

1. Suppose that you have two independent unbiased estimators of the same parameter
θ , say θ̂1 and θ̂2, with different variances v1 and v2. What linear combination θ̂ =
c1θ̂1 + c2θ̂2 is the minimum variance unbiased estimator of θ?

2. Consider the simple regression yi = βxi + εi where E [ε | x] = 0 and E [ε2 | x] = σ 2

a. What is the minimum mean squared error linear estimator of β? [Hint: Let the
estimator be (β̂ = c′y). Choose c to minimize Var(β̂) + (E(β̂ − β))2. The answer
is a function of the unknown parameters.]
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b. For the estimator in part a, show that ratio of the mean squared error of β̂ to
that of the ordinary least squares estimator b is

MSE [β̂]
MSE [b]

= τ 2

(1 + τ 2)
, where τ 2 = β2

[σ 2/x′x]
.

Note that τ is the square of the population analog to the “t ratio” for testing
the hypothesis that β = 0, which is given in (5-11). How do you interpret the
behavior of this ratio as τ → ∞?

3. Suppose that the classical regression model applies but that the true value of the
constant is zero. Compare the variance of the least squares slope estimator com-
puted without a constant term with that of the estimator computed with an unnec-
essary constant term.

4. Suppose that the regression model is yi = α + βxi + εi , where the disturbances
εi have f (εi ) = (1/λ) exp(−εi/λ), εi ≥ 0. This model is rather peculiar in that all
the disturbances are assumed to be nonnegative. Note that the disturbances have
E [εi | xi ] = λ and Var[εi | xi ] = λ2. Show that the least squares slope is unbiased
but that the intercept is biased.

5. Prove that the least squares intercept estimator in the classical regression model is
the minimum variance linear unbiased estimator.

6. As a profit-maximizing monopolist, you face the demand curve Q = α +β P + ε. In
the past, you have set the following prices and sold the accompanying quantities:

Q 3 3 7 6 10 15 16 13 9 15 9 15 12 18 21

P 18 16 17 12 15 15 4 13 11 6 8 10 7 7 7

Suppose that your marginal cost is 10. Based on the least squares regression, com-
pute a 95 percent confidence interval for the expected value of the profit-maximizing
output.

7. The following sample moments for x = [1, x1, x2, x3] were computed from 100 ob-
servations produced using a random number generator:

X′X =

⎡
⎢⎢⎣

100 123 96 109
123 252 125 189

96 125 167 146
109 189 146 168

⎤
⎥⎥⎦, X′y =

⎡
⎢⎢⎣

460
810
615
712

⎤
⎥⎥⎦, y′y = 3924.

The true model underlying these data is y = x1 + x2 + x3 + ε.
a. Compute the simple correlations among the regressors.
b. Compute the ordinary least squares coefficients in the regression of y on a con-

stant x1, x2, and x3.
c. Compute the ordinary least squares coefficients in the regression of y on a con-

stant, x1 and x2, on a constant, x1 and x3, and on a constant, x2 and x3.
d. Compute the variance inflation factor associated with each variable.
e. The regressors are obviously collinear. Which is the problem variable?

8. Consider the multiple regression of y on K variables X and an additional variable z.
Prove that under the assumptions A1 through A6 of the classical regression model,
the true variance of the least squares estimator of the slopes on X is larger when z
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is included in the regression than when it is not. Does the same hold for the sample
estimate of this covariance matrix? Why or why not? Assume that X and z are
nonstochastic and that the coefficient on z is nonzero.

9. For the classical normal regression model y = Xβ + ε with no constant term and
K regressors, assuming that the true value of β is zero, what is the exact expected
value of F[K, n − K] = (R2/K)/[(1 − R2)/(n − K)]?

10. Prove that E [b′b] = β ′β + σ 2 ∑K
k=1(1/λk) where b is the ordinary least squares

estimator and λk is a characteristic root of X′X.
11. For the classical normal regression model y = Xβ + ε with no constant term and

K regressors, what is plim F[K, n − K] = plim R2/K
(1−R2)/(n−K)

, assuming that the true
value of β is zero?

12. Let ei be the ith residual in the ordinary least squares regression of y on X in the
classical regression model, and let εi be the corresponding true disturbance. Prove
that plim(ei − εi ) = 0.

13. For the simple regression model yi = μ + εi , εi ∼ N[0, σ 2], prove that the sam-
ple mean is consistent and asymptotically normally distributed. Now consider the
alternative estimator μ̂ = ∑

i wi yi , wi = i
(n(n+1)/2)

= i∑
i i

. Note that
∑

i wi = 1.

Prove that this is a consistent estimator of μ and obtain its asymptotic variance.
[Hint:

∑
i i2 = n(n + 1)(2n + 1)/6.]

14. Consider a data set consisting of n observations, nc complete and nm incomplete,
for which the dependent variable, yi , is missing. Data on the independent variables,
xi , are complete for all n observations, Xc and Xm. We wish to use the data to
estimate the parameters of the linear regression model y = Xβ + ε. Consider the
following the imputation strategy: Step 1: Linearly regress yc on Xc and compute
bc. Step 2: Use Xm to predict the missing ym with Xmbc. Then regress the full sample
of observations, (yc, Xmbc), on the full sample of regressors, (Xc, Xm).
a. Show that the first and second step least squares coefficient vectors are identical.
b. Is the second step coefficient estimator unbiased?
c. Show that the sum of squared residuals is the same at both steps.
d. Show that the second step estimator of σ 2 is biased downward.

15. In (4-13), we find that when superfluous variables X2 are added to the regression of
y on X1 the least squares coefficient estimator is an unbiased estimator of the true
parameter vector, β = (β ′

1, 0′)′. Show that in this long regression, e′e/(n− K1 − K2)

is also unbiased as estimator of σ 2.
16. In Section 4.7.3, we consider regressing y on a set of principal components, rather

than the original data. For simplicity, assume that X does not contain a constant
term, and that the K variables are measured in deviations from the means and
are “standardized” by dividing by the respective standard deviations. We consider
regression of y on L principal components, Z = XCL, where L < K. Let d denote
the coefficient vector. The regression model is y = Xβ + ε. In the discussion, it is
claimed that E[d] = C′

Lβ. Prove the claim.
17. Example 4.10 presents a regression model that is used to predict the auction prices

of Monet paintings. The most expensive painting in the sample sold for $33.0135M
(log = 17.3124). The height and width of this painting were 35” and 39.4”, respec-
tively. Use these data and the model to form prediction intervals for the log of the
price and then the price for this painting.
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Applications

1. Data on U.S. gasoline consumption for the years 1953 to 2004 are given in
Table F2.2. Note, the consumption data appear as total expenditure. To obtain
the per capita quantity variable, divide GASEXP by GASP times Pop. The other
variables do not need transformation.
a. Compute the multiple regression of per capita consumption of gasoline on per

capita income, the price of gasoline, all the other prices and a time trend. Report
all results. Do the signs of the estimates agree with your expectations?

b. Test the hypothesis that at least in regard to demand for gasoline, consumers do
not differentiate between changes in the prices of new and used cars.

c. Estimate the own price elasticity of demand, the income elasticity, and the cross-
price elasticity with respect to changes in the price of public transportation. Do
the computations at the 2004 point in the data.

d. Reestimate the regression in logarithms so that the coefficients are direct esti-
mates of the elasticities. (Do not use the log of the time trend.) How do your
estimates compare with the results in the previous question? Which specification
do you prefer?

e. Compute the simple correlations of the price variables. Would you conclude that
multicollinearity is a “problem” for the regression in part a or part d?

f. Notice that the price index for gasoline is normalized to 100 in 2000, whereas the
other price indices are anchored at 1983 (roughly). If you were to renormalize
the indices so that they were all 100.00 in 2004, then how would the results of the
regression in part a change? How would the results of the regression in part d
change?

g. This exercise is based on the model that you estimated in part d. We are inter-
ested in investigating the change in the gasoline market that occurred in 1973.
First, compute the average values of log of per capita gasoline consumption in
the years 1953–1973 and 1974–2004 and report the values and the difference. If
we divide the sample into these two groups of observations, then we can decom-
pose the change in the expected value of the log of consumption into a change
attributable to change in the regressors and a change attributable to a change in
the model coefficients, as shown in Section 4.5.3. Using the Oaxaca–Blinder ap-
proach described there, compute the decomposition by partitioning the sample
and computing separate regressions. Using your results, compute a confidence
interval for the part of the change that can be attributed to structural change in
the market, that is, change in the regression coefficients.

2. Christensen and Greene (1976) estimated a generalized Cobb–Douglas cost func-
tion for electricity generation of the form

ln C = α + β ln Q + γ
[ 1

2 (ln Q)2
] + δk ln Pk + δl ln Pl + δ f ln Pf + ε.

Pk, Pl , and Pf indicate unit prices of capital, labor, and fuel, respectively, Q is output
and C is total cost. To conform to the underlying theory of production, it is necessary
to impose the restriction that the cost function be homogeneous of degree one in
the three prices. This is done with the restriction δk + δl + δ f = 1, or δ f = 1− δk − δl .
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Inserting this result in the cost function and rearranging produces the estimating
equation,

ln(C/Pf ) = α + β ln Q + γ
[ 1

2 (ln Q)2
] + δk ln(Pk/Pf ) + δl ln(Pl/Pf ) + ε.

The purpose of the generalization was to produce a U-shaped average total cost
curve. [See Example 6.6 for discussion of Nerlove’s (1963) predecessor to this study.]
We are interested in the efficient scale, which is the output at which the cost curve
reaches its minimum. That is the point at which (∂ ln C/∂ ln Q)|Q= Q∗ = 1 or Q∗ =
exp[(1 − β)/γ ].
a. Data on 158 firms extracted from Christensen and Greene’s study are given in

Table F4.4. Using all 158 observations, compute the estimates of the parameters
in the cost function and the estimate of the asymptotic covariance matrix.

b. Note that the cost function does not provide a direct estimate of δf . Compute
this estimate from your regression results, and estimate the asymptotic standard
error.

c. Compute an estimate of Q∗ using your regression results and then form a con-
fidence interval for the estimated efficient scale.

d. Examine the raw data and determine where in the sample the efficient scale lies.
That is, determine how many firms in the sample have reached this scale, and
whether, in your opinion, this scale is large in relation to the sizes of firms in
the sample. Christensen and Greene approached this question by computing the
proportion of total output in the sample that was produced by firms that had not
yet reached efficient scale. (Note: There is some double counting in the data set—
more than 20 of the largest “firms” in the sample we are using for this exercise
are holding companies and power pools that are aggregates of other firms in
the sample. We will ignore that complication for the purpose of our numerical
exercise.)
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5

HYPOTHESIS TESTS AND
MODEL SELECTION

Q
5.1 INTRODUCTION

The linear regression model is used for three major purposes: estimation and prediction,
which were the subjects of the previous chapter, and hypothesis testing. In this chapter,
we examine some applications of hypothesis tests using the linear regression model. We
begin with the methodological and statistical theory. Some of this theory was developed
in Chapter 4 (including the idea of a pivotal statistic in Section 4.5.1) and in Appendix
C.7. In Section 5.2, we will extend the methodology to hypothesis testing based on the
regression model. After the theory is developed, Sections 5.3–5.7 will examine some
applications in regression modeling. This development will be concerned with the im-
plications of restrictions on the parameters of the model, such as whether a variable
is “relevant” (i.e., has a nonzero coefficient) or whether the regression model itself is
supported by the data (i.e., whether the data seem consistent with the hypothesis that
all of the coefficients are zero). We will primarily be concerned with linear restrictions
in this discussion. We will turn to nonlinear restrictions near the end of the development
in Section 5.7. Section 5.8 considers some broader types of hypotheses, such as choosing
between two competing models, such as whether a linear or a loglinear model is better
suited to the data. In each of the cases so far, the testing procedure attempts to resolve
a competition between two theories for the data; in Sections 5.2–5.7 between a narrow
model and a broader one and in Section 5.8, between two arguably equal models. Section
5.9 illustrates a particular specification test, which is essentially a test of a proposition
such as “the model is correct” vs. “the model is inadequate.” This test pits the theory
of the model against “some other unstated theory.” Finally, Section 5.10 presents some
general principles and elements of a strategy of model testing and selection.

5.2 HYPOTHESIS TESTING METHODOLOGY

We begin the analysis with the regression model as a statement of a proposition,

y = Xβ + ε. (5-1)

To consider a specific application, Example 4.6 depicted the auction prices of paintings

ln Price = β1 + β2 ln Size + β3AspectRatio + ε. (5-2)

Some questions might be raised about the “model” in (5-2), fundamentally, about the
variables. It seems natural that fine art enthusiasts would be concerned about aspect ra-
tio, which is an element of the aesthetic quality of a painting. But, the idea that size should

148
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be an element of the price is counterintuitive, particularly weighed against the surpris-
ingly small sizes of some of the world’s most iconic paintings such as the Mona Lisa
(30′′ high and 21′′ wide) or Dali’s Persistence of Memory (only 9.5′′ high and 13′′ wide).
A skeptic might question the presence of lnSize in the equation, or, equivalently, the
nonzero coefficient, β2. To settle the issue, the relevant empirical question is whether
the equation specified appears to be consistent with the data—that is, the observed sale
prices of paintings. In order to proceed, the obvious approach for the analyst would be
to fit the regression first and then examine the estimate of β2. The “test” at this point,
is whether b2 in the least squares regression is zero or not. Recognizing that the least
squares slope is a random variable that will never be exactly zero even if β2 really is, we
would soften the question to be whether the sample estimate seems to be close enough
to zero for us to conclude that its population counterpart is actually zero, that is, that the
nonzero value we observe is nothing more than noise that is due to sampling variability.
Remaining to be answered are questions including; How close to zero is close enough
to reach this conclusion? What metric is to be used? How certain can we be that we
have reached the right conclusion? (Not absolutely, of course.) How likely is it that our
decision rule, whatever we choose, will lead us to the wrong conclusion? This section
will formalize these ideas. After developing the methodology in detail, we will construct
a number of numerical examples.

5.2.1 RESTRICTIONS AND HYPOTHESES

The approach we will take is to formulate a hypothesis as a restriction on a model.
Thus, in the classical methodology considered here, the model is a general statement
and a hypothesis is a proposition that narrows that statement. In the art example in
(5-2), the narrower statement is (5-2) with the additional statement that β2 = 0—
without comment on β1 or β3. We define the null hypothesis as the statement that
narrows the model and the alternative hypothesis as the broader one. In the example,
the broader model allows the equation to contain both lnSize and AspectRatio—it
admits the possibility that either coefficient might be zero but does not insist upon it.
The null hypothesis insists that β2 = 0 while it also makes no comment about β1 or β3.
The formal notation used to frame this hypothesis would be

ln Price = β1 + β2 ln Size + β3AspectRatio + ε,

H0: β2 = 0,

H1: β2 �= 0.

(5-3)

Note that the null and alternative hypotheses, together, are exclusive and exhaustive.
There is no third possibility; either one or the other of them is true, not both.

The analysis from this point on will be to measure the null hypothesis against the
data. The data might persuade the econometrician to reject the null hypothesis. It would
seem appropriate at that point to “accept” the alternative. However, in the interest of
maintaining flexibility in the methodology, that is, an openness to new information,
the appropriate conclusion here will be either to reject the null hypothesis or not to
reject it. Not rejecting the null hypothesis is not equivalent to “accepting” it—though
the language might suggest so. By accepting the null hypothesis, we would implicitly
be closing off further investigation. Thus, the traditional, classical methodology leaves
open the possibility that further evidence might still change the conclusion. Our testing
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methodology will be constructed so as either to

Reject H0: The data are inconsistent with the hypothesis with a reasonable degree
of certainty.

Do not reject H0: The data appear to be consistent with the null hypothesis.

5.2.2 NESTED MODELS

The general approach to testing a hypothesis is to formulate a statistical model that
contains the hypothesis as a restriction on its parameters. A theory is said to have
testable implications if it implies some testable restrictions on the model. Consider, for
example, a model of investment, It ,

ln It = β1 + β2it + β3�pt + β4 ln Yt + β5t + εt , (5-4)

which states that investors are sensitive to nominal interest rates, it , the rate of inflation,
�pt , (the log of) real output, lnYt , and other factors that trend upward through time,
embodied in the time trend, t. An alternative theory states that “investors care about
real interest rates.” The alternative model is

ln It = β1 + β2(it − �pt ) + β3�pt + β4 ln Yt + β5t + εt . (5-5)

Although this new model does embody the theory, the equation still contains both
nominal interest and inflation. The theory has no testable implication for our model.
But, consider the stronger hypothesis, “investors care only about real interest rates.”
The resulting equation,

ln It = β1 + β2(it − �pt ) + β4 ln Yt + β5t + εt , (5-6)

is now restricted; in the context of (5-4), the implication is that β2 +β3 = 0. The stronger
statement implies something specific about the parameters in the equation that may or
may not be supported by the empirical evidence.

The description of testable implications in the preceding paragraph suggests (cor-
rectly) that testable restrictions will imply that only some of the possible models con-
tained in the original specification will be “valid”; that is, consistent with the theory. In
the example given earlier, (5-4) specifies a model in which there are five unrestricted
parameters (β1, β2, β3, β4, β5). But, (5-6) shows that only some values are consistent
with the theory, that is, those for which β3 = −β2. This subset of values is contained
within the unrestricted set. In this way, the models are said to be nested. Consider a
different hypothesis, “investors do not care about inflation.” In this case, the smaller set
of coefficients is (β1, β2, 0, β4, β5). Once again, the restrictions imply a valid parameter
space that is “smaller” (has fewer dimensions) than the unrestricted one. The general
result is that the hypothesis specified by the restricted model is contained within the
unrestricted model.

Now, consider an alternative pair of models: Model0: “Investors care only about
inflation”; Model1: “Investors care only about the nominal interest rate.” In this case,
the two parameter vectors are (β1, 0, β3, β4, β5) by Model0 and (β1, β2, 0, β4, β5) by
Model1. In this case, the two specifications are both subsets of the unrestricted model,
but neither model is obtained as a restriction on the other.They have the same number
of parameters; they just contain different variables. These two models are nonnested.
For the present, we are concerned only with nested models. Nonnested models are
considered in Section 5.8.
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5.2.3 TESTING PROCEDURES—NEYMAN–PEARSON
METHODOLOGY

In the example in (5-2), intuition suggests a testing approach based on measuring
the data against the hypothesis. The essential methodology suggested by the work of
Neyman and Pearson (1933) provides a reliable guide to testing hypotheses in the set-
ting we are considering in this chapter. Broadly, the analyst follows the logic, “What
type of data will lead me to reject the hypothesis?” Given the way the hypothesis is
posed in Section 5.2.1, the question is equivalent to asking what sorts of data will sup-
port the model. The data that one can observe are divided into a rejection region and
an acceptance region. The testing procedure will then be reduced to a simple up or
down examination of the statistical evidence. Once it is determined what the rejection
region is, if the observed data appear in that region, the null hypothesis is rejected. To
see how this operates in practice, consider, once again, the hypothesis about size in the
art price equation. Our test is of the hypothesis that β2 equals zero. We will compute
the least squares slope. We will decide in advance how far the estimate of β2 must be
from zero to lead to rejection of the null hypothesis. Once the rule is laid out, the test,
itself, is mechanical. In particular, for this case, b2 is “far” from zero if b2 > β0+

2 or b2 <
β0−

2 . If either case occurs, the hypothesis is rejected. The crucial element is that the rule
is decided upon in advance.

5.2.4 SIZE, POWER, AND CONSISTENCY OF A TEST

Since the testing procedure is determined in advance and the estimated coefficient(s)
in the regression are random, there are two ways the Neyman–Pearson method can
make an error. To put this in a numerical context, the sample regression corresponding
to (5-2) appears in Table 4.6. The estimate of the coefficient on lnArea is 1.33372 with
an estimated standard error of 0.09072. Suppose the rule to be used to test is decided
arbitrarily (at this point—we will formalize it shortly) to be: If b2 is greater than +1.0
or less than −1.0, then we will reject the hypothesis that the coefficient is zero (and
conclude that art buyers really do care about the sizes of paintings). So, based on this
rule, we will, in fact, reject the hypothesis. However, since b2 is a random variable, there
are the following possible errors:

Type I error: β2 = 0, but we reject the hypothesis.
The null hypothesis is incorrectly rejected.

Type II error: β2 �= 0, but we do not reject the hypothesis.
The null hypothesis is incorrectly retained.

The probability of a Type I error is called the size of the test. The size of a test is the
probability that the test will incorrectly reject the null hypothesis. As will emerge later,
the analyst determines this in advance. One minus the probability of a Type II error is
called the power of a test. The power of a test is the probability that it will correctly
reject a false null hypothesis. The power of a test depends on the alternative. It is not
under the control of the analyst. To consider the example once again, we are going to
reject the hypothesis if |b2| > 1. If β2 is actually 1.5, then based on the results we’ve seen,
we are quite likely to find a value of b2 that is greater than 1.0. On the other hand, if β2

is only 0.3, then it does not appear likely that we will observe a sample value greater
than 1.0. Thus, again, the power of a test depends on the actual parameters that underlie
the data. The idea of power of a test relates to its ability to find what it is looking for.
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A test procedure is consistent if its power goes to 1.0 as the sample size grows to
infinity. This quality is easy to see, again, in the context of a single parameter, such as
the one being considered here. Since least squares is consistent, it follows that as the
sample size grows, we will be able to learn the exact value of β2, so we will know if it is
zero or not. Thus, for this example, it is clear that as the sample size grows, we will know
with certainty if we should reject the hypothesis. For most of our work in this text, we
can use the following guide: A testing procedure about the parameters in a model is
consistent if it is based on a consistent estimator of those parameters. Since nearly all
our work in this book is based on consistent estimators and save for the latter sections
of this chapter, where our tests will be about the parameters in nested models, our tests
will be consistent.

5.2.5 A METHODOLOGICAL DILEMMA: BAYESIAN
VERSUS CLASSICAL TESTING

As we noted earlier, the Neyman–Pearson testing methodology we will employ here is an
all-or-nothing proposition. We will determine the testing rule(s) in advance, gather the
data, and either reject or not reject the null hypothesis. There is no middle ground. This
presents the researcher with two uncomfortable dilemmas. First, the testing outcome,
that is, the sample data might be uncomfortably close to the boundary of the rejection
region. Consider our example. If we have decided in advance to reject the null hypothesis
if b2 > 1.00, and the sample value is 0.9999, it will be difficult to resist the urge to
reject the null hypothesis anyway, particularly if we entered the analysis with a strongly
held belief that the null hypothesis is incorrect. (I.e., intuition notwithstanding, I am
convinced that art buyers really do care about size.) Second, the methodology we have
laid out here has no way of incorporating other studies. To continue our example, if
I were the tenth analyst to study the art market, and the previous nine had decisively
rejected the hypothesis that β2 = 0, I will find it very difficult not to reject that hypothesis
even if my evidence suggests, based on my testing procedure, that I should not.

This dilemma is built into the classical testing methodology. There is a middle
ground. The Bayesian methodology that we will discuss in Chapter 16 does not face
this dilemma because Bayesian analysts never reach a firm conclusion. They merely
update their priors. Thus, the first case noted, in which the observed data are close to
the boundary of the rejection region, the analyst will merely be updating the prior with
somethat slightly less persuasive evidence than might be hoped for. But, the methodol-
ogy is comfortable with this. For the second instance, we have a case in which there is a
wealth of prior evidence in favor of rejecting H0. It will take a powerful tenth body of
evidence to overturn the previous nine conclusions. The results of the tenth study (the
posterior results) will incorporate not only the current evidence, but the wealth of prior
data as well.

5.3 TWO APPROACHES TO TESTING HYPOTHESES

The general linear hypothesis is a set of J restrictions on the linear regression model,

y = Xβ + ε,
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The restrictions are written

r11β1 + r12β2 + · · · + r1KβK = q1

r21β1 + r22β2 + · · · + r2KβK = q2

· · ·
rJ1β1 + rJ2β2 + · · · + rJKβK = qJ .

(5-7)

The simplest case is a single restriction on one coefficient, such as

βk = 0.

The more general case can be written in the matrix form,

Rβ = q. (5-8)

Each row of R is the coefficients in one of the restrictions. Typically, R will have only a
few rows and numerous zeros in each row. Some examples would be as follows:

1. One of the coefficients is zero, β j = 0,

R = [0 0 · · · 1 0 · · · 0] and q = 0.

2. Two of the coefficients are equal, βk = β j ,

R = [0 0 1 · · · − 1 · · · 0] and q = 0.

3. A set of the coefficients sum to one, β2 + β3 + β4 = 1,

R = [0 1 1 1 0 · · ·] and q = 1.

4. A subset of the coefficients are all zero, β1 = 0, β2 = 0, and β3 = 0,

R =
⎡
⎣

1 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0

⎤
⎦ = [ I 0 ] and q =

⎡
⎣

0
0
0

⎤
⎦.

5. Several linear restrictions, β2 + β3 = 1, β4 + β6 = 0, and β5 + β6 = 0,

R =
⎡
⎣

0 1 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 1

⎤
⎦ and q =

⎡
⎣

1
0
0

⎤
⎦.

6. All the coefficients in the model except the constant term are zero,

R = [0 : IK−1] and q = 0.

The matrix R has K columns to be conformable with β, J rows for a total of J
restrictions, and full row rank, so J must be less than or equal to K. The rows of R
must be linearly independent. Although it does not violate the condition, the case of
J = K must also be ruled out. If the K coefficients satisfy J = K restrictions, then R is
square and nonsingular and β = R−1q. There is no estimation or inference problem. The
restriction Rβ = q imposes J restrictions on K otherwise free parameters. Hence, with
the restrictions imposed, there are, in principle, only K − J free parameters remaining.

We will want to extend the methods to nonlinear restrictions. In a following ex-
ample, below, the hypothesis takes the form H0: β j/βk = βl/βm. The general nonlinear
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hypothesis involves a set of J possibly nonlinear restrictions,

c(β) = q, (5-9)

where c(β) is a set of J nonlinear functions of β. The linear hypothesis is a special case.
The counterpart to our requirements for the linear case are that, once again, J be strictly
less than K, and the matrix of derivatives,

G(β) = ∂c(β)/∂β ′, (5-10)

have full row rank. This means that the restrictions are functionally independent. In the
linear case, G(β) is the matrix of constants, R that we saw earlier and functional inde-
pendence is equivalent to linear independence. We will consider nonlinear restrictions
in detail in Section 5.7. For the present, we will restrict attention to the general linear
hypothesis.

The hypothesis implied by the restrictions is written

H0: Rβ − q = 0,

H1: Rβ − q �= 0.

We will consider two approaches to testing the hypothesis, Wald tests and fit based
tests. The hypothesis characterizes the population. If the hypothesis is correct, then
the sample statistics should mimic that description. To continue our earlier example,
the hypothesis states that a certain coefficient in a regression model equals zero. If the
hypothesis is correct, then the least squares coefficient should be close to zero, at least
within sampling variability. The tests will proceed as follows:

• Wald tests: The hypothesis states that Rβ − q equals 0. The least squares estimator,
b, is an unbiased and consistent estimator of β. If the hypothesis is correct, then
the sample discrepancy, Rb − q should be close to zero. For the example of a single
coefficient, if the hypothesis that βk equals zero is correct, then bk should be close
to zero. The Wald test measures how close Rb − q is to zero.

• Fit based tests: We obtain the best possible fit—highest R2—by using least squares
without imposing the restrictions. We proved this in Chapter 3. We will show here
that the sum of squares will never decrease when we impose the restrictions—except
for an unlikely special case, it will increase. For example, when we impose βk = 0
by leaving xk out of the model, we should expect R2 to fall. The empirical device
to use for testing the hypothesis will be a measure of how much R2 falls when we
impose the restrictions.

AN IMPORTANT ASSUMPTION
To develop the test statistics in this section, we will assume normally distributed dis-
turbances. As we saw in Chapter 4, with this assumption, we will be able to obtain the
exact distributions of the test statistics. In Section 5.6, we will consider the implications
of relaxing this assumption and develop an alternative set of results that allows us to
proceed without it.
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5.4 WALD TESTS BASED ON THE DISTANCE
MEASURE

The Wald test is the most commonly used procedure. It is often called a “significance
test.” The operating principle of the procedure is to fit the regression without the re-
strictions, and then assess whether the results appear, within sampling variability, to
agree with the hypothesis.

5.4.1 TESTING A HYPOTHESIS ABOUT A COEFFICIENT

The simplest case is a test of the value of a single coefficient. Consider, once again, our
art market example in Section 5.2. The null hypothesis is

H0: β2 = β0
2 ,

where β0
2 is the hypothesized value of the coefficient, in this case, zero. The Wald distance

of a coefficient estimate from a hypothesized value is the linear distance, measured in
standard deviation units. Thus, for this case, the distance of bk from β0

k would be

Wk = bk − β0
k√

σ 2Skk
. (5-11)

As we saw in (4-38), Wk (which we called zk before) has a standard normal distribution
assuming that E[bk] = β0

k . Note that if E[bk] is not equal to β0
k , then Wk still has a normal

distribution, but the mean is not zero. In particular, if E[bk] is β1
k which is different from

β0
k , then

E
{

Wk|E[bk] = β1
k

} = β1
k − β0

k√
σ 2Skk

. (5-12)

(E.g., if the hypothesis is that βk = β0
k = 0, and βk does not equal zero, then the expected

of Wk = bk/
√

σ 2Skk will equal β1
k/

√
σ 2Skk, which is not zero.) For purposes of using Wk

to test the hypothesis, our interpretation is that if βk does equal β0
k , then bk will be close

to β0
k , with the distance measured in standard error units. Therefore, the logic of the

test, to this point, will be to conclude that H0 is incorrect—should be rejected—if Wk is
“large.”

Before we determine a benchmark for large, we note that the Wald measure sug-
gested here is not usable because σ 2 is not known. It was estimated by s2. Once again,
invoking our results from Chapter 4, if we compute Wk using the sample estimate of
σ 2, we obtain

tk = bk − β0
k√

s2Skk
. (5-13)

Assuming that βk does indeed equal β0
k , that is, “under the assumption of the null

hypothesis,” then tk has a t distribution with n − K degrees of freedom. [See (4-41).]
We can now construct the testing procedure. The test is carried out by determining in
advance the desired confidence with which we would like to draw the conclusion—the
standard value is 95 percent. Based on (5-13), we can say that

Prob
{−t∗

(1−α/2),[n−K] < tk < +t∗
(1−α/2),[n−K]

}
,
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where t*(1−α/2),[n−K] is the appropriate value from a t table. By this construction, finding
a sample value of tk that falls outside this range is unlikely. Our test procedure states
that it is so unlikely that we would conclude that it could not happen if the hypothesis
were correct, so the hypothesis must be incorrect.

A common test is the hypothesis that a parameter equals zero—equivalently, this
is a test of the relevance of a variable in the regression. To construct the test statistic,
we set β0

k to zero in (5-13) to obtain the standard “t ratio,”

tk = bk

sbk
.

This statistic is reported in the regression results in several of our earlier examples, such
as 4.10 where the regression results for the model in (5-2) appear. This statistic is usually
labeled the t ratio for the estimator bk. If |bk|/sbk > t(1−α/2),[n−K], where t(1−α/2),[n−K] is
the 100(1 − α/2) percent critical value from the t distribution with (n − K) degrees
of freedom, then the null hypothesis that the coefficient is zero is rejected and the
coefficient (actually, the associated variable) is said to be “statistically significant.” The
value of 1.96, which would apply for the 95 percent significance level in a large sample,
is often used as a benchmark value when a table of critical values is not immediately
available. The t ratio for the test of the hypothesis that a coefficient equals zero is a
standard part of the regression output of most computer programs.

Another view of the testing procedure is useful. Also based on (4-39) and (5-13),
we formed a confidence interval for βk as bk ± t∗sk. We may view this interval as the set
of plausible values of βk with a confidence level of 100(1 −α) percent, where we choose
α, typically 5 percent. The confidence interval provides a convenient tool for testing
a hypothesis about βk, since we may simply ask whether the hypothesized value, β0

k is
contained in this range of plausible values.

Example 5.1 Art Appreciation
Regression results for the model in (5-3) based on a sample of 430 sales of Monet paintings
appear in Table 4.6 in Example 4.10. The estimated coefficient on lnArea is 1.33372 with an
estimated standard error of 0.09072. The distance of the estimated coefficient from zero is
1.33372/0.09072 = 14.70. Since this is far larger than the 95 percent critical value of 1.96, we
reject the hypothesis that β2 equals zero; evidently buyers of Monet paintings do care about
size. In constrast, the coefficient on AspectRatio is −0.16537 with an estimated standard
error of 0.12753, so the associated t ratio for the test of H0:β3 = 0 is only −1.30. Since this
is well under 1.96, we conclude that art buyers (of Monet paintings) do not care about the
aspect ratio of the paintings. As a final consideration, we examine another (equally bemusing)
hypothesis, whether auction prices are inelastic H0: β2 ≤ 1 or elastic H1: β2 > 1 with respect
to area. This is a one-sided test. Using our Neyman–Pearson guideline for formulating the
test, we will reject the null hypothesis if the estimated coefficient is sufficiently larger than 1.0
(and not if it is less than or equal to 1.0). To maintain a test of size 0.05, we will then place
all of the area for the critical region (the rejection region) to the right of 1.0; the critical value
from the table is 1.645. The test statistic is (1.33372 − 1.0)/0.09072 = 3.679 > 1.645. Thus,
we will reject this null hypothesis as well.

Example 5.2 Earnings Equation
Appendix Table F5.1 contains 753 observations used in Mroz’s (1987) study of the labor
supply behavior of married women. We will use these data at several points in this example.
Of the 753 individuals in the sample, 428 were participants in the formal labor market. For
these individuals, we will fit a semilog earnings equation of the form suggested in Example 2.2;

lnearnings = β1 + β2age + β3age2 + β4education + β5kids + ε,
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TABLE 5.1 Regression Results for an Earnings Equation

Sum of squared residuals: 599.4582
Standard error of the regression: 1.19044

R2 based on 428 observations 0.040995

Variable Coefficient Standard Error t Ratio

Constant 3.24009 1.7674 1.833
Age 0.20056 0.08386 2.392
Age2 −0.0023147 0.00098688 −2.345
Education 0.067472 0.025248 2.672
Kids −0.35119 0.14753 −2.380

Estimated Covariance Matrix for b(e − n = times 10−n)

Constant Age Age2 Education Kids

3.12381
−0.14409 0.0070325

0.0016617 −8.23237e−5 9.73928e−7
−0.0092609 5.08549e−5 −4.96761e−7 0.00063729

0.026749 −0.0026412 3.84102e−5 −5.46193e−5 0.021766

where earnings is hourly wage times hours worked, education is measured in years of school-
ing, and kids is a binary variable which equals one if there are children under 18 in the house-
hold. (See the data description in Appendix F for details.) Regression results are shown in
Table 5.1. There are 428 observations and 5 parameters, so the t statistics have (428 − 5) =
423 degrees of freedom. For 95 percent significance levels, the standard normal value of
1.96 is appropriate when the degrees of freedom are this large. By this measure, all variables
are statistically significant and signs are consistent with expectations. It will be interesting
to investigate whether the effect of kids is on the wage or hours, or both. We interpret the
schooling variable to imply that an additional year of schooling is associated with a 6.7
percent increase in earnings. The quadratic age profile suggests that for a given education
level and family size, earnings rise to a peak at −b2/(2b3) which is about 43 years of age,
at which point they begin to decline. Some points to note: (1) Our selection of only those
individuals who had positive hours worked is not an innocent sample selection mechanism.
Since individuals chose whether or not to be in the labor force, it is likely (almost certain) that
earnings potential was a significant factor, along with some other aspects we will consider
in Chapter 19.

(2) The earnings equation is a mixture of a labor supply equation—hours worked by the
individual—and a labor demand outcome—the wage is, presumably, an accepted offer. As
such, it is unclear what the precise nature of this equation is. Presumably, it is a hash of the
equations of an elaborate structural equation system. (See Example 10.1 for discussion.)

5.4.2 THE F STATISTIC AND THE LEAST SQUARES DISCREPANCY

We now consider testing a set of J linear restrictions stated in the null hypothesis,

H0 : Rβ − q = 0,

against the alternative hypothesis,

H1 : Rβ − q �= 0.

Given the least squares estimator b, our interest centers on the discrepancy vector
Rb − q = m. It is unlikely that m will be exactly 0. The statistical question is whether
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the deviation of m from 0 can be attributed to sampling error or whether it is significant.
Since b is normally distributed [see (4-18)] and m is a linear function of b, m is also nor-
mally distributed. If the null hypothesis is true, then Rβ −q = 0 and m has mean vector

E [m | X] = RE[b | X] − q = Rβ − q = 0.

and covariance matrix

Var[m | X] = Var[Rb − q | X] = R
{

Var[b | X]
}

R′ = σ 2R(X′X)−1R′.

We can base a test of H0 on the Wald criterion. Conditioned on X, we find:

W = m′{Var[m | X]
}−1m

= (Rb − q)′[σ 2R(X′X)−1R′]−1(Rb − q) (5-14)

= (Rb − q)′[R(X′X)−1R′]−1(Rb − q)

σ 2

∼ χ2[J ].

The statistic W has a chi-squared distribution with J degrees of freedom if the hypothe-
sis is correct.1 Intuitively, the larger m is—that is, the worse the failure of least squares
to satisfy the restrictions—the larger the chi-squared statistic. Therefore, a large chi-
squared value will weigh against the hypothesis.

The chi-squared statistic in (5-14) is not usable because of the unknown σ 2. By
using s2 instead of σ 2 and dividing the result by J, we obtain a usable F statistic with
J and n − K degrees of freedom. Making the substitution in (5-14), dividing by J, and
multiplying and dividing by n − K, we obtain

F = W
J

σ 2

s2

=
(

(Rb − q)′[R(X′X)−1R′]−1(Rb − q)

σ 2

)(
1
J

)(
σ 2

s2

)(
(n − K)

(n − K)

)
(5-15)

= (Rb − q)′[σ 2R(X′X)−1R′]−1(Rb − q)/J
[(n − K)s2/σ 2]/(n − K)

.

If Rβ = q, that is, if the null hypothesis is true, then Rb − q = Rb − Rβ = R(b − β) =
R(X′X)−1X′ε. [See (4-4).] Let C = [R(X′X)−1R′] since

R(b − β)

σ
= R(X′X)−1X′

(
ε

σ

)
= D

(
ε

σ

)
,

the numerator of F equals [(ε/σ)′T(ε/σ)]/J where T = D′C−1D. The numerator is
W/J from (5-14) and is distributed as 1/J times a chi-squared [J ], as we showed earlier.
We found in (4-16) that s2 = e′e/(n − K) = ε′Mε/(n − K) where M is an idempotent
matrix. Therefore, the denominator of F equals [(ε/σ)′M(ε/σ)]/(n − K). This statistic is
distributed as 1/(n − K) times a chi-squared [n−K]. Therefore, the F statistic is the ratio
of two chi-squared variables each divided by its degrees of freedom. Since M(ε/σ) and

1This calculation is an application of the “full rank quadratic form” of Section B.11.6. Note that although the
chi-squared distribution is conditioned on X, it is also free of X.
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T(ε/σ) are both normally distributed and their covariance TM is 0, the vectors of the
quadratic forms are independent. The numerator and denominator of F are functions of
independent random vectors and are therefore independent. This completes the proof
of the F distribution. [See (B-35).] Canceling the two appearances of σ 2 in (5-15) leaves
the F statistic for testing a linear hypothesis:

F[J, n − K|X] = (Rb − q)′
{

R[s2(X′X)−1]R′}−1
(Rb − q)

J
. (5-16)

For testing one linear restriction of the form

H0 : r1β1 + r2β2 + · · · + rKβK = r′β = q,

(usually, some of the r’s will be zero), the F statistic is

F[1, n − K] = (	 j r j bj − q)2

	 j	kr jrk Est. Cov[bj , bk]
.

If the hypothesis is that the jth coefficient is equal to a particular value, then R has a
single row with a 1 in the jth position and 0s elsewhere, R(X′X)−1R′ is the jth diagonal
element of the inverse matrix, and Rb − q is (bj − q). The F statistic is then

F[1, n − K] = (bj − q)2

Est. Var[bj ]
.

Consider an alternative approach. The sample estimate of r′β is

r1b1 + r2b2 + · · · + rKbK = r′b = q̂.

If q̂ differs significantly from q, then we conclude that the sample data are not consistent
with the hypothesis. It is natural to base the test on

t = q̂ − q
se(q̂)

. (5-17)

We require an estimate of the standard error of q̂. Since q̂ is a linear function of b and we
have an estimate of the covariance matrix of b, s2(X′X)−1, we can estimate the variance
of q̂ with

Est. Var[q̂ | X] = r′[s2(X′X)−1]r.

The denominator of t is the square root of this quantity. In words, t is the distance in
standard error units between the hypothesized function of the true coefficients and the
same function of our estimates of them. If the hypothesis is true, then our estimates
should reflect that, at least within the range of sampling variability. Thus, if the absolute
value of the preceding t ratio is larger than the appropriate critical value, then doubt is
cast on the hypothesis.

There is a useful relationship between the statistics in (5-16) and (5-17). We can
write the square of the t statistic as

t2 = (q̂ − q)2

Var(q̂ − q | X)
= (r′b − q)

{
r′[s2(X′X)−1]r

}−1
(r′b − q)

1
.

It follows, therefore, that for testing a single restriction, the t statistic is the square root
of the F statistic that would be used to test that hypothesis.
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Example 5.3 Restricted Investment Equation
Section 5.2.2 suggested a theory about the behavior of investors: They care only about real
interest rates. If investors were only interested in the real rate of interest, then equal increases
in interest rates and the rate of inflation would have no independent effect on investment.
The null hypothesis is

H0 : β2 + β3 = 0.

Estimates of the parameters of equations (5-4) and (5-6) using 1,950.1 to 2,000.4 quarterly
data on real investment, real GDP, an interest rate (the 90-day T-bill rate), and inflation mea-
sured by the change in the log of the CPI given in Appendix Table F5.2 are presented in
Table 5.2. (One observation is lost in computing the change in the CPI.)

To form the appropriate test statistic, we require the standard error of q̂ = b2 + b3,
which is

se( q̂) = [0.003192 + 0.002342 + 2(−3.718 × 10−6) ]1/2 = 0.002866.

The t ratio for the test is therefore

t = −0.00860 + 0.00331
0.002866

= −1.845.

Using the 95 percent critical value from t [203-5] = 1.96 (the standard normal value), we
conclude that the sum of the two coefficients is not significantly different from zero, so the
hypothesis should not be rejected.

There will usually be more than one way to formulate a restriction in a regression model.
One convenient way to parameterize a constraint is to set it up in such a way that the standard
test statistics produced by the regression can be used without further computation to test the
hypothesis. In the preceding example, we could write the regression model as specified in
(5-5). Then an equivalent way to test H0 would be to fit the investment equation with both the
real interest rate and the rate of inflation as regressors and to test our theory by simply testing
the hypothesis that β3 equals zero, using the standard t statistic that is routinely computed.
When the regression is computed this way, b3 = −0.00529 and the estimated standard error
is 0.00287, resulting in a t ratio of −1.844(!). (Exercise: Suppose that the nominal interest
rate, rather than the rate of inflation, were included as the extra regressor. What do you think
the coefficient and its standard error would be?)

Finally, consider a test of the joint hypothesis

β2 + β3 = 0 (investors consider the real interest rate),

β4 = 1 (the marginal propensity to invest equals 1),

β5 = 0 (there is no time trend).

TABLE 5.2 Estimated Investment Equations (Estimated standard errors in
parentheses)

β1 β2 β3 β4 β5

Model (5-4) −9.135 −0.00860 0.00331 1.930 −0.00566
(1.366) (0.00319) (0.00234) (0.183) (0.00149)

s = 0.08618, R2 = 0.979753, e′e = 1.47052,
Est. Cov[b2, b3] = −3.718e−6

Model (5-6) −7.907 −0.00443 0.00443 1.764 −0.00440
(1.201) (0.00227) (0.00227) (0.161) (0.00133)

s = 0.8670, R2 = 0.979405, e′e = 1.49578



Greene-2140242 book January 19, 2011 20:51

CHAPTER 5 ✦ Hypothesis Tests and Model Selection 161

Then,

R =
[

0 1 1 0 0
0 0 0 1 0
0 0 0 0 1

]
, q =

[
0
1
0

]
and Rb − q =

[−0.0053
0.9302

−0.0057

]
.

Inserting these values in F yields F = 109.84. The 5 percent critical value for F [3, 198] is
2.65. We conclude, therefore, that these data are not consistent with the hypothesis. The
result gives no indication as to which of the restrictions is most influential in the rejection
of the hypothesis. If the three restrictions are tested one at a time, the t statistics in (5-17)
are −1.844, 5.076, and −3.803. Based on the individual test statistics, therefore, we would
expect both the second and third hypotheses to be rejected.

5.5 TESTING RESTRICTIONS USING THE FIT
OF THE REGRESSION

A different approach to hypothesis testing focuses on the fit of the regression. Recall
that the least squares vector b was chosen to minimize the sum of squared deviations,
e′e. Since R2 equals 1 − e′e/y′M0y and y′M0y is a constant that does not involve b, it
follows that b is chosen to maximize R2. One might ask whether choosing some other
value for the slopes of the regression leads to a significant loss of fit. For example, in the
investment equation (5-4), one might be interested in whether assuming the hypothesis
(that investors care only about real interest rates) leads to a substantially worse fit
than leaving the model unrestricted. To develop the test statistic, we first examine the
computation of the least squares estimator subject to a set of restrictions. We will then
construct a test statistic that is based on comparing the R2′

s from the two regressions.

5.5.1 THE RESTRICTED LEAST SQUARES ESTIMATOR

Suppose that we explicitly impose the restrictions of the general linear hypothesis in
the regression. The restricted least squares estimator is obtained as the solution to

Minimizeb0 S(b0) = (y − Xb0)
′(y − Xb0) subject to Rb0 = q. (5-18)

A Lagrangean function for this problem can be written

L∗(b0, λ) = (y − Xb0)
′(y − Xb0) + 2λ′(Rb0 − q).2 (5-19)

The solutions b∗ and λ∗ will satisfy the necessary conditions

∂L∗

∂b∗
= −2X′(y − Xb∗) + 2R′λ∗ = 0,

∂L∗

∂λ∗
= 2(Rb∗ − q) = 0.

(5-20)

Dividing through by 2 and expanding terms produces the partitioned matrix equation
[

X′X R′
R 0

][
b∗
λ∗

]
=

[
X′y
q

]
(5-21)

or,
Ad∗ = v.

2Since λ is not restricted, we can formulate the constraints in terms of 2λ. The convenience of the scaling
shows up in (5-20).
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Assuming that the partitioned matrix in brackets is nonsingular, the restricted least
squares estimator is the upper part of the solution

d∗ = A−1v. (5-22)

If, in addition, X′X is nonsingular, then explicit solutions for b∗ and λ∗ may be obtained
by using the formula for the partitioned inverse (A-74),3

b∗ = b − (X′X)−1R′[R(X′X)−1R′]−1(Rb − q)

= b − Cm,

and (5-23)

λ∗ = [R(X′X)−1R′]−1(Rb − q).

Greene and Seaks (1991) show that the covariance matrix for b∗ is simply σ 2 times
the upper left block of A−1. Once again, in the usual case in which X′X is nonsingular,
an explicit formulation may be obtained:

Var[b∗ | X] = σ 2(X′X)−1 − σ 2(X′X)−1R′[R(X′X)−1R′]−1R(X′X)−1. (5-24)

Thus,

Var[b∗ | X] = Var[b | X]—a nonnegative definite matrix.

One way to interpret this reduction in variance is as the value of the information con-
tained in the restrictions.

Note that the explicit solution for λ∗ involves the discrepancy vector Rb − q. If the
unrestricted least squares estimator satisfies the restriction, the Lagrangean multipliers
will equal zero and b∗ will equal b. Of course, this is unlikely. The constrained solution
b∗ is equal to the unconstrained solution b minus a term that accounts for the failure of
the unrestricted solution to satisfy the constraints.

5.5.2 THE LOSS OF FIT FROM RESTRICTED LEAST SQUARES

To develop a test based on the restricted least squares estimator, we consider a single
coefficient first and then turn to the general case of J linear restrictions. Consider the
change in the fit of a multiple regression when a variable z is added to a model that
already contains K − 1 variables, x. We showed in Section 3.5 (Theorem 3.6) (3-29) that
the effect on the fit would be given by

R2
Xz = R2

X + (
1 − R2

X

)
r∗2

yz, (5-25)

where R2
Xz is the new R2 after z is added, R2

X is the original R2 and r∗
yz is the partial

correlation between y and z, controlling for x. So, as we knew, the fit improves (or, at
the least, does not deteriorate). In deriving the partial correlation coefficient between
y and z in (3-22) we obtained the convenient result

r∗2
yz = t2

z

t2
z + (n − K)

, (5-26)

3The general solution given for d∗ may be usable even if X′X is singular. Suppose, for example, that X′X is
4 × 4 with rank 3. Then X′X is singular. But if there is a parametric restriction on β, then the 5 × 5 matrix
in brackets may still have rank 5. This formulation and a number of related results are given in Greene and
Seaks (1991).
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where t2
z is the square of the t ratio for testing the hypothesis that the coefficient on z is

zero in the multiple regression of y on X and z. If we solve (5-25) for r∗2
yz and (5-26) for

t2
z and then insert the first solution in the second, then we obtain the result

t2
z =

(
R2

Xz − R2
X

)
/1(

1 − R2
Xz

)
/(n − K)

. (5-27)

We saw at the end of Section 5.4.2 that for a single restriction, such as βz = 0,

F[1, n − K] = t2[n − K],

which gives us our result. That is, in (5-27), we see that the squared t statistic (i.e., the
F statistic) is computed using the change in the R2. By interpreting the preceding as
the result of removing z from the regression, we see that we have proved a result for the
case of testing whether a single slope is zero. But the preceding result is general. The test
statistic for a single linear restriction is the square of the t ratio in (5-17). By this construc-
tion, we see that for a single restriction, F is a measure of the loss of fit that results from
imposing that restriction. To obtain this result, we will proceed to the general case of
J linear restrictions, which will include one restriction as a special case.

The fit of the restricted least squares coefficients cannot be better than that of the
unrestricted solution. Let e∗ equal y − Xb∗. Then, using a familiar device,

e∗ = y − Xb − X(b∗ − b) = e − X(b∗ − b).

The new sum of squared deviations is

e′
∗e∗ = e′e + (b∗ − b)′X′X(b∗ − b) ≥ e′e.

(The middle term in the expression involves X′e, which is zero.) The loss of fit is

e′
∗e∗ − e′e = (Rb − q)′[R(X′X)−1R′]−1(Rb − q). (5-28)

This expression appears in the numerator of the F statistic in (5-7). Inserting the
remaining parts, we obtain

F[J, n − K] = (e′
∗e∗ − e′e)/J

e′e/(n − K)
. (5-29)

Finally, by dividing both numerator and denominator of F by 	i (yi − y)2, we obtain the
general result:

F[J, n − K] = (R2 − R2
∗ )/J

(1 − R2)/(n − K)
. (5-30)

This form has some intuitive appeal in that the difference in the fits of the two models
is directly incorporated in the test statistic. As an example of this approach, consider
the joint test that all the slopes in the model are zero. This is the overall F ratio that will
be discussed in Section 5.5.3, where R2

∗ = 0.

For imposing a set of exclusion restrictions such as βk = 0 for one or more coeffi-
cients, the obvious approach is simply to omit the variables from the regression and base
the test on the sums of squared residuals for the restricted and unrestricted regressions.
The F statistic for testing the hypothesis that a subset, say β2, of the coefficients are
all zero is constructed using R = (0 : I), q = 0, and J = K2 = the number of elements in
β2. The matrix R(X′X)−1R′ is the K2 × K2 lower right block of the full inverse matrix.
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Using our earlier results for partitioned inverses and the results of Section 3.3, we have

R(X′X)−1R′ = (X′
2M1X2)

−1

and

Rb − q = b2.

Inserting these in (5-28) gives the loss of fit that results when we drop a subset of the
variables from the regression:

e′
∗e∗ − e′e = b′

2X′
2M1X2b2.

The procedure for computing the appropriate F statistic amounts simply to comparing
the sums of squared deviations from the “short” and “long” regressions, which we saw
earlier.

Example 5.4 Production Function
The data in Appendix Table F5.3 have been used in several studies of production functions.4

Least squares regression of log output (value added) on a constant and the logs of labor and
capital produce the estimates of a Cobb–Douglas production function shown in Table 5.3.
We will construct several hypothesis tests based on these results. A generalization of the
Cobb–Douglas model is the translog model,5 which is

ln Y = β1 + β2 ln L + β3 ln K + β4

(
1
2 ln2 L

) + β5

(
1
2 ln2 K

) + β6 ln L ln K + ε.

As we shall analyze further in Chapter 10, this model differs from the Cobb–Douglas model
in that it relaxes the Cobb–Douglas’s assumption of a unitary elasticity of substitution. The
Cobb–Douglas model is obtained by the restriction β4 = β5 = β6 = 0. The results for the
two regressions are given in Table 5.3. The F statistic for the hypothesis of a Cobb–Douglas
model is

F [3, 21] = (0.85163 − 0.67993)/3
0.67993/21

= 1.768.

The critical value from the F table is 3.07, so we would not reject the hypothesis that a
Cobb–Douglas model is appropriate.

The hypothesis of constant returns to scale is often tested in studies of production. This
hypothesis is equivalent to a restriction that the two coefficients of the Cobb–Douglas pro-
duction function sum to 1. For the preceding data,

F [1, 24] = (0.6030 + 0.3757 − 1)2

0.01586 + 0.00728 − 2(0.00961)
= 0.1157,

which is substantially less than the 95 percent critical value of 4.26. We would not reject
the hypothesis; the data are consistent with the hypothesis of constant returns to scale. The
equivalent test for the translog model would be β2 + β3 = 1 and β4 + β5 + 2β6 = 0. The F
statistic with 2 and 21 degrees of freedom is 1.8991, which is less than the critical value of
3.47. Once again, the hypothesis is not rejected.

In most cases encountered in practice, it is possible to incorporate the restrictions of
a hypothesis directly on the regression and estimate a restricted model.6 For example, to

4The data are statewide observations on SIC 33, the primary metals industry. They were originally constructed
by Hildebrand and Liu (1957) and have subsequently been used by a number of authors, notably Aigner,
Lovell, and Schmidt (1977). The 28th data point used in the original study is incomplete; we have used only
the remaining 27.
5Berndt and Christensen (1973). See Example 2.4 and Section 10.5.2 for discussion.
6This case is not true when the restrictions are nonlinear. We consider this issue in Chapter 7.
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TABLE 5.3 Estimated Production Functions

Translog Cobb–Douglas

Sum of squared residuals 0.67993 0.85163
Standard error of regression 0.17994 0.18837
R-squared 0.95486 0.94346
Adjusted R-squared 0.94411 0.93875
Number of observations 27 27

Standard Standard
Variable Coefficient Error t Ratio Coefficient Error t Ratio

Constant 0.944196 2.911 0.324 1.171 0.3268 3.582
ln L 3.61364 1.548 2.334 0.6030 0.1260 4.787
ln K −1.89311 1.016 −1.863 0.3757 0.0853 4.402
1
2 ln2 L −0.96405 0.7074 −1.363
1
2 ln2 K 0.08529 0.2926 0.291
ln L× ln K 0.31239 0.4389 0.712

Estimated Covariance Matrix for Translog (Cobb–Douglas) Coefficient Estimates

Constant ln L ln K 1
2 ln2 L 1

2 ln2 K ln L ln K

Constant 8.472
(0.1068)

ln L −2.388 2.397
(−0.01984) (0.01586)

ln K −0.3313 −1.231 1.033
(0.001189) (−0.00961) (0.00728)

1
2 ln2 L −0.08760 −0.6658 0.5231 0.5004
1
2 ln2 K −0.2332 0.03477 0.02637 0.1467 0.08562
ln L ln K 0.3635 0.1831 −0.2255 −0.2880 −0.1160 0.1927

impose the constraint β2 = 1 on the Cobb–Douglas model, we would write

ln Y = β1 + 1.0 ln L + β3 ln K + ε,

or

ln Y − ln L = β1 + β3 ln K + ε.

Thus, the restricted model is estimated by regressing ln Y − ln L on a constant and ln K.
Some care is needed if this regression is to be used to compute an F statistic. If the F statis-
tic is computed using the sum of squared residuals [see (5-29)], then no problem will arise.
If (5-30) is used instead, however, then it may be necessary to account for the restricted
regression having a different dependent variable from the unrestricted one. In the preced-
ing regression, the dependent variable in the unrestricted regression is ln Y , whereas in the
restricted regression, it is ln Y − ln L. The R2 from the restricted regression is only 0.26979,
which would imply an F statistic of 285.96, whereas the correct value is 9.935. If we compute
the appropriate R2

∗ using the correct denominator, however, then its value is 0.92006 and the
correct F value results.

Note that the coefficient on ln K is negative in the translog model. We might conclude that
the estimated output elasticity with respect to capital now has the wrong sign. This conclusion
would be incorrect, however; in the translog model, the capital elasticity of output is

∂ ln Y
∂ ln K

= β3 + β5 ln K + β6 ln L .
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If we insert the coefficient estimates and the mean values for ln K and ln L (not the logs of
the means) of 7.44592 and 5.7637, respectively, then the result is 0.5425, which is quite in
line with our expectations and is fairly close to the value of 0.3757 obtained for the Cobb–
Douglas model. The estimated standard error for this linear combination of the least squares
estimates is computed as the square root of

Est. Var[b3 + b5 ln K + b6 ln L ] = w′(Est. Var[b])w,

where

w = (0, 0, 1, 0, ln K , ln L ) ′

and b is the full 6×1 least squares coefficient vector. This value is 0.1122, which is reasonably
close to the earlier estimate of 0.0853.

5.5.3 TESTING THE SIGNIFICANCE OF THE REGRESSION

A question that is usually of interest is whether the regression equation as a whole is
significant. This test is a joint test of the hypotheses that all the coefficients except the
constant term are zero. If all the slopes are zero, then the multiple correlation coeffi-
cient, R2, is zero as well, so we can base a test of this hypothesis on the value of R2. The
central result needed to carry out the test is given in (5-30). This is the special case with
R2

∗ = 0, so the F statistic, which is usually reported with multiple regression results is

F[K − 1, n − K] = R2/(K − 1)

(1 − R2)/(n − K)
.

If the hypothesis that β2 = 0 (the part of β not including the constant) is true and the dis-
turbances are normally distributed, then this statistic has an F distribution with K-1 and
n- K degrees of freedom. Large values of F give evidence against the validity of the hy-
pothesis. Note that a large F is induced by a large value of R2. The logic of the test is that
the F statistic is a measure of the loss of fit (namely, all of R2) that results when we impose
the restriction that all the slopes are zero. If F is large, then the hypothesis is rejected.

Example 5.5 F Test for the Earnings Equation
The F ratio for testing the hypothesis that the four slopes in the earnings equation in

Example 5.2 are all zero is

F [4, 423] = 0.040995/(5 − 1)
(1 − 0.040995)/(428 − 5)

= 4.521,

which is far larger than the 95 percent critical value of 2.39. We conclude that the data are
inconsistent with the hypothesis that all the slopes in the earnings equation are zero. We
might have expected the preceding result, given the substantial t ratios presented earlier.
But this case need not always be true. Examples can be constructed in which the indi-
vidual coefficients are statistically significant, while jointly they are not. This case can be re-
garded as pathological, but the opposite one, in which none of the coefficients is significantly
different from zero while R2 is highly significant, is relatively common. The problem is that
the interaction among the variables may serve to obscure their individual contribution to the
fit of the regression, whereas their joint effect may still be significant.

5.5.4 SOLVING OUT THE RESTRICTIONS AND A CAUTION ABOUT
USING R2

In principle, one can usually solve out the restrictions imposed by a linear hypothesis.
Algebraically, we would begin by partitioning R into two groups of columns, one with
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J and one with K − J, so that the first set are linearly independent. (There are many
ways to do so; any one will do for the present.) Then, with β likewise partitioned and
its elements reordered in whatever way is needed, we may write

Rβ = R1β1 + R2β2 = q.

If the J columns of R1 are independent, then

β1 = R−1
1 [q − R2β2].

This suggests that one might estimate the restricted model directly using a transformed
equation, rather than use the rather cumbersome restricted estimator shown in (5-23).
A simple example illustrates. Consider imposing constant returns to scale on a two input
production function,

ln y = β1 + β2 ln x1 + β3 ln x2 + ε.

The hypothesis of linear homogeneity is β2 + β3 = 1 or β3 = 1 − β2. Simply building
the restriction into the model produces

ln y = β1 + β2 ln x1 + (1 − β2) ln x2 + ε

or

ln y = ln x2 + β1 + β2(ln x1 − ln x2) + ε.

One can obtain the restricted least squares estimates by linear regression of (lny – lnx2)

on a constant and (lnx1 – lnx2). However, the test statistic for the hypothesis cannot be
tested using the familiar result in (5-30), because the denominators in the two R2’s are
different. The statistic in (5-30) could even be negative. The appropriate approach would
be to use the equivalent, but appropriate computation based on the sum of squared
residuals in (5-29). The general result from this example is that one must be careful in
using (5-30) that the dependent variable in the two regressions must be the same.

5.6 NONNORMAL DISTURBANCES
AND LARGE-SAMPLE TESTS

We now consider the relation between the sample test statistics and the data in X. First,
consider the conventional t statistic in (4-41) for testing H0 : βk = β0

k ,

t |X = bk − β0
k√

s2(X′X)−1
kk

.

Conditional on X, if βk = β0
k (i.e., under H0), then t|X has a t distribution with

(n − K) degrees of freedom. What interests us, however, is the marginal, that is, the
unconditional distribution of t. As we saw, b is only normally distributed conditionally
on X; the marginal distribution may not be normal because it depends on X (through
the conditional variance). Similarly, because of the presence of X, the denominator
of the t statistic is not the square root of a chi-squared variable divided by its de-
grees of freedom, again, except conditional on this X. But, because the distributions

of (bk − βk)/

√
s2(X′X)−1

kk |X and [(n − K)s2/σ
2]|X are still independent N[0, 1] and
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χ2[n − K], respectively, which do not involve X, we have the surprising result that,
regardless of the distribution of X, or even of whether X is stochastic or nonstochastic,
the marginal distributions of t is still t, even though the marginal distribution of bk may
be nonnormal. This intriguing result follows because f (t |X) is not a function of X. The
same reasoning can be used to deduce that the usual F ratio used for testing linear
restrictions, discussed in the previous section, is valid whether X is stochastic or not.
This result is very powerful. The implication is that if the disturbances are normally dis-
tributed, then we may carry out tests and construct confidence intervals for the parameters
without making any changes in our procedures, regardless of whether the regressors are
stochastic, nonstochastic, or some mix of the two.

The distributions of these statistics do follow from the normality assumption for ε,
but they do not depend on X. Without the normality assumption, however, the exact
distributions of these statistics depend on the data and the parameters and are not F, t,
and chi-squared. At least at first blush, it would seem that we need either a new set of
critical values for the tests or perhaps a new set of test statistics. In this section, we will
examine results that will generalize the familiar procedures. These large-sample results
suggest that although the usual t and F statistics are still usable, in the more general
case without the special assumption of normality, they are viewed as approximations
whose quality improves as the sample size increases. By using the results of Section D.3
(on asymptotic distributions) and some large-sample results for the least squares esti-
mator, we can construct a set of usable inference procedures based on already familiar
computations.

Assuming the data are well behaved, the asymptotic distribution of the least squares
coefficient estimator, b, is given by

b
a∼ N

[
β,

σ 2

n
Q−1

]
where Q = plim

(
X′X

n

)
. (5-31)

The interpretation is that, absent normality of ε, as the sample size, n, grows, the normal
distribution becomes an increasingly better approximation to the true, though at this
point unknown, distribution of b. As n increases, the distribution of

√
n(b−β) converges

exactly to a normal distribution, which is how we obtain the preceding finite-sample
approximation. This result is based on the central limit theorem and does not require
normally distributed disturbances. The second result we will need concerns the estimator
of σ 2:

plim s2 = σ 2, where s2 = e′e/(n − K).

With these in place, we can obtain some large-sample results for our test statistics that
suggest how to proceed in a finite sample with nonnormal disturbances.

The sample statistic for testing the hypothesis that one of the coefficients, βk equals
a particular value, β0

k is

tk =
√

n
(
bk − β0

k

)
√

s2
(
X′X/n

)−1
kk

.

(Note that two occurrences of
√

n cancel to produce our familiar result.) Under the
null hypothesis, with normally distributed disturbances, tk is exactly distributed as t with
n − K degrees of freedom. [See Theorem 4.6 and the beginning of this section.] The
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exact distribution of this statistic is unknown, however, if ε is not normally distributed.
From the preceding results, we find that the denominator of tk converges to

√
σ 2Q−1

kk .
Hence, if tk has a limiting distribution, then it is the same as that of the statistic that
has this latter quantity in the denominator. (See point 3 Theorem D.16.) That is, the
large-sample distribution of tk is the same as that of

τk =
√

n
(
bk − β0

k

)
√

σ 2Q−1
kk

.

But τk = (bk− E [bk])/(Asy. Var[bk])1/2 from the asymptotic normal distribution (under
the hypothesis βk = β0

k), so it follows that τk has a standard normal asymptotic distri-
bution, and this result is the large-sample distribution of our t statistic. Thus, as a large-
sample approximation, we will use the standard normal distribution to approximate
the true distribution of the test statistic tk and use the critical values from the standard
normal distribution for testing hypotheses.

The result in the preceding paragraph is valid only in large samples. For moderately
sized samples, it provides only a suggestion that the t distribution may be a reasonable
approximation. The appropriate critical values only converge to those from the standard
normal, and generally from above, although we cannot be sure of this. In the interest
of conservatism—that is, in controlling the probability of a Type I error—one should
generally use the critical value from the t distribution even in the absence of normality.
Consider, for example, using the standard normal critical value of 1.96 for a two-tailed
test of a hypothesis based on 25 degrees of freedom. The nominal size of this test is
0.05. The actual size of the test, however, is the true, but unknown, probability that
|tk| > 1.96, which is 0.0612 if the t[25] distribution is correct, and some other value if
the disturbances are not normally distributed. The end result is that the standard t test
retains a large sample validity. Little can be said about the true size of a test based on
the t distribution unless one makes some other equally narrow assumption about ε, but
the t distribution is generally used as a reliable approximation.

We will use the same approach to analyze the F statistic for testing a set of J
linear restrictions. Step 1 will be to show that with normally distributed disturbances,
JF converges to a chi-squared variable as the sample size increases. We will then show
that this result is actually independent of the normality of the disturbances; it relies on
the central limit theorem. Finally, we consider, as before, the appropriate critical values
to use for this test statistic, which only has large sample validity.

The F statistic for testing the validity of J linear restrictions, Rβ − q = 0, is given in
(5-6). With normally distributed disturbances and under the null hypothesis, the exact
distribution of this statistic is F[J, n − K]. To see how F behaves more generally, divide
the numerator and denominator in (5-16) by σ 2 and rearrange the fraction slightly, so

F = (Rb − q)′
{

R[σ 2(X′X)−1]R′}−1
(Rb − q)

J (s2/σ 2)
. (5-32)

Since plim s2 = σ 2, and plim(X′X/n) = Q, the denominator of F converges to J and the
bracketed term in the numerator will behave the same as (σ 2/n)RQ−1R′. (See Theo-
rem D16.3.) Hence, regardless of what this distribution is, if F has a limiting distribution,
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then it is the same as the limiting distribution of

W∗ = 1
J

(Rb − q)′[R(σ 2/n)Q−1R′]−1(Rb − q)

= 1
J

(Rb − q)′
{

Asy. Var[Rb − q]
}−1

(Rb − q).

This expression is (1/J ) times a Wald statistic, based on the asymptotic distribution.
The large-sample distribution of W∗ will be that of (1/J ) times a chi-squared with J de-
grees of freedom. It follows that with normally distributed disturbances, JF converges
to a chi-squared variate with J degrees of freedom. The proof is instructive. [See White
(2001, p. 76).]

THEOREM 5.1 Limiting Distribution of the Wald Statistic
If

√
n(b − β)

d−→ N[0, σ 2Q−1] and if H0 : Rβ − q = 0 is true, then

W = (Rb − q)′{Rs2(X′X)−1R′}−1(Rb − q) = JF
d−→ χ2[J].

Proof: Since R is a matrix of constants and Rβ = q,
√

nR(b − β) = √
n(Rb − q)

d−→ N[0, R(σ 2Q−1)R′]. (1)

For convenience, write this equation as

z
d−→ N[0, P]. (2)

In Section A.6.11, we define the inverse square root of a positive definite matrix
P as another matrix, say T, such that T2 = P−1, and denote T as P−1/2. Then, by
the same reasoning as in (1) and (2),

if z
d−→ N[0, P], then P−1/2z

d−→ N[0, P−1/2PP−1/2] = N[0, I]. (3)

We now invoke Theorem D.21 for the limiting distribution of a function of a
random variable. The sum of squares of uncorrelated (i.e., independent) standard
normal variables is distributed as chi-squared. Thus, the limiting distribution of

(P−1/2z)′(P−1/2z) = z′P−1z
d−→ χ2(J ). (4)

Reassembling the parts from before, we have shown that the limiting distribution
of

n(Rb − q)′[R(σ 2Q−1)R′]−1(Rb − q) (5)

is chi-squared, with J degrees of freedom. Note the similarity of this result to the
results of Section B.11.6. Finally, if

plim s2
(

1
n

X′X
)−1

= σ 2Q−1, (6)

then the statistic obtained by replacing σ 2Q−1 by s2(X′X/n)−1 in (5) has the same
limiting distribution. The n’s cancel, and we are left with the same Wald statistic
we looked at before. This step completes the proof.
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The appropriate critical values for the F test of the restrictions Rβ − q = 0 con-
verge from above to 1/J times those for a chi-squared test based on the Wald statis-
tic (see the Appendix tables). For example, for testing J = 5 restrictions, the critical
value from the chi-squared table (Appendix Table G.4) for 95 percent significance is
11.07. The critical values from the F table (Appendix Table G.5) are 3.33 = 16.65/5 for
n − K = 10, 2.60 = 13.00/5 for n − K = 25, 2.40 = 12.00/5 for n − K = 50, 2.31 = 11.55/5
for n − K = 100, and 2.214 = 11.07/5 for large n − K. Thus, with normally distributed
disturbances, as n gets large, the F test can be carried out by referring JF to the critical
values from the chi-squared table.

The crucial result for our purposes here is that the distribution of the Wald statistic is
built up from the distribution of b, which is asymptotically normal even without normally
distributed disturbances. The implication is that an appropriate large sample test statistic
is chi-squared = JF. Once again, this implication relies on the central limit theorem, not
on normally distributed disturbances. Now, what is the appropriate approach for a small
or moderately sized sample? As we saw earlier, the critical values for the F distribution
converge from above to (1/J ) times those for the preceding chi-squared distribution.
As before, one cannot say that this will always be true in every case for every possible
configuration of the data and parameters. Without some special configuration of the
data and parameters, however, one, can expect it to occur generally. The implication is
that absent some additional firm characterization of the model, the F statistic, with the
critical values from the F table, remains a conservative approach that becomes more
accurate as the sample size increases.

Exercise 7 at the end of this chapter suggests another approach to testing that has
validity in large samples, a Lagrange multiplier test. The vector of Lagrange multipliers
in (5-23) is [R(X′X)−1R′]−1(Rb − q), that is, a multiple of the least squares discrepancy
vector. In principle, a test of the hypothesis that λ∗ equals zero should be equivalent to a
test of the null hypothesis. Since the leading matrix has full rank, this can only equal zero
if the discrepancy equals zero. A Wald test of the hypothesis that λ∗ = 0 is indeed a valid
way to proceed. The large sample distribution of the Wald statistic would be chi-squared
with J degrees of freedom. (The procedure is considered in Exercise 7.) For a set of
exclusion restrictions, β2 = 0, there is a simple way to carry out this test. The chi-squared
statistic, in this case with K2 degrees of freedom can be computed as nR2 in the regression
of e∗ (the residuals in the short regression) on the full set of independent variables.

5.7 TESTING NONLINEAR RESTRICTIONS

The preceding discussion has relied heavily on the linearity of the regression model.
When we analyze nonlinear functions of the parameters and nonlinear regression
models, most of these exact distributional results no longer hold.

The general problem is that of testing a hypothesis that involves a nonlinear function
of the regression coefficients:

H0 : c(β) = q.

We shall look first at the case of a single restriction. The more general case, in which
c(β) = q is a set of restrictions, is a simple extension. The counterpart to the test statistic
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we used earlier would be

z = c(β̂) − q
estimated standard error

, (5-33)

or its square, which in the preceding were distributed as t[n − K] and F[1, n − K],
respectively. The discrepancy in the numerator presents no difficulty. Obtaining an
estimate of the sampling variance of c(β̂) − q, however, involves the variance of a
nonlinear function of β̂.

The results we need for this computation are presented in Sections 4.4.4, B.10.3, and
D.3.1. A linear Taylor series approximation to c(β̂) around the true parameter vector β is

c(β̂) ≈ c(β) +
(

∂c(β)

∂β

)′
(β̂ − β). (5-34)

We must rely on consistency rather than unbiasedness here, since, in general, the ex-
pected value of a nonlinear function is not equal to the function of the expected value.
If plim β̂ = β, then we are justified in using c(β̂) as an estimate of c(β). (The rele-
vant result is the Slutsky theorem.) Assuming that our use of this approximation is
appropriate, the variance of the nonlinear function is approximately equal to the vari-
ance of the right-hand side, which is, then,

Var[c(β̂)] ≈
(

∂c(β)

∂β

)′
Var[β̂]

(
∂c(β)

∂β

)
. (5-35)

The derivatives in the expression for the variance are functions of the unknown param-
eters. Since these are being estimated, we use our sample estimates in computing the
derivatives. To estimate the variance of the estimator, we can use s2(X′X)−1. Finally, we
rely on Theorem D.22 in Section D.3.1 and use the standard normal distribution instead
of the t distribution for the test statistic. Using g(β̂) to estimate g(β) = ∂c(β)/∂β, we
can now test a hypothesis in the same fashion we did earlier.

Example 5.6 A Long-Run Marginal Propensity to Consume
A consumption function that has different short- and long-run marginal propensities to con-
sume can be written in the form

ln Ct = α + β ln Yt + γ ln Ct−1 + εt ,

which is a distributed lag model. In this model, the short-run marginal propensity to consume
(MPC) (elasticity, since the variables are in logs) is β, and the long-run MPC is δ = β/(1 − γ ) .
Consider testing the hypothesis that δ = 1.

Quarterly data on aggregate U.S. consumption and disposable personal income for the
years 1950 to 2000 are given in Appendix Table F5.2. The estimated equation based on these
data is

ln Ct = 0.003142 + 0.07495 ln Yt + 0.9246 ln Ct−1 + et , R2 = 0.999712, s = 0.00874.

(0.01055) (0.02873) (0.02859)

Estimated standard errors are shown in parentheses. We will also require Est. Asy. Cov[b, c] =
−0.0008207. The estimate of the long-run MPC is d = b/(1 − c) = 0.07495/(1 − 0.9246) =
0.99403. To compute the estimated variance of d, we will require

gb = ∂d
∂b

= 1
1 − c

= 13.2626, gc = ∂d
∂c

= b
(1 − c) 2

= 13.1834.
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The estimated asymptotic variance of d is

Est. Asy. Var[d] = g2
b Est. Asy. Var[b] + g2

c Est. Asy. Var[c] + 2gbgcEst. Asy. Cov[b, c]

= 13.26262 × 0.028732 + 13.18342 × 0.028592

+ 2(13.2626) (13.1834) (−0.0008207) = 0.0002585.

The square root is 0.016078. To test the hypothesis that the long-run MPC is greater than or
equal to 1, we would use

z = 0.99403 − 1
0.016078

= −0.37131.

Because we are using a large sample approximation, we refer to a standard normal table
instead of the t distribution. The hypothesis that γ = 1 is not rejected.

You may have noticed that we could have tested this hypothesis with a linear restriction
instead; if δ = 1, then β = 1−γ , or β +γ = 1. The estimate is q = b+c−1 = −0.00045. The
estimated standard error of this linear function is [0.028732 + 0.028592 − 2(0.0008207) ]1/2 =
0.00118. The t ratio for this test is −0.38135, which is almost the same as before. Since
the sample used here is fairly large, this is to be expected. However, there is nothing in the
computations that ensures this outcome. In a smaller sample, we might have obtained a
different answer. For example, using the last 11 years of the data, the t statistics for the two
hypotheses are 7.652 and 5.681. The Wald test is not invariant to how the hypothesis is
formulated. In a borderline case, we could have reached a different conclusion. This lack of
invariance does not occur with the likelihood ratio or Lagrange multiplier tests discussed
in Chapter 14. On the other hand, both of these tests require an assumption of normality,
whereas the Wald statistic does not. This illustrates one of the trade-offs between a more
detailed specification and the power of the test procedures that are implied.

The generalization to more than one function of the parameters proceeds along
similar lines. Let c(β̂) be a set of J functions of the estimated parameter vector and let
the J × K matrix of derivatives of c(β̂) be

Ĝ = ∂c(β̂)

∂β̂
′ . (5-36)

The estimate of the asymptotic covariance matrix of these functions is

Est. Asy. Var[ĉ] = Ĝ
{

Est. Asy. Var[β̂]
}

Ĝ′. (5-37)

The jth row of Ĝ is K derivatives of c j with respect to the K elements of β̂. For example,
the covariance matrix for estimates of the short- and long-run marginal propensities to
consume would be obtained using

G =
[

0 1 0
0 1/(1 − γ ) β/(1 − γ )2

]
.

The statistic for testing the J hypotheses c(β) = q is

W = (ĉ − q)′
{

Est. Asy. Var[ĉ]
}−1

(ĉ − q). (5-38)

In large samples, W has a chi-squared distribution with degrees of freedom equal to the
number of restrictions. Note that for a single restriction, this value is the square of the
statistic in (5-33).
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5.8 CHOOSING BETWEEN NONNESTED MODELS

The classical testing procedures that we have been using have been shown to be most
powerful for the types of hypotheses we have considered.7 Although use of these pro-
cedures is clearly desirable, the requirement that we express the hypotheses in the form
of restrictions on the model y = Xβ + ε,

H0 : Rβ = q

versus

H1 : Rβ �= q,

can be limiting. Two common exceptions are the general problem of determining which
of two possible sets of regressors is more appropriate and whether a linear or loglinear
model is more appropriate for a given analysis. For the present, we are interested in
comparing two competing linear models:

H0 : y = Xβ + ε0 (5-39a)

and

H1 : y = Zγ + ε1. (5-39b)

The classical procedures we have considered thus far provide no means of forming a
preference for one model or the other. The general problem of testing nonnested hy-
potheses such as these has attracted an impressive amount of attention in the theoretical
literature and has appeared in a wide variety of empirical applications.8

5.8.1 TESTING NONNESTED HYPOTHESES

A useful distinction between hypothesis testing as discussed in the preceding chapters
and model selection as considered here will turn on the asymmetry between the null
and alternative hypotheses that is a part of the classical testing procedure.9 Because,
by construction, the classical procedures seek evidence in the sample to refute the
“null” hypothesis, how one frames the null can be crucial to the outcome. Fortunately,
the Neyman–Pearson methodology provides a prescription; the null is usually cast as
the narrowest model in the set under consideration. On the other hand, the classical
procedures never reach a sharp conclusion. Unless the significance level of the testing
procedure is made so high as to exclude all alternatives, there will always remain the
possibility of a Type 1 error. As such, the null hypothesis is never rejected with certainty,
but only with a prespecified degree of confidence. Model selection tests, in contrast,
give the competing hypotheses equal standing. There is no natural null hypothesis.
However, the end of the process is a firm decision—in testing (5-39a, b), one of the
models will be rejected and the other will be retained; the analysis will then proceed in

7See, for example, Stuart and Ord (1989, Chap. 27).
8Surveys on this subject are White (1982a, 1983), Gourieroux and Monfort (1994), McAleer (1995), and
Pesaran and Weeks (2001). McAleer’s survey tabulates an array of applications, while Gourieroux and Mon-
fort focus on the underlying theory.
9See Granger and Pesaran (2000) for discussion.
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the framework of that one model and not the other. Indeed, it cannot proceed until one
of the models is discarded. It is common, for example, in this new setting for the analyst
first to test with one model cast as the null, then with the other. Unfortunately, given
the way the tests are constructed, it can happen that both or neither model is rejected;
in either case, further analysis is clearly warranted. As we shall see, the science is a bit
inexact.

The earliest work on nonnested hypothesis testing, notably Cox (1961, 1962), was
done in the framework of sample likelihoods and maximum likelihood procedures.
Recent developments have been structured around a common pillar labeled the en-
compassing principle [Mizon and Richard (1986)]. In the large, the principle directs
attention to the question of whether a maintained model can explain the features of its
competitors, that is, whether the maintained model encompasses the alternative. Yet a
third approach is based on forming a comprehensive model that contains both competi-
tors as special cases. When possible, the test between models can be based, essentially,
on classical (-like) testing procedures. We will examine tests that exemplify all three
approaches.

5.8.2 AN ENCOMPASSING MODEL

The encompassing approach is one in which the ability of one model to explain features
of another is tested. Model 0 “encompasses” Model 1 if the features of Model 1 can be
explained by Model 0, but the reverse is not true.10 Because H0 cannot be written as a
restriction on H1, none of the procedures we have considered thus far is appropriate.
One possibility is an artificial nesting of the two models. Let X be the set of variables in
X that are not in Z, define Z likewise with respect to X, and let W be the variables that
the models have in common. Then H0 and H1 could be combined in a “supermodel”:

y = X β + Z γ + Wδ + ε.

In principle, H1 is rejected if it is found that γ = 0 by a conventional F test, whereas H0

is rejected if it is found that β = 0. There are two problems with this approach. First,
δ remains a mixture of parts of β and γ , and it is not established by the F test that either
of these parts is zero. Hence, this test does not really distinguish between H0 and H1;
it distinguishes between H1 and a hybrid model. Second, this compound model may
have an extremely large number of regressors. In a time-series setting, the problem of
collinearity may be severe.

Consider an alternative approach. If H0 is correct, then y will, apart from the ran-
dom disturbance ε, be fully explained by X. Suppose we then attempt to estimate γ

by regression of y on Z. Whatever set of parameters is estimated by this regression,
say, c, if H0 is correct, then we should estimate exactly the same coefficient vector if we
were to regress Xβ on Z, since ε0 is random noise under H0. Because β must be esti-
mated, suppose that we use Xb instead and compute c0. A test of the proposition that
Model 0 “encompasses” Model 1 would be a test of the hypothesis that E [c − c0] = 0.
It is straightforward to show [see Davidson and MacKinnon (2004, pp. 671–672)] that
the test can be carried out by using a standard F test to test the hypothesis that γ 1 = 0

10See Deaton (1982), Dastoor (1983), Gourieroux et al. (1983, 1995), and, especially, Mizon and Richard
(1986).
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in the augmented regression,

y = Xβ + Z1γ 1 + ε1,

where Z1 is the variables in Z that are not in X. (Of course, a line of manipulation
reveals that Z and Z1 are the same, so the tests are also.)

5.8.3 COMPREHENSIVE APPROACH—THE J TEST

The underpinnings of the comprehensive approach are tied to the density function as
the characterization of the data generating process. Let f0(yi | data, β0) be the assumed
density under Model 0 and define the alternative likewise as f1(yi | data, β1). Then, a
comprehensive model which subsumes both of these is

fc(yi | data, β0, β1) = [ f0(yi | data, β0)]
1−λ[ f1(yi | data, β1)]

λ

∫
range of yi

[ f0(yi | data, β0)]1−λ[ f1(yi | data, β1)]λ dyi
.

Estimation of the comprehensive model followed by a test of λ = 0 or 1 is used to assess
the validity of Model 0 or 1, respectively.11

The J test proposed by Davidson and MacKinnon (1981) can be shown [see Pesaran
and Weeks (2001)] to be an application of this principle to the linear regression model.
Their suggested alternative to the preceding compound model is

y = (1 − λ)Xβ + λ(Zγ ) + ε.

In this model, a test of λ = 0 would be a test against H1. The problem is that λ cannot
be separately estimated in this model; it would amount to a redundant scaling of the
regression coefficients. Davidson and MacKinnon’s J test consists of estimating γ by
a least squares regression of y on Z followed by a least squares regression of y on X
and Zγ̂ , the fitted values in the first regression. A valid test, at least asymptotically,
of H1 is to test H0 : λ = 0. If H0 is true, then plim λ̂ = 0. Asymptotically, the ratio
λ̂/se( λ̂) (i.e., the usual t ratio) is distributed as standard normal and may be referred to
the standard table to carry out the test. Unfortunately, in testing H0 versus H1 and vice
versa, all four possibilities (reject both, neither, or either one of the two hypotheses)
could occur. This issue, however, is a finite sample problem. Davidson and MacKinnon
show that as n → ∞, if H1 is true, then the probability that λ̂ will differ significantly
from 0 approaches 1.

Example 5.7 J Test for a Consumption Function
Gaver and Geisel (1974) propose two forms of a consumption function:

H0 : Ct = β1 + β2Yt + β3Yt−1 + ε0t ,

and

H1 : Ct = γ1 + γ2Yt + γ3Ct−1 + ε1t .

The first model states that consumption responds to changes in income over two periods,
whereas the second states that the effects of changes in income on consumption persist
for many periods. Quarterly data on aggregate U.S. real consumption and real disposable
income are given in Appendix Table F5.2. Here we apply the J test to these data and the two
proposed specifications. First, the two models are estimated separately (using observations

11Silva (2001) presents an application to the choice of probit or logit model for binary choice.
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1950.2 through 2000.4). The least squares regression of C on a constant, Y , lagged Y , and
the fitted values from the second model produces an estimate of λ of 1.0145 with a t ratio of
62.861. Thus, H0 should be rejected in favor of H1. But reversing the roles of H0 and H1, we
obtain an estimate of λ of −10.677 with a t ratio of −7.188. Thus, H1 is rejected as well.12

5.9 A SPECIFICATION TEST

The tests considered so far have evaluated nested models. The presumption is that one of
the two models is correct. In Section 5.8, we broadened the range of models considered
to allow two nonnested models. It is not assumed that either model is necessarily the
true data generating process; the test attempts to ascertain which of two competing
models is closer to the truth. Specification tests fall between these two approaches. The
idea of a specification test is to consider a particular null model and alternatives that
are not explicitly given in the form of restrictions on the regression equation. A useful
way to consider some specification tests is as if the core model, y = Xβ + ε is the
null hypothesis and the alternative is a possibly unstated generalization of that model.
Ramsey’s (1969) RESET test is one such test which seeks to uncover nonlinearities in
the functional form. One (admittedly ambiguous) way to frame the analysis is

H0: y = Xβ + ε,
H1: y = Xβ + higher order powers of xk and other terms + ε.

A straightforward approach would be to add squares, cubes, and cross products of the
regressors to the equation and test down to H0 as a restriction on the larger model.
Two complications are that this approach might be too specific about the form of the
alternative hypothesis and, second, with a large number of variables in X, it could
become unwieldy. Ramsey’s proposed solution is to add powers of x′

iβ to the regression
using the least squares predictions—typically, one would add the square and, perhaps
the cube. This would require a two-step estimation procedure, since in order to add
(x′

i b)2 and (x′
i b)3, one needs the coefficients. The suggestion, then, is to fit the null

model first, using least squares. Then, for the second step, the squares (and cubes) of
the predicted values from this first-step regression are added to the equation and it is
refit with the additional variables. A (large-sample) Wald test is then used to test the
hypothesis of the null model.

As a general strategy, this sort of specification is designed to detect failures of the
assumptions of the null model. The obvious virtue of such a test is that it provides much
greater generality than a simple test of restrictions such as whether a coefficient is zero.
But, that generality comes at considerable cost:

1. The test is nonconstructive. It gives no indication what the researcher should do
next if the null model is rejected. This is a general feature of specification tests.
Rejection of the null model does not imply any particular alternative.

2. Since the alternative hypothesis is unstated, it is unclear what the power of this test
is against any specific alternative.

3. For this specific test (perhaps not for some other specification tests we will examine
later), because x′

i b uses the same b for every observation, the observations are

12For related discussion of this possibility, see McAleer, Fisher, and Volker (1982).
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correlated, while they are assumed to be uncorrelated in the original model. Because
of the two-step nature of the estimator, it is not clear what is the appropriate
covariance matrix to use for the Wald test. Two other complications emerge for this
test. First, it is unclear what the coefficients converge to, assuming they converge
to anything. Second, variance of the difference between x′

i b and x′
iβ is a function of

x, so the second-step regression might be heteroscedastic. The implication is that
neither the size nor the power of this test is necessarily what might be expected.

Example 5.8 Size of a RESET Test
To investigate the true size of the RESET test in a particular application, we carried out
a Monte Carlo experiment. The results in Table 4.6 give the following estimates of equa-
tion (5-2):

ln Price = −8.42653 + 1.33372 ln Area − 0.16537Aspect Ratio + e where sd(e) = 1.10266.

We take the estimated right-hand side to be our population. We generated 5,000 samples
of 430 (the original sample size), by reusing the regression coefficients and generating a
new sample of disturbances for each replication. Thus, with each replication, r , we have
a new sample of observations on lnPricei r where the regression part is as above reused
and a new set of disturbances is generated each time. With each sample, we computed
the least squares coefficient, then the predictions. We then recomputed the least squares
regression while adding the square and cube of the prediction to the regression. Finally, with
each sample, we computed the chi-squared statistic, and rejected the null model if the chi-
squared statistic is larger than 5.99, the 95th percentile of the chi-squared distribution with
two degrees of freedom. The nominal size of this test is 0.05. Thus, in samples of 100, 500,
1,000, and 5,000, we should reject the null nodel 5, 25, 50, and 250 times. In our experiment,
the computed chi-squared exceeded 5.99 8, 31, 65, and 259 times, respectively, which
suggests that at least with sufficient replications, the test performs as might be expected.
We then investigated the power of the test by adding 0.1 times the square of ln Area to
the predictions. It is not possible to deduce the exact power of the RESET test to detect
this failure of the null model. In our experiment, with 1,000 replications, the null hypothesis
is rejected 321 times. We conclude that the procedure does appear have power to detect
this failure of the model assumptions.

5.10 MODEL BUILDING—A GENERAL
TO SIMPLE STRATEGY

There has been a shift in the general approach to model building in the past 20 years
or so, partly based on the results in the previous two sections. With an eye toward
maintaining simplicity, model builders would generally begin with a small specification
and gradually build up the model ultimately of interest by adding variables. But, based
on the preceding results, we can surmise that just about any criterion that would be
used to decide whether to add a variable to a current specification would be tainted by
the biases caused by the incomplete specification at the early steps. Omitting variables
from the equation seems generally to be the worse of the two errors. Thus, the simple-
to-general approach to model building has little to recommend it. Building on the work
of Hendry [e.g., (1995)] and aided by advances in estimation hardware and software,
researchers are now more comfortable beginning their specification searches with large
elaborate models involving many variables and perhaps long and complex lag structures.
The attractive strategy is then to adopt a general-to-simple, downward reduction of the
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model to the preferred specification. [This approach has been completely automated in
Hendry’s PCGets(c) computer program. See, e.g., Hendry and Kotzis (2001).] Of course,
this must be tempered by two related considerations. In the “kitchen sink” regression,
which contains every variable that might conceivably be relevant, the adoption of a
fixed probability for the Type I error, say, 5 percent, ensures that in a big enough
model, some variables will appear to be significant, even if “by accident.” Second, the
problems of pretest estimation and stepwise model building also pose some risk of
ultimately misspecifying the model. To cite one unfortunately common example, the
statistics involved often produce unexplainable lag structures in dynamic models with
many lags of the dependent or independent variables.

5.10.1 MODEL SELECTION CRITERIA

The preceding discussion suggested some approaches to model selection based on
nonnested hypothesis tests. Fit measures and testing procedures based on the sum of
squared residuals, such as R2 and the Cox (1961) test, are useful when interest centers
on the within-sample fit or within-sample prediction of the dependent variable. When
the model building is directed toward forecasting, within-sample measures are not nec-
essarily optimal. As we have seen, R2 cannot fall when variables are added to a model,
so there is a built-in tendency to overfit the model. This criterion may point us away
from the best forecasting model, because adding variables to a model may increase the
variance of the forecast error (see Section 4.6) despite the improved fit to the data. With
this thought in mind, the adjusted R2,

R 2 = 1 − n − 1
n − K

(1 − R2) = 1 − n − 1
n − K

(
e′e∑n

i=1(yi − y)2

)
, (5-40)

has been suggested as a fit measure that appropriately penalizes the loss of degrees of
freedom that result from adding variables to the model. Note that R 2 may fall when
a variable is added to a model if the sum of squares does not fall fast enough. (The
applicable result appears in Theorem 3.7; R 2 does not rise when a variable is added to
a model unless the t ratio associated with that variable exceeds one in absolute value.)
The adjusted R2 has been found to be a preferable fit measure for assessing the fit of
forecasting models. [See Diebold (2003), who argues that the simple R2 has a downward
bias as a measure of the out-of-sample, one-step-ahead prediction error variance.]

The adjusted R2 penalizes the loss of degrees of freedom that occurs when a model
is expanded. There is, however, some question about whether the penalty is sufficiently
large to ensure that the criterion will necessarily lead the analyst to the correct model
(assuming that it is among the ones considered) as the sample size increases. Two alter-
native fit measures that have seen suggested are the Akaike Information Criterion,

AIC(K) = s2
y(1 − R2)e2K/n (5-41)

and the Schwarz or Bayesian Information Criterion,

BIC(K) = s2
y(1 − R2)nK/n. (5-42)

(There is no degrees of freedom correction in s2
y.) Both measures improve (decline) as

R2 increases (decreases), but, everything else constant, degrade as the model size in-
creases. Like R 2, these measures place a premium on achieving a given fit with a smaller



Greene-2140242 book January 19, 2011 20:51

180 PART I ✦ The Linear Regression Model

number of parameters per observation, K/n. Logs are usually more convenient; the
measures reported by most software are

AIC(K) = ln
(

e′e
n

)
+ 2K

n
(5-43)

BIC(K) = ln
(

e′e
n

)
+ K ln n

n
. (5-44)

Both prediction criteria have their virtues, and neither has an obvious advantage over
the other. [See Diebold (2003).] The Schwarz criterion, with its heavier penalty for
degrees of freedom lost, will lean toward a simpler model. All else given, simplicity
does have some appeal.

5.10.2 MODEL SELECTION

The preceding has laid out a number of choices for model selection, but, at the same
time, has posed some uncomfortable propositions. The pretest estimation aspects of
specification search are based on the model builder’s knowledge of “the truth” and the
consequences of failing to use that knowledge. While the cautions about blind search
for statistical significance are well taken, it does seem optimistic to assume that the
correct model is likely to be known with hard certainty at the outset of the analysis. The
bias documented in (4-10) is well worth the modeler’s attention. But, in practical terms,
knowing anything about the magnitude presumes that we know what variables are in
X2, which need not be the case. While we can agree that the model builder will omit
income from a demand equation at their peril, we could also have some sympathy for
the analyst faced with finding the right specification for their forecasting model among
dozens of choices. The tests for nonnested models would seem to free the modeler from
having to claim that the specified set of models contain “the truth.” But, a moment’s
thought should suggest that the cost of this is the possibly deflated power of these
procedures to point toward that truth, The J test may provide a sharp choice between
two alternatives, but it neglects the third possibility, that both models are wrong. Vuong’s
test (see Section 14.6.6) does but, of course, it suffers from the fairly large inconclusive
region, which is a symptom of its relatively low power against many alternatives. The
upshot of all of this is that there remains much to be accomplished in the area of model
selection. Recent commentary has provided suggestions from two perspective, classical
and Bayesian.

5.10.3 CLASSICAL MODEL SELECTION

Hansen (2005) lists four shortcomings of the methodology we have considered here:

1. parametric vision
2. assuming a true data generating process
3. evaluation based on fit
4. ignoring model uncertainty

All four of these aspects have framed the analysis of the preceding sections. Hansen’s
view is that the analysis considered here is too narrow and stands in the way of progress
in model discovery.
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All the model selection procedures considered here are based on the likelihood
function, which requires a specific distributional assumption. Hansen argues for a focus,
instead, on semiparametric structures. For regression analysis, this points toward gen-
eralized method of moments estimators. Casualties of this reorientation will be dis-
tributionally based test statistics such as the Cox and Vuong statistics, and even the
AIC and BIC measures, which are transformations of the likelihood function. How-
ever, alternatives have been proposed [e.g, by Hong, Preston, and Shum (2000)]. The
second criticism is one we have addressed. The assumed “true” model can be a straight-
jacket. Rather (he argues), we should view our specifications as approximations to the
underlying true data generating process—this greatly widens the specification search,
to one for a model which provides the best approximation. Of course, that now forces
the question of what is “best.” So far, we have focused on the likelihood function,
which in the classical regression can be viewed as an increasing function of R2. The
author argues for a more “focused” information criterion (FIC) that examines di-
rectly the parameters of interest, rather than the fit of the model to the data. Each
of these suggestions seeks to improve the process of model selection based on famil-
iar criteria, such as test statistics based on fit measures and on characteristics of the
model.

A (perhaps the) crucial issue remaining is uncertainty about the model itself. The
search for the correct model is likely to have the same kinds of impacts on statistical
inference as the search for a specification given the form of the model (see Sections 4.3.2
and 4.3.3). Unfortunately, incorporation of this kind of uncertainty in statistical infer-
ence procedures remains an unsolved problem. Hansen suggests one potential route
would be the Bayesian model averaging methods discussed next although he does ex-
press some skepticism about Bayesian methods in general.

5.10.4 BAYESIAN MODEL AVERAGING

If we have doubts as to which of two models is appropriate, then we might well be
convinced to concede that possibly neither one is really “the truth.” We have painted
ourselves into a corner with our “left or right” approach to testing. The Bayesian
approach to this question would treat it as a problem of comparing the two hypothe-
ses rather than testing for the validity of one over the other. We enter our sampling
experiment with a set of prior probabilities about the relative merits of the two hy-
potheses, which is summarized in a “prior odds ratio,” P01 = Prob[H0]/Prob[H1]. After
gathering our data, we construct the Bayes factor, which summarizes the weight of the
sample evidence in favor of one model or the other. After the data have been analyzed,
we have our “posterior odds ratio,” P01 | data = Bayes factor × P01. The upshot is that
ex post, neither model is discarded; we have merely revised our assessment of the com-
parative likelihood of the two in the face of the sample data. Of course, this still leaves
the specification question open. Faced with a choice among models, how can we best
use the information we have? Recent work on Bayesian model averaging [Hoeting et al.
(1999)] has suggested an answer.

An application by Wright (2003) provides an interesting illustration. Recent
advances such as Bayesian VARs have improved the forecasting performance of econo-
metric models. Stock and Watson (2001, 2004) report that striking improvements in
predictive performance of international inflation can be obtained by averaging a large
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number of forecasts from different models and sources. The result is remarkably con-
sistent across subperiods and countries. Two ideas are suggested by this outcome. First,
the idea of blending different models is very much in the spirit of Hansen’s fourth
point. Second, note that the focus of the improvement is not on the fit of the model
(point 3), but its predictive ability. Stock and Watson suggested that simple equal-
weighted averaging, while one could not readily explain why, seems to bring large
improvements. Wright proposed Bayesian model averaging as a means of making the
choice of the weights for the average more systematic and of gaining even greater
predictive performance.

Leamer (1978) appears to be the first to propose Bayesian model averaging as a
means of combining models. The idea has been studied more recently by Min and Zellner
(1993) for output growth forecasting, Doppelhofer et al. (2000) for cross-country growth
regressions, Koop and Potter (2004) for macroeconomic forecasts, and others. Assume
that there are M models to be considered, indexed by m = 1, . . . , M. For simplicity,
we will write the mth model in a simple form, fm(y | Z, θm) where f (.) is the density,
y and Z are the data, and θm is the parameter vector for model m. Assume, as well, that
model m∗ is the true model, unknown to the analyst. The analyst has priors πm over
the probabilities that model m is the correct model, so πm is the prior probability that
m = m∗. The posterior probabilities for the models are

�m = Prob(m = m∗ | y, Z) = P(y, Z | m)πm∑M
r=1 P(y, Z | r)πr

, (5-45)

where P(y, Z | m) is the marginal likelihood for the mth model,

P(y, Z | m) =
∫

θm

P(y, Z | θm, m)P(θm)dθm, (5-46)

while P(y, Z | θm, m) is the conditional (on θm) likelihood for the mth model and P(θm)

is the analyst’s prior over the parameters of the mth model. This provides an alternative
set of weights to the �m = 1/M suggested by Stock and Watson. Let θ̂m denote the
Bayesian estimate (posterior mean) of the parameters of model m. (See Chapter 16.)
Each model provides an appropriate posterior forecast density, f ∗(y | Z, θ̂m, m). The
Bayesian model averaged forecast density would then be

f ∗ =
M∑

m=1

f ∗(y | Z, θ̂m, m)�m. (5-47)

A point forecast would be a similarly weighted average of the forecasts from the indi-
vidual models.

Example 5.9 Bayesian Averaging of Classical Estimates
Many researchers have expressed skepticism of Bayesian methods because of the apparent
arbitrariness of the specifications of prior densities over unknown parameters. In the Bayesian
model averaging setting, the analyst requires prior densities over not only the model prob-
abilities, πm, but also the model specific parameters, θm. In their application, Doppelhofer,
Miller, and Sala-i-Martin (2000) were interested in the appropriate set of regressors to include
in a long-term macroeconomic (income) growth equation. With 32 candidates, M for their
application was 232 (minus one if the zero regressors model is ignored), or roughly four bil-
lion. Forming this many priors would be optimistic in the extreme. The authors proposed a
novel method of weighting a large subset (roughly 21 million) of the 2M possible (classical)
least squares regressions. The weights are formed using a Bayesian procedure; however,
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the estimates that are weighted are the classical least squares estimates. While this saves
considerable computational effort, it still requires the computation of millions of least squares
coefficient vectors. [See Sala-i-Martin (1997).] The end result is a model with 12 independent
variables.

5.11 SUMMARY AND CONCLUSIONS

This chapter has focused on the third use of the linear regression model, hypothesis
testing. The central result for testing hypotheses is the F statistic. The F ratio can be pro-
duced in two equivalent ways; first, by measuring the extent to which the unrestricted
least squares estimate differs from what a hypothesis would predict, and second, by
measuring the loss of fit that results from assuming that a hypothesis is correct.We then
extended the F statistic to more general settings by examining its large-sample proper-
ties, which allow us to discard the assumption of normally distributed disturbances and
by extending it to nonlinear restrictions.

This is the last of five chapters that we have devoted specifically to the methodology
surrounding the most heavily used tool in econometrics, the classical linear regression
model. We began in Chapter 2 with a statement of the regression model. Chapter 3 then
described computation of the parameters by least squares—a purely algebraic exercise.
Chapter 4 reinterpreted least squares as an estimator of an unknown parameter vector
and described the finite sample and large-sample characteristics of the sampling distri-
bution of the estimator. Chapter 5 was devoted to building and sharpening the regression
model, with statistical results for testing hypotheses about the underlying population.
In this chapter, we have examined some broad issues related to model specification and
selection of a model among a set of competing alternatives. The concepts considered
here are tied very closely to one of the pillars of the paradigm of econometrics; under-
lying the model is a theoretical construction, a set of true behavioral relationships that
constitute the model. It is only on this notion that the concepts of bias and biased esti-
mation and model selection make any sense—“bias” as a concept can only be described
with respect to some underlying “model” against which an estimator can be said to be
biased. That is, there must be a yardstick. This concept is a central result in the analysis of
specification, where we considered the implications of underfitting (omitting variables)
and overfitting (including superfluous variables) the model. We concluded this chapter
(and our discussion of the classical linear regression model) with an examination of
procedures that are used to choose among competing model specifications.

Key Terms and Concepts

• Acceptance region
• Adjusted R-squared
• Akaike Information

Criterion
• Alternative hypothesis
• Bayesian model averaging
• Bayesian Information

Criterion

• Biased estimator
• Comprehensive model
• Consistent
• Distributed lag
• Discrepancy vector
• Encompassing principle
• Exclusion restrictions
• Ex post forecast

• Functionally independent
• General nonlinear

hypothesis
• General-to-simple strategy
• Inclusion of superfluous

variables
• J test
• Lack of invariance



Greene-2140242 book January 19, 2011 20:51

184 PART I ✦ The Linear Regression Model

• Lagrange multiplier test
• Linear restrictions
• Mean squared error
• Model selection
• Nested
• Nested models
• Nominal size
• Nonnested
• Nonnested models
• Nonnormality
• Null hypothesis

• One-sided test
• Parameter space
• Power of a test
• Prediction criterion
• Prediction interval
• Prediction variance
• Rejection region
• Restricted least squares
• Root mean squared error
• Sample discrepancy
• Schwarz criterion

• Simple-to-general
• Size of the test
• Specification test
• Stepwise model building
• t ratio
• Testable implications
• Theil U statistic
• Wald criterion
• Wald distance
• Wald statistic
• Wald test

Exercises

1. A multiple regression of y on a constant x1 and x2 produces the following results:
ŷ = 4 + 0.4x1 + 0.9x2, R2 = 8/60, e′e = 520, n = 29,

X′X =
⎡
⎣

29 0 0
0 50 10
0 10 80

⎤
⎦.

Test the hypothesis that the two slopes sum to 1.
2. Using the results in Exercise 1, test the hypothesis that the slope on x1 is 0 by running

the restricted regression and comparing the two sums of squared deviations.
3. The regression model to be analyzed is y = X1β1 + X2β2 + ε, where X1 and X2

have K1 and K2 columns, respectively. The restriction is β2 = 0.
a. Using (5-23), prove that the restricted estimator is simply [b1∗, 0], where b1∗ is

the least squares coefficient vector in the regression of y on X1.
b. Prove that if the restriction is β2 = β0

2 for a nonzero β0
2, then the restricted

estimator of β1 is b1∗ = (X′
1X1)

−1X′
1(y − X2β

0
2).

4. The expression for the restricted coefficient vector in (5-23) may be written in the
form b∗ = [I − CR]b + w, where w does not involve b. What is C? Show that the
covariance matrix of the restricted least squares estimator is

σ 2(X′X)−1 − σ 2(X′X)−1R′[R(X′X)−1R′]−1R(X′X)−1

and that this matrix may be written as

Var[b | X]
{

[Var(b | X)]−1 − R′[Var(Rb) | X]−1R
}

Var[b | X].

5. Prove the result that the restricted least squares estimator never has a larger
covariance matrix than the unrestricted least squares estimator.

6. Prove the result that the R2 associated with a restricted least squares estimator
is never larger than that associated with the unrestricted least squares estimator.
Conclude that imposing restrictions never improves the fit of the regression.

7. An alternative way to test the hypothesis Rβ − q = 0 is to use a Wald test of the
hypothesis that λ∗ = 0, where λ∗ is defined in (5-23). Prove that

χ2 = λ′
∗
{

Est. Var[λ∗]
}−1

λ∗ = (n − K)

[
e′

∗e∗
e′e

− 1
]
.
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Note that the fraction in brackets is the ratio of two estimators of σ 2. By virtue
of (5-28) and the preceding discussion, we know that this ratio is greater than 1.
Finally, prove that this test statistic is equivalent to JF, where J is the number of
restrictions being tested and F is the conventional F statistic given in (5-16). For-
mally, the Lagrange multiplier test requires that the variance estimator be based on
the restricted sum of squares, not the unrestricted. Then, the test statistic would be
LM = nJ/[(n − K)/F + J ]. See Godfrey (1988).

8. Use the test statistic defined in Exercise 7 to test the hypothesis in Exercise 1.
9. Prove that under the hypothesis that Rβ = q, the estimator

s2
∗ = (y − Xb∗)′(y − Xb∗)

n − K + J
,

where J is the number of restrictions, is unbiased for σ 2.
10. Show that in the multiple regression of y on a constant, x1 and x2 while imposing

the restriction β1 + β2 = 1 leads to the regression of y − x1 on a constant and
x2 − x1.

11. Suppose the true regression model is given by (4-8). The result in (4-10) shows that
if either P1.2 is nonzero or β2 is nonzero, then regression of y on X1 alone produces
a biased and inconsistent estimator of β1. Suppose the objective is to forecast y,
not to estimate the parameters. Consider regression of y on X1 alone to estimate
β1 with b1 (which is biased). Is the forecast of y computed using X1b1 also biased?
Assume that E[X2 | X1] is a linear function of X1. Discuss your findings gener-
ally. What are the implications for prediction when variables are omitted from a
regression?

12. Compare the mean squared errors of b1 and b1.2 in Section 4.7.2. (Hint: The compar-
ison depends on the data and the model parameters, but you can devise a compact
expression for the two quantities.)

13. The log likelihood function for the linear regression model with normally distributed
disturbances is shown in Example 4.6. Show that at the maximum likelihood esti-
mators of b for β and e′e/n for σ 2, the log likelihood is an increasing function of
R2 for the model.

14. Show that the model of the alternative hypothesis in Example 5.7 can be written

H1: Ct = θ1 + θ2Yt + θ3Yt−1 +
∞∑

s=2

θs+2Yt−s + εi t +
∞∑

s=1

λsεt−s .

As such, it does appear that H0 is a restriction on H1. However, because there are
an infinite number of constraints, this does not reduce the test to a standard test of
restrictions. It does suggest the connections between the two formulations.

Applications

1. The application in Chapter 3 used 15 of the 17,919 observations in Koop and
Tobias’s (2004) study of the relationship between wages and education, ability, and
family characteristics. (See Appendix Table F3.2.) We will use the full data set for
this exercise. The data may be downloaded from the Journal of Applied Economet-
rics data archive at http://www.econ.queensu.ca/jae/12004-vl9.7/koop-tobias/. The
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data file is in two parts. The first file contains the panel of 17,919 observations on
variables:

Column 1; Person id (ranging from 1 to 2,178),
Column 2; Education,
Column 3; Log of hourly wage,
Column 4; Potential experience,
Column 5; Time trend.

Columns 2–5 contain time varying variables. The second part of the data set contains
time invariant variables for the 2,178 households. These are

Column 1; Ability,
Column 2; Mother’s education,
Column 3; Father’s education,
Column 4; Dummy variable for residence in a broken home,
Column 5; Number of siblings.

To create the data set for this exercise, it is necessary to merge these two data files.
The ith observation in the second file will be replicated Ti times for the set of Ti

observations in the first file. The person id variable indicates which rows must con-
tain the data from the second file. (How this preparation is carried out will vary
from one computer package to another.) (Note: We are not attempting to replicate
Koop and Tobias’s results here—we are only employing their interesting data set.)
Let X1 = [constant, education, experience, ability] and let X2 = [mother’s education,
father’s education, broken home, number of siblings].
a. Compute the full regression of log wage on X1 and X2 and report all results.
b. Use an F test to test the hypothesis that all coefficients except the constant term

are zero.
c. Use an F statistic to test the joint hypothesis that the coefficients on the four

household variables in X2 are zero.
d. Use a Wald test to carry out the test in part c.

2. The generalized Cobb–Douglas cost function examined in Application 2 in Chap-
ter 4 is a special case of the translog cost function,

ln C = α + β ln Q + δk ln Pk + δl ln Pl + δ f ln Pf

+ φkk[ 1
2 (ln Pk)

2] + φll[ 1
2 (ln Pl)

2] + φff [ 1
2 (ln Pf )

2]

+ φkl[ln Pk][ln Pl] + φkf [ln Pk][ln Pf ] + φlf [ln Pl][ln Pf ]

+ γ [ 1
2 (ln Q)2]

+ θQk[ln Q][ln Pk] + θQl[ln Q][ln Pl] + θQf [ln Q][ln Pf ] + ε.

The theoretical requirement of linear homogeneity in the factor prices imposes the
following restrictions:

δk + δl + δ f = 1, φkk + φkl + φkf = 0, φkl + φll + φlf = 0,

φkf + φlf + φff = 0, θQK + θQl + θQf = 0.

Note that although the underlying theory requires it, the model can be estimated
(by least squares) without imposing the linear homogeneity restrictions. [Thus, one
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could “test” the underlying theory by testing the validity of these restrictions. See
Christensen, Jorgenson, and Lau (1975).] We will repeat this exercise in part b.

A number of additional restrictions were explored in Christensen and Greene’s
(1976) study. The hypothesis of homotheticity of the production structure would
add the additional restrictions

θQk = 0, θQl = 0, θQf = 0.

Homogeneity of the production structure adds the restriction γ = 0. The hypothe-
sis that all elasticities of substitution in the production structure are equal to −1 is
imposed by the six restrictions φi j = 0 for all i and j .

We will use the data from the earlier application to test these restrictions. For
the purposes of this exercise, denote by β1, . . . , β15 the 15 parameters in the cost
function above in the order that they appear in the model, starting in the first line
and moving left to right and downward.
a. Write out the R matrix and q vector in (5-8) that are needed to impose the

restriction of linear homogeneity in prices.
b. “Test” the theory of production using all 158 observations. Use an F test to test

the restrictions of linear homogeneity. Note, you can use the general form of the
F statistic in (5-16) to carry out the test. Christensen and Greene enforced the
linear homogeneity restrictions by building them into the model. You can do this
by dividing cost and the prices of capital and labor by the price of fuel. Terms
with f subscripts fall out of the model, leaving an equation with 10 parameters.
Compare the sums of squares for the two models to carry out the test. Of course,
the test may be carried out either way and will produce the same result.

c. Test the hypothesis homotheticity of the production structure under the assump-
tion of linear homogeneity in prices.

d. Test the hypothesis of the generalized Cobb–Douglas cost function in Chap-
ter 4 against the more general translog model suggested here, once again (and
henceforth) assuming linear homogeneity in the prices.

e. The simple Cobb–Douglas function appears in the first line of the model above.
Test the hypothesis of the Cobb–Douglas model against the alternative of the
full translog model.

f. Test the hypothesis of the generalized Cobb–Douglas model against the homo-
thetic translog model.

g. Which of the several functional forms suggested here do you conclude is the
most appropriate for these data?

3. The gasoline consumption model suggested in part d of Application 1 in Chapter 4
may be written as

ln(G/Pop) = α + βP ln Pg + βI ln (Income/Pop) + γnc ln Pnc + γuc ln Puc + γpt ln Ppt

+ τyear + δd ln Pd + δn ln Pn + δs ln Ps + ε.

a. Carry out a test of the hypothesis that the three aggregate price indices are not
significant determinants of the demand for gasoline.

b. Consider the hypothesis that the microelasticities are a constant proportion of
the elasticity with respect to their corresponding aggregate. Thus, for some pos-
itive θ (presumably between 0 and 1), γnc = θδd, γuc = θδd, γpt = θδs . The first
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two imply the simple linear restriction γnc = γuc. By taking ratios, the first (or
second) and third imply the nonlinear restriction

γnc

γpt
= δd

δs
or γncδs − γptδd = 0.

Describe in detail how you would test the validity of the restriction.
c. Using the gasoline market data in Table F2.2, test the two restrictions suggested

here, separately and jointly.
4. The J test in Example 5.7 is carried out using more than 50 years of data. It is

optimistic to hope that the underlying structure of the economy did not change in
50 years. Does the result of the test carried out in Example 5.7 persist if it is based on
data only from 1980 to 2000? Repeat the computation with this subset of the data.
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6

FUNCTIONAL FORM AND
STRUCTURAL CHANGE

Q
6.1 INTRODUCTION

This chapter will complete our analysis of the linear regression model. We begin by ex-
amining different aspects of the functional form of the regression model. Many different
types of functions are linear by the definition in Section 2.3.1. By using different trans-
formations of the dependent and independent variables, binary variables, and different
arrangements of functions of variables, a wide variety of models can be constructed that
are all estimable by linear least squares. Section 6.2 considers using binary variables to
accommodate nonlinearities in the model. Section 6.3 broadens the class of models
that are linear in the parameters. By using logarithms, quadratic terms, and interaction
terms (products of variables), the regression model can accommodate a wide variety of
functional forms in the data.

Section 6.4 examines the issue of specifying and testing for discrete change in the
underlying process that generates the data, under the heading of structural change. In
a time-series context, this relates to abrupt changes in the economic environment, such
as major events in financial (e.g., the world financial crisis of 2007–2009) or commodity
markets (such as the several upheavals in the oil market). In a cross section, we can
modify the regression model to account for discrete differences across groups such as
different preference structures or market experiences of men and women.

6.2 USING BINARY VARIABLES

One of the most useful devices in regression analysis is the binary, or dummy variable.
A dummy variable takes the value one for some observations to indicate the presence
of an effect or membership in a group and zero for the remaining observations. Bi-
nary variables are a convenient means of building discrete shifts of the function into a
regression model.

6.2.1 BINARY VARIABLES IN REGRESSION

Dummy variables are usually used in regression equations that also contain other quan-
titative variables. In the earnings equation in Example 5.2, we included a variable Kids
to indicate whether there were children in the household, under the assumption that for
many married women, this fact is a significant consideration in labor supply behavior.
The results shown in Example 6.1 appear to be consistent with this hypothesis.

189
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TABLE 6.1 Estimated Earnings Equation

ln earnings = β1 + β2 age + β3 age2 + β4 education + β5 kids + ε
Sum of squared residuals: 599.4582
Standard error of the regression: 1.19044

R2 based on 428 observations 0.040995

Variable Coefficient Standard Error t Ratio

Constant 3.24009 1.7674 1.833
Age 0.20056 0.08386 2.392
Age2 −0.0023147 0.00098688 −2.345
Education 0.067472 0.025248 2.672
Kids −0.35119 0.14753 −2.380

Example 6.1 Dummy Variable in an Earnings Equation
Table 6.1 following reproduces the estimated earnings equation in Example 5.2. The variable
Kids is a dummy variable, which equals one if there are children under 18 in the household and
zero otherwise. Since this is a semilog equation, the value of −0.35 for the coefficient is an
extremely large effect, one which suggests that all other things equal, the earnings of women
with children are nearly a third less than those without. This is a large difference, but one that
would certainly merit closer scrutiny. Whether this effect results from different labor market
effects that influence wages and not hours, or the reverse, remains to be seen. Second, having
chosen a nonrandomly selected sample of those with only positive earnings to begin with,
it is unclear whether the sampling mechanism has, itself, induced a bias in this coefficient.

Dummy variables are particularly useful in loglinear regressions. In a model of the
form

ln y = β1 + β2x + β3d + ε,

the coefficient on the dummy variable, d, indicates a multiplicative shift of the function.
The percentage change in E[y|x,d] asociated with the change in d is

%
(
�E[y|x, d]/�d

) = 100%
{

E[y|x, d = 1] − E[y|x, d = 0]
E[y|x, d = 0]

}

= 100%
{

exp(β1 + β2x + β3)E[exp(ε)] − exp(β1 + β2x)E[exp(ε)]
exp(β1 + β2x)E[exp(ε)]

}

= 100%[exp(β3) − 1].

Example 6.2 Value of a Signature
In Example 4.10 we explored the relationship between (log of) sale price and surface area for
430 sales of Monet paintings. Regression results from the example are included in Table 6.2.
The results suggest a strong relationship between area and price—the coefficient is 1.33372
indicating a highly elastic relationship and the t ratio of 14.70 suggests the relationship is
highly significant. A variable (effect) that is clearly left out of the model is the effect of the
artist’s signature on the sale price. Of the 430 sales in the sample, 77 are for unsigned
paintings. The results at the right of Table 6.2 include a dummy variable for whether the
painting is signed or not. The results show an extremely strong effect. The regression results
imply that

E [Price|Area, Aspect, Signature) =
exp[−9.64 + 1.35 ln Area − 0.08AspectRatio + 1.23Signature + 0.9932/2].
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TABLE 6.2 Estimated Equations for Log Price

ln price = β1 + β2 ln Area + β3aspect ratio + β4signature + ε

Mean of ln Price 0.33274
Number of observations 430

Sum of squared residuals 519.17235 420.16787
Standard error 1.10266 0.99313
R-squared 0.33620 0.46279
Adjusted R-squared 0.33309 0.45900

Standard Standard
Variable Coefficient Error t Coefficient Error t

Constant −8.42653 0.61183 −13.77 −9.64028 0.56422 −17.09
Ln area 1.33372 0.09072 14.70 1.34935 0.08172 16.51
Aspect ratio −0.16537 0.12753 −1.30 −0.07857 0.11519 −0.68
Signature 0.00000 0.00000 0.00 1.25541 0.12530 10.02

(See Section 4.6.) Computing this result for a painting of the same area and aspect ratio, we
find the model predicts that the signature effect would be

100% × (�E [Price]/Price) = 100%[exp(1.26) − 1] = 252%.

The effect of a signature on an otherwise similar painting is to more than double the price. The
estimated standard error for the signature coefficient is 0.1253. Using the delta method, we
obtain an estimated standard error for [exp(b3) − 1] of the square root of [exp(b3) ]2 × .12532,
which is 0.4417. For the percentage difference of 252%, we have an estimated standard
error of 44.17%.

Superficially, it is possible that the size effect we observed earlier could be explained by
the presence of the signature. If the artist tended on average to sign only the larger paintings,
then we would have an explanation for the counterintuitive effect of size. (This would be
an example of the effect of multicollinearity of a sort.) For a regression with a continuous
variable and a dummy variable, we can easily confirm or refute this proposition. The average
size for the 77 sales of unsigned paintings is 1,228.69 square inches. The average size of
the other 353 is 940.812 square inches. There does seem to be a substantial systematic
difference between signed and unsigned paintings, but it goes in the other direction. We
are left with significant findings of both a size and a signature effect in the auction prices of
Monet paintings. Aspect Ratio, however, appears still to be inconsequential.

There is one remaining feature of this sample for us to explore. These 430 sales involved
only 387 different paintings. Several sales involved repeat sales of the same painting. The
assumption that observations are independent draws is violated, at least for some of them.
We will examine this form of “clustering” in Chapter 11 in our treatment of panel data.

It is common for researchers to include a dummy variable in a regression to account
for something that applies only to a single observation. For example, in time-series
analyses, an occasional study includes a dummy variable that is one only in a single
unusual year, such as the year of a major strike or a major policy event. (See, for
example, the application to the German money demand function in Section 21.3.5.) It
is easy to show (we consider this in the exercises) the very useful implication of this:

A dummy variable that takes the value one only for one observation has the effect of
deleting that observation from computation of the least squares slopes and variance
estimator (but not R-squared).
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6.2.2 SEVERAL CATEGORIES

When there are several categories, a set of binary variables is necessary. Correcting
for seasonal factors in macroeconomic data is a common application. We could write a
consumption function for quarterly data as

Ct = β1 + β2xt + δ1 Dt1 + δ2 Dt2 + δ3 Dt3 + εt ,

where xt is disposable income. Note that only three of the four quarterly dummy vari-
ables are included in the model. If the fourth were included, then the four dummy
variables would sum to one at every observation, which would reproduce the constant
term—a case of perfect multicollinearity. This is known as the dummy variable trap.
Thus, to avoid the dummy variable trap, we drop the dummy variable for the fourth quar-
ter. (Depending on the application, it might be preferable to have four separate dummy
variables and drop the overall constant.)1 Any of the four quarters (or 12 months) can
be used as the base period.

The preceding is a means of deseasonalizing the data. Consider the alternative
formulation:

Ct = βxt + δ1 Dt1 + δ2 Dt2 + δ3 Dt3 + δ4 Dt4 + εt . (6-1)

Using the results from Section 3.3 on partitioned regression, we know that the preceding
multiple regression is equivalent to first regressing C and x on the four dummy variables
and then using the residuals from these regressions in the subsequent regression of
deseasonalized consumption on deseasonalized income. Clearly, deseasonalizing in this
fashion prior to computing the simple regression of consumption on income produces
the same coefficient on income (and the same vector of residuals) as including the set
of dummy variables in the regression.

Example 6.3 Genre Effects on Movie Box Office Receipts
Table 4.8 in Example 4.12 presents the results of the regression of log of box office receipts
for 62 2009 movies on a number of variables including a set of dummy variables for genre:
Action, Comedy, Animated, or Horror. The left out category is “any of the remaining 9 genres”
in the standard set of 13 that is usually used in models such as this one. The four coefficients
are −0.869, −0.016, −0.833, +0.375, respectively. This suggests that, save for horror movies,
these genres typically fare substantially worse at the box office than other types of movies.
We note the use of b directly to estimate the percentage change for the category, as we
did in example 6.1 when we interpreted the coefficient of −0.35 on Kids as indicative of a
35 percent change in income, is an approximation that works well when b is close to zero
but deteriorates as it gets far from zero. Thus, the value of −0.869 above does not translate
to an 87 percent difference between Action movies and other movies. Using the formula we
used in Example 6.2, we find an estimated difference closer to [exp(−0.869) − 1] or about
58 percent.

6.2.3 SEVERAL GROUPINGS

The case in which several sets of dummy variables are needed is much the same as
those we have already considered, with one important exception. Consider a model of
statewide per capita expenditure on education y as a function of statewide per capita
income x. Suppose that we have observations on all n = 50 states for T = 10 years.

1See Suits (1984) and Greene and Seaks (1991).
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A regression model that allows the expected expenditure to change over time as well
as across states would be

yit = α + βxit + δi + θt + εi t . (6-2)

As before, it is necessary to drop one of the variables in each set of dummy variables
to avoid the dummy variable trap. For our example, if a total of 50 state dummies and
10 time dummies is retained, a problem of “perfect multicollinearity” remains; the sums
of the 50 state dummies and the 10 time dummies are the same, that is, 1. One of the
variables in each of the sets (or the overall constant term and one of the variables in
one of the sets) must be omitted.

Example 6.4 Analysis of Covariance
The data in Appendix Table F6.1 were used in a study of efficiency in production of airline
services in Greene (2007a). The airline industry has been a favorite subject of study [e.g.,
Schmidt and Sickles (1984); Sickles, Good, and Johnson (1986)], partly because of interest
in this rapidly changing market in a period of deregulation and partly because of an abun-
dance of large, high-quality data sets collected by the (no longer existent) Civil Aeronautics
Board. The original data set consisted of 25 firms observed yearly for 15 years (1970 to 1984),
a “balanced panel.” Several of the firms merged during this period and several others expe-
rienced strikes, which reduced the number of complete observations substantially. Omitting
these and others because of missing data on some of the variables left a group of 10 full
observations, from which we have selected six for the examples to follow. We will fit a cost
equation of the form

ln Ci ,t = β1 + β2 ln Qi ,t + β3 ln2 Qi ,t + β4 ln Pfuel i,t + β5 Loadfactori ,t

+
14∑

t=1

θt Di ,t +
5∑

i =1

δi Fi ,t + εi ,t .

The dummy variables are Di ,t which is the year variable and Fi ,t which is the firm variable. We
have dropped the last one in each group. The estimated model for the full specification is

ln Ci ,t = 13.56 + 0.8866 ln Qi ,t + 0.01261 ln2 Qi ,t + 0.1281 ln Pf i ,t − 0.8855 LFi ,t

+ time effects + firm effects + ei ,t .

The year effects display a revealing pattern, as shown in Figure 6.1. This was a period of
rapidly rising fuel prices, so the cost effects are to be expected. Since one year dummy
variable is dropped, the effect shown is relative to this base year (1984).

We are interested in whether the firm effects, the time effects, both, or neither are sta-
tistically significant. Table 6.3 presents the sums of squares from the four regressions. The
F statistic for the hypothesis that there are no firm-specific effects is 65.94, which is highly
significant. The statistic for the time effects is only 2.61, which is larger than the critical value
of 1.84, but perhaps less so than Figure 6.1 might have suggested. In the absence of the

TABLE 6.3 F tests for Firm and Year Effects

Model Sum of Squares Restrictions F Deg.Fr.

Full model 0.17257 0 —
Time effects only 1.03470 5 65.94 [5, 66]
Firm effects only 0.26815 14 2.61 [14, 66]
No effects 1.27492 19 22.19 [19, 66]
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FIGURE 6.1 Estimated Year Dummy Variable Coefficients.

year-specific dummy variables, the year-specific effects are probably largely absorbed by
the price of fuel.

6.2.4 THRESHOLD EFFECTS AND CATEGORICAL VARIABLES

In most applications, we use dummy variables to account for purely qualitative factors,
such as membership in a group, or to represent a particular time period. There are cases,
however, in which the dummy variable(s) represents levels of some underlying factor
that might have been measured directly if this were possible. For example, education
is a case in which we typically observe certain thresholds rather than, say, years of
education. Suppose, for example, that our interest is in a regression of the form

income = β1 + β2 age + effect of education + ε.

The data on education might consist of the highest level of education attained, such
as high school (HS), undergraduate (B), master’s (M), or Ph.D. (P). An obviously
unsatisfactory way to proceed is to use a variable E that is 0 for the first group, 1 for the
second, 2 for the third, and 3 for the fourth. That is, income = β1 + β2 age + β3E + ε.
The difficulty with this approach is that it assumes that the increment in income at each
threshold is the same; β3 is the difference between income with a Ph.D. and a master’s
and between a master’s and a bachelor’s degree. This is unlikely and unduly restricts
the regression. A more flexible model would use three (or four) binary variables, one
for each level of education. Thus, we would write

income = β1 + β2 age + δB B + δM M + δP P + ε.
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The correspondence between the coefficients and income for a given age is

High school : E [income | age, HS] = β1 + β2 age,

Bachelor’s : E [income | age, B] = β1 + β2 age + δB,

Master’s : E [income | age, M] = β1 + β2 age + δM,

Ph.D. : E [income | age, P] = β1 + β2 age + δP.

The differences between, say, δP and δM and between δM and δB are of interest. Obvi-
ously, these are simple to compute. An alternative way to formulate the equation that
reveals these differences directly is to redefine the dummy variables to be 1 if the indi-
vidual has the degree, rather than whether the degree is the highest degree obtained.
Thus, for someone with a Ph.D., all three binary variables are 1, and so on. By defining
the variables in this fashion, the regression is now

High school : E [income | age, HS] = β1 + β2 age,

Bachelor’s : E [income | age, B] = β1 + β2 age + δB,

Master’s : E [income | age, M] = β1 + β2 age + δB + δM,

Ph.D. : E [income | age, P] = β1 + β2 age + δB + δM + δP.

Instead of the difference between a Ph.D. and the base case, in this model δP is the
marginal value of the Ph.D. How equations with dummy variables are formulated is a
matter of convenience. All the results can be obtained from a basic equation.

6.2.5 TREATMENT EFFECTS AND DIFFERENCE
IN DIFFERENCES REGRESSION

Researchers in many fields have studied the effect of a treatment on some kind of
response. Examples include the effect of going to college on lifetime income [Dale
and Krueger (2002)], the effect of cash transfers on child health [Gertler (2004)], the
effect of participation in job training programs on income [LaLonde (1986)], and pre-
versus postregime shifts in macroeconomic models [Mankiw (2006)], to name but a
few. These examples can be formulated in regression models involving a single dummy
variable:

yi = x′
iβ + δDi + εi ,

where the shift parameter, δ, measures the impact of the treatment or the policy change
(conditioned on x) on the sampled individuals. In the simplest case of a comparison of
one group to another,

yi = β1 + β2 Di + εi ,

we will have b1 = (ȳ|Di = 0), that is, the average outcome of those who did not ex-
perience the intervention, and b2 = (ȳ|Di = 1) − (ȳ|Di = 0), the difference in the
means of the two groups. In the Dale and Krueger (2002) study, the model compared
the incomes of students who attended elite colleges to those who did not. When the
analysis is of an intervention that occurs over time, such as Krueger’s (1999) analysis
of the Tennessee STAR experiment in which school performance measures were ob-
served before and after a policy dictated a change in class sizes, the treatment dummy
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variable will be a period indicator, Dt = 0 in period 1 and 1 in period 2. The effect in β2

measures the change in the outcome variable, for example, school performance, pre- to
postintervention; b2 = ȳ1 − ȳ0.

The assumption that the treatment group does not change from period 1 to period 2
weakens this comparison. A strategy for strengthening the result is to include in the
sample a group of control observations that do not receive the treatment. The change in
the outcome for the treatment group can then be compared to the change for the control
group under the presumption that the difference is due to the intervention. An intriguing
application of this strategy is often used in clinical trials for health interventions to
accommodate the placebo effect. The placebo “effect” is a controversial, but apparently
tangible outcome in some clinical trials in which subjects “respond” to the treatment
even when the treatment is a decoy intervention, such as a sugar or starch pill in a drug
trial. [See Hróbjartsson and Götzsche, 2001.] A broad template for assessment of the
results of such a clinical trial is as follows: The subjects who receive the placebo are
the controls. The outcome variable—level of cholesterol for example—is measured at
the baseline for both groups. The treatment group receives the drug; the control group
receives the placebo, and the outcome variable is measured posttreatment. The impact
is measured by the difference in differences,

E = [(ȳexit|treatment) − (ȳbaseline|treatment)] − [(ȳexit|placebo) − (ȳbaseline|placebo)].

The presumption is that the difference in differences measurement is robust to the
placebo effect if it exists. If there is no placebo effect, the result is even stronger
(assuming there is a result).

An increasingly common social science application of treatment effect models with
dummy variables is in the evaluation of the effects of discrete changes in policy.2 A
pioneering application is the study of the Manpower Development and Training Act
(MDTA) by Ashenfelter and Card (1985). The simplest form of the model is one with
a pre- and posttreatment observation on a group, where the outcome variable is y,
with

yit = β1 + β2Tt + β3 Di + β4Tt × Di + εit, t = 1, 2. (6-3)

In this model, Tt is a dummy variable that is zero in the pretreatment period and
one after the treatment and Di equals one for those individuals who received the
“treatment.” The change in the outcome variable for the “treated” individuals will
be

(yi2|Di = 1) − (yi1|Di = 1) = (β1 + β2 + β3 + β4) − (β1 + β3) = β2 + β4.

For the controls, this is

(yi2|Di = 0) − (yi1|Di = 0) = (β1 + β2) − (β1) = β2.

The difference in differences is

[(yi2|Di = 1) − (yi1|Di = 1)] − [(yi2|Di = 0) − (yi1|Di = 0)] = β4.

2Surveys of literatures on treatment effects, including use of, ‘D-i-D,’ estimators, are provided by Imbens and
Wooldridge (2009) and Millimet, Smith, and Vytlacil (2008).
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In the multiple regression of yit on a constant, T, D, and TD, the least squares estimate
of β4 will equal the difference in the changes in the means,

b4 = (ȳ|D = 1, Period 2) − (ȳ|D = 1, Period 1)

− (ȳ|D = 0, Period 2) − (ȳ|D = 0, Period 1)

= �ȳ|treatment − �ȳ|control.

The regression is called a difference in differences estimator in reference to this result.
When the treatment is the result of a policy change or event that occurs completely

outside the context of the study, the analysis is often termed a natural experiment. Card’s
(1990) study of a major immigration into Miami in 1979 discussed in Example 6.5 is an
application.

Example 6.5 A Natural Experiment: The Mariel Boatlift
A sharp change in policy can constitute a natural experiment. An example studied by Card
(1990) is the Mariel boatlift from Cuba to Miami (May–September 1980), which increased the
Miami labor force by 7 percent. The author examined the impact of this abrupt change in labor
market conditions on wages and employment for nonimmigrants. The model compared Miami
to a similar city, Los Angeles. Let i denote an individual and D denote the “treatment,” which
for an individual would be equivalent to “lived in a city that experienced the immigration.”
For an individual in either Miami or Los Angeles, the outcome variable is

(Yi ) = 1 if they are unemployed and 0 if they are employed.

Let c denote the city and let t denote the period, before (1979) or after (1981) the immigration.
Then, the unemployment rate in city c at time t is E [yi ,0|c, t] if there is no immigration and it
is E [yi ,1|c, t] if there is the immigration. These rates are assumed to be constants. Then,

E [ yi ,0|c, t] = βt + γc without the immigration,

E [ yi ,1|c, t] = βt + γc + δ with the immigration.

The effect of the immigration on the unemployment rate is measured by δ. The natural ex-
periment is that the immigration occurs in Miami and not in Los Angeles but is not a result
of any action by the people in either city. Then,

E [ yi |M, 79] = β79 + γM and E [ yi |M, 81] = β81 + γM + δ for Miami,

E [ yi |L, 79] = β79 + γL and E [ yi |L, 81] = β81 + γL for Los Angeles.

It is assumed that unemployment growth in the two cities would be the same if there were
no immigration. If neither city experienced the immigration, the change in the unemployment
rate would be

E [ yi ,0|M, 81] − E [ yi ,0|M, 79] = β81 − β79 for Miami,

E [ yi ,0|L, 81] − E [ yi ,0|L, 79] = β81 − β79 for Los Angeles.

If both cities were exposed to migration,

E [ yi ,1|M, 81] − E [ yi ,1|M, 79] = β81 − β79 + δ for Miami

E [ yi ,1|L, 81] − E [ yi ,1|L, 79] = β81 − β79 + δ for Los Angeles.

Only Miami experienced the migration (the “treatment”). The difference in differences that
quantifies the result of the experiment is

{E [ yi ,1|M, 81] − E [ yi ,1|M, 79]} − {E [ yi ,0|L, 81] − E [ yi ,0|L, 79]} = δ.
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The author examined changes in employment rates and wages in the two cities over several
years after the boatlift. The effects were surprisingly modest given the scale of the experiment
in Miami.

One of the important issues in policy analysis concerns measurement of such treat-
ment effects when the dummy variable results from an individual participation decision.
In the clinical trial example given earlier, the control observations (it is assumed) do not
know they they are in the control group. The treatment assignment is exogenous to the
experiment. In contrast, in Keueger and Dale’s study, the assignment to the treatment
group, attended the elite college, is completely voluntary and determined by the indi-
vidual. A crucial aspect of the analysis in this case is to accommodate the almost certain
outcome that the “treatment dummy” might be measuring the latent motivation and
initiative of the participants rather than the effect of the program itself. That is the main
appeal of the natural experiment approach—it more closely (possibly exactly) repli-
cates the exogenous treatment assignment of a clinical trial.3 We will examine some of
these cases in Chapters 8 and 19.

6.3 NONLINEARITY IN THE VARIABLES

It is useful at this point to write the linear regression model in a very general form: Let
z = z1, z2, . . . , zL be a set of L independent variables; let f1, f2, . . . , fK be K linearly
independent functions of z; let g(y) be an observable function of y; and retain the usual
assumptions about the disturbance. The linear regression model may be written

g(y) = β1 f1(z) + β2 f2(z) + · · · + βK fK(z) + ε

= β1x1 + β2x2 + · · · + βKxK + ε

= x′β + ε.

(6-4)

By using logarithms, exponentials, reciprocals, transcendental functions, polynomials,
products, ratios, and so on, this “linear” model can be tailored to any number of
situations.

6.3.1 PIECEWISE LINEAR REGRESSION

If one is examining income data for a large cross section of individuals of varying ages
in a population, then certain patterns with regard to some age thresholds will be clearly
evident. In particular, throughout the range of values of age, income will be rising, but the
slope might change at some distinct milestones, for example, at age 18, when the typical
individual graduates from high school, and at age 22, when he or she graduates from
college. The time profile of income for the typical individual in this population might
appear as in Figure 6.2. Based on the discussion in the preceding paragraph, we could
fit such a regression model just by dividing the sample into three subsamples. However,
this would neglect the continuity of the proposed function. The result would appear
more like the dotted figure than the continuous function we had in mind. Restricted

3See Angrist and Krueger (2001) and Angrist and Pischke (2010) for discussions of this approach.
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regression and what is known as a spline function can be used to achieve the desired
effect.4

The function we wish to estimate is

E [income | age] = α0 + β0 age if age < 18,

α1 + β1 age if age ≥ 18 and age < 22,

α2 + β2 age if age ≥ 22.

The threshold values, 18 and 22, are called knots. Let

d1 = 1 if age ≥ t∗
1 ,

d2 = 1 if age ≥ t∗
2 ,

where t∗
1 = 18 and t∗

2 = 22. To combine all three equations, we use

income = β1 + β2 age + γ1d1 + δ1d1 age + γ2d2 + δ2d2 age + ε.

This relationship is the dashed function in Figure 6.2. The slopes in the three segments
are β2, β2 + δ1, and β2 + δ1 + δ2. To make the function piecewise continuous, we require
that the segments join at the knots—that is,

β1 + β2t∗
1 = (β1 + γ1) + (β2 + δ1)t∗

1

and

(β1 + γ1) + (β2 + δ1)t∗
2 = (β1 + γ1 + γ2) + (β2 + δ1 + δ2)t∗

2 .

4An important reference on this subject is Poirier (1974). An often-cited application appears in Garber and
Poirier (1974).
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These are linear restrictions on the coefficients. Collecting terms, the first one is

γ1 + δ1t∗
1 = 0 or γ1 = −δ1t∗

1 .

Doing likewise for the second and inserting these in (6-3), we obtain

income = β1 + β2 age + δ1d1 (age − t∗
1 ) + δ2d2 (age − t∗

2 ) + ε.

Constrained least squares estimates are obtainable by multiple regression, using a con-
stant and the variables

x1 = age,

x2 = age − 18 if age ≥ 18 and 0 otherwise,

and
x3 = age − 22 if age ≥ 22 and 0 otherwise.

We can test the hypothesis that the slope of the function is constant with the joint test
of the two restrictions δ1 = 0 and δ2 = 0.

6.3.2 FUNCTIONAL FORMS

A commonly used form of regression model is the loglinear model,

ln y = ln α +
∑

k

βk ln Xk + ε = β1 +
∑

k

βkxk + ε.

In this model, the coefficients are elasticities:
(

∂y
∂ Xk

)(
Xk

y

)
= ∂ ln y

∂ ln Xk
= βk. (6-5)

In the loglinear equation, measured changes are in proportional or percentage terms;
βk measures the percentage change in y associated with a 1 percent change in Xk.
This removes the units of measurement of the variables from consideration in using the
regression model. An alternative approach sometimes taken is to measure the variables
and associated changes in standard deviation units. If the data are “standardized” before
estimation using x∗

ik = (xik − x̄k)/sk and likewise for y, then the least squares regression
coefficients measure changes in standard deviation units rather than natural units or
percentage terms. (Note that the constant term disappears from this regression.) It is
not necessary actually to transform the data to produce these results; multiplying each
least squares coefficient bk in the original regression by sk/sy produces the same result.

A hybrid of the linear and loglinear models is the semilog equation

ln y = β1 + β2x + ε. (6-6)

We used this form in the investment equation in Section 5.2.2,

ln It = β1 + β2 (it − �pt ) + β3�pt + β4 ln Yt + β5t + εt ,

where the log of investment is modeled in the levels of the real interest rate, the price
level, and a time trend. In a semilog equation with a time trend such as this one,
d ln I/dt = β5 is the average rate of growth of I. The estimated value of −0.00566 in
Table 5.2 suggests that over the full estimation period, after accounting for all other
factors, the average rate of growth of investment was −0.566 percent per year.
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The coefficients in the semilog model are partial- or semi-elasticities; in (6-6), β2 is
∂ ln y/∂x. This is a natural form for models with dummy variables such as the earnings
equation in Example 5.2. The coefficient on Kids of −0.35 suggests that all else equal,
earnings are approximately 35 percent less when there are children in the household.

The quadratic earnings equation in Example 6.1 shows another use of nonlineari-
ties in the variables. Using the results in Example 6.1, we find that for a woman with
12 years of schooling and children in the household, the age-earnings profile appears as
in Figure 6.3. This figure suggests an important question in this framework. It is tempting
to conclude that Figure 6.3 shows the earnings trajectory of a person at different ages,
but that is not what the data provide. The model is based on a cross section, and what it
displays is the earnings of different people of different ages. How this profile relates to
the expected earnings path of one individual is a different, and complicated question.

6.3.3 INTERACTION EFFECTS

Another useful formulation of the regression model is one with interaction terms. For
example, a model relating braking distance D to speed S and road wetness W might be

D = β1 + β2S + β3W + β4SW + ε.

In this model,

∂ E [D | S, W]
∂S

= β2 + β4W,

which implies that the marginal effect of higher speed on braking distance is increased
when the road is wetter (assuming that β4 is positive). If it is desired to form confidence
intervals or test hypotheses about these marginal effects, then the necessary standard
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error is computed from

Var
(

∂ Ê [D | S, W]
∂S

)
= Var[β̂2] + W2 Var[β̂4] + 2W Cov[β̂2, β̂4],

and similarly for ∂ E [D | S, W]/∂W. A value must be inserted for W. The sample mean
is a natural choice, but for some purposes, a specific value, such as an extreme value of
W in this example, might be preferred.

6.3.4 IDENTIFYING NONLINEARITY

If the functional form is not known a priori, then there are a few approaches that may
help at least to identify any nonlinearity and provide some information about it from the
sample. For example, if the suspected nonlinearity is with respect to a single regressor
in the equation, then fitting a quadratic or cubic polynomial rather than a linear function
may capture some of the nonlinearity. By choosing several ranges for the regressor in
question and allowing the slope of the function to be different in each range, a piecewise
linear approximation to the nonlinear function can be fit.

Example 6.6 Functional Form for a Nonlinear Cost Function
In a celebrated study of economies of scale in the U.S. electric power industry, Nerlove (1963)
analyzed the production costs of 145 American electricity generating companies. This study
produced several innovations in microeconometrics. It was among the first major applications
of statistical cost analysis. The theoretical development in Nerlove’s study was the first to
show how the fundamental theory of duality between production and cost functions could be
used to frame an econometric model. Finally, Nerlove employed several useful techniques
to sharpen his basic model.

The focus of the paper was economies of scale, typically modeled as a characteristic of
the production function. He chose a Cobb–Douglas function to model output as a function
of capital, K, labor, L, and fuel, F:

Q = α0 K αK LαL F αF eεi ,

where Q is output and εi embodies the unmeasured differences across firms. The economies
of scale parameter is r = αK +αL +αF . The value 1 indicates constant returns to scale. In this
study, Nerlove investigated the widely accepted assumption that producers in this industry
enjoyed substantial economies of scale. The production model is loglinear, so assuming that
other conditions of the classical regression model are met, the four parameters could be
estimated by least squares. However, he argued that the three factors could not be treated
as exogenous variables. For a firm that optimizes by choosing its factors of production, the
demand for fuel would be F ∗ = F ∗( Q, PK , PL , PF ) and likewise for labor and capital, so
certainly the assumptions of the classical model are violated.

In the regulatory framework in place at the time, state commissions set rates and firms
met the demand forthcoming at the regulated prices. Thus, it was argued that output (as well
as the factor prices) could be viewed as exogenous to the firm and, based on an argument by
Zellner, Kmenta, and Dreze (1966), Nerlove argued that at equilibrium, the deviation of costs
from the long-run optimum would be independent of output. (This has a testable implication
which we will explore in Section 19.2.4.) Thus, the firm’s objective was cost minimization
subject to the constraint of the production function. This can be formulated as a Lagrangean
problem,

MinK ,L ,F PK K + PL L + PF F + λ( Q − α0 K αK LαL F αF ) .

The solution to this minimization problem is the three factor demands and the multiplier
(which measures marginal cost). Inserted back into total costs, this produces an (intrinsically
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TABLE 6.4 Cobb–Douglas Cost Functions (standard errors in
parentheses)

log Q log PL − log PF log PK − log PF R2

All firms 0.721 0.593 −0.0085 0.932
(0.0174) (0.205) (0.191)

Group 1 0.400 0.615 −0.081 0.513
Group 2 0.658 0.094 0.378 0.633
Group 3 0.938 0.402 0.250 0.573
Group 4 0.912 0.507 0.093 0.826
Group 5 1.044 0.603 −0.289 0.921

linear) loglinear cost function,

PK K + PL L + PF F = C( Q, PK , PL , PF ) = r AQ1/r PαK /r
K PαL /r

L PαF /r
F eεi /r ,

or

ln C = β1 + βq ln Q + βK ln PK + βL ln PL + βF ln PF + ui , (6-7)

where βq = 1/(αK + αL + αF ) is now the parameter of interest and β j = α j /r , j = K , L,
F. Thus, the duality between production and cost functions has been used to derive the
estimating equation from first principles.

A complication remains. The cost parameters must sum to one; βK + βL + βF = 1, so
estimation must be done subject to this constraint.5 This restriction can be imposed by
regressing ln(C/PF ) on a constant, ln Q, ln( PK /PF ) , and ln( PL/PF ). This first set of results
appears at the top of Table 6.4.6

Initial estimates of the parameters of the cost function are shown in the top row of Table 6.4.
The hypothesis of constant returns to scale can be firmly rejected. The t ratio is (0.721 −
1)/0.0174 = −16.03, so we conclude that this estimate is significantly less than 1 or, by
implication, r is significantly greater than 1. Note that the coefficient on the capital price is
negative. In theory, this should equal αK /r , which (unless the marginal product of capital is
negative) should be positive. Nerlove attributed this to measurement error in the capital price
variable. This seems plausible, but it carries with it the implication that the other coefficients
are mismeasured as well. [Christensen and Greene’s (1976) estimator of this model with these
data produced a positive estimate. See Section 10.5.2.]

The striking pattern of the residuals shown in Figure 6.4 and some thought about the
implied form of the production function suggested that something was missing from the
model.7 In theory, the estimated model implies a continually declining average cost curve,

5In the context of the econometric model, the restriction has a testable implication by the definition in
Chapter 5. But, the underlying economics require this restriction—it was used in deriving the cost function.
Thus, it is unclear what is implied by a test of the restriction. Presumably, if the hypothesis of the restriction
is rejected, the analysis should stop at that point, since without the restriction, the cost function is not a
valid representation of the production function.We will encounter this conundrum again in another form in
Chapter 10. Fortunately, in this instance, the hypothesis is not rejected. (It is in the application in Chapter 10.)
6Readers who attempt to replicate Nerlove’s study should note that he used common (base 10) logs in his
calculations, not natural logs. A practical tip: to convert a natural log to a common log, divide the former by
loge 10 = 2.302585093. Also, however, although the first 145 rows of the data in Appendix Table F6.2 are
accurately transcribed from the original study, the only regression listed in Table 6.3 that can be reproduced
with these data is the first one. The results for Groups 1–5 in the table have been recomputed here and do
not match Nerlove’s results. Likewise, the results in Table 6.4 have been recomputed and do not match the
original study.
7A Durbin–Watson test of correlation among the residuals (see Section 20.7) revealed to the author a sub-
stantial autocorrelation. Although normally used with time series data, the Durbin–Watson statistic and a test
for “autocorrelation” can be a useful tool for determining the appropriate functional form in a cross-sectional
model. To use this approach, it is necessary to sort the observations based on a variable of interest (output).
Several clusters of residuals of the same sign suggested a need to reexamine the assumed functional form.
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FIGURE 6.4 Residuals from Predicted Cost.

which in turn implies persistent economies of scale at all levels of output. This conflicts with
the textbook notion of a U-shaped average cost curve and appears implausible for the data.
Note the three clusters of residuals in the figure. Two approaches were used to extend the
model.

By sorting the sample into five groups of 29 firms on the basis of output and fitting separate
regressions to each group, Nerlove fit a piecewise loglinear model. The results are given in the
lower rows of Table 6.4, where the firms in the successive groups are progressively larger. The
results are persuasive that the (log)linear cost function is inadequate. The output coefficient
that rises toward and then crosses 1.0 is consistent with a U-shaped cost curve as surmised
earlier.

A second approach was to expand the cost function to include a quadratic term in log
output. This approach corresponds to a much more general model and produced the results
given in Table 6.5. Again, a simple t test strongly suggests that increased generality is called
for; t = 0.051/0.00054 = 9.44. The output elasticity in this quadratic model is βq+2γqq log Q.8

There are economies of scale when this value is less than 1 and constant returns to scale
when it equals 1. Using the two values given in the table (0.152 and 0.0052, respectively), we
find that this function does, indeed, produce a U-shaped average cost curve with minimum
at ln Q = (1 − 0.152)/(2 × 0.051) = 8.31, or Q = 4079, which is roughly in the middle of the
range of outputs for Nerlove’s sample of firms.

This study was updated by Christensen and Greene (1976). Using the same data but a
more elaborate (translog) functional form and by simultaneously estimating the factor de-
mands and the cost function, they found results broadly similar to Nerlove’s. Their preferred
functional form did suggest that Nerlove’s generalized model in Table 6.5 did somewhat un-
derestimate the range of outputs in which unit costs of production would continue to decline.
They also redid the study using a sample of 123 firms from 1970 and found similar results.

8Nerlove inadvertently measured economies of scale from this function as 1/(βq + δ log Q), where βq and
δ are the coefficients on log Q and log2 Q. The correct expression would have been 1/[∂ log C/∂ log Q] =
1/[βq + 2δ log Q]. This slip was periodically rediscovered in several later papers.
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TABLE 6.5 Log-Quadratic Cost Function (standard errors in parentheses)

log Q log2 Q log PL − log PF log PK − log PF R2

All firms 0.152 0.051 0.481 0.074 0.96
(0.062) (0.0054) (0.161) (0.150)

In the latter sample, however, it appeared that many firms had expanded rapidly enough
to exhaust the available economies of scale. We will revisit the 1970 data set in a study of
production costs in Section 10.5.1.

The preceding example illustrates three useful tools in identifying and dealing with
unspecified nonlinearity: analysis of residuals, the use of piecewise linear regression,
and the use of polynomials to approximate the unknown regression function.

6.3.5 INTRINSICALLY LINEAR MODELS

The loglinear model illustrates an intermediate case of a nonlinear regression model.
The equation is intrinsically linear, however. By taking logs of Yi = αXβ2

i eεi , we obtain

ln Yi = ln α + β2 ln Xi + εi

or

yi = β1 + β2xi + εi .

Although this equation is linear in most respects, something has changed in that it is no
longer linear in α. Written in terms of β1, we obtain a fully linear model. But that may
not be the form of interest. Nothing is lost, of course, since β1 is just ln α. If β1 can be
estimated, then an obvious estimator of α is suggested, α̂ = exp(b1).

This fact leads us to a useful aspect of intrinsically linear models; they have an
“invariance property.” Using the nonlinear least squares procedure described in the
next chapter, we could estimate α and β2 directly by minimizing the sum of squares
function:

Minimize with respect to (α, β2) : S(α, β2) =
n∑

i=1

(ln Yi − ln α − β2 ln Xi )
2 . (6-8)

This is a complicated mathematical problem because of the appearance the term ln α.
However, the equivalent linear least squares problem,

Minimize with respect to (β1, β2) : S(β1, β2) =
n∑

i=1

(yi − β1 − β2xi )
2 , (6-9)

is simple to solve with the least squares estimator we have used up to this point. The
invariance feature that applies is that the two sets of results will be numerically identical;
we will get the identical result from estimating α using (6-8) and from using exp(β1) from
(6-9). By exploiting this result, we can broaden the definition of linearity and include
some additional cases that might otherwise be quite complex.
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TABLE 6.6 Estimates of the Regression in a Gamma Model: Least Squares
versus Maximum Likelihood

β ρ

Estimate Standard Error Estimate Standard Error

Least squares −1.708 8.689 2.426 1.592
Maximum likelihood −4.719 2.345 3.151 0.794

DEFINITION 6.1 Intrinsic Linearity
In the classical linear regression model, if the K parameters β1, β2, . . . , βK can
be written as K one-to-one, possibly nonlinear functions of a set of K underlying
parameters θ1, θ2, . . . , θK, then the model is intrinsically linear in θ .

Example 6.7 Intrinsically Linear Regression
In Section 14.6.4, we will estimate by maximum likelihood the parameters of the model

f ( y | β, x) = (β + x)−ρ

�(ρ)
yρ−1e−y/(β+x) .

In this model, E [ y | x] = (βρ) + ρx, which suggests another way that we might estimate the
two parameters. This function is an intrinsically linear regression model, E [y | x] = β1+β2x, in
which β1 = βρ and β2 = ρ. We can estimate the parameters by least squares and then retrieve
the estimate of β using b1/b2. Because this value is a nonlinear function of the estimated
parameters, we use the delta method to estimate the standard error. Using the data from that
example,9 the least squares estimates of β1 and β2 (with standard errors in parentheses) are
−4.1431 (23.734) and 2.4261 (1.5915). The estimated covariance is −36.979. The estimate
of β is −4.1431/2.4261 = −1.7077. We estimate the sampling variance of β̂ with

Est. Var[β̂] =
(

∂β̂

∂b1

)2

V̂ar[b1] +
(

∂β̂

∂b2

)2

V̂ar[b2] + 2

(
∂β̂

∂b1

)(
∂β̂

∂b2

)
Ĉov[b1, b2]

= 8.68892.

Table 6.6 compares the least squares and maximum likelihood estimates of the parameters.
The lower standard errors for the maximum likelihood estimates result from the inefficient
(equal) weighting given to the observations by the least squares procedure. The gamma
distribution is highly skewed. In addition, we know from our results in Appendix C that this
distribution is an exponential family. We found for the gamma distribution that the sufficient
statistics for this density were i yi and i ln yi . The least squares estimator does not use the
second of these, whereas an efficient estimator will.

The emphasis in intrinsic linearity is on “one to one.” If the conditions are met, then
the model can be estimated in terms of the functions β1, . . . , βK, and the underlying
parameters derived after these are estimated. The one-to-one correspondence is an
identification condition. If the condition is met, then the underlying parameters of the

9The data are given in Appendix Table FC.1.
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regression (θ) are said to be exactly identified in terms of the parameters of the linear
model β. An excellent example is provided by Kmenta (1986, p. 515, and 1967).

Example 6.8 CES Production Function
The constant elasticity of substitution production function may be written

ln y = ln γ − ν

ρ
ln[δK −ρ + (1 − δ) L−ρ ] + ε. (6-10)

A Taylor series approximation to this function around the point ρ = 0 is

ln y = ln γ + νδ ln K + ν(1 − δ) ln L + ρνδ(1 − δ)
{− 1

2 [ln K − ln L ]2
} + ε′

= β1x1 + β2x2 + β3x3 + β4x4 + ε′, (6-11)

where x1 = 1, x2 = ln K , x3 = ln L , x4 = − 1
2 ln2( K/L ) , and the transformations are

β1 = ln γ , β2 = νδ, β3 = ν(1 − δ) , β4 = ρνδ(1 − δ) ,

γ = eβ1 , δ = β2/(β2 + β3) , ν = β2 + β3, ρ = β4(β2 + β3)/(β2β3) .
(6-12)

Estimates of β1, β2, β3, and β4 can be computed by least squares. The estimates of γ , δ, ν,
and ρ obtained by the second row of (6-12) are the same as those we would obtain had we
found the nonlinear least squares estimates of (6-11) directly. (As Kmenta shows, however,
they are not the same as the nonlinear least squares estimates of (6-10) due to the use of the
Taylor series approximation to get to (6-11)). We would use the delta method to construct the
estimated asymptotic covariance matrix for the estimates of θ ′ = [γ , δ, ν, ρ]. The derivatives
matrix is

C = ∂θ

∂β ′ =

⎡
⎢⎢⎣

eβ1 0 0 0

0 β3/(β2 + β3) 2 −β2/(β2 + β3) 2 0
0 1 1 0

0 −β3β4

/(
β2

2β3

) −β2β4

/(
β2β

2
3

)
(β2 + β3)/(β2β3)

⎤
⎥⎥⎦ .

The estimated covariance matrix for θ̂ is Ĉ [s2(X′X)−1]Ĉ′.

Not all models of the form

yi = β1(θ)xi1 + β2(θ)xi2 + · · · + βK(θ)xik + εi (6-13)

are intrinsically linear. Recall that the condition that the functions be one to one (i.e.,
that the parameters be exactly identified) was required. For example,

yi = α + βxi1 + γ xi2 + βγ xi3 + εi

is nonlinear. The reason is that if we write it in the form of (6-13), we fail to account
for the condition that β4 equals β2β3, which is a nonlinear restriction. In this model,
the three parameters α, β, and γ are overidentified in terms of the four parameters
β1, β2, β3, and β4. Unrestricted least squares estimates of β2, β3, and β4 can be used to
obtain two estimates of each of the underlying parameters, and there is no assurance that
these will be the same. Models that are not intrinsically linear are treated in Chapter 7.
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FIGURE 6.5 Gasoline Price and Per Capita Consumption,
1953–2004.

6.4 MODELING AND TESTING
FOR A STRUCTURAL BREAK

One of the more common applications of the F test is in tests of structural change.10 In
specifying a regression model, we assume that its assumptions apply to all the obser-
vations in our sample. It is straightforward, however, to test the hypothesis that some
or all of the regression coefficients are different in different subsets of the data. To
analyze a number of examples, we will revisit the data on the U.S. gasoline market that
we examined in Examples 2.3, 4.2, 4.4, 4.8, and 4.9. As Figure 6.5 suggests, this market
behaved in predictable, unremarkable fashion prior to the oil shock of 1973 and was
quite volatile thereafter. The large jumps in price in 1973 and 1980 are clearly visible,
as is the much greater variability in consumption.11 It seems unlikely that the same
regression model would apply to both periods.

6.4.1 DIFFERENT PARAMETER VECTORS

The gasoline consumption data span two very different periods. Up to 1973, fuel was
plentiful and world prices for gasoline had been stable or falling for at least two decades.
The embargo of 1973 marked a transition in this market, marked by shortages, rising
prices, and intermittent turmoil. It is possible that the entire relationship described by
our regression model changed in 1974. To test this as a hypothesis, we could proceed as
follows: Denote the first 21 years of the data in y and X as y1 and X1 and the remaining

10This test is often labeled a Chow test, in reference to Chow (1960).
11The observed data will doubtless reveal similar disruption in 2006.
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years as y2 and X2. An unrestricted regression that allows the coefficients to be different
in the two periods is

[
y1

y2

]
=

[
X1 0
0 X2

][
β1
β2

]
+

[
ε1

ε2

]
. (6-14)

Denoting the data matrices as y and X, we find that the unrestricted least squares
estimator is

b = (X′X)−1X′y =
[

X′
1X1 0
0 X′

2X2

]−1[X′
1y1

X′
2y2

]
=

[
b1

b2

]
, (6-15)

which is least squares applied to the two equations separately. Therefore, the total sum
of squared residuals from this regression will be the sum of the two residual sums of
squares from the two separate regressions:

e′e = e′
1e1 + e′

2e2.

The restricted coefficient vector can be obtained in two ways. Formally, the restriction
β1 = β2 is Rβ = q, where R = [I : −I] and q = 0. The general result given earlier can
be applied directly. An easier way to proceed is to build the restriction directly into the
model. If the two coefficient vectors are the same, then (6-14) may be written

[
y1

y2

]
=

[
X1

X2

]
β +

[
ε1

ε2

]
,

and the restricted estimator can be obtained simply by stacking the data and estimating
a single regression. The residual sum of squares from this restricted regression, e′

∗e∗,
then forms the basis for the test. The test statistic is then given in (5-29), where J , the
number of restrictions, is the number of columns in X2 and the denominator degrees of
freedom is n1 + n2 − 2k.

6.4.2 INSUFFICIENT OBSERVATIONS

In some circumstances, the data series are not long enough to estimate one or the
other of the separate regressions for a test of structural change. For example, one might
surmise that consumers took a year or two to adjust to the turmoil of the two oil price
shocks in 1973 and 1979, but that the market never actually fundamentally changed or
that it only changed temporarily. We might consider the same test as before, but now
only single out the four years 1974, 1975, 1980, and 1981 for special treatment. Because
there are six coefficients to estimate but only four observations, it is not possible to fit
the two separate models. Fisher (1970) has shown that in such a circumstance, a valid
way to proceed is as follows:

1. Estimate the regression, using the full data set, and compute the restricted sum of
squared residuals, e′

∗e∗.
2. Use the longer (adequate) subperiod (n1 observations) to estimate the regression,

and compute the unrestricted sum of squares, e′
1e1. This latter computation is done

assuming that with only n2 < K observations, we could obtain a perfect fit for y2

and thus contribute zero to the sum of squares.
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3. The F statistic is then computed, using

F [n2, n1 − K] = (e′
∗e∗ − e′

1e1)/n2

e′
1e1/(n1 − K)

. (6-16)

Note that the numerator degrees of freedom is n2, not K.12 This test has been labeled
the Chow predictive test because it is equivalent to extending the restricted model to
the shorter subperiod and basing the test on the prediction errors of the model in this
latter period.

6.4.3 CHANGE IN A SUBSET OF COEFFICIENTS

The general formulation previously suggested lends itself to many variations that allow
a wide range of possible tests. Some important particular cases are suggested by our
gasoline market data. One possible description of the market is that after the oil shock
of 1973, Americans simply reduced their consumption of gasoline by a fixed proportion,
but other relationships in the market, such as the income elasticity, remained unchanged.
This case would translate to a simple shift downward of the loglinear regression model
or a reduction only in the constant term. Thus, the unrestricted equation has separate
coefficients in the two periods, while the restricted equation is a pooled regression with
separate constant terms. The regressor matrices for these two cases would be of the
form

(unrestricted) XU =
[

i 0 Wpre73 0

0 i 0 Wpost73

]

and

(restricted) XR =
[

i 0 Wpre73

0 i Wpost73

]
.

The first two columns of XU are dummy variables that indicate the subperiod in which
the observation falls.

Another possibility is that the constant and one or more of the slope coefficients
changed, but the remaining parameters remained the same. The results in Example 6.9
suggest that the constant term and the price and income elasticities changed much
more than the cross-price elasticities and the time trend. The Chow test for this type
of restriction looks very much like the one for the change in the constant term alone.
Let Z denote the variables whose coefficients are believed to have changed, and let W
denote the variables whose coefficients are thought to have remained constant. Then,
the regressor matrix in the constrained regression would appear as

X =
[

ipre Zpre 0 0 Wpre

0 0 ipost Zpost Wpost

]
. (6-17)

As before, the unrestricted coefficient vector is the combination of the two separate
regressions.

12One way to view this is that only n2 < K coefficients are needed to obtain this perfect fit.
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6.4.4 TESTS OF STRUCTURAL BREAK WITH
UNEQUAL VARIANCES

An important assumption made in using the Chow test is that the disturbance variance
is the same in both (or all) regressions. In the restricted model, if this is not true, the first
n1 elements of ε have variance σ 2

1 , whereas the next n2 have variance σ 2
2 , and so on. The

restricted model is, therefore, heteroscedastic, and our results for the classical regression
model no longer apply. As analyzed by Schmidt and Sickles (1977), Ohtani and Toyoda
(1985), and Toyoda and Ohtani (1986), it is quite likely that the actual probability of
a type I error will be larger than the significance level we have chosen. (That is, we
shall regard as large an F statistic that is actually less than the appropriate but unknown
critical value.) Precisely how severe this effect is going to be will depend on the data
and the extent to which the variances differ, in ways that are not likely to be obvious.

If the sample size is reasonably large, then we have a test that is valid whether or
not the disturbance variances are the same. Suppose that θ̂1 and θ̂2 are two consistent
and asymptotically normally distributed estimators of a parameter based on indepen-
dent samples,13 with asymptotic covariance matrices V1 and V2. Then, under the null
hypothesis that the true parameters are the same,

θ̂1 − θ̂2 has mean 0 and asymptotic covariance matrix V1 + V2.

Under the null hypothesis, the Wald statistic,

W = (θ̂1 − θ̂2)
′(V̂1 + V̂2)

−1(θ̂1 − θ̂2), (6-18)

has a limiting chi-squared distribution with K degrees of freedom. A test that the differ-
ence between the parameters is zero can be based on this statistic.14 It is straightforward
to apply this to our test of common parameter vectors in our regressions. Large values
of the statistic lead us to reject the hypothesis.

In a small or moderately sized sample, the Wald test has the unfortunate property
that the probability of a type I error is persistently larger than the critical level we
use to carry it out. (That is, we shall too frequently reject the null hypothesis that the
parameters are the same in the subsamples.) We should be using a larger critical value.
Ohtani and Kobayashi (1986) have devised a “bounds” test that gives a partial remedy
for the problem.15

It has been observed that the size of the Wald test may differ from what we have
assumed, and that the deviation would be a function of the alternative hypothesis. There
are two general settings in which a test of this sort might be of interest. For comparing
two possibly different populations—such as the labor supply equations for men versus
women—not much more can be said about the suggested statistic in the absence of
specific information about the alternative hypothesis. But a great deal of work on this
type of statistic has been done in the time-series context. In this instance, the nature of
the alternative is rather more clearly defined.

13Without the required independence, this test and several similar ones will fail completely. The problem
becomes a variant of the famous Behrens–Fisher problem.
14See Andrews and Fair (1988). The true size of this suggested test is uncertain. It depends on the nature of the
alternative. If the variances are radically different, the assumed critical values might be somewhat unreliable.
15See also Kobayashi (1986). An alternative, somewhat more cumbersome test is proposed by Jayatissa (1977).
Further discussion is given in Thursby (1982).
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Example 6.9 Structural Break in the Gasoline Market
Figure 6.5 shows a plot of prices and quantities in the U.S. gasoline market from 1953 to
2004. The first 21 points are the layer at the bottom of the figure and suggest an orderly
market. The remainder clearly reflect the subsequent turmoil in this market.

We will use the Chow tests described to examine this market. The model we will examine
is the one suggested in Example 2.3, with the addition of a time trend:

ln(G/Pop) t = β1 + β2 ln( Income/Pop) t + β3 ln PGt + β4 ln PNCt + β5 ln PUCt + β6t + εt .

The three prices in the equation are for G, new cars and used cars. Income/Pop is per capita
Income, and G/Pop is per capita gasoline consumption. The time trend is computed as t =
Year −1952, so in the first period t = 1. Regression results for four functional forms are shown
in Table 6.7. Using the data for the entire sample, 1953 to 2004, and for the two subperiods,
1953 to 1973 and 1974 to 2004, we obtain the three estimated regressions in the first and
last two columns. The F statistic for testing the restriction that the coefficients in the two
equations are the same is

F [6, 40] = (0.101997 − (0.00202244 + 0.007127899) )/6
(0.00202244 + 0.007127899)/(21 + 31 − 12)

= 67.645.

The tabled critical value is 2.336, so, consistent with our expectations, we would reject the
hypothesis that the coefficient vectors are the same in the two periods. Using the full set of
52 observations to fit the model, the sum of squares is e∗′e∗ = 0.101997. When the n2 = 4
observations for 1974, 1975, 1980, and 1981 are removed from the sample, the sum of
squares falls to e′e = 0.0973936. The F statistic is 0.496. Because the tabled critical value
for F [4, 48−6] is 2.594, we would not reject the hypothesis of stability. The conclusion to this
point would be that although something has surely changed in the market, the hypothesis of
a temporary disequilibrium seems not to be an adequate explanation.

An alternative way to compute this statistic might be more convenient. Consider the
original arrangement, with all 52 observations. We now add to this regression four binary
variables, Y1974, Y1975, Y1980, and Y1981. Each of these takes the value one in the single
year indicated and zero in all 51 remaining years. We then compute the regression with
the original six variables and these four additional dummy variables. The sum of squared
residuals in this regression is 0.0973936 (precisely the same as when the four observations
are deleted from the sample—see Exercise 7 in Chapter 3), so the F statistic for testing the
joint hypothesis that the four coefficients are zero is

F [4, 42] = (0.101997 − 0.0973936)/4
0.0973936/(52 − 6 − 4)

= 0.496

once again. (See Section 6.4.2 for discussion of this test.)

TABLE 6.7 Gasoline Consumption Functions

Coefficients 1953–2004 Pooled Preshock Postshock

Constant −26.6787 −24.9009 −22.1647
Constant −24.8167 −15.3283
ln Income/Pop 1.6250 1.4562 0.8482 0.3739
ln PG −0.05392 −0.1132 −0.03227 −0.1240
ln PNC −0.08343 −0.1044 0.6988 −0.001146
ln PUC −0.08467 −0.08646 −0.2905 −0.02167
Year −0.01393 −0.009232 0.01006 0.004492
R2 0.9649 0.9683 0.9975 0.9529
Standard error 0.04709 0.04524 0.01161 0.01689
Sum of squares 0.101997 0.092082 0.00202244 0.007127899
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The F statistic for testing the restriction that the coefficients in the two equations are the
same apart from the constant term is based on the last three sets of results in the table:

F [5, 40] = (0.092082 − (0.00202244 + 0.007127899) )/5
(0.00202244 + 0.007127899)/(21 + 31 − 12)

= 72.506.

The tabled critical value is 2.449, so this hypothesis is rejected as well. The data suggest
that the models for the two periods are systematically different, beyond a simple shift in the
constant term.

The F ratio that results from estimating the model subject to the restriction that the two
automobile price elasticities and the coefficient on the time trend are unchanged is

F [3, 40] = (0.01441975 − (0.00202244 + 0.007127899) )/3
(0.00202244 + 0.007127899)/(52 − 6 − 6)

= 7.678.

(The restricted regression is not shown.) The critical value from the F table is 2.839, so this
hypothesis is rejected as well. Note, however, that this value is far smaller than those we
obtained previously. This fact suggests that the bulk of the difference in the models across
the two periods is, indeed, explained by the changes in the constant and the price and income
elasticities.

The test statistic in (6-18) for the regression results in Table 6.7 gives a value of 502.34.
The 5 percent critical value from the chi-squared table for six degrees of freedom is 12.59.
So, on the basis of the Wald test, we would once again reject the hypothesis that the same
coefficient vector applies in the two subperiods 1953 to 1973 and 1974 to 2004. We should
note that the Wald statistic is valid only in large samples, and our samples of 21 and 31
observations hardly meet that standard. We have tested the hypothesis that the regression
model for the gasoline market changed in 1973, and on the basis of the F test (Chow test)
we strongly rejected the hypothesis of model stability.

Example 6.10 The World Health Report
The 2000 version of the World Health Organization’s (WHO) World Health Report contained a
major country-by-country inventory of the world’s health care systems. [World Health Organi-
zation (2000). See also http://www.who.int/whr/en/.] The book documented years of research
and has thousands of pages of material. Among the most controversial and most publicly
debated parts of the report was a single chapter that described a comparison of the delivery
of health care by 191 countries—nearly all of the world’s population. [Evans et al. (2000a,b).
See, e.g., Hilts (2000) for reporting in the popular press.] The study examined the efficiency
of health care delivery on two measures: the standard one that is widely studied, (disability
adjusted) life expectancy (DALE), and an innovative new measure created by the authors
that was a composite of five outcomes (COMP) and that accounted for efficiency and fair-
ness in delivery. The regression-style modeling, which was done in the setting of a frontier
model (see Section 19.2.4), related health care attainment to two major inputs, education
and (per capita) health care expenditure. The residuals were analyzed to obtain the country
comparisons.

The data in Appendix Table F6.3 were used by the researchers at the WHO for the study.
(They used a panel of data for the years 1993 to 1997. We have extracted the 1997 data for
this example.) The WHO data have been used by many researchers in subsequent analyses.
[See, e.g., Hollingsworth and Wildman (2002), Gravelle et al. (2002), and Greene (2004).]
The regression model used by the WHO contained DALE or COMP on the left-hand side
and health care expenditure, education, and education squared on the right. Greene (2004)
added a number of additional variables such as per capita GDP, a measure of the distribution
of income, and World Bank measures of government effectiveness and democratization of
the political structure.

Among the controversial aspects of the study was the fact that the model aggregated
countries of vastly different characteristics. A second striking aspect of the results, suggested
in Hilts (2000) and documented in Greene (2004), was that, in fact, the “efficient” countries in
the study were the 30 relatively wealthy OECD members, while the rest of the world on average
fared much more poorly. We will pursue that aspect here with respect to DALE. Analysis
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TABLE 6.8 Regression Results for Life Expectancy

All Countries OECD Non-OECD

Constant 25.237 38.734 42.728 49.328 26.812 41.408
Health exp 0.00629 −0.00180 0.00268 0.00114 0.00955 −0.00178
Education 7.931 7.178 6.177 5.156 7.0433 6.499
Education2 −0.439 −0.426 −0.385 −0.329 −0.374 −0.372
Gini coeff −17.333 −5.762 −21.329
Tropic −3.200 −3.298 −3.144
Pop. Dens. −0.255e−4 0.000167 −0.425e−4
Public exp −0.0137 −0.00993 −0.00939
PC GDP 0.000483 0.000108 0.000600
Democracy 1.629 −0.546 1.909
Govt. Eff. 0.748 1.224 0.786
R2 0.6824 0.7299 0.6483 0.7340 0.6133 0.6651
Std. Err. 6.984 6.565 1.883 1.916 7.366 7.014
Sum of sq. 9121.795 7757.002 92.21064 69.74428 8518.750 7378.598
N 191 30 161
GDP/Pop 6609.37 18199.07 4449.79
F test 4.524 0.874 3.311

of COMP is left as an exercise. Table 6.8 presents estimates of the regression models for
DALE for the pooled sample, the OECD countries, and the non-OECD countries, respectively.
Superficially, there do not appear to be very large differences across the two subgroups. We
first tested the joint significance of the additional variables, income distribution (GINI), per
capita GDP, and so on. For each group, the F statistic is [(e∗′e∗ −e′e)/7]/[e′e/(n−11) ]. These
F statistics are shown in the last row of the table. The critical values for F[7,180] (all), F[7,19]
(OECD), and F[7,150] (non-OECD) are 2.061, 2.543, and 2.071, respectively. We conclude
that the additional explanatory variables are significant contributors to the fit for the non-
OECD countries (and for all countries), but not for the OECD countries. Finally, to conduct
the structural change test of OECD vs. non-OECD, we computed

F [11, 169] = [7757.007 − (69.74428 + 7378.598) ]/11
(69.74428 + 7378.598)/(191 − 11 − 11)

= 0.637.

The 95 percent critical value for F[11,169] is 1.846. So, we do not reject the hypothesis
that the regression model is the same for the two groups of countries. The Wald statistic
in (6-18) tells a different story. The statistic is 35.221. The 95 percent critical value from the
chi-squared table with 11 degrees of freedom is 19.675. On this basis, we would reject the
hypothesis that the two coefficient vectors are the same.

6.4.5 PREDICTIVE TEST OF MODEL STABILITY

The hypothesis test defined in (6-16) in Section 6.4.2 is equivalent to H0 : β2 = β1 in the
“model”

yt = x′
tβ1 + εt , t = 1, . . . , T1

yt = x′
tβ2 + εt , t = T1 + 1, . . . , T1 + T2.

(Note that the disturbance variance is assumed to be the same in both subperiods.) An
alternative formulation of the model (the one used in the example) is

[
y1

y2

]
=

[
X1 0
X2 I

](
β

γ

)
+

[
ε1

ε2

]
.
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This formulation states that
yt = x′

tβ1 + εt , t = 1, . . . , T1

yt = x′
tβ2 + γt + εt , t = T1 + 1, . . . , T1 + T2.

Because each γt is unrestricted, this alternative formulation states that the regression
model of the first T1 periods ceases to operate in the second subperiod (and, in fact, no
systematic model operates in the second subperiod). A test of the hypothesis γ = 0 in
this framework would thus be a test of model stability. The least squares coefficients for
this regression can be found by using the formula for the partitioned inverse matrix

(
b
c

)
=

[
X′

1X1 + X′
2X2 X′

2

X2 I

]−1 [
X′

1y1 + X′
2y2

y2

]

=
[

(X′
1X1)

−1 −(X′
1X1)

−1X′
2

−X2(X′
1X1)

−1 I + X2(X′
1X1)

−1X′
2

] [
X′

1y1 + X′
2y2

y2

]

=
(

b1

c2

)

where b1 is the least squares slopes based on the first T1 observations and c2 is y2 −X2b1.
The covariance matrix for the full set of estimates is s2 times the bracketed matrix. The
two subvectors of residuals in this regression are e1 = y1 − X1b1 and e2 = y2 − (X2b1 +
Ic2) = 0, so the sum of squared residuals in this least squares regression is just e′

1e1.
This is the same sum of squares as appears in (6-16). The degrees of freedom for the
denominator is [T1 + T2 − (K + T2)] = T1 − K as well, and the degrees of freedom for
the numerator is the number of elements in γ which is T2. The restricted regression with
γ = 0 is the pooled model, which is likewise the same as appears in (6-16). This implies
that the F statistic for testing the null hypothesis in this model is precisely that which
appeared earlier in (6-16), which suggests why the test is labeled the “predictive test.”

6.5 SUMMARY AND CONCLUSIONS

This chapter has discussed the functional form of the regression model. We examined
the use of dummy variables and other transformations to build nonlinearity into the
model. We then considered other nonlinear models in which the parameters of the
nonlinear model could be recovered from estimates obtained for a linear regression.
The final sections of the chapter described hypothesis tests designed to reveal whether
the assumed model had changed during the sample period, or was different for different
groups of observations.

Key Terms and Concepts

• Binary variable
• Chow test
• Control group
• Control observations
• Difference in differences

• Dummy variable
• Dummy variable trap
• Exactly identified
• Identification condition
• Interaction terms

• Intrinsically linear
• Knots
• Loglinear model
• Marginal effect
• Natural experiment
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• Nonlinear restriction
• Overidentified
• Piecewise continuous
• Placebo effect
• Predictive test

• Qualification indices
• Response
• Semilog equation
• Spline
• Structural change

• Threshold effects
• Time profile
• Treatment
• Treatment group
• Wald test

Exercises

1. A regression model with K = 16 independent variables is fit using a panel of
seven years of data. The sums of squares for the seven separate regressions and
the pooled regression are shown below. The model with the pooled data allows a
separate constant for each year. Test the hypothesis that the same coefficients apply
in every year.

1954 1955 1956 1957 1958 1959 1960 All

Observations 65 55 87 95 103 87 78 570
e′e 104 88 206 144 199 308 211 1425

2. Reverse regression. A common method of analyzing statistical data to detect dis-
crimination in the workplace is to fit the regression

y = α + x′β + γ d + ε, (1)

where y is the wage rate and d is a dummy variable indicating either membership
(d = 1) or nonmembership (d = 0) in the class toward which it is suggested the
discrimination is directed. The regressors x include factors specific to the particular
type of job as well as indicators of the qualifications of the individual. The hypoth-
esis of interest is H0 : γ ≥ 0 versus H1 : γ < 0. The regression seeks to answer the
question, “In a given job, are individuals in the class (d = 1) paid less than equally
qualified individuals not in the class (d = 0)?” Consider an alternative approach.
Do individuals in the class in the same job as others, and receiving the same wage,
uniformly have higher qualifications? If so, this might also be viewed as a form of
discrimination. To analyze this question, Conway and Roberts (1983) suggested the
following procedure:

1. Fit (1) by ordinary least squares. Denote the estimates a, b, and c.
2. Compute the set of qualification indices,

q = ai + Xb. (2)

Note the omission of cd from the fitted value.
3. Regress q on a constant, y and d. The equation is

q = α∗ + β∗y + γ∗d + ε∗. (3)

The analysis suggests that if γ < 0, γ∗ > 0.
a. Prove that the theory notwithstanding, the least squares estimates c and c∗ are

related by

c∗ = (ȳ1 − ȳ)(1 − R2)

(1 − P)
(
1 − r2

yd

) − c, (4)
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where
ȳ1 = mean of y for observations with d = 1,

ȳ = mean of y for all observations,
P = mean of d,

R2 = coefficient of determination for (1),

r2
yd = squared correlation between y and d.

[Hint: The model contains a constant term]. Thus, to simplify the algebra, assume
that all variables are measured as deviations from the overall sample means and
use a partitioned regression to compute the coefficients in (3). Second, in (2),
use the result that based on the least squares results y = ai + Xb + cd + e, so
q = y − cd − e. From here on, we drop the constant term. Thus, in the regression
in (3) you are regressing [y − cd − e] on y and d.

b. Will the sample evidence necessarily be consistent with the theory? [Hint: Sup-
pose that c = 0.]

A symposium on the Conway and Roberts paper appeared in the Journal of Business
and Economic Statistics in April 1983.

3. Reverse regression continued. This and the next exercise continue the analysis of
Exercise 2. In Exercise 2, interest centered on a particular dummy variable in which
the regressors were accurately measured. Here we consider the case in which the
crucial regressor in the model is measured with error. The paper by Kamlich and
Polachek (1982) is directed toward this issue.

Consider the simple errors in the variables model,

y = α + βx∗ + ε, x = x∗ + u,

where u and ε are uncorrelated and x is the erroneously measured, observed coun-
terpart to x∗.
a. Assume that x∗, u, and ε are all normally distributed with means μ∗, 0, and 0,

variances σ 2
∗ , σ 2

u , and σ 2
ε , and zero covariances. Obtain the probability limits of

the least squares estimators of α and β.
b. As an alternative, consider regressing x on a constant and y, and then computing

the reciprocal of the estimate. Obtain the probability limit of this estimator.
c. Do the “direct” and “reverse” estimators bound the true coefficient?

4. Reverse regression continued. Suppose that the model in Exercise 3 is extended to
y = βx∗ +γ d +ε, x = x∗ +u. For convenience, we drop the constant term. Assume
that x∗, ε, and u are independent normally distributed with zero means. Suppose
that d is a random variable that takes the values one and zero with probabilities π

and 1 − π in the population and is independent of all other variables in the model.
To put this formulation in context, the preceding model (and variants of it) have
appeared in the literature on discrimination. We view y as a “wage” variable, x∗ as
“qualifications,” and x as some imperfect measure such as education. The dummy
variable d is membership (d = 1) or nonmembership (d = 0) in some protected class.
The hypothesis of discrimination turns on γ < 0 versus γ ≥ 0.
a. What is the probability limit of c, the least squares estimator of γ , in the least

squares regression of y on x and d? [Hints: The independence of x∗ and d is
important. Also, plim d′d/n = Var[d] + E2[d] = π(1 − π) + π2 = π . This minor
modification does not affect the model substantively, but it greatly simplifies the
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algebra.] Now suppose that x∗ and d are not independent. In particular, suppose
that E [x∗ | d = 1] = μ1 and E [x∗ | d = 0] = μ0. Repeat the derivation with this
assumption.

b. Consider, instead, a regression of x on y and d. What is the probability limit of
the coefficient on d in this regression? Assume that x∗ and d are independent.

c. Suppose that x∗ and d are not independent, but γ is, in fact, less than zero. As-
suming that both preceding equations still hold, what is estimated by (ȳ | d = 1)−
(ȳ | d = 0)? What does this quantity estimate if γ does equal zero?

Applications

1. In Application 1 in Chapter 3 and Application 1 in Chapter 5, we examined Koop
and Tobias’s data on wages, education, ability, and so on. We continue the analysis
here. (The source, location and configuration of the data are given in the earlier
application.) We consider the model

ln Wage = β1 + β2 Educ + β3 Ability + β4 Experience

+ β5 Mother’s education + β6 Father’s education + β7 Broken home

+ β8 Siblings + ε.

a. Compute the full regression by least squares and report your results. Based on
your results, what is the estimate of the marginal value, in $/hour, of an additional
year of education, for someone who has 12 years of education when all other
variables are at their means and Broken home = 0?

b. We are interested in possible nonlinearities in the effect of education on ln Wage.
(Koop and Tobias focused on experience. As before, we are not attempting to
replicate their results.) A histogram of the education variable shows values from 9
to 20, a huge spike at 12 years (high school graduation) and, perhaps surprisingly,
a second at 15—intuition would have anticipated it at 16. Consider aggregating
the education variable into a set of dummy variables:

HS = 1 if Educ ≤ 12, 0 otherwise

Col = 1 if Educ > 12 and Educ ≤ 16, 0 otherwise

Grad = 1 if Educ > 16, 0 otherwise.

Replace Educ in the model with (Col, Grad), making high school (HS) the
base category, and recompute the model. Report all results. How do the re-
sults change? Based on your results, what is the marginal value of a college
degree? (This is actually the marginal value of having 16 years of education—
in recent years, college graduation has tended to require somewhat more than
four years on average.) What is the marginal impact on ln Wage of a graduate
degree?

c. The aggregation in part b actually loses quite a bit of information. Another way
to introduce nonlinearity in education is through the function itself. Add Educ2

to the equation in part a and recompute the model. Again, report all results.
What changes are suggested? Test the hypothesis that the quadratic term in the
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equation is not needed—that is, that its coefficient is zero. Based on your results,
sketch a profile of log wages as a function of education.

d. One might suspect that the value of education is enhanced by greater ability. We
could examine this effect by introducing an interaction of the two variables in
the equation. Add the variable

Educ Ability = Educ × Ability

to the base model in part a. Now, what is the marginal value of an additional
year of education? The sample mean value of ability is 0.052374. Compute a
confidence interval for the marginal impact on ln Wage of an additional year of
education for a person of average ability.

e. Combine the models in c and d. Add both Educ2 and Educ Ability to the base
model in part a and reestimate. As before, report all results and describe your
findings. If we define “low ability” as less than the mean and “high ability” as
greater than the mean, the sample averages are −0.798563 for the 7,864 low-
ability individuals in the sample and +0.717891 for the 10,055 high-ability indi-
viduals in the sample. Using the formulation in part c, with this new functional
form, sketch, describe, and compare the log wage profiles for low- and high-
ability individuals.

2. (An extension of Application 1.) Here we consider whether different models as
specified in Application 1 would apply for individuals who reside in “Broken
homes.” Using the results in Sections 6.4.1 and 6.4.4, test the hypothesis that the
same model (not including the Broken home dummy variable) applies to both
groups of individuals, those with Broken home = 0 and with Broken home = 1.

3. In Solow’s classic (1957) study of technical change in the U.S. economy, he suggests
the following aggregate production function: q(t) = A(t) f [k(t)], where q(t) is ag-
gregate output per work hour, k(t) is the aggregate capital labor ratio, and A(t) is
the technology index. Solow considered four static models, q/A= α+β ln k, q/A=
α − β/k, ln(q/A) = α + β ln k, and ln(q/A) = α + β/k. Solow’s data for the years
1909 to 1949 are listed in Appendix Table F6.4.
a. Use these data to estimate the α and β of the four functions listed above. (Note:

Your results will not quite match Solow’s. See the next exercise for resolution of
the discrepancy.)

b. In the aforementioned study, Solow states:

A scatter of q/Aagainst k is shown in Chart 4. Considering the amount
of a priori doctoring which the raw figures have undergone, the fit is
remarkably tight. Except, that is, for the layer of points which are ob-
viously too high. These maverick observations relate to the seven last
years of the period, 1943–1949. From the way they lie almost exactly
parallel to the main scatter, one is tempted to conclude that in 1943 the
aggregate production function simply shifted.

Compute a scatter diagram of q/Aagainst k and verify the result he notes above.
c. Estimate the four models you estimated in the previous problem including a

dummy variable for the years 1943 to 1949. How do your results change? (Note:
These results match those reported by Solow, although he did not report the
coefficient on the dummy variable.)
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d. Solow went on to surmise that, in fact, the data were fundamentally different
in the years before 1943 than during and after. Use a Chow test to examine
the difference in the two subperiods using your four functional forms. Note that
with the dummy variable, you can do the test by introducing an interaction term
between the dummy and whichever function of k appears in the regression. Use
an F test to test the hypothesis.

4. Data on the number of incidents of wave damage to a sample of ships, with the
type of ship and the period when it was constructed, are given in Table 6.9. There
are five types of ships and four different periods of construction. Use F tests and
dummy variable regressions to test the hypothesis that there is no significant “ship
type effect” in the expected number of incidents. Now, use the same procedure to
test whether there is a significant “period effect.”

TABLE 6.9 Ship Damage Incidents

Period Constructed

Ship Type 1960–1964 1965–1969 1970–1974 1975–1979

A 0 4 18 11
B 29 53 44 18
C 1 1 2 1
D 0 0 11 4
E 0 7 12 1

Source: Data from McCullagh and Nelder (1983, p. 137).
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NONLINEAR,
SEMIPARAMETRIC, AND

NONPARAMETRIC
REGRESSION MODELS1

Q
7.1 INTRODUCTION

Up to this point, the focus has been on a linear regression model

y = x1β1 + x2β2 + · · · + ε. (7-1)

Chapters 2 to 5 developed the least squares method of estimating the parameters and
obtained the statistical properties of the estimator that provided the tools we used
for point and interval estimation, hypothesis testing, and prediction. The modifications
suggested in Chapter 6 provided a somewhat more general form of the linear regres-
sion model,

y = f1(x)β1 + f2(x)β2 + · · · + ε. (7-2)

By the definition we want to use in this chapter, this model is still “linear,” because
the parameters appear in a linear form. Section 7.2 of this chapter will examine the
nonlinear regression model (which includes (7-1) and (7-2) as special cases),

y = h(x1, x2, . . . , xP; β1, β2, . . . , βK) + ε, (7-3)

where the conditional mean function involves P variables and K parameters. This form
of the model changes the conditional mean function from E [y|x, β] = x′β to E [y|x] =
h(x, β) for more general functions. This allows a much wider range of functional forms
than the linear model can accommodate.2 This change in the model form will require
us to develop an alternative method of estimation, nonlinear least squares. We will
also examine more closely the interpretation of parameters in nonlinear models. In
particular, since ∂ E[y|x]/∂x is no longer equal to β, we will want to examine how β

should be interpreted.
Linear and nonlinear least squares are used to estimate the parameters of the con-

ditional mean function, E[y|x]. As we saw in Example 4.5, other relationships between
y and x, such as the conditional median, might be of interest. Section 7.3 revisits this
idea with an examination of the conditional median function and the least absolute

1This chapter covers some fairly advanced features of regression modeling and numerical analysis. It may be
bypassed in a first course without loss of continuity.
2A complete discussion of this subject can be found in Amemiya (1985). Other important references are
Jennrich (1969), Malinvaud (1970), and especially Goldfeld and Quandt (1971, 1972). A very lengthy author-
itative treatment is the text by Davidson and MacKinnon (1993).

221
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deviations estimator. This section will also relax the restriction that the model coeffi-
cients are always the same in the different parts of the distribution of y (given x). The
LAD estimator estimates the parameters of the conditional median, that is, 50th per-
centile function. The quantile regression model allows the parameters of the regression
to change as we analyze different parts of the conditional distribution.

The model forms considered thus far are semiparametric in nature, and less para-
metric as we move from Section 7.2 to 7.3. The partially linear regression examined in
Section 7.4 extends (7-1) such that y = f (x)+ z′β + ε. The endpoint of this progression
is a model in which the relationship between y and x is not forced to conform to a
particular parameterized function. Using largely graphical and kernel density methods,
we consider in Section 7.5 how to analyze a nonparametric regression relationship that
essentially imposes little more than E[y|x] = h(x).

7.2 NONLINEAR REGRESSION MODELS

The general form of the nonlinear regression model is

yi = h(xi , β) + εi . (7-4)

The linear model is obviously a special case. Moreover, some models that appear to be
nonlinear, such as

y = eβ1 xβ2
1 xβ3

2 eε,

become linear after a transformation, in this case after taking logarithms. In this chapter,
we are interested in models for which there is no such transformation, such as the one
in the following example.

Example 7.1 CES Production Function
In Example 6.8, we examined a constant elasticity of substitution production function model:

ln y = ln γ − ν

ρ
ln

[
δK −ρ + (1 − δ) L−ρ

] + ε. (7-5)

No transformation reduces this equation to one that is linear in the parameters. In Example 6.5,
a linear Taylor series approximation to this function around the point ρ = 0 is used to produce
an intrinsically linear equation that can be fit by least squares. Nonetheless, the underlying
model in (7.5) is nonlinear in the sense that interests us in this chapter.

This and the next section will extend the assumptions of the linear regression model
to accommodate nonlinear functional forms such as the one in Example 7.1. We will
then develop the nonlinear least squares estimator, establish its statistical properties,
and then consider how to use the estimator for hypothesis testing and analysis of the
model predictions.

7.2.1 ASSUMPTIONS OF THE NONLINEAR REGRESSION MODEL

We shall require a somewhat more formal definition of a nonlinear regression model.
Sufficient for our purposes will be the following, which include the linear model as the
special case noted earlier. We assume that there is an underlying probability distribution,
or data generating process (DGP) for the observable yi and a true parameter vector, β,
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which is a characteristic of that DGP. The following are the assumptions of the nonlinear
regression model:

1. Functional form: The conditional mean function for yi given xi is

E [yi | xi ] = h(xi , β), i = 1, . . . , n,

where h(xi , β) is a continuously differentiable function of β.
2. Identifiability of the model parameters: The parameter vector in the model is

identified (estimable) if there is no nonzero parameter β0 �= β such that
h(xi , β

0) = h(xi , β) for all xi . In the linear model, this was the full rank assump-
tion, but the simple absence of “multicollinearity” among the variables in x is not
sufficient to produce this condition in the nonlinear regression model. Example 7.2
illustrates the problem.

3. Zero mean of the disturbance: It follows from Assumption 1 that we may write

yi = h(xi , β) + εi ,

where E [εi | h(xi , β)] = 0. This states that the disturbance at observation i is uncor-
related with the conditional mean function for all observations in the sample. This
is not quite the same as assuming that the disturbances and the exogenous variables
are uncorrelated, which is the familiar assumption, however.

4. Homoscedasticity and nonautocorrelation: As in the linear model, we assume con-
ditional homoscedasticity,

E
[
ε2

i

∣∣ h(x j , β), j = 1, . . . , n
] = σ 2, a finite constant, (7-6)

and nonautocorrelation

E [εiε j | h(xi , β), h(x j , β), j = 1, . . . , n] = 0 for all j �= i.

5. Data generating process: The data generating process for xi is assumed to be a
well-behaved population such that first and second moments of the data can be as-
sumed to converge to fixed, finite population counterparts. The crucial assumption
is that the process generating xi is strictly exogenous to that generating εi . The data
on xi are assumed to be “well behaved.”

6. Underlying probability model: There is a well-defined probability distribution gen-
erating εi . At this point, we assume only that this process produces a sample of
uncorrelated, identically (marginally) distributed random variables εi with mean
zero and variance σ 2 conditioned on h(xi , β). Thus, at this point, our statement
of the model is semiparametric. (See Section 12.3.) We will not be assuming any
particular distribution for εi . The conditional moment assumptions in 3 and 4 will
be sufficient for the results in this chapter. In Chapter 14, we will fully parameterize
the model by assuming that the disturbances are normally distributed. This will
allow us to be more specific about certain test statistics and, in addition, allow some
generalizations of the regression model. The assumption is not necessary here.

Example 7.2 Identification in a Translog Demand System
Christensen, Jorgenson, and Lau (1975), proposed the translog indirect utility function for
a consumer allocating a budget among K commodities:

ln V = β0 +
K∑

k=1

βk ln( pk/M) +
K∑

k=1

∑K

j =1
γkj ln( pk/M) ln( pj /M) ,
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where V is indirect utility, pk is the price for the kth commodity, and M is income. Utility, direct
or indirect, is unobservable, so the utility function is not usable as an empirical model. Roy’s
identity applied to this logarithmic function produces a budget share equation for the kth
commodity that is of the form

Sk = −∂ ln V/∂ ln pk

∂ ln V/∂ ln M
=

βk + ∑K
j =1 γkj ln( pj /M)

βM + ∑K
j =1 γMj ln( pj /M)

+ ε, k = 1, . . . , K ,

where βM = 
kβk and γMj = 
kγkj . No transformation of the budget share equation produces
a linear model. This is an intrinsically nonlinear regression model. (It is also one among a
system of equations, an aspect we will ignore for the present.) Although the share equation is
stated in terms of observable variables, it remains unusable as an emprical model because of
an identification problem. If every parameter in the budget share is multiplied by the same
constant, then the constant appearing in both numerator and denominator cancels out, and
the same value of the function in the equation remains. The indeterminacy is resolved by
imposing the normalization βM = 1. Note that this sort of identification problem does not
arise in the linear model.

7.2.2 THE NONLINEAR LEAST SQUARES ESTIMATOR

The nonlinear least squares estimator is defined as the minimizer of the sum of squares,

S(β) = 1
2

n∑
i=1

ε2
i = 1

2

n∑
i=1

[yi − h(xi , β)]2. (7-7)

The first order conditions for the minimization are

∂S(β)

∂β
=

n∑
i=1

[yi − h(xi , β)]
∂h(xi , β)

∂β
= 0. (7-8)

In the linear model, the vector of partial derivatives will equal the regressors, xi . In what
follows, we will identify the derivatives of the conditional mean function with respect to
the parameters as the “pseudoregressors,” x0

i (β) = x0
i . We find that the nonlinear least

squares estimator is found as the solutions to

∂S(β)

∂β
=

n∑
i=1

x0
i εi = 0. (7-9)

This is the nonlinear regression counterpart to the least squares normal equations in
(3-5). Computation requires an iterative solution. (See Example 7.3.) The method is
presented in Section 7.2.6.

Assumptions 1 and 3 imply that E[εi |h(xi , β] = 0. In the linear model, it follows,
because of the linearity of the conditional mean, that εi and xi , itself, are uncorrelated.
However, uncorrelatedness of εi with a particular nonlinear function of xi (the regres-
sion function) does not necessarily imply uncorrelatedness with xi , itself, nor, for that
matter, with other nonlinear functions of xi . On the other hand, the results we will
obtain for the behavior of the estimator in this model are couched not in terms of xi

but in terms of certain functions of xi (the derivatives of the regression function), so, in
point of fact, E[ε|X] = 0 is not even the assumption we need.

The foregoing is not a theoretical fine point. Dynamic models, which are very com-
mon in the contemporary literature, would greatly complicate this analysis. If it can
be assumed that εi is strictly uncorrelated with any prior information in the model,
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including previous disturbances, then perhaps a treatment analogous to that for the
linear model would apply. But the convergence results needed to obtain the asymptotic
properties of the estimator still have to be strengthened. The dynamic nonlinear regres-
sion model is beyond the reach of our treatment here. Strict independence of εi and
xi would be sufficient for uncorrelatedness of εi and every function of xi , but, again,
in a dynamic model, this assumption might be questionable. Some commentary on this
aspect of the nonlinear regression model may be found in Davidson and MacKinnon
(1993, 2004).

If the disturbances in the nonlinear model are normally distributed, then the log of
the normal density for the ith observation will be

ln f (yi |xi , β, σ 2) = −(1/2){ ln 2π + ln σ 2 + [yi − h(xi , β)]2/σ 2}. (7-10)

For this special case, we have from item D.2 in Theorem 14.2 (on maximum likelihood
estimation), that the derivatives of the log density with respect to the parameters have
mean zero. That is,

E
[
∂ ln f (yi | xi , β, σ 2)

∂β

]
= E

[
1
σ 2

(
∂h(xi , β)

∂β

)
εi

]
= 0, (7-11)

so, in the normal case, the derivatives and the disturbances are uncorrelated. Whether
this can be assumed to hold in other cases is going to be model specific, but under
reasonable conditions, we would assume so. [See Ruud (2000, p. 540).]

In the context of the linear model, the orthogonality condition E [xiεi ] = 0 produces
least squares as a GMM estimator for the model. (See Chapter 13.) The orthogonality
condition is that the regressors and the disturbance in the model are uncorrelated.
In this setting, the same condition applies to the first derivatives of the conditional
mean function. The result in (7-11) produces a moment condition which will define the
nonlinear least squares estimator as a GMM estimator.

Example 7.3 First-Order Conditions for a Nonlinear Model
The first-order conditions for estimating the parameters of the nonlinear regression model,

yi = β1 + β2 eβ3xi + εi ,

by nonlinear least squares [see (7-13)] are

∂S(b)
∂b1

= −
n∑

i =1

[
yi − b1 − b2 eb3xi

] = 0,

∂S(b)
∂b2

= −
n∑

i =1

[
yi − b1 − b2 eb3xi

]
eb3xi = 0,

∂S(b)
∂b3

= −
n∑

i =1

[
yi − b1 − b2 eb3xi

]
b2xi eb3xi = 0.

These equations do not have an explicit solution.

Conceding the potential for ambiguity, we define a nonlinear regression model at
this point as follows.
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DEFINITION 7.1 Nonlinear Regression Model
A nonlinear regression model is one for which the first-order conditions for least
squares estimation of the parameters are nonlinear functions of the parameters.

Thus, nonlinearity is defined in terms of the techniques needed to estimate the param-
eters, not the shape of the regression function. Later we shall broaden our definition to
include other techniques besides least squares.

7.2.3 LARGE SAMPLE PROPERTIES OF THE NONLINEAR
LEAST SQUARES ESTIMATOR

Numerous analytical results have been obtained for the nonlinear least squares esti-
mator, such as consistency and asymptotic normality. We cannot be sure that nonlinear
least squares is the most efficient estimator, except in the case of normally distributed
disturbances. (This conclusion is the same one we drew for the linear model.) But, in
the semiparametric setting of this chapter, we can ask whether this estimator is optimal
in some sense given the information that we do have; the answer turns out to be yes.
Some examples that follow will illustrate the points.

It is necessary to make some assumptions about the regressors. The precise require-
ments are discussed in some detail in Judge et al. (1985), Amemiya (1985), and Davidson
and MacKinnon (2004). In the linear regression model, to obtain our asymptotic results,
we assume that the sample moment matrix (1/n)X′X converges to a positive definite
matrix Q. By analogy, we impose the same condition on the derivatives of the regres-
sion function, which are called the pseudoregressors in the linearized model (defined in
(7-29)) when they are computed at the true parameter values. Therefore, for the nonlinear
regression model, the analog to (4-20) is

plim
1
n

X0′X0 = plim
1
n

n∑
i=1

(
∂h(xi , β0)

∂β0

)(
∂h(xi , β0)

∂β ′
0

)
= Q0, (7-12)

where Q0 is a positive definite matrix. To establish consistency of b in the linear model,
we required plim(1/n)X′ε = 0. We will use the counterpart to this for the pseudo-
regressors:

plim
1
n

n∑
i=1

x0
i εi = 0.

This is the orthogonality condition noted earlier in (4-24). In particular, note that orthog-
onality of the disturbances and the data is not the same condition. Finally, asymptotic
normality can be established under general conditions if

1√
n

n∑
i=1

x0
i εi

d−→ N[0, σ 2Q0].

With these in hand, the asymptotic properties of the nonlinear least squares estimator
have been derived. They are, in fact, essentially those we have already seen for the
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linear model, except that in this case we place the derivatives of the linearized function
evaluated at β, X0 in the role of the regressors. [See Amemiya (1985).]

The nonlinear least squares criterion function is

S(b) = 1
2

n∑
i=1

[yi − h(xi , b)]2 = 1
2

n∑
i=1

e2
i , (7-13)

where we have inserted what will be the solution value, b. The values of the parameters
that minimize (one half of) the sum of squared deviations are the nonlinear least squares
estimators. The first-order conditions for a minimum are

g(b) = −
n∑

i=1

[yi − h(xi , b)]
∂h(xi , b)

∂b
= 0. (7-14)

In the linear model of Chapter 3, this produces a set of linear equations, the normal
equations (3-4). But in this more general case, (7-14) is a set of nonlinear equations that
do not have an explicit solution. Note that σ 2 is not relevant to the solution [nor was it
in (3-4)]. At the solution,

g(b) = −X0′e = 0,

which is the same as (3-12) for the linear model.
Given our assumptions, we have the following general results:

THEOREM 7.1 Consistency of the Nonlinear Least
Squares Estimator

If the following assumptions hold;

a. The parameter space containing β is compact (has no gaps or nonconcave
regions),

b. For any vector β0 in that parameter space, plim (1/n)S(β0) = q(β0), a con-
tinuous and differentiable function,

c. q(β0) has a unique minimum at the true parameter vector, β,

then, the nonlinear least squares estimator defined by (7-13) and (7-14) is consis-
tent. We will sketch the proof, then consider why the theorem and the proof differ
as they do from the apparently simpler counterpart for the linear model. The proof,
notwithstanding the underlying subtleties of the assumptions, is straightforward.
The estimator, say, b0, minimizes (1/n)S(β0). If (1/n)S(β0) is minimized for every
n, then it is minimized by b0 as n increases without bound. We also assumed that
the minimizer of q(β0) is uniquely β. If the minimum value of plim (1/n)S(β0)

equals the probability limit of the minimized value of the sum of squares, the
theorem is proved. This equality is produced by the continuity in assumption b.

In the linear model, consistency of the least squares estimator could be established
based on plim(1/n)X′X = Q and plim(1/n)X′ε = 0. To follow that approach here,
we would use the linearized model and take essentially the same result. The loose
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end in that argument would be that the linearized model is not the true model, and
there remains an approximation. For this line of reasoning to be valid, it must also be
either assumed or shown that plim(1/n)X0′δ = 0 where δi = h(xi , β) minus the Taylor
series approximation. An argument to this effect appears in Mittelhammer et al. (2000,
pp. 190–191).

Note that no mention has been made of unbiasedness. The linear least squares
estimator in the linear regression model is essentially alone in the estimators considered
in this book. It is generally not possible to establish unbiasedness for any other estimator.
As we saw earlier, unbiasedness is of fairly limited virtue in any event—we found, for
example, that the property would not differentiate an estimator based on a sample of
10 observations from one based on 10,000. Outside the linear case, consistency is the
primary requirement of an estimator. Once this is established, we consider questions
of efficiency and, in most cases, whether we can rely on asymptotic normality as a basis
for statistical inference.

THEOREM 7.2 Asymptotic Normality of the Nonlinear Least
Squares Estimator

If the pseudoregressors defined in (7-12) are “well behaved,” then

b
a∼ N

[
β,

σ 2

n
(Q0)−1

]
,

where

Q0 = plim
1
n

X0′X0.

The sample estimator of the asymptotic covariance matrix is

Est. Asy. Var[b] = σ̂ 2(X0′X0)−1. (7-15)

Asymptotic efficiency of the nonlinear least squares estimator is difficult to establish
without a distributional assumption. There is an indirect approach that is one possibility.
The assumption of the orthogonality of the pseudoregressors and the true disturbances
implies that the nonlinear least squares estimator is a GMM estimator in this context.
With the assumptions of homoscedasticity and nonautocorrelation, the optimal weight-
ing matrix is the one that we used, which is to say that in the class of GMM estimators
for this model, nonlinear least squares uses the optimal weighting matrix. As such, it is
asymptotically efficient in the class of GMM estimators.

The requirement that the matrix in (7-12) converges to a positive definite matrix
implies that the columns of the regressor matrix X0 must be linearly independent. This
identification condition is analogous to the requirement that the independent variables
in the linear model be linearly independent. Nonlinear regression models usually involve
several independent variables, and at first blush, it might seem sufficient to examine the
data directly if one is concerned with multicollinearity. However, this situation is not
the case. Example 7.4 gives an application.
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A consistent estimator of σ 2 is based on the residuals:

σ̂ 2 = 1
n

n∑
i=1

[yi − h(xi , b)]2. (7-16)

A degrees of freedom correction, 1/(n− K), where K is the number of elements in β, is
not strictly necessary here, because all results are asymptotic in any event. Davidson and
MacKinnon (2004) argue that on average, (7-16) will underestimate σ 2, and one should
use the degrees of freedom correction. Most software in current use for this model does,
but analysts will want to verify which is the case for the program they are using. With
this in hand, the estimator of the asymptotic covariance matrix for the nonlinear least
squares estimator is given in (7-15).

Once the nonlinear least squares estimates are in hand, inference and hypothesis
tests can proceed in the same fashion as prescribed in Chapter 5. A minor problem can
arise in evaluating the fit of the regression in that the familiar measure,

R2 = 1 −
∑n

i=1 e2
i∑n

i=1(yi − ȳ)2
, (7-17)

is no longer guaranteed to be in the range of 0 to 1. It does, however, provide a useful
descriptive measure.

7.2.4 HYPOTHESIS TESTING AND PARAMETRIC RESTRICTIONS

In most cases, the sorts of hypotheses one would test in this context will involve fairly
simple linear restrictions. The tests can be carried out using the familiar formulas dis-
cussed in Chapter 5 and the asymptotic covariance matrix presented earlier. For more
involved hypotheses and for nonlinear restrictions, the procedures are a bit less clear-
cut. Two principal testing procedures were discussed in Section 5.4: the Wald test, which
relies on the consistency and asymptotic normality of the estimator, and the F test, which
is appropriate in finite (all) samples, that relies on normally distributed disturbances.
In the nonlinear case, we rely on large-sample results, so the Wald statistic will be the
primary inference tool. An analog to the F statistic based on the fit of the regression
will also be developed later. Finally, Lagrange multiplier tests for the general case can
be constructed. Since we have not assumed normality of the disturbances (yet), we
will postpone treatment of the likelihood ratio statistic until we revisit this model in
Chapter 14.

The hypothesis to be tested is

H0: r(β) = q, (7-18)

where r(β) is a column vector of J continuous functions of the elements of β. These
restrictions may be linear or nonlinear. It is necessary, however, that they be overiden-
tifying restrictions. Thus, in formal terms, if the original parameter vector has K free
elements, then the hypothesis r(β) − q must impose at least one functional relationship
on the parameters. If there is more than one restriction, then they must be functionally
independent. These two conditions imply that the J × K Jacobian,

R(β) = ∂r(β)

∂β ′ , (7-19)



Greene-2140242 book January 19, 2011 21:3

230 PART I ✦ The Linear Regression Model

must have full row rank and that J , the number of restrictions, must be strictly less than
K. This situation is analogous to the linear model, in which R(β) would be the matrix of
coefficients in the restrictions. (See, as well, Section 5.4, where the methods examined
here are applied to the linear model.)

Let b be the unrestricted, nonlinear least squares estimator, and let b∗ be the esti-
mator obtained when the constraints of the hypothesis are imposed.3 Which test statistic
one uses depends on how difficult the computations are. Unlike the linear model, the var-
ious testing procedures vary in complexity. For instance, in our example, the Lagrange
multiplier is by far the simplest to compute. Of the four methods we will consider, only
this test does not require us to compute a nonlinear regression.

The nonlinear analog to the familiar F statistic based on the fit of the regression
(i.e., the sum of squared residuals) would be

F[J, n − K] = [S(b∗) − S(b)]/J
S(b)/(n − K)

. (7-20)

This equation has the appearance of our earlier F ratio in (5-29). In the nonlinear
setting, however, neither the numerator nor the denominator has exactly the necessary
chi-squared distribution, so the F distribution is only approximate. Note that this F
statistic requires that both the restricted and unrestricted models be estimated.

The Wald test is based on the distance between r(b) and q. If the unrestricted esti-
mates fail to satisfy the restrictions, then doubt is cast on the validity of the restrictions.
The statistic is

W = [r(b) − q]′
{

Est. Asy. Var[r(b) − q]
}−1[r(b) − q]

= [r(b) − q]′
{

R(b)V̂R′(b)
}−1[r(b) − q],

(7-21)

where

V̂ = Est. Asy. Var[b],

and R(b) is evaluated at b, the estimate of β.
Under the null hypothesis, this statistic has a limiting chi-squared distribution with

J degrees of freedom. If the restrictions are correct, the Wald statistic and J times the F
statistic are asymptotically equivalent. The Wald statistic can be based on the estimated
covariance matrix obtained earlier using the unrestricted estimates, which may provide
a large savings in computing effort if the restrictions are nonlinear. It should be noted
that the small-sample behavior of W can be erratic, and the more conservative F statistic
may be preferable if the sample is not large.

The caveat about Wald statistics that applied in the linear case applies here as well.
Because it is a pure significance test that does not involve the alternative hypothesis, the
Wald statistic is not invariant to how the hypothesis is framed. In cases in which there
are more than one equivalent ways to specify r(β) = q, W can give different answers
depending on which is chosen.

The Lagrange multiplier test is based on the decrease in the sum of squared resid-
uals that would result if the restrictions in the restricted model were released. The
formalities of the test are given in Section 14.6.3. For the nonlinear regression model,

3This computational problem may be extremely difficult in its own right, especially if the constraints are
nonlinear. We assume that the estimator has been obtained by whatever means are necessary.
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the test has a particularly appealing form.4 Let e∗ be the vector of residuals yi −h(xi , b∗)
computed using the restricted estimates. Recall that we defined X0 as an n × K matrix
of derivatives computed at a particular parameter vector in (7-29). Let X0

∗ be this ma-
trix computed at the restricted estimates. Then the Lagrange multiplier statistic for the
nonlinear regression model is

LM = e′
∗X0

∗[X0′
∗ X0

∗]−1X0′
∗ e∗

e′∗e∗/n
. (7-22)

Under H0, this statistic has a limiting chi-squared distribution with J degrees of freedom.
What is especially appealing about this approach is that it requires only the restricted
estimates. This method may provide some savings in computing effort if, as in our
example, the restrictions result in a linear model. Note, also, that the Lagrange multiplier
statistic is n times the uncentered R2 in the regression of e∗ on X0

∗. Many Lagrange
multiplier statistics are computed in this fashion.

7.2.5 APPLICATIONS

This section will present three applications of estimation and inference for nonlinear re-
gression models. Example 7.4 illustrates a nonlinear consumption function that extends
Examples 1.2 and 2.1. The model provides a simple demonstration of estimation and
hypothesis testing for a nonlinear model. Example 7.5 analyzes the Box–Cox transfor-
mation. This specification is used to provide a more general functional form than the
linear regression—it has the linear and loglinear models as special cases. Finally, Exam-
ple 7.6 is a lengthy examination of an exponential regression model. In this application,
we will explore some of the implications of nonlinear modeling, specifically “interaction
effects.” We examined interaction effects in Section 6.3.3 in a model of the form

y = β1 + β2x + β3z + β4xz + ε.

In this case, the interaction effect is ∂2 E[y|x, z]/∂x∂z = β4. There is no interaction effect
if β4 equals zero. Example 7.6 considers the (perhaps unintended) implication of the
nonlinear model that when E[y|x, z] = h(x, z, β), there is an interaction effect even if
the model is

h(x, z, β) = h(β1 + β2x + β3z).

Example 7.4 Analysis of a Nonlinear Consumption Function
The linear consumption function analyzed at the beginning of Chapter 2 is a restricted version
of the more general consumption function

C = α + βYγ + ε,

in which γ equals 1.With this restriction, the model is linear. If γ is free to vary, however, then
this version becomes a nonlinear regression. Quarterly data on consumption, real disposable
income, and several other variables for the U.S. economy for 1950 to 2000 are listed in
Appendix Table F5.2. We will use these to fit the nonlinear consumption function. (Details of
the computation of the estimates are given in Section 7.2.6 in Example 7.8.) The restricted
linear and unrestricted nonlinear least squares regression results are shown in Table 7.1.

The procedures outlined earlier are used to obtain the asymptotic standard errors and an
estimate of σ 2. (To make this comparable to s2 in the linear model, the value includes the
degrees of freedom correction.)

4This test is derived in Judge et al. (1985). A lengthy discussion appears in Mittelhammer et al. (2000).
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TABLE 7.1 Estimated Consumption Functions

Linear Model Nonlinear Model

Parameter Estimate Standard Error Estimate Standard Error

α −80.3547 14.3059 458.7990 22.5014
β 0.9217 0.003872 0.10085 0.01091
γ 1.0000 — 1.24483 0.01205
e′e 1,536,321.881 504,403.1725
σ 87.20983 50.0946
R2 0.996448 0.998834
Var[b] — 0.000119037
Var[c] — 0.00014532
Cov[b, c] — −0.000131491

In the preceding example, there is no question of collinearity in the data matrix X = [i, y];
the variation in Y is obvious on inspection. But, at the final parameter estimates, the R2 in
the regression is 0.998834 and the correlation between the two pseudoregressors x0

2 = Yγ

and x0
3 = βYγ ln Y is 0.999752. The condition number for the normalized matrix of sums of

squares and cross products is 208.306. (The condition number is computed by computing
the square root of the ratio of the largest to smallest characteristic root of D−1X0

′X0D−1 where
x0

1 = 1 and D is the diagonal matrix containing the square roots of x0
k
′x0

k on the diagonal.)
Recall that 20 was the benchmark for a problematic data set. By the standards discussed in
Section 4.7.1 and A.6.6, the collinearity problem in this “data set” is severe. In fact, it appears
not to be a problem at all.

For hypothesis testing and confidence intervals, the familiar procedures can be used,
with the proviso that all results are only asymptotic. As such, for testing a restriction, the
chi-squared statistic rather than the F ratio is likely to be more appropriate. For example, for
testing the hypothesis that γ is different from 1, an asymptotic t test, based on the standard
normal distribution, is carried out, using

z = 1.24483 − 1
0.01205

= 20.3178.

This result is larger than the critical value of 1.96 for the 5 percent significance level, and
we thus reject the linear model in favor of the nonlinear regression. The three procedures for
testing hypotheses produce the same conclusion.

• The F statistic is

F [1.204 − 3] = (1, 536, 321.881 − 504, 403.17)/1
504, 403.17/(204 − 3)

= 411.29.

The critical value from the table is 3.84, so the hypothesis is rejected.• The Wald statistic is based on the distance of γ̂ from 1 and is simply the square of the
asymptotic t ratio we computed earlier:

W = (1.24483 − 1)2

0.012052
= 412.805.

The critical value from the chi-squared table is 3.84.• For the Lagrange multiplier statistic, the elements in xi * are

xi * = [1, Yγ , βYγ ln Y ].

To compute this at the restricted estimates, we use the ordinary least squares estimates
for α and β and 1 for γ so that

xi * = [1, Y, βY ln Y ].
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The residuals are the least squares residuals computed from the linear regression. Insert-
ing the values given earlier, we have

LM = 996, 103.9
(1, 536, 321.881/204)

= 132.267.

As expected, this statistic is also larger than the critical value from the chi-squared table.

We are also interested in the marginal propensity to consume. In this expanded model,
H0 : γ = 1 is a test-that the marginal propensity to consume is constant, not that it is 1. (That
would be a joint test of both γ = 1 and β = 1.) In this model, the marginal propensity to
consume is

MPC = dC/dY = βγ Yγ−1,

which varies with Y . To test the hypothesis that this value is 1, we require a particular value
of Y . Because it is the most recent value, we choose D PI 2000.4 = 6634.9. At this value, the
MPC is estimated as 1.08264. We estimate its standard error using the delta method, with
the square root of

[∂MPC/∂b ∂MPC/∂c]

[
Var[b] Cov[b, c]

Cov[b, c] Var[c]

] [
∂MPC/∂b
∂MPC/∂c

]

= [cYc−1 bYc−1(1 + c ln Y ) ]

[
0.000119037 −0.000131491

−0.000131491 0.00014532

] [
cYc−1

bYc−1(1 + c ln Y )

]

= 0.00007469,

which gives a standard error of 0.0086423. For testing the hypothesis that the MPC is equal to
1.0 in 2000.4 we would refer z = (1.08264−1)/0.0086423 = −9.56299 to the standard normal
table. This difference is certainly statistically significant, so we would reject the hypothesis.

Example 7.5 The Box–Cox Transformation
The Box–Cox transformation [Box and Cox (1964), Zarembka (1974)] is used as a device
for generalizing the linear model. The transformation is

x(λ) = ( xλ − 1)/λ.

Special cases of interest are λ = 1, which produces a linear transformation, x(1) = x − 1, and
λ = 0. When λ equals zero, the transformation is, by L’Hôpital’s rule,

lim
λ→0

xλ − 1
λ

= lim
λ→0

d( xλ − 1)/dλ

1
= lim

λ→0
xλ × ln x = ln x.

The regression analysis can be done conditionally on λ. For a given value of λ, the model,

y = α +
K∑

k=2

βkx (λ)
k + ε, (7-23)

is a linear regression that can be estimated by least squares. However, if λ in (7-23) is taken
to be an unknown parameter, then the regression becomes nonlinear in the parameters.

In principle, each regressor could be transformed by a different value of λ, but, in most
applications, this level of generality becomes excessively cumbersome, and λ is assumed
to be the same for all the variables in the model.5 To be defined for all values of λ, x must
be strictly positive. In most applications, some of the regressors—for example, a dummy
variable—will not be transformed. For such a variable, say νk, ν

(λ)
k = νk, and the relevant

derivatives in (7-24) will be zero. It is also possible to transform y, say, by y(θ ) . Transformation
of the dependent variable, however, amounts to a specification of the whole model, not just

5See, for example, Seaks and Layson (1983).
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the functional form of the conditional mean. For example, θ = 1 implies a linear equation
while θ = 0 implies a logarithmic equation.

In some applications, the motivation for the transformation is to program around zero
values in a loglinear model. Caves, Christensen, and Trethaway (1980) analyzed the costs
of production for railroads providing freight and passenger service. Continuing a long line
of literature on the costs of production in regulated industries, a translog cost function (see
Section 10.4.2) would be a natural choice for modeling this multiple-output technology. Sev-
eral of the firms in the study, however, produced no passenger service, which would preclude
the use of the translog model. (This model would require the log of zero.) An alternative is
the Box–Cox transformation, which is computable for zero output levels. A question does
arise in this context (and other similar ones) as to whether zero outputs should be treated
the same as nonzero outputs or whether an output of zero represents a discrete corporate
decision distinct from other variations in the output levels. In addition, as can be seen in
(7-24), this solution is only partial. The zero values of the regressors preclude computation
of appropriate standard errors.

Nonlinear least squares is straightforward. In most instances, we can expect to find the
least squares value of λ between −2 and 2. Typically, then, λ is estimated by scanning this
range for the value that minimizes the sum of squares. Note what happens of there are zeros
for x in the sample. Then, a constraint must still be placed on λ in their model, as 0(λ) is
defined only if λ is strictly positive. A positive value of λ is not assured. Once the optimal
value of λ is located, the least squares estimates, the mean squared residual, and this value
of λ constitute the nonlinear least squares estimates of the parameters.

After determining the optimal value of λ, it is sometimes treated as if it were a known value
in the least squares results. But λ̂ is an estimate of an unknown parameter. It is not hard to
show that the least squares standard errors will always underestimate the correct asymptotic
standard errors.6 To get the appropriate values, we need the derivatives of the right-hand
side of (7-23) with respect to α, β, and λ. The pseudoregressors are

∂h( .)
∂α

= 1,

∂h( .)
∂βk

= x(λ)
k ,

∂h( .)
∂λ

=
K∑

k=1

βk
∂x (λ)

k

∂λ
=

K∑
k=1

βk

[
1
λ

(
xλ

k ln xk − x (λ)
k

)]
.

(7-24)

We can now use (7-15) and (7-16) to estimate the asymptotic covariance matrix of the pa-
rameter estimates. Note that ln xk appears in ∂h( .)/∂λ. If xk = 0, then this matrix cannot be
computed. This was the point noted earlier.

It is important to remember that the coefficients in a nonlinear model are not equal to the
slopes (or the elasticities) with respect to the variables. For the particular Box–Cox model
ln Y = α + βX (λ) + ε,

∂E [ln y|x]
∂ ln x

= x
∂E [ln y|x]

∂x
= βxλ = η.

A standard error for this estimator can be obtained using the delta method. The derivatives
are ∂η/∂β = xλ = η/β and ∂η/∂λ = η ln x. Collecting terms, we obtain

Asy.Var[η̂] = (η/β) 2
{

Asy.Var
[
β̂
] + (β ln x) 2 Asy.Var

[
λ̂
] + (2β ln x) Asy.Cov

[
β̂, λ̂

]}

The application in Example 7.4 is a Box–Cox model of the sort discussed here. We can
rewrite (7-23) as

y = (α − 1/λ) + (β/λ) Xλ + ε

= α∗ + β∗xγ + ε.

6See Fomby, Hill, and Johnson (1984, pp. 426–431).
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FIGURE 7.1 Histogram for Income.

This shows that an alternative way to handle the Box–Cox regression model is to transform
the model into a nonlinear regression and then use the Gauss–Newton regression (see Sec-
tion 7.2.6) to estimate the parameters. The original parameters of the model can be recovered
by λ = γ , α = α∗ + 1/γ and β = γβ∗.

Example 7.6 Interaction Effects in a Loglinear Model for Income
A recent study in health economics is “Incentive Effects in the Demand for Health Care:
A Bivariate Panel Count Data Estimation” by Riphahn, Wambach, and Million (2003). The
authors were interested in counts of physician visits and hospital visits and in the impact that
the presence of private insurance had on the utilization counts of interest, that is, whether
the data contain evidence of moral hazard. The sample used is an unbalanced panel of 7,293
households, the German Socioeconomic Panel (GSOEP) data set.7 Among the variables re-
ported in the panel are household income, with numerous other sociodemographic variables
such as age, gender, and education. For this example, we will model the distribution of in-
come using the last wave of the data set (1988), a cross section with 4,483 observations.
Two of the individuals in this sample reported zero income, which is incompatible with the
underlying models suggested in the development below. Deleting these two observations
leaves a sample of 4,481 observations. Figures 7.1 and 7.2 display a histogram and a kernel
density estimator for the household income variable for these observations.

We will fit an exponential regression model to the income variable, with

Income = exp(β1 + β2Age + β3Age2 + β4Education + β5Female

+ β6Female × Education + β7Age × Education) + ε.

7The data are published on the Journal of Applied Econometrics data archive Web site, at
http://qed.econ.queensu.ca/jae/2003-v18.4/riphahn-wambach-million/. The variables in the data file are listed
in Appendix Table F7.1. The number of observations in each year varies from one to seven with a total
number of 27,326 observations. We will use these data in several examples here and later in the book.
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FIGURE 7.2 Kernel Density Estimate for Income.

Table 7.2 provides descriptive statistics for the variables used in this application.
Loglinear models play a prominent role in statistics. Many derive from a density function

of the form f ( y|x) = p[y|α0 + x′β, θ ], where α0 is a constant term and θ is an additional
parameter, and

E [y|x] = g(θ ) exp(α0 + x′β) ,

(hence the name “loglinear models”). Examples include the Weibull, gamma, lognormal, and
exponential models for continuous variables and the Poisson and negative binomial models
for counts. We can write E [y|x] as exp[ln g(θ ) + α0 + x′β], and then absorb lng(θ ) in the
constant term in ln E [y|x] = α + x′β. The lognormal distribution (see Section B.4.4) is often
used to model incomes. For the lognormal random variable,

p[y|α0 + x′β, θ ] = exp[− 1
2 ( ln y − α0 − x′β) 2/θ2]

θy
√

2π
, y > 0,

E [y|x] = exp(α0 + x′β + θ2/2) = exp(α + x′β) .

TABLE 7.2 Descriptive Statistics for Variables Used in
Nonlinear Regression

Variable Mean Std.Dev. Minimum Maximum

INCOME 0.348896 0.164054 0.0050 2
AGE 43.4452 11.2879 25 64
EDUC 11.4167 2.36615 7 18
FEMALE 0.484267 0.499808 0 1
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The exponential regression model is also consistent with a gamma distribution. The density
of a gamma distributed random variable is

p[y|α0 + x′β, θ ] = λθ exp(−λy) yθ−1

�(θ )
, y > 0, θ > 0, λ = exp(−α0 − x′β) ,

E [y|x] = θ/λ = θ exp(α0 + x′β) = exp( ln θ + α0 + x′β) = exp(α + x′β) .

The parameter θ determines the shape of the distribution. When θ > 2, the gamma density
has the shape of a chi-squared variable (which is a special case). Finally, the Weibull model
has a similar form,

p[y|α0 + x′β, θ ] = θλθ exp[−(λy) θ ]yθ−1, y ≥ 0, θ > 0, λ = exp(−α0 − x′β) ,

E [y|x] = �(1 + 1/θ ) exp(α0 + x′β) = exp[ln �(1 + 1/θ ) + α0 + x′β] = exp(α + x′β) .

In all cases, the maximum likelihood estimator is the most efficient estimator of the pa-
rameters. (Maximum likelihood estimation of the parameters of this model is considered in
Chapter 14.) However, nonlinear least squares estimation of the model

E [y|x] = exp(α + x′β) + ε

has a virtue in that the nonlinear least squares estimator will be consistent even if the dis-
tributional assumption is incorrect—it is robust to this type of misspecification since it does
not make explicit use of a distributional assumption.

Table 7.3 presents the nonlinear least squares regression results. Superficially, the pattern
of signs and significance might be expected—with the exception of the dummy variable for
female. However, two issues complicate the interpretation of the coefficients in this model.
First, the model is nonlinear, so the coefficients do not give the magnitudes of the interesting
effects in the equation. In particular, for this model,

∂E [y|x]/∂xk = exp(α + x′β) × ∂ (α + x′β)/∂xk.

Second, as we have constructed our model, the second part of the derivative is not equal to
the coefficient, because the variables appear either in a quadratic term or as a product with
some other variable. Moreover, for the dummy variable, Female, we would want to compute
the partial effect using

�E [y|x]/�Female = E [y|x, Female = 1] − E [y|x, Female = 0]

A third consideration is how to compute the partial effects, as sample averages or at the
means of the variables. For example,

∂E [y|x]/∂Age = E [y|x] × (β2 + 2β3Age + β7Educ) .

TABLE 7.3 Estimated Regression Equations

Nonlinear Least Squares Linear Least Squares

Variable Estimate Std. Error t Estimate Std. Error t

Constant −2.58070 0.17455 14.78 −0.13050 0.06261 −2.08
Age 0.06020 0.00615 9.79 0.01791 0.00214 8.37
Age2 −0.00084 0.00006082 −13.83 −0.00027 0.00001985 −13.51
Education −0.00616 0.01095 −0.56 −0.00281 0.00418 −0.67
Female 0.17497 0.05986 2.92 0.07955 0.02339 3.40
Female × Educ −0.01476 0.00493 −2.99 −0.00685 0.00202 −3.39
Age × Educ 0.00134 0.00024 5.59 0.00055 0.00009394 5.88
e′e 106.09825 106.24323
s 0.15387 0.15410
R2 0.12005 0.11880
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FIGURE 7.3 Expected Incomes.

The average value of Age in the sample is 43.4452 and the average Education is 11.4167.
The partial effect of a year of education is estimated to be 0.000948 if it is computed by
computing the partial effect for each individual and averaging the result. It is 0.000925 if it
is computed by computing the conditional mean and the linear term at the averages of the
three variables. The partial effect is difficult to interpret without information about the scale of
the income variable. Since the average income in the data is about 0.35, these partial effects
suggest that an additional year of education is associated with a change in expected income
of about 2.6 percent (i.e., 0.009/0.35).

The rough calculation of partial effects with respect to Age does not reveal the model
implications about the relationship between age and expected income. Note, for example,
that the coefficient on Age is positive while the coefficient on Age2 is negative. This implies
(neglecting the interaction term at the end), that the Age − Income relationship implied by the
model is parabolic. The partial effect is positive at some low values and negative at higher
values. To explore this, we have computed the expected Income using the model separately
for men and women, both with assumed college education (Educ = 16) and for the range of
ages in the sample, 25 to 64. Figure 7.3 shows the result of this calculation. The upper curve
is for men (Female = 0) and the lower one is for women. The parabolic shape is as expected;
what the figure reveals is the relatively strong effect—ceteris paribus, incomes are predicted
to rise by about 80 percent between ages 25 and 48. (There is an important aspect of this
computation that the model builder would want to develop in the analysis. It remains to be
argued whether this parabolic relationship describes the trajectory of expected income for
an individual as they age, or the average incomes of different cohorts at a particular moment
in time (1988). The latter would seem to be the more appropriate conclusion at this point,
though one might be tempted to infer the former.)

The figure reveals a second implication of the estimated model that would not be obvious
from the regression results. The coefficient on the dummy variable for Female is positive,
highly significant, and, in isolation, by far the largest effect in the model. This might lead
the analyst to conclude that on average, expected incomes in these data are higher for
women than men. But, Figure 7.3 shows precisely the opposite. The difference is accounted
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for by the interaction term, Female × Education. The negative sign on the latter coefficient
is suggestive. But, the total effect would remain ambiguous without the sort of secondary
analysis suggested by the figure.

Finally, in addition to the quadratic term in age, the model contains an interaction term,
Age × Education. The coefficient is positive and highly significant. But, it is far from obvious
how this should be interpreted. In a linear model,

Income = β1 + β2Age + β3Age2 + β4Education + β5Female

+ β6Female × Education + β7Age × Education + ε,

we would find that β7 = ∂2 E [I ncome|x]/∂ Age∂Education. That is, the “interaction effect” is
the change in the partial effect of Age associated with a change in Education (or vice versa).
Of course, if β7 equals zero, that is, if there is no product term in the model, then there is
no interaction effect—the second derivative equals zero. However, this simple interpretation
usually does not apply in nonlinear models (i.e., in any nonlinear model). Consider our ex-
ponential regression, and suppose that in fact, β7 is indeed zero. For convenience, let μ( x)
equal the conditional mean function. Then, the partial effect with respect to Age is

∂μ( x)/∂Age = μ( x) × (β2 + 2β3Age)

and

∂2μ( x)/∂Age∂Educ = μ( x) × (β2 + 2β3Age) (β4 + β6Female) , (7-25)

which is nonzero even if there is no “interaction term” in the model. The interaction effect
in the model that we estimated, which includes the product term, is

∂2 E [y|x]/∂Age∂Educ = μ( x) × [β7 + (β2 +2β3Age+β7Educ) (β4 +β6Female+β7Age) ]. (7-26)

At least some of what is being called the interaction effect in this model is attributable entirely
to the fact the model is nonlinear. To isolate the “functional form effect” from the true “inter-
action effect,” we might subtract (7-25) from (7-26) and then reassemble the components:

∂2μ( x)/∂Age∂Educ = μ( x) [(β2 + 2β3Age) (β4 + β6Female) ]

+ μ( x)β7[1 + Age(β2 + 2β3) + Educ(β4 + β6Female) + Educ × Age(β7) ]. (7-27)

It is clear that the coefficient on the product term bears essentially no relationship to the
quantity of interest (assuming it is the change in the partial effects that is of interest). On the
other hand, the second term is nonzero if and only if β7 is nonzero. One might, therefore,
identify the second part with the “interaction effect” in the model. Whether a behavioral
interpretation could be attached to this is questionable, however. Moreover, that would leave
unexplained the functional form effect. The point of this exercise is to suggest that one should
proceed with some caution in interpreting interaction effects in nonlinear models. This sort
of analysis has a focal point in the literature in Ai and Norton (2004). A number of comments
and extensions of the result are to be found, including Greene (2010).

We make one final observation about the nonlinear regression. In a loglinear, single-index
function model such as the one analyzed here, one might, “for comparison purposes,” com-
pute simple linear least squares results. The coefficients in the right-hand side of Table 7.3
suggest superficially that nonlinear least squares and least squares are computing completely
different relationships. To uncover the similarity (if there is one), it is useful to consider the
partial effects rather than the coefficients. We found, for example, the partial effect of educa-
tion in the nonlinear model, using the means of the variables, is 0.000925. Although the linear
least squares coefficients are very different, if the partial effect for education is computed for
the linear equation, we find −0.00281 − 0.00685( .5) + 0.00055(43.4452) = 0.01766, where
we have used 0.5 for Female. Dividing by 0.35, we obtain 0.0504, which is at least close to
its counterpart in the nonlinear model. As a general result, at least approximately, the linear
least squares coefficients are making this approximation.
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7.2.6 COMPUTING THE NONLINEAR LEAST SQUARES ESTIMATOR

Minimizing the sum of squared residuals for a nonlinear regression is a standard problem
in nonlinear optimization that can be solved by a number of methods. (See Section E.3.)
The method of Gauss–Newton is often used. This algorithm (and most of the sampling
theory results for the asymptotic properties of the estimator) is based on a linear Taylor
series approximation to the nonlinear regression function. The iterative estimator is
computed by transforming the optimization to a series of linear least squares regressions.

The nonlinear regression model is y = h(x, β)+ε. (To save some notation, we have
dropped the observation subscript). The procedure is based on a linear Taylor series
approximation to h(x, β) at a particular value for the parameter vector, β0:

h(x, β) ≈ h(x, β0) +
K∑

k=1

∂h(x, β0)

∂β0
k

(
βk − β0

k

)
. (7-28)

This form of the equation is called the linearized regression model. By collecting terms,
we obtain

h(x, β) ≈
[

h(x, β0) −
K∑

k=1

β0
k

(
∂h(x, β0)

∂β0
k

)]
+

K∑
k=1

βk

(
∂h(x, β0)

∂β0
k

)
. (7-29)

Let x0
k equal the kth partial derivative,8 ∂h(x, β0)/∂β0

k . For a given value of β0, x0
k is a

function only of the data, not of the unknown parameters. We now have

h(x, β) ≈
[

h0 −
K∑

k=1

x0
kβ0

k

]
+

K∑
k=1

x0
kβk,

which may be written

h(x, β) ≈ h0 − x0′β0 + x0′β,

which implies that

y ≈ h0 − x0′β0 + x0′β + ε.

By placing the known terms on the left-hand side of the equation, we obtain a linear
equation:

y0 = y − h0 + x0′β0 = x0′β + ε0. (7-30)

Note that ε0 contains both the true disturbance, ε, and the error in the first-order Taylor
series approximation to the true regression, shown in (7-29). That is,

ε0 = ε +
[

h(x, β) −
{

h0 −
K∑

k=1

x0
kβ0

k +
K∑

k=1

x0
kβk

}]
. (7-31)

Because all the errors are accounted for, (7-30) is an equality, not an approximation.
With a value of β0 in hand, we could compute y0 and x0 and then estimate the parameters
of (7-30) by linear least squares. Whether this estimator is consistent or not remains to
be seen.

8You should verify that for the linear regression model, these derivatives are the independent variables.
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Example 7.7 Linearized Regression
For the model in Example 7.3, the regressors in the linearized equation would be

x0
1 = ∂h( .)

∂β0
1

= 1,

x0
2 = ∂h( .)

∂β0
2

= eβ0
3

x ,

x0
3 = ∂h( .)

∂β0
3

= β0
2 xeβ0

3
x .

With a set of values of the parameters β0,

y0 = y − h
(
x, β0

1 , β0
2 , β0

3

) + β0
1 x0

1 + β0
2 x0

2 + β0
3 x0

3

can be linearly regressed on the three pseudoregressors to estimate β1, β2, and β3.

The linearized regression model shown in (7-30) can be estimated by linear least
squares. Once a parameter vector is obtained, it can play the role of a new β0, and the
computation can be done again. The iteration can continue until the difference between
successive parameter vectors is small enough to assume convergence. One of the main
virtues of this method is that at the last iteration the estimate of (Q0)−1 will, apart from
the scale factor σ̂ 2/n, provide the correct estimate of the asymptotic covariance matrix
for the parameter estimator.

This iterative solution to the minimization problem is

bt+1 =
[

n∑
i=1

x0
i x0′

i

]−1 [
n∑

i=1

x0
i

(
yi − h0

i + x0′
i bt

)
]

= bt +
[

n∑
i=1

x0
i x0′

i

]−1 [
n∑

i=1

x0
i

(
yi − h0

i

)]
(7-32)

= bt + (X0′X0)−1X0′e0

= bt + �t ,

where all terms on the right-hand side are evaluated at bt and e0 is the vector of nonlin-
ear least squares residuals. This algorithm has some intuitive appeal as well. For each
iteration, we update the previous parameter estimates by regressing the nonlinear least
squares residuals on the derivatives of the regression functions. The process will have
converged (i.e., the update will be 0) when X0′e0 is close enough to 0. This derivative
has a direct counterpart in the normal equations for the linear model, X′e = 0.

As usual, when using a digital computer, we will not achieve exact convergence with
X0′e0 exactly equal to zero. A useful, scale-free counterpart to the convergence criterion
discussed in Section E.3.6 is δ = e0′X0(X0′X0)−1X0′e0. [See (7-22).] We note, finally,
that iteration of the linearized regression, although a very effective algorithm for many
problems, does not always work. As does Newton’s method, this algorithm sometimes
“jumps off” to a wildly errant second iterate, after which it may be impossible to compute
the residuals for the next iteration. The choice of starting values for the iterations can
be crucial. There is art as well as science in the computation of nonlinear least squares
estimates. [See McCullough and Vinod (1999).] In the absence of information about
starting values, a workable strategy is to try the Gauss–Newton iteration first. If it
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fails, go back to the initial starting values and try one of the more general algorithms,
such as BFGS, treating minimization of the sum of squares as an otherwise ordinary
optimization problem.

Example 7.8 Nonlinear Least Squares
Example 7.4 considered analysis of a nonlinear consumption function,

C = α + βYγ + ε.

The linearized regression model is

C − (α0 + β0Yγ 0) + (α01 + β0Yγ 0 + γ 0β0Yγ 0 ln Y ) = α + β(Yγ 0) + γ (β0Yγ 0 ln Y ) + ε0.

Combining terms, we find that the nonlinear least squares procedure reduces to iterated
regression of

C0 = C + γ 0β0Yγ 0
ln Y

on

x0 =
[

∂h( .)
∂α

∂h( .)
∂β

∂h( .)
∂γ

]′
=

⎡
⎣

1
Yγ 0

β0Yγ 0
ln Y

⎤
⎦.

Finding the starting values for a nonlinear procedure can be difficult. Simply trying a
convenient set of values can be unproductive. Unfortunately, there are no good rules for
starting values, except that they should be as close to the final values as possible (not
particularly helpful). When it is possible, an initial consistent estimator of β will be a good
starting value. In many cases, however, the only consistent estimator available is the one
we are trying to compute by least squares. For better or worse, trial and error is the most
frequently used procedure. For the present model, a natural set of values can be obtained
because a simple linear model is a special case. Thus, we can start α and β at the linear least
squares values that would result in the special case of γ = 1 and use 1 for the starting value
for γ . The iterations are begun at the least squares estimates for α and β and 1 for γ .

The solution is reached in eight iterations, after which any further iteration is merely “fine
tuning” the hidden digits (i.e., those that the analyst would not be reporting to their reader;
“gradient” is the scale-free convergence measure, δ, noted earlier). Note that the coefficient
vector takes a very errant step after the first iteration—the sum of squares becomes huge—
but the iterations settle down after that and converge routinely.

Begin NLSQ iterations. Linearized regression.
Iteration = 1; Sum of squares = 1536321.88; Gradient = 996103.930
Iteration = 2; Sum of squares = 0.184780956E+12; Gradient = 0.184780452E+12 (×1012)
Iteration = 3; Sum of squares = 20406917.6; Gradient = 19902415.7
Iteration = 4; Sum of squares = 581703.598; Gradient = 77299.6342
Iteration = 5; Sum of squares = 504403.969; Gradient = 0.752189847
Iteration = 6; Sum of squares = 504403.216; Gradient = 0.526642396E-04
Iteration = 7; Sum of squares = 504403.216; Gradient = 0.511324981E-07
Iteration = 8; Sum of squares = 504403.216; Gradient = 0.606793426E-10

7.3 MEDIAN AND QUANTILE REGRESSION

We maintain the essential assumptions of the linear regression model,

y = x′β + ε

where E[ε|x] = 0 and E[y|x] = x′β. If ε|x is normally distributed, so that the distribution
of ε|x is also symmetric, then the median, Med[ε|x], is also zero and Med[y|x] = x′β.
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Under these assumptions, least squares remains a natural choice for estimation of β. But,
as we explored in Example 4.5, least absolute deviations (LAD) is a possible alternative
that might even be preferable in a small sample. Suppose, however, that we depart from
the second assumption directly. That is, the statement of the model is

Med[y|x] = x′β.

This result suggests a motivation for LAD in its own right, rather than as a robust (to
outliers) alternative to least squares.9 The conditional median of yi |xi might be an inter-
esting function. More generally, other quantiles of the distribution of yi |xi might also be
of interest. For example, we might be interested in examining the various quantiles of
the distribution of income or spending. Quantile regression (rather than least squares)
is used for this purpose. The (linear) quantile regression model can be defined as

Q[y|x, q] = x′βq such that Prob [y ≤ x′βq|x] = q, 0 < q < 1. (7-33)

The median regression would be defined for q = 1
2 . Other focal points are the lower and

upper quartiles, q = 1
4 and q = 3

4 , respectively. We will develop the median regression
in detail in Section 7.3.1, once again largely as an alternative estimator in the linear
regression setting.

The quantile regression model is a richer specification than the linear model that we
have studied thus far, because the coefficients in (7-33) are indexed by q. The model is
nonparametric—it requires a much less detailed specification of the distribution of y|x.
In the simplest linear model with fixed coefficient vector, β, the quantiles of y|x would
be defined by variation of the constant term. The implication of the model is shown in
Figure 7.4. For a fixed β and conditioned on x, the value of αq + βx such that Prob(y <

αq + βx) is shown for q = 0.15, 0.5, and 0.9 in Figure 7.4. There is a value of αq for each
quantile. In Section 7.3.2, we will examine the more general specification of the quantile
regression model in which the entire coefficient vector plays the role of αq in Figure 7.4.

7.3.1 LEAST ABSOLUTE DEVIATIONS ESTIMATION

Least squares can be severely distorted by outlying observations. Recent applications
in microeconomics and financial economics involving thick-tailed disturbance distribu-
tions, for example, are particularly likely to be affected by precisely these sorts of obser-
vations. (Of course, in those applications in finance involving hundreds of thousands of
observations, which are becoming commonplace, this discussion is moot.) These appli-
cations have led to the proposal of “robust” estimators that are unaffected by outlying
observations.10 In this section, we will examine one of these, the least absolute devia-
tions, or LAD estimator.

That least squares gives such large weight to large deviations from the regression
causes the results to be particularly sensitive to small numbers of atypical data points
when the sample size is small or moderate. The least absolute deviations (LAD) esti-
mator has been suggested as an alternative that remedies (at least to some degree) the

9In Example 4.5, we considered the possibility that in small samples with possibly thick-tailed disturbance
distributions, the LAD estimator might have a smaller variance than least squares.
10For some applications, see Taylor (1974), Amemiya (1985, pp. 70–80), Andrews (1974), Koenker and Bassett
(1978), and a survey written at a very accessible level by Birkes and Dodge (1993). A somewhat more rigorous
treatment is given by Hardle (1990).
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FIGURE 7.4 Quantile Regression Model.

problem. The LAD estimator is the solution to the optimization problem,

Minb0

n∑
i=1

|yi − x′
i b0|.

The LAD estimator’s history predates least squares (which itself was proposed over
200 years ago). It has seen little use in econometrics, primarily for the same reason that
Gauss’s method (LS) supplanted LAD at its origination; LS is vastly easier to compute.
Moreover, in a more modern vein, its statistical properties are more firmly established
than LAD’s and samples are usually large enough that the small sample advantage of
LAD is not needed.

The LAD estimator is a special case of the quantile regression:

Prob[yi ≤ x′
iβq] = q.

The LAD estimator estimates the median regression. That is, it is the solution to the
quantile regression when q = 0.5. Koenker and Bassett (1978, 1982), Huber (1967), and
Rogers (1993) have analyzed this regression.11 Their results suggest an estimator for
the asymptotic covariance matrix of the quantile regression estimator,

Est. Asy. Var[bq] = (X′X)−1X′DX(X′X)−1,

11Powell (1984) has extended the LAD estimator to produce a robust estimator for the case in which data on
the dependent variable are censored, that is, when negative values of yi are recorded as zero. See Melenberg
and van Soest (1996) for an application. For some related results on other semiparametric approaches to
regression, see Butler et al. (1990) and McDonald and White (1993).
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where D is a diagonal matrix containing weights

di =
[

q
f (0)

]2

if yi − x′
iβ is positive and

[
1 − q
f (0)

]2

otherwise,

and f (0) is the true density of the disturbances evaluated at 0.12 [It remains to obtain an
estimate of f (0).] There is a useful symmetry in this result. Suppose that the true density
were normal with variance σ 2. Then the preceding would reduce to σ 2(π/2)(X′X)−1,
which is the result we used in Example 4.5. For more general cases, some other empirical
estimate of f (0) is going to be required. Nonparametric methods of density estimation
are available [see Section 12.4 and, e.g., Johnston and DiNardo (1997, pp. 370–375)].
But for the small sample situations in which techniques such as this are most desir-
able (our application below involves 25 observations), nonparametric kernel density
estimation of a single ordinate is optimistic; these are, after all, asymptotic results.
But asymptotically, as suggested by Example 4.5, the results begin overwhelmingly
to favor least squares. For better or worse, a convenient estimator would be a ker-
nel density estimator as described in Section 12.4.1. Looking ahead, the computation
would be

f̂ (0) = 1
n

n∑
i=1

1
h

K
[

ei

h

]

where h is the bandwidth (to be discussed shortly), K[.] is a weighting, or kernel function
and ei , i = 1, . . . , n is the set of residuals. There are no hard and fast rules for choosing
h; one popular choice is that used by Stata (2006), h = .9s/n1/5. The kernel function
is likewise discretionary, though it rarely matters much which one chooses; the logit
kernel (see Table 12.2) is a common choice.

The bootstrap method of inferring statistical properties is well suited for this ap-
plication. Since the efficacy of the bootstrap has been established for this purpose,
the search for a formula for standard errors of the LAD estimator is not really neces-
sary. The bootstrap estimator for the asymptotic covariance matrix can be computed as
follows:

Est. Var[bLAD] = 1
R

R∑
r=1

(bLAD(r) − bLAD)(bLAD(r) − bLAD)′,

where bLAD is the LAD estimator and bLAD(r) is the rth LAD estimate of β based on
a sample of n observations, drawn with replacement, from the original data set.

Example 7.9 LAD Estimation of a Cobb–Douglas Production Function
Zellner and Revankar (1970) proposed a generalization of the Cobb–Douglas production func-
tion that allows economies of scale to vary with output. Their statewide data on Y = value
added (output), K = capital, L = labor, and N = the number of establishments in the trans-
portation industry are given in Appendix Table F7.2. For this application, estimates of the

12Koenker suggests that for independent and identically distributed observations, one should replace di
with the constant a = q(1 − q)/[ f (F−1(q))]2 = [.50/ f (0)]2 for the median (LAD) estimator. This reduces the
expression to the true asymptotic covariance matrix, a(X′X)−1. The one given is a sample estimator which
will behave the same in large samples. (Personal communication to the author.)
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FIGURE 7.5 Standardized Residuals for Production Function.

TABLE 7.4 LS and LAD Estimates of a Production Function

Least Squares LAD

Bootstrap Kernel Density

Coefficient Estimate
Standard

Error t Ratio Estimate Std. Error t Ratio Std. Error t Ratio

Constant 2.293 0.107 21.396 2.275 0.202 11.246 0.183 12.374
βk 0.279 0.081 3.458 0.261 0.124 2.099 0.138 1.881
βl 0.927 0.098 9.431 0.927 0.121 7.637 0.169 5.498

e2 0.7814 0.7984

|e| 3.3652 3.2541

Cobb–Douglas production function,

ln(Yi /Ni ) = β1 + β2 ln( Ki /Ni ) + β3 ln( Li /Ni ) + εi ,

are obtained by least squares and LAD. The standardized least squares residuals shown in
Figure 7.5 suggest that two observations (Florida and Kentucky) are outliers by the usual
construction. The least squares coefficient vectors with and without these two observations
are (2.293, 0.279, 0.927) and (2.205, 0.261, 0.879), respectively, which bears out the sug-
gestion that these two points do exert considerable influence. Table 7.4 presents the LAD
estimates of the same parameters, with standard errors based on 500 bootstrap replica-
tions. The LAD estimates with and without these two observations are identical, so only
the former are presented. Using the simple approximation of multiplying the corresponding
OLS standard error by (π/2)1/2 = 1.2533 produces a surprisingly close estimate of the boot-
strap estimated standard errors for the two slope parameters (0.102, 0.123) compared with
the bootstrap estimates of (0.124, 0.121). The second set of estimated standard errors are
based on Koenker’s suggested estimator, .25/f̂ 2(0) = 0.25/1.54672 = 0.104502. The band-
width and kernel function are those suggested earlier. The results are surprisingly consistent
given the small sample size.
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7.3.2 QUANTILE REGRESSION MODELS

The quantile regression model is

Q[y|x, q] = x′βq such that Prob[y ≤ x′βq|x] = q, 0 < q < 1.

This is essentially a nonparametric specification. No assumption is made about the
distribution of y|x or about its conditional variance. The fact that q can vary continuously
(strictly) between zero and one means that there are an infinite number of possible
“parameter vectors.” It seems reasonable to view the coefficients, which we might write
β(q) less as fixed “parameters,” as we do in the linear regression model, than loosely
as features of the distribution of y|x. For example, it is not likely to be meaningful to
view β(.49) to be discretely different from β(.50) or to compute precisely a particular
difference such as β(.5)−β(.3). On the other hand, the qualitative difference, or possibly
the lack of a difference, between β(.3) and β(.5) as displayed in our following example,
may well be an interesting characteristic of the sample.

The estimator, bq ofβq for a specific quantile is computed by minimizing the function

Fn(βq|y, X) =
n∑

i :yi ≥x′
i βq

q|yi − x′
iβq| +

n∑
i :yi <x′

i βq

(1 − q)|yi − x′
iβq|

=
n∑

i=1

g
(

yi − x′
iβq|q

)

where

g(ei,q|q) =
{

qei,q if ei,q ≥ 0
(1 − q)ei,q if ei,q < 0

}
, ei,q = yi − x′

iβq.

When q = 0.5, the estimator is the least absolute deviations estimator we examined in
Example 4.5 and Section 7.3.1. Solving the minimization problem requires an iterative
estimator. It can be set up as a linear programming problem.13 [See Keonker and D’Oray
(1987).]

We cannot use the methods of Chapter 4 to determine the asymptotic covariance
matrix of the estimator. But, the fact that the estimator is obtained by minimizing a sum
does lead to a set of results similar to those we obtained in Section 4.4 for least squares.
[See Buchinsky (1998).] Assuming that the regressors are “well behaved,” the quantile
regression estimator of βq is consistent and asymptotically normally distributed with
asymptotic covariance matrix

Asy.Var.[bq] = 1
n

H−1GH−1

where

H = plim
1
n

n∑
i=1

fq(0|xi )xi x′
i

13Quantile regression is supported as a built in procedure in contemporary software such as Statas, SAS,
and NLOGIT.
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and

G = plim
q(1 − q)

n

n∑
i=1

xi x′
i .

This is the result we had earlier for the LAD estimator, now with quantile q instead of
0.5. As before, computation is complicated by the need to compute the density of εq at
zero. This will require either an approximation of uncertain quality or a specification of
the particular density, which we have hoped to avoid. The usual approach, as before, is
to use bootstrapping.

Example 7.10 Income Elasticity of Credit Card Expenditure
Greene (1992, 2007) analyzed the default behavior and monthly expenditure behavior of a
large sample (13,444 observations) of credit card users. Among the results of interest in the
study was an estimate of the income elasticity of the monthly expenditure. A conventional
regression approach might be based on

Q[ln Spending|x, q] = β1,q + β2,q ln Income + β3,q Age + β4,q Dependents.

The data in Appendix Table F7.3 contain these and numerous other covariates that might
explain spending; we have chosen these three for this example only. The 13,444 observations
in the data set are based on credit card applications. Of the full sample, 10,499 applications
were approved and the next 12 months of spending and default behavior were observed.14

Spending is the average monthly expenditure in the 12 months after the account was initiated.
Average monthly income and number of household dependents are among the demographic
data in the application. Table 7.5 presents least squares estimates of the coefficients of
the conditional mean function as well as full results for several quantiles.15 Standard errors
are shown for the least squares and median (1 = 0.5) results. The results for the other
quantiles are essentially the same. The least squares estimate of 1.08344 is slightly and
significantly greater than one—the estimated standard error is 0.03212 so the t statistic is
(1.08344 − 1)/0.03212 = 2.60. This suggests an aspect of consumption behavior that might
not be surprising. However, the very large amount of variation over the range of quantiles
might not have been expected. We might guess that at the highest levels of spending for
any income level, there is (comparably so) some saturation in the response of spending to
changes in income.

Figure 7.6 displays the estimates of the income elasticity of expenditure for the range
of quantiles from 0.1 to 0.9, with the least squares estimate which would correspond to
the fixed value at all quantiles shown in the center of the figure. Confidence limits shown
in the figure are based on the asymptotic normality of the estimator. They are computed
as the estimated income elasticity plus and minus 1.96 times the estimated standard error.
Figure 7.7 shows the implied quantile regressions for q = 0.1, 0.3, 0.5, 0.7, and 0.9. The
relatively large increase from the 0.1 quantile to the 0.3 suggests some skewness in the

14The expenditure data are taken from the credit card records while the income and demographic data are
taken from the applications. While it might be tempting to use, for example, Powell’s (1986a,b) censored
quantile regression estimator to accommodate this large cluster of zeros for the dependent variable, this
approach would misspecify the model—the “zeros” represent nonexistent observations, not missing ones. A
more detailed approach—the one used in the 1992 study—would model separately the presence or absence
of the observation on spending and then model spending conditionally on acceptance of the application. We
will revisit this issue in Chapter 19 in the context of the sample selection model. The income data are censored
at 100,000 and 220 of the observations have expenditures that are filled with $1 or less. We have not “cleaned”
the data set for these aspects. The full 10,499 observations have been used as they are in the original data set.
15We would note, if (7-33) is the statement of the model, then it does not follow that that the conditional
mean function is a linear regression. That would be an additional assumption.
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TABLE 7.5 Estimated Quantile Regression Models

Estimated Parameters

Quantile Constant ln Income Age Dependents

0.1 −6.73560 1.40306 −0.03081 −0.04297
0.2 −4.31504 1.16919 −0.02460 −0.04630
0.3 −3.62455 1.12240 −0.02133 −0.04788
0.4 −2.98830 1.07109 −0.01859 −0.04731

(Median) 0.5 −2.80376 1.07493 −0.01699 −0.04995
Std.Error (0.24564) (0.03223) (0.00157) (0.01080)

t −11.41 33.35 −10.79 −4.63

Least Squares −3.05581 1.08344 −0.01736 −.04461
Std.Error (0.23970) (0.03212) (0.00135) (0.01092)

t −12.75 33.73 −12.88 −4.08

0.6 −2.05467 1.00302 −0.01478 −0.04609
0.7 −1.63875 0.97101 −0.01190 −0.03803
0.8 −0.94031 0.91377 −0.01126 −0.02245
0.9 −0.05218 0.83936 −0.00891 −0.02009

Quantile 
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FIGURE 7.6 Estimates of Income Elasticity of Expenditure.

spending distribution. In broad terms, the results do seem to be largely consistent with our
earlier result of the quantiles largely being differentiated by shifts in the constant term, in
spite of the seemingly large change in the coefficient on ln Income in the results.
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7.4 PARTIALLY LINEAR REGRESSION

The proper functional form in the linear regression is an important specification issue.
We examined this in detail in Chapter 6. Some approaches, including the use of dummy
variables, logs, quadratics, and so on, were considered as means of capturing nonlin-
earity. The translog model in particular (Example 2.4) is a well-known approach to
approximating an unknown nonlinear function. Even with these approaches, the re-
searcher might still be interested in relaxing the assumption of functional form in the
model. The partially linear model [analyzed in detail by Yatchew (1998, 2000) and
Härdle, Liang, and Gao (2000)] is another approach. Consider a regression model in
which one variable, x, is of particular interest, and the functional form with respect to
x is problematic. Write the model as

yi = f (xi ) + z′
iβ + εi ,

where the data are assumed to be well behaved and, save for the functional form, the
assumptions of the classical model are met. The function f (xi ) remains unspecified. As
stated, estimation by least squares is not feasible until f (xi ) is specified. Suppose the
data were such that they consisted of pairs of observations (yj1, yj2), j = 1, . . . , n/2,
in which xj1 = xj2 within every pair. If so, then estimation of β could be based on the
simple transformed model

yj2 − yj1 = (z j2 − z j1)
′β + (ε j2 − ε j1), j = 1, . . . , n/2.

As long as observations are independent, the constructed disturbances, vi still have zero
mean, variance now 2σ 2, and remain uncorrelated across pairs, so a classical model
applies and least squares is actually optimal. Indeed, with the estimate of β, say, β̂d in
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hand, a noisy estimate of f (xi ) could be estimated with yi − z′
i β̂d (the estimate contains

the estimation error as well as εi ).16

The problem, of course, is that the enabling assumption is heroic. Data would not
behave in that fashion unless they were generated experimentally. The logic of the
partially linear regression estimator is based on this observation nonetheless. Suppose
that the observations are sorted so that x1 < x2 < · · · < xn. Suppose, as well, that this
variable is well behaved in the sense that as the sample size increases, this sorted data
vector more tightly and uniformly fills the space within which xi is assumed to vary.
Then, intuitively, the difference is “almost” right, and becomes better as the sample size
grows. [Yatchew (1997, 1998) goes more deeply into the underlying theory.] A theory
is also developed for a better differencing of groups of two or more observations. The
transformed observation is yd,i = ∑M

m=0 dmyi−m where
∑M

m=0 dm = 0 and
∑M

m=0 d2
m = 1.

(The data are not separated into nonoverlapping groups for this transformation—we
merely used that device to motivate the technique.) The pair of weights for M = 1 is
obviously ±√

0.5—this is just a scaling of the simple difference, 1, −1. Yatchew [1998,
p. 697)] tabulates “optimal” differencing weights for M= 1, . . . , 10. The values for M= 2
are (0.8090, −0.500, −0.3090) and for M = 3 are (0.8582, −0.3832, −0.2809, −0.1942).
This estimator is shown to be consistent, asymptotically normally distributed, and have
asymptotic covariance matrix17

Asy. Var[β̂d] =
(

1 + 1
2M

)
σ 2

v

n
Ex[Var[z | x]].

The matrix can be estimated using the sums of squares and cross products of the differ-
enced data. The residual variance is likewise computed with

σ̂ 2
v =

∑n
i=M+1(yd,i − z′

d,i β̂d)
2

n − M
.

Yatchew suggests that the partial residuals, yd,i − z′
d,i β̂d be smoothed with a kernel

density estimator to provide an improved estimator of f (xi ). Manzan and Zeron (2010)
present an application of this model to the U.S. gasoline market.

Example 7.11 Partially Linear Translog Cost Function
Yatchew (1998, 2000) applied this technique to an analysis of scale effects in the costs of
electricity supply. The cost function, following Nerlove (1963) and Christensen and Greene
(1976), was specified to be a translog model (see Example 2.4 and Section 10.5.2) involving
labor and capital input prices, other characteristics of the utility, and the variable of interest,
the number of customers in the system, C. We will carry out a similar analysis using Chris-
tensen and Greene’s 1970 electricity supply data. The data are given in Appendix Table F4.4.
(See Section 10.5.1 for description of the data.) There are 158 observations in the data set,
but the last 35 are holding companies that are comprised of combinations of the others.
In addition, there are several extremely small New England utilities whose costs are clearly
unrepresentative of the best practice in the industry. We have done the analysis using firms
6–123 in the data set. Variables in the data set include Q = output, C = total cost, and PK, PL,
and PF = unit cost measures for capital, labor, and fuel, respectively. The parametric model

16See Estes and Honoré (1995) who suggest this approach (with simple differencing of the data).
17Yatchew (2000, p. 191) denotes this covariance matrix E [Cov[z | x]].
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specified is a restricted version of the Christensen and Greene model,

ln c = β1k + β2l + β3q + β4(q2/2) + β5 + ε,

where c = ln[C/( Q × PF ) ], k = ln(PK/PF ) , l = ln(PL/PF ) , and q = ln Q. The partially linear
model substitutes f (q) for the last three terms. The division by PF ensures that average cost is
homogeneous of degree one in the prices, a theoretical necessity. The estimated equations,
with estimated standard errors, are shown here.

(parametric) c = −7.32 + 0.069k + 0.241 − 0.569q + 0.057q2/2 + ε,
(0.333) (0.065) (0.069) (0.042) (0.006) s = 0.13949

(partially linear) cd = 0.108kd + 0.163ld + f (q) + v
(0.076) (0.081) s = 0.16529

7.5 NONPARAMETRIC REGRESSION

The regression function of a variable y on a single variable x is specified as

y = μ(x) + ε.

No assumptions about distribution, homoscedasticity, serial correlation or, most impor-
tantly, functional form are made at the outset; μ(x) may be quite nonlinear. Because
this is the conditional mean, the only substantive restriction would be that deviations
from the conditional mean function are not a function of (correlated with) x. We have
already considered several possible strategies for allowing the conditional mean to be
nonlinear, including spline functions, polynomials, logs, dummy variables, and so on.
But, each of these is a “global” specification. The functional form is still the same for
all values of x. Here, we are interested in methods that do not assume any particular
functional form.

The simplest case to analyze would be one in which several (different) observations
on yi were made with each specific value of xi . Then, the conditional mean function
could be estimated naturally using the simple group means. The approach has two
shortcomings, however. Simply connecting the points of means, (xi , ȳ | xi ) does not
produce a smooth function. The method would still be assuming something specific
about the function between the points, which we seek to avoid. Second, this sort of data
arrangement is unlikely to arise except in an experimental situation. Given that data
are not likely to be grouped, another possibility is a piecewise regression in which we
define “neighborhoods” of points around each x of interest and fit a separate linear or
quadratic regression in each neighborhood. This returns us to the problem of continuity
that we noted earlier, but the method of splines, discussed in Section 6.3.1, is actually
designed specifically for this purpose. Still, unless the number of neighborhoods is quite
large, such a function is still likely to be crude.

Smoothing techniques are designed to allow construction of an estimator of the
conditional mean function without making strong assumptions about the behavior of
the function between the points. They retain the usefulness of the nearest neighbor
concept but use more elaborate schemes to produce smooth, well-behaved functions.
The general class may be defined by a conditional mean estimating function

μ̂(x∗) =
n∑

i=1

wi (x∗ | x1, x2, . . . , xn)yi =
n∑

i=1

wi (x∗ | x)yi ,
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where the weights sum to 1. The linear least squares regression line is such an estimator.
The predictor is

μ̂(x∗) = a + bx∗.

where a and b are the least squares constant and slope. For this function, you can show
that

wi (x∗|x) = 1
n

+ x∗(xi − x̄)∑n
i=1(xi − x̄)2

.

The problem with this particular weighting function, which we seek to avoid here, is that
it allows every xi to be in the neighborhood of x∗, but it does not reduce the weight of
any xi when it is far from x∗. A number of smoothing functions have been suggested that
are designed to produce a better behaved regression function. [See Cleveland (1979)
and Schimek (2000).] We will consider two.

The locally weighted smoothed regression estimator (“loess” or “lowess” depending
on your source) is based on explicitly defining a neighborhood of points that is close to
x∗. This requires the choice of a bandwidth, h. The neighborhood is the set of points
for which |x∗ − xi | is small. For example, the set of points that are within the range x*
± h/2 might constitute the neighborhood. The choice of bandwith is crucial, as we will
explore in the following example, and is also a challenge. There is no single best choice.
A common choice is Silverman’s (1986) rule of thumb,

hSilverman = .9[min(s, IQR)]
1.349 n0.2

where s is the sample standard deviation and IQR is the interquartile range (0.75 quan-
tile minus 0.25 quantile). A suitable weight is then required. Cleveland (1979) recom-
mends the tricube weight,

Ti (x∗|x, h) =
[

1 −
( |xi − x∗|

h

)3
]3

.

Combining terms, then the weight for the loess smoother is

wi (x∗|x, h) = 1(xi in the neighborhood) × Ti (x∗|x, h).

The bandwidth is essential in the results. A wider neighborhood will produce a
smoother function, but the wider neighborhood will track the data less closely than a
narrower one. A second possibility, similar to the least squares approach, is to allow
the neighborhood to be all points but make the weighting function decline smoothly
with the distance between x* and any xi . A variety of kernel functions are used for this
purpose. Two common choices are the logistic kernel,

K(x∗|xi , h) = �(vi )[1 − �(vi )] where �(vi ) = exp(vi )/[1 + exp(vi )], vi = (xi − x∗)/h,
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and the Epanechnikov kernel,

K(x∗|xi , h) = 0.75(1 − 0.2 v2
i )/

√
5 if |vi | ≤ 5 and 0 otherwise.

This produces the kernel weighted regression estimator,

μ̂(x∗|x, h) =

n∑
i=1

1
k

K
[

xi − x∗

h

]
yi

n∑
i=1

1
k

K
[

xi − x∗

h

] ,

which has become a standard tool in nonparametric analysis.

Example 7.12 A Nonparametric Average Cost Function
In Example 7.11, we fit a partially linear regression for the relationship between average cost
and output for electricity supply. Figures 7.8 and 7.9 show the less ambitious nonparametric
regressions of average cost on output. The overall picture is the same as in the earlier exam-
ple. The kernel function is the logistic density in both cases. The function in Figure 7.8 uses
a bandwidth of 2,000. Because this is a fairly large proportion of the range of variation of
output, the function is quite smooth. The regression in Figure 7.9 uses a bandwidth of only
200. The function tracks the data better, but at an obvious cost. The example demonstrates
what we and others have noted often. The choice of bandwidth in this exercise is crucial.

Data smoothing is essentially data driven. As with most nonparametric techniques,
inference is not part of the analysis—this body of results is largely descriptive. As can
be seen in the example, nonparametric regression can reveal interesting characteristics
of the data set. For the econometrician, however, there are a few drawbacks. There is
no danger of misspecifying the conditional mean function, for example. But, the great

FIGURE 7.8 Nonparametric Cost Function.
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FIGURE 7.9 Nonparametric Cost Function.

generality of the approach limits the ability to test one’s specification or the underlying
theory. [See, for example, Blundell, Browning, and Crawford’s (2003) extensive study
of British expenditure patterns.] Most relationships are more complicated than a simple
conditional mean of one variable. In Example 7.12, some of the variation in average cost
relates to differences in factor prices (particularly fuel) and in load factors. Extensions
of the fully nonparametric regression to more than one variable is feasible, but very
cumbersome. [See Härdle (1990) and Li and Racine (2007).] A promising approach is
the partially linear model considered earlier.

7.6 SUMMARY AND CONCLUSIONS

In this chapter, we extended the regression model to a form that allows nonlinearity
in the parameters in the regression function. The results for interpretation, estimation,
and hypothesis testing are quite similar to those for the linear model. The two crucial
differences between the two models are, first, the more involved estimation procedures
needed for the nonlinear model and, second, the ambiguity of the interpretation of the
coefficients in the nonlinear model (because the derivatives of the regression are often
nonconstant, in contrast to those in the linear model).

Key Terms and Concepts

• Bandwidth
• Bootstrap
• Box–Cox transformation
• Conditional mean function

• Conditional median
• Delta method
• Epanechnikov kernel
• GMM estimator

• Identification condition
• Identification problem
• Index function model
• Indirect utility function
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• Interaction term
• Iteration
• Jacobian
• Kernel density estimator
• Kernel functions
• Least absolute deviations

(LAD)
• Linear regression model
• Linearized regression model
• Lagrange multiplier test
• Logistic kernel
• Logit model

• Loglinear model
• Median regression
• Nearest neighbor
• Neighborhood
• Nonlinear least squares
• Nonlinear regression model
• Nonparametric estimators
• Nonparametric regression
• Normalization
• Orthogonality condition
• Overidentifying restrictions
• Partially linear model

• Pseudoregressors
• Quantile regression
• Roy’s identity
• Semiparametric
• Semiparametric estimation
• Silverman’s rule of thumb
• Smoothing function
• Starting values
• Two-step estimation
• Wald test

Exercises

1. Describe how to obtain nonlinear least squares estimates of the parameters of the
model y = αxβ + ε.

2. Verify the following differential equation, which applies to the Box–Cox transfor-
mation:

di x(λ)

dλi
=

(
1
λ

) [
xλ(ln x)i − idi−1x(λ)

dλi−1

]
. (7-34)

Show that the limiting sequence for λ = 0 is

lim
λ→0

di x(λ)

dλi
= (ln x)i+1

i + 1
. (7-35)

These results can be used to great advantage in deriving the actual second deriva-
tives of the log-likelihood function for the Box–Cox model.

Applications

1. Using the Box–Cox transformation, we may specify an alternative to the Cobb–
Douglas model as

ln Y = α + βk
(Kλ − 1)

λ
+ βl

(Lλ − 1)

λ
+ ε.

Using Zellner and Revankar’s data in Appendix Table F7.2, estimate α, βk, βl , and
λ by using the scanning method suggested in Example 7.5. (Do not forget to scale
Y, K, and L by the number of establishments.) Use (7-24), (7-15), and (7-16) to
compute the appropriate asymptotic standard errors for your estimates. Compute
the two output elasticities, ∂ ln Y/∂ ln K and ∂ ln Y/∂ ln L, at the sample means of
K and L. (Hint: ∂ ln Y/∂ ln K = K∂ ln Y/∂K.)

2. For the model in Application 1, test the hypothesis that λ = 0 using a Wald test
and a Lagrange multiplier test. Note that the restricted model is the Cobb–Douglas
loglinear model. The LM test statistic is shown in (7-22). To carry out the test, you
will need to compute the elements of the fourth column of X 0, the pseudoregressor
corresponding to λ is ∂ E[y | x]/∂λ | λ = 0. Result (7-35) will be useful.
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3. The National Institute of Standards and Technology (NIST) has created a web site
that contains a variety of estimation problems, with data sets, designed to test the
accuracy of computer programs. (The URL is http://www.itl.nist.gov/div898/strd/.)
One of the five suites of test problems is a set of 27 nonlinear least squares prob-
lems, divided into three groups: easy, moderate, and difficult. We have chosen one
of them for this application. You might wish to try the others (perhaps to see if
the software you are using can solve the problems). This is the Misra1c problem
(http://www.itl.nist.gov/div898/strd/nls/data/misra1c.shtml). The nonlinear regres-
sion model is

yi = h(x, β) + ε

= β1

(
1 − 1√

1 + 2β2xi

)
+ εi .

The data are as follows:

Y X

10.07 77.6
14.73 114.9
17.94 141.1
23.93 190.8
29.61 239.9
35.18 289.0
40.02 332.8
44.82 378.4
50.76 434.8
55.05 477.3
61.01 536.8
66.40 593.1
75.47 689.1
81.78 760.0

For each problem posed, NIST also provides the “certified solution,” (i.e., the right
answer). For the Misralc problem, the solutions are as follows:

Estimate Estimated Standard Error

β1 6.3642725809E + 02 4.6638326572E + 00
β2 2.0813627256E − 04 1.7728423155E − 06
e′e 4.0966836971E − 02
s2 = e′e/(n − K) 5.8428615257E − 02

Finally, NIST provides two sets of starting values for the iterations, generally one set
that is “far” from the solution and a second that is “close” from the solution. For this
problem, the starting values provided areβ1 = (500, 0.0001)andβ2 = (600, 0.0002).
The exercise here is to reproduce the NIST results with your software. [For a detailed
analysis of the NIST nonlinear least squares benchmarks with several well-known
computer programs, see McCullough (1999).]

4. In Example 7.1, the CES function is suggested as a model for production,

lny = lnγ − ν

ρ
ln

[
δK−ρ + (1 − δ)L−ρ

] + ε. (7-36)
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Example 6.8 suggested an indirect method of estimating the parameters of this
model. The function is linearized around ρ = 0, which produces an intrinsically
linear approximation to the function,

lny = β1 + β2lnK + β3lnL+ β4[1/2(lnK − LnL)2] + ε,

where β1 = ln γ, β2 = νδ. β3 = ν(1 − δ) and β4 = ρνδ(1 − δ). The approximation
can be estimated by linear least squares. Estimates of the structural parameters are
found by inverting the preceding four equations. An estimator of the asymptotic
covariance matrix is suggested using the delta method. The parameters of (7-36)
can also be estimated directly using nonlinear least squares and the results given
earlier in this chapter.

Christensen and Greene’s (1976) data on U.S. electricity generation are given
in Appendix Table F4.4. The data file contains 158 observations. Using the first
123, fit the CES production function, using capital and fuel as the two factors of
production rather than capital and labor. Compare the results obtained by the two
approaches, and comment on why the differences (which are substantial) arise.

The following exercises require specialized software. The relevant techniques
are available in several packages that might be in use, such as SAS, Stata, or
LIMDEP. The exercises are suggested as departure points for explorations using a
few of the many estimation techniques listed in this chapter.

5. Using the gasoline market data in Appendix Table F2.2, use the partially linear
regression method in Section 7.4 to fit an equation of the form

ln(G/Pop) = β1 ln(Income) + β2lnPnew cars + β3lnPused cars + g(lnPgasoline) + ε.

6. To continue the analysis in Application 5, consider a nonparametric regression of
G/Pop on the price. Using the nonparametric estimation method in Section 7.5,
fit the nonparametric estimator using a range of bandwidth values to explore the
effect of bandwidth.
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8

ENDOGENEITY AND
INSTRUMENTAL VARIABLE

ESTIMATION

Q
8.1 INTRODUCTION

The assumption that xi and εi are uncorrelated in the linear regression model,

yi = xi
′β + εi , (8-1)

has been crucial in the development thus far. But, there are many applications in which
this assumption is untenable. Examples include models of treatment effects such as that
in Example 6.5, models that contain variables that are measured with error, dynamic
models involving expectations, and a large variety of common situations that involve
variables that are unobserved, or for other reasons are omitted from the equation.
Without the assumption that the disturbances and the regressors are uncorrelated, none
of the proofs of consistency or unbiasedness of the least squares estimator that were
obtained in Chapter 4 will remain valid, so the least squares estimator loses its appeal.
This chapter will develop an estimation method that arises in situations such as these.

It is convenient to partition x in (8-1) into two sets of variables, x1 and x2, with the
assumption that x1 is not correlated with ε and x2 is, or may be, (part of the empirical
investigation). We are assuming that x1 is exogenous in the model—see assumption A.3
in the statement of the linear regression model in Section 2.3. It will follow that x2 is,
by this definition, endogenous in the model. How does endogeneity arise? Example 8.1
suggests some common settings.

Example 8.1 Models with Endogenous Right-Hand-Side Variables
The following models and settings will appear at various points in this book.

Omitted Variables: In Example 4.2, we examined an equation for gasoline consumption
of the form

ln G = β1 + β2 ln Price + β3 ln Income + ε.

When income is improperly omitted from this (any) demand equation, the resulting “model”
is

ln G = β1 + β2 ln Price + w,

where w = β3 ln Income + ε. Linear regression of ln G on a constant and lnPrice does not
consistently estimate (β1, β2) if lnPrice is correlated with w. It surely will be in aggregate
time-series data. The omitted variable reappears in the equation in the disturbance, causing
omitted variable bias in the least squares estimator of the misspecified equation.

Endogenous Treatment Effects: Kreuger and Dale (1999) examined the effect of at-
tendance at an elite college on lifetime earnings. The regression model with a “treatment
effect” dummy variable, T, which equals one for those who attended an elite college and

259
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zero otherwise, appears as

ln y = x′β + δT + ε.

Least squares regression of a measure of earnings, ln y, on x and T attempts to produce an
estimate of δ, the impact of the treatment. It seems inevitable, however, that some unobserved
determinants of lifetime earnings, such as ambition, inherent abilities, persistence, and so on
would also determine whether the individual had an opportunity to attend an elite college.
If so, then the least squares estimator of δ will inappropriately attribute the effect to the
treatment, rather than to these underlying factors. Least squares will not consistently estimate
δ, ultimately because of the correlation between T and ε.

In order to quantify definitively the impact of attendance at an elite college on the individu-
als who did so, the researcher would have to conduct an impossible experiment. Individuals
in the sample would have to be observed twice, once having attended the elite college and
a second time (in a second lifetime) without having done so. Whether comparing individuals
who attended elite colleges to other individuals who did not adequately measures the effect
of the treatment on the treated individuals is the subject of a vast current literature. See,
for example, Imbens and Wooldridge (2009) for a survey.

Simultaneous Equations: In an equilibrium model of price and output determination in
a market, there would be equations for both supply and demand. For example, a model of
output and price determination in a product market might appear

(Demand) QuantityD = α0 + α1Price + α2Income + εD ,

(Supply) QuantityS = β0 + β1Price + β2InputPrice + εS,

(Equilibrium) QuantityD = QuantityS.

Consider attempting to estimate the parameters of the demand equation by regression of a
time series of equilibrium quantities on equilibrium prices and incomes. The equilibrium price
is determined by the equation of the two quantities. By imposing the equilibrium condition,
we can solve for Price = (α0 − β0 + α2Income − β2InputPrice + εD − εS)/(β1 − α1) . The
implication is that Price is correlated with εD—if an external shock causes εD to change, that
induces a shift in the demand curve and ultimately causes a new equilibrium price. Least
squares regression of quantity on price and income does not estimate the parameters of the
demand equation consistently. This “feedback” between εD and Price in this model produces
simultaneous equations bias in the least squares estimator.

Dynamic Panel Data Models: In Chapter 11, we will examine a random effects dynamic
model of the form yit = xitβ +γ yi ,t−1 +εit +ui where ui contains the time-invariant unobserved
features of individual i. Clearly, in this case, the regressor yi ,t−1 is correlated with the distur-
bance, (εit +ui )—the unobserved heterogeneity is present in yit in every period. In Chapter 13,
we will examine a model for municipal expenditure of the form Sit = f ( Si ,t−1, . . .) + εit. The
disturbances are assumed to be freely correlated across periods, so both Si ,t−1 and εit are
correlated with εi ,t−1. It follows that they are correlated with each other, which means that this
model, even without time persistent effects, does not satisfy the assumptions of the linear
regression model. The regressors and disturbances are correlated.

Omitted Parameter Heterogeneity: Many cross-country studies of economic growth
have the following structure (greatly simplified for purposes of this example),

� ln Yit = αi + θi t + βi � ln Yi ,t−1 + εit,

where �lnYit is the growth rate of country i in year t. [See, for example, Lee, Pesaran and
Smith (1997).] Note that the coefficients in the model are country specific. What does least
squares regression of growth rates of income on a time trend and lagged growth rates
estimate? Rewrite the growth equation as

� ln Yit = α + θ t + β � ln Yi ,t−1 + (αi − α) + (θi − θ ) t + (βi − β)� ln Yi ,t−1 + εit

= α + θ t + β � ln Yi ,t−1 + wit.
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We assume that the “average” parameters, α, θ , and β, are meaningful fixed parameters to
be estimated. Does the least squares regression of � ln Yit on a constant, t, and � ln Yi ,t−1
estimate these parameters consistently? We might assume that the cross-country variation in
the constant terms is purely random, and the time trends, θi , are driven by purely exogenous
factors. But, the differences across countries of the convergence parameters, βi , are likely
at least to be correlated with the growth in incomes in those countries, which will induce
a correlation between the lagged income growth and the term (βi − β) embedded in wit. If
(βi −β) is random noise that is uncorrelated with � ln Yi ,t−1, then (βi −β)� ln Yi ,t−1 will be also.

Measurement Error: Ashenfelter and Krueger (1994), Ashenfelter and Zimmerman (1997),
and Bonjour et al. (2003) examined applications in which an earnings equation

yi ,t = f (Educationi ,t , . . .) + εi ,t

is specified for sibling pairs (twins) t = 1, 2 for n families. Education is a variable that is
inherently unmeasurable; years of schooling is typically the best proxy variable available.
Consider, in a very simple model, attempting to estimate the parameters of

yit = β1 + β2Educationit + εit,

by a regression of Earningsit on a constant and Schoolingit with

Schoolingit = Educationit + uit,

where uit is the measurement error. By a simple substitution, we find

yit = β1 + β2Schoolingit + wit,

where wit = εit −β2uit. Schooling is clearly correlated with wit = (εit −β2uit) . The interpretation
is that at least some of the variation in Schooling is due to variation in the measurement
error, uit. Since schooling is correlated with wit, it is endogenous, and least squares is not
a suitable estimator of the earnings equation. As we will show later, in cases such as this
one, the mismeasurement of a relevant variable causes a particular form of inconsistency,
attenuation bias, in the estimator of β2.

Nonrandom Sampling: In a model of the effect of a training program, an employment
program, or the labor supply behavior of a particular segment of the labor force, the sample
of observations may have voluntarily selected themselves into the observed sample. The Job
Training Partnership Act (JTPA) was a job training program intended to provide employment
assistance to disadvantaged youth. Anderson et al. (1991) found that for a sample that
they examined, the program appeared to be administered most often to the best qualified
applicants. In an earnings equation estimated for such a nonrandom sample, the implication
is that the disturbances are not truly random. For the application just described, for example,
on average, the disturbances are unusually high compared to the full population. Merely
unusually high would not be a problem save for the general finding that the explanation
for the nonrandomness is found at least in part in the variables that appear elsewhere in
the model. This nonrandomness of the sample translates to a form of omitted variable bias
known as sample selection bias.

Attrition: We can observe two closely related important cases of nonrandom sampling.
In panel data studies of firm performance, the firms still in the sample at the end of the
observation period are likely to be a subset of those present at the beginning—those firms
that perform badly, “fail” or drop out of the sample. Those that remain are unusual in the same
fashion as the previous sample of JTPA participants. In these cases, least squares regression
of the performance variable on the covariates (whatever they are), suffers from a form of
selection bias known as survivorship bias. In this case, the distribution of outcomes, firm
performances, for the survivors is systematically higher than that for the population of firms as
a whole. This produces a phenomenon known as truncation bias. In clinical trials and other
statistical analysis of health interventions, subjects often drop out of the study for reasons
related to the intervention, itself—for a quality of life intervention such as a drug treatment for
cancer, subjects may leave because they recover and feel uninterested in returning for the exit
interview, or they may pass away or become incapacitated and be unable to return. In either
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case, the statistical analysis is subject to attrition bias. The same phenomenon may impact
the analysis of panel data in health econometrics studies. For example, Contoyannis, Jones,
and Rice (2004) examined self-assessed health outcomes in a long panel data set extracted
from the British Household Panel Data survey. In each year of the study, a significant number
of the observations were absent from the next year’s data set, with the result that the sample
was winnowed significantly from the beginning to the end of the study.

In all the cases listed in Example 8.1, the term “bias” refers to the result that
least squares (or other conventional modifications of least squares) is an inconsistent
(persistently biased) estimator of the coefficients of the model of interest. Though the
source of the result differs considerably from setting to setting, all ultimately trace back
to endogeneity of some or all of the right-hand-side variables and this, in turn, translates
to correlation between the regressors and the disturbances. These can be broadly viewed
in terms of some specific effects:

• Omitted variables, either observed or unobserved,
• Feedback effects,
• Dynamic effects,
• Endogenous sample design,

and so on. There are two general solutions to the problem of constructing a consistent
estimator. In some cases, a more detailed, “structural” specification of the model can
be developed. These usually involve specifying additional equations that explain the
correlation between xi and εi in a way that enables estimation of the full set of param-
eters of interest. We will develop a few of these models in later chapters, including,
for example, Chapter 19 where we consider Heckman’s (1979) model of sample selec-
tion. The second approach, which is becoming increasingly common in contemporary
research, is the method of instrumental variables. The method of instrumental variables
is developed around the following estimation strategy: Suppose that in the model of
(8-1), the K variables xi may be correlated with εi . Suppose as well that there exists
a set of L variables zi , such that zi is correlated with xi , but not with εi . We cannot
estimate β consistently by using the familiar least squares estimator. But, the assumed
lack of correlation between zi and εi implies a set of relationships that may allow us
construct a consistent estimator of β by using the assumed relationships among zi , xi ,
and εi .

This chapter will develop the method of instrumental variables as an extension of
the models and estimators that have been considered in Chapters 2–7. Section 8.2 will
formalize the model in a way that provides an estimation framework. The method of
instrumental variables (IV) estimation and two-stage least squares (2SLS) is developed
in detail in Section 8.3. Two tests of the model specification are considered in Section
8.4. A particular application of the estimation with measurement error, is developed in
detail in Section 8.5. Section 8.6 will consider nonlinear models and begin the devel-
opment of the generalized method of moments (GMM) estimator. The IV estimator
is a powerful tool that underlies a great deal of contemporary empirical research. A
shortcoming, the problem of weak instruments is considered in Section 8.7. Finally,
some observations about instrumental variables and the search for causal effects are
presented in Section 8.8.

This chapter will develop the fundamental results for IV estimation. The use of
instrumental variables will appear in many applications in the chapters to follow,
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including mutiple equations models in Chapter 10, the panel data methods in Chapter
11, and in the development of the generalized method of moments in Chapter 13.

8.2 ASSUMPTIONS OF THE EXTENDED MODEL

The assumptions of the linear regression model, laid out in Chapters 2 and 4 are

A.1. Linearity: yi = xi1β1 + xi2β2 + · · · + xi KβK + εi .

A.2. Full rank: The n × K sample data matrix, X has full column rank.
A.3. Exogeneity of the independent variables: E[εi |xj1, xj2, . . . , xjk] = 0, i , j = 1,

. . . , n. There is no correlation between the disturbances and the independent
variables.

A.4. Homoscedasticity and nonautocorrelation: Each disturbance, εi , has the same
finite variance, σ 2 and is uncorrelated with every other disturbance, εj , conditioned
on X.

A.5. Stochastic or nonstochastic data: (xi1, xi2, . . . , xi K) i = 1, . . . , n.

A.6. Normal distribution: The disturbances are normally distributed.

We will maintain the important result that plim (X′X/n) = Qxx. The basic assumptions
of the regression model have changed, however. First, A.3 (no correlation between x
and ε) is, under our new assumptions,

A.I3. E[εi | xi ] = ηi .

We interpret Assumption A.I3 to mean that the regressors now provide information
about the expectations of the disturbances. The important implication of A.I3 is that
the disturbances and the regressors are now correlated. Assumption A.I3 implies that

E[xiεi ] = γ (8-2)

for some nonzero γ . If the data are “well behaved,” then we can apply Theorem D.5
(Khinchine’s theorem) to assert that

plim (1/n)X′ε = γ . (8-3)

Notice that the original model results if ηi = 0. The implication of (8-3) is that the
regressors, X, are no longer exogenous.

We now assume that there is an additional set of variables, Z, that have two prop-
erties:

1. Exogeneity: They are uncorrelated with the disturbance.
2. Relevance: They are correlated with the independent variables, X.

We will formalize these notions as we proceed. In the context of our model, variables
that have these two properties are instrumental variables. We assume the following:

A.I7. [xi , zi , εi ], i = 1, . . . , n, are an i.i.d. sequence of random variables.
A.I8a. E[x2

ik] = Qxx,kk < ∞, a finite constant, k = 1, . . . , K.
A.I8b. E[z2

il] = Qzz,ll < ∞, a finite constant, l = 1, . . . , L.
A.I8c. E[zil xik] = Qzx,lk < ∞, a finite constant, l = 1, . . . , L, k = 1, . . . , K.
A.I9. E[εi | zi ] = 0.
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In later work in time series models, it will be important to relax assumption A.I7. Finite
means of zl follows from A.I8b. Using the same analysis as in Section 4.4, we have

plim (1/n)Z′Z = Qzz, a finite, positive definite matrix (well-behaved data),

plim (1/n)Z′X = Qzx, a finite, L× K matrix with rank K (relevance),

plim (1/n)Z′ε = 0 (exogeneity).

In our statement of the regression model, we have assumed thus far the special case of
ηi = 0; γ = 0 follows. There is no need to dispense with Assumption A.I7—it may well
continue to be true—but in this special case, it becomes irrelevant.

For the present, we will assume that L = K—there are the same number of in-
strumental variables as there are right-hand-side variables in the equation. Recall in
the introduction and in Example 8.1, we partitioned x into x1 a set of K1 exogenous
variables and x2, a set of K2 endogenous variables on the right-hand-side of (8-1). In
nearly all cases in practice, the “problem of endogeneity” is attributable to one or a
small number of variables in x. In the Kreuger and Dale (1999) study of endogenous
treatment effects in Example 8.1, we have a single endogenous variable in the equation,
the treatment dummy variable, T. The implication for our formulation here is that in
such a case, the K1 variables x1 will be among the instrumental variables in Z and the K2

remaining variables will be other exogenous variables that are not the same as x2. The
usual interpretation will be that these K2 variables, z2, are the “instruments for x2” while
the x1 variables are instruments for themselves. To continue the example, the matrix Z
for the endogenous treatment effects model would contain the K1 columns of X and an
additional instrumental variable, z, for the treatment dummy variable. In the simultane-
ous equations model of supply and demand, the endogenous right-hand-side variable is
x2 = price while the exogenous variables are (1,Income). One might suspect (correctly),
that in this model, a set of instrumental variables would be z = (1,Income,InputPrice).
In terms of the underlying relationships among the variables, this intuitive understand-
ing will provide a reliable guide. For reasons that will be clear shortly, however, it is
necessary statistically to treat Z as the instruments for X in its entirety.

There is a second subtle point about the use of instrumental variables that will
likewise be more evident below. The “relevance condition” must actually be a statement
of conditional correlation. Consider, once again, the treatment effects example, and
suppose that z is the instrumental variable in question for the treatment dummy variable
T. The relevance condition as stated implies that the correlation between z and (x,T) is
nonzero. Formally, what will be required is that the conditional correlation of z with T|x
be nonzero. One way to view this is in terms of a projection; the instrumental variable
z is relevant if the coefficient on z in the regression of T on (x,z) is nonzero. Intuitively,
z must provide information about the movement of T that is not provided by the x
variables that are already in the model.

8.3 ESTIMATION

For the general model of Section 8.2, we lose most of the useful results we had for
least squares. We will consider the implications for least squares and then construct an
alternative estimator for β in this extended model.
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8.3.1 LEAST SQUARES

The least squares estimator, b, is no longer unbiased;

E[b|X] = β + X′X−1X′η �= β,

so the Gauss–Markov theorem no longer holds. The estimator is also inconsistent;

plim b = β + plim
(

X′X
n

)−1

plim
(

X′ε
n

)
= β + Q−1

XXγ �= β. (8-4)

(The asymptotic distribution is considered in the exercises.) The inconsistency of least
squares is not confined to the coefficients on the endogenous variables. To see this,
apply (8-4) to the treatment effects example discussed earlier. In that case, all but the
last variable in X are uncorrelated with ε. This means that

plim
(

X′ε
n

)
=

⎛
⎜⎜⎜⎝

0
0
...

γK

⎞
⎟⎟⎟⎠ = γK

⎛
⎜⎜⎜⎝

0
0
...

1

⎞
⎟⎟⎟⎠ .

It follows that for this special case, the result in (8-4) is

plim b = β + γK × the last column of Q−1
XX.

There is no reason to expect that any of the elements of the last column of Q−1
XX will equal

zero. The implication is that even though only one of the variables in X is correlated
with ε, all of the elements of b are inconsistent, not just the estimator of the coefficient
on the endogenous variable. This effects is called smearing; the inconsistency due to the
endogeneity of the one variable is smeared across all of the least squares estimators.

8.3.2 THE INSTRUMENTAL VARIABLES ESTIMATOR

Because E[ziεi ] = 0 and all terms have finite variances, it follows that

plim
(

Z′ε
n

)
= plim

(
Z′y
n

)
− plim

(
Z′Xβ

n

)
= 0.

Therefore,

plim
(

Z′y
n

)
=

[
plim

(
Z′X

n

)]
β + plim

(
Z′ε
n

)
=

[
plim

(
Z′X

n

)]
β. (8-5)

We have assumed that Z has the same number of variables as X. For example, suppose
in our consumption function that xt = [1, Yt ] when zt = [1, Yt−1]. We have assumed that
the rank of Z′X is K, so now Z′X is a square matrix. It follows that

[
plim

(
Z′X

n

)]−1

plim
(

Z′y
n

)
= β, (8-6)

which leads us to the instrumental variable estimator,

bIV = (Z′X)−1Z′y.
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We have already proved that bIV is consistent. We now turn to the asymptotic distribu-
tion. We will use the same method as in Section 4.4.2. First,

√
n(bIV − β) =

(
Z′ X

n

)−1 1√
n

Z′ε,

which has the same limiting distribution as Q−1
zx [(1/

√
n)Z′ε]. Our analysis of (1/

√
n)Z′ε

can be the same as that of (1/
√

n)X′ε in Section 4.4.3, so it follows that
(

1√
n

Z′ε
)

d−→ N
[
0, σ 2 Qzz

]
,

and
(

Z′X
n

)−1( 1√
n

Z′ε
)

d−→ N
[
0, σ 2Q−1

zx QzzQ−1
xz

]
.

This step completes the derivation for the next theorem.

THEOREM 8.1 Asymptotic Distribution of the Instrumental
Variables Estimator

If Assumptions A.1, A.2, A.I3, A.4, A.5, A.I7, A.I8a–c, and A.I9 all hold for
[yi , xi , zi , εi ], where z is a valid set of L = K instrumental variables, then the
asymptotic distribution of the instrumental variables estimator bIV = (Z′X)−1Z′y
is

bIV
a∼ N

[
β,

σ 2

n
Q−1

zx QzzQ−1
xz

]
. (8-7)

where Qzx = plim(Z′X/n) and Qzz = plim(Z′Z/n).

To estimate the asymptotic covariance matrix, we will require an estimator of σ 2.
The natural estimator is

σ̂ 2 = 1
n

n∑
i=1

(yi − x′
i bIV)2.

A correction for degrees of freedom is superfluous, as all results here are asymptotic,
and σ̂ 2 would not be unbiased in any event. (Nonetheless, it is standard practice in most
software to make the degrees of freedom correction.) Write the vector of residuals as

y − XbIV = y − X(Z′X)−1Z′y.

Substitute y = Xβ + ε and collect terms to obtain ε̂ = [I − X(Z′X)−1Z′]ε. Now,

σ̂ 2 = ε̂′ε̂
n

= ε′ε
n

+
(

ε′Z
n

)(
X′Z

n

)−1(X′X
n

)(
Z′X

n

)−1(Z′ε
n

)
− 2

(
ε′X

n

)(
Z′X

n

)−1(Z′ε
n

)
.
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We found earlier that we could (after a bit of manipulation) apply the product result for
probability limits to obtain the probability limit of an expression such as this. Without
repeating the derivation, we find that σ̂ 2 is a consistent estimator of σ 2, by virtue of
the first term. The second and third product terms converge to zero. To complete the
derivation, then, we will estimate Asy. Var[bIV] with

Est. Asy. Var[bIV] = 1
n

{(
ε̂′ε̂
n

)(
Z′X

n

)−1(Z′Z
n

)(
X′Z

n

)−1
}

= σ̂ 2(Z′X)−1(Z′Z)(X′Z)−1.

(8-8)

8.3.3 MOTIVATING THE INSTRUMENTAL VARIABLES ESTIMATOR

In obtaining the IV estimator, we relied on the solutions to the equations in (8-5),

plim(Z′y/n) = plim(Z′X/n)β

or

QZy = QZXβ.

The IV estimator is obtained by solving this set of K moment equations. Since this is a
set of K equations in K unknowns, if Q−1

ZX exists, then there is an exact solution for β,
given in (8-6). The corresponding moment equations if only X is used would be

plim(X′y/n) = plim(X′X/n)β + plim(X′ε/n) = plim(X′X/n)β + γ

or

QXy = QXXβ + γ ,

which is, without further restrictions, K equations in 2K unknowns. There are insufficient
equations to solve this system for either β or γ . The further restrictions that would allow
estimation of β would be γ = 0; this is precisely the exogeneity assumption A.3. The
implication is that the parameter vector β is not identified in terms of the moments
of X and y alone—there does not exist a solution. But, it is identified in terms of the
moments of Z, X and y, plus the K restrictions imposed by the exogeneity assumption,
and the relevance assumption that allows computation of bIV.

Consider these results in the context of a simplified model,

y = βx + δT + ε.

In order for least squares consistently to estimate δ (and β), it is assumed that movements
in T are exogenous to the model, so that covariation of y and T is explainable by the
movement of T and not by the movement of ε. When T and ε are correlated and ε varies
through some factor not in the equation, the movement of y will appear to be induced
by variation in T when it is actually induced by variation in ε which is transmitted
through T. If T is exogenous, that is, not correlated with ε, then movements in ε will not
“cause” movements in T (we use the term “cause” very loosely here) and will thus not
be mistaken for exogenous variation in T. The exogeneity assumption plays precisely
this role. To summarize, then, in order for a regression model to identify δ correctly, it
must be assumed that variation in T is not associated with variation in ε. If it is, then
as seen in (8-4), variation in y comes about through an additional source, variation in
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ε that is transmitted through variation in T. That is the influence of γ in (8-4). What is
needed, then, to identify δ is movement in T that is definitely not induced by movement
in ε. Enter the instrumental variable, z. If z is an instrumental variable with cov(z,T) �=
0 and cov(z,ε) = 0, then movement in z provides the variation that we need. If we can
consider doing this exercise experimentally, in order to measure the “causal effect” of
movement in T, we would change z and then measure the per unit change in y associated
with the change in T, knowing that the change in T was induced only by the change in
z, not ε, that is, (�y/�z)/(�T/�z).

Example 8.2 Instrumental Variable Analysis
Grootendorst (2007) and Deaton (1997) recount what appears to be the earliest application
of the method of instrumental variables:

Although IV theory has been developed primarily by economists, the method originated in
epidemiology. IV was used to investigate the route of cholera transmission during the London
cholera epidemic of 1853–54. A scientist from that era, John Snow, hypothesized that cholera
was waterborne. To test this, he could have tested whether those who drank purer water
had lower risk of contracting cholera. In other words, he could have assessed the correlation
between water purity (x) and cholera incidence (y). Yet, as Deaton (1997) notes, this would not
have been convincing: “The people who drank impure water were also more likely to be poor,
and to live in an environment contaminated in many ways, not least by the ‘poison miasmas’
that were then thought to be the cause of cholera.” Snow instead identified an instrument that
was strongly correlated with water purity yet uncorrelated with other determinants of cholera
incidence, both observed and unobserved. This instrument was the identity of the company
supplying households with drinking water. At the time, Londoners received drinking water
directly from the Thames River. One company, the Lambeth Water Company, drew water at a
point in the Thames above the main sewage discharge; another, the Southwark and Vauxhall
Company, took water below the discharge. Hence the instrument z was strongly correlated
with water purity x. The instrument was also uncorrelated with the unobserved determinants
of cholera incidence (y). According to Snow (1844, pp. 74–75), the households served by the
two companies were quite similar; indeed: “the mixing of the supply is of the most intimate
kind. The pipes of each Company go down all the streets, and into nearly all the courts
and alleys. . . . The experiment, too, is on the grandest scale. No fewer than three hundred
thousand people of both sexes, of every age and occupation, and of every rank and station,
from gentlefolks down to the very poor, were divided into two groups without their choice,
and in most cases, without their knowledge; one group supplied with water containing the
sewage of London, and amongst it, whatever might have come from the cholera patients,
the other group having water quite free from such impurity.”

Example 8.3 Streams as Instruments
In Hoxby (2000), the author was interested in the effect of the amount of school “choice” in
a school “market” on educational achievement in the market. The equations of interest were
of the form

Aikm

ln Ekm
= β1Cm + x′

ikmβ2 + x̄′
.kmβ3 + x̄′

..mβ4 + εikm + εkm + εm

where “ikm” denotes household i in district k in market m, Aikm is a measure of achieve-
ment and Eikm is per capita expenditures. The equation contains individual level data, district
means, and market means. The exogenous variables are intended to capture the different
sources of heterogeneity at all three levels of aggregation. (The compound disturbance,
which we will revisit when we examine panel data specifications in Chapter 10, is intended
to allow for random effects at all three levels as well.) Reasoning that the amount of choice
available to students, Cm, would be endogenous in this equation, the author sought a valid
instrumental variable that would “explain” (be correlated with) Cm but uncorrelated with the
disturbances in the equation. In the U.S. market, to a large degree, school district boundaries
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were set in the late 18th through the 19th centuries and handed down to present-day admin-
istrators by historical precedent. In the formative years, the author noted, district boundaries
were set in response to natural travel barriers, such as rivers and streams. It follows, as
she notes, that “the number of districts in a given land area is an increasing function of
the number of natural barriers”; hence, the number of streams in the physical market area
provides the needed instrumental variable. [The controversial topic of the study and the un-
conventional choice of instruments caught the attention of the popular press, for example,
http://gsppi.berkeley.edu/faculty/jrothstein/hoxby/wsj.pdf, and academic observers includ-
ing Rothstein (2004).] This study is an example of a “natural experiment” as described in
Angrist and Pischke (2009).

Example 8.4 Instrumental Variable in Regression
The role of an instrumental variable in identifying parameters in regression models was devel-
oped in Working’s (1926) classic application, adapted here for our market equilibrium example
in Example 8.1. Figure 8.1a displays the “observed data” for the market equilibria in a market
in which there are random disturbances (εS, εD ) and variation in demanders’ incomes and
input prices faced by suppliers. The market equilibria in Figure 8.1a are scattered about as
the aggregates of all these effects. Figure 8.1b suggests the underlying conditions of sup-
ply and demand that give rise to these equilibria. Different outcomes in the supply equation
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FIGURE 8.1 Identifying a Demand Curve with an Instrumental Variable.
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corresponding to different values of the input price and different income values on the demand
side produce nine regimes, punctuated by the random variation induced by the disturbances.
Given the ambiguous mass of points, linear regression of quantity on price (and income) is
likely to produce a result such as that shown by the heavy dotted line in Figure 8.1c. The
slope of this regression barely resembles the slope of the demand equations. Faced with this
prospect, how is it possible to learn about the slope of the demand curve? The experiment
needed, shown in Figure 8.1d, would involve two elements: (1) Hold Income constant, so
we can focus on the demand curve in a particular demand setting. That is the function of
multiple regression—Income is included as a conditioning variable in the equation. (2) Now
that we have focused on a particular set of demand outcomes (e.g., D2), move the supply
curve so that the equilibria now trace out the demand function. That is the function of the
changing InputPrice, which is the instrumental variable that we need for identification of the
demand function(s) for this experiment.

8.3.4 TWO-STAGE LEAST SQUARES

Thus far, we have assumed that the number of instrumental variables in Z is the same as
the number of variables (exogenous plus endogenous) in X. (In the typical application,
the researcher provides the necessary instrumental variable for the single endogenous
variable in their equation.) However, it is possible that the data contain additional
instruments. Recall the market equilibrium application considered in Examples 8.1
and 8.4. Suppose this were an agricultural market in which there are two exogenous
conditions of supply, InputPrice and Rainfall. Then, the equations of the model are

(Demand) QuantityD = α0 + α1Price + α2Income + εD,

(Supply) QuantityS = β0 + β1Price + β2InputPrice + β3Rainfall + εS,

(Equilibrium) QuantityD = QuantityS.

Given the approach taken in Example 8.4, it would appear that the researcher could
simply choose either of the two exogenous variables (instruments) in the supply equa-
tion for purpose of identifying the demand equation. (We will turn to the now apparent
problem of how to identify the supply equation in Section 8.4.2.) Intuition should sug-
gest that simply choosing a subset of the available instrumental variables would waste
sample information—it seems inevitable that it will be preferable to use the full matrix
Z, even when L > K. The method of two-stage least squares solves the problem of
how to use all the information in the sample when Z contains more variables than are
necessary to construct an instrumental variable estimator.

If Z contains more variables than X, then much of the preceding derivation is
unusable, because Z′X will be L× K with rank K < Land will thus not have an inverse.
The crucial result in all the preceding is plim(Z′ε/n) = 0. That is, every column of Z is
asymptotically uncorrelated with ε. That also means that every linear combination of
the columns of Z is also uncorrelated with ε, which suggests that one approach would
be to choose K linear combinations of the columns of Z. Which to choose? One obvious
possibility, discarded in the preceding paragraph, is simply to choose K variables among
the L in Z. Discarding the information contained in the “extra” L–K columns will turn
out to be inefficient. A better choice is the projection of the columns of X in the column
space of Z:

X̂ = Z(Z′Z)−1Z′X.
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We will return shortly to the virtues of this choice. With this choice of instrumental
variables, X̂ for Z, we have

bIV = (X̂′X)−1X̂′y = [X′Z(Z′Z)−1Z′X]−1X′Z(Z′Z)−1Z′y. (8-9)

The estimator of the asymptotic covariance matrix will be σ̂ 2 times the bracketed matrix
in (8-9). The proofs of consistency and asymptotic normality for this estimator are
exactly the same as before, because our proof was generic for any valid set of instruments,
and X̂ qualifies.

There are two reasons for using this estimator—one practical, one theoretical. If
any column of X also appears in Z, then that column of X is reproduced exactly in
X̂. This is easy to show. In the expression for X̂, if the kth column in X is one of the
columns in Z, say the lth, then the kth column in (Z′Z)−1Z′X will be the lth column of
an L × L identity matrix. This result means that the kth column in X̂ = Z(Z′Z)−1Z′X
will be the lth column in Z, which is the kth column in X. This result is important and
useful. Consider what is probably the typical application. Suppose that the regression
contains K variables, only one of which, say, the kth, is correlated with the disturbances.
We have one or more instrumental variables in hand, as well as the other K−1 variables
that certainly qualify as instrumental variables in their own right. Then what we would
use is Z = [X(k), z1, z2, . . .], where we indicate omission of the kth variable by (k) in
the subscript. Another useful interpretation of X̂ is that each column is the set of fitted
values when the corresponding column of X is regressed on all the columns of Z, which
is obvious from the definition. It also makes clear why each xk that appears in Z is
perfectly replicated. Every xk provides a perfect predictor for itself, without any help
from the remaining variables in Z. In the example, then, every column of X except the
one that is omitted from X(k) is replicated exactly, whereas the one that is omitted is
replaced in X̂ by the predicted values in the regression of this variable on all the z’s.

Of all the different linear combinations of Z that we might choose, X̂ is the most
efficient in the sense that the asymptotic covariance matrix of an IV estimator based on
a linear combination ZF is smaller when F = (Z′Z)−1Z′X than with any other F that
uses all L columns of Z; a fortiori, this result eliminates linear combinations obtained
by dropping any columns of Z. This important result was proved in a seminal paper by
Brundy and Jorgenson (1971). [See, also, Wooldridge (2002a, pp. 96–97).]

We close this section with some practical considerations in the use of the instru-
mental variables estimator. By just multiplying out the matrices in the expression, you
can show that

bIV = (X̂′X)−1X̂′y

= (X′(I − MZ)X)−1X′(I − MZ)y (8-10)

= (X̂′X̂)−1X̂′y

because I − MZ is idempotent. Thus, when (and only when) X̂ is the set of instruments,
the IV estimator is computed by least squares regression of y on X̂. This conclusion
suggests (only logically; one need not actually do this in two steps), that bIV can be
computed in two steps, first by computing X̂, then by the least squares regression. For
this reason, this is called the two-stage least squares (2SLS) estimator. We will revisit this
form of estimator at great length at several points later, particularly in our discussion of
simultaneous equations models in Section 10.5. One should be careful of this approach,



Greene-2140242 book January 19, 2011 21:5

272 PART I ✦ The Linear Regression Model

however, in the computation of the asymptotic covariance matrix; σ̂ 2 should not be
based on X̂. The estimator

s2
IV = (y − X̂bIV)′(y − X̂bIV)

n

is inconsistent for σ 2, with or without a correction for degrees of freedom.
An obvious question is where one is likely to find a suitable set of instrumental

variables. The recent literature on “natural experiments” focuses on policy changes such
as the Mariel Boatlift (Example 6.5) or natural outcomes such as occurrences of streams
(Example 8.3) or birthdays [Angrist (1992, 1994)]. In many time-series settings, lagged
values of the variables in the model provide natural candidates. In other cases, the
answer is less than obvious. The asymptotic covariance matrix of the IV estimator can
be rather large if Z is not highly correlated with X; the elements of (Z′X)−1 grow large.
(See Sections 8.7 and 10.6.6 on “weak” instruments.) Unfortunately, there usually is
not much choice in the selection of instrumental variables. The choice of Z is often ad
hoc.1 There is a bit of a dilemma in this result. It would seem to suggest that the best
choices of instruments are variables that are highly correlated with X. But the more
highly correlated a variable is with the problematic columns of X, the less defensible
the claim that these same variables are uncorrelated with the disturbances.

Example 8.5 Instrumental Variable Estimation of a Labor Supply
Equation

A leading example of a model in which correlation between a regressor and the disturbance is
likely to arise is in market equilibrium models. Cornwell and Rupert (1988) analyzed the returns
to schooling in a panel data set of 595 observations on heads of households. The sample
data are drawn from years 1976 to 1982 from the “Non-Survey of Economic Opportunity”
from the Panel Study of Income Dynamics. The estimating equation is

ln Wageit = β1 + β2Expit + β3Exp2
it + β4Wksit + β5Occit + β6Indit + β7Southit +

β8SMSAit + β9MSit + β10Unionit + β11Edi + β12Femi + β13Blki + εit

where the variables are

Exp = years of full time work experience,
Wks = weeks worked,
Occ = 1 if blue-collar occupation, 0 if not,
Ind = 1 if the individual works in a manufacturing industry, 0 if not,
South = 1 if the individual resides in the south, 0 if not,
SMSA = 1 if the individual resides in an SMSA, 0 if not,
MS = 1 if the individual is married, 0 if not,
Union = 1 if the individual wage is set by a union contract, 0 if not,
Ed = years of education,
Fem = 1 if the individual is female, 0 if not,
Blk = 1 if the individual is black, 0 if not.
See Appendix Table F8.1 for the data source. The main interest of the study, beyond com-
paring various estimation methods, is β11, the return to education. The equation suggested
is a reduced form equation; it contains all the variables in the model but does not spec-
ify the underlying structural relationships. In contrast, the three-equation, model specified
in Section 8.3.4 is a structural equation system. The reduced form for this model would

1Results on “optimal instruments” appear in White (2001) and Hansen (1982). In the other direction, there
is a contemporary literature on “weak” instruments, such as Staiger and Stock (1997), which we will explore
in Sections 8.7 and 10.6.6.



Greene-2140242 book January 19, 2011 21:5

CHAPTER 8 ✦ Endogeneity and Instrumental Variables 273

TABLE 8.1 Estimated Labor Supply Equation

OLS IV with Z1 IV with Z2

Variable Estimate Std. Error Estimate Std. Error Estimate Std. Error

Constant 44.7665 1.2153 18.8987 13.0590 30.7044 4.9997
ln Wage 0.7326 0.1972 5.1828 2.2454 3.1518 0.8572
Education −0.1532 0.03206 −0.4600 0.1578 −0.3200 0.06607
Union −1.9960 0.1701 −2.3602 0.2567 −2.1940 0.1860
Female −1.3498 0.2642 0.6957 1.0650 −0.2378 0.4679

consist of separate regressions of Price and Quantity on (1, Income, InputPrice, Rainfall).
We will return to the idea of reduced forms in the setting of simultaneous equations models
in Chapter 10. For the present, the implication for the suggested model is that this market
equilibrium equation represents the outcome of the interplay of supply and demand in a labor
market. Arguably, the supply side of this market might consist of a household labor supply
equation such as

Wksit = γ1 + γ2 ln Wageit + γ3 Edi + γ4Unionit + γ5 Femi + uit.

(One might prefer a different set of right-hand-side variables in this structural equation.)
Structural equations are more difficult to specify than reduced forms. If the number of weeks
worked and the accepted wage offer are determined jointly, then InWageit and uit in this
equation are correlated. We consider two instrumental variable estimators based on

Z1 = [1, Indit, Edi , Unionit, Femi ]

and

Z2 = [1, Indit, Edi , Unionit, Femi , SMSAit].

Table 8.1 presents the three sets of estimates. The least squares estimates are computed
using the standard results in Chapters 3 and 4. One noteworthy result is the very small
coefficient on the log wage variable. The second set of results is the instrumental variable
estimate developed in Section 8.3.2. Note that here, the single instrument is Indit. As might be
expected, the log wage coefficient becomes considerably larger. The other coefficients are,
perhaps, contradictory. One might have different expectations about all three coefficients.
The third set of coefficients are the two-stage least squares estimates based on the larger set
of instrumental variables. In this case, SMSA and Ind are both used as instrumental variables.

8.4 TWO SPECIFICATION TESTS

There are two aspects of the model that we would be interested in verifying if possi-
ble, rather than assuming them at the outset. First, it will emerge in the derivation in
Section 8.4.1 that of the two estimators considered here, least squares and instrumental
variables, the first is unambiguously more efficient. The IV estimator is robust; it is
consistent whether or not plim(X′ε/n) = 0. However, if not needed, that is if γ = 0,
then least squares would be a better estimator by virtue of its smaller variance.2 For this
reason, and possibly in the interest of a test of the theoretical specification of the model,

2It is possible, of course, that even if least squares is inconsistent, it might still be more precise. If LS is
only slightly biased but has a much smaller variance than IV, then by the expected squared error criterion,
variance plus squared bias, least squares might still prove the preferred estimator. This turns out to be nearly
impossible to verify empirically. We will revisit the issue in passing at a few points later in the text.
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a test that reveals information about the bias of least squares will be useful. Second, the
use of two-stage least squares with L > K, that is, with “additional” instruments, entails
L− K restrictions on the relationships among the variables in the model. As might be
apparent from the derivation thus far, when there are K variables in X, some of which
may be endogenous, then there must be at least K variables in Z in order to identify the
parameters of the model, that is, to obtain consistent estimators of the parameters using
the information in the sample. When there is an excess of instruments, one is actually
imposing additional, arguably superfluous restrictions on the process generating the
data. Consider, once again, the agricultural market example at the end of Section 8.3.3.
In that structure, it is certainly safe to assume that Rainfall is an exogenous event that is
uncorrelated with the disturbances in the demand equation. But, it is conceivable that
the interplay of the markets involved might be such that the InputPrice is correlated
with the shocks in the demand equation. In the market for biofuels, corn is both an
input in the market supply and an output in other markets. In treating InputPrice as
exogenous in that example, we would be imposing the assumption that InputPrice is un-
correlated with εD, at least by some measure unnecessarily since the parameters of the
demand equation can be estimated without this assumption. This section will describe
two specification tests that consider these aspects of the IV estimator.

8.4.1 THE HAUSMAN AND WU SPECIFICATION TESTS

It might not be obvious that the regressors in the model are correlated with the dis-
turbances or that the regressors are measured with error. If not, there would be some
benefit to using the least squares (LS) estimator rather than the IV estimator. Consider a
comparison of the two covariance matrices under the hypothesis that both estimators are
consistent, that is, assuming plim (1/n)X′ε = 0. The difference between the asymptotic
covariance matrices of the two estimators is

Asy. Var[bIV] − Asy. Var[bLS] = σ 2

n
plim

(
X′Z(Z′Z)−1Z′X

n

)−1

− σ 2

n
plim

(
X′X

n

)−1

= σ 2

n
plim n

[
(X′Z(Z′Z)−1Z′X)−1 − (X′X)−1].

To compare the two matrices in the brackets, we can compare their inverses. The inverse
of the first is X′Z(Z′Z)−1Z′X = X′(I − MZ)X = X′X − X′MZX. Because MZ is a non-
negative definite matrix, it follows that X′MZX is also. So, X′Z(Z′Z)−1Z′X equals X′X
minus a nonnegative definite matrix. Because X′Z(Z′Z)−1Z′X is smaller, in the matrix
sense, than X′X, its inverse is larger. Under the hypothesis, the asymptotic covariance
matrix of the LS estimator is never larger than that of the IV estimator, and it will
actually be smaller unless all the columns of X are perfectly predicted by regressions on
Z. Thus, we have established that if plim(1/n)X′ε = 0—that is, if LS is consistent—then
it is a preferred estimator. (Of course, we knew that from all our earlier results on the
virtues of least squares.)

Our interest in the difference between these two estimators goes beyond the ques-
tion of efficiency. The null hypothesis of interest will usually be specifically whether
plim(1/n)X′ε = 0. Seeking the covariance between X and ε through (1/n)X′e is fruit-
less, of course, because the normal equations produce (1/n)X′e = 0. In a seminal paper,
Hausman (1978) suggested an alternative testing strategy. [Earlier work by Wu (1973)
and Durbin (1954) produced what turns out to be the same test.] The logic of Hausman’s
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approach is as follows. Under the null hypothesis, we have two consistent estimators of
β, bLS and bIV. Under the alternative hypothesis, only one of these, bIV, is consistent.
The suggestion, then, is to examine d = bIV−bLS. Under the null hypothesis, plim d = 0,
whereas under the alternative, plim d �= 0. Using a strategy we have used at various
points before, we might test this hypothesis with a Wald statistic,

H = d′{Est. Asy. Var[d]
}−1d.

The asymptotic covariance matrix we need for the test is

Asy. Var[bIV − bLS] = Asy. Var[bIV] + Asy. Var[bLS]

− Asy. Cov[bIV, bLS] − Asy. Cov[bLS, bIV].

At this point, the test is straightforward, save for the considerable complication that
we do not have an expression for the covariance term. Hausman gives a fundamental
result that allows us to proceed. Paraphrased slightly,

the covariance between an efficient estimator, bE, of a parameter vector, β, and its
difference from an inefficient estimator, bI , of the same parameter vector, bE − bI ,
is zero.

For our case, bE is bLS and bI is bIV. By Hausman’s result we have

Cov[bE, bE − bI ] = Var[bE] − Cov[bE, bI ] = 0

or

Cov[bE, bI ] = Var[bE],

so

Asy. Var[bIV − bLS] = Asy. Var[bIV] − Asy. Var[bLS].

Inserting this useful result into our Wald statistic and reverting to our empirical estimates
of these quantities, we have

H = (bIV − bLS)
′{Est. Asy. Var[bIV] − Est. Asy. Var[bLS]

}−1
(bIV − bLS).

Under the null hypothesis, we are using two different, but consistent, estimators of σ 2.
If we use s2 as the common estimator, then the statistic will be

H = d′[(X̂′X̂)−1 − (X′X)−1]−1d
s2

.

It is tempting to invoke our results for the full rank quadratic form in a normal
vector and conclude the degrees of freedom for this chi-squared statistic is K. But that
method will usually be incorrect, and worse yet, unless X and Z have no variables in
common, the rank of the matrix in this statistic is less than K, and the ordinary inverse
will not even exist. In most cases, at least some of the variables in X will also appear
in Z. (In almost any application, X and Z will both contain the constant term.) That
is, some of the variables in X are known to be uncorrelated with the disturbances. For
example, the usual case will involve a single variable that is thought to be problematic
or that is measured with error. In this case, our hypothesis, plim(1/n)X′ε = 0, does not
really involve all K variables, because a subset of the elements in this vector, say, K0,
are known to be zero. As such, the quadratic form in the Wald test is being used to test
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only K∗ = K − K0 hypotheses. It is easy (and useful) to show that, in fact, H is a rank
K∗ quadratic form. Since Z(Z′Z)−1Z′ is an idempotent matrix, (X̂′X̂) = X̂′X. Using this
result and expanding d, we find

d = (X̂′X̂)−1X̂′y − (X′X)−1X′y

= (X̂′X̂)−1[X̂′y − (X̂′X̂)(X′X)−1X′y]

= (X̂′X̂)−1X̂′(y − X(X′X)−1X′y)

= (X̂′X̂)−1X̂′e,

where e is the vector of least squares residuals. Recall that K0 of the columns in X̂ are
the original variables in X. Suppose that these variables are the first K0. Thus, the first
K0 rows of X̂′e are the same as the first K0 rows of X′e, which are, of course 0. (This
statement does not mean that the first K0 elements of d are zero.) So, we can write d as

d = (X̂′X̂)−1
[

0
X̂∗′e

]
= (X̂′X̂)−1

[
0
q∗

]
,

where X∗ is the K∗ variables in x that are not in z.
Finally, denote the entire matrix in H by W. (Because that ordinary inverse may

not exist, this matrix will have to be a generalized inverse; see Section A.6.12.) Then,
denoting the whole matrix product by P, we obtain

H = [0′ q∗′](X̂′X̂)−1W(X̂′X̂)−1
[

0
q∗

]
= [0′ q∗′]P

[
0
q∗

]
= q∗′P∗∗q∗,

where P∗∗ is the lower right K∗ × K∗ submatrix of P. We now have the end result.
Algebraically, H is actually a quadratic form in a K∗ vector, so K∗ is the degrees of
freedom for the test.

The preceding Wald test requires a generalized inverse [see Hausman and Taylor
(1981)], so it is going to be a bit cumbersome. In fact, one need not actually approach the
test in this form, and it can be carried out with any regression program. The alternative
variable addition test approach devised by Wu (1973) is simpler. An F statistic with K∗

and n − K − K∗ degrees of freedom can be used to test the joint significance of the
elements of γ in the augmented regression

y = Xβ + X̂∗γ + ε∗, (8-11)

where X̂∗ are the fitted values in regressions of the variables in X∗ on Z. This result is
equivalent to the Hausman test for this model. [Algebraic derivations of this result can
be found in the articles and in Davidson and MacKinnon (2004, Section 8.7).]

Example 8.6 (Continued) Labor Supply Model
For the labor supply equation estimated in Example 8.5, we used the Wu (variable addition)
test to examine the endogeneity of the In Wage variable. For the first step, In Wageit is
regressed on z1,i t . The predicted value from this equation is then added to the least squares
regression of Wksit on xit. The results of this regression are

Ŵksit = 18.8987 + 0.6938 ln Wageit − 0.4600 Edi − 2.3602 Unionit

(12.3284) (0.1980) (0.1490) (0.2423)

+ 0.6958 Femi + 4.4891 ̂ln Wageit + uit,

(1.0054) (2.1290)
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where the estimated standard errors are in parentheses. The t ratio on the fitted log
wage coefficient is 2.108, which is larger than the critical value from the standard normal
table of 1.96. Therefore, the hypothesis of exogeneity of the log Wage variable is
rejected.

Although most of the preceding results are specific to this test of correlation between
some of the columns of X and the disturbances, ε, the Hausman test is general. To
reiterate, when we have a situation in which we have a pair of estimators, θ̂ E and θ̂ I ,
such that under H0: θ̂ E and θ̂ I are both consistent and θ̂ E is efficient relative to θ̂ I , while
under H1: θ̂ I remains consistent while θ̂ E is inconsistent, then we can form a test of the
hypothesis by referring the Hausman statistic,

H = (θ̂ I − θ̂ E)′
{

Est. Asy. Var[θ̂ I ] − Est. Asy. Var[θ̂ E]
}−1

(θ̂ I − θ̂ E)
d−→ χ2[J ],

to the appropriate critical value for the chi-squared distribution. The appropriate
degrees of freedom for the test, J, will depend on the context. Moreover, some sort
of generalized inverse matrix may be needed for the matrix, although in at least one
common case, the random effects regression model (see Chapter 11), the appropri-
ate approach is to extract some rows and columns from the matrix instead. The short
rank issue is not general. Many applications can be handled directly in this form with
a full rank quadratic form. Moreover, the Wu approach is specific to this application.
Another applications that we will consider, the independence from irrelevant alterna-
tives test for the multinomial logit model, does not lend itself to the regression ap-
proach and is typically handled using the Wald statistic and the full rank quadratic
form. As a final note, observe that the short rank of the matrix in the Wald statis-
tic is an algebraic result. The failure of the matrix in the Wald statistic to be posi-
tive definite, however, is sometimes a finite-sample problem that is not part of the
model structure. In such a case, forcing a solution by using a generalized inverse
may be misleading. Hausman suggests that in this instance, the appropriate conclu-
sion might be simply to take the result as zero and, by implication, not reject the null
hypothesis.

Example 8.7 Hausman Test for a Consumption Function
Quarterly data for 1950.1 to 2000.4 on a number of macroeconomic variables appear in
Appendix Table F5.2. A consumption function of the form Ct = α + βYt + εt is estimated
using the 203 observations on aggregate U.S. real consumption and real disposable personal
income, omitting the first. This model is a candidate for the possibility of bias due to correlation
between Yt and εt . Consider instrumental variables estimation using Yt−1 and Ct−1 as the
instruments for Yt , and, of course, the constant term is its own instrument. One observation
is lost because of the lagged values, so the results are based on 203 quarterly observations.
The Hausman statistic can be computed in two ways:

1. Use the Wald statistic for H with the Moore–Penrose generalized inverse. The common
s2 is the one computed by least squares under the null hypothesis of no correlation. With
this computation, H = 8.481. There is K ∗ = 1 degree of freedom. The 95 percent critical
value from the chi-squared table is 3.84. Therefore, we reject the null hypothesis of no
correlation between Yt and εt .

2. Using the Wu statistic based on (8–11), we regress Ct on a constant, Yt , and the predicted
value in a regression of Yt on a constant, Yt−1 and Ct−1. The t ratio on the prediction is
2.968, so the F statistic with 1 and 200 degrees of freedom is 8.809. The critical value for
this F distribution is 3.888, so, again, the null hypothesis is rejected.
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8.4.2 A TEST FOR OVERIDENTIFICATION

The motivation for choosing the IV estimator is not efficiency. The estimator is con-
structed to be consistent; efficiency is not a consideration. In Chapter 13, we will revisit
the issue of efficient method of moments estimation. The observation that 2SLS rep-
resents the most efficient use of all L instruments establishes only the efficiency of the
estimator in the class of estimators that use K linear combinations of the columns of Z.
The IV estimator is developed around the orthogonality conditions

E[ziεi ] = 0. (8-12)

The sample counterpart to this is the moment equation,

1
n

n∑
i=1

ziεi = 0. (8-13)

The solution, when L = K, is bIV = (Z′X)−1Z′y, as we have seen. If L > K, then there
is no single solution, and we arrived at 2SLS as a strategy. Estimation is still based on
(8-13). However, the sample counterpart is now L equations in K unknowns and (8-13)
has no solution. Nonetheless, under the hypothesis of the model, (8-12) remains true.
We can consider the additional restictions as a hypothesis that might or might not be
supported by the sample evidence. The excess of moment equations provides a way to
test the overidentification of the model. The test will be based on (8-13), which, when
evaluated at bIV, will not equal zero when L > K, though the hypothesis in (8-12) might
still be true.

The test statistic will be a Wald statistic. (See Section 5.4.) The sample statistic,
based on (8-13) and the IV estimator, is

m̄ = 1
n

n∑
i=1

zi eIV,i = 1
n

n∑
i=1

zi (yi − x′
i bIV).

The Wald statistic is

χ2[L− K] = m̄′[Var(m̄)]−1m̄.

To complete the construction, we require an estimator of the variance. There are two
ways to proceed. Under the assumption of the model,

Var[m̄] = σ 2

n2
Z′Z,

which can be estimated easily using the sample estimator of σ 2. Alternatively, we might
base the estimator on (8-12), which would imply that an appropriate estimator would
be

Est.Var[m̄] = 1
n2

∑
i=1

(zi eIV,i )(zi eIV,i )
′ = 1

n2

∑
i=1

e2
IV,i ziz′

i.

These two estimators will be numerically different in a finite sample, but under the
assumptions that we have made so far, both (multiplied by n) will converge to the
same matrix, so the choice is immaterial. Current practice favors the second. The Wald
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statistic is, then
(

1
n

n∑
i=1

zi eIV,i

)′ [
1
n2

n∑
i=1

e2
IV,i zi z′

i

]−1 (
1
n

n∑
i=1

zi eIV,i

)
.

A remaining detail is the number of degrees of freedom. The test can only detect the
failure of L− K moment equations, so that is the rank of the quadratic form; the limiting
distribution of the statistic is chi squared with L− K degrees of freedom.

Example 8.8 Overidentification of the Labor Supply Equation
In Example 8.5, we computed 2SLS estimates of the parameters of an equation for weeks
worked. The estimator is based on

x = [1, ln Wage, Education, Union, Female]

and

z = [1, Ind, Education, Union, Female, SMSA].

There is one overidentifying restriction. The sample moment based on the 2SLS results in
Table 8.1 is

(1/4165)Z′e2SLS = [0, .03476, 0, 0, 0, −.01543]′.

The chi-squared statistic is 1.09399 with one degree of freedom. If the first suggested vari-
ance estimator is used, the statistic is 1.05241. Both are well under the 95 percent critical
value of 3.84, so the hypothesis of overidentification is not rejected.

We note a final implication of the test. One might conclude, based on the underlying
theory of the model, that the overidentification test relates to one particular instrumen-
tal variable and not another. For example, in our market equilibrium example with
two instruments for the demand equation, Rainfall and InputPrice, rainfall is obviously
exogenous, so a rejection of the overidentification restriction would eliminate Input-
Price as a valid instrument. However, this conclusion would be inappropriate; the test
suggests only that one or more of the elements in (8-12) are nonzero. It does not suggest
which elements in particular these are.

8.5 MEASUREMENT ERROR

Thus far, it has been assumed (at least implicitly) that the data used to estimate the
parameters of our models are true measurements on their theoretical counterparts. In
practice, this situation happens only in the best of circumstances. All sorts of measure-
ment problems creep into the data that must be used in our analyses. Even carefully
constructed survey data do not always conform exactly to the variables the analysts
have in mind for their regressions. Aggregate statistics such as GDP are only estimates
of their theoretical counterparts, and some variables, such as depreciation, the services
of capital, and “the interest rate,” do not even exist in an agreed-upon theory. At worst,
there may be no physical measure corresponding to the variable in our model; intelli-
gence, education, and permanent income are but a few examples. Nonetheless, they all
have appeared in very precisely defined regression models.
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8.5.1 LEAST SQUARES ATTENUATION

In this section, we examine some of the received results on regression analysis with badly
measured data. The general assessment of the problem is not particularly optimistic.
The biases introduced by measurement error can be rather severe. There are almost no
known finite-sample results for the models of measurement error; nearly all the results
that have been developed are asymptotic.3 The following presentation will use a few
simple asymptotic results for the classical regression model.

The simplest case to analyze is that of a regression model with a single regressor and
no constant term. Although this case is admittedly unrealistic, it illustrates the essential
concepts, and we shall generalize it presently. Assume that the model,

y∗ = βx∗ + ε, (8-14)

conforms to all the assumptions of the classical normal regression model. If data on y∗

and x∗ were available, then β would be estimable by least squares. Suppose, however,
that the observed data are only imperfectly measured versions of y∗ and x∗. In the
context of an example, suppose that y∗ is ln(output/labor) and x∗ is ln(capital/labor).
Neither factor input can be measured with precision, so the observed y and x contain
errors of measurement. We assume that

y = y∗ + v with v ∼ N
[
0, σ 2

v

]
, (8-15a)

x = x∗ + u with u ∼ N
[
0, σ 2

u

]
. (8-15b)

Assume, as well, that u and v are independent of each other and of y∗ and x∗. (As we
shall see, adding these restrictions is not sufficient to rescue a bad situation.)

As a first step, insert (8-15a) into (8-14), assuming for the moment that only y∗ is
measured with error:

y = βx∗ + ε + v = βx∗ + ε′.

This result conforms to the assumptions of the classical regression model. As long as the
regressor is measured properly, measurement error on the dependent variable can be
absorbed in the disturbance of the regression and ignored. To save some cumbersome
notation, therefore, we shall henceforth assume that the measurement error problems
concern only the independent variables in the model.

Consider, then, the regression of y on the observed x. By substituting (8-15b) into
(8-14), we obtain

y = βx + [ε − βu] = βx + w. (8-16)

Because x equals x∗ + u, the regressor in (8-16) is correlated with the disturbance:

Cov[x, w] = Cov[x∗ + u, ε − βu] = −βσ 2
u . (8-17)

This result violates one of the central assumptions of the classical model, so we can
expect the least squares estimator,

b = (1/n)
∑n

i=1 xi yi

(1/n)
∑n

i=1 x2
i

,

3See, for example, Imbens and Hyslop (2001).
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to be inconsistent. To find the probability limits, insert (8-14) and (8-15b) and use the
Slutsky theorem:

plim b = plim(1/n)
∑n

i=1(x∗
i + ui )(βx∗

i + εi )

plim(1/n)
∑n

i=1(x∗
i + ui )2

.

Because x∗, ε, and u are mutually independent, this equation reduces to

plim b = βQ∗

Q∗ + σ 2
u

= β

1 + σ 2
u /Q∗ , (8-18)

where Q∗ = plim(1/n)
∑

i x∗2
i . As long as σ 2

u is positive, b is inconsistent, with a persis-
tent bias toward zero. Clearly, the greater the variability in the measurement error, the
worse the bias. The effect of biasing the coefficient toward zero is called attenuation.

In a multiple regression model, matters only get worse. Suppose, to begin, we assume
that y = X∗β + ε and X = X∗ + U, allowing every observation on every variable to be
measured with error. The extension of the earlier result is

plim
(

X′X
n

)
= Q∗ + �uu, and plim

(
X′y
n

)
= Q∗β.

Hence,

plim b = [Q∗ + �uu]−1Q∗β = β − [Q∗ + �uu]−1�uuβ. (8-19)

This probability limit is a mixture of all the parameters in the model. In the same fashion
as before, bringing in outside information could lead to identification. The amount of
information necessary is extremely large, however, and this approach is not particularly
promising.

It is common for only a single variable to be measured with error. One might
speculate that the problems would be isolated to the single coefficient. Unfortunately,
this situation is not the case. For a single bad variable—assume that it is the first—the
matrix �uu is of the form

�uu =

⎡
⎢⎢⎢⎣

σ 2
u 0 · · · 0

0 0 · · · 0
...

0 0 · · · 0

⎤
⎥⎥⎥⎦ .

It can be shown that for this special case,

plim b1 = β1

1 + σ 2
u q∗11

(8-20a)

[note the similarity of this result to (8-18)], and, for k �= 1,

plim bk = βk − β1

[
σ 2

u q∗k1

1 + σ 2
u q∗11

]
, (8-20b)

where q∗k1 is the (k, 1)th element in (Q∗)−1.4 This result depends on several unknowns
and cannot be estimated. The coefficient on the badly measured variable is still biased

4Use (A-66) to invert [Q∗ + �uu] = [Q∗ + (σue1)(σue1)
′], where e1 is the first column of a K × K identity

matrix. The remaining results are then straightforward.
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toward zero. The other coefficients are all biased as well, although in unknown direc-
tions. A badly measured variable contaminates all the least squares estimates.5 If more
than one variable is measured with error, there is very little that can be said.6 Although
expressions can be derived for the biases in a few of these cases, they generally depend
on numerous parameters whose signs and magnitudes are unknown and, presumably,
unknowable.

8.5.2 INSTRUMENTAL VARIABLES ESTIMATION

An alternative set of results for estimation in this model (and numerous others) is built
around the method of instrumental variables. Consider once again the errors in variables
model in (8-14) and (8-15a,b). The parameters, β, σ 2

ε , q∗, and σ 2
u are not identified in

terms of the moments of x and y. Suppose, however, that there exists a variable z such
that z is correlated with x∗ but not with u. For example, in surveys of families, income
is notoriously badly reported, partly deliberately and partly because respondents often
neglect some minor sources. Suppose, however, that one could determine the total
amount of checks written by the head(s) of the household. It is quite likely that this z
would be highly correlated with income, but perhaps not significantly correlated with
the errors of measurement. If Cov[x∗, z] is not zero, then the parameters of the model
become estimable, as

plim
(1/n)

∑
i yi zi

(1/n)
∑

i xi zi
= β Cov[x∗, z]

Cov[x∗, z]
= β. (8-21)

For the general case, y = X∗β + ε, X = X∗ + U, suppose that there exists a matrix
of variables Z that is not correlated with the disturbances or the measurement error but
is correlated with regressors, X. Then the instrumental variables estimator based on Z,
bIV = (Z′X)−1Z′y, is consistent and asymptotically normally distributed with asymptotic
covariance matrix that is estimated with

Est. Asy. Var[bIV] = σ̂ 2[Z′X]−1[Z′Z][X′Z]−1. (8-22)

For more general cases, Theorem 8.1 and the results in Section 8.3 apply.

8.5.3 PROXY VARIABLES

In some situations, a variable in a model simply has no observable counterpart. Edu-
cation, intelligence, ability, and like factors are perhaps the most common examples.
In this instance, unless there is some observable indicator for the variable, the model
will have to be treated in the framework of missing variables. Usually, however, such an
indicator can be obtained; for the factors just given, years of schooling and test scores
of various sorts are familiar examples. The usual treatment of such variables is in the
measurement error framework. If, for example,

income = β1 + β2 education + ε

5This point is important to remember when the presence of measurement error is suspected.
6Some firm analytic results have been obtained by Levi (1973), Theil (1961), Klepper and Leamer (1983),
Garber and Klepper (1980), Griliches (1986), and Cragg (1997).
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and

years of schooling = education + u,

then the model of Section 8.5.1 applies. The only difference here is that the true variable
in the model is “latent.” No amount of improvement in reporting or measurement would
bring the proxy closer to the variable for which it is proxying.

The preceding is a pessimistic assessment, perhaps more so than necessary. Consider
a structural model,

Earnings = β1 + β2 Experience + β3 Industry + β4 Ability + ε.

Ability is unobserved, but suppose that an indicator, say, IQ, is. If we suppose that IQ
is related to Ability through a relationship such as

IQ = α1 + α2 Ability + v,

then we may solve the second equation for Ability and insert it in the first to obtain the
reduced form equation

Earnings = (β1 − β4α1/α2) + β2 Experience + β3 Industry + (β4/α2)IQ + (ε − vβ4/α2).

This equation is intrinsically linear and can be estimated by least squares. We do not have
consistent estimators of β1 and β4, but we do have them for the coefficients of interest,
β2 and β3. This would appear to “solve” the problem. We should note the essential
ingredients; we require that the indicator, IQ, not be related to the other variables in
the model, and we also require that v not be correlated with any of the variables. In
this instance, some of the parameters of the structural model are identified in terms of
observable data. Note, though, that IQ is not a proxy variable, it is an indicator of the
latent variable, Ability. This form of modeling has figured prominently in the education
and educational psychology literature. Consider, in the preceding small model how one
might proceed with not just a single indicator, but say with a battery of test scores, all
of which are indicators of the same latent ability variable.

It is to be emphasized that a proxy variable is not an instrument (or the reverse).
Thus, in the instrumental variables framework, it is implied that we do not regress y on
Z to obtain the estimates. To take an extreme example, suppose that the full model was

y = X∗β + ε,

X = X∗ + U,

Z = X∗ + W.

That is, we happen to have two badly measured estimates of X∗. The parameters of this
model can be estimated without difficulty if W is uncorrelated with U and X∗, but not
by regressing y on Z. The instrumental variables technique is called for.

When the model contains a variable such as education or ability, the question that
naturally arises is; If interest centers on the other coefficients in the model, why not
just discard the problem variable?7 This method produces the familiar problem of an
omitted variable, compounded by the least squares estimator in the full model being
inconsistent anyway. Which estimator is worse? McCallum (1972) and Wickens (1972)

7This discussion applies to the measurement error and latent variable problems equally.
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show that the asymptotic bias (actually, degree of inconsistency) is worse if the proxy
is omitted, even if it is a bad one (has a high proportion of measurement error). This
proposition neglects, however, the precision of the estimates. Aigner (1974) analyzed
this aspect of the problem and found, as might be expected, that it could go either way.
He concluded, however, that “there is evidence to broadly support use of the proxy.”

Example 8.9 Income and Education in a Study of Twins
The traditional model used in labor economics to study the effect of education on income is
an equation of the form

yi = β1 + β2 agei + β3 age2
i + β4 educationi + x′

i β5 + εi ,

where yi is typically a wage or yearly income (perhaps in log form) and xi contains other
variables, such as an indicator for sex, region of the country, and industry. The literature
contains discussion of many possible problems in estimation of such an equation by least
squares using measured data. Two of them are of interest here:

1. Although “education” is the variable that appears in the equation, the data available to re-
searchers usually include only “years of schooling.” This variable is a proxy for education,
so an equation fit in this form will be tainted by this problem of measurement error. Per-
haps surprisingly so, researchers also find that reported data on years of schooling are
themselves subject to error, so there is a second source of measurement error. For the
present, we will not consider the first (much more difficult) problem.

2. Other variables, such as “ability”—we denote these μi —will also affect income and
are surely correlated with education. If the earnings equation is estimated in the form
shown above, then the estimates will be further biased by the absence of this “omitted
variable.” This bias has been called the selectivity effect in recent studies.

Simple cross-section studies will be considerably hampered by these problems. But, in a
study of twins, Ashenfelter and Kreuger (1994) analyzed a data set that allowed them, with a
few simple assumptions, to ameliorate these problems.8

Annual “twins festivals” are held at many places in the United States. The largest is held
in Twinsburg, Ohio. The authors interviewed about 500 individuals over the age of 18 at the
August 1991 festival. Using pairs of twins as their observations enabled them to modify their
model as follows: Let ( yi j , Ai j ) denote the earnings and age for twin j , j = 1, 2, for pair i . For
the education variable, only self-reported “schooling” data, Si j , are available. The authors
approached the measurement problem in the schooling variable, Si j , by asking each twin
how much schooling they had and how much schooling their sibling had. Denote reported
schooling by sibling m of sibling j by Si j (m) . So, the self-reported years of schooling of twin 1
is Si 1(1). When asked how much schooling twin 1 has, twin 2 reports Si 1(2). The measurement
error model for the schooling variable is

Si j (m) = Si j + ui j (m) , j , m = 1, 2, where Si j = “true” schooling for twin j of pair i .

We assume that the two sources of measurement error, ui j (m) , are uncorrelated and they
and Si j have zero means. Now, consider a simple bivariate model such as the one in (8-14):

yi j = βSi j + εi j .

As we saw earlier, a least squares estimate of β using the reported data will be attenuated:

plim b = β × Var[Si j ]
Var[Si j ] + Var[ui j ( j ) ]

= βq.

8Other studies of twins and siblings include Bound, Chorkas, Haskel, Hawkes, and Spector (2003). Ashenfelter
and Rouse (1998), Ashenfelter and Zimmerman (1997), Behrman and Rosengweig (1999), Isacsson (1999),
Miller, Mulvey, and Martin (1995), Rouse (1999), and Taubman (1976).
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(Because there is no natural distinction between twin 1 and twin 2, the assumption that the
variances of the two measurement errors are equal is innocuous.) The factor q is sometimes
called the reliability ratio. In this simple model, if the reliability ratio were known, then β could
be consistently estimated. In fact, the construction of this model allows just that. Since the
two measurement errors are uncorrelated,

Corr[Si 1(1) , Si 1(2) ] = Corr[Si 2(1) , Si 2(2) ]

= Var[Si 1]
{{Var[Si 1] + Var[ui 1(1) ]} × {Var[Si 1] + Var[ui 1(2) ]}}1/2

= q.

In words, the correlation between the two reported education attainments measures the
reliability ratio. The authors obtained values of 0.920 and 0.877 for 298 pairs of identical
twins and 0.869 and 0.951 for 92 pairs of fraternal twins, thus providing a quick assessment
of the extent of measurement error in their schooling data.

The earnings equation is a multiple regression, so this result is useful for an overall assess-
ment of the problem, but the numerical values are not sufficient to undo the overall biases
in the least squares regression coefficients. An instrumental variables estimator was used
for that purpose. The estimating equation for yi j = ln Wagei j with the least squares (LS) and
instrumental variable (IV) estimates is as follows:

yi j = β1 + β2 agei + β3 age2
i + β4 Si j ( j ) + β5 Si m(m) + β6 sexi + β7 racei + εi j

LS (0.088) (−0.087) (0.084) (0.204) (−0.410)
IV (0.088) (−0.087) (0.116) (−0.037) (0.206) (−0.428) .

In the equation, Si j ( j ) is the person’s report of his or her own years of schooling and Si m(m) is
the sibling’s report of the sibling’s own years of schooling. The problem variable is schooling.
To obtain a consistent estimator, the method of instrumental variables was used, using each
sibling’s report of the other sibling’s years of schooling as a pair of instrumental variables.
The estimates reported by the authors are shown below the equation. (The constant term
was not reported, and for reasons not given, the second schooling variable was not included
in the equation when estimated by LS.) This preliminary set of results is presented to give a
comparison to other results in the literature. The age, schooling, and gender effects are com-
parable with other received results, whereas the effect of race is vastly different, −40 percent
here compared with a typical value of +9 percent in other studies. The effect of using the
instrumental variable estimator on the estimates of β4 is of particular interest. Recall that
the reliability ratio was estimated at about 0.9, which suggests that the IV estimate would be
roughly 11 percent higher (1/0.9). Because this result is a multiple regression, that estimate
is only a crude guide. The estimated effect shown above is closer to 38 percent.

The authors also used a different estimation approach. Recall the issue of selection bias
caused by unmeasured effects. The authors reformulated their model as

yi j = β1 + β2 agei + β3 age2
i + β4 Si j ( j ) + β6 sexi + β7 racei + μi + εi j .

Unmeasured latent effects, such as “ability,” are contained in μi . Because μi is not observ-
able but is, it is assumed, correlated with other variables in the equation, the least squares
regression of yi j on the other variables produces a biased set of coefficient estimates. [This
is a “fixed effects model—see Section 11.4. The assumption that the latent effect, “ability,”
is common between the twins and fully accounted for is a controversial assumption that
ability is accounted for by “nature” rather than “nurture.” See, e.g., Behrman and Taubman
(1989). A search of the Internet on the subject of the “nature versus nurture debate” will turn
up millions of citations. We will not visit the subject here.] The difference between the two
earnings equations is

yi 1 − yi 2 = β4[Si 1(1) − Si 2(2) ] + εi 1 − εi 2.

This equation removes the latent effect but, it turns out, worsens the measurement error
problem. As before, β4 can be estimated by instrumental variables. There are two instrumental
variables available, Si 2(1) and Si 1(2) . (It is not clear in the paper whether the authors used



Greene-2140242 book January 19, 2011 21:5

286 PART I ✦ The Linear Regression Model

the two separately or the difference of the two.) The least squares estimate is 0.092, which
is comparable to the earlier estimate. The instrumental variable estimate is 0.167, which is
nearly 82 percent higher. The two reported standard errors are 0.024 and 0.043, respectively.
With these figures, it is possible to carry out Hausman’s test;

H = (0.167 − 0.092)2

0.0432 − 0.0242
= 4.418.

The 95 percent critical value from the chi-squared distribution with one degree of freedom is
3.84, so the hypothesis that the LS estimator is consistent would be rejected. (The square
root of H , 2.102, would be treated as a value from the standard normal distribution, from
which the critical value would be 1.96. The authors reported a t statistic for this regression
of 1.97. The source of the difference is unclear.)

8.6 NONLINEAR INSTRUMENTAL VARIABLES
ESTIMATION

In Section 8.2, we extended the linear regression model to allow for the possibility that
the regressors might be correlated with the disturbances. The same problem can arise in
nonlinear models. The consumption function estimated in Section 7.2.5 is almost surely
a case in point, and we reestimated it using the instrumental variables technique for
linear models in Example 8.7. In this section, we will extend the method of instrumental
variables to nonlinear regression models.

In the nonlinear model,

yi = h(xi , β) + εi ,

the covariates xi may be correlated with the disturbances. We would expect this effect
to be transmitted to the pseudoregressors, x0

i = ∂h(xi , β)/∂β. If so, then the results that
we derived for the linearized regression would no longer hold. Suppose that there is a
set of variables [z1, . . . , zL] such that

plim(1/n)Z′ε = 0 (8-23)

and

plim(1/n)Z′X0 = Q0
zx �= 0,

where X0 is the matrix of pseudoregressors in the linearized regression, evaluated at the
true parameter values. If the analysis that we used for the linear model in Section 8.3 can
be applied to this set of variables, then we will be able to construct a consistent estimator
for β using the instrumental variables. As a first step, we will attempt to replicate the
approach that we used for the linear model. The linearized regression model is given in
(7-30),

y = h(X, β) + ε ≈ h0 + X0(β − β0) + ε

or

y0 ≈ X0β + ε,

where

y0 = y − h0 + X0β0.
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For the moment, we neglect the approximation error in linearizing the model. In (8-23),
we have assumed that

plim(1/n)Z′y0 = plim (1/n)Z′X0β. (8-24)

Suppose, as we assumed before, that there are the same number of instrumental vari-
ables as there are parameters, that is, columns in X0. (Note: This number need not be
the number of variables.) Then the “estimator” used before is suggested:

bIV = (Z′X0)−1Z′y0. (8-25)

The logic is sound, but there is a problem with this estimator. The unknown parameter
vector β appears on both sides of (8-24). We might consider the approach we used for
our first solution to the nonlinear regression model. That is, with some initial estima-
tor in hand, iterate back and forth between the instrumental variables regression and
recomputing the pseudoregressors until the process converges to the fixed point that
we seek. Once again, the logic is sound, and in principle, this method does produce the
estimator we seek.

If we add to our preceding assumptions

1√
n

Z′ε d−→ N[0, σ 2Qzz],

then we will be able to use the same form of the asymptotic distribution for this es-
timator that we did for the linear case. Before doing so, we must fill in some gaps in
the preceding. First, despite its intuitive appeal, the suggested procedure for finding the
estimator is very unlikely to be a good algorithm for locating the estimates. Second, we
do not wish to limit ourselves to the case in which we have the same number of instru-
mental variables as parameters. So, we will consider the problem in general terms. The
estimation criterion for nonlinear instrumental variables is a quadratic form,

Minβ S(β) = 1
2

{
[y − h(X, β)]′Z

}
(Z′Z)−1

{
Z′[y − h(X, β)]

}

= 1
2ε(β)′Z(Z′Z)−1Z′ε(β).9 (8-26)

The first-order conditions for minimization of this weighted sum of squares are

∂S(β)

∂β
= −X0′Z(Z′Z)−1Z′ε(β) = 0. (8-27)

This result is the same one we had for the linear model with X0 in the role of X. This
problem, however, is highly nonlinear in most cases, and the repeated least squares
approach is unlikely to be effective. But it is a straightforward minimization problem
in the frameworks of Appendix E, and instead, we can just treat estimation here as a
problem in nonlinear optimization.

We have approached the formulation of this instrumental variables estimator
more or less strategically. However, there is a more structured approach. The

9Perhaps the more natural point to begin the minimization would be S0(β) = [ε(β)′Z][Z′ε(β)]. We have
bypassed this step because the criterion in (8-26) and the estimator in (8-27) will turn out (following and in
Chapter 13) to be a simple yet more efficient GMM estimator.
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orthogonality condition

plim(1/n)Z′ε = 0

defines a GMM estimator. With the homoscedasticity and nonautocorrelation assump-
tion, the resultant minimum distance estimator produces precisely the criterion function
suggested above. We will revisit this estimator in this context, in Chapter 13.

With well-behaved pseudoregressors and instrumental variables, we have the gen-
eral result for the nonlinear instrumental variables estimator; this result is discussed at
length in Davidson and MacKinnon (2004).

THEOREM 8.2 Asymptotic Distribution of the Nonlinear
Instrumental Variables Estimator

With well-behaved instrumental variables and pseudoregressors,

bIV
a∼ N

[
β, (σ 2/n)

(
Q0

xz(Qzz)
−1Q0

zx

)−1]
.

We estimate the asymptotic covariance matrix with

Est. Asy. Var[bIV] = σ̂ 2[X̂0′Z(Z′Z)−1Z′X̂0]−1,

where X̂0 is X0 computed using bIV.

As a final observation, note that the “two-stage least squares” interpretation of the
instrumental variables estimator for the linear model still applies here, with respect
to the IV estimator. That is, at the final estimates, the first-order conditions (normal
equations) imply that

X0′Z(Z′Z)−1Z′y = X0′Z(Z′Z)−1Z′X0β,

which says that the estimates satisfy the normal equations for a linear regression of
y (not y0) on the predictions obtained by regressing the columns of X0 on Z. The
interpretation is not quite the same here, because to compute the predictions of X0, we
must have the estimate of β in hand. Thus, this two-stage least squares approach does
not show how to compute bIV; it shows a characteristic of bIV.

Example 8.10 Instrumental Variables Estimates of the
Consumption Function

The consumption function in Section 7.2.5 was estimated by nonlinear least squares without
accounting for the nature of the data that would certainly induce correlation between X0

and ε. As we did earlier, we will reestimate this model using the technique of instrumental
variables. For this application, we will use the one-period lagged value of consumption and
one- and two-period lagged values of income as instrumental variables. Table 8.2 reports
the nonlinear least squares and instrumental variables estimates. Because we are using two
periods of lagged values, two observations are lost. Thus, the least squares estimates are
not the same as those reported earlier.

The instrumental variable estimates differ considerably from the least squares estimates.
The differences can be deceiving, however. Recall that the MPC in the model is βγ Yγ−1. The
2000.4 value for DPI that we examined earlier was 6634.9. At this value, the instrumental
variables and least squares estimates of the MPC are 1.1543 with an estimated standard
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TABLE 8.2 Nonlinear Least Squares and Instrumental Variable Estimates

Instrumental Variables Least Squares

Parameter Estimate Standard Error Estimate Standard Error

α 627.031 26.6063 468.215 22.788
β 0.040291 0.006050 0.0971598 0.01064
γ 1.34738 0.016816 1.24892 0.1220
σ 57.1681 — 49.87998 —
e′e 650,369.805 — 495,114.490 —

error of 0.01234 and 1.08406 with an estimated standard error of 0.008694, respectively.
These values do differ a bit, but less than the quite large differences in the parameters might
have led one to expect. We do note that the IV estimate is considerably greater than the
estimate in the linear model, 0.9217 (and greater than one, which seems a bit implausible).

8.7 WEAK INSTRUMENTS

Our analysis thus far has focused on the “identification” condition for IV estimation,
that is, the “exogeneity assumption,” A.I9, which produces

plim (1/n)Z′ε = 0. (8-28)

Taking the “relevance” assumption,

plim (1/n)Z′X = QZX, a finite, nonzero, L× K matrix with rank K, (8-29)

as given produces a consistent IV estimator. In absolute terms, with (8-28) in place,
(8-29) is sufficient to assert consistency. As such, researchers have focused on exogeneity
as the defining problem to be solved in constructing the IV estimator. A growing liter-
ature has argued that greater attention needs to be given to the relevance condition.
While strictly speaking, (8-29) is indeed sufficient for the asymptotic results we have
claimed, the common case of “weak instruments,” in which (8-29) is only barely true has
attracted considerable scrutiny. In practical terms, instruments are “weak” when they
are only slightly correlated with the right-hand-side variables, X; that is, (1/n)Z′X is close
to zero. (We will quantify this theoretically when we revisit the issue in Section 10.6.6.)
Researchers have begun to examine these cases, finding in some an explanation for
perverse and contradictory empirical results.10

Superficially, the problem of weak instruments shows up in the asymptotic covari-
ance matrix of the IV estimator,

Asy. Var[bIV] = σ 2
ε

n

[(
X′Z

n

) (
Z′Z

n

)−1 (
Z′X

n

)]−1

,

which will be “large” when the instruments are weak, and, other things equal, larger
the weaker they are. However, the problems run deeper than that. Nelson and Startz

10Important references are Nelson and Startz (1990a,b), Staiger and Stock (1997), Stock, Wright, and Yogo
(2002), Hahn and Hausman (2002, 2003), Kleibergen (2002), Stock and Yogo (2005), and Hausman, Stock,
and Yogo (2005).
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(1990a,b) and Hahn and Hausman (2003) list two implications: (i) The two-stage least
squares estimator is badly biased toward the ordinary least squares estimator, which is
known to be inconsistent, and (ii) the standard first-order asymptotics (such as those we
have used in the preceding) will not give an accurate framework for statistical inference.
Thus, the problem is worse than simply lack of precision. There is also at least some
evidence that the issue goes well beyond “small sample problems.” [See Bound, Jaeger,
and Baker (1995).]

Current research offers several prescriptions for detecting weakness in instrumental
variables. For a single endogenous variable (x that is correlated with ε), the standard
approach is based on the first-step least squares regression of two-stage least squares.
The conventional F statistic for testing the hypothesis that all the coefficients in the
regression

xi = z′
iπ + vi

are zero is used to test the “hypothesis” that the instruments are weak. An F statistic
less than 10 signals the problem. [See Nelson and Startz (1990b), Staiger and Stock
(1997), and Stock and Watson (2007, Chapter 12) for motivation of this specific test.]
When there are more than one endogenous variable in the model, testing each one
separately using this test is not sufficient, since collinearity among the variables could
impact the result but would not show up in either test. Shea (1997) proposes a four-step
multivariate procedure that can be used. Godfrey (1999) derived a surprisingly simple
alternative method of doing the computation. For endogenous variable k, the Godfrey
statistic is the ratio of the estimated variances of the two estimators, OLS and 2SLS,

R2
k = vk(OLS)/e′e(OLS)

vk(2SLS)/e′e(2SLS)

where vk(OLS) is the kth diagonal element of [e′e(OLS)/(n− K)](X′X)−1 and vk(2SLS)
is defined likewise. With the scalings, the statistic reduces to

R2
k = (X′X)kk

(X̂′X̂)kk

where the superscript indicates the element of the inverse matrix. The F statistic can
then be based on this measure; F = [R2

k/(L − 1)]/[(1 − R2
k)/(n − L)] assuming that Z

contains a constant term.
It is worth noting that the test for weak instruments is not a specification test,

nor is it a constructive test for building the model. Rather, it is a strategy for helping
the researcher avoid basing inference on unreliable statistics whose properties are not
well represented by the familiar asymptotic results, for example, distributions under
assumed null model specifications. Several extensions are of interest. Other statistical
procedures are proposed in Hahn and Hausman (2002) and Kleibergen (2002). We are
also interested in cases of more than a single endogenous variable. We will take another
look at this issue in Section 10.6.6, where we can cast the modeling framework as a
simultaneous equations model.

The stark results of this section call the IV estimator into question. In a fairly narrow
circumstance, an alternative estimator is the “moment”-free LIML estimator discussed
in Section 10.6.4. Another, perhaps somewhat unappealing, approach is to retreat to
least squares. The OLS estimator is not without virtue. The asymptotic variance of the
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OLS estimator

Asy. Var[bLS] = (σ 2/n)Q−1
XX

is unambiguously smaller than the asymptotic variance of the IV estimator

Asy. Var[bIV] = (σ 2/n)
(
QXZQ−1

ZZQZX
)−1

.

(The proof is considered in the exercises.) Given the preceding results, it could be far
smaller. The OLS estimator is inconsistent, however,

plim bLS − β = Q−1
XXγ

[see (8-4)]. By a mean squared error comparison, it is unclear whether the OLS estimator
with

M(bLS | β) = (σ 2/n)Q−1
XX + Q−1

XXγ γ ′Q−1
XX,

or the IV estimator, with

M(bIV | β) = (σ 2/n)
(
QXZQ−1

ZZQZX
)−1

,

is more precise. The natural recourse in the face of weak instruments is to drop the
endogenous variable from the model or improve the instrument set. Each of these is a
specification issue. Strictly in terms of estimation strategy within the framework of the
data and specification in hand, there is scope for OLS to be the preferred strategy.

8.8 NATURAL EXPERIMENTS AND THE SEARCH
FOR CAUSAL EFFECTS

Econometrics and statistics have historically been taught, understood, and operated
under the credo that “correlation is not causation.” But, much of the still-growing field
of microeconometrics and some of what we have done in this chapter have been ad-
vanced as “causal modeling.”11 In the contemporary literature on treatment effects and
program evaluation, the point of the econometric exercise really is to establish more
than mere statistical association—in short, the answer to the question “does the pro-
gram work?” requires an econometric response more committed than “the data seem
to be consistent with that hypothesis.” A cautious approach to econometric model-
ing has nonetheless continued to base its view of “causality” essentially on statistical
grounds.12

An example of the sort of causal model considered here is an equation such as
Krueger and Dale’s (1999) model for earnings attainment and elite college attendance,

ln Earnings = x′β + δT + ε,

11See, for example, Chapter 2 of Cameron and Trivedi (2005), which is entitled “Causal and Noncausal
Models” and, especially, Angrist, Imbens, and Robin (1996), Angrist and Krueger (2001), and Angrist and
Pischke (2009, 2010).
12See, among many recent commentaries on this line of inquiry, Heckman and Vytlacil (2007).
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in which δ is the “causal effect” of attendance at an elite college. In this model, T
cannot vary autonomously, outside the model. Variation in T is determined partly by
the same hidden influences that determine lifetime earnings. Though a causal effect
can be attributed to T, measurement of that effect, δ, cannot be done with multiple
linear regression. The technique of linear instrumental variables estimation has evolved
as a mechanism for disentangling causal influences. As does least squares regression,
the method of instrumental variables must be defended against the possibility that
the underlying statistical relationships uncovered could be due to “something else.”
But, when the instrument is the outcome of a “natural experiment,” true exogeneity is
claimed. It is this purity of the result that has fueled the enthusiasm of the most strident
advocates of this style of investigation. The power of the method lends an inevitability
and stability to the findings. This has produced a willingness of contemporary researchers
to step beyond their cautious roots.13 Example 8.11 describes a recent controversial
contribution to this literature. On the basis of a natural experiment, the authors identify
a cause-and-effect relationship that would have been viewed as beyond the reach of
regression modeling under earlier paradigms.14

Example 8.11 Does Television Cause Autism?
The following is the abstract of economists Waldman, Nicholson, and Adilov’s (2008) study
of autism.15

Autism is currently estimated to affect approximately one in every 166 children, yet the
cause or causes of the condition are not well understood. One of the current theories con-
cerning the condition is that among a set of children vulnerable to developing the condition
because of their underlying genetics, the condition manifests itself when such a child is ex-
posed to a (currently unknown) environmental trigger. In this paper we empirically investigate
the hypothesis that early childhood television viewing serves as such a trigger. Using the
Bureau of Labor Statistics’s American Time Use Survey, we first establish that the amount
of television a young child watches is positively related to the amount of precipitation in
the child’s community. This suggests that, if television is a trigger for autism, then autism
should be more prevalent in communities that receive substantial precipitation. We then
look at county-level autism data for three states—California, Oregon, and Washington—
characterized by high precipitation variability. Employing a variety of tests, we show that
in each of the three states (and across all three states when pooled) there is substantial
evidence that county autism rates are indeed positively related to county-wide levels of pre-
cipitation. In our final set of tests we use California and Pennsylvania data on children born
between 1972 and 1989 to show, again consistent with the television as trigger hypothesis,
that county autism rates are also positively related to the percentage of households that
subscribe to cable television. Our precipitation tests indicate that just under forty percent of
autism diagnoses in the three states studied is the result of television watching due to pre-
cipitation, while our cable tests indicate that approximately seventeen percent of the growth
in autism in California and Pennsylvania during the 1970s and 1980s is due to the growth of
cable television. These findings are consistent with early childhood television viewing being
an important trigger for autism. (Emphasis added.) We also discuss further tests that can be
conducted to explore the hypothesis more directly.

13See, e.g., Angrist and Pischke (2009, 2010). In reply, Keane (2010, p. 48) opines “What has always bothered
me about the ‘experimentalist’ school is the false sense of certainty it conveys. The basic idea is that if we
have a ‘really good instrument,’ we can come up with ‘convincing’ estimates of ‘causal effects’ that are not
‘too sensitive to assumptions.”
14See the symposium in the Spring 2010 Journal of Economic Perspectives, Angrist and Pischke (2010), Leamer
(2010), Sims (2010), Keane (2010), Stock (2010), and Nevo and Whinston (2010).
15Extracts from http://www.johnson.cornell.edu/faculty.profiles/waldman/autism-waldman-nicholson-adilov
.pdf.
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The authors add (at page 3), “Although consistent with the hypothesis that early
childhood television watching is an important trigger for autism, our first main find-
ing is also consistent with another possibility. Specifically, since precipitation is likely
correlated with young children spending more time indoors generally, not just young
children watching more television, our first main finding could be due to any indoor
toxin. Therefore, we also employ a second instrumental variable or natural experiment,
that is correlated with early childhood television watching but unlikely to be substantially
correlated with time spent indoors.” (Emphasis added.) They conclude (on pages 39-
40): “Using the results found in Table 3’s pooled cross-sectional analysis of California,
Oregon, and Washington’s county-level autism rates, we find that if early childhood tele-
vision watching is the sole trigger driving the positive correlation between autism and
precipitation then thirty-eight percent of autism diagnoses are due to the incremental
television watching due to precipitation.”

Waldman, Nicholson, and Adilov’s (2008)16 study provoked an intense and wide-
spread response among academics, autism researchers, and the public. Whitehouse
(2007) surveyed some of the discussion, which touches upon the methodological impli-
cations of the search for “causal effects” in econometric research:

Prof. Waldman’s willingness to hazard an opinion on a delicate matter of science
reflects the growing ambition of economists—and also their growing hubris, in
the view of critics. Academic economists are increasingly venturing beyond
their traditional stomping ground, a wanderlust that has produced some pow-
erful results but also has raised concerns about whether they’re sometimes
going too far.

Such debates are likely to grow as economists delve into issues in education,
politics, history and even epidemiology. Prof. Waldman’s use of precipitation
illustrates one of the tools that has emboldened them: the instrumental variable,
a statistical method that, by introducing some random or natural influence,
helps economists sort out questions of cause and effect. Using the technique,
they can create “natural experiments” that seek to approximate the rigor of
randomized trials—the traditional gold standard of medical research.

Instrumental variables have helped prominent researchers shed light on
sensitive topics. Joshua Angrist of the Massachusetts Institute of Technology
has studied the cost of war, the University of Chicago’s Steven Levitt has ex-
amined the effect of adding police on crime, and Harvard’s Caroline Hoxby
has studied school performance. Their work has played an important role in
public-policy debates. But as enthusiasm for the approach has grown, so too
have questions. One concern: When economists use one variable as a proxy
for another—rainfall patterns instead of TV viewing, for example—it’s not al-
ways clear what the results actually measure. Also, the experiments on their
own offer little insight into why one thing affects another. “There’s a saying that
ignorance is bliss,” says James Heckman, an economics professor at the Univer-
sity of Chicago who won a Nobel Prize in 2000 for his work on statistical meth-
ods. “I think that characterizes a lot of the enthusiasm for these instruments.”
Says MIT economist Jerry Hausman, “If your instruments aren’t perfect, you
could go seriously wrong.

16Published as NBER working paper 12632 in 2006.
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Example 8.12 Is Season of Birth a Valid Instrument?
Buckles and Hungerman (BH, 2008) list more than 20 studies of long-term economic out-
comes that use season of birth as an instrumental variable, beginning with one of the earliest
and best known papers in the “natural experiments” literature, Angrist and Krueger (1991).
The assertion of the validity of season of birth as a proper instrument is that family back-
ground is unrelated to season of birth, but it is demonstrably related to long-term outcomes
such as income and education. The assertion justifies using dummy variables for season of
birth as instrumental variables in outcome equations. If, on the other hand, season of birth
is correlated with family background, then it will “fail the exclusion restriction in most IV set-
tings where it has been used” (BH, page 2). According to the authors, the randomness of
quarter of birth over the population [see, e.g., Kleibergen (2002)] has been taken as a given,
without scientific investigation of the claim. Using data from live birth certificates and census
data, BH found a numerically modest, but statistically significant relationship between birth
dates and family background. They found “women giving birth in the winter look different
from other women; they are younger, less educated, and less likely to be married. . . . The
fraction of children born to women without a high school degree is about 10 percent higher
(2 percentage points) in January than in May . . . We also document a 10 percent decline in
the fraction of children born to teenagers from January to May.” Precisely why there should
be such a relationship remains uncertain. Researchers differ (of course) on the numerical
implications of BH’s finding. [See Lahart (2009).] But, the methodological implication of their
finding is consistent with Hausman’s observation.

8.9 SUMMARY AND CONCLUSIONS

The instrumental variable (IV) estimator, in various forms, is among the most fundamen-
tal tools in econometrics. Broadly interpreted, it encompasses most of the estimation
methods that we will examine in this book. This chapter has developed the basic results
for IV estimation of linear models. The essential departure point is the exogeneity and
relevance assumptions that define an instrumental variable. We then analyzed linear
IV estimation in the form of the two-stage least squares estimator. With only a few spe-
cial exceptions related to simultaneous equations models with two variables, almost no
finite-sample properties have been established for the IV estimator. (We temper that,
however, with the results in Section 8.7 on weak instruments, where we saw evidence
that whatever the finite-sample properties of the IV estimator might be, under some
well-discernible circumstances, these properties are not attractive.) We then examined
the asymptotic properties of the IV estimator for linear and nonlinear regression mod-
els. Finally, some cautionary notes about using IV estimators when the instruments are
only weakly relevant in the model are examined in Section 8.7.

Key Terms and Concepts

• Asymptotic covariance
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• Asymptotic distribution
• Attenuation
• Attenuation bias
• Attrition
• Attrition bias

• Consistent estimator
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• Hausman statistic
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• Indicator
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• Limiting distribution
• Measurement error
• Minimum distance

estimator
• Moment equations
• Natural experiment
• Nonrandom sampling
• Omitted parameter

heterogeneity
• Omitted variables
• Omitted variable bias
• Orthogonality conditions
• Overidentification

• Panel data
• Proxy variable
• Random effects
• Reduced form equation
• Relevance
• Reliability ratio
• Sample selection bias
• Selectivity effect
• Simultaneous equations
• Simultaneous equations bias
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• Specification test
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• Structural equation system
• Structural Model
• Structural specification
• Survivorship bias
• Truncation bias
• Two-stage least squares

(2SLS)
• Variable addition test
• Weak instruments
• Weakly exogenous
• Wu test

Exercises

1. In the discussion of the instrumental variable estimator, we showed that the least
squares estimator, bLS, is biased and inconsistent. Nonetheless, bLS does estimate
something—see (8-4). Derive the asymptotic covariance matrix of bLS and show
that bLS is asymptotically normally distributed.

2. For the measurement error model in (8-14) and (8-15b), prove that when only x
is measured with error, the squared correlation between y and x is less than that
between y* and x*. (Note the assumption that y* = y.) Does the same hold true if
y* is also measured with error?

3. Derive the results in (8-20a) and (8-20b) for the measurement error model. Note
the hint in footnote 4 in Section 8.5.1 that suggests you use result (A-66) when you
need to invert

[Q∗ + �uu] = [Q∗ + (σue1)(σue1)
′].

4. At the end of Section 8.7, it is suggested that the OLS estimator could have a smaller
mean squared error than the 2SLS estimator. Using (8-4), the results of Exercise 1,
and Theorem 8.1, show that the result will be true if

QXX − QXZQ−1
ZZQZX >>

1(
σ 2/n

) + γ ′Q−1
XXγ

γ γ ′.

How can you verify that this is at least possible? The right-hand-side is a rank one,
nonnegative definite matrix.What can be said about the left-hand side?

5. Consider the linear model yi = α + βxi + εi in which Cov[xi , εi ] = γ �= 0. Let z
be an exogenous, relevant instrumental variable for this model. Assume, as well,
that z is binary—it takes only values 1 and 0. Show the algebraic forms of the LS
estimator and the IV estimator for both α and β.

6. In the discussion of the instrumental variables estimator, we showed that the least
squares estimator b is biased and inconsistent. Nonetheless, b does estimate some-
thing: plim b = θ = β + Q−1γ . Derive the asymptotic covariance matrix of b, and
show that b is asymptotically normally distributed.
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Application

1. In Example 8.5, we have suggested a model of a labor market. From the “reduced
form” equation given first, you can see the full set of variables that appears in
the model—that is the “endogenous variables,” ln Wageit, and Wksit, and all other
exogenous variables. The labor supply equation suggested next contains these two
variables and three of the exogenous variables. From these facts, you can deduce
what variables would appear in a labor “demand” equation for ln Wageit. As-
sume (for purpose of our example) that ln Wageit is determined by Wksit and the
remaining appropriate exogenous variables. (We should emphasize that this exer-
cise is purely to illustrate the computations—the structure here would not provide a
theoretically sound model for labor market equilibrium.)
a. What is the labor demand equation implied?
b. Estimate the parameters of this equation by OLS and by 2SLS and compare the

results. (Ignore the panel nature of the data set. Just pool the data.)
c. Are the instruments used in this equation relevant? How do you know?
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THE GENERALIZED
REGRESSION MODEL AND

HETEROSCEDASTICITY

Q
9.1 INTRODUCTION

In this and the next several chapters, we will extend the multiple regression model
to disturbances that violate Assumption A.4 of the classical regression model. The
generalized linear regression model is

y = Xβ + ε,

E [ε | X] = 0, (9-1)

E [εε′ | X] = σ 2� = �,

where � is a positive definite matrix. (The covariance matrix is written in the form σ 2� at
several points so that we can obtain the classical model, σ 2I, as a convenient special case.)

The two leading cases we will consider in detail are heteroscedasticity and
autocorrelation. Disturbances are heteroscedastic when they have different variances.
Heteroscedasticity arises in volatile high-frequency time-series data such as daily obser-
vations in financial markets and in cross-section data where the scale of the dependent
variable and the explanatory power of the model tend to vary across observations.
Microeconomic data such as expenditure surveys are typical. The disturbances are still
assumed to be uncorrelated across observations, so σ 2� would be

σ 2� = σ 2

⎡
⎢⎢⎢⎣

ω1 0 · · · 0
0 ω2 · · · 0

...

0 0 · · · ωn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

σ 2
1 0 · · · 0

0 σ 2
2 · · · 0

...

0 0 · · · σ 2
n

⎤
⎥⎥⎥⎦ .

(The first mentioned situation involving financial data is more complex than this and is
examined in detail in Chapter 20.)

Autocorrelation is usually found in time-series data. Economic time series often
display a “memory” in that variation around the regression function is not independent
from one period to the next. The seasonally adjusted price and quantity series published
by government agencies are examples. Time-series data are usually homoscedastic,
so σ 2� might be

σ 2� = σ 2

⎡
⎢⎢⎢⎣

1 ρ1 · · · ρn−1

ρ1 1 · · · ρn−2
...

ρn−1 ρn−2 · · · 1

⎤
⎥⎥⎥⎦ .
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The values that appear off the diagonal depend on the model used for the disturbance.
In most cases, consistent with the notion of a fading memory, the values decline as we
move away from the diagonal.

Panel data sets, consisting of cross sections observed at several points in time,
may exhibit both characteristics. We shall consider them in Chapter 11. This chapter
presents some general results for this extended model. We will examine the model of
heteroscedasticity in this chapter and in Chapter 14. A general model of autocorrelation
appears in Chapter 20. Chapters 10 and 11 examine in detail specific types of generalized
regression models.

Our earlier results for the classical model will have to be modified. We will take
the following approach on general results and in the specific cases of heteroscedasticity
and serial correlation:

1. We first consider the consequences for the least squares estimator of the more
general form of the regression model. This will include assessing the effect of
ignoring the complication of the generalized model and of devising an appropriate
estimation strategy, still based on least squares.

2. We will examine alternative estimation approaches that can make better use of the
characteristics of the model. Minimal assumptions about � are made at this point.

3. We then narrow the assumptions and begin to look for methods of detecting the
failure of the classical model—that is, we formulate procedures for testing the spec-
ification of the classical model against the generalized regression.

4. The final step in the analysis is to formulate parametric models that make specific
assumptions about �. Estimators in this setting are some form of generalized least
squares or maximum likelihood which is developed in Chapter 14.

The model is examined in general terms in this chapter. Major applications to panel
data and multiple equation systems are considered in Chapters 11 and 10, respectively.

9.2 INEFFICIENT ESTIMATION BY LEAST SQUARES
AND INSTRUMENTAL VARIABLES

The essential results for the classical model with spherical disturbances,

E [ε | X] = 0

and

E [εε′ | X] = σ 2I, (9-2)

are presented in Chapters 2 through 6. To reiterate, we found that the ordinary least
squares (OLS) estimator

b = (X′X)−1X′y = β + (X′X)−1X′ε (9-3)

is best linear unbiased (BLU), consistent and asymptotically normally distributed
(CAN), and if the disturbances are normally distributed, like other maximum likelihood
estimators considered in Chapter 14, asymptotically efficient among all CAN estimators.
We now consider which of these properties continue to hold in the model of (9-1).

To summarize, the least squares estimators retain only some of their desirable
properties in this model. Least squares remains unbiased, consistent, and asymptotically
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normally distributed. It will, however, no longer be efficient—this claim remains to be
verified—and the usual inference procedures are no longer appropriate.

9.2.1 FINITE-SAMPLE PROPERTIES OF ORDINARY
LEAST SQUARES

By taking expectations on both sides of (9-3), we find that if E [ε | X] = 0, then

E [b] = EX[E [b | X]] = β. (9-4)

Therefore, we have the following theorem.

THEOREM 9.1 Finite-Sample Properties of b in the Generalized
Regression Model

If the regressors and disturbances are uncorrelated, then the unbiasedness of least
squares is unaffected by violations of assumption (9-2). The least squares estimator
is unbiased in the generalized regression model. With nonstochastic regressors, or
conditional on X, the sampling variance of the least squares estimator is

Var[b | X] = E [(b − β)(b − β)′ | X]

= E [(X′X)−1X′εε′X(X′X)−1 | X]

= (X′X)−1X′(σ 2�)X(X′X)−1 (9-5)

= σ 2

n

(
1
n

X′X
)−1(1

n
X′�X

)(
1
n

X′X
)−1

.

If the regressors are stochastic, then the unconditional variance is EX [Var[b | X]].
In (9-3), b is a linear function of ε. Therefore, if ε is normally distributed, then

b | X ∼ N[β, σ 2(X′X)−1(X′�X)(X′X)−1].

The end result is that b has properties that are similar to those in the classical
regression case. Because the variance of the least squares estimator is not σ 2(X′X)−1,
however, statistical inference based on s2(X′X)−1 may be misleading. Not only is this
the wrong matrix to be used, but s2 may be a biased estimator of σ 2. There is usually
no way to know whether σ 2(X′X)−1 is larger or smaller than the true variance of b, so
even with a good estimator of σ 2, the conventional estimator of Var[b | X] may not be
particularly useful. Finally, because we have dispensed with the fundamental underlying
assumption, the familiar inference procedures based on the F and t distributions will
no longer be appropriate. One issue we will explore at several points following is how
badly one is likely to go awry if the result in (9-5) is ignored and if the use of the familiar
procedures based on s2(X′X)−1 is continued.

9.2.2 ASYMPTOTIC PROPERTIES OF ORDINARY LEAST SQUARES

If Var[b | X] converges to zero, then b is mean square consistent. With well-behaved
regressors, (X′X/n)−1 will converge to a constant matrix. But (σ 2/n)(X′�X / n) need
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not converge at all. By writing this product as

σ 2

n

(
X′�X

n

)
=

(
σ 2

n

)(∑n
i=1

∑n
j=1 ωi j xi x′

j

n

)
(9-6)

we see that though the leading constant will, by itself, converge to zero, the matrix is a
sum of n2 terms, divided by n. Thus, the product is a scalar that is O(1/n) times a matrix
that is, at least at this juncture, O(n), which is O(1). So, it does appear at first blush that if
the product in (9-6) does converge, it might converge to a matrix of nonzero constants.
In this case, the covariance matrix of the least squares estimator would not converge to
zero, and consistency would be difficult to establish. We will examine in some detail, the
conditions under which the matrix in (9-6) converges to a constant matrix.1 If it does,
then because σ 2/n does vanish, ordinary least squares is consistent as well as unbiased.

THEOREM 9.2 Consistency of OLS in the Generalized
Regression Model

If Q = plim(X′X/n) and plim(X′�X / n) are both finite positive definite matrices,
then b is consistent for β. Under the assumed conditions,

plim b = β.

The conditions in Theorem 9.2 depend on both X and �. An alternative formula2

that separates the two components is as follows. Ordinary least squares is consistent in
the generalized regression model if:

1. The smallest characteristic root of X′X increases without bound as n → ∞, which
implies that plim(X′X)−1 = 0. If the regressors satisfy the Grenander conditions
G1 through G3 of Section 4.4.1, Table 4.2, then they will meet this requirement.

2. The largest characteristic root of � is finite for all n. For the heteroscedastic model,
the variances are the characteristic roots, which requires them to be finite. For
models with autocorrelation, the requirements are that the elements of � be finite
and that the off-diagonal elements not be too large relative to the diagonal elements.
We will examine this condition at several points below.

The least squares estimator is asymptotically normally distributed if the limiting
distribution of

√
n(b − β) =

(
X′X

n

)−1 1√
n

X′ε (9-7)

is normal. If plim(X′X/n) = Q, then the limiting distribution of the right-hand side is
the same as that of

vn,LS = Q−1 1√
n

X′ε = Q−1 1√
n

n∑
i=1

xiεi , (9-8)

1In order for the product in (9-6) to vanish, it would be sufficient for (X′�X/n) to be O(nδ) where δ < 1.
2Amemiya (1985, p. 184).
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where x′
i is a row of X (assuming, of course, that the limiting distribution exists at all).

The question now is whether a central limit theorem can be applied directly to v. If
the disturbances are merely heteroscedastic and still uncorrelated, then the answer is
generally yes. In fact, we already showed this result in Section 4.4.2 when we invoked
the Lindeberg–Feller central limit theorem (D.19) or the Lyapounov theorem (D.20).
The theorems allow unequal variances in the sum. The exact variance of the sum is

Ex

[
Var

[
1√
n

n∑
i=1

xiεi

]∣∣∣∣∣ X

]
= σ 2

n

n∑
i=1

ωi Qi ,

which, for our purposes, we would require to converge to a positive definite matrix. In
our analysis of the classical model, the heterogeneity of the variances arose because of
the regressors, but we still achieved the limiting normal distribution in (4-27) through
(4-33). All that has changed here is that the variance of ε varies across observations as
well. Therefore, the proof of asymptotic normality in Section 4.4.2 is general enough to
include this model without modification. As long as X is well behaved and the diagonal
elements of � are finite and well behaved, the least squares estimator is asymptotically
normally distributed, with the covariance matrix given in (9-5). That is,

In the heteroscedastic case, if the variances of εi are finite and are not dominated
by any single term, so that the conditions of the Lindeberg–Feller central limit
theorem apply to vn,LS in (9-8), then the least squares estimator is asymptotically
normally distributed with covariance matrix

Asy. Var[b] = σ 2

n
Q−1plim

(
1
n

X′�X
)

Q−1. (9-9)

For the most general case, asymptotic normality is much more difficult to establish
because the sums in (9-8) are not necessarily sums of independent or even uncorrelated
random variables. Nonetheless, Amemiya (1985, p. 187) and Anderson (1971) have
established the asymptotic normality of b in a model of autocorrelated disturbances
general enough to include most of the settings we are likely to meet in practice. We will
revisit this issue in Chapter 20 when we examine time-series modeling. We can conclude
that, except in particularly unfavorable cases, we have the following theorem.

THEOREM 9.3 Asymptotic Distribution of b in the GR Model
If the regressors are sufficiently well behaved and the off-diagonal terms in �

diminish sufficiently rapidly, then the least squares estimator is asymptotically
normally distributed with mean β and covariance matrix given in (9-9).

9.2.3 ROBUST ESTIMATION OF ASYMPTOTIC
COVARIANCE MATRICES

There is a remaining question regarding all the preceding results. In view of (9-5), is it
necessary to discard ordinary least squares as an estimator? Certainly if � is known,
then, as shown in Section 9.6.1, there is a simple and efficient estimator available based



Greene-2140242 book January 19, 2011 21:7

302 PART II ✦ Generalized Regression Model and Equation Systems

on it, and the answer is yes. If � is unknown, but its structure is known and we can
estimate � using sample information, then the answer is less clear-cut. In many cases,
basing estimation of β on some alternative procedure that uses an �̂ will be preferable
to ordinary least squares. This subject is covered in Chapters 10 and 11. The third
possibility is that � is completely unknown, both as to its structure and the specific
values of its elements. In this situation, least squares or instrumental variables may be
the only estimator available, and as such, the only available strategy is to try to devise
an estimator for the appropriate asymptotic covariance matrix of b.

If σ 2� were known, then the estimator of the asymptotic covariance matrix of b in
(9-10) would be

VOLS = 1
n

(
1
n

X′X
)−1(1

n
X′[σ 2�]X

)(
1
n

X′X
)−1

.

The matrix of sums of squares and cross products in the left and right matrices are
sample data that are readily estimable. The problem is the center matrix that involves
the unknown σ 2�. For estimation purposes, note that σ 2 is not a separate unknown
parameter. Because � is an unknown matrix, it can be scaled arbitrarily, say, by κ , and
with σ 2 scaled by 1/κ , the same product remains. In our applications, we will remove the
indeterminacy by assuming that tr(�) = n, as it is when σ 2� = σ 2I in the classical model.
For now, just let � = σ 2�. It might seem that to estimate (1/n)X′�X, an estimator of �,
which contains n(n + 1)/2 unknown parameters, is required. But fortunately (because
with n observations, this method is going to be hopeless), this observation is not quite
right. What is required is an estimator of the K(K+1)/2 unknown elements in the matrix

plim Q∗ = plim
1
n

n∑
i=1

n∑
j=1

σijxi x′
j .

The point is that Q∗ is a matrix of sums of squares and cross products that involves σij

and the rows of X. The least squares estimator b is a consistent estimator of β, which
implies that the least squares residuals ei are “pointwise” consistent estimators of their
population counterparts εi . The general approach, then, will be to use X and e to devise
an estimator of Q∗.

This (perhaps somewhat counterintuitive) principle is exceedingly useful in modern
research. Most important applications, including general models of heteroscedasticity,
autocorrelation, and a variety of panel data models, can be estimated in this fashion. The
payoff is that the estimator frees the analyst from the necessity to assume a particular
structure for �. With tools such as the robust covariance estimator in hand, one of
the distinct trends in current research is away from narrow assumptions and toward
broad, robust models such as these. The heteroscedasticity and autocorrelation cases
are considered in Section 9.4 and Chapter 20, respectively, while several models for
panel data are detailed in Chapter 11.

9.2.4 INSTRUMENTAL VARIABLE ESTIMATION

Chapter 8 considered cases in which the regressors, X, are correlated with the distur-
bances, ε. The instrumental variables (IV) estimator developed there enjoys a kind of
robustness that least squares lacks in that it achieves consistency whether or not X and
ε are correlated, while b is neither unbiased not consistent. However, efficiency was not
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a consideration in constructing the IV estimator. We will reconsider the IV estimator
here, but since it is inefficient to begin with, there is little to say about the implications
of nonspherical disturbances for the efficiency of the estimator, as we examined for b
in the previous section. As such, the relevant question for us to consider here would be,
essentially, does IV still “work” in the generalized regression model? Consistency and
asymptotic normality will be the useful properties.

The IV estimator is

bIV = [X′Z(Z′Z)−1Z′X]−1X′Z(Z′Z)−1Z′y

= β + [X′Z(Z′Z)−1Z′X]−1X′Z(Z′Z)−1Z′ε,
(9-10)

where X is the set of K regressors and Z is a set of L ≥ K instrumental variables.
We now consider the extension of Theorems 9.2 and 9.3 to the IV estimator when
E[εε′|X] = σ 2�.

Suppose that X and Z are well behaved as assumed in Section 8.2. That is,

plim(1/n)Z′Z = QZZ, a positive definite matrix,

plim(1/n)Z′X = QZX = Q′
XZ, a nonzero matrix,

plim(1/n)X′X = QXX, a positive definite matrix.

To avoid a string of matrix computations that may not fit on a single line, for conve-
nience let

QXX.Z = [
QXZQ−1

ZZQZX
]−1QXZQ−1

ZZ

= plim
[(

1
n

X′Z
)(

1
n

Z′Z
)−1(1

n
Z′X

)]−1(1
n

X′Z
)(

1
n

Z′Z
)−1

.

If Z is a valid set of instrumental variables, that is, if the second term in (9-10) vanishes
asymptotically, then

plim bIV = β + QXX.Z plim
(

1
n

Z′ε
)

= β.

This result is exactly the same one we had before. We might note that at the several
points where we have established unbiasedness or consistency of the least squares or
instrumental variables estimator, the covariance matrix of the disturbance vector has
played no role; unbiasedness is a property of the means. As such, this result should
come as no surprise. The large sample behavior of bIV depends on the behavior of

vn,IV = 1√
n

n∑
i=1

ziεi .

This result is exactly the one we analyzed in Section 4.4.2. If the sampling distribution of
vn converges to a normal distribution, then we will be able to construct the asymptotic
distribution for bIV. This set of conditions is the same that was necessary for X when
we considered b above, with Z in place of X. We will once again rely on the results of
Anderson (1971) or Amemiya (1985) that under very general conditions,

1√
n

n∑
i=1

ziεi
d−→ N

[
0, σ 2plim

(
1
n

Z′�Z
)]

.

With the other results already in hand, we now have the following.
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THEOREM 9.4 Asymptotic Distribution of the IV Estimator in
the Generalized Regression Model

If the regressors and the instrumental variables are well behaved in the fashions
discussed above, then

bIV
a∼ N[β, VIV],

where

VIV = σ 2

n
(QXX.Z) plim

(
1
n

Z′�Z
)

(Q′
XX.Z).

Theorem 9.4 is the instrumental variable estimation counterpart to Theorems 9.2 and
9.3 for least squares.

9.3 EFFICIENT ESTIMATION BY GENERALIZED
LEAST SQUARES

Efficient estimation of β in the generalized regression model requires knowledge of
�. To begin, it is useful to consider cases in which � is a known, symmetric, positive
definite matrix. This assumption will occasionally be true, though in most models, � will
contain unknown parameters that must also be estimated. We shall examine this case
in Section 9.6.2.

9.3.1 GENERALIZED LEAST SQUARES (GLS)

Because � is a positive definite symmetric matrix, it can be factored into

� = C�C′,

where the columns of C are the characteristic vectors of � and the characteristic roots
of � are arrayed in the diagonal matrix �. Let �1/2 be the diagonal matrix with ith
diagonal element

√
λi , and let T = C�1/2. Then � = TT′. Also, let P′ = C�−1/2, so

�−1 = P′P. Premultiply the model in (9-1) by P to obtain

Py = PXβ + Pε

or
y∗ = X∗β + ε∗. (9-11)

The conditional variance of ε∗ is

E [ε∗ε′
∗ | X∗] = Pσ 2�P′ = σ 2I,

so the classical regression model applies to this transformed model. Because � is
assumed to be known, y∗ and X∗ are observed data. In the classical model, ordinary
least squares is efficient; hence,

β̂ = (X′
∗X∗)−1X′

∗y∗

= (X′P′PX)−1X′P′Py

= (X′�−1X)−1X′�−1y
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is the efficient estimator of β. This estimator is the generalized least squares (GLS) or
Aitken (1935) estimator of β. This estimator is in contrast to the ordinary least squares
(OLS) estimator, which uses a “weighting matrix,” I, instead of �−1. By appealing to
the classical regression model in (9-11), we have the following theorem, which includes
the generalized regression model analogs to our results of Chapter 4:

THEOREM 9.5 Properties of the Generalized Least Squares
Estimator

If E [ε∗ | X∗] = 0, then

E [β̂ | X∗] = E [(X′
∗X∗)−1X′

∗y∗ | X∗] = β + E [(X′
∗X∗)−1X′

∗ε∗ | X∗] = β.

The GLS estimator β̂ is unbiased. This result is equivalent to E [Pε | PX] = 0, but
because P is a matrix of known constants, we return to the familiar requirement
E [ε | X] = 0. The requirement that the regressors and disturbances be uncorre-
lated is unchanged.

The GLS estimator is consistent if plim(1/n)X′
∗X∗ = Q∗, where Q∗ is a finite

positive definite matrix. Making the substitution, we see that this implies

plim[(1/n)X′�−1X]−1 = Q−1
∗ . (9-12)

We require the transformed data X∗ = PX, not the original data X, to be well
behaved.3 Under the assumption in (9-1), the following hold:

The GLS estimator is asymptotically normally distributed, with mean β and
sampling variance

Var[β̂ | X∗] = σ 2(X′
∗X∗)−1 = σ 2(X′�−1X)−1. (9-13)

The GLS estimator β̂ is the minimum variance linear unbiased estimator in
the generalized regression model. This statement follows by applying the Gauss–
Markov theorem to the model in (9-11). The result in Theorem 9.5 is Aitken’s
(1935) theorem, and β̂ is sometimes called the Aitken estimator. This broad result
includes the Gauss–Markov theorem as a special case when � = I.

For testing hypotheses, we can apply the full set of results in Chapter 5 to the trans-
formed model in (9-11). For testing the J linear restrictions, Rβ = q, the appropriate
statistic is

F[J, n − K] = (Rβ̂ − q)′[Rσ̂ 2(X′
∗X∗)−1R′]−1(Rβ̂ − q)

J
= (ε̂′

cε̂c − ε̂′ε̂)/J
σ̂ 2

,

where the residual vector is

ε̂ = y∗ − X∗β̂

and

σ̂ 2 = ε̂′ε̂
n − K

= (y − Xβ̂)′�−1(y − Xβ̂)

n − K
. (9-14)

3Once again, to allow a time trend, we could weaken this assumption a bit.
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The constrained GLS residuals, ε̂c = y∗ − X∗β̂c, are based on

β̂c = β̂ − [X′�−1X]−1R′[R(X′�−1X)−1R′]−1(Rβ̂ − q).4

To summarize, all the results for the classical model, including the usual inference
procedures, apply to the transformed model in (9-11).

There is no precise counterpart to R2 in the generalized regression model. Alterna-
tives have been proposed, but care must be taken when using them. For example, one
choice is the R2 in the transformed regression, (9-11). But this regression need not have
a constant term, so the R2 is not bounded by zero and one. Even if there is a constant
term, the transformed regression is a computational device, not the model of interest.
That a good (or bad) fit is obtained in the “model” in (9-11) may be of no interest; the
dependent variable in that model, y∗, is different from the one in the model as originally
specified. The usual R2 often suggests that the fit of the model is improved by a correc-
tion for heteroscedasticity and degraded by a correction for autocorrelation, but both
changes can often be attributed to the computation of y∗. A more appealing fit measure
might be based on the residuals from the original model once the GLS estimator is in
hand, such as

R2
G = 1 − (y − Xβ̂)′(y − Xβ̂)∑n

i=1(yi − ȳ)2
.

Like the earlier contender, however, this measure is not bounded in the unit interval.
In addition, this measure cannot be reliably used to compare models. The generalized
least squares estimator minimizes the generalized sum of squares

ε′
∗ε∗ = (y − Xβ)′�−1(y − Xβ),

not ε′ε. As such, there is no assurance, for example, that dropping a variable from the
model will result in a decrease in R2

G, as it will in R2. Other goodness-of-fit measures,
designed primarily to be a function of the sum of squared residuals (raw or weighted by
�−1) and to be bounded by zero and one, have been proposed.5 Unfortunately, they all
suffer from at least one of the previously noted shortcomings. The R2-like measures in
this setting are purely descriptive. That being the case, the squared sample correlation
between the actual and predicted values, r2

y,ŷ = corr2(y, ŷ) = corr2(y, x′β̂), would
likely be a useful descriptor. Note, though, that this is not a proportion of variation
explained, as is R2; it is a measure of the agreement of the model predictions with the
actual data.

9.3.2 FEASIBLE GENERALIZED LEAST SQUARES (FGLS)

To use the results of Section 9.3.1, � must be known. If � contains unknown parameters
that must be estimated, then generalized least squares is not feasible. But with an
unrestricted �, there are n(n + 1)/2 additional parameters in σ 2�. This number is far
too many to estimate with n observations. Obviously, some structure must be imposed
on the model if we are to proceed.

4Note that this estimator is the constrained OLS estimator using the transformed data. [See (5-23).]
5See, example, Judge et al. (1985, p. 32) and Buse (1973).
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The typical problem involves a small set of parameters α such that � = �(α). For
example, a commonly used formula in time-series settings is

�(ρ) =

⎡
⎢⎢⎢⎣

1 ρ ρ2 ρ3 · · · ρn−1

ρ 1 ρ ρ2 · · · ρn−2

...

ρn−1 ρn−2 · · · 1

⎤
⎥⎥⎥⎦ ,

which involves only one additional unknown parameter. A model of heteroscedasticity
that also has only one new parameter is

σ 2
i = σ 2zθ

i . (9-15)

Suppose, then, that α̂ is a consistent estimator of α. (We consider later how such an
estimator might be obtained.) To make GLS estimation feasible, we shall use �̂ = �(α̂)

instead of the true �. The issue we consider here is whether using �(α̂) requires us to
change any of the results of Section 9.3.1.

It would seem that if plim α̂ = α, then using �̂ is asymptotically equivalent to using
the true �.6 Let the feasible generalized least squares (FGLS) estimator be denoted

ˆ̂β = (X′�̂−1X)−1X′�̂−1y.

Conditions that imply that ˆ̂β is asymptotically equivalent to β̂ are

plim
[(

1
n

X′�̂−1X
)

−
(

1
n

X′�−1X
)]

= 0 (9-16)

and

plim
[(

1√
n

X′�̂−1ε

)
−

(
1√
n

X′�−1ε

)]
= 0. (9-17)

The first of these equations states that if the weighted sum of squares matrix based
on the true � converges to a positive definite matrix, then the one based on �̂ con-
verges to the same matrix. We are assuming that this is true. In the second condition, if
the transformed regressors are well behaved, then the right-hand-side sum will have a
limiting normal distribution. This condition is exactly the one we used in Chapter 4 to
obtain the asymptotic distribution of the least squares estimator; here we are using the
same results for X∗ and ε∗. Therefore, (9-17) requires the same condition to hold when
� is replaced with �̂.7

These conditions, in principle, must be verified on a case-by-case basis. Fortunately,
in most familiar settings, they are met. If we assume that they are, then the FGLS
estimator based on α̂ has the same asymptotic properties as the GLS estimator. This
result is extremely useful. Note, especially, the following theorem.

6This equation is sometimes denoted plim �̂ = �. Because � is n × n, it cannot have a probability limit. We
use this term to indicate convergence element by element.
7The condition actually requires only that if the right-hand sum has any limiting distribution, then the left-
hand one has the same one. Conceivably, this distribution might not be the normal distribution, but that seems
unlikely except in a specially constructed, theoretical case.
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THEOREM 9.6 Efficiency of the FGLS Estimator
An asymptotically efficient FGLS estimator does not require that we have an
efficient estimator of α; only a consistent one is required to achieve full efficiency
for the FGLS estimator.

Except for the simplest cases, the finite-sample properties and exact distributions
of FGLS estimators are unknown. The asymptotic efficiency of FGLS estimators may
not carry over to small samples because of the variability introduced by the estimated
�. Some analyses for the case of heteroscedasticity are given by Taylor (1977). A model
of autocorrelation is analyzed by Griliches and Rao (1969). In both studies, the authors
find that, over a broad range of parameters, FGLS is more efficient than least squares.
But if the departure from the classical assumptions is not too severe, then least squares
may be more efficient than FGLS in a small sample.

9.4 HETEROSCEDASTICITY AND WEIGHTED
LEAST SQUARES

Regression disturbances whose variances are not constant across observations are het-
eroscedastic. Heteroscedasticity arises in numerous applications, in both cross-section
and time-series data. For example, even after accounting for firm sizes, we expect to
observe greater variation in the profits of large firms than in those of small ones. The vari-
ance of profits might also depend on product diversification, research and development
expenditure, and industry characteristics and therefore might also vary across firms of
similar sizes. When analyzing family spending patterns, we find that there is greater vari-
ation in expenditure on certain commodity groups among high-income families than
low ones due to the greater discretion allowed by higher incomes.8

In the heteroscedastic regression model,

Var[εi | X] = σ 2
i , i = 1, . . . , n.

We continue to assume that the disturbances are pairwise uncorrelated. Thus,

E [εε′ | X ] = σ 2� = σ 2

⎡
⎢⎢⎢⎣

ω1 0 0 · · · 0
0 ω2 0 · · ·

...

0 0 0 · · · ωn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

σ 2
1 0 0 · · · 0

0 σ 2
2 0 · · ·

...

0 0 0 · · · σ 2
n

⎤
⎥⎥⎥⎦ .

It will sometimes prove useful to write σ 2
i = σ 2ωi . This form is an arbitrary scaling

which allows us to use a normalization,

tr(�) =
n∑

i=1

ωi = n.

8Prais and Houthakker (1955).
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FIGURE 9.1 Plot of Residuals Against Income.

This makes the classical regression with homoscedastic disturbances a simple special
case with ωi = 1, i = 1, . . . , n. Intuitively, one might then think of the ω’s as weights
that are scaled in such a way as to reflect only the variety in the disturbance variances.
The scale factor σ 2 then provides the overall scaling of the disturbance process.

Example 9.1 Heteroscedastic Regression
The data in Appendix Table F7.3 give monthly credit card expenditure for 13,444 individuals.
Linear regression of monthly expenditure on a constant, age, income and its square, and a
dummy variable for home ownership using the 72 of the observations for which expenditure
was nonzero produces the residuals plotted in Figure 9.1. The pattern of the residuals is
characteristic of a regression with heteroscedasticity. (The subsample of 72 observations is
given in Appendix Table F9.1.)

We will examine the heteroscedastic regression model, first in general terms, then
with some specific forms of the disturbance covariance matrix. We begin by examining
the consequences of heteroscedasticity for least squares estimation. We then consider
robust estimation. Section 9.4.4 presents appropriate estimators of the asymptotic co-
variance matrix of the least squares estimator. Specification tests for heteroscedasticity
are considered in Section 9.5. Section 9.6 considers generalized (weighted) least squares,
which requires knowledge at least of the form of �. Finally, two common applications
are examined in Section 9.7.

9.4.1 ORDINARY LEAST SQUARES ESTIMATION

We showed in Section 9.2 that in the presence of heteroscedasticity, the least squares
estimator b is still unbiased, consistent, and asymptotically normally distributed. The
asymptotic covariance matrix is

Asy. Var[b] = σ 2

n

(
plim

1
n

X′X
)−1(

plim
1
n

X′�X
)(

plim
1
n

X′X
)−1

. (9-18)
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Estimation of the asymptotic covariance matrix would be based on

Var[b | X] = (X′X)−1

(
σ 2

n∑
i=1

ωi xi x′
i

)
(X′X)−1.

[See (9-5).] Assuming, as usual, that the regressors are well behaved, so that (X′X/n)−1

converges to a positive definite matrix, we find that the mean square consistency of b
depends on the limiting behavior of the matrix:

Q∗
n = X′�X

n
= 1

n

n∑
i=1

ωi xi x′
i .

If Q∗
n converges to a positive definite matrix Q∗, then as n → ∞, b will converge to β

in mean square. Under most circumstances, if ωi is finite for all i , then we would expect
this result to be true. Note that Q∗

n is a weighted sum of the squares and cross products
of x with weights ωi/n, which sum to 1. We have already assumed that another weighted
sum, X′X/n, in which the weights are 1/n, converges to a positive definite matrix Q, so it
would be surprising if Q∗

n did not converge as well. In general, then, we would expect that

b
a∼ N

[
β,

σ 2

n
Q−1Q∗Q−1

]
, with Q∗ = plim Q∗

n.

A formal proof is based on Section 4.4 with Qi = ωi xi x′
i .

9.4.2 INEFFICIENCY OF ORDINARY LEAST SQUARES

It follows from our earlier results that b is inefficient relative to the GLS estimator. By
how much will depend on the setting, but there is some generality to the pattern. As
might be expected, the greater is the dispersion in ωi across observations, the greater
the efficiency of GLS over OLS. The impact of this on the efficiency of estimation will
depend crucially on the nature of the disturbance variances. In the usual cases, in which
ωi depends on variables that appear elsewhere in the model, the greater is the dispersion
in these variables, the greater will be the gain to using GLS. It is important to note,
however, that both these comparisons are based on knowledge of �. In practice, one of
two cases is likely to be true. If we do have detailed knowledge of �, the performance
of the inefficient estimator is a moot point. We will use GLS or feasible GLS anyway. In
the more common case, we will not have detailed knowledge of �, so the comparison
is not possible.

9.4.3 THE ESTIMATED COVARIANCE MATRIX OF b

If the type of heteroscedasticity is known with certainty, then the ordinary least squares
estimator is undesirable; we should use generalized least squares instead. The precise
form of the heteroscedasticity is usually unknown, however. In that case, generalized
least squares is not usable, and we may need to salvage what we can from the results of
ordinary least squares.

The conventionally estimated covariance matrix for the least squares estimator
σ 2(X′X)−1 is inappropriate; the appropriate matrix is σ 2(X′X)−1(X′�X)(X′X)−1. It is
unlikely that these two would coincide, so the usual estimators of the standard errors
are likely to be erroneous. In this section, we consider how erroneous the conventional
estimator is likely to be.



Greene-2140242 book January 19, 2011 21:7

CHAPTER 9 ✦ The Generalized Regression Model 311

As usual,

s2 = e′e
n − K

= ε′Mε

n − K
, (9-19)

where M = I − X(X′X)−1X′. Expanding this equation, we obtain

s2 = ε′ε
n − K

− ε′X(X′X)−1X′ε
n − K

. (9-20)

Taking the two parts separately yields

E
[

ε′ε
n − K

∣∣∣∣ X
]

= trE [εε′ | X]
n − K

= nσ 2

n − K
. (9-21)

[We have used the scaling tr(�) = n.] In addition,

E
[
ε′X(X′X)−1X′ε

n − K

∣∣∣∣ X
]

= tr
{
E [(X′X)−1X′εε′X | X]

}

n − K

=
tr

[
σ 2

(
X′X

n

)−1(X′�X
n

)]

n − K
= σ 2

n − K
tr

[(
X′X

n

)−1

Q∗
n

]
, (9-22)

where Q∗
n is defined after (9-18). As n → ∞, the term in (9-21) will converge to σ 2.

The term in (9-22) will converge to zero if b is consistent because both matrices in the
product are finite. Therefore;

If b is consistent, then lim
n→∞ E [s2] = σ 2.

It can also be shown—we leave it as an exercise—that if the fourth moment of every
disturbance is finite and all our other assumptions are met, then

lim
n→∞ Var

[
e′e

n − K

]
= lim

n→∞ Var
[

ε′ε
n − K

]
= 0.

This result implies, therefore, that

If plim b = β, then plim s2 = σ 2.

Before proceeding, it is useful to pursue this result. The normalization tr(�) = n implies
that

σ 2 = σ̄ 2 = 1
n

∑
i

σ 2
i and ωi = σ 2

i

σ̄ 2
.

Therefore, our previous convergence result implies that the least squares estimator
s2 converges to plim σ̄ 2, that is, the probability limit of the average variance of the
disturbances, assuming that this probability limit exists. Thus, some further assumption
about these variances is necessary to obtain the result.

The difference between the conventional estimator and the appropriate (true) co-
variance matrix for b is

Est. Var[b | X] − Var[b | X] = s2(X′X)−1 − σ 2(X′X)−1(X′�X)(X′X)−1. (9-23)
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In a large sample (so that s2 ≈ σ 2), this difference is approximately equal to

D = σ 2

n

(
X′X

n

)−1[X′X
n

− X′�X
n

](
X′X

n

)−1

. (9-24)

The difference between the two matrices hinges on

� = X′X
n

− X′�X
n

=
n∑

i=1

(
1
n

)
xi x′

i −
n∑

i=1

(
ωi

n

)
xi x′

i = 1
n

n∑
i=1

(1 − ωi )xi x′
i , (9-25)

where x′
i is the ith row of X. These are two weighted averages of the matrices Qi = xi x′

i ,

using weights 1 for the first term and ωi for the second. The scaling tr(�) = n implies
that

∑
i (ωi/n) = 1. Whether the weighted average based on ωi/n differs much from the

one using 1/n depends on the weights. If the weights are related to the values in xi , then
the difference can be considerable. If the weights are uncorrelated with xi x′

i , however,
then the weighted average will tend to equal the unweighted average.9

Therefore, the comparison rests on whether the heteroscedasticity is related to any
of xk or xj ×xk. The conclusion is that, in general: If the heteroscedasticity is not correlated
with the variables in the model, then at least in large samples, the ordinary least squares
computations, although not the optimal way to use the data, will not be misleading. For
example, in the groupwise heteroscedasticity model of Section 9.7.2, if the observations
are grouped in the subsamples in a way that is unrelated to the variables in X, then the
usual OLS estimator of Var[b] will, at least in large samples, provide a reliable estimate
of the appropriate covariance matrix. It is worth remembering, however, that the least
squares estimator will be inefficient, the more so the larger are the differences among
the variances of the groups.10

The preceding is a useful result, but one should not be overly optimistic. First, it
remains true that ordinary least squares is demonstrably inefficient. Second, if the pri-
mary assumption of the analysis—that the heteroscedasticity is unrelated to the vari-
ables in the model—is incorrect, then the conventional standard errors may be quite
far from the appropriate values.

9.4.4 ESTIMATING THE APPROPRIATE COVARIANCE MATRIX
FOR ORDINARY LEAST SQUARES

It is clear from the preceding that heteroscedasticity has some potentially serious im-
plications for inferences based on the results of least squares. The application of more
appropriate estimation techniques requires a detailed formulation of �, however. It
may well be that the form of the heteroscedasticity is unknown. White (1980a) has
shown that it is still possible to obtain an appropriate estimator for the variance of the
least squares estimator, even if the heteroscedasticity is related to the variables in X.

9Suppose, for example, that X contains a single column and that both xi and ωi are independent and identically
distributed random variables. Then x′x/n converges to E [x2

i ], whereas x′�x/n converges to Cov[ωi , x2
i ] +

E [ωi ]E [x2
i ]. E [ωi ] = 1, so if ω and x2 are uncorrelated, then the sums have the same probability limit.

10Some general results, including analysis of the properties of the estimator based on estimated variances,
are given in Taylor (1977).



Greene-2140242 book January 19, 2011 21:7

CHAPTER 9 ✦ The Generalized Regression Model 313

Referring to (9-18), we seek an estimator of

Q∗ = 1
n

n∑
i=1

σ 2
i xi x′

i .

White (1980a) shows that under very general conditions, the estimator

S0 = 1
n

n∑
i=1

e2
i xi x′

i (9-26)

has

plim S0 = plim Q∗.11

We can sketch a proof of this result using the results we obtained in Section 4.4.12

Note first that Q∗ is not a parameter matrix in itself. It is a weighted sum of the outer
products of the rows of X (or Z for the instrumental variables case). Thus, we seek not to
“estimate” Q∗, but to find a function of the sample data that will be arbitrarily close to this
function of the population parameters as the sample size grows large. The distinction is
important. We are not estimating the middle matrix in (9-9) or (9-18); we are attempting
to construct a matrix from the sample data that will behave the same way that this matrix
behaves. In essence, if Q∗ converges to a finite positive matrix, then we would be looking
for a function of the sample data that converges to the same matrix. Suppose that the true
disturbances εi could be observed. Then each term in Q∗ would equal E [ε2

i xi x′
i | xi ]. With

some fairly mild assumptions about xi , then, we could invoke a law of large numbers
(see Theorems D.4 through D.9) to state that if Q∗ has a probability limit, then

plim
1
n

n∑
i=1

σ 2
i xi x′

i = plim
1
n

n∑
i=1

ε2
i xi x′

i .

The final detail is to justify the replacement of εi with ei in S0. The consistency of b for
β is sufficient for the argument. (Actually, residuals based on any consistent estimator
of β would suffice for this estimator, but as of now, b or bIV is the only one in hand.)
The end result is that the White heteroscedasticity consistent estimator

Est. Asy. Var[b] = 1
n

(
1
n

X′X
)−1

(
1
n

n∑
i=1

e2
i xi x′

i

)(
1
n

X′X
)−1

= n(X′X)−1S0(X′X)−1

(9-27)

can be used to estimate the asymptotic covariance matrix of b.
This result is extremely important and useful.13 It implies that without actually

specifying the type of heteroscedasticity, we can still make appropriate inferences based
on the results of least squares. This implication is especially useful if we are unsure of
the precise nature of the heteroscedasticity (which is probably most of the time). We
will pursue some examples in Section 8.7.

11See also Eicker (1967), Horn, Horn, and Duncan (1975), and MacKinnon and White (1985).
12We will give only a broad sketch of the proof. Formal results appear in White (1980) and (2001).
13Further discussion and some refinements may be found in Cragg (1982). Cragg shows how White’s obser-
vation can be extended to devise an estimator that improves on the efficiency of ordinary least squares.
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TABLE 9.1 Least Squares Regression Results

Constant Age OwnRent Income Income2

Sample mean 32.08 0.36 3.369
Coefficient −237.15 −3.0818 27.941 234.35 −14.997
Standard error 199.35 5.5147 82.922 80.366 7.4693
t ratio −1.19 −0.5590 0.337 2.916 −2.0080
White S.E. 212.99 3.3017 92.188 88.866 6.9446
D. and M. (1) 220.79 3.4227 95.566 92.122 7.1991
D. and M. (2) 221.09 3.4477 95.672 92.083 7.1995

R2 = 0.243578, s = 284.75080

Mean expenditure = $262.53. Income is ×$10,000
Tests for heteroscedasticity: White = 14.329,
Breusch–Pagan = 41.920, Koenker–Bassett = 6.187.

A number of studies have sought to improve on the White estimator for OLS.14

The asymptotic properties of the estimator are unambiguous, but its usefulness in small
samples is open to question. The possible problems stem from the general result that
the squared OLS residuals tend to underestimate the squares of the true disturbances.
[That is why we use 1/(n− K) rather than 1/n in computing s2.] The end result is that in
small samples, at least as suggested by some Monte Carlo studies [e.g., MacKinnon and
White (1985)], the White estimator is a bit too optimistic; the matrix is a bit too small, so
asymptotic t ratios are a little too large. Davidson and MacKinnon (1993, p. 554) suggest
a number of fixes, which include (1) scaling up the end result by a factor n/(n − K) and
(2) using the squared residual scaled by its true variance, e2

i /mii , instead of e2
i , where

mii = 1 − x′
i (X

′X)−1xi .15 [See Exercise 9.6.b.] On the basis of their study, Davidson
and MacKinnon strongly advocate one or the other correction. Their admonition “One
should never use [the White estimator] because [(2)] always performs better” seems a bit
strong, but the point is well taken. The use of sharp asymptotic results in small samples
can be problematic. The last two rows of Table 9.1 show the recomputed standard errors
with these two modifications.

Example 9.2 The White Estimator
Using White’s estimator for the regression in Example 9.1 produces the results in the row
labeled “White S. E.” in Table 9.1. The two income coefficients are individually and jointly sta-
tistically significant based on the individual t ratios and F (2, 67) = [(0.244−0.064)/2]/[0.756/
(72 − 5) ] = 7.976. The 1 percent critical value is 4.94.

The differences in the estimated standard errors seem fairly minor given the extreme
heteroscedasticity. One surprise is the decline in the standard error of the age coefficient.
The F test is no longer available for testing the joint significance of the two income coefficients
because it relies on homoscedasticity. A Wald test, however, may be used in any event. The
chi-squared test is based on

W = (Rb) ′[R
(
Est. Asy. Var[b]

)
R′]−1

(Rb) where R =
[

0 0 0 1 0
0 0 0 0 1

]
,

14See, e.g., MacKinnon and White (1985) and Messer and White (1984).
15This is the standardized residual in (4-61). The authors also suggest a third correction, e2

i /m2
i i , as an

approximation to an estimator based on the “jackknife” technique, but their advocacy of this estimator
is much weaker than that of the other two.
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and the estimated asymptotic covariance matrix is the White estimator. The F statistic based
on least squares is 7.976. The Wald statistic based on the White estimator is 20.604; the
95 percent critical value for the chi-squared distribution with two degrees of freedom is 5.99,
so the conclusion is unchanged.

9.5 TESTING FOR HETEROSCEDASTICITY

Heteroscedasticity poses potentially severe problems for inferences based on least
squares. One can rarely be certain that the disturbances are heteroscedastic, however,
and unfortunately, what form the heteroscedasticity takes if they are. As such, it is use-
ful to be able to test for homoscedasticity and, if necessary, modify the estimation
procedures accordingly.16 Several types of tests have been suggested. They can be
roughly grouped in descending order in terms of their generality and, as might be
expected, in ascending order in terms of their power.17 We will examine the two most
commonly used tests.

Tests for heteroscedasticity are based on the following strategy. Ordinary least
squares is a consistent estimator of β even in the presence of heteroscedasticity. As such,
the ordinary least squares residuals will mimic, albeit imperfectly because of sampling
variability, the heteroscedasticity of the true disturbances. Therefore, tests designed
to detect heteroscedasticity will, in general, be applied to the ordinary least squares
residuals.

9.5.1 WHITE’S GENERAL TEST

To formulate most of the available tests, it is necessary to specify, at least in rough
terms, the nature of the heteroscedasticity. It would be desirable to be able to test a
general hypothesis of the form

H0 : σ 2
i = σ 2 for all i,

H1 : Not H0.

In view of our earlier findings on the difficulty of estimation in a model with n unknown
parameters, this is rather ambitious. Nonetheless, such a test has been suggested by
White (1980b). The correct covariance matrix for the least squares estimator is

Var[b | X] = σ 2[X′X]−1[X′�X][X′X]−1,

which, as we have seen, can be estimated using (9-27). The conventional estimator is
V = s2[X′X]−1. If there is no heteroscedasticity, then V will give a consistent estimator
of Var[b | X], whereas if there is, then it will not. White has devised a statistical test based
on this observation. A simple operational version of his test is carried out by obtaining
nR2 in the regression of e2

i on a constant and all unique variables contained in x and

16There is the possibility that a preliminary test for heteroscedasticity will incorrectly lead us to use weighted
least squares or fail to alert us to heteroscedasticity and lead us improperly to use ordinary least squares.
Some limited results on the properties of the resulting estimator are given by Ohtani and Toyoda (1980).
Their results suggest that it is best to test first for heteroscedasticity rather than merely to assume that it is
present.
17A study that examines the power of several tests for heteroscedasticity is Ali and Giaccotto (1984).
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all the squares and cross products of the variables in x. The statistic is asymptotically
distributed as chi-squared with P − 1 degrees of freedom, where P is the number of
regressors in the equation, including the constant.

The White test is extremely general. To carry it out, we need not make any specific
assumptions about the nature of the heteroscedasticity. Although this characteristic is
a virtue, it is, at the same time, a potentially serious shortcoming. The test may reveal
heteroscedasticity, but it may instead simply identify some other specification error
(such as the omission of x2 from a simple regression).18 Except in the context of a
specific problem, little can be said about the power of White’s test; it may be very low
against some alternatives. In addition, unlike some of the other tests we shall discuss,
the White test is nonconstructive. If we reject the null hypothesis, then the result of the
test gives no indication of what to do next.

9.5.2 THE BREUSCH–PAGAN/GODFREY LM TEST

Breusch and Pagan19 have devised a Lagrange multiplier test of the hypothesis that
σ 2

i = σ 2 f (α0 + α′zi ), where zi is a vector of independent variables.20 The model is
homoscedastic if α = 0. The test can be carried out with a simple regression:

LM = 1
2

explained sum of squares in the regression of e2
i /(e

′e/n) on zi .

For computational purposes, let Z be the n × P matrix of observations on (1, zi ), and
let g be the vector of observations of gi = e2

i /(e
′e/n) − 1. Then

LM = 1
2

[g′Z(Z′Z)−1Z′g]. (9-28)

Under the null hypothesis of homoscedasticity, LM has a limiting chi-squared distribu-
tion with degrees of freedom equal to the number of variables in zi . This test can be
applied to a variety of models, including, for example, those examined in Example 9.3 (2)
and in Sections 9.7.1 and 9.7.2.21

It has been argued that the Breusch–Pagan Lagrange multiplier test is sensitive to
the assumption of normality. Koenker (1981) and Koenker and Bassett (1982) suggest
that the computation of LM be based on a more robust estimator of the variance of ε2

i ,

V = 1
n

n∑
i=1

[
e2

i − e′e
n

]2

.

The variance of ε2
i is not necessarily equal to 2σ 4 if εi is not normally distributed. Let u

equal (e2
1, e2

2, . . . , e2
n) and i be an n × 1 column of 1s. Then ū = e′e/n. With this change,

the computation becomes

LM =
[

1
V

]
(u − ū i)′Z(Z′Z)−1Z′(u − ū i).

18Thursby (1982) considers this issue in detail.
19Breusch and Pagan (1979).
20Lagrange multiplier tests are discussed in Section 14.6.3.
21The model σ 2

i = σ 2 exp(α′zi ) is one of these cases. In analyzing this model specifically, Harvey (1976)
derived the same test statistic.
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Under normality, this modified statistic will have the same limiting distribution as the
Breusch–Pagan statistic, but absent normality, there is some evidence that it provides a
more powerful test. Waldman (1983) has shown that if the variables in zi are the same
as those used for the White test described earlier, then the two tests are algebraically
the same.

Example 9.3 Testing for Heteroscedasticity
1. White’s Test: For the data used in Example 9.1, there are 15 variables in x⊗x including the
constant term. But since Ownrent2 = OwnRent and Income × Income = Income2, only 13 are
unique. Regression of the squared least squares residuals on these 13 variables produces
R2 = 0.199013. The chi-squared statistic is therefore 72(0.199013) = 14.329. The 95 percent
critical value of chi-squared with 12 degrees of freedom is 21.03, so despite what might seem
to be obvious in Figure 9.1, the hypothesis of homoscedasticity is not rejected by this test.
2. Breusch–Pagan Test: This test requires a specific alternative hypothesis. For this pur-
pose, we specify the test based on z = [1, Income, Income2]. Using the least squares resid-
uals, we compute gi = e2

i /(e′e/72) − 1; then LM = 1
2 g′Z(Z′Z)−1Z′g. The sum of squares

is 5,432,562.033. The computation produces LM = 41.920. The critical value for the chi-
squared distribution with two degrees of freedom is 5.99, so the hypothesis of homoscedas-
ticity is rejected. The Koenker and Bassett variant of this statistic is only 6.187, which is still
significant but much smaller than the LM statistic. The wide difference between these two
statistics suggests that the assumption of normality is erroneous. Absent any knowledge
of the heteroscedasticity, we might use the Bera and Jarque (1981, 1982) and Kiefer and
Salmon (1983) test for normality,

χ2[2] = n[1/6(m3/s3) 2 + 1/25( (m4 − 3)/s4) 2]

where mj = (1/n)
∑

i e j
i . Under the null hypothesis of homoscedastic and normally distributed

disturbances, this statistic has a limiting chi-squared distribution with two degrees of free-
dom. Based on the least squares residuals, the value is 497.35, which certainly does lead
to rejection of the hypothesis. Some caution is warranted here, however. It is unclear what
part of the hypothesis should be rejected. We have convincing evidence in Figure 9.1 that
the disturbances are heteroscedastic, so the assumption of homoscedasticity underlying
this test is questionable. This does suggest the need to examine the data before applying a
specification test such as this one.

9.6 WEIGHTED LEAST SQUARES

Having tested for and found evidence of heteroscedasticity, the logical next step is to
revise the estimation technique to account for it. The GLS estimator is

β̂ = (X′�−1X)−1X′�−1y. (9-29)

Consider the most general case, Var[εi | X] = σ 2
i = σ 2ωi . Then �−1 is a diagonal matrix

whose ith diagonal element is 1/ωi . The GLS estimator is obtained by regressing

Py =

⎡
⎢⎢⎢⎢⎣

y1/
√

ω1

y2/
√

ω2

...

yn/
√

ωn

⎤
⎥⎥⎥⎥⎦

on PX =

⎡
⎢⎢⎢⎢⎣

x′
1/

√
ω1

x′
2/

√
ω2

...

x′
n/

√
ωn

⎤
⎥⎥⎥⎥⎦

.
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Applying ordinary least squares to the transformed model, we obtain the weighted least
squares (WLS) estimator.

β̂ =
[

n∑
i=1

wi xi x′
i

]−1 [
n∑

i=1

wi xi yi

]
,

where wi = 1/ωi .22 The logic of the computation is that observations with smaller vari-
ances receive a larger weight in the computations of the sums and therefore have greater
influence in the estimates obtained.

9.6.1 WEIGHTED LEAST SQUARES WITH KNOWN �

A common specification is that the variance is proportional to one of the regressors
or its square. Our earlier example of family expenditures is one in which the relevant
variable is usually income. Similarly, in studies of firm profits, the dominant variable is
typically assumed to be firm size. If

σ 2
i = σ 2x2

ik,

then the transformed regression model for GLS is

y
xk

= βk + β1

(
x1

xk

)
+ β2

(
x2

xk

)
+ · · · + ε

xk
. (9-30)

If the variance is proportional to xk instead of x2
k, then the weight applied to each

observation is 1/
√

xk instead of 1/xk.
In (9-30), the coefficient on xk becomes the constant term. But if the variance is

proportional to any power of xk other than two, then the transformed model will no
longer contain a constant, and we encounter the problem of interpreting R2 mentioned
earlier. For example, no conclusion should be drawn if the R2 in the regression of y/z on
1/z and x/z is higher than in the regression of y on a constant and x for any z, including
x. The good fit of the weighted regression might be due to the presence of 1/z on both
sides of the equality.

It is rarely possible to be certain about the nature of the heteroscedasticity in a
regression model. In one respect, this problem is only minor. The weighted least squares
estimator

β̂ =
[

n∑
i=1

wi xi x′
i

]−1 [
n∑

i=1

wi xi yi

]

is consistent regardless of the weights used, as long as the weights are uncorrelated with
the disturbances.

But using the wrong set of weights has two other consequences that may be less
benign. First, the improperly weighted least squares estimator is inefficient. This point
might be moot if the correct weights are unknown, but the GLS standard errors will

22The weights are often denoted wi = 1/σ 2
i . This expression is consistent with the equivalent

β̂ = [X′(σ 2�)−1X]−1X′(σ 2�)−1y. The σ 2’s cancel, leaving the expression given previously.
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also be incorrect. The asymptotic covariance matrix of the estimator

β̂ = [X′V−1X]−1X′V−1y (9-31)
is

Asy. Var[β̂] = σ 2[X′V−1X]−1X′V−1�V−1X[X′V−1X]−1. (9-32)

This result may or may not resemble the usual estimator, which would be the matrix in
brackets, and underscores the usefulness of the White estimator in (9-27).

The standard approach in the literature is to use OLS with the White estimator
or some variant for the asymptotic covariance matrix. One could argue both flaws and
virtues in this approach. In its favor, robustness to unknown heteroscedasticity is a
compelling virtue. In the clear presence of heteroscedasticity, however, least squares
can be extremely inefficient. The question becomes whether using the wrong weights is
better than using no weights at all. There are several layers to the question. If we use
one of the models mentioned earlier—Harvey’s, for example, is a versatile and flexible
candidate—then we may use the wrong set of weights and, in addition, estimation of
the variance parameters introduces a new source of variation into the slope estimators
for the model. A heteroscedasticity robust estimator for weighted least squares can
be formed by combining (9-32) with the White estimator. The weighted least squares
estimator in (9-31) is consistent with any set of weights V = diag[v1, v2, . . . , vn]. Its
asymptotic covariance matrix can be estimated with

Est. Asy. Var[β̂] = (X′V−1X)−1

[
n∑

i=1

(
e2

i

v2
i

)
xi x′

i

]
(X′V−1X)−1. (9-33)

Any consistent estimator can be used to form the residuals. The weighted least squares
estimator is a natural candidate.

9.6.2 ESTIMATION WHEN � CONTAINS UNKNOWN PARAMETERS

The general form of the heteroscedastic regression model has too many parameters to
estimate by ordinary methods. Typically, the model is restricted by formulating σ 2� as
a function of a few parameters, as in σ 2

i = σ 2xα
i or σ 2

i = σ 2(x′
iα)2. Write this as �(α).

FGLS based on a consistent estimator of �(α) (meaning a consistent estimator of α)
is asymptotically equivalent to full GLS. The new problem is that we must first find
consistent estimators of the unknown parameters in �(α). Two methods are typically
used, two-step GLS and maximum likelihood. We consider the two-step estimator here
and the maximum likelihood estimator in Chapter 14.

For the heteroscedastic model, the GLS estimator is

β̂ =
[

n∑
i=1

(
1
σ 2

i

)
xi x′

i

]−1 [
n∑

i=1

(
1
σ 2

i

)
xi yi

]
. (9-34)

The two-step estimators are computed by first obtaining estimates σ̂ 2
i , usually using some

function of the ordinary least squares residuals. Then, ˆ̂β uses (9-34) and σ̂ 2
i . The ordinary

least squares estimator of β, although inefficient, is still consistent. As such, statistics
computed using the ordinary least squares residuals, ei = (yi − x′

i b), will have the same
asymptotic properties as those computed using the true disturbances, εi = (yi − x′

iβ).
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This result suggests a regression approach for the true disturbances and variables zi that
may or may not coincide with xi . Now E [ε2

i | zi ] = σ 2
i , so

ε2
i = σ 2

i + vi ,

where vi is just the difference between ε2
i and its conditional expectation. Because εi is

unobservable, we would use the least squares residual, for which ei = εi − x′
i (b − β) =

εi + ui . Then, e2
i = ε2

i + u2
i + 2εi ui . But, in large samples, as b

p−→ β, terms in ui will
become negligible, so that at least approximately,23

e2
i = σ 2

i + v∗
i .

The procedure suggested is to treat the variance function as a regression and use
the squares or some other functions of the least squares residuals as the dependent
variable.24 For example, if σ 2

i = z′
iα, then a consistent estimator of α will be the least

squares slopes, a, in the “model,”

e2
i = z′

iα + v∗
i .

In this model, v∗
i is both heteroscedastic and autocorrelated, so a is consistent but

inefficient. But, consistency is all that is required for asymptotically efficient estimation
of β using �(α̂). It remains to be settled whether improving the estimator of α in this
and the other models we will consider would improve the small sample properties of
the two-step estimator of β.25

The two-step estimator may be iterated by recomputing the residuals after comput-
ing the FGLS estimates and then reentering the computation. The asymptotic properties
of the iterated estimator are the same as those of the two-step estimator, however. In
some cases, this sort of iteration will produce the maximum likelihood estimator at
convergence. Yet none of the estimators based on regression of squared residuals on
other variables satisfy the requirement. Thus, iteration in this context provides little
additional benefit, if any.

9.7 APPLICATIONS

This section will present two common applications of the heteroscedastic regression
model, Harvey’s model of multiplicative heteroscedasticity and a model of groupwise
heteroscedasticity that extends to the disturbance variance some concepts that are usu-
ally associated with variation in the regression function.

9.7.1 MULTIPLICATIVE HETEROSCEDASTICITY

Harvey’s (1976) model of multiplicative heteroscedasticity is a very flexible, general
model that includes most of the useful formulations as special cases. The general for-
mulation is

σ 2
i = σ 2 exp(z′

iα).

23See Amemiya (1985) and Harvey (1976) for formal analyses.
24See, for example, Jobson and Fuller (1980).
25Fomby, Hill, and Johnson (1984, pp. 177–186) and Amemiya (1985, pp. 203–207; 1977a) examine this model.



Greene-2140242 book January 19, 2011 21:7

CHAPTER 9 ✦ The Generalized Regression Model 321

A model with heteroscedasticity of the form

σ 2
i = σ 2

M∏
m=1

zαm
im

results if the logs of the variables are placed in zi . The groupwise heteroscedasticity
model described in Example 9.4 is produced by making zi a set of group dummy vari-
ables (one must be omitted). In this case, σ 2 is the disturbance variance for the base
group whereas for the other groups, σ 2

g = σ 2 exp(αg).

Example 9.4 Multiplicative Heteroscedasticity
In Example 6.4, we fit a cost function for the U.S. airline industry of the form

In Ci t = β1 + β2 In Qi t + β3 ( ln Qi t ) 2 + β4 ln Pfuel,i ,t + β5 Loadfactori ,t + εi ,t

where Ci ,t is total cost, Qi ,t is output, and Pfuel,i ,t is the price of fuel and the 90 observations
in the data set are for six firms observed for 15 years. (The model also included dummy
variables for firm and year, which we will omit for simplicity.) We now consider a revised
model in which the load factor appears in the variance of εi ,t rather than in the regression
function. The model is

σ 2
i ,t = σ 2 exp(γ Loadfactori ,t )

= exp(γ1 + γ2 Loadfactori ,t ) .

The constant in the implied regression is γ1 = ln σ 2. Figure 9.2 shows a plot of the least
squares residuals against Load factor for the 90 observations. The figure does suggest the
presence of heteroscedasticity. (The dashed lines are placed to highlight the effect.) We
computed the LM statistic using (9-28). The chi-squared statistic is 2.959. This is smaller
than the critical value of 3.84 for one degree of freedom, so on this basis, the null hypothesis
of homoscedasticity with respect to the load factor is not rejected.

FIGURE 9.2 Plot of Residuals Against Load Factor.
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TABLE 9.2 Multiplicative Heteroscedasticity Model

Constant Ln Q Ln2 Q Ln Pf R2 Sum of Squares

OLS 9.1382 0.92615 0.029145 0.41006
0.24507a 0.032306 0.012304 0.018807 0.9861674c 1.577479d

0.22595b 0.030128 0.011346 0.017524
Two step 9.2463 0.92136 0.024450 0.40352

0.21896 0.033028 0.011412 0.016974
0.986119 1.612938

Iteratede 9.2774 0.91609 0.021643 0.40174
0.20977 0.032993 0.011017 0.016332

0.986071 1.645693

aConventional OLS standard errors
bWhite robust standard errors
cSquared correlation between actual and fitted values
dSum of squared residuals
eValues of c2 by iteration: 8.254344, 11.622473, 11.705029, 11.710618, 11.711012, 11.711040, 11.711042

To begin, we use OLS to estimate the parameters of the cost function and the set of
residuals, ei ,t . Regression of log(e2

i t ) on a constant and the load factor provides estimates of
γ1 and γ2, denoted c1 and c2. The results are shown in Table 9.2. As Harvey notes, exp(c1)
does not necessarily estimate σ 2 consistently—for normally distributed disturbances, it is
low by a factor of 1.2704. However, as seen in (9-29), the estimate of σ 2 (biased or otherwise)
is not needed to compute the FGLS estimator. Weights wi ,t = exp(−c1 − c2Loadfactori ,t ) are
computed using these estimates, then weighted least squares using (9-30) is used to obtain
the FGLS estimates of β. The results of the computations are shown in Table 9.2.

We might consider iterating the procedure. Using the results of FGLS at step 2, we can
recompute the residuals, then recompute c1 and c2 and the weights, and then reenter the
iteration. The process converges when the estimate of c2 stabilizes. This requires seven iter-
ations. The results are shown in Table 9.2. As noted earlier, iteration does not produce any
gains here. The second step estimator is already fully efficient. Moreover, this does not pro-
duce the MLE, either. That would be obtained by regressing [e2

i ,t/exp(c1 + c2Loadfactori ,t ) −1]
on the constant and load factor at each iteration to obtain the new estimates. We will revisit
this in Chapter 14.

9.7.2 GROUPWISE HETEROSCEDASTICITY

A groupwise heteroscedastic regression has the structural equations

yi = x′
iβ + εi , i = 1, . . . , n,

E [εi | xi ] = 0, i = 1, . . . , n.

The n observations are grouped into G groups, each with ng observations. The slope
vector is the same in all groups, but within group g

Var[εig | xig] = σ 2
g , i = 1, . . . , ng.

If the variances are known, then the GLS estimator is

β̂ =
⎡
⎣

G∑
g=1

(
1
σ 2

g

)
X′

gXg

⎤
⎦

−1 ⎡
⎣

G∑
g=1

(
1
σ 2

g

)
X′

gyg

⎤
⎦ . (9-35)
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Because X′
gyg = X′

gXgbg , where bg is the OLS estimator in the gth subset of observa-
tions,

β̂ =
⎡
⎣

G∑
g=1

(
1
σ 2

g

)
X′

gXg

⎤
⎦

−1⎡
⎣

G∑
g=1

(
1
σ 2

g

)
X′

gXgbg

⎤
⎦=

⎡
⎣

G∑
g=1

Vg

⎤
⎦

−1⎡
⎣

G∑
g=1

Vgbg

⎤
⎦=

G∑
g=1

Wgbg.

This result is a matrix weighted average of the G least squares estimators. The weighting
matrices are Wg = [∑G

g=1

(
Var[bg]

)−1]−1(Var[bg]
)−1. The estimator with the smaller

covariance matrix therefore receives the larger weight. (If Xg is the same in every group,
then the matrix Wg reduces to the simple, wgI = (hg/

∑
g hg)I where hg = 1/σ 2

g .)
The preceding is a useful construction of the estimator, but it relies on an algebraic

result that might be unusable. If the number of observations in any group is smaller than
the number of regressors, then the group specific OLS estimator cannot be computed.
But, as can be seen in (9-35), that is not what is needed to proceed; what is needed are
the weights. As always, pooled least squares is a consistent estimator, which means that
using the group specific subvectors of the OLS residuals,

σ̂ 2
g = e′

geg

ng
, (9-36)

provides the needed estimator for the group specific disturbance variance. Thereafter,
(9-35) is the estimator and the inverse matrix in that expression gives the estimator of
the asymptotic covariance matrix.

Continuing this line of reasoning, one might consider iterating the estimator by re-
turning to (9-36) with the two-step FGLS estimator, recomputing the weights, then
returning to (9-35) to recompute the slope vector. This can be continued until conver-
gence. It can be shown [see Oberhofer and Kmenta (1974)] that so long as (9-36) is used
without a degrees of freedom correction, then if this does converge, it will do so at the
maximum likelihood estimator (with normally distributed disturbances).

For testing the homoscedasticity assumption, both White’s test and the LM test are
straightforward. The variables thought to enter the conditional variance are simply a set
of G − 1 group dummy variables, not including one of them (to avoid the dummy vari-
able trap), which we’ll denote Z∗. Because the columns of Z∗ are binary and orthogonal,
to carry out White’s test, we need only regress the squared least squares residuals on a
constant and Z∗ and compute NR2 where N = ∑

g ng . The LM test is also straightfor-
ward. For purposes of this application of the LM test, it will prove convenient to replace
the overall constant in Z in (9-28), with the remaining group dummy variable. Since the
column space of the full set of dummy variables is the same as that of a constant and
G− 1 of them, all results that follow will be identical. In (9-28), the vector g will now be
G subvectors where each subvector is the ng elements of [(e2

ig/σ̂
2)−1], and σ̂ 2 = e′e/N.

By multiplying it out, we find that g′Z is the G vector with elements ng[(σ̂ 2
g /σ̂ 2) − 1],

while (Z′Z)−1 is the G × G matrix with diagonal elements 1/ng . It follows that

LM = 1
2

g′Z(Z′Z)−1Z′g = 1
2

G∑
g=1

ng

(
σ̂ 2

g

σ̂ 2
− 1

)2

. (9-37)

Both statistics have limiting chi squared distributions with G − 1 degrees of freedom
under the null hypothesis of homoscedasticity. (There are only G−1 degrees of freedom
because the hypothesis imposes G − 1 restrictions, that the G variances are all equal to
each other. Implicitly, one of the variances is free and the other G − 1 equal that one.)
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Example 9.5 Groupwise Heteroscedasticity
Baltagi and Griffin (1983) is a study of gasoline usage in 18 of the 30 OECD countries. The
model analyzed in the paper is

ln (Gasoline usage/car) i ,t = β1 + β2 ln(Per capita income) i ,t + β3 ln Pricei ,t

β4 ln(Cars per capita) i ,t + εi ,t ,

where i = country and t = 1960, . . . , 1978. This is a balanced panel (see Section 9.2) with
19(18) = 342 observations in total. The data are given in Appendix Table F9.2.

Figure 9.3 displays the OLS residuals using the least squares estimates of the model
above with the addition of 18 country dummy variables (1 to 18) (and without the overall con-
stant). (The country dummy variables are used so that the country-specific residuals will have
mean zero). The F statistic for testing the null hypothesis that all the constants are equal is

F
[
(G − 1) ,

(
�gng − K − G

) ] = (e′
0e0 − e′

1e1)/(G − 1)

(e′
1e1/

∑
g

ng − K − G)

= (14.90436 − 2.73649)/17
2.73649/(342 − 3 − 18)

= 83.960798,

where e0 is the vector of residuals in the regression with a single constant term and e1 is the
regression with country specific constant terms. The critical value from the F table with 17
and 321 degrees of freedom is 1.655. The regression results are given in Table 9.3. Figure 9.3
does convincingly suggest the presence of groupwise heteroscedasticity. The White and LM
statistics are 342(0.38365) = 131.21 and 279.588, respectively. The critical value from the
chi-squared distribution with 17 degrees of freedom is 27.587. So, we reject the hypothesis
of homoscedasticity and proceed to fit the model by feasible GLS. The two-step estimators
are shown in Table 9.3. The FGLS estimator is computed by using weighted least squares,
where the weights are 1/σ̂ 2

g for each observation in country g. Comparing the White standard
errors to the two-step estimators, we see that in this instance, there is a substantial gain to
using feasible generalized least squares.

FIGURE 9.3 Plot of OLS Residuals by Country.
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TABLE 9.3 Estimated Gasoline Consumption Equations

OLS FGLS

Coefficient Std. Error White Std. Err. Coefficient Std. Error

In Income 0.66225 0.07339 0.07277 0.57507 0.02927
In Price −0.32170 0.04410 0.05381 −0.27967 0.03519
Cars/Cap. −0.64048 0.02968 0.03876 −0.56540 0.01613
Country 1 2.28586 0.22832 0.22608 2.43707 0.11308
Country 2 2.16555 0.21290 0.20983 2.31699 0.10225
Country 3 3.04184 0.21864 0.22479 3.20652 0.11663
Country 4 2.38946 0.20809 0.20783 2.54707 0.10250
Country 5 2.20477 0.21647 0.21087 2.33862 0.10101
Country 6 2.14987 0.21788 0.21846 2.30066 0.10893
Country 7 2.33711 0.21488 0.21801 2.57209 0.11206
Country 8 2.59233 0.24369 0.23470 2.72376 0.11384
Country 9 2.23255 0.23954 0.22973 2.34805 0.10795
Country 10 2.37593 0.21184 0.22643 2.58988 0.11821
Country 11 2.23479 0.21417 0.21311 2.39619 0.10478
Country 12 2.21670 0.20304 0.20300 2.38486 0.09950
Country 13 1.68178 0.16246 0.17133 1.90306 0.08146
Country 14 3.02634 0.39451 0.39180 3.07825 0.20407
Country 15 2.40250 0.22909 0.23280 2.56490 0.11895
Country 16 2.50999 0.23566 0.26168 2.82345 0.13326
Country 17 2.34545 0.22728 0.22322 2.48214 0.10955
Country 18 3.05525 0.21960 0.22705 3.21519 0.11917

9.8 SUMMARY AND CONCLUSIONS

This chapter has introduced a major extension of the classical linear model. By allowing
for heteroscedasticity and autocorrelation in the disturbances, we expand the range
of models to a large array of frameworks. We will explore these in the next several
chapters. The formal concepts introduced in this chapter include how this extension
affects the properties of the least squares estimator, how an appropriate estimator
of the asymptotic covariance matrix of the least squares estimator can be computed
in this extended modeling framework and, finally, how to use the information about
the variances and covariances of the disturbances to obtain an estimator that is more
efficient than ordinary least squares.

We have analyzed in detail one form of the generalized regression model, the model
of heteroscedasticity. We first considered least squares estimation. The primary result
for least squares estimation is that it retains its consistency and asymptotic normality,
but some correction to the estimated asymptotic covariance matrix may be needed for
appropriate inference. The White estimator is the standard approach for this compu-
tation. After examining two general tests for heteroscedasticity, we then narrowed the
model to some specific parametric forms, and considered weighted (generalized) least
squares for efficient estimation and maximum likelihood estimation. If the form of the
heteroscedasticity is known but involves unknown parameters, then it remains uncer-
tain whether FGLS corrections are better than OLS. Asymptotically, the comparison is
clear, but in small or moderately sized samples, the additional variation incorporated
by the estimated variance parameters may offset the gains to GLS.
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Key Terms and Concepts

• Aitken’s theorem
• Asymptotic properties
• Autocorrelation
• Breusch–Pagan Lagrange

multiplier test
• Efficient estimator
• Feasible generalized least

squares (FGLS)
• Finite-sample properties
• Generalized least squares

(GLS)
• Generalized linear

regression model
• Generalized sum of squares

• Groupwise
heteroscedasticity

• Heteroscedasticity
• Kruskal’s theorem
• Lagrange multiplier test
• Multiplicative

heteroscedasticity
• Nonconstructive test
• Ordinary least squares

(OLS)
• Panel data
• Parametric model
• Robust estimation
• Robust estimator

• Robustness to unknown
heteroscedasticity

• Semiparametric model
• Specification test
• Spherical disturbances
• Two-step estimator
• Wald test
• Weighted least squares

(WLS)
• White heteroscedasticity

consistent estimator
• White test

Exercises

1. What is the covariance matrix, Cov[β̂, β̂ − b], of the GLS estimator β̂ =
(X′�−1X)−1X′�−1y and the difference between it and the OLS estimator, b =
(X′X)−1X′y? The result plays a pivotal role in the development of specification
tests in Hausman (1978).

2. This and the next two exercises are based on the test statistic usually used to test a
set of J linear restrictions in the generalized regression model

F[J, n − K] = (Rβ̂ − q)′[R(X′�−1X)−1R′]−1(Rβ̂ − q)/J

(y − Xβ̂)′�−1(y − Xβ̂)/(n − K)
,

where β̂ is the GLS estimator. Show that if � is known, if the disturbances are
normally distributed and if the null hypothesis, Rβ = q, is true, then this statistic
is exactly distributed as F with J and n − K degrees of freedom. What assump-
tions about the regressors are needed to reach this conclusion? Need they be non-
stochastic?

3. Now suppose that the disturbances are not normally distributed, although � is still
known. Show that the limiting distribution of previous statistic is (1/J ) times a chi-
squared variable with J degrees of freedom. (Hint: The denominator converges to
σ 2.) Conclude that in the generalized regression model, the limiting distribution of
the Wald statistic

W = (Rβ̂ − q)′
{

R
(
Est. Var[β̂]

)
R′}−1

(Rβ̂ − q)

is chi-squared with J degrees of freedom, regardless of the distribution of the distur-
bances, as long as the data are otherwise well behaved. Note that in a finite sample,
the true distribution may be approximated with an F[J, n − K] distribution. It is a
bit ambiguous, however, to interpret this fact as implying that the statistic is asymp-
totically distributed as F with J and n − K degrees of freedom, because the limiting
distribution used to obtain our result is the chi-squared, not the F. In this instance,
the F[J, n − K] is a random variable that tends asymptotically to the chi-squared
variate.
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4. Finally, suppose that � must be estimated, but that assumptions (9-16) and (9-17)
are met by the estimator. What changes are required in the development of the
previous problem?

5. In the generalized regression model, if the K columns of X are characteristic vectors
of �, then ordinary least squares and generalized least squares are identical. (The
result is actually a bit broader; X may be any linear combination of exactly K
characteristic vectors. This result is Kruskal’s theorem.)
a. Prove the result directly using matrix algebra.
b. Prove that if X contains a constant term and if the remaining columns are in

deviation form (so that the column sum is zero), then the model of Exercise 8
is one of these cases. (The seemingly unrelated regressions model with identical
regressor matrices, discussed in Chapter 10, is another.)

6. In the generalized regression model, suppose that � is known.
a. What is the covariance matrix of the OLS and GLS estimators of β?
b. What is the covariance matrix of the OLS residual vector e = y − Xb?
c. What is the covariance matrix of the GLS residual vector ε̂ = y − Xβ̂?
d. What is the covariance matrix of the OLS and GLS residual vectors?

7. Suppose that y has the pdf f (y | x) = (1/x′β)e−y/(x′β), y > 0.
Then E [y | x] = x′β and Var[y | x] = (x′β)2. For this model, prove that GLS

and MLE are the same, even though this distribution involves the same parameters
in the conditional mean function and the disturbance variance.

8. Suppose that the regression model is y = μ + ε, where ε has a zero mean, constant
variance, and equal correlation, ρ, across observations. Then Cov[εi , ε j ] = σ 2ρ if
i �= j . Prove that the least squares estimator of μ is inconsistent. Find the charac-
teristic roots of � and show that Condition 2 after Theorem 9.2 is violated.

9. Suppose that the regression model is yi = μ + εi , where

E[εi | xi ] = 0, Cov[εi , ε j | xi , xj ] = 0 for i = j, but Var[εi | xi ] = σ 2x2
i , xi > 0.

a. Given a sample of observations on yi and xi , what is the most efficient estimator
of μ? What is its variance?

b. What is the OLS estimator of μ, and what is the variance of the ordinary least
squares estimator?

c. Prove that the estimator in part a is at least as efficient as the estimator in part b.
10. For the model in Exercise 9, what is the probability limit of s2 = 1

n

∑n
i=1(yi − ȳ)2?

Note that s2 is the least squares estimator of the residual variance. It is also n times
the conventional estimator of the variance of the OLS estimator,

Est. Var [ȳ] = s2(X′X)−1 = s2

n
.

How does this equation compare with the true value you found in part b of Exer-
cise 9? Does the conventional estimator produce the correct estimator of the true
asymptotic variance of the least squares estimator?

11. For the model in Exercise 9, suppose that ε is normally distributed, with mean zero
and variance σ 2[1 + (γ x)2]. Show that σ 2 and γ 2 can be consistently estimated by
a regression of the least squares residuals on a constant and x2. Is this estimator
efficient?
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12. Two samples of 50 observations each produce the following moment matrices. (In
each case, X is a constant and one variable.)

Sample 1 Sample 2

X′X
[

50 300
300 2100

] [
50 300
300 2100

]

y′X [300 2000] [300 2200]

y′y [2100] [2800]

a. Compute the least squares regression coefficients and the residual variances s2

for each data set. Compute the R2 for each regression.
b. Compute the OLS estimate of the coefficient vector assuming that the coefficients

and disturbance variance are the same in the two regressions. Also compute the
estimate of the asymptotic covariance matrix of the estimate.

c. Test the hypothesis that the variances in the two regressions are the same without
assuming that the coefficients are the same in the two regressions.

d. Compute the two-step FGLS estimator of the coefficients in the regressions,
assuming that the constant and slope are the same in both regressions. Compute
the estimate of the covariance matrix and compare it with the result of part b.

Applications

1. This application is based on the following data set.

50 Observations on y:

−1.42 2.75 2.10 −5.08 1.49 1.00 0.16 −1.11 1.66
−0.26 −4.87 5.94 2.21 −6.87 0.90 1.61 2.11 −3.82
−0.62 7.01 26.14 7.39 0.79 1.93 1.97 −23.17̧ −2.52
−1.26 −0.15 3.41 −5.45 1.31 1.52 2.04 3.00 6.31

5.51 −15.22 −1.47 −1.48 6.66 1.78 2.62 −5.16 −4.71
−0.35 −0.48 1.24 0.69 1.91

50 Observations on x1:

−1.65 1.48 0.77 0.67 0.68 0.23 −0.40 −1.13 0.15
−0.63 0.34 0.35 0.79 0.77 −1.04 0.28 0.58 −0.41
−1.78 1.25 0.22 1.25 −0.12 0.66 1.06 −0.66 −1.18
−0.80 −1.32 0.16 1.06 −0.60 0.79 0.86 2.04 −0.51

0.02 0.33 −1.99 0.70 −0.17 0.33 0.48 1.90 −0.18
−0.18 −1.62 0.39 0.17 1.02

50 Observations on x2:

−0.67 0.70 0.32 2.88 −0.19 −1.28 −2.72 −0.70 −1.55
−0.74 −1.87 1.56 0.37 −2.07 1.20 0.26 −1.34 −2.10

0.61 2.32 4.38 2.16 1.51 0.30 −0.17 7.82 −1.15
1.77 2.92 −1.94 2.09 1.50 −0.46 0.19 −0.39 1.54
1.87 −3.45 −0.88 −1.53 1.42 −2.70 1.77 −1.89 −1.85
2.01 1.26 −2.02 1.91 −2.23
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a. Compute the ordinary least squares regression of y on a constant, x1, and x2. Be
sure to compute the conventional estimator of the asymptotic covariance matrix
of the OLS estimator as well.

b. Compute the White estimator of the appropriate asymptotic covariance matrix
for the OLS estimates.

c. Test for the presence of heteroscedasticity using White’s general test. Do your
results suggest the nature of the heteroscedasticity?

d. Use the Breusch–Pagan/Godfrey Lagrange multiplier test to test for hetero-
scedasticity.

e. Reestimate the parameters using a two-step FGLS estimator. Use Harvey’s for-
mulation, Var[εi | xi1, xi2] = σ 2 exp(γ1xi1 + γ2xi2).

2. (We look ahead to our use of maximum likelihood to estimate the models discussed
in this chapter in Chapter 14.) In Example 9.4, we computed an iterated FGLS
estimator using the airline data and the model Var[εit | Loadfactori,t ] = exp(γ1 +
γ2 Loadfactori,t ). The weights computed at each iteration were computed by esti-
mating (γ1, γ2) by least squares regression of ln ε̂2

i,t on a constant and Loadfactor.
The maximum likelihood estimator would proceed along similar lines, however
the weights would be computed by regression of [ε̂2

i,t/σ̂
2
i,t − 1] on a constant and

Loadfactori,t instead. Use this alternative procedure to estimate the model. Do you
get different results?
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10

SYSTEMS OF EQUATIONS

Q
10.1 INTRODUCTION

There are many settings in which the single equation models of the previous chapters
apply to a group of related variables. In these contexts, it makes sense to consider the
several models jointly. Some examples follow.

1. Munnell’s (1990) model for output by the 48 continental U.S. states is

ln GSPit = β1i + β2i ln pcit + β3i ln hwyit + β4i ln waterit + β5i ln utilit

+ β6i ln empit + β7i unempit + εit.

Taken one state at a time, this provides a set of 48 linear regression models. The
application develops a model in which the observations are correlated across time
within a state. An important question pursued here and in the applications in the
next example is whether it is valid to assume that the coefficient vector is the same
for all states (individuals) in the sample.

2. The capital asset pricing model of finance specifies that for a given security,

rit − rft = αi + βi (rmt − rft) + εit,

where rit is the return over period t on security i, r ft is the return on a risk-free
security, rmt is the market return, and βi is the security’s beta coefficient. The distur-
bances are obviously correlated across securities. The knowledge that the return on
security i exceeds the risk-free rate by a given amount gives some information about
the excess return of security j , at least for some j ’s. It may be useful to estimate
the equations jointly rather than ignore this connection.

3. Pesaran and Smith (1995) proposed a dynamic model for wage determination in 38
UK industries. The central equation is of the form

yit = αi + x′
itβ i + γi yi,t−1 + εit.

Nair-Reichert and Weinhold’s (2001) cross-country analysis of growth of develop-
ing countries takes the same form. In both cases, each group (industry, country)
could be analyzed separately. However, the connections across groups and the in-
teresting question of “poolability”—that is, whether it is valid to assume identical
coefficients—is a central part of the analysis. The lagged dependent variable in the
model produces a substantial complication.

4. In a model of production, the optimization conditions of economic theory imply that
if a firm faces a set of factor prices p, then its set of cost-minimizing factor demands
for producing output Q will be a set of equations of the form xm = fm(Q, p).

330
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The empirical model is

x1 = f1(Q, p|θ) + ε1,

x2 = f2(Q, p|θ) + ε2,

· · ·
xM = fM(Q, p|θ) + εM,

where θ is a vector of parameters that are part of the technology and εm represents
errors in optimization. Once again, the disturbances should be correlated. In addi-
tion, the same parameters of the production technology will enter all the demand
equations, so the set of equations has cross-equation restrictions. Estimating the
equations separately will waste the information that the same set of parameters
appears in all the equations.

5. The essential form of a model for equilibrium in a market is

QDemand = α1 + α2Price + α3Income + d′α + εDemand,

QSupply = β1 + β2Price + s′β + εSupply,

QEquilibrium = QDemand = QSupply,

where d and s are other variables that influence the equilibrium through their
impact on the demand and supply curves, respectively. This model differs from
those suggested thus far because the implication of the third equation is that Price
is not exogenous in the equation system. The equations of this model fit more
appropriately in the instrumental variables framework developed in Chapter 8
than in the regression models developed in Chapters 1 to 7. The multiple equations
framework developed in this chapter provides additional results for estimating
“simultaneous equations models” such as this.

The multiple equations regression model developed in this chapter provides a
modeling framework that can be used in many different settings. The models of pro-
duction and cost developed in Section 10.5 provide the platform for a literature on
empirical analysis of firm behavior. At the macroeconomic level, the “vector autore-
gression models” used in Chapter 21 are specific forms of the seemingly unrelated
regressions model of Section 10.2. The simultaneous equations model presented in
Section 10.6 lies behind the specification of the large variety of models considered in
Chapter 8.

This chapter will develop the essential theory for sets of related regression equa-
tions. Section 10.2 examines the general model in which each equation has its own fixed
set of parameters, and examines efficient estimation techniques. Section 10.2.6 examines
the “pooled” model with identical coefficients in all equations. Production and consumer
demand models are a special case of the general model in which the equations of the
model obey an adding-up constraint that has important implications for specification
and estimation. Section 10.3 suggests extensions of the seemingly unrelated regression
model to the generalized regression models with heteroscedasticity and autocorrelation
that are developed in Chapters 9 and 20. Section 10.4 broadens the seemingly unrelated
regressions model to nonlinear systems of equations. In Section 10.5, we examine a
classic application of the seemingly unrelated regressions model that illustrates the
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interesting features of the current genre of demand studies in the applied literature.
The seemingly unrelated regressions model is then extended to the translog specifica-
tion, which forms the platform for many recent microeconomic studies of production
and cost. Finally, Section 10.6 merges the results of Chapter 8 on models with endoge-
nous variables with the development in this chapter of multiple equation systems. In
Section 10.6, we will develop simultaneous equations models. These are systems of
equations that build on the seemingly unrelated regressions model to produce equation
systems that include interrelationships among the dependent variables. The supply and
demand model suggested in example 5 above, of equilibrium in which price and quantity
in a market are jointly determined, is an application.

10.2 THE SEEMINGLY UNRELATED
REGRESSIONS MODEL

All the examples suggested in the chapter introduction have a common multiple equa-
tion structure, which we may write as

y1 = X1β1 + ε1,

y2 = X2β2 + ε2,

· · · (10-1)

yM = XMβM + εM.

There are M equations and T observations in the sample of data used to estimate them.1

The second and third examples embody different types of constraints across equations
and different structures of the disturbances. A basic set of principles will apply to them
all, however.2 The seemingly unrelated regressions (SUR) model in (10-1) is

yi = Xiβ i + εi , i = 1, . . . , M. (10-2)

Define the MT × 1 vector of disturbances,

ε = [ε′
1, ε

′
2, . . . , ε

′
M]′.

We assume strict exogeneity of Xi ,

E [ε | X1, X2, . . . , XM] = 0,

and homoscedasticity

E [εmε′
m | X1, X2, . . . , XM] = σmmIT.

We assume that a total of T observations are used in estimating the parameters of
the M equations.3 Each equation involves Ki regressors, for a total of K = ∑M

i=1 Ki .
We will require T > Ki . The data are assumed to be well behaved, as described in

1The use of T is not meant to imply any necessary connection to time series. For instance, in the fourth
example, above, the data might be cross sectional.
2See the surveys by Srivastava and Dwivedi (1979), Srivastava and Giles (1987), and Fiebig (2001).
3There are a few results for unequal numbers of observations, such as Schmidt (1977), Baltagi, Garvin, and
Kerman (1989), Conniffe (1985), Hwang (1990), and Im (1994). But, the case of fixed T is the norm in practice.
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Section 4.4.1, and we shall not treat the issue separately here. For the present, we also
assume that disturbances are uncorrelated across observations but correlated across
equations. Therefore,

E [εitε js | X1, X2, . . . , XM] = σij, if t = s and 0 otherwise.

The disturbance formulation is, therefore,

E [εiε
′
j | X1, X2, . . . , XM] = σijIT,

or

E [εε′ | X1, X2, . . . , XM] = � =

⎡
⎢⎢⎢⎢⎣

σ11I σ12I · · · σ1MI
σ21I σ22I · · · σ2MI

...

σM1I σM2I · · · σMMI

⎤
⎥⎥⎥⎥⎦

. (10-3)

It will be convenient in the discussion below to have a term for the particular
kind of model in which the data matrices are group specific data sets on the same set
of variables. Munnell’s model noted in the introduction is such a case. This special
case of the seemingly unrelated regressions model is a multivariate regression model.
In contrast, the cost function model examined in Section 10.4.1 is not of this type—it
consists of a cost function that involves output and prices and a set of cost share equations
that have only a set of constant terms. We emphasize, this is merely a convenient term
for a specific form of the SUR model, not a modification of the model itself.

10.2.1 GENERALIZED LEAST SQUARES

Each equation is, by itself, a classical regression. Therefore, the parameters could be
estimated consistently, if not efficiently, one equation at a time by ordinary least squares.
The generalized regression model applies to the stacked model,

⎡
⎢⎢⎢⎢⎣

y1

y2

...

yM

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

X1 0 · · · 0
0 X2 · · · 0

...

0 0 · · · XM

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

β1

β2
...

βM

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

ε1

ε2

...

εM

⎤
⎥⎥⎥⎥⎦

= Xβ + ε. (10-4)

Therefore, the efficient estimator is generalized least squares.4 The model has a partic-
ularly convenient form. For the tth observation, the M × M covariance matrix of the
disturbances is

� =

⎡
⎢⎢⎢⎢⎣

σ11 σ12 · · · σ1M

σ21 σ22 · · · σ2M

...

σM1 σM2 · · · σMM

⎤
⎥⎥⎥⎥⎦

, (10-5)

4See Zellner (1962) and Telser (1964).
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so, in (10-3),

� = � ⊗ I (10-6)

and

�−1 = �−1 ⊗ I.5

Denoting the ijth element of �−1 by σ ij, we find that the GLS estimator is

β̂ = [X′�−1X]−1X′�−1y = [X′(�−1 ⊗ I)X]−1X′(�−1 ⊗ I)y. (10-7)

Expanding the Kronecker products produces

β̂ =

⎡
⎢⎢⎢⎢⎣

σ 11X′
1X1 σ 12X′

1X2 · · · σ 1MX′
1XM

σ 21X′
2X1 σ 22X′

2X2 · · · σ 2MX′
2XM

...

σ M1X′
MX1 σ M2X′

MX2 · · · σ MMX′
MXM

⎤
⎥⎥⎥⎥⎦

−1
⎡
⎢⎢⎢⎢⎢⎢⎣

∑M
j=1 σ 1 j X′

1y j

∑M
j=1 σ 2 j X′

2y j
...∑M

j=1 σ Mj X′
My j

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The asymptotic covariance matrix for the GLS estimator is the bracketed inverse matrix
in (10-7). All the results of Chapter 9 for the generalized regression model extend to
this model (which has both heteroscedasticity and autocorrelation).

This estimator is obviously different from ordinary least squares. At this point,
however, the equations are linked only by their disturbances—hence the name seem-
ingly unrelated regressions model—so it is interesting to ask just how much efficiency
is gained by using generalized least squares instead of ordinary least squares. Zellner
(1962) and Dwivedi and Srivastava (1978) have analyzed some special cases in detail.

1. If the equations are actually unrelated—that is, if σij = 0 for i �= j—then there is
obviously no payoff to GLS estimation of the full set of equations. Indeed, full GLS
is equation by equation OLS.6

2. If the equations have identical explanatory variables—that is, if Xi = X j —then
OLS and GLS are identical. We will turn to this case in Section 10.2.2.7

3. If the regressors in one block of equations are a subset of those in another, then GLS
brings no efficiency gain over OLS in estimation of the smaller set of equations;
thus, GLS and OLS are once again identical.8

In the more general case, with unrestricted correlation of the disturbances and
different regressors in the equations, the results are complicated and dependent on

5See Appendix Section A.5.5.
6See also Baltagi (1989) and Bartels and Fiebig (1992) for other cases in which OLS = GLS.
7An intriguing result, albeit probably of negligible practical significance, is that the result also applies if the
X′s are all nonsingular, and not necessarily identical, linear combinations of the same set of variables. The
formal result which is a corollary of Kruskal’s theorem [see Davidson and MacKinnon (1993, p. 294)] is that
OLS and GLS will be the same if the K columns of X are a linear combination of exactly K characteristic
vectors of �. By showing the equality of OLS and GLS here, we have verified the conditions of the corollary.
The general result is pursued in the exercises. The intriguing result cited is now an obvious case.
8The result was analyzed by Goldberger (1970) and later by Revankar (1974) and Conniffe (1982a, b).
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the data. Two propositions that apply generally are as follows:

1. The greater is the correlation of the disturbances, the greater is the efficiency gain
accruing to GLS.

2. The less correlation there is between the X matrices, the greater is the gain in
efficiency in using GLS.9

10.2.2 SEEMINGLY UNRELATED REGRESSIONS
WITH IDENTICAL REGRESSORS

The case of identical regressors is quite common, notably in the capital asset pricing
model in empirical finance—see the chapter introduction. In this special case, general-
ized least squares is equivalent to equation by equation ordinary least squares. Impose
the assumption that Xi = X j = X, so that X′

i X j = X′X for all i and j in (10-7). The
inverse matrix on the right-hand side now becomes [�−1 ⊗X′X]−1, which, using (A-76),
equals [� ⊗ (X′X)−1]. Also on the right-hand side, each term X′

i y j equals X′y j , which,
in turn equals X′Xb j . With these results, after moving the common X′X out of the
summations on the right-hand side, we obtain

β̂ =

⎡
⎢⎢⎢⎢⎣

σ11(X′X)−1 σ12(X′X)−1 · · · σ1M(X′X)−1

σ21(X′X)−1 σ22(X′X)−1 · · · σ2M(X′X)−1

...

σM1(X′X)−1 σM2(X′X)−1 · · · σMM(X′X)−1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

(X′X)
∑M

l=1 σ 1lbl

(X′X)
∑M

l=1 σ 2lbl
...

(X′X)
∑M

l=1 σ Mlbl

⎤
⎥⎥⎥⎥⎥⎦

. (10-8)

Now, we isolate one of the subvectors, say the first, from β̂. After multiplication, the
moment matrices cancel, and we are left with

β̂1 =
M∑

j=1

σ1 j

M∑
l=1

σ jlbl = b1

(
M∑

j=1

σ1 jσ
j1

)
+ b2

(
M∑

j=1

σ1 jσ
j2

)
+ · · · + bM

(
M∑

j=1

σ1 jσ
j M

)
.

The terms in parentheses are the elements of the first row of ��−1 = I, so the end result
is β̂1 = b1. For the remaining subvectors, which are obtained the same way, β̂ i = bi , which
is the result we sought.10

To reiterate, the important result we have here is that in the SUR model, when all
equations have the same regressors, the efficient estimator is single-equation ordinary
least squares; OLS is the same as GLS. Also, the asymptotic covariance matrix of β̂

for this case is given by the large inverse matrix in brackets in (10-8), which would be
estimated by

Est. Asy. Cov[β̂ i , β̂j ] = σ̂ij(X′X)−1, i, j = 1, . . . , M, where �̂ij = σ̂ij = 1
T

e′
i e j .

Except in some special cases, this general result is lost if there are any restrictions on β,
either within or across equations.

9See also Binkley (1982) and Binkley and Nelson (1988).
10See Hashimoto and Ohtani (1990) for discussion of hypothesis testing in this case.
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10.2.3 FEASIBLE GENERALIZED LEAST SQUARES

The preceding discussion assumes that � is known, which, as usual, is unlikely to be the
case. FGLS estimators have been devised, however.11. The least squares residuals may
be used (of course) to estimate consistently the elements of � with

σ̂ij = sij = e′
i e j

T
. (10-9)

The consistency of sij follows from that of bi and b j .12 A degrees of freedom correction
in the divisor is occasionally suggested. Two possibilities that are unbiased when i = j
are

s∗
ij = e′

i e j

[(T − Ki )(T − Kj )]1/2
and s∗∗

ij = e′
i e j

T − max(Ki , Kj )
.13 (10-10)

Whether unbiasedness of the estimator of � used for FGLS is a virtue here is uncertain.
The asymptotic properties of the feasible GLS estimator, ˆ̂β do not rely on an unbiased
estimator of �; only consistency is required. All our results from Chapters 8 and 9 for
FGLS estimators extend to this model, with no modification. We shall use (10-9) in what
follows. With

S =

⎡
⎢⎢⎢⎢⎢⎣

s11 s12 · · · s1M

s21 s22 · · · s2M

...

sM1 sM2 · · · sMM

⎤
⎥⎥⎥⎥⎥⎦

(10-11)

in hand, FGLS can proceed as usual.

10.2.4 TESTING HYPOTHESES

For testing a hypothesis aboutβ, a statistic analogous to the F ratio in multiple regression
analysis is

F[J, MT − K] = (Rβ̂ − q)′[R(X′�̂−1
X)−1R′]−1(Rβ̂ − q)/J

ε̂′�−1ε̂/(MT − K)
. (10-12)

The computation requires the unknown �. If we insert the FGLS estimate �̂ based on
(10-9) and use the result that the denominator converges to one, then, in large samples,
the statistic will behave the same as

F̂ = 1
J

(R ˆ̂β − q)′[R V̂ar[ ˆ̂β]R′]−1(R ˆ̂β − q). (10-13)

This can be referred to the standard F table. Because it uses the estimated �, even
with normally distributed disturbances, the F distribution is only valid approximately.
In general, the statistic F[J, n] converges to 1/J times a chi-squared [J ] as n → ∞.

11See Zellner (1962) and Zellner and Huang (1962). The FGLS estimator for this model is also labeled
Zellner’s efficient estimator, or ZEF, in reference to Zellner (1962) where it was introduced
12Perhaps surprisingly, if it is assumed that the density of ε is symmetric, as it would be with normality, then
bi is also unbiased. See Kakwani (1967).
13See, as well, Judge et al. (1985), Theil (1971), and Srivastava and Giles (1987).
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Therefore, an alternative test statistic that has a limiting chi-squared distribution with
J degrees of freedom when the null hypothesis is true is

J F̂ = (R ˆ̂β − q)′[RV̂ar[ ˆ̂β]R′]−1(R ˆ̂β − q). (10-14)

This can be recognized as a Wald statistic that measures the distance between R ˆ̂β and q.
Both statistics are valid asymptotically, but (10-13) may perform better in a small or
moderately sized sample.14 Once again, the divisor used in computing σ̂ij may make a
difference, but there is no general rule.

A hypothesis of particular interest is the homogeneity restriction of equal coeffi-
cient vectors in the multivariate regression model. That case is fairly common in this
setting. The homogeneity restriction is that β i = βM, i = 1, . . . , M − 1. Consistent with
(10-13)–(10-14), we would form the hypothesis as

Rβ =

⎡
⎢⎢⎢⎢⎢⎣

I 0 · · · 0 −I

0 I · · · 0 −I

· · ·
0 0 · · · I −I

⎤
⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎝

β1

β2

· · ·
βM

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

β1 − βM

β2 − βM

· · ·
βM−1 − βM

⎞
⎟⎟⎟⎟⎠

= 0. (10-15)

This specifies a total of (M − 1)K restrictions on the KM × 1 parameter vector. Denote
the estimated asymptotic covariance for ( ˆ̂β i ,

ˆ̂β j ) as V̂ij. The bracketed matrix in (10-13)
would have typical block

[R V̂ar[ ˆ̂β]R′]ij = V̂ij − V̂iM − V̂Mj + V̂MM

This may be a considerable amount of computation. The test will be simpler if the
model has been fit by maximum likelihood, as we examine in Section 14.9.3. Pesaran
and Yamagata (2008) provide an alternative test that can be used when M is large and
T is relatively small.

10.2.5 A SPECIFICATION TEST FOR THE SUR MODEL

It is of interest to assess statistically whether the off diagonal elements of � are zero. If
so, then the efficient estimator for the full parameter vector, absent heteroscedasticity or
autocorrelation, is equation by equation ordinary least squares. There is no standard test
for the general case of the SUR model unless the additional assumption of normality of
the disturbances is imposed in (10-2) and (10-3). With normally distributed disturbances,
the standard trio of tests, Wald, likelihood ratio, and Lagrange multiplier, can be used.
For reasons we will turn to shortly, the Wald test is likely to be too cumbersome to apply.
With normally distributed disturbances, the likelihood ratio statistic for testing the null
hypothesis that the matrix � in (10-5) is a diagonal matrix against the alternative that
� is simply an unrestricted positive definite matrix would be

λLR = T[ln |S0| − ln |S1|], (10-16)

14See Judge et al. (1985, p. 476). The Wald statistic often performs poorly in the small sample sizes typical in
this area. Fiebig (2001, pp. 108–110) surveys a recent literature on methods of improving the power of testing
procedures in SUR models.
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where S1 is the residual covariance matrix defined in (10-9) (without a degrees of free-
dom correction). The residuals are computed using maximum likelihood estimates of
the parameters, not FGLS.15 Under the null hypothesis, the model would be efficiently
estimated by individual equation OLS, so

ln |S0| =
M∑

i=1

ln (e′
i ei/T ),

where ei = yi −Xi bi . The limiting distribution of the likelihood ratio statistic under the
null hypothesis would be chi-squared with M(M − 1)/2 degrees of freedom.

The likelihood ratio statistic requires the unrestricted MLE to compute the residual
covariance matrix under the alternative, so it is can be cumbersome to compute. A
simpler alternative is the Lagrange multiplier statistic developed by Breusch and Pagan
(1980) which is

λLM = T
M∑

i=2

i−1∑
j=1

r2
ij

(10-17)
= (T/2)[trace(R′R) − M],

where R is the sample correlation matrix of the M sets of T OLS residuals. This has the
same large sample distribution under the null hypothesis as the likelihood ratio statistic,
but is obviously easier to compute, as it only requires the OLS residuals.

The third test statistic in the trio is the Wald statistic. In principle, the Wald statistic
for the SUR model would be computed using

W = σ̂ ′[Asy. Var(σ̂ )]−1σ̂ ,

where σ̂ is the M(M − 1)/2 length vector containing the estimates of the off-diagonal
(lower triangle) elements of �, and the asymptotic covariance matrix of the estimator
appears in the brackets. Under normality, the asymptotic covariance matrix contains the
corresponding elements of 2� ⊗ �/T. It would be possible to estimate the covariance
term more generally using a moment-based estimator. Because

σ̂ij = 1
T

T∑
t=1

eitejt

is a mean of T observations, one might use the conventional estimator of its variance
and its covariance with σ̂lm, which would be

fij,lm = 1
T

1
T − 1

T∑
t=1

(eitejt − σ̂ij)(eltemt − σ̂lm). (10-18)

The modified Wald statistic would then be

W′ = σ̂ ′[F]−1σ̂

15In the SUR model of this chapter, the MLE for normally distributed disturbances can be computed by
iterating the FGLS procedure, back and forth between (10-7) and (10-9) until the estimates are no longer
changing. We note, this procedure produces the MLE when it converges, but it is not guaranteed to converge,
nor is it assured that there is a unique MLE. For our regional data set, the iterated FGLS procedure does not
converge after 1,000 iterations. The Oberhofer–Kmenta (1974) result implies that if the iteration converges,
it reaches the MLE. It does not guarantee that the iteration will converge, however. The problem with this
application may be the very small sample size, 17 observations. One would not normally use the technique
of maximum likelihood with a sample this small.
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where the elements of F are the corresponding values in (10-18). This computation
is obviously more complicated than the other two. However, it does have the virtue
that it does not require an assumption of normality of the disturbances in the model.
What would be required is (a) consistency of the estimators of β i so that the we can
assert (b) consistency of the estimators of σij and, finally, (c) asymptotic normality of
the estimators in (b) so that we can apply Theorem 4.4. All three requirements should
be met in the SUR model with well-behaved regressors.

Alternative approaches that have been suggested [see, e.g., Johnson and Wichern
(2005, p. 424)] are based on the following general strategy: Under the alternative hy-
pothesis of an unrestricted �, the sample estimate of � will be �̂ = [σ̂ij] as defined
in (10-9). Under any restrictive null hypothesis, the estimator of � will be �̂0, a matrix
that by construction will be larger than �̂1 in the matrix sense defined in Appendix A.
Statistics based on the “excess variation,” such as T(�̂0 − �̂1) are suggested for the
testing procedure. One of these is the likelihood ratio test in (10-16).

10.2.6 THE POOLED MODEL

If the variables in Xi are all the same and the coefficient vectors in (10-2) are assumed
all to be equal, the pooled model,

yit = x′
itβ + εit

results. This differs from the panel data treatment in Chapter 11, however, in that the
correlation across observations is assumed to occur at time t , not within group i . (Of
course, by a minor rearrangement of the data, the same model results. However, the
interpretation differs, so we will maintain the distinction.) Collecting the T observations
for group i , we obtain

yi = Xiβ + εi

or, for all n groups,
⎡
⎢⎢⎢⎣

y1

y2
...

yn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

X1

X2
...

Xn

⎤
⎥⎥⎥⎦β +

⎡
⎢⎢⎢⎣

ε1

ε2
...

εn

⎤
⎥⎥⎥⎦ = Xβ + ε, (10-19)

where

E[εi | X] = 0,
(10-20)

E[εiε
′
j | X] = σij�ij.

If �ij = I, then this is equivalent to the SUR model of (10-2) with identical coefficient
vectors. The generalized least squares estimator under this covariance structures model
assumption is

β̂ = [X′(� ⊗ I)−1X]−1[X′(� ⊗ I)−1y]

=
⎡
⎣

n∑
i=1

n∑
j=1

σ ijX′
i X j

⎤
⎦

−1 ⎡
⎣

n∑
i=1

n∑
j=1

σ ijX′
i y j

⎤
⎦ . (10-21)
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where σ ij denotes the ijth element of �−1. The FGLS estimator can be computed using
(10-9), where ei can either be computed using group-specific OLS residuals or it can be
a subvector of the pooled OLS residual vector using all nT observations.

There is an important consideration to note in feasible GLS estimation of this
model. The computation requires inversion of the matrix �̂ where the ijth element is
given by (10-9). This matrix is n × n. It is computed from the least squares residuals using

�̂ = 1
T

T∑
t=1

et e′
t = 1

T
E′E, (10-22)

where e′
t is a 1 × n vector containing all n residuals for the n groups at time t , placed

as the tth row of the T × n matrix of residuals, E. The rank of this matrix cannot be
larger than T. Note what happens if n > T. In this case, the n × n matrix has rank T,
which is less than n, so it must be singular, and the FGLS estimator cannot be computed.
Consider Example 10.1. We aggregated the 48 states into n = 9 regions. It would not
be possible to fit a full model for the n = 48 states with only T = 17 observations.
This result is a deficiency of the data set, not the model. The population matrix, � is
positive definite. But, if there are not enough observations, then the data set is too short
to obtain a positive definite estimate of the matrix.

Example 10.1 A Regional Production Model for Public Capital
Munnell (1990) proposed a model of productivity of public capital at the state level. The central
equation of the analysis that we will extend here is a Cobb–Douglas production function,

ln gspit = αi + β1i ln pcit + β2i ln hwyit + β3i ln waterit

+ β4i ln utilit + β5i ln empit + β6i unempit + εit,

where the variables in the model, measured for the lower 48 U.S. states and years 1970–1986,
are

gsp = gross state product,
pc = private capital,
hwy = highway capital,
water = water utility capital,
util = utility capital,
emp = employment (labor),
unemp = unemployment rate.

The data are given in Appendix Table F10.1. We defined nine regions consisting of groups of
the 48 states:

1. GF = Gulf = AL, FL, LA, MS,
2. MW = Midwest = IL, IN, KY, Ml, MN, OH, Wl,
3. MA = Mid Atlantic = DE, MD, NJ, NY, PA, VA,
4. MT = Mountain = CO, ID, MT, ND, SD, WY,
5. NE = New England = CT, ME, MA, NH, Rl, VT,
6. SO = South = GA, NC, SC, TN, WV, R,
7. SW = Southwest = AZ, NV, NM, TX, UT,
8. CN = Central = AK, IA, KS, MO, NE, OK,
9. WC = West Coast = CA, OR, WA.

For our application, we will use the aggregated data to analyze a nine-region (equation) model.
Data on output, the capital stocks, and employment are aggregated simply by summing the
values for the individual states (before taking logarithms). The unemployment rate for each
region, m, at time t is determined by a weighted average of the unemployment rates for the
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states in the region, where the weights are

wit = empit/� j empjt.

Then, the unemployment rate for region m at time t is the following average of the unemploy-
ment rates of the states ( j ) in region (m) at time t:

unempmt = � j wjt(m) unempjt(m) .

We initially estimated the nine equations of the regional productivity model separately by
OLS. The OLS estimates are shown in Table 10.1. The correlation matrix for the OLS residuals
is as follows:

GF MW MA MT NE SO SW CN WC

GF 1.0000
MW 0.1036 1.0000
MA 0.3421 0.0634 1.0000

R = MT 0.4243 0.6970 −0.0158 1.0000
NE −0.5127 −0.2896 0.1915 −0.5372 1.0000
SO 0.5897 0.4893 0.2329 0.3434 −0.2411 1.0000
SW 0.3115 0.1320 0.6514 0.1301 −0.3220 0.2594 1.0000
CN 0.7958 0.3370 0.3904 0.4957 −02980 0.8050 0.3465 1.0000
WC 0.2340 0.5654 0.2116 0.5736 −0.0576 0.2693 −0.0375 0.3818 1.0000

The values in R are large enough to suggest that there is substantial correlation of the dis-
turbances across regions.

Table 10.1 also presents the FGLS estimates of the parameters of the SUR model for
regional output. These are computed in two steps, with the first-step OLS results producing
the estimate of � for FGLS. (The pooled results that are also presented are discussed in
Section 10.2.8.) The correlations listed earlier suggest that there is likely to be considerable
benefit to using FGLS in terms of efficiency of the estimator. The individual equation OLS
estimators are consistent, but they neglect the cross-equation correlation. The substantially
lower estimated standard errors for the FGLS results with each equation appear to confirm
that expectation.

We used (10-14) to construct test statistics for two hypotheses. We first tested the hy-
pothesis of constant returns to scale throughout the system. Constant returns to scale would
require that the coefficients on the inputs, β1 through β5 (four capital variables and the labor
variable) sum to 1.0. The 9 × 9(7) matrix, R, for (10-14) would have rows equal to

R1 = (0, 1, 1, 1, 1, 1, 0) 0′ 0′ 0′ 0′ 0′ 0′ 0′ 0′

R2 = 0′ (0, 1, 1, 1, 1, 1, 0) 0′ 0′ 0′ 0′ 0′ 0′ 0′,

and so on. In (10-14), we would have q′ = (1,1,1,1,1,1,1,1,1). This hypothesis imposes nine
restrictions. The computed chi-squared is 102.305. The critical value is 16.919, so this hy-
pothesis is rejected as well. The discrepancy vector for these results is

(Rβ − q) ′ = (−0.64674, −0.12883, 0.96435, 0.03930, 0.06710, 1.79472, 2.30283,

0.12907, 1.10534) .

The distance is quite large for some regions, so the hypothesis of constant returns to scale
(to the extent it is meaningful at this level of aggregation) does appear to be inconsistent with
the data (results).

The “pooling” restriction for the multivariate regression (same variables—not necessarily
the same data, as in our example) is formulated as

H0: β1 = β2 = · · · = βM ,

H1: Not H0.
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For this hypothesis, the R matrix is shown in (10-15). The test statistic is in (10-14). For
our model with nine equations and seven parameters in each, the null hypothesis imposes
8(7) = 56 restrictions. The computed test statistic is 10,554.77, which is far lager than the
critical value from the table, 74.468. So, the hypothesis of homogeneity is rejected.

As noted in Section 10.2.7, we do not have a standard test of the specification of the
SUR model against the alternative hypothesis of uncorrelated disturbances for the general
SUR model without an assumption of normality. The Breusch and Pagan (1980) Lagrange
multiplier test based on the correlation matrix does have some intuitive appeal. We used (10-
17) to compute the LM statistic for the nine-equation model reported in Table 10.1. For the
correlation matrix shown earlier, the chi-squared statistic equals 102.305 with 8(9)/2 = 36
degrees of freedom. The critical value from the chi-squared table is 50.998, so the null
hypothesis that the seemingly unrelated regressions are actually unrelated is rejected. We
conclude that the disturbances in the regional model are not actually unrelated. The null
hypothesis that σij = 0 for all i �= j is rejected. To investigate a bit further, we repeated
the test with the completely disaggregated (statewide) data. The corresponding chi-squared
statistic is 8399.41 with 48(47)/2 = 1, 128 degrees of freedom. The critical value is 1,207.25,
so the null hypothesis is rejected at the state level as well.

10.3 SEEMINGLY UNRELATED GENERALIZED
REGRESSION MODELS

In principle, the SUR model can accommodate heteroscedasticity as well as autocorre-
lation. Bartels and Fiebig (1992) suggested the generalized SURmodel, � = A[�⊗I]A′
where A is a block diagonal matrix. Ideally, A is made a function of measured char-
acteristics of the individual and a separate parameter vector, θ , so that the model can
be estimated in stages. In a first step, OLS residuals could be used to form a prelim-
inary estimator of θ , and then the data are transformed to homoscedasticity, leaving
� and β to be estimated at subsequent steps using transformed data. One application
along these lines is the random parameters model of Fiebig, Bartels, and Aigner (1991);
(9-50) shows how the random parameters model induces heteroscedasticity. Another
application is Mandy and Martins-Filho (1993), who specified σij(t) = zij(t)′αij. (The
linear specification of a variance does present some problems, as a negative value is
not precluded.) Kumbhakar and Heshmati (1996) proposed a cost and demand sys-
tem that combined the translog model of Section 10.4.2 with the complete equation
system in 10.4.1. In their application, only the cost equation was specified to include a
heteroscedastic disturbance.

Autocorrelation in the disturbances of regression models usually arises as a partic-
ular feature of the time-series model. It is among the properties of the time series. (We
will explore this aspect of the model specification in detail in Chapter 20.) In the multi-
ple equation models examined in this chapter, the time-series properties of the data are
usually not the main focus of the investigation. The main advantage of the SUR specifi-
cation is its treatment of the correlation across observations at a particular point in time.
Frequently, panel data specifications, such as those in examples 3 and 4 in the chapter
introduction, can also be analyzed in the framework of the SUR model of this chap-
ter. In these cases, there may be persistent effects in the disturbances, but here, again,
those effects are often viewed as a consequence of the presence of latent, time invariant
heterogeneity. Nonetheless, because the multiple equations models examined in this
chapter often do involve moderately long time series, it is appropriate to deal at least
somewhat more formally with autocorrelation. Opinions differ on the appropriateness
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of “corrections” for autocorrelation. At one extreme is Mizon (1995) who argues force-
fully that autocorrelation arises as a consequence of a remediable failure to include
dynamic effects in the model. However, in a system of equations, the analysis that leads
to this conclusion is going to be far more complex than in a single equation model.16

Suffice to say, the issue remains to be settled conclusively.

10.4 NONLINEAR SYSTEMS OF EQUATIONS

We now consider estimation of nonlinear systems of equations. The underlying theory
is essentially the same as that for linear systems. As such, most of the following will
describe practical aspects of estimation. Consider estimation of the parameters of the
equation system

y1 = h1(β, X) + ε1,

y2 = h2(β, X) + ε2,
...

yM = hM(β, X) + εM.

(10-23)

[Note the analogy to (10-19).]
There are M equations in total, to be estimated with t = 1, . . . , T observations.

There are K parameters in the model. No assumption is made that each equation
has “its own” parameter vector; we simply use some of or all the K elements in β

in each equation. Likewise, there is a set of T observations on each of P independent
variables xp, p = 1, . . . , P, some of or all that appear in each equation. For convenience,
the equations are written generically in terms of the full β and X. The disturbances
are assumed to have zero means and contemporaneous covariance matrix �. We will
leave the extension to autocorrelation for more advanced treatments.

In the multivariate regression model, if � is known, then the generalized least
squares estimator of β is the vector that minimizes the generalized sum of squares

ε(β)′�−1ε(β) =
M∑

i=1

M∑
j=1

σ ij[yi − hi (β, X)]′[y j − h j (β, X)], (10-24)

where ε(β) is an MT × 1 vector of disturbances obtained by stacking the equations,
� = � ⊗ I, and σ ij is the ijth element of �−1. [See (10-7).] As we did in Section 7.2.3,
define the pseudoregressors as the derivatives of the h(β, X) functions with respect to β.
That is, linearize each of the equations. Then the first-order condition for minimizing
this sum of squares is

∂ε(β)′�−1ε(β)

∂β
=

M∑
i=1

M∑
j=1

σ ij[2X0′
i (β)ε j (β)

] = 0, (10-25)

16Dynamic SUR models in the spirit of Mizon’s admonition were proposed by Anderson and Blundell
(1982). A few recent applications are Kiviet, Phillips, and Schipp (1995) and DesChamps (1998). However,
relatively little work has been done with dynamic SUR models. The VAR models are an important group
of applications, but they come from a different analytical framework. Likewise, the panel data applications
noted in the introduction and in Section 11.8.3 would fit into the modeling framework we are developing
here. However, in these applications, the regressions are “actually” unrelated—the authors did not model
the cross-unit correlation that is the central focus of this chapter. Related results may be found in Guilkey
and Schmidt (1973), Guilkey (1974), Berndt and Savin (1977), Moschino and Moro (1994), McLaren (1996),
and Holt (1998).
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where X0
i (β) is the T × K matrix of pseudoregressors from the linearization of the ith

equation. (See Section 7.2.6.) If any of the parameters in β do not appear in the ith
equation, then the corresponding column of X0

i (β) will be a column of zeros.
This problem of estimation is doubly complex. In almost any circumstance, solution

will require an iteration using one of the methods discussed in Appendix E. Second, of
course, is that� is not known and must be estimated. Remember that efficient estimation
in the multivariate regression model does not require an efficient estimator of �, only
a consistent one. Therefore, one approach would be to estimate the parameters of each
equation separately using nonlinear least squares. This method will be inefficient if any
of the equations share parameters, since that information will be ignored. But at this
step, consistency is the objective, not efficiency. The resulting residuals can then be used
to compute

S = 1
T

E′E. (10-26)

The second step of FGLS is the solution of (10-25), which will require an iterative
procedure once again and can be based on S instead of �. With well-behaved pseudore-
gressors, this second-step estimator is fully efficient. Once again, the same theory used
for FGLS in the linear, single-equation case applies here.17 Once the FGLS estimator
is obtained, the appropriate asymptotic covariance matrix is estimated with

Est. Asy. Var[β̂] =
[

M∑
i=1

M∑
j=1

sijX0
i (β)′X0

j (β)

]−1

. (10-27)

There is a possible flaw in the strategy just outlined. It may not be possible to fit all
the equations individually by nonlinear least squares. It is conceivable that identification
of some of the parameters requires joint estimation of more than one equation. But as
long as the full system identifies all parameters, there is a simple way out of this problem.
Recall that all we need for our first step is a consistent set of estimators of the elements
of β. It is easy to show that the preceding defines a GMM estimator (see Chapter 13.) We
can use this result to devise an alternative, simple strategy. The weighting of the sums
of squares and cross products in (10-24) by σ ij produces an efficient estimator of β.
Any other weighting based on some positive definite A would produce consistent,
although inefficient, estimates. At this step, though, efficiency is secondary, so the
choice of A = I is a convenient candidate. Thus, for our first step, we can find β to
minimize

ε(β)′ε(β) =
M∑

i=1

[yi − hi (β, X)]′[yi − hi (β, X)] =
M∑

i=1

T∑
t=1

[yit − hi (β, xit)]2.

(This estimator is just pooled nonlinear least squares, where the regression function
varies across the sets of observations.) This step will produce the β̂ we need to compute S.

17Neither the nonlinearity nor the multiple equation aspect of this model brings any new statistical issues to
the fore. By stacking the equations, we see that this model is simply a variant of the nonlinear regression model
with the added complication of a nonscalar disturbance covariance matrix, which we analyzed in Chapter 9.
The new complications are primarily practical.
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10.5 SYSTEMS OF DEMAND EQUATIONS:
SINGULAR SYSTEMS

Most of the recent applications of the multivariate regression model18 have been in the
context of systems of demand equations, either commodity demands or factor demands
in studies of production.

Example 10.2 Stone’s Expenditure System
Stone’s expenditure system19 based on a set of logarithmic commodity demand equations,
income Y , and commodity prices pn is

log qi = αi + ηi log

(
Y
P

)
+

M∑
j =1

η∗
ij log

(
pj

P

)
,

where P is a generalized (share-weighted) price index, ηi is an income elasticity, and η∗
ij is a

compensated price elasticity. We can interpret this system as the demand equation in real
expenditure and real prices. The resulting set of equations constitutes an econometric model
in the form of a set of seemingly unrelated regressions. In estimation, we must account for
a number of restrictions including homogeneity of degree one in income, �i Si ηi = 1, and
symmetry of the matrix of compensated price elasticities, η∗

ij = η∗
j i , where Si is the budget

share for good i .

Other examples include the system of factor demands and factor cost shares from
production, which we shall consider again later. In principle, each is merely a particular
application of the model of the Section 10.2. But some special problems arise in these
settings. First, the parameters of the systems are generally constrained across equa-
tions. That is, the unconstrained model is inconsistent with the underlying theory.20

The numerous constraints in the system of demand equations presented earlier give
an example. A second intrinsic feature of many of these models is that the disturbance
covariance matrix � is singular.21

10.5.1 COBB–DOUGLAS COST FUNCTION

Consider a Cobb–Douglas production function,

Q = α0

M∏
i=1

xαi
i .

18Note the distinction between the multivariate or multiple-equation model discussed here and the multiple
regression model.
19A very readable survey of the estimation of systems of commodity demands is Deaton and Muellbauer
(1980). The example discussed here is taken from their Chapter 3 and the references to Stone’s (1954a,b)
work cited therein. Deaton (1986) is another useful survey. A counterpart for production function modeling
is Chambers (1988). Other developments in the specification of systems of demand equations include Chavez
and Segerson (1987), Brown and Walker (1995), and Fry, Fry, and McLaren (1996).
20This inconsistency does not imply that the theoretical restrictions are not testable or that the unrestricted
model cannot be estimated. Sometimes, the meaning of the model is ambiguous without the restrictions,
however. Statistically rejecting the restrictions implied by the theory, which were used to derive the econo-
metric model in the first place, can put us in a rather uncomfortable position. For example, in a study of utility
functions, Christensen, Jorgenson, and Lau (1975), after rejecting the cross-equation symmetry of a set of
commodity demands, stated, “With this conclusion we can terminate the test sequence, since these results
invalidate the theory of demand” (p. 380). See Silver and Ali (1989) for discussion of testing symmetry restric-
tions. The theory and the model may also conflict in other ways. For example, Stone’s loglinear expenditure
system in Example 10.7 does not conform to any theoretically valid utility function. See Goldberger (1987).
21Denton (1978) examines several of these cases.
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Profit maximization with an exogenously determined output price calls for the firm to
maximize output for a given cost level C (or minimize costs for a given output Q). The
Lagrangean for the maximization problem is

� = α0

M∏
i=1

xαi
i + λ(C − p′x),

where p is the vector of M factor prices. The necessary conditions for maximizing this
function are

∂�

∂xi
= αi Q

xi
− λpi = 0 and

∂�

∂λ
= C − p′x = 0.

The joint solution provides xi (Q, p) and λ(Q, p). The total cost of production is

M∑
i=1

pi xi =
M∑

i=1

αi Q
λ

.

The cost share allocated to the ith factor is
pi xi∑M

i=1 pi xi
= αi∑M

i=1 αi
= βi . (10-28)

The full model is22

ln C = β0 + βq ln Q +
M∑

i=1

βi ln pi + εc,

si = βi + εi , i = 1, . . . , M.

(10-29)

By construction,
∑M

i=1 βi = 1 and
∑M

i=1 si = 1. (This is the cost function analysis begun
in Example 6.6. We will return to that application below.) The cost shares will also
sum identically to one in the data. It therefore follows that

∑M
i=1 εi = 0 at every data

point, so the system is singular. For the moment, ignore the cost function. Let the M×1
disturbance vector from the shares be ε = [ε1, ε2, . . . , εM]′. Because ε′i = 0, where i is a
column of 1s, it follows that E [εε′i] = �i = 0, which implies that � is singular. Therefore,
the methods of the previous sections cannot be used here. (You should verify that the
sample covariance matrix of the OLS residuals will also be singular.)

The solution to the singularity problem appears to be to drop one of the equations,
estimate the remainder, and solve for the last parameter from the other M − 1. The
constraint

∑M
i=1 βi = 1 states that the cost function must be homogeneous of degree one

in the prices, a theoretical necessity. If we impose the constraint

βM = 1 − β1 − β2 − · · · − βM−1, (10-30)

then the system is reduced to a nonsingular one:

ln
(

C
pM

)
= β0 + βq ln Q +

M−1∑
i=1

βi ln
(

pi

pM

)
+ εc,

si = βi + εi , i = 1, . . . , M − 1.

22We leave as an exercise the derivation of β0, which is a mixture of all the parameters, and βq , which equals
1/�mαm.
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TABLE 10.2 Regression Estimates (standard errors in parentheses)

Ordinary Least Squares Multivariate Regression

β0 −4.686 (0.885) −3.764 (0.702) −7.069 (0.107) −5.707 (0.165)
βq 0.721 (0.0174) 0.153 (0.0618) 0.766 (0.0154) 0.238 (0.0587)
βqq — 0.0505 (0.00536) — 0.0451 (0.00508)
βk −0.00847 (0.191) 0.0739 (0.150) 0.424 (0.00946) 0.424 (0.00944)
βl 0.594 (0.205) 0.481 (0.161) 0.106 (0.00386) 0.106 (0.00382)
β f 0.414 (0.0989) 0.445 (0.0777) 0.470 (0.0101) 0.470 (0.0100)
R2 0.9316 0.9581 — —

— —

This system provides estimates of β0, βq, and β1, . . . , βM−1. The last parameter is es-
timated using (10-30). It is immaterial which factor is chosen as the numeraire. Both
FGLS and maximum likelihood, which can be obtained by iterating FGLS or by di-
rect maximum likelihood estimation, are invariant to which factor is chosen as the
numeraire.23

Nerlove’s (1963) study of the electric power industry that we examined in Exam-
ple 6.6 provides an application of the Cobb–Douglas cost function model. His ordinary
least squares estimates of the parameters were listed in Example 6.6. Among the results
are (unfortunately) a negative capital coefficient in three of the six regressions. Nerlove
also found that the simple Cobb–Douglas model did not adequately account for the
relationship between output and average cost. Christensen and Greene (1976) further
analyzed the Nerlove data and augmented the data set with cost share data to estimate
the complete demand system. Appendix Table F6.2 lists Nerlove’s 145 observations
with Christensen and Greene’s cost share data. Cost is the total cost of generation in
millions of dollars, output is in millions of kilowatt-hours, the capital price is an index
of construction costs, the wage rate is in dollars per hour for production and mainte-
nance, the fuel price is an index of the cost per Btu of fuel purchased by the firms,
and the data reflect the 1955 costs of production. The regression estimates are given in
Table 10.2.

Least squares estimates of the Cobb–Douglas cost function are given in the first
column.24 The coefficient on capital is negative. Because βi = βq∂ ln Q/∂ ln xi —that is,
a positive multiple of the output elasticity of the ith factor—this finding is troubling.
The third column presents the constrained FGLS estimates. To obtain the constrained
estimator, we set up the model in the form of the pooled SUR estimator in (10-19);

y =
⎡
⎣

ln(C/Pf)

sk

sl

⎤
⎦ =

⎡
⎣

i ln Q ln(Pk/Pf ) ln(Pl/Pf )

0 0 i 0
0 0 0 i

⎤
⎦

⎛
⎜⎜⎝

β0

βq

βk

βl

⎞
⎟⎟⎠ +

⎡
⎣

εc

εk

εl

⎤
⎦

[There are 3(145) = 435 observations in the data matrices.] The estimator is then FGLS
as shown in (10-21). An additional column is added for the log quadratic model. Two

23The invariance result is proved in Barten (1969). Some additional results on the method are given by
Revankar (1976), Deaton (1986), Powell (1969), and McGuire et al. (1968).
24Results based on Nerlove’s full data set are given in Example 6.6.
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FIGURE 10.1 Predicted and Actual Average Costs.

things to note are the dramatically smaller standard errors and the now positive (and
reasonable) estimate of the capital coefficient. The estimates of economies of scale in
the basic Cobb–Douglas model are 1/βq = 1.39 (column 1) and 1.31 (column 3), which
suggest some increasing returns to scale. Nerlove, however, had found evidence that at
extremely large firm sizes, economies of scale diminished and eventually disappeared.
To account for this (essentially a classical U-shaped average cost curve), he appended a
quadratic term in log output in the cost function. The single equation and multivariate
regression estimates are given in the second and fourth sets of results.

The quadratic output term gives the cost function the expected U-shape. We can
determine the point where average cost reaches its minimum by equating ∂ ln C/∂ ln Q
to 1. This is Q∗ = exp[(1 − βq)/(2βqq)]. For the multivariate regression, this value is
Q∗ = 4665. About 85 percent of the firms in the sample had output less than this, so by
these estimates, most firms in the sample had not yet exhausted the available economies
of scale. Figure 10.1 shows predicted and actual average costs for the sample. (To obtain
a reasonable scale, the smallest one third of the firms are omitted from the figure.)
Predicted average costs are computed at the sample averages of the input prices. The
figure does reveal that that beyond a quite small scale, the economies of scale, while
perhaps statistically significant, are economically quite small.

10.5.2 FLEXIBLE FUNCTIONAL FORMS: THE TRANSLOG
COST FUNCTION

The literatures on production and cost and on utility and demand have evolved in
several directions. In the area of models of producer behavior, the classic paper by
Arrow et al. (1961) called into question the inherent restriction of the Cobb–Douglas
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model that all elasticities of factor substitution are equal to 1. Researchers have since
developed numerous flexible functions that allow substitution to be unrestricted (i.e.,
not even constant).25 Similar strands of literature have appeared in the analysis of
commodity demands.26 In this section, we examine in detail a model of production.

Suppose that production is characterized by a production function, Q = f (x).
The solution to the problem of minimizing the cost of producing a specified output
rate given a set of factor prices produces the cost-minimizing set of factor demands
xi = xi (Q, p). The total cost of production is given by the cost function,

C =
M∑

i=1

pi xi (Q, p) = C(Q, p). (10-31)

If there are constant returns to scale, then it can be shown that C = Qc(p) or

C/Q = c(p),

where c(p) is the unit or average cost function.27 The cost-minimizing factor demands
are obtained by applying Shephard’s (1970) lemma, which states that if C(Q, p) gives
the minimum total cost of production, then the cost-minimizing set of factor demands
is given by

x∗
i = ∂C(Q, p)

∂pi
= Q∂c(p)

∂pi
. (10-32)

Alternatively, by differentiating logarithmically, we obtain the cost-minimizing factor
cost shares:

si = ∂ ln C(Q, p)

∂ ln pi
= pi xi

C
. (10-33)

With constant returns to scale, ln C(Q, p) = ln Q + ln c(p), so

si = ∂ ln c(p)

∂ ln pi
. (10-34)

In many empirical studies, the objects of estimation are the elasticities of factor substi-
tution and the own price elasticities of demand, which are given by

θij = c(∂2c/∂pi∂pj )

(∂c/∂pi )(∂c/∂pj )

and

ηii = siθii.

25See, in particular, Berndt and Christensen (1973). Two useful surveys of the topic are Jorgenson (1983) and
Diewert (1974).
26See, for example, Christensen, Jorgenson, and Lau (1975) and two surveys, Deaton and Muellbauer (1980)
and Deaton (1983). Berndt (1990) contains many useful results.
27The Cobb–Douglas function of the previous section gives an illustration. The restriction of constant returns
to scale is βq = 1, which is equivalent to C = Qc(p). Nerlove’s more general version of the cost function
allows nonconstant returns to scale. See Christensen and Greene (1976) and Diewert (1974) for some of the
formalities of the cost function and its relationship to the structure of production.
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By suitably parameterizing the cost function (10-31) and the cost shares (10-34), we
obtain an M or M+ 1 equation econometric model that can be used to estimate these
quantities.28

The transcendental logarithmic or translog function is the most frequently used
flexible function in empirical work.29 By expanding ln c(p) in a second-order Taylor
series about the point ln p = 0, we obtain

ln c ≈ β0 +
M∑

i=1

(
∂ ln c
∂ ln pi

)
log pi + 1

2

M∑
i=1

M∑
j=1

(
∂2 ln c

∂ ln pi ∂ ln pj

)
ln pi ln pj , (10-35)

where all derivatives are evaluated at the expansion point. If we treat these derivatives
as the coefficients, then the cost function becomes

ln c = β0 + β1 ln p1 + · · · + βM ln pM + δ11
( 1

2 ln2 p1
) + δ12 ln p1 ln p2

+δ22
( 1

2 ln2 p2
) + · · · + δMM

( 1
2 ln2 pM

)
. (10-36)

This is the translog cost function. If δij equals zero, then it reduces to the Cobb–Douglas
function we looked at earlier. The cost shares are given by

s1 = ∂ ln c
∂ ln p1

= β1 + δ11 ln p1 + δ12 ln p2 + · · · + δ1M ln pM,

s2 = ∂ ln c
∂ ln p2

= β2 + δ21 ln p1 + δ22 ln p2 + · · · + δ2M ln pM,

...

sM = ∂ ln c
∂ ln pM

= βM + δM1 ln p1 + δM2 ln p2 + · · · + δMM ln pM.

(10-37)

The cost shares must sum to 1, which requires,

β1 + β2 + · · · + βM = 1,

M∑
i=1

δij = 0 (column sums equal zero), (10-38)

M∑
j=1

δij = 0 (row sums equal zero).

We will also impose the (theoretical) symmetry restriction, δij = δ j i .
The system of share equations provides a seemingly unrelated regressions model

that can be used to estimate the parameters of the model.30 To make the model

28The cost function is only one of several approaches to this study. See Jorgenson (1983) for a discussion.
29See Example 2.4. The function was developed by Kmenta (1967) as a means of approximating the CES
production function and was introduced formally in a series of papers by Berndt, Christensen, Jorgenson,
and Lau, including Berndt and Christensen (1973) and Christensen et al. (1975). The literature has produced
something of a competition in the development of exotic functional forms. The translog function has remained
the most popular, however, and by one account, Guilkey, Lovell, and Sickles (1983) is the most reliable of
several available alternatives. See also Example 5.4.
30The cost function may be included, if desired, which will provide an estimate ofβ0 but is otherwise inessential.
Absent the assumption of constant returns to scale, however, the cost function will contain parameters of
interest that do not appear in the share equations. As such, one would want to include it in the model. See
Christensen and Greene (1976) for an application.
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TABLE 10.3 Parameter Estimates (standard errors in parentheses)

βK 0.05682 (0.00131) δKM −0.02169∗ (0.00963)
βL 0.25355 (0.001987) δLL 0.07488 (0.00639)
βE 0.04383 (0.00105) δLE −0.00321 (0.00275)
βM 0.64580∗ (0.00299) δLM −0.07169∗ (0.00941)
δKK 0.02987 (0.00575) δEE 0.02938 (0.00741)
δKL 0.0000221 (0.00367) δEM −0.01797∗ (0.01075)
δKE −0.00820 (0.00406) δMM 0.11134∗ (0.02239)

∗Estimated indirectly using (10-38).

operational, we must impose the restrictions in (10-38) and solve the problem of singu-
larity of the disturbance covariance matrix of the share equations. The first is accom-
plished by dividing the first M− 1 prices by the Mth, thus eliminating the last term in
each row and column of the parameter matrix. As in the Cobb–Douglas model, we
obtain a nonsingular system by dropping the Mth share equation. We compute max-
imum likelihood estimates of the parameters to ensure invariance with respect to the
choice of which share equation we drop. For the translog cost function, the elastici-
ties of substitution are particularly simple to compute once the parameters have been
estimated:

θij = δij + si s j

si s j
, θii = δii + si (si − 1)

s2
i

. (10-39)

These elasticities will differ at every data point. It is common to compute them at some
central point such as the means of the data.31

Example 10.3 A Cost Function for U.S. Manufacturing
A number of recent studies using the translog methodology have used a four-factor model,
with capital K , labor L, energy E , and materials M, the factors of production. Among the first
studies to employ this methodology was Berndt and Wood’s (1975) estimation of a translog
cost function for the U.S. manufacturing sector. The three factor shares used to estimate the
model are

sK = βK + δK K ln

(
pK

pM

)
+ δK L ln

(
pL

pM

)
+ δK E ln

(
pE

pM

)
,

sL = βL + δK L ln

(
pK

pM

)
+ δLL ln

(
pL

pM

)
+ δL E ln

(
pE

pM

)
,

sE = βE + δK E ln

(
pK

pM

)
+ δL E ln

(
pL

pM

)
+ δE E ln

(
pE

pM

)
.

Berndt and Wood’s data are reproduced in Appendix Table F10.2. Constrained FGLS esti-
mates of the parameters presented in Table 10.3 were obtained by constructing the “pooled

31They will also be highly nonlinear functions of the parameters and the data. A method of computing asymp-
totic standard errors for the estimated elasticities is presented in Anderson and Thursby (1986). Krinsky and
Robb (1986, 1990) (see Section 15.3) proposed their method as an alternative approach to this computation.
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TABLE 10.4 Estimated Elasticities

Capital Labor Energy Materials

Cost Shares for 1959
Fitted shares 0.05646 0.27454 0.04424 0.62476
Actual shares 0.06185 0.27303 0.04563 0.61948

Implied Elasticities of Substitution, 1959
Capital −7.34124
Labor 1.0014 −1.64902
Energy −2.28422 0.73556 −6.59124
Materials 0.38512 0.58205 0.34994 −0.31536

Implied Own Price Elasticities

−0.41448 −0.45274 −0.29161 −0.19702

regression” in (10-19) with data matrices

y =
[

sK
sL
sE

]
,

(10-40)

X =
[

i 0 0 ln PK/PM ln PL/PM ln PE/PM 0 0 0
0 i 0 0 ln PK/PM 0 ln PL/PM ln PE/PM 0
0 0 i 0 0 ln PK/PM 0 ln PL/PM ln PE/PM

]
,

β ′ = (βK , βL , βE , δK K , δK L , δK E , δLL , δL E , δE E ) .

Estimates are then obtained using the two-step procedure in (10-7) and (10-9).32 The full set
of estimates are given in Table 10.4. The parameters not estimated directly in (10-36) are
computed using (10-38).

The implied estimates of the elasticities of substitution and demand for 1959 (the central
year in the data) are derived in Table 10.4 using the fitted cost shares and the estimated
parameters in (10-39). The departure from the Cobb–Douglas model with unit elasticities is
substantial. For example, the results suggest almost no substitutability between energy and
labor and some complementarity between capital and energy.33

10.6 SIMULTANEOUS EQUATIONS MODELS

There is a qualitative difference between the market equilibrium model suggested in
the chapter Introduction,

QDemand = α1 + α2Price + α3Income + d′α + εDemand,

QSupply = β1 + β2Price + s′β + εSupply,

QEquilibrium = QDemand = QSupply,

32These estimates do not match those reported by Berndt and Wood. They used an iterative estimator, whereas
ours is two step FGLS. To purge their data of possible correlation with the disturbances, they first regressed
the prices on 10 exogenous macroeconomic variables, such as U.S. population, government purchases of labor
services, real exports of durable goods and U.S. tangible capital stock, and then based their analysis on the
fitted values. The estimates given here are, in general quite close to those given by Berndt and Wood. For
example, their estimates of the first five parameters are 0.0564, 0.2539, 0.0442, 0.6455, and 0.0254.
33Berndt and Wood’s estimate of θEL for 1959 is 0.64.
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and the other examples considered thus far. The seemingly unrelated regression model,

yim = xim
′βm + εim,

derives from a set of regression equations that are connected through the disturbances.
The regressors, xim are exogenous and vary autonomously for reasons that are not
explained within the model. Thus, the coefficients are directly interpretable as partial ef-
fects and can be estimated by least squares or other methods that are based on the condi-
tional mean functions, E[yim|xim] = xim

′β. In a model such as the preceding equilibrium
model, the relationships are explicit and neither of the two market equations is a regres-
sion model. As a consequence, the partial equilibrium experiment of changing the price
and inducing a change in the equilibrium quantity so as to elicit an estimate of the price
elasticity of demand, α2 (or supply elasticity, β2) makes no sense. The model is of the
joint determination of quantity and price. Price changes when the market equilibrium
changes, but that is induced by changes in other factors, such as changes in incomes or
other variables that affect the supply function. (See Figure 8.1 for a graphical treatment.)

As we saw in Example 8.4, least squares regression of observed equilibrium quanti-
ties on price and the other factors will compute an ambiguous mixture of the supply and
demand functions. The result follows from the endogeneity of Price in either equation.
“Simultaneous equations models” arise in settings such as this one, in which the set of
equations are interdependent by design. Simultaneous equations models will fit in the
framework developed in Chapter 8, where we considered equations in which some of
the right-hand-side variables are endogenous—that is, correlated with the disturbances.
The substantive difference at this point is the source of the endogeneity. In our treat-
ments in Chapter 8, endogeneity arose, for example, in the models of omitted variables,
measurement error, or endogenous treatment effects, essentially as an unintended de-
viation from the assumptions of the linear regression model. In the simultaneous equa-
tions framework, endogeneity is a fundamental part of the specification. This section
will consider the issues of specification and estimation in systems of simultaneous equa-
tions. We begin in Section 10.6.1 with a development of a general framework for the
analysis and a statement of some fundamental issues. Section 10.6.2 presents the simul-
taneous equations model as an extension of the seemingly unrelated regressions model
in Section 10.2. The ultimate objective of the analysis will be to learn about the model
coefficients. The issue of whether this is even possible is considered in Section 10.6.3,
where we develop the issue of identification. Once the identification question is settled,
methods of estimation and inference are presented in Section 10.6.4 and 10.6.5.

10.6.1 SYSTEMS OF EQUATIONS

Consider a simplified version of the preceding equilibrium model, above,

demand equation: qd,t = α1 pt + α2xt + εd,t ,

supply equation: qs,t = β1 pt + εs,t ,

equilibrium condition: qd,t = qs,t = qt .

These equations are structural equations in that they are derived from theory and each
purports to describe a particular aspect of the economy.34 Because the model is one

34The distinction between structural and nonstructural models is sometimes drawn on this basis. See, for
example, Cooley and LeRoy (1985).
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of the joint determination of price and quantity, they are labeled jointly dependent or
endogenous variables. Income, x, is assumed to be determined outside of the model,
which makes it exogenous. The disturbances are added to the usual textbook description
to obtain an econometric model. All three equations are needed to determine the
equilibrium price and quantity, so the system is interdependent. Finally, because an
equilibrium solution for price and quantity in terms of income and the disturbances
is, indeed, implied (unless α1 equals β1), the system is said to be a complete system of
equations. The completeness of the system requires that the number of equations equal
the number of endogenous variables. As a general rule, it is not possible to estimate all
the parameters of incomplete systems (although it may be possible to estimate some of
them).

Suppose that interest centers on estimating the demand elasticity α1. For simplicity,
assume that εd and εs are well behaved, classical disturbances with

E [εd,t | xt ] = E [εs,t | xt ] = 0,

E
[
ε2

d,t

∣∣ xt
] = σ 2

d ,

E
[
ε2

s,t

∣∣ xt
] = σ 2

s ,

E [εd,tεs,t | xt ] = 0.

All variables are mutually uncorrelated with observations at different time periods.
Price, quantity, and income are measured in logarithms in deviations from their sample
means. Solving the equations for p and q in terms of x, εd, and εs produces the reduced
form of the model

p = α2x
β1 − α1

+ εd − εs

β1 − α1
= π1x + v1,

q = β1α2x
β1 − α1

+ β1εd − α1εs

β1 − α1
= π2x + v2.

(10-41)

(Note the role of the “completeness” requirement that α1 not equal β1.)
It follows that Cov[p, εd] = σ 2

d / (β1−α1) and Cov[p, εs] = −σ 2
s / (β1−α1) so neither

the demand nor the supply equation satisfies the assumptions of the classical regression
model. The price elasticity of demand cannot be consistently estimated by least squares
regression of q on x and p. This result is characteristic of simultaneous-equations models.
Because the endogenous variables are all correlated with the disturbances, the least
squares estimators of the parameters of equations with endogenous variables on the
right-hand side are inconsistent.35

Suppose that we have a sample of T observations on p, q, and x such that

plim(1 / T)x′x = σ 2
x .

Since least squares is inconsistent, we might instead use an instrumental variable es-
timator.36 The only variable in the system that is not correlated with the disturbances

35This failure of least squares is sometimes labeled simultaneous equations bias.
36See Section 8.3.
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is x. Consider, then, the IV estimator, β̂1 = q′x/p′x. This estimator has

plim β̂1 = plim
q′x / T
p′x / T

= σ 2
x β1α2 / (β1 − α1)

σ 2
x α2 / (β1 − α1)

= β1.

Evidently, the parameter of the supply curve can be estimated by using an instrumental
variable estimator. In the least squares regression of p on x, the predicted values are
p̂ = (p′x / x′x)x. It follows that in the instrumental variable regression the instrument is
p̂. That is,

β̂1 = p̂′q
p̂′p

.

Because p̂′p = p̂′p̂, β̂1 is also the slope in a regression of q on these predicted values.
This interpretation defines the two-stage least squares estimator.

It would be desirable to use a similar device to estimate the parameters of the de-
mand equation, but unfortunately, we have exhausted the information in the sample. Not
only does least squares fail to estimate the demand equation, but without some further
assumptions, the sample contains no other information that can be used. This example
illustrates the problem of identification alluded to in the introduction to this section.

The distinction between “exogenous” and “endogenous” variables in a model is a
subtle and sometimes controversial complication. It is the subject of a long literature.
We have drawn the distinction in a useful economic fashion at a few points in terms of
whether a variable in the model could reasonably be expected to vary “autonomously,”
independently of the other variables in the model. Thus, in a model of supply and de-
mand, the weather variable in a supply equation seems obviously to be exogenous in a
pure sense to the determination of price and quantity, whereas the current price clearly
is “endogenous” by any reasonable construction. Unfortunately, this neat classification
is of fairly limited use in macroeconomics, where almost no variable can be said to be
truly exogenous in the fashion that most observers would understand the term. To take
a common example, the estimation of consumption functions by ordinary least squares,
as we did in some earlier examples, is usually treated as a respectable enterprise, even
though most macroeconomic models (including the examples given here) depart from a
consumption function in which income is exogenous. This departure has led analysts, for
better or worse, to draw the distinction largely on statistical grounds. The methodolog-
ical development in the literature has produced some consensus on this subject. As we
shall see, the definitions formalize the economic characterization we drew earlier. We
will loosely sketch a few results here for purposes of our derivations to follow. The inter-
ested reader is referred to the literature (and forewarned of some challenging reading).

Engle, Hendry, and Richard (1983) define a set of variables xt in a parameterized
model to be weakly exogenous if the full model can be written in terms of a marginal
probability distribution for xt and a conditional distribution for yt |xt such that estimation
of the parameters of the conditional distribution is no less efficient than estimation of
the full set of parameters of the joint distribution. This case will be true if none of the
parameters in the conditional distribution appears in the marginal distribution for xt .
In the present context, we will need this sort of construction to derive reduced forms
the way we did previously. With reference to time-series applications (although the
notion extends to cross sections as well), variables xt are said to be predetermined in
the model if xt is independent of all subsequent structural disturbances εt+s for s ≥ 0.
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Variables that are predetermined in a model can be treated, at least asymptotically, as
if they were exogenous in the sense that consistent estimators can be derived when
they appear as regressors. We will use this result in Chapter 21, when we derive the
properties of regressions containing lagged values of the dependent variable. A related
concept is Granger (1969)–Sims (1977) causality. Granger causality (a kind of statistical
feedback) is absent when f (xt |xt−1, yt−1) equals f (xt |xt−1). The definition states that
in the conditional distribution, lagged values of yt add no information to explanation
of movements of xt beyond that provided by lagged values of xt itself. This concept is
useful in the construction of forecasting models. Finally, if xt is weakly exogenous and
if yt−1 does not Granger cause xt , then xt is strongly exogenous.

10.6.2 A GENERAL NOTATION FOR LINEAR SIMULTANEOUS
EQUATIONS MODELS37

The structural form of the model is38

γ11 yt1 + γ21 yt2 + · · · + γM1 yt M + β11xt1 + · · · + βK1xt K = εt1,

γ12 yt1 + γ22 yt2 + · · · + γM2 yt M + β12xt1 + · · · + βK2xt K = εt2,
(10-42)

...

γ1Myt1 + γ2Myt2 + · · · + γMMyt M + β1Mxt1 + · · · + βKMxt K = εt M.

There are M equations and M endogenous variables, denoted y1, . . . , yM. There are K
exogenous variables, x1, . . . , xK, that may include predetermined values of y1, . . . , yM

as well. The first element of x t will usually be the constant, 1. Finally, εt1, . . . , εt M are the
structural disturbances. The subscript t will be used to index observations, t = 1, . . . , T.

In matrix terms, the system may be written

[y1 y2 · · · yM]t

⎡
⎢⎢⎢⎢⎢⎣

γ11 γ12 · · · γ1M

γ21 γ22 · · · γ2M

...

γM1 γM2 · · · γMM

⎤
⎥⎥⎥⎥⎥⎦

+ [x1 x2 · · · xK]t

⎡
⎢⎢⎢⎢⎢⎣

β11 β12 · · · β1M

β21 β22 · · · β2M

...

βK1 βK2 · · · βKM

⎤
⎥⎥⎥⎥⎥⎦

= [ε1 ε2 · · · εM]t ,

37We will be restricting our attention to linear models. Nonlinear systems occupy another strand of literature
in this area. Nonlinear systems bring forth numerous complications beyond those discussed here and are
beyond the scope of this text. Gallant (1987), Gallant and Holly (1980), Gallant and White (1988), Davidson
and MacKinnon (2004), and Wooldridge (2002a) provide further discussion.
38For the present, it is convenient to ignore the special nature of lagged endogenous variables and treat them
the same as the strictly exogenous variables.
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or
y′

t 	 + x′
t B = ε′

t .

Each column of the parameter matrices is the vector of coefficients in a particular
equation, whereas each row applies to a specific endogenous variable.

The underlying theory will imply a number of restrictions on 	 and B. One of the
variables in each equation is labeled the dependent variable so that its coefficient in the
model will be 1. Thus, there will be at least one “1” in each column of 	. This normaliza-
tion is not a substantive restriction. The relationship defined for a given equation will
be unchanged if every coefficient in the equation is multiplied by the same constant.
Choosing a “dependent variable” simply removes this indeterminacy. If there are any
identities, then the corresponding columns of 	 and B will be completely known, and
there will be no disturbance for that equation. Because not all variables appear in all
equations, some of the parameters will be zero. The theory may also impose other types
of restrictions on the parameter matrices.

If 	 is an upper triangular matrix, then the system is said to be triangular. In this
case, the model is of the form

yt1 = f1(x t ) + εt1,

yt2 = f2(yt1, x t ) + εt2,

...

yt M = fM(yt1, yt2, . . . , yt,M−1, x t ) + εt M.

The joint determination of the variables in this model is recursive. The first is completely
determined by the exogenous factors. Then, given the first, the second is likewise de-
termined, and so on.

The solution of the system of equations determining yt in terms of xt and εt is the
reduced form of the model,

y′
t = [x1 x2 · · · xK]t

⎡
⎢⎢⎢⎢⎣

π11 π12 · · · π1M

π21 π22 · · · π2M

...

πK1 πK2 · · · πKM

⎤
⎥⎥⎥⎥⎦

+ [ν1 · · · νM]t

= −x′
t B	−1 + ε′

t	
−1

= x′
t
 + v′

t .

For this solution to exist, the model must satisfy the completeness condition for simul-
taneous equations systems: 	 must be nonsingular.

Example 10.4 Structure and Reduced Form in a Small Macroeconomic
Model

Consider the model

consumption : ct = α0 + α1 yt + α2ct−1 + εt1,

investment : i t = β0 + β1rt + β2( yt − yt−1) + εt2,

demand : yt = ct + i t + gt .
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The model contains an autoregressive consumption function based on output, yt , and one
lagged value, an investment equation based on interest, rt and the growth in output, and an
equilibrium condition. The model determines the values of the three endogenous variables
ct , i t , and yt . This model is a dynamic model. In addition to the exogenous variables rt and
government spending, gt , it contains two predetermined variables, ct−1 and yt−1. These are
obviously not exogenous, but with regard to the current values of the endogenous variables,
they may be regarded as having already been determined. The deciding factor is whether
or not they are uncorrelated with the current disturbances, which we might assume. The
reduced form of this model is

Act = α0(1 − β2) + β0α1 + α1β1rt + α1gt + α2(1 − β2)ct−1 − α1β2 yt−1 + (1 − β2)εt1 + α1εt2,

Ait = α0β2 + β0(1 − α1) + β1(1 − α1)rt + β2gt + α2β2ct−1 − β2(1 − α1) yt−1

+ β2εt1 + (1 − α1)εt2,

Ayt = α0 + β0 + β1rt + gt + α2ct−1 − β2 yt−1 + εt1 + εt2,

where A = 1 − α1 − β2. Note that the reduced form preserves the equilibrium condition.
Denote y′ = [c, i , y], x′ = [1, r, g, c−1, y−1], and

	 =
[

1 0 −1
0 1 −1

−α1 −β2 1

]
, B =

⎡
⎢⎢⎣

−α0 −β0 0
0 −β1 0
0 0 −1

−α2 0 0
0 β2 0

⎤
⎥⎥⎦ , 	−1 = 1

�

[
1 − β2 β 1

α1 1 − α1 1
α1 β2 1

]
,


′ = 1
�

[
α0(1 − β2 + β0α1)
α0β2 + β0(1 − α1)

α0 + β0

α1β1
β1(1 − α1)

β1

α1
β2
1

α2(1 − β2)
α2β2
α2

−β2α1
−β2(1 − α1)

−β2

]
,

where � = 1 − α1 − β2. The completeness condition is that α1 and β2 do not sum to one.
There is ambiguity in the interpretation of coefficients in a simultaneous equations model.

The effects in the structural form of the model would be labeled “causal,” in that they are
derived directly from the underlying theory. However, in order to trace through the effects
of autonomous changes in the variables in the model, it is necessary to work through the
reduced form. For example, the interest rate does not appear in the consumption function.
But, that does not imply that changes in rt would not “cause” changes in consumption, since
changes in rt change investment, which impacts demand which, in turn, does appear in the
consumption function. Thus, we can see from the reduced form that �ct/�rt = α1β1/A.
Similarly, the “experiment,” �ct/�yt is meaningless without first determining what caused
the change in yt . If the change were induced by a change in the interest rate, we would find
(�ct/�rt )/(�yt/�rt ) = (α1β1/A)/(β1/A) = α1.

The structural disturbances are assumed to be randomly drawn from an M-variate
distribution with

E [εt | x t ] = 0 and E [εtε
′
t | xt ] = �.

For the present, we assume that

E [εtε
′
s | x t , xs] = 0, ∀t, s.

Later, we will drop this assumption to allow for heteroscedasticity and autocorrelation.
It will occasionally be useful to assume that εt has a multivariate normal distribution,
but we shall postpone this assumption until it becomes necessary. It may be convenient
to retain the identities without disturbances as separate equations. If so, then one way
to proceed with the stochastic specification is to place rows and columns of zeros in the
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appropriate places in �. It follows that the reduced-form disturbances, v′
t = ε′

t	
−1 have

E [vt | x t ] = (	−1)′0 = 0,

E [vt v′
t | xt ] = (	−1)′�	−1 = �.

This implies that

� = 	′�	.

The preceding formulation describes the model as it applies to an observation [y′, x′, ε′]t

at a particular point in time or in a cross section. In a sample of data, each joint obser-
vation will be one row in a data matrix,

[Y X E] =

⎡
⎢⎢⎢⎢⎣

y′
1 x′

1 ε′
1

y′
2 x′

2 ε′
2

...

y′
T x′

T ε′
T

⎤
⎥⎥⎥⎥⎦

.

In terms of the full set of T observations, the structure is

Y	 + XB = E,

with

E [E | X] = 0 and E [(1 / T)E′E | X] = �.

Under general conditions, we can strengthen this structure to

plim[(1 / T)E′E] = �.

An important assumption, comparable with the one made in Chapter 4 for the classical
regression model, is

plim(1 / T)X′X = Q, a finite positive definite matrix. (10-43)

We also assume that

plim(1 / T)X′E = 0. (10-44)

This assumption is what distinguishes the predetermined variables from the endogenous
variables. The reduced form is

Y = X
 + V, where V = E	−1. (10-45)

Combining the earlier results, we have

plim
1
T

⎡
⎢⎣

Y′

X′

V′

⎤
⎥⎦[Y X V] =

⎡
⎢⎣


′Q
 + � 
′Q �

Q
 Q 0′

� 0 �

⎤
⎥⎦ .

10.6.3 THE PROBLEM OF IDENTIFICATION

Solving the identification problem logically precedes estimation. It is a crucial element of
the model specification step. The issue is whether there is any way to obtain estimates of
the parameters of the specified model. We have in hand a certain amount of information
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to use for inference about the underlying structure. If more than one theory is consistent
with the same “data,” then the theories are said to be observationally equivalent and
there is no way of distinguishing them. We have already encountered this problem in
Chapter 4, where we examined the issue of multicollinearity. The “model,”

consumption = β1 + β2WageIncome + β3NonWageIncome + β4TotalIncome + ε,

(10-46)
cannot be distinguished from the alternative model

consumption = γ1 + γ2WageIncome + γ3NonWageIncome + γ4TotalIncome + ω,

(10-47)
where γ1 = β1, γ2 = β2 + a, γ3 = β3 + a, γ4 = β4 − a for some nonzero a, if the
data consist only of consumption and the two income values (and their sum). How-
ever, if we know that if β4 equals zero, then, as we saw in Chapter 4, γ2 must equal
β2 and γ3 must equal β3. The additional information serves to rule out the alternative
model. The notion of observational equivalence relates to what can be learned from
the available information, which consists of the sample data and the restrictions that
theory places on the equations of the model. In Chapter 8, where we examined the
instrumental variable estimator, we defined identification in terms of sufficient moment
equations. Indeed, Figure 8.1 is precisely an application of the principle of observa-
tional equivalence. The case of measurement error that we examined in Section 8.5
is likewise about identification. The sample regression coefficient, b, converges to a
function of two underlying parameters, β and σ 2

u ; plim b = β/[1 + σ 2
u /Q∗∗] where

Q∗∗ = plim(x∗′x∗/n). With no further information about σ 2
u , we cannot infer β from the

sample information, b and Q∗∗—there are different pairs of β and σ 2
u that produce the

same plim b.
A mathematical statement of the idea can be made in terms of the likelihood

function, which embodies the sample information. At this point, it helps to drop the
statistical distinction between “y” and “x” and consider, in generic terms, the joint
probability distribution for the observed data, p(Y, X|θ), given the model parameters.
Two model structures are observationally equivalent if

p(Y, X|θ1) = p(Y, X|θ2) for θ1 �= θ2 for all realizations of (Y, X).

A structure is said to be unidentified if it is observationally equivalent to another struc-
ture.39 (For our preceding consumption example, as will usually be the case when a
model is unidentified, there are an infinite number of structures that are all equivalent
to (10-46), one for each nonzero value of a in (10-47).

The general simultaneous equations model we have specified in (10-42) is not iden-
tified. We have implicitly assumed that the marginal distribution of X can be separated
from the conditional distribution of Y|X. We can write the model as

p(Y, X|	, B, �, �) = p(Y|X, �, �)p(X|�) with 
 = − B
−1 and � = (	′)−1�(	)−1.

We assume that � and (	, B, �) have no elements in common. But, let F be any non-
singular M × M matrix and define B2 = FB and 	2 = F	 and �2 = F′�F (i.e., we just
multiply the whole model by F). If F is not equal to an identity matrix, then B2, 	2, and

39See Hsiao (1983) for a survey of this issue.
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�2 are a different B, 	 and � that are consistent with the same data, that is, with the
same (Y, X) which imply (
 and �). This follows because 
2 = −B−1

2 	2 = −B−1	 = 


and likewise for �2. To see how this will proceed from here, consider that in each equa-
tion, there is one “dependent variable,” that is a variable whose coefficient equals one.
Therefore, one specific element of 	 in every equation (column) equals one. That rules
out any matrix F which does not leave a one in that position in 	2. Likewise, in the
market equilibrium case in Section 10.6.1, the coefficient on x in the supply equation
is zero. That means there is an element in one of the columns of B that equals zero.
Any F that does not preserve that zero restriction is invalid. Thus, certain restrictions
that theory imposes on the model rule out some of the alternative models. With enough
restrictions, the only valid F matrix will be F = I, and the model becomes identified.

The structural model consists of the equation system

y	 = −x′B + ε′.

Each column in 	 and B are the parameters of a specific equation in the system. The
sample information consists of, at the first instance the data, (Y, X), and other nonsample
information in the form of restrictions on parameter matrices, such as the normalizations
noted in the preceding example. The sample data provide sample moments, X′X/n,
X′Y/n, and Y′Y/n. For purposes of identification, which is independent of issues of
sample size, suppose we could observe as large a sample as desired. Then, we could
observe [from (10-45)]

plim(1/n)X′X = Q,

plim(1/n)X′Y = plim(1/n)X′(X
 + V) = Q
,

plim(1/n)Y′Y = plim(1/n)(X
 + V)′(X
 + V) = 
′Q
 + �.

Therefore, 
, the matrix of reduced-form coefficients, is observable:


 = [plim(1/n)X′Y]−1[plim(1/n)X′Y]

This estimator is simply the equation-by-equation least squares regression of Y on X.
Because 
 is observable, � is also:

� = [plim(1/n)Y′Y] − [plim(1/n)Y′X][plim(1/n)X′X]−1[plim(1/n)X′Y].

This result should be recognized as the matrix of least squares residual variances and
covariances. Therefore,


 and � can be estimated consistently by least squares regression of Y on X.

The information in hand, therefore, consists of 
, �, and whatever other nonsample
information we have about the structure.40

Thus, 
 and � are “observable.” The ultimate question is whether we can deduce
	, B, � from 
, �. A simple counting exercise immediately reveals that the answer is

40We have not necessarily shown that this is all the information in the sample. In general, we observe the
conditional distribution f (yi |xi ), which constitutes the likelihood for the reduced form. With normally dis-
tributed disturbances, this distribution is a function of only 
 and �. With other distributions, other or higher
moments of the variables might provide additional information. See, for example, Goldberger (1964, p. 311),
Hausman (1983, pp. 402–403), and especially Reirsol (1950).
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no—there are M2 parameters 	, M(M + 1)/2 in � and KM in B to be deduced. The
sample data contain KM elements in 
 and M(M + 1)/2 elements in �. By simply
counting equations and unknowns, we find that our data are insufficient by M2 pieces
of information. We have (in principle) used the sample information already, so these
M2 additional restrictions are going to be provided by the theory of the model. A small
example will help to fix ideas.

Example 10.5 Identification
Consider a market in which q is quantity of Q, p is price, and z is the price of Z, a related
good. We assume that z enters both the supply and demand equations. For example, Z
might be a crop that is purchased by consumers and that will be grown by farmers instead
of Q if its price rises enough relative to p. Thus, we would expect α2 > 0 and β2 < 0. So,

qd = α0 + α1 p + α2z + εd (demand ) ,

qs = β0 + β1 p + β2z + εs (supply) ,

qd = qs = q (equilibrium) .

The reduced form is

q = α1β0 − α0β1

α1 − β1
+ α1β2 − α2β1

α1 − β1
z + α1εs − α2εd

α1 − β1
= π11 + π21z + νq,

p = β0 − α0

α1 − β1
+ β2 − α2

α1 − β1
z + εs − εd

α1 − β1
= π12 + π22z + νp.

With only four reduced-form coefficients and six structural parameters, it is obvious that there
will not be a complete solution for all six structural parameters in terms of the four reduced
parameters. Suppose, though, that it is known that β2 = 0 (farmers do not substitute the
alternative crop for this one). Then the solution for β1 is π21 / π22. After a bit of manipulation,
we also obtain β0 = π11 − π12π21 / π22. The restriction identifies the supply parameters, but
this step is as far as we can go.

Now, suppose that income x, rather than z, appears in the demand equation. The revised
model is

q = α0 + α1 p + α2x + ε1,

q = β0 + β1 p + β2z + ε2.

The structure is now

[q p]

[
1 1

−α1 −β1

]
+ [1 x z]

⎡
⎣

−α0 −β0

−α2 0
0 −β2

⎤
⎦ = [ε1 ε2].

The reduced form is

[q p] = [1 x z]

⎡
⎣

(α1β0 − α0β1) / � (β0 − α0) / �

−α2β1 / � −α2 / �

α1β2 / � β2 / �

⎤
⎦ + [ν1 ν2],

where � = (α1 − β1) . Every false structure has the same reduced form. But in the coefficient
matrix,

B̃ = BF =

⎡
⎣

α0 f11 + β0 f21 α0 f12 + β0 f22

α2 f11 α2 f12

β2 f21 β2 f22

⎤
⎦ ,

if f12 is not zero, then the imposter will have income appearing in the supply equation,
which our theory has ruled out. Likewise, if f21 is not zero, then z will appear in the demand
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equation, which is also ruled out by our theory. Thus, although all false structures have the
same reduced form as the true one, the only one that is consistent with our theory (i.e.,
is admissible) and has coefficients of 1 on q in both equations (examine 	F) is F = I. This
transformation just produces the original structure.

The unique solutions for the structural parameters in terms of the reduced-form parame-
ters are now

α0 = π11 − π12

(
π31

π32

)
, β0 = π11 − π12

(
π21

π22

)
,

α1 = π31

π32
, β1 = π21

π22
,

α2 = π22

(
π21

π22
− π31

π32

)
, β2 = π32

(
π31

π32
− π21

π22

)
.

The conclusion is that some equation systems are identified and others are not. The
formal mathematical conditions under which an equation system is identified turns on
some intricate results known as the rank and order conditions.

The order condition is a simple counting rule. In the equation system context, the
order condition is that the number of exogenous variables that appear elsewhere in the
equation system must be at least as large as the number of endogenous variables in
the equation. We used this rule when we constructed the IV estimator in Chapter 8.
In that setting, we required our model to be at least “identified” by requiring that the
number of instrumental variables not contained in X be at least as large as the number
of endogenous variables. The correspondence of that single equation application with
the condition defined here is that the rest of the equation system is, essentially, the
rest of the world (i.e., the source of the instrumental variables).41 A simple sufficient
order condition for an equation system is that each equation must contain “its own”
exogenous variable that does not appear elsewhere in the system.

The order condition is necessary for identification; the rank condition is sufficient.
The equation system in (10-42) in structural form is y′	 = −x′B +ε′. The reduced form
is y′ = x′(−B	−1) + ε′	−1 = x′
 + v′. The way we are going to deduce the parameters
in (	, B, �) is from the reduced form parameters (
, �). For a particular equation, say
the jth, the solution is contained in 
	 = −B, or for a particular equation, 
	 j = −B j

where 	 j contains all the coefficients in the jth equation that multiply endogenous
variables. One of these coefficients will equal one, usually some will equal zero, and
the remainder are the nonzero coefficients on endogenous variables in the equation,
Y j [these are denoted γ j in (10-48) following]. Likewise, B j contains the coefficients
in equation j on all exogenous variables in the model—some of these will be zero and
the remainder will multiply variables in X j , the exogenous variables that appear in this
equation [these are denoted β j in (10-48) following]. The empirical counterpart will be

[plim(1/n)X′X]−1[plim(1/n)X′Y j ]	 j − B j = 0.

The rank condition ensures that there is a unique solution to this set of equations. In
practical terms, the rank condition is difficult to establish in large equation systems.
Practitioners typically take it as a given. In small systems, such as the 2 or 3 equation

41This invokes the perennial question (encountered repeatedly in the applications in Chapter 8), “where do
the instruments come from?” See Section 8.8 for discussion.
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systems that dominate contemporary research, it is trivial. We have already used the
rank condition in Chapter 8 where it played a role in the “relevance” condition for instru-
mental variable estimation. In particular, note after the statement of the assumptions
for instrumental variable estimation, we assumed plim(1/n)Z′X is a matrix with rank
K. (This condition is often labeled the “rank condition” in contemporary applications.
It not identical, but it is sufficient for the condition mentioned here.)

To add all this up, it is instructive to return to the order condition. We are trying
to solve a set of moment equations based on the relationship between the structural
parameters and the reduced form. The sample information provides KM + M(M +
1)/2 items in 
 and �. We require M2 additional restrictions, imposed by the theory
behind the model. The restrictions come in the form of normalizations, most commonly
exclusion restrictions, and other relationships among the parameters, such as linear
relationships, or specific values attached to coefficients.

The question of identification is a theoretical exercise. It arises in all econometric
settings in which the parameters of a model are to be deduced from the combination of
sample information and nonsample (theoretical) information. The crucial issue in each
of these cases is our ability (or lack of) to deduce the values of structural parameters
uniquely from sample information in terms of sample moments coupled with nonsam-
ple information, mainly restrictions on parameter values. The issue of identification is
the subject of a lengthy literature including Working (1927) (which has been adapted
to produce Figure 8.1), Gabrielsen (1978), Amemiya (1985), Bekker and Wansbeek
(2001), and continuing through the contemporary discussion of natural experiments
(Section 8.8 and Angrist and Pischke (2010), with commentary).

10.6.4 SINGLE EQUATION ESTIMATION AND INFERENCE

For purposes of estimation and inference, we write the specification of the simultaneous
equations model in the form that the researcher would typically formulate it:

y j = X jβ j + Y jγ j + ε j

= Z jδ j + ε j (10-48)

where y j is the “dependent variable” in the equation, X j is the set of exogenous variables
that appear in the jth equation—note that this is not all the variables in the model—
and Z j = (X j , Y j ). The full set of exogenous variables in the model, including X j and
variables that appear elsewhere in the model (including a constant term if any equation
includes one) is denoted X. For example, in the supply/demand model in Example 10.5,
the full set of exogenous variables is X = (1, x, z), while for the demand equation,
XDemand = (1, x) and XSupply = (1, z). Finally, Y j is the endogenous variables that
appear on the right-hand side of the jth equation. Once again, this is likely to be a
subset of the endogenous variables in the full model. In Example 10.5, Y j = (price) in
both cases.

There are two approaches to estimation and inference for simultaneous equations
models. Limited information estimators are constructed for each equation individually.
The approach is analogous to estimation of the seemingly unrelated regressions model
in Section 10.2 by least squares, one equation at a time. Full information estimators are
used to estimate all equations simultaneously. The counterpart for the seemingly unre-
lated regressions model is the feasible generalized least squares estimator discussed in
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Section 10.2.3. The major difference to be accommodated at this point is the endogeneity
of Y j in (10-48).

The equation system in (10-48) is precisely the model developed in Chapter 8.
Least squares will generally be unsuitable as it is inconsistent due to the correlation
between Y j and ε j . The usual approach will be two-stage least squares as developed
in Sections 8.3.2 to 8.3.4. The only difference between the case considered here and
that in Chapter 8 is the source of the instrumental variables. In our general model in
Chapter 8, the source of the instruments remained somewhat ambiguous; the overall
rule was “outside the model.” In this setting, the instruments come from elsewhere in the
model—that is, “not in the jth equation.” Thus, for estimating the linear simultaneous
equations model, the most common estimator is

δ̂ j,2SLS = [Ẑ
′
j Ẑ j ]−1Ẑ

′
j y j

= [(Z′
j X)(X′X)−1(X′Z j )]−1(Z′

j X)(X′X)−1X′y j ,
(10-49)

where all columns of Ẑ
′
j are obtained as predictions in a regression of the corresponding

column of Z j on X. This equation also results in a useful simplification of the estimated
asymptotic covariance matrix,

Est. Asy. Var[δ̂ j,2SLS] = σ̂jj[Ẑ
′
j Ẑ j ]−1.

It is important to note that σjj is estimated by

σ̂jj = (y j − Z j δ̂ j )
′(y j − Z j δ̂ j )

T
, (10-50)

using the original data, not Ẑ j .
Note the role of the order condition for identification in the two-stage least squares

estimator. Formally, the order condition requires that the number of exogenous vari-
ables that appear elsewhere in the model (not in this equation) be at least as large as
the number of endogenous variables that appear in this equation. The implication will
be that we are going to predict Z j = (X j , Y j ) using X = (X j , X j

∗). In order for these
predictions to be linearly independent, there must be at least as many variables used
to compute the predictions as there are variables being predicted. Comparing (X j , Y j )

to (X j , X j
∗), we see that there must be at least as many variables in X j

∗ as there are in
Y j , which is the order condition. The practical rule of thumb that every equation have
at least one variable in it that does not appear in any other equation will guarantee this
outcome.

Two-stage least squares is used nearly universally in estimation of simultaneous
equation models—for precisely the reasons outlined in Chapter 8. However, some ap-
plications (and some theoretical treatments) have suggested that the limited informa-
tion maximum likelihood (LIML) estimator based on the normal distribution may have
better properties. The technique has also found recent use in the analysis of weak instru-
ments that we consider in Section 10.6.5. A full (lengthy) derivation of the log-likelihood
is provided in Davidson and MacKinnon (2004). We will proceed to the practical aspects
of this estimator and refer the reader to this source for the background formalities. A
result that emerges from the derivation is that the LIML estimator has the same asymp-
totic distribution as the 2SLS estimator, and the latter does not rely on an assumption
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of normality. This raises the question why one would use the LIML technique given the
availability of the more robust (and computationally simpler) alternative. Small sample
results are sparse, but they would favor 2SLS as well. [See Phillips (1983).] One signifi-
cant virtue of LIML is its invariance to the normalization of the equation. Consider an
example in a system of equations,

y1 = y2γ2 + y3γ3 + x1β1 + x2β2 + ε1.

An equivalent equation would be

y2 = y1(1/γ2) + y3(−γ3/γ2) + x1(−β1/γ2) + x2(−β2/γ2) + ε1(−1/γ2)

= y1γ̃1 + y3γ̃3 + x1β̃1 + x2β̃2 + ε̃1.

The parameters of the second equation can be manipulated to produce those of the first.
But, as you can easily verify, the 2SLS estimator is not invariant to the normalization of
the equation—2SLS would produce numerically different answers. LIML would give
the same numerical solutions to both estimation problems suggested earlier. A second
virtue is LIML’s better performance in the presence of weak instruments.

The LIML, or least variance ratio estimator, can be computed as follows.42 Let

W0
j = E0

j
′E0

j , (10-51)

where

Y0
j = [y j , Y j ],

and

E0
j = M j Y0

j = [I − X j (X′
j X j )

−1X′
j ]Y

0
j . (10-52)

Each column of E0
j is a set of least squares residuals in the regression of the correspond-

ing column of Y0
j on X j , that is, the exogenous variables that appear in the jth equation.

Thus, W0
j is the matrix of sums of squares and cross products of these residuals. Define

W1
j = E1

j
′E1

j = Y0
j
′[I − X(X′X)−1X′]Y0

j . (10-53)

That is, W1
j is defined like W0

j except that the regressions are on all the x’s in the model,
not just the ones in the jth equation. Let

λ1 = smallest characteristic root of
(
W1

j

)−1W0
j . (10-54)

This matrix is asymmetric, but all its roots are real and greater than or equal to 1.
Depending on the available software, it may be more convenient to obtain the identical
smallest root of the symmetric matrix D = (W1

j )
−1/2W0

j (W
1
j )

−1/2. Now partition W0
j into

W0
j =

[
w0

jj w0
j
′

w0
j W0

jj

]
corresponding to [y j , Y j ], and partition W1

j likewise. Then, with these

42The least variance ratio estimator is derived in Johnston (1984). The LIML estimator was derived by
Anderson and Rubin (1949, 1950). The LIML estimator has, since its derivation by Anderson and Rubin in
1949 and 1950, been of largely theoretical interest only. The much simpler and equally efficient two-stage least
squares estimator has stood as the estimator of choice. But LIML and the A–R specification test have been
rediscovered and reinvigorated with their use in the analysis of weak instruments. See Hahn and Hausman
(2002, 2003) and Sections 8.7 and 10.6.6.



Greene-2140242 book January 19, 2011 21:9

CHAPTER 10 ✦ Systems of Equations 369

parts in hand,

γ̂ j,LIML = [
W0

jj − λ1W1
jj

]−1(w0
j − λ1w1

j

)
(10-55)

and

β̂ j,LIML = [X′
j X j ]−1X′

j (y j − Y j γ̂ j,LIML).

Note that β j is estimated by a simple least squares regression. [See (3-18).] The asymp-
totic covariance matrix for the LIML estimator is identical to that for the 2SLS esti-
mator.43 The implication is that with normally distributed disturbances, 2SLS is fully
efficient.

The k class of estimators is defined by the following form

δ̂ j,k =
(

γ̂ j,k

β̂ j,k

) [
Y′

j Y j − kV′
j V j Y′

j X j

X′
j Y j X′

j X j

] [
Y′

j y j − kV′
j v j

X′
j y j

]
, (10-56)

where V j and v j are the reduced form disturbances in (10-45). The feasible estimator is
computed using the residuals from the OLS regressions of Y j and yi on X (not X j ). We
have already considered three members of the class, OLS with k = 0, 2SLS with k = 1,
and, it can be shown, LIML with k = λ1. [This last result follows from (10-55).] There
have been many other k-class estimators derived; Davidson and MacKinnon (2004,
pp. 537–538 and 548–549) and Mariano (2001) give discussion. It has been shown that
all members of the k class for which k converges to 1 at a rate faster than 1/

√
n have

the same asymptotic distribution as that of the 2SLS estimator that we examined earlier.
These are largely of theoretical interest, given the pervasive use of 2SLS or OLS, save
for an important consideration. The large sample properties of all k-class estimators
are the same, but the finite-sample properties are possibly very different. Davidson and
MacKinnon (2004, pp. 537–538 and 548–549) and Mariano (1982, 2001) suggest that
some evidence favors LIML when the sample size is small or moderate and the number
of overidentifying restrictions is relatively large.

10.6.5 SYSTEM METHODS OF ESTIMATION

We may formulate the full system of equations as
⎡
⎢⎢⎢⎣

y1

y2
...

yM

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Z1 0 · · · 0
0 Z2 · · · 0
...

...
...

...

0 0 · · · ZM

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

δ1

δ2
...

δM

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

ε1

ε2
...

εM

⎤
⎥⎥⎥⎦ (10-57)

or

y = Zδ + ε,

where

E [ε | X] = 0, and E [εε′ | X] = �̄ = � ⊗ I. (10-58)

43This is proved by showing that both estimators are members of the “k class” of estimators, all of which have
the same asymptotic covariance matrix. Details are given in Theil (1971) and Schmidt (1976).
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[See (10-6).] The least squares estimator,

d = [Z′Z]−1Z′y,

is equation-by-equation ordinary least squares and is inconsistent. But even if ordinary
least squares were consistent, we know from our results for the seemingly unrelated
regressions model that it would be inefficient compared with an estimator that makes use
of the cross-equation correlations of the disturbances. For the first issue, we turn once
again to an IV estimator. For the second, as we did Section 10.2.1, we use a generalized
least squares approach. Thus, assuming that the matrix of instrumental variables, W̄
satisfies the requirements for an IV estimator, a consistent though inefficient estimator
would be

δ̂IV = [W̄′Z]−1W̄′y. (10-59)

Analogous to the seemingly unrelated regressions model, a more efficient estimator
would be based on the generalized least squares principle,

δ̂IV,GLS = [W̄′(�−1 ⊗ I)Z]−1W̄′(�−1 ⊗ I)y, (10-60)

or, where W j is the set of instrumental variables for the jth equation,

δ̂IV,GLS =

⎡
⎢⎢⎢⎢⎢⎣

σ 11W′
1Z1 σ 12W′

1Z2 · · · σ 1MW′
1ZM

σ 21W′
2Z1 σ 22W′

2Z2 · · · σ 2MW′
2ZM

...

σ M1W′
MZ1 σ M2W′

MZ2 · · · σ MMW′
MZM

⎤
⎥⎥⎥⎥⎥⎦

−1
⎡
⎢⎢⎢⎢⎢⎢⎣

∑M
j=1 σ 1 j W′

1y j
∑M

j=1 σ 2 j W′
2y j

...∑M
j=1 σ Mj W′

My j

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Three IV techniques are generally used for joint estimation of the entire system of
equations: three-stage least squares, GMM, and full information maximum likelihood
(FIML). We will consider three-stage least squares here. GMM and FIML are discussed
in Chapters 13 and 14, respectively.

Consider the IV estimator formed from

W̄ = Ẑ = diag[X(X′X)−1X′Z1, . . . , X(X′X)−1X′ZM] =

⎡
⎢⎢⎢⎣

Ẑ1 0 · · · 0
0 Ẑ2 · · · 0
...

...
...

...

0 0 · · · ẐM

⎤
⎥⎥⎥⎦ .

The IV estimator,

δ̂IV = [Ẑ
′
Z]−1Ẑ

′
y,

is simply equation-by-equation 2SLS. We have already established the consistency of
2SLS. By analogy to the seemingly unrelated regressions model of Section 10.2, how-
ever, we would expect this estimator to be less efficient than a GLS estimator. A natural
candidate would be

δ̂3SLS = [Ẑ
′
(�−1 ⊗ I)Z]−1Ẑ

′
(�−1 ⊗ I)y.
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For this estimator to be a valid IV estimator, we must establish that

plim
1
T

Ẑ
′
(�−1 ⊗ I)ε = 0,

which is M sets of equations, each one of the form

plim
1
T

M∑
j=1

σ ijẐ
′
iε j = 0.

Each is the sum of vectors all of which converge to zero, as we saw in the development
of the 2SLS estimator. The second requirement, that

plim
1
T

Ẑ
′
(�−1 ⊗ I)Z �= 0,

and that the matrix be nonsingular, can be established along the lines of its counterpart
for 2SLS. Identification of every equation by the rank condition is sufficient. [But, see
Mariano (2001) on the subject of “weak instruments.”]

Once again using the idempotency of I − M, we may also interpret this estimator
as a GLS estimator of the form

δ̂3SLS = [Ẑ
′
(�−1 ⊗ I)Ẑ]−1Ẑ

′
(�−1 ⊗ I)y. (10-61)

The appropriate asymptotic covariance matrix for the estimator is

Asy. Var[δ̂3SLS] = [Z̄′(�−1 ⊗ I)Z̄]−1, (10-62)

where Z̄ = diag[X
 j , X j ]. This matrix would be estimated with the bracketed inverse
matrix in (10-61).

Using sample data, we find that Z̄ may be estimated with Ẑ. The remaining difficulty
is to obtain an estimate of �. In estimation of the multivariate regression model, for
efficient estimation, any consistent estimator of � will do. The designers of the 3SLS
method, Zellner and Theil (1962), suggest the natural choice arising out of the two-
stage least estimates. The three-stage least squares (3SLS) estimator is thus defined as
follows:

1. Estimate 
 by ordinary least squares and compute Ŷ j for each equation.
2. Compute δ̂ j,2SLS for each equation; then

σ̂ij = (yi − Zi δ̂i )
′(y j − Z j δ̂ j )

T
. (10-63)

3. Compute the GLS estimator according to (10-61) and an estimate of the asymptotic
covariance matrix according to (10-62) using Ẑ and �̂.

It is also possible to iterate the 3SLS computation. Unlike the seemingly unrelated
regressions estimator, however, this method does not provide the maximum likelihood
estimator, nor does it improve the asymptotic efficiency.44

By showing that the 3SLS estimator satisfies the requirements for an IV estima-
tor, we have established its consistency. The question of asymptotic efficiency remains.

44A Jacobian term needed to maximize the log-likelihood is not treated by the 3SLS estimator. See Dhrymes
(1973).
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It can be shown that among all IV estimators that use only the sample information
embodied in the system, 3SLS is asymptotically efficient.45 For normally distributed
disturbances, it can also be shown that 3SLS has the same asymptotic distribution as
the full information maximum likelihood estimator.

Example 10.6 Klein’s Model I
A widely used example of a simultaneous equations model of the economy is Klein’s (1950)
Model I. The model may be written

Ct = α0 + α1 Pt + α2 Pt−1 + α3

(
Wp

t + W g
t

) + ε1t (consumption),

I t = β0 + β1 Pt + β2 Pt−1 + β3 Kt−1 + ε2t (investment),

Wp
t = γ0 + γ1 Xt + γ2 Xt−1 + γ3 At + ε3t (private wages),

Xt = Ct + I t + Gt (equilibrium demand),

Pt = Xt − Tt − Wp
t (private profits),

Kt = Kt−1 + I t (capital stock).

The endogenous variables are each on the left-hand side of an equation and are labeled
on the right. The exogenous variables are Gt = government nonwage spending, Tt = indirect
business taxes plus net exports, W g

t = government wage bill, At = time trend measured as
years from 1931, and the constant term. There are also three predetermined variables: the
lagged values of the capital stock, private profits, and total demand. The model contains
three behavioral equations, an equilibrium condition, and two accounting identities. This
model provides an excellent example of a small, dynamic model of the economy. It has also
been widely used as a test ground for simultaneous equations estimators. Klein estimated the
parameters using yearly data for 1921 to 1941. The data are listed in Appendix Table F10.3.
Table 10.5. presents limited and full information estimates for Klein’s Model I based on the
original data for 1920–1941.46

It might seem, in light of the entire discussion, that one of the structural estimators
described previously should always be preferred to ordinary least squares, which, alone
among the estimators considered here, is inconsistent. Unfortunately, the issue is not so
clear. First, it is often found that the OLS estimator is surprisingly close to the structural
estimator. It can be shown that, at least in some cases, OLS has a smaller variance about
its mean than does 2SLS about its mean, leading to the possibility that OLS might be
more precise in a mean-squared-error sense.47 But this result must be tempered by
the finding that the OLS standard errors are, in all likelihood, not useful for inference
purposes.48 Nonetheless, OLS is a frequently used estimator. Obviously, this discussion
is relevant only to finite samples. Asymptotically, 2SLS must dominate OLS, and in a
correctly specified model, any full information estimator must dominate any limited

45See Schmidt (1976) for a proof of its efficiency relative to 2SLS.
46The asymptotic covariance matrix for the LIML estimator will differ from that for the 2SLS estimator
in a finite sample because the estimator of σjj that multiplies the inverse matrix will differ and because in
computing the matrix to be inverted, the value of “k” [see the equation after (10-55)] is one for 2SLS and the
smallest root in (10-54) for LIML. Asymptotically, k equals one and the estimators of σjj are equivalent.
47See Goldberger (1964, pp. 359–360).
48Cragg (1967).
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TABLE 10.5 Estimates of Klein’s Model I (Estimated Asymptotic Standard
Errors in Parentheses)

Limited Information Estimates Full Information Estimates

2SLS 3SLS
C 16.6 0.017 0.216 0.810 16.4 0.125 0.163 0.790

(1.32) (0.118) (0.107) (0.040) (1.30) (0.108) (0.100) (0.038)
I 20.3 0.150 0.616 −0.158 28.2 −0.013 0.756 −0.195

(7.54) (0.173) (0.162) (0.036) (6.79) (0.162) (0.153) (0.033)
Wp 1.50 0.439 0.147 0.130 1.80 0.400 0.181 0.150

(1.15) (0.036) (0.039) (0.029) (1.12) (0.032) (0.034) (0.028)

LIML FIML
C 17.1 −0.222 0.396 0.823 18.3 −0.232 0.388 0.802

(1.84) (0.202) (0.174) (0.055) (2.49) (0.312) (0.217) (0.036)
I 22.6 0.075 0.680 −0.168 27.3 −0.801 1.052 −0.146

(9.24) (0.219) (0.203) (0.044) (7.94) (0.491) (0.353) (0.30)
Wp 1.53 0.434 0.151 0.132 5.79 0.234 0.285 0.235

(2.40) (0.137) (0.135) (0.065) (1.80) (0.049) (0.045) (0.035)

OLS I3SLS
C 16.2 0.193 0.090 0.796 16.6 0.165 0.177 0.766

(1.30) (0.091) (0.091) (0.040) (1.22) (0.096) (0.090) (0.035)
I 10.1 0.480 0.333 −0.112 42.9 −0.356 1.01 −0.260

(5.47) (0.097) (0.101) (0.027) (10.6) (0.260) (0.249) (0.051)
Wp 1.50 0.439 0.146 0.130 2.62 0.375 0.194 0.168

(1.27) (0.032) (0.037) (0.032) (1.20) (0.031) (0.032) (0.029)

information one. The finite sample properties are of crucial importance. Most of what
we know is asymptotic properties, but most applications are based on rather small or
moderately sized samples.

The large difference between the inconsistent OLS and the other estimates suggests
the bias discussed earlier. On the other hand, the incorrect sign on the LIML and FIML
estimate of the coefficient on P and the even larger difference of the coefficient on P−1

in the C equation are striking. Assuming that the equation is properly specified, these
anomalies would likewise be attributed to finite sample variation, because LIML and
2SLS are asymptotically equivalent.

Intuition would suggest that systems methods, 3SLS, and FIML, are to be preferred
to single-equation methods, 2SLS and LIML. Indeed, if the advantage is so transparent,
why would one ever choose a single-equation estimator? The proper analogy is to
the use of single-equation OLS versus GLS in the SURE model of Section 10.2. An
obvious practical consideration is the computational simplicity of the single-equation
methods. But the current state of available software has eliminated this advantage.

Although the system methods of estimation are asymptotically better, they have two
problems. First, any specification error in the structure of the model will be propagated
throughout the system by 3SLS or FIML. The limited information estimators will, by
and large, confine a problem to the particular equation in which it appears. Second,
in the same fashion as the SURE model, the finite-sample variation of the estimated
covariance matrix is transmitted throughout the system. Thus, the finite-sample variance
of 3SLS may well be as large as or larger than that of 2SLS. Although they are only
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single estimates, the results for Klein’s Model I give a striking example. The upshot
would appear to be that the advantage of the systems estimators in finite samples may
be more modest than the asymptotic results would suggest. Monte Carlo studies of the
issue have tended to reach the same conclusion.49

10.6.6 TESTING IN THE PRESENCE OF WEAK INSTRUMENTS

In Section 8.7, we introduced the problems of estimation and inference with instrumen-
tal variables in the presence of weak instruments. The first-stage regression method of
Staiger and Stock (1997) is often used to detect the condition. Other tests have also
been proposed, notably that of Hahn and Hausman (2002, 2003). Consider an equation
with a single endogenous variable on the right-hand side,

y1 = γ y2 + x′
1β1 + ε1.

Given the way the model has been developed, the placement of y1 on the left-hand side
of this equation and y2 on the right represents nothing more than a normalization of the
coefficient matrix 	 in (10-42). For the moment, label this the “forward” equation. If
we renormalize the model in terms of y2, we obtain the completely equivalent equation

y2 = (1/γ )y1 + x′
1(−β1/γ ) + (−ε1/γ )

= θy1 + x′
1λ1 + v1,

which we [i.e., Hahn and Hausman (2002)] label the “reverse equation.” In principle,
for estimation of γ , it should make no difference which form we estimate; we can esti-
mate γ directly in the first equation or indirectly through 1/θ in the second. However,
in practice, of all the k-class estimators listed in Section 10.6.4 which includes all the
estimators we have examined, only the LIML estimator is invariant to this renormal-
ization; certainly the 2SLS estimator is not. If we consider the forward 2SLS estimator,
γ̂ , and the reverse estimator, 1/θ̂ , we should in principle obtain similar estimates. But
there is a bias in the 2SLS estimator that becomes more pronounced as the instru-
ments become weaker. The Hahn and Hausman test statistic is based on the difference
between these two estimators (corrected for the known bias of the 2SLS estimator in
this case). [Research on this and other tests is ongoing. Hausman, Stock, and Yogo
(2005) do report rather disappointing results for the power of this test in the presence
of irrelevant instruments.]

The problem of inference remains. The upshot of the development so far is that the
usual test statistics are likely to be unreliable. Some useful results have been obtained
for devising inference procedures that are more robust than the standard first-order
asymptotics that we have employed (for example, in Theorem 8.1 and Section 10.4).
Kleibergen (2002) has constructed a class of test statistics based on Anderson and
Rubin’s (1949, 1950) results that appears to offer some progress. An intriguing aspect
of this strand of research is that the Anderson and Rubin test was developed in their
1949 and 1950 studies and predates by several years the development of two-stage least
squares by Theil (1953) and Basmann (1957). [See Stock and Trebbi (2003) for discussion
of the early development of the method of instrumental variables.] A lengthy description

49See Cragg (1967) and the many related studies listed by Judge et al. (1985, pp. 646–653).
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of Kleibergen’s method and several extensions appears in the survey by Dufour (2003),
which we draw on here for a cursory look at the Anderson and Rubin statistic.

The simultaneous equations model in terms of equation 1 is written

y1 = X1β1 + Y1γ 1 + ε1,

Y1 = X1
1 + X∗
1


∗
1 + V1,

(10-64)

where y1 is the n observations on the left-hand variable in the equation of interest, Y1

is the n observations on M1 endogenous variables in this equation, γ 1 is the structural
parameter vector in this equation, and X1 is the K1 included exogenous variables in
equation 1. The second equation is the set of M1 reduced form equations for the included
endogenous variables that appear in equation 1. (Note that M∗

1 endogenous variables,
Y∗

1, are excluded from equation 1.) The full set of exogenous variables in the model is

X = [X1, X∗
1],

where X∗
1 is the K∗

1 exogenous variables that are excluded from equation 1. (We are
changing Dufour’s notation slightly to conform to the conventions used in our devel-
opment of the model.) Note that the second equation represents the first stage of the
two-stage least squares procedure.

We are interested in inference about γ 1. We must first assume that the model is
identified. We will invoke the rank and order conditions as usual. The order condition is
that there must be at least as many excluded exogenous variables as there are included
endogenous variables, which is that K∗

1 ≥ M1. For the rank condition to be met, we
must have

π∗
1 − 
∗

1γ 1 = 0,

where π∗
1 is the second part of the coefficient vector in the reduced form equation for

y1, that is,

y1 = X1π1 + X∗
1π

∗
1 + v1.

For this result to hold, 
∗
1 must have full column rank, K∗

1 . The weak instruments
problem is embodied in 
∗

1. If this matrix has short rank, the parameter vector γ 1 is not
identified. The weak instruments problem arises when 
∗

1 is nearly short ranked. The
important aspect of that observation is that the weak instruments can be characterized
as an identification problem.

Anderson and Rubin (1949, 1950) (AR) proposed a method of testing H0: γ 1 = γ 0
1.

The AR statistic is constructed as follows: Combining the two equations in (10-64), we
have

y1 = X1β1 + X1
1γ 1 + X∗
1


∗
1γ 1 + ε1 + V1γ 1.

Using (10-64) again, subtract Y1γ
0
1 from both sides of this equation to obtain

y1 − Y1γ
0
1 = X1β1 + X1
1γ 1 + X∗

1

∗
1γ 1 + ε1 + V1γ 1

− X1
1γ
0
1 − X∗

1

∗
1γ

0
1 − V1γ

0
1

= X1
[
β1 + 
1

(
γ 1 − γ 0

1

)] + X∗
1

[

∗

1

(
γ 1 − γ 0

1

)] + ε1 + V1
(
γ 1 − γ 0

1

)

= X1θ1 + X∗
1θ

∗
1 + w1.
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Under the null hypothesis, this equation reduces to

y1 − Y1γ
0
1 = X1θ1 + w1,

so a test of the null hypothesis can be carried out by testing the hypothesis that θ∗
1 equals

zero in the preceding partial reduced-form equation. Anderson and Rubin proposed a
simple F test,

AR
(
γ 0

1

) =
[(

y1 − Y1γ
0
1

)′M1
(
y1 − Y1γ

0
1

) − (
y1 − Y1γ

0
1

)′M
(
y1 − Y1γ

0
1

)]/
K∗

1(
y1 − Y1γ

0
1

)′M
(
y1 − Y1γ

0
1

)/
(n − K)

∼ F[K∗
1 , n − K],

where M1 = [I − X1(X′
1X1)

−1X′
1] and M = [I − X(X′X)−1X′]. This is the standard

F statistic for testing the hypothesis that the set of coefficients is zero in the classical
linear regression. [See (5-29).] [Dufour (2003) shows how the statistic can be extended
to allow more general restrictions that also include β1.]

There are several striking features of this approach, beyond the fact that it has
been available since 1949: (1) its distribution is free of the model parameters in finite
samples (assuming normality of the disturbances); (2) it is robust to the weak instruments
problem; (3) it is robust to the exclusion of other instruments; and (4) it is robust to
specification errors in the structural equations for Y1, the other variables in the equation.
There are some shortcomings as well, namely: (1) the tests developed by this method
are only applied to the full parameter vector; (2) the power of the test may diminish as
more (and too many more) instrumental variables are added; (3) it relies on a normality
assumption for the disturbances; and (4) there does not appear to be a counterpart for
nonlinear systems of equations.

10.7 SUMMARY AND CONCLUSIONS

This chapter has surveyed the specification and estimation of multiple equations models.
The SUR model is an application of the generalized regression model introduced in
Chapter 9. The advantage of the SUR formulation is the rich variety of behavioral
models that fit into this framework. We began with estimation and inference with the
SUR model, treating it essentially as a generalized regression. The major difference
between this set of results and the single equation model in Chapter 9 is practical.
While the SUR model is, in principle a single equation GR model with an elaborate
covariance structure, special problems arise when we explicitly recognize its intrinsic
nature as a set of equations linked by their disturbances. The major result for estimation
at this step is the feasible GLS estimator. In spite of its apparent complexity, we can
estimate the SUR model by a straightforward two-step GLS approach that is similar
to the one we used for models with heteroscedasticity in Chapter 9. We also extended
the SUR model to autocorrelation and heteroscedasticity. Once again, the multiple
equation nature of the model complicates these applications. Section 10.4 presented
a common application of the seemingly unrelated regressions model, the estimation
of demand systems. One of the signature features of this literature is the seamless
transition from the theoretical models of optimization of consumers and producers to
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the sets of empirical demand equations derived from Roy’s identity for consumers and
Shephard’s lemma for producers.

The multiple equations models surveyed in this chapter involve most of the issues
that arise in analysis of linear equations in econometrics. Before one embarks on the
process of estimation, it is necessary to establish that the sample data actually contain
sufficient information to provide estimates of the parameters in question. This is the
question of identification. Identification involves both the statistical properties of es-
timators and the role of theory in the specification of the model. Once identification
is established, there are numerous methods of estimation. We considered a number of
single-equation techniques, including least squares, instrumental variables, and max-
imum likelihood. Fully efficient use of the sample data will require joint estimation
of all the equations in the system. Once again, there are several techniques—these
are extensions of the single-equation methods including three-stage least squares, and
full information maximum likelihood. In both frameworks, this is one of those be-
nign situations in which the computationally simplest estimator is generally the most
efficient one.

Key Terms and Concepts

• Admissible
• Autocorrelation
• Balanced panel
• Behavioral equation
• Causality
• Cobb–Douglas model
• Complete system of

equations
• Completeness condition
• Consistent estimators
• Constant returns to scale
• Covariance structures

model
• Demand system
• Dynamic model
• Econometric model
• Endogenous
• Equilibrium condition
• Exactly identified model
• Exclusion restrictions
• Exogenous
• Feasible GLS
• FIML
• Flexible functional form
• Flexible functions
• Full information estimator
• Full information maximum

likelihood
• Generalized regression

model

• Granger causality
• Heteroscedasticity
• Homogeneity restriction
• Identical explanatory

variables
• Identical regressors
• Identification
• Instrumental variable

estimator
• Interdependent
• Invariance
• Invariant
• Jointly dependent
• k class
• Kronecker product
• Lagrange multiplier test
• Least variance ratio
• Likelihood ratio test
• Limited information

estimator
• Limited information

maximum likelihood
(LIML) estimator

• Maximum likelihood
• Multivariate regression

model
• Nonlinear systems
• Nonsample information
• Nonstructural
• Normalization

• Observationally equivalent
• Order condition
• Overidentification
• Pooled model
• Predetermined variable
• Problem of identification
• Projection
• Rank condition
• Recursive model
• Reduced form
• Reduced form disturbance
• Restrictions
• Seemingly unrelated

regressions
• Share equations
• Shephard’s lemma
• Simultaneous equations

models
• Singularity of the

disturbance covariance
matrix

• Simultaneous equations
bias

• Specification test
• Strongly exogenous
• Structural disturbance
• Structural equation
• Structural form
• System methods of

estimation
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• Systems of demand
equations

• Taylor series
• Three-stage least squares

(3SLS) estimator

• Translog function
• Triangular system
• Two-stage least squares

(2SLS) estimator
• Underidentified

• Weak instruments
• Weakly exogenous

Exercises

1. A sample of 100 observations produces the following sample data:

ȳ1 = 1, ȳ2 = 2,

y′
1y1 = 150,

y′
2y2 = 550,

y′
1y2 = 260.

The underlying bivariate regression model is

y1 = μ + ε1,

y2 = μ + ε2.

a. Compute the OLS estimate of μ, and estimate the sampling variance of this
estimator.

b. Compute the FGLS estimate of μ and the sampling variance of the estimator.
2. Consider estimation of the following two-equation model:

y1 = β1 + ε1,

y2 = β2x + ε2.

A sample of 50 observations produces the following moment matrix:

1 y1 y2 x

1
y1

y2

x

⎡
⎢⎢⎣

50
150 500

50 40 90
100 60 50 100

⎤
⎥⎥⎦.

a. Write the explicit formula for the GLS estimator of [β1, β2]. What is the asymp-
totic covariance matrix of the estimator?

b. Derive the OLS estimator and its sampling variance in this model.
c. Obtain the OLS estimates of β1 and β2, and estimate the sampling covariance

matrix of the two estimates. Use n instead of (n − 1) as the divisor to compute
the estimates of the disturbance variances.

d. Compute the FGLS estimates of β1 and β2 and the estimated sampling covariance
matrix.

e. Test the hypothesis that β2 = 1.
3. The model

y1 = β1x1 + ε1,

y2 = β2x2 + ε2
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satisfies all the assumptions of the classical multivariate regression model. All vari-
ables have zero means. The following sample second-moment matrix is obtained
from a sample of 20 observations:

y1 y2 x1 x2

y1

y2

x1

x2

⎡
⎢⎢⎣

20 6 4 3
6 10 3 6
4 3 5 2
3 6 2 10

⎤
⎥⎥⎦.

a. Compute the FGLS estimates of β1 and β2.
b. Test the hypothesis that β1 = β2.
c. Compute the maximum likelihood estimates of the model parameters.
d. Use the likelihood ratio test to test the hypothesis in part b.

4. Prove that in the model

y1 = X1β1 + ε1,

y2 = X2β2 + ε2,

generalized least squares is equivalent to equation-by-equation ordinary least
squares if X1 = X2. Does your result hold if it is also known that β1 = β2?

5. Consider the two-equation system

y1 = β1x1 + ε1,

y2 = β2x2 + β3x3 + ε2.

Assume that the disturbance variances and covariance are known. Now suppose
that the analyst of this model applies GLS but erroneously omits x3 from the second
equation. What effect does this specification error have on the consistency of the
estimator of β1?

6. Consider the system

y1 = α1 + βx + ε1,

y2 = α2 + ε2.

The disturbances are freely correlated. Prove that GLS applied to the system leads
to the OLS estimates of α1 and α2 but to a mixture of the least squares slopes in the
regressions of y1 and y2 on x as the estimator of β. What is the mixture? To simplify
the algebra, assume (with no loss of generality) that x̄ = 0.

7. For the model

y1 = α1 + βx + ε1,

y2 = α2 + ε2,

y3 = α3 + ε3,

assume that yi2 + yi3 = 1 at every observation. Prove that the sample covariance
matrix of the least squares residuals from the three equations will be singular,
thereby precluding computation of the FGLS estimator. How could you proceed
in this case?
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8. Consider the following two-equation model:

y1 = γ1 y2 + β11x1 + β21x2 + β31x3 + ε1,

y2 = γ2 y1 + β12x1 + β22x2 + β32x3 + ε2.

a. Verify that, as stated, neither equation is identified.
b. Establish whether or not the following restrictions are sufficient to identify

(or partially identify) the model:
(1) β21 = β32 = 0,
(2) β12 = β22 = 0,
(3) γ1 = 0,
(4) γ1 = γ2 and β32 = 0,
(5) σ12 = 0 and β31 = 0,
(6) γ1 = 0 and σ12 = 0,
(7) β21 + β22 = 1,
(8) σ12 = 0, β21 = β22 = β31 = β32 = 0,
(9) σ12 = 0, β11 = β21 = β22 = β31 = β32 = 0.

9. Obtain the reduced form for the model in Exercise 8 under each of the assumptions
made in parts a and in parts b1 and b9.

10. The following model is specified:

y1 = γ1 y2 + β11x1 + ε1,

y2 = γ2 y1 + β22x2 + β32x3 + ε2.

All variables are measured as deviations from their means. The sample of 25 ob-
servations produces the following matrix of sums of squares and cross products:

y1 y2 x1 x2 x3

y1

y2

x1

x2

x3

⎡
⎢⎢⎢⎢⎢⎢⎣

20 6 4 3 5

6 10 3 6 7

4 3 5 2 3

3 6 2 10 8

5 7 3 8 15

⎤
⎥⎥⎥⎥⎥⎥⎦

.

a. Estimate the two equations by OLS.
b. Estimate the parameters of the two equations by 2SLS. Also estimate the asymp-

totic covariance matrix of the 2SLS estimates.
c. Obtain the LIML estimates of the parameters of the first equation.
d. Estimate the two equations by 3SLS.
e. Estimate the reduced form coefficient matrix by OLS and indirectly by using

your structural estimates from part b.
11. For the model

y1 = γ1 y2 + β11x1 + β21x2 + ε1,

y2 = γ2 y1 + β32x3 + β42x4 + ε2,
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show that there are two restrictions on the reduced form coefficients. Describe a
procedure for estimating the model while incorporating the restrictions.

12. Prove that

plim
Y′

jε j

T
= .ω j − �jjγ j .

13. Prove that an underidentified equation cannot be estimated by 2SLS.

Applications

1. Continuing the analysis of Section 10.5.2, we find that a translog cost function for
one output and three factor inputs that does not impose constant returns to scale is

ln C = α + β1 ln p1 + β2 ln p2 + β3 ln p3 + δ11
1
2 ln2 p1 + δ12 ln p1 ln p2

+ δ13 ln p1 ln p3 + δ22
1
2 ln2 p2 + δ23 ln p2 ln p3 + δ33

1
2 ln2 p3

+ γq1 ln Q ln p1 + γq2 ln Q ln p2 + γq3 ln Q ln p3

+ βq ln Q + βqq
1
2 ln2 Q + εc.

The factor share equations are

S1 = β1 + δ11 ln p1 + δ12 ln p2 + δ13 ln p3 + γq1 ln Q + ε1,

S2 = β2 + δ12 ln p1 + δ22 ln p2 + δ23 ln p3 + γq2 ln Q + ε2,

S3 = β3 + δ13 ln p1 + δ23 ln p2 + δ33 ln p3 + γq3 ln Q + ε3.

[See Christensen and Greene (1976) for analysis of this model.]
a. The three factor shares must add identically to 1. What restrictions does this

requirement place on the model parameters?
b. Show that the adding-up condition in (10-38) can be imposed directly on the

model by specifying the translog model in (C/p3), (p1/p3), and (p2/p3) and
dropping the third share equation. (See Example 10.3.) Notice that this reduces
the number of free parameters in the model to 10.

c. Continuing part b, the model as specified with the symmetry and equality restric-
tions has 15 parameters. By imposing the constraints, you reduce this number to
10 in the estimating equations. How would you obtain estimates of the parame-
ters not estimated directly?

The remaining parts of this exercise will require specialized software. The E-Views,
TSP, Stata, or LIMDEP, programs noted in the Preface are four that could be
used. All estimation is to be done using the data used in Section 10.5.1
d. Estimate each of the three equations you obtained in part b by ordinary least

squares. Do the estimates appear to satisfy the cross-equation equality and sym-
metry restrictions implied by the theory?

e. Using the data in Section 10.5.1, estimate the full system of three equations (cost
and the two independent shares), imposing the symmetry and cross-equation
equality constraints.
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f. Using your parameter estimates, compute the estimates of the elasticities in
(10-39) at the means of the variables.

g. Use a likelihood ratio statistic to test the joint hypothesis that γqi = 0, i = 1, 2, 3.
[Hint: Just drop the relevant variables from the model.]

2. The Grunfeld investment data in Appendix Table 10.4 are a classic data set that
have been used for decades to develop and demonstrate estimators for seemingly
unrelated regressions.50 Although somewhat dated at this juncture, they remain an
ideal application of the techniques presented in this chapter.51 The data consist of
time series of 20 yearly observations on 10 firms. The three variables are

Iit = gross investment,

Fit = market value of the firm at the end of the previous year,

Cit = value of the stock of plant and equipment at the end of the previous year.

The main equation in the studies noted is

Iit = β1 + β2 Fit + β3Cit + εit.
52

a. Fit the 10 equations separately by ordinary least squares and report your results.
b. Use a Wald (Chow) test to test the “aggregation” restriction that the 10 coeffi-

cient vectors are the same.
c. Use the seemingly unrelated regressions (FGLS) estimator to reestimate the

parameters of the model, once again, allowing the coefficients to differ across
the 10 equations. Now, use the pooled model and, again, FGLS to estimate the
constrained equation with equal parameter vectors, and test the aggregation
hypothesis.

d. Using the OLS residuals from the separate regressions, use the LM statistic in
(10-17) to test for the presence of cross-equation correlation.

e. An alternative specification to the model in part c that focuses on the variances
rather than the means is a groupwise heteroscedasticity model. For the current
application, you can fit this model using (10-19), (10-20), and (10-21) while
imposing the much simpler model with σij = 0 when i �= j . Do the results of
the pooled model differ in the three cases considered, simple OLS, groupwise
heteroscedasticity, and full unrestricted covariances [which would be (10-20)]
with �ij = I?

3. The data in AppendixTable F5.2 may be used to estimate a small macroeconomic
model. Use these data to estimate the model in Example 10.4. Estimate the param-
eters of the two equations by two-stage and three-stage least squares.

50See Grunfeld (1958), Grunfeld and Griliches (1960), Boot and de Witt (1960) and Kleiber and Zeileis
(2010).
51See, in particular, Zellner (1962, 1963) and Zellner and Huang (1962).
52Note that the model specifies investment, a flow, as a function of two stocks. This could be a theoretical
misspecification. It might be preferable to specify the model in terms of planned investment. But, 50 years
after the fact, we’ll take the specified model as it is.
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MODELS FOR PANEL DATA

Q
11.1 INTRODUCTION

Data sets that combine time series and cross sections are common in economics. The
published statistics of the OECD contain numerous series of economic aggregates ob-
served yearly for many countries. The Penn World Tables [CIC (2010)] is a data bank that
contains national income data on 188 countries for over 50 years. Recently constructed
longitudinal data sets contain observations on thousands of individuals or families, each
observed at several points in time. Other empirical studies have examined time-series
data on sets of firms, states, countries, or industries simultaneously. These data sets pro-
vide rich sources of information about the economy. The analysis of panel data allows
the model builder to learn about economic processes while accounting for both hetero-
geneity across individuals, firms, countries, and so on and for dynamic effects that are
not visible in cross sections. Modeling in this context often calls for complex stochastic
specifications. In this chapter, we will survey the most commonly used techniques for
time-series—cross section (e.g., cross country) and panel (e.g., longitudinal) data. The
methods considered here provide extensions to most of the models we have examined in
the preceding chapters. Section 11.2 describes the specific features of panel data. Most of
this analysis is focused on individual data, rather than cross-country aggregates. We will
examine some aspects of aggregate data modeling in Section 11.11. Sections 11.3, 11.4,
and 11.5 consider in turn the three main approaches to regression analysis with panel
data, pooled regression, the fixed effects model, and the random effects model. Section
11.6 considers robust estimation of covariance matrices for the panel data estimators,
including a general treatment of “cluster” effects. Sections 11.7–11.11 examine some
specific applications and extensions of panel data methods. Spatial autocorrelation is
discussed in Section 11.7. In Section 11.8, we consider sources of endogeneity in the
random effects model, including a model of the sort considered in Chapter 8 with an
endogenous right-hand-side variable and then two approaches to dynamic models. Sec-
tion 11.9 builds the fixed and random effects models into nonlinear regression models.
In Section 11.10, the random effects model is extended to the multiple equation systems
developed in Chapter 10. Finally, Section 11.11 examines random parameter models.
The random parameters approach is an extension of the fixed and random effects model
in which the heterogeneity that the FE and RE models build into the constant terms is
extended to other parameters as well.

Panel data methods are used throughout the remainder of this book. We will develop
several extensions of the fixed and random effects models in Chapter 14 on maximum
likelihood methods, and in Chapter 15 where we will continue the development of
random parameter models that is begun in Section 11.11. Chapter 14 will also present
methods for handling discrete distributions of random parameters under the heading of

383
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latent class models. The fixed and random effects approaches will be used throughout the
applications of discrete and limited dependent variables models in microeconometrics
in Chapters 17, 18, and 19.

11.2 PANEL DATA MODELS

Many recent studies have analyzed panel, or longitudinal, data sets. Two very fa-
mous ones are the National Longitudinal Survey of Labor Market Experience (NLS,
http://www.bls.gov/nls/nlsdoc.htm) and the Michigan Panel Study of Income Dynam-
ics (PSID, http://psidonline.isr.umich.edu/). In these data sets, very large cross sections,
consisting of thousands of microunits, are followed through time, but the number of
periods is often quite small. The PSID, for example, is a study of roughly 6,000 fam-
ilies and 15,000 individuals who have been interviewed periodically from 1968 to the
present. An ongoing study in the United Kingdom is the British Household Panel
Survey (BHPS, http://www.iser.essex.ac.uk/ulsc/bhps/) that was begun in 1991 and is
now in its 18th wave. The survey follows several thousand households (currently over
5,000) for several years. Many very rich data sets have recently been developed in the
area of health care and health economics, including the German Socioeconomic Panel
(GSOEP, http://dpls.dacc.wisc.edu/apdu/GSOEP/gsoep cd data.html) and the Medi-
cal Expenditure Panel Survey (MEPS, http://www.meps.ahrq.gov/). Constructing long,
evenly spaced time series in contexts such as these would be prohibitively expensive,
but for the purposes for which these data are typically used, it is unnecessary. Time
effects are often viewed as “transitions” or discrete changes of state. The Current Pop-
ulation Survey (CPS, http://www.census.gov/cps/), for example, is a monthly survey of
about 50,000 households that interviews households monthly for four months, waits for
eight months, then reinterviews. This two-wave, rotating panel format allows analysis of
short-term changes as well as a more general analysis of the U.S. national labor market.
They are typically modeled as specific to the period in which they occur and are not
carried across periods within a cross-sectional unit.1 Panel data sets are more oriented
toward cross-section analyses; they are wide but typically short. Heterogeneity across
units is an integral part—indeed, often the central focus—of the analysis.

The analysis of panel or longitudinal data is the subject of one of the most active
and innovative bodies of literature in econometrics,2 partly because panel data provide
such a rich environment for the development of estimation techniques and theoretical
results. In more practical terms, however, researchers have been able to use time-series
cross-sectional data to examine issues that could not be studied in either cross-sectional
or time-series settings alone. Two examples are as follows.

1. In a widely cited study of labor supply, Ben-Porath (1973) observes that at a certain
point in time, in a cohort of women, 50 percent may appear to be working. It is

1Formal time-series modeling for panel data is briefly examined in Section 21.5.
2The panel data literature rivals the received research on unit roots and cointegration in econometrics in
its rate of growth. A compendium of the earliest literature is Maddala (1993). Book-length surveys on the
econometrics of panel data include Hsiao (2003), Dielman (1989), Matyas and Sevestre (1996), Raj and
Baltagi (1992), Nerlove (2002), Arellano (2003), and Baltagi (2001, 2008). There are also lengthy surveys
devoted to specific topics, such as limited dependent variable models [Hsiao, Lahiri, Lee, and Pesaran (1999)]
and semiparametric methods [Lee (1998)]. An extensive bibliography is given in Baltagi (2008).
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ambiguous whether this finding implies that, in this cohort, one-half of the women
on average will be working or that the same one-half will be working in every period.
These have very different implications for policy and for the interpretation of any
statistical results. Cross-sectional data alone will not shed any light on the question.

2. A long-standing problem in the analysis of production functions has been the in-
ability to separate economies of scale and technological change.3 Cross-sectional
data provide information only about the former, whereas time-series data muddle
the two effects, with no prospect of separation. It is common, for example, to as-
sume constant returns to scale so as to reveal the technical change.4 Of course, this
practice assumes away the problem. A panel of data on costs or output for a number
of firms each observed over several years can provide estimates of both the rate of
technological change (as time progresses) and economies of scale (for the sample
of different sized firms at each point in time).

Recent applications have allowed researchers to study the impact of health policy
changes [e.g., Riphahn et al.’s (2003) analysis of reforms in German public health in-
surance regulations] and more generally the dynamics of labor market behavior. In
principle, the methods of Chapters 6 and 21 can be applied to longitudinal data sets.
In the typical panel, however, there are a large number of cross-sectional units and
only a few periods. Thus, the time-series methods discussed there may be somewhat
problematic. Recent work has generally concentrated on models better suited to these
short and wide data sets. The techniques are focused on cross-sectional variation, or
heterogeneity. In this chapter, we shall examine in detail the most widely used models
and look briefly at some extensions.

11.2.1 GENERAL MODELING FRAMEWORK FOR ANALYZING
PANEL DATA

The fundamental advantage of a panel data set over a cross section is that it will allow the
researcher great flexibility in modeling differences in behavior across individuals. The
basic framework for this discussion is a regression model of the form

yit = x′
itβ + z′

iα + εit
(11-1)

= x′
itβ + ci + εit.

There are K regressors in xit, not including a constant term. The heterogeneity, or
individual effect is z′

iα where zi contains a constant term and a set of individual or group-
specific variables, which may be observed, such as race, sex, location, and so on, or
unobserved, such as family specific characteristics, individual heterogeneity in skill or

3The distinction between these two effects figured prominently in the policy question of whether it was
appropriate to break up the AT&T Corporation in the 1980s and, ultimately, to allow competition in the
provision of long-distance telephone service.
4In a classic study of this issue, Solow (1957) states: “From time series of �Q/Q, wK, �K/K, wL and �L/L
or their discrete year-to-year analogues, we could estimate �A/Aand thence A(t) itself. Actually an amusing
thing happens here. Nothing has been said so far about returns to scale. But if all factor inputs are classified
either as K or L, then the available figures always show wK and wL adding up to one. Since we have assumed
that factors are paid their marginal products, this amounts to assuming the hypothesis of Euler’s theorem.
The calculus being what it is, we might just as well assume the conclusion, namely, the F is homogeneous of
degree one.”
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preferences, and so on, all of which are taken to be constant over time t . As it stands,
this model is a classical regression model. If zi is observed for all individuals, then the
entire model can be treated as an ordinary linear model and fit by least squares. The
complications arise when ci is unobserved, which will be the case in most applications.
Consider, for example, analyses of the effect of education and experience on earnings
from which “ability” will always be a missing and unobservable variable. In health care
studies, for example, of usage of the health care system, “health” and “health care” will
be unobservable factors in the analysis.

The main objective of the analysis will be consistent and efficient estimation of the
partial effects,

β = ∂E[yit | xit]/∂xit.

Whether this is possible depends on the assumptions about the unobserved effects. We
begin with a strict exogeneity assumption for the independent variables,

E[εit | xi1, xi2, . . . , ] = 0.

That is, the current disturbance is uncorrelated with the independent variables in every
period, past, present, and future. The crucial aspect of the model concerns the hetero-
geneity. A particularly convenient assumption would be mean independence,

E[ci | xi1, xi2, . . .] = α.

If the missing variable(s) are uncorrelated with the included variables, then, as we shall
see, they may be included in the disturbance of the model. This is the assumption that
underlies the random effects model, as we will explore later. It is, however, a particularly
strong assumption—it would be unlikely in the labor market and health care examples
mentioned previously. The alternative would be

E[ci | xi1, xi2, . . . , ] = h(xi1, xi2, . . .)

= h(Xi ).

This formulation is more general, but at the same time, considerably more complicated,
the more so since it may require yet further assumptions about the nature of the function.

11.2.2 MODEL STRUCTURES

We will examine a variety of different models for panel data. Broadly, they can be
arranged as follows:
1. Pooled Regression: If zi contains only a constant term, then ordinary least squares
provides consistent and efficient estimates of the common α and the slope vector β.

2. Fixed Effects: If zi is unobserved, but correlated with xit, then the least squares
estimator of β is biased and inconsistent as a consequence of an omitted variable.
However, in this instance, the model

yit = x′
itβ + αi + εit,

where αi = z′
iα, embodies all the observable effects and specifies an estimable condi-

tional mean. This fixed effects approach takes αi to be a group-specific constant term
in the regression model. It should be noted that the term “fixed” as used here signifies
the correlation of ci and xit, not that ci is nonstochastic.
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3. Random Effects: If the unobserved individual heterogeneity, however formulated,
can be assumed to be uncorrelated with the included variables, then the model may be
formulated as

yit = x′
itβ + E [z′

iα] + {
z′

iα − E [z′
iα]

} + εit

= x′
itβ + α + ui + εit,

that is, as a linear regression model with a compound disturbance that may be con-
sistently, albeit inefficiently, estimated by least squares. This random effects approach
specifies that ui is a group-specific random element, similar to εit except that for each
group, there is but a single draw that enters the regression identically in each period.
Again, the crucial distinction between fixed and random effects is whether the unob-
served individual effect embodies elements that are correlated with the regressors in
the model, not whether these effects are stochastic or not. We will examine this basic
formulation, then consider an extension to a dynamic model.

4. Random Parameters: The random effects model can be viewed as a regression
model with a random constant term. With a sufficiently rich data set, we may extend
this idea to a model in which the other coefficients vary randomly across individuals as
well. The extension of the model might appear as

yit = x′
it(β + hi ) + (α + ui ) + εit,

where hi is a random vector that induces the variation of the parameters across individ-
uals. This random parameters model was proposed quite early in this literature, but has
only fairly recently enjoyed widespread attention in several fields. It represents a natural
extension in which researchers broaden the amount of heterogeneity across individu-
als while retaining some commonalities—the parameter vectors still share a common
mean. Some recent applications have extended this yet another step by allowing the
mean value of the parameter distribution to be person specific, as in

yit = x′
it(β + �zi + hi ) + (α + ui ) + εit,

where zi is a set of observable, person specific variables, and � is a matrix of parameters
to be estimated. As we will examine in Chapter 17, this hierarchical model is extremely
versatile.

11.2.3 EXTENSIONS

The short list of model types provided earlier only begins to suggest the variety of ap-
plications of panel data methods in econometrics. We will begin in this chapter to study
some of the formulations and uses of linear models. The random and fixed effects mod-
els and random parameters models have also been widely used in models of censoring,
binary, and other discrete choices, and models for event counts. We will examine all
of these in the chapters to follow. In some cases, such as the models for count data in
Chapter 18 the extension of random and fixed effects models is straightforward, if
somewhat more complicated computationally. In others, such as in binary choice mod-
els in Chapter 17 and censoring models in Chapter 19, these panel data models have been
used, but not before overcoming some significant methodological and computational
obstacles.
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11.2.4 BALANCED AND UNBALANCED PANELS

By way of preface to the analysis to follow, we note an important aspect of panel data
analysis. As suggested by the preceding discussion, a “panel” data set will consist of
n sets of observations on individuals to be denoted i = 1, . . . , n. If each individual in
the data set is observed the same number of times, usually denoted T, the data set is
a balanced panel. An unbalanced panel data set is one in which individuals may be
observed different numbers of times. We will denote this Ti . A fixed panel is one in
which the same set of individuals is observed for the duration of the study. The data sets
we will examine in this chapter, while not all balanced, are fixed. A rotating panel is
one in which the cast of individuals changes from one period to the next. For example,
Gonzalez and Maloney (1999) examined self-employment decisions in Mexico using
the National Urban Employment Survey. This is a quarterly data set drawn from 1987
to 1993 in which individuals are interviewed five times. Each quarter, one-fifth of the
individuals is rotated out of the data set. We will not treat rotating panels in this text.
Some discussion and numerous references may be found in Baltagi (2008).

The development to follow is structured so that the distinction between balanced
and unbalanced panels will entail nothing more than a trivial change in notation—
where for convenience we write T suggesting a balanced panel, merely changing T to
Ti generalizes the results. We will note specifically when this is not the case, such as in
Breusch and Pagan’s (1980) LM statistic.

11.2.5 WELL-BEHAVED PANEL DATA

The asymptotic properties of the estimators in the classical regression model were
established in Section 4.4 under the following assumptions:

A.1. Linearity: yi = xi1β1 + xi2β2 + · · · + xi KβK + εi .

A.2. Full rank: The n × K sample data matrix, X has full column rank.
A.3. Exogeneity of the independent variables: E [εi | xj1, xj2, . . . , xj K] = 0, i, j =

1, . . . , n.
A.4. Homoscedasticity and nonautocorrelation.
A.5. Data generating mechanism-independent observations.

The following are the crucial results needed: For consistency of b, we need

plim(1/n)X′X = plim Q̄n = Q, a positive definite matrix,

plim(1/n)X′ε = plim w̄n = E [w̄n] = 0.

(For consistency of s2, we added a fairly weak assumption about the moments of the
disturbances.) To establish asymptotic normality, we required consistency and

√
n w̄n

d−→ N[0, σ 2Q].

With these in place, the desired characteristics are then established by the methods of
Sections 4.4.1 and 4.4.2.

Exceptions to the assumptions are likely to arise in a panel data set. The sample
will consist of multiple observations on each of many observational units. For example,
a study might consist of a set of observations made at different points in time on a large
number of families. In this case, the x’s will surely be correlated across observations, at



Greene-2140242 book January 19, 2011 21:10

CHAPTER 11 ✦ Models for Panel Data 389

least within observational units. They might even be the same for all the observations
on a single family.

The panel data set could be treated as follows. Assume for the moment that the
data consist of a fixed number of observations, say T, on a set of n families, so that the
total number of rows in X is N = nT. The matrix

Q̄n = 1
n

n∑
i=1

Qi

in which N is all the observations in the sample, could be viewed as

Q̄n = 1
n

∑
i

1
T

∑
observations
for family i

Qit = 1
n

n∑
i=1

Q̄i ,

where Q̄i = average Qit for family i. We might then view the set of observations on the
ith unit as if they were a single observation and apply our convergence arguments to the
number of families increasing without bound. The point is that the conditions that are
needed to establish convergence will apply with respect to the number of observational
units. The number of observations taken for each observation unit might be fixed and
could be quite small.

This chapter will contain relatively little development of the properties of estima-
tors as was done in Chapter 4. We will rely on earlier results in Chapters 4, 8, and 9 and
focus instead on a variety of models and specifications.

11.3 THE POOLED REGRESSION MODEL

We begin the analysis by assuming the simplest version of the model, the pooled model,

yit = α + x′
itβ + εit, i = 1, . . . , n, t = 1, . . . , Ti ,

E[εit | xi1, xi2, . . . , xiTi ] = 0,
(11-2)

Var[εit | xi1, xi2, . . . , xiTi ] = σ 2
ε ,

Cov[εit, ε js | xi1, xi2, . . . , xiTi ] = 0 if i �= j or t �= s.

(In the panel data context, this is also called the population averaged model under
the assumption that any latent heterogeneity has been averaged out.) In this form, if
the remaining assumptions of the classical model are met (zero conditional mean of εit,
homoscedasticity, independence across observations, i , and strict exogeneity of xit), then
no further analysis beyond the results of Chapter 4 is needed. Ordinary least squares
is the efficient estimator and inference can reliably proceed along the lines developed
in Chapter 5.

11.3.1 LEAST SQUARES ESTIMATION OF THE POOLED MODEL

The crux of the panel data analysis in this chapter is that the assumptions underlying
ordinary least squares estimation of the pooled model are unlikely to be met. The
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question, then, is what can be expected of the estimator when the heterogeneity does
differ across individuals? The fixed effects case is obvious. As we will examine later,
omitting (or ignoring) the heterogeneity when the fixed effects model is appropriate
renders the least squares estimator inconsistent—sometimes wildly so. In the random
effects case, in which the true model is

yit = ci + x′
itβ + εit,

where E[ci | Xi ] = α, we can write the model

yit = α + x′
itβ + εit + (ci − E[ci | Xi ])

= α + x′
itβ + εit + ui

= α + x′
itβ + wit.

In this form, we can see that the unobserved heterogeneity induces autocorrelation;
E[witwis] = σ 2

u when t �= s. As we explored in Chapter 9—we will revisit it in Chap-
ter 20—the ordinary least squares estimator in the generalized regression model may
be consistent, but the conventional estimator of its asymptotic variance is likely to
underestimate the true variance of the estimator.

11.3.2 ROBUST COVARIANCE MATRIX ESTIMATION

Suppose we consider the model more generally than this. Stack the Ti observations for
individual i in a single equation,

yi = Xiβ + wi ,

where β now includes the constant term. In this setting, there may be heteroscedasticity
across individuals. However, in a panel data set, the more substantive problem is cross-
observation correlation, or autocorrelation. In a longitudinal data set, the group of
observations may all pertain to the same individual, so any latent effects left out of
the model will carry across all periods. Suppose, then, we assume that the disturbance
vector consists of εit plus these omitted components. Then,

Var[wi | Xi ] = σ 2
εITi + �i

= �i .

The ordinary least squares estimator of β is

b = (X′X)−1X′y

=
[

n∑
i=1

X′
i Xi

]−1 n∑
i=1

X′
i yi

=
[

n∑
i=1

X′
i Xi

]−1 n∑
i=1

X′
i (Xiβ + wi )

= β +
[

n∑
i=1

X′
i Xi

]−1 n∑
i=1

X′
i wi .
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Consistency can be established along the lines developed in Chapter 4. The true
asymptotic covariance matrix would take the form we saw for the generalized regression
model in (9-9),

Asy. Var[b] = 1
n

plim

[
1
n

n∑
i=1

X′
i Xi

]−1

plim

[
1
n

n∑
i=1

X′
i wi w′

i Xi

]
plim

[
1
n

n∑
i=1

X′
i Xi

]−1

= 1
n

plim

[
1
n

n∑
i=1

X′
i Xi

]−1

plim

[
1
n

n∑
i=1

X′
i�i Xi

]
plim

[
1
n

n∑
i=1

X′
i Xi

]−1

.

This result provides the counterpart to (9-18). As before, the center matrix must be
estimated. In the same spirit as the White estimator, we can estimate this matrix with

Est. Asy. Var[b] = 1
n

[
1
n

n∑
i=1

X′
i Xi

]−1 [
1
n

n∑
i=1

X′
i ŵi ŵ′

i Xi

] [
1
n

n∑
i=1

X′
i Xi

]−1

, (11-3)

where ŵ′ is the vector of Ti residuals for individual i . In fact, the logic of the White
estimator does carry over to this estimator. Note, however, this is not quite the same as
(9-27). It is quite likely that the more important issue for appropriate estimation of the
asymptotic covariance matrix is the correlation across observations, not heteroscedas-
ticity. As such, it is quite likely that the White estimator in (9-27) is not the solution to
the inference problem here. Example 11.1 shows this effect at work.

Example 11.1 Wage Equation
Cornwell and Rupert (1988) analyzed the returns to schooling in a balanced panel of 595
observations on heads of households. The sample data are drawn from years 1976–1982
from the “Non-Survey of Economic Opportunity” from the Panel Study of Income Dynamics.
The estimating equation is

ln Wageit = β1 + β2 Expit + β3 Exp2
it + β4 Wksit + β5 Occit

+ β6 Indit + β7 Southit + β8 SMSAit + β9 MSi t

+ β10 Unionit + β11 Edi + β12 Femi + β13 Blki + εit

where the variables are

Exp = years of full time work experience,
Wks = weeks worked,
Occ = 1 if blue-collar occupation, 0 if not,
Ind = 1 if the individual works in a manufacturing industry, 0 if not,
South = 1 if the individual resides in the south, 0 if not,
SMSA = 1 if the individual resides in an SMSA, 0 if not,
MS = 1 if the individual is married, 0 if not,
Union = 1 if the individual wage is set by a union contract, 0 if not,
Ed = years of education,
Fem = 1 if the individual is female, 0 if not,
Blk = 1 if the individual is black, 0 if not.

Note that Ed, Fem, and Blk are time invariant. See Appendix Table F8.1 for the data source.
The main interest of the study, beyond comparing various estimation methods, is β11, the
return to education. Table 11.1 reports the least squares estimates based on the full sample
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TABLE 11.1 Wage Equation Estimated by OLS

Estimated OLS Standard Panel Robust White Hetero.
Coefficient Coefficient Error Standard Error Consistent Std. Error

β1: Constant 5.2511 0.07129 0.1233 0.07435
β2: Exp 0.04010 0.002159 0.004067 0.002158
β3: Exp2 −0.0006734 0.00004744 0.00009111 0.00004789
β4: Wks 0.004216 0.001081 0.001538 0.001143
β5: Occ −0.1400 0.01466 0.02718 0.01494
β6: Ind 0.04679 0.01179 0.02361 0.01199
β7: South −0.05564 0.01253 0.02610 0.01274
β8: SMSA 0.1517 0.01207 0.02405 0.01208
β9: MS 0.04845 0.02057 0.04085 0.02049
β10: Union 0.09263 0.01280 0.02362 0.01233
β11: Ed 0.05670 0.002613 0.005552 0.002726
β12: Fem −0.3678 0.02510 0.04547 0.02310
β13: Blk −0.1669 0.02204 0.04423 0.02075

of 4,165 observations. [The authors do not report OLS estimates. However, they do report
linear least squares estimates of the fixed effects model, which are simple least squares
using deviations from individual means. (See Section 11.4.) It was not possible to match
their reported results for these or any of their other reported results. Because our purpose
is to compare the various estimators to each other, we have not attempted to resolve the
discrepancy.] The conventional OLS standard errors are given in the second column of results.
The third column gives the robust standard errors computed using (11-3). For these data,
the computation is

Est. Asy. Var[b] =
[

595∑
i=1

X′
iXi

]−1 [
595∑
i=1

(
7∑

t=1

xiteit

)(
7∑

t=1

xiteit

)′][
595∑
i=1

X′
iXi

]−1

.

The robust standard errors are generally about twice the uncorrected ones. In contrast, the
White robust standard errors are almost the same as the uncorrected ones. This suggests
that for this model, ignoring the within group correlations does, indeed, substantially affect
the inferences one would draw.

11.3.3 CLUSTERING AND STRATIFICATION

Many recent studies have analyzed survey data sets, such as the Current Population Sur-
vey (CPS). Survey data are often drawn in “clusters,” partly to reduce costs. For example,
interviewers might visit all the families in a particular block. In other cases, effects that
resemble the common random effects in panel data treatments might arise naturally in
the sampling setting. Consider, for example, a study of student test scores across several
states. Common effects could arise at many levels in such a data set. Education cur-
riculum or funding policies in a state could cause a “state effect;” there could be school
district effects, school effects within districts, and even teacher effects within a particular
school. Each of these is likely to induce correlation across observations that resembles
the random (or fixed) effects we have identified. One might be reluctant to assume that
a tightly structured model such as the simple random effects specification is at work.
But, as we saw in Example 11.1, ignoring common effects can lead to serious inference
errors. The robust estimator suggested in Section 11.3.2 provides a useful approach.

For a two-level model, such as might arise in a sample of firms that are grouped
by industry, or students who share teachers in particular schools, a natural approach
to this “clustering” would be the robust common effects approach shown earlier. The
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resemblance of the now standard cluster estimator for a one-level model to the common
effects panel model considered earlier is more than coincidental. However, there is a
difference in the data generating mechanism in that in this setting, the individuals in
the group are generally observed once, and their association, that is, common effect, is
likely to be less clearly defined than in a panel such as the one analyzed in Example 11.1.
A refinement to (11-3) is often employed to account for small-sample effects when the
number of clusters is likely to be a significant proportion of a finite total, such as the
number of school districts in a state. A degrees of freedom correction as shown in (11-4)
is often employed for this purpose. The robust covariance matrix estimator would be

Est.Asy.Var[b]

=
⎡
⎣

G∑
g=1

X′
gXg

⎤
⎦

−1⎡
⎣ G

G − 1

G∑
g=1

( ng∑
i=1

xigŵig

)( ng∑
i=1

xigŵig

)′⎤
⎦
⎡
⎣

G∑
g=1

X′
gXg

⎤
⎦

−1

=
⎡
⎣

G∑
g=1

X′
gXg

⎤
⎦

−1⎡
⎣ G

G − 1

G∑
g=1

(
X′

gŵg
) (

ŵ′
gXg

)
⎤
⎦

⎡
⎣

G∑
g=1

X′
gXg

⎤
⎦

−1

, (11-4)

where G is the number of clusters in the sample and each cluster consists of ng, g =
1, . . . , G observations. [Note that this matrix is simply G/(G − 1) times the matrix in
(11-3).] A further correction (without obvious formal motivation) sometimes employed
is a “degrees of freedom correction,” �gng/[(�gng) − K].

Many further refinements for more complex samples—consider the test scores
example—have been suggested. For a detailed analysis, see Cameron and Trivedi (2005,
Chapter 24). Several aspects of the computation are discussed in Wooldridge (2003) as
well. An important question arises concerning the use of asymptotic distributional re-
sults in cases in which the number of clusters might be relatively small. Angrist and
Lavy (2002) find that the clustering correction after pooled OLS, as we have done in
Example 11.1, is not as helpful as might be hoped for (though our correction with 595
clusters each of size 7 would be “safe” by these standards). But, the difficulty might
arise, at least in part, from the use of OLS in the presence of the common effects. Kezde
(2001) and Bertrand, Dufflo, and Mullainathan (2002) find more encouraging results
when the correction is applied after estimation of the fixed effects regression. Yet an-
other complication arises when the groups are very large and the number of groups
is relatively small, for example, when the panel consists of many large samples from
a subset (or even all) of the U.S. states. Since the asymptotic theory we have used to
this point assumes the opposite, the results will be less reliable in this case. Donald and
Lang (2007) find that this case gravitates toward analysis of group means, rather than
the individual data. Wooldridge (2003) provides results that help explain this finding.
Finally, there is a natural question as to whether the correction is even called for if one
has used a random effects, generalized least squares procedure (see Section 11.5) to do
the estimation at the first step. If the data generating mechanism were strictly consistent
with the random effects model, the answer would clearly be negative. Under the view
that the random effects specification is only an approximation to the correlation across
observations in a cluster, then there would remain “residual correlation” that would be
accommodated by the correction in (11-4) (or some GLS counterpart). (This would call
the specific random effects correction in Section 11.5 into question, however.) A similar
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TABLE 11.2 Sale Price Equation

Estimated OLS Standard Corrected
Variable Coefficient Error Standard Error

Constant −9.7068 0.5661 0.6791
ln Area 1.3473 0.0822 0.1030
Signature 1.3614 0.1251 0.1281
ln Aspect Ratio −0.0225 0.1479 0.1661

argument would motivate the correction after fitting the fixed effects model as well. We
will pursue these possibilities in Section 11.6.4 after we develop the fixed and random
effects estimator in detail.

Example 11.2 Repeat Sales of Monet Paintings
We examined in Examples 3.4, 4.5, 4.10, and 6.2 the relationship between the sale price and
the surface area of a sample of 430 sales of Monet paintings. In fact, these were not sales of
430 paintings. Many of them were repeat sales of the same painting at different points in time.
The sample actually contains 376 paintings. The numbers of sales per painting were one,
333; two, 34; three, 7; and four, 2. If the sale price of the painting is motivated at least partly
by intrinsic features of the painting, then this would motivate a correction of the least squares
standard errors as suggested in (11-4). Table 11.2 displays the OLS regression results with
the coventional and with the corrected standard errors. Even with the quite modest amount of
grouping in the data, the impact of the correction, in the expected direction of larger standard
errors, is evident.

11.3.4 ROBUST ESTIMATION USING GROUP MEANS

The pooled regression model can be estimated using the sample means of the data. The
implied regression model is obtained by premultiplying each group by (1/T)i′ where
i′ is a row vector of ones;

(1/T)i′yi = (1/T)i′Xiβ + (1/T)i′wi

or

ȳi. = x̄′
i.β + w̄i .

In the transformed linear regression, the disturbances continue to have zero conditional
means but heteroscedastic variances σ 2

i = (1/T2)i′�i i. With �i unspecified, this is a
heteroscedastic regression for which we would use the White estimator for appropriate
inference. Why might one want to use this estimator when the full data set is available?
If the classical assumptions are met, then it is straightforward to show that the asymp-
totic covariance matrix for the group means estimator is unambiguously larger, and the
answer would be that there is no benefit. But, failure of the classical assumptions is
what brought us to this point, and then the issue is less clear-cut. In the presence of un-
structured cluster effects the efficiency of least squares can be considerably diminished,
as we saw in the preceding example. The loss of information that occurs through the
averaging might be relatively small, though in principle, the disaggregated data should
still be better.

We emphasize, using group means does not solve the problem that is addressed by
the fixed effects estimator. Consider the general model,

yi = Xiβ + ci i + wi ,
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where as before, ci is the latent effect. If the mean independence assumption, E[ci | Xi ] =
α, is not met, then, the effect will be transmitted to the group means as well. In this case,
E[ci | Xi ] = h(Xi ). A common specification is Mundlak’s (1978),

E[ci | Xi ] = x̄′
i.γ .

(We will revisit this specification in Section 11.5.6.) Then,

yit = x′
itβ + ci + εit

= x′
itβ + x̄′

i.γ + [εit + ci − E[ci | Xi ]]

= x′
itβ + x̄′

i.γ + uit,

where, by construction, E[uit | Xi ] = 0. Taking means as before,

ȳi. = x̄′
i.β + x̄′

i.γ + ūi.

= x̄′
i.(β + γ ) + ūi..

The implication is that the group means estimator estimates not β, but β +γ . Averaging
the observations in the group collects the entire set of effects, observed and latent, in
the group means.

One consideration that remains, which, unfortunately, we cannot resolve analyti-
cally, is the possibility of measurement error. If the regressors are measured with error,
then, as we examined in Section 8.5, the least squares estimator is inconsistent and, as
a consequence, efficiency is a moot point. In the panel data setting, if the measurement
error is random, then using group means would work in the direction of averaging it
out—indeed, in this instance, assuming the benchmark case xitk = x∗

itk + uitk, one could
show that the group means estimator would be consistent as T → ∞ while the OLS
estimator would not.

Example 11.3 Robust Estimators of the Wage Equation
Table 11.3 shows the group means estimator of the wage equation shown in Example 11.1
with the original least squares estimates. In both cases, a robust estimator is used for the
covariance matrix of the estimator. It appears that similar results are obtained with the means.

11.3.5 ESTIMATION WITH FIRST DIFFERENCES

First differencing is another approach to estimation. Here, the intent would explicitly
be to transform latent heterogeneity out of the model. The base case would be

yit = ci + x′
itβ + εit,

which implies the first differences equation

�yit = �ci + (�xit)
′β + �εit,

or

�yit = (�xit)
′β + εit − εi,t−1

= (�xit)
′β + uit.
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TABLE 11.3 Wage Equation Estimated by OLS

OLS Estimated Panel Robust Group Means White Robust
Coefficient Coefficient Standard Error Estimates Standard Error

β1: Constant 5.2511 0.1233 5.1214 0.2078
β2: Exp 0.04010 0.004067 0.03190 0.004597
β3: Exp2 −0.0006734 0.00009111 −0.0005656 0.0001020
β4: Wks 0.004216 0.001538 0.009189 0.003578
β5: Occ −0.1400 0.02718 −0.1676 0.03338
β6: Ind 0.04679 0.02361 0.05792 0.02636
β7: South −0.05564 0.02610 −0.05705 0.02660
β8: SMSA 0.1517 0.02405 0.1758 0.02541
β9: MS 0.04845 0.04085 0.1148 0.04989
β10: Union 0.09263 0.02362 0.1091 0.02830
β11: Ed 0.05670 0.005552 0.05144 0.005862
β12: Fem −0.3678 0.04547 −0.3171 0.05105
β13: Blk −0.1669 0.04423 −0.1578 0.04352

The advantage of the first difference approach is that it removes the latent hetero-
geneity from the model whether the fixed or random effects model is appropriate. The
disadvantage is that the differencing also removes any time-invariant variables from the
model. In our example, we had three, Ed, Fem, and Blk. If the time-invariant variables
in the model are of no interest, then this is a robust approach that can estimate the
parameters of the time-varying variables consistently. Of course, this is not helpful for
the application in the example, because the impact of Ed on ln Wage was the primary
object of the analysis. Note, as well, that the differencing procedure trades the cross-
observation correlation in ci for a moving average (MA) disturbance, ui,t = εi,t − εi,t−1.
The new disturbance, ui,t is autocorrelated, though across only one period. Procedures
are available for using two-step feasible GLS for an MA disturbance (see Chapter 20).
Alternatively, this model is a natural candidate for OLS with the Newey–West robust
covariance estimator, since the right number of lags (one) is known. (See Section 20.5.2.)

As a general observation, with a variety of approaches available, the first difference
estimator does not have much to recommend it, save for one very important application.
Many studies involve two period “panels,” a before and after treatment. In these cases,
as often as not, the phenomenon of interest may well specifically be the change in the
outcome variable—the “treatment effect.” Consider the model

yit = ci + x′
itβ + θ Sit + εit,

where t = 1, 2 and Sit = 0 in period 1 and 1 in period 2; Sit indicates a “treatment” that
takes place between the two observations. The “treatment effect” would be

E[�yi | (�xi = 0)] = θ,

which is precisely the constant term in the first difference regression,

�yi = θ + (�xi )
′β + ui .

We will examine cases like these in detail in Section 18.5.
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11.3.6 THE WITHIN- AND BETWEEN-GROUPS ESTIMATORS

We can formulate the pooled regression model in three ways. First, the original formu-
lation is

yit = α + x′
itβ + εit. (11-5a)

In terms of the group means,

ȳi. = α + x̄′
i.β + ε̄i., (11-5b)

while in terms of deviations from the group means,

yit − ȳi. = (xit − x̄i.)
′β + εit − ε̄i.. (11-5c)

[We are assuming there are no time-invariant variables, such as Ed in Example 11.1, in
xit. These would become all zeros in (11-5c).] All three are classical regression models,
and in principle, all three could be estimated, at least consistently if not efficiently, by
ordinary least squares. [Note that (11-5b) defines only n observations, the group means.]
Consider then the matrices of sums of squares and cross products that would be used
in each case, where we focus only on estimation of β. In (11-5a), the moments would
accumulate variation about the overall means, ¯̄y and ¯̄x, and we would use the total sums
of squares and cross products,

Stotal
xx =

n∑
i=1

T∑
t=1

(xit − ¯̄x)(xit − ¯̄x)′ and Stotal
xy =

n∑
i=1

T∑
t=1

(xit − ¯̄x)(yit − ¯̄y). (11-6)

For (11-5c), because the data are in deviations already, the means of (yit − ȳi.) and
(xit − x̄i.) are zero. The moment matrices are within-groups (i.e., variation around group
means) sums of squares and cross products,

Swithin
xx =

n∑
i=1

T∑
t=1

(xit − x̄i.)(xit − x̄i.)
′ and Swithin

xy =
n∑

i=1

T∑
t=1

(xit − x̄i.)(yit − ȳi.).

Finally, for (11-5b), the mean of group means is the overall mean. The moment matrices
are the between-groups sums of squares and cross products—that is, the variation of
the group means around the overall means;

Sbetween
xx =

n∑
i=1

T(x̄i. − ¯̄x)(x̄i. − ¯̄x)′ and Sbetween
xy =

n∑
i=1

T(x̄i. − ¯̄x)(ȳi. − ¯̄y).

It is easy to verify that

Stotal
xx = Swithin

xx + Sbetween
xx and Stotal

xy = Swithin
xy + Sbetween

xy .

Therefore, there are three possible least squares estimators of β corresponding to
the decomposition. The least squares estimator is

btotal = [
Stotal

xx

]−1Stotal
xy = [

Swithin
xx + Sbetween

xx

]−1[Swithin
xy + Sbetween

xy

]
. (11-7)

The within-groups estimator is

bwithin = [
Swithin

xx

]−1Swithin
xy . (11-8)



Greene-2140242 book January 19, 2011 21:10

398 PART II ✦ Generalized Regression Model and Equation Systems

This is the dummy variable estimator developed in Section 11.4. An alternative estima-
tor would be the between-groups estimator,

bbetween = [
Sbetween

xx

]−1Sbetween
xy . (11-9)

This is the group means estimator. This least squares estimator of (11-5b) is based on
the n sets of groups means. (Note that we are assuming that n is at least as large as K.)
From the preceding expressions (and familiar previous results),

Swithin
xy = Swithin

xx bwithin and Sbetween
xy = Sbetween

xx bbetween.

Inserting these in (11-7), we see that the least squares estimator is a matrix weighted
average of the within- and between-groups estimators:

btotal = Fwithinbwithin + Fbetweenbbetween, (11-10)

where

Fwithin = [
Swithin

xx + Sbetween
xx

]−1Swithin
xx = I − Fbetween.

The form of this result resembles the Bayesian estimator in the classical model discussed
in Chapter 16. The resemblance is more than passing; it can be shown [see, e.g., Judge
et al. (1985)] that

Fwithin = {
[Asy. Var(bwithin)]−1 + [Asy. Var(bbetween)]−1}−1[Asy. Var(bwithin)]−1,

which is essentially the same mixing result we have for the Bayesian estimator. In the
weighted average, the estimator with the smaller variance receives the greater weight.

Example 11.4 Analysis of Covariance and the World Health
Organization Data

The decomposition of the total variation in Section 11.3.6 extends to the linear regression
model the familiar “analysis of variance,” or ANOVA, that is often used to decompose the
variation in a variable in a clustered or stratified sample, or in a panel data set. One of
the useful features of panel data analysis as we are doing here is the ability to analyze the
between-groups variation (heterogeneity) to learn about the main regression relationships
and the within-groups variation to learn about dynamic effects.

The World Health Organization data used in Example 6.10 is an unbalanced panel data
set—we used only one year of the data in Example 6.10. Of the 191 countries in the sample,
140 are observed in the full five years, one is observed four times, and 50 are observed
only once. The original WHO studies (2000a, 2000b) analyzed these data using the fixed
effects model developed in the next section. The estimator is that in (11-8). It is easy to see
that groups with one observation will fall out of the computation, because if Ti = 1, then
the observation equals the group mean. These data have been used by many researchers
in similar panel data analyses. [See, e.g., Greene (2004c) and several references.] Gravelle
et al. (2002a) have strongly criticized these analyses, arguing that the WHO data are much
more like a cross section than a panel data set.

From Example 6.10, the model used by the researchers at WHO was

ln DALEit = αi + β1 ln Health Expenditureit + β2 ln Educationit + β3 ln2 Educationit + εit.

Additional models were estimated using WHO’s composite measure of health care attain-
ment, COMP. The analysis of variance for a variable xit is based on the decomposition

n∑
i =1

Ti∑
t=1

( xit − ¯̄x) 2 =
n∑

i =1

Ti∑
t=1

( xit − x̄i .) 2 +
n∑

t=1

Ti ( x̄i . − ¯̄x) 2.
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TABLE 11.4 Analysis of Variance for WHO Data on
Health Care Attainment

Variable Within-Groups Variation Between-Groups Variation

COMP 5.645% 99.850%
DALE 0.150% 94.355%
Expenditure 0.635% 99.365%
Education 0.178% 99.822%

Dividing both sides of the equation by the left-hand side produces the decomposition:

1 = Within-groups proportion + Between-groups proportion.

The first term on the right-hand side is the within-group variation that differentiates a panel
data set from a cross section (or simply multiple observations on the same variable). Table 11.4
lists the decomposition of the variation in the variables used in the WHO studies.

The results suggest the reasons for the authors’ concern about the data. For all but COMP,
virtually all the variation in the data is between groups—that is cross-sectional variation. As
the authors argue, these data are only slightly different from a cross section.

11.4 THE FIXED EFFECTS MODEL

The fixed effects model arises from the assumption that the omitted effects, ci , in the
general model,

yit = x′
itβ + ci + εit,

are correlated with the included variables. In a general form,

E[ci | Xi] = h(Xi ). (11-11)

Because the conditional mean is the same in every period, we can write the model as

yit = x′
itβ + h(Xi ) + εit + [ci − h(Xi )]

= x′
itβ + αi + εit + [ci − h(Xi )].

By construction, the bracketed term is uncorrelated with Xi , so we may absorb it in the
disturbance, and write the model as

yit = x′
itβ + αi + εit. (11-12)

A further assumption (usually unstated) is that Var[ci | Xi ] is constant. With this assump-
tion, (11-12) becomes a classical linear regression model. (We will reconsider the ho-
moscedasticity assumption shortly.) We emphasize, it is (11-11) that signifies the “fixed
effects” model, not that any variable is “fixed” in this context and random elsewhere.
The fixed effects formulation implies that differences across groups can be captured in
differences in the constant term.5 Each αi is treated as an unknown parameter to be
estimated.

5It is also possible to allow the slopes to vary across i , but this method introduces some new methodological
issues, as well as considerable complexity in the calculations. A study on the topic is Cornwell and Schmidt
(1984).
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Before proceeding, we note once again a major shortcoming of the fixed effects
approach. Any time-invariant variables in xit will mimic the individual specific constant
term. Consider the application of Examples 11.1 and 11.3. We could write the fixed
effects formulation as

ln Wageit = x′
itβ + [β10 Edi + β11 Femi + β12 Blki + ci ] + εit.

The fixed effects formulation of the model will absorb the last four terms in the regres-
sion in αi . The coefficients on the time-invariant variables cannot be estimated. This
lack of identification is the price of the robustness of the specification to unmeasured
correlation between the common effect and the exogenous variables.

11.4.1 LEAST SQUARES ESTIMATION

Let yi and Xi be the T observations for the ith unit, i be a T × 1 column of ones, and
let εi be the associated T × 1 vector of disturbances.6 Then,

yi = Xiβ + iαi + εi .

Collecting these terms gives
⎡
⎢⎢⎣

y1

y2
...

yn

⎤
⎥⎥⎦=

⎡
⎢⎢⎢⎣

X1

X2
...

Xn

⎤
⎥⎥⎥⎦β +

⎡
⎢⎢⎢⎣

i 0 · · · 0
0 i · · · 0

...

0 0 · · · i

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

α1

α2
...

αn

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

ε1

ε2
...

εn

⎤
⎥⎥⎦

or

y = [X d1 d2, . . . , dn]
[
β

α

]
+ ε, (11-13)

where di is a dummy variable indicating the ith unit. Let the nT × n matrix D =
[d1, d2, . . . , dn]. Then, assembling all nT rows gives

y = Xβ + Dα + ε.

This model is usually referred to as the least squares dummy variable (LSDV) model
(although the “least squares” part of the name refers to the technique usually used to
estimate it, not to the model itself).

This model is a classical regression model, so no new results are needed to analyze it.
If n is small enough, then the model can be estimated by ordinary least squares with K
regressors in X and n columns in D, as a multiple regression with K + n parameters.
Of course, if n is thousands, as is typical, then this model is likely to exceed the storage
capacity of any computer. But, by using familiar results for a partitioned regression, we
can reduce the size of the computation.7 We write the least squares estimator of β as

b = [X′MDX]−1[X′MDy] = bwithin, (11-14)

6The assumption of a fixed group size, T, at this point is purely for convenience. As noted in Section 11.2.4,
the unbalanced case is a minor variation.
7See Theorem 3.3.
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where

MD = I − D(D′D)−1D′.

This amounts to a least squares regression using the transformed data X∗ = MDX and
y∗ = MDy. The structure of D is particularly convenient; its columns are orthogonal, so

MD =

⎡
⎢⎢⎣

M0 0 0 · · · 0
0 M0 0 · · · 0

· · ·
0 0 0 · · · M0

⎤
⎥⎥⎦.

Each matrix on the diagonal is

M0 = IT − 1
T

ii′. (11-15)

Premultiplying any T × 1 vector zi by M0 creates M0zi = zi − z̄i. (Note that the mean is
taken over only the T observations for unit i .) Therefore, the least squares regression of
MDy on MDX is equivalent to a regression of [yit − ȳi.] on [xit − x̄i.], where ȳi. and x̄i. are
the scalar and K × 1 vector of means of yit and xit over the T observations for group i .8

The dummy variable coefficients can be recovered from the other normal equation in
the partitioned regression:

D′Da + D′Xb = D′y

or

a = [D′D]−1D′(y − Xb).

This implies that for each i ,

ai = ȳi. − x̄′
i.b. (11-16)

The appropriate estimator of the asymptotic covariance matrix for b is

Est. Asy. Var[b] = s2[X′MDX]−1 = s2[Swithin
xx

]−1
, (11-17)

which uses the second moment matrix with x’s now expressed as deviations from their
respective group means. The disturbance variance estimator is

s2 =
∑n

i=1

∑T
t=1 (yit − x′

itb − ai )
2

nT − n − K
= (MDy − MDXb)′(MDy − MDXb)

nT − n − K
. (11-18)

The i tth residual used in this computation is

eit = yit − x′
itb − ai = yit − x′

itb − (ȳi. − x̄′
i.b) = (yit − ȳi.) − (xit − x̄i.)

′b.

Thus, the numerator in s2 is exactly the sum of squared residuals using the least squares
slopes and the data in group mean deviation form. But, done in this fashion, one might
then use nT − K instead of nT − n − K for the denominator in computing s2, so a

8An interesting special case arises if T = 2. In the two-period case, you can show—we leave it as an exercise—
that this least squares regression is done with nT/2 first difference observations, by regressing observation
(yi2 − yi1) (and its negative) on (xi2 − xi1) (and its negative).
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correction would be necessary. For the individual effects,

Asy. Var[ai ] = σ 2
ε

T
+ x̄′

i.

{
Asy. Var[b]

}
x̄i., (11-19)

so a simple estimator based on s2 can be computed.

11.4.2 SMALL T ASYMPTOTICS

From (11-17), we find

Asy. Var[b] = σ 2
ε [X′MDX]−1

= σ 2
ε

n

[
1
n

n∑
i=1

X′
i M

0Xi

]−1

= σ 2
ε

n

[
1
n

n∑
i=1

T∑
t=1

(xit − x̄i.)(xit − x̄i.)
′
]−1

(11-20)

= σ 2
ε

n

[
T

1
n

n∑
i=1

1
T

T∑
t=1

(xit − x̄i.)(xit − x̄i.)
′
]−1

= σ 2
ε

n

[
TS̄xx,i

]−1
.

Since least squares is unbiased in this model, the question of (mean square) consistency
turns on the covariance matrix. Does the matrix above converge to zero? It is necessary
to be specific about what is meant by convergence. In this setting, increasing sample
size refers to increasing n, that is, increasing the number of groups. The group size,
T, is assumed fixed. The leading scalar clearly vanishes with increasing n. The matrix
in the square brackets is T times the average over the n groups of the within-groups
covariance matrices of the variables in Xi . So long as the data are well behaved, we can
assume that the bracketed matrix does not converge to a zero matrix (or a matrix with
zeros on the diagonal). On this basis, we can expect consistency of the least squares es-
timator. In practical terms, this requires within-groups variation of the data. Notice that
the result falls apart if there are time invariant variables in Xi , because then there are
zeros on the diagonals of the bracketed matrix. This result also suggests the nature of
the problem of the WHO data in Example 11.4 as analyzed by Gravelle et al. (2002).

Now, consider the result in (11-19) for the asymptotic variance of ai . Assume that
b is consistent, as shown previously. Then, with increasing n, the asymptotic variance
of ai declines to a lower bound of σ 2

ε /T which does not converge to zero. The constant
term estimators in the fixed effects model are not consistent estimators of αi . They
are not inconsistent because they gravitate toward the wrong parameter. They are so
because their asymptotic variances do not converge to zero, even as the sample size
grows. It is easy to see why this is the case. From (11-16), we see that each ai is estimated
using only T observations—assume n were infinite, so that β were known. Because T
is not assumed to be increasing, we have the surprising result. The constant terms are
inconsistent unless T → ∞, which is not part of the model.



Greene-2140242 book January 19, 2011 21:10

CHAPTER 11 ✦ Models for Panel Data 403

11.4.3 TESTING THE SIGNIFICANCE OF THE GROUP EFFECTS

The t ratio for ai can be used for a test of the hypothesis that αi equals zero. This
hypothesis about one specific group, however, is typically not useful for testing in this
regression context. If we are interested in differences across groups, then we can test the
hypothesis that the constant terms are all equal with an F test. Under the null hypothesis
of equality, the efficient estimator is pooled least squares. The F ratio used for this
test is

F(n − 1, nT − n − K) =
(

R2
LSDV − R2

Pooled

)/
(n − 1)(

1 − R2
LSDV

)/
(nT − n − K)

, (11-21)

where LSDV indicates the dummy variable model and Pooled indicates the pooled
or restricted model with only a single overall constant term. Alternatively, the model
may have been estimated with an overall constant and n − 1 dummy variables instead.
All other results (i.e., the least squares slopes, s2, R2) will be unchanged, but rather
than estimate αi , each dummy variable coefficient will now be an estimate of αi − α1

where group “1” is the omitted group. The F test that the coefficients on these n − 1
dummy variables are zero is identical to the one above. It is important to keep in mind,
however, that although the statistical results are the same, the interpretation of the
dummy variable coefficients in the two formulations is different.9

11.4.4 FIXED TIME AND GROUP EFFECTS

The least squares dummy variable approach can be extended to include a time-specific
effect as well. One way to formulate the extended model is simply to add the time
effect, as in

yit = x′
itβ + αi + δt + εit. (11-22)

This model is obtained from the preceding one by the inclusion of an additional
T − 1 dummy variables. (One of the time effects must be dropped to avoid perfect
collinearity—the group effects and time effects both sum to one.) If the number of
variables is too large to handle by ordinary regression, then this model can also be
estimated by using the partitioned regression.10 There is an asymmetry in this formu-
lation, however, since each of the group effects is a group-specific intercept, whereas
the time effects are contrasts—that is, comparisons to a base period (the one that is
excluded). A symmetric form of the model is

yit = x′
itβ + μ + αi + δt + εit, (11-23)

where a full n and T effects are included, but the restrictions
∑

i

αi =
∑

t

δt = 0

9For a discussion of the differences, see Suits (1984).
10The matrix algebra and the theoretical development of two-way effects in panel data models are complex.
See, for example, Baltagi (2008). Fortunately, the practical application is much simpler. The number of periods
analyzed in most panel data sets is rarely more than a handful. Because modern computer programs uniformly
allow dozens (or even hundreds) of regressors, almost any application involving a second fixed effect can be
handled just by literally including the second effect as a set of actual dummy variables.
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are imposed. Least squares estimates of the slopes in this model are obtained by
regression of

y∗it = yit − ȳi. − ȳ.t + ¯̄y (11-24)

on

x∗it = xit − x̄i. − x̄.t + ¯̄x,

where the period-specific and overall means are

ȳ.t = 1
n

n∑
i=1

yit and ¯̄y = 1
nT

n∑
i=1

T∑
t=1

yit,

and likewise for x̄.t and ¯̄x. The overall constant and the dummy variable coefficients can
then be recovered from the normal equations as

μ̂ = m = ¯̄y − ¯̄x′b,

α̂i = ai = (ȳi. − ¯̄y) − (x̄i. − ¯̄x)′b, (11-25)

δ̂t = dt = (ȳ.t − ¯̄y) − (x̄.t − ¯̄x)′b.

The estimated asymptotic covariance matrix for b is computed using the sums of squares
and cross products of x∗it computed in (11-24) and

s2 =
∑n

i=1

∑T
t=1(yit − x′

itb − m − ai − dt )
2

nT − (n − 1) − (T − 1) − K − 1
(11-26)

If one of n or T is small and the other is large, then it may be simpler just to treat the
smaller set as an ordinary set of variables and apply the previous results to the one-
way fixed effects model defined by the larger set. Although more general, this model is
infrequently used in practice. There are two reasons. First, the cost in terms of degrees
of freedom is often not justified. Second, in those instances in which a model of the
timewise evolution of the disturbance is desired, a more general model than this simple
dummy variable formulation is usually used.

11.4.5 TIME-INVARIANT VARIABLES AND FIXED EFFECTS VECTOR
DECOMPOSITION

The presence of time-invariant variables (TIVs) in the common effects regression
presents a vexing problem for the model builder. The significant problem for the fixed
effects model (FEM) is that the estimator cannot accommodate TIVs. Thus, in the wage
equation in Example 11.5, we have omitted three variables of considerable interest
from the fixed effects model, Ed, Fem, and Blk. If we write the FEM with a set of
time-invariant variables in it as

y = Xβ + Zγ + Dα + ε,

with Z being the matrix of M TIVs, then the problem becomes one of multicollinear-
ity. Since the columns of matrix D are a complete set of n dummy variables, any
time-invariant variable in Z can be written as a linear combination of the columns
of D. Let the mth column of Z be the TIV, Z(m) = (zm1, zm1, . . . , zm2, zm2,

. . . , . . . , zmn, zmn, . . .)
′; each specific value, zmi , is repeated Ti times. Then Z(m) equals
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Dzm where zm is the n × 1 vector (zm1, zm2, . . . , zmn)
′. Collecting all M columns, we have

Z = DZn where Zn is the n × m matrix (z1, z2, . . . , zm). If we attempt to compute the
LSDV estimator of (β ′, γ ′)′ of (11-14) using the transformed variables MD[X,Z], the
columns of Z are transformed to deviations from group means, which are columns of
zeros, since Z is already the period means, and the transformed data matrix becomes
(MDX, 0)—since Z is already in the form of group means, deviations from group means
are zero. The LSDV regression cannot be computed with TIVs. In theoretical terms,
the problem is that γ is not identified. No amount of data can disentangle γ from α.
The model would be

y = Xβ + D(Znγ ) + Dα + ε = Xβ + D[Znγ + α] + ε.

In the fixed effects case, the identifying restriction is γ = 0. That is, in a fixed effects
model, the coefficients on TIVs are not identified in terms of the moments of the data
so their coefficients are fixed at zero, so as to identify α.

Plümper and Troeger (2007) have proposed a three-step procedure that they label
Fixed effects vector decomposition (FEVD) that suggests a solution to the problem of
estimating coefficients on TIVs in a fixed effects model and, at the same time, brings
noticeable gains in the efficiency of estimation of the parameters. The three steps are

Step 1: Linear regression of y on X and D to estimate α. That is, compute the LSDV
estimator of β in (11-14) and use (11-16) to compute estimates of the individual constant
terms.
Step 2: Linear regression of the n estimated constant terms, ai , i = 1, . . . , n, on a
constant term and Zn From this regression, we compute the n residuals, hn. We then
expand this vector to the full sample length using h = Dhn.
Step 3: Linear regression of y on [X,(i,Z),h], where i is an overall constant term, to
estimate (β, α0, γ , δ) in y = Xβ + α0 + Zγ + hδ + ε.

The suggestion produces some interesting algebraic results that will be instructive for
the analysis of this chapter. The surprising result discussed in several recent comments
including Breusch, Ward, Nguyen, and Kompas (2010), Chatelain and Ralf (2010), and
Greene (2010), is that step 3 simply reproduces the results in steps 1 and 2, but the
covariance matrix computed for the estimator of β at step 3 is not identical and is
unambiguously smaller than the matrix in (11-17). It is instructive to work through a
derivation in detail.

We will prove the following results:
FEVD.1 The estimated coefficients on X at step 3 are identical to those at step 1.
FEVD.2 The estimated coefficients on (i,Z) at step 3 are identical to those at step 2.
FEVD.3 The estimated coefficient on h at step 3 is equals 1.0.
FEVD.4 The sum of squared residuals in the regression at step 3 is identical to that at

step 1.
FEVD.5 The s2 computed at step 3 is less than that at step 1.
FEVD.6 The asymptotic covariance matrix computed for the estimator of β at step 3

is smaller than that at step 1 (even though the estimates are algebraically identical)
because of FEVD.5 and because the matrix used is smaller.

(Note there are much more compact proofs of these results. The following approaches
are used to demonstrate the tools we have developed in this and the preceding chapters.)
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Proofs of results: Write the results of the three least squares regressions as

(Step 1) y = XbLSDV + DaLSDV + eLSDV,

(Step 2) aLSDV = WncLSDV + hn where Wn = (in, Zn),

(Step 3) y = XbFEVD + WcFEVD + hdFEVD + eFEVD, where W = (i, Z).

Thus, W at step 3 includes the M time-invariant variables and an overall constant. To
begin, we will establish that eLSDV = eFEVD. Recall that Z = DZn and i = Din, where
in is an n × 1 column vector of ones. The residuals in (step 2 are hn = aLSDV − WncLSDV

and h = Dhn. Therefore, the result at step 3) is equivalent to

y = XbFEVD + DWncFEVD + D(aLSDV − WncLSDV)dFEVD + eFEVD.

Rearranging it slightly,

y = XbFEVD + DaLSDV + DWncFEVD − DWncLSDV(dFEVD) + eFEVD. (11-27)

The first two terms are the predictions from the linear regression of y on X and D and the
third and fourth terms simply add more linear combinations of the columns of D. Since
(X,D) has (we have assumed) full column rank, least squares regression (11-27) must
provide the same fit as step 1. The residuals must be identical; that is eFEVD = eLSDV.
Now, premultiply (11-27) by X′MD. Since MDD = 0 and MDeLSDV = eLSDV, we find

X′MDy = X′MDXbFEVD + X′eLSDV.

Since X′eLSDV = 0 (from step 1), we have bFEVD = (X′MDX)−1(X′MDy) = bLSDV which
proves FEVD.1.

To compute cFEVD, at step 3, we have at the solution (using bFEVD = bLSDV and
eFEVD = eLSDV)

y − XbLSDV = WcFEVD + hdFEVD + eLSDV.

Premultiply this expression by W′. From step 2, W′h = Wn
′D′Dhn = 0. This is true

because D′D is a diagonal matrix with Ti on the diagonals. Thus, each element in W′h
is Ti W(m)′hn = 0, where W(m) is the mth column of Wn. From step 3, W′eFEVD =
W′eLSDV = 0. Thus,

W′(y − XbLSDV) = W′WcFEVD

so

cFEVD = (W′W)−1W′(y − XbLSDV).

From step 1, y − XbLSDV = DaLSDV + eLSDV. Since W′eFEVD = W′eLSDV = 0, from
step 3,

cFEVD = (W′W)−1W′DaLSDV.

But, by premultiplying step 2 by D, we find DaLSDV = DWncLSDV + Dhn. It follows that
the solution is

cLSDV = (Wn
′D′DWn)

−1Wn
′D′DaLSDV + (Wn

′D′DWn)
−1Wn

′D′Dhn.

The second term is zero as shown earlier. The end result is cLSDV = cFEVD which is
FEVD.2.
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Once again using step 3, we now solve for dFEVD using what we already have. The
solution is in

y − XbLSDV − WcLSDV = hdFEVD + eLSDV.

But, y − XbLSDV = a + eLSDV = DaLSDV + eLSDV and WcLSDV = a − h = DaLSDV − h.
Inserting these,

DaLSDV + eLSDV − DaLSDV + h = hdFEVD + eLSDV

or

h + eLSDV = hdFEVD + eLSDV,

from which it follows that dFEVD = 1. This proves FEVD.3.
FEVD.4 has already been shown since eFEVD = eLSDV.. The R2’s in the two regres-

sions are the same as well, as R2
FEVD = 1 − (eFEVD

′eFEVD/y′M0y) = R2
LSDV since the

residual vectors are identical. [See (3-26).] But,

s2
FEVD = eFEVD

′eFEVD/(�i Ti − K − M − 1 − 1) < s2
LSDV = eLSDV

′eLSDV/(�i Ti − K − n).

The difference is the degrees of freedom correction, which can be large. In our example
to follow, DFFEVD = 4165−9−3−1−1 = 4151, while DFLSDV = 4165−9−595 = 3561.
For the example, then, s2

FEVD/s2
LSDV = 0.85787. This establishes FEVD.5.

To establish FEVD.6, based on (11-17), we are going to compare

Est.Asy.Var[bFEVD] = s2
FEVD(X′MW,hX)−1

to

Est.Asy.Var[bLSDV] = s2
LSDV(X′MDX)−1.

We have already established that s2
LSDV > s2

FEVD. To compare the matrices, we will
compare their inverses, and show that the difference matrix

A = X′MW,hX − X′MDX

is positive definite. This will imply that the inverse matrix in Est.Asy.Var[bFEVD] is
smaller than that in Est.Asy.Var[bLSDV]. To show this, we note that R = (W, h) =
D(Wn, hn) is M+ 2 linear combinations of the columns of D while D is all n columns of
D. The residuals defined by MDX [see (3-15)] are obtained by regressions of X on all n
columns of D. They will be identical to the residuals obtained by regression of X on any
n linearly independent combinations of the columns of D. For these, we will use [R,Q]
where Q is orthogonal to R. Therefore X′MDX = X′MR,QX. Expanding this, we have

A = X′X − X′R(R′R)−1R′X − X′X + X′ ( R Q
) [(

R′
Q′

) (
R Q

)]−1 (
R′
Q′

)
X.

The inverse matrix is simplified by R′Q = 0, so the bracketed matrix and its inverse are
block diagonal. Multiplying it out, we find

A = X′Q(Q′Q)−1Q′X = X′(I − MQ)X.
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Since I − MQ is idempotent, A = X′(I − MQ)′(I − MQ)X = X*′X* is positive definite.
This establishes that the computed covariance matrix for bFEVD will always be strictly
smaller than that for bLSDV, which is FEVD.6.

This leaves what should appear to be a loose end in the analysis. How was it possible
to estimate γ (in step 2 or step 3) given that it is unidentified in the original model? The
answer is the crucial assumption previously noted at several points. From the original
specification Z is uncorrelated with ε. But, for the regression (in step 2) to estimate a
nonzero γ , it must be further assumed that zi is uncorrelated with ui . This restricts the
original fixed effects model—it is a hybrid in which the time-varying variables are al-
lowed to be correlated with ui but the time-invariant variables are not. The authors note
this on page 6 and in their footnote 7 where they state, “If the time-invariant variables
are assumed to be orthogonal to the unobserved unit effects—i.e., if the assumption
underlying our estimator is correct—the estimator is consistent. If this assumption is
violated, the estimated coefficients for the time-invariant variables are biased. . . . Note
that the estimated coefficients of the time-varying variables remain unbiased even in
the presence of correlated unit effects. However, the assumption underlying a FE model
must be satisfied (no correlated time-varying variables may exist).” (Emphasis added—it
seems that “varying” should be “invariant”) There are other estimators that would con-
sistently be β and γ in this revised model, including the Hausman and Taylor estimator
discussed in Section 11.8.1 and instrumental variables estimators suggested by Breusch
et al. (2010) and by Chatelain and Ralf (2010).

The problem of primary interest in Plümper and Troeger was an intermediate case
somewhat different from what we have examined here. There are two directions of
the work. If only some of the elements of Z but not all of them, are correlated with
ui , then we obtain the setting analyzed by Hausman and Taylor that is examined in
Section 11.8.1. Plümper and Troeger’s FEVD estimator will, in that instance, be an
inconsistent estimator that may have a smaller variance than the IV estimator proposed
by Hausman and Taylor. The second case the authors are interested in is when Z is
not strictly time invariant but is “slowly changing.” When there is very little within-
groups variation, for example, as shown for the World Health Organization data in
Example 11.4, then, once again, the estimator suggested here may have some advantages
over instrumental variables and other treatments. In that case, when there are no strictly
time-invariant variables in the model, then the analysis is governed by the random effects
model discussed in the next section.

Example 11.5 Fixed Effects Wage Equation
Table 11.5 presents the estimated wage equation with individual effects for the Cornwell
and Rupert data used in Examples 11.1 and 11.3. The model includes three time-invariant
variables, Ed, Fem, Blk, that must be dropped from the equation. As a consequence, the
fixed effects estimates computed here are not comparable to the results for the pooled
model already examined. For comparison, the least squares estimates with panel robust
standard errors are also presented. We have also added a set of time dummy variables to
the model. The F statistic for testing the significance of the individual effects based on the,
R2’s for the equations is

F [594, 3561] = (0.9072422 − 0.3154548)/594
(1 − 0.9072422)/(4165 − 9 − 595)

= 38.247

The critical value for the F table with 594 and 3561 degrees of freedom is 1.106, so the
evidence is strongly in favor of an individual-specific effect. As often happens, the fit of the
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model increases greatly when the individual effects are added. We have also added time
effects to the model. The model with time effects without the individual effects is in the second
column results. The F statistic for testing the significance of the time effects (in the absence
of the individual effects) is

F [6, 4149] = (0.4636788 − 0.3154548)/6
(1 − 0.4636788)/(4165 − 10 − 6)

= 191.11,

The critical value from the F table is 2.101, so the hypothesis that the time effects are zero
is also rejected. The last column of results shows the model with both time and individual
effects. For this model it is necessary to drop a second time effect because the experience
variable, Exp, is an individual specific time trend. The Exp variable can be expressed as

Expi ,t = Ei ,0 + ( t − 1) , t = 1, . . . , 7,

which can be expressed as a linear combination of the individual dummy variable and the
six time variables. For the last model, we have dropped the first and last of the time effects.
In this model, the F statistic for testing the significance of the time effects is

F [5, 3556] = (0.9080847 − 0.9072422)/5
(1 − 0.9080847)/(4165 − 9 − 5 − 5595)

= 6.519.

The time effects remain significant—the critical value is 2.217—but the test statistic is con-
siderably reduced. The time effects reveal a striking pattern. In the equation without the
individual effects, we find a steady increase in wages of 7–9 percent per year. But, when the
individual effects are added to the model, this progression disappears.

It might seem appropriate to compute the robust standard errors for the fixed effects
estimator as well as for the pooled estimator. However, in principle, that should be unneces-
sary. If the model is correct and completely specified, then the individual effects should be
capturing the omitted heterogeneity, and what remains is a classical, homoscedastic, nonau-
tocorrelated disturbance. This does suggest a rough indicator of the appropriateness of the
model specification. If the conventional asymptotic covariance matrix in (11-17) and the ro-
bust estimator in (11-3), with Xi replaced with the data in group mean deviations form, give
very different estimates, one might question the model specification. [This is the logic that
underlies White’s (1982a) information matrix test (and the extensions by Newey (1985a) and
Tauchen (1985).] The robust standard errors are shown in parentheses under those for the
fixed effects estimates in the sixth column of Table 11.5. They are considerably higher than
the uncorrected standard errors—50 percent to 100 percent—which might suggest that the
fixed effects specification should be reconsidered.

The FEVD computations are shown in Table 11.5 as well. The third set of results, marked
“Individual Effects,” shows the step 1 and step 2 results. Note that these are computed in two
least squares regressions. The second step is indicated by the heavy box. The fit measures
are not shown for step 2. The step 3 results are shown in the last two columns of the table.
As anticipated, the estimated coefficients match the first and second step regressions. For
bLSDV, the standard errors have fallen by a factor of 2 to 4. For cLSDV, the estimators of γ ,
they have fallen by a factor of 7 to 10. In view of the previous analytic results, the estimates
in the last column of Table 11.5 would be viewed as overly optimistic.

11.5 RANDOM EFFECTS

The fixed effects model allows the unobserved individual effects to be correlated with the
included variables. We then modeled the differences between units strictly as parametric
shifts of the regression function. This model might be viewed as applying only to the
cross-sectional units in the study, not to additional ones outside the sample. For example,
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an intercountry comparison may well include the full set of countries for which it is
reasonable to assume that the model is constant. If the individual effects are strictly
uncorrelated with the regressors, then it might be appropriate to model the individual
specific constant terms as randomly distributed across cross-sectional units. This view
would be appropriate if we believed that sampled cross-sectional units were drawn from
a large population. It would certainly be the case for the longitudinal data sets listed
in the introduction to this chapter.11 The payoff to this form is that it greatly reduces
the number of parameters to be estimated. The cost is the possibility of inconsistent
estimators, should the assumption turn out to be inappropriate.

Consider, then, a reformulation of the model

yit = x′
itβ + (α + ui ) + εit, (11-28)

where there are K regressors including a constant and now the single constant term is
the mean of the unobserved heterogeneity, E [z′

iα]. The component ui is the random
heterogeneity specific to the ith observation and is constant through time; recall from
Section 11.2.1, ui = {

z′
iα− E [z′

iα]
}

. For example, in an analysis of families, we can view
ui as the collection of factors, z′

iα, not in the regression that are specific to that family.
We continue to assume strict exogeneity:

E [εit | X] = E [ui | X] = 0,

E
[
ε2

it

∣∣ X
] = σ 2

ε ,

E
[
u2

i

∣∣ X
] = σ 2

u ,

E [εitu j | X] = 0 for all i, t, and j,

E [εitε js | X] = 0 if t �= s or i �= j,

E [ui u j | X] = 0 if i �= j.

(11-29)

As before, it is useful to view the formulation of the model in blocks of T observations
for group i, yi , Xi , ui i, and εi . For these T observations, let

ηit = εit + ui

and

ηi = [ηi1, ηi2, . . . , ηiT]′.

In view of this form of ηit, we have what is often called an error components model. For
this model,

E
[
η2

it

∣∣ X
] = σ 2

ε + σ 2
u ,

E [ηitηis | X] = σ 2
u , t �= s (11-30)

E [ηitη js | X] = 0 for all t and s if i �= j.

11This distinction is not hard and fast; it is purely heuristic. We shall return to this issue later. See Mundlak
(1978) for methodological discussion of the distinction between fixed and random effects.
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For the T observations for unit i , let � = E [ηiη
′
i | X]. Then

� =

⎡
⎢⎢⎢⎣

σ 2
ε + σ 2

u σ 2
u σ 2

u · · · σ 2
u

σ 2
u σ 2

ε + σ 2
u σ 2

u · · · σ 2
u

· · ·
σ 2

u σ 2
u σ 2

u · · · σ 2
ε + σ 2

u

⎤
⎥⎥⎥⎦= σ 2

ε IT + σ 2
u iT i′T, (11-31)

where iT is a T × 1 column vector of 1s. Because observations i and j are independent,
the disturbance covariance matrix for the full nT observations is

� =

⎡
⎢⎢⎣

� 0 0 · · · 0
0 � 0 · · · 0

...

0 0 0 · · · �

⎤
⎥⎥⎦= In ⊗ �. (11-32)

11.5.1 LEAST SQUARES ESTIMATION

The model defined by (11-28),

yit = α + xit′β + ui + εit,

with the strict exogeneity assumptions in (11-29) and the covariance matrix detailed in
(11-31) and (11-32) is a generalized regression model that fits into the framework we
developed in Chapter 9. The disturbances are autocorrelated in that observations are
correlated across time within a group, though not across groups. All the implications
of Section 9.2.1 would apply here. In particular, the parameters of the random effects
model can be estimated consistently, though not efficiently, by ordinary least squares
(OLS). An appropriate robust asymptotic covariance matrix for the OLS estimator
would be given by (11-3).

There are other consistent estimators available as well. By taking deviations from
group means, we obtain

yit − ȳi = (xit − x̄i )
′β + εit − ε̄i .

This implies that (assuming there are no time-invariant regressors in xit), the LSDV
estimator of (11-14) is a consistent estimator of β. (Note that alone among the four
estimators to be suggested here, the LSDV estimator is robust to whether the correct
specification is actually a random or a fixed effects model.) As is OLS, LSDV is inefficient
since, as we will show in Section 11.5.2, there is an efficient GLS estimator that is not
equal to bLSDV. The group means (between groups) regression model,

ȳi = α + x̄′
itβ + ui + ε̄i , i = 1, . . . , n,

provides a third method of consistently estimating the coefficients β. None of these is
the preferred estimator in this setting, since the GLS estimator will be more efficient
than any of them. However, as we saw in Chapters 9 and 10, many generalized regres-
sion models are estimated in two steps, with the first step being a robust least squares
regression that is used to produce a first round estimate of the variance parameters of
the model. That would be the case here as well. To suggest where this logic will lead in
Section 11.5.3, note that for the three cases noted, the mean squared residuals would
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produce the following consistent estimators of functions of the variances:

(Pooled) plim [epooled
′epooled/(nT)] = σ 2

u + σ 2
ε ,

(LSDV) plim [eLSDV
′eLSDV/(nT)] = σ 2

ε [1 − 1/T],
(Means) plim [emeans

′emeans/(nT)] = σ 2
u + σ 2

ε /T.

Any pair of these estimators would provide a two-equation method of moments
estimator of (σ 2

u , σ 2
ε ). With these in mind, we will now develop an efficient generalized

least squares estimator.

11.5.2 GENERALIZED LEAST SQUARES

The generalized least squares estimator of the slope parameters is

β̂ = (X′�−1X)−1X′�−1y =
(

n∑
i=1

X′
i�

−1Xi

)−1 (
n∑

i=1

X′
i�

−1yi

)
.

To compute this estimator as we did in Chapter 9 by transforming the data and using
ordinary least squares with the transformed data, we will require �−1/2 = [In ⊗ �]−1/2.
We need only find �−1/2, which is

�−1/2 = 1
σε

[
I − θ

T
iTi′T

]
,

where

θ = 1 − σε√
σ 2

ε + Tσ 2
u

.

The transformation of yi and Xi for GLS is therefore

�−1/2yi = 1
σε

⎡
⎢⎢⎢⎣

yi1 − θ ȳi.

yi2 − θ ȳi.
...

yiT − θ ȳi.

⎤
⎥⎥⎥⎦, (11-33)

and likewise for the rows of Xi .12 For the data set as a whole, then, generalized least
squares is computed by the regression of these partial deviations of yit on the same
transformations of xit. Note the similarity of this procedure to the computation in the
LSDV model, which uses θ = 1 in (11-15). (One could interpret θ as the effect that
would remain if σε were zero, because the only effect would then be ui . In this case,
the fixed and random effects models would be indistinguishable, so this result makes
sense.)

It can be shown that the GLS estimator is, like the pooled OLS estimator, a matrix
weighted average of the within- and between-units estimators:

β̂ = F̂withinbwithin + (I − F̂within)bbetween,13 (11-34)

12This transformation is a special case of the more general treatment in Nerlove (1971b).
13An alternative form of this expression, in which the weighting matrices are proportional to the covariance
matrices of the two estimators, is given by Judge et al. (1985).
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where now,

F̂within = [
Swithin

xx + λSbetween
xx

]−1Swithin
xx ,

λ = σ 2
ε

σ 2
ε + Tσ 2

u
= (1 − θ)2.

To the extent that λ differs from one, we see that the inefficiency of ordinary least
squares will follow from an inefficient weighting of the two estimators. Compared with
generalized least squares, ordinary least squares places too much weight on the between-
units variation. It includes it all in the variation in X, rather than apportioning some of
it to random variation across groups attributable to the variation in ui across units.

Unbalanced panels add a layer of difficulty in the random effects model. The first
problem can be seen in (11-32). The matrix � is no longer In ⊗ � because the diagonal
blocks in � are of different sizes. There is also groupwise heteroscedasticity in (11-33),
because the ith diagonal block in �−1/2 is

�
−1/2
i = ITi − θi

Ti
iTi i

′
Ti
, θi = 1 − σε√

σ 2
ε + Tiσ 2

u

.

In principle, estimation is still straightforward, because the source of the groupwise
heteroscedasticity is only the unequal group sizes. Thus, for GLS, or FGLS with es-
timated variance components, it is necessary only to use the group-specific θi in the
transformation in (11-33).

11.5.3 FEASIBLE GENERALIZED LEAST SQUARES
WHEN � IS UNKNOWN

If the variance components are known, generalized least squares can be computed as
shown earlier. Of course, this is unlikely, so as usual, we must first estimate the distur-
bance variances and then use an FGLS procedure. A heuristic approach to estimation
of the variance components is as follows:

yit = x′
itβ + α + εit + ui (11-35)

and

ȳi. = x̄′
i.β + α + ε̄i. + ui .

Therefore, taking deviations from the group means removes the heterogeneity:

yit − ȳi. = [xit − x̄i.]′β + [εit − ε̄i.]. (11-36)

Because

E

[
T∑

t=1

(εit − ε̄i.)
2

]
= (T − 1)σ 2

ε ,

if β were observed, then an unbiased estimator of σ 2
ε based on T observations in group

i would be

σ̂ 2
ε (i) =

∑T
t=1(εit − ε̄i.)

2

T − 1
. (11-37)
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Because β must be estimated—(11-33) implies that the LSDV estimator is consistent,
indeed, unbiased in general—we make the degrees of freedom correction and use the
LSDV residuals in

s2
e (i) =

∑T
t=1(eit − ēi.)

2

T − K − 1
. (11-38)

(Note that based on the LSDV estimates, ēi. is actually zero. We will carry it through
nonetheless to maintain the analogy to (11-34) where ε̄i. is not zero but is an estimator
of E[εi t ] = 0.) We have n such estimators, so we average them to obtain

s̄2
e = 1

n

n∑
i=1

s2
e (i) = 1

n

n∑
i=1

[∑T
t=1(eit − ēi.)

2

T − K − 1

]
=

∑n
i=1

∑T
t=1(eit − ēi.)

2

nT − nK − n
. (11-39)

The degrees of freedom correction in s̄2
e is excessive because it assumes that α and

β are reestimated for each i . The estimated parameters are the n means ȳi · and the K
slopes. Therefore, we propose the unbiased estimator14

σ̂ 2
ε = s2

LSDV =
∑n

i=1

∑T
t=1(eit − ēi.)

2

nT − n − K
. (11-40)

This is the variance estimator in the fixed effects model in (11-18), appropriately cor-
rected for degrees of freedom. It remains to estimate σ 2

u . Return to the original model
specification in (11-35). In spite of the correlation across observations, this is a classical
regression model in which the ordinary least squares slopes and variance estimators are
both consistent and, in most cases, unbiased. Therefore, using the ordinary least squares
residuals from the model with only a single overall constant, we have

plim s2
Pooled = plim

e′e
nT − K − 1

= σ 2
ε + σ 2

u . (11-41)

This provides the two estimators needed for the variance components; the second would
be σ̂ 2

u = s2
Pooled − s2

LSDV . A possible complication is that this second estimator could be
negative. But, recall that for feasible generalized least squares, we do not need an
unbiased estimator of the variance, only a consistent one. As such, we may drop the
degrees of freedom corrections in (11-40) and (11-41). If so, then the two variance
estimators must be nonnegative, since the sum of squares in the LSDV model cannot
be larger than that in the simple regression with only one constant term. Alternative
estimators have been proposed, all based on this principle of using two different sums of
squared residuals.15 This is a point on which modern software varies greatly. Generally,
programs begin with (11-40) and (11-41) to estimate the variance components. What
they do next when the estimate of σ 2

u is nonpositive is far from uniform. Dropping the
degrees of freedom correction is a frequently used strategy, but at least one widely
used program simply sets σ 2

u to zero, and others resort to different strategies based on,
for example, the group means estimator. The unfortunate implication for the unwary
is that different programs can systematically produce different results using the same

14A formal proof of this proposition may be found in Maddala (1971) or in Judge et al. (1985, p. 551).
15See, for example, Wallace and Hussain (1969), Maddala (1971), Fuller and Battese (1974), and Amemiya
(1971).



Greene-2140242 book January 19, 2011 21:10

416 PART II ✦ Generalized Regression Model and Equation Systems

model and the same data. The practitioner is strongly advised to consult the program
documentation for resolution.

There is a remaining complication. If there are any regressors that do not vary within
the groups, the LSDV estimator cannot be computed. For example, in a model of family
income or labor supply, one of the regressors might be a dummy variable for location,
family structure, or living arrangement. Any of these could be perfectly collinear with
the fixed effect for that family, which would prevent computation of the LSDV estimator.
In this case, it is still possible to estimate the random effects variance components. Let
[b, a] be any consistent estimator of [β, α] in (11-35), such as the ordinary least squares
estimator. Then, (11-41) provides a consistent estimator of mee = σ 2

ε + σ 2
u . The mean

squared residuals using a regression based only on the n group means in (11-35) provides
a consistent estimator of m∗∗ = σ 2

u + (σ 2
ε /T ), so we can use

σ̂ 2
ε = T

T − 1
(mee − m∗∗)

σ̂ 2
u = T

T − 1
m∗∗ − 1

T − 1
mee = ωm∗∗ + (1 − ω)mee,

where ω > 1. As before, this estimator can produce a negative estimate of σ 2
u that, once

again, calls the specification of the model into question. [Note, finally, that the residuals
in (11-40) and (11-41) could be based on the same coefficient vector.]

There is, perhaps surprisingly, a simpler way out of the dilemma posed by time-
invariant regressors. In (11-36), we find that the group mean deviations estimator still
provides a consistent estimator of σ 2

ε . The time-invariant variables fall out of the model
so it is not possible to estimate the full coefficient vector β. But, recall, estimation of β is
not the objective at this step, estimation of σ 2

ε is. Therefore, it follows that the residuals
from the group mean deviations (LSDV) estimator can still be used to estimate σ 2

ε .
By the same logic, the first differences could also be used. (See Section 11.3.5.) The
residual variance in the first difference regression would estimate 2σ 2

ε . These outcomes
are irrespective of whether there are time-invariant regressors in the model.

11.5.4 TESTING FOR RANDOM EFFECTS

Breusch and Pagan (1980) have devised a Lagrange multiplier test for the random
effects model based on the OLS residuals.16 For

H0: σ 2
u = 0 (or Corr[ηit, ηis] = 0),

H1: σ 2
u �= 0,

the test statistic is

LM = nT
2(T − 1)

⎡
⎢⎣

∑n
i=1

[∑T
t=1 eit

]2

∑n
i=1

∑T
t=1 e2

it

− 1

⎤
⎥⎦

2

= nT
2(T − 1)

[ ∑n
i=1(T ēi.)

2

∑n
i=1

∑T
t=1 e2

it

− 1

]2

. (11-42)

16We have focused thus far strictly on generalized least squares and moments based consistent estimation
of the variance components. The LM test is based on maximum likelihood estimation, instead. See Maddala
(1971) and Balestra and Nerlove (1966, 2003) for this approach to estimation.
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Under the null hypothesis, the limiting distribution of LM is chi-squared with one degree
of freedom.

Example 11.6 Testing for Random Effects
We are interested in comparing the random and fixed effects estimators in the Cornwell
and Rupert wage equation. As we saw earlier, there are three time-invariant variables in
the equation: Ed, Fem, and Blk. As such, we cannot directly compare the two estimators.
The random effects model can provide separate estimates of the parameters on the time-
invariant variables while the fixed effects estimator cannot. For purposes of the illustration,
then, we will for the present time confine attention to the restricted common effects model,

ln Wageit = β1 Expit + β2 Exp2
it + β3 Wksit + β4 Occit + β5 Indit + β6 Southit

+ β7 SMSAit + β8 MSit + β9 Unionit + ci + εit.

The fixed and random effects models differ in the treatment of ci .
Least squares estimates of the parameters including a constant term appear in Table 11.6.

We then computed the group mean residuals for the seven observations for each individual.
The sum of squares of the means is 53.824384. The total sum of squared residuals for the
regression is 607.1265. With T and n equal to 7 and 595, respectively, (11-42) produces a
chi-squared statistic of 3881.34. This far exceeds the 95 percent critical value for the chi-
squared distribution with one degree of freedom, 3.84. At this point, we conclude that the
classical regression model with a single constant term is inappropriate for these data. The
result of the test is to reject the null hypothesis in favor of the random effects model. But, it
is best to reserve judgment on that, because there is another competing specification that
might induce these same results, the fixed effects model. We will examine this possibility in
the subsequent examples.

TABLE 11.6 Estimates of the Wage Equation

Pooled Least Squares Fixed Effects LSDV Random Effects FGLS

Variable Estimate Std.Errora Estimate Std.Error Estimate Std.Error Robust

Exp 0.0361 0.004533 0.1132 0.002471 0.08906 0.002280 0.01276
Exp2 −0.0006550 0.0001016 −0.0004184 0.0000546 −0.0007577 0.00005036 0.00031
Wks 0.004461 0.001728 0.0008359 0.0005997 0.001066 0.0005939 0.00331
Occ −0.3176 0.02726 −0.02148 0.01378 −0.1067 0.01269 0.05424
Ind 0.03213 0.02526 0.01921 0.01545 −0.01637 0.01391 0.05303
South −0.1137 0.02868 −0.001861 0.03430 −0.06899 0.02354 0.05984
SMSA 0.1586 0.02602 −0.04247 0.01943 −0.01530 0.01649 0.05421
MS 0.3203 0.03494 −0.02973 0.01898 −0.02398 0.01711 0.06989
Union 0.06975 0.02667 0.03278 0.01492 0.03597 0.01367 0.05653
Constant 5.8802 0.09673 5.3455 0.04361 0.19866

Mundlak: Group Means Mundlak: Time Varying

Exp −0.08574 0.005821 0.1132 0.002474
Exp2 −0.0001168 0.0001281 −0.0004184 0.00005467
Wks 0.008020 0.004006 0.0008359 0.0006004
Occ −0.3321 0.03363 −0.02148 0.01380
Ind 0.02677 0.03203 0.01921 0.01547
South −0.1064 0.04444 −0.001861 0.03434
SMSA 0.2239 0.03421 0.04247 0.01945
MS 0.4134 0.03984 −0.02972 0.01901
Union 0.05637 0.03549 0.03278 0.01494
Constant 5.7222 0.1906
aRobust standard errors
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With the variance estimators in hand, FGLS can be used to estimate the parameters
of the model. All of our earlier results for FGLS estimators apply here. In particular, all
that is needed for efficient estimation of the model parameters are consistent estimators
of the variance components, and there are several. [See Hsiao (2003), Baltagi (2005),
Nerlove (2002), Berzeg (1979), and Maddala and Mount (1973).]

Example 11.7 Estimates of the Random Effects Model
In the previous example, we found the total sum of squares for the least squares estimator was
607.1265. The fixed effects (LSDV) estimates for this model appear in Table 11.5 (and 11.6),
where the sum of squares given is 82.26732. Therefore, the moment estimators of the variance
parameters are

σ̂ 2
ε + σ̂ 2

u = 607.1265
4165 − 10

= 0.1461195

and

σ̂ 2
ε = 82.26732

4165 − 595 − 9
= 0.0231023.

The implied estimator of σ 2
u is 0.12301719. (No problem of negative variance components

has emerged.) The estimate of θ for FGLS is

θ̂ = 1 −
√

0.0231023
0.0231023 + 7(0.12301719)

= 0.8383608.

FGLS estimates are computed by regressing the partial differences of ln Wageit on the partial
differences of the constant and the nine regressors, using this estimate of θ in (11-33). Esti-
mates of the parameters using the OLS, fixed effects and random effects estimators appear
in Table 11.6.

None of the desirable properties of the estimators in the random effects model rely
on T going to infinity.17 Indeed, T is likely to be quite small. The estimator of σ 2

ε is equal
to an average of n estimators, each based on the T observations for unit i . [See (11-39).]
Each component in this average is, in principle, consistent. That is, its variance is of
order 1/T or smaller. Because T is small, this variance may be relatively large. But,
each term provides some information about the parameter. The average over the n
cross-sectional units has a variance of order 1/(nT ), which will go to zero if n increases,
even if we regard T as fixed. The conclusion to draw is that nothing in this treatment
relies on T growing large. Although it can be shown that some consistency results will
follow for T increasing, the typical panel data set is based on data sets for which it does
not make sense to assume that T increases without bound or, in some cases, at all.18

As a general proposition, it is necessary to take some care in devising estimators whose
properties hinge on whether T is large or not. The widely used conventional ones we
have discussed here do not, but we have not exhausted the possibilities.

The random effects model was developed by Balestra and Nerlove (1966). Their
formulation included a time-specific component, κt , as well as the individual effect:

yit = α + β ′xit + εit + ui + κt .

17See Nickell (1981).
18In this connection, Chamberlain (1984) provided some innovative treatments of panel data that, in fact,
take T as given in the model and that base consistency results solely on n increasing. Some additional results
for dynamic models are given by Bhargava and Sargan (1983).
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The extended formulation is rather complicated analytically. In Balestra and Nerlove’s
study, it was made even more so by the presence of a lagged dependent variable. A full
set of results for this extended model, including a method for handling the lagged
dependent variable, has been developed.19 We will turn to this in Section 11.8.

11.5.5 HAUSMAN’S SPECIFICATION TEST FOR THE RANDOM
EFFECTS MODEL

At various points, we have made the distinction between fixed and random effects mod-
els. An inevitable question is, Which should be used? From a purely practical standpoint,
the dummy variable approach is costly in terms of degrees of freedom lost. On the other
hand, the fixed effects approach has one considerable virtue. There is little justification
for treating the individual effects as uncorrelated with the other regressors, as is assumed
in the random effects model. The random effects treatment, therefore, may suffer from
the inconsistency due to this correlation between the included variables and the random
effect.20

The specification test devised by Hausman (1978)21 is used to test for orthogonality
of the common effects and the regressors. The test is based on the idea that under the
hypothesis of no correlation, both OLS, LSDV and FGLS estimators are consistent, but
OLS is inefficient,22 whereas under the alternative, LSDV is consistent, but FGLS is not.
Therefore, under the null hypothesis, the two estimates should not differ systematically,
and a test can be based on the difference. The other essential ingredient for the test is
the covariance matrix of the difference vector, [b − β̂]:

Var[b − β̂] = Var[b] + Var[β̂] − Cov[b, β̂] − Cov[β̂, b]. (11-43)

Hausman’s essential result is that the covariance of an efficient estimator with its differ-
ence from an inefficient estimator is zero, which implies that

Cov[(b − β̂), β̂] = Cov[b, β̂] − Var[β̂] = 0

or that

Cov[b, β̂] = Var[β̂].

Inserting this result in (11-43) produces the required covariance matrix for the test,

Var[b − β̂] = Var[b] − Var[β̂] = �.

The chi-squared test is based on the Wald criterion:

W = χ2[K − 1] = [b − β̂]′�̂−1[b − β̂]. (11-44)

For �̂, we use the estimated covariance matrices of the slope estimator in the LSDV
model and the estimated covariance matrix in the random effects model, excluding the
constant term. Under the null hypothesis, W has a limiting chi-squared distribution with
K − 1 degrees of freedom.

19See Balestra and Nerlove (1966), Fomby, Hill, and Johnson (1984), Judge et al. (1985), Hsiao (1986),
Anderson and Hsiao (1982), Nerlove (1971a, 2002), and Baltagi (2008).
20See Hausman and Taylor (1981) and Chamberlain (1978).
21Related results are given by Baltagi (1986).
22Referring to the FGLS matrix weighted average given earlier, we see that the efficient weight uses θ ,
whereas OLS sets θ = 1.
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The Hausman test is a useful device for determining the preferred specification
of the common effects model. As developed here, it has one practical shortcoming.
The construction in (11-43) conforms to the theory of the test. However, it does not
guarantee that the difference of the two covariance matrices will be positive definite in a
finite sample. The implication is that nothing prevents the statistic from being negative
when it is computed according to (11-44). One can, in that event, conclude that the
random effects model is not rejected, since the similarity of the covariance matrices
is what is causing the problem, and under the alternative (fixed effects) hypothesis,
they would be significantly different. There are, however, several alternative methods
of computing the statistic for the Hausman test, some asymptotically equivalent and
others actually numerically identical. Baltagi (2005, pp. 65–73) provides an extensive
analysis. One particularly convenient form of the test finesses the practical problem
noted here. An asymptotically equivalent test statistic is given by

H′ = (β̂LSDV − β̂MEANS)
′
[
Asy.Var[β̂LSDV] + Asy.Var[β̂MEANS]

]−1
(β̂LSDV − β̂MEANS)

(11-45)

where β̂MEANS is the group means estimator discussed in Section 11.3.4. As noted, this
is one of several equivalent forms of the test. The advantage of this form is that the
covariance matrix will always be nonnegative definite.

Example 11.8 Hausman Test for Fixed versus Random Effects
Using the results of the preceding example, we retrieved the coefficient vector and estimated
asymptotic covariance matrix, bFE and VF E from the fixed effects results and the first nine
elements of β̂RE and VRE (excluding the constant term). The test statistic is

H = (bFE − β̂RE ) ′[VFE − VRE ]−1(bFE − β̂RE )

The value of the test statistic is 2,636.08. The critical value from the chi-squared table is
16.919 so the null hypothesis of the random effects model is rejected. We conclude that the
fixed effects model is the preferred specification for these data. This is an unfortunate turn of
events, as the main object of the study is the impact of education, which is a time-invariant
variable in this sample. Using (11-42) instead, we obtain a test statistic of 3,177.58. Of course,
this does not change the conclusion.

Imbens and Wooldridge (2007) have argued that in spite of the practical consid-
erations about the Hausman test in (11-44) and (11-45), the test should be based on
robust covariance matrices that do not depend on the assumption of the null hypothesis
(the random effects model). (i.e., “It makes no sense to report a fully robust variance
matrix for FE and RE but then to compute a Hausman test that maintains the full set
of RE assumptions”). Their suggested approach amounts to the variable addition test
described in the next section, with a robust covariance matrix.

11.5.6 EXTENDING THE UNOBSERVED EFFECTS MODEL:
MUNDLAK’S APPROACH

Even with the Hausman test available, choosing between the fixed and random effects
specifications presents a bit of a dilemma. Both specifications have unattractive short-
comings. The fixed effects approach is robust to correlation between the omitted het-
erogeneity and the regressors, but it proliferates parameters and cannot accommodate
time-invariant regressors. The random effects model hinges on an unlikely assumption,
that the omitted heterogeneity is uncorrelated with the regressors. Several authors have
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suggested modifications of the random effects model that would at least partly overcome
its deficit. The failure of the random effects approach is that the mean independence
assumption, E[ci |Xi ] = 0, is untenable. Mundlak’s (1978) approach would suggest the
specification

E[ci | Xi ] = x̄′
i.γ .23

Substituting this in the random effects model, we obtain

yit = x′
itβ + ci + εit

= x′
itβ + x̄′

i.γ + εit + (ci − E[ci | Xi ]) (11-46)

= x′
itβ + x̄′

i.γ + εit + ui .

This preserves the specification of the random effects model, but (one hopes) deals
directly with the problem of correlation of the effects and the regressors. Note that the
additional terms in x̄′

i.γ will only include the time-varying variables—the time-invariant
variables are already group means. This additional set of estimates is shown in the lower
panel of Table 11.6 in Example 11.6.

Mundlak’s approach is frequently used as a compromise between the fixed and
random effects models. One side benefit of the specification is that it provides another
convenient approach to the Hausman test. As the model is formulated above, the differ-
ence between the “fixed effects” model and the “random effects” model is the nonzeroγ .
As such, a statistical test of the null hypothesis that γ equals zero should provide an
alternative approach to the two methods suggested earlier.

Example 11.9 Variable Addition Test for Fixed versus Random Effects
Using the results in Example 11.6, we recovered the subvector of the estimates in the lower
half of Table 11.6 corresponding to γ , and the corresponding submatrix of the full covariance
matrix. (The lower panel in Table 11.6 was estimated separately.) The test statistic is

H ′ = γ̂ ′[Est. Asy. Var( γ̂ ) ]−1γ̂

The value of the test statistic is 3193.69. The critical value from the chi-squared table for nine
degrees of freedom is 16.919, so the null hypothesis of the random effects model is rejected.
We conclude as before that the fixed effects estimator is the preferred specification for this
model.

11.5.7 EXTENDING THE RANDOM AND FIXED EFFECTS MODELS:
CHAMBERLAIN’S APPROACH

The linear unobserved effects model is

yit = ci + x′
itβ + εit. (11-47)

The random effects model assumes that E[ci | Xi ] = α, where the T rows of Xi are
x′

it. As we saw in Section 11.5.1, this model can be estimated consistently by ordinary
least squares. Regardless of how εit is modeled, there is autocorrelation induced by

23Other analyses, for example, Chamberlain (1982) and Wooldridge (2002a), interpret the linear function as
the projection of ci on the group means, rather than the conditional mean. The difference is that we need
not make any particular assumptions about the conditional mean function while there always exists a linear
projection. The conditional mean interpretation does impose an additional assumption on the model but
brings considerable simplification. Several authors have analyzed the extension of the model to projection
on the full set of individual observations rather than the means. The additional generality provides the bases
of several other estimators including minimum distance [Chamberlain (1982)], GMM [Arellano and Bover
(1995)], and constrained seemingly unrelated regressions and three-stage least squares [Wooldridge (2002a)].
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the common, unobserved ci , so the generalized regression model applies. The random
effects formulation is based on the assumption E[wi w′

i | Xi ] = σ 2
ε IT + σ 2

u ii′, where
wit = (εit + ui ). We developed the GLS and FGLS estimators for this formulation as
well as a strategy for robust estimation of the OLS covariance matrix. Among the im-
plications of the development of Section 11.5 is that this formulation of the disturbance
covariance matrix is more restrictive than necessary, given the information contained
in the data. The assumption that E[εiε

′
i | Xi ] = σ 2

ε IT assumes that the correlation across
periods is equal for all pairs of observations, and arises solely through the persistent ci .
In Section 10.2.6, we estimated the equivalent model with an unrestricted covariance
matrix, E[εiε

′
i | Xi ] = �. The implication is that the random effects treatment includes

two restrictive assumptions, mean independence, E[ci | Xi ] = α, and homoscedasticity,
E[εiε

′
i | Xi ] = σ 2

ε IT . [We do note, dropping the second assumption will cost us the iden-
tification of σ 2

u as an estimable parameter. This makes sense—if the correlation across
periods t and s can arise from either their common ui or from correlation of (εit, εis) then
there is no way for us separately to estimate a variance for ui apart from the covariances
of εit and εis .] It is useful to note, however, that the panel data model can be viewed
and formulated as a seemingly unrelated regressions model with common coefficients
in which each period constitutes an equation, Indeed, it is possible, albeit unnecessary,
to impose the restriction E[wi w′

i | Xi ] = σ 2
ε IT + σ 2

u ii′.
The mean independence assumption is the major shortcoming of the random effects

model. The central feature of the fixed effects model in Section 11.4 is the possibility that
E[ci | Xi ] is a nonconstant g(Xi ). As such, least squares regression of yit on xit produces
an inconsistent estimator of β. The dummy variable model considered in Section 11.4 is
the natural alternative. The fixed effects approach has the advantage of dispensing with
the unlikely assumption that ci and xit are uncorrelated. However, it has the shortcoming
of requiring estimation of the n “parameters,” αi .

Chamberlain (1982, 1984) and Mundlak (1978) suggested alternative approaches
that lie between these two. Their modifications of the fixed effects model augment it
with the projections of ci on all the rows of Xi (Chamberlain) or the group means
(Mundlak). (See Section 11.5.5.) Consider the first of these, and assume (as it requires)
a balanced panel of T observations per group. For purposes of this development, we
will assume T = 3. The generalization will be obvious at the conclusion. Then, the
projection suggested by Chamberlain is

ci = α + x′
i1γ 1 + x′

i2γ 2 + x′
i3γ 3 + ri , (11-48)

where now, by construction, ri is orthogonal to xit.24 Insert (11-48) into (11-44) to obtain

yit = α + x′
i1γ 1 + x′

i2γ 2 + x′
i3γ 3 + x′

itβ + εit + ri .

24There are some fine points here that can only be resolved theoretically. If the projection in (11-48) is not the
conditional mean, then we have E[ri × xit] = 0, t = 1, . . . , T but not E[ri | Xi ] = 0. This does not affect the
asymptotic properties of the FGLS estimator to be developed here, although it does have implications, for
example, for unbiasedness. Consistency will hold regardless. The assumptions behind (11-48) do not include
that Var[ri | Xi ] is homoscedastic. It might not be. This could be investigated empirically. The implication here
concerns efficiency, not consistency. The FGLS estimator to be developed here would remain consistent, but
a GMM estimator would be more efficient—see Chapter 13. Moreover, without homoscedasticity, it is not
certain that the FGLS estimator suggested here is more efficient than OLS (with a robust covariance matrix
estimator). Our intent is to begin the investigation here. Further details can be found in Chamberlain (1984)
and, for example, Im, Ahn, Schmidt, and Wooldridge (1999).
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Estimation of the 1 + 3K + K parameters of this model presents a number of compli-
cations. [We do note, this approach has the potential to (wildly) proliferate parameters.
For our quite small regional productivity model in Example 11.19, the original model
with six main coefficients plus the treatment of the constants becomes a model with
1 + 6 + 17(6) = 109 parameters to be estimated.]

If only the n observations for period 1 are used, then the parameter vector,

θ1 = α, (β + γ 1), γ 2, γ 3 = α, π1, γ 2, γ 3, (11-49)

can be estimated consistently, albeit inefficiently, by ordinary least squares. The
“model” is

yi1 = z′
i1θ1 + wi1, i = 1, . . . , n.

Collecting the n observations, we have

y1 = Z1θ1 + w1.

If, instead, only the n observations from period 2 or period 3 are used, then OLS
estimates, in turn,

θ2 = α, γ 1, (β + γ 2), γ 3 = α, γ 1, π2, γ 3,

or

θ3 = α, γ 1, γ 2, (β + γ 3) = α, γ 1, γ 2, π3.

It remains to reconcile the multiple estimates of the same parameter vectors. In terms
of the preceding layouts above, we have the following:

OLS Estimates: a1, p1, c2,1, c3,1, a2 c1,2, p2, c3,2, a3, c1,3, c2,3, p3;
Estimated Parameters: α, (β + γ 1), γ 2, γ 3, α, γ 1, (β + γ 2), γ 3, α, γ 1, γ 2, (β + γ 3);
Structural Parameters: α, β, γ 1, γ 2, γ 3.

(11-50)
Chamberlain suggested a minimum distance estimator (MDE). For this problem, the
MDE is essentially a weighted average of the several estimators of each part of the
parameter vector. We will examine the MDE for this application in more detail in
Chapter 13. (For another simpler application of minimum distance estimation that
shows the “weighting” procedure at work, see the reconciliation of four competing
estimators of a single parameter at the end of Example 11.20.) There is an alternative
way to formulate the estimator that is a bit more transparent. For the first period,

y1 =

⎛
⎜⎜⎜⎝

y1,1

y2,1
...

yn,1

⎞
⎟⎟⎟⎠ =

⎡
⎢⎢⎢⎣

1 x1,1 x1,1 x1,2 x1,3

1 x2,2 x2,1 x2,2 x2,3
...

...
...

...
...

1 xn,1 xn,1 xn,1 xn,1

⎤
⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎝

α

β

γ 1

γ 2

γ 3

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎝

r1,1

r2,1
...

rn,1

⎞
⎟⎟⎟⎠ = X̃1θ + r1. (11-51)

We treat this as the first equation in a T equation seemingly unrelated regressions
model. The second equation, for period 2, is the same (same coefficients), with the data
from the second period appearing in the blocks, then likewise for period 3 (and periods
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4, . . . , T in the general case). Stacking the data for the T equations (periods), we have

⎛
⎜⎜⎜⎝

y1

y2
...

yT

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

X̃1

X̃2
...

X̃T

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

α

β

γ 1
...

γ T

⎞
⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎝

r1

r2
...

rT

⎞
⎟⎟⎟⎠ = X̃θ + r, (11-52)

where E[X̃′r] = 0 and (by assumption), E[rr′ | X̃] = � ⊗ In. With the homoscedasticity
assumption for ri,t , this is precisely the application in Section 10.2.6. The parameters
can be estimated by FGLS as shown in Section 10.2.6.

Example 11.10 Hospital Costs
Carey (1997) examined hospital costs for a sample of 1,733 hospitals observed in five years,
1987–1991. The model estimated is

ln (TC/P) it = αi + βD DISit + βO OPVit + β3 ALSit + β4 CMit

+ β5 DIS2
it + β6 DIS3

it + β7 OPV2
it + β8 OPV3

it

+ β9 ALS2
it + β10 ALS3

it + β11 DISit × OPVit

+ β12 FAit + β13 HIit + β14 HTi + β15 LTi + β16 Largei

+ β17 Smalli + β18 NonProfiti + β19 Profiti

+ εit,

where

TC = total cost,
P = input price index,
DIS = discharges,
OPV = outpatient visits,
ALS = average length of stay,
CM = case mix index,
FA = fixed assets,
HI = Hirfindahl index of market concentration at county level,
HT = dummy for high teaching load hospital,
LT = dummy variable for low teaching load hospital,
Large = dummy variable for large urban area,
Small = dummy variable for small urban area,
Nonprofit = dummy variable for nonprofit hospital,
Profit = dummy variable for for profit hospital.

We have used subscripts “D” and “O” for the coefficients on DIS and OPV as these will be
isolated in the following discussion. The model employed in the study is that in (11-47) and
(11-48). Initial OLS estimates are obtained for the full cost function in each year. SUR esti-
mates are then obtained using a restricted version of the Chamberlain system. This second
step involved a hybrid model that modified (11-49) so that in each period the coefficient
vector was

θ t = [αt , βDt (γ ) , βOt (γ ) , β3t (γ ) , β4t (γ ) , β5t , . . . , β19t ]

where βDt (γ ) indicates that all five years of the variable (DISit) are included in the equation
and, likewise for βOt (γ ) (OPV) , β3t (γ ) (ALS) and β4t (γ ) (CM ) . This is equivalent to using

ci = α + �1991
t=1987(DIS, OPV, ALS, CM) ′

itγ t + r i

in (11-48).
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TABLE 11.7 Coefficient Estimates in SUR Model for Hospital Costs

Coefficient on Variable in the Equation

Equation DIS87 DIS88 DIS89 DIS90 DIS91

βD,87 + γD,87 γD,88 γD,89 γD,90 γD,91
SUR87 1.76 0.116 −0.0881 0.0570 −0.0617

γD,87 βD,88 + γD,88 γD,89 γD,90 γD,91
SUR88 0.254 1.61 −0.0934 0.0610 −0.0514

γD,87 γD,88 βD,89 + γD,89 γD,90 γD,91
SUR89 0.217 0.0846 1.51 0.0454 −0.0253

γD,87 γD,88 γD,89 βD,90 + γD,90 γD,91
SUR90 0.179 0.0822a 0.0295 1.57 0.0244

γD,87 γD,88 γD,89 γD,90 βD,91 + γD,91
SUR91 0.153 0.0363 −0.0422 0.0813 1.70

aThe value reported in the published paper is 8.22. The correct value is 0.0822. (Personal
communication from the author.)

The unrestricted SUR system estimated at the second step provides multiple estimates
of the various model parameters. For example, each of the five equations provides an esti-
mate of (β5, . . . , β19) . The author added one more layer to the model in allowing the coeffi-
cients on DISit and OPVit to vary over time. Therefore, the structural parameters of interest
are (βD1, . . . , βD5) , (γD1 . . . , γD5) (the coefficients on DIS) and (βO1, . . . , βO5) , (γO1 . . . , γO5) (the
coefficients on OPV). There are, altogether, 20 parameters of interest. The SUR estimates
produce, in each year (equation), parameters on DIS for the five years and on OPV for the
five years, so there is a total of 50 estimates. Reconciling all of them means imposing a total
of 30 restrictions. Table 11.7 shows the relationships for the time varying parameter on DISit
in the five-equation model. The numerical values reported by the author are shown follow-
ing the theoretical results. A similar table would apply for the coefficients on OPV, ALS, and
CM.(In the latter two, the β coefficient was not assumed to be time varying.) It can be seen
in the table, for example, that there are directly four different estimates of γD,87 in the second
to fifth equations, and likewise for each of the other parameters. Combining the entries in
Table 11.7 with the counterpart for the coefficients on OPV, we see 50 SUR/FGLS estimates
to be used to estimate 20 underlying parameters. The author used a minimum distance
approach to reconcile the different estimates. We will return to this example in Example 13.6,
where we will develop the MDE in more detail.

11.6 NONSPHERICAL DISTURBANCES
AND ROBUST COVARIANCE ESTIMATION

Because the models considered here are extensions of the classical regression model,
we can treat heteroscedasticity in the same way that we did in Chapter 9. That is, we
can compute the ordinary or feasible generalized least squares estimators and obtain
an appropriate robust covariance matrix estimator, or we can impose some structure on
the disturbance variances and use generalized least squares. In the panel data settings,
there is greater flexibility for the second of these without making strong assumptions
about the nature of the heteroscedasticity.

11.6.1 ROBUST ESTIMATION OF THE FIXED EFFECTS MODEL

As noted in Section 11.3.2, in a panel data set, the correlation across observations within
a group is likely to be a more substantial influence on the estimated covariance matrix of
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the least squares estimator than is heteroscedasticity. This is evident in the estimates in
Table 11.1. In the fixed (or random) effects model, the intent of explicitly including the
common effect in the model is to account for the source of this correlation. However,
accounting for the common effect in the model does not remove heteroscedasticity—it
centers the conditional mean properly. Here, we consider the straightforward extension
of White’s estimator to the fixed and random effects models.

In the fixed effects model, the full regressor matrix is Z = [X, D]. The White
heteroscedasticity consistent covariance matrix for OLS—that is, for the fixed effects
estimator—is the lower right block of the partitioned matrix

Est. Asy. Var[b, a] = (Z′Z)−1Z′E2Z(Z′Z)−1,

where E is a diagonal matrix of least squares (fixed effects estimator) residuals. This
computation promises to be formidable, but fortunately, it works out very simply. The
White estimator for the slopes is obtained just by using the data in group mean deviation
form [see (11-15) and (11-18)] in the familiar computation of S0 [see (9-26) and (9-27)].
Also, the disturbance variance estimator in (11-18) is the counterpart to the one in
(9-20), which we showed that after the appropriate scaling of � was a consistent estima-
tor of σ 2 = plim[1/(nT )]

∑n
i=1

∑T
t=1 σ 2

it . The implication is that we may still use (11-18)
to estimate the variances of the fixed effects.

A somewhat less general but useful simplification of this result can be obtained if we
assume that the disturbance variance is constant within the ith group. If E [ε2

it | Zi ] = σ 2
i ,

then, with a panel of data, σ 2
i is estimable by e′

i ei/T using the least squares residu-
als. The center matrix in Est. Asy. Var[b, a] may be replaced with

∑
i (e

′
i ei/T)Z′

i Zi .
Whether this estimator is preferable is unclear. If the groupwise model is correct, then
it and the White estimator will estimate the same matrix. On the other hand, if the
disturbance variances do vary within the groups, then this revised computation may be
inappropriate.

Arellano (1987) and Arellano and Bover (1995) have taken this analysis a step
further. If one takes the ith group as a whole, then we can treat the observations in

yi = Xiβ + αi iT + εi

as a generalized regression model with disturbance covariance matrix �i . We saw
in Section 11.3.2 that a model this general, with no structure on �i , offered little
hope for estimation, robust or otherwise. But the problem is more manageable with
a panel data set where correlation across units can be assumed to be zero. As be-
fore, let Xi∗ denote the data in group mean deviation form. The counterpart to X′�X
here is

X′
∗�X∗ =

n∑
i=1

(X′
i∗�i Xi∗).

By the same reasoning that we used to construct the White estimator in Chapter 9, we
can consider estimating �i with the sample of one, ei e′

i . As before, it is not consistent
estimation of the individual �i ’s that is at issue, but estimation of the sum. If n is large
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enough, then we could argue that

plim
1

nT
X′

∗�X∗ = plim
1

nT

n∑
i=1

X′
i∗�i X∗i

= plim
1
n

n∑
i=1

1
T

X′
∗i

ei e′
i X∗i (11-53)

= plim
1
n

n∑
i=1

(
1
T

T∑
t=1

T∑
s=1

eiteisx∗it x
′
∗is

)
.

This is the extension of (11-3) to the fixed effects case.

11.6.2 HETEROSCEDASTICITY IN THE RANDOM EFFECTS MODEL

Because the random effects model is a generalized regression model with a known
structure, OLS with a robust estimator of the asymptotic covariance matrix is not the
best use of the data. The GLS estimator is efficient whereas the OLS estimator is
not. If a perfectly general covariance structure is assumed, then one might simply use
Arellano’s estimator described in the preceding section with a single overall constant
term rather than a set of fixed effects. But, within the setting of the random effects
model, ηit = εit + ui , allowing the disturbance variance to vary across groups would
seem to be a useful extension.

A series of papers, notably Mazodier and Trognon (1978), Baltagi and Griffin
(1988), and the recent monograph by Baltagi (2005, pp. 77–79) suggest how one might
allow the group-specific component ui to be heteroscedastic. But, empirically, there is
an insurmountable problem with this approach. In the final analysis, all estimators of
the variance components must be based on sums of squared residuals, and, in particular,
an estimator of σ 2

ui would be estimated using a set of residuals from the distribution of
ui . However, the data contain only a single observation on ui repeated in each obser-
vation in group i. So, the estimators presented, for example, in Baltagi (2001), use, in
effect, one residual in each case to estimate σ 2

ui . What appears to be a mean squared
residual is only (1/T )

∑T
t=1 û2

i = û2
i . The properties of this estimator are ambiguous,

but efficiency seems unlikely. The estimators do not converge to any population figure
as the sample size, even T, increases. [The counterpoint is made in Hsiao (2003, p. 56).]
Heteroscedasticity in the unique component, εit represents a more tractable modeling
possibility.

In Section 11.5.2, we introduced heteroscedasticity into estimation of the ran-
dom effects model by allowing the group sizes to vary. But the estimator there (and
its feasible counterpart in the next section) would be the same if, instead of θi =
1 − σε/(Tiσ

2
u + σ 2

ε )1/2, we were faced with

θi = 1 − σεi√
σ 2

εi + Tiσ 2
u

.

Therefore, for computing the appropriate feasible generalized least squares estimator,
once again we need only devise consistent estimators for the variance components and
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then apply the GLS transformation shown earlier. One possible way to proceed is as
follows: Because pooled OLS is still consistent, OLS provides a usable set of residuals.
Using the OLS residuals for the specific groups, we would have, for each group,

̂σ 2
εi + u2

i = e′
i ei

T
.

The residuals from the dummy variable model are purged of the individual specific
effect, ui , so σ 2

εi may be consistently (in T) estimated with

σ̂ 2
εi = elsdv′

i elsdv
i

T

where elsdv
it = yit − x′

itb
lsdv − ai . Combining terms, then,

σ̂ 2
u = 1

n

n∑
i=1

[(
eols′

i eols
i

T

)
−

(
elsdv′

i elsdv
i

T

)]
= 1

n

n∑
i=1

(̂
u2

i

)
.

We can now compute the FGLS estimator as before.

11.6.3 AUTOCORRELATION IN PANEL DATA MODELS

Serial correlation of regression disturbances in panel data will be considered in detail
in Section 20.10. Rather than defer the topic in connection to panel data to Chap-
ter 20, we will briefly note it here. As we saw in Section 11.3.2 and Example 11.1,
“autocorrelation”—that is, correlation across the observations in the groups in a panel—
is likely to be a substantive feature of the model. Our treatment of the effect there, how-
ever, was meant to accommodate autocorrelation in its broadest sense, that is, nonzero
covariances across observations in a group. The results there would apply equally to
clustered observations, as observed in Section 11.3.3. An important element of that
specification was that with clustered data, there might be no obvious structure to the
autocorrelation. When the panel data set consists explicitly of groups of time series, and
especially if the time series are relatively long as in Example 11.11, one might want to
begin to invoke the more detailed, structured time series models which are discussed in
Chapter 20.

11.6.4 CLUSTER (AND PANEL) ROBUST COVARIANCE MATRICES
FOR FIXED AND RANDOM EFFECTS ESTIMATORS

As suggested earlier, in situations in which cluster corrections are appropriate, there
might be a residual correlation within groups that is not fully accounted for by a gener-
alized least squares estimator or a fixed effects model. A counterpart to (11-4) for the
fixed and random effects estimators is straightforward to construct based on results we
have already obtained.

For the fixed effects estimator, based on (11-14) and (11-20), we have

bLSDV =
⎡
⎣

G∑
g=1

ng∑
i=1

(
�(1)xig

)(
�(1)xig

)′
⎤
⎦

−1⎡
⎣

G∑
g=1

ng∑
i=1

(
�(1)xig

) (
�(1)yig

)
⎤
⎦ (11-54)

where �(1)xit = xit − (1)x̄i is the deviation of xit from one times the group mean vector.
The motivation for the “(1)” will be evident shortly. In the same fashion as (11-3), we
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will construct a robust covariance matrix estimator using

Est.Asy.Var[bLSDV] =

⎡
⎣

G∑
g=1

ng∑
i=1

(
�(1)xig

) (
�(1)xig

)′
⎤
⎦

−1

×
⎡
⎣

G∑
g=1

{ ng∑
i=1

(
�(1)xig

)
eig

}{ ng∑
i=1

(
�(1)xig

)
eig

}′⎤
⎦×

⎡
⎣

G∑
g=1

ng∑
i=1

(
�(1)xig

) (
�(1)xig

)′
⎤
⎦

−1

.

(11-55)

This estimator is equivalent to (11-3) based on the data in deviations from their cluster
means. (With a slight change in notation, it becomes a robust estimator for the covariance
matrix of the fixed effects estimator.) From (11-32) and (11-33), the GLS estimator of
β for the random effects model is

β̂GLS =
⎡
⎣

G∑
g=1

X′
g�

−1
g Xg

⎤
⎦

−1⎡
⎣

G∑
g=1

X′
g�

−1
g yg

⎤
⎦

=
⎡
⎣

G∑
g=1

ng∑
i=1

(
�(θg)xig

) (
�(θg)xig

)′
⎤
⎦

−1⎡
⎣

G∑
g=1

ng∑
i=1

(
�(θg)xig

) (
�(θg)yig

)
⎤
⎦, (11-56)

where θg = 1 −
(
σε/

√
σ 2

ε + ngσ 2
u

)
. It follows that the estimator of the asymptotic

covariance matrix would be

Est.Asy.Var[β̂GLS] =

⎡
⎣

G∑
g=1

ng∑
i=1

(
�(θg)xig

) (
�(θg)xig

)′
⎤
⎦

−1

×
⎡
⎣

G∑
g=1

{ ng∑
i=1

(
�(θg)xig

)
eig

}{ ng∑
i=1

(
�(θg)xig

)
eig

}′⎤
⎦×

⎡
⎣

G∑
g=1

ng∑
i=1

(
�(θg)xig

) (
�(θg)xig

)′
⎤
⎦

−1

.

(11-57)

See, also, Cameron and Trivedi (2005, pp. 838–839).

Example 11.11 Robust Standard Errors for Fixed and Random Effects
Estimators

Table 11.8 presents the estimates of the fixed random effects models that appear in
Tables 11.5 and 11.6. The correction of the standard errors results in a fairly substantial
change in the estimates. The effect is especially promounced in the random effects case,
where the estimated standard errors increase by a factor of five or more.

11.7 SPATIAL AUTOCORRELATION

The clustering effects suggested in Section 11.3.3 is motivated by an expectation that
effects of neighboring locations would spill over into each other, creating a sort of
correlation across space, rather than across time as we have focused on thus far. The
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TABLE 11.8 Cluster Corrections for Fixed and Random Effects Estimators

Fixed Effects Random Effects

Variable Estimate Std.Error Robust Estimate Std.Error Robust

Constant 5.3455 0.04361 0.19866
Exp 0.1132 0.002471 0.00437 0.08906 0.002280 0.01276
Exp2 −0.00042 0.000055 0.000089 −0.0007577 0.00005036 0.00031
Wks 0.00084 0.000600 0.00094 0.001066 0.0005939 0.00331
Occ −0.02148 0.01378 0.02052 −0.1067 0.01269 0.05424
Ind 0.01921 0.01545 0.02450 −0.01637 0.01391 0.053003
South −0.00186 0.03430 0.09646 −0.06899 0.02354 0.05984
SMSA −0.04247 0.01942 0.03185 −0.01530 0.01649 0.05421
MS −0.02973 0.01898 0.02902 −0.02398 0.01711 0.06984
Union 0.03278 0.01492 0.02708 0.03597 0.01367 0.05653

effect should be common in cross-region studies, such as in agriculture, urban economics,
and regional science. Recent studies of the phenomenon include Case’s (1991) study
of expenditure patterns, Bell and Bockstael’s (2000) study of real estate prices, and
Baltagi and Li’s (2001) analysis of R&D spillovers. Models of spatial autocorrelation
[see Anselin (1988, 2001) for the canonical reference and Le Sage and Pace (2009) for
a recent survey], are constructed to formalize this notion.

A model with spatial autocorrelation can be formulated as follows: The regression
model takes the familiar panel structure,

yit = x′
itβ + εit + ui,i = 1, . . . , n; t = 1, . . . , T.

The common ui is the usual unit (e.g., country) effect. The correlation across space is
implied by the spatial autocorrelation structure

εit = λ

n∑
j=1

Wi jε j t + vt .

The scalar λ is the spatial autoregression coefficient. The elements Wi j are spatial (or
contiguity) weights that are assumed known. The elements that appear in the sum above
are a row of the spatial weight or contiguity matrix, W, so that for the n units, we have

εt = λWεt + vt , vt = vt i.

The structure of the model is embodied in the symmetric weight matrix, W. Consider
for an example counties or states arranged geographically on a grid or some linear
scale such as a line from one coast of the country to another. Typically Wi j will equal
one for i, j pairs that are neighbors and zero otherwise. Alternatively, Wi j may reflect
distances across space, so that Wi j decreases with increases in |i − j |. This would be
similar to a temporal autocorrelation matrix. Assuming that |λ| is less than one, and
that the elements of W are such that (I − λW) is nonsingular, we may write

εt = (In − λW)−1vt ,

so for the n observations at time t ,

yt = Xtβ + (In − λW)−1vt + u.

We further assume that ui and vi have zero means, variances σ 2
u and σ 2

v and are indepen-
dent across countries and of each other. It follows that a generalized regression model
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applies to the n observations at time t ;

E[yt | Xt ] = Xtβ,

Var[yt | Xt ] = (In − λW)−1[σ 2
v ii′](In − λW)−1 + σ 2

u In.

At this point, estimation could proceed along the lines of Chapter 9, save for the need
to estimate λ. There is no natural residual based estimator of λ. Recent treatments
of this model have added a normality assumption and employed maximum likelihood
methods. [The log likelihood function for this model and numerous references appear
in Baltagi (2005, p. 196). Extensive analysis of the estimation problem is given in Bell
and Bockstael (2000).]

A natural first step in the analysis is a test for spatial effects. The standard procedure
for a cross section is Moran’s (1950) I statistic, which would be computed for each set
of residuals, et , using

It = n
∑n

i=1

∑n
j=1 Wi j (eit − ēt )(e jt − ēt )(∑n

i=1

∑n
j=1 Wi, j

) ∑n
i=1(eit − ēt )2

. (11-58)

For a panel of T independent sets of observations, Ī = 1
T

∑T
t=1 It would use the full set

of information. A large sample approximation to the variance of the statistic under the
null hypothesis of no spatial autocorrelation is

V2 = 1
T

n2 ∑n
i=1

∑n
j=1 W 2

i j + 3
(∑n

i=1

∑n
j=1 Wi j

)2
− n

∑n
i=1

(∑n
j=1 Wi j

)2

(n2 − 1)
(∑n

i=1

∑n
j=1 Wi j

)2 . (11-59)

The statistic Ī/V will converge to standard normality under the null hypothesis and can
form the basis of the test. (The assumption of independence across time is likely to be
dubious at best, however.) Baltagi, Song, and Koh (2003) identify a variety of LM tests
based on the assumption of normality. Two that apply to cross section analysis [See Bell
and Bockstael (2000, p. 78)] are

LM(1) = (e′We/s2)2

tr(W′W + W2)

for spatial autocorrelation and

LM(2) = (e′Wy/s2)2

b′X′WMWXb/s2 + tr(W′W + W2)

for spatially lagged dependent variables, where e is the vector of OLS residuals, s2 =
e′e/n, and M = I − X(X′X)−1X′. [See Anselin and Hudak (1992).]

Anselin (1988) identifies several possible extensions of the spatial model to dynamic
regressions. A “pure space-recursive model” specifies that the autocorrelation pertains
to neighbors in the previous period:

yit = γ [Wyt−1]i + x′
itβ + εit.

A “time-space recursive model” specifies dependence that is purely autoregressive with
respect to neighbors in the previous period:

yit = ρyi,t−1 + γ [Wyt−1]i + x′
itβ + εit.
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A “time-space simultaneous” model specifies that the spatial dependence is with respect
to neighbors in the current period:

yit = ρyi,t−1 + λ[Wyt ]i + x′
itβ + εit.

Finally, a “time-space dynamic model” specifies that autoregression depends on neigh-
bors in both the current and last period:

yit = ρyi,t−1 + λ[Wyt ]i + γ [Wyt−1]i + x′
itβ + εit.

Example 11.12 Spatial Autocorrelation in Real Estate Sales
Bell and Bockstael analyzed the problem of modeling spatial autocorrelation in large samples.
This is likely to become an increasingly common problem with GIS (geographic information
system) data sets. The central problem is maximization of a likelihood function that involves a
sparse matrix, (I −λ W) . Direct approaches to the problem can encounter severe inaccuracies
in evaluation of the inverse and determinant. Kelejian and Prucha (1999) have developed a
moment-based estimator for λ that helps to alleviate the problem. Once the estimate of λ is in
hand, estimation of the spatial autocorrelation model is done by FGLS. The authors applied
the method to analysis of a cross section of 1,000 residential sales in Anne Arundel County,
Maryland, from 1993 to 1996. The parcels sold all involved houses built within one year prior
to the sale. GIS software was used to measure attributes of interest.

The model is

ln Price = α + β1 In Assessed value (LIV)
+ β2 In Lot size (LLT)
+ β3 In Distance in km to Washington, DC (LDC)
+ β4 In Distance in km to Baltimore (LBA)
+ β5% land surrounding parcel in publicly owned space (POPN)
+ β6% land surrounding parcel in natural privately owned space (PNAT)
+ β7% land surrounding parcel in intensively developed use (PDEV)
+ β8% land surrounding parcel in low density residential use (PLOW)
+ β9 Public sewer service (1 if existing or planned, 0 if not) (PSEW)
+ ε.

(Land surrounding the parcel is all parcels in the GIS data whose centroids are within
500 meters of the transacted parcel.) For the full model, the specification is

y = Xβ + ε,

ε = λWε + v.

The authors defined four contiguity matrices:

W1: Wij = 1/distance between i and j if distance < 600 meters, 0 otherwise,
W2: Wij = 1 if distance between i and j < 200 meters, 0 otherwise,
W3: Wij = 1 if distance between i and j < 400 meters, 0 otherwise,
W4: Wij = 1 if distance between i and j < 600 meters, 0 othewise.

All contiguity matrices were row-standardized. That is, elements in each row are scaled so
that the row sums to one. One of the objectives of the study was to examine the impact
of row standardization on the estimation. It is done to improve the numerical stability of the
optimization process. Because the estimates depend numerically on the normalization, it is
not completely innocent.

Test statistics for spatial autocorrelation based on the OLS residuals are shown in
Table 11.9. (These are taken from the authors’ Table 3.) The Moran statistics are distributed
as standard normal while the LM statistics are distributed as chi-squared with one degree of



Greene-2140242 book January 19, 2011 21:10

CHAPTER 11 ✦ Models for Panel Data 433

TABLE 11.9 Test Statistics for Spatial
Autocorrelation

W1 W2 W3 W4

Moran’s I 7.89 9.67 13.66 6.88
LM(1) 49.95 84.93 156.48 36.46
LM(2) 7.40 17.22 2.33 7.42

TABLE 11.10 Estimated Spatial Regression Models

Spatial based Spatial based on
OLS FGLSa on W1 ML W1 Gen. Moments

Parameter Estimate Std.Err. Estimate Std.Err. Estimate Std.Err. Estimate Std.Err.

α 4.7332 0.2047 4.7380 0.2048 5.1277 0.2204 5.0648 0.2169
β1 0.6926 0.0124 0.6924 0.0214 0.6537 0.0135 0.6638 0.0132
β2 0.0079 0.0052 0.0078 0.0052 0.0002 0.0052 0.0020 0.0053
β3 −0.1494 0.0195 −0.1501 0.0195 −0.1774 0.0245 −0.1691 0.0230
β4 −0.0453 0.0114 −0.0455 0.0114 −0.0169 0.0156 −0.0278 0.0143
β5 −0.0493 0.0408 −0.0484 0.0408 −0.0149 0.0414 −0.0269 0.0413
β6 0.0799 0.0177 0.0800 0.0177 0.0586 0.0213 0.0644 0.0204
β7 0.0677 0.0180 0.0680 0.0180 0.0253 0.0221 0.0394 0.0211
β8 −0.0166 0.0194 −0.0168 0.0194 −0.0374 0.0224 −0.0313 0.0215
β9 −0.1187 0.0173 −0.1192 0.0174 −0.0828 0.0180 −0.0939 0.0179
λ — — — — 0.4582 0.0454 0.3517 —

aThe author reports using a heteroscedasticity model σ 2
i × f (LIVi , LIV2

i ). The function f (.) is not identified.

freedom. All but the LM(2) statistic for W3 are larger than the 99 percent critical value from
the respective table, so we would conclude that there is evidence of spatial autocorrelation.
Estimates from some of the regressions are shown in Table 11.10. In the remaining results in
the study, the authors find that the outcomes are somewhat sensitive to the specification of
the spatial weight matrix, but not particularly so to the method of estimating λ.

Example 11.13 Spatial Lags in Health Expenditures
Moscone, Knapp, and Tosetti (2007) investigated the determinants of mental health expen-
diture over six years in 148 British local authorities using two forms of the spatial correlation
model to incorporate possible interaction among authorities as well as unobserved spatial
heterogeneity. The models estimated, in addition to pooled regression and a random effects
model, were as follows. The first is a model with spatial lags:

yt = γt i + ρWyt + Xtβ + u + εt ,

where u is a 148 × 1 vector of random effects and i is a 148 × 1 column of ones. For each
local authority,

yit = γt + ρ (w′
i yt ) + x′

itβ + ui + εit,

where w′
i is the ith row of the contiguity matrix, W. Contiguities were defined in W as one

if the locality shared a border or vertex and zero otherwise. (The authors also experimented
with other contiguity matrices based on “sociodemographic” differences.) The second model
estimated is of spatial error correlation

yt = γt i + Xtβ + u + εt ,

εt = λWεt + vt .
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For each local authority, this model implies

yit = γt + x′
itβ + ui + λ� j wi j ε j t + vit.

The authors use maximum likelihood to estimate the parameters of the model. To simplify
the computations, they note that the maximization can be done using a two-step procedure.
As we have seen in other applications, when � in a generalized regression model is known, the
appropriate estimator is GLS. For both of these models, with known spatial autocorrelation
parameter, a GLS transformation of the data produces a classical regression model. [See
(9-11).] The method used is to iterate back and forth between simple OLS estimation of γt , β
and σ 2

ε and maximization of the “concentrated log likelihood” function which, given the other
estimates, is a function of the spatial autocorrelation parameter, ρ or λ, and the variance of
the heterogeneity, σ 2

u .
The dependent variable in the models is the log of per capita mental health expenditures.

The covariates are the percentage of males and of people under 20 in the area, average
mortgage rates, numbers of unemployment claims, employment, average house price, me-
dian weekly wage, percent of single parent households, dummy variables for Labour party or
Liberal Democrat party authorities, and the density of population (“to control for supply-side
factors”). The estimated spatial autocorrelation coefficients for the two models are 0.1579
and 0.1220, both more than twice as large as the estimated standard error. Based on the
simple Wald tests, the hypothesis of no spatial correlation would be rejected. The log likeli-
hood values for the two spatial models were +206.3 and +202.8, compared to −211.1 for the
model with no spatial effects or region effects, so the results seem to favor the spatial models
based on a chi-squared test statistic (with one degree of freedom) of twice the difference.
However, there is an ambiguity in this result as the improved “fit” could be due to the region
effects rather than the spatial effects. A simple random effects model shows a log likelihood
value of +202.3, which bears this out. Measured against this value, the spatial lag model
seems the preferred specification, whereas the spatial autocorrelation model does not add
significantly to the log likelihood function compared to the basic random effects model.

11.8 ENDOGENEITY

Recent panel data applications have relied heavily on the methods of instrumental
variables. We will develop this methodology in detail in Chapter 13 where we consider
generalized method of moments (GMM) estimation. At this point, we can examine two
major building blocks in this set of methods, Hausman and Taylor’s (1981) estimator for
the random effects model and Bhargava and Sargan’s (1983) proposals for estimating a
dynamic panel data model. These two tools play a significant role in the GMM estimators
of dynamic panel models in Chapter 13.

11.8.1 HAUSMAN AND TAYLOR’S INSTRUMENTAL VARIABLES
ESTIMATOR

Recall the original specification of the linear model for panel data in (11-1):

yit = x′
itβ + z′

iα + εit. (11-60)

The random effects model is based on the assumption that the unobserved person-
specific effects, zi , are uncorrelated with the included variables, xit. This assumption is
a major shortcoming of the model. However, the random effects treatment does allow
the model to contain observed time-invariant characteristics, such as demographic char-
acteristics, while the fixed effects model does not—if present, they are simply absorbed
into the fixed effects. Hausman and Taylor’s (1981) estimator for the random effects
model suggests a way to overcome the first of these while accommodating the second.
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Their model is of the form:

yit = x′
1i tβ1 + x′

2i tβ2 + z′
1iα1 + z′

2iα2 + εit + ui

where β = (β ′
1, β

′
2)

′ and α = (α′
1, α

′
2)

′. In this formulation, all individual effects denoted
zi are observed. As before, unobserved individual effects that are contained in z′

iα in
(11-60) are contained in the person specific random term, ui . Hausman and Taylor define
four sets of observed variables in the model:

x1i t is K1 variables that are time varying and uncorrelated with ui ,
z1i is L1 variables that are time-invariant and uncorrelated with ui ,
x2i t is K2 variables that are time varying and are correlated with ui ,
z2i is L2 variables that are time-invariant and are correlated with ui .

The assumptions about the random terms in the model are

E [ui | x1i t , z1i ] = 0 though E [ui | x2i t , z2i ] �= 0,

Var[ui | x1i t , z1i , x2i t , z2i ] = σ 2
u ,

Cov[εit, ui | x1i t , z1i , x2i t , z2i ] = 0,

Var[εit + ui | x1i t , z1i , x2i t , z2i ] = σ 2 = σ 2
ε + σ 2

u ,

Corr[εit + ui , εis + ui | x1i t , z1i , x2i t , z2i ] = ρ = σ 2
u /σ 2.

Note the crucial assumption that one can distinguish sets of variables x1 and z1 that are
uncorrelated with ui from x2 and z2 which are not. The likely presence of x2 and z2 is what
complicates specification and estimation of the random effects model in the first place.

We note in passing that we can contrast the four assumptions with those made in
Plümper and Troeger’s (2007) FEVD formulation in Section 11.4.5 that, in the notation
of this formulation, would be that x1i t and x2i t are time varying and both freely correlated
with ui while z1i and z2i are time invariant and are both uncorrelated with ui . For
both formulations, (11-61) applies. The two approaches differ in the additional moment
conditions, E[variable × (ui +εit)] = 0, that are used to identify the parameters α1 and α2.

By construction, any OLS or GLS estimators of this model are inconsistent when
the model contains variables that are correlated with the random effects. Hausman and
Taylor have proposed an instrumental variables estimator that uses only the information
within the model (i.e., as already stated). The strategy for estimation is based on the
following logic: First, by taking deviations from group means, we find that

yit − ȳi. = (x1i t − x̄1i.)
′β1 + (x2i t − x̄2i.)

′β2 + εit − ε̄i., (11-61)

which implies that both parts of β can be consistently estimated by least squares, in
spite of the correlation between x2 and u. This is the familiar, fixed effects, least squares
dummy variable estimator—the transformation to deviations from group means re-
moves from the model the part of the disturbance that is correlated with x2i t . In the
original model, Hausman and Taylor show that the group mean deviations can be used
as (K1 + K2) instrumental variables for estimation of (β, α). That is the implication
of (11-61). Because z1 is uncorrelated with the disturbances, it can likewise serve as
a set of L1 instrumental variables. That leaves a necessity for L2 instrumental vari-
ables. The authors show that the group means for x1 can serve as these remaining
instruments, and the model will be identified so long as K1 is greater than or equal
to L2. For identification purposes, then, K1 must be at least as large as L2. As usual,
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feasible GLS is better than OLS, and available. Likewise, FGLS is an improvement over
simple instrumental variable estimation of the model, which is consistent but inefficient.

The authors propose the following set of steps for consistent and efficient estimation:

Step 1. Obtain the LSDV (fixed effects) estimator of β = (β ′
1, β

′
2)

′ based on x1 and x2.
The residual variance estimator from this step is a consistent estimator of σ 2

ε .

Step 2. Form the within-groups residuals, eit, from the LSDV regression at step 1.
Stack the group means of these residuals in a full-sample-length data vector. Thus,

e∗
it = ēi. = 1

T

T∑
t=1

(yit − x′
itbw), t = 1, . . . , T, i = 1, . . . , n. (The individual constant term, ai ,

is not included in e∗
it.) These group means are used as the dependent variable in an in-

strumental variable regression on z1 and z2 with instrumental variables z1 and x1. (Note
the identification requirement that K1, the number of variables in x1 be at least as large
as L2, the number of variables in z2.) The time-invariant variables are each repeated T
times in the data matrices in this regression. This provides a consistent estimator of α.

Step 3. The residual variance in the regression in step 2 is a consistent estimator of
σ ∗2 = σ 2

u + σ 2
ε /T. From this estimator and the estimator of σ 2

ε in step 1, we deduce an
estimator of σ 2

u = σ ∗2 − σ 2
ε /T. We then form the weight for feasible GLS in this model

by forming the estimate of

θ = 1 −
√

σ 2
ε

σ 2
ε + Tσ 2

u
.

Step 4. The final step is a weighted instrumental variable estimator. Let the full set of
variables in the model be

w′
it = (x′

1i t , x′
2i t , z′

1i , z′
2i ).

Collect these nT observations in the rows of data matrix W. The transformed variables
for GLS are, as before when we first fit the random effects model,

w∗′
it = w′

it − θ̂w̄′
i. and y∗

it = yit − θ̂ ȳi.

where θ̂ denotes the sample estimate of θ . The transformed data are collected in the
rows data matrix W∗ and in column vector y∗. Note in the case of the time-invariant
variables in wit, the group mean is the original variable, and the transformation just
multiplies the variable by 1 − θ̂ . The instrumental variables are

v′
it = [(x1i t − x̄1i.)

′, (x2i t − x̄2i.)
′, z′

1i x̄′
1i.].

These are stacked in the rows of the nT × (K1 + K2 + L1 + K1) matrix V. Note for the
third and fourth sets of instruments, the time-invariant variables and group means are
repeated for each member of the group. The instrumental variable estimator would be

(β̂ ′, α̂′)′IV = [(W∗′V)(V′V)−1(V′W∗)]−1[(W∗′V)(V′V)−1(V′y∗)].25 (11-62)

25Note that the FGLS random effects estimator would be (β̂ ′, α̂′)′RE = [W∗′W∗]−1W∗′y∗.
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The instrumental variable estimator is consistent if the data are not weighted, that is,
if W rather than W∗ is used in the computation. But, this is inefficient, in the same
way that OLS is consistent but inefficient in estimation of the simpler random effects
model.

Example 11.14 The Returns to Schooling
The economic returns to schooling have been a frequent topic of study by econometricians.
The PSID and NLS data sets have provided a rich source of panel data for this effort. In wage
(or log wage) equations, it is clear that the economic benefits of schooling are correlated
with latent, unmeasured characteristics of the individual such as innate ability, intelligence,
drive, or perseverance. As such, there is little question that simple random effects models
based on panel data will suffer from the effects noted earlier. The fixed effects model is the
obvious alternative, but these rich data sets contain many useful variables, such as race,
union membership, and marital status, which are generally time invariant. Worse yet, the
variable most of interest, years of schooling, is also time invariant. Hausman and Taylor
(1981) proposed the estimator described here as a solution to these problems. The authors
studied the effect of schooling on (the log of) wages using a random sample from the PSID of
750 men aged 25–55, observed in two years, 1968 and 1972. The two years were chosen so
as to minimize the effect of serial correlation apart from the persistent unmeasured individual
effects. The variables used in their model were as follows:

Experience = age—-years of schooling—-5,
Years of schooling,
Bad Health = a dummy variable indicating general health,
Race = a dummy variable indicating nonwhite (70 of 750 observations),
Union = a dummy variable indicating union membership,
Unemployed = a dummy variable indicating previous year’s unemployment.

The model also included a constant term and a period indicator. [The coding of the latter is
not given, but any two distinct values, including 0 for 1968 and 1 for 1972, would produce
identical results. (Why?)]

The primary focus of the study is the coefficient on schooling in the log wage equation.
Because schooling and, probably, Experience and Unemployed are correlated with the latent
effect, there is likely to be serious bias in conventional estimates of this equation. Table 11.11
reports some of their reported results. The OLS and random effects GLS results in the first
two columns provide the benchmark for the rest of the study. The schooling coefficient is
estimated at 0.0669, a value which the authors suspected was far too small. As we saw
earlier, even in the presence of correlation between measured and latent effects, in this
model, the LSDV estimator provides a consistent estimator of the coefficients on the time
varying variables. Therefore, we can use it in the Hausman specification test for correlation
between the included variables and the latent heterogeneity. The calculations are shown
in Section 11.5.4, result (11-42). Because there are three variables remaining in the LSDV
equation, the chi-squared statistic has three degrees of freedom. The reported value of 20.2
is far larger than the 95 percent critical value of 7.81, so the results suggest that the random
effects model is misspecified.

Hausman and Taylor proceeded to reestimate the log wage equation using their proposed
estimator. The fourth and fifth sets of results in Table 11.11 present the instrumental variable
estimates. The specification test given with the fourth set of results suggests that the pro-
cedure has produced the expected result. The hypothesis of the modified random effects
model is now not rejected; the chi-squared value of 2.24 is much smaller than the critical
value. The schooling variable is treated as endogenous (correlated with ui ) in both cases. The
difference between the two is the treatment of Unemployed and Experience. In the preferred
equation, they are included in x2 rather than x1. The end result of the exercise is, again,
the coefficient on schooling, which has risen from 0.0669 in the worst specification (OLS) to
0.2169 in the last one, an increase of over 200 percent. As the authors note, at the same
time, the measured effect of race nearly vanishes.
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TABLE 11.11 Estimated Log Wage Equations

Variables OLS GLS/RE LSDV HT/IV-GLS HT/IV-GLS

x1 Experience 0.0132 0.0133 0.0241 0.0217
(0.0011)a (0.0017) (0.0042) (0.0031)

Bad health −0.0843 −0.0300 −0.0388 −0.0278 −0.0388
(0.0412) (0.0363) (0.0460) (0.0307) (0.0348)

Unemployed −0.0015 −0.0402 −0.0560 −0.0559
Last Year (0.0267) (0.0207) (0.0295) (0.0246)
Time NRb NR NR NR NR

x2 Experience 0.0241
(0.0045)

Unemployed −0.0560
(0.0279)

z1 Race −0.0853 −0.0878 −0.0278 −0.0175
(0.0328) (0.0518) (0.0752) (0.0764)

Union 0.0450 0.0374 0.1227 0.2240
(0.0191) (0.0296) (0.0473) (0.2863)

Schooling 0.0669 0.0676
(0.0033) (0.0052)

Constant NR NR NR NR NR
z2 Schooling 0.1246 0.2169

(0.0434) (0.0979)
σε 0.321 0.192 0.160 0.190 0.629
ρ =

√
σ 2

u /(σ 2
u + σ 2

ε ) 0.632 0.661 0.817
Spec. Test [3] 20.2 2.24 0.00

aEstimated asymptotic standard errors are given in parentheses.
bNR indicates that the coefficient estimate was not reported in the study.

11.8.2 CONSISTENT ESTIMATION OF DYNAMIC PANEL DATA
MODELS: ANDERSON AND HSIAO’S IV ESTIMATOR

Consider a homogeneous dynamic panel data model,

yit = γ yi,t−1 + x′
itβ + ci + εit, (11-63)

where ci is, as in the preceding sections of this chapter, individual unmeasured hetero-
geneity, that may or may not be correlated with xit. We consider methods of estimation
for this model when T is fixed and relatively small, and n may be large and increasing.

Pooled OLS is obviously inconsistent. Rewrite (11-63) as

yit = γ yi,t−1 + x′
itβ + wit.

The disturbance in this pooled regression may be correlated with xit, but either way, it
is surely correlated with yi,t−1. By substitution,

Cov[yi,t−1, (ci + εit)] = σ 2
c + γ Cov[yi,t−2, (ci + εit)],

and so on. By repeated substitution, it can be seen that for |γ | < 1 and moderately
large T,

Cov[yi,t−1, (ci + εit)] ≈ σ 2
c /(1 − γ ). (11-64)
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[It is useful to obtain this result from a different direction. If the stochastic process that
is generating (yit, ci ) is stationary, then Cov[yi,t−1, ci ] = Cov[yi,t−2, ci ], from which we
would obtain (11-64) directly. The assumption |γ | < 1 would be required for stationar-
ity.] Consequently, OLS and GLS are inconsistent. The fixed effects approach does not
solve the problem either. Taking deviations from individual means, we have

yit − ȳi. = (xit − x̄i.)
′β + γ (yi,t−1 − ȳi.) + (εit − ε̄i.).

Anderson and Hsiao (1981, 1982) show that

Cov[(yit − ȳi.), (εit − ε̄i.)] ≈ −σ 2
ε

T(1 − γ )2

[
(T − 1) − Tγ + γ T

T

]

= −σ 2
ε

T(1 − γ )2

[
(1 − γ ) − 1 − γ T

T

]
.

This does converge to zero as T increases, but, again, we are considering cases in which
T is small or moderate, say 5 to 15, in which case, the bias in the OLS estimator could
be 15 percent to 60 percent. The implication is that the “within” transformation does
not produce a consistent estimator.

It is easy to see that taking first differences is likewise ineffective. The first differ-
ences of the observations are

yit − yi,t−1 = (xit − xi,t−1)
′β + γ (yi,t−1 − yi,t−2) + (εit − εi,t−1). (11-65)

As before, the correlation between the last regressor and the disturbance persists, so
OLS or GLS based on first differences would also be inconsistent. There is another
approach. Write the regression in differenced form as

�yit = �x′
itβ + γ�yi,t−1 + �εit

or, defining x∗
it = [�xit, �yi,t−1], ε∗

it = �εit and θ = [β ′, γ ]′

y∗
it = x∗

it
′θ + ε∗

it.

For the pooled sample, beginning with t = 3, write this as

y∗ = X∗θ + ε∗.

The least squares estimator based on the first differenced data is

θ̂ =
[

1
n(T − 3)

X∗′X∗
]−1 (

1
n(T − 3)

X∗′y∗
)

= θ +
[

1
n(T − 3)

X∗′X∗
]−1 (

1
n(T − 3)

X∗′ε∗
)

.

Assuming that the inverse matrix in brackets converges to a positive definite
matrix—that remains to be shown—the inconsistency in this estimator arises
because the vector in parentheses does not converge to zero. The last element is
plimn→∞[1/(n(T − 3))]�n

i=1�
T
t=3(yi,t−1 − yi,t−2)(εit − εi,t−1), which is not zero.

Suppose there were a variable z∗ such that plim [1/(n(T − 3))]z∗′ε∗ = 0 and
plim[1/(n(T − 3))]z∗′X∗ �= 0. Let Z = [�X, z∗]; z∗

it replaces �yi,t−1 in x∗
it. By this
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construction, it appears we have a consistent estimator. Consider

θ̂ IV = (Z′X∗)−1Z′y∗.

= (Z′X∗)−1Z′(X∗θ + ε∗)

= θ + (Z′X∗)−1Z′ε∗.

Then, after multiplying throughout by 1/(n(T − 3)) as before, we find

Plim θ̂ IV = θ + plim{[1/(n(T − 3))](Z′X∗)}−1 × 0,

which seems to solve the problem of consistent estimation.
The variable z∗ is an instrumental variable, and the estimator is an instrumental

variable estimator (hence the subscript on the preceding estimator). Finding suitable,
valid instruments, that is, variables that satisfy the necessary assumptions, for models in
which the right-hand variables are correlated with omitted factors is often challenging.
In this setting, there is a natural candidate—in fact, there are several. From (11-65), we
have at period t = 3

yi3 − yi2 = (xi3 − xi2)
′β + γ (yi2 − yi1) + (εi3 − εi2).

We could use yi1 as the needed variable, because it is not correlated εi3 −εi2. Continuing
in this fashion, we see that for t = 3, 4, . . . , T, yi,t−2 appears to satisfy our requirements.
Alternatively, beginning from period t = 4, we can see that zit = (yi,t−2 − yi,t−3) once
again satisfies our requirements. This is Anderson and Hsiao’s (1981) result for instru-
mental variable estimation of the dynamic panel data model. It now becomes a ques-
tion of which approach, levels (yi,t−2, t = 3, . . . , T), or differences (yi,t−2 − yi,t−3, t =
4, . . . , T) is a preferable approach. Arellano (1989) and Kiviet (1995) obtain results that
suggest that the estimator based on levels is more efficient.

11.8.3 EFFICIENT ESTIMATION OF DYNAMIC PANEL DATA
MODELS—THE ARELLANO/BOND ESTIMATORS

A leading contemporary application of the methods of this chapter is the dynamic panel
data model, which we now write

yit = x′
itβ + δyi,t−1 + ci + εit.

Several applications are described in Example 11.21. The basic assumptions of the model
are

1. Strict exogeneity: E[εit | Xi , ci ] = 0,
2. Homoscedasticity: E[ε2

it | Xi , ci ] = σ 2
ε ,

3. Nonautocorrelation: E[εitεis | Xi , ci ] = 0 if t �= s,
4. Uncorrelated observations: E[εitε js | Xi ,ci ,X j ,c j ] = 0 for i �= j and for all t and s,

where the rows of the T × K data matrix Xi are x′
it. We will not assume mean indepen-

dence. The “effects” may be fixed or random, so we allow

E[ci | Xi ] = g(Xi ).

(See Section 11.2.1.) We will also assume a fixed number of periods, T, for convenience.
The treatment here (and in the literature) can be modified to accommodate unbalanced
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panels, but it is a bit inconvenient. (It involves the placement of zeros at various places
in the data matrices defined below and changing the terminal indexes in summations
from 1 to T.)

The presence of the lagged dependent variable in this model presents a considerable
obstacle to estimation. Consider, first, the straightforward application of Assumption
A.I3 in Section 8.2. The compound disturbance in the model is (ci + εit). The correlation
between yi,t−1 and (ci + εi,t ) is obviously nonzero because yi,t−1 = x′

i,t−1β + δyi,t−2 +ci +
εi,t−1:

Cov[yi,t−1, (ci + εit)] = σ 2
c + δ Cov[yi,t−2, (ci + εit)].

If T is large and 0 < δ < 1, then this covariance will be approximately σ 2
c /(1 − δ). The

large T assumption is not going to be met in most cases. But, because δ will generally be
positive, we can expect that this covariance will be at least larger than σ 2

c . The implication
is that both (pooled) OLS and GLS in this model will be inconsistent. Unlike the case
for the static model (δ = 0), the fixed effects treatment does not solve the problem.
Taking group mean differences, we obtain

yi,t − ȳi. = (xi,t − x̄i.)
′β + δ(yi,t−1 − ȳi.) + (εi,t − ε̄i.).

As shown in Anderson and Hsiao (1981, 1982),

Cov[(yi,t−1 − ȳi.), (εi,t − ε̄i.)] ≈ −σ 2
ε

T 2

(T − 1) − Tδ + δT

(1 − δ)2
.

This result is O(1/T), which would generally be no problem if the asymptotics in our
model were with respect to increasing T. But, in this panel data model, T is assumed to
be fixed and relatively small. For conventional values of T, say 5 to 15, the proportional
bias in estimation of δ could be on the order of, say, 15 to 60 percent.

Neither OLS nor GLS are useful as estimators. There are, however, instrumental
variables available within the structure of the model. Anderson and Hsiao (1981, 1982)
proposed an approach based on first differences rather than differences from group
means,

yit − yi,t−1 = (xit − xi,t−1)
′β + δ(yi,t−1 − yi,t−2) + εit − εi,t−1.

For the first full observation,

yi3 − yi2 = (xi3 − xi2)
′β + δ(yi2 − yi1) + εi3 − εi2, (11-66)

the variable yi1 (assuming initial point t = 0 is where our data generating process begins)
satisfies the requirements, because εi1 is predetermined with respect to (εi3 − εi2). [That
is, if we used only the data from periods 1 to 3 constructed as in (11-66), then the
instrumental variables for (yi2 − yi1) would be zi(3) where zi(3) = (y1,1, y2,1, . . . , yn,1) for
the n observations.] For the next observation,

yi4 − yi3 = (xi4 − xi3)
′β + δ(yi3 − yi2) + εi4 − εi3,

variables yi2 and (yi2 − yi1) are both available.
Based on the preceding paragraph, one might begin to suspect that there is, in fact,

rather than a paucity of instruments, a large surplus. In this limited development, we have
a choice between differences and levels. Indeed, we could use both and, moreover, in any
period after the fourth, not only is yi2 available as an instrument, but so also is yi1, and so
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on. This is the essential observation behind the Arellano, Bover, and Bond (1991, 1995)
estimators, which are based on the very large number of candidates for instrumental
variables in this panel data model. To begin, with the model in first differences form, for
yi3−yi2, variable yi1 is available. For yi4−yi3, yi1 and yi2 are both available; for yi5−yi4, we
have yi1, yi2, and yi3, and so on. Consider, as well, that we have not used the exogenous
variables. With strictly exogenous regressors, not only are all lagged values of yis for s
previous to t − 1, but all values of xit are also available as instruments. For example, for
yi4 − yi3, the candidates are yi1, yi2 and (x′

i1, x′
i2, . . . , x′

iT) for all T periods. The number of
candidates for instruments is, in fact, potentially huge. [See Ahn and Schmidt (1995) for a
very detailed analysis.] If the exogenous variables are only predetermined, rather than
strictly exogenous, then only E[εit | xi,t , xi,t−1, . . . , xi1] = 0, and only vectors xis from
1 to t − 1 will be valid instruments in the differenced equation that contains εit − εi,t−1.
[See Baltagi and Levin (1986) for an application.] This is hardly a limitation, given that
in the end, for a moderate sized model, we may be considering potentially hundreds or
thousands of instrumental variables for estimation of what is usually a small handful of
parameters.

We now formulate the model in a more familiar form, so we can apply the instru-
mental variable estimator. In terms of the differenced data, the basic equation is

yit − yi,t−1 = (xit − xi,t−1)
′β + δ(yi,t−1 − yi,t−2) + εit − εi,t−1,

or

�yit = (�xit)
′β + δ(�yi,t−1) + �εit, (11-67)

where � is the first difference operator, �at = at − at−1 for any time-series variable (or
vector) at . (It should be noted that a constant term and any time-invariant variables in
xit will fall out of the first differences. We will recover these below after we develop the
estimator for β.) The parameters of the model to be estimated are θ = (β ′, δ)′ and σ 2

ε .
For convenience, write the model as

ỹit = x̃′
itθ + ε̃it

We are going to define an instrumental variable estimator along the lines of (8-9) and
(8-10). Because our data set is a panel, the counterpart to

Z′X̃ =
n∑

i=1

zi x̃′
i (11-68)

in the cross-section case would seem to be

Z′X̃ =
n∑

i=1

T∑
t=3

zitx̃′
it =

n∑
i=1

Z′
i X̃

′
i (11-69)

ỹi =

⎡
⎢⎢⎢⎣

�yi3

�yi4
...

�yiTi

⎤
⎥⎥⎥⎦ , X̃i =

⎡
⎢⎢⎣

�x′
i3 �yi2

�x′
i4 �yi3

· · ·
�x′

iT �yi,T−1

⎤
⎥⎥⎦ ,

where there are (T −2) observations (rows) and K+1 columns in X̃i . There is a compli-
cation, however, in that the number of instruments we have defined may vary by period,
so the matrix computation in (11-69) appears to sum matrices of different sizes.
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Consider an alternative approach. If we used only the first full observations defined
in (11-67), then the cross-section version would apply, and the set of instruments Z in
(11-68) with strictly exogenous variables would be the n × (1 + KT ) matrix

Z(3) =

⎡
⎢⎢⎢⎣

y1,1, x′
1,1, x′

1,2, . . . x′
1,T

y2,1, x′
2,1, x′

2,2, . . . x′
2,T

...

yn,1, x′
n,1, x′

n,2, . . . x′
n,T

⎤
⎥⎥⎥⎦ ,

and the instrumental variable estimator of (8-9) would be based on

X̃(3) =

⎡
⎢⎢⎢⎣

x′
1,3 − x′

1,2 y1,4 − y1,3
x′

2,3 − x′
2,2 y2,4 − y2,3

...
...

x′
n,3 − x′

n,2 yn,4 − yn,3

⎤
⎥⎥⎥⎦ and ỹ(3) =

⎡
⎢⎢⎢⎣

y1,3 − y1,2

y2,3 − y2,2
...

yn,3 − yn,2

⎤
⎥⎥⎥⎦ .

The subscript “(3)” indicates the first observation used for the left-hand side of the
equation. Neglecting the other observations, then, we could use these data to form the
IV estimator in (8-9), which we label for the moment θ̂ IV(3). Now, repeat the construction
using the next (fourth) observation as the first, and, again, using only a single year of
the panel. The data matrices are now

X̃(4) =

⎡
⎢⎢⎢⎣

x′
1,4 − x′

1,3 y1,3 − y1,2

x′
2,4 − x′

2,3 y2,3 − y2,2
...

...

x′
n,4 − x′

n,3 yn,3 − yn,2

⎤
⎥⎥⎥⎦ , ỹ(4) =

⎡
⎢⎢⎢⎣

y1,4 − y1,3

y2,4 − y2,3
...

yn,4 − yn,3

⎤
⎥⎥⎥⎦ , and

(11-70)

Z(4) =

⎡
⎢⎢⎢⎣

y1,1, y1,2, x′
1,1, x′

1,2, . . . x′
1,T

y2,1, y2,2, x′
2,1, x′

2,2, . . . x′
2,T

...

yn,1, yn,2, x′
n,1, x′

n,2, . . . x′
n,T

⎤
⎥⎥⎥⎦

and we have a second IV estimator, θ̂ IV(4), also based on n observations, but, now, 2 + KT
instruments. And so on.

We now need to reconcile the T −2 estimators of θ that we have constructed, θ̂ IV(3),

θ̂ IV(4), . . . , θ̂ IV(T). We faced this problem in Section 11.5.8 where we examined Chamber-
lain’s formulation of the fixed effects model. The minimum distance estimator suggested
there and used in Carey’s (1997) study of hospital costs in Example 11.10 provides a
means of efficiently “averaging” the multiple estimators of the parameter vector. We
will return to the MDE in Chapter 13. For the present, we consider, instead, Arellano
and Bond’s (1991) [and Arellano and Bover’s (1995)] approach to this problem. We will
collect the full set of estimators in a counterpart to (11-56) and (11-57). First, combine
the sets of instruments in a single matrix, Z, where for each individual, we obtain the
(T − 2) × L matrix Zi . The definition of the rows of Zi depend on whether the re-
gressors are assumed to be strictly exogenous or predetermined. For strictly exogenous
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variables,

Zi =

⎡
⎢⎣

yi,1, x′
i,1, x′

i,2, . . . x′
i,T 0 . . . 0

0 yi,1, yi,2, x′
i,1, x′

i,2, . . . x′
i,T . . . 0

. . . . . . . . . . . .

0 0 . . . yi,1, yi,2, . . . , yi,T−2, x′
i,1, x′

i,2, . . . x′
i,T

⎤
⎥⎦,

(11-71a)

and L = ∑T−2
i=1 (i + TK) = (T − 2)(T − 1)/2 + (T − 2)TK. For only predetermined

variables, the matrix of instrumental variables is

Zi =

⎡
⎢⎢⎣

yi,1, x′
i,1, x′

i,2 0 . . . 0
0 yi,1, yi,2, x′

i,1, x′
i,2, x′

i,3 . . . 0
. . . . . . . . . . . .

0 0 . . . yi,1, yi,2, . . . , yi,T−2, x′
i,1, x′

i,2, . . . x′
i,T−1

⎤
⎥⎥⎦,

(11-71b)

and L = �T−2
i=1 (i(K +1)+ K) = [(T −2)(T −1)/2](1+ K)+ (T −2)K. This construction

does proliferate instruments (moment conditions, as we will see in Chapter 13). In the
application in Example 11.15, we have a small panel with only T = 7 periods, and we fit
a model with only K = 4 regressors in xit, plus the lagged dependent variable. The strict
exogeneity assumption produces a Zi matrix that is (5 × 135) for this case. With only
the assumption of predetermined xit, Zi collapses slightly to (5 × 95). For purposes of
the illustration, we have used only the two previous observations on xit. This further
reduces the matrix to

Zi =

⎡
⎢⎢⎣

yi,1, x′
i,1, x′

i,2 0 . . . 0
0 yi,1, yi,2, xi,2, x′

i,3 . . . 0
. . . . . . . . . . . .

0 0 . . . yi,1, yi,2, . . . , yi,T−2, x′
i,T−2, x′

i,T−1

⎤
⎥⎥⎦ ,

(11-71c)

which, with T = 7 and K = 4, will be (5 × 55). [Baltagi (2005, Chapter 8) presents
some alternative configurations of Zi that allow for mixtures of strictly exogenous and
predetermined variables.]

Now, we can compute the two-stage least squares estimator in (11-10) using our
definitions of the data matrices Zi , X̃i , and ỹi and (11-69). This will be

θ̂ IV =
⎡
⎣

(
n∑

i=1

X̃′
i Zi

) (
n∑

i=1

Z′
i Zi

)−1 (
n∑

i=1

Z′
i X̃i

)⎤
⎦

−1

×
⎡
⎣

(
n∑

i=1

X̃′
i Zi

) (
n∑

i=1

Z′
i Zi

)−1 (
n∑

i=1

Z′
i ỹi

)⎤
⎦ . (11-72)

The natural estimator of the asymptotic covariance matrix for the estimator would be

Est. Asy. Var
[
θ̂ IV

] = σ̂ 2
�ε

⎡
⎣

(
n∑

i=1

X̃′
i Zi

) (
n∑

i=1

Z′
i Zi

)−1 (
n∑

i=1

Z′
i Xi

)⎤
⎦

−1

, (11-73)
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where

σ̂ 2
�ε =

∑n
i=1

∑T
t=3[(yit − yi,t−1) − (xit − xi,t−1)

′β̂ − δ̂(yi,t−1 − yi,t−2)]2

n(T − 2)
. (11-74)

However, this variance estimator is likely to understate the true asymptotic variance
because the observations are autocorrelated for one period. Because (yit − yi,t−1) =
x̃′

itθ + (εit − εi,t−1) = x̃′
itθ + vit,

Cov[vit, vi,t−1] = Cov[vit, vi,t+1] = −σ 2
ε .

Covariances at longer lags or leads are zero. In the differenced model, though the
disturbance covariance matrix is not σ 2

v I, it does take a particularly simple form.

Cov

⎛
⎜⎜⎜⎜⎝

εi,3 − εi,2

εi,4 − εi,3

εi,5 − εi,4

· · ·
εi,T − εi,T−1

⎞
⎟⎟⎟⎟⎠

= σ 2
ε

⎡
⎢⎢⎢⎢⎣

2 −1 0 . . . 0
−1 2 −1 . . . 0
0 −1 2 . . . 0
. . . . . . −1 . . . −1
0 0 . . . −1 2

⎤
⎥⎥⎥⎥⎦

= σ 2
ε �i . (11-75)

The implication is that the estimator in (11-74) estimates not σ 2
ε but 2σ 2

ε . However,
simply dividing the estimator by two does not produce the correct asymptotic co-
variance matrix because the observations themselves are autocorrelated. As such, the
matrix in (11-73) is inappropriate. (We encountered this issue in Theorem 9.1 and in
Sections 9.2.3, 9.4.3, and 11.3.2.) An appropriate correction can be based on the coun-
terpart to the White estimator that we developed in (11-3). For simplicity, let

Â =
⎡
⎣

(
n∑

i=1

X̃′
i Zi

) (
n∑

i=1

Z′
i Zi

)−1 (
n∑

i=1

Z′
i X̃i

)⎤
⎦

−1

.

Then, a robust covariance matrix that accounts for the autocorrelation would be

Â

⎡
⎣

(
n∑

i=1

X̃′
i Zi

) (
n∑

i=1

Z′
i Zi

)−1 (
n∑

i=1

Z′
i v̂i v̂′

i Zi

) (
n∑

i=1

Z′
i Zi

)−1 (
n∑

i=1

Z′
i X̃i

)⎤
⎦ Â.

(11-76)

[One could also replace the v̂i v̂′
i in (11-76) with σ̂ 2

ε �i in (11-75) because this is the known
expectation.]

It will be useful to digress briefly and examine the estimator in (11-72). The compu-
tations are less formidable than it might appear. Note that the rows of Zi in (11-71a,b,c)
are orthogonal. It follows that the matrix

F =
n∑

i=1

Z′
i Zi

in (11-72) is block-diagonal with T − 2 blocks. The specific blocks in F are

Ft =
n∑

i=1

zitz′
it

= Z′
(t)Z(t),
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for t = 3, . . . , T. Because the number of instruments is different in each period—see
(11-71)—these blocks are of different sizes, say, (Lt × Lt ). The same construction shows
that the matrix

∑n
i=1 X̃′

i Zi is actually a partitioned matrix of the form
n∑

i=1

X̃′
i Zi = [

X̃′
(3)Z(3) X̃′

(4)Z(4) . . . X̃′
(T )Z(T )

]
,

where, again, the matrices are of different sizes; there are T − 2 rows in each but the
number of columns differs. It follows that the inverse matrix, (

∑n
i=1 Z′

i Zi )
−1, is also

block-diagonal, and that the matrix quadratic form in (11-72) can be written
(

n∑
i=1

X̃′
i Zi

) (
n∑

i=1

Z̃′
i Zi

)−1 (
n∑

i=1

Z′
i X̃i

)
=

T∑
t=3

(
X̃′

(t)Z(t)
) (

Z′
(t)Z(t)

)−1 (
Z′

(t)X̃(t)
)

=
T∑

t=3

(
ˆ̃X

′
(t)

ˆ̃X(t)

)

=
T∑

t=3

W(t),

[see (8-9) and the preceding result]. Continuing in this fashion, we find
(

n∑
i=1

X̃′
i Zi

) (
n∑

i=1

Z̃′
i Zi

)−1 (
n∑

i=1

Z′
i ỹi

)
=

T∑
t=3

ˆ̃X
′
(t)y(t).

From (8-10), we can see that

ˆ̃X
′
(t)y(t) =

(
ˆ̃X

′
(t)

ˆ̃X(t)

)
θ̂ IV(t)

= W(t)θ̂ IV(t).

Combining the terms constructed thus far, we find that the estimator in (11-72) can be
written in the form

θ̂ IV =
(

T∑
t=3

W(t)

)−1 (
T∑

t=3

W(t)θ̂ IV(t)

)

=
T∑

t=3

R(t)θ̂ IV(t),

where

R(t) =
(

T∑
t=3

W(t)

)−1

W(t) and
T∑

t=3

R(t) = I.

In words, we find that, as might be expected, the Arellano and Bond estimator of
the parameter vector is a matrix weighted average of the T −2 period specific two-stage
least squares estimators, where the instruments used in each period may differ. Because
the estimator is an average of estimators, a question arises, is it an efficient average—
are the weights chosen to produce an efficient estimator? Perhaps not surprisingly, the
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answer for this θ̂ is no; there is a more efficient set of weights that can be constructed
for this model. We will assemble them when we examine the generalized method of
moments estimator in Chapter 13

There remains a loose end in the preceding. After (11-67), it was noted that this
treatment discards a constant term and any time-invariant variables that appear in the
model. The Hausman and Taylor (1981) approach developed in the preceding section
suggests a means by which the model could be completed to accommodate this possi-
bility. Expand the basic formulation to include the time-invariant effects, as

yit = x′
itβ + δyi,t−1 + α + f ′

i γ + ci + εit,

where fi is the set of time-invariant variables and γ is the parameter vector yet to
be estimated. This model is consistent with the entire preceding development, as the
component α + f ′

i γ would have fallen out of the differenced equation along with ci at
the first step at (11-63). Having developed a consistent estimator for θ = (β ′, δ)′, we
now turn to estimation of (α, γ ′)′. The residuals from the IV regression (11-72),

wit = x′
itβ̂ IV − δ̂IV yi,t−1

are pointwise consistent estimators of

ωit = α + f ′
i γ + ci + εit.

Thus, the group means of the residuals can form the basis of a second-step regression;

w̄i = α + f ′
i γ + ci + ε̄i + ηi (11-76)

where ηi = (w̄i . − ω̄i .) is the estimation error that converges to zero as θ̂ converges
to θ . The implication would seem to be that we can now linearly regress these group
mean residuals on a constant and the time-invariant variables fi to estimate α and γ .
The flaw in the strategy, however, is that the initial assumptions of the model do not
state that ci is uncorrelated with the other variables in the model, including the im-
plicit time invariant terms, fi . Therefore, least squares is not a usable estimator here
unless the random effects model is assumed, which we specifically sought to avoid at
the outset. As in Hausman and Taylor’s treatment, there is a workable strategy if it
can be assumed that there are some variables in the model, including possibly some
among the fi as well as others among xit that are uncorrelated with ci and εit. These
are the z1 and x1 in the Hausman and Taylor estimator (see step 2 in the develop-
ment of the preceding section). Assuming that these variables are available—this is
an identification assumption that must be added to the model—then we do have a us-
able instrumental variable estimator, using as instruments the constant term (1), any
variables in fi that are uncorrelated with the latent effects or the disturbances (call
this fi1), and the group means of any variables in xit that are also exogenous. There
must be enough of these to provide a sufficiently large set of instruments to fit all the
parameters in (11-76). This is, once again, the same identification we saw in step 2 of
the Hausman and Taylor estimator, K1, the number of exogenous variables in xit must
be at least as large as L2, which is the number of endogenous variables in fi . With all
this in place, we then have the instrumental variable estimator in which the dependent
variable is w̄i., the right-hand-side variables are (1, fi ), and the instrumental variables
are (1, fi1, x̄i1.).
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There is yet another direction that we might extend this estimation method. In
(11-76), we have implicitly allowed a more general covariance matrix to govern the
generation of the disturbances εit and computed a robust covariance matrix for the
simple IV estimator. We could take this a step further and look for a more efficient
estimator. As a library of recent studies has shown, panel data sets are rich in information
that allows the analyst to specify highly general models and to exploit the implied
relationships among the variables to construct much more efficient generalized method
of moments (GMM) estimators. [See, in particular, Arellano and Bover (1995) and
Blundell and Bond (1998).] We will return to this development in Chapter 13.

Example 11.15 Dynamic Labor Supply Equation
In Example 8.5, we used instrumental variables fit a labor supply equation,

Wksit = γ1 + γ2ln Wageit + γ3 Edi + γ4 Unionit + γ5 Femi + uit.

To illustrate the computations of this section, we will extend this model as follows:

Wksit = β1In Wageit + β2 Unionit + β3 Occit + β4 Expit + δ Wksi ,t−1

+ α + γ1 Edi + γ2 Femi + ci + εit.

(We have rearranged the variables and parameter names to conform to the notation in this
section.) We note, in theoretical terms, as suggested in the earlier example, it may not be
appropriate to treat ln Wageit as uncorrelated with εit or ci . However, we will be analyzing the
model in first differences. It may well be appropriate to treat changes in wages as exogenous.
That would depend on the theoretical underpinnings of the model. We will treat the variable
as predetermined here, and proceed. There are two time-invariant variables in the model,
Femi , which is clearly exogenous, and Edi , which might be endogenous. The identification
requirement for estimation of (α, γ1, γ2) is met by the presence of three exogenous variables,
Unionit, Occit, and Expit (K1 = 3 and L2 = 1).

The differenced equation analyzed at the first step is

�Wksit = β1�In Wageit + β2�Unionit + β3�Occit + β4�Expit + δ�Wksi ,t−1 + �εit.

We estimated the parameters and the asymptotic covariance matrix according to (11-72) and
(11-76). For specification of the instrumental variables, we used the one previous observation
on xit, as shown in the text.26 Table 11.12 presents the computations with several other
inconsistent estimators.

The various estimates are quite far apart. In the absence of the common effects (and
autocorrelation of the disturbances), all five estimators shown would be consistent. Given the
very wide disparities, one might suspect that common effects are an important feature of the
data. The second standard errors given with the IV estimates are based on the uncorrected
matrix in (11-73) with σ̂ 2

�ε in (11-74) divided by two. We found the estimator to be quite
volatile, as can be seen in the table. The estimator is also very sensitive to the choice of
instruments that comprise Zi . Using (11-71a) instead of (11-71b) produces wild swings in
the estimates and, in fact, produces implausible results. One possible explanation in this
particular example is that the instrumental variables we are using are dummy variables that
have relatively little variation over time.

26This estimator and the GMM estimators in Chapter 13 are built into some contemporary computer programs,
including NLOGIT and Stata. Many researchers use Gauss programs that are distributed by M. Arellano,
http://www.cemfi.es/%7Earellano/#dpd, or program the calculations themselves using MatLab or R. We have
programmed the matrix computations directly for this application using the matrix package in NLOGIT.
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11.8.4 NONSTATIONARY DATA AND PANEL DATA MODELS

Some of the discussion thus far (and to follow) focuses on “small T” statistical results.
Panels are taken to contain a fixed and small T observations on a large n individ-
ual units. Recent research using cross-country data sets such as the Penn World Tables
(http://pwt.econ.upenn.edu/php site/pwt index.php), which now include data on nearly
200 countries for well over 50 years, have begun to analyze panels with T sufficiently
large that the time-series properties of the data become an important consideration. In
particular, the recognition and accommodation of nonstationarity that is now a stan-
dard part of single time-series analyses are now seen to be appropriate for large scale
cross-country studies, such as income growth studies based on the Penn World Tables,
cross-country studies of health care expenditure, and analyses of purchasing power
parity.

The analysis of long panels, such as in the growth and convergence literature, typi-
cally involves dynamic models, such as

yit = αi + γi yi,t−1 + x′
itβ i + εit. (11-77)

In single time-series analysis involving low-frequency macroeconomic flow data such as
income, consumption, investment, the current account deficit, and so on, it has long been
recognized that estimated regression relations can be distorted by nonstationarity in the
data. What appear to be persistent and strong regression relationships can be entirely
spurious and due to underlying characteristics of the time-series processes rather than
actual connections among the variables. Hypothesis tests about long-run effects will
be considerably distorted by unit roots in the data. It has become evident that the
same influences, with the same deletarious effects, will be found in long panel data
sets. The panel data application is further complicated by the possible heterogeneity
of the parameters. The coefficients of interest in many cross-country studies are the
lagged effects, such as γi in (11-77), and it is precisely here that the received results
on nonstationary data have revealed the problems of estimation and inference. Valid
tests for unit roots in panel data have been proposed in many studies. Three that are
frequently cited are Levin and Lin (1992), Im, Pesaran, and Shin (2003) and Maddala
and Wu (1999).

There have been numerous empirical applications of time series methods for non-
stationary data in panel data settings, including Frankel and Rose’s (1996) and Pedroni’s
(2001) studies of purchasing power parity, Fleissig and Strauss (1997) on real wage sta-
tionarity, Culver and Papell (1997) on inflation, Wu (2000) on the current account
balance, McCoskey and Selden (1998) on health care expenditure, Sala-i-Martin (1996)
on growth and convergence, McCoskey and Kao (1999) on urbanization and produc-
tion, and Coakely et al. (1996) on savings and investment. An extensive enumeration
appears in Baltagi (2005, Chapter 12).

A subtle problem arises in obtaining results useful for characterizing the properties
of estimators of the model in (11-77). The asymptotic results based on large n and large
T are not necessarily obtainable simultaneously, and great care is needed in deriving
the asymptotic behavior of useful statistics. Phillips and Moon (1999, 2000) are standard
references on the subject.

We will return to the topic of nonstationary data in Chapter 21. This is an emerging
literature, most of which is well beyond the level of this text. We will rely on the several
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detailed received surveys, such as Bannerjee (1999), Smith (2000), and Baltagi and Kao
(2000) to fill in the details.

11.9 NONLINEAR REGRESSION WITH PANEL DATA

The extension of the panel data models to the nonlinear regression case is, perhaps
surprisingly, not at all straightforward. Thus far, to accommodate the nonlinear model,
we have generally applied familiar results to the linearized regression. This approach will
carry forward to the case of clustered data. (See Section 11.3.3.) Unfortunately, this will
not work with the standard panel data methods. The nonlinear regression will be the
first of numerous panel data applications that we will consider in which the widsom of
the linear regression model cannot be extended to the more general framework.

11.9.1 A ROBUST COVARIANCE MATRIX FOR NONLINEAR
LEAST SQUARES

The counterpart to (11-3) or (11-4) would simply replace Xi with X̂0
i where the rows

are the pseudoregressors for cluster i as defined in (7-12) and “ˆ” indicates that it is
computed using the nonlinear least squares estimates of the parameters.

Example 11.16 Health Care Utilization
The recent literature in health economics includes many studies of health care utilization. A
common measure of the dependent variable of interest is a count of the number of encounters
with the health care system, either through visits to a physician or to a hospital. These
counts of occurrences are usually studied with the Poisson regression model described in
Section 18.4. The nonlinear regression model is

E [ yi | xi ] = exp(x′
i β) .

A recent study in this genre is “Incentive Effects in the Demand for Health Care: A Bivariate
Panel Count Data Estimation” by Riphahn, Wambach, and Million (2003). The authors were
interested in counts of physician visits and hospital visits. In this application, they were
particularly interested in the impact of the presence of private insurance on the utilization
counts of interest, that is, whether the data contain evidence of moral hazard.

The raw data are published on the Journal of Applied Econometrics data archive Web site,
The URL for the data file is http://qed.econ.queensu.ca/jae/2003-v18.4/riphahn-wambach-
million/. The variables in the data file are listed in Appendix Table F7.1. The sample is an
unbalanced panel of 7,293 households, the German Socioeconomic Panel data set. The
number of observations varies from one to seven (1,525; 1,079; 825; 926; 1,311; 1,000; 887)
with a total number of observations of 27,326. We will use these data in several examples
here and later in the book.

The following model uses a simple specification for the count of number of visits to the
physican in the observation year,

xit = (1, ageit, educit, incomeit, kidsit)

Table 11.13 details the nonlinear least squares iterations and the results. The convergence
criterion for the iterations is e0′X0(X0′X0)−1X0′e0 < 10−10. Although this requires 11 iterations,
the function actually reaches the minimum in 7. The estimates of the asymptotic standard
errors are computed using the conventional method, s2( X̂0′X̂0)−1 and then by the cluster cor-
rection in (11-4). The corrected standard errors are considerably larger, as might be expected
given that these are a panel data set.
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TABLE 11.13 Nonlinear Least Squares Estimates of a
Utilization Equation

Begin NLSQ iterations. Linearized regression.
Iteration = 1; Sum of squares = 1014865.00; Gradient = 156281.794
Iteration = 2; Sum of squares = 8995221.17; Gradient = 8131951.67
Iteration = 3; Sum of squares = 1757006.18; Gradient = 897066.012
Iteration = 4; Sum of squares = 930876.806; Gradient = 73036.2457
Iteration = 5; Sum of squares = 860068.332; Gradient = 2430.80472
Iteration = 6; Sum of squares = 857614.333; Gradient = 12.8270683
Iteration = 7; Sum of squares = 857600.927; Gradient = 0.411851239E-01
Iteration = 8; Sum of squares = 857600.883; Gradient = 0.190628165E-03
Iteration = 9; Sum of squares = 857600.883; Gradient = 0.904650588E-06
Iteration = 10; Sum of squares = 857600.883; Gradient = 0.430441193E-08
Iteration = 11; Sum of squares = 857600.883; Gradient = 0.204875467E-10

Convergence achieved

Variable Estimate Standard Error Robust Standard Error

Constant 0.9801 0.08927 0.12522
Age 0.01873 0.001053 0.00142
Education −0.03613 0.005732 0.00780
Income −0.5911 0.07173 0.09702
Kids −0.1692 0.02642 0.03330

11.9.2 FIXED EFFECTS

The nonlinear panel data regression model would appear

yit = h(xit, β) + εit, t = 1, . . . , Ti , i = 1, . . . , n.

Consider a model with latent heterogeneity, ci . An ambiguity immediately emerges;
how should heterogeneity enter the model. Building on the linear model, an additive
term might seem natural, as in

yit = h(xit, β) + ci + εit, t = 1, . . . , Ti , i = 1, . . . , n. (11-78)

But we can see in the previous application that this is likely to be inappropriate. The
loglinear model of the previous section is constrained to ensure that E[yit | xit] is positive.
But an additive random term ci as in (11-78) could subvert this; unless the range of ci

is restricted, the conditional mean could be negative. The most common application of
nonlinear models is the index function model,

yit = h(x′
itβ + ci ) + εit.

This is the natural extension of the linear model, but only in the appearance of the con-
ditional mean. Neither the fixed effects nor the random effects model can be estimated
as they were in the linear case.

Consider the fixed effects model first. We would write this as

yit = h(x′
itβ + αi ) + εit, (11-79)

where the parameters to be estimated are β and αi , i = 1, . . . , n. Transforming the
data to deviations from group means does not remove the fixed effects from the model.
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For example,

yit − ȳi. = h(x′
itβ + αi ) − 1

Ti

Ti∑
s=1

h(x′
isβ + αi ),

which does not simplify things at all. Transforming the regressors to deviations is like-
wise pointless. To estimate the parameters, it is necessary to minimize the sum of squares
with respect to all n + K parameters simultaneously. Because the number of dummy
variable coefficients can be huge—the preceding example is based on a data set with
7,293 groups—this can be a difficult or impractical computation. A method of maximiz-
ing a function (such as the negative of the sum of squares) that contains an unlimited
number of dummy variable coefficients is shown in Chapter 17. As we will examine later
in the book, the difficulty with nonlinear models that contain large numbers of dummy
variable coefficients is not necessarily the practical one of computing the estimates.
That is generally a solvable problem. The difficulty with such models is an intriguing
phenomenon known as the incidental parameters problem. In most (not all, as we shall
find) nonlinear panel data models that contain n dummy variable coefficients, such as
the one in (11-79), as a consequence of the fact that the number of parameters increases
with the number of individuals in the sample, the estimator of β is biased and incon-
sistent, to a degree that is O(1/T ). Because T is only 7 or less in our application, this
would seem to be a case in point.

Example 11.17 Exponential Model with Fixed Effects
The exponential model of the preceding example is actually one of a small handful of known
special cases in which it is possible to “condition” out the dummy variables. Consider the
sum of squared residuals,

Sn = 1
2

n∑
i =1

Ti∑
t=1

[yit − exp(x′
itβ + αi ) ]2.

The first order condition for minimizing Sn with respect to αi is

∂Sn

∂αi
=

Ti∑
t=1

− [yit − exp(x′
itβ + αi ) ]exp(x′

itβ + αi ) = 0. (11-80)

Let γi = exp(αi ) . Then, an equivalent necessary condition would be

∂Sn

∂γi
=

Ti∑
t=1

− [yit − γi exp(x′
itβ) ][γi exp(x′

itβ) ] = 0,

or

γi

Ti∑
t=1

[yit exp(x′
itβ) ] = γ 2

i

Ti∑
t=1

[exp(x′
itβ) ]2.

Obviously, if we can solve the equation for γi , we can obtain αi = Inγi . The preceding equation
can, indeed, be solved for γi , at least conditionally. At the minimum of the sum of squares, it
will be true that

γ̂i =
∑Ti

t=1 yit exp(x′
itβ̂)∑Ti

t=1[exp(x′
itβ̂) ]2

. (11-81)

We can now insert (11-81) into (11-80) to eliminate αi. (This is a counterpart to taking devi-
ations from means in the linear case. As noted, this is possible only for a very few special
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models—this happens to be one of them. The process is also known as “concentrating out”
the parameters γi . Note that at the solution, γ̂i , is obtained as the slope in a regression without
a constant term of yit on ẑit = exp(x′

itβ̂) using Ti observations.) The result in (11-81) must hold
at the solution. Thus, (11-81) inserted in (11-80) restricts the search for β to those values that
satisfy the restrictions in (11-81). The resulting sum of squares function is now a function only
of the data and β, and can be minimized with respect to this vector of K parameters. With
the estimate of β in hand, αi can be estimated using the log of the result in (11-81) (which is
positive by construction).

The preceding example presents a mixed picture for the fixed effects model. In
nonlinear cases, two problems emerge that were not present earlier, the practical one of
actually computing the dummy variable parameters and the theoretical incidental pa-
rameters problem that we have yet to investigate, but which promises to be a significant
shortcoming of the fixed effects model. We also note we have focused on a particular
form of the model, the “single index” function, in which the conditional mean is a non-
linear function of a linear function. In more general cases, it may be unclear how the
unobserved heterogeneity should enter the regression function.

11.9.3 RANDOM EFFECTS

The random effects nonlinear model also presents complications both for specification
and for estimation. We might begin with a general model

yit = h(xit, β, ui ) + εit. (11-82)

The “random effects” assumption would be, as usual, mean independence,

E[ui | Xi ] = 0.

Unlike the linear model, the nonlinear regression cannot be consistently estimated by
(nonlinear) least squares. In practical terms, we can see why in (7-28)–(7-30). In the
linearized regression, the conditional mean at the expansion point β0 [see (7-28)] as
well as the pseudoregressors are both functions of the unobserved ui . This is true in the
general case as well as the simpler case of a single index model,

yit = h(x′
itβ + ui ) + εit. (11-83)

Thus, it is not possible to compute the iterations for nonlinear least squares. As in the
fixed effects case, neither deviations from group means nor first differences solves the
problem. Ignoring the problem—that is, simply computing the nonlinear least squares
estimator without accounting for heterogeneity—does not produce a consistent estima-
tor, for the same reasons. In general, the benign effect of latent heterogeneity (random
effects) that we observe in the linear model only carries over to a very few nonlinear
models and, unfortunately, this is not one of them.

The problem of computing partial effects in a random effects model such as (11-83)
is that when E[yit|xit, ui ] is given by (11-83), then

∂ E[yit|x′
itβ + ui ]

∂xit
= [h′(x′

itβ + ui )]β

is a function of the unobservable ui . Two ways to proceed from here are the fixed
effects approach of the previous section and a random effects approach. The fixed
effects approach is feasible but may be hindered by the incidental parameters problem
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noted earlier. A random effects approach might be preferable, but comes at the price
of assuming that xit and ui are uncorrelated, which may be unreasonable. Papke and
Wooldridge (2008) examined several cases and proposed the Mundlak approach of
projecting ui on the group means of xit. The working specification of the model is then

E∗[yit|xit, x̄i , vi ] = h(x′
itβ + α + x̄′

iθ + vi ).

This leaves the practical problem of how to compute the estimates of the parameters
and how to compute the partial effects. Papke and Wooldridge (2008) suggest a useful
result if it can be assumed that vi is normally distributed with mean zero and variance
σ 2

v . In that case,

E[yit|xit, x̄] = Evi E[yit|xit, x̄, vi ] = h

(
x′

itβ + α + x̄′
iθ√

1 + σ 2
v

)
= h

(
x′

itβv + αv + x̄′
iθv

)
.

The implication is that nonlinear least squares regression will estimate the scaled coef-
ficients, after which the average partial effect can be estimated for a particular value of
the covariates, x0, with

�̂(x0) = 1
n

n∑
i=1

h′ (x′
0β̂v + α̂v + x̄′

i θ̂v

)
β̂v.

They applied the technique to a case of test pass rates, which are a fraction bounded by
zero and one. Loudermilk (2007) is another application with an extension to a dynamic
model.

11.10 SYSTEMS OF EQUATIONS

Extensions of the SUR model to panel data applications have been made in two direc-
tions. Several studies have layered the familiar random effects treatment of Section 11.5
on top of the generalized regression. An alternative treatment of the fixed and ran-
dom effects models as a form of seemingly unrelated regressions model suggested by
Chamberlain (1982, 1984) has provided some of the foundation of recent treatments of
dynamic panel data models, as in Sections 11.8.2 and 11.8.3.

Avery (1977) suggested a natural extension of the random effects model to multiple
equations,

yit,j = x′
it,jβ j + εit,j + ui,j,

where j indexes the equation, i indexes individuals, and t is the time index as before.
Each equation can be treated as a random effects model. In this instance, however, the ef-
ficient estimator when the equations are actually unrelated (that is, Cov[εi t,m, εi t,l | X] =
0 and Cov[ui,m, ui,l | X] = 0) is equation by equation GLS as developed in Section 11.5,
not OLS. That is, without the cross-equation correlation, each equation constitutes a
random effects model. The cross-equation correlation takes the form

E[εit,jεit,l | X] = σ jl

and

E[ui, j ui,l | X] = θ jl .
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Observations remain uncorrelated across individuals, (εi t, j , εrs,l) and (ui j , ur,l) when
i �= r . The “noise” terms, εi t, j are also uncorrelated across time for all individuals
and across individuals. Correlation over time arises through the influence of the com-
mon effect, which produces persistent random effects for the given individual, both
within the equation and across equations through θ jl . Avery developed a two-step
estimator for the model. At the first step, as usual, estimates of the variance compo-
nents are based on OLS residuals. The second step is FGLS. Subsequent studies have
added features to the model. Magnus (1982) derived the log likelihood function for nor-
mally distributed disturbances, the likelihood equations for the MLE, and a method of
estimation. Verbon (1980) added heteroscedasticity to the model.

There have also been a handful of applications, including Howrey and Varian’s
(1984) analysis of electricity pricing and the impact of time of day rates, Brown et al.’s
(1983) treatment of a form of the capital asset pricing model (CAPM), Sickles’s (1985)
analysis of airline costs, and Wan et al.’s (1992) development of a nonlinear panel data
SUR model for agricultural output.

Example 11.18 Demand for Electricity and Gas
Beierlein, Dunn, and McConnon (1981) proposed a dynamic panel data SUR model for de-
mand for electricity and natural gas in the northeastern United States. The central equation
of the model is

ln Qi t, j = β0 + β1 ln P natural gasi t, j + β2 ln P electricityi t, j + β3 ln P fuel oili t, j

+ β4 ln per capita incomei t, j + β5 ln Qi ,t−1, j + wi t, j

wi t, j = εi t, j + ui , j + vt, j

where

j = consuming sectors (natural gas, electricity) × (residential, comercial, industrial)

i = state (New England plus New York, New Jersey, Pennsylvania)

t = year, 1957, . . . ,1977.

Note that this model has both time and state random effects and a lagged dependent variable
in each equation.

11.11 PARAMETER HETEROGENEITY

The treatment so far has assumed that the slope parameters of the model are fixed
constants, and the intercept varies randomly from group to group. An equivalent for-
mulation of the pooled, fixed, and random effects models is

yit = (α + ui ) + x′
itβ + εit,

where ui is a person-specific random variable with conditional variance zero in the
pooled model, positive in the others, and conditional mean dependent on Xi in the fixed
effects model and constant in the random effects model. By any of these,
the heterogeneity in the model shows up as variation in the constant terms in the
regression model. There is ample evidence in many studies—we will examine two later—
that suggests that the other parameters in the model also vary across individuals. In the
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dynamic model we consider in Section 11.11.3, cross-country variation in the slope pa-
rameter in a production function is the central focus of the analysis. This section will
consider several approaches to analyzing parameter heterogeneity in panel data models.

11.11.1 THE RANDOM COEFFICIENTS MODEL

Parameter heterogeneity across individuals or groups can be modeled as stochastic
variation.27 Suppose that we write

yi = Xiβ i + εi ,

E[εi | Xi ] = 0,

E[εiε
′
i | Xi ] = σ 2

ε IT,

(11-84)

where

β i = β + ui (11-85)

and

E[ui | Xi ] = 0,

E[ui u′
i | Xi ] = �.

(11-86)

(Note that if only the constant term in β is random in this fashion and the other param-
eters are fixed as before, then this reproduces the random effects model we studied in
Section 11.5.) Assume for now that there is no autocorrelation or cross-section corre-
lation in εi . We also assume for now that T > K, so that when desired, it is possible to
compute the linear regression of yi on Xi for each group. Thus, the β i that applies to a
particular cross-sectional unit is the outcome of a random process with mean vector β

and covariance matrix �.28 By inserting (11-85) into (11-84) and expanding the result,
we obtain a generalized regression model for each block of observations:

yi = Xiβ + (εi + Xi ui ),

so

�i i = E[(yi − Xiβ)(yi − Xiβ)′ | Xi ] = σ 2
ε IT + Xi�X′

i .

For the system as a whole, the disturbance covariance matrix is block diagonal, with
T ×T diagonal block �i i . We can write the GLS estimator as a matrix weighted average
of the group specific OLS estimators:

β̂ = (X′�−1X)−1X′�−1y =
n∑

i=1

Wi bi , (11-87)

27The most widely cited studies are Hildreth and Houck (1968), Swamy (1970, 1971, 1974), Hsiao (1975),
and Chow (1984). See also Breusch and Pagan (1979). Some recent discussions are Swamy and Tavlas (1995,
2001) and Hsiao (2003). The model bears some resemblance to the Bayesian approach of Chapter 16. But,
the similarity is only superficial. We are maintaining the classical approach to estimation throughout.
28Swamy and Tavlas (2001) label this the “first-generation random coefficients model” (RCM). We will
examine the “second generation” (the current generation) of random coefficients models in the next section.
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where

Wi =
[

n∑
i=1

(
� + σ 2

ε

(
X′

i Xi
)−1

)−1
]−1 (

� + σ 2
ε

(
X′

i Xi
)−1)−1

.

Empirical implementation of this model requires an estimator of �. One approach
[see, e.g., Swamy (1971)] is to use the empirical variance of the set of n least squares
estimates, bi minus the average value of s2

i (X′
i Xi )

−1:

G = [1/(n − 1)]
[
�i bi b′

i − nb̄ b̄′] − (1/N)�i Vi , (11-88)

where

b̄ = (1/n)�i bi

and

Vi = s2
i (X′

i Xi )
−1.

This matrix may not be positive definite, however, in which case [as Baltagi (2005)
suggests], one might drop the second term.

A chi-squared test of the random coefficients model against the alternative of the
classical regression (no randomness of the coefficients) can be based on

C = �i (bi − b∗)′V−1
i (bi − b∗),

where

b∗ =
[
�i V−1

i

]−1
�i V−1

i bi .

Under the null hypothesis of homogeneity, C has a limiting chi-squared distribution
with (n− 1)K degrees of freedom. The best linear unbiased individual predictors of the
group-specific coefficient vectors are matrix weighted averages of the GLS estimator,
β̂, and the group specific OLS estimates, bi ,29

β̂ i = Qi β̂ + [I − Qi ]bi ,

where (11-89)

Qi = [(
1/s2

i

)
X′

i Xi + G−1]−1G−1.

Example 11.19 Random Coefficients Model
In Example 10.1, we examined Munell’s production model for gross state product,

ln gspit = β1 + β2 ln pcit + β3 ln hwyit + β4 ln waterit

+ β5 ln utilit + β6 ln empit + β7 unempit + εit, i = 1, . . . , 48; t = 1, . . . , 17.

The panel consists of state level data for 17 years. The model in Example 10.1 (and Munnell’s)
provide no means for parameter heterogeneity save for the constant term. We have rees-
timated the model using the Hildreth and Houck approach. The OLS and Feasible GLS
estimates are given in Table 11.14. The chi-squared statistic for testing the null hypothesis
of parameter homogeneity is 25,556.26, with 7(47) = 329 degrees of freedom. The critical
value from the table is 372.299, so the hypothesis would be rejected.

Unlike the other cases we have examined in this chapter, the FGLS estimates are very
different from OLS in these estimates, in spite of the fact that both estimators are consistent
and the sample is fairly large. The underlying standard deviations are computed using G as

29See Hsiao (2003, pp. 144–149).
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TABLE 11.14 Estimated Random Coefficients Models

Least Squares Feasible GLS

Standard Standard Popn. Std.
Variable Estimate Error Estimate Error Deviation

Constant 1.9260 0.05250 1.6533 1.08331 7.0782

ln pc 0.3120 0.01109 0.09409 0.05152 0.3036

ln hwy 0.05888 0.01541 0.1050 0.1736 1.1112

ln water 0.1186 0.01236 0.07672 0.06743 0.4340

ln util 0.00856 0.01235 −0.01489 0.09886 0.6322

ln emp 0.5497 0.01554 0.9190 0.1044 0.6595

unemp −0.00727 0.001384 −0.004706 0.002067 0.01266

σε 0.08542 0.2129
ln L 853.1372

�0.246 �0.147 �0.049 0.049

6

4

2

0.147
b2

0.246 0.344 0.442

FIGURE 11.1 Estimates of Coefficient on Private Capital.

the covariance matrix. [For these data, subtracting the second matrix rendered G not positive
definite, so in the table, the standard deviations are based on the estimates using only the
first term in (11-88).] The increase in the standard errors is striking. This suggests that there is
considerable variation in the parameters across states. We have used (11-89) to compute the
estimates of the state specific coefficients. Figure 11.1 shows a histogram for the coefficient
on private capital. As suggested, there is a wide variation in the estimates.
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11.11.2 A HIERARCHICAL LINEAR MODEL

Many researchers have employed a two-step approach to estimate two-level models. In
a common form of the application, a panel data set is employed to estimate the model,

yit = x′
itβ i + εit, i = 1, . . . , n, t = 1, . . . , T,

βi,k = z′
iαk + ui,k, i = 1, . . . , n.

Assuming the panel is long enough, the first equation is estimated n times, once for
each individual i , and then the estimated coefficient on xitk in each regression forms an
observation for the second-step regression.30 (This is the approach we took in (11-16)
in Section 11.4; each ai is computed by a linear regression of yi − Xi bLSDV on a column
of ones.)

Example 11.20 Fannie Mae’s Pass Through
Fannie Mae is the popular name for the Federal National Mortgage Corporation. Fannie Mae is
the secondary provider for mortgage money for nearly all the small- and moderate-sized home
mortgages in the United States. Loans in the study described here are termed “small” if they
are for less than $100,000. A loan is termed a “conforming” in the language of the literature
on this market if (as of 2004), it was for no more than $333,700. A larger than conforming
loan is called a “jumbo” mortgage. Fannie Mae provides the capital for nearly all conforming
loans and no nonconforming loans. The question pursued in the study described here was
whether the clearly observable spread between the rates on jumbo loans and conforming
loans reflects the cost of raising the capital in the market. Fannie Mae is a “government
sponsored enterprice” (GSE). It was created by the U.S. Congress, but it is not an arm of the
government; it is a private corporation. In spite of, or perhaps because of this ambiguous
relationship to the government, apparently, capital markets believe that there is some benefit
to Fannie Mae in raising capital. Purchasers of the GSE’s debt securities seem to believe
that the debt is implicitly backed by the government— this in spite of the fact that Fannie
Mae explicitly states otherwise in its publications. This emerges as a “funding advantage”
(GFA) estimated by the authors of the study of about 17 basis points (hundredths of one
percent). In a study of the residential mortgage market, Passmore (2005) and Passmore,
Sherlund, and Burgess (2005) sought to determine whether this implicit subsidy to the GSE
was passed on to the mortgagees or was, instead, passed on to the stockholders. Their
approach utilitized a very large data set and a two-level, two-step estimation procedure.
The first step equation estimated was a mortgage rate equation using a sample of roughly
1 million closed mortgages. All were conventional 30-year fixed-rate loans closed between
April 1997 and May 2003. The dependent variable of interest is the rate on the mortgage,
RMit. The first level equation is

RMit = β1i + β2,i Jit + terms for “loan to value ratio,” “new home dummy variable,”
“small mortgage”

+ terms for “fees charged” and whether the mortgage was originated
by a mortgage company + εit.

The main variable of interest in this model is Jit, which is a dummy variable for whether the
loan is a jumbo mortgage. The “i” in this setting is a (state, time) pair for California, New
Jersey, Maryland, Virginia, and all other states, and months from April 1997 to May 2003.
There were 370 groups in total. The regression model was estimated for each group. At the
second step, the coefficient of interest is β2,i . On overall average, the spread between jumbo

30An extension of the model in which “ui” is heteroscedastic is developed at length in Saxonhouse (1976)
and revisited by Achen (2005).
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and conforming loans at the time was roughly 16 basis points. The second-level equation is

β2,i = α1 + α2GFAi

+ α3one-year treasury rate

+ α410-year treasury rate

+ α5credit risk

+ α6prepayment risk

+ measures of maturity mismatch risk

+ quarter and state fixed effects

+ mortgage market capacity

+ mortgage market development

+ ui .

The result ultimately of interest is the coefficient on GFA, α2, which is interpreted as the fraction
of the GSE funding advantage that is passed through to the mortgage holders. Four different
estimates of α2 were obtained, based on four different measures of corporate debt liquidity;
the estimated values were

(
α̂1

2, α̂2
2, α̂3

2, α̂4
2

) = (0.07, 0.31, 0.17, 0.10) . The four estimates were
averaged using a minimum distance estimator (MDE). Let �̂ denote the estimated 4 × 4
asymptotic covariance matrix for the estimators. Denote the distance vector

d = (
α̂1

2 − α2, α̂2
2 − α2, α̂3

2 − α2, α̂4
2 − α2

)′

The minimum distance estimator is the value for α2 that minimizes d′�̂
−1

d. For this study, �̂
is a diagonal matrix. It is straighforward to show that in this case, the MDE is

α̂2 =
4∑

j =1

α̂
j
2

(
1/ω̂ j

�4
m=11/ω̂m

)
.

The final answer is roughly 16 percent. By implication, then, the authors estimated that
100 − 16 = 84 percent of the GSE funding advantage was kept within the company or
passed through to stockholders.

11.11.3 PARAMETER HETEROGENEITY AND DYNAMIC
PANEL DATA MODELS

The analysis in this section has involved static models and relatively straightforward
estimation problems. We have seen as this section has progressed that parameter het-
erogeneity introduces a fair degree of complexity to the treatment. Dynamic effects
in the model, with or without heterogeneity, also raise complex new issues in estima-
tion and inference. There are numerous cases in which dynamic effects and parameter
heterogeneity coincide in panel data models. This section will explore a few of the spec-
ifications and some applications. The familiar estimation techniques (OLS, FGLS, etc.)
are not effective in these cases. The proposed solutions are developed in Chapter 8
where we present the technique of instrumental variables and in Chapter 13 where we
present the GMM estimator and its application to dynamic panel data models.

Example 11.21 Dynamic Panel Data Models
The antecedent of much of the current research on panel data is Balestra and Nerlove’s
(1966) study of the natural gas market. [See, also, Nerlove (2002, Chapter 2).] The model is a
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stock-flow description of the derived demand for fuel for gas using appliances. The central
equation is a model for total demand,

Git = G∗
it + (1 − r )Gi ,t−1,

where Git is current total demand. Current demand consists of new demand, G∗
it, that is

created by additions to the stock of appliances plus old demand, which is a proportion of
the previous period’s demand, r being the depreciation rate for gas using appliances. New
demand is due to net increases in the stock of gas using appliances, which is modeled as

G∗
it = β0 + β1Priceit + β2�Popit + β3Popit + β4�Incomeit + β5Incomeit + εit,

where � is the first difference (change) operator, �Xt = Xt − Xt−1. The reduced form of the
model is a dynamic equation,

Git = β0 + β1Priceit + β2�Popit + β3Popit + β4�Incomeit + β5Incomeit + γ Gi ,t−1 + εit.

The authors analyzed a panel of 36 states over a six-year period (1957–1962). Both fixed
effects and random effects approaches were considered.

An equilibrium model for steady state growth has been used by numerous authors [e.g.,
Robertson and Symons (1992), Pesaran and Smith (1995), Lee, Pesaran, and Smith (1997),
Pesaran, Shin, and Smith (1999), Nerlove (2002) and Hsiao, Pesaran, and Tahmiscioglu (2002)]
for cross industry or country comparisons. Robertson and Symons modeled real wages in
13 OECD countries over the period 1958 to 1986 with a wage equation

Wit = αi + β1i kit + β2i �wedgeit + γi Wi ,t−1 + εit,

where Wit is the real product wage for country i in year t, kit is the capital-labor ratio, and
wedge is the “tax and import price wedge.”

Lee, Pesaran, and Smith (1997) compared income growth across countries with a steady-
state income growth model of the form

ln yit = αi + θi t + λi In yi ,t−1 + εit,

where θi = (1 − λi )δi , δi is the technological growth rate for country i and λi is the convergence
parameter. The rate of convergence to a steady state is 1 − λi .

Pesaran and Smith (1995) analyzed employment in a panel of 38 UK industries observed
over 29 years, 1956–1984. The main estimating equation was

ln eit = αi + β1i t + β2i ln yit + β3i ln yi ,t−1 + β4i ln ȳt + β5i ln ȳt−1

+ β6i ln wit + β7i ln wi ,t−1 + γ1i ln ei ,t−1 + γ2i ln ei ,t−2 + εit,

where yit is industry output, ȳt is total (not average) output, and wit is real wages.

In the growth models, a quantity of interest is the long-run multiplier or long-run
elasticity. Long-run effects are derived through the following conceptual experiment.
The essential feature of the models above is a dynamic equation of the form

yt = α + βxt + γ yt−1.

Suppose at time t , xt is fixed from that point forward at x̄. The value of yt at that time
will then be α + β x̄ + γ yt−1, given the previous value. If this process continues, and if
|γ | < 1, then eventually ys will reach an equilibrium at a value such that ys = ys−1 = ȳ.
If so, then ȳ = α + β x̄ + γ ȳ, from which we can deduce that ȳ = (α + x̄)/(1 − γ ).
The path to this equilibrium from time t into the future is governed by the adjustment
equation

ys − ȳ = (yt − ȳ)γ s−t , s ≥ t.
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The experiment, then, is to ask: What is the impact on the equilibrium of a change in the
input, x̄? The result is ∂ ȳ/∂ x̄ = β/(1−γ ). This is the long-run multiplier, or equilibrium
multiplier in the model. In the preceding Pesaran and Smith model, the inputs are in
logarithms, so the multipliers are long-run elasticities. For example, with two lags of
ln eit in Pesaran and Smith’s model, the long-run effects for wages are

φi = (β6i + β7i )/(1 − γ1i − γ2i ).

In this setting, in contrast to the preceding treatments, the number of units, n,
is generally taken to be fixed, though often it will be fairly large. The Penn World
Tables (http://pwt.econ.upenn.edu/php site/pwt index.php) that provide the database
for many of these analyses now contain information on almost 200 countries for well
over 50 years. Asymptotic results for the estimators are with respect to increasing T,
though we will consider in general, cases in which T is small. Surprisingly, increasing T
and n at the same time need not simplify the derivations.

The parameter of interest in many studies is the average long-run effect, say φ̄ =
(1/n)�iφi , in the Pesaran and Smith example. Because n is taken to be fixed, the “pa-
rameter” φ̄ is a definable object of estimation—that is, with n fixed, we can speak of
φ̄ as a parameter rather than as an estimator of a parameter. There are numerous ap-
proaches one might take. For estimation purposes, pooling, fixed effects, random effects,
group means, or separate regressions are all possibilities. (Unfortunately, nearly all are
inconsistent.) In addition, there is a choice to be made whether to compute the average
of long-run effects or compute the long-run effect from averages of the parameters.
The choice of the average of functions, φ̄ versus the function of averages,

φ̄∗ =
1
n

∑n
i=1(β̂6i + β̂7i )

1 − 1
n

∑n
i=1(γ̂1i + γ̂2i )

turns out to be of substance. For their UK industry study, Pesaran and Smith report
estimates of −0.33 for φ̄ and −0.45 for φ̄∗. (The authors do not express a preference for
one over the other.)

The development to this point is implicitly based on estimation of separate models
for each unit (country, industry, etc.). There are also a variety of other estimation strate-
gies one might consider. We will assume for the moment that the data series are station-
ary in the dimension of T. (See Chapter 21.) This is a transparently false assumption, as
revealed by a simple look at the trends in macroeconomic data, but maintaining it for
the moment allows us to proceed. We will reconsider it later.

We consider the generic, dynamic panel data model,

yit = αi + βi xit + γi yi,t−1 + εit. (11-90)

Assume that T is large enough that the individual regressions can be computed. In the
absence of autocorrelation in εit, it has been shown [e.g., Griliches (1961), Maddala
and Rao (1973)] that the OLS estimator of γi is biased downward, but consistent in T.
Thus, E[γ̂i − γi ] = θi/T for some θi . The implication for the individual estimator of the
long-run multiplier, φi = βi/(1 − γi ), is unclear in this case, however. The denominator
is overestimated. But it is not clear whether the estimator of βi is overestimated or
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underestimated. It is true that whatever bias there is O(1/T). For this application, T
is fixed and possibly quite small. The end result is that it is unlikely that the individual
estimator of φi is unbiased, and by construction, it is inconsistent, because T cannot be
assumed to be increasing. If that is the case, then ˆ̄φ is likewise inconsistent for φ̄. We
are averaging n estimators, each of which has bias and variance that are O(1/T). The
variance of the mean is, therefore, O(1/nT) which goes to zero, but the bias remains
O(1/T). It follows that the average of the n means is not converging to φ̄; it is converg-
ing to the average of whatever these biased estimators are estimating. The problem
vanishes with large T, but that is not relevant to the current context. However, in the
Pesaran and Smith study, T was 29, which is large enough that these effects are probably
moderate. For macroeconomic cross-country studies such as those based on the Penn
World Tables, the data series might be yet longer than this.

One might consider aggregating the data to improve the results. Smith and Pesaran
(1995) suggest an average based on country means. Averaging the observations over T
in (11-90) produces

ȳi. = αi + βi x̄i. + γi ȳ−1,i + ε̄i.. (11-91)

A linear regression using the n observations would be inconsistent for two reasons:
First, ε̄i. and ȳ−1,i must be correlated. Second, because of the parameter heterogeneity,
it is not clear without further assumptions what the OLS slopes estimate under the false
assumption that all coefficients are equal. But ȳi. and ȳ−1,i differ by only the first and
last observations; ȳ−1,i = ȳi. − (yiT − yi0)/T = ȳi. − [�T(y)/T]. Inserting this in (11-89)
produces

ȳi. = αi + βi x̄i. + γi ȳi. − γi [�T(y)/T] + ε̄i.

= αi

1 − γi
+ βi

1 − γi
x̄i. − γi

1 − γi
[�T(y)/T] + ε̄i. (11-92)

= δi + φi x̄i. + τi [�T(y)/T] + ε̄i..

We still seek to estimate φ̄. The form in (11-92) does not solve the estimation problem,
since the regression suggested using the group means is still heterogeneous. If it could
be assumed that the individual long-run coefficients differ randomly from the averages
in the fashion of the random parameters model of Section 11.1.1, so δi = δ̄ + uδ,i and
likewise for the other parameters, then the model could be written

ȳi. = δ̄ + φ̄ x̄i. + τ̄ [�T(y)/T]i + ε̄i. + {uδ,i + uφ,i x̄i + uτ,i [�T(y)/T]i }
= δ̄ + φ̄ x̄i. + τ̄ [�T(y)/T]i + ε̄i + wi .

At this point, the equation appears to be a heteroscedastic regression amenable to least
squares estimation, but for one loose end. Consistency follows if the terms [�T(y)/T]i

and ε̄i are uncorrelated. Because the first is a rate of change and the second is in levels,
this should generally be the case. Another interpretation that serves the same purpose
is that the rates of change in [�T(y)/T]i should be uncorrelated with the levels in x̄i.,
in which case, the regression can be partitioned, and simple linear regression of the
country means of yit on the country means of xit and a constant produces consistent
estimates of φ̄ and δ̄.
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Alternatively, consider a time-series approach. We average the observation in
(11-90) across countries at each time period rather than across time within countries.
In this case, we have

ȳ.t = ᾱ + 1
n

n∑
i=1

βi xit + 1
n

n∑
i=1

γi yi,t−1 + 1
n

n∑
i=1

εit.

Let γ̄ = 1
n

∑n
i=1 γi so that γi = γ̄ + (γi − γ̄ ) and βi = β̄ + (βi − β̄). Then,

ȳ.t = ᾱ + β̄ x̄.t + γ̄ ȳ−1,t + [ε̄.t + (βi − β̄)x̄.t + (γi − γ̄ )ȳ−1,t ]

= ᾱ + β̄ x̄.t + γ̄ ȳ−1,t + ε̄.t + w.t .

Unfortunately, the regressor, γ̄ ȳ−1,t is surely correlated with w.t , so neither OLS or GLS
will provide a consistent estimator for this model. (One might consider an instrumental
variable estimator, however, there is no natural instrument available in the model as
constructed.) Another possibility is to pool the entire data set, possibly with random or
fixed effects for the constant terms. Because pooling, even with country-specific constant
terms, imposes homogeneity on the other parameters, the same problems we have just
observed persist.

Finally, returning to (11-90), one might treat it as a formal random parameters
model,

yit = αi + βi xit + γi yi,t−1 + εit,

αi = α + uα,i ,
(11-93)

βi = β + uβ,i ,

γi = γ + uγ,i .

The assumptions needed to formulate the model in this fashion are those of the previous
section. As Pesaran and Smith (1995) observe, this model can be estimated using the
“Swamy (1971)” estimator, which is the matrix weighted average of the least squares
estimators discussed in Section 11.11.1. The estimator requires that T be large enough
to fit each country regression by least squares. That has been the case for the received
applications. Indeed, for the applications we have examined, both n and T are relatively
large. If not, then one could still use the mixed models approach developed in Chapter 15.
A compromise that appears to work well for panels with moderate sized n and T is
the “mixed-fixed” model suggested in Hsiao (1986, 2003) and Weinhold (1999). The
dynamic model in (11-92) is formulated as a partial fixed effects model,

yit = αi dit + βi xit + γi dit yi,t−1 + εit,

βi = β + uβ,i ,

where dit is a dummy variable that equals one for country i in every period and zero
otherwise (i.e., the usual fixed effects approach). Note that dit also appears with yi,t−1.
As stated, the model has “fixed effects,” one random coefficient, and a total of 2n+1 co-
efficients to estimate, in addition to the two variance components, σ 2

ε and σ 2
u . The model

could be estimated inefficiently by using ordinary least squares—the random coefficient
induces heteroscedasticity (see Section 11.11.1)—by using the Hildreth–Houck–Swamy
approach, or with the mixed linear model approach developed in Chapter 15.
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Example 11.22 A Mixed Fixed Growth Model for Developing Countries
Weinhold (1996) and Nair–Reichert and Weinhold (2001) analyzed growth and development
in a panel of 24 developing countries observed for 25 years, 1971–1995. The model they
employed was a variant of the mixed-fixed model proposed by Hsiao (1986, 2003). In their
specification,

GGDPi ,t = αi dit + γi ditGGDPi ,t−1

+ β1i GGDIi ,t−1 + β2i GFDIi ,t−1 + β3i GEXPi ,t−1 + β4INFLi ,t−1 + εit,
where

GGDP = Growth rate of gross domestic product,
GGDI = Growth rate of gross domestic investment,
GFDI = Growth rate of foreign direct investment (inflows),

GEXP = Growth rate of exports of goods and services,
INFL = Inflation rate.

11.12 SUMMARY AND CONCLUSIONS

This chapter has shown a few of the extensions of the classical model that can be obtained
when panel data are available. In principle, any of the models we have examined before
this chapter and all those we will consider later, including the multiple equation models,
can be extended in the same way. The main advantage, as we noted at the outset, is that
with panel data, one can formally model dynamic effects and the heterogeneity across
groups that are typical in microeconomic data.

Key Terms and Concepts

• Adjustment equation
• Autocorrelation
• Arellano and Bond’s

estimator
• Balanced panel
• Between groups
• Cluster estimator
• Contiguity
• Contiguity matrix
• Contrasts
• Dynamic panel data model
• Equilibrium multiplier
• Error components model
• Estimator
• Feasible GLS
• First difference
• Fixed effects
• Fixed effects vector

decomposition
• Fixed panel
• Group means
• Group means estimator
• Hausman specification test

• Heterogeneity
• Hierarchical linear model
• Hierarchical model
• Hausman and Taylor’s

estimator
• Incidental parameters

problem
• Index function model
• Individual effect
• Instrumental variable
• Instrumental variable

estimator
• Lagrange multiplier test
• Least squares dummy

variable model
• Long run elasticity
• Long run multiplier
• Longitudinal data set
• Matrix weighted average
• Mean independence
• Measurement error
• Minimum distance estimator
• Mixed model

• Mundlak’s approach
• Nested random effects
• Panel data
• Parameter heterogeneity
• Partial effects
• Pooled model
• Pooled regression
• Population averaged model
• Projections
• Random coefficients model
• Random effects
• Random parameters
• Robust covariance matrix
• Rotating panel
• Simulation based estimation
• Small T asymptotics
• Spatial autocorrelation
• Spatial autoregression

coefficient
• Spatial error correlation
• Spatial lags
• Specification test
• Strict exogeneity
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• Time-invariant
• Two-step estimation

• Unbalanced panel
• Variable addition test

• Within groups

Exercises

1. The following is a panel of data on investment (y) and profit (x) for n = 3 firms
over T = 10 periods.

i = 1 i = 2 i = 3

t y x y x y x

1 13.32 12.85 20.30 22.93 8.85 8.65
2 26.30 25.69 17.47 17.96 19.60 16.55
3 2.62 5.48 9.31 9.16 3.87 1.47
4 14.94 13.79 18.01 18.73 24.19 24.91
5 15.80 15.41 7.63 11.31 3.99 5.01
6 12.20 12.59 19.84 21.15 5.73 8.34
7 14.93 16.64 13.76 16.13 26.68 22.70
8 29.82 26.45 10.00 11.61 11.49 8.36
9 20.32 19.64 19.51 19.55 18.49 15.44

10 4.77 5.43 18.32 17.06 20.84 17.87

a. Pool the data and compute the least squares regression coefficients of the model
yit = α + βxit + εit.

b. Estimate the fixed effects model of (11-13), and then test the hypothesis that the
constant term is the same for all three firms.

c. Estimate the random effects model of (11-28), and then carry out the Lagrange
multiplier test of the hypothesis that the classical model without the common
effect applies.

d. Carry out Hausman’s specification test for the random versus the fixed effect
model.

2. Suppose that the fixed effects model is formulated with an overall constant term and
n − 1 dummy variables (dropping, say, the last one). Investigate the effect that this
supposition has on the set of dummy variable coefficients and on the least squares
estimates of the slopes, compared to (11-3).

3. Unbalanced design for random effects. Suppose that the random effects model of
Section 11.5 is to be estimated with a panel in which the groups have different
numbers of observations. Let Ti be the number of observations in group i.
a. Show that the pooled least squares estimator is unbiased and consistent despite

this complication.
b. Show that the estimator in (11-40) based on the pooled least squares estimator of

β (or, for that matter, any consistent estimator ofβ) is a consistent estimator ofσ 2
ε .

4. What are the probability limits of (1/n)LM, where LM is defined in (11-42) under
the null hypothesis that σ 2

u = 0 and under the alternative that σ 2
u �= 0?

5. A two-way fixed effects model. Suppose that the fixed effects model is modified
to include a time-specific dummy variable as well as an individual-specific vari-
able. Then yit = αi + γt + x′

itβ + εit. At every observation, the individual- and
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time-specific dummy variables sum to 1, so there are some redundant coefficients.
The discussion in Section 11.4.4 shows that one way to remove the redundancy
is to include an overall constant and drop one of the time specific and one of the
time-dummy variables. The model is, thus,

yit = μ + (αi − α1) + (γt − γ1) + x′
itβ + εit.

(Note that the respective time- or individual-specific variable is zero when t or i
equals one.) Ordinary least squares estimates of β are then obtained by regression
of yit − ȳi. − ȳ.t + ¯̄y on xit − x̄i. − x̄.t + ¯̄x. Then (αi − α1) and (γt − γ1) are estimated
using the expressions in (11-25). Using the following data, estimate the full set of
coefficients for the least squares dummy variable model:

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

i = 1
y 21.7 10.9 33.5 22.0 17.6 16.1 19.0 18.1 14.9 23.2
x1 26.4 17.3 23.8 17.6 26.2 21.1 17.5 22.9 22.9 14.9
x2 5.79 2.60 8.36 5.50 5.26 1.03 3.11 4.87 3.79 7.24

i = 2
y 21.8 21.0 33.8 18.0 12.2 30.0 21.7 24.9 21.9 23.6
x1 19.6 22.8 27.8 14.0 11.4 16.0 28.8 16.8 11.8 18.6
x2 3.36 1.59 6.19 3.75 1.59 9.87 1.31 5.42 6.32 5.35

i = 3
y 25.2 41.9 31.3 27.8 13.2 27.9 33.3 20.5 16.7 20.7
x1 13.4 29.7 21.6 25.1 14.1 24.1 10.5 22.1 17.0 20.5
x2 9.57 9.62 6.61 7.24 1.64 5.99 9.00 1.75 1.74 1.82

i = 4
y 15.3 25.9 21.9 15.5 16.7 26.1 34.8 22.6 29.0 37.1
x1 14.2 18.0 29.9 14.1 18.4 20.1 27.6 27.4 28.5 28.6
x2 4.09 9.56 2.18 5.43 6.33 8.27 9.16 5.24 7.92 9.63

Test the hypotheses that (1) the “period” effects are all zero, (2) the “group” effects
are all zero, and (3) both period and group effects are zero. Use an F test in each case.

6. Two-way random effects model. We modify the random effects model by the addi-
tion of a time-specific disturbance. Thus,

yit = α + x′
itβ + εit + ui + vt ,

where

E [εit | X] = E [ui |X] = E [vt |X] = 0,

E [εitu j | X] = E [εitvs |X] = E [uivt |X] = 0 for all i, j, t, s

Var[εit | X] = σ 2
ε , Cov[εit, ε js |X] = 0 for all i, j, t, s

Var[ui | X] = σ 2
u , Cov[ui , u j |X] = 0 for all i, j

Var[vt | X] = σ 2
v , Cov[vt , vs |X] = 0 for all t, s.

Write out the full disturbance covariance matrix for a data set with n = 2 and T = 2.
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7. The model
[

y1

y2

]
=

[
x1

x2

]
β +

[
ε1

ε2

]

satisfies the groupwise heteroscedastic regression model of Section 9.7.2 All vari-
ables have zero means. The following sample second-moment matrix is obtained
from a sample of 20 observations:

y1 y2 x1 x2

y1

y2

x1

x2

⎡
⎢⎢⎣

20 6 4 3
6 10 3 6
4 3 5 2
3 6 2 10

⎤
⎥⎥⎦ .

a. Compute the two separate OLS estimates of β, their sampling variances, the
estimates of σ 2

1 and σ 2
2 , and the R2’s in the two regressions.

b. Carry out the Lagrange multiplier test of the hypothesis that σ 2
1 = σ 2

2 .
c. Compute the two-step FGLS estimate of β and an estimate of its sampling vari-

ance. Test the hypothesis that β equals 1.
d. Carry out the Wald test of equal disturbance variances.
e. Compute the maximum likelihood estimates of β, σ 2

1 , and σ 2
2 by iterating the

FGLS estimates to convergence.
f. Carry out a likelihood ratio test of equal disturbance variances.

8. Suppose that in the groupwise heteroscedasticity model of Section 9.7.2, Xi is the
same for all i. What is the generalized least squares estimator of β? How would you
compute the estimator if it were necessary to estimate σ 2

i ?
9. The following table presents a hypothetical panel of data:

i = 1 i = 2 i = 3

t y x y x y x

1 30.27 24.31 38.71 28.35 37.03 21.16
2 35.59 28.47 29.74 27.38 43.82 26.76
3 17.90 23.74 11.29 12.74 37.12 22.21
4 44.90 25.44 26.17 21.08 24.34 19.02
5 37.58 20.80 5.85 14.02 26.15 18.64
6 23.15 10.55 29.01 20.43 26.01 18.97
7 30.53 18.40 30.38 28.13 29.64 21.35
8 39.90 25.40 36.03 21.78 30.25 21.34
9 20.44 13.57 37.90 25.65 25.41 15.86

10 36.85 25.60 33.90 11.66 26.04 13.28

a. Estimate the groupwise heteroscedastic model of Section 9.7.2. Include an esti-
mate of the asymptotic variance of the slope estimator. Use a two-step procedure,
basing the FGLS estimator at the second step on residuals from the pooled least
squares regression.

b. Carry out the Wald and Lagrange multiplier tests of the hypothesis that the
variances are all equal.
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Applications

As usual, the following applications below require econometric software. The com-
putations can be done with any modern software package, so no specific program is
recommended.

1. The data in Appendix Table F10.4 were used by Grunfeld (1958) and dozens of
researchers since, including Zellner (1962, 1963) and Zellner and Huang (1962), to
study different estimators for panel data and linear regression systems. [See Kleiber
and Zeileis (2010).] The model is an investment equation

Iit = β1 + β2 Fit + β3Cit + εit, t = 1, . . . , 20, i = 1, . . . , 10,

where

Iit = real gross investment for firm i in year t ,

Fit = real value of the firm—shares outstanding,

Cit = real value of the capital stock.

For present purposes, this is a balanced panel data set.
a. Fit the pooled regression model.
b. Referring to the results in part a, is there evidence of within groups correlation?

Compute the robust standard errors for your pooled OLS estimator and compare
them to the conventional ones.

c. Compute the fixed effects estimator for these data, then, using an F test, test the
hypothesis that the constants for the 10 firms are all the same.

d. Use a Lagrange multiplier statistic to test for the presence of common effects in
the data.

e. Compute the one-way random effects estimator and report all estimation results.
Explain the difference between this specification and the one in part c.

f. Use a Hausman test to determine whether a fixed or random effects specification
is preferred for these data.

2. The data in Appendix Table F6.1 are an unbalanced panel on 25 U.S. airlines in the
pre-deregulation days of the 1970s and 1980s. The group sizes range from 2 to 15.
Data in the file are the following variables. (Variable names contained in the data
file are constructed to indicate the variable contents.)

Total cost,
Expenditures on Capital, Labor, Fuel, Materials, Property, and Equipment,
Price measures for the six inputs,
Quantity measures for the six inputs,
Output measured in revenue passenger miles, converted to an index number for
the airline,
Load factor = the average percentage capacity utilization of the airline’s fleet,
Stage = the average flight (stage) length in miles,
Points = the number of points served by the airline,
Year = the calendar year,
T = Year—1969,
TI = the number of observations for the airline, repeated for each year.
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Use these data to build a cost model for airline service. Allow for cross-airline
heterogeneity in the constants in the model. Use both random and fixed effects
specifications, and use available statistical tests to determine which is the preferred
model. An appropriate cost model to begin the analysis with would be

ln costit = αi +
6∑

k=1

βk ln Pricek,i t + γ ln Outputit + εit.

It is necessary to impose linear homogeneity in the input prices on the cost function,
which you would do by dividing five of the six prices and the total cost by the sixth
price (choose any one), then using ln(cost/P6) and ln(Pk/P6) in the regression. You
might also generalize the cost function by including a quadratic term in the log of
output in the function. A translog model would include the unique squares and
cross products of the input prices and products of log output with the logs of the
prices. The data include three additional factors that may influence costs, stage
length, load factor and number of points served. Include them in your model, and
use the appropriate test statistic to test whether they are, indeed, relevant to the
determination of (log) total cost.
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12

ESTIMATION FRAMEWORKS
IN ECONOMETRICS

Q
12.1 INTRODUCTION

This chapter begins our treatment of methods of estimation. Contemporary economet-
rics offers the practitioner a remarkable variety of estimation methods, ranging from
tightly parameterized likelihood-based techniques at one end to thinly stated nonpara-
metric methods that assume little more than mere association between variables at
the other, and a rich variety in between. Even the experienced researcher could be
forgiven for wondering how they should choose from this long menu. It is certainly
beyond our scope to answer this question here, but a few principles can be suggested.
Recent research has leaned when possible toward methods that require few (or fewer)
possibly unwarranted or improper assumptions. This explains the ascendance of the
GMM estimator in situations where strong likelihood-based parameterizations can be
avoided and robust estimation can be done in the presence of heteroscedasticity and
serial correlation. (It is intriguing to observe that this is occurring at a time when ad-
vances in computation have helped bring about increased acceptance of very heavily
parameterized Bayesian methods.)

As a general proposition, the progression from full to semi- to non-parametric
estimation relaxes strong assumptions, but at the cost of weakening the conclusions
that can be drawn from the data. As much as anywhere else, this is clear in the anal-
ysis of discrete choice models, which provide one of the most active literatures in the
field. (A sampler appears in Chapter 17.) A formal probit or logit model allows estima-
tion of probabilities, marginal effects, and a host of ancillary results, but at the cost of
imposing the normal or logistic distribution on the data. Semiparametric and nonpara-
metric estimators allow one to relax the restriction but often provide, in return, only
ranges of probabilities, if that, and in many cases, preclude estimation of probabilities
or useful marginal effects. One does have the virtue of robustness in the conclusions,
however. [See, e.g., the symposium in Angrist (2001) for a spirited discussion on these
points.]

Estimation properties is another arena in which the different approaches can be
compared. Within a class of estimators, one can define “the best” (most efficient) means
of using the data. (See Example 12.2 for an application.) Sometimes comparisons
can be made across classes as well. For example, when they are estimating the same
parameters—this remains to be established—the best parametric estimator will gener-
ally outperform the best semiparametric estimator. That is the value of the information,
of course. The other side of the comparison, however, is that the semiparametric esti-
mator will carry the day if the parametric model is misspecified in a fashion to which
the semiparametric estimator is robust (and the parametric model is not).

472
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Schools of thought have entered this conversation for a long time. Proponents of
Bayesian estimation often took an almost theological viewpoint in their criticism of their
classical colleagues. [See, for example, Poirier (1995).] Contemporary practitioners are
usually more pragmatic than this. Bayesian estimation has gained currency as a set of
techniques that can, in very many cases, provide both elegant and tractable solutions
to problems that have heretofore been out of reach. Thus, for example, the simulation-
based estimation advocated in the many papers of Chib and Greenberg (e.g., 1996) have
provided solutions to a variety of computationally challenging problems.1 Arguments
as to the methodological virtue of one approach or the other have received much less
attention than before.

Chapters 2 through 7 of this book have focused on the classical regression model
and a particular estimator, least squares (linear and nonlinear). In this and the next
four chapters, we will examine several general estimation strategies that are used in a
wide variety of situations. This chapter will survey a few methods in the three broad
areas we have listed. Chapter 13 discusses the generalized method of moments, which
has emerged as the centerpiece of semiparametric estimation. Chapter 14 presents the
method of maximum likelihood, the broad platform for parametric, classical estimation
in econometrics. Chapter 15 discusses simulation-based estimation and bootstrapping.
This is a recently developed body of techniques that have been made feasible by ad-
vances in estimation technology and which has made quite straightforward many es-
timators that were previously only scarcely used because of the sheer difficulty of the
computations. Finally, Chapter 16 introduces the methods of Bayesian econometrics.

The list of techniques presented here is far from complete. We have chosen a set
that constitutes the mainstream of econometrics. Certainly there are others that might
be considered. [See, for example, Mittelhammer, Judge, and Miller (2000) for a lengthy
catalog.] Virtually all of them are the subject of excellent monographs on the subject.
In this chapter we will present several applications, some from the literature, some
home grown, to demonstrate the range of techniques that are current in econometric
practice. We begin in Section 12.2 with parametric approaches, primarily maximum
likelihood. Because this is the subject of much of the remainder of this book, this
section is brief. Section 12.2 also introduces Bayesian estimation, which in its traditional
form, is as heavily parameterized as maximum likelihood estimation. Section 12.3 is on
semiparametric estimation. GMM estimation is the subject of all of Chapter 13, so it is
only introduced here. The technique of least absolute deviations is presented here as
well. A range of applications from the recent literature is also surveyed. Section 12.4
describes nonparametric estimation. The fundamental tool, the kernel density estimator
is developed, then applied to a problem in regression analysis. Two applications are
presented here as well. Being focused on application, this chapter will say very little
about the statistical theory for these techniques—such as their asymptotic properties.

1The penetration of Bayesian econometrics could be overstated. It is fairly well represented in current journals
such as the Journal of Econometrics, Journal of Applied Econometrics, Journal of Business and Economic
Statistics, and so on. On the other hand, in the six major general treatments of econometrics published in 2000,
four (Hayashi, Ruud, Patterson, Davidson) do not mention Bayesian methods at all, a buffet of 32 essays
(Baltagi) devotes only one to the subject, and the one that displays any preference (Mittelhammer et al.)
devotes nearly 10 percent (70) of its pages to Bayesian estimation, but all to the broad metatheory of the
linear regression model and none to the more elaborate applications that form the received applications in
the many journals in the field.
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(The results are developed at length in the literature, of course.) We will turn to the
subject of the properties of estimators briefly at the end of the chapter, in Section 12.5,
then in greater detail in Chapters 13 through 16.

12.2 PARAMETRIC ESTIMATION AND INFERENCE

Parametric estimation departs from a full statement of the density or probability model
that provides the data generating mechanism for a random variable of interest. For the
sorts of applications we have considered thus far, we might say that the joint density of
a scalar random variable, “y” and a random vector, “x” of interest can be specified by

f (y, x) = g(y | x, β) × h(x | θ), (12-1)

with unknown parameters β and θ . To continue the application that has occupied us
since Chapter 2, consider the linear regression model with normally distributed distur-
bances. The assumption produces a full statement of the conditional density that is the
population from which an observation is drawn;

yi | xi ∼ N[x′
iβ, σ 2].

All that remains for a full definition of the population is knowledge of the specific
values taken by the unknown, but fixed parameters. With those in hand, the conditional
probability distribution for yi is completely defined—mean, variance, probabilities of
certain events, and so on. (The marginal density for the conditioning variables is usually
not of particular interest.) Thus, the signature features of this modeling platform are
specifications of both the density and the features (parameters) of that density.

The parameter space for the parametric model is the set of allowable values of
the parameters that satisfy some prior specification of the model. For example, in the
regression model specified previously, the K regression slopes may take any real value,
but the variance must be a positive number. Therefore, the parameter space for that
model is [β, σ 2] ∈ R

K×R+. “Estimation” in this context consists of specifying a criterion
for ranking the points in the parameter space, then choosing that point (a point estimate)
or a set of points (an interval estimate) that optimizes that criterion, that is, has the best
ranking. Thus, for example, we chose linear least squares as one estimation criterion
for the linear model. “Inference” in this setting is a process by which some regions
of the (already specified) parameter space are deemed not to contain the unknown
parameters, though, in more practical terms, we typically define a criterion and then,
state that, by that criterion, certain regions are unlikely to contain the true parameters.

12.2.1 CLASSICAL LIKELIHOOD-BASED ESTIMATION

The most common (by far) class of parametric estimators used in econometrics is the
maximum likelihood estimators. The underlying philosophy of this class of estimators
is the idea of “sample information.” When the density of a sample of observations is
completely specified, apart from the unknown parameters, then the joint density of
those observations (assuming they are independent), is the likelihood function

f (y1, y2, . . . , x1, x2, . . .) =
n∏

i=1

f (yi , xi | β, θ). (12-2)
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This function contains all the information available in the sample about the population
from which those observations were drawn. The strategy by which that information is
used in estimation constitutes the estimator.

The maximum likelihood estimator [Fisher (1925)] is the function of the data that
(as its name implies) maximizes the likelihood function (or, because it is usually more
convenient, the log of the likelihood function). The motivation for this approach is
most easily visualized in the setting of a discrete random variable. In this case, the
likelihood function gives the joint probability for the observed sample observations,
and the maximum likelihood estimator is the function of the sample information that
makes the observed data most probable (at least by that criterion). Though the analogy
is most intuitively appealing for a discrete variable, it carries over to continuous variables
as well. Since this estimator is the subject of Chapter 14, which is quite lengthy, we will
defer any formal discussion until then and consider instead two applications to illustrate
the techniques and underpinnings.

Example 12.1 The Linear Regression Model
Least squares weighs negative and positive deviations equally and gives disproportionate
weight to large deviations in the calculation. This property can be an advantage or a disad-
vantage, depending on the data generating process. For normally distributed disturbances,
this method is precisely the one needed to use the data most efficiently. If the data are
generated by a normal distribution, then the log of the likelihood function is

ln L = −n
2

ln 2π − n
2

ln σ 2 − 1
2σ 2

(y − Xβ) ′(y − Xβ) .

You can easily show that least squares is the estimator of choice for this model. Maximizing
the function means minimizing the exponent, which is done by least squares for β, then e′e/n
follows as the estimator for σ 2.

If the appropriate distribution is deemed to be something other than normal—perhaps on
the basis of an observation that the tails of the disturbance distribution are too thick—see
Example 4.7 and Section 14.9.5.a—then there are three ways one might proceed. First, as we
have observed, the consistency of least squares is robust to this failure of the specification, so
long as the conditional mean of the disturbances is still zero. Some correction to the standard
errors is necessary for proper inferences. Second, one might want to proceed to an estimator
with better finite sample properties. The least absolute deviations estimator discussed in
Section 12.3.2 is a candidate. Finally, one might consider some other distribution which
accommodates the observed discrepancy. For example, Ruud (2000) examines in some
detail a linear regression model with disturbances distributed according to the t distribution
with v degrees of freedom. As long as v is finite, this random variable will have a larger
variance than the normal. Which way should one proceed? The third approach is the least
appealing. Surely if the normal distribution is inappropriate, then it would be difficult to come
up with a plausible mechanism whereby the t distribution would not be. The LAD estimator
might well be preferable if the sample were small. If not, then least squares would probably
remain the estimator of choice, with some allowance for the fact that standard inference tools
would probably be misleading. Current practice is generally to adopt the first strategy.

Example 12.2 The Stochastic Frontier Model
The stochastic frontier model, discussed in detail in Chapter 19, is a regression-like model
with a disturbance distribution that is asymmetric and distinctly nonnormal. The conditional
density for the dependent variable in this model is

f ( y | x, β, σ, λ) =
√

2
σ
√

π
exp

[−( y − α − x′β) 2

2σ 2

]
�

(−λ( y − α − x′β)
σ

)
.
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This produces a log-likelihood function for the model,

ln L = −n ln σ − n
2

ln
2
π

− 1
2

n∑
i =1

(
εi

σ

)2

+
n∑

i =1

ln �

(−λεi

σ

)
.

There are at least two fully parametric estimators for this model. The maximum likelihood
estimator is discussed in Section 19.2.4. Greene (2007) presents the following method of
moments estimator: For the regression slopes, excluding the constant term, use least
squares. For the parameters α, σ , and λ, based on the second and third moments of the
least squares residuals and the least squares constant, solve

m2 = σ 2
v + [1 − 2/π ]σ 2

u ,

m3 = (2/π ) 1/2[1 − 4/π ]σ 3
u ,

a = α + (2/π ) 2σu,

where λ = σu/σv and σ 2 = σ 2
u + σ 2

v .
Both estimators are fully parametric. The maximum likelihood estimator is for the reasons

discussed earlier. The method of moments estimators (see Section 13.2) are appropriate only
for this distribution. Which is preferable? As we will see in Chapter 19, both estimators are
consistent and asymptotically normally distributed. By virtue of the Cramér–Rao theorem,
the maximum likelihood estimator has a smaller asymptotic variance. Neither has any small
sample optimality properties. Thus, the only virtue of the method of moments estimator is
that one can compute it with any standard regression/statistics computer package and a
hand calculator whereas the maximum likelihood estimator requires specialized software
(only somewhat—it is reasonably common).

12.2.2 MODELING JOINT DISTRIBUTIONS WITH
COPULA FUNCTIONS

Specifying the likelihood function commits the analyst to a possibly strong assump-
tion about the distribution of the random variable of interest. The payoff, of course, is
the stronger inferences that this permits. However, when there is more than one ran-
dom variable of interest, such as in a joint household decision on health care usage in
the example to follow, formulating the full likelihood involves specifying the marginal
distributions, which might be comfortable, and a full specification of the joint distri-
bution, which is likely to be less so. In the typical situation, the model might involve
two similar random variables and an ill-formed specification of correlation between
them. Implicitly, this case involves specification of the marginal distributions. The joint
distribution is an empirical necessity to allow the correlation to be nonzero. The copula
function approach provides a mechanism that the researcher can use to steer around
this situation.

Trivedi and Zimmer (2007) suggest a variety of applications that fit this description:

• Financial institutions are often concerned with the prices of different, related
(dependent) assets. The typical multivariate normality assumption is problematic
because of GARCH effects (see Section 20.13) and thick tails in the distributions.
While specifying appropriate marginal distributions may be reasonably straight-
forward, specifying the joint distribution is anything but that. Klugman and Parsa
(2000) is an application.

• There are many microeconometric applications in which straightforward marginal
distributions cannot be readily combined into a natural joint distribution. The
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bivariate event count model analyzed in Munkin and Trivedi (1999) and in the
next example is an application.

• In the linear self-selection model of Chapter 19, the necessary joint distribution is
part of a larger model. The likelihood function for the observed outcome involves
the joint distribution of a variable of interest, hours, wages, income, and so on, and
the probability of observation. The typical application is based on a joint normal
distribution. Smith (2003, 2005) suggests some applications in which a flexible cop-
ula representation is more appropriate. [In an intriguing early application of copula
modeling that was not labeled as such, since it greatly predates the econometric lit-
erature, Lee (1983) modeled the outcome variable in a selectivity model as normal,
the observation probability as logistic, and the connection between them using what
amounted to the “Gaussian” copula function shown next.]

Although the antecedents in the statistics literature date to Sklar’s (1973) derivations,
the applications in econometrics and finance are quite recent, with most applications
appearing since 2000. [See the excellent survey by Trivedi and Zimmer (2007) for an
extensive description.]

Consider a modeling problem in which the marginal cdfs of two random variables
can be fully specified as F1(y1 | •) and F2(y2 | •), where we condition on sample infor-
mation (data) and parameters denoted “•.” For the moment, assume these are con-
tinuous random variables that obey all the axioms of probability. The bivariate cdf is
F12(y1, y2 | •). A (bivariate) copula function (the results also extend to multivariate func-
tions) is a function C(u1, u2) defined over the unit square [(0 ≤ u1 ≤ 1) × (0 ≤ u2 ≤ 1)]
that satisfies

(1) C(1, u2) = u2 and C(u1, 1) = u1,

(2) C(0, u2) = C(u1, 0) = 0,

(3) ∂C(u1, u2)/∂u1 ≥ 0 and ∂C(u1, u2)/∂u2 ≥ 0.

These are properties of bivariate cdfs for random variables u1 and u2 that are bounded
in the unit square. It follows that the copula function is a two-dimensional cdf defined
over the unit square that has one-dimensional marginal distributions that are standard
uniform in the unit interval [that is, property (1)]. To make profitable use of this re-
lationship, we note that the cdf of a random variable, F1(y1 | •), is, itself, a uniformly
distributed random variable. This is the fundamental probability transform that we
use for generating random numbers. (See Section 15.2.) In Sklar’s (1973) theorem, the
marginal cdfs play the roles of u1 and u2. The theorem states that there exists a copula
function, C(. , .) such that

F12(y1, y2 | •) = C[F1(y1 | •), F2(y2 | •)].

If F12(y1, y2 | •) = C[F1(y1 | •), F2(y2 | •)] is continuous and if the marginal cdfs have
quantile (inverse) functions F−1

j (u j ) where 0 ≤ u j ≤ 1, then the copula function can
be expressed as

F12(y1, y2 | •) = F12
[
F−1

1 (u1 | •), F−1
2 (u2 | •)

]

= Prob[U1 ≤ u1, U2 ≤ u2]

= C(u1, u2).
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In words, the theorem implies that the joint density can be written as the copula function
evaluated at the two cumulative probability functions.

Copula functions allow the analyst to assemble joint distributions when only the
marginal distributions can be specified. To fill in the desired element of correlation
between the random variables, the copula function is written

F12(y1, y2 | •) = C[F1(y1 | •), F2(y2 | •), θ ],

where θ is a “dependence parameter.” For continuous random variables, the joint pdf
is then the mixed partial derivative,

f12(y1, y2 | •) = c12[F1(y1 | •), F2(y2 | •), θ ]

= ∂2C[F1(y1 | •), F2(y2 | •), θ ]/∂y1∂y2 (12-3)

= [∂2C(., ., θ)/∂ F1∂ F2] f1(y1 | •) f2(y2 | •).

A log-likelihood function can now be constructed using the logs of the right-hand sides of
(12-3). Taking logs of (12-3) reveals the utility of the copula approach. The contribution
of the joint observation to the log likelihood is

ln f12(y1, y2 | •) = ln[∂2C(., ., θ)/∂ F1∂ F2] + ln f1(y1 | •) + ln f2(y2 | •).

Some of the common copula functions that have been used in applications are as follows:

Product: C[u1, u2, θ ] = u1 × u2,

FGM: C[u1, u2, θ ] = u1u2[1 + θ(1 − u1)(1 − u2)],

Gaussian: C[u1, u2, θ ] = �2[�−1(u1), �
−1(u2), θ ],

Clayton: C[u1, u2, θ ] = [
u−θ

1 + u−θ
2 − 1

]−1/θ
,

Frank: C[u1, u2, θ ] = 1
θ

ln
[

1 + exp(θu1 − 1)exp(θu2 − 1)

exp(θ) − 1

]
.

The product copula implies that the random variables are independent, because it im-
plies that the joint cdf is the product of the marginals. In the FGM (Fairlie, Gumbel,
Morgenstern) copula, it can be seen that θ = 0 implies the product copula, or indepen-
dence. The same result can be shown for the Clayton copula. In the Gaussian function,
the copula is the bivariate normal cdf if the marginals happen to be normal to begin
with. The essential point is that the marginals need not be normal to construct the copula
function, so long as the marginal cdfs can be specified. (The dependence parameter is
not the correlation between the variables. Trivedi and Zimmer provide transformations
of θ that are closely related to correlations for each copula function listed.)

The essence of the copula technique is that the researcher can specify and analyze
the marginals and the copula functions separately. The likelihood function is obtained
by formulating the cdfs [or the densities, because the differentiation in (12-3) will reduce
the joint density to a convenient function of the marginal densities] and the copula.

Example 12.3 Joint Modeling of a Pair of Event Counts
The standard regression modeling approach for a random variable, y, that is a count of events
is the Poisson regression model,

Prob[Y = y | x] = exp(−λ)λy/y!, where λ = exp(x′β) , y = 0, 1, . . . .
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More intricate specifications use the negative binomial model (version 2, NB2),

Prob[Y = y | x] = 
( y + α)

(α)
( y + 1)

(
α

λ + α

)α
(

λ

λ + α

)y

, y = 0, 1, . . . ,

where α is an overdispersion parameter. (See Section 18.4.) A satisfactory, appropriate speci-
fication for bivariate outcomes has been an ongoing topic of research. Early suggestions were
based on a latent mixture model,

y1 = z + w1,

y2 = z + w2,

where w1 and w2 have the Poisson or NB2 distributions specified earlier with conditional
means λ1 and λ2 and z is taken to be an unobserved Poisson or NB variable. This formulation
induces correlation between the variables but is unsatisfactory because that correlation must
be positive. In a natural application, y1 is doctor visits and y2 is hospital visits. These could
be negatively correlated. Munkin and Trivedi (1999) specified the jointness in the conditional
mean functions, in the form of latent, common heterogeneity;

λ j = exp(x′
j β j + ε)

where ε is common to the two functions. Cameron et al. (2004) used a bivariate copula
approach to analyze Australian data on self-reported and actual physician visits (the lat-
ter maintained by the Health Insurance Commission). They made two adjustments to the
preceding model we developed above. First, they adapted the basic copula formulation to
these discrete random variables. Second, the variable of interest to them was not the actual
or self-reported count, but the difference. Both of these are straightforward modifications of
the basic copula model.

12.3 SEMIPARAMETRIC ESTIMATION

Semiparametric estimation is based on fewer assumptions than parametric estimation.
In general, the distributional assumption is removed, and an estimator is devised from
certain more general characteristics of the population. Intuition suggests two (correct)
conclusions. First, the semiparametric estimator will be more robust than the parametric
estimator—it will retain its properties, notably consistency across a greater range of
specifications. Consider our most familiar example. The least squares slope estimator is
consistent whenever the data are well behaved and the disturbances and the regressors
are uncorrelated. This is even true for the frontier function in Example 12.2, which has
an asymmetric, nonnormal disturbance. But, second, this robustness comes at a cost.
The distributional assumption usually makes the preferred estimator more efficient
than a robust one. The best robust estimator in its class will usually be inferior to the
parametric estimator when the assumption of the distribution is correct. Once again,
in the frontier function setting, least squares may be robust for the slopes, and it is
the most efficient estimator that uses only the orthogonality of the disturbances and
the regressors, but it will be inferior to the maximum likelihood estimator when the
two-part normal distribution is the correct assumption.

12.3.1 GMM ESTIMATION IN ECONOMETRICS

Recent applications in economics include many that base estimation on the method
of moments. The generalized method of moments departs from a set of model based
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moment equations, E [m(yi , xi , β)] = 0, where the set of equations specifies a relation-
ship known to hold in the population. We used one of these in the preceding paragraph.
The least squares estimator can be motivated by noting that the essential assumption is
that E [xi (yi − x′

iβ)] = 0. The estimator is obtained by seeking a parameter estimator,
b, which mimics the population result; (1/n)�i [xi (yi − x′

i b)] = 0. These are, of course,
the normal equations for least squares. Note that the estimator is specified without ben-
efit of any distributional assumption. Method of moments estimation is the subject of
Chapter 13, so we will defer further analysis until then.

12.3.2 MAXIMUM EMPIRICAL LIKELIHOOD ESTIMATION

Empirical likelihood methods are suggested as a semiparametric alternative to maxi-
mum likelihood. As we shall see shortly, the estimator is closely related to the GMM
estimator. Let πi denote generically the probability that yi |xi takes the realized value in
the sample. Intuition suggests (correctly) that with no further information, πi will equal
1/n. The empirical likelihood function is

EL =
∏n

i=1
π

1/n
i .

The maximum empirical likelihood estimator maximizes EL. Equivalently, we maximize
the log of the empirical likelihood,

ELL = 1
n

n∑
i=1

ln πi .

As a maximization problem, this program lacks sufficient structure to admit a solution—
the solutions for πi are unbounded. If we impose the restrictions that πi are probabilities
that sum to one, we can use a Langragean formulation to solve the optimization problem,

ELL =
[

1
n

n∑
i=1

ln πi

]
+ λ

[
1 −

n∑
i=1

πi

]
.

This slightly restricts the problem since with 0 < πi < 1 and �iπi = 1, the solution
suggested earlier becomes obvious. (There is nothing in the problem that differentiates
the πi ’s, so they must all be equal to each other.) Inserting this result in the derivative
with respect to any specific πi produces the remaining result, λ = 1.

The maximization problem becomes meaningful when we impose a structure on the
data. To develop an example, we’ll recall Example 7.6, a nonlinear regression equation
for Income for the German Socioeconomic Panel data, where we specified

E[Income|Age, Sex, Education] = exp(x′β) = h(x, β).

For purpose of an example, assume that Education may be endogenous in this equation,
but we have available a set of instruments, z, say (Age, Health, Sex, MarketCondition).
We have assumed that there are more instruments (4) than included variables (3), so that
the parameters will be overidentified (and the example will be complicated enough to
be interesting). (See Sections 8.3.4 and 8.6.) The orthogonality conditions for nonlinear
instrumental variable estimation are that the disturbances be uncorrelated with the
instrumental variables, so

E{zi [Incomei − h(xi , β)]} = E[mi (β)] = 0.
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The nonlinear least squares solution to this problem was developed in Section 8.6. A
GMM estimator will minimize with respect to β the criterion function

q = m̄′(β)Am̄(β)

where A is the chosen weighting matrix. Note that for our example, including the con-
stant term, there are four elements in β and five moment equations, so the parameters
are overidentified.

If we impose the restrictions implied by our moment equations on the empirical
likelihood function, instead, we obtain the population moment condition

[
n∑

i=1

πi zi (Incomei − h(xi , β))

]
= 0.

(The probabilities are population quantities, so this is the expected value.) This produces
the constrained empirical log likelihood

ELL =
[

1
n

n∑
i=1

ln πi

]
+ λ

[
1 −

n∑
i=1

πi

]
+ γ ′

[
n∑

i=1

πi zi (Incomei − h(xi , β))

]
.

The function is now maximized with respect to πi , λ, β (K elements) and γ (L ele-
ments, the number of instrumental variables). At the solution, the values of πi provide,
essentially, a set of weights. Cameron and Trivedi (2005, p. 205) provide a solution for
π̂i in terms of (β, γ ) and show, once again, that λ = 1. The concentrated ELL function
with these inserted provides a function of γ and β that remains to be maximized.

The empirical likelihood estimator has the same asymptotic properties as the
GMM estimator. (This makes sense, given the resemblance of the estimation criteria—
ultimately, both are focused on the moment equations.) There is evidence that at least in
some cases, the finite sample properties of the empirical likelihood estimator might be
better than GMM. A survey appears in Imbens (2002). One suggested modification of
the procedure is to replace the core function in (1/n)�i ln πi with the entropy measure,

Entropy = (1/n)�iπi ln πi .

The maximum entropy estimator is developed in Golan, Judge, and Miller (1996) and
Golan (2009).

12.3.3 LEAST ABSOLUTE DEVIATIONS ESTIMATION
AND QUANTILE REGRESSION

Least squares can be severely distorted by outlying observations in a small sample.
Recent applications in microeconomics and financial economics involving thick-tailed
disturbance distributions, for example, are particularly likely to be affected by precisely
these sorts of observations. (Of course, in those applications in finance involving hun-
dreds of thousands of observations, which are becoming commonplace, this discussion
is moot.) These applications have led to the proposal of “robust” estimators that are
unaffected by outlying observations. One of these, the least absolute deviations, or LAD
estimator discussed in Section 7.3.1, is also useful in its own right as an estimator of the
conditional median function in the modified model

Med[y|x] = x′β .50.
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That is, rather than providing a robust alternative to least squares as an estimator of
the slopes of E[y|x], LAD is an estimator of a different feature of the population. This
is essentially a semiparametric specification in that it specifies only a particular feature
of the distribution, its median, but not the distribution itself. It also specifies that the
conditional median be a linear function of x.

The median, in turn, is only one possible quantile of interest. If the model is extended
to other quantiles of the conditional distribution, we obtain

Q[y|x, q] = x′βq such that Prob[y < x′βq|x] = q, 0 < q < 1.

This is essentially a nonparametric specification. No assumption is made about the dis-
tribution of y|x or about its conditional variance. The fact that q can vary continuously
(strictly) between zero and one means that there is an infinite number of possible “pa-
rameter vectors.” It seems reasonable to view the coefficients, which we might write
β(q) less as fixed “parameters,” as we do in the linear regression model, than loosely
as features of the distribution of y|x. For example, it is not likely to be meaningful
to view β(.49) to be discretely different from β(.50) or to compute precisely a partic-
ular difference such as β(.5) − β(.3). On the other hand, the qualitative difference,
or possibly the lack of a difference, between β(.3) and β(.5) may well be an inter-
esting characteristic of the population. The quantile regression model is examined in
Section 7.3.2.

12.3.4 KERNEL DENSITY METHODS

The kernel density estimator is an inherently nonparametric tool, so it fits more ap-
propriately into the next section. But some models that use kernel methods are not
completely nonparametric. The partially linear model in Section 7.4 is a case in point.
Many models retain an index function formulation, that is, build the specification around
a linear function, x′β, which makes them at least semiparametric, but nonetheless still
avoid distributional assumptions by using kernel methods. Lewbel’s (2000) estimator
for the binary choice model is another example.

Example 12.4 Semiparametric Estimator for Binary Choice Models
The core binary choice model analyzed in Section 17.3, the probit model, is a fully parametric
specification. Under the assumptions of the model, maximum likelihood is the efficient (and
appropriate) estimator. However, as documented in a voluminous literature, the estimator of
β is fragile with respect to failures of the distributional assumption. We will examine a few
semiparametric and nonparametric estimators in Section 17.4.7. To illustrate the nature of
the modeling process, we consider an estimator suggested by Lewbel (2000). The probit
model is based on the normal distribution, with Prob[ yi = 1 | xi ] = Prob[x′

i β + εi > 0] where
εi ∼ N[0, 1]. The estimator of β under this specification will be inconsistent if the distribution
is not normal or if εi is heteroscedastic. Lewbel suggests the following: If (a) it can be as-
sumed that xi contains a “special” variable, vi , whose coefficient has a known sign–a method
is developed for determining the sign and (b) the density of εi is independent of this vari-
able, then a consistent estimator of β can be obtained by regression of [yi − s(vi ) ]/ f (vi | xi )
on xi where s(vi ) = 1 if vi > 0 and 0 otherwise and f (vi | xi ) is a kernel density estimator
of the density of vi | xi . Lewbel’s estimator is robust to heteroscedasticity and distribution.
A method is also suggested for estimating the distribution of εi . Note that Lewbel’s estimator
is semiparametric. His underlying model is a function of the parameters β, but the distribution
is unspecified.
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12.3.5 COMPARING PARAMETRIC AND SEMIPARAMETRIC
ANALYSES

It is often of interest to compare the outcomes of parametric and semiparametric mod-
els. As we have noted earlier, the strong assumptions of the fully parametric model come
at a cost; the inferences from the model are only as robust as the underlying assump-
tions. Of course, the other side of that equation is that when the assumptions are met,
parametric models represent efficient strategies for analyzing the data. The alternative,
semiparametric approaches relax assumptions such as normality and homoscedasticity.
It is important to note that the model extensions to which semiparametric estimators
are typically robust render the more heavily parameterized estimators inconsistent. The
comparison is not just one of efficiency. As a consequence, comparison of parameter
estimates can be misleading—the parametric and semiparametric estimators are often
estimating very different quantities.

Example 12.5 A Model of Vacation Expenditures
Melenberg and van Soest (1996) analyzed the 1981 vacation expenditures of a sample of
1,143 Dutch families. The important feature of the data that complicated the analysis was that
37 percent (423) of the families reported zero expenditures. A linear regression that ignores
this feature of the data would be heavily skewed toward underestimating the response of
expenditures to the covariates such as total family expenditures (budget), family size, age,
or education. (See Section 19.3.) The standard parametric approach to analyzing data of this
sort is the “Tobit,” or censored, regression model:

y∗
i = x′

i β + εi , εi ∼ N[0, σ 2],

yi = max(0, y∗
i ) .

(Maximum likelihood estimation of this model is examined in detail in Section 19.3.) The model
rests on two strong assumptions, normality and homoscedasticity. Both assumptions can be
relaxed in a more elaborate parametric framework, but the authors found that test statistics
persistently rejected one or both of the assumptions even with the extended specifications.
An alternative approach that is robust to both is Powell’s (1984, 1986a, b) censored least
absolute deviations estimator, which is a more technically demanding computation based
on the LAD estimator in Section 7.3.1. Not surprisingly, the parameter estimates produced
by the two approaches vary widely. The authors computed a variety of estimators of β. A
useful exercise that they did not undertake would be to compare the partial effects from the
different models. This is a benchmark on which the differences between the different esti-
mators can sometimes be reconciled. In the Tobit model, ∂E [ yi | xi ] /∂xi = �(x′

i β/σ )β (see
Section 19.3). It is unclear how to compute the counterpart in the semiparametric model,
since the underlying specification holds only that Med[εi | xi ] = 0. (The authors report on
the Journal of Applied Econometrics data archive site that these data are proprietary. As
such, we were unable to extend the analysis to obtain estimates of partial effects.) This high-
lights a significant difficulty with the semiparametric approach to estimation. In a nonlinear
model such as this one, it is often the partial effects that are of interest, not the coefficients.
But, one of the byproducts of the more “robust” specification is that the partial effects are
undefined.

In a second stage of the analysis, the authors decomposed their expenditure equation into
a “participation” equation that modeled probabilities for the binary outcome “expenditure =
0 or > 0” and a conditional expenditure equation for those with positive expenditure. [In
Section 18.4.8, we will label this a “hurdle” model. See Mullahy (1986).] For this step, the
authors once again used a parametric model based on the normal distribution (the probit
model—see Section 17.3) and a semiparametric model that is robust to distribution and
heteroscedasticity developed by Klein and Spady (1993). As before, the coefficient estimates
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FIGURE 12.1 Predicted Probabilities of Positive Expenditure.

differ substantially. However, in this instance, the specification tests are considerably more
sympathetic to the parametric model. Figure 12.1, which reproduces their Figure 2, compares
the predicted probabilities from the two models. The dashed curve is the probit model. Within
the range of most of the data, the models give quite similar predictions. Once again, however,
it is not possible to compare partial effects. The interesting outcome from this part of the
analysis seems to be that the failure of the parametric specification resides more in the
modeling of the continuous expenditure variable than with the model that separates the two
subsamples based on zero or positive expenditures.

12.4 NONPARAMETRIC ESTIMATION

Researchers have long held reservations about the strong assumptions made in para-
metric models fit by maximum likelihood. The linear regression model with normal
disturbances is a leading example. Splines, translog models, and polynomials all repre-
sent attempts to generalize the functional form. Nonetheless, questions remain about
how much generality can be obtained with such approximations. The techniques of non-
parametric estimation discard essentially all fixed assumptions about functional form
and distribution. Given their very limited structure, it follows that nonparametric spec-
ifications rarely provide very precise inferences. The benefit is that what information
is provided is extremely robust. The centerpiece of this set of techniques is the kernel
density estimator that we have used in the preceding examples. We will examine some
examples, then examine an application to a bivariate regression.2

2The set of literature in this area of econometrics is large and rapidly growing. Major references which
provide an applied and theoretical foundation are Härdle (1990), Pagan and Ullah (1999), and Li and Racine
(2007).
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12.4.1 KERNEL DENSITY ESTIMATION

Sample statistics such as a mean, variance, and range give summary information about
the values that a random variable may take. But, they do not suffice to show the distribu-
tion of values that the random variable takes, and these may be of interest as well. The
density of the variable is used for this purpose. A fully parametric approach to density
estimation begins with an assumption about the form of a distribution. Estimation of
the density is accomplished by estimation of the parameters of the distribution. To take
the canonical example, if we decide that a variable is generated by a normal distribution
with mean μ and variance σ 2, then the density is fully characterized by these parameters.
It follows that

f̂ (x) = f (x | μ̂, σ̂ 2) = 1
σ̂

1√
2π

exp

[
−1

2

(
x − μ̂

σ̂

)2
]

.

One may be unwilling to make a narrow distributional assumption about the density.
The usual approach in this case is to begin with a histogram as a descriptive device.
Consider an example. In Examples 15.17 and in Greene (2004a), we estimate a model
that produces a conditional estimator of a slope vector for each of the 1,270 firms in
our sample. We might be interested in the distribution of these estimators across firms.
In particular, the conditional estimates of the estimated slope on ln sales for the 1,270
firms have a sample mean of 0.3428, a standard deviation of 0.08919, a minimum of
0.2361, and a maximum of 0.5664. This tells us little about the distribution of values,
though the fact that the mean is well below the midrange of 0.4013 might suggest some
skewness. The histogram in Figure 12.2 is much more revealing. Based on what we see

FIGURE 12.2 Histogram for Estimated bsales Coefficients.
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thus far, an assumption of normality might not be appropriate. The distribution seems
to be bimodal, but certainly no particular functional form seems natural.

The histogram is a crude density estimator. The rectangles in the figure are called
bins. By construction, they are of equal width. (The parameters of the histogram are
the number of bins, the bin width, and the leftmost starting point. Each is important
in the shape of the end result.) Because the frequency count in the bins sums to the
sample size, by dividing each by n, we have a density estimator that satisfies an obvious
requirement for a density; it sums (integrates) to one. We can formalize this by laying
out the method by which the frequencies are obtained. Let xk be the midpoint of the
kth bin and let h be the width of the bin—we will shortly rename h to be the bandwidth
for the density estimator. The distances to the left and right boundaries of the bins are
h/2. The frequency count in each bin is the number of observations in the sample which
fall in the range xk ± h/2. Collecting terms, we have our “estimator”

f̂ (x) = 1
n

frequency in binx

width of binx
= 1

n

n∑
i=1

1
h

1
(

x − h
2

< xi < x + h
2

)
,

where 1(statement) denotes an indicator function that equals 1 if the statement is true
and 0 if it is false and binx denotes the bin which has x as its midpoint. We see, then, that
the histogram is an estimator, at least in some respects, like other estimators we have
encountered. The event in the indicator can be rearranged to produce an equivalent
form

f̂ (x) = 1
n

n∑
i=1

1
h

1
(

−1
2

<
xi − x

h
<

1
2

)
.

This form of the estimator simply counts the number of points that are within one
half-bin width of xk.

Albeit rather crude, this “naive” (its formal name in the literature) estimator is in
the form of kernel density estimators that we have met at various points;

f̂ (x) = 1
n

n∑
i=1

1
h

K
[

xi − x
h

]
, where K[z] = 1[−1/2 < z < 1/2].

The naive estimator has several shortcomings. It is neither smooth nor continuous.
Its shape is partly determined by where the leftmost and rightmost terminals of the
histogram are set. (In constructing a histogram, one often chooses the bin width to be
a specified fraction of the sample range. If so, then the terminals of the lowest and
highest bins will equal the minimum and maximum values in the sample, and this will
partly determine the shape of the histogram. If, instead, the bin width is set irrespective
of the sample values, then this problem is resolved.) More importantly, the shape of
the histogram will be crucially dependent on the bandwidth itself. (Unfortunately, this
problem remains even with more sophisticated specifications.)

The crudeness of the weighting function in the estimator is easy to remedy. Rosen-
blatt’s (1956) suggestion was to substitute for the naive estimator some other weighting
function which is continuous and which also integrates to one. A number of candidates
have been suggested, including the (long) list in Table 12.1. Each of these is smooth,
continuous, symmetric, and equally attractive. The logit and normal kernels are defined
so that the weight only asymptotically falls to zero whereas the others fall to zero at
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TABLE 12.1 Kernels for Density Estimation

Kernel Formula K[z]

Epanechnikov 0.75(1 − 0.2z2)/2.236 if |z| ≤ 5, 0 else
Normal φ(z) (normal density),
Logit (z)[1 − (z)] (logistic density)
Uniform 0.5 if |z| ≤ 1, 0 else
Beta 0.75(1 − z)(1 + z) if |z| ≤ 1, 0 else
Cosine 1 + cos(2πz) if |z| ≤ 0.5, 0 else
Triangle 1 − |z|, if |z| ≤ 1, 0 else
Parzen 4/3 − 8z2 + 8 |z|3 if |z| ≤ 0.5, 8(1 − |z|)3/3 if 0.5 < |z| ≤ 1, 0 else.

specific points. It has been observed that in constructing a density estimator, the choice
of kernel function is rarely crucial, and is usually minor in importance compared to
the more difficult problem of choosing the bandwidth. (The logit and normal kernels
appear to be the default choice in many applications.)

The kernel density function is an estimator. For any specific x, f̂ (x) is a sample
statistic,

f̂ (z) = 1
n

n∑
i=1

g(xi | z, h).

Because g(xi | z, h) is nonlinear, we should expect a bias in a finite sample. It is tempting
to apply our usual results for sample moments, but the analysis is more complicated
because the bandwidth is a function of n. Pagan and Ullah (1999) have examined the
properties of kernel estimators in detail and found that under certain assumptions,
the estimator is consistent and asymptotically normally distributed but biased in finite
samples. The bias is a function of the bandwidth, but for an appropriate choice of h, the
bias does vanish asymptotically. As intuition might suggest, the larger is the bandwidth,
the greater is the bias, but at the same time, the smaller is the variance. This might suggest
a search for an optimal bandwidth. After a lengthy analysis of the subject, however, the
authors’ conclusion provides little guidance for finding one. One consideration does
seem useful. For the proportion of observations captured in the bin to converge to the
corresponding area under the density, the width itself must shrink more slowly than 1/n.
Common applications typically use a bandwidth equal to some multiple of n−1/5 for this
reason. Thus, the one we used earlier is h = 0.9 × s/n1/5. To conclude the illustration
begun earlier, Figure 12.3 is a logit-based kernel density estimator for the distribution
of slope estimates for the model estimated earlier. The resemblance to the histogram
in Figure 12.2 is to be expected.

12.5 PROPERTIES OF ESTIMATORS

The preceding has been concerned with methods of estimation. We have surveyed a
variety of techniques that have appeared in the applied literature. We have not yet
examined the statistical properties of these estimators. Although, as noted earlier, we
will leave extensive analysis of the asymptotic theory for more advanced treatments, it
is appropriate to spend at least some time on the fundamental theoretical platform that
underlies these techniques.
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FIGURE 12.3 Kernel Density for bsales Coefficients.

12.5.1 STATISTICAL PROPERTIES OF ESTIMATORS

Properties that we have considered are as follows:

• Unbiasedness: This is a finite sample property that can be established in only a
very small number of cases. Strict unbiasedness is rarely of central importance
outside the linear regression model. However, “asymptotic unbiasedness” (whereby
the expectation of an estimator converges to the true parameter as the sample size
grows), might be of interest. [See, e.g., Pagan and Ullah (1999, Section 2.5.1 on the
subject of the kernel density estimator).] In most cases, however, discussions of
asymptotic unbiasedness are actually directed toward consistency, which is a more
desirable property.

• Consistency: This is a much more important property. Econometricians are rarely
willing to place much credence in an estimator for which consistency cannot be
established.

• Asymptotic normality: This property forms the platform for most of the statistical
inference that is done with common estimators. When asymptotic normality can-
not be established, it sometimes becomes difficult to find a method of progressing
beyond simple presentation of the numerical values of estimates (with caveats).
However, most of the contemporary literature in macroeconomics and time-series
analysis is strongly focused on estimators that are decidedly not asymptotically nor-
mally distributed. The implication is that this property takes its importance only in
context, not as an absolute virtue.

• Asymptotic efficiency: Efficiency can rarely be established in absolute terms.
Efficiency within a class often can, however. Thus, for example, a great deal can
be said about the relative efficiency of maximum likelihood and GMM estimators
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in the class of consistent and asymptotically normally distributed (CAN) estima-
tors. There are two important practical considerations in this setting. First, the
researcher will want to know that he or she has not made demonstrably suboptimal
use of the data. (The literature contains discussions of GMM estimation of fully
specified parametric probit models—GMM estimation in this context is unambigu-
ously inferior to maximum likelihood.) Thus, when possible, one would want to
avoid obviously inefficient estimators. On the other hand, it will usually be the case
that the researcher is not choosing from a list of available estimators; he or she has
one at hand, and questions of relative efficiency are moot.

12.5.2 EXTREMUM ESTIMATORS

An extremum estimator is one that is obtained as the optimizer of a criterion function
q(θ | data). Three that have occupied much of our effort thus far are

• Least squares: θ̂ LS = Argmax
[−(1/n)

∑n
i=1(yi − h(xi , θLS))

2
]
,

• Maximum likelihood: θ̂ML = Argmax
[
(1/n)

∑n
i=1 ln f (yi | xi , θML)

]
, and

• GMM: θ̂GMM = Argmax[−m̄(data, θGMM)′Wm̄(data, θGMM)].

(We have changed the signs of the first and third only for convenience so that all three
may be cast as the same type of optimization problem.) The least squares and max-
imum likelihood estimators are examples of M estimators, which are defined by op-
timizing over a sum of terms. Most of the familiar theoretical results developed here
and in other treatises concern the behavior of extremum estimators. Several of the es-
timators considered in this chapter are extremum estimators, but a few—including the
Bayesian estimators, some of the semiparametric estimators, and all of the nonparamet-
ric estimators—are not. Nonetheless. we are interested in establishing the properties of
estimators in all these cases, whenever possible. The end result for the practitioner will
be the set of statistical properties that will allow him or her to draw with confidence
conclusions about the data generating process(es) that have motivated the analysis in
the first place.

Derivations of the behavior of extremum estimators are pursued at various levels
in the literature. (See, for example, any of the sources mentioned in Footnote 1 of this
chapter.) Amemiya (1985) and Davidson and MacKinnon (2004) are very accessible
treatments. Newey and McFadden (1994) is a rigorous analysis that provides a current,
standard source. Our discussion at this point will only suggest the elements of the anal-
ysis. The reader is referred to one of these sources for detailed proofs and derivations.

12.5.3 ASSUMPTIONS FOR ASYMPTOTIC PROPERTIES
OF EXTREMUM ESTIMATORS

Some broad results are needed in order to establish the asymptotic properties of the
classical (not Bayesian) conventional extremum estimators noted above.

1. The parameter space (see Section 12.2) must be convex and the parameter vector
that is the object of estimation must be a point in its interior. The first requirement
rules out ill-defined estimation problems such as estimating a parameter which
can only take one of a finite discrete set of values. Thus, searching for the date of
a structural break in a time-series model as if it were a conventional parameter
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leads to a nonconvexity. Some proofs in this context are simplified by assuming
that the parameter space is compact. (A compact set is closed and bounded.)
However, assuming compactness is usually restrictive, so we will opt for the weaker
requirement.

2. The criterion function must be concave in the parameters. (See Section A.8.2.)
This assumption implies that with a given data set, the objective function has an
interior optimum and that we can locate it. Criterion functions need not be “glob-
ally concave”; they may have multiple optima. But, if they are not at least “locally
concave,” then we cannot speak meaningfully about optimization. One would nor-
mally only encounter this problem in a badly structured model, but it is possible to
formulate a model in which the estimation criterion is monotonically increasing or
decreasing in a parameter. Such a model would produce a nonconcave criterion
function.3 The distinction between compactness and concavity in the preceding
condition is relevant at this point. If the criterion function is strictly continuous in
a compact parameter space, then it has a maximum in that set and assuming con-
cavity is not necessary. The problem for estimation, however, is that this does not
rule out having that maximum occur on the (assumed) boundary of the parameter
space. This case interferes with proofs of consistency and asymptotic normality.
The overall problem is solved by assuming that the criterion function is concave
in the neighborhood of the true parameter vector.

3. Identifiability of the parameters. Any statement that begins with “the true param-
eters of the model, θ0 are identified if . . .” is problematic because if the parameters
are “not identified,” then arguably, they are not the parameters of the (any) model.
(For example, there is no “true” parameter vector in the unidentified model of Ex-
ample 2.5.) A useful way to approach this question that avoids the ambiguity of
trying to define the true parameter vector first and then asking if it is identified
(estimable) is as follows, where we borrow from Davidson and MacKinnon (1993,
p. 591): Consider the parameterized model, M, and the set of allowable data gener-
ating processes for the model, μ. Under a particular parameterization μ, let there
be an assumed “true” parameter vector, θ(μ). Consider any parameter vector θ

in the parameter space, �. Define

qμ(μ, θ) = plimμqn(θ | data).

This function is the probability limit of the objective function under the assumed
parameterization μ. If this probability limit exists (is a finite constant) and more-
over, if

qμ[μ, θ(μ)] > qμ(μ, θ) if θ �= θ(μ),

then, if the parameter space is compact, the parameter vector is identified by the
criterion function. We have not assumed compactness. For a convex parameter

3In their Exercise 23.6, Griffiths, Hill, and Judge (1993), based (alas) on the first edition of this text, suggest a
probit model for statewide voting outcomes that includes dummy variables for region: Northeast, Southeast,
West, and Mountain. One would normally include three of the four dummy variables in the model, but
Griffiths et al. carefully dropped two of them because in addition to the dummy variable trap, the Southeast
variable is always zero when the dependent variable is zero. Inclusion of this variable produces a nonconcave
likelihood function—the parameter on this variable diverges. Analysis of a closely related case appears as a
caveat on page 272 of Amemiya (1985).
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space, we would require the additional condition that there exist no sequences
without limit points θm such that q(μ, θm) converges to q[μ, θ(μ)].

The approach taken here is to assume first that the model has some set of
parameters. The identifiability criterion states that assuming this is the case, the
probability limit of the criterion is maximized at these parameters. This result rests
on convergence of the criterion function to a finite value at any point in the interior
of the parameter space. Because the criterion function is a function of the data, this
convergence requires a statement of the properties of the data—for example, well
behaved in some sense. Leaving that aside for the moment, interestingly, the results
to this point already establish the consistency of the M estimator. In what might
seem to be an extremely terse fashion, Amemiya (1985) defined identifiability
simply as “existence of a consistent estimator.” We see that identification and the
conditions for consistency of the M estimator are substantively the same.

This form of identification is necessary, in theory, to establish the consistency
arguments. In any but the simplest cases, however, it will be extremely difficult to
verify in practice. Fortunately, there are simpler ways to secure identification that
will appeal more to the intuition:
• For the least squares estimator, a sufficient condition for identification is that

any two different parameter vectors, θ and θ0, must be able to produce dif-
ferent values of the conditional mean function. This means that for any two
different parameter vectors, there must be an xi that produces different val-
ues of the conditional mean function. You should verify that for the linear
model, this is the full rank assumption A.2. For the model in Example 2.5, we
have a regression in which x2 = x3 + x4. In this case, any parameter vec-
tor of the form (β1, β2 − a, β3 + a, β4 + a) produces the same conditional
mean as (β1, β2, β3, β4) regardless of xi , so this model is not identified. The
full rank assumption is needed to preclude this problem. For nonlinear regres-
sions, the problem is much more complicated, and there is no simple generality.
Example 7.2 shows a nonlinear regression model that is not identified and how
the lack of identification is remedied.

• For the maximum likelihood estimator, a condition similar to that for the re-
gression model is needed. For any two parameter vectors, θ �= θ0, it must be pos-
sible to produce different values of the density f (yi | xi , θ) for some data vector
(yi , xi ). Many econometric models that are fit by maximum likelihood are “in-
dex function” models that involve densities of the form f (yi | xi , θ) = f (yi | x′

iθ).
When this is the case, the same full rank assumption that applies to the regres-
sion model may be sufficient. (If there are no other parameters in the model,
then it will be sufficient.)

• For the GMM estimator, not much simplicity can be gained. A sufficient con-
dition for identification is that E[m̄(data, θ)] �= 0 if θ �= θ0.

4. Behavior of the data has been discussed at various points in the preceding text.
The estimators are based on means of functions of observations. (You can see
this in all three of the preceding definitions. Derivatives of these criterion func-
tions will likewise be means of functions of observations.) Analysis of their large
sample behaviors will turn on determining conditions under which certain sample
means of functions of observations will be subject to laws of large numbers such as
the Khinchine (D.5) or Chebychev (D.6) theorems, and what must be assumed in
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order to assert that “root-n” times sample means of functions will obey central
limit theorems such as the Lindeberg–Feller (D.19) or Lyapounov (D.20) theo-
rems for cross sections or the Martingale Difference Central Limit theorem for
dependent observations (Theorem 20.3). Ultimately, this is the issue in establish-
ing the statistical properties. The convergence property claimed above must occur
in the context of the data. These conditions have been discussed in Sections 4.4.1
and 4.4.2 under the heading of “well-behaved data.” At this point, we will assume
that the data are well behaved.

12.5.4 ASYMPTOTIC PROPERTIES OF ESTIMATORS

With all this apparatus in place, the following are the standard results on asymptotic
properties of M estimators:

THEOREM 12.1 Consistency of M Estimators
If (a) the parameter space is convex and the true parameter vector is a point in
its interior, (b) the criterion function is concave, (c) the parameters are identified
by the criterion function, and (d) the data are well behaved, then the M estimator
converges in probability to the true parameter vector.

Proofs of consistency of M estimators rely on a fundamental convergence result
that, itself, rests on assumptions (a) through (d) in Theorem 12.1. We have assumed
identification. The fundamental device is the following: Because of its dependence on
the data, q(θ | data) is a random variable. We assumed in (c) that plim q(θ | data) = q0(θ)

for any point in the parameter space. Assumption (c) states that the maximum of q0(θ)

occurs at q0(θ0), so θ0 is the maximizer of the probability limit. By its definition, the
estimator θ̂ , is the maximizer of q(θ | data). Therefore, consistency requires the limit of
the maximizer, θ̂ be equal to the maximizer of the limit, θ0. Our identification condition
establishes this. We will use this approach in somewhat greater detail in Section 14.4.5.a
where we establish consistency of the maximum likelihood estimator.

THEOREM 12.2 Asymptotic Normality of M Estimators
If

(i) θ̂ is a consistent estimator of θ0 where θ0 is a point in the interior of the
parameter space;

(ii) q(θ | data) is concave and twice continuously differentiable in θ in a neigh-
borhood of θ0;

(iii)
√

n[∂q(θ0 | data)/∂θ0]
d−→N[0, �];

(iv) for any θ in �, lim
n→∞ Pr[|(∂2q(θ | data)/∂θk∂θm) − hkm(θ)| > ε] = 0 ∀ ε > 0

where hkm(θ) is a continuous finite valued function of θ ;
(v) the matrix of elements H(θ) is nonsingular at θ0, then√

n(θ̂ − θ0)
d−→N

{
0, [H−1(θ0)�H−1(θ0)]

}
.
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The proof of asymptotic normality is based on the mean value theorem from calculus
and a Taylor series expansion of the derivatives of the maximized criterion function
around the true parameter vector;

√
n
∂q(θ̂ | data)

∂ θ̂
= 0 = √

n
∂q(θ0 | data)

∂θ0
+ ∂2q(θ̄ | data)

∂ θ̄∂ θ̄
′

√
n(θ̂ − θ0).

The second derivative is evaluated at a point θ̄ that is between θ̂ and θ0, that is, θ̄ =
wθ̂ + (1 − w)θ0 for some 0 < w < 1. Because we have assumed plim θ̂ = θ0, we see that
the matrix in the second term on the right must be converging to H(θ0). The assumptions
in the theorem can be combined to produce the claimed normal distribution. Formal
proof of this set of results appears in Newey and McFadden (1994). A somewhat more
detailed analysis based on this theorem appears in Section 14.4.5.b, where we establish
the asymptotic normality of the maximum likelihood estimator.

The preceding was restricted to M estimators, so it remains to establish counterparts
for the important GMM estimator. Consistency follows along the same lines used earlier,
but asymptotic normality is a bit more difficult to establish. We will return to this issue
in Chapter 13, where, once again, we will sketch the formal results and refer the reader
to a source such as Newey and McFadden (1994) for rigorous derivation.

The preceding results are not straightforward in all estimation problems. For exam-
ple, the least absolute deviations (LAD) is not among the estimators noted earlier,
but it is an M estimator and it shares the results given here. The analysis is com-
plicated because the criterion function is not continuously differentiable. Nonethe-
less, consistency and asymptotic normality have been established. [See Koenker and
Bassett (1982) and Amemiya (1985, pp. 152–154).] Some of the semiparametric and
all of the nonparametric estimators noted require somewhat more intricate treatments.
For example, Pagan and Ullah (Sections 2.5 and 2.6) are able to establish the familiar
desirable properties for the kernel density estimator f̂ (x∗), but it requires a somewhat
more involved analysis of the function and the data than is necessary, say, for the lin-
ear regression or binomial logit model. The interested reader can find many lengthy
and detailed analyses of asymptotic properties of estimators in, for example, Amemiya
(1985), Newey and McFadden (1994), Davidson and MacKinnon (2004), and Hayashi
(2000). In practical terms, it is rarely possible to verify the conditions for an estima-
tion problem at hand, and they are usually simply assumed. However, finding viola-
tions of the conditions is sometimes more straightforward, and this is worth pursuing.
For example, lack of parametric identification can often be detected by analyzing the
model itself.

12.5.5 TESTING HYPOTHESES

The preceding describes a set of results that (more or less) unifies the theoretical un-
derpinnings of three of the major classes of estimators in econometrics, least squares,
maximum likelihood, and GMM. A similar body of theory has been produced for the
familiar test statistics, Wald, likelihood ratio (LR), and Lagrange multiplier (LM). [See
Newey and McFadden (1994).] All of these have been laid out in practical terms else-
where in this text, so in the interest of brevity, we will refer the interested reader to the
background sources listed for the technical details.
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12.6 SUMMARY AND CONCLUSIONS

This chapter has presented a short overview of estimation in econometrics. There are
various ways to approach such a survey. The current literature can be broadly grouped
by three major types of estimators—parametric, semiparametric, and nonparametric.
It has been suggested that the overall drift in the literature is from the first toward the
third of these, but on a closer look, we see that this is probably not the case. Maximum
likelihood is still the estimator of choice in many settings. New applications have been
found for the GMM estimator, but at the same time, new Bayesian and simulation
estimators, all fully parametric, are emerging at a rapid pace. Certainly, the range of
tools that can be applied in any setting is growing steadily.

Key Terms and Concepts

• Bandwidth
• Bayesian estimation
• Bootstrap
• Conditional density
• Copula function
• Criterion function
• Data generating

mechanism
• Density
• Empirical likelihood

function
• Entropy
• Estimation criterion
• Extremum estimator

• Fundamental probability
transform

• Generalized method of
moments

• Histogram
• Identifiability
• Kernel density estimator
• Least absolute deviations

(LAD)
• Likelihood function
• M estimator
• Maximum empirical

likelihood estimator
• Maximum entropy

• Maximum likelihood
estimator

• Method of moments
• Nearest neighbor
• Nonparametric estimators
• Parameter space
• Parametric estimation
• Partially linear model
• Quantile regression
• Semiparametric estimation
• Simulation-based estimation
• Sklar’s theorem
• Smoothing function
• Stochastic frontier model

Exercise and Question

1. Compare the fully parametric and semiparametric approaches to estimation of a
discrete choice model such as the multinomial logit model discussed in Chapter 17.
What are the benefits and costs of the semiparametric approach?
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MINIMUM DISTANCE
ESTIMATION AND THE

GENERALIZED METHOD
OF MOMENTS

Q
13.1 INTRODUCTION

The maximum likelihood estimator presented in Chapter 14 is fully efficient among con-
sistent and asymptotically normally distributed estimators, in the context of the specified
parametric model. The possible shortcoming in this result is that to attain that efficiency,
it is necessary to make possibly strong, restrictive assumptions about the distribution,
or data generating process. The generalized method of moments (GMM) estimators
discussed in this chapter move away from parametric assumptions, toward estimators
that are robust to some variations in the underlying data generating process.

This chapter will present a number of fairly general results on parameter estimation.
We begin with perhaps the oldest formalized theory of estimation, the classical theory
of the method of moments. This body of results dates to the pioneering work of Fisher
(1925). The use of sample moments as the building blocks of estimating equations is
fundamental in econometrics. GMM is an extension of this technique that, as will be
clear shortly, encompasses nearly all the familiar estimators discussed in this book.
Section 13.2 will introduce the estimation framework with the method of moments. The
technique of minimum distance estimation is developed in Section 13.3. Formalities of
the GMM estimator are presented in Section 13.4. Section 13.5 discusses hypothesis
testing based on moment equations. Major applications, including dynamic panel data
models, are described in Section 13.6.

Example 13.1 Euler Equations and Life Cycle Consumption
One of the most often cited applications of the GMM principle for estimating econometric
models is Hall’s (1978) permanent income model of consumption. The original form of the
model (with some small changes in notation) posits a hypothesis about the optimizing be-
havior of a consumer over the life cycle. Consumers are hypothesized to act according to
the model:

Maximize Et

[
T−t∑
τ=0

(
1

1 + δ

)τ

U (ct+τ ) | �t

]
subject to

T−t∑
τ=0

(
1

1 + r

)τ

(ct+τ − wt+τ ) = At .

The information available at time t is denoted �t so that Et denotes the expectation formed
at time t based on the information set �t . The maximand is the expected discounted stream
of future utility from consumption from time t until the end of life at time T. The individual’s
subjective rate of time preference is β = 1/(1+δ) . The real rate of interest, r ≥ δ is assumed to
be constant. The utility function U(ct ) is assumed to be strictly concave and time separable
(as shown in the model). One period’s consumption is ct . The intertemporal budget constraint
states that the present discounted excess of ct over earnings, wt , over the lifetime equals

495
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total assets At not including human capital. In this model, it is claimed that the only source of
uncertainty is wt . No assumption is made about the stochastic properties of wt except that
there exists an expected future earnings, Et [wt+τ | �t ]. Successive values are not assumed
to be independent and wt is not assumed to be stationary.

Hall’s major “theorem” in the paper is the solution to the optimization problem, which
states

Et [U ′(ct+1) |�t ] = 1 + δ

1 + r
U ′(ct ) .

For our purposes, the major conclusion of the paper is “Corollary 1” which states “No in-
formation available in time t apart from the level of consumption, ct , helps predict future
consumption, ct+1, in the sense of affecting the expected value of marginal utility. In particu-
lar, income or wealth in periods t or earlier are irrelevant once ct is known.” We can use this as
the basis of a model that can be placed in the GMM framework. To proceed, it is necessary
to assume a form of the utility function. A common (convenient) form of the utility function
is U (ct ) = c1−α

t /(1 − α) , which is monotonic, U ′ = c−α
t > 0 and concave, U ′′/U ′ = −α/ct < 0.

Inserting this form into the solution, rearranging the terms, and reparameterizing it for con-
venience, we have

Et

[
(1 + r )

(
1

1 + δ

)(
ct+1

ct

)−α

− 1| �t

]
= Et

[
β(1 + r ) Rλ

t+1 − 1| �t

] = 0,

where Rt+1 = ct+1/ct and λ = −α.
Hall assumed that r was constant over time. Other applications of this modeling frame-

work [for example, Hansen and Singleton (1982)] have modified the framework so as to
involve a forecasted interest rate, rt+1. How one proceeds from here depends on what is
in the information set. The unconditional mean does not identify the two parameters. The
corollary states that the only relevant information in the information set is ct . Given the form
of the model, the more natural instrument might be Rt . This assumption exactly identifies the
two parameters in the model:

Et

[(
β(1 + rt+1) Rλ

t+1 − 1
)(

1
Rt

)]
=

[
0
0

]
.

As stated, the model has no testable implications. These two moment equations would
exactly identify the two unknown parameters. Hall hypothesized several models involving
income and consumption which would overidentify and thus place restrictions on the model.

13.2 CONSISTENT ESTIMATION: THE METHOD
OF MOMENTS

Sample statistics such as the mean and variance can be treated as simple descriptive
measures. In our discussion of estimation in Appendix C, however, we argue that, in
general, sample statistics each have a counterpart in the population, for example, the
correspondence between the sample mean and the population expected value. The
natural (perhaps obvious) next step in the analysis is to use this analogy to justify using
the sample “moments” as estimators of these population parameters. What remains to
establish is whether this approach is the best, or even a good way to use the sample data
to infer the characteristics of the population.

The basis of the method of moments is as follows: In random sampling, under
generally benign assumptions, a sample statistic will converge in probability to some
constant. For example, with i.i.d. random sampling, m̄′

2 = (1/n)
∑n

i=1 y2
i will converge
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in mean square to the variance plus the square of the mean of the random variable, yi .
This constant will, in turn, be a function of the unknown parameters of the distribution.
To estimate K parameters, θ1, . . . , θK, we can compute K such statistics, m̄1, . . . , m̄K,
whose probability limits are known functions of the parameters. These K moments are
equated to the K functions, and the functions are inverted to express the parameters
as functions of the moments. The moments will be consistent by virtue of a law of
large numbers (Theorems D.4–D.9). They will be asymptotically normally distributed
by virtue of the Lindeberg–Levy Central Limit theorem (D.18). The derived para-
meter estimators will inherit consistency by virtue of the Slutsky theorem (D.12) and
asymptotic normality by virtue of the delta method (Theorem D.21).

This section will develop this technique in some detail, partly to present it in its own
right and partly as a prelude to the discussion of the generalized method of moments,
or GMM, estimation technique, which is treated in Section 13.4.

13.2.1 RANDOM SAMPLING AND ESTIMATING THE PARAMETERS
OF DISTRIBUTIONS

Consider independent, identically distributed random sampling from a distribution
f (y | θ1, . . . , θK) with finite moments up to E [y2K]. The random sample consists of
n observations, y1, . . . , yn. The kth “raw” or uncentered moment is

m̄′
k = 1

n

n∑
i=1

yk
i .

By Theorem D.4,

E [m̄′
k] = μ′

k = E
[
yk

i

]
,

and

Var[m̄′
k] = 1

n
Var

[
yk

i

] = 1
n

(
μ′

2k − μ′2
k

)
.

By convention, μ′
1 = E [yi ] = μ. By the Khinchine theorem, D.5,

plim m̄′
k = μ′

k = E
[
yk

i

]
.

Finally, by the Lindeberg–Levy central limit theorem,
√

n(m̄′
k − μ′

k)
d−→ N

[
0, μ′

2k − μ′2
k

]
.

In general, μ′
k will be a function of the underlying parameters. By computing K

raw moments and equating them to these functions, we obtain K equations that can (in
principle) be solved to provide estimates of the K unknown parameters.

Example 13.2 Method of Moments Estimator for N [μ, σ 2]
In random sampling from N[μ, σ 2],

plim
1
n

n∑
i =1

yi = plim m̄′
1 = E [yi ] = μ,

and

plim
1
n

n∑
i =1

y2
i = plim m̄′

2 = Var [yi ] + μ2 = σ 2 + μ2.
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Equating the right- and left-hand sides of the probability limits gives moment estimators

μ̂ = m̄′
1 = ȳ,

and

σ̂ 2 = m̄′
2 − m̄′ 2

1 =
(

1
n

n∑
i =1

y2
i

)
−

(
1
n

n∑
i =1

yi

)2

= 1
n

n∑
i =1

( yi − ȳ) 2.

Note that σ̂ 2 is biased, although both estimators are consistent.

Although the moments based on powers of y provide a natural source of information
about the parameters, other functions of the data may also be useful. Let mk(·) be a
continuous and differentiable function not involving the sample size n, and let

m̄k = 1
n

n∑
i=1

mk(yi ), k = 1, 2, . . . , K.

These are also “moments” of the data. It follows from Theorem D.4 and the corollary,
(D-5), that

plim m̄k = E [mk(yi )] = μk(θ1, . . . , θK).

We assume that μk(·) involves some of or all the parameters of the distribution. With
K parameters to be estimated, the K moment equations,

m̄1 − μ1(θ1, . . . , θK) = 0,

m̄2 − μ2(θ1, . . . , θK) = 0,

· · ·
m̄K − μK(θ1, . . . , θK) = 0,

provide K equations in K unknowns, θ1, . . . , θK. If the equations are continuous and
functionally independent, then method of moments estimators can be obtained by solv-
ing the system of equations for

θ̂k = θ̂k[m̄1, . . . , m̄K].

As suggested, there may be more than one set of moments that one can use for estimating
the parameters, or there may be more moment equations available than are necessary.

Example 13.3 Inverse Gaussian (Wald) Distribution
The inverse Gaussian distribution is used to model survival times, or elapsed times from some
beginning time until some kind of transition takes place. The standard form of the density for
this random variable is

f ( y) =
√

λ

2πy3
exp

[
−λ( y − μ) 2

2μ2 y

]
, y > 0, λ > 0, μ > 0.

The mean is μ while the variance is μ3/λ. The efficient maximum likelihood estimators of the
two parameters are based on (1/n)

∑n
i =1 yi and (1/n)

∑n
i =1(1/yi ) . Because the mean and

variance are simple functions of the underlying parameters, we can also use the sample mean
and sample variance as moment estimators of these functions. Thus, an alternative pair of
method of moments estimators for the parameters of the Wald distribution can be based on
(1/n)

∑n
i =1 yi and (1/n)

∑n
i =1 y2

i . The precise formulas for these two pairs of estimators is
left as an exercise.
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Example 13.4 Mixtures of Normal Distributions
Quandt and Ramsey (1978) analyzed the problem of estimating the parameters of a mixture
of normal distributions. Suppose that each observation in a random sample is drawn from
one of two different normal distributions. The probability that the observation is drawn from
the first distribution, N[μ1, σ 2

1 ], is λ, and the probability that it is drawn from the second is
(1 − λ) . The density for the observed y is

f ( y) = λN
[
μ1, σ 2

1

] + (1 − λ) N
[
μ2, σ 2

2

]
, 0 ≤ λ ≤ 1

= λ(
2πσ 2

1

)1/2 e−1/2[( y−μ1)/σ1]2 + 1 − λ(
2πσ 2

2

)1/2 e−1/2[( y−μ2)/σ2]2 .

Before proceeding, we note that this density is precisely the same as the finite mixture
model described in Section 14.10.1. Maximum likelihood estimation of the model using the
method described there would be simpler than the method of moment generating functions
developed here.

The sample mean and second through fifth central moments,

m̄k = 1
n

n∑
i =1

( yi − ȳ ) k, k = 2, 3, 4, 5,

provide five equations in five unknowns that can be solved (via a ninth-order polynomial) for
consistent estimators of the five parameters. Because ȳ converges in probability to E [ yi ] = μ,
the theorems given earlier for m̄′

k as an estimator of μ′
k apply as well to m̄k as an estimator

of

μk = E [( yi − μ) k].

For the mixed normal distribution, the mean and variance are

μ = E [yi ] = λμ1 + (1 − λ)μ2,

and

σ 2 = Var[yi ] = λσ 2
1 + (1 − λ)σ 2

2 + 2λ(1 − λ) (μ1 − μ2) 2,

which suggests how complicated the familiar method of moments is likely to become. An
alternative method of estimation proposed by the authors is based on

E [etyi ] = λetμ1+t2σ2
1

/2 + (1 − λ)etμ2+t2σ2
2

/2 = 
t ,

where t is any value not necessarily an integer. Quandt and Ramsey (1978) suggest choosing
five values of t that are not too close together and using the statistics

M̄t = 1
n

n∑
i =1

etyi

to estimate the parameters. The moment equations are M̄t − 
t (μ1, μ2, σ 2
1 , σ 2

2 , λ) = 0. They
label this procedure the method of moment generating functions. (See Section B.6 for
definition of the moment generating function.)

In most cases, method of moments estimators are not efficient. The exception is in
random sampling from exponential families of distributions.
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DEFINITION 13.1 Exponential Family
An exponential (parametric) family of distributions is one whose log-likelihood
is of the form

ln L(θ | data) = a(data) + b(θ) +
K∑

k=1

ck(data)sk(θ),

where a(·), b(·), ck(·), and sk(·) are functions. The members of the “family” are
distinguished by the different parameter values.

If the log-likelihood function is of this form, then the functions ck(·) are called
sufficient statistics.1 When sufficient statistics exist, method of moments estimator(s)
can be functions of them. In this case, the method of moments estimators will also
be the maximum likelihood estimators, so, of course, they will be efficient, at least
asymptotically. We emphasize, in this case, the probability distribution is fully specified.
Because the normal distribution is an exponential family with sufficient statistics m̄′

1
and m̄′

2, the estimators described in Example 13.2 are fully efficient. (They are the
maximum likelihood estimators.) The mixed normal distribution is not an exponential
family. We leave it as an exercise to show that the Wald distribution in Example 13.3 is
an exponential family. You should be able to show that the sufficient statistics are the
ones that are suggested in Example 13.3 as the bases for the MLEs of μ and λ.

Example 13.5 Gamma Distribution
The gamma distribution (see Section B.4.5) is

f ( y) = λp

�( P)
e−λy yP−1, y ≥ 0, P > 0, λ > 0.

The log-likelihood function for this distribution is

1
n

ln L = [P ln λ − ln �( P) ] − λ
1
n

n∑
i =1

yi + ( P − 1)
1
n

n∑
i =1

ln yi .

This function is an exponential family with a(data) = 0, b(θ ) = n[P ln λ − ln �( P) ] and two suf-
ficient statistics, 1

n

∑n
i =1 yi and 1

n

∑n
i =1 ln yi . The method of moments estimators based on

1
n

∑n
i =1 yi and 1

n

∑n
i =1 ln yi would be the maximum likelihood estimators. But, we also have

plim
1
n

n∑
i =1

⎡
⎢⎢⎣

yi

y2
i

ln yi

1/yi

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

P/λ

P( P + 1)/λ2

�( P) − ln λ

λ/( P − 1)

⎤
⎥⎥⎦ .

(The functions �( P) and �( P) = d ln �( P)/dP are discussed in Section E.2.3.) Any two of
these can be used to estimate λ and P.

1Stuart and Ord (1989, pp. 1–29) give a discussion of sufficient statistics and exponential families of distribu-
tions. A result that we will use in Chapter 17 is that if the statistics, ck(data) are sufficient statistics, then the
conditional density f [y1, . . . , yn | ck(data), k = 1, . . . , K] is not a function of the parameters.
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For the income data in Example C.1, the four moments listed earlier are

(m̄′
1, m̄′

2, m̄′
∗, m̄′

−1) = 1
n

n∑
i =1

[
yi , y2

i , ln yi ,
1
yi

]
= [31.278, 1453.96, 3.22139, 0.050014].

The method of moments estimators of θ = ( P, λ) based on the six possible pairs of these
moments are as follows:

( P̂, λ̂) =

⎡
⎢⎣

m̄′
1 m̄′

2 m̄′
−1

m̄′
2 2.05682, 0.065759

m̄′
−1 2.77198, 0.0886239 2.60905, 0.080475

m̄′
∗ 2.4106, 0.0770702 2.26450, 0.071304 3.03580, 0.1018202

⎤
⎥⎦ .

The maximum likelihood estimates are θ̂ (m̄′
1, m̄′

∗) = (2.4106, 0.0770702) .

13.2.2 ASYMPTOTIC PROPERTIES OF THE METHOD
OF MOMENTS ESTIMATOR

In a few cases, we can obtain the exact distribution of the method of moments estima-
tor. For example, in sampling from the normal distribution, μ̂ has mean μ and vari-
ance σ 2/n and is normally distributed, while σ̂ 2 has mean [(n − 1)/n]σ 2 and variance
[(n − 1)/n]22σ 4/(n − 1) and is exactly distributed as a multiple of a chi-squared variate
with (n−1) degrees of freedom. If sampling is not from the normal distribution, the ex-
act variance of the sample mean will still be Var[y]/n, whereas an asymptotic variance
for the moment estimator of the population variance could be based on the leading
term in (D-27), in Example D.10, but the precise distribution may be intractable.

There are cases in which no explicit expression is available for the variance of
the underlying sample moment. For instance, in Example 13.4, the underlying sample
statistic is

M̄t = 1
n

n∑
i=1

etyi = 1
n

n∑
i=1

Mit .

The exact variance of M̄t is known only if t is an integer. But if sampling is random, and
if M̄t is a sample mean: we can estimate its variance with 1/n times the sample variance
of the observations on Mit. We can also construct an estimator of the covariance of M̄t

and M̄s :

Est. Asy. Cov[M̄t , M̄s] = 1
n

{
1
n

n∑
i=1

[(etyi − M̄t )(esyi − M̄s)]

}
.

In general, when the moments are computed as

m̄n,k = 1
n

n∑
i=1

mk(yi ), k = 1, . . . , K,

where yi is an observation on a vector of variables, an appropriate estimator of the
asymptotic covariance matrix of m̄n = [m̄n,1, . . . , m̄n,k] can be computed using

1
n

F jk = 1
n

{
1
n

n∑
i=1

[(mj (yi ) − m̄j )(mk(yi ) − m̄k)]

}
, j, k = 1, . . . , K.

(One might divide the inner sum by n − 1 rather than n. Asymptotically it is the same.)
This estimator provides the asymptotic covariance matrix for the moments used in
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computing the estimated parameters. Under the assumption of i.i.d. random sampling
from a distribution with finite moments, nF will converge in probability to the appropri-
ate covariance matrix of the normalized vector of moments, � = Asy.Var[

√
n m̄n(θ)].

Finally, under our assumptions of random sampling, although the precise distribution
is likely to be unknown, we can appeal to the Lindeberg–Levy central limit theorem
(D.18) to obtain an asymptotic approximation.

To formalize the remainder of this derivation, refer back to the moment equations,
which we will now write

m̄n,k(θ1, θ2, . . . , θK) = 0, k = 1, . . . , K.

The subscript n indicates the dependence on a data set of n observations. We have also
combined the sample statistic (sum) and function of parameters, μ(θ1, . . . , θK) in this
general form of the moment equation. Let Ḡn(θ) be the K × K matrix whose kth row
is the vector of partial derivatives

Ḡ′
n,k = ∂m̄n,k

∂θ ′ .

Now, expand the set of solved moment equations around the true values of the param-
eters θ0 in a linear Taylor series. The linear approximation is

0 ≈ [m̄n(θ0)] + Ḡ′
n(θ0)(θ̂ − θ0).

Therefore, √
n(θ̂ − θ0) ≈ −[Ḡn(θ0)]−1√n[m̄n(θ0)]. (13-1)

(We have treated this as an approximation because we are not dealing formally with
the higher order term in the Taylor series. We will make this explicit in the treatment
of the GMM estimator in Section 13.4.) The argument needed to characterize the large
sample behavior of the estimator, θ̂ , is discussed in Appendix D. We have from Theo-
rem D.18 (the central limit theorem) that

√
n m̄n(θ0) has a limiting normal distribution

with mean vector 0 and covariance matrix equal to �. Assuming that the functions
in the moment equation are continuous and functionally independent, we can expect
Ḡn(θ0) to converge to a nonsingular matrix of constants, �(θ0). Under general condi-
tions, the limiting distribution of the right-hand side of (13-1) will be that of a linear
function of a normally distributed vector. Jumping to the conclusion, we expect the
asymptotic distribution of θ̂ to be normal with mean vector θ0 and covariance matrix
(1/n) × {−[�(θ0)]−1

}
�

{−[�′(θ0)]−1
}

. Thus, the asymptotic covariance matrix for the
method of moments estimator may be estimated with

Est. Asy. Var [θ̂ ] = 1
n

[Ḡ
′
n(θ̂)F−1Ḡn(θ̂)]−1.

Example 13.5 (Continued)
Using the estimates θ̂ (m′

1, m′
∗) = (2.4106, 0.0770702) ,

ˆ̄G =
[
−1/λ̂ P̂/λ̂

2

−�̂
′

1/λ̂

]
=

[
−12.97515 405.8353
−0.51241 12.97515

]
.

[The function � ′ is d2 ln �( P)/dP2 = (��′′ − �′ 2)/�2. With P̂ = 2.4106, �̂ = 1.250832,
�̂ = 0.658347, and �̂ ′ = 0.512408].2 The matrix F is the sample covariance matrix of y

2	 ′ is the trigamma function. Values for �(P), 	(P), and 	 ′(P) are tabulated in Abramovitz and Stegun
(1971). The values given were obtained using the IMSL computer program library.
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and ln y (using 19 as the divisor),

F =
[

500.68 14.31
14.31 0.47746

]
.

The product is

1
n

[
Ĝ

′
F−1Ĝ

]−1

=
[

0.38978 0.014605
0.014605 0.00068747

]
.

For the maximum likelihood estimator, the estimate of the asymptotic covariance matrix
based on the expected (and actual) Hessian is

[−H]−1 = 1
n

[
� ′ −1/λ

−1/λ P/λ2

]−1

=
[

0.51243 0.01638
0.01638 0.00064654

]
.

The Hessian has the same elements as G because we chose to use the sufficient statistics
for the moment estimators, so the moment equations that we differentiated are, apart from
a sign change, also the derivatives of the log-likelihood. The estimates of the two variances
are 0.51203 and 0.00064654, respectively, which agrees reasonably well with the method of
moments estimates. The difference would be due to sampling variability in a finite sample
and the presence of F in the first variance estimator.

13.2.3 SUMMARY—THE METHOD OF MOMENTS

In the simplest cases, the method of moments is robust to differences in the specifica-
tion of the data generating process (DGP). A sample mean or variance estimates its
population counterpart (assuming it exists), regardless of the underlying process. It is
this freedom from unnecessary distributional assumptions that has made this method
so popular in recent years. However, this comes at a cost. If more is known about the
DGP, its specific distribution for example, then the method of moments may not make
use of all of the available information. Thus, in Example 13.3, the natural estimators
of the parameters of the distribution based on the sample mean and variance turn out
to be inefficient. The method of maximum likelihood, which remains the foundation of
much work in econometrics, is an alternative approach which utilizes this out of sample
information and is, therefore, more efficient.

13.3 MINIMUM DISTANCE ESTIMATION

The preceding analysis has considered exactly identified cases. In each example, there
were K parameters to estimate and we used K moments to estimate them. In Exam-
ple 13.5, we examined the gamma distribution, a two-parameter family, and considered
different pairs of moments that could be used to estimate the two parameters. (The most
efficient estimator for the parameters of this distribution will be based on (1/n)�i yi

and (1/n)�i ln yi . This does raise a general question: How should we proceed if we
have more moments than we need? It would seem counterproductive to simply discard
the additional information. In this case, logically, the sample information provides more
than one estimate of the model parameters, and it is now necessary to reconcile those
competing estimators.

We have encountered this situation in several earlier examples: In Example 11.20, in
Passmore’s (2005) study of Fannie Mae, we have four independent estimators of a single
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parameter, α̂ j , with estimated asymptotic variance V̂ j , j = 1, . . . , 4. The estimators were
combined using a criterion function:

minimize with respect to α : q =
4∑

j=i

(α̂ j − α)2

V̂ j
.

The solution to this minimization problem is

α̂MDE =
4∑

j=1

w j α̂ j , w j = 1/V̂ j∑4
s=1(1/V̂s)

, j = 1, . . . , 4 and
4∑

j=1

w j = 1.

In forming the two-stage least squares estimator of the parameters in a dynamic panel
data model in Section 11.11.3, we obtained T − 2 instrumental variable estimators of
the parameter vector θ by forming different instruments for each period for which we
had sufficient data. The T − 2 estimators of the same parameter vector are θ̂ IV(t). The
Arellano–Bond estimator of the single parameter vector in this setting is

θ̂ IV =
( T∑

t=3

W(t)

)−1( T∑
t=3

W(t)θ̂ IV(t)

)

=
T∑

t=3

R(t)θ̂ IV(t),

where

W(t) =
(

ˆ̃X′
(t)

ˆ̃X(t)

)

and

R(t) =
(

T∑
t=3

W(t)

)−1

W(t) and
T∑

t=3

R(t) = I.

Finally, Carey’s (1997) analysis of hospital costs that we examined in Example 11.10
involved a seemingly unrelated regressions model that produced multiple estimates of
several of the model parameters. We will revisit this application in Example 13.6.

A minimum distance estimator (MDE) is defined as follows: Let m̄n,l denote a
sample statistic based on n observations such that

plim m̄n,l = gl(θ0), l = 1, . . . , L,

where θ0 is a vector of K ≤ L parameters to be estimated. Arrange these moments and
functions in L× 1 vectors m̄n and g(θ0) and further assume that the statistics are jointly
asymptotically normally distributed with plim m̄n = g(θ) and Asy. Var[m̄n] = (1/n)�.
Define the criterion function

q = [m̄n − g(θ)]′W [m̄n − g(θ)]

for a positive definite weighting matrix, W. The minimum distance estimator is the
θ̂MDE that minimizes q. Different choices of W will produce different estimators, but
the estimator has the following properties for any W:
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THEOREM 13.1 Asymptotic Distribution of the Minimum
Distance Estimator

Under the assumption that
√

n[m̄n−g(θ0)]
d−→ N[0,�], the asymptotic properties

of the minimum distance estimator are as follows:

plim θ̂MDE = θ0,

Asy. Var
[
θ̂MDE

] = 1
n

[�(θ0)
′W(�θ0)]−1[�(θ0)

′W�W�(θ0)][�(θ0)
′W�(θ0)]−1

= 1
n

V,

where

�(θ0) = plim G(θ̂MDE) = plim
∂g(θ̂MDE)

∂ θ̂
′
MDE

,

and

θ̂MDE
a−→ N

[
θ0,

1
n

V
]

.

Proofs may be found in Malinvaud (1970) and Amemiya (1985). For our purposes, we
can note that the MDE is an extension of the method of moments presented in the
preceding section. One implication is that the estimator is consistent for any W, but
the asymptotic covariance matrix is a function of W. This suggests that the choice of
W might be made with an eye toward the size of the covariance matrix and that there
might be an optimal choice. That does indeed turn out to be the case. For minimum
distance estimation, the weighting matrix that produces the smallest variance is

optimal weighting matrix: W∗ = [
Asy. Var.

√
n{m̄n − g(θ)}]−1

= �−1.

[See Hansen (1982) for discussion.] With this choice of W,

Asy. Var
[
θ̂MDE

] = 1
n

[
�(θ0)

′�−1�(θ0)
]−1

,

which is the result we had earlier for the method of moments estimator.
The solution to the MDE estimation problem is found by locating the θ̂MDE such

that
∂q

∂ θ̂MDE
= −G(θ̂MDE)′W

[
m̄n − g(θ̂MDE)

] = 0.

An important aspect of the MDE arises in the exactly identified case. If K equals L,
and if the functions gl(θ) are functionally independent, that is, G(θ) has full row rank,
K, then it is possible to solve the moment equations exactly. That is, the minimization
problem becomes one of simply solving the K moment equations, m̄n,l = gl(θ0) in the K
unknowns, θ̂MDE. This is the method of moments estimator examined in the preceding
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section. In this instance, the weighting matrix, W, is irrelevant to the solution, because
the MDE will now satisfy the moment equations

[
m̄n − g(θ̂MDE)

] = 0.

For the examples listed earlier, which are all for overidentified cases, the minimum
distance estimators are defined by

q = (
(α̂1 − α) (α̂2 − α) (α̂3 − α) (α̂4 − α)

)
⎡
⎢⎢⎢⎣

V̂1 0 0 0
0 V̂2 0 0
0 0 V̂3 0
0 0 0 V̂4

⎤
⎥⎥⎥⎦

−1 ⎛
⎜⎜⎝

(α̂1 − α)

(α̂2 − α)

(α̂3 − α)

(α̂4 − α)

⎞
⎟⎟⎠

for Passmore’s analysis of Fannie Mae, and

q = (
(bIV(3) − θ) . . . (bIV(T) − θ)

)′

⎡
⎢⎢⎢⎣

(
ˆ̃X′

(3)
ˆ̃X(3)

)
. . . 0

...
. . .

...

0 . . .
(

ˆ̃X′
(T)

ˆ̃X(T)

)

⎤
⎥⎥⎥⎦

−1⎛
⎜⎝

(bIV(3) − θ)
...

(bIV(T) − θ)

⎞
⎟⎠

for the Arellano–Bond estimator of the dynamic panel data model.

Example 13.6 Minimum Distance Estimation of a Hospital
Cost Function

In Carey’s (1997) study of hospital costs in Example 11.10, Chamberlain’s (1984) seemingly
unrelated regressions approach to a panel data model produces five period-specific esti-
mates of a parameter vector, θ t . Some of the parameters are specific to the year while others
(it is hypothesized) are common to all five years. There are two specific parameters of interest,
βD and βO, that are allowed to vary by year, but are each estimated multiple times by the
SUR model. We focus on just these parameters. The model states

yit = αi + Ait + βD,t DISit + βO,t OUTit + εit,

where

αi = Bi + �tγD,t DISit + �tγO,t OUTit + ui , t = 1987, . . . , 1991,

DISit is patient discharges, and OUTit is outpatient visits. (We are changing Carey’s notation
slightly and suppressing parts of the model that are extraneous to the development here. The
terms Ait and Bi contain those additional components.) The preceding model is estimated by
inserting the expression for αi in the main equation, then fitting an unrestricted seemingly un-
related regressions model by FGLS. There are five years of data, hence five sets of estimates.
Note, however, with respect to the discharge variable, DIS, although each equation provides
separate estimates of (γD,1, . . . , (βD,t + γD,t ) , . . . , γD,5) , a total of five parameter estimates
in each each equation (year), there are only 10, not 25 parameters to be estimated in total.
The parameters on OUTit are likewise overidentified. Table 13.1 reproduces the estimates in
Table 11.7 for the discharge coefficients and adds the estimates for the outpatient variable.

Looking at the tables we see that the SUR model provides four direct estimates of γD,87,
based on the 1988–1991 equations. It also implicitly provides four estimates of βD,87 since
any of the four estimates of γD,87 from the last four equations can be subtracted from the
coefficient on DIS in the 1987 equation to estimate βD,87. There are 50 parameter estimates
of different functions of the 20 underlying parameters

θ = (βD,87, . . . , βD,91) , (γD,87, . . . , γD,91) , (βO,87, . . . , βO,91) , (γO,87, . . . , γO,91) ,

and, therefore, 30 constraints to impose in finding a common, restricted estimator. An MDE
was used to reconcile the competing estimators.
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TABLE 13.1a Coefficient Estimates for DIS in SUR Model for Hospital Costs

Coefficient on Variable in the Equation

Equation DIS87 DIS88 DIS89 DIS90 DIS91

SUR87 βD,87 + γD,87 γD,88 γD,89 γD,90 γD,91
1.76 0.116 −0.0881 0.0570 −0.0617

SUR88 γD,87 βD,88 + γD,88 γD,89 γD,90 γD,91
0.254 1.61 −0.0934 0.0610 −0.0514

SUR89 γD,87 γD,88 βD,89 + γD,89 γD,90 γD,91
0.217 0.0846 1.51 0.0454 −0.0253

SUR90 γD,87 γD,88 γD,89 βD,90 + γD,90 γD,91
0.179 0.0822 0.0295 1.57 0.0244

SUR91 γD,87 γD,88 γD,89 γD,90 βD,91 + γD,91
0.153 0.0363 −0.0422 0.0813 1.70

MDE β = 1.50 β = 1.58 β = 1.54 β = 1.57 β = 1.63
γ = 0.219 γ = 0.0666 γ = −0.0539 γ = 0.0690 γ = −0.0213

TABLE 13.1b Coefficient Estimates for OUT in SUR Model for Hospital Costs

Coefficient on Variable in the Equation

Equation OUT87 OUT88 OUT89 OUT90 OUT91

SUR87 βO,87 + γD,87 γO,88 γO,89 γO,90 γO,91
0.0139 0.00292 0.00157 0.000951 0.000678

SUR88 γO,87 βO,88 + γO,88 γO,89 γO,90 γO,91
0.00347 0.0125 0.00501 0.00550 0.00503

SUR89 γO,87 γO,88 βO,89 + γO,89 γO,90 γO,91
0.00118 0.00159 0.00832 −0.00220 −0.00156

SUR90 γO,87 γO,88 γO,89 βO,90 + γO,90 γO,91
−0.00226 −0.00155 0.000401 0.00897 0.000450

SUR91 γO,87 γO,88 γO,89 γO,90 βO,91 + γO,91
0.00278 0.00255 0.00233 0.00305 0.0105

MDE β = 0.0112 β = 0.00999 β = 0.0100 β = 0.00915 β = 0.00793
γ = 0.00177 γ = 0.00408 γ = −0.00011 γ = −0.00073 γ = 0.00267

Let β̂ t denote the 10 × 1 period-specific estimator of the model parameters. Unlike the
other cases we have examined, the individual estimates here are not uncorrelated. In the
SUR model, the estimated asymptotic covariance matrix is the partitioned matrix given in
(10-7). For the estimators of two equations,

Est. Asy. Cov
[
β̂ t , β̂s

] = the t, s block of

⎡
⎢⎢⎢⎢⎣

σ̂ 11X′
1X1 σ̂ 12X′

1X2 . . . σ̂ 15X′
1X5

σ̂ 21X′
2X1 σ̂ 22X′

2X2 . . . σ̂ 25X′
2X5

...
...

. . .
...

σ̂ 51X′
5X1 σ̂ 52X′

5X2 . . . σ̂ 55X′
5X5

⎤
⎥⎥⎥⎥⎦

−1

= V̂ts

where σ̂ ts is the t,s element of 
̂
−1

. (We are extracting a submatrix of the relevant matrices
here since Carey’s SUR model contained 26 other variables in each equation in addition to
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the five periods of DIS and OUT). The 50 × 50 weighting matrix for the MDE is

W =

⎡
⎢⎢⎢⎣

V̂87,87 V̂87,88 V̂87,89 V̂87,90 V̂87,91

V̂88,87 V̂88,88 V̂88,89 V̂88,90 V̂88,91

V̂89,87 V̂89,88 V̂89,89 V̂89,90 V̂89,91

V̂90,87 V̂90,88 V̂90,89 V̂90,90 V̂90,91

V̂91,87 V̂91,88 V̂91,89 V̂91,90 V̂91,91

⎤
⎥⎥⎥⎦

−1

=
[
V̂

ts
]

.

The vector of the quadratic form is a stack of five 10 × 1 vectors; the first is

m̄n,87 − g87(θ )

=
[{

β̂87
D,87 − (βD,87 + γD,87)

}
,
{
β̂87

D,88 − γD,88

}
,
{
β̂87

D,89 − γD,89

}
,
{
β̂87

D,90 − γD,90

}
,
{
β̂87

D,91 − γD,90

}
,{

β̂87
O,87 − (βO,87 + γO,87)

}
,
{
β̂87

O,88 − γO,88

}
,
{
β̂87

O,89 − γD,89

}
,
{
β̂87

O,90 − γO,90

}
,
{
β̂87

O,91 − γO,90

}
]′

for the 1987 equation and likewise for the other four equations. The MDE criterion function
for this model is

q =
1991∑

t=1987

1981∑
s=1997

[m̄t − gt (θ ) ]′ V̂
ts

[m̄s − gs(θ ) ] .

Note, there are 50 estimated parameters from the SUR equations (those are listed in
Table 13.1) and 20 unknown parameters to be calibrated in the criterion function. The re-
ported minimum distance estimates are shown in the last row of each table.

13.4 THE GENERALIZED METHOD OF MOMENTS
(GMM) ESTIMATOR

A large proportion of the recent empirical work in econometrics, particularly in macro-
economics and finance, has employed GMM estimators. As we shall see, this broad class
of estimators, in fact, includes most of the estimators discussed elsewhere in this book.

The GMM estimation technique is an extension of the minimum distance technique
described in Section 13.3.3 In the following, we will extend the generalized method of
moments to other models beyond the generalized linear regression, and we will fill in
some gaps in the derivation in Section 13.2.

13.4.1 ESTIMATION BASED ON ORTHOGONALITY CONDITIONS

Consider the least squares estimator of the parameters in the classical linear regression
model. An important assumption of the model is

E [xiεi ] = E [xi (yi − x′
iβ)] = 0.

3Formal presentation of the results required for this analysis are given by Hansen (1982); Hansen and Singleton
(1988); Chamberlain (1987); Cumby, Huizinga, and Obstfeld (1983); Newey (1984, 1985a, 1985b); Davidson
and MacKinnon (1993); and Newey and McFadden (1994). Useful summaries of GMM estimation and other
developments in econometrics are provided by Pagan and Wickens (1989) and Matyas (1999). An application
of some of these techniques that contains useful summaries is Pagan and Vella (1989). Some further discussion
can be found in Davidson and MacKinnon (2004). Ruud (2000) provides many of the theoretical details.
Hayashi (2000) is another extensive treatment of estimation centered on GMM estimators.
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The sample analog is

1
n

n∑
i=1

xi ε̂i = 1
n

n∑
i=1

xi (yi − x′
i β̂) = 0.

The estimator of β is the one that satisfies these moment equations, which are just the
normal equations for the least squares estimator. So, we see that the OLS estimator is
a method of moments estimator.

For the instrumental variables estimator of Chapter 8, we relied on a large sample
analog to the moment condition,

plim
(

1
n

n∑
i=1

ziεi

)
= plim

(
1
n

n∑
i=1

zi (yi − x′
iβ)

)
= 0.

We resolved the problem of having more instruments than parameters by solving the
equations

(
1
n

X′Z
)(

1
n

Z′Z
)−1(1

n
Z′ε̂

)
= 1

n
X̂′ε̂ = 1

n

n∑
i=1

x̂i ε̂i = 0,

where the columns of X̂ are the fitted values in regressions on all the columns of Z (that
is, the projections of these columns of X into the column space of Z). (See Section 8.3.4
for further details.)

The nonlinear least squares estimator was defined similarly, although in this case,
the normal equations are more complicated because the estimator is only implicit. The
population orthogonality condition for the nonlinear regression model is E [x0

i εi ] = 0.
The empirical moment equation is

1
n

n∑
i=1

(
∂ E [yi | xi , β]

∂β

)
(yi − E [yi | xi , β]) = 0.

Maximum likelihood estimators are obtained by equating the derivatives of a log-
likelihood to zero. The scaled log-likelihood function is

1
n

ln L = 1
n

n∑
i=1

ln f (yi | xi , θ),

where f (·) is the density function and θ is the parameter vector. For densities that satisfy
the regularity conditions [see Section 14.4.1],

E
[
∂ ln f (yi | xi , θ)

∂θ

]
= 0.

The maximum likelihood estimator is obtained by equating the sample analog to zero:

1
n

∂ ln L

∂ θ̂
= 1

n

n∑
i=1

∂ ln f (yi | xi , θ̂)

∂ θ̂
= 0.

(Dividing by n to make this result comparable to our earlier ones does not change the so-
lution.) The upshot is that nearly all the estimators we have discussed and will encounter
later can be construed as method of moments estimators. [Manski’s (1992) treatment of
analog estimation provides some interesting extensions and methodological discourse.]
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As we extend this line of reasoning, it will emerge that most of the estimators
defined in this book can be viewed as generalized method of moments estimators.

13.4.2 GENERALIZING THE METHOD OF MOMENTS

The preceding examples all have a common aspect. In each case listed, save for the
general case of the instrumental variable estimator, there are exactly as many moment
equations as there are parameters to be estimated. Thus, each of these are exactly
identified cases. There will be a single solution to the moment equations, and at that
solution, the equations will be exactly satisfied.4 But there are cases in which there are
more moment equations than parameters, so the system is overdetermined.

In Example 13.5, we defined four sample moments,

ḡ = 1
n

n∑
i=1

[
yi , y2

i ,
1
yi

, ln yi

]

with probability limits P/λ, P(P + 1)/λ2, λ/(P − 1), and ψ(P)− ln λ, respectively. Any
pair could be used to estimate the two parameters, but as shown in the earlier example,
the six pairs produce six somewhat different estimates of θ = (P, λ).

In such a case, to use all the information in the sample it is necessary to devise a way
to reconcile the conflicting estimates that may emerge from the overdetermined system.
More generally, suppose that the model involves K parameters, θ = (θ1, θ2, . . . , θK)′,
and that the theory provides a set of L > K moment conditions,

E [ml(yi , xi , zi , θ)] = E [mil(θ)] = 0,

where yi , xi , and zi are variables that appear in the model and the subscript i on mil(θ)

indicates the dependence on (yi , xi , zi ). Denote the corresponding sample means as

m̄l(y, X, Z, θ) = 1
n

n∑
i=1

ml(yi , xi , zi , θ) = 1
n

n∑
i=1

mil(θ).

Unless the equations are functionally dependent, the system of L equations in K un-
known parameters,

m̄l(θ) = 1
n

n∑
i=1

ml(yi , xi , zi , θ) = 0, l = 1, . . . , L,

will not have a unique solution.5 For convenience, the moment equations are defined
implicitly here as opposed to equalities of moments to functions as in Section 13.3. It
will be necessary to reconcile the

(L
K

)
different sets of estimates that can be produced.

One possibility is to minimize a criterion function, such as the sum of squares,6

q =
L∑

l=1

m̄2
l = m̄(θ)′m̄(θ). (13-2)

4That is, of course if there is any solution. In the regression model with multicollinearity, there are K param-
eters but fewer than K independent moment equations.
5It may if L is greater than the sample size, n. We assume that L is strictly less than n.
6This approach is one that Quandt and Ramsey (1978) suggested for the problem in Example 13.4.
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It can be shown [see, e.g., Hansen (1982)] that under the assumptions we have made so
far, specifically that plim m̄(θ) = E [m̄(θ)] = 0, the minimizer of q in (13-2) produces a
consistent (albeit, as we shall see, possibly inefficient) estimator of θ . We can, in fact,
use as the criterion a weighted sum of squares,

q = m̄(θ)′Wnm̄(θ),

where Wn is any positive definite matrix that may depend on the data but is not a
function of θ , such as I in (13-2), to produce a consistent estimator of θ .7 For example,
we might use a diagonal matrix of weights if some information were available about the
importance (by some measure) of the different moments. We do make the additional
assumption that plim Wn = a positive definite matrix, W.

By the same logic that makes generalized least squares preferable to ordinary least
squares, it should be beneficial to use a weighted criterion in which the weights are
inversely proportional to the variances of the moments. Let W be a diagonal matrix
whose diagonal elements are the reciprocals of the variances of the individual moments,

wll = 1
Asy. Var[

√
n m̄l]

= 1
φll

.

(We have written it in this form to emphasize that the right-hand side involves the
variance of a sample mean which is of order (1/n).) Then, a weighted least squares
estimator would minimize

q = m̄(θ)′�−1m̄(θ). (13-3)

In general, the Lelements of m̄ are freely correlated. In (13-3), we have used a diagonal
W that ignores this correlation. To use generalized least squares, we would define the
full matrix,

W = {
Asy. Var[

√
n m̄]

}−1 = �−1. (13-4)

The estimators defined by choosing θ to minimize

q = m̄(θ)′Wnm̄(θ)

are minimum distance estimators as defined in Section 13.3. The general result is that
if Wn is a positive definite matrix and if

plim m̄(θ) = 0,

then the minimum distance (generalized method of moments, or GMM) estimator of
θ is consistent.8 Because the OLS criterion in (13-2) uses I, this method produces a
consistent estimator, as does the weighted least squares estimator and the full GLS
estimator. What remains to be decided is the best W to use. Intuition might suggest

7In principle, the weighting matrix can be a function of the parameters as well. See Hansen, Heaton, and
Yaron (1996) for discussion. Whether this provides any benefit in terms of the asymptotic properties of
the estimator seems unlikely. The one payoff the authors do note is that certain estimators become invari-
ant to the sort of normalization that is discussed in Example 14.1. In practical terms, this is likely to be a
consideration only in a fairly small class of cases.
8In the most general cases, a number of other subtle conditions must be met so as to assert consistency and the
other properties we discuss. For our purposes, the conditions given will suffice. Minimum distance estimators
are discussed in Malinvaud (1970), Hansen (1982), and Amemiya (1985).
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(correctly) that the one defined in (13-4) would be optimal, once again based on the
logic that motivates generalized least squares. This result is the now-celebrated one of
Hansen (1982).

The asymptotic covariance matrix of this generalized method of moments (GMM)
estimator is

VGMM = 1
n

[�′W�]−1 = 1
n

[�′�−1�]−1, (13-5)

where � is the matrix of derivatives with jth row equal to

� j = plim
∂m̄j (θ)

∂θ ′ ,

and � = Asy. Var[
√

n m̄]. Finally, by virtue of the central limit theorem applied to the
sample moments and the Slutsky theorem applied to this manipulation, we can expect
the estimator to be asymptotically normally distributed. We will revisit the asymptotic
properties of the estimator in Section 13.4.3.

Example 13.7 GMM Estimation of a Nonlinear Regression Model
In Example 7.6, we examined a nonlinear regression model for income using the German
Socioeconomic Panel Data set. The regression model was

Income = h(1, Age, Education, Female, γ ) + ε,

where h(.) is an exponential function of the variables. In the example, we used several inter-
action terms. In this application, we will simplify the conditional mean function somewhat,
and use

Income = exp(γ1 + γ2Age + γ3Education + γ4Female) + ε,

which, for convenience, we will write

yi = exp(x′
i γ ) + εi

= μi + εi .
9

. The sample consists of the 1988 wave of the panel, less two observations for which Income
equals zero. The resulting sample contains 4,481 observations. Descriptive statistics for the
sample data are given in Table 7.2.

We will first consider nonlinear least squares estimation of the parameters. The normal
equations for nonlinear least squares will be

(1/n)�i [( yi − μi )μi xi ] = (1/n)�i [εi μi xi ] = 0.

Note that the orthogonality condition involves the pseudoregressors, ∂μi /∂γ = x0
i = μi xi .

The implied population moment equation is

E [εi (μi xi ) ] = 0.

Computation of the nonlinear least squares estimator is discussed in Section 7.2.6. The
estimator of the asymptotic covariance matrix is

Est. Asy. Var[γ̂ NLSQ] = �n
i =1( yi − μ̂i ) 2

(4,481 − 4)

[
4,481∑
i =1

( μ̂i xi ) ( μ̂i xi )
′
]−1

, where μ̂i = exp(x′
i γ̂ ) .

9We note that in this model, it is likely that Education is endogenous. It would be straightforward to accom-
modate that in the GMM estimator. However, for purposes of a straightforward numerical example, we will
proceed assuming that Education is exogenous
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A simple method of moments estimator might be constructed from the hypothesis that xi
(not x0

i ) is orthogonal to εi . Then,

E [εi xi ] = E

⎡
⎢⎣εi

⎛
⎜⎝

1
Agei

Educationi
Femalei

⎞
⎟⎠

⎤
⎥⎦ = 0

implies four moment equations. The sample counterparts will be

m̄k(γ ) = 1
n

n∑
i =1

( yi − μi ) xi k = 1
n

n∑
i =1

εi xi k.

In order to compute the method of moments estimator, we will minimize the sum of squares,

m̄′(γ )m̄(γ ) =
4∑

k=1

m̄2
k (γ ) .

This is a nonlinear optimization problem that must be solved iteratively using the methods
described in Section E.3.

With the first-step estimated parameters, γ̂ 0 in hand, the covariance matrix is estimated
using (13-5).

�̂ =
{

1
4,481

4,481∑
i =1

mi ( γ̂
0)m′

i ( γ̂
0)

}
=

{
1

4,481

4,481∑
i =1

(
ε̂0

i xi

) (
ε̂0

i xi

)′
}

Ḡ =
{

1
4,481

n∑
i =1

(
ε̂0

i xi

) (−μ̂0
i xi

)′
}

.

The asymptotic covariance matrix for the MOM estimator is computed using (13-5),

Est. Asy. Var[γ̂ MOM] = 1
n

[Ḡ�̂
−1

Ḡ
′
]−1.

Suppose we have in hand additional variables, Health Satisfaction and Marital Status,
such that although the conditional mean function remains as given previously, we will use
them to form a GMM estimator. This provides two additional moment equations,

E

[
εi

(
Health Satisfactioni
Marital Statusi

)]

for a total of six moment equations for estimating the four parameters. We constuct the
generalized method of moments estimator as follows: The initial step is the same as before,
except the sum of squared moments, m̄′(γ )m̄(γ ) , is summed over six rather than four terms.
We then construct

�̂ =
{

1
4,481

4,481∑
i =1

mi ( γ̂ ) m′
i ( γ̂ )

}
=

{
1

4,481

4,481∑
i =1

( ε̂i zi ) ( ε̂i zi ) ′
}

,

where now, zi in the second term is the six exogenous variables, rather than the original four
(including the constant term). Thus, �̂ is now a 6 × 6 moment matrix. The optimal weighting
matrix for estimation (developed in the next section) is �̂

−1
. The GMM estimator is computed

by minimizing with respect to γ

q = m̄′(γ )�̂
−1

m̄(γ ) .

The asymptotic covariance matrix is computed using (13-5) as it was for the simple method
of moments estimator.
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TABLE 13.2 Nonlinear Regression Estimates (Standard Errors in
Parentheses)

Nonlinear Method of First Step
Estimate Least Squares Moments GMM GMM

Constant −1.69331 −1.62969 −1.45551 −1.61192
(0.04408) (0.04214) (0.10102) (0.04163)

Age 0.00207 0.00178 −0.00028 0.00092
(0.00061) (0.00057) (0.00100) (0.00056)

Education 0.04792 0.04861 0.03731 0.04647
(0.00247) (0.00262) (0.00518) (0.00262)

Female −0.00658 0.00070 −0.02205 −0.01517
(0.01373) (0.01384) (0.01445) (0.01357)

Table 13.2 presents four sets of estimates, nonlinear least squares, method of moments,
first-step GMM, and GMM using the optimal weighting matrix. Two comparisons are noted.
The method of moments produces slightly different results from the nonlinear least squares
estimator. This is to be expected, since they are different criteria. Judging by the standard
errors, the GMM estimator seems to provide a very slight improvement over the nonlinear
least squares and method of moments estimators. The conclusion, though, would seem to be
that the two additional moments (variables) do not provide very much additional information
for estimation of the parameters.

13.4.3 PROPERTIES OF THE GMM ESTIMATOR

We will now examine the properties of the GMM estimator in some detail. Because the
GMM estimator includes other familiar estimators that we have already encountered,
including least squares (linear and nonlinear), and instrumental variables, these results
will extend to those cases. The discussion given here will only sketch the elements of
the formal proofs. The assumptions we make here are somewhat narrower than a fully
general treatment might allow, but they are broad enough to include the situations
likely to arise in practice. More detailed and rigorous treatments may be found in, for
example, Newey and McFadden (1994), White (2001), Hayashi (2000), Mittelhammer
et al. (2000), or Davidson (2000).

The GMM estimator is based on the set of population orthogonality conditions,

E [mi (θ0)] = 0,

where we denote the true parameter vector by θ0. The subscript i on the term on the
left-hand side indicates dependence on the observed data, (yi , xi , zi ). Averaging this
over the sample observations produces the sample moment equation

E [m̄n(θ0)] = 0,

where

m̄n(θ0) = 1
n

n∑
i=1

mi (θ0).

This moment is a set of L equations involving the K parameters. We will assume that
this expectation exists and that the sample counterpart converges to it. The definitions
are cast in terms of the population parameters and are indexed by the sample size.
To fix the ideas, consider, once again, the empirical moment equations that define the
instrumental variable estimator for a linear or nonlinear regression model.
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Example 13.8 Empirical Moment Equation for Instrumental Variables
For the IV estimator in the linear or nonlinear regression model, we assume

E [m̄n(β) ] = E

[
1
n

n∑
i =1

zi [ yi − h(xi , β) ]

]
= 0.

There are L instrumental variables in zi and K parameters in β. This statement defines L
moment equations, one for each instrumental variable.

We make the following assumptions about the model and these empirical moments:

ASSUMPTION 13.1. Convergence of the Empirical Moments: The data generating
process is assumed to meet the conditions for a law of large numbers to apply, so
that we may assume that the empirical moments converge in probability to their
expectation. Appendix D lists several different laws of large numbers that increase
in generality. What is required for this assumption is that

m̄n(θ0) = 1
n

n∑
i=1

mi (θ0)
p−→ 0.

The laws of large numbers that we examined in Appendix D accommodate cases of
independent observations. Cases of dependent or correlated observations can be gath-
ered under the Ergodic theorem (20.1). For this more general case, then, we would
assume that the sequence of observations m(θ) constitutes a jointly (L × 1) stationary
and ergodic process.

The empirical moments are assumed to be continuous and continuously differen-
tiable functions of the parameters. For our earlier example, this would mean that the
conditional mean function, h(xi , β) is a continuous function of β (although not neces-
sarily of xi ). With continuity and differentiability, we will also be able to assume that
the derivatives of the moments,

Ḡn(θ0) = ∂m̄n(θ0)

∂θ ′
0

= 1
n

n∑
i=1

∂mi,n(θ0)

∂θ ′
0

,

converge to a probability limit, say, plim Ḡn(θ0) = Ḡ(θ0). [See (13-1), (13-5), and The-
orem 13.1.] For sets of independent observations, the continuity of the functions and
the derivatives will allow us to invoke the Slutsky theorem to obtain this result. For the
more general case of sequences of dependent observations, Theorem 20.2, Ergodicity
of Functions, will provide a counterpart to the Slutsky theorem for time-series data. In
sum, if the moments themselves obey a law of large numbers, then it is reasonable to
assume that the derivatives do as well.

ASSUMPTION 13.2. Identification: For any n ≥ K, if θ1 and θ2 are two different
parameter vectors, then there exist data sets such that m̄n(θ1) 	= m̄n(θ2). Formally,
in Section 12.5.3, identification is defined to imply that the probability limit of the
GMM criterion function is uniquely minimized at the true parameters, θ0.
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Assumption 13.2 is a practical prescription for identification. More formal condi-
tions are discussed in Section 12.5.3. We have examined two violations of this crucial
assumption. In the linear regression model, one of the assumptions is full rank of the
matrix of exogenous variables—the absence of multicollinearity in X. In our discus-
sion of the maximum likelihood estimator, we will encounter a case (Example 14.1) in
which a normalization is needed to identify the vector of parameters. [See Hansen et al.
(1996) for discussion of this case.] Both of these cases are included in this assumption.
The identification condition has three important implications:

1. Order condition. The number of moment conditions is at least as large as the
number of parameters; L≥ K. This is necessary, but not sufficient for identification.

2. Rank condition. The L× K matrix of derivatives, Ḡn(θ0) will have row rank equal
to K. (Again, note that the number of rows must equal or exceed the number of
columns.)

3. Uniqueness. With the continuity assumption, the identification assumption implies
that the parameter vector that satisfies the population moment condition is unique.
We know that at the true parameter vector, plim m̄n(θ0) = 0. If θ1 is any parameter
vector that satisfies this condition, then θ1 must equal θ0.

Assumptions 13.1 and 13.2 characterize the parameterization of the model.
Together they establish that the parameter vector will be estimable. We now make
the statistical assumption that will allow us to establish the properties of the GMM
estimator.

ASSUMPTION 13.3. Asymptotic Distribution of Empirical Moments: We assume
that the empirical moments obey a central limit theorem. This assumes that the
moments have a finite asymptotic covariance matrix, (1/n)�, so that

√
n m̄n(θ0)

d−→ N [0, �].

The underlying requirements on the data for this assumption to hold will vary
and will be complicated if the observations comprising the empirical moment are not
independent. For samples of independent observations, we assume the conditions un-
derlying the Lindeberg–Feller (D.19) or Liapounov central limit theorem (D.20) will
suffice. For the more general case, it is once again necessary to make some assumptions
about the data. We have assumed that

E [mi (θ0)] = 0.

If we can go a step further and assume that the functions mi (θ0) are an ergodic, stationary
martingale difference series,

E [mi (θ0) | mi−1(θ0), mi−2(θ0) . . .] = 0,

then we can invoke Theorem 20.3, the central limit theorem for the Martingale differ-
ence series. It will generally be fairly complicated to verify this assumption for nonlinear
models, so it will usually be assumed outright. On the other hand, the assumptions are
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likely to be fairly benign in a typical application. For regression models, the assumption
takes the form

E [ziεi | zi−1εi−1, . . .] = 0,

which will often be part of the central structure of the model.
With the assumptions in place, we have

THEOREM 13.2 Asymptotic Distribution of the GMM Estimator
Under the preceding assumptions,

θ̂GMM
p−→ θ0,

θ̂GMM
a∼ N[θ0, VGMM], (13-6)

where VGMM is defined in (13-5).

We will now sketch a proof of Theorem 13.2. The GMM estimator is obtained by
minimizing the criterion function

qn(θ) = m̄n(θ)′Wnm̄n(θ),

where Wn is the weighting matrix used. Consistency of the estimator that minimizes
this criterion can be established by the same logic that will be used for the maximum
likelihood estimator. It must first be established that qn(θ) converges to a value q0(θ).
By our assumptions of strict continuity and Assumption 13.1, qn(θ0) converges to 0.
(We could apply the Slutsky theorem to obtain this result.) We will assume that qn(θ)

converges to q0(θ) for other points in the parameter space as well. Because Wn is positive
definite, for any finite n, we know that

0 ≤ qn(θ̂GMM) ≤ qn(θ0). (13-7)

That is, in the finite sample, θ̂GMM actually minimizes the function, so the sample value of
the criterion is not larger at θ̂GMM than at any other value, including the true parameters.
But, at the true parameter values, qn(θ0)

p−→ 0. So, if (13-7) is true, then it must follow
that qn(θ̂GMM)

p−→ θ0 as well because of the identification assumption, 13.2. As n → ∞,
qn(θ̂GMM) and qn(θ) converge to the same limit. It must be the case, then, that as n → ∞,
m̄n(θ̂GMM) → m̄n(θ0), because the function is quadratic and W is positive definite. The
identification condition that we assumed earlier now assures that as n → ∞, θ̂GMM must
equal θ0. This establishes consistency of the estimator.

We will now sketch a proof of the asymptotic normality of the estimator: The first-
order conditions for the GMM estimator are

∂qn(θ̂GMM)

∂ θ̂GMM
= 2Ḡn(θ̂GMM)′Wnm̄n(θ̂GMM) = 0. (13-8)

(The leading 2 is irrelevant to the solution, so it will be dropped at this point.) The
orthogonality equations are assumed to be continuous and continuously differentiable.
This allows us to employ the mean value theorem as we expand the empirical moments
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in a linear Taylor series around the true value, θ0

m̄n(θ̂GMM) = m̄n(θ0) + Ḡn(θ̄)(θ̂GMM − θ0), (13-9)

where θ̄ is a point between θ̂GMM and the true parameters, θ0. Thus, for each element
θ̄k = wkθ̂k,GMM + (1 − wk)θ0,k for some wk such that 0 < wk < 1. Insert (13-9) in (13-8)
to obtain

Ḡn(θ̂GMM)′Wnm̄n(θ0) + Ḡn(θ̂GMM)′WnḠn(θ̄)(θ̂GMM − θ0) = 0.

Solve this equation for the estimation error and multiply by
√

n. This produces

√
n(θ̂GMM − θ0) = −[Ḡn(θ̂GMM)′WnḠn(θ̄)]−1Ḡn(θ̂GMM)′Wn

√
n m̄n(θ0).

Assuming that they have them, the quantities on the left- and right-hand sides have the
same limiting distributions. By the consistency of θ̂GMM, we know that θ̂GMM and θ̄ both
converge to θ0. By the strict continuity assumed, it must also be the case that

Ḡn(θ̄)
p−→ Ḡ(θ0) and Ḡn(θ̂GMM)

p−→ Ḡ(θ0).

We have also assumed that the weighting matrix, Wn, converges to a matrix of constants,
W. Collecting terms, we find that the limiting distribution of the vector on the left-hand
side must be the same as that on the right-hand side in (13-10),

√
n(θ̂GMM − θ0)

d−→ {−[Ḡ(θ0)
′WḠ(θ0)]−1Ḡ(θ0)

′W
}√

n m̄n(θ0). (13-10)

We now invoke Assumption 13.3. The matrix in curled brackets is a set of constants.
The last term has the normal limiting distribution given in Assumption 13.3. The mean
and variance of this limiting distribution are zero and �, respectively. Collecting terms,
we have the result in Theorem 13.2, where

VGMM = 1
n

[Ḡ(θ0)
′WḠ(θ0)]−1Ḡ(θ0)

′W�WḠ(θ0)[Ḡ(θ0)
′WḠ(θ0)]−1. (13-11)

The final result is a function of the choice of weighting matrix, W. If the optimal weighting
matrix, W = �−1, is used, then the expression collapses to

VGMM,optimal = 1
n

[Ḡ(θ0)
′�−1Ḡ(θ0)]−1. (13-12)

Returning to (13-11), there is a special case of interest. If we use least squares or
instrumental variables with W = I, then

VGMM = 1
n
(Ḡ′Ḡ)−1Ḡ′�Ḡ(Ḡ′Ḡ)−1.

This equation prescibes essentially the White or Newey-West estimator, which returns
us to our departure point and provides a neat symmetry to the GMM principle. We will
formalize this in Section 13.6.1.
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13.5 TESTING HYPOTHESES IN THE GMM
FRAMEWORK

The estimation framework developed in the previous section provides the basis for a
convenient set of statistics for testing hypotheses. We will consider three groups of tests.
The first is a pair of statistics that is used for testing the validity of the restrictions that
produce the moment equations. The second is a trio of tests that correspond to the
familiar Wald, LM, and LR tests. The third is a class of tests based on the theoretical
underpinnings of the conditional moments that we used earlier to devise the GMM
estimator.

13.5.1 TESTING THE VALIDITY OF THE MOMENT RESTRICTIONS

In the exactly identified cases we examined earlier (least squares, instrumental variables,
maximum likelihood), the criterion for GMM estimation,

q = m̄(θ)′Wm̄(θ),

would be exactly zero because we can find a set of estimates for which m̄(θ) is exactly
zero. Thus in the exactly identified case when there are the same number of moment
equations as there are parameters to estimate, the weighting matrix W is irrelevant
to the solution. But if the parameters are overidentified by the moment equations,
then these equations imply substantive restrictions. As such, if the hypothesis of the
model that led to the moment equations in the first place is incorrect, at least some of
the sample moment restrictions will be systematically violated. This conclusion provides
the basis for a test of the overidentifying restrictions. By construction, when the optimal
weighting matrix is used,

nq = [√
n m̄(θ̂)′

] {
Est. Asy. Var[

√
n m̄(θ̂)]

}−1 [√
n m̄(θ̂)

]
,

so nq is a Wald statistic. Therefore, under the hypothesis of the model,

nq
d−→ χ2[L− K].

(For the exactly identified case, there are zero degrees of freedom and q = 0.)

Example 13.9 Overidentifying Restrictions
In Hall’s consumption model, two orthogonality conditions noted in Example 13.1 exactly
identify the two parameters. But his analysis of the model suggests a way to test the specifi-
cation. The conclusion, “No information available in time t apart from the level of consump-
tion, ct , helps predict future consumption, ct+1, in the sense of affecting the expected value
of marginal utility. In particular, income or wealth in periods t or earlier are irrelevant once
ct is known” suggests how one might test the model. If lagged values of income (Yt might
equal the ratio of current income to the previous period’s income) are added to the set of
instruments, then the model is now overidentified by the orthogonality conditions;

Et

⎡
⎢⎢⎣

(
β(1 + rt+1) Rλ

t+1 − 1
) ×

⎛
⎜⎜⎝

1
Rt

Yt−1

Yt−2

⎞
⎟⎟⎠

⎤
⎥⎥⎦ =

[
0
0

]
.

A simple test of the overidentifying restrictions would be suggestive of the validity of the
corollary. Rejecting the restrictions casts doubt on the original model. Hall’s proposed tests
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to distinguish the life cycle–permanent income model from other theories of consumption
involved adding two lags of income to the information set. Hansen and Singleton (1982) op-
erated directly on this form of the model. Other studies, for example, Campbell and Mankiw’s
(1989) as well as Hall’s, used the model’s implications to formulate more conventional instru-
mental variable regression models.

The preceding is a specification test, not a test of parametric restrictions. However,
there is a symmetry between the moment restrictions and restrictions on the parameter
vector. Suppose θ is subjected to J restrictions (linear or nonlinear) that restrict the
number of free parameters from K to K − J . (That is, reduce the dimensionality of
the parameter space from K to K − J .) The nature of the GMM estimation problem
we have posed is not changed at all by the restrictions. The constrained problem may
be stated in terms of

qR = m̄(θ R)′Wm̄(θ R).

Note that the weighting matrix, W, is unchanged. The precise nature of the solution
method may be changed—the restrictions mandate a constrained optimization. How-
ever, the criterion is essentially unchanged. It follows then that

nqR
d−→ χ2[L− (K − J )].

This result suggests a method of testing the restrictions, although the distribution theory
is not obvious. The weighted sum of squares with the restrictions imposed, nqR, must
be larger than the weighted sum of squares obtained without the restrictions, nq. The
difference is

(nqR − nq)
d−→ χ2[J ]. (13-13)

The test is attributed to Newey and West (1987b). This provides one method of testing
a set of restrictions. (The small-sample properties of this test will be the central focus
of the application discussed in Section 13.6.5.) We now consider several alternatives.

13.5.2 GMM COUNTERPARTS TO THE WALD, LM, AND LR TESTS

Section 14.6 describes a trio of testing procedures that can be applied to a hypothesis
in the context of maximum likelihood estimation. To reiterate, let the hypothesis to
be tested be a set of J possibly nonlinear restrictions on K parameters θ in the form
H0: r(θ) = 0. Let c1 be the maximum likelihood estimates of θ estimated without the
restrictions, and let c0 denote the restricted maximum likelihood estimates, that is, the
estimates obtained while imposing the null hypothesis. The three statistics, which are
asymptotically equivalent, are obtained as follows:

LR = likelihood ratio = −2(ln L0 − ln L1),

where

ln Lj = log likelihood function evaluated at c j , j = 0, 1.

The likelihood ratio statistic requires that both estimates be computed. The Wald statis-
tic is

W = Wald = [r(c1)]′
{

Est. Asy. Var[r(c1)]
}−1[r(c1)]. (13-14)
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The Wald statistic is the distance measure for the degree to which the unrestricted esti-
mator fails to satisfy the restrictions. The usual estimator for the asymptotic covariance
matrix would be

Est. Asy. Var[r(c1)] = R1
{

Est. Asy. Var[c1]
}

R′
1, (13-15)

where

R1 = ∂r(c1)/∂c′
1 (R1 is a J × K matrix).

The Wald statistic can be computed using only the unrestricted estimate. The LM statis-
tic is

LM = Lagrange multiplier = g′
1(c0)

{
Est. Asy. Var[g1(c0)]

}−1g1(c0), (13-16)

where

g1(c0) = ∂ ln L1(c0)/∂c0,

that is, the first derivatives of the unconstrained log-likelihood computed at the re-
stricted estimates. The term Est. Asy. Var[g1(c0)] is the inverse of any of the usual
estimators of the asymptotic covariance matrix of the maximum likelihood estimators
of the parameters, computed using the restricted estimates. The most convenient choice
is usually the BHHH estimator. The LM statistic is based on the restricted estimates.

Newey and West (1987b) have devised counterparts to these test statistics for the
GMM estimator. The Wald statistic is computed identically, using the results of GMM
estimation rather than maximum likelihood.10 That is, in (13-14), we would use the
unrestricted GMM estimator of θ . The appropriate asymptotic covariance matrix is
(13-12). The computation is exactly the same. The counterpart to the LR statistic is
the difference in the values of nq in (13-13). It is necessary to use the same weight-
ing matrix, W in both restricted and unrestricted estimators. Because the unrestricted
estimator is consistent under both H0 and H1, a consistent, unrestricted estimator of
θ is used to compute W. Label this �−1

1 = {
Asy. Var[

√
n m̄1(c1)]

}−1. In each oc-
currence, the subscript 1 indicates reference to the unrestricted estimator. Then q
is minimized without restrictions to obtain q1 and then subject to the restrictions to
obtain q0. The statistic is then (nq0 − nq1).11 Because we are using the same W in
both cases, this statistic is necessarily nonnegative. (This is the statistic discussed in
Section 13.5.1.)

Finally, the counterpart to the LM statistic would be

LMGMM = n
[
m̄1(c0)

′�̂−1
1 Ḡ1(c0)

][
Ḡ1(c0)

′�̂−1
1 Ḡ1(c0)

]−1[Ḡ1(c0)
′�̂−1

1 m̄1(c0)
]
.

The logic for this LM statistic is the same as that for the MLE. The derivatives of the
minimized criterion q in (13-3) evaluated at the restricted estimator are

g1(c0) = ∂q
∂c0

= 2Ḡ1(c0)
′�̂−1

1 m̄(c0).

10See Burnside and Eichenbaum (1996) for some small-sample results on this procedure. Newey and
McFadden (1994) have shown the asymptotic equivalence of the three procedures.
11Newey and West label this test the D test.
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The LM statistic, LMGMM, is a Wald statistic for testing the hypothesis that this vector
equals zero under the restrictions of the null hypothesis. From our earlier results, we
would have

Est. Asy. Var[g1(c0)] = 4
n

Ḡ1(c0)
′�̂−1

1

{
Est. Asy. Var[

√
n m̄(c0)]

}
�̂−1

1 Ḡ1(c0).

The estimated asymptotic variance of
√

n m̄(c0) is �̂1, so

Est. Asy. Var[g1(c0)] = 4
n

Ḡ1(c0)
′�̂−1

1 Ḡ1(c0).

The Wald statistic would be

Wald = g1(c0)
′{Est. Asy. Var[g1(c0)]

}−1g1(c0)

= n m̄′
1(c0)�̂

−1
1 Ḡ1(c0)

{
Ḡ1(c0)

′�̂−1
1 Ḡ1(c0)

}−1Ḡ1(c0)
′�̂−1

1 m̄1(c0).
(13-17)

13.6 GMM ESTIMATION OF ECONOMETRIC
MODELS

The preceding has suggested that the GMM approach to estimation broadly encom-
passes most of the estimators we will encounter in this book. We have implicitly exam-
ined least squares and the general method of instrumental variables in the process. In
this section, we will formalize more specifically the GMM estimators for several of the
estimators that appear in the earlier chapters. Section 13.6.1 examines the generalized
regression model of Chapter 9. Section 13.6.2 describes a relatively minor extension
of the GMM/IV estimator to nonlinear regressions. Sections 13.6.3 and 13.6.4 describe
the GMM estimators for our models of systems of equations, the seemingly unrelated
regressions (SUR) model and models of simultaneous equations. In the latter, as we
did in Chapter 10, we consider both limited (single-equation) and full information
(multiple-equation) estimators. Finally, in Section 13.6.5, we develop one of the ma-
jor applications of GMM estimation, the Arellano–Bond–Bover estimator for dynamic
panel data models.

13.6.1 SINGLE-EQUATION LINEAR MODELS

It is useful to confine attention to the instrumental variables case, as it is fairly general
and we can easily specialize it to the simpler regression models if that is appropri-
ate. Thus, we depart from the usual linear model (8-1), but we no longer require that
E [εi | xi ] = 0. Instead, we adopt the instrumental variables formulation in Chapter 8.
That is, our model is

yi = x′
iβ + εi

E [ziεi ] = 0

for K variables in xi and for some set of L instrumental variables, zi , where L ≥ K.
The earlier case of the generalized regression model arises if zi = xi , and the classical
regression form results if we add � = I as well, so this is a convenient encompassing
model framework.

In Chapter 9 on generalized least squares estimation, we considered two cases, first
one with a known �, then one with an unknown � that must be estimated. In estimation
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by the generalized method of moments, neither of these approaches is relevant because
we begin with much less (assumed) knowledge about the data generating process. We
will consider three cases:

• Classical regression: Var[εi | X, Z] = σ 2,
• Heteroscedasticity: Var[εi | X, Z] = σ 2

i ,
• Generalized model: Cov[εt , εs | X, Z] = σ 2ωts,

where Z and X are the n×Land n×K observed data matrices. (We assume, as will often
be true, that the fully general case will apply in a time-series setting. Hence the change
in the subscripts.) No specific distribution is assumed for the disturbances, conditional or
unconditional.

The assumption E [ziεi ] = 0 implies the following orthogonality condition:

Cov[zi , εi] = 0, or E [zi (yi − x′
iβ)] = 0.

By summing the terms, we find that this further implies the population moment equation,

E

[
1
n

n∑
i=1

zi (yi − x′
iβ)

]
= E [m̄(β)] = 0. (13-18)

This relationship suggests how we might now proceed to estimate β. Note, in fact, that if
zi = xi , then this is just the population counterpart to the least squares normal equations.
So, as a guide to estimation, this would return us to least squares. Suppose, we now
translate this population expectation into a sample analog and use that as our guide for
estimation. That is, if the population relationship holds for the true parameter vector,
β, suppose we attempt to mimic this result with a sample counterpart, or empirical
moment equation,[

1
n

n∑
i=1

zi (yi − x′
i β̂)

]
=

[
1
n

n∑
i=1

mi (β̂)

]
= m̄(β̂) = 0. (13-19)

In the absence of other information about the data generating process, we can use the
empirical moment equation as the basis of our estimation strategy.

The empirical moment condition is Lequations (the number of variables in Z) in K
unknowns (the number of parameters we seek to estimate). There are three possibilities
to consider:

1. Underidentified. L < K. If there are fewer moment equations than there are pa-
rameters, then it will not be possible to find a solution to the equation system in (13-19).
With no other information, such as restrictions that would reduce the number of free
parameters, there is no need to proceed any further with this case.

For the identified cases, it is convenient to write (13-19) as

m̄(β̂) =
(

1
n

Z′y
)

−
(

1
n

Z′X
)

β̂. (13-20)

2. Exactly identified. If L = K, then you can easily show (we leave it as an exercise)
that the single solution to our equation system is the familiar instrumental variables
estimator from Section 8.3.2,

β̂ = (Z′X)−1Z′y. (13-21)
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3. Overidentified. If L > K, then there is no unique solution to the equation sys-
tem m̄(β̂) = 0. In this instance, we need to formulate some strategy to choose an
estimator. One intuitively appealing possibility which has served well thus far is “least
squares.” In this instance, that would mean choosing the estimator based on the criterion
function

Minβ q = m̄(β̂)′m̄(β̂).

We do keep in mind that we will only be able to minimize this at some positive value;
there is no exact solution to (13-19) in the overidentified case. Also, you can verify that
if we treat the exactly identified case as if it were overidentified, that is, use least squares
anyway, we will still obtain the IV estimator shown in (13-21) for the solution to case (2).
For the overidentified case, the first-order conditions are

∂q
∂β

= 2
(

∂m̄′(β̂)

∂β

)
m̄(β̂) = 2Ḡ(β̂)′m̄(β̂)

= 2
(

1
n

X′Z
)(

1
n

Z′y − 1
n

Z′Xβ̂

)
= 0.

(13-22)

We leave as exercise to show that the solution in both cases (2) and (3) is now

β̂ = [(X′Z)(Z′X)]−1(X′Z)(Z′y). (13-23)

The estimator in (13-23) is a hybrid that we have not encountered before, though if
L = K, then it does reduce to the earlier one in (13-21). (In the overidentified case,
(13-21) is not an IV estimator, it is, as we have sought, a method of moments estimator.)

It remains to establish consistency and to obtain the asymptotic distribution and an
asymptotic covariance matrix for the estimator. The intermediate results we need are
Assumptions 13.1, 13.2, and 13.3 in Section 13.4.3:

• Convergence of the moments. The sample moment converges in probability to its
population counterpart. That is, m̄(β) → 0. Different circumstances will produce
different kinds of convergence, but we will require it in some form. For the simplest
cases, such as a model of heteroscedasticity, this will be convergence in mean square.
Certain time-series models that involve correlated observations will necessitate
some other form of convergence. But, in any of the cases we consider, we will
require the general result: plim m̄(β) = 0.

• Identification. The parameters are identified in terms of the moment equations.
Identification means, essentially, that a large enough sample will contain sufficient
information for us actually to estimate β consistently using the sample moments.
There are two conditions which must be met—an order condition, which we have
already assumed (L ≥ K), and a rank condition, which states that the moment
equations are not redundant. The rank condition implies the order condition, so we
need only formalize it:

• Identification condition for GMM estimation. The L× K matrix

�(β) = E [Ḡ(β)] = plim Ḡ(β) = plim
∂m̄
∂β ′ = plim

1
n

n∑
i=1

∂mi

∂β ′
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must have row rank equal to K.12 Because this requires L ≥ K, this implies the
order condition. This assumption means that this derivative matrix converges in
probability to its expectation. Note that we have assumed, in addition, that the
derivatives, like the moments themselves, obey a law of large numbers—they con-
verge in probability to their expectations.

• Limiting Normal Distribution for the Sample Moments. The population moment
obeys a central limit theorem or some similar variant. Since we are studying a
generalized regression model, Lindeberg–Levy (D.18.) will be too narrow—the
observations will have different variances. Lindeberg–Feller (D.19.A) suffices in the
heteroscedasticity case, but in the general case, we will ultimately require something
more general. See Section 13.4.3.

It will follow from Assumptions 13.1–13.3 (again, at this point we do this without
proof) that the GMM estimators that we obtain are, in fact, consistent. By virtue of the
Slutsky theorem, we can transfer our limiting results to the empirical moment equations.

To obtain the asymptotic covariance matrix we will simply invoke the general result
for GMM estimators in Section 13.4.3. That is,

Asy. Var[β̂] = 1
n

[�′�]−1
�′ {Asy. Var[

√
n m̄(β)]

}
�[�′�]−1

.

For the particular model we are studying here,

m̄(β) = (1/n)(Z′y − Z′Xβ),

Ḡ(β) = (1/n)Z′X,

�(β) = QZX (see Section 8.3.2).

(You should check in the preceding expression that the dimensions of the particular
matrices and the dimensions of the various products produce the correctly configured
matrix that we seek.) The remaining detail, which is the crucial one for the model we
are examining, is for us to determine

V = Asy. Var[
√

n m̄(β)].

Given the form of m̄(β),

V = 1
n

Var

[
n∑

i=1

ziεi

]
= 1

n

n∑
i=1

n∑
j=1

σ 2ωi j zi z′
j = σ 2 Z′�Z

n

for the most general case. Note that this is precisely the expression that appears in
(9-6), so the question that arose there arises here once again. That is, under what con-
ditions will this converge to a constant matrix? We take the discussion there as given.
The only remaining detail is how to estimate this matrix. The answer appears in Sec-
tion 9.2.3, where we pursued this same question in connection with robust estimation of
the asymptotic covariance matrix of the least squares estimator. To review then, what
we have achieved to this point is to provide a theoretical foundation for the instrumental

12We require that the row rank be at least as large as K. There could be redundant, that is, functionally
dependent, moments, so long as there are at least K that are functionally independent.
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variables estimator. As noted earlier, this specializes to the least squares estimator. The
estimators of V for our three cases will be

• Classical regression:

V̂ = (e′e/n)

n

n∑
i=1

zi z′
i = (e′e/n)

n
Z′Z.

• Heteroscedastic regression:

V̂ = 1
n

n∑
i=1

e2
i zi z′

i . (13-24)

• Generalized regression:

V̂ = 1
n

[
n∑

t=1

e2
t zt z′

t +
p∑

�=1

(
1 − �

(p + 1)

) n∑
t=�+1

et et−�(zt z′
t−� + zt−�z′

t )

]
.

We should observe that in each of these cases, we have actually used some information
about the structure of �. If it is known only that the terms in m̄(β) are uncorrelated,
then there is a convenient estimator available,

V̂ = 1
n

n∑
i=1

mi (β̂)mi (β̂)′,

that is, the natural, empirical variance estimator. Note that this is what is being used in
the heteroscedasticity case directly preceding.

Collecting all the terms so far, then, we have

Est. Asy. Var[β̂] = 1
n

[Ḡ(β̂)′Ḡ(β̂)]−1Ḡ(β̂)′V̂Ḡ(β̂)[Ḡ(β̂)′Ḡ(β̂)]−1

= n[(X′Z)(Z′X)]−1(X′Z)V̂(Z′X)[(X′Z)(Z′X)]−1.

(13-25)

The preceding might seem to endow the least squares or method of moments esti-
mators with some degree of optimality, but that is not the case. We have only provided
them with a different statistical motivation (and established consistency). We now con-
sider the question of whether, because this is the generalized regression model, there is
some better (more efficient) means of using the data.

The class of minimum distance estimators for this model is defined by the solutions
to the criterion function

Minβ q = m̄(β)′Wm̄(β),

where W is any positive definite weighting matrix. Based on the assumptions just made,
we can invoke Theorem 13.1 to obtain

Asy. Var
[
β̂MD

] = 1
n

[
Ḡ′WḠ

]−1
Ḡ′WVWḠ

[
Ḡ′WḠ

]−1
.

Note that our entire preceding analysis was of the simplest minimum distance estimator,
which has W = I. The obvious question now arises, if any W produces a consistent
estimator, is any W better than any other one, or is it simply arbitrary? There is a firm
answer, for which we have to consider two cases separately:
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• Exactly identified case. If L = K; that is, if the number of moment conditions is
the same as the number of parameters being estimated, then W is irrelevant to the
solution, so on the basis of simplicity alone, the optimal W is I.

• Overidentified case. In this case, the “optimal” weighting matrix, that is, the W that
produces the most efficient estimator, is W = V−1. The best weighting matrix is the
inverse of the asymptotic covariance of the moment vector. In this case, the MDE
will be the GMM estimator with

β̂GMM = [(X′Z)V̂
−1

(Z′X)]−1(X′Z)V̂
−1

(Z′y),

and

Asy. Var
[
β̂GMM

] = 1
n

[Ḡ′V−1Ḡ]−1

= n[(X′Z)V−1(Z′X)]−1.

We conclude this discussion by tying together what should seem to be a loose end.
The GMM estimator is computed as the solution to

Minβ q = m̄(β)′
{
Asy. Var[

√
n m̄(β)]

}−1 m̄(β),

which might suggest that the weighting matrix is a function of the thing we are trying to
estimate. The process of GMM estimation will have to proceed in two steps: Step 1 is to
obtain an estimate of V; Step 2 will consist of using the inverse of this V as the weighting
matrix in computing the GMM estimator. The following is a common strategy:

Step 1. Use W = I to obtain a consistent estimator of β. Then, estimate V with

V̂ = 1
n

n∑
i =1

e2
i zi z′

i

in the heteroscedasticity case (i.e., the White estimator) or, for the more general case,
the Newey–West estimator.

Step 2. Use W = V̂−1 to compute the GMM estimator.

By this point, the observant reader should have noticed that in all of the preceding,
we have never actually encountered the two-stage least squares estimator that we in-
troduced in Section 8.3.4. To obtain this estimator, we must revert back to the classical,
that is, homoscedastic, and nonautocorrelated disturbances case. In that instance, the
weighting matrix in Theorem 13.2 will be W = (Z′Z)−1 and we will obtain the apparently
missing result.

The GMM estimator in the heteroscedastic regression model is produced by the
empirical moment equations

1
n

n∑
i=1

xi
(

yi − x′
i β̂GMM

) = 1
n

X′ε̂
(
β̂GMM

) = m̄
(
β̂GMM

) = 0. (13-26)
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The estimator is obtained by minimizing

q = m̄′(β̂GMM

)
Wm̄

(
β̂GMM

)
,

where W is a positive definite weighting matrix. The optimal weighting matrix would be

W = {
Asy. Var[

√
n m̄(β)]

}−1
,

which is the inverse of

Asy. Var[
√

nm̄(β)] = Asy. Var

[
1√
n

n∑
i=1

xiεi

]
= plim

n→∞

1
n

n∑
i=1

σ 2ωi xi x′
i = σ 2Q∗.

[See Section 9.4.1.] The optimal weighting matrix would be [σ 2Q∗]−1. But recall that this
minimization problem is an exactly identified case, so the weighting matrix is irrelevant
to the solution. You can see the result in the moment equation—that equation is simply
the normal equations for ordinary least squares. We can solve the moment equations
exactly, so there is no need for the weighting matrix. Regardless of the covariance matrix
of the moments, the GMM estimator for the heteroscedastic regression model is ordinary
least squares. We can use the results we have already obtained to find its asymptotic
covariance matrix. The implied estimator is the White estimator in (9-27). [Once again,
see Theorem 13.2.] The conclusion to be drawn at this point is that until we make some
specific assumptions about the variances, we do not have a more efficient estimator than
least squares, but we do have to modify the estimated asymptotic covariance matrix.

13.6.2 SINGLE-EQUATION NONLINEAR MODELS

Suppose that the theory specifies a relationship

yi = h(xi , β) + εi ,

where β is a K × 1 parameter vector that we wish to estimate. This may not be a
regression relationship, because it is possible that

Cov[εi , h(xi , β)] 	= 0,

or even

Cov[εi , x j ] 	= 0 for all i and j .

Consider, for example, a model that contains lagged dependent variables and autocor-
related disturbances. (See Section 20.9.3.) For the present, we assume that

E [ε | X] 	= 0,

and

E [εε′ | X] = σ 2� = 
,

where 
 is symmetric and positive definite but otherwise unrestricted. The disturbances
may be heteroscedastic and/or autocorrelated. But for the possibility of correlation be-
tween regressors and disturbances, this model would be a generalized, possibly non-
linear, regression model. Suppose that at each observation i we observe a vector of
L variables, zi , such that zi is uncorrelated with εi . You will recognize zi as a set of
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instrumental variables. The assumptions thus far have implied a set of orthogonality
conditions,

E [ziεi ] = 0,

which may be sufficient to identify (if L= K) or even overidentify (if L> K) the pa-
rameters of the model. (See Section 8.3.4.)

For convenience, define

e(X, β̂) = yi − h(xi , β̂), i = 1, . . . , n,

and

Z = n × L matrix whose ith row is z′
i .

By a straightforward extension of our earlier results, we can produce a GMM estimator
of β. The sample moments will be

m̄n(β) = 1
n

n∑
i=1

zi e(xi , β) = 1
n

Z′e(X, β).

The minimum distance estimator will be the β̂ that minimizes

q = m̄n(β̂)′Wm̄n(β̂) =
(

1
n

[e(X, β̂)′Z]
)

W
(

1
n

[Z′e(X, β̂)]
)

(13-27)

for some choice of W that we have yet to determine. The criterion given earlier produces
the nonlinear instrumental variable estimator. If we use W = (Z′Z)−1, then we have
exactly the estimation criterion we used in Section 8.6, where we defined the nonlinear
instrumental variables estimator. Apparently (13-27) is more general, because we are
not limited to this choice of W. For any given choice of W, as long as there are enough
orthogonality conditions to identify the parameters, estimation by minimizing q is, at
least in principle, a straightforward problem in nonlinear optimization. The optimal
choice of W for this estimator is

WGMM = {
Asy. Var[

√
n m̄n(β)]

}−1

=
{

Asy. Var

[
1√
n

n∑
i=1

ziεi

]}−1

=
{

Asy. Var
[

1√
n

Z′e(X, β)

]}−1

.
(13-28)

For our model, this is

W =
⎡
⎣1

n

n∑
i=1

n∑
j=1

Cov[ziεi , z jε j ]

⎤
⎦

−1

=
⎡
⎣1

n

n∑
i=1

n∑
j=1

σi j zi z′
j

⎤
⎦

−1

=
[

Z′
Z
n

]−1

.

If we insert this result in (13-27), we obtain the criterion for the GMM estimator:

q =
[(

1
n

)
e(X, β̂)′Z

] (
Z′
Z

n

)−1[(
1
n

)
Z′e(X, β̂)

]
.

There is a possibly difficult detail to be considered. The GMM estimator involves

1
n

Z′
Z = 1
n

n∑
i=1

n∑
j=1

zi z′
j Cov[εi , ε j ] = 1

n

n∑
i=1

n∑
j=1

zi z′
j Cov[(yi − h(xi , β)), (yj − h(x j , β))].
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The conditions under which such a double sum might converge to a positive definite
matrix are sketched in Section 9.2.2. Assuming that they do hold, estimation appears to
require that an estimate ofβ be in hand already, even though it is the object of estimation.
It may be that a consistent but inefficient estimator of β is available. Suppose for the
present that one is. If observations are uncorrelated, then the cross-observation terms
may be omitted, and what is required is

1
n

Z′
Z = 1
n

n∑
i=1

zi z′
i Var[(yi − h(xi , β))].

We can use a counterpart to the White (1980) estimator discussed in Section 9.4.4 for
this case:

S0 = 1
n

n∑
i=1

zi z′
i (yi − h(xi , β̂))2. (13-29)

If the disturbances are autocorrelated but the process is stationary, then Newey and
West’s (1987a) estimator is available (assuming that the autocorrelations are sufficiently
small at a reasonable lag, p):

S =
[

S0 + 1
n

p∑
�=1

w(�)

n∑
i=�+1

ei ei−�(zi z′
i−� + zi−�z′

i )

]
=

p∑
�=0

w(�)S�, (13-30)

where

w(�) = 1 − �

p + 1
.

The maximum lag length p must be determined in advance. We will require that observa-
tions that are far apart in time—that is, for which |i −�| is large—must have increasingly
smaller covariances for us to establish the convergence results that justify OLS, GLS, and
now GMM estimation. The choice of p is a reflection of how far back in time one must
go to consider the autocorrelation negligible for purposes of estimating (1/n)Z′
Z.
Current practice suggests using the smallest integer greater than or equal to n1/4.

Still left open is the question of where the initial consistent estimator should be
obtained. One possibility is to obtain an inefficient but consistent GMM estimator by
using W = I in (13-27). That is, use a nonlinear (or linear, if the equation is linear)
instrumental variables estimator. This first-step estimator can then be used to construct
W, which, in turn, can then be used in the GMM estimator. Another possibility is that
β may be consistently estimable by some straightforward procedure other than GMM.

Once the GMM estimator has been computed, its asymptotic covariance matrix
and asymptotic distribution can be estimated based on Theorem 13.2. Recall that

m̄n(β) = 1
n

n∑
i=1

ziεi ,

which is a sum of L× 1 vectors. The derivative, ∂m̄n(β)/∂β ′, is a sum of L× K matrices,
so

Ḡ(β) = ∂m̄(β)/∂β ′ = 1
n

n∑
i=1

Gi (β) = 1
n

n∑
i=1

zi

[
∂εi

∂β ′

]
. (13-31)
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In the model we are considering here,

∂εi

∂β ′ = −∂h(xi , β)

∂β ′ .

The derivatives are the pseudoregressors in the linearized regression model that we
examined in Section 7.2.3. Using the notation defined there,

∂εi

∂β
= −x0

i ,

so

Ḡ(β) = 1
n

n∑
i=1

Gi (β) = 1
n

n∑
i=1

−zi x0′
i = −1

n
Z′X0

. (13-32)

With this matrix in hand, the estimated asymptotic covariance matrix for the GMM
estimator is

Est. Asy. Var[β̂] =
[

Ḡ(β̂)′
(

1
n

Z′
̂Z
)−1

Ḡ(β̂)

]−1

= [(X0′Z)(Z′
̂Z)−1(Z′X0
)]−1.

(13-33)

(The two minus signs, a 1/n2, and an n2, all fall out of the result.)
If the 
 that appears in (13-33) were σ 2I, then (13-33) would be precisely the asymp-

totic covariance matrix that appears in Theorem 8.1 for linear models and Theorem 8.2
for nonlinear models. But there is an interesting distinction between this estimator
and the IV estimators discussed earlier. In the earlier cases, when there were more in-
strumental variables than parameters, we resolved the overidentification by specifically
choosing a set of K instruments, the K projections of the columns of X or X0 into the
column space of Z. Here, in contrast, we do not attempt to resolve the overidentifi-
cation; we simply use all the instruments and minimize the GMM criterion. Now, you
should be able to show that when 
 = σ 2I and we use this information, when all is said
and done, the same parameter estimates will be obtained. But, if we use a weighting
matrix that differs from W = (Z′Z/n)−1, then they are not.

13.6.3 SEEMINGLY UNRELATED REGRESSION MODELS

In Section 10.4, we considered FGLS estimation of the equation system

y1 = h1(X, β) + ε1,

y2 = h2(X, β) + ε2,
...

yM = hM(X, β) + εM.

The development there extends backwards to the linear system as well. However, none
of the estimators considered are consistent if the pseudoregressors, x0

tm, or the actual
regressors, xtm for the linear model, are correlated with the disturbances, εtm. Suppose
we allow for this correlation both within and across equations. (If it is, in fact, absent,
then the GMM estimator developed here will remain consistent.) For simplicity in this
section, we will denote observations with subscript t and equations with subscripts
i and j . Suppose, as well, that there are a set of instrumental variables, zt , such that

E[ztεtm] = 0, t = 1, . . . , T and m = 1, . . . , M. (13-34)
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(We could allow a separate set of instrumental variables for each equation, but it would
needlessly complicate the presentation.)

Under these assumptions, the nonlinear FGLS and ML estimators given earlier will
be inconsistent. But a relatively minor extension of the instrumental variables technique
developed for the single-equation case in Section 8.4 can be used instead. The sample
analog to (13-34) is

1
T

T∑
t=1

zt [yti − hi (xt , β)] = 0, i = 1, . . . , M.

If we use this result for each equation in the system, one at a time, then we obtain exactly
the GMM estimator discussed in Section 13.6.2. But, in addition to the efficiency loss
that results from not imposing the cross-equation constraints in β, we would also neglect
the correlation between the disturbances. Let

1
T

Z′�i j Z = E
[

Z′εiε
′
j Z

T

]
. (13-35)

The GMM criterion for estimation in this setting is

q =
M∑

i=1

M∑
j=1

[(yi − hi (X, β))′Z/T][Z′�i j Z/T]i j [Z′(y j − h j (X, β))/T]
(13-36)

=
M∑

i=1

M∑
j=1

[εi (β)′Z/T][Z′�i j Z/T]i j [Z′ε j (β)/T],

where [Z′�i j Z/T]i j denotes the ijth block of the inverse of the matrix with the ijth
block equal to Z′�i j Z/T. (This matrix is laid out in full in Section 13.6.4.)

GMM estimation would proceed in several passes. To compute any of the variance
parameters, we will require an initial consistent estimator of β. This step can be done with
equation-by-equation nonlinear instrumental variables—see Section 8.6—although if
equations have parameters in common, then a choice must be made as to which to use.
At the next step, the familiar White or Newey–West technique is used to compute, block
by block, the matrix in (13-35). Because it is based on a consistent estimator of β (we
assume), this matrix need not be recomputed. Now, with this result in hand, an iterative
solution to the maximization problem in (13-36) can be sought, for example, using the
methods of Appendix E. The first-order conditions are

∂q
∂β

= −2
M∑

i=1

M∑
j=1

[
X0

i (β)′Z/T
]
[Z′Wi j Z/T]i j [Z′ε j (β)/T] = 0. (13-37)

Note again that the blocks of the inverse matrix in the center are extracted from the
larger constructed matrix after inversion. [This brief discussion might understate the
complexity of the optimization problem in (13-36), but that is inherent in the pro-
cedure.] At completion, the asymptotic covariance matrix for the GMM estimator is
estimated with

VGMM = 1
T

[
M∑

i=1

M∑
j=1

[
X0

i (β)′Z/T
]
[Z′Wi j Z/T]i j[Z′X0

j (β)/T
]]−1

.
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13.6.4 SIMULTANEOUS EQUATIONS MODELS WITH
HETEROSCEDASTICITY

The GMM estimator in Section 13.6.1 is, with a minor change of notation, precisely
the set of procedures we used in Section 10.6.4 and 10.6.5 to estimate the equations in
a simultaneous equations model. Using a GMM estimator, however, will allow us to
generalize the covariance structure for the disturbances. We assume that

yt j = z′
t jδ j + εt j , t = 1, . . . , T,

where zt j = [Yt j , xt j ]. (We use the capital Yt j to denote the Lj included endogenous
variables. Note, as well, that to maintain consistency with Chapter 10, the roles of the
symbols x and z are reversed here; x is now the vector of exogenous variables.) We have
assumed that εt j in the jth equation is neither heteroscedastic nor autocorrelated. There
is no need to impose those assumptions at this point. Autocorrelation in the context of a
simultaneous equations model is a substantial complication, however. For the present,
we will consider the heteroscedastic case only.

The assumptions of the model provide the orthogonality conditions,

E [x tεt j ] = E [x t (yt j − z′
t jδ j )] = 0.

If x t is taken to be the full set of exogenous variables in the model, then we obtain the
criterion for the GMM estimator for the jth equation,

q =
[

e(zt , δ j )
′X

T

]
W−1

jj

[
X′e(zt , δ j )

T

]

= m̄(δ j )
′W−1

jj m̄(δ j ),

where

m̄(δ j ) = 1
T

T∑
t=1

x t (yt j − z′
t jδ j ) and W−1

jj = the GMM weighting matrix.

Once again, this is precisely the estimator defined in Section 13.6.1. If the disturbances
are assumed to be homoscedastic and nonautocorrelated, then the optimal weighting
matrix will be an estimator of the inverse of

Wjj = Asy. Var[
√

T m̄(δ j )]

= plim

[
1
T

T∑
t=1

x t x′
t (yt j − z′

t jδ j )
2

]

= plim
1
T

T∑
t=1

σjjx t x′
t

= plim σjj

(
X′X

T

)
.

The constant σ jj is irrelevant to the solution. If we use (X′X)−1 as the weighting matrix,
then the GMM estimator that minimizes q is the 2SLS estimator.

The extension that we can obtain here is to allow for heteroscedasticity of un-
known form. There is no need to rederive the earlier result. If the disturbances are
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heteroscedastic, then

Wjj = plim
1
T

T∑
t=1

ω j j,t x t x′
t = plim

X′�jjX
T

.

The weighting matrix can be estimated with White’s heteroscedasticity consistent
estimator—see (13-24)—if a consistent estimator of δ j is in hand with which to com-
pute the residuals. One is, because 2SLS ignoring the heteroscedasticity is consistent,
albeit inefficient. The conclusion then is that under these assumptions, there is a way to
improve on 2SLS by adding another step. The name 3SLS is reserved for the systems
estimator of this sort. When choosing between 2.5-stage least squares and Davidson
and MacKinnon’s suggested “heteroscedastic 2SLS,” or H2SLS, we chose to opt for the
latter. The estimator is based on the initial two-stage least squares procedure. Thus,

δ̂ j,H2SLS = [Z′
j X(S0, j j )

−1X′Z j ]−1[Z′
j X(S0, j j )

−1X′y j ],

where

S0, j j =
T∑

t=1

x t x′
t (yt j − z′

t j δ̂ j,2SLS)
2.

The asymptotic covariance matrix is estimated with

Est. Asy. Var[δ̂ j,H2SLS] = [Z′
j X(S0, j j )

−1X′Z j ]−1.

Extensions of this estimator were suggested by Cragg (1983) and Cumby, Huizinga, and
Obstfeld (1983).

The GMM estimator for a system of equations is described in Section 13.6.3. As
in the single-equation case, a minor change in notation produces the estimators for a
simultaneous equations model. As before, we will consider the case of unknown het-
eroscedasticity only. The extension to autocorrelation is quite complicated. [See Cumby,
Huizinga, and Obstfeld (1983).] The orthogonality conditions defined in (13-34) are

E [x tεt j ] = E [x t (yt j − z′
t jδ j )] = 0.

If we consider all the equations jointly, then we obtain the criterion for estimation of
all the model’s parameters,

q =
M∑

j=1

M∑
l=1

[
e(zt , δ j )

′X
T

]
[W] jl

[
X′e(zt , δl)

T

]

=
M∑

j=1

M∑
l=1

m̄(δ j )
′[W] jlm̄(δl),

where

m̄(δ j ) = 1
T

T∑
t=1

x t (yt j − z′
t jδ j ),

and

[W] jl = block jl of the weighting matrix, W−1.

As before, we consider the optimal weighting matrix obtained as the asymptotic covari-
ance matrix of the empirical moments, m̄(δ j ). These moments are stacked in a single
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vector m̄(δ). Then, the jlth block of Asy. Var[
√

T m̄(δ)] is

�jl = plim

{
1
T

T∑
t=1

[x t x′
t (yt j − z′

t jδ j )(ytl − z′
tlδl)]

}
= plim

(
1
T

T∑
t=1

ω jl,t x t x′
t

)
.

If the disturbances are homoscedastic, then �jl = σjl[plim(X′X/T)] is produced. Other-
wise, we obtain a matrix of the form �jl = plim[X′�jlX/T]. Collecting terms, then, the
criterion function for GMM estimation is

q =

⎡
⎢⎢⎢⎢⎢⎣

[X′(y1 − Z1δ1)]/T

[X′(y2 − Z2δ2)]/T

...

[X′(yM − ZMδM)]/T

⎤
⎥⎥⎥⎥⎥⎦

′ ⎡
⎢⎢⎢⎢⎢⎣

�11 �12 · · · �1M

�21 �22 · · · �2M

...
... · · · ...

�M1 �M2 · · · �MM

⎤
⎥⎥⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎢⎢⎣

[X′(y1 − Z1δ1)]/T

[X′(y2 − Z2δ2)]/T

...

[X′(yM − ZMδM)]/T

⎤
⎥⎥⎥⎥⎥⎦

.

For implementation, �jl can be estimated with

�̂jl = 1
T

T∑
t=1

x t x′
t (yt j − z′

t j d j )(ytl − z′
tldl),

where d j is a consistent estimator of δ j . The two-stage least squares estimator is a
natural choice. For the diagonal blocks, this choice is the White estimator as usual. For
the off-diagonal blocks, it is a simple extension. With this result in hand, the first-order
conditions for GMM estimation are

∂q̂
∂δ j

= −2
M∑

l=1

(
Z′

j X

T

)
�̂

jl
[

X′(yl − Zlδl)

T

]
,

where �̂
jl

is the jlth block in the inverse of the estimate of the center matrix in q.
The solution is

⎡
⎢⎢⎢⎣

δ̂1,GMM

δ̂2,GMM
...

δ̂M,GMM

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

Z′
1X�̂11X′Z1 Z′

1X�̂12X′Z2 · · · Z′
1X�̂1MX′ZM

Z′
2X�̂21X′Z1 Z′

2X�̂22X′Z2 · · · Z′
2X�̂2MX′ZM

...
... · · · ...

Z′
MX�̂M1X′Z1 Z′

MX�̂M2X′Z2 · · · Z′
MX�̂MMX′ZM

⎤
⎥⎥⎥⎥⎦

−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M∑
j=1

Z′
1X�̂1 j y j

M∑
j=1

Z′
2X�̂2 j y j

...

M∑
j=1

Z′
MX�̂Mj y j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The asymptotic covariance matrix for the estimator would be estimated with T times
the large inverse matrix in brackets.

Several of the estimators we have already considered are special cases:

• If �̂jj = σ̂jj(X′X/T) and �̂jl = 0 for j 	= l, then δ̂ j is 2SLS.
• If �̂jl = 0 for j 	= l, then δ̂ j is H2SLS, the single-equation GMM estimator.
• If �̂jl = σ̂jl(X′X/T), then δ̂ j is 3SLS.

As before, the GMM estimator brings efficiency gains in the presence of heteroscedas-
ticity. If the disturbances are homoscedastic, then it is asymptotically the same as 3SLS,
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[although in a finite sample, it will differ numerically because Sjl will not be identical to
σ̂jl(X′X)].

13.6.5 GMM ESTIMATION OF DYNAMIC PANEL DATA MODELS

Panel data are well suited for examining dynamic effects, as in the first-order model,

yit = x′
itβ + δyi,t−1 + ci + εit

= w′
itθ + αi + εit,

where the set of right-hand-side variables, wit, now includes the lagged dependent vari-
able, yi,t−1. Adding dynamics to a model in this fashion creates a major change in the
interpretation of the equation. Without the lagged variable, the “independent vari-
ables” represent the full set of information that produce observed outcome yit. With the
lagged variable, we now have in the equation the entire history of the right-hand-side
variables, so that any measured influence is conditioned on this history; in this case,
any impact of xit represents the effect of new information. Substantial complications
arise in estimation of such a model. In both the fixed and random effects settings, the
difficulty is that the lagged dependent variable is correlated with the disturbance, even
if it is assumed that εit is not itself autocorrelated. For the moment, consider the fixed
effects model as an ordinary regression with a lagged dependent variable that is depen-
dent across observations. In that dynamic regression model, the estimator based on T
observations is biased in finite samples, but it is consistent in T. The finite sample bias
is of order 1/T. The same result applies here, but the difference is that whereas before
we obtained our large sample results by allowing T to grow large, in this setting, T is
assumed to be small and fixed, and large-sample results are obtained with respect to
n growing large, not T. The fixed effects estimator of θ = [β, δ] can be viewed as an
average of n such estimators. Assume for now that T ≥ K + 1 where K is the number
of variables in xit. Then, from (11-13),

θ̂ =
[

n∑
i=1

W′
i M

0Wi

]−1 [
n∑

i=1

W′
i M

0yi

]

=
[

n∑
i=1

W′
i M

0Wi

]−1 [
n∑

i=1

W′
i M

0Wi di

]

=
n∑

i=1

Fi di ,

where the rows of the T × (K + 1) matrix Wi are w′
it and M0 is the T × T matrix that

creates deviations from group means [see (11-14)]. Each group-specific estimator, di ,
is inconsistent, as it is biased in finite samples and its variance does not go to zero
as n increases. This matrix weighted average of n inconsistent estimators will also be
inconsistent. (This analysis is only heuristic. If T < K + 1, then the individual coefficient
vectors cannot be computed.13)

13Further discussion is given by Nickell (1981), Ridder and Wansbeek (1990), and Kiviet (1995).
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The problem is more transparent in the random effects model. In the model

yit = x′
itβ + δyi,t−1 + ui + εit,

the lagged dependent variable is correlated with the compound disturbance in the
model, since the same ui enters the equation for every observation in group i.

Neither of these results renders the model inestimable, but they do make neces-
sary some technique other than our familiar LSDV or FGLS estimators. The general
approach, which has been developed in several stages in the literature,14 relies on in-
strumental variables estimators and, most recently [by Arellano and Bond (1991) and
Arellano and Bover (1995)] on a GMM estimator. For example, in either the fixed or
random effects cases, the heterogeneity can be swept from the model by taking first
differences, which produces

yit − yi,t−1 = (xit − xi,t−1)
′β + δ(yi,t−1 − yi,t−2) + (εit − εi,t−1).

This model is still complicated by correlation between the lagged dependent variable
and the disturbance (and by its first-order moving average disturbance). But without the
group effects, there is a simple instrumental variables estimator available. Assuming that
the time series is long enough, one could use the lagged differences, (yi,t−2−yi,t−3), or the
lagged levels, yi,t−2 and yi,t−3, as one or two instrumental variables for (yi,t−1 − yi,t−2).
(The other variables can serve as their own instruments.) This is the Anderson and Hsiao
estimator developed for this model in Section 11.8.2. By this construction, then, the
treatment of this model is a standard application of the instrumental variables technique
that we developed in Section 11.8 15 This illustrates the flavor of an instrumental variable
approach to estimation. But, as Arellano et al. and Ahn and Schmidt (1995) have shown,
there is still more information in the sample that can be brought to bear on estimation,
in the context of a GMM estimator, which we now consider.

We can extend the Hausman and Taylor (HT) formulation of the random effects
model in Section 11.8.1 to include the lagged dependent variable;

yit = δyi,t−1 + x′
1i tβ1 + x′

2i tβ2 + z′
1iα1 + z′

2iα2 + εit + ui

= θ ′wit + εit + ui

= θ ′wit + ηit,

where

wit = [yi,t−1, x′
1i t , x′

2i t , z′
1i , z′

2i ]
′

is now a (1+K1+K2+L1+L2)×1 vector. The terms in the equation are the same as in the
Hausman and Taylor model. Instrumental variables estimation of the model without the
lagged dependent variable is discussed in Section 11.8.1 on the HT estimator. Moreover,
by just including yi,t−1 in x2i t , we see that the HT approach extends to this setting as
well, essentially without modification. Arellano et al. suggest a GMM estimator and
show that efficiency gains are available by using a larger set of moment conditions.

14The model was first proposed in this form by Balestra and Nerlove (1966). See, for example, Anderson and
Hsiao (1981, 1982), Bhargava and Sargan (1983), Arellano (1989), Arellano and Bond (1991), Arellano and
Bover (1995), Ahn and Schmidt (1995), and Nerlove (2003).
15There is a question as to whether one should use differences or levels as instruments. Arellano (1989) and
Kiviet (1995) give evidence that the latter is preferable.
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In the previous treatment, we used a GMM estimator constructed as follows: The set
of moment conditions we used to formulate the instrumental variables were

E

⎡
⎢⎢⎣

⎛
⎜⎜⎝

x1i t

x2i t

z1i

x̄1i.

⎞
⎟⎟⎠ (ηit − η̄i )

⎤
⎥⎥⎦ = E

⎡
⎢⎢⎣

⎛
⎜⎜⎝

x1i t

x2i t

z1i

x̄1i.

⎞
⎟⎟⎠ (εit − ε̄i )

⎤
⎥⎥⎦ = 0.

This moment condition is used to produce the instrumental variable estimator. We could
ignore the nonscalar variance of ηit and use simple instrumental variables at this point.
However, by accounting for the random effects formulation and using the counterpart
to feasible GLS, we obtain the more efficient estimator in Section 11.8. As usual, this
can be done in two steps. The inefficient estimator is computed to obtain the residuals
needed to estimate the variance components. This is Hausman and Taylor’s steps 1 and
2. Steps 3 and 4 are the GMM estimator based on these estimated variance components.

Arellano et al. suggest that the preceding does not exploit all the information in
the sample. In simple terms, within the T observations in group i, we have not used the
fact that

E

⎡
⎢⎢⎣

⎛
⎜⎜⎝

x1i t

x2i t

z1i

x̄1i.

⎞
⎟⎟⎠ (ηis − η̄i )

⎤
⎥⎥⎦ = 0 for some s 	= t.

Thus, for example, not only are disturbances at time t uncorrelated with these variables
at time t , arguably, they are uncorrelated with the same variables at time t − 1, t − 2,
possibly t + 1, and so on. In principle, the number of valid instruments is potentially
enormous. Suppose, for example, that the set of instruments listed above is strictly
exogenous with respect to ηit in every period including current, lagged, and future. Then,
there are a total of [T(K1 + K2) + L1 + K1)] moment conditions for every observation.
Consider, for example, a panel with two periods. We would have for the two periods,

E

⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎝

x1i1

x2i1

x1i2

x2i2

z1i

x̄1i.

⎞
⎟⎟⎟⎟⎟⎟⎠

(ηi1 − η̄i )

⎤
⎥⎥⎥⎥⎥⎥⎦

= 0 and E

⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎝

x1i1

x2i1

x1i2

x2i2

z1i

x̄1i.

⎞
⎟⎟⎟⎟⎟⎟⎠

(ηi2 − η̄i )

⎤
⎥⎥⎥⎥⎥⎥⎦

= 0. (13-38)

How much useful information is brought to bear on estimation of the parameters is
uncertain, as it depends on the correlation of the instruments with the included exoge-
nous variables in the equation. The farther apart in time these sets of variables become
the less information is likely to be present. (The literature on this subject contains ref-
erence to “strong” versus “weak” instrumental variables.16) To proceed, as noted, we
can include the lagged dependent variable in x2i . This set of instrumental variables can

16See West (2001).
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be used to construct the estimator, actually whether the lagged variable is present or
not. We note, at this point, that on this basis, Hausman and Taylor’s estimator did not
actually use all the information available in the sample. We now have the elements of
the Arellano et al. estimator in hand; what remains is essentially the (unfortunately,
fairly involved) algebra, which we now develop.

Let

Wi =

⎡
⎢⎢⎢⎣

w′
i1

w′
i2
...

w′
iT

⎤
⎥⎥⎥⎦ = the full set of rhs data for group i, and yi =

⎡
⎢⎢⎢⎣

yi1

yi2
...

yiT

⎤
⎥⎥⎥⎦ .

Note that Wi is assumed to be, a T × (1 + K1 + K2 + L1 + L2) matrix. Because there is a
lagged dependent variable in the model, it must be assumed that there are actually T + 1
observations available on yit. To avoid a cumbersome, cluttered notation, we will leave
this distinction embedded in the notation for the moment. Later, when necessary, we
will make it explicit. It will reappear in the formulation of the instrumental variables. A
total of T observations will be available for constructing the IV estimators. We now form
a matrix of instrumental variables. [Different approaches to this have been considered
by Hausman and Taylor (1981), Arellano et al. (1991, 1995, 1999), Ahn and Schmidt
(1995), and Amemiya and MaCurdy (1986), among others.] We will form a matrix Vi

consisting of Ti − 1 rows constructed the same way for Ti − 1 observations and a final
row that will be different, as discussed later. [This is to exploit a useful algebraic result
discussed by Arellano and Bover (1995).] The matrix will be of the form

Vi =

⎡
⎢⎢⎢⎣

v′
i1 0′ · · · 0′

0′ v′
i2 · · · 0′

...
...

. . .
...

0′ 0′ · · · a′
i

⎤
⎥⎥⎥⎦ . (13-39)

The instrumental variable sets contained in v′
it which have been suggested might include

the following from within the model:

xit and xi,t−1 (i.e., current and one lag of all the time varying variables),
xi1, . . . , xiT (i.e., all current, past and future values of all the time varying variables),
xi1, . . . , xit (i.e., all current and past values of all the time varying variables).

The time-invariant variables that are uncorrelated with ui , that is z1i , are appended
at the end of the nonzero part of each of the first T − 1 rows. It may seem that in-
cluding x2 in the instruments would be invalid. However, we will be converting the
disturbances to deviations from group means which are free of the latent effects—that
is, this set of moment conditions will ultimately be converted to what appears in (13-38).
While the variables are correlated with ui by construction, they are not correlated with
εit − ε̄i . The final row of Vi is important to the construction. Two possibilities have been
suggested:

a′
i = [z′

1i x̄i1] (produces the Hausman and Taylor estimator),
a′

i = [z′
1i x′

1i1, x′
1i2, . . . , x1iT] (produces Amemiya and MaCurdy’s estimator).
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Note that the a variables are exogenous time-invariant variables, z1i and the exogenous
time-varying variables, either condensed into the single group mean or in the raw form,
with the full set of T observations.

To construct the estimator, we will require a transformation matrix, H, constructed
as follows. Let M01 denote the first T − 1 rows of M0, the matrix that creates deviations
from group means. Then,

H =
⎡
⎣

M01

1
T

i′T

⎤
⎦ .

Thus, H replaces the last row of M0 with a row of 1/T. The effect is as follows: if q is T
observations on a variable, then Hq produces q∗ in which the first T − 1 observations
are converted to deviations from group means and the last observation is the group
mean. In particular, let the T × 1 column vector of disturbances

ηi = [ηi1, ηi2, . . . , ηiT] = [(εi1 + ui ), (εi2 + ui ), . . . , (εiT + ui )]′,

then

Hη =

⎡
⎢⎢⎢⎣

ηi1 − η̄i
...

ηi,T−1 − η̄i

η̄i

⎤
⎥⎥⎥⎦ .

We can now construct the moment conditions. With all this machinery in place, we
have the result that appears in (13-40), that is

E [V′
i Hηi ] = E [gi ] = 0.

It is useful to expand this for a particular case. Suppose T = 3 and we use as instruments
the current values in period 1, and the current and previous values in period 2 and the
Hausman and Taylor form for the invariant variables. Then the preceding is

E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1i1 0 0
x2i1 0 0
z1i 0 0
0 x1i1 0
0 x2i1 0
0 x1i2 0
0 x2i2 0
0 z1i 0
0 0 z1i

0 0 x̄1i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎝

ηi1 − η̄i

ηi2 − η̄i

η̄i

⎞
⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0. (13-40)
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This is the same as (13-38).17 The empirical moment condition that follows from this is

plim
1
n

n∑
i=1

V′
i Hηi

= plim
1
n

n∑
i=1

V′
i H

⎛
⎜⎜⎜⎝

yi1 − δyi0 − x′
1i1β1 − x′

2i1β2 − z′
1iα1 − z′

2iα2

yi2 − δyi1 − x′
1i2β1 − x′

2i2β2 − z′
1iα1 − z′

2iα2
...

yiT − δyi,T−1 − x′
1iTβ1 − x′

2iTβ2 − z′
1iα1 − z′

2iα2

⎞
⎟⎟⎟⎠ = 0.

Write this as

plim
1
n

n∑
i=1

mi = plim m̄ = 0.

The GMM estimator θ̂ is then obtained by minimizing

q = m̄′Am̄

with an appropriate choice of the weighting matrix, A. The optimal weighting matrix
will be the inverse of the asymptotic covariance matrix of

√
n m̄. With a consistent

estimator of θ in hand, this can be estimated empirically using

Est. Asy. Var[
√

n m̄] = 1
n

n∑
i=1

m̂i m̂′
i = 1

n

n∑
i=1

V′
i Hη̂i η̂

′
i H

′Vi .

This is a robust estimator that allows an unrestricted T × T covariance matrix for the T
disturbances, εit + ui . But, we have assumed that this covariance matrix is the 
 defined
in (11-31) for the random effects model. To use this information we would, instead, use
the residuals in

η̂i = yi − Wi θ̂

to estimate σ 2
u and σ 2

ε and then 
, which produces

Est. Asy. Var[
√

n m̄] = 1
n

n∑
i=1

V′
i H
̂H′Vi .

We now have the full set of results needed to compute the GMM estimator. The solution
to the optimization problem of minimizing q with respect to the parameter vector θ is

θ̂GMM =
⎡
⎣

(
n∑

i=1

W′
i HVi

)(
n∑

i=1

V′
i H

′
̂HVi

)−1( n∑
i=1

V′
i H

′Wi

)⎤
⎦

−1

×
(

n∑
i=1

W′
i HVi

)(
n∑

i=1

V′
i H

′
̂HVi

)−1( n∑
i=1

V′
i H

′yi

)
. (13-41)

The estimator of the asymptotic covariance matrix for θ̂GMM is the inverse matrix in
brackets.

17In some treatments [e.g., Blundell and Bond (1998)], an additional condition is assumed for the initial value,
yi0, namely E [yi0 | exogenous data] = μ0. This would add a row at the top of the matrix in (13-40) containing
[(yi0 − μ0), 0, 0].
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The remaining loose end is how to obtain the consistent estimator of θ̂ to compute

. Recall that the GMM estimator is consistent with any positive definite weighting
matrix, A, in our preceding expression. Therefore, for an initial estimator, we could set
A = I and use the simple instrumental variables estimator,

θ̂ IV =
[(

n∑
i=1

W′
i HVi

)(
n∑

i=1

V′
i H

′Wi

)]−1( n∑
i=1

W′
i HVi

)(
n∑

i=1

V′
i H

′yi

)
.

It is more common to proceed directly to the “two-stage least squares” estimator (see
Sections 8.3.4 and 11.8.2), which uses

A =
(

1
n

n∑
i=1

V′
i H

′HVi

)−1

.

The estimator is, then, the one given earlier in (13-41) with 
̂ replaced by IT . Either
estimator is a function of the sample data only and provides the initial estimator we
need.

Ahn and Schmidt (among others) observed that the IV estimator proposed here,
as extensive as it is, still neglects quite a lot of information and is therefore (relatively)
inefficient. For example, in the first differenced model,

E [yis(εit − εi,t−1)] = 0, s = 0, . . . , t − 2, t = 2, . . . , T.

That is, the level of yis is uncorrelated with the differences of disturbances that are at
least two periods subsequent.18 (The differencing transformation, as the transformation
to deviations from group means, removes the individual effect.) The corresponding
moment equations that can enter the construction of a GMM estimator are

1
n

n∑
i=1

yis[(yit − yi,t−1) − δ(yi,t−1 − yi,t−2) − (xit − xi,t−1)
′β] = 0

s = 0, . . . , t − 2, t = 2, . . . , T.

Altogether, Ahn and Schmidt identify T(T − 1)/2 + T − 2 such equations that involve
mixtures of the levels and differences of the variables. The main conclusion that they
demonstrate is that in the dynamic model, there is a large amount of information to
be gleaned not only from the familiar relationships among the levels of the variables,
but also from the implied relationships between the levels and the first differences. The
issue of correlation between the transformed yit and the deviations of εit is discussed
in the papers cited. [As Ahn and Schmidt show, there are potentially huge numbers
of additional orthogonality conditions in this model owing to the relationship between
first differences and second moments. We do not consider those. The matrix Vi could
be huge. Consider a model with 10 time-varying right-hand-side variables and suppose
Ti is 15. Then, there are 15 rows and roughly 15 × (10 × 15) or 2,250 columns. The
Ahn and Schmidt estimator, which involves potentially thousands of instruments in a
model containing only a handful of parameters, may become a bit impractical at this
point. The common approach is to use only a small subset of the available instrumental

18This is the approach suggested by Holtz-Eakin (1988) and Holtz-Eakin, Newey, and Rosen (1988).
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variables. The order of the computation grows as the number of parameters times the
square of T.]

The number of orthogonality conditions (instrumental variables) used to estimate
the parameters of the model is determined by the number of variables in vit and ai in
(13-39). In most cases, the model is vastly overidentified—there are far more orthogo-
nality conditions than parameters. As usual in GMM estimation, a test of the over-
identifying restrictions can be based on q, the estimation criterion. At its minimum, the
limiting distribution of nq is chi-squared with degrees of freedom equal to the number
of instrumental variables in total minus (1 + K1 + K2 + L1 + L2).19

Example 13.10 GMM Estimation of a Dynamic Panel Data Model
of Local Government Expenditures

Dahlberg and Johansson (2000) estimated a model for the local government expenditure of
several hundred municipalities in Sweden observed over the nine-year period t = 1979 to
1987. The equation of interest is

Si ,t = αt +
m∑

j =1

β j Si ,t− j +
m∑

j =1

γ j Ri ,t− j +
m∑

j =1

δ j Gi ,t− j + fi + εit,

for i = 1, . . . , n = 265, and t = m+ 1, . . . , 9. (We have changed their notation slightly to make
it more convenient.) Si ,t , Ri ,t , and Gi ,t are municipal spending, receipts (taxes and fees), and
central government grants, respectively. Analogous equations are specified for the current
values of Ri ,t and Gi ,t . The appropriate lag length, m, is one of the features of interest to
be determined by the empirical study. The model contains a municipality specific effect, fi ,
which is not specified as being either “fixed” or “random.” To eliminate the individual effect,
the model is converted to first differences. The resulting equation is

�Si ,t = λt +
m∑

j =1

β j �Si ,t− j +
m∑

j =1

γ j �Ri ,t− j +
m∑

j =1

δ j �Gi ,t− j + uit,

or

yi ,t = x′
i ,tθ + ui ,t ,

where �Si ,t = Si ,t − Si ,t−1 and so on and ui ,t = εi ,t − εi ,t−1. This removes the group effect and
leaves the time effect. Because the time effect was unrestricted to begin with, �αt = λt
remains an unrestricted time effect, which is treated as “fixed” and modeled with a time-
specific dummy variable. The maximum lag length is set at m = 3. With nine years of data,
this leaves usable observations from 1983 to 1987 for estimation, that is, t = m + 2, . . . , 9.
Similar equations were fit for Ri ,t and Gi ,t .

The orthogonality conditions claimed by the authors are

E [Si ,sui ,t ] = E [Ri ,s ui ,t ] = E [Gi ,sui ,t ] = 0, s = 1, . . . , t − 2.

The orthogonality conditions are stated in terms of the levels of the financial variables and
the differences of the disturbances. The issue of this formulation as opposed to, for example,
E [�Si ,s�εi ,t ] = 0 (which is implied) is discussed by Ahn and Schmidt (1995). As we shall
see, this set of orthogonality conditions implies a total of 80 instrumental variables. The
authors use only the first of the three sets listed, which produces a total of 30. For the five
observations, using the formulation developed in Section 13.6.5, we have the following matrix

19This is true generally in GMM estimation. It was proposed for the dynamic panel data model by Bhargava
and Sargan (1983).
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of instrumental variables for the orthogonality conditions

Zi =

⎡
⎢⎢⎢⎢⎣

S81−79 d83 0′ 0 0′ 0 0′ 0 0′ 0

0′ 0 S82−79 d84 0′ 0 0′ 0 0′ 0

0′ 0 0′ 0 S83−79 d85 0′ 0 0′ 0

0′ 0 0′ 0 0′ 0 S84−79 d86 0′ 0

0′ 0 0′ 0 0′ 0 0′ 0 S85−79 d87

⎤
⎥⎥⎥⎥⎦

1983
1984
1985
1986
1987

where the notation St1−t0 indicates the range of years for that variable. For example, S83−79
denotes [Si ,1983, Si ,1982, Si ,1981, Si ,1980, Si ,1979] and dyear denotes the year-specific dummy vari-
able. Counting columns in Zi we see that using only the lagged values of the dependent vari-
able and the time dummy variables, we have (3 + 1) +(4 + 1) + (5 + 1) +(6 + 1) + (7 + 1) = 30
instrumental variables. Using the lagged values of the other two variables in each equa-
tion would add 50 more, for a total of 80 if all the orthogonality conditions suggested
earlier were employed. Given the preceding construction, the orthogonality conditions
are now

E [Z′
i ui ] = 0,

where ui = [ui ,1983, ui ,1984, ui ,1985, ui ,1986, ui ,1987]′. The empirical moment equation is

plim

[
1
n

n∑
i =1

Z′
i ui

]
= plim m̄(θ ) = 0.

The parameters are vastly overidentified. Using only the lagged values of the depen-
dent variable in each of the three equations estimated, there are 30 moment conditions and
14 parameters being estimated when m = 3, 11 when m = 2, 8 when m = 1, and 5 when
m = 0. (As we do our estimation of each of these, we will retain the same matrix of instrumen-
tal variables in each case.) GMM estimation proceeds in two steps. In the first step, basic,
unweighted instrumental variables is computed using

θ̂
′
I V =

⎡
⎣
(

n∑
i =1

X′
i Zi

)(
n∑

i =1

Z′
i Zi

)−1( n∑
i =1

Z′
i Xi

)⎤
⎦

−1(
n∑

i =1

X′
i Zi

)(
n∑

i =1

Z′
i Zi

)−1( n∑
i =1

Z′
i yi

)
,

where

y ′
i = (�S83 �S84 �S85 �S86 �S87) ,

and

X i =

⎡
⎢⎢⎢⎢⎣

�S82 �S81 �S80 �R82 �R81 �R80 �G82 �G81 �G80 1 0 0 0 0
�S83 �S82 �S81 �R83 �R82 �R81 �G83 �G82 �G81 0 1 0 0 0
�S84 �S83 �S82 �R84 �R83 �R82 �G84 �G83 �G82 0 0 1 0 0
�S85 �S84 �S83 �R85 �R84 �R83 �G85 �G84 �G83 0 0 0 1 0
�S86 �S85 �S84 �R86 �R85 �R84 �G86 �G85 �G84 0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

.

The second step begins with the computation of the new weighting matrix,

�̂ = Est. Asy. Var[
√

nm̄] = 1
N

n∑
i =1

Z′
i ûi û

′
i Zi .
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TABLE 13.3 Descriptive Statistics for Local Expenditure Data

Variable Mean Std. Deviation Minimum Maximum

Spending 18478.51 3174.36 12225.68 33883.25
Revenues 13422.56 3004.16 6228.54 29141.62
Grants 5236.03 1260.97 1570.64 12589.14

After multiplying and dividing by the implicit (1/n) in the outside matrices, we obtain the
estimator,

θ ′
GMM =

[(
n∑

i =1

X′
i Zi

)(
n∑

i =1

Z′
i ûi û

′
i Zi

)−1 (
n∑

i =1

Z′
i Xi

)]−1

×
(

n∑
i =1

X′
i Zi

)(
n∑

i =1

Z′
i ûi û

′
i Zi

)−1 (
n∑

i =1

Z′
i yi

)

=
[(

n∑
i =1

X′
i Zi

)
W

(
n∑

i =1

Z′
i Xi

)]−1 (
n∑

i =1

X′
i Zi

)
W

(
n∑

i =1

Z′
i yi

)
.

The estimator of the asymptotic covariance matrix for the estimator is the inverse matrix in
square brackets in the first line of the result.

The primary focus of interest in the study was not the estimator itself, but the lag length and
whether certain lagged values of the independent variables appeared in each equation. These
restrictions would be tested by using the GMM criterion function, which in this formulation
would be (based on recomputing the residuals after GMM estimation)

nq =
(

n∑
i =1

û′
i Zi

)
W

(
n∑

i =1

Z′
i ûi

)
.

Note that the weighting matrix is not (necessarily) recomputed. For purposes of testing hy-
potheses, the same weighting matrix should be used.

At this point, we will consider the appropriate lag length, m. The specification can be re-
duced simply by redefining X to change the lag length. To test the specification, the weighting
matrix must be kept constant for all restricted versions (m = 2 and m = 1) of the model.

The Dahlberg and Johansson data may be downloaded from the Journal of Applied Econo-
metrics Web site—see Appendix Table F13.1. The authors provide the summary statistics
for the raw data that are given in Table 13.3. The data used in the study and provided in
the internet source are nominal values in Swedish kroner, deflated by a municipality-specific
price index then converted to per capita values. Descriptive statistics for the raw data appear
in Table 13.3.20 Equations were estimated for all three variables, with maximum lag lengths
of m= 1, 2, and 3. (The authors did not provide the actual estimates.) Estimation is done
using the methods developed by Ahn and Schmidt (1995), Arellano and Bover (1995), and
Holtz-Eakin, Newey, and Rosen (1988), as described. The estimates of the first specification
provided are given in Table 13.4.

Table 13.5 contains estimates of the model parameters for each of the three equations,
and for the three lag lengths, as well as the value of the GMM criterion function for each model
estimated. The base case for each model has m = 3. There are three restrictions implied by
each reduction in the lag length. The critical chi-squared value for three degrees of freedom
is 7.81 for 95 percent significance, so at this level, we find that the two-level model is just

20The data provided on the Web site and used in our computations were further transformed by dividing by
100,000.
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TABLE 13.4 Estimated Spending Equation

Variable Estimate Standard Error t Ratio

Year 1983 −0.0036578 0.0002969 −12.32
Year 1984 −0.00049670 0.0004128 −1.20
Year 1985 0.00038085 0.0003094 1.23
Year 1986 0.00031469 0.0003282 0.96
Year 1987 0.00086878 0.0001480 5.87
Spending (t − 1) 1.15493 0.34409 3.36
Revenues (t − 1) −1.23801 0.36171 −3.42
Grants (t − 1) 0.016310 0.82419 0.02
Spending (t − 2) −0.0376625 0.22676 −0.17
Revenues (t − 2) 0.0770075 0.27179 0.28
Grants (t − 2) 1.55379 0.75841 2.05
Spending (t − 3) −0.56441 0.21796 −2.59
Revenues (t − 3) 0.64978 0.26930 2.41
Grants (t − 3) 1.78918 0.69297 2.58

TABLE 13.5 Estimated Lag Equations for Spending, Revenue, and Grants

Expenditure Model Revenue Model Grant Model

m = 3 m = 2 m = 1 m = 3 m = 2 m = 1 m = 3 m = 2 m = 1

St−1 1.155 0.8742 0.5562 −0.1715 −0.3117 −0.1242 −0.1675 −0.1461 −0.1958
St−2 −0.0377 0.2493 — 0.1621 −0.0773 — −0.0303 −0.0304 —
St−3 −0.5644 — — −0.1772 — — −0.0955 — —
Rt−1 −1.2380 −0.8745 −0.5328 −0.0176 0.1863 −0.0245 0.1578 0.1453 0.2343
Rt−2 0.0770 −0.2776 — −0.0309 0.1368 — 0.0485 0.0175 —
Rt−3 0.6497 — — 0.0034 — — 0.0319 — —
Gt−1 0.0163 −0.4203 0.1275 −0.3683 0.5425 −0.0808 −0.2381 −0.2066 −0.0559
Gt−2 1.5538 0.1866 — 2.7152 2.4621 — −0.0492 −0.0804 —
Gt−3 1.7892 — — 0.0948 — — 0.0598 — —
nq 22.8287 30.4526 34.4986 30.5398 34.2590 53.2506 17.5810 20.5416 27.5927

barely accepted for the spending equation, but clearly appropriate for the other two—the
difference between the two criteria is 7.62. Conditioned on m = 2, only the revenue model
rejects the restriction of m = 1. As a final test, we might ask whether the data suggest that
perhaps no lag structure at all is necessary. The GMM criterion value for the three equations
with only the time dummy variables are 45.840, 57.908, and 62.042, respectively. Therefore,
all three zero lag models are rejected.

Among the interests in this study were the appropriate critical values to use for the spec-
ification test of the moment restriction. With 16 degrees of freedom, the critical chi-squared
value for 95 percent significance is 26.3, which would suggest that the revenues equation is
misspecified. Using a bootstrap technique, the authors find that a more appropriate critical
value leaves the specification intact. Finally, note that the three-equation model in the m = 3
columns of Table 13.5 imply a vector autoregression of the form

yt = �1yt−1 + �2yt−2 + �3yt−3 + vt ,

where yt = (�St , �Rt , �Gt ) ′.
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13.7 SUMMARY AND CONCLUSIONS

The generalized method of moments provides an estimation framework that includes
least squares, nonlinear least squares, instrumental variables, and maximum likelihood,
and a general class of estimators that extends beyond these. But it is more than just a
theoretical umbrella. The GMM provides a method of formulating models and implied
estimators without making strong distributional assumptions. Hall’s model of household
consumption is a useful example that shows how the optimization conditions of an
underlying economic theory produce a set of distribution-free estimating equations. In
this chapter, we first examined the classical method of moments. GMM as an estimator
is an extension of this strategy that allows the analyst to use additional information
beyond that necessary to identify the model, in an optimal fashion. After defining and
establishing the properties of the estimator, we then turned to inference procedures. It
is convenient that the GMM procedure provides counterparts to the familiar trio of test
statistics: Wald, LM, and LR. In the final section, we specialized the GMM estimator
for linear and nonlinear equations and multiple-equation models. We then developed
an example that appears at many points in the recent applied literature, the dynamic
panel data model with individual specific effects, and lagged values of the dependent
variable.

Key Terms and Concepts

• Analog estimation
• Arellano and Bond
• Arellano and Bover

estimator
• Central limit theorem
• Criterion function
• Dynamic panel data model
• Empirical moment equation
• Ergodic theorem
• Euler equation
• Exactly identified cases
• Exponential family
• Generalized method of

moments
• GMM estimator
• H2SLS
• Instrumental variables
• Likelihood ratio statistic

• LM statistic
• Martingale difference series
• Maximum likelihood

estimator
• Mean value theorem
• Method of moment

generating functions
• Method of moments
• Method of moments

estimators
• Minimum distance

estimator (MDE)
• Moment equation
• Newey–West estimator
• Nonlinear instrumental

variable estimator
• Optimal weighting matrix
• Order condition

• Orthogonality conditions
• Overidentifying restrictions
• Overidentified cases
• Population moment

equation
• Probability limit
• Random sample
• Rank condition
• Slutsky theorem
• Specification test
• Sufficient statistic
• Taylor series
• Uncentered moment
• Wald statistic
• Weighted least squares
• Weighting matrix

Exercises

1. For the normal distribution μ2k = σ 2k(2k)!/(k!2k) and μ2k+1 = 0, k = 0, 1, . . . . Use
this result to analyze the two estimators

√
b1 = m3

m3/2
2

and b2 = m4

m2
2
,
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where mk = 1
n

∑n
i=1(xi − x̄)k. The following result will be useful:

Asy. Cov[
√

nmj ,
√

nmk] = μ j+k −μ jμk + jkμ2μ j−1μk−1 − jμ j−1μk+1 −kμk−1μ j+1.

Use the delta method to obtain the asymptotic variances and covariance of these
two functions, assuming the data are drawn from a normal distribution with mean
μ and variance σ 2. (Hint: Under the assumptions, the sample mean is a consistent
estimator of μ, so for purposes of deriving asymptotic results, the difference be-
tween x̄ and μ may be ignored. As such, no generality is lost by assuming the mean
is zero, and proceeding from there.) Obtain V, the 3 × 3 covariance matrix for the
three moments and then use the delta method to show that the covariance matrix
for the two estimators is

JVJ′ =
[

6/n 0
0 24/n

]
,

where J is the 2 × 3 matrix of derivatives.
2. Using the results in Example 13.5, estimate the asymptotic covariance matrix of

the method of moments estimators of P and λ based on m′
1 and m′

2. [Note: You will
need to use the data in Example C.1 to estimate V.]

3. Exponential Families of Distributions. For each of the following distributions, deter-
mine whether it is an exponential family by examining the log-likelihood function.
Then, identify the sufficient statistics.
a. Normal distribution with mean μ and variance σ 2.
b. The Weibull distribution in Exercise 4 in Chapter 14.
c. The mixture distribution in Exercise 3 in Chapter 14.

4. In the classical regression model with heteroscedasticity, which is more efficient,
ordinary least squares or GMM? Obtain the two estimators and their respective
asymptotic covariance matrices, then prove your assertion.

5. Consider the probit model analyzed in Chapter 17. The model states that for given
vector of independent variables,

Prob[yi = 1 | xi ] = �[x′
iβ], Prob[yi = 0 | xi ] = 1 − Prob[yi = 1 | xi ].

Consider a GMM estimator based on the result that

E [yi | xi ] = �(x′
iβ).

This suggests that we might base estimation on the orthogonality conditions

E [(yi − �(x′
iβ))xi ] = 0.

Construct a GMM estimator based on these results. Note that this is not the non-
linear least squares estimator. Explain—what would the orthogonality conditions
be for nonlinear least squares estimation of this model?

6. Consider GMM estimation of a regression model as shown at the beginning of
Example 13.8. Let W1 be the optimal weighting matrix based on the moment equa-
tions. Let W2 be some other positive definite matrix. Compare the asymptotic
covariance matrices of the two proposed estimators. Show conclusively that the
asymptotic covariance matrix of the estimator based on W1 is not larger
than that based on W2.
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MAXIMUM LIKELIHOOD
ESTIMATION

Q
14.1 INTRODUCTION

The generalized method of moments discussed in Chapter 13 and the semiparametric,
nonparametric, and Bayesian estimators discussed in Chapters 12 and 16 are becoming
widely used by model builders. Nonetheless, the maximum likelihood estimator dis-
cussed in this chapter remains the preferred estimator in many more settings than the
others listed. As such, we focus our discussion of generally applied estimation methods
on this technique. Sections 14.2 through 14.6 present basic statistical results for estima-
tion and hypothesis testing based on the maximum likelihood principle. Sections 14.7
and 14.8 present two extensions of the method, two-step estimation and pseudo max-
imum likelihood estimation. After establishing the general results for this method of
estimation, we will then apply them to the more familiar setting of econometric mod-
els. The applications presented in Section 14.9 and 14.10 apply the maximum likelihood
method to most of the models in the preceding chapters and several others that illustrate
different uses of the technique.

14.2 THE LIKELIHOOD FUNCTION AND
IDENTIFICATION OF THE PARAMETERS

The probability density function, or pdf, for a random variable, y, conditioned on a
set of parameters, θ , is denoted f (y | θ).1 This function identifies the data-generating
process that underlies an observed sample of data and, at the same time, provides a
mathematical description of the data that the process will produce. The joint density
of n independent and identically distributed (i.i.d.) observations from this process is the
product of the individual densities;

f (y1, . . . , yn | θ) =
n∏

i=1

f (yi | θ) = L(θ | y). (14-1)

This joint density is the likelihood function, defined as a function of the unknown
parameter vector, θ , where y is used to indicate the collection of sample data. Note
that we write the joint density as a function of the data conditioned on the parameters
whereas when we form the likelihood function, we will write this function in reverse,
as a function of the parameters, conditioned on the data. Though the two functions are
the same, it is to be emphasized that the likelihood function is written in this fashion

1Later we will extend this to the case of a random vector, y, with a multivariate density, but at this point, that
would complicate the notation without adding anything of substance to the discussion.

549
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to highlight our interest in the parameters and the information about them that is
contained in the observed data. However, it is understood that the likelihood function
is not meant to represent a probability density for the parameters as it is in Chapter 16.
In this classical estimation framework, the parameters are assumed to be fixed constants
that we hope to learn about from the data.

It is usually simpler to work with the log of the likelihood function:

ln L(θ | y) =
n∑

i=1

ln f (yi | θ). (14-2)

Again, to emphasize our interest in the parameters, given the observed data, we denote
this function L(θ | data) = L(θ | y). The likelihood function and its logarithm, evalu-
ated at θ , are sometimes denoted simply L(θ) and ln L(θ), respectively, or, where no
ambiguity can arise, just L or ln L.

It will usually be necessary to generalize the concept of the likelihood function to
allow the density to depend on other conditioning variables. To jump immediately to
one of our central applications, suppose the disturbance in the classical linear regres-
sion model is normally distributed. Then, conditioned on its specific xi , yi is normally
distributed with mean μi = x′

iβ and variance σ 2. That means that the observed random
variables are not i.i.d.; they have different means. Nonetheless, the observations are
independent, and as we will examine in closer detail,

ln L(θ | y, X) =
n∑

i=1

ln f (yi | xi , θ) = −1
2

n∑
i=1

[ln σ 2 + ln(2π) + (yi − x′
iβ)2/σ 2], (14-3)

where X is the n × K matrix of data with ith row equal to x′
i .

The rest of this chapter will be concerned with obtaining estimates of the parameters,
θ , and in testing hypotheses about them and about the data-generating process. Before
we begin that study, we consider the question of whether estimation of the parameters
is possible at all—the question of identification. Identification is an issue related to the
formulation of the model. The issue of identification must be resolved before estimation
can even be considered. The question posed is essentially this: Suppose we had an
infinitely large sample—that is, for current purposes, all the information there is to be
had about the parameters. Could we uniquely determine the values of θ from such a
sample? As will be clear shortly, the answer is sometimes no.

DEFINITION 14.1 Identification
The parameter vector θ is identified (estimable) if for any other parameter vector,
θ∗ �= θ , for some data y, L(θ∗ | y) �= L(θ | y).

This result will be crucial at several points in what follows. We consider two examples,
the first of which will be very familiar to you by now.

Example 14.1 Identification of Parameters
For the regression model specified in (14-3), suppose that there is a nonzero vector a such
that x′

i a = 0 for every xi . Then there is another “parameter” vector, γ = β + a �= β such that
x′

i β = x′
i γ for every xi . You can see in (14-3) that if this is the case, then the log-likelihood
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is the same whether it is evaluated at β or at γ . As such, it is not possible to consider
estimation of β in this model because β cannot be distinguished from γ . This is the case of
perfect collinearity in the regression model, which we ruled out when we first proposed the
linear regression model with “Assumption 2. Identifiability of the Model Parameters.”

The preceding dealt with a necessary characteristic of the sample data. We now consider
a model in which identification is secured by the specification of the parameters in the model.
(We will study this model in detail in Chapter 17.) Consider a simple form of the regression
model considered earlier, yi = β1 + β2xi + εi , where εi | xi has a normal distribution with zero
mean and variance σ 2. To put the model in a context, consider a consumer’s purchases of
a large commodity such as a car where xi is the consumer’s income and yi is the difference
between what the consumer is willing to pay for the car, p∗

i , and the price tag on the car, pi .
Suppose rather than observing p∗

i or pi , we observe only whether the consumer actually
purchases the car, which, we assume, occurs when yi = p∗

i − pi is positive. Collecting this
information, our model states that they will purchase the car if yi > 0 and not purchase it if
yi ≤ 0. Let us form the likelihood function for the observed data, which are purchase (or not)
and income. The random variable in this model is “purchase” or “not purchase”—there are
only two outcomes. The probability of a purchase is

Prob(purchase | β1, β2, σ, xi ) = Prob( yi > 0 | β1, β2, σ, xi )

= Prob(β1 + β2xi + εi > 0 | β1, β2, σ, xi )

= Prob[εi > −(β1 + β2xi ) | β1, β2, σ, xi ]

= Prob[εi /σ > −(β1 + β2xi )/σ | β1, β2, σ, xi ]

= Prob[zi > −(β1 + β2xi )/σ | β1, β2, σ, xi ]

where zi has a standard normal distribution. The probability of not purchase is just one minus
this probability. The likelihood function is

∏
i = purchased

[Prob(purchase | β1, β2, σ, xi ) ]
∏

i = not purchased

[1 − Prob(purchase | β1, β2, σ, xi ) ].

We need go no further to see that the parameters of this model are not identified. If β1, β2, and
σ are all multiplied by the same nonzero constant, regardless of what it is, then Prob(purchase)
is unchanged, 1 − Prob(purchase) is also, and the likelihood function does not change. This
model requires a normalization. The one usually used is σ = 1, but some authors [e.g.,
Horowitz (1993)] have used β1 = 1 instead.

14.3 EFFICIENT ESTIMATION: THE PRINCIPLE
OF MAXIMUM LIKELIHOOD

The principle of maximum likelihood provides a means of choosing an asymptotically
efficient estimator for a parameter or a set of parameters. The logic of the technique is
easily illustrated in the setting of a discrete distribution. Consider a random sample of
the following 10 observations from a Poisson distribution: 5, 0, 1, 1, 0, 3, 2, 3, 4, and 1.
The density for each observation is

f (yi | θ) = e−θ θ yi

yi !
.
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FIGURE 14.1 Likelihood and Log-Likelihood Functions for a Poisson
Distribution.

Because the observations are independent, their joint density, which is the likelihood
for this sample, is

f (y1, y2, . . . , y10 | θ) =
10∏

i=1

f (yi | θ) = e−10θ θ�10
i=1 yi

∏10
i=1 yi !

= e−10θ θ20

207, 360
.

The last result gives the probability of observing this particular sample, assuming that a
Poisson distribution with as yet unknown parameter θ generated the data. What value
of θ would make this sample most probable? Figure 14.1 plots this function for various
values of θ . It has a single mode at θ = 2, which would be the maximum likelihood
estimate, or MLE, of θ .

Consider maximizing L(θ | y) with respect to θ . Because the log function is mono-
tonically increasing and easier to work with, we usually maximize ln L(θ | y) instead; in
sampling from a Poisson population,

ln L(θ | y) = −nθ + ln θ

n∑
i=1

yi −
n∑

i=1

ln(yi !),

∂ ln L(θ | y)

∂θ
= −n + 1

θ

n∑
i=1

yi = 0 ⇒ θ̂ML = yn.

For the assumed sample of observations,

ln L(θ | y) = −10θ + 20 ln θ − 12.242,

d ln L(θ | y)

dθ
= −10 + 20

θ
= 0 ⇒ θ̂ = 2,
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and

d2 ln L(θ | y)

dθ2
= −20

θ2
< 0 ⇒ this is a maximum.

The solution is the same as before. Figure 14.1 also plots the log of L(θ | y) to illustrate
the result.

The reference to the probability of observing the given sample is not exact in a
continuous distribution, because a particular sample has probability zero. Nonetheless,
the principle is the same. The values of the parameters that maximize L(θ | data) or its
log are the maximum likelihood estimates, denoted θ̂ . The logarithm is a monotonic
function, so the values that maximize L(θ | data) are the same as those that maximize
ln L(θ | data). The necessary condition for maximizing ln L(θ | data) is

∂ ln L(θ | data)

∂θ
= 0. (14-4)

This is called the likelihood equation. The general result then is that the MLE is a root
of the likelihood equation. The application to the parameters of the dgp for a discrete
random variable are suggestive that maximum likelihood is a “good” use of the data. It
remains to establish this as a general principle. We turn to that issue in the next section.

Example 14.2 Log-Likelihood Function and Likelihood Equations
for the Normal Distribution

In sampling from a normal distribution with mean μ and variance σ 2, the log-likelihood func-
tion and the likelihood equations for μ and σ 2 are

ln L (μ, σ 2) = −n
2

ln(2π ) − n
2

ln σ 2 − 1
2

n∑
i =1

[
( yi − μ) 2

σ 2

]
, (14-5)

∂ ln L
∂μ

= 1
σ 2

n∑
i =1

( yi − μ) = 0, (14-6)

∂ ln L
∂σ 2

= − n
2σ 2

+ 1
2σ 4

n∑
i =1

( yi − μ) 2 = 0. (14-7)

To solve the likelihood equations, multiply (14-6) by σ 2 and solve for μ̂, then insert this solution
in (14-7) and solve for σ 2. The solutions are

μ̂ML = 1
n

n∑
i =1

yi = yn and σ̂ 2
ML = 1

n

n∑
i =1

( yi − yn) 2. (14-8)

14.4 PROPERTIES OF MAXIMUM LIKELIHOOD
ESTIMATORS

Maximum likelihood estimators (MLEs) are most attractive because of their large-
sample or asymptotic properties.
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DEFINITION 14.2 Asymptotic Efficiency
An estimator is asymptotically efficient if it is consistent, asymptotically normally
distributed (CAN), and has an asymptotic covariance matrix that is not larger than
the asymptotic covariance matrix of any other consistent, asymptotically normally
distributed estimator.2

If certain regularity conditions are met, the MLE will have these properties. The finite
sample properties are sometimes less than optimal. For example, the MLE may be bi-
ased; the MLE of σ 2 in Example 14.2 is biased downward. The occasional statement that
the properties of the MLE are only optimal in large samples is not true, however. It can
be shown that when sampling is from an exponential family of distributions (see Defini-
tion 13.1), there will exist sufficient statistics. If so, MLEs will be functions of them, which
means that when minimum variance unbiased estimators exist, they will be MLEs. [See
Stuart and Ord (1989).] Most applications in econometrics do not involve exponential
families, so the appeal of the MLE remains primarily its asymptotic properties.

We use the following notation: θ̂ is the maximum likelihood estimator; θ0 denotes
the true value of the parameter vector; θ denotes another possible value of the param-
eter vector, not the MLE and not necessarily the true values. Expectation based on the
true values of the parameters is denoted E0[.]. If we assume that the regularity condi-
tions discussed momentarily are met by f (x, θ0), then we have the following theorem.

THEOREM 14.1 Properties of an MLE
Under regularity, the maximum likelihood estimator (MLE) has the following
asymptotic properties:

M1. Consistency: plim θ̂ = θ0.
M2. Asymptotic normality: θ̂

a∼ N[θ0, {I(θ0)}−1], where

I(θ0) = −E0[∂2 ln L/∂θ0∂θ ′
0].

M3. Asymptotic efficiency: θ̂ is asymptotically efficient and achieves the Cramér–
Rao lower bound for consistent estimators, given in M2 and Theorem C.2.

M4. Invariance: The maximum likelihood estimator of γ 0 = c(θ0) is c(θ̂) if
c(θ0) is a continuous and continuously differentiable function.

14.4.1 REGULARITY CONDITIONS

To sketch proofs of these results, we first obtain some useful properties of probability
density functions. We assume that (y1, . . . , yn) is a random sample from the population
with density function f (yi | θ0) and that the following regularity conditions hold. [Our

2Not larger is defined in the sense of (A-118): The covariance matrix of the less efficient estimator equals that
of the efficient estimator plus a nonnegative definite matrix.
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statement of these is informal. A more rigorous treatment may be found in Stuart and
Ord (1989) or Davidson and MacKinnon (2004).]

DEFINITION 14.3 Regularity Conditions

R1. The first three derivatives of ln f (yi | θ) with respect to θ are continuous
and finite for almost all yi and for all θ . This condition ensures the existence
of a certain Taylor series approximation to and the finite variance of the
derivatives of ln L.

R2. The conditions necessary to obtain the expectations of the first and second
derivatives of ln f (yi | θ) are met.

R3. For all values of θ , |∂3 ln f (yi | θ)/∂θ j∂θk∂θl | is less than a function that
has a finite expectation. This condition will allow us to truncate the Taylor
series.

With these regularity conditions, we will obtain the following fundamental char-
acteristics of f (yi | θ): D1 is simply a consequence of the definition of the likelihood
function. D2 leads to the moment condition which defines the maximum likelihood
estimator. On the one hand, the MLE is found as the maximizer of a function, which
mandates finding the vector that equates the gradient to zero. On the other, D2 is a
more fundamental relationship that places the MLE in the class of generalized method
of moments estimators. D3 produces what is known as the information matrix equality.
This relationship shows how to obtain the asymptotic covariance matrix of the MLE.

14.4.2 PROPERTIES OF REGULAR DENSITIES

Densities that are “regular” by Definition 14.3 have three properties that are used in
establishing the properties of maximum likelihood estimators:

THEOREM 14.2 Moments of the Derivatives of the Log-Likelihood

D1. ln f (yi | θ), gi = ∂ ln f (yi | θ)/∂θ , and Hi = ∂2 ln f (yi | θ)/∂θ∂θ ′, i =
1, . . . , n, are all random samples of random variables. This statement fol-
lows from our assumption of random sampling. The notation gi (θ0) and
Hi (θ0) indicates the derivative evaluated at θ0.

D2. E0[gi (θ0)] = 0.
D3. Var[gi (θ0)] = −E [Hi (θ0)].

Condition D1 is simply a consequence of the definition of the density.

For the moment, we allow the range of yi to depend on the parameters; A(θ0) ≤
yi ≤ B(θ0). (Consider, for example, finding the maximum likelihood estimator of θ0

for a continuous uniform distribution with range [0, θ0].) (In the following, the single
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integral
∫

. . . dyi , will be used to indicate the multiple integration over all the elements
of a multivariate of yi if that is necessary.) By definition,

∫ B(θ0)

A(θ0)

f (yi | θ0) dyi = 1.

Now, differentiate this expression with respect to θ0. Leibnitz’s theorem gives

∂
∫ B(θ0)

A(θ0)
f (yi | θ0) dyi

∂θ0
=

∫ B(θ0)

A(θ0)

∂ f (yi | θ0)

∂θ0
dyi + f (B(θ0) | θ0)

∂ B(θ0)

∂θ0

− f (A(θ0) | θ0)
∂ A(θ0)

∂θ0

= 0.

If the second and third terms go to zero, then we may interchange the operations of
differentiation and integration. The necessary condition is that limyi →A(θ0) f (yi | θ0) =
limyi →B(θ0) f (yi | θ0) = 0. (Note that the uniform distribution suggested earlier violates
this condition.) Sufficient conditions are that the range of the observed random variable,
yi , does not depend on the parameters, which means that ∂ A(θ0)/∂θ0 = ∂ B(θ0)/∂θ0 = 0
or that the density is zero at the terminal points. This condition, then, is regularity
condition R2. The latter is usually assumed, and we will assume it in what follows. So,

∂
∫

f (yi | θ0) dyi

∂θ0
=

∫
∂ f (yi | θ0)

∂θ0
dyi =

∫
∂ ln f (yi | θ0)

∂θ0
f (yi | θ0) dyi

= E0

[
∂ ln f (yi | θ0)

∂θ0

]
= 0.

This proves D2.
Because we may interchange the operations of integration and differentiation, we

differentiate under the integral once again to obtain
∫ [

∂2 ln f (yi | θ0)

∂θ0∂θ ′
0

f (yi | θ0) + ∂ ln f (yi | θ0)

∂θ0

∂ f (yi | θ0)

∂θ ′
0

]
dyi = 0.

But
∂ f (yi | θ0)

∂θ ′
0

= f (yi | θ0)
∂ ln f (yi | θ0)

∂θ ′
0

,

and the integral of a sum is the sum of integrals. Therefore,

−
∫ [

∂2 ln f (yi | θ0)

∂θ0∂θ ′
0

]
f (yi | θ0) dyi =

∫ [
∂ ln f (yi | θ0)

∂θ0

∂ ln f (yi | θ0)

∂θ ′
0

]
f (yi | θ0) dyi .

The left-hand side of the equation is the negative of the expected second derivatives
matrix. The right-hand side is the expected square (outer product) of the first derivative
vector. But, because this vector has expected value 0 (we just showed this), the right-
hand side is the variance of the first derivative vector, which proves D3:

Var0

[
∂ ln f (yi | θ0)

∂θ0

]
= E0

[(
∂ ln f (yi | θ0)

∂θ0

)(
∂ ln f (yi | θ0)

∂θ ′
0

)]
= −E

[
∂2 ln f (yi | θ0)

∂θ0∂θ ′
0

]
.
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14.4.3 THE LIKELIHOOD EQUATION

The log-likelihood function is

ln L(θ | y) =
n∑

i=1

ln f (yi | θ).

The first derivative vector, or score vector, is

g = ∂ ln L(θ | y)

∂θ
=

n∑
i=1

∂ ln f (yi | θ)

∂θ
=

n∑
i=1

gi . (14-9)

Because we are just adding terms, it follows from D1 and D2 that at θ0,

E0

[
∂ ln L(θ0 | y)

∂θ0

]
= E0[g0] = 0. (14-10)

which is the likelihood equation mentioned earlier.

14.4.4 THE INFORMATION MATRIX EQUALITY

The Hessian of the log-likelihood is

H = ∂2 ln L(θ | y)

∂θ∂θ ′ =
n∑

i=1

∂2 ln f (yi | θ)

∂θ∂θ ′ =
n∑

i=1

Hi .

Evaluating once again at θ0, by taking

E0[g0g′
0] = E0

⎡
⎣

n∑
i=1

n∑
j=1

g0i g′
0 j

⎤
⎦,

and, because of D1, dropping terms with unequal subscripts we obtain

E0[g0g′
0] = E0

[
n∑

i=1

g0i g′
0i

]
= E0

[
n∑

i=1

(−H0i )

]
= −E0[H0],

so that

Var0

[
∂ ln L(θ0 | y)

∂θ0

]
= E0

[(
∂ ln L(θ0 | y)

∂θ0

)(
∂ ln L(θ0 | y)

∂θ ′
0

)]

= −E0

[
∂2 ln L(θ0 | y)

∂θ0∂θ ′
0

]
.

(14-11)

This very useful result is known as the information matrix equality.

14.4.5 ASYMPTOTIC PROPERTIES OF THE MAXIMUM
LIKELIHOOD ESTIMATOR

We can now sketch a derivation of the asymptotic properties of the MLE. Formal proofs
of these results require some fairly intricate mathematics. Two widely cited derivations
are those of Cramér (1948) and Amemiya (1985). To suggest the flavor of the exercise,
we will sketch an analysis provided by Stuart and Ord (1989) for a simple case, and
indicate where it will be necessary to extend the derivation if it were to be fully general.
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14.4.5.a Consistency

We assume that f (yi | θ0) is a possibly multivariate density that at this point does not
depend on covariates, xi . Thus, this is the i.i.d., random sampling case. Because θ̂ is the
MLE, in any finite sample, for any θ �= θ̂ (including the true θ0) it must be true that

ln L(θ̂) ≥ ln L(θ). (14-12)

Consider, then, the random variable L(θ)/L(θ0). Because the log function is strictly
concave, from Jensen’s Inequality (Theorem D.13.), we have

E0

[
ln

L(θ)

L(θ0)

]
< ln E0

[
L(θ)

L(θ0)

]
. (14-13)

The expectation on the right-hand side is exactly equal to one, as

E0

[
L(θ)

L(θ0)

]
=

∫ (
L(θ)

L(θ0)

)
L(θ0) dy = 1 (14-14)

is simply the integral of a joint density. So, the right hand side of (14-13) equals zero.
Divide the left hand side of (14-13) by n to produce

E0[1/n ln L(θ)] − E0[1/n ln L(θ0)] < 0.

This produces a central result:

THEOREM 14.3 Likelihood Inequality

E0[(1/n) ln L(θ0)] > E0[(1/n) ln L(θ)] for any θ �= θ0 (including θ̂).

In words, the expected value of the log-likelihood is maximized at the true value of the
parameters.

For any θ , including θ̂ ,

[(1/n) ln L(θ)] = (1/n)

n∑
i=1

ln f (yi | θ)

is the sample mean of n i.i.d. random variables, with expectation E0[(1/n) ln L(θ)].
Because the sampling is i.i.d. by the regularity conditions, we can invoke the
Khinchine theorem, D.5; the sample mean converges in probability to the popu-
lation mean. Using θ = θ̂ , it follows from Theorem 14.3 that as n → ∞,
lim Prob{[(1/n) ln L(θ̂)] < [(1/n) ln L(θ0)]} = 1 if θ̂ �= θ0. But, θ̂ is the MLE, so for every
n, (1/n) ln L(θ̂) ≥(1/n) ln L(θ0). The only way these can both be true is if (1/n) times
the sample log-likelihood evaluated at the MLE converges to the population expecta-
tion of (1/n) times the log-likelihood evaluated at the true parameters. There remains
one final step. Does (1/n) ln L(θ̂) → (1/n) ln L(θ0) imply that θ̂ → θ0? If there is a
single parameter and the likelihood function is one to one, then clearly so. For more
general cases, this requires a further characterization of the likelihood function. If the
likelihood is strictly continuous and twice differentiable, which we assumed in the reg-
ularity conditions, and if the parameters of the model are identified which we assumed
at the beginning of this discussion, then yes, it does, so we have the result.
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This is a heuristic proof. As noted, formal presentations appear in more advanced
treatises than this one. We should also note, we have assumed at several points that
sample means converge to their population expectations. This is likely to be true for
the sorts of applications usually encountered in econometrics, but a fully general set
of results would look more closely at this condition. Second, we have assumed i.i.d.
sampling in the preceding—that is, the density for yi does not depend on any other
variables, xi . This will almost never be true in practice. Assumptions about the behavior
of these variables will enter the proofs as well. For example, in assessing the large sample
behavior of the least squares estimator, we have invoked an assumption that the data
are “well behaved.” The same sort of consideration will apply here as well. We will
return to this issue shortly. With all this in place, we have property M1, plim θ̂ = θ0.

14.4.5.b Asymptotic Normality

At the maximum likelihood estimator, the gradient of the log-likelihood equals zero
(by definition), so

g(θ̂) = 0.

(This is the sample statistic, not the expectation.) Expand this set of equations in a
Taylor series around the true parameters θ0. We will use the mean value theorem to
truncate the Taylor series at the second term,

g(θ̂) = g(θ0) + H(θ̄)(θ̂ − θ0) = 0.

The Hessian is evaluated at a point θ̄ that is between θ̂ and θ0 [θ̄ = wθ̂ + (1 − w)θ0

for some 0 < w < 1]. We then rearrange this function and multiply the result by
√

n to
obtain

√
n(θ̂ − θ0) = [−H(θ̄)]−1[

√
ng(θ0)].

Because plim(θ̂ − θ0) = 0, plim(θ̂ − θ̄) = 0 as well. The second derivatives are continu-
ous functions. Therefore, if the limiting distribution exists, then

√
n(θ̂ − θ0)

d−→ [−H(θ0)]−1[
√

ng(θ0)].

By dividing H(θ0) and g(θ0) by n, we obtain
√

n(θ̂ − θ0)
d−→ [− 1

n H(θ0)
]−1[

√
n g(θ0)]. (14-15)

We may apply the Lindeberg–Levy central limit theorem (D.18) to [
√

n g(θ0)], because
it is

√
n times the mean of a random sample; we have invoked D1 again. The limiting

variance of [
√

n g(θ0)] is −E0[(1/n)H(θ0)], so
√

n g(θ0)
d−→ N

{
0, −E0

[ 1
n H(θ0)

]}
.

By virtue of Theorem D.2, plim[−(1/n)H(θ0)] = − E0[(1/n)H(θ0)]. This result is a
constant matrix, so we can combine results to obtain
[− 1

n H(θ0)
]−1√

n g(θ0)
d−→ N

[
0,

{−E0
[ 1

n H(θ0)
]}−1{−E0

[ 1
n H(θ0)

]}{−E0[ 1
n H(θ0)]

}−1]
,

or
√

n(θ̂ − θ0)
d−→ N

[
0,

{−E0
[ 1

n H(θ0)
]}−1]

,
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which gives the asymptotic distribution of the MLE:

θ̂
a∼ N[θ0, {I(θ0)}−1].

This last step completes M2.

Example 14.3 Information Matrix for the Normal Distribution
For the likelihood function in Example 14.2, the second derivatives are

∂2 ln L
∂μ2

= −n
σ 2

,

∂2 ln L
∂ (σ 2) 2

= n
2σ 4

− 1
σ 6

n∑
i =1

( yi − μ) 2,

∂2 ln L
∂μ∂σ 2

= −1
σ 4

n∑
i =1

( yi − μ) .

For the asymptotic variance of the maximum likelihood estimator, we need the expectations
of these derivatives. The first is nonstochastic, and the third has expectation 0, as E [yi ] = μ.
That leaves the second, which you can verify has expectation −n/(2σ 4) because each of the
n terms ( yi −μ) 2 has expected value σ 2. Collecting these in the information matrix, reversing
the sign, and inverting the matrix gives the asymptotic covariance matrix for the maximum
likelihood estimators:

{
−E0

[
∂2 ln L
∂θ0 ∂θ ′

0

]}−1

=
[
σ 2/n 0

0 2σ 4/n

]
.

14.4.5.c Asymptotic Efficiency

Theorem C.2 provides the lower bound for the variance of an unbiased estimator.
Because the asymptotic variance of the MLE achieves this bound, it seems natural to
extend the result directly. There is, however, a loose end in that the MLE is almost never
unbiased. As such, we need an asymptotic version of the bound, which was provided
by Cramér (1948) and Rao (1945) (hence the name):

THEOREM 14.4 Cramér–Rao Lower Bound
Assuming that the density of yi satisfies the regularity conditions R1–R3, the
asymptotic variance of a consistent and asymptotically normally distributed esti-
mator of the parameter vector θ0 will always be at least as large as

[I(θ0)]−1 =
(
−E0

[
∂2 ln L(θ0)

∂θ0 ∂θ ′
0

])−1

=
(

E0

[(
∂ ln L(θ0)

∂θ0

)(
∂ ln L(θ0)

∂θ0

)′ ])−1

.

The asymptotic variance of the MLE is, in fact, equal to the Cramér–Rao Lower Bound
for the variance of a consistent, asymptotically normally distributed estimator, so this
completes the argument.3

3A result reported by LeCam (1953) and recounted in Amemiya (1985, p. 124) suggests that, in principle,
there do exist CAN functions of the data with smaller variances than the MLE. But, the finding is a narrow
result with no practical implications. For practical purposes, the statement may be taken as given.
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14.4.5.d Invariance

Last, the invariance property, M4, is a mathematical result of the method of computing
MLEs; it is not a statistical result as such. More formally, the MLE is invariant to one-to-
one transformations of θ . Any transformation that is not one to one either renders the
model inestimable if it is one to many or imposes restrictions if it is many to one. Some
theoretical aspects of this feature are discussed in Davidson and MacKinnon (2004,
pp. 446, 539–540). For the practitioner, the result can be extremely useful. For example,
when a parameter appears in a likelihood function in the form 1/θ j , it is usually worth-
while to reparameterize the model in terms of γ j = 1/θ j . In an important application,
Olsen (1978) used this result to great advantage. (See Section 19.3.3.) Suppose that
the normal log-likelihood in Example 14.2 is parameterized in terms of the precision
parameter, θ2 = 1/σ 2. The log-likelihood becomes

ln L(μ, θ2) = −(n/2) ln(2π) + (n/2) ln θ2 − θ2

2

n∑
i=1

(yi − μ)2.

The MLE for μ is clearly still x. But the likelihood equation for θ2 is now

∂ ln L(μ, θ2)/∂θ2 = 1
2

[
n/θ2 −

n∑
i=1

(yi − μ)2

]
= 0,

which has solution θ̂2 = n/
∑n

i=1(yi − μ̂)2 = 1/σ̂ 2, as expected. There is a second impli-
cation. If it is desired to analyze a function of an MLE, then the function of θ̂ will, itself,
be the MLE.

14.4.5.e Conclusion

These four properties explain the prevalence of the maximum likelihood technique in
econometrics. The second greatly facilitates hypothesis testing and the construction of
interval estimates. The third is a particularly powerful result. The MLE has the minimum
variance achievable by a consistent and asymptotically normally distributed estimator.

14.4.6 ESTIMATING THE ASYMPTOTIC VARIANCE
OF THE MAXIMUM LIKELIHOOD ESTIMATOR

The asymptotic covariance matrix of the maximum likelihood estimator is a matrix of
parameters that must be estimated (i.e., it is a function of the θ0 that is being estimated).
If the form of the expected values of the second derivatives of the log-likelihood is
known, then

[I(θ0)]−1 =
{
−E0

[
∂2 ln L(θ0)

∂θ0 ∂θ ′
0

]}−1

(14-16)

can be evaluated at θ̂ to estimate the covariance matrix for the MLE. This estimator
will rarely be available. The second derivatives of the log-likelihood will almost always
be complicated nonlinear functions of the data whose exact expected values will be
unknown. There are, however, two alternatives. A second estimator is

[Î(θ̂)]−1 =
(

−∂2 ln L(θ̂)

∂ θ̂ ∂ θ̂ ′

)−1

. (14-17)

This estimator is computed simply by evaluating the actual (not expected) second
derivatives matrix of the log-likelihood function at the maximum likelihood estimates.
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It is straightforward to show that this amounts to estimating the expected second deriva-
tives of the density with the sample mean of this quantity. Theorem D.4 and Result (D-5)
can be used to justify the computation. The only shortcoming of this estimator is that the
second derivatives can be complicated to derive and program for a computer. A third
estimator based on result D3 in Theorem 14.2, that the expected second derivatives
matrix is the covariance matrix of the first derivatives vector, is

[ˆ̂I(θ̂)]−1 =
[

n∑
i=1

ĝi ĝ′
i

]−1

= [Ĝ′Ĝ]−1, (14-18)

where

ĝi = ∂ ln f (xi , θ̂)

∂ θ̂
,

and

Ĝ = [ĝ1, ĝ2, . . . , ĝn]′.

Ĝ is an n × K matrix with ith row equal to the transpose of the ith vector of derivatives
in the terms of the log-likelihood function. For a single parameter, this estimator is just
the reciprocal of the sum of squares of the first derivatives. This estimator is extremely
convenient, in most cases, because it does not require any computations beyond those
required to solve the likelihood equation. It has the added virtue that it is always non-
negative definite. For some extremely complicated log-likelihood functions, sometimes
because of rounding error, the observed Hessian can be indefinite, even at the maxi-
mum of the function. The estimator in (14-18) is known as the BHHH estimator4 and
the outer product of gradients, or OPG, estimator.

None of the three estimators given here is preferable to the others on statistical
grounds; all are asymptotically equivalent. In most cases, the BHHH estimator will be
the easiest to compute. One caution is in order. As the following example illustrates,
these estimators can give different results in a finite sample. This is an unavoidable finite
sample problem that can, in some cases, lead to different statistical conclusions. The
example is a case in point. Using the usual procedures, we would reject the hypothesis
that β = 0 if either of the first two variance estimators were used, but not if the third
were used. The estimator in (14-16) is usually unavailable, as the exact expectation of
the Hessian is rarely known. Available evidence suggests that in small or moderate-sized
samples, (14-17) (the Hessian) is preferable.

Example 14.4 Variance Estimators for an MLE
The sample data in Example C.1 are generated by a model of the form

f ( yi , xi , β) = 1
β + xi

e−yi /(β+xi ) ,

where y = income and x = education. To find the maximum likelihood estimate of β, we
maximize

ln L (β) = −
n∑

i =1

ln(β + xi ) −
n∑

i =1

yi

β + xi
.

4It appears to have been advocated first in the econometrics literature in Berndt et al. (1974).
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The likelihood equation is

∂ ln L (β)
∂β

= −
n∑

i =1

1
β + xi

+
n∑

i =1

yi

(β + xi ) 2
= 0, (14-19)

which has the solution β̂ = 15.602727. To compute the asymptotic variance of the MLE, we
require

∂2 ln L (β)
∂β2

=
n∑

i =1

1
(β + xi ) 2

− 2
n∑

i =1

yi

(β + xi ) 3
. (14-20)

Because the function E ( yi ) = β +xi is known, the exact form of the expected value in (14-20)
is known. Inserting β̂ + xi for yi in (14-20) and taking the negative of the reciprocal yields the
first variance estimate, 44.2546. Simply inserting β̂ = 15.602727 in (14-20) and taking the
negative of the reciprocal gives the second estimate, 46.16337. Finally, by computing the
reciprocal of the sum of squares of first derivatives of the densities evaluated at β̂,

[ˆ̂I( β̂) ]−1 = 1∑n
i =1[−1/( β̂ + xi ) + yi /( β̂ + xi ) 2]2

,

we obtain the BHHH estimate, 100.5116.

14.5 CONDITIONAL LIKELIHOODS, ECONOMETRIC
MODELS, AND THE GMM ESTIMATOR

All of the preceding results form the statistical underpinnings of the technique of maxi-
mum likelihood estimation. But, for our purposes, a crucial element is missing. We have
done the analysis in terms of the density of an observed random variable and a vector
of parameters, f (yi | α). But econometric models will involve exogenous or predeter-
mined variables, xi , so the results must be extended. A workable approach is to treat
this modeling framework the same as the one in Chapter 4, where we considered the
large sample properties of the linear regression model. Thus, we will allow xi to denote
a mix of random variables and constants that enter the conditional density of yi . By
partitioning the joint density of yi and xi into the product of the conditional and the
marginal, the log-likelihood function may be written

ln L(α | data) =
n∑

i=1

ln f (yi , xi | α) =
n∑

i=1

ln f (yi | xi , α) +
n∑

i=1

ln g(xi | α),

where any nonstochastic elements in xi such as a time trend or dummy variable are
being carried as constants. To proceed, we will assume as we did before that the process
generating xi takes place outside the model of interest. For present purposes, that
means that the parameters that appear in g(xi | α) do not overlap with those that appear
in f (yi | xi , α). Thus, we partition α into [θ , δ] so that the log-likelihood function may
be written

ln L(θ , δ | data) =
n∑

i=1

ln f (yi , xi | α) =
n∑

i=1

ln f (yi | xi , θ) +
n∑

i=1

ln g(xi | δ).

As long as θ and δ have no elements in common and no restrictions connect them (such
as θ + δ = 1), then the two parts of the log-likelihood may be analyzed separately. In
most cases, the marginal distribution of xi will be of secondary (or no) interest.
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Asymptotic results for the maximum conditional likelihood estimator must now
account for the presence of xi in the functions and derivatives of ln f (yi | xi , θ). We will
proceed under the assumption of well-behaved data so that sample averages such as

(1/n) ln L(θ | y, X) = 1
n

n∑
i=1

ln f (yi | xi , θ)

and its gradient with respect to θ will converge in probability to their population expec-
tations. We will also need to invoke central limit theorems to establish the asymptotic
normality of the gradient of the log-likelihood, so as to be able to characterize the
MLE itself. We will leave it to more advanced treatises such as Amemiya (1985) and
Newey and McFadden (1994) to establish specific conditions and fine points that must
be assumed to claim the “usual” properties for maximum likelihood estimators. For
present purposes (and the vast bulk of empirical applications), the following minimal
assumptions should suffice:

• Parameter space. Parameter spaces that have gaps and nonconvexities in them
will generally disable these procedures. An estimation problem that produces this
failure is that of “estimating” a parameter that can take only one among a discrete
set of values. For example, this set of procedures does not include “estimating”
the timing of a structural change in a model. The likelihood function must be a
continuous function of a convex parameter space. We allow unbounded parameter
spaces, such as σ > 0 in the regression model, for example.

• Identifiability. Estimation must be feasible. This is the subject of Definition 14.1
concerning identification and the surrounding discussion.

• Well-behaved data. Laws of large numbers apply to sample means involving the
data and some form of central limit theorem (generally Lyapounov) can be applied
to the gradient. Ergodic stationarity is broad enough to encompass any situation
that is likely to arise in practice, though it is probably more general than we need for
most applications, because we will not encounter dependent observations specif-
ically until later in the book. The definitions in Chapter 4 are assumed to hold
generally.

With these in place, analysis is essentially the same in character as that we used in the
linear regression model in Chapter 4 and follows precisely along the lines of Section 12.5.

14.6 HYPOTHESIS AND SPECIFICATION TESTS
AND FIT MEASURES

The next several sections will discuss the most commonly used test procedures: the
likelihood ratio, Wald, and Lagrange multiplier tests. [Extensive discussion of these
procedures is given in Godfrey (1988).] We consider maximum likelihood estimation
of a parameter θ and a test of the hypothesis H0: c(θ) = 0. The logic of the tests can be
seen in Figure 14.2.5 The figure plots the log-likelihood function ln L(θ), its derivative
with respect to θ, d ln L(θ)/dθ , and the constraint c(θ). There are three approaches to

5See Buse (1982). Note that the scale of the vertical axis would be different for each curve. As such, the points
of intersection have no significance.
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FIGURE 14.2 Three Bases for Hypothesis Tests.

testing the hypothesis suggested in the figure:

• Likelihood ratio test. If the restriction c(θ) = 0 is valid, then imposing it should not
lead to a large reduction in the log-likelihood function. Therefore, we base the test
on the difference, ln LU − ln LR, where LU is the value of the likelihood function at
the unconstrained value of θ and LR is the value of the likelihood function at the
restricted estimate.

• Wald test. If the restriction is valid, then c(θ̂MLE) should be close to zero because the
MLE is consistent. Therefore, the test is based on c(θ̂MLE). We reject the hypothesis
if this value is significantly different from zero.



Greene-2140242 book January 19, 2011 21:15

566 PART III ✦ Estimation Methodology

• Lagrange multiplier test. If the restriction is valid, then the restricted estimator
should be near the point that maximizes the log-likelihood. Therefore, the slope
of the log-likelihood function should be near zero at the restricted estimator. The
test is based on the slope of the log-likelihood at the point where the function is
maximized subject to the restriction.

These three tests are asymptotically equivalent under the null hypothesis, but they can
behave rather differently in a small sample. Unfortunately, their small-sample proper-
ties are unknown, except in a few special cases. As a consequence, the choice among
them is typically made on the basis of ease of computation. The likelihood ratio test
requires calculation of both restricted and unrestricted estimators. If both are simple
to compute, then this way to proceed is convenient. The Wald test requires only the
unrestricted estimator, and the Lagrange multiplier test requires only the restricted
estimator. In some problems, one of these estimators may be much easier to compute
than the other. For example, a linear model is simple to estimate but becomes nonlinear
and cumbersome if a nonlinear constraint is imposed. In this case, the Wald statistic
might be preferable. Alternatively, restrictions sometimes amount to the removal of
nonlinearities, which would make the Lagrange multiplier test the simpler procedure.

14.6.1 THE LIKELIHOOD RATIO TEST

Let θ be a vector of parameters to be estimated, and let H0 specify some sort of restriction
on these parameters. Let θ̂U be the maximum likelihood estimator of θ obtained without
regard to the constraints, and let θ̂ R be the constrained maximum likelihood estimator.
If L̂U and L̂R are the likelihood functions evaluated at these two estimates, then the
likelihood ratio is

λ = L̂R

L̂U
. (14-21)

This function must be between zero and one. Both likelihoods are positive, and L̂R

cannot be larger than L̂U . (A restricted optimum is never superior to an unrestricted
one.) If λ is too small, then doubt is cast on the restrictions.

An example from a discrete distribution helps to fix these ideas. In estimating from
a sample of 10 from a Poisson population at the beginning of Section 14.3, we found the
MLE of the parameter θ to be 2. At this value, the likelihood, which is the probability of
observing the sample we did, is 0.104 × 10−7. Are these data consistent with H0: θ = 1.8?
LR = 0.936 × 10−8, which is, as expected, smaller. This particular sample is somewhat
less probable under the hypothesis.

The formal test procedure is based on the following result.

THEOREM 14.5 Limiting Distribution of the Likelihood Ratio
Test Statistic

Under regularity and underH0, the limiting distribution of −2 ln λ is chi-squared,
with degrees of freedom equal to the number of restrictions imposed.
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The null hypothesis is rejected if this value exceeds the appropriate critical value
from the chi-squared tables. Thus, for the Poisson example,

−2 ln λ = −2 ln
(

0.0936
0.104

)
= 0.21072.

This chi-squared statistic with one degree of freedom is not significant at any conven-
tional level, so we would not reject the hypothesis that θ = 1.8 on the basis of this test.6

It is tempting to use the likelihood ratio test to test a simple null hypothesis against
a simple alternative. For example, we might be interested in the Poisson setting in
testing H0: θ = 1.8 against H1: θ = 2.2. But the test cannot be used in this fashion. The
degrees of freedom of the chi-squared statistic for the likelihood ratio test equals the
reduction in the number of dimensions in the parameter space that results from imposing
the restrictions. In testing a simple null hypothesis against a simple alternative, this
value is zero.7 Second, one sometimes encounters an attempt to test one distributional
assumption against another with a likelihood ratio test; for example, a certain model
will be estimated assuming a normal distribution and then assuming a t distribution.
The ratio of the two likelihoods is then compared to determine which distribution is
preferred. This comparison is also inappropriate. The parameter spaces, and hence the
likelihood functions of the two cases, are unrelated.

14.6.2 THE WALD TEST

A practical shortcoming of the likelihood ratio test is that it usually requires estimation
of both the restricted and unrestricted parameter vectors. In complex models, one or
the other of these estimates may be very difficult to compute. Fortunately, there are
two alternative testing procedures, the Wald test and the Lagrange multiplier test, that
circumvent this problem. Both tests are based on an estimator that is asymptotically
normally distributed.

These two tests are based on the distribution of the full rank quadratic form con-
sidered in Section B.11.6. Specifically,

If x ∼ NJ [μ, �], then (x − μ)′�−1(x − μ) ∼ chi-squared[J ]. (14-22)

In the setting of a hypothesis test, under the hypothesis that E(x) = μ, the quadratic
form has the chi-squared distribution. If the hypothesis that E(x) = μ is false, however,
then the quadratic form just given will, on average, be larger than it would be if the
hypothesis were true.8 This condition forms the basis for the test statistics discussed in
this and the next section.

Let θ̂ be the vector of parameter estimates obtained without restrictions. We hypo-
thesize a set of restrictions

H0: c(θ) = q.

6Of course, our use of the large-sample result in a sample of 10 might be questionable.
7Note that because both likelihoods are restricted in this instance, there is nothing to prevent −2 ln λ from
being negative.
8If the mean is not μ, then the statistic in (14-22) will have a noncentral chi-squared distribution. This
distribution has the same basic shape as the central chi-squared distribution, with the same degrees of freedom,
but lies to the right of it. Thus, a random draw from the noncentral distribution will tend, on average, to be
larger than a random observation from the central distribution.
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If the restrictions are valid, then at least approximately θ̂ should satisfy them. If the
hypothesis is erroneous, however, then c(θ̂)− q should be farther from 0 than would be
explained by sampling variability alone. The device we use to formalize this idea is the
Wald test.

THEOREM 14.6 Limiting Distribution of the Wald Test Statistic
The Wald statistic is

W = [c(θ̂) − q]′
(
Asy.Var[c(θ̂) − q]

)−1[c(θ̂) − q].

Under H0, W has a limiting chi-squared distribution with degrees of freedom
equal to the number of restrictions [i.e., the number of equations in
c(θ̂)−q = 0]. A derivation of the limiting distribution of the Wald statistic appears
in Theorem 5.1.

This test is analogous to the chi-squared statistic in (14-22) if c(θ̂) − q is normally
distributed with the hypothesized mean of 0. A large value of W leads to rejection of the
hypothesis. Note, finally, that W only requires computation of the unrestricted model.
One must still compute the covariance matrix appearing in the preceding quadratic form.
This result is the variance of a possibly nonlinear function, which we treated earlier.

Est. Asy. Var[c(θ̂) − q] = Ĉ Est. Asy. Var[θ̂ ]Ĉ′,

Ĉ =
[
∂c(θ̂)

∂ θ̂ ′

]
.

(14-23)

That is, C is the J × K matrix whose jth row is the derivatives of the jth constraint with
respect to the K elements of θ . A common application occurs in testing a set of linear
restrictions.

For testing a set of linear restrictions Rθ = q, the Wald test would be based on

H0: c(θ) − q = Rθ − q = 0,

Ĉ =
[
∂c(θ̂)

∂ θ̂
′

]
= R, (14-24)

Est. Asy. Var[c(θ̂) − q] = R Est. Asy. Var[θ̂ ]R,

and

W = [Rθ̂ − q]′[R Est. Asy. Var(θ̂)R′]−1[Rθ̂ − q].

The degrees of freedom is the number of rows in R.
If c(θ) = q is a single restriction, then the Wald test will be the same as the test

based on the confidence interval developed previously. If the test is

H0: θ = θ0 versus H1: θ �= θ0,

then the earlier test is based on

z = |θ̂ − θ0|
s(θ̂)

, (14-25)
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where s(θ̂) is the estimated asymptotic standard error. The test statistic is compared to
the appropriate value from the standard normal table. The Wald test will be based on

W = [(θ̂ − θ0)−0]
(
Asy. Var[(θ̂ − θ0)−0]

)−1[(θ̂ − θ0)−0] = (θ̂ − θ0)
2

Asy. Var[θ̂ ]
= z2. (14-26)

Here W has a limiting chi-squared distribution with one degree of freedom, which is
the distribution of the square of the standard normal test statistic in (14-25).

To summarize, the Wald test is based on measuring the extent to which the un-
restricted estimates fail to satisfy the hypothesized restrictions. There are two short-
comings of the Wald test. First, it is a pure significance test against the null hypothesis,
not necessarily for a specific alternative hypothesis. As such, its power may be limited
in some settings. In fact, the test statistic tends to be rather large in applications. The
second shortcoming is not shared by either of the other test statistics discussed here.
The Wald statistic is not invariant to the formulation of the restrictions. For example,
for a test of the hypothesis that a function θ = β/(1 − γ ) equals a specific value q there
are two approaches one might choose. A Wald test based directly on θ − q = 0 would
use a statistic based on the variance of this nonlinear function. An alternative approach
would be to analyze the linear restriction β − q(1 − γ ) = 0, which is an equivalent,
but linear, restriction. The Wald statistics for these two tests could be different and
might lead to different inferences. These two shortcomings have been widely viewed as
compelling arguments against use of the Wald test. But, in its favor, the Wald test does
not rely on a strong distributional assumption, as do the likelihood ratio and Lagrange
multiplier tests. The recent econometrics literature is replete with applications that are
based on distribution free estimation procedures, such as the GMM method. As such,
in recent years, the Wald test has enjoyed a redemption of sorts.

14.6.3 THE LAGRANGE MULTIPLIER TEST

The third test procedure is the Lagrange multiplier (LM) or efficient score (or just score)
test. It is based on the restricted model instead of the unrestricted model. Suppose that
we maximize the log-likelihood subject to the set of constraints c(θ) − q = 0. Let λ be
a vector of Lagrange multipliers and define the Lagrangean function

ln L∗(θ) = ln L(θ) + λ′(c(θ) − q).

The solution to the constrained maximization problem is the root of

∂ ln L∗

∂θ
= ∂ ln L(θ)

∂θ
+ C′λ = 0,

∂ ln L∗

∂λ
= c(θ) − q = 0,

(14-27)

where C′ is the transpose of the derivatives matrix in the second line of (14-23). If the
restrictions are valid, then imposing them will not lead to a significant difference in the
maximized value of the likelihood function. In the first-order conditions, the meaning is
that the second term in the derivative vector will be small. In particular, λ will be small.
We could test this directly, that is, test H0: λ = 0, which leads to the Lagrange multiplier
test. There is an equivalent simpler formulation, however. At the restricted maximum,
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the derivatives of the log-likelihood function are

∂ ln L(θ̂ R)

∂ θ̂ R
= −Ĉ′λ̂ = ĝR. (14-28)

If the restrictions are valid, at least within the range of sampling variability, then ĝR = 0.
That is, the derivatives of the log-likelihood evaluated at the restricted parameter vector
will be approximately zero. The vector of first derivatives of the log-likelihood is the
vector of efficient scores. Because the test is based on this vector, it is called the score
test as well as the Lagrange multiplier test. The variance of the first derivative vector
is the information matrix, which we have used to compute the asymptotic covariance
matrix of the MLE. The test statistic is based on reasoning analogous to that underlying
the Wald test statistic.

THEOREM 14.7 Limiting Distribution of the Lagrange
Multiplier Statistic

The Lagrange multiplier test statistic is

LM =
(

∂ ln L(θ̂ R)

∂ θ̂ R

)′
[I(θ̂ R)]−1

(
∂ ln L(θ̂ R)

∂ θ̂ R

)
.

Under the null hypothesis, LM has a limiting chi-squared distribution with degrees
of freedom equal to the number of restrictions. All terms are computed at the
restricted estimator.

The LM statistic has a useful form. Let ĝi R denote the ith term in the gradient of
the log-likelihood function. Then,

ĝR =
n∑

i=1

ĝi R = Ĝ′
Ri,

where ĜR is the n × K matrix with ith row equal to ĝ′
i R and i is a column of 1s. If we use

the BHHH (outer product of gradients) estimator in (14-18) to estimate the Hessian,
then

[Î(θ̂)]−1 = [Ĝ′
RĜR]−1,

and

LM = i′ĜR[Ĝ′
RĜR]−1Ĝ′

Ri.

Now, because i′i equals n, LM = n(i′ĜR[Ĝ′
RĜR]−1Ĝ′

Ri/n) = nR2
i , which is n times the

uncentered squared multiple correlation coefficient in a linear regression of a column of
1s on the derivatives of the log-likelihood function computed at the restricted estimator.
We will encounter this result in various forms at several points in the book.
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14.6.4 AN APPLICATION OF THE LIKELIHOOD-BASED
TEST PROCEDURES

Consider, again, the data in Example C.1. In Example 14.4, the parameter β in the
model

f (yi | xi , β) = 1
β + xi

e−yi /(β+xi ) (14-29)

was estimated by maximum likelihood. For convenience, let βi = 1/(β + xi ). This expo-
nential density is a restricted form of a more general gamma distribution,

f (yi | xi , β, ρ) = β
ρ
i

(ρ)
yρ−1

i e−yi βi . (14-30)

The restriction is ρ = 1.9 We consider testing the hypothesis

H0: ρ = 1 versus H1: ρ �= 1

using the various procedures described previously. The log-likelihood and its derivatives
are

ln L(β, ρ) = ρ

n∑
i=1

ln βi − n ln (ρ) + (ρ − 1)

n∑
i=1

ln yi −
n∑

i=1

yiβi ,

∂ ln L
∂β

= −ρ

n∑
i=1

βi +
n∑

i=1

yiβ
2
i ,

∂ ln L
∂ρ

=
n∑

i=1

ln βi − n�(ρ) +
n∑

i=1

ln yi , (14-31)

∂2ln L
∂β2

= ρ

n∑
i=1

β2
i − 2

n∑
i=1

yiβ
3
i ,

∂2 ln L
∂ρ2

= −n� ′(ρ),
∂2 ln L
∂β∂ρ

= −
n∑

i=1

βi .

[Recall that �(ρ) = d ln (ρ)/dρ and � ′(ρ) = d2 ln (ρ)/dρ2.] Unrestricted maximum
likelihood estimates of β and ρ are obtained by equating the two first derivatives to zero.
The restricted maximum likelihood estimate of β is obtained by equating ∂ ln L/∂β to
zero while fixing ρ at one. The results are shown in Table 14.1. Three estimators are
available for the asymptotic covariance matrix of the estimators of θ = (β, ρ)′. Using
the actual Hessian as in (14-17), we compute V = [−�i∂

2 ln f (yi | xi , β, ρ)/∂θ∂θ ′]−1 at
the maximum likelihood estimates. For this model, it is easy to show that E [yi | xi ] =
ρ(β + xi ) (either by direct integration or, more simply, by using the result that
E [∂ ln L/∂β] = 0 to deduce it). Therefore, we can also use the expected Hessian as
in (14-16) to compute VE = {−�i E [∂2 ln f (yi | xi , β, ρ)/∂θ∂θ ′]}−1. Finally, by using the
sums of squares and cross products of the first derivatives, we obtain the BHHH esti-
mator in (14-18), VB = [�i (∂ ln f (yi | xi , β, ρ)/∂θ)(∂ ln f (yi | xi , β, ρ)/∂θ ′)]−1. Results
in Table 14.1 are based on V.

The three estimators of the asymptotic covariance matrix produce notably different
results:

V =
[

5.499 −1.653
−1.653 0.6309

]
, VE =

[
4.900 −1.473

−1.473 0.5768

]
, VB =

[
13.37 −4.322
−4.322 1.537

]
.

9The gamma function (ρ) and the gamma distribution are described in Sections B.4.5 and E2.3.
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TABLE 14.1 Maximum Likelihood Estimates

Quantity Unrestricted Estimate a Restricted Estimate

β −4.7185 (2.345) 15.6027 (6.794)
ρ 3.1509 (0.794) 1.0000 (0.000)
ln L −82.91605 −88.43626
∂ ln L/∂β 0.0000 0.0000
∂ ln L/∂ρ 0.0000 7.9145
∂2 ln L/∂β2 −0.85570 −0.02166
∂2 ln L/∂ρ2 −7.4592 −32.8987
∂2 ln L/∂β∂ρ −2.2420 −0.66891

aEstimated asymptotic standard errors based on V are given in parentheses.

Given the small sample size, the differences are to be expected. Nonetheless, the striking
difference of the BHHH estimator is typical of its erratic performance in small samples.

• Confidence interval test: A 95 percent confidence interval for ρ based on the
unrestricted estimates is 3.1509 ± 1.96

√
0.6309 = [1.5941, 4.7076]. This interval

does not contain ρ = 1, so the hypothesis is rejected.
• Likelihood ratio test: The LR statistic is λ = −2[−88.43626 − (−82.91604)] =

11.0404. The table value for the test, with one degree of freedom, is 3.842. The
computed value is larger than this critical value, so the hypothesis is again
rejected.

• Wald test: The Wald test is based on the unrestricted estimates. For this restric-
tion, c(θ) − q = ρ − 1, dc(ρ̂)/dρ̂ = 1, Est. Asy. Var[c(ρ̂) − q] = Est. Asy. Var[ρ̂] =
0.6309, so W = (3.1517 − 1)2/[0.6309] = 7.3384. The critical value is the same as
the previous one. Hence, H0 is once again rejected. Note that the Wald statistic is
the square of the corresponding test statistic that would be used in the confidence
interval test, |3.1509 − 1|/√0.6309 = 2.73335.

• Lagrange multiplier test: The Lagrange multiplier test is based on the restricted
estimators. The estimated asymptotic covariance matrix of the derivatives used to
compute the statistic can be any of the three estimators discussed earlier. The
BHHH estimator, VB, is the empirical estimator of the variance of the gradient
and is the one usually used in practice. This computation produces

LM = [0.0000 7.9145]
[

0.00995 0.26776
0.26776 11.199

]−1 [
0.0000
7.9145

]
= 15.687.

The conclusion is the same as before. Note that the same computation done
using V rather than VB produces a value of 5.1162. As before, we observe
substantial small sample variation produced by the different estimators.

The latter three test statistics have substantially different values. It is possible to
reach different conclusions, depending on which one is used. For example, if the test
had been carried out at the 1 percent level of significance instead of 5 percent and
LM had been computed using V, then the critical value from the chi-squared statistic
would have been 6.635 and the hypothesis would not have been rejected by the LM test.
Asymptotically, all three tests are equivalent. But, in a finite sample such as this one,
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differences are to be expected.10 Unfortunately, there is no clear rule for how to proceed
in such a case, which highlights the problem of relying on a particular significance level
and drawing a firm reject or accept conclusion based on sample evidence.

14.6.5 COMPARING MODELS AND COMPUTING MODEL FIT

The test statistics described in Sections 14.6.1–14.6.3 are available for assessing the
validity of restrictions on the parameters in a model. When the models are nested,
any of the three mentioned testing procedures can be used. For nonnested models, the
computation is a comparison of one model to another based on an estimation criterion
to discern which is to be preferred. Two common measures that are based on the same
logic as the adjusted R-squared for the linear model are

Akaike information criterion (AIC) = −2 ln L+ 2K,

Bayes (Schwarz) information criterion (BIC) = −2 ln L+ K ln n,

where K is the number of parameters in the model. Choosing a model based on the
lowest AIC is logically the same as using R̄2 in the linear model; nonstatistical, albeit
widely accepted.

The AIC and BIC are information criteria, not fit measures as such. This does leave
open the question of how to assess the “fit” of the model. Only the case of a linear least
squares regression in a model with a constant term produces an R2, which measures
the proportion of variation explained by the regression. The ambiguity in R2 as a fit
measure arose immediately when we moved from the linear regression model to the
generalized regression model in Chapter 9. The problem is yet more acute in the context
of the models we consider in this chapter. For example, the estimators of the models for
count data in Example 14.10 make no use of the “variation” in the dependent variable
and there is no obvious measure of “explained variation.”

A measure of “fit” that was originally proposed for discrete choice models in Mc-
Fadden (1974), but surprisingly has gained wide currency throughout the empirical
literature is the likelihood ratio index, which has come to be known as the Pseudo R2.
It is computed as

PseudoR2 = 1 − (ln L)/(ln L0),

where ln L is the log-likelihood for the model estimated and ln L0 is the log-likelihood
for the same model with only a constant term. The statistic does resemble the R2 in a
linear regression. The choice of name is for this statistic is unfortunate, however, because
even in the discrete choice context for which it was proposed, it has no connection to
the fit of the model to the data. In discrete choice settings in which log-likelihoods must
be negative, the pseudo R2 must be between zero and one and rises as variables are
added to the model. It can obviously be zero, but is usually bounded below one. In the
linear model with normally distributed disturbances, the maximized log-likelihood is

ln L = (−n/2)[1 + ln 2π + ln(e′e/n)].

10For further discussion of this problem, see Berndt and Savin (1977).
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With a small amount of manipulation, we find that the pseudo R2 for the linear regression
model is

PseudoR2 = − ln(1 − R2)

1 + ln 2π + ln s2
y
,

while the “true” R2 is 1−e′e/e′
0e0. Because s2

y can vary independently of R2—multiplying
y by any scalar, A, leaves R2 unchanged but multiplies s2

y by A2—although the upper limit
is one, there is no lower limit on this measure. This same problem arises in any model that
uses information on the scale of a dependent variable, such as the tobit model (Chap-
ter 19). The computation makes even less sense as a fit measure in multinomial models
such as the ordered probit model (Chapter 18) or the multinomial logit model. For dis-
crete choice models, there are a variety of such measures discussed in Chapter 17. For
limited dependent variable and many loglinear models, some other measure that is re-
lated to a correlation between a prediction and the actual value would be more useable.
Nonetheless, the measure seems to have gained currency in the contemporary literature.
[The popular software package, Stata, reports the pseudo R2 with every model fit by
MLE, but at the same time, admonishes its users not to interpret it as anything meaning-
ful. See, for example, http://www.stata.com/support/faqs/stat/pseudor2.html. Cameron
and Trivedi (2005) document the pseudo R2 at length and then give similar cautions
about it and urge their readers to seek a more meaningful measure of the correlation
between model predictions and the outcome variable of interest. Wooldridge (2002a)
dismisses it summarily, and argues that coefficients are more interesting.]

14.6.6 VUONG’S TEST AND THE KULLBACK–LEIBLER
INFORMATION CRITERION

Vuong’s (1989) approach to testing nonnested models is also based on the likelihood
ratio statistic. The logic of the test is similar to that which motivates the likelihood ratio
test in general. Suppose that f (yi | Zi , θ) and g(yi | Zi , γ ) are two competing models for
the density of the random variable yi , with f being the null model, H0, and g being
the alternative, H1. For instance, in Example 5.7, both densities are (by assumption
now) normal, yi is consumption, Ct , Zi is [1, Yt , Yt−1, Ct−1], θ is (β1, β2, β3, 0, σ 2), γ is
(γ1, γ2, 0, γ3, ω

2), and σ 2 and ω2 are the respective conditional variances of the distur-
bances, ε0t and ε1t . The crucial element of Vuong’s analysis is that it need not be the
case that either competing model is “true”; they may both be incorrect. What we want
to do is attempt to use the data to determine which competitor is closer to the truth,
that is, closer to the correct (unknown) model.

We assume that observations in the sample (disturbances) are conditionally inde-
pendent. Let Li,0 denote the ith contribution to the likelihood function under the null
hypothesis. Thus, the log-likelihood function under the null hypothesis is �i ln Li,0. De-
fine Li,1 likewise for the alternative model. Now, let mi equal ln Li,1 − ln Li,0. If we were
using the familiar likelihood ratio test, then, the likelihood ratio statistic would be simply
LR = 2�i mi = 2n m̄ when Li,0 and Li,1 are computed at the respective maximum likeli-
hood estimators. When the competing models are nested—H0 is a restriction on H1—we
know that �i mi ≥ 0. The restrictions of the null hypothesis will never increase the like-
lihood function. (In the linear regression model with normally distributed disturbances
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that we have examined so far, the log-likelihood and these results are all based on the
sum of squared residuals, and as we have seen, imposing restrictions never reduces the
sum of squares.) The limiting distribution of the LR statistic under the assumption of
the null hypothesis is chi squared with degrees of freedom equal to the reduction in the
number of dimensions of the parameter space of the alternative hypothesis that results
from imposing the restrictions.

Vuong’s analysis is concerned with nonnested models for which �i mi need not
be positive. Formalizing the test requires us to look more closely at what is meant
by the “right” model (and provides a convenient departure point for the discussion
in the next two sections). In the context of nonnested models, Vuong allows for the
possibility that neither model is “true” in the absolute sense. We maintain the clas-
sical assumption that there does exist a “true” model, h(yi | Zi , α) where α is the
“true” parameter vector, but possibly neither hypothesized model is that true model.
The Kullback–Leibler Information Criterion (KLIC) measures the distance between
the true model (distribution) and a hypothesized model in terms of the likelihood
function. Loosely, the KLIC is the log-likelihood function under the hypothesis of
the true model minus the log-likelihood function for the (misspecified) hypothesized
model under the assumption of the true model. Formally, for the model of the null
hypothesis,

KLIC = E[ln h(yi | Zi , α) | h is true] − E[ln f (yi | Zi,θ) | h is true].

The first term on the right hand side is what we would estimate with (1/n)ln L if we
maximized the log-likelihood for the true model, h(yi | Zi , α). The second term is what
is estimated by (1/n) ln L assuming (incorrectly) that f (yi | Zi , θ) is the correct model.
Notice that f (yi | Zi , θ) is written in terms of a parameter vector, θ . Because α is the
“true” parameter vector, it is perhaps ambiguous what is meant by the parameteriza-
tion, θ . Vuong (p. 310) calls this the “pseudotrue” parameter vector. It is the vector
of constants that the estimator converges to when one uses the estimator implied by
f (yi | Zi , θ). In Example 5.7, if H0 gives the correct model, this formulation assumes
that the least squares estimator in H1 would converge to some vector of pseudo-true
parameters. But, these are not the parameters of the correct model—they would be the
slopes in the population linear projection of Ct on [1, Yt , Ct−1].

Suppose the “true” model is y = Xβ + ε, with normally distributed disturbances
and y = Zδ + w is the proposed competing model. The KLIC would be the ex-
pected log-likelihood function for the true model minus the expected log-likelihood
function for the second model, still assuming that the first one is the truth. By con-
struction, the KLIC is positive. We will now say that one model is “better” than an-
other if it is closer to the “truth” based on the KLIC. If we take the difference of
the two KLICs for two models, the true log-likelihood function falls out, and we are
left with

KLIC1 − KLIC0 = E[ln f (yi | Zi , θ) | h is true] − E[ln g(yi | Zi , γ ) | h is true].

To compute this using a sample, we would simply compute the likelihood ratio statis-
tic, nm̄ (without multiplying by 2) again. Thus, this provides an interpretation of the
LR statistic. But, in this context, the statistic can be negative—we don’t know which
competing model is closer to the truth.
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Vuong’s general result for nonnested models (his Theorem 5.1) describes the be-
havior of the statistic

V =
√

n
( 1

n

∑n
i=1 mi

)
√

1
n

∑n
i=1(mi − m̄)2

= √
n(m̄/sm), mi = ln Li,0 − ln Li,1.

He finds:

1. Under the hypothesis that the models are “equivalent”, V
D−→ N[0, 1].

2. Under the hypothesis that f (yi | Zi , θ) is “better”, V
A.S.−→ +∞.

3. Under the hypothesis that g(yi | Zi , γ ) is “better”, V
A.S.−→ −∞.

This test is directional. Large positive values favor the null model while large neg-
ative values favor the alternative. The intermediate values (e.g., between −1.96 and
+1.96 for 95 percent significance) are an inconclusive region. An application appears in
Example 14.10.

14.7 TWO-STEP MAXIMUM LIKELIHOOD
ESTIMATION

The applied literature contains a large and increasing number of applications in which
elements of one model are embedded in another, which produces what are known as
“two-step” estimation problems. [Among the best known of these is Heckman’s (1979)
model of sample selection discussed in Example 1.1 and in Chapter 19.] There are two
parameter vectors, θ1 and θ2. The first appears in the second model, but not the reverse.
In such a situation, there are two ways to proceed. Full information maximum likelihood
(FIML) estimation would involve forming the joint distribution f (y1, y2| x1, x2, θ1, θ2)

of the two random variables and then maximizing the full log-likelihood function,

ln L(θ1, θ2) =
n∑

i=1

ln f (yi1, yi2 | xi1, xi2, θ1, θ2).

A two-step, procedure for this kind of model could be used by estimating the parameters
of model 1 first by maximizing

ln L1(θ1) =
n∑

i=1

ln f1(yi1 | xi1, θ1)

and then maximizing the marginal likelihood function for y2 while embedding the con-
sistent estimator of θ1, treating it as given. The second step involves maximizing

ln L2(θ̂1, θ2) =
n∑

i=1

ln f2(yi2|xi1, xi2, θ̂1, θ2).

There are at least two reasons one might proceed in this fashion. First, it may be straight-
forward to formulate the two separate log-likelihoods, but very complicated to derive
the joint distribution. This situation frequently arises when the two variables being mod-
eled are from different kinds of populations, such as one discrete and one continuous
(which is a very common case in this framework). The second reason is that maximizing
the separate log-likelihoods may be fairly straightforward, but maximizing the joint
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log-likelihood may be numerically complicated or difficult.11 The results given here
can be found in an important reference on the subject, Murphy and Topel (2002, first
published in 1985).

Suppose, then, that our model consists of the two marginal distributions,
f1(y1 | x1, θ1) and f2(y2 | x1, x2, θ1, θ2). Estimation proceeds in two steps.

1. Estimate θ1 by maximum likelihood in model 1. Let V̂1 be n times any of the
estimators of the asymptotic covariance matrix of this estimator that were discussed
in Section 14.4.6.

2. Estimate θ2 by maximum likelihood in model 2, with θ̂1 inserted in place of θ1 as
if it were known. Let V̂2 be n times any appropriate estimator of the asymptotic
covariance matrix of θ̂2.

The argument for consistency of θ̂2 is essentially that if θ1 were known, then all our results
for MLEs would apply for estimation of θ2, and because plim θ̂1 = θ1, asymptotically,
this line of reasoning is correct. (See point 3 of Theorem D.16.) But the same line of
reasoning is not sufficient to justify using (1/n)V̂2 as the estimator of the asymptotic
covariance matrix of θ̂2. Some correction is necessary to account for an estimate of θ1

being used in estimation of θ2. The essential result is the following.

THEOREM 14.8 Asymptotic Distribution of the Two-Step MLE
[Murphy and Topel (2002)]

If the standard regularity conditions are met for both log-likelihood functions, then
the second-step maximum likelihood estimator of θ2 is consistent and asymptoti-
cally normally distributed with asymptotic covariance matrix

V∗
2 = 1

n

[
V2 + V2[CV1C′ − RV1C′ − CV1R′]V2

]
,

where

V1 = Asy. Var[
√

n(θ̂1 − θ1)] based on ln L1,

V2 = Asy. Var[
√

n(θ̂2 − θ2)] based on ln L2 | θ1,

C = E
[

1
n

(
∂ ln L2

∂θ2

)(
∂ ln L2

∂θ ′
1

)]
, R = E

[
1
n

(
∂ ln L2

∂θ2

)(
∂ ln L1

∂θ ′
1

)]
.

The correction of the asymptotic covariance matrix at the second step requires
some additional computation. Matrices V1 and V2 are estimated by the respective
uncorrected covariance matrices. Typically, the BHHH estimators,

V̂1 =
[

1
n

n∑
i=1

(
∂ ln fi1

∂ θ̂1

)(
∂ ln fi1

∂ θ̂
′
1

)]−1

11There is a third possible motivation. If either model is misspecified, then the FIML estimates of both
models will be inconsistent. But if only the second is misspecified, at least the first will be estimated consistently.
Of course, this result is only “half a loaf,” but it may be better than none.
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THEOREM 14.8 (Continued)

and

V̂2 =
[

1
n

n∑
i=1

(
∂ ln fi2

∂ θ̂2

)(
∂ ln fi2

∂ θ̂ ′
2

)]−1

are used. The matrices R and C are obtained by summing the individual obser-
vations on the cross products of the derivatives. These are estimated with

Ĉ = 1
n

n∑
i=1

(
∂ ln fi2

∂ θ̂2

)(
∂ ln fi2

∂ θ̂ ′
1

)

and

R̂ = 1
n

n∑
i=1

(
∂ ln fi2

∂ θ̂2

)(
∂ ln fi1

∂ θ̂ ′
1

)
.

A derivation of this useful result is instructive. We will rely on (14-11) and the
results of Section 14.4.5.b where the asymptotic normality of the maximum likelihood
estimator is developed. The first step MLE of θ1 is defined by

1
n

∂ ln L1(θ̂1)

θ̂1
= 1

n

n∑
i=1

∂ ln f1(yi1|xi1, θ̂1)

∂ θ̂1

= 1
n

n∑
i=1

gi1(θ̂1) = ḡ1(θ̂1) = 0.

Using the results in that section, we obtained the asymptotic distribution from (14-15),
√

n(θ̂1 − θ1)
d−→

[
−H(1)

11 (θ1)
]−1 √

nḡ1 (θ1) ,

where the expression means that the limiting distribution of the two random vectors is
the same, and

H(1)

11 = E
[

1
n

∂2 ln L1(θ1)

∂θ1∂θ ′
1

]
.

The second step MLE of θ2 is defined by

1
n

∂ ln L2(θ̂1, θ̂2)

∂ θ̂2
= 1

n

n∑
i=1

∂ ln f2(yi2|xi1, xi2, θ̂1, θ̂2)

∂ θ̂2

= 1
n

n∑
i=1

gi2(θ̂1, θ̂2) = ḡ2(θ̂1, θ̂2) = 0.

Expand the derivative vector, ḡ2(θ̂1, θ̂2), in a linear Taylor series as usual, and use the
results in Section 14.4.5.b once again;

ḡ2(θ̂1, θ̂2) = ḡ2(θ1, θ2) +
[
H(2)

22 (θ1, θ2)
]
(θ̂2 − θ2)

+
[
H(2)

21 (θ1, θ2)
] (

θ̂1 − θ1
) + o(1/n) = 0,
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where

H(2)

21 (θ1, θ2) = E
[

1
n

∂2 ln L2(θ1, θ2)

∂θ2∂θ ′
1

]
and H(2)

22 (θ1, θ2) = E
[

1
n

∂2 ln L2(θ1, θ2)

∂θ2∂θ ′
2

]
.

To obtain the asymptotic distribution, we use the same device as before,

√
n(θ̂2 − θ2)

d−→
[
−H(2)

22 (θ1, θ2)
]−1 √

nḡ2 (θ1, θ2)

+
[
−H(2)

22 (θ1, θ2)

]−1 [
H(2)

21 (θ1, θ2)

] √
n(θ̂1 − θ1).

For convenience, denote H(2)
22 = H(2)

22 (θ1, θ2), H(2)

21 = H(2)

21 (θ1, θ2) and H(1)

11 = H(1)

11 (θ1).
Now substitute the first step estimator of θ1 in this expression to obtain

√
n(θ̂2 − θ2)

d−→
[
−H(2)

22

]−1 √
nḡ2 (θ1, θ2)

+
[
−H(2)

22

]−1 [
H(2)

21

] [
−H(1)

11

]−1 √
nḡ1(θ1).

Consistency and asymptotic normality of the two estimators follow from our earlier
results. To obtain the asymptotic covariance matrix for θ̂2 we will obtain the limiting
variance of the random vector in the preceding expression. The joint normal distribution
of the two first derivative vectors has zero means and

Var
[ √

nḡ1 (θ1)√
nḡ2 (θ2, θ1)

]
=

[
�11 �12

�21 �22

]
.

Then, the asymptotic covariance matrix we seek is

Var
[√

n(θ̂2 − θ2)
] =

[
−H(2)

22

]−1
�22

[
−H(2)

22

]−1

+
[
−H(2)

22

]−1 [
H(2)

21

] [
−H(1)

11

]−1
�11

[
−H(1)

11

]−1 [
H(2)

21

]′ [
−H(2)

22

]−1

+
[
−H(2)

22

]−1
�21

[
−H(1)

11

]−1 [
H(2)

21

]′ [
−H(2)

22

]−1

+
[
−H(2)

22

]−1 [
H21(2)

] [
−H(1)

11

]−1
�12

[
−H(2)

22

]−1
.

As we found earlier, the variance of the first derivative vector of the log-likelihood is
the negative of the expected second derivative matrix [see (14-11)]. Therefore �22 =
[−H(2)

22 ] and �11 = [−H(1)

11 ]. Making the substitution we obtain

Var
[√

n(θ̂2 − θ2)
] =

[
−H(2)

22

]−1
+

[
−H(2)

22

]−1 [
H(2)

21

] [
−H(1)

11

]−1 [
H(2)

21

]′ [
−H(2)

22

]−1

+
[
−H(2)

22

]−1
�21

[
−H(1)

11

]−1 [
H(2)

21

]′ [
−H(2)

22

]−1

+
[
−H(2)

22

]−1 [
H(2)

21

] [
−H(1)

11

]−1
�12

[
−H(2)

22

]−1
.
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From (14-15), [−H(1)

11 ]−1 and [−H(2)
22 ]−1 are the V1 and V2 that appear in Theorem 14.8,

which further reduces the expression to

Var
[√

n(θ̂2 − θ2)
]

= V2 + V2

[
H(2)

21

]
V1

[
H(2)

21

]′
V2 − V2�21V1

[
H(2)

21

]′
V2 − V2

[
H(2)

21

]
V1�12V2.

Two remaining terms are H(2)

21 , which is the E[∂2 ln L2(θ1, θ2)/∂θ2∂θ ′
1], which is being

estimated by −C in the statement of the theorem [note (14-11) again for the change of
sign] and �21 which is the covariance of the two first derivative vectors. This is being
estimated by R in Theorem 14.8. Making these last two substitutions produces

Var
[√

n(θ̂2 − θ2)
] = V2 + V2CV1C′V2 − V2RV1C′V2 − V2CV1R′V2,

which completes the derivation.

Example 14.5 Two-Step ML Estimation
A common application of the two-step method is accounting for the variation in a con-
structed regressor in a second step model. In this instance, the constructed variable is often
an estimate of an expected value of a variable that is likely to be endogenous in the sec-
ond step model. In this example, we will construct a rudimentary model that illustrates the
computations.

In Riphahn, Wambach, and Million (RWM, 2003), the authors studied whether individuals’
use of the German health care system was at least partly explained by whether or not they had
purchased a particular type of supplementary health insurance. We have used their data set,
German Socioeconomic Panel (GSOEP) at several points. (See, e.g., Example 7.6.) One of the
variables of interest in the study is DocVis, the number of times an individual visits the doctor
during the survey year. RWM considered the possibility that the presence of supplementary
(Addon) insurance had an influence on the number of visits. Our simple model is as follows:
The model for the number of visits is a Poisson regression (see Section 18.4.1). This is a
loglinear model that we will specify as

E [DocVis|x2, PAddon] = μ(x′
2β, γ , x′

1α) = exp[x′
2β + γ
(x′

1α) ].

The model contains not the dummy variable 1 if the individual has Addon insurance and 0
otherwise, which is likely to be endogenous in this equation, but an estimate of E [Addon|x1]
from a logistic probability model (see Section 17.2) for whether the individual has insurance,


(x′
1α) = exp(x′

1α)
1 + exp(x′

1α)
= Prob[Individual has purchased Addon insurance | x1].

For purposes of the exercise, we will specify

( y1 = Addon) x1 = (constant, Age, Education, Married, Kids) ,

( y2 = DocVis) x2 = (constant, Age, Education, Income, Female) .

As before, to sidestep issues related to the panel data nature of the data set, we will use
the 4,483 observations in the 1988 wave of the data set, and drop the two observations for
which Income is zero.

The log-likelihood for the logistic probability model is

ln L1(α) = � i {(1 − yi 1) ln[1 − 
(x′
i 1α) ] + yi 1 ln 
(x′

i 1α) }.
The derivatives of this log-likelihood are

gi 1(α) = ∂ ln f1( yi 1|xi 1, α)/∂α = [ yi 1 − 
(x′
i 1α) ]xi 1.
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We will maximize this log-likelihood with respect to α and then compute V1 using the BHHH
estimator, as in Theorem 14.8. We will also use gi 1(α) in computing R.

The log-likelihood for the Poisson regression model is

ln L2 = � i [−μ(x′
i 2β, γ , x′

i 1α) + yi 2 ln μ(x′
i 2β, γ , x′

i 1α) − ln y′
i 2].

The derivatives of this log-likelihood are

g(2)
i 2 (β, γ , α) = ∂ ln f2( yi 2, xi 1, xi 2, β, γ , α)/∂ (β ′, γ ) ′ = [yi 2 − μ(x′

i 2β, γ , x′
i 1α) ][x′

i 2, 
(x′
i 1α) ]′

g(2)
i 1 (β, γ , α) = ∂ ln f2( yi 2, xi 1, xi 2, β, γ , α)/∂α = [yi − μ(x′

i 2β, γ , x′
i 1α) ]γ
(x′

i 1α) [1 − 
(x′
i 1α) ]xi 1.

We will use g(2)
i 2 for computing V2 and in computing R and C and g(2)

i 1 in computing C. In
particular,

V1 = [(1/n)� i gi 1(α)gi 1(α) ′]−1,

V2 = [(1/n)� i g
(2)
i 2 (β, γ , α)g(2)

i 2 (β, γ , α) ′]−1,

C = [(1/n)� i g
(2)
i 2 (β, γ , α)g(2)

i 1 (β, γ , α) ′],

R = [(1/n)� i g
(2)
i 2 (β, γ , α)gi 1(α) ′].

Table 14.2 presents the two-step maximum likelihood estimates of the model parameters
and estimated standard errors. For the first-step logistic model, the standard errors marked
H1 vs. V1 compares the values computed using the negative inverse of the second derivatives
matrix (H1) vs. the outer products of the first derivatives (V1). As expected with a sample this
large, the difference is minor. The latter were used in computing the corrected covariance
matrix at the second step. In the Poisson model, the comparison of V2 to V∗

2 shows distinctly
that accounting for the presence of α̂ in the constructed regressor has a substantial impact on
the standard errors, even in this relatively large sample. Note that the effect of the correction
is to double the standard errors on the coefficients for the variables that the equations have
in common, but it is quite minor for Income and Female, which are unique to the second step
model.

The covariance of the two gradients, R, may converge to zero in a particular appli-
cation. When the first- and second-step estimates are based on different samples, R is
exactly zero. For example, in our earlier application, R is based on two residuals,

gi1 = {Addoni − E[Addoni |xi1]} and g(2)
i2 = {DocVisi − E[DocVisi |xi2, 
i1]}.

The two residuals may well be uncorrelated. This assumption would be checked on a
model-by-model basis, but in such an instance, the third and fourth terms in V2 vanish

TABLE 14.2 Estimated Logistic and Poisson Models

Logistic Model for Addon Poisson Model for DocVis

Standard Standard Standard Standard
Coefficient Error (H1) Error (V1) Coefficient Error (V2) Error (V∗

2 )

Constant −6.19246 0.60228 0.58287 0.77808 0.04884 0.09319
Age 0.01486 0.00912 0.00924 0.01752 0.00044 0.00111
Education 0.16091 0.03003 0.03326 −0.03858 0.00462 0.00980
Married 0.22206 0.23584 0.23523
Kids −0.10822 0.21591 0.21993
Income −0.80298 0.02339 0.02719
Female 0.16409 0.00601 0.00770

(x′

1α) 3.91140 0.77283 1.87014
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asymptotically and what remains is the simpler alternative,

V∗∗
2 = (1/n)[V2 + V2CV1C′V2].

(In our application, the sample correlation between gi1 and g(2)
i2 is only 0.015658 and the

elements of the estimate of R are only about 0.01 times the corresponding elements of
C—essentially about 99 percent of the correction in V2* is accounted for by C.)

It has been suggested that this set of procedures might be more complicated than
necessary. [E.g., Cameron and Trivedi (2005, p. 202).] There are two alternative ap-
proaches one might take. First, under general circumstances, the asymptotic covariance
matrix of the second-step estimator could be approximated using the bootstrapping
procedure that will be discussed in Section 15.4. We would note, however, if this ap-
proach is taken, then it is essential that both steps be “bootstrapped.” Otherwise, taking
θ̂1 as given and fixed, we will end up estimating (1/n)V2, not the appropriate covari-
ance matrix. The point of the exercise is to account for the variation in θ̂1. The second
possibility is to fit the full model at once. That is, use a one-step, full information max-
imum likelihood estimator and estimate θ1 and θ2 simultaneously. Of course, this is
usually the procedure we sought to avoid in the first place. And with modern software,
this two-step method is often quite straightforward. Nonetheless, this is occasionally a
possibility. Once again, Heckman’s (1979) famous sample selection model provides an
illuminating case. The two-step and full information estimators for Heckman’s model
are developed in Section 19.5.3.

14.8 PSEUDO-MAXIMUM LIKELIHOOD
ESTIMATION AND ROBUST ASYMPTOTIC
COVARIANCE MATRICES

Maximum likelihood estimation requires complete specification of the distribution of
the observed random variable. If the correct distribution is something other than what
we assume, then the likelihood function is misspecified and the desirable properties
of the MLE might not hold. This section considers a set of results on an estimation
approach that is robust to some kinds of model misspecification. For example, we have
found that in a model, if the conditional mean function is E [y | x] = x′β, then certain
estimators, such as least squares, are “robust” to specifying the wrong distribution of
the disturbances. That is, LS is MLE if the disturbances are normally distributed, but
we can still claim some desirable properties for LS, including consistency, even if the
disturbances are not normally distributed. This section will discuss some results that
relate to what happens if we maximize the “wrong” log-likelihood function, and for those
cases in which the estimator is consistent despite this, how to compute an appropriate
asymptotic covariance matrix for it.12

12The following will sketch a set of results related to this estimation problem. The important references on this
subject are White (1982a); Gourieroux, Monfort, and Trognon (1984); Huber (1967); and Amemiya (1985).
A recent work with a large amount of discussion on the subject is Mittelhammer et al. (2000). The derivations
in these works are complex, and we will only attempt to provide an intuitive introduction to the topic.
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14.8.1 MAXIMUM LIKELIHOOD AND GMM ESTIMATION

Let f (yi | xi , β) be the true probability density for a random variable yi given a set of co-
variates xi and parameter vector β. The log-likelihood function is (1/n) ln L(β | y, X) =
(1/n)

∑n
i=1 ln f (yi |xi , β). The MLE, β̂ML, is the sample statistic that maximizes this

function. (The division of ln L by n does not affect the solution.) We maximize the
log-likelihood function by equating its derivatives to zero, so the MLE is obtained by
solving the set of empirical moment equations

1
n

n∑
i=1

∂ ln f (yi | xi , β̂ML)

∂β̂ML
= 1

n

n∑
i=1

di (β̂ML) = d̄(β̂ML) = 0.

The population counterpart to the sample moment equation is

E
[

1
n

∂ ln L
∂β

]
= E

[
1
n

n∑
i=1

di (β)

]
= E [d̄(β)] = 0.

Using what we know about GMM estimators, if E [d̄(β)] = 0, then β̂ML is consistent
and asymptotically normally distributed, with asymptotic covariance matrix equal to

VML = [G(β)′G(β)]−1G(β)′
{

Var[d̄(β)]
}

G(β)[G(β)′G(β)]−1,

where G(β) = plim ∂d̄(β)/∂β ′. Because d̄(β) is the derivative vector, G(β) is 1/n times
the expected Hessian of ln L; that is, (1/n)E [H(β)] = H̄(β). As we saw earlier,
Var[∂ ln L/∂β] = −E [H(β)]. Collecting all seven appearances of (1/n)E [H(β)],
we obtain the familiar result VML = {−E [H(β)]

}−1
. [All the n’s cancel and Var[d̄] =

(1/n)H̄(β).] Note that this result depends crucially on the result Var[∂ ln L/∂β] =
−E [H(β)].

14.8.2 MAXIMUM LIKELIHOOD AND M ESTIMATION

The maximum likelihood estimator is obtained by maximizing the function h̄n(y, X, β) =
(1/n)

∑n
i=1 ln f (yi , xi , β). This function converges to its expectation as n → ∞. Be-

cause this function is the log-likelihood for the sample, it is also the case (not proven
here) that as n → ∞, it attains its unique maximum at the true parameter vector,
β. (We used this result in proving the consistency of the maximum likelihood estima-
tor.) Since plim h̄n(y, X, β) = E [h̄n(y, X, β)], it follows (by interchanging differentia-
tion and the expectation operation) that plim ∂ h̄n(y, X, β)/∂β = E [∂ h̄n(y, X, β)/∂β].
But, if this function achieves its maximum at β, then it must be the case that plim
∂ h̄n(y, X, β)/∂β = 0.

An estimator that is obtained by maximizing a criterion function is called an M
estimator [Huber (1967)] or an extremum estimator [Amemiya (1985)]. Suppose that
we obtain an estimator by maximizing some other function, Mn(y, X, β) that, although
not the log-likelihood function, also attains its unique maximum at the true β as n → ∞.

Then the preceding argument might produce a consistent estimator with a known asymp-
totic distribution. For example, the log-likelihood for a linear regression model with
normally distributed disturbances with different variances, σ 2ωi , is

h̄n(y, X, β) = 1
n

n∑
i=1

{−1
2

[
ln

(
2πσ 2ωi

) + (yi − x′
iβ)2

σ 2ωi

]}
.
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By maximizing this function, we obtain the maximum likelihood estimator. But we
also examined another estimator, simple least squares, which maximizes Mn(y, X, β) =
−(1/n)

∑n
i=1(yi − x′

iβ)2. As we showed earlier, least squares is consistent and asymp-
totically normally distributed even with this extension, so it qualifies as an M estimator
of the sort we are considering here.

Now consider the general case. Suppose that we estimateβ by maximizing a criterion
function

Mn(y | X, β) = 1
n

n∑
i=1

ln g(yi | xi , β).

Suppose as well that plimMn(y, X, β) = E [Mn(y | X, β)] and that as n → ∞,

E [Mn(y |X, β)] attains its unique maximum at β. Then, by the argument we used ear-
lier for the MLE, plim ∂ Mn(y | X, β)/∂β = E [∂Mn(y | X, β)/∂β] = 0. Once again, we
have a set of moment equations for estimation. Let β̂E be the estimator that maximizes
Mn(y | X, β). Then the estimator is defined by

∂ Mn(y | X, β̂E)

∂β̂E
= 1

n

n∑
i=1

∂ ln g(yi | xi , β̂E)

∂β̂E
= m̄(β̂E) = 0.

Thus, β̂E is a GMM estimator. Using the notation of our earlier discussion, G(β̂E) is
the symmetric Hessian of E [Mn(y, X, β)], which we will denote (1/n)E [HM(β̂E)] =
H̄M(β̂E). Proceeding as we did above to obtain VML, we find that the appropriate
asymptotic covariance matrix for the extremum estimator would be

VE = [H̄M(β)]−1
(

1
n
�

)
[H̄M(β)]−1,

where � = Var[∂ log g(yi | xi , β)/∂β], and, as before, the asymptotic distribution is
normal.

The Hessian in VE can easily be estimated by using its empirical counterpart,

Est.[H̄M(β̂E)] = 1
n

n∑
i=1

∂2 ln g(yi | xi , β̂E)

∂β̂E∂β̂ ′
E

.

But,� remains to be specified, and it is unlikely that we would know what function to use.
The important difference is that in this case, the variance of the first derivatives vector
need not equal the Hessian, so VE does not simplify. We can, however, consistently
estimate � by using the sample variance of the first derivatives,

�̂ = 1
n

n∑
i=1

[
∂ ln g(yi | xi , β̂)

∂β̂

] [
∂ ln g(yi | xi , β̂)

∂β̂ ′

]
.

If this were the maximum likelihood estimator, then �̂ would be the OPG estimator
that we have used at several points. For example, for the least squares estimator in the
heteroscedastic linear regression model, the criterion is Mn(y, X, β) = −(1/n)

∑n
i=1(yi −

x′
iβ)2, the solution is b, G(b) = (−2/n)X′X, and

�̂ = 1
n

n∑
i=1

[2xi (yi − x′
iβ)][2xi (yi − x′

iβ)]′ = 4
n

n∑
i=1

e2
i xi x′

i .

Collecting terms, the 4s cancel and we are left precisely with the White estimator of
(9-27)!
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14.8.3 SANDWICH ESTIMATORS

At this point, we consider the motivation for all this weighty theory. One disadvantage
of maximum likelihood estimation is its requirement that the density of the observed
random variable(s) be fully specified. The preceding discussion suggests that in some
situations, we can make somewhat fewer assumptions about the distribution than a
full specification would require. The extremum estimator is robust to some kinds of
specification errors. One useful result to emerge from this derivation is an estimator for
the asymptotic covariance matrix of the extremum estimator that is robust at least to
some misspecification. In particular, if we obtain β̂E by maximizing a criterion function
that satisfies the other assumptions, then the appropriate estimator of the asymptotic
covariance matrix is

Est. VE = 1
n

[H̄(β̂E)]−1�̂(β̂E)[H̄(β̂E)]−1.

If β̂E is the true MLE, then VE simplifies to
{−[H(β̂E)]

}−1
. In the current literature,

this estimator has been called a sandwich estimator. There is a trend in the current
literature to compute this estimator routinely, regardless of the likelihood function. It
is worth noting that if the log-likelihood is not specified correctly, then the parameter
estimators are likely to be inconsistent, save for the cases such as those noted later,
so robust estimation of the asymptotic covariance matrix may be misdirected effort.
But if the likelihood function is correct, then the sandwich estimator is unnecessary.
This method is not a general patch for misspecified models. Not every likelihood func-
tion qualifies as a consistent extremum estimator for the parameters of interest in the
model.

One might wonder at this point how likely it is that the conditions needed for all
this to work will be met. There are applications in the literature in which this machin-
ery has been used that probably do not meet these conditions, such as the tobit model
of Chapter 19. We have seen one important case. Least squares in the generalized
regression model passes the test. Another important application is models of “individ-
ual heterogeneity” in cross-section data. Evidence suggests that simple models often
overlook unobserved sources of variation across individuals in cross-sections, such as
unmeasurable “family effects” in studies of earnings or employment. Suppose that the
correct model for a variable is h(yi | xi , vi , β, θ), where vi is a random term that is not ob-
served and θ is a parameter of the distribution of v. The correct log-likelihood function
is �i ln f (yi | xi , β, θ) = �i ln ∫v h(yi | xi , vi , β, θ) f (vi ) dvi . Suppose that we maximize
some other pseudo-log-likelihood function, �i ln g(yi | xi , β) and then use the sandwich
estimator to estimate the asymptotic covariance matrix of β̂. Does this produce a con-
sistent estimator of the true parameter vector? Surprisingly, sometimes it does, even
though it has ignored the nuisance parameter, θ . We saw one case, using OLS in the GR
model with heteroscedastic disturbances. Inappropriately fitting a Poisson model when
the negative binomial model is correct—see Section 18.4.4—is another case. For some
specifications, using the wrong likelihood function in the probit model with proportions
data is a third. [These examples are suggested, with several others, by Gourieroux, Mon-
fort, and Trognon (1984).] We do emphasize once again that the sandwich estimator,
in and of itself, is not necessarily of any virtue if the likelihood function is misspecified
and the other conditions for the M estimator are not met.
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14.8.4 CLUSTER ESTIMATORS

Micro-level, or individual, data are often grouped or “clustered.” A model of production
or economic success at the firm level might be based on a group of industries, with
multiple firms in each industry. Analyses of student educational attainment might be
based on samples of entire classes, or schools, or statewide averages of schools within
school districts. And, of course, such “clustering” is the defining feature of a panel data
set. We considered several of these types of applications in our analysis of panel data
in Chapter 11. The recent literature contains many studies of clustered data in which
the analyst has estimated a pooled model but sought to accommodate the expected
correlation across observations with a correction to the asymptotic covariance matrix.
We used this approach in computing a robust covariance matrix for the pooled least
squares estimator in a panel data model [see (11-3) and Example 11.1 in Section 11.6.4].

For the normal linear regression model, the log-likelihood that we maximize with
the pooled least squares estimator is

ln L =
n∑

i=1

Ti∑
t=1

[
−1

2
ln 2π − 1

2
ln σ 2 − 1

2
(yit − x′

i tβ)2

σ 2

]
.

[See (14-34).] The “cluster-robust” estimator in (11-3) can be written

W =
(

n∑
i=1

X′
i Xi

)−1 [
n∑

i=1

(X′
i ei )(e′

i Xi )

] (
n∑

i=1

X′
i Xi

)−1

=
(

− 1
σ̂ 2

n∑
i=1

Ti∑
t=1

xitx′
it

)−1[ n∑
i=1

(
Ti∑

t=1

1
σ̂ 2

xiteit

)(
Ti∑

t=1

1
σ̂ 2

eitx′
it

)](
− 1

σ̂ 2

n∑
i=1

Ti∑
t=1

xitx′
it

)−1

=
(

n∑
i=1

Ti∑
t=1

∂2 ln fit

∂β̂∂β̂ ′

)−1 [
n∑

i=1

(
Ti∑

t=1

∂ ln fit

∂β̂

)(
Ti∑

t=1

∂ ln fit

∂β̂ ′

)](
n∑

i=1

Ti∑
t=1

∂2 ln fit

∂β̂∂β̂ ′

)−1

,

where fit is the normal density with mean x′
i tβ and variance σ 2. This is precisely the

“cluster-corrected” robust covariance matrix that appears elsewhere in the literature
[minus an ad hoc “finite population correction” as in (11-4)].

In the generalized linear regression model (as in others), the OLS estimator is
consistent, and will have asymptotic covariance matrix equal to

Asy. Var[b] = (X′X)−1[X′(σ 2�)X](X′X)−1.

(See Theorem 9.1.) The center matrix in the sandwich for the panel data case can be
written

X′(σ 2�) X =
n∑

i=1

X′
i�Xi ,

which motivates the preceding robust estimator. Whereas when we first encountered
it, we motivated the cluster estimator with an appeal to the same logic that leads to the
White estimator for heteroscedasticity, we now have an additional result that appears
to justify the estimator in terms of the likelihood function.

Consider the specification error that the estimator is intended to accommodate.
Suppose that the observations in group i were multivariate normally distributed with



Greene-2140242 book January 19, 2011 21:15

CHAPTER 14 ✦ Maximum Likelihood Estimation 587

disturbance mean vector 0 and unrestricted Ti × Ti covariance matrix, �i . Then, the
appropriate log-likelihood function would be

ln L =
n∑

i=1

(−Ti/2 ln 2π − 1
2 ln |�i | − 1

2ε′
i�

−1
i εi

)
,

where εi is the Ti × 1 vector of disturbances for individual i . Therefore, we have maxi-
mized the wrong likelihood function. Indeed, the β that maximizes this log-likelihood
function is the GLS estimator, not the OLS estimator. OLS, and the cluster corrected
estimator given earlier, “work” in the sense that (1) the least squares estimator is consis-
tent in spite of the misspecification and (2) the robust estimator does, indeed, estimate
the appropriate asymptotic covariance matrix.

Now, consider the more general case. Suppose the data set consists of n multivariate
observations, [yi,1, . . . , yi,Ti ], i = 1, . . . , n. Each cluster is a draw from joint density
fi (yi | Xi , θ). Once again, to preserve the generality of the result, we will allow the
cluster sizes to differ. The appropriate log-likelihood for the sample is

ln L =
n∑

i=1

ln fi (yi | Xi , θ).

Instead of maximizing ln L, we maximize a pseudo-log-likelihood

ln LP =
n∑

i=1

Ti∑
t=1

ln g
(

yit | xi t , θ
)
,

where we make the possibly unreasonable assumption that the same parameter vec-
tor, θ enters the pseudo-log-likelihood as enters the correct one. Assume that it does.
Using our familiar first-order asymptotics, the pseudo-maximum likelihood estimator
(MLE) will satisfy

(θ̂P,ML − θ) ≈
(

−1∑n
i=1 Ti

n∑
i=1

Ti∑
t=1

∂2 ln fit

∂θ∂θ ′

)−1 (
1∑n

i=1 Ti

n∑
i=1

Ti∑
t=1

∂ ln fit

∂θ

)
+ (θ − β)

=
(

−1∑n
i=1 Ti

n∑
i=1

Ti∑
t=1

Hit

)−1 ( n∑
i=1

wi ḡi

)
+ (θ − β),

where wi = Ti/
∑n

i=1 Ti and ḡi = (1/Ti )
∑Ti

t=1 ∂ ln fit/∂θ . The trailing term in the ex-
pression is included to allow for the possibility that plim θ̂P,ML = β, which may not
equal θ . [Note, for example, Cameron and Trivedi (2005, p. 842) specifically assume
consistency in the generic model they describe.] Taking the expected outer product
of this expression to estimate the asymptotic mean squared deviation will produce two
terms—the cross term vanishes. The first will be the cluster-corrected matrix that is ubiq-
uitous in the current literature. The second will be the squared error that may persist as
n increases because the pseudo-MLE need not estimate the parameters of the model
of interest.

We draw two conclusions. We can justify the cluster estimator based on this approx-
imation. In general, it will estimate the expected squared variation of the pseudo-MLE
around its probability limit. Whether it measures the variation around the appropriate
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parameters of the model hangs on whether the second term equals zero. In words, per-
haps not surprisingly, this apparatus only works if the estimator is consistent. Is that
likely? Certainly not if the pooled model is ignoring unobservable fixed effects. More-
over, it will be inconsistent in most cases in which the misspecification is to ignore latent
random effects as well. The pseudo-MLE is only consistent for random effects in a
few special cases, such as the linear model and Poisson and negative binomial models
discussed in Chapter 18. It is not consistent in the probit and logit models in which this
approach often used. In the end, the cases in which the estimator are consistent are
rarely, if ever, enumerated. The upshot is stated succinctly by Freedman (2006, p. 302):
“The sandwich algorithm, under stringent regularity conditions, yields variances for
the MLE that are asymptotically correct even when the specification—and hence the
likelihood function—are incorrect. However, it is quite another thing to ignore bias. It
remains unclear why applied workers should care about the variance of an estimator
for the wrong parameter.”

14.9 APPLICATIONS OF MAXIMUM
LIKELIHOOD ESTIMATION

We will now examine several applications of the maximum likelihood estimator (MLE).
We begin by developing the ML counterparts to most of the estimators for the classical
and generalized regression models in Chapters 4 through 11. (Generally, the develop-
ment for dynamic models becomes more involved than we are able to pursue here. The
one exception we will consider is the standard model of autocorrelation.) We empha-
size, in each of these cases, that we have already developed an efficient, generalized
method of moments estimator that has the same asymptotic properties as the MLE
under the assumption of normality. In more general cases, we will sometimes find that
the GMM estimator is actually preferred to the MLE because of its robustness to fail-
ures of the distributional assumptions or its freedom from the necessity to make those
assumptions in the first place. However, for the extensions of the classical model based
on generalized least sqaures that are treated here, that is not the case. It might be argued
that in these cases, the MLE is superfluous. There are occasions when the MLE will be
preferred for other reasons, such as its invariance to transformation in nonlinear models
and, possibly, its small sample behavior (although that is usually not the case). And, we
will examine some nonlinear models in which there is no linear, method of moments
counterpart, so the MLE is the natural estimator. Finally, in each case, we will find some
useful aspect of the estimator, itself, including the development of algorithms such as
Newton’s method and the EM method for latent class models.

14.9.1 THE NORMAL LINEAR REGRESSION MODEL

The linear regression model is

yi = x′
iβ + εi .

The likelihood function for a sample of n independent, identically and normally dis-
tributed disturbances is

L = (2πσ 2)−n/2e−ε′ε/(2σ 2). (14-32)
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The transformation from εi to yi is εi = yi − x′
iβ, so the Jacobian for each observation,

|∂εi/∂yi |, is one.13 Making the transformation, we find that the likelihood function for
the n observations on the observed random variables is

L = (2πσ 2)−n/2e(−1/(2σ 2))(y−Xβ)′(y−Xβ). (14-33)

To maximize this function with respect to β, it will be necessary to maximize the expo-
nent or minimize the familiar sum of squares. Taking logs, we obtain the log-likelihood
function for the classical regression model:

ln L = −n
2

ln 2π − n
2

ln σ 2 − (y − Xβ)′(y − Xβ)

2σ 2
. (14-34)

The necessary conditions for maximizing this log-likelihood are
⎡
⎢⎢⎣

∂ ln L
∂β

∂ ln L
∂σ 2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

X′(y − Xβ)

σ 2

−n
2σ 2

+ (y − Xβ)′(y − Xβ)

2σ 4

⎤
⎥⎥⎦ =

[
0
0

]
. (14-35)

The values that satisfy these equations are

β̂ML = (X′X)−1X′y = b and σ̂ 2
ML = e′e

n
. (14-36)

The slope estimator is the familiar one, whereas the variance estimator differs from the
least squares value by the divisor of n instead of n − K.14

The Cramér–Rao bound for the variance of an unbiased estimator is the negative
inverse of the expectation of

⎡
⎢⎢⎢⎣

∂2 ln L
∂β∂β ′

∂2 ln L
∂β∂σ 2

∂2 ln L
∂σ 2∂β ′

∂2 ln L
∂(σ 2)2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

−X′X
σ 2

−X′ε
σ 4

−ε′X
σ 4

n
2σ 4

− ε′ε
σ 6

⎤
⎥⎥⎦ . (14-37)

In taking expected values, the off-diagonal term vanishes, leaving

[I(β, σ 2)]−1 =
[
σ 2(X′X)−1 0

0′ 2σ 4/n

]
. (14-38)

The least squares slope estimator is the maximum likelihood estimator for this model.
Therefore, it inherits all the desirable asymptotic properties of maximum likelihood
estimators.

We showed earlier that s2 = e′e/(n − K) is an unbiased estimator of σ 2. Therefore,
the maximum likelihood estimator is biased toward zero:

E
[
σ̂ 2

ML

] = n − K
n

σ 2 =
(

1 − K
n

)
σ 2 < σ 2. (14-39)

13See (B-41) in Section B.5. The analysis to follow is conditioned on X. To avoid cluttering the notation, we
will leave this aspect of the model implicit in the results. As noted earlier, we assume that the data generating
process for X does not involve β or σ 2 and that the data are well behaved as discussed in Chapter 4.
14As a general rule, maximum likelihood estimators do not make corrections for degrees of freedom.
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Despite its small-sample bias, the maximum likelihood estimator of σ 2 has the same
desirable asymptotic properties. We see in (14-39) that s2 and σ̂ 2 differ only by a factor
−K/n, which vanishes in large samples. It is instructive to formalize the asymptotic
equivalence of the two. From (14-38), we know that

√
n
(
σ̂ 2

ML − σ 2) d−→ N[0, 2σ 4].

It follows that

zn =
(

1 − K
n

)√
n
(
σ̂ 2

ML − σ 2) + K√
n
σ 2 d−→

(
1 − K

n

)
N[0, 2σ 4] + K√

n
σ 2.

But K/
√

n and K/n vanish as n → ∞, so the limiting distribution of zn is also N[0, 2σ 4].
Because zn = √

n(s2 − σ 2), we have shown that the asymptotic distribution of s2 is the
same as that of the maximum likelihood estimator.

The standard test statistic for assessing the validity of a set of linear restrictions in
the linear model, Rβ − q = 0, is the F ratio,

F[J, n − K] = (e′
∗e∗ − e′e)/J

e′e/(n − K)
= (Rb − q)′[Rs2(X′X)−1R′]−1(Rb − q)

J
.

With normally distributed disturbances, the F test is valid in any sample size. There re-
mains a problem with nonlinear restrictions of the form c(β) = 0, since the counterpart
to F , which we will examine here, has validity only asymptotically even with normally
distributed disturbances. In this section, we will reconsider the Wald statistic and ex-
amine two related statistics, the likelihood ratio statistic and the Lagrange multiplier
statistic. These statistics are both based on the likelihood function and, like the Wald
statistic, are generally valid only asymptotically.

No simplicity is gained by restricting ourselves to linear restrictions at this point, so
we will consider general hypotheses of the form

H0: c(β) = 0,

H1: c(β) �= 0.

The Wald statistic for testing this hypothesis and its limiting distribution under H0 would
be

W = c(b)′{C(b)[σ̂ 2(X′X)−1]C(b)′}−1c(b)
d−→ χ2[J ], (14-40)

where

C(b) = [∂c(b)/∂b′]. (14-41)

The likelihood ratio (LR) test is carried out by comparing the values of the log-likelihood
function with and without the restrictions imposed. We leave aside for the present how
the restricted estimator b∗ is computed (except for the linear model, which we saw
earlier). The test statistic and its limiting distribution under H0 are

LR = −2[ln L∗ − ln L]
d−→ χ2[J ]. (14-42)

The log-likelihood for the regression model is given in (14-34). The first-order condi-
tions imply that regardless of how the slopes are computed, the estimator of σ 2 without
restrictions on β will be σ̂ 2 = (y−Xb)′(y−Xb)/n and likewise for a restricted estimator
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σ̂ 2
∗ = (y − Xb∗)′(y − Xb∗)/n = e′

∗e∗/n. The concentrated log-likelihood15 will be

ln Lc = −n
2

[1 + ln 2π + ln(e′e/n)]

and likewise for the restricted case. If we insert these in the definition of LR, then we
obtain

LR = n ln[e′
∗e∗/e′e] = n

(
ln σ̂ 2

∗ − ln σ̂ 2) = n ln
(
σ̂ 2

∗ /σ̂ 2). (14-43)

The Lagrange multiplier (LM) test is based on the gradient of the log-likelihood
function. The principle of the test is that if the hypothesis is valid, then at the restricted
estimator, the derivatives of the log-likelihood function should be close to zero. There
are two ways to carry out the LM test. The log-likelihood function can be maximized
subject to a set of restrictions by using

ln LLM = −n
2

[
ln 2π + ln σ 2 + [(y − Xβ)′(y − Xβ)]/n

σ 2

]
+ λ′c(β).

The first-order conditions for a solution are
⎡
⎢⎢⎢⎢⎢⎢⎣

∂ ln LLM

∂β

∂ ln LLM

∂σ 2

∂ ln LLM

∂λ

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

X′(y − Xβ)

σ 2
+ C(β)′λ

−n
2σ 2

+ (y − Xβ)′(y − Xβ)

2σ 4

c(β)

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎣

0
0
0

⎤
⎥⎦ . (14-44)

The solutions to these equations give the restricted least squares estimator, b∗; the usual
variance estimator, now e′

∗e∗/n; and the Lagrange multipliers. There are now two ways
to compute the test statistic. In the setting of the classical linear regression model, when
we actually compute the Lagrange multipliers, a convenient way to proceed is to test
the hypothesis that the multipliers equal zero. For this model, the solution for λ∗ is λ∗ =
[R(X′X)−1R′]−1(Rb−q). This equation is a linear function of the least squares estimator.
If we carry out a Wald test of the hypothesis that λ∗ equals 0, then the statistic will be

LM = λ′
∗{Est. Var[λ∗]}−1λ∗ = (Rb − q)′[R s2

∗(X
′X)−1R′]−1(Rb − q). (14-45)

The disturbance variance estimator, s2
∗ , based on the restricted slopes is e′

∗e∗/n.
An alternative way to compute the LM statistic often produces interesting results.

In most situations, we maximize the log-likelihood function without actually computing
the vector of Lagrange multipliers. (The restrictions are usually imposed some other
way.) An alternative way to compute the statistic is based on the (general) result that
under the hypothesis being tested,

E [∂ ln L/∂β] = E [(1/σ 2)X′ε] = 0

and16

Asy. Var[∂ ln L/∂β] = −E [∂2 ln L/∂β∂β ′]−1 = σ 2(X′X)−1. (14-46)

15See Section E4.3.
16This makes use of the fact that the Hessian is block diagonal.
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We can test the hypothesis that at the restricted estimator, the derivatives are equal to
zero. The statistic would be

LM = e′
∗X(X′X)−1X′e∗

e′∗e∗/n
= nR2

∗. (14-47)

In this form, the LM statistic is n times the coefficient of determination in a regression
of the residuals ei∗ = (yi − x′

i b∗) on the full set of regressors.
With some manipulation we can show that W = [n/(n − K)]JF and LR and LM

are approximately equal to this function of F .17 All three statistics converge to JF as n
increases. The linear model is a special case in that the LR statistic is based only on the
unrestricted estimator and does not actually require computation of the restricted least
squares estimator, although computation of F does involve most of the computation of
b∗. Because the log function is concave, and W/n ≥ ln(1 + W/n), Godfrey (1988) also
shows that W ≥ LR ≥ LM, so for the linear model, we have a firm ranking of the three
statistics.

There is ample evidence that the asymptotic results for these statistics are problem-
atic in small or moderately sized samples. [See, e.g., Davidson and MacKinnon (2004,
pp. 424–428).] The true distributions of all three statistics involve the data and the un-
known parameters and, as suggested by the algebra, converge to the F distribution
from above. The implication is that critical values from the chi-squared distribution are
likely to be too small; that is, using the limiting chi-squared distribution in small or
moderately sized samples is likely to exaggerate the significance of empirical results.
Thus, in applications, the more conservative F statistic (or t for one restriction) is likely
to be preferable unless one’s data are plentiful.

14.9.2 THE GENERALIZED REGRESSION MODEL

For the generalized regression model of Section 9.1,

yi = x′
iβ + εi , i = 1, . . . , n,

E[ε | X] = 0,

E[εε′ | X] = σ 2�,

as before, we first assume that � is a matrix of known constants. If the disturbances are
multivariate normally distributed, then the log-likelihood function for the sample is

ln L = −n
2

ln(2π) − n
2

ln σ 2 − 1
2σ 2

(y − Xβ)′�−1(y − Xβ) − 1
2

ln |�|. (14-48)

Because � is a matrix of known constants, the maximum likelihood estimator of β is
the vector that minimizes the generalized sum of squares,

S∗(β) = (y − Xβ)′�−1(y − Xβ)

17See Godfrey (1988, pp. 49–51).
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(hence the name generalized least squares). The necessary conditions for maximizing L
are

∂ ln L
∂β

= 1
σ 2

X′�−1(y − Xβ) = 1
σ 2

X′
∗(y∗ − X∗β) = 0,

∂ ln L
∂σ 2

= − n
2σ 2

+ 1
2σ 4

(y − Xβ)′�−1(y − Xβ) (14-49)

= − n
2σ 2

+ 1
2σ 4

(y∗ − X∗β)′(y∗ − X∗β) = 0.

The solutions are the OLS estimators using the transformed data:

β̂ML = (X′
∗X∗)−1X′

∗y∗ = (X′�−1X)−1X′�−1y, (14-50)

σ̂ 2
ML = 1

n
(y∗ − X∗β̂)′(y∗ − X∗β̂)

(14-51)

= 1
n
(y − Xβ̂)′�−1(y − Xβ̂),

which implies that with normally distributed disturbances, generalized least squares is
also maximum likelihood. As in the classical regression model, the maximum likelihood
estimator of σ 2 is biased. An unbiased estimator is the one in (9-14). The conclusion,
which would be expected, is that when � is known, the maximum likelihood estimator
is generalized least squares.

When � is unknown and must be estimated, then it is necessary to maximize the log-
likelihood in (14-48) with respect to the full set of parameters [β, σ 2, �] simultaneously.
Because an unrestricted � alone contains n(n+1)/2−1 parameters, it is clear that some
restriction will have to be placed on the structure of � for estimation to proceed. We will
examine several applications in which � = �(θ) for some smaller vector of parameters
in the next several sections. We note only a few general results at this point.

1. For a given value of θ the estimator of β would be feasible GLS and the estimator
of σ 2 would be the estimator in (14-51).

2. The likelihood equations for θ will generally be complicated functions of β and σ 2,
so joint estimation will be necessary. However, in many cases, for given values of β

and σ 2, the estimator of θ is straightforward. For example, in the model of (9-15),
the iterated estimator of θ when β and σ 2 and a prior value of θ are given is the
prior value plus the slope in the regression of (e2

i /σ̂
2
i − 1) on zi .

The second step suggests a sort of back and forth iteration for this model that will work
in many situations—starting with, say, OLS, iterating back and forth between 1 and 2
until convergence will produce the joint maximum likelihood estimator. This situation
was examined by Oberhofer and Kmenta (1974), who showed that under some fairly
weak requirements, most importantly that θ not involve σ 2 or any of the parameters in β,
this procedure would produce the maximum likelihood estimator. Another implication
of this formulation which is simple to show (we leave it as an exercise) is that under the
Oberhofer and Kmenta assumption, the asymptotic covariance matrix of the estimator
is the same as the GLS estimator. This is the same whether � is known or estimated,
which means that if θ and β have no parameters in common, then exact knowledge of
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� brings no gain in asymptotic efficiency in the estimation of β over estimation of β with
a consistent estimator of �.

We will now examine the two primary, single-equation applications: heteroscedas-
ticity and autocorrelation.

14.9.2.a Multiplicative Heteroscedasticity

Harvey’s (1976) model of multiplicative heteroscedasticity is a very flexible, general
model that includes most of the useful formulations as special cases. The general for-
mulation is

σ 2
i = σ 2 exp(z′

iα). (14-52)

A model with heteroscedasticity of the form

σ 2
i = σ 2

M∏
m=1

zαm
im (14-53)

results if the logs of the variables are placed in zi . The groupwise heteroscedasticity
model described in Section 9.7.2 is produced by making zi a set of group dummy variables
(one must be omitted). In this case, σ 2 is the disturbance variance for the base group
whereas for the other groups, σ 2

g = σ 2 exp(αg).
We begin with a useful simplification. Let zi include a constant term so that z′

i =
[1, q′

i ], where qi is the original set of variables, and let γ ′ = [ln σ 2, α′]. Then, the model
is simply σ 2

i = exp(z′
iγ ). Once the full parameter vector is estimated, exp(γ1) provides

the estimator of σ 2. (This estimator uses the invariance result for maximum likelihood
estimation. See Section 14.4.5.d.)

The log-likelihood is

ln L = −n
2

ln(2π) − 1
2

n∑
i=1

ln σ 2
i − 1

2

n∑
i=1

ε2
i

σ 2
i

(14-54)= −n
2

ln(2π) − 1
2

n∑
i=1

z′
iγ − 1

2

n∑
i=1

ε2
i

exp(z′
iγ )

.

The likelihood equations are

∂ ln L
∂β

=
n∑

i=1

xi
εi

exp(z′
iγ )

= X′�−1ε = 0,

(14-55)∂ ln L
∂γ

= 1
2

n∑
i=1

zi

(
ε2

i

exp(z′
iγ )

− 1
)

= 0.

For this model, the method of scoring turns out to be a particularly convenient way to
maximize the log-likelihood function. The terms in the Hessian are

∂2 ln L
∂β ∂β ′ = −

n∑
i=1

1
exp(z′

iγ )
xi x′

i = −X′�−1X, (14-56)

∂2 ln L
∂β ∂γ ′ = −

n∑
i=1

εi

exp(z′
iγ )

xi z′
i , (14-57)

∂2 ln L
∂γ ∂γ ′ = −1

2

n∑
i=1

ε2
i

exp(z′
iγ )

zi z′
i . (14-58)
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The expected value of ∂2 ln L/∂β∂γ ′ is 0 because E [εi |xi , zi ] = 0. The expected value
of the fraction in ∂2 ln L/∂γ ∂γ ′ is E [ε2

i /σ
2
i |xi , zi ] = 1. Let δ = [β, γ ]. Then

−E
(

∂2 ln L
∂δ ∂δ′

)
=

[
X′�−1X 0

0′ 1
2 Z′Z

]
= −H̄. (14-59)

The method of scoring is an algorithm for finding an iterative solution to the likelihood
equations. The iteration is

δt+1 = δt − H̄−1gt ,

where δt (i.e., β t , γ t , and �t ) is the estimate at iteration t , gt is the two-part vector of first
derivatives [∂ ln L/∂β ′

t , ∂ ln L/∂γ ′
t ]

′, and H̄ is partitioned likewise. [Newton’s method
uses the actual second derivatives in (14-56)–(14-58) rather than their expectations in
(14-59). The scoring method exploits the convenience of the zero expectation of the off-
diagonal block (cross derivative) in (14-57).] Because H̄ is block diagonal, the iteration
can be written as separate equations:

β t+1 = β t + (
X′�−1

t X
)−1(X′�−1

t εt
)

= β t + (
X′�−1

t X
)−1X′�−1

t (y − Xβ t ) (14-60)

= (
X′�−1

t X
)−1X′�−1

t y (of course).

Therefore, the updated coefficient vectorβ t+1 is computed by FGLS using the previously
computed estimate of γ to compute �. We use the same approach for γ :

γ t+1 = γ t + [2(Z′Z)−1]

[
1
2

n∑
i=1

zi

(
ε2

i

exp(z′
iγ )

− 1
)]

. (14-61)

The 2 and 1
2 cancel. The updated value of γ is computed by adding the vector of coeffi-

cients in the least squares regression of [ε2
i / exp(z′

iγ ) − 1] on zi to the old one. Note that
the correction is 2(Z′Z)−1Z′(∂ ln L/∂γ ), so convergence occurs when the derivative is
zero.

The remaining detail is to determine the starting value for the iteration. Because
any consistent estimator will do, the simplest procedure is to use OLS for β and the
slopes in a regression of the logs of the squares of the least squares residuals on zi

for γ . Harvey (1976) shows that this method will produce an inconsistent estimator of
γ1 = ln σ 2, but the inconsistency can be corrected just by adding 1.2704 to the value
obtained.18 Thereafter, the iteration is simply:

1. Estimate the disturbance variance σ 2
i with exp(z′

iγ ).
2. Compute β t+1 by FGLS.19

3. Update γ t using the regression described in the preceding paragraph.
4. Compute dt+1 = [β t+1, γ t+1] − [β t , γ t ]. If dt+1 is large, then return to step 1.

18He also presents a correction for the asymptotic covariance matrix for this first step estimator of γ .
19The two-step estimator obtained by stopping here would be fully efficient if the starting value for γ were
consistent, but it would not be the maximum likelihood estimator.
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If dt+1 at step 4 is sufficiently small, then exit the iteration. The asymptotic covariance
matrix is simply −H−1, which is block diagonal with blocks

Asy. Var[β̂ML] = (X′�−1X)−1,

Asy. Var[γ̂ ML] = 2(Z′Z)−1.

If desired, then σ̂ 2 = exp(γ̂1) can be computed. The asymptotic variance would be
[exp(γ1)]2(Asy. Var[γ̂1,ML]).

Testing the null hypothesis of homoscedasticity in this model,

H0: α = 0

in (14-52), is particularly simple. The Wald test will be carried out by testing the hypoth-
esis that the last M elements of γ are zero. Thus, the statistic will be

λWALD = α̂′
{

[0 I][2(Z′Z)]−1
[

0
I

]}
α̂.

Because the first column in Z is a constant term, this reduces to

λWALD = 1
2
α̂′(Z′

1M0Z1)α̂,

where Z1 is the last M columns of Z, not including the column of ones, and M0

creates deviations from means. The likelihood ratio statistic is computed based on
(14-54). Under both the null hypothesis (homoscedastic—using OLS) and the alterna-
tive (heteroscedastic—using MLE), the third term in ln L reduces to −n/2. Therefore,
the statistic is simply

λLR = 2(ln L1 − ln L0) = n ln s2 −
n∑

i=1

ln σ̂ 2
i ,

where s2 = e′e/n using the OLS residuals. To compute the LM statistic, we will use
the expected Hessian in (14-59). Under the null hypothesis, the part of the derivative
vector in (14-55) that corresponds to β is (1/s2)X′e = 0. Therefore, using (14-55), the
LM statistic is

λLM =
[

1
2

n∑
i=1

(
e2

i

s2
− 1

) (
1

zi1

)]′ [
1
2
(Z′Z)

]−1
[

1
2

n∑
i=1

(
e2

i

s2
− 1

) (
1

zi1

)]
.

The first element in the derivative vector is zero, because
∑

i e
2
i = ns2. Therefore, the

expression reduces to

λLM = 1
2

[
n∑

i=1

(
e2

i

s2
− 1

)
zi1

]′
(Z′

1M0Z1)
−1

[
n∑

i=1

(
e2

i

s2
− 1

)
zi1

]
.

This is one-half times the explained sum of squares in the linear regression of the
variable hi = (e2

i /s2 − 1) on Z, which is the Breusch–Pagan/Godfrey LM statistic from
Section 9.5.2.
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Example 14.6 Multiplicative Heteroscedasticity
In Example 6.4, we fit a cost function for the U.S. airline industry of the form

ln Ci t = β1 + β2 ln Qi t + β3[ln Qi t ]2 + β4 ln Pfuel,i,t + β5 Loadfactori ,t + εi ,t ,

where Ci ,t is total cost, Qi ,t is output, and Pfuel,i,t is the price of fuel and the 90 observations
in the data set are for six firms observed for 15 years. (The model also included dummy
variables for firm and year, which we will omit for simplicity.) In Example 9.4, we fit a revised
model in which the load factor appears in the variance of εi ,t rather than in the regression
function. The model is

σ 2
i ,t = σ 2 exp(α Loadfactori ,t )

= exp(γ1 + γ2 Loadfactori ,t ) .

Estimates were obtained by iterating the weighted least squares procedure using weights
Wi ,t = exp(−c1 − c2 Loadfactori ,t ) . The estimates of γ1 and γ2 were obtained at each iteration
by regressing the logs of the squared residuals on a constant and Loadfactori t . It was noted
at the end of the example [and is evident in (14-61)] that these would be the wrong weights
to use for the iterated weighted least if we wish to compute the MLE. Table 14.3 reproduces
the results from Example 9.4 and adds the MLEs produced using Harvey’s method. The
MLE of γ2 is substantially different from the earlier result. The Wald statistic for testing the
homoscedasticity restriction (α = 0) is (9.78076/2.839)2 = 11.869, which is greater than
3.84, so the null hypothesis would be rejected. The likelihood ratio statistic is −2(54.2747 −
57.3122) = 6.075, which produces the same conclusion. However, the LM statistic is 2.96,
which conflicts. This is a finite sample result that is not uncommon.

14.9.2.b Autocorrelation

At various points in the preceding sections, we have considered models in which there
is correlation across observations, including the spatial autocorrelation case in Sec-
tion 11.7, autocorrelated disturbances in panel data models [Section 11.6.3 and in
(11-28)], and in the seemingly unrelated regressions model in Section 10.3. The first
order autoregression model examined there will be formalized in detail in Chapter 20.

TABLE 14.3 Multiplicative Heteroscedasticity Model

Sum of
Constant Ln Q Ln2 Q Ln Pf R2 Squares

OLS 9.1382 0.92615 0.029145 0.41006
ln L = 54.2747 0.24507a 0.032306 0.012304 0.018807 0.9861674c 1.577479d

0.22595b 0.030128 0.011346 0.017524
Two-step 9.2463 0.92136 0.024450 0.40352

0.21896 0.033028 0.011412 0.016974 0.986119 1.612938
Iteratede 9.2774 0.91609 0.021643 0.40174

0.20977 0.032993 0.011017 0.016332 0.986071 1.645693

MLEf 9.2611 0.91931 0.023281 0.40266
ln L = 57.3122 0.2099 0.032295 0.010987 0.016304 0.986100 1.626301
aConventional OLS standard errors
bWhite robust standard errors
cSquared correlation between actual and fitted values
dSum of squared residuals
eValues of c2 by iteration: 8.254344, 11.622473, 11.705029, 11.710618, 11.711012,
11.711040, 11.711042
fEstimate of γ2 is 9.78076 (2.839).
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We will briefly examine it here to highlight some useful results about the maximum
likelihood estimator.

The linear regression model with first order autoregressive [AR(1)] disturbances is

yt = x′
tβ + εt , t = 1, . . . , T,

εt = ρεt−1 + ut , |ρ| < 1,

E[ut | X] = 0

E[ut us | X] = σ 2
u if t = s and 0 otherwise.

Feasible GLS estimation of the parameters of this model is examined in detail in Chap-
ter 20. We now add the assumption of normality; ut ∼ N[0, σ 2

u ], and construct the
maximum likelihood estimator.

Because every observation on yt is correlated with every other observation, in
principle, to form the likelihood function, we have the joint density of one T-variate
observation. The Prais and Winsten (1954) transformation in (20-28) suggests a useful
way to reformulate this density. We can write

f (y1, y2, . . . , yT) = f (y1) f (y2 | y1), f (y3 | y2) . . . , f (yT | yT−1).

Because √
1 − ρ2 y1 =

√
1 − ρ2 x′

1β + u1

(14-62)
yt | yt−1 = ρyt−1 + (xt − ρxt−1)

′β + ut ,

and the observations on ut are independently normally distributed, we can use these
results to form the log-likelihood function,

ln L =
[
−1

2
ln 2π − 1

2
ln σ 2

u + 1
2

ln(1 − ρ2) − (1 − ρ2)(y1 − x′
1β)2

2σ 2
u

]

(14-63)
+

T∑
t=2

[
−1

2
ln 2π − 1

2
ln σ 2

u − [(yt − ρyt−1) − (xt − ρxt−1)
′β]2

2σ 2
u

]
.

As usual, the MLE of β is GLS based on the MLEs of σ 2
u and ρ, and the MLE for

σ 2
u will be u′u/T given β and ρ. The complication is how to compute ρ. As we will note

in Chapter 20, there is a strikingly large number of choices for consistently estimating
ρ in the AR(1) model. It is tempting to choose the most convenient, and then begin
the back and forth iterations between β and (σ 2

u , ρ) to obtain the MLE. However, this
strategy will not (in general) locate the MLE unless the intermediate estimates of the
variance parameters also satisfy the likelihood equation, which for ρ is

∂ ln L
∂ρ

= ρε2
1

σ 2
u

− ρ

1 − ρ2
+

T∑
t=2

utεt−1

σ 2
u

.

One could sidestep the problem simply by scanning the range of ρ of (−1, +1) and
computing the other estimators at every point, to locate the maximum of the likelihood
function by brute force. With modern computers, even with long time series, the amount
of computation involved would be minor (if a bit inelegant and inefficient). Beach and
MacKinnon (1978a) developed a more systematic algorithm for searching for ρ in this
model. The iteration is then defined between ρ and (β, σ 2

u ) as usual.
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The information matrix for this log-likelihood is

−E

⎡
⎢⎢⎢⎢⎢⎢⎣

∂2 ln L

∂

⎛
⎝

β

σ 2
u
ρ

⎞
⎠ ∂

(
β ′σ 2

u ρ
)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
σ 2

u
X′�−1X 0 0

0′ T
2σ 4

u

ρ

σ 2
u (1 − ρ2)

0′ ρ

σ 2
u (1 − ρ2)

T − 2
1 − ρ2

+ 1 + ρ2

(1 − ρ2)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(14-64)

Note that the diagonal elements in the matrix are O(T). But the (2, 3) and (3, 2)
elements are constants of O(1) that will, like the second part of the (3, 3) element,
become minimal as T increases. Dropping these “end effects” (and treating T − 2 as
the same as T when T increases) produces a diagonal matrix from which we extract the
standard approximations for the MLEs in this model:

Asy. Var[β̂] = σ 2
u (X′�−1X)−1,

Asy. Var
[
σ̂ 2

u

] = 2σ 4
u

T
, (14-65)

Asy. Var[ρ̂] = 1 − ρ2

T
.

Example 14.7 Autocorrelation in a Money Demand Equation
Using the macroeconomic data in Table F5.2, we fit a money demand equation,

ln( M1/CPI u) t = β1 + β2 ln Real GDPt + β3 ln T-bill ratet + εt .

The least squares residuals shown in Figure 14.3 display the typical pattern for a highly
autocorrelated series.

FIGURE 14.3 Residuals from Estimated Money Demand Equation.
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TABLE 14.4 Estimates of Money Demand Equation: T = 204

OLS Prais and Winsten Maximum Likelihood

Variable Estimate Std. Error Estimate Std. Error Estimate Std. Error

Constant −2.1316 0.09100 −1.4755 0.2550 −1.6319 0.4296
Ln real GDP 0.3519 0.01205 0.2549 0.03097 0.2731 0.0518
Ln T-bill rate −0.1249 0.009841 −0.02666 0.007007 −0.02522 0.006941
σε 0.06185 0.07767 0.07571
σu 0.06185 0.01298 0.01273
ρ 0. 0. 0.9557 0.02061 0.9858 0.01180

The simple first-order autocorrelation of the ordinary least squares residuals is r = 1 −
d/2 = 0.9557, where d is the Durbin–Watson Statistic in (20-23). We then refit the model
using the Prais and Winsten FGLS estimator and the maximum likelihood estimator using
the Beach and MacKinnon algorithm. The results are shown in Table 14.4. Although the OLS
estimator is consistent in this model, nonetheless, the FGLS and ML estimates are quite
different.

14.9.3 SEEMINGLY UNRELATED REGRESSION MODELS

The general form of the seemingly unrelated regression (SUR) model is given in
(10-1)–(10-3);

yi = Xiβ i + εi , i = 1, . . . , M,

E[εi | X1, . . . , XM] = 0, (14-66)

E[εiε
′
j | X1, . . . , XM] = σi j I.

FGLS estimation of this model is examined in detail in Section 10.2.3. We will now
add the assumption of normally distributed disturbances to the model and develop the
maximum likelihood estimators. Given the covariance structure defined in (14-66), the
joint normality assumption applies to the vector of M disturbances observed at time t ,
which we write as

εt | X1, . . . , XM ∼ N[0, �], t = 1, . . . , T. (14-67)

14.9.3.a The Pooled Model

The pooled model, in which all coefficient vectors are equal, provides a convenient
starting point. With the assumption of equal coefficient vectors, the regression model
becomes

yit = x′
i tβ + εi t ,

E[εi t | X1, . . . , XM] = 0, (14-68)

E[εi tεjs | X1, . . . , XM] = σi j if t = s, and 0 if t �= s.

This is a model of heteroscedasticity and cross-sectional correlation. With multivariate
normality, the log-likelihood is

ln L =
T∑

t=1

[
− M

2
ln 2π − 1

2
ln |�| − 1

2
ε′

t�
−1εt

]
. (14-69)
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As we saw earlier, the efficient estimator for this model is GLS as shown in (10-21).
Because the elements of � must be estimated, the FGLS estimator based on (10-9) is
used.

As we have seen in several applications now, the maximum likelihood estimator of
β, given �, is GLS, based on (10-21). The maximum likelihood estimator of � is

σ̂i j =
(
y′

i − Xi
ˆ̂βML

)′(y j − X j
ˆ̂βML

)

T
= ε̂′

i ε̂ j

T
(14-70)

based on the MLE of β. If each MLE requires the other, how can we proceed to obtain
both? The answer is provided by Oberhofer and Kmenta (1974), who show that for
certain models, including this one, one can iterate back and forth between the two esti-
mators. Thus, the MLEs are obtained by iterating to convergence between (14-70) and

ˆ̂β = [X′�̂−1X]−1[X′�̂−1y]. (14-71)

The process may begin with the (consistent) ordinary least squares estimator, then
(14-70), and so on. The computations are simple, using basic matrix algebra. Hypothe-
sis tests about β may be done using the familiar Wald statistic. The appropriate estimator
of the asymptotic covariance matrix is the inverse matrix in brackets in (10-21).

For testing the hypothesis that the off-diagonal elements of � are zero—that is, that
there is no correlation across firms—there are three approaches. The likelihood ratio
test is based on the statistic

λLR = T(ln |�̂heteroscedastic| − ln |�̂general|) = T

(
M∑

i=1

ln σ̂ 2
i − ln |�̂|

)
, (14-72)

where σ̂ 2
i are the estimates of σ 2

i obtained from the maximum likelihood estimates
of the groupwise heteroscedastic model and �̂ is the maximum likelihood estimator
in the unrestricted model. (Note how the excess variation produced by the restrictive
model is used to construct the test.) The large-sample distribution of the statistic is chi-
squared with M(M − 1)/2 degrees of freedom. The Lagrange multiplier test developed
by Breusch and Pagan (1980) provides an alternative. The general form of the statistic is

λLM = T
n∑

i=2

i−1∑
j=1

r2
i j , (14-73)

where r2
i j is the i jth residual correlation coefficient. If every equation had a different

parameter vector, then equation specific ordinary least squares would be efficient (and
ML) and we would compute ri j from the OLS residuals (assuming that there are suffi-
cient observations for the computation). Here, however, we are assuming only a single-
parameter vector. Therefore, the appropriate basis for computing the correlations is the
residuals from the iterated estimator in the groupwise heteroscedastic model, that is,
the same residuals used to compute σ̂ 2

i . (An asymptotically valid approximation to the
test can be based on the FGLS residuals instead.) Note that this is not a procedure for
testing all the way down to the classical, homoscedastic regression model. That case in-
volves different LM and LR statistics based on the groupwise heteroscedasticity model.
If either the LR statistic in (14-72) or the LM statistic in (14-73) are smaller than the
critical value from the table, the conclusion, based on this test, is that the appropriate
model is the groupwise heteroscedastic model.
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14.9.3.b The SUR Model

The Oberhofer–Kmenta (1974) conditions are met for the seemingly unrelated regres-
sions model, so maximum likelihood estimates can be obtained by iterating the FGLS
procedure. We note, once again, that this procedure presumes the use of (10-9) for esti-
mation of σi j at each iteration. Maximum likelihood enjoys no advantages over FGLS
in its asymptotic properties.20 Whether it would be preferable in a small sample is an
open question whose answer will depend on the particular data set.

14.9.3.c Exclusion Restrictions

By simply inserting the special form of � in the log-likelihood function for the gen-
eralized regression model in (14-48), we can consider direct maximization instead of
iterated FGLS. It is useful, however, to reexamine the model in a somewhat different
formulation. This alternative construction of the likelihood function appears in many
other related models in a number of literatures.

Consider one observation on each of the Mdependent variables and their associated
regressors. We wish to arrange this observation horizontally instead of vertically. The
model for this observation can be written

[y1 y2 · · · yM]t = [x∗
t ]′[π1 π2 · · · π M] + [ε1 ε2 · · · εM]t

= [x∗
t ]′� + E,

(14-74)

where x∗
t is the full set of all K∗ different independent variables that appear in the model.

The parameter matrix then has one column for each equation, but the columns are not
the same as β i in (14-66) unless every variable happens to appear in every equation.
Otherwise, in the ith equation, π i will have a number of zeros in it, each one imposing
an exclusion restriction. For example, consider a two-equation model for production
costs for two airlines,

C1t = α1 + β1P P1t + β1LLF1t + ε1t ,

C2t = α2 + β2P P2t + β2LLF2t + ε2t ,

where C is cost, P is fuel price, and LF is load factor. The tth observation would be

[C1 C2]t = [1 P1 LF1 P2 LF2]t

⎡
⎢⎢⎢⎢⎢⎢⎣

α1 α2

β1P 0

β1L 0

0 β2P

0 β2L

⎤
⎥⎥⎥⎥⎥⎥⎦

+ [ε1 ε2]t .

This vector is one observation. Let εt be the vector of M disturbances for this
observation arranged, for now, in a column. Then E [εtε

′
t ] = �. The log of the joint

normal density of these M disturbances is

ln Lt = − M
2

ln(2π) − 1
2

ln|�| − 1
2
ε′

t�
−1εt . (14-75)

20Jensen (1995) considers some variation on the computation of the asymptotic covariance matrix for the
estimator that allows for the possibility that the normality assumption might be violated.
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The log-likelihood for a sample of T joint observations is the sum of these over t :

ln L =
T∑

t=1

ln Lt = − MT
2

ln(2π) − T
2

ln|�| − 1
2

T∑
t=1

ε′
t�

−1εt . (14-76)

The term in the summation in (14-76) is a scalar that equals its trace. We can always
permute the matrices in a trace, so

T∑
t=1

ε′
t�

−1εt =
T∑

t=1

tr
(
ε′

t�
−1εt

) =
T∑

t=1

tr
(
�−1εtε

′
t

)
. (14-77)

This can be further simplified. The sum of the traces of T matrices equals the trace of
the sum of the matrices [see (A-91)]. We will now also be able to move the constant
matrix, �−1, outside the summation. Finally, it will prove useful to multiply and divide
by T. Combining all three steps, we obtain

T∑
t=1

tr
(
�−1εtε

′
t

) = T tr

[
�−1

(
1
T

) T∑
t=1

εtε
′
t

]
= T tr(�−1W), (14-78)

where

Wi j = 1
T

T∑
t=1

εtiεt j .

Because this step uses actual disturbances, E [Wi j ] = σi j ; W is the M × M matrix we
would use to estimate � if the ε’s were actually observed. Inserting this result in the
log-likelihood, we have

ln L = −T
2

[M ln(2π) + ln|�| + tr(�−1W)]. (14-79)

We now consider maximizing this function.
It has been shown21 that

∂ ln L
∂�′ = T

2
X∗′E�−1,

∂ ln L
∂�

= −T
2

�−1(� − W)�−1,

(14-80)

where the x∗′
t in (14-74) is row t of X∗. Equating the second of these derivatives to a zero

matrix, we see that given the maximum likelihood estimates of the slope parameters, the
maximum likelihood estimator of � is W, the matrix of mean residual sums of squares
and cross products—that is, the matrix we have used for FGLS. [Notice that there is no
correction for degrees of freedom; ∂ ln L/∂� = 0 implies (10-9).]

We also know that because this model is a generalized regression model, the maxi-
mum likelihood estimator of the parameter matrix [β] must be equivalent to the FGLS
estimator we discussed earlier.22 It is useful to go a step further. If we insert our solution

21See, for example, Joreskog (1973).
22This equivalence establishes the Oberhofer–Kmenta conditions.
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for � in the likelihood function, then we obtain the concentrated log-likelihood,

ln Lc = −T
2

[M(1 + ln(2π)) + ln|W|]. (14-81)

We have shown, therefore, that the criterion for choosing the maximum likelihood
estimator of β is

β̂ML = Minβ
1
2 ln|W|, (14-82)

subject to the exclusion restrictions. This important result reappears in many other mod-
els and settings. This minimization must be done subject to the constraints in the pa-
rameter matrix. In our two-equation example, there are two blocks of zeros in the
parameter matrix, which must be present in the MLE as well. The estimator of β is the
set of nonzero elements in the parameter matrix in (14-74).

The likelihood ratio statistic is an alternative to the F statistic discussed earlier for
testing hypotheses about β. The likelihood ratio statistic is23

λ = −2(log Lr − log Lu) = T(log|Ŵr | − log|Ŵu|), (14-83)

where Ŵr and Ŵu are the residual sums of squares and cross-product matrices using
the constrained and unconstrained estimators, respectively. Under the null hypothesis
of the restrictions, the limiting distribution of the likelihood ratio statistic is chi-squared
with degrees of freedom equal to the number of restrictions. This procedure can also
be used to test the homogeneity restriction in the multivariate regression model. The
restricted model is the pooled model discussed in the preceding section.

It may also be of interest to test whether � is a diagonal matrix. Two possible
approaches were suggested in Section 14.9.3a [see (14-72) and (14-73)]. The unrestricted
model is the one we are using here, whereas the restricted model is the groupwise
heteroscedastic model of Section 9.8.2 (Example 9.5), without the restriction of equal-
parameter vectors. As such, the restricted model reduces to separate regression models,
estimable by ordinary least squares. The likelihood ratio statistic would be

λLR = T

[
M∑

i=1

log σ̂ 2
i − log |�̂|

]
, (14-84)

where σ̂ 2
i is e′

i ei/T from the individual least squares regressions and �̂ is the maxi-
mum likelihood estimate of �. This statistic has a limiting chi-squared distribution with
M(M − 1)/2 degrees of freedom under the hypothesis. The alternative suggested by
Breusch and Pagan (1980) is the Lagrange multiplier statistic,

λLM = T
M∑

i=2

i−1∑
j=1

r2
i j , (14-85)

where ri j is the estimated correlation σ̂i j/[σ̂i i σ̂ j j ]1/2. This statistic also has a limiting chi-
squared distribution with M(M − 1)/2 degrees of freedom. This test has the advantage
that it does not require computation of the maximum likelihood estimator of �, because
it is based on the OLS residuals.

23See Attfield (1998) for refinements of this calculation to improve the small sample performance.
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Example 14.8 ML Estimates of a Seemingly Unrelated
Regressions Model

Although a bit dated, the Grunfeld data used in Application 11.2 have withstood the test of
time and are still the standard data set used to demonstrate the SUR model. The data in
Appendix Table F10.4 are for 10 firms and 20 years (1935–1954). For the purpose of this
illustration, we will use the first four firms. [The data are downloaded from the Web site for
Baltagi (2005), at http://www.wiley.com/legacy/wileychi/baltagi/supp/Grunfeld.fil. See also
Kleiber and Zeileis (2010).]

The model is an investment equation:

I i t = β1i + β2i Fi t + β3i Ci t + εi t , t = 1, . . . , 20, i = 1, . . . , 10,

where

I i t = real gross investment for firm i in year t,

Fi t = real value of the firm-shares outstanding,

Ci t = real value of the capital stock.

The OLS estimates for the four equations are shown in the left panel of Table 14.5. The
correlation matrix for the four OLS residual vectors is

Re =

⎡
⎢⎣

1 −0.261 0.279 −0.273
−0.261 1 0.428 0.338

0.279 0.428 1 −0.0679
−0.273 0.338 −0.0679 1

⎤
⎥⎦ .

Before turning to the FGLS and MLE estimates, we carry out the LM test against the null
hypothesis that the regressions are actually unrelated. We leave as an exercise to show that
the LM statistic in (14-85) can be computed as

λLM = (T/2) [trace(R′
eRe) − M] = 10.451.

The 95 percent critical value from the chi squared distribution with 6 degrees of freedom is
12.59, so at this point, it appears that the null hypothesis is not rejected. We will proceed in
spite of this finding.

TABLE 14.5 Estimated Investment Equations

OLS FGLS MLE

Firm Variable Estimate St. Err. Estimate St. Err. Estimate St. Err.

Constant −149.78 97.58 −160.68 90.41 −179.41 86.66
1 F 0.1192 0.02382 0.1205 0.02187 0.1248 0.02086

C 0.3714 0.03418 0.3800 0.03311 0.3802 0.03266
Constant −49.19 136.52 21.16 116.18 36.46 106.18

2 F 0.1749 0.06841 0.1304 0.05737 0.1244 0.05191
C 0.3896 0.1312 0.4485 0.1225 0.4367 0.1171
Constant −9.956 28.92 −19.72 26.58 −24.10 25.80

3 F 0.02655 0.01435 0.03464 0.01279 0.03808 0.01217
C 0.1517 0.02370 0.1368 0.02249 0.1311 0.02223
Constant −6.190 12.45 0.9366 11.59 2.581 11.54

4 F 0.07795 0.01841 0.06785 0.01705 0.06564 0.01698
C 0.3157 0.02656 0.3146 0.02606 0.3137 0.02617
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The next step is to compute the covariance matrix for the OLS residuals using

W = (1/T )E′E =

⎡
⎢⎣

7160.29 −1967.05 607.533 −282.756
−1967.05 7904.66 978.45 367.84

607.533 978.45 660.829 −21.3757
− 282.756 367.84 −21.3757 149.872

⎤
⎥⎦,

where E is the 20 × 4 matrix of OLS residuals. Stacking the data in the partitioned matrices

X =

⎡
⎢⎣

X1 0 0 0
0 X2 0 0
0 0 X3 0
0 0 0 X4

⎤
⎥⎦ and y =

⎡
⎢⎣

y1
y2
y3
y4

⎤
⎥⎦,

we now compute �̂ = W ⊗ I20 and the FGLS estimates,

β̂ = [X′�̂
−1

X]−1X′�̂
−1

y.

The estimated asymptotic covariance matrix for the FGLS estimates is the bracketed inverse
matrix. These results are shown in the center panel in Table 14.5.

To compute the MLE, we will take advantage of the Oberhofer and Kmenta (1974) re-
sult and iterate the FGLS estimator. Using the FGLS coefficient vector, we recompute the
residuals, then recompute W, then reestimate β. The iteration is repeated until the estimated
parameter vector converges. We use as our convergence measure the following criterion
based on the change in the estimated parameter from iteration (s − 1) to iteration (s):

δ = [β̂(s) − β̂(s − 1) ]′[X′[�̂(s) ]−1X][β̂(s) − β̂(s − 1) ].

The sequence of values of this criterion function are: 0.21922, 0.16318, 0.00662, 0.00037,
0.00002367825, 0.000001563348, 0.1041980 × 10−6. We exit the iterations after iteration 7.
The ML estimates are shown in the right panel of Table 14.5.

We then carry out the likelihood ratio test of the null hypothesis of a diagonal covariance
matrix. The maximum likelihood estimate of � is

�̂ =

⎡
⎢⎣

7235.46 −2455.13 615.167 −325.413
−2455.13 8146.41 1288.66 427.011

615.167 1288.66 702.268 2.51786
−325.413 427.011 2.51786 153.889

⎤
⎥⎦

The estimate for the constrained model is the diagonal matrix formed from the diagonals of
W shown earlier for the OLS results. (The estimates are shown in boldface in the preceding
matrix.) The test statistic is then

LR = T ( ln |diag(W) | − ln |�̂|) = 18.55.

Recall that the critical value is 12.59. The results contradict the LM statistic. The hypothesis
of diagonal covariance matrix is now rejected.

Note that aside from the constants, the four sets of coefficient estimates are fairly similar.
Because of the constants, there seems little doubt that the pooling restriction will be rejected.
To find out, we compute the Wald statistic based on the MLE results. For testing

H0: β1 = β2 = β3 = β4,

we can formulate the hypothesis as

H0: β1 − β4 = 0, β2 − β4 = 0, β3 − β4 = 0.

The Wald statistic is

λW = (Rβ̂ − q) ′[RVR′]−1(Rβ̂ − q) = 2190.96
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where R =
[

I3 0 0 −I3
0 I3 0 −I3
0 0 I3 −I3

]
, q =

[
0
0
0

]
, and V = [X′�̂

−1
X]−1. Under the null hypothesis, the

Wald statistic has a limiting chi-squared distribution with 9 degrees of freedom. The critical
value is 16.92, so, as expected, the hypothesis is rejected. It may be that the difference is due
to the different constant terms. To test the hypothesis that the four pairs of slope coefficients
are equal, we replaced the I3 in R with [0, I2], the 0s with 2 × 3 zero matrices and q with
a 6 × 1 zero vector, The resulting chi-squared statistic equals 229.005. The critical value is
12.59, so this hypothesis is rejected also.

14.9.4 SIMULTANEOUS EQUATIONS MODELS

In Chapter 10, we noted two approaches to maximum likelihood estimation in the
equation system

y′
t� + x′

t B = ε′
t ,

(14-86)
εt | X ∼ N[0, �].

The limited information maximum likelihood (LIML) estimator is a single-equation
approach that estimates the parameters one equation at a time. The full information
maximum likelihood (FIML) estimator analyzes the full set of equations at one step.

Derivation of the LIML estimator is quite complicated. Lengthy treatments appear
in Anderson and Rubin (1948), Theil (1971), and Davidson and MacKinnon (1993,
Chapter 18). The mechanics of the computation are surprisingly simple, as shown earlier
(Section 10.6.4). The LIML estimates for Klein’s Model I appear in Example 10.6 with
the other single-equation and system estimators. For the practitioner, a useful result
is that the asymptotic variance of the two-stage least squares (2SLS) estimator, which
is yet simpler to compute, is the same as that of the LIML estimator. For practical
purposes, this would generally render the LIML estimator, with its additional normality
assumption, moot. The virtue of the LIML is largely theoretical—it provides a useful
benchmark for the analysis of the properties of single-equation estimators. The single
exception would be the invariance of the estimator to normalization of the equation
(i.e., which variable appears on the left of the equals sign). This turns out to be useful in
the context of analysis in the presence of weak instruments. (See Sections 8.7 and 10.6.6.)

The FIML estimator is much simpler to derive than the LIML estimator but con-
siderably more difficult to implement. To obtain the needed results, we first operated
on the reduced form

y′
t = x′

t� + v′
t ,

(14-87)
vt | X ∼ N[0, �],

which is the seemingly unrelated regressions model analyzed at length in Chapter 10
and in Section 14.9.3. The complication is the restrictions imposed on the parameters,

� = −B�−1 and � = (�−1)′�(�−1). (14-88)

As is now familiar from several applications, given estimates of � and B in (14-86),
the estimator of � is (1/T)E′E based on the residuals. We can even show fairly easily
that given � and �, the estimator of (−B) in (14-86) would be provided by the results
for the SUR model in Section 14.9.3.c (where we estimate the model subject to the
zero restrictions in the coefficient matrix). The complication in estimation is brought by



Greene-2140242 book January 19, 2011 21:15

608 PART III ✦ Estimation Methodology

�; this is a Jacobian. The term ln |�| appears in the log-likelihood function. Nonlinear
optimization over the nonzero elements in a function that includes this term is exceed-
ingly complicated. However, three-stage least squares (3SLS) has the same asymptotic
efficiency as the FIML estimator, again without the normality assumption and without
the practical complications.

The end result is that for the practitioner, the LIML and FIML estimators have
been supplanted in the literature by much simpler GMM estimators, 2SLS, H2SLS,
3SLS, and H3SLS. Interest remains in these estimators, but largely as a component of
the ongoing theoretical development.

14.9.5 MAXIMUM LIKELIHOOD ESTIMATION OF NONLINEAR
REGRESSION MODELS

In Chapter 7, we considered nonlinear regression models in which the nonlinearity in
the parameters appeared entirely on the right-hand side of the equation. Maximum
likelihood is used when the disturbances in a regression, or the dependent variable,
more generally, is not normally distributed. The geometric regression model provides
an application.

Example 14.9 Identification in a Loglinear Regression Model
In Example 7.6, we estimated an exponential regression model, of the form

E [Income|Age, Education, Female] = exp(γ ∗
1 + γ 2Age + γ 3Education + γ 4Female) .

This loglinear conditional mean is consistent with several different distributions, including the
lognormal, Weibull, gamma, and exponential models. In each of these cases, the conditional
mean function is of the form

E [Income|x] = g(θ ) exp(γ 1 + x′γ 2)

= exp(γ ∗
1 + x′γ 2) ,

where θ is an additional parameter of the distribution and γ ∗
1 = ln g(θ ) + γ1. Two implications

are:

1. Nonlinear least squares (NLS) is robust at least to some failures of the distributional as-
sumption. The nonlinear least squares estimator of γ 2 will be consistent and asymptotically
normally distributed in all cases for which E [Income|x] = exp(γ ∗

1 + x′γ 2) .
2. The NLS estimator cannot produce a consistent estimator of γ1; plimc1 = γ ∗

1, which varies
depending on the correct distribution. In the conditional mean function, any pair of values
for which γ ′

1 = ln g(θ ) + γ1 is the same will lead to the same sum of squares. This is
a form of multicollinearity; the pseudoregressor for θ is ∂E [Income|x]/∂θ = exp(γ ∗

1 +
x′γ 2) [g′(θ )/g(θ ) ] while that for γ1 is ∂E [Income|x]/∂γ 1 = exp(γ ∗

1 + x′γ 2) . The first is a
constant multiple of the second.

NLS cannot provide separate estimates of θ and γ 1 while MLE can—see the example to
follow. Second, NLS might be less efficient than MLE since it does not use the information
about the distribution of the dependent variable. This second consideration is uncertain. For
estimation of γ 2, the NLS estimator is less efficient for not using the distributional information.
However, that shortcoming might be offset because the NLS estimator does not attempt to
compute an independent estimator of the additional parameter, θ .

To illustrate, we reconsider the estimator in Example 7.6. The gamma regression model
specifies

f ( y|x) = μ(x) θ

(θ )
exp[−μ(x) y]yθ−1, y > 0, θ > 0, μ(x) = exp(−γ1 − x′γ2) .
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TABLE 14.6 Estimated Gamma Regression Model

(2)
(1) Constrained (3) (4)

NLS NLS MLE NLS/MLE

Constant 1.22468 1.69331 3.36826 3.36380
(47722.5) (0.04408) (0.05048) (0.04408)

Age −0.00207 −0.00207 −0.00153 −0.00207
(0.00061) (0.00061) (0.00061) (0.00061)

Education −0.04792 −0.04792 −0.04975 −0.04792
(0.00247) (0.00247) (0.00286) (0.00247)

Female 0.00658 0.00658 0.00696 0.00658
(0.01373) (0.01373) (0.01322) (0.08677)

θ 0.62699 — 5.31474 5.31474
(29921.3) — (0.10894) (0.00000)

The conditional mean function for this model is

E [y|x] = θ/μ(x) = θ exp(γ1 + x′γ2) = exp(γ ∗
1 + x′γ2) .

Table 14.6 presents estimates of θ and (γ1, γ2) . Estimated standard errors appear in parenthe-
ses. The estimates in columns (1), (2) and (4) are all computed using nonlinear least squares.
In (1), an attempt is made to estimate θ and γ1 separately. The estimator “converged” on two
values. However, the estimated standard errors are essentially infinite. The convergence to
anything at all is due to rounding error in the computer. The results in column (2) are for γ ∗

1 and
γ 2. The sums of squares for these two estimates as well as for those in (4) are all 112.19688,
indicating that the three results merely show three different sets of results for which γ ∗

1 is the
same. The full maximum likelihood estimates are presented in (3). Note that an estimate of
θ is obtained here because the assumed gamma distribution provides another independent
moment equation for this parameter, ∂ ln L/∂θ = −n ln �(θ ) + � i ( ln yi − ln μ(x) ) = 0, while
the normal equations for the sum of squares provides the same normal equation for θ and γ1.

The standard approach to modeling counts of events begins with the Poisson re-
gression model,

Prob[Y = yi | xi ] = exp(−λi )λ
yi
i

yi !
, λi = exp(x′

iβ), yi = 0, 1, . . .

which has loglinear conditional mean function E[yi | xi ] = λi . (The Poisson regression
model and other specifications for data on counts are discussed at length in Chapter 18.
We introduce the topic here to begin development of the MLE in a fairly straight-
forward, typical nonlinear setting.) Appendix Table F7.1 presents the Riphahn et al.
(2003) data, which we will use to analyze a count variable, DocVis, the number of visits
to physicans in the survey year. The histogram in Figure 14.4 shows a distinct spike at
zero followed by rapidly declining frequencies. While the Poisson distribution, which
is typically hump-shaped, can accommodate this configuration if λi is less than one,
the shape is nonetheless somewhat “non-Poisson.” [So-called Zero Inflation models
(discussed in Chapter 18) are often used for this situation.]

The geometric distribution,

f (yi | xi ) = θi (1 − θi )
yi , θi = 1/(1 + λi ), λi = exp(x′

iβ), yi = 0, 1, . . . ,

is a convenient specification that produces the effect shown in Figure 14.4. (Note that,
formally, the specification is used to model the number of failures before the first success
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FIGURE 14.4 Histogram for Doctor Visits.

in successive independent trials each with success probability θi , so in fact, it is misspec-
ified as a model for counts. The model does provide a convenient and useful illustration,
however.) The conditional mean function is also E[yi | xi ] = λi . The partial effects in
the model are

∂ E[yi | xi ]
∂xi

= λiβ,

so this is a distinctly nonlinear regression model. We will construct a maximum likeli-
hood estimator, then compare the MLE to the nonlinear least squares and (misspecified)
linear least squares estimates.

The log-likelihood function is

ln L =
n∑

i=1

ln f (yi | xi, β) =
n∑

i=1

ln θi + yi ln(1 − θi ).

The likelihood equations are

∂ ln L
∂β

=
n∑

i=1

(
1
θi

− yi

1 − θi

)
dθi

dλi

∂λi

∂β
= 0.

Because
dθi

dλi

∂λi

∂β
=

( −1
(1 + λi )2

)
λi xi = −θi (1 − θi )xi ,

the likelihood equations simplify to

∂ ln L
∂β

=
n∑

i=1

(θi yi − (1 − θi ))xi

=
n∑

i=1

(θi (1 + yi ) − 1)xi .
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To estimate the asymptotic covariance matrix, we can use any of the three estimators
of Asy. Var [β̂MLE]. The BHHH estimator would be

Est. Asy. VarBHHH[β̂MLE] =
[

n∑
i=1

(
∂ ln f (yi | xi , β̂)

∂β̂

) (
∂ ln f (yi | xi , β̂)

∂β̂

)′]−1

=
[

n∑
i=1

(θ̂i (1 + yi ) − 1)2xi x′
i

]
.

The negative inverse of the second derivatives matrix evaluated at the MLE is

[
−∂2 ln L

∂β̂∂β̂ ′

]−1

=
[

n∑
i=1

(1 + yi )θ̂i (1 − θ̂i )xi x′
i

]−1

.

Finally, as noted earlier, E[yi | xi ] = λi = (1 − θi )/θi , is known, so we can also use the
negative inverse of the expected second derivatives matrix,

[
−E

(
∂2 ln L

∂β̂∂β̂ ′

)]−1

=
[

n∑
i=1

(1 − θ̂i )xi x′
i

]−1

.

To compute the estimates of the parameters, either Newton’s method,

β̂ t+1 = β̂ t − [
Ĥt]−1ĝt ,

or the method of scoring,

β̂ t+1 = β̂ t − {
E[Ĥt ]

}−1ĝt ,

can be used, where H and g are the second and first derivatives that will be evaluated
at the current estimates of the parameters. Like many models of this sort, there is a
convenient set of starting values, assuming the model contains a constant term. Because
E[yi | xi ] = λi , if we start the slope parameters at zero, then a natural starting value for
the constant term is the log of ȳ.

Example 14.10 Geometric Regression Model for Doctor Visits
In Example 7.6, we considered nonlinear least squares estimation of a loglinear model for the
number of doctor visits variable shown in Figure 14.4. The data are drawn from the Riphahn
et al. (2003) data set in Appendix Table F7.1. We will continue that analysis here by fitting a
more detailed model for the count variable DocVis. The conditional mean analyzed here is

ln E [DocVisit | xi t ] = β1 + β2 Agei t + β3 Educi t + β4 Incomei t + β5 Kidsi t

(This differs slightly from the model in Example 11.14. For this exercise, with an eye toward
the fixed effects model in Example 14.13), we have specified a model that does not contain
any time-invariant variables, such as Femalei .) Sample means for the variables in the model
are given in Table 14.7. Note, these data are a panel. In this exercise, we are ignoring that
fact, and fitting a pooled model. We will turn to panel data treatments in the next section,
and revisit this application.
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We used Newton’s method for the optimization, with starting values as suggested earlier.
The five iterations are as follows:

Variable Constant Age Educ Income Kids

Start values: 0.11580e+01 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00
1st derivs. −0.25191e−08 −0.61777e+05 0.73202e+04 0.42575e+04 0.16464e+04
Parameters: 0.11580e+01 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00
Iteration 1 F = 0.6287e+05 g′inv(H)g = 0.4367e+02
1st derivs. 0.48616e+03 −0.22449e+05 −0.57162e+04 −0.17112e+04 −0.16521e+03
Parameters: 0.11186e+01 0.17563e−01 −0.50263e−01 −0.46274e−01 −0.15609e+00
Iteration 2 F = 0.6192e+05 g′inv(H)g = 0.3547e+01
1st derivs. −0.31284e+01 −0.15595e+03 −0.37197e+02 −0.10630e+02 −0.77186e+00
Parameters: 0.10922e+01 0.17981e−01 −0.47303e−01 −0.46739e−01 −0.15683e+00
Iteration 3 F= 0.6192e+05 g′inv(H)g = 0.2598e−01
1st derivs. −0.18417e−03 −0.99368e−02 −0.21992e−02 −0.59354e−03 −0.25994e−04
Parameters: 0.10918e+01 0.17988e−01 −0.47274e−01 −0.46751e−01 −0.15686e+00
Iteration 4 F= 0.6192e+05 g′inv(H)g = 0.1831e−05
1st derivs. −0.35727e−11 0.86745e−10 −0.26302e−10 −0.61006e−11 −0.15620e−11
Parameters: 0.10918e+01 0.17988e−01 −0.47274e−01 −0.46751e−01 −0.15686e+00
Iteration 5 F= 0.6192e+05 g′inv(H)g = 0.1772e−12

Convergence based on the LM criterion, g′H−1g is achieved after the fourth iteration. Note
that the derivatives at this point are extremely small, albeit not absolutely zero. Table 14.7
presents the maximum likelihood estimates of the parameters. Several sets of standard er-
rors are presented. The three sets based on different estimators of the information matrix
are presented first. The fourth set are based on the cluster corrected covariance matrix
discussed in Section 14.8.4. Because this is actually an (unbalanced) panel data set, we
anticipate correlation across observations. Not surprisingly, the standard errors rise sub-
stantially. The partial effects listed next are computed in two ways. The “Average Partial
Effect” is computed by averaging λi β across the individuals in the sample. The “Partial
Effect” is computed for the average individual by computing λ at the means of the data.
The next-to-last column contains the ordinary least squares coefficients. In this model,
there is no reason to expect ordinary least squares to provide a consistent estimator of
β. The question might arise, What does ordinary least squares estimate? The answer is the
slopes of the linear projection of DocVis on xi t . The resemblance of the OLS coefficients
to the estimated partial effects is more than coincidental, and suggests an answer to the
question.

The analysis in the table suggests three competing approaches to modeling DocVis. The
results for the geometric regression model are given in Table 14.7. At the beginning of this
section, we noted that the more conventional approach to modeling a count variable such as
DocVis is with the Poisson regression model. The log-likelihood function and its derivatives

TABLE 14.7 Estimated Geometric Regression Model Dependent Variable: DocVis:
Mean = 3.18352, Standard Deviation = 5.68969

St. Er. St. Er. St. Er. St. Er. PE
Variable Estimate H E[H] BHHH Cluster APE Mean OLS Mean

Constant 1.0918 0.0524 0.0524 0.0354 0.1112 — — 2.656
Age 0.0180 0.0007 0.0007 0.0005 0.0013 0.0572 0.0547 0.061 43.52
Education −0.0473 0.0033 0.0033 0.0023 0.0069 −0.150 −0.144 −0.121 11.32
Income −0.0468 0.0041 0.0042 0.0023 0.0075 −0.149 −0.142 −0.162 3.52
Kids −0.1569 0.0156 0.0155 0.0103 0.0319 −0.499 −0.477 −0.517 0.40
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TABLE 14.8 Estimates of Three Models for DOCVIS

Geometric Model Poisson Model Nonlinear Reg.

Variable Estimate St. Er. Estimate St. Er. Estimate St. Er.

Constant 1.0918 0.0524 1.0480 0.0272 0.9801 0.0893
Age 0.0180 0.0007 0.0184 0.0003 0.0187 0.0011
Education −0.0473 0.0033 −0.0433 0.0017 −0.0361 0.0057
Income −0.0468 0.0041 −0.0520 0.0022 −0.0591 0.0072
Kids −0.1569 0.0156 −0.1609 0.0080 −0.1692 0.0264

are even simpler than the geometric model,

ln L =
n∑

i =1

yi ln λi − λi − ln yi !,

∂ ln L/∂β =
n∑

i =1

( yi − λi )xi ,

∂2 ln L/∂β∂β ′ =
n∑

i =1

−λi xi x′
i .

A third approach might be a semiparametric, nonlinear regression model,

yi t = exp(x′
i tβ) + εi t .

This is, in fact, the model that applies to both the geometric and Poisson cases. Under
either distributional assumption, nonlinear least squares is inefficient compared to MLE.
But, the distributional assumption can be dropped altogether, and the model fit as a simple
exponential regression. Table 14.8 presents the three sets of estimates.

It is not obvious how to choose among the alternatives. Of the three, the Poisson model is
used most often by far. The Poisson and geometric models are not nested, so we cannot use
a simple parametric test to choose between them. However, these two models will surely fit
the conditions for the Vuong test described in Section 14.6.6. To implement the test, we first
computed

Vi t = ln fi t | geometric − ln fi t | Poisson

using the respective MLEs of the parameters. The test statistic given in Section 14.6.6 is then

V =

(√∑n
i =1 Ti

)
V̄

sV
.

This statistic converges to standard normal under the underlying assumptions. A large posi-
tive value favors the geometric model. The computed sample value is 37.885, which strongly
favors the geometric model over the Poisson.

14.9.6 PANEL DATA APPLICATIONS

Application of panel data methods to the linear panel data models we have considered
so far is a fairly marginal extension. For the random effects linear model, considered in
the following Section 14.9.6.a, the MLE of β is, as always, FGLS given the MLEs of the
variance parameters. The latter produce a fairly substantial complication, as we shall
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see. This extension does provide a convenient, interesting application to see the payoff
to the invariance property of the MLE—we will reparameterize a fairly complicated
log-likelihood function to turn it into a simple one. Where the method of maximum like-
lihood becomes essential is in analysis of fixed and random effects in nonlinear models.
We will develop two general methods for handling these situations in generic terms in
Sections 14.9.6.b and 14.9.6.c, then apply them in several models later in the book.

14.9.6.a ML Estimation of the Linear Random Effects Model

The contribution of the ith individual to the log-likelihood for the random effects model
[(11-28) to (11-31)] with normally distributed disturbances is

ln Li
(
β, σ 2

ε , σ 2
u

) = −1
2

[
Ti ln 2π + ln |�i | + (yi − Xiβ)′�−1

i (yi − Xiβ)
]

(14-89)

= −1
2

[
Ti ln 2π + ln |�i | + ε′

i�
−1
i εi

]
,

where

�i = σ 2
ε ITi + σ 2

u ii′,

and i denotes a Ti ×1 column of ones. Note that the �i varies over i because it is Ti × Ti .
Baltagi (2005, pp. 19–20) presents a convenient and compact estimator for this model
that involves iteration between an estimator of φ2 = [

σ 2
ε /(σ 2

ε + Tσ 2
u )

]
, based on sums

of squared residuals, and (α, β, σ 2
ε ) (α is the constant term) using FGLS. Unfortunately,

the convenience and compactness come unraveled in the unbalanced case. We consider,
instead, what Baltagi labels a “brute force” approach, that is, direct maximization of
the log-likelihood function in (14-89). (See, op. cit, pp. 169–170.)

Using (A-66), we find (in (11-28) that

�−1
i = 1

σ 2
ε

[
ITi − σ 2

u

σ 2
ε + Tiσ 2

u
ii′

]
.

We will also need the determinant of �i . To obtain this, we will use the product of its
characteristic roots. First, write

|�i | = (
σ 2

ε

)Ti |I + γ ii′|,
where γ = σ 2

u /σ 2
ε . To find the characteristic roots of the matrix, use the definition

[I + γ ii′]c = λc,

where c is a characteristic vector and λ is the associated characteristic root. The equation
implies that γ ii′c = (λ − 1)c. Premultiply by i′ to obtain γ (i′i)(i′c) = (λ − 1)(i′c). Any
vector c with elements that sum to zero will satisfy this equality. There will be Ti − 1
such vectors and the associated characteristic roots will be (λ − 1) = 0 or λ = 1. For
the remaining root, divide by the nonzero (i′c) and note that i′i = Ti , so the last root is
Tiγ = λ − 1 or λ = (1 + Tiγ ).24 It follows that the determinant is

ln |�i | = Ti ln σ 2
ε + ln(1 + Tiγ ).

24By this derivation, we have established a useful general result. The characteristic roots of a T × T matrix
of the form A = (I + abb′) are 1 with multiplicity (T − 1) and ab′b with multiplicity 1. The proof follows
precisely along the lines of our earlier derivation.
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Expanding the parts and multiplying out the third term gives the log-likelihood function

ln L =
n∑

i=1

ln Li

= −1
2

[
(
ln 2π + ln σ 2

ε

) n∑
i=1

Ti +
n∑

i=1

ln(1 + Tiγ )

]
− 1

2σ 2
ε

n∑
i=1

[
ε′

iεi − σ 2
u (Ti ε̄i )

2

σ 2
ε + Tiσ 2

u

]
.

Note that in the third term, we can write σ 2
ε + Tiσ

2
u = σ 2

ε (1 + Tiγ ) and σ 2
u = σ 2

ε γ . After
inserting these, two appearances of σ 2

ε in the square brackets will cancel, leaving

ln L = −1
2

n∑
i=1

(
Ti

(
ln 2π + ln σ 2

ε

) + ln(1 + Tiγ ) + 1
σ 2

ε

[
ε′

iεi − γ (Ti ε̄i )
2

1 + Tiγ

])
.

Now, let θ = 1/σ 2
ε , Ri = 1 + Tiγ, and Qi = γ /Ri . The individual contribution to the

log-likelihood becomes

ln Li = −1
2

[θ(ε′
iεi − Qi (Ti ε̄i )

2) + ln Ri − Ti ln θ + Ti ln 2π ].

The likelihood equations are

∂ ln Li

∂β
= θ

[
Ti∑

t=1

xi tεi t

]
− θ

[
Qi

(
Ti∑

t=1

xi t

) (
Ti∑

t=1

εi t

)]
,

∂ ln Li

∂θ
= −1

2

⎡
⎣

(
Ti∑

t=1

ε2
i t

)
− Qi

(
Ti∑

t=1

εi t

)2

− Ti

θ

⎤
⎦ ,

∂ ln Li

∂γ
= 1

2

⎡
⎣θ

⎛
⎝ 1

R2
i

(
Ti∑

t=1

εi t

)2
⎞
⎠ − Ti

Ri

⎤
⎦ .

These will be sufficient for programming an optimization algorithm such as DFP or
BFGS. (See Section E3.3.) We could continue to derive the second derivatives for
computing the asymptotic covariance matrix, but this is unnecessary. For β̂MLE, we
know that because this is a generalized regression model, the appropriate asymptotic
covariance matrix is

Asy. Var[β̂MLE] =
[

n∑
i=1

X′
i �̂

−1
i Xi

]−1

.

(See Section 11.5.1.) We also know that the MLEs of the variance components estima-
tors will be asymptotically uncorrelated with that of β. In principle, we could continue
to estimate the asymptotic variances of the MLEs of σ 2

ε and σ 2
u . It would be necessary to

derive these from the estimators of θ and γ , which one would typically do in any event.
However, statistical inference about the disturbance variance, σ 2

ε in a regression model,
is typically of no interest. On the other hand, one might want to test the hypothesis that
σ 2

u equals zero, or γ = 0. Breusch and Pagan’s (1979) LM statistic in (11-42) extended



Greene-2140242 book January 19, 2011 21:15

616 PART III ✦ Estimation Methodology

to the unbalanced panel case considered here would be

LM =
(∑N

i=1 Ti

)2

[
2

∑N
i=1 Ti (Ti − 1)

]
[ ∑N

i=1(Ti ēi )
2

∑N
i=1

∑Ti
t=1 e2

i t

− 1

]2

=
(∑N

i=1 Ti

)2

[
2

∑N
i=1 Ti (Ti − 1)

]
[∑N

i=1[(Ti ēi )
2 − e′

i ei ]∑N
i=1 e′

i ei

]2

.

Example 14.11 Maximum Likelihood and FGLS Estimates of a
Wage Equation

Examples 11.5 and 11.6 presented FGLS estimates of a wage equation using Cornwell and
Rupert’s panel data. We have reestimated the wage equation using maximum likelihood
instead of FGLS. The parameter estimates appear in Table 14.9, with the FGLS and pooled
OLS estimates. The estimates of the variance components are shown in the table as well.
The similarity of the MLEs and FGLS estimates is to be expected given the large sample size.
The LM statistic for testing for the presence of the common effects is 3,881.34, which is far
larger than the critical value of 3.84. With the MLE, we can also use an LR test to test for
random effects against the null hypothesis of no effects. The chi-squared statistic based on
the two log-likelihoods is 4,297.57, which leads to the same conclusion.

14.9.6.b Nested Random Effects

Consider a data set on test scores for multiple school districts in a state. To establish a
notation for this complex model, we define a four-level unbalanced structure,

Zijkt = test score for student t, teacher k, school j, district i,

L = school districts, i = 1, . . . , L,

Mi = schools in each district, j = 1, . . . , Mi ,

Nij = teachers in each school, k = 1, . . . , Nij

Tijk = students in each class, t = 1, . . . , Tijk.

TABLE 14.9 Estimates of the Wage Equation

Pooled Least Squares Random Effects MLE Random Effects FGLS

Variable Estimate Std. Error a Estimate Std. Error Estimate Std. Error

Exp 0.0361 0.004533 0.1078 0.002480 0.08906 0.002280
Exp2 −0.0006550 0.0001016 −0.0005054 0.00005452 −0.0007577 0.00005036
Wks 0.004461 0.001728 0.0008663 0.0006031 0.001066 0.0005939
Occ −0.3176 0.02726 −0.03954 0.01374 −0.1067 0.01269
Ind 0.03213 0.02526 0.008807 0.01531 −0.01637 0.01391
South −0.1137 0.02868 −0.01615 0.03201 −0.06899 0.02354
SMSA 0.1586 0.02602 −0.04019 0.01901 −0.01530 0.01649
MS 0.3203 0.03494 −0.03540 0.01880 −0.02398 0.01711
Union 0.06975 0.02667 0.03306 0.01482 0.03597 0.01367
Constant 5.8802 0.09673 4.8197 0.06035 5.3455 0.04361
σ 2

ε 0.146119 0.023436 (θ = 42.66926) 0.023102
σ 2

u 0 0.876517 (γ = 37.40035) 0.838361
ln L −1899.537 249.25 —
a Robust standard errors
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Thus, from the outset, we allow the model to be unbalanced at all levels. In general
terms, then, the random effects regression model would be

yijkt = x′
ijktβ + uijk + vij + wi + εijkt.

Strict exogeneity of the regressors is assumed at all levels. All parts of the disturbance
are also assumed to be uncorrelated. (A normality assumption will be added later as
well.) From the structure of the disturbances, we can see that the overall covariance
matrix, �, is block-diagonal over i , with each diagonal block itself block-diagonal in
turn over j , each of these is block-diagonal over k, and, at the lowest level, the blocks,
for example, for the class in our example, have the form for the random effects model
that we saw earlier.

Generalized least squares has been well worked out for the balanced case. [See, for
example, Baltagi, Song, and Jung (2001), who also provide results for the three-level
unbalanced case.] Define the following to be constructed from the variance components,
σ 2

ε , σ 2
u , σ 2

v , and σ 2
w :

σ 2
1 = Tσ 2

u + σ 2
ε ,

σ 2
2 = NTσ 2

v + Tσ 2
u + σ 2

ε = σ 2
1 + NTσ 2

v ,

σ 2
3 = MNTσ 2

w + NTσ 2
v + Tσ 2

u + σ 2
ε = σ 2

2 + MNTσ 2
w.

Then, full generalized least squares is equivalent to OLS regression of

ỹijkt = yijkt −
(

1 − σε

σ1

)
ȳijk. −

(
σε

σ1
− σε

σ2

)
ȳij. . −

(
σε

σ2
− σε

σ3

)
ȳi . . .

on the same transformation of xijkt. FGLS estimates are obtained by three groupwise
between estimators and the within estimator for the innermost grouping.

The counterparts for the unbalanced case can be derived [see Baltagi et al. (2001)],
but the degree of complexity rises dramatically. As Antwiler (2001) shows, however,
if one is willing to assume normality of the distributions, then the log-likelihood is
very tractable. (We note an intersection of practicality with nonrobustness.) Define the
variance ratios

ρu = σ 2
u

σ 2
ε

, ρv = σ 2
v

σ 2
ε

, ρw = σ 2
w

σ 2
ε

.

Construct the following intermediate results:

θijk = 1 + Tijkρu, φij =
Nij∑

k=1

Tijk

θijk
, θij = 1 + φijρv, φi =

Mi∑
j=1

φij

θij
, θi = 1 + ρwφi

and sums of squares of the disturbances eijkt = yijkt − x′
ijktβ,

Aijk =
Tijk∑
t=1

e2
ijkt,

Bijk =
Tijk∑
t=1

eijkt, Bij =
Nij∑

k=1

Bijk

θijk
, Bi =

Mi∑
j=1

Bij

θij
.
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The log-likelihood is

ln L = −1
2

H ln
(
2πσ 2

ε

) − 1
2

⎡
⎣

L∑
i=1

⎧
⎨
⎩ln θi +

Mi∑
j=1

⎧
⎨
⎩ln θij +

Nij∑
k=1

{
ln θijk + Aijk

σ 2
ε

− ρu

θijk

B2
ijk

σ 2
ε

}
− ρv

θij

B2
ij

σ 2
ε

⎫⎬
⎭ − ρw

θi

B2
i

σ 2
ε

⎫⎬
⎭

⎤
⎦ ,

where H is the total number of observations. (For three levels, L = 1 and ρw = 0.)
Antwiler (2001) provides the first derivatives of the log-likelihood function needed to
maximize ln L. However, he does suggest that the complexity of the results might make
numerical differentiation attractive. On the other hand, he finds the second derivatives
of the function intractable and resorts to numerical second derivatives in his application.
The complex part of the Hessian is the cross derivatives between β and the variance
parameters, and the lower right part for the variance parameters themselves. However,
these are not needed. As in any generalized regression model, the variance estimators
and the slope estimators are asymptotically uncorrelated. As such, one need only invert
the part of the matrix with respect to β to get the appropriate asymptotic covariance
matrix. The relevant block is

−∂2 ln L
∂β∂β ′ = 1

σ 2
ε

L∑
i=1

Mi∑
j=1

Nij∑
k=1

Tijk∑
t=1

xijktx′
ijkt − ρw

σ 2
ε

L∑
i=1

Mi∑
j=1

Nij∑
k=1

1
θijk

⎛
⎝

Tijk∑
t=1

xijkt

⎞
⎠

⎛
⎝

Tijk∑
t=1

x′
ijkt

⎞
⎠

− ρv

σ 2
ε

L∑
i=1

Mi∑
j=1

1
θij

⎛
⎝

Nij∑
k=1

1
θijk
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⎛
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⎝
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x′
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⎞
⎠
⎞
⎠
⎞
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The maximum likelihood estimator of β is FGLS based on the maximum likelihood
estimators of the variance parameters. Thus, expression (14-90) provides the appropriate
covariance matrix for the GLS or maximum likelihood estimator. The difference will
be in how the variance components are computed. Baltagi et al. (2001) suggest a variety
of methods for the three-level model. For more than three levels, the MLE becomes
more attractive.

Given the complexity of the results, one might prefer simply to use OLS in spite
of its inefficiency. As might be expected, the standard errors will be biased owing to
the correlation across observations; there is evidence that the bias is downward. [See
Moulton (1986).] In that event, the robust estimator in (11-4) would be the natural
alternative. In the example given earlier, the nesting structure was obvious. In other
cases, such as our application in Example 11.12, that might not be true. In Example 14.12
[and in the application in Baltagi (2005)], statewide observations are grouped into
regions based on intuition. The impact of an incorrect grouping is unclear. Both OLS and
FGLS would remain consistent—both are equivalent to GLS with the wrong weights,
which we considered earlier. However, the impact on the asymptotic covariance matrix
for the estimator remains to be analyzed.
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Example 14.12 Statewide Productivity
Munnell (1990) analyzed the productivity of public capital at the state level using a Cobb–
Douglas production function. We will use the data from that study to estimate a three-level
log linear regression model,

ln gsp j kt = α + β1 ln pcj kt + β2 ln hwy j kt + β3 ln water j kt

+ β4 ln util j kt + β5 ln empj kt + β6 unempj kt + ε j kt + u j k + v j ,

j = 1, . . . , 9; t = 1, . . . , 17, k = 1, . . . , Nj ,
where the variables in the model are

gsp = gross state product,
p cap = public capital = hwy + water + util,
hwy = highway capital,
water = water utility capital,
util = utility capital,
pc = private capital,
emp = employment (labor),
unemp = unemployment rate,

and we have defined M = 9 regions each consisting of a group of the 48 continental states:

Gulf = AL, FL, LA, MS,
Midwest = IL, IN, KY, Ml, MN, OH, Wl,
Mid Atlantic = DE, MD, NJ, NY, PA, VA,
Mountain = CO, ID, MT, ND, SD, WY,
New England = CT, ME, MA, NH, Rl, VT,
South = GA, NC, SC, TN, WV,
Southwest = AZ, NV, NM, TX, UT,
Tornado Alley = AR, IA, KS, MO, NE, OK,
West Coast = CA, OR, WA.

For each state, we have 17 years of data, from 1970 to 1986.25 The two- and three-level
random effects models were estimated by maximum likelihood. The two-level model was
also fit by FGLS using the methods developed in Section 11.5.3.

Table 14.10 presents the estimates of the production function using pooled OLS, OLS
for the fixed effects model and both FGLS and maximum likelihood for the random effects
models. Overall, the estimates are similar, though the OLS estimates do stand somewhat
apart. This suggests, as one might suspect, that there are omitted effects in the pooled
model. The F statistic for testing the significance of the fixed effects is 76.712 with 47 and 762
degrees of freedom. The critical value from the table is 1.379, so on this basis, one would reject
the hypothesis of no common effects. Note, as well, the extremely large differences between
the conventional OLS standard errors and the robust (cluster) corrected values. The three or
four fold differences strongly suggest that there are latent effects at least at the state level.
It remains to consider which approach, fixed or random effects is preferred. The Hausman
test for fixed vs. random effects produces a chi-squared value of 18.987. The critical value
is 12.592. This would imply that the fixed effects model would be the preferred specification.
When we repeat the calculation of the Hausman statistic using the three-level estimates in the
last column of Table 14.10, the statistic falls slightly to 15.327. Finally, note the similarity of all
three sets of random effects estimates. In fact, under the hypothesis of mean independence,
all three are consistent estimators. It is tempting at this point to carry out a likelihood ratio test

25The data were downloaded from the web site for Baltagi (2005) at http://www.wiley.com/legacy/wileychi/
baltagi3e/. See Appendix Table F10.1.
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TABLE 14.10 Estimated Statewide Production Function

Nested
Random Random Random

Fixed Effects Effects FGLS Effects ML Effects

Estimate Estimate Estimate Estimate
OLS

Estimate Std. Err.a (Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.)

α 1.9260 0.05250 2.1608 2.1759 2.1348
(0.2143) (0.1380) (0.1477) (0.1514)

β1 0.3120 0.01109 0.2350 0.2755 0.2703 0.2724
(0.04678) (0.02621) (0.01972) (0.02110) (0.02141)

β2 0.05888 0.01541 0.07675 0.06167 0.06268 0.06645
(0.05078) (0.03124) (0.02168) (0.02269) (0.02287)

β3 0.1186 0.01236 0.0786 0.07572 0.07545 0.07392
(0.03450) (0.0150) (0.01381) (0.01397) (0.01399)

β4 0.00856 0.01235 −0.11478 −0.09672 −0.1004 −0.1004
(0.04062) (0.01814) (0.01683) (0.01730) (0.01698)

β5 0.5497 0.01554 0.8011 0.7450 0.7542 0.7539
(0.06770) (0.02976) (0.02482) (0.02664) (0.02613)

β6 −0.00727 0.001384 −0.005179 −0.005963 −0.005809 −0.005878
(0.002946) (0.000980) (0.0008814) (0.0009014) (0.0009002)

σε 0.085422 0.03676493 0.0367649 0.0366974 0.0366964
σu 0.0771064 0.0875682 0.0791243
σv 0.0386299
ln L 853.1372 1565.501 1429.075 1430.30576
aRobust (cluster) standard errors in parentheses. The covariance matrix is multiplied by a degrees of
freedom correction, nT/(nT − k) = 816/810.

of the hypothesis of the two-level model against the broader alternative three-level model. The
test statistic would be twice the difference of the log-likelihoods, which is 2.46. For one degree
of freedom, the critical chi-squared with one degree of freedom is 3.84, so on this basis, we
would not reject the hypothesis of the two-level model. We note, however, that there is a
problem with this testing procedure. The hypothesis that a variance is zero is not well defined
for the likelihood ratio test—the parameter under the null hypothesis is on the boundary of
the parameter space (σ 2

v ≥ 0) . In this instance, the familiar distribution theory does not apply.

14.9.6.c Random Effects in Nonlinear Models: MLE Using Quadrature

Section 14.9.5.b describes a nonlinear model for panel data, the geometric regression
model,

Prob[Yit = yit | xi t ] = θi t (1 − θi t )
yit , yit = 0, 1, . . . ; i = 1, . . . , n, t = 1, . . . , Ti ,

θi t = 1/(1 + λi t ), λi t = exp(x′
i tβ).

As noted, this is a panel data model, although as stated, it has none of the features we
have used for the panel data in the linear case. It is a regression model,

E[yit | xi t ] = λi t ,

which implies that

yit = λi t + εi t .

This is simply a tautology that defines the deviation of yit from its conditional mean. It
might seem natural at this point to introduce a common fixed or random effect, as we
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did earlier in the linear case, as in

yit = λi t + εi t + ci .

However, the difficulty in this specification is that whereas εi t is defined residually just as
the difference between yit and its mean, ci is a freely varying random variable. Without
extremely complex constraints on how ci varies, the model as stated cannot prevent
yit from being negative. When building the specification for a nonlinear model, greater
care must be taken to preserve the internal consistency of the specification. A frequent
approach in index function models such as this one is to introduce the common effect
in the conditional mean function. The random effects geometric regression model, for
example, might appear

Prob[Yit = yit | xi t ] = θi t (1 − θi t )
yit , yit = 0, 1, . . . ; i = 1, . . . , n, t = 1, . . . , Ti ,

θi t = 1/(1 + λi t ), λi t = exp(x′
i tβ + ui ),

f (ui ) = the specification of the distribution of random effects over individuals.

By this specification, it is now appropriate to state the model specification as

Prob[Yit = yit | xi t , ui ] = θi t (1 − θi t )
yit .

That is, our statement of the probability is now conditioned on both the observed data
and the unobserved random effect. The random common effect can then vary freely
and the inherent characteristics of the model are preserved.

Two questions now arise:

• How does one obtain maximum likelihood estimates of the parameters of the
model? We will pursue that question now.

• If we ignore the individual heterogeneity and simply estimate the pooled model,
will we obtain consistent estimators of the model parameters? The answer is
sometimes, but usually not. The favorable cases are the simple loglinear models
such as the geometric and Poisson models that we consider in this chapter. The
unfavorable cases are most of the other common applications in the literature,
including, notably, models for binary choice, censored regressions, sample
selection, and, generally, nonlinear models that do not have simple exponential
means. [Note that this is the crucial issue in the consideration of robust covariance
matrix estimation in Sections 14.8.3 and 14.8.4. See, as well, Freedman (2006).]

We will now develop a maximum likelihood estimator for a nonlinear random
effects model. To set up the methodology for applications later in the book, we will do
this in a generic specification, then return to the specific application of the geometric
regression model in Example 14.10. Assume, then, that the panel data model defines
the probability distribution of a random variable, yit , conditioned on a data vector, xi t ,
and an unobserved common random effect, ui . As always, there are Ti observations
in the group, and the data on xi t and now ui are assumed to be strictly exogenously
determined. Our model for one individual is, then,

p(yit | xi t , ui ) = f (yit | xi t , ui , θ),
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where p(yit | xi t , ui ) indicates that we are defining a conditional density while
f (yit | xi t , ui , θ) defines the functional form and emphasizes the vector of parameters to
be estimated. We are also going to assume that, but for the common ui , observations
within a group would be independent—the dependence of observations in the group
arises through the presence of the common ui . The joint density of the Ti observations
on yit given ui under these assumptions would be

p(yi1, yi2, . . . , yi,Ti | Xi , ui ) =
Ti∏

t=1

f (yit | xi t , ui , θ),

because conditioned on ui , the observations are independent. But because ui is part of
the observation on the group, to construct the log-likelihood, we will require

p(yi1, yi2, . . . , yi,Ti , ui | Xi ) =
[

Ti∏
t=1

f (yit | xi t , ui , θ)

]
f (ui ).

The likelihood function is the joint density for the observed random variables. Because
ui is an unobserved random effect, to construct the likelihood function, we will then
have to integrate it out of the joint density. Thus,

p(yi1, yi2, . . . , yi,Ti | Xi ) =
∫

ui

[
Ti∏

t=1

f (yit | xi t , ui , θ)

]
f (ui )dui .

The contribution to the log-likelihood function of group i is, then,

ln Li = ln
∫

ui

[
Ti∏

t=1

f (yit | xi t , ui , θ)

]
f (ui )dui .

There are two practical problems to be solved to implement this estimator. First, it
will be rare that the integral will exist in closed form. (It does when the density of yit is
normal with linear conditional mean and the random effect is normal, because, as we
have seen, this is the random effects linear model.) As such, the practical complication
that arises is how the integrals are to be computed. Second, it remains to specify the
distribution of ui over which the integration is taken. The distribution of the common
effect is part of the model specification. Several approaches for this model have now
appeared in the literature. The one we will develop here extends the random effects
model with normally distributed effects that we have analyzed in the previous section.
The technique is Butler and Moffitt’s (1982) method. It was originally proposed for
extending the random effects model to a binary choice setting (see Chapter 17), but,
as we shall see presently, it is straightforward to extend it to a wide range of other
models. The computations center on a technique for approximating integrals known as
Gauss–Hermite quadrature.

We assume that ui is normally distributed with mean zero and variance σ 2
u . Thus,

f (ui ) = 1√
2πσ 2

u

exp
(

− u2
i

2σ 2
u

)
.



Greene-2140242 book January 19, 2011 21:15

CHAPTER 14 ✦ Maximum Likelihood Estimation 623

With this assumption, the ith term in the log-likelihood is

ln Li = ln
∫ ∞

−∞

[
Ti∏

t=1

f (yit | xi t , ui , θ)

]
1√

2πσ 2
u

exp
(

− u2
i

2σ 2
i

)
dui .

To put this function in a form that will be convenient for us later, we now let wi =
ui/(σu

√
2) so that ui = σu

√
2wi = φwi and the Jacobian of the transformation from ui

to wi is dui = φdwi . Now, we make the change of variable in the integral, to produce
the function

ln Li = ln
1√
π

∫ ∞

−∞

[
Ti∏

t=1

f (yit | xi t , φwi , θ)

]
exp

(−w2
i

)
dwi .

For the moment, let

g(wi ) =
Ti∏

t=1

f (yit | xi t , φwi , θ).

Then, the function we are manipulating is

ln Li = ln
1√
π

∫ ∞

−∞
g(wi ) exp

(−w2
i

)
dwi .

The payoff to all this manipulation is that integrals of this form can be computed very
accurately by Gauss–Hermite quadrature. Gauss–Hermite quadrature replaces the in-
tegration with a weighted sum of the functions evaluated at a specific set of points. For
the general case, this is

∫ ∞

−∞
g(wi ) exp

(−w2
i

)
dwi ≈

H∑
h=1

zhg(vh)

where zh is the weight and vh is the node. Tables of the weights and nodes are found
in popular sources such as Abramovitz and Stegun (1971). For example, the nodes and
weights for a four-point quadrature are

vh = ±0.52464762327529002 and ±1.6506801238857849,

zh = 0.80491409000549996 and 0.081312835447250001.

In practice, it is common to use eight or more points, up to a practical limit of about
96. Assembling all of the parts, we obtain the approximation to the contribution to the
log-likelihood,

ln Li = ln
1√
π

H∑
h=1

zh

[
Ti∏

t=1

f (yit | xi t , φvh, θ)

]
.

The Hermite approximation to the log-likelihood function is

ln L = 1√
π

n∑
i=1

ln
H∑

h=1

zh

[
Ti∏

t=1

f (yit | xi t , φvh, θ)

]
. (14-90)

This function is now to be maximized with respect to θ and φ. Maximization is a complex
problem. However, it has been automated in contemporary software for some models,
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notably the binary choice models mentioned earlier, and is in fact quite straightforward
to implement in many other models as well. The first and second derivatives of the log-
likelihood function are correspondingly complex but still computable using quadrature.
The estimate ofσu and an appropriate standard error are obtained from φ̂ using the result
φ = σu

√
2. The hypothesis of no cross-period correlation can be tested, in principle,

using any of the three standard testing procedures.

Example 14.13 Random Effects Geometric Regression Model
We will use the preceding to construct a random effects model for the DocVis count variable
analyzed in Example 14.10. Using (14-90), the approximate log-likelihood function will be

ln L H = 1√
π

n∑
i =1

ln
H∑

h=1

zh

[
Ti∏

t=1

θi t (1 − θi t ) yi t

]
,

θi t = 1/(1 + λi t ) , λi t = exp(x′
i tβ + φvh) .

The derivatives of the log-likelihood are approximated as well. The following is the general
result—development is left as an exercise:

∂ log L

∂

(
β
φ

) =
n∑

i =1

1
Li

∂Li

∂

(
β
φ

)

≈
n∑

i =1

⎧
⎪⎨
⎪⎩

1√
π

H∑
h=1

zh

[
Ti∏

t=1

f ( yi t | xi t , φvh, β)

]⎡
⎢⎣

Ti∑
t=1

∂ log f ( yi t | xi t , φvh, β)

∂

(
β
φ

)

⎤
⎥⎦

⎫
⎪⎬
⎪⎭

{
1√
π

H∑
h=1

zh

[
Ti∏

t=1

f ( yi t | xi t , φvh, β)

]} .

It remains only to specialize this to our geometric regression model. For this case, the density
is given earlier. The missing components of the preceding derivatives are the partial deriva-
tives with respect to β and φ that were obtained in Section 14.9.5. The necessary result is

∂ ln f ( yi t | xi t , φvh, β)

∂

(
β
φ

) = [θi t (1 + yi t ) − 1]
(

xi t
vh

)
.

Maximum likelihood estimates of the parameters of the random effects geometric regression
model are given in Example 14.13 with the fixed effects estimates for this model.

14.9.6.d Fixed Effects in Nonlinear Models: Full MLE

Using the same modeling framework that we used in the previous section, we now
define a fixed effects model as an index function model with a group-specific constant
term. As before, the “model” is the assumed density for a random variable,

p(yit | dit , xi t ) = f (yit | αi dit + x′
i tβ),

where dit is a dummy variable that takes the value one in every period for individual i
and zero otherwise. (In more involved models, such as the censored regression model
we examine in Chapter 19, there might be other parameters, such as a variance. For
now, it is convenient to omit them—the development can be extended to add them
later.) For convenience, we have redefined xi t to be the nonconstant variables in the
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model.26 The parameters to be estimated are the K elements of β and the n individual
constant terms. The log-likelihood function for the fixed effects model is

ln L =
n∑

i=1

Ti∑
t=1

ln f (yit | αi + x′
i tβ),

where f (.) is the probability density function of the observed outcome, for example, the
geometric regression model that we used in our previous example. It will be convenient
to let zit = αi + x′

i tβ so that p(yit | dit , xi t ) = f (yit | zit ).
In the fixed effects linear regression case, we found that estimation of the parameters

was made possible by a transformation of the data to deviations from group means that
eliminated the person-specific constants from the equation. (See Section 11.4.1.) In a
few cases of nonlinear models, it is also possible to eliminate the fixed effects from
the likelihood function, although in general not by taking deviations from means. One
example is the exponential regression model that is used for lifetimes of electronic
components and electrical equipment such as light bulbs:

f (yit | αi + x′
i tβ) = θi t exp(−θi t yit ), θi t = exp(αi + x′

i tβ), yit ≥ 0.

It will be convenient to write θi t = γi exp(x′
i tβ) = γi�i t . We are exploiting the invariance

property of the MLE—estimating γi = exp(αi ) is the same as estimating αi . The log-
likelihood is

ln L =
n∑

i=1

Ti∑
t=1

ln θi t − θi t yit

(14-91)
=

n∑
i=1

Ti∑
t=1

ln(γi�i t ) − (γi�i t )yit .

The MLE will be found by equating the n + K partial derivatives with respect to γi and
β to zero. For each constant term,

∂ ln L
∂γi

=
Ti∑

t=1

(
1
γi

− �i t yit

)
.

Equating this to zero provides a solution for γi in terms of the data and β,

γi = Ti∑Ti
t=1 �i t yit

. (14-92)

[Note the analogous result for the linear model in (11-16).] Inserting this solution back
in the log-likelihood function in (14-91), we obtain the concentrated log-likelihood,

ln LC =
n∑

i=1

Ti∑
t=1

[
ln

(
Ti�i t∑Ti

s=1 �is yis

)
−

(
Ti�i t∑Ti

s=1 �is yis

)
yit

]
,

26In estimating a fixed effects linear regression model in Section 11.4, we found that it was not possible to
analyze models with time-invariant variables. The same limitation applies in the nonlinear case, for essentially
the same reasons. The time-invariant effects are absorbed in the constant term. In estimation, the columns
of the data matrix with time-invariant variables will be transformed to columns of zeros when we compute
derivatives of the log-likelihood function.
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which is now only a function of β. This function can now be maximized with respect
to β alone. The MLEs for αi are then found as the logs of the results of (14-92). Note,
once again, we have eliminated the constants from the estimation problem, but not by
computing deviations from group means. That is specific to the linear model.

The concentrated log-likelihood is only obtainable in only a small handful of cases,
including the linear model, the exponential model (as just shown), the Poisson regression
model, and a few others. Lancaster (2000) lists some of these and discusses the under-
lying methodological issues. In most cases, if one desires to estimate the parameters of
a fixed effects model, it will be necessary to actually compute the possibly huge number
of constant terms, αi , at the same time as the main parameters, β. This has widely been
viewed as a practical obstacle to estimation of this model because of the need to invert
a potentially large second derivatives matrix, but this is a misconception. [See, for ex-
ample, Maddala (1987), p. 317.] The likelihood equations for the fixed effects model are

∂ ln L
∂αi

=
Ti∑

t=1

∂ ln f (yit | zit )

∂zit

∂zit

∂αi
=

Ti∑
t=1

git = gi. = 0,

and

∂ ln L
∂β

=
n∑

i=1

Ti∑
t=1

∂ ln f (yit | zit )

∂zit

∂zit

∂β
=

n∑
i=1

Ti∑
t=1

git xi t = 0.

The second derivatives matrix is

∂2 ln L

∂α2
i

=
Ti∑

t=1

∂2 ln f (yit | zit )

∂z2
i t

=
Ti∑

t=1

hit = hi. < 0,

∂2 ln L
∂β∂αi

=
Ti∑

t=1

hit xi t ,

∂2 ln L
∂β∂β ′ =

n∑
i=1

Ti∑
t=1

hit xi t x′
i t = Hββ ′ ,

where Hββ ′ is a negative definite matrix. The likelihood equations are a large system,
but the solution turns out to be surprisingly straightforward. [See Greene (2001).]

By using the formula for the partitioned inverse, we find that the K × K submatrix
of the inverse of the Hessian that corresponds to β, which would provide the asymptotic
covariance matrix for the MLE, is

Hββ ′ =
{

n∑
i=1

[
Ti∑

t=1

hit xi t x′
i t − 1

hi.

(
Ti∑

t=1

hit xi t

) (
Ti∑

t=1

hit x′
i t

)]}−1

,

=
{

n∑
i=1

[
Ti∑

t=1

hit (xi t − x̄i )(xi t − x̄i )
′
]}−1

, where x̄i =
∑Ti

t=1 hit xi t

hi.
.

Note the striking similarity to the result we had in (11-20) for the fixed effects model in
the linear case. [A similar result is noted briefly in Chamberlain (1984).] By assembling
the Hessian as a partitioned matrix for β and the full vector of constant terms, then
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using (A-66b) and the preceding definitions to isolate one diagonal element, we find

Hαi αi = 1
hi.

+ x̄′
i H

ββ ′
x̄i .

Once again, the result has the same format as its counterpart in the linear model. [See
(11.19).] In principle, the negatives of these would be the estimators of the asymptotic
variances of the maximum likelihood estimators. (Asymptotic properties in this model
are problematic, as we consider shortly.)

All of these can be computed quite easily once the parameter estimates are in hand,
so that in fact, practical estimation of the model is not really the obstacle. [This must
be qualified, however. Consider the likelihood equation for one of the constants in the
geometric regression model. This would be

Ti∑
t=1

[θi t (1 + yit ) − 1] = 0.

Suppose yit equals zero in every period for individual i . Then, the solution occurs where
�i (θi t −1) = 0. But θi t is between zero and one, so the sum must be negative and cannot
equal zero. The likelihood equation has no solution with finite coefficients. Such groups
would have to be removed from the sample to fit this model.]

It is shown in Greene (2001) in spite of the potentially large number of parameters
in the model, Newton’s method can be used with the following iteration, which uses
only the K × K matrix computed earlier and a few K × 1 vectors:

β̂(s+1) = β̂(s) −
{

n∑
i=1

[
Ti∑

t=1

hit (xi t − x̄i )(xi t − x̄i )
′
]}−1 {

n∑
i=1

[
Ti∑

t=1

git (xi t − x̄i )

]}

= β̂(s) + �
(s)
β ,

and

α̂
(s+1)
l = α̂

(s)
l − [

(gi./hi.) + x̄′
i�

(s)
β

]
.27

This is a large amount of computation involving many summations, but it is linear
in the number of parameters and does not involve any n × n matrices.

In addition to the theoretical virtues and shortcomings of this model, we note the
practical aspect of estimation of what are possibly a huge number of parameters, n+ K.
In the fixed effects case, n is not limited, and could be in the thousands in a typical
application. [In Example 14.14, n is 7,293. As of this writing, the largest application of
the method described here that we are aware of is Kingdon and Cassen’s (2007) study
in which they fit a fixed effects probit model with well over 140,000 dummy variable
coefficients.] The problems with the fixed effects estimator are statistical, not practical.28

The estimator relies on Ti increasing for the constant terms to be consistent—in essence,
each αi is estimated with Ti observations. In this setting, not only is Ti fixed, it is also

27Similar results appear in Prentice and Gloeckler (1978) who attribute it to Rao (1973) and Chamberlain
(1980, 1984).
28See Vytlacil, Aakvik, and Heckman (2005), Chamberlain (1980, 1984), Newey (1994), Bover and Arellano
(1997), and Chen (1998) for some extensions of parametric and semiparametric forms of the binary choice
models with fixed effects.
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TABLE 14.11 Panel Data Estimates of a Geometric Regression for DOCVIS

Pooled Random Effectsa Fixed Effects

Variable Estimate St. Er. Estimate St. Er. Estimate St. Er.

Constant 1.0918 0.1112 0.3998 0.09531
Age 0.0180 0.0013 0.02208 0.001220 0.04845 0.003511
Education −0.0473 0.0069 −0.04507 0.006262 −0.05437 0.03721
Income −0.0468 0.0075 −0.1959 0.06103 −0.1892 0.09127
Kids −0.1569 0.0319 −0.1242 0.02336 −0.002543 0.03687

aEstimated σu = 0.9542921.

likely to be quite small. As such, the estimators of the constant terms are not consistent
(not because they converge to something other than what they are trying to estimate,
but because they do not converge at all). There is, as well, a small sample (small Ti ) bias
in the slope estimators. This is the incidental parameters problem. [See Neyman and
Scott (1948) and Lancaster (2000).] We will examine the incidental parameters problem
in a bit more detail with a Monte Carlo study in Section 15.5.2.

Example 14.14 Fixed and Random Effects Geometric Regression
Example 14.10 presents pooled estimates for the geometric regression model

f ( yi t | xi t ) = θi t (1 − θi t ) yi t , θi t = 1/(1 + λi t ) , λi t = exp(ci + x′
i tβ) , yi t = 0, 1, . . .

We will now reestimate the model under the assumptions of the random and fixed effects
specifications. The methods of the preceding two sections are applied directly—no modi-
fication of the procedures was required. Table 14.11 presents the three sets of maximum
likelihood estimates. The estimates vary considerably. The average group size is about five.
This implies that the fixed effects estimator may well be subject to a small sample bias. Save
for the coefficient on Kids, the fixed effects and random effects estimates are quite similar.
On the other hand, the two panel models give similar results to the pooled model except
for the Income coefficient. On this basis, it is difficult to see, based solely on the results,
which should be the preferred model. The model is nonlinear to begin with, so the pooled
model, which might otherwise be preferred on the basis of computational ease, now has no
redeeming virtues. None of the three models is robust to misspecification. Unlike the linear
model, in this and other nonlinear models, the fixed effects estimator is inconsistent when T
is small in both random and fixed effects models. The random effects estimator is consistent
in the random effects model, but, as usual, not in the fixed effects model. The pooled esti-
mator is inconsistent in both random and fixed effects cases (which calls into question the
virtue of the robust covariance matrix). It might be tempting to use a Hausman specification
test (see Section 11.5.5); however, the conditions that underlie the test are not met—unlike
the linear model where the fixed effects is consistent in both cases, here it is inconsistent in
both cases. For better or worse, that leaves the analyst with the need to choose the model
based on the underlying theory.

14.10 LATENT CLASS AND FINITE MIXTURE
MODELS

In this final application of maximum likelihood estimation, rather than explore a partic-
ular model, we will develop a technique that has been used in many different settings.
The latent class modeling framework specifies that the distribution of the observed data
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is a mixture of a finite number of underlying distributions. The model can be motivated
in several ways:

• In the classic application of the technique, the observed data are drawn from a mix
of distinct underlying populations. Consider, for example, a historical or fossilized
record of the intersection (or collision) of two populations. The anthropological
record consists of measurements on some variable that would differ imperfectly,
but substantively, between the populations. However, the analyst has no definitive
marker for which subpopulation an observation is drawn from. Given a sample of
observations, they are interested in two statistical problems: (1) estimate the
parameters of the underlying populations and (2) classify the observations in hand
as having originated in which population. The technique has seen a number of
recent applications in health econometrics. For example, in a study of obesity,
Greene, Harris, Hollingsworth, and Maitra (2008) speculated that their ordered
choice model (see Chapter 19) might systematically vary in a sample that
contained (it was believed) some individuals who have a genetic predisposition
toward obesity and most that did not. In another contemporary application,
Lambert (1992) studied the number of defective outcomes in a production
process. When a “zero defectives” condition is observed, it could indicate either
regime 1, “the process is under control,” or regime 2, “the process is not under
control but just happens to produce a zero observation.”

• In a narrower sense, one might view parameter heterogeneity in a population as a
form of discrete mixing. We have modeled parameter heterogeneity using
continuous distributions in Section 11.11. The “finite mixture” approach takes the
distribution of parameters across individuals to be discrete. (Of course, this is
another way to interpret the first point.)

• The finite mixing approach is a means by which a distribution (model) can be
constructed from a mixture of underlying distributions. Goldfeld and Quandt’s
mixture of normals model in Example 13.4 is a case in which a nonnormal
distribution is created by mixing two normal distributions with different
parameters.

14.10.1 A FINITE MIXTURE MODEL

To lay the foundation for the more fully developed model that follows, we revisit the
mixture of normals model from Example 13.4. Consider a population that consists of a
latent mixture of two underlying normal distributions. Neglecting for the moment that
it is unknown which applies to a given individual, we have, for individual i ,

f (yi | classi = 1) = N
[
μ1, σ

2
1

] = exp
[− 1

2 (yi − μ1)
2/σ 2

1

]

σ1
√

2π
,

and (14-93)

f (yi | classi = 2) = N
[
μ2, σ

2
2

] = exp
[− 1

2 (yi − μ2)
2/σ 2

2

]

σ2
√

2π
.

The contribution to the likelihood function is f (yi | classi = 1) for an individual in class 1
and f (yi | class = 2) for an individual in class 2. Assume that there is a true proportion
λ = Prob(classi = 1) of individuals in the population that are in class 1, and (1 − λ) in
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class 2. Then the unconditional (marginal) density for individual i is

f (yi ) = λ f (yi | classi = 1) + (1 − λ) f (yi | classi = 2) (14-94)

= Eclasses f (yi | classi ).

The parameters to be estimated are λ, μ1, μ2, σ1, and σ2. Combining terms, the log-
likelihood for a sample of n individual observations would be

ln L =
n∑

i=1

ln

(
λ exp

[− 1
2 (yi − μ1)

2/σ 2
1

]

σ1
√

2π
+ (1 − λ) exp

[− 1
2 (yi − μ2)

2/σ 2
2

]

σ2
√

2π

)
. (14-95)

This is the mixture density that we saw in Example 13.4. We suggested the method of
moments as an estimator of the five parameters in that example. However, this appears
to be a straightforward problem in maximum likelihood estimation.

Example 14.15 Latent Class Model for Grade Point Averages
Appendix Table F14.1 contains a data set of 32 observations used by Spector and Mazzeo
(1980) to study whether a new method of teaching economics, the Personalized System of
Instruction (PSI), significantly influenced performance in later economics courses. Variables
in the data set include

GPAi = the student’s grade point average,
GRADEi = dummy variable for whether the student’s grade in intermediate

macroeconomics was higher than in the principles course,
PSIi = dummy variable for whether the individual participated in the PSI,
TUCEi = the student’s score on a pretest in economics.

We will use these data to develop a finite mixture normal model for the distribution of grade
point averages.

We begin by computing maximum likelihood estimates of the parameters in (14-95). To
estimate the parameters using an iterative method, it is necessary to devise a set of starting
values. It might seem natural to use the simple values from a one-class model, ȳ and sy,
and a value such as 1/2 for λ. However, the optimizer will immediately stop on these values,
as the derivatives will be zero at this point. Rather, it is common to use some value near
these—perturbing them slightly (a few percent), just to get the iterations started. Table 14.12
contains the estimates for this two-class finite mixture model. The estimates for the one-class
model are the sample mean and standard deviation of GPA. [Because these are the MLEs,

σ̂ 2 = 1
n

∑n
i =1(GPAi − GP A) 2.] The means and standard deviations of the two classes are

noticeably different—the model appears to be revealing a distinct splitting of the data into two
classes. (Whether two is the appropriate number of classes is considered in Section 14.10.5.)
It is tempting at this point to identify the two classes with some other covariate, either in the
data set or not, such as PSI. However, at this point, there is no basis for doing so—the
classes are “latent.” As the analysis continues, however, we will want to investigate whether
any observed data help to predict the class membership.

TABLE 14.12 Estimated Normal Mixture Model

One Class Latent Class 1 Latent Class 2

Parameter Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

μ 3.1172 0.08251 3.64187 0.3452 2.8894 0.2514
σ 0.4594 0.04070 0.2524 0.2625 0.3218 0.1095
Probability 1.0000 0.0000 0.3028 0.3497 0.6972 0.3497
ln L −20.51274 −19.63654
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14.10.2 MEASURED AND UNMEASURED HETEROGENEITY

The development thus far has assumed that the analyst has no information about class
membership. Estimation of the “prior” probabilities (λ in the preceding example) is part
of the estimation problem. There may be some, albeit imperfect, information about class
membership in the sample as well. For our earlier example of grade point averages,
we also know the individual’s score on a test of economic literacy (TUCE). Use of
this information might sharpen the estimates of the class probabilities. The mixture of
normals problem, for example, might be formulated

f (yi | zi ) =

⎛
⎜⎜⎜⎝

Prob(class = 1 | zi ) exp
[− 1

2 (yi − μ1)
2/σ 2

1

]

σ1
√

2π

+ [1 − Prob(class = 1 | zi )] exp
[− 1

2 (yi − μ2)
2/σ 2

2

]

σ2
√

2π

⎞
⎟⎟⎟⎠,

where zi is the vector of variables that help to explain the class probabilities. To make the
mixture model amenable to estimation, it is necessary to parameterize the probabilities.
The logit probability model is a common device. (See Section 17.2. For applications, see
Greene (2007d, Section 2.3.3) and references cited.) For the two-class case, this might
appear as follows:

Prob(class = 1 | zi ) = exp(z′
iθ)

1 + exp(z′
iθ)

, Prob(class = 2 | zi ) = 1 − Prob(class = 1 | zi ).

(14-96)

(The more general J class case is shown in Section 14.10.6.) The log-likelihood for our
mixture of two normals example becomes

ln L =
n∑

i=1

ln Li

=
n∑

i=1

ln

⎛
⎜⎜⎜⎝

(
exp(z′

iθ)

1 + exp(z′
iθ)

)
exp

[− 1
2 (yi − μ1)

2/σ 2
1

]

σ1
√

2π

+
(

1
1 + exp(z′

iθ)

)
exp

[− 1
2 (yi − μ2)

2/σ 2
2

]

σ2
√

2π

⎞
⎟⎟⎟⎠ . (14-97)

The log-likelihood is now maximized with respect to μ1, σ1, μ2, σ2, and θ . If zi contains
a constant term and some other observed variables, then the earlier model returns if
the coefficients on those other variables all equal zero. In this case, it follows that λ =
ln[θ/(1− θ)]. (This device is usually used to ensure that 0 < λ < 1 in the earlier model.)

14.10.3 PREDICTING CLASS MEMBERSHIP

The model in (14-97) now characterizes two random variables, yi , the outcome variable
of interest, and classi , the indicator of which class the individual resides in. We have
a joint distribution, f (yi , classi ), which we are modeling in terms of the conditional
density, f (yi | classi ) in (14-93), and the marginal density of classi in (14-96). We have
initially assumed the latter to be a simple Bernoulli distribution with Prob(classi = 1) =
λ, but then modified in the previous section to equal Prob(classi = 1 | zi ) = �(z′

iθ).
These can be viewed as the “prior” probabilities in a Bayesian sense. If we wish to make
a prediction as to which class the individual came from, using all the information that we
have on that individual, then the prior probability is going to waste some information.
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The “posterior,” or conditional (on the remaining data) probability,

Prob(classi = 1 | zi yi ) = f (yi , class = 1 | zi )

f (yi )
, (14-98)

will be based on more information than the marginal probabilities. We have the ele-
ments that we need to compute this conditional probability. Use Bayes’s theorem to
write this as

Prob(classi = 1 | zi , yi )

= f (yi | classi = 1, zi )Prob(classi = 1 | zi )

f (yi | classi = 1, zi )Prob(classi = 1 | zi ) + f (yi | classi = 2, zi )Prob(classi = 2 | zi )
.

(14-99)

The denominator is Li (not ln Li ) from (14-97). The numerator is the first term in Li . To
continue our mixture of two normals example, the conditional (posterior) probability is

Prob(classi = 1 | zi , yi ) =

(
exp(z′

iθ)

1 + exp(z′
iθ)

)
exp

[− 1
2 (yi − μ1)

2/σ 2
1

]

σ1
√

2π

Li
, (14-100)

while the unconditional probability is in (14-96). The conditional probability for the
second class is computed using the other two marginal densities in the numerator (or by
subtraction from one). Note that the conditional probabilities are functions of the data
even if the unconditional ones are not. To come to the problem suggested at the outset,
then, the natural predictor of classi is the class associated with the largest estimated
posterior probability.

14.10.4 A CONDITIONAL LATENT CLASS MODEL

To complete the construction of the latent class model, we note that the means (and,
in principle, the variances) in the original model could be conditioned on observed
data as well. For our normal mixture models, we might make the marginal mean, μ j , a
conditional mean:

μij = x′
iβ j .

In the data of Example 14.15, we also observe an indicator of whether the individual has
participated in a special program designed to enhance the economics program (PSI).
We might modify the model,

f (yi | classi = 1, PSIi ) = N
[
μi1, σ

2
1

] = exp
[− 1

2 (yi − β1,1 − β2,1PSIi )
2/σ 2

1

]

σ1
√

2π
,

and similarly for f (yi | classi = 2, PSIi ). The model is now a latent class linear regression
model.

More generally, as we will see shortly, the latent class, or finite mixture model for a
variable yi can be formulated as

f (yi | classi = j, xi ) = h j (yi , xi , γ j ),

where h j denotes the density conditioned on class j—indexed by j to indicate, for exam-
ple, the jth parameter vector γ j = (β j , σ j ) and so on. The marginal class probabilities



Greene-2140242 book January 19, 2011 21:15

CHAPTER 14 ✦ Maximum Likelihood Estimation 633

are

Prob(classi = j | zi ) = pj ( j, zi , θ).

The methodology can be applied to any model for yi . In the example in Section 14.10.6,
we will model a binary dependent variable with a probit model. The methodology
has been applied in many other settings, such as stochastic frontier models [Orea and
Kumbhakar (2004), Greene (2004)], Poisson regression models [Wedel et al. (1993)],
and a wide variety of count, discrete choice, and limited dependent variable models
[McLachlan and Peel (2000), Greene (2007b)].

Example 14.16 Latent Class Regression Model for Grade
Point Averages

Combining 14.10.2 and 14.10.4, we have a latent class model for grade point averages,

f (GPAi | classi = j , PSIi ) = exp
[− 1

2 ( yi − β1 j − β2 j PSIi ) 2/σ 2
j

]

σ j

√
2π

, j = 1, 2,

Prob(classi = 1 | TUCEi ) = exp(θ1 + θ2TUCEi )
1 + exp(θ1 + θ2TUCEi )

,

Prob(classi = 2 | TUCEi ) = 1 − Prob(class = 1 | TUCEi ) .

The log-likelihood is now

ln L =
n∑

i =1

ln

⎛
⎜⎜⎜⎝

(
exp(θ1 + θ2TUCEi )

1 + exp(θ1 + θ2TUCEi )

)
exp

[− 1
2 ( yi − β1,1 − β2,1PSIi ) 2/σ 2

1

]

σ1

√
2π

+
(

1
1 + exp(θ1 + θ2TUCEi )

)
exp

[− 1
2 ( yi − β1,2 − β2,2PSIi ) 2/σ 2

2

]

σ2

√
2π

⎞
⎟⎟⎟⎠ .

Maximum likelihood estimates of the parameters are given in Table 14.13.
Table 14.14 lists the observations sorted by GPA. The predictions of class membership re-

flect what one might guess from the coefficients in the table of coefficients. Class 2 members
on average have lower GPAs than in class 1. The listing in Table 14.14 shows this clustering.
It also suggests how the latent class model is using the sample information. If the results in
Table 14.12—just estimating the means, constant class probabilities—are used to produce
the same table, when sorted, the highest 10 GPAs are in class 1 and the remainder are in
class 2. The more elaborate model is adding information on TUCE to the computation. A
low TUCE score can push a high GPA individual into class 2. (Of course, this is largely what
multiple linear regression does as well.)

TABLE 14.13 Estimated Latent Class Linear Regression Model for GPA

One Class Latent Class 1 Latent Class 2

Parameter Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

β1 3.1011 0.1117 3.3928 0.1733 2.7926 0.04988
β2 0.03675 0.1689 −0.1074 0.2006 −0.5703 0.07553
σ = e ′e/n 0.4443 0.0003086 0.3812 0.09337 0.1119 0.04487
θ1 0.0000 0.0000 −6.8392 3.07867 0.0000 0.0000
θ2 0.0000 0.0000 0.3518 0.1601 0.0000 0.0000
Prob | ¯TUCE 1.0000 0.7063 0.2937
ln L −20.48752 −13.39966
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TABLE 14.14 Estimated Latent Class Probabilities

GPA TUCE PSI CLASS P1 P1∗ P2 P2∗

2.06 22 1 2 0.7109 0.0116 0.2891 0.9884
2.39 19 1 2 0.4612 0.0467 0.5388 0.9533
2.63 20 0 2 0.5489 0.1217 0.4511 0.8783
2.66 20 0 2 0.5489 0.1020 0.4511 0.8980
2.67 24 1 1 0.8325 0.9992 0.1675 0.0008
2.74 19 0 2 0.4612 0.0608 0.5388 0.9392
2.75 25 0 2 0.8760 0.3499 0.1240 0.6501
2.76 17 0 2 0.2975 0.0317 0.7025 0.9683
2.83 19 0 2 0.4612 0.0821 0.5388 0.9179
2.83 27 1 1 0.9345 1.0000 0.0655 0.0000
2.86 17 0 2 0.2975 0.0532 0.7025 0.9468
2.87 21 0 2 0.6336 0.2013 0.3664 0.7987
2.89 14 1 1 0.1285 1.0000 0.8715 0.0000
2.89 22 0 2 0.7109 0.3065 0.2891 0.6935
2.92 12 0 2 0.0680 0.0186 0.9320 0.9814
3.03 25 0 1 0.8760 0.9260 0.1240 0.0740
3.10 21 1 1 0.6336 1.0000 0.3664 0.0000
3.12 23 1 1 0.7775 1.0000 0.2225 0.0000
3.16 25 1 1 0.8760 1.0000 0.1240 0.0000
3.26 25 0 1 0.8760 0.9999 0.1240 0.0001
3.28 24 0 1 0.8325 0.9999 0.1675 0.0001
3.32 23 0 1 0.7775 1.0000 0.2225 0.0000
3.39 17 1 1 0.2975 1.0000 0.7025 0.0000
3.51 26 1 1 0.9094 1.0000 0.0906 0.0000
3.53 26 0 1 0.9094 1.0000 0.0906 0.0000
3.54 24 1 1 0.8325 1.0000 0.1675 0.0000
3.57 23 0 1 0.7775 1.0000 0.2225 0.0000
3.62 28 1 1 0.9530 1.0000 0.0470 0.0000
3.65 21 1 1 0.6336 1.0000 0.3664 0.0000
3.92 29 0 1 0.9665 1.0000 0.0335 0.0000
4.00 21 0 1 0.6336 1.0000 0.3664 0.0000
4.00 23 1 1 0.7775 1.0000 0.2225 0.0000

14.10.5 DETERMINING THE NUMBER OF CLASSES

There is an unsolved inference issue remaining in the specification of the model. The
number of classes has been taken as a known parameter—two in our main example
thus far, three in the following application. Ideally, one would like to determine the
appropriate number of classes statistically. However, J is not a parameter in the model.
A likelihood ratio test, for example, will not provide a valid result. Consider the original
model in Example 14.15. The model has two classes and five parameters in total. It would
seem natural to test down to a one-class model that contains only the mean and variance
using the LR test. However, the number of restrictions here is actually ambiguous. If
μ1 = μ2 and σ1 = σ2, then the mixing probability is irrelevant—the two class densities
are the same, and it is a one-class model. Thus, the number of restrictions needed to
get from the two-class model to the one-class model is ambiguous. It is neither two
nor three. One strategy that has been suggested is to test upward, adding classes until
the marginal class insignificantly changes the log-likelihood or one of the information
criteria such as the AIC or BIC (see Section 14.6.5). Unfortunately, this approach is
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likewise problematic because the estimates from any specification that is too short are
inconsistent. The alternative would be to test down from a specification known to be
too large. Heckman and Singer (1984b) discuss this possibility and note that when the
number of classes becomes larger than appropriate, the estimator should break down. In
our Example 14.15, if we expand to four classes, the optimizer breaks down, and it is no
longer possible to compute the estimates. A five-class model does produce estimates,
but some are nonsensical. This does provide at least the directions to seek a viable
strategy. The authoritative treatise on finite mixture models by McLachlan and Peel
(2000, Chapter 6) contains extensive discussion of this issue.

14.10.6 A PANEL DATA APPLICATION

The latent class model is a useful framework for applications in panel data. The class
probabilities partly play the role of common random effects, as we will now explore.
The latent class model can be interpreted as a random parameters model, as suggested
in Section 11.11, with a discrete distribution of the parameters.

Suppose that β j is generated from a discrete distribution with J outcomes, or classes,
so that the distribution of β j is over these classes. Thus, the model states that an indi-
vidual belongs to one of the J latent classes, indexed by the parameter vector, but it
is unknown from the sample data exactly which one. We will use the sample data to
estimate the parameter vectors, the parameters of the underlying probability distribu-
tion and the probabilities of class membership. The corresponding model formulation
is now

f (yit | xi t , zi , �, β1, β2, . . . , β J ) =
J∑

j=1

pij(zi , �) f (yit | class = j, xi t , β j ),

where it remains to parameterize the class probabilities, pij, and the structural model,
f (yit | class = j, xi t , β j ). The parameter matrix, �, contains the parameters of the
discrete probability distribution. It has J rows, one for each class, and M columns, for
the M variables in zi . At a minimum, M = 1 and zi contains a constant term if the
class probabilities are fixed parameters as in Example 14.15. Finally, to accommodate
the panel data nature of the sampling situation, we suppose that conditioned on β j ,
that is, on membership in class j , which is fixed over time, the observations on yit are
independent. Therefore, for a group of Ti observations, the joint density is

f (yi1, yi2, . . . , yt,Ti | class = j, xi1, xi2, . . . , xi,Ti , β j ) =
Ti∏

t=1

f (yit | class = j, xi t , β j ).

The log-likelihood function for a panel of data is

ln L =
n∑

i=1

ln

⎡
⎣

J∑
j=1

pij(�, zi )

Ti∏
t=1

f (yit | class = j, xi t , β j )

⎤
⎦ .

The class probabilities must be constrained to sum to 1. The approach that is usually
used is to reparameterize them as a set of logit probabilities, as we did in the preceding
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examples. Then,

pij(zi , �) = exp(θij)∑J
j=1 exp(θij)

, J = 1, . . . , J, θij = z′
iδ j , θi J = 0 (δ J = 0). (14-101)

(See Section 18.2.2 for development of this model for the set of probabilities.) Note
the restriction on θij. This is an identification restriction. Without it, the same set of
probabilities will arise if an arbitrary vector is added to every δ j . The resulting log-
likelihood is a continuous function of the parameters β1, . . . , β J and δ1, . . . , δ J . For all
its apparent complexity, estimation of this model by direct maximization of the log-
likelihood is not especially difficult. [See Section E.3 and Greene (2001, 2007b). The
EM algorithm discussed in Section E.3.7 is especially well suited for estimating the
parameters of latent class models. See McLachlan and Peel (2000).] The number of
classes that can be identified is likely to be relatively small (on the order of 5 or 10 at
most), however, which has been viewed as a drawback of the approach. In general, the
more complex the model for yit , the more difficult it becomes to expand the number
of classes. Also, as might be expected, the less rich the data set in terms of cross-group
variation, the more difficult it is to estimate latent class models.

Estimation produces values for the structural parameters, (β j , δ j ), j = 1, . . . , J .
With these in hand, we can compute the prior class probabilities, pij using (14-101).
For prediction purposes, we are also interested in the posterior (on the data) class
probabilities, which we can compute using Bayes theorem [see (14-99)]. The conditional
probability is

Prob(class = j | observation i)

= f (observation i | class = j)Prob(class j)∑J
j=1 f (observation i | class = j)Prob(class j)

(14-102)
= f (yi1, yi2, . . . , yi,Ti | xi1, xi2, . . . , xi,Ti , β j )pij(z j , �)∑J

j=1 f (yi1, yi2, . . . , yi,Ti | xi1, xi2, . . . , xi,Ti , β j )pij(z j , �)

= wij.

The set of probabilities, wi = (wi1, wi2, . . . , wi J ) gives the posterior density over the
distribution of values of β, that is, [β1, β2, . . . , β J ].

Example 14.17 Latent Class Model for Health Care Utilization
In Examples 7.6 and 11.16, we proposed an exponential regression model,

yi t = DocVisi t = exp(x′
i tβ) + εi t ,

for the variable DocVis, the number of visits to the doctor, in the German health care data.
(See Example 11.13 for details.) The regression results for the specification,

xit = (1, Agei t , Educationi t , Incomei t , Kidsi t )

are repeated (in parentheses) in Table 14.15 for convenience. The nonlinear least squares
estimator is only semiparametric; it makes no assumption about the distribution of DocVisi t
or about εi t . We do see striking increases in the standard errors when the “cluster robust”
asymptotic covariance matrix is used. (The estimates are given in Example 11.16.) The analy-
sis at this point assumes that the nonlinear least squares estimator remains consistent in the
presence of the cross-observation correlation. Given the way the model is specified, that is,
only in terms of the conditional mean function, this is probably reasonable. The extension
would imply a nonlinear generalized regression as opposed to a nonlinear ordinary regression.
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TABLE 14.15 Panel Data Estimates of a Geometric Regression for DocVis

Pooled MLE
(Nonlinear Least Squares) Random Effects a Fixed Effects

Variable Estimate St. Er Estimate St. Er. Estimate St. Er.

Constant 1.0918 0.1082 0.3998 0.09531
(0.9801) (0.1813)

Age 0.0180 0.0013 0.02208 0.001220 0.04845 0.003511
(0.01873) (0.00198)

Education −0.0473 0.0067 −0.04507 0.006262 −0.05437 0.03721
(−0.03613) (0.01228)

Income −0.4687 0.0726 −0.1959 0.06103 −0.1982 0.09127
(−0.5911) (0.1282)

Kids −0.1569 0.0306 −0.1242 0.02336 −0.002543 0.03687
(−0.1692) (0.04882)

aEstimated σu = 0.9542921.

In Example 14.10, we narrowed this model by assuming that the observations on doctor
visits were generated by a geometric distribution,

f ( yi | xi ) = θi (1 − θi ) yi , θi = 1/(1 + λi ) , λi = exp(x′
i β) , yi = 0, 1, . . . .

The conditional mean is still exp(x′
i tβ) , but this specification adds the structure of a particu-

lar distribution for outcomes. The pooled model was estimated in Example 14.10. Example
14.14 added the panel data assumptions of random then fixed effects to the model. The
model is now

f ( yi t | xi t ) = θi t (1 − θi t ) yit , θi t = 1/(1 + λi t ) , λi t = exp(ci + x′
i tβ) , yi t = 0, 1, . . . .

The pooled, random effects and fixed effects estimates appear in Table 14.15. The pooled es-
timates, where the standard errors are corrected for the panel data grouping, are comparable
to the nonlinear least squares estimates with the robust standard errors. The parameter esti-
mates are similar—both are consistent and this is a very large sample. The smaller standard
errors seen for the MLE are the product of the more detailed specification.

We will now relax the specification by assuming a two-class finite mixture model. We also
specify that the class probabilities are functions of gender and marital status. For the latent
class specification,

Prob(classi = 1 | zi ) = �(θ1 + θ2 Femalei + θ3 Marriedi ) .

The model structure is the geometric regression as before. Estimates of the parameters of the
latent class model are shown in Table 14.16. See Section E3.7 for discussion of estimation
methods.

Deb and Trivedi (2002) suggested that a meaningful distinction between groups of health
care system users would be between “infrequent” and “frequent” users. To investigate
whether our latent class model is picking up this distinction in the data, we used (14-102)
to predict the class memberships (class 1 or 2). We then linearly regressed DocVisi t on a
constant and a dummy variable for class 2. The results are

DocVisi t = 5.8034 (0.0465) − 4.7801 (0.06282)Class2i + ei t ,

where estimated standard errors are in parentheses. The linear regression suggests that the
class membership dummy variable is strongly segregating the observations into frequent and
infrequent users. The information in the regression is summarized in the descriptive statistics
in Table 14.17.
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TABLE 14.16 Estimated Latent Class Linear Regression Model for GPA

One Class Latent Class 1 Latent Class 2

Parameter Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

β1 1.0918 0.1082 1.6423 0.05351 −0.3344 0.09288
β2 0.0180 0.0013 0.01691 0.0007324 0.02649 0.001248
β3 −0.0473 0.0067 −0.04473 0.003451 −0.06502 0.005739
β4 −0.4687 0.0726 −0.4567 0.04688 0.01395 0.06964
β5 −0.1569 0.0306 −0.1177 0.01611 −0.1388 0.02738
θ1 0.0000 0.0000 −0.4280 0.06938 0.0000 0.0000
θ2 0.0000 0.0000 0.8255 0.06322 0.0000 0.0000
θ3 0.0000 0.0000 −0.07829 0.07143 0.0000 0.0000
Prob | z̄ 1.0000 0.47697 0.52303
ln L −61917.97 −58708.63

TABLE 14.17 Descriptive Statistics for Doctor
Visits

Class Mean Standard Deviation

All, n = 27,326 3.18352 7.47579
Class 1, n = 12,349 5.80347 1.63076
Class 2, n = 14,977 1.02330 3.18352

14.11 SUMMARY AND CONCLUSIONS

This chapter has presented the theory and several applications of maximum likelihood
estimation, which is the most frequently used estimation technique in econometrics
after least squares. The maximum likelihood estimators are consistent, asymptotically
normally distributed, and efficient among estimators that have these properties. The
drawback to the technique is that it requires a fully parametric, detailed specification of
the data generating process. As such, it is vulnerable to misspecification problems. The
previous chapter considered GMM estimation techniques that are less parametric, but
more robust to variation in the underlying data generating process. Together, ML and
GMM estimation account for the large majority of empirical estimation in econometrics.

Key Terms and Concepts

• AIC
• Asymptotic efficiency
• Asymptotic normality
• Asymptotic variance
• Autocorrelation
• Bayes’s theorem
• BHHH estimator
• BIC
• Butler and Moffitt’s method
• Cluster estimator

• Concentrated log-likelihood
• Conditional likelihood
• Consistency
• Cramér–Rao lower bound
• Efficient score
• Exclusion restriction
• Exponential regression

model
• Finite mixture model
• Fixed effects

• Full information maximum
likelihood (FIML)

• Gauss–Hermite quadrature
• Generalized sum of

squares
• Geometric regression
• GMM estimator
• Identification
• Incidental parameters

problem
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• Index function model
• Information matrix

equality
• Invariance
• Jacobian
• Kullback–Leibler

information criterion
• Latent regression
• Lagrange multiplier statistic
• Lagrange multiplier (LM)

test
• Latent class model
• Latent class linear

regression model
• Likelihood equation
• Likelihood function
• Likelihood inequality
• Likelihood ratio
• Likelihood ratio index
• Likelihood ratio statistic

• Likelihood ratio (LR) test
• Logistic probability mode
• Loglinear conditional mean
• Maximum likelihood
• Maximum likelihood

estimate
• Maximum likelihood

estimator
• M estimator
• Method of scoring
• Murphy and Topel

estimator
• Newton’s method
• Noncentral chi-squared

distribution
• Nonlinear least squares
• Nonnested models
• Normalization
• Oberhofer–Kmenta

estimator

• Outer product of gradients
estimator (OPG)

• Precision parameter
• Pseudo-log-likelihood

function
• Pseudo MLE
• Pseudo R squared
• Quadrature
• Random effects
• Regularity conditions
• Sandwich estimator
• Score test
• Score vector
• Two-step maximum

likelihood estimation
• Wald statistic
• Wald test
• Vuong test

Exercises

1. Assume that the distribution of x is f (x) = 1/θ, 0 ≤ x ≤ θ. In random sampling
from this distribution, prove that the sample maximum is a consistent estimator of
θ. Note that you can prove that the maximum is the maximum likelihood estimator
of θ. But the usual properties do not apply here. Why not? (Hint: Attempt to verify
that the expected first derivative of the log-likelihood with respect to θ is zero.)

2. In random sampling from the exponential distribution f (x) = (1/θ)e−x/θ , x ≥ 0,

θ > 0, find the maximum likelihood estimator of θ and obtain the asymptotic dis-
tribution of this estimator.

3. Mixture distribution. Suppose that the joint distribution of the two random variables
x and y is

f (x, y) = θe−(β+θ)y(βy)x

x!
, β, θ > 0, y ≥ 0, x = 0, 1, 2, . . . .

a. Find the maximum likelihood estimators of β and θ and their asymptotic joint
distribution.

b. Find the maximum likelihood estimator of θ/(β + θ) and its asymptotic distri-
bution.

c. Prove that f (x) is of the form

f (x) = γ (1 − γ )x, x = 0, 1, 2, . . . ,

and find the maximum likelihood estimator of γ and its asymptotic distribution.
d. Prove that f (y | x) is of the form

f (y | x) = λe−λy(λy)x

x!
, y ≥ 0, λ > 0.
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Prove that f (y | x) integrates to 1. Find the maximum likelihood estimator of λ

and its asymptotic distribution. (Hint: In the conditional distribution, just carry
the x’s along as constants.)

e. Prove that

f (y) = θe−θy, y ≥ 0, θ > 0.

Find the maximum likelihood estimator of θ and its asymptotic variance.
f. Prove that

f (x | y) = e−βy(βy)x

x!
, x = 0, 1, 2, . . . , β > 0.

Based on this distribution, what is the maximum likelihood estimator of β?
4. Suppose that x has the Weibull distribution

f (x) = αβxβ−1e−αxβ

, x ≥ 0, α, β > 0.

a. Obtain the log-likelihood function for a random sample of n observations.
b. Obtain the likelihood equations for maximum likelihood estimation of α and β.

Note that the first provides an explicit solution for α in terms of the data and
β. But, after inserting this in the second, we obtain only an implicit solution for
β. How would you obtain the maximum likelihood estimators?

c. Obtain the second derivatives matrix of the log-likelihood with respect to α and
β. The exact expectations of the elements involving β involve the derivatives
of the gamma function and are quite messy analytically. Of course, your exact
result provides an empirical estimator. How would you estimate the asymptotic
covariance matrix for your estimators in part b?

d. Prove that αβCov[ln x, xβ] = 1. (Hint: The expected first derivatives of the
log-likelihood function are zero.)

5. The following data were generated by the Weibull distribution of Exercise 4:

1.3043 0.49254 1.2742 1.4019 0.32556 0.29965 0.26423
1.0878 1.9461 0.47615 3.6454 0.15344 1.2357 0.96381
0.33453 1.1227 2.0296 1.2797 0.96080 2.0070

a. Obtain the maximum likelihood estimates of α and β, and estimate the asymp-
totic covariance matrix for the estimates.

b. Carry out a Wald test of the hypothesis that β = 1.

c. Obtain the maximum likelihood estimate of α under the hypothesis that β = 1.

d. Using the results of parts a and c, carry out a likelihood ratio test of the hypothesis
that β = 1.

e. Carry out a Lagrange multiplier test of the hypothesis that β = 1.

6. Limited Information Maximum Likelihood Estimation. Consider a bivariate dis-
tribution for x and y that is a function of two parameters, α and β. The joint
density is f (x, y | α, β). We consider maximum likelihood estimation of the two
parameters. The full information maximum likelihood estimator is the now famil-
iar maximum likelihood estimator of the two parameters. Now, suppose that we
can factor the joint distribution as done in Exercise 3, but in this case, we have
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f (x, y | α, β) = f (y | x, α, β) f (x | α). That is, the conditional density for y is a func-
tion of both parameters, but the marginal distribution for x involves only α.

a. Write down the general form for the log-likelihood function using the joint
density.

b. Because the joint density equals the product of the conditional times the marginal,
the log-likelihood function can be written equivalently in terms of the factored
density. Write this down, in general terms.

c. The parameter α can be estimated by itself using only the data on x and the
log-likelihood formed using the marginal density for x. It can also be estimated
with β by using the full log-likelihood function and data on both y and x. Show
this.

d. Show that the first estimator in part c has a larger asymptotic variance than
the second one. This is the difference between a limited information maximum
likelihood estimator and a full information maximum likelihood estimator.

e. Show that if ∂2 ln f (y | x, α, β)/∂α∂β = 0, then the result in part d is no longer
true.

7. Show that the likelihood inequality in Theorem 14.3 holds for the Poisson distribu-
tion used in Section 14.3 by showing that E [(1/n) ln L(θ | y)] is uniquely maximized
at θ = θ0. (Hint: First show that the expectation is −θ + θ0 ln θ − E0[ln yi !].)

8. Show that the likelihood inequality in Theorem 14.3 holds for the normal distribu-
tion.

9. For random sampling from the classical regression model in (14-3), reparameterize
the likelihood function in terms of η = 1/σ and δ = (1/σ)β. Find the maximum
likelihood estimators of η and δ and obtain the asymptotic covariance matrix of the
estimators of these parameters.

10. Consider sampling from a multivariate normal distribution with mean vector μ =
(μ1, μ2, . . . , μM) and covariance matrix σ 2I. The log-likelihood function is

ln L = −nM
2

ln(2π) − nM
2

ln σ 2 − 1
2σ 2

n∑
i=1

(yi − μ)′(yi − μ).

Show that the maximum likelihood estimators of the parameters are μ̂ = ȳm, and

σ̂ 2
ML =

∑n
i=1

∑M
m=1 (yim − ȳm)2

nM
= 1

M

M∑
m=1

1
n

n∑
i=1

(yim − ȳm)2 = 1
M

M∑
m=1

σ̂ 2
m.

Derive the second derivatives matrix and show that the asymptotic covariance
matrix for the maximum likelihood estimators is

{
−E

[
∂2 ln L
∂θ∂θ ′

]}−1

=
[

σ 2I/n 0
0 2σ 4/(nM)

]
.

Suppose that we wished to test the hypothesis that the means of the M distributions
were all equal to a particular value μ0. Show that the Wald statistic would be

W = (ȳ − μ0i)′
(

σ̂ 2

n
I
)−1

(ȳ − μ0i) =
( n

s2

)
(ȳ − μ0i)′(ȳ − μ0i),

where ȳ is the vector of sample means.
11. Prove the result claimed in Example 4.7.
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Applications

1. Binary Choice. This application will be based on the health care data analyzed
in Example 14.17 and several others. Details on obtaining the data are given in
Example 11.16. We consider analysis of a dependent variable, yit , that takes values
and 1 and 0 with probabilities F(x′

iβ) and 1 − F(x′
iβ), where F is a function that

defines a probability. The dependent variable, yit , is constructed from the count
variable DocVis, which is the number of visits to the doctor in the given year.
Construct the binary variable

yit = 1 if DocVisit > 0, 0 otherwise.

We will build a model for the probability that yit equals one. The independent
variables of interest will be,

xi t = (1, ageit , educit , femaleit , marriedit , hsatit ).

a. According to the model, the theoretical density for yit is

f (yit | xi t ) = F(x′
i tβ) for yit = 1 and 1 − F(x′

i tβ) for yit = 0.

We will assume that a “logit model” (see Section 17.2) is appropriate, so that

F(x′
i tβ) = �(x′

i tβ) = exp(x′
i tβ)

1 − exp(x′
i tβ)

.

Show that for the two outcomes, the probabilities may be may be combined
into the density function

f (yit | xi t ) = g(yit , xi t , β) = �[(2yit − 1)x′
i tβ].

Now, use this result to construct the log-likelihood function for a sample of
data on (yit , xi t ). (Note: We will be ignoring the panel aspect of the data set.
Build the model as if this were a cross section.)

b. Derive the likelihood equations for estimation of β.
c. Derive the second derivatives matrix of the log-likelihood function. (Hint: The

following will prove useful in the derivation: d�(t)/dt = �(t)[1 − �(t)].)
d. Show how to use Newton’s method to estimate the parameters of the model.
e. Does the method of scoring differ from Newton’s method? Derive the negative

of the expectation of the second derivatives matrix.
f. Obtain maximum likelihood estimates of the parameters for the data and vari-

ables noted. Report your results: estimates, standard errors, etc., as well as the
value of the log-likelihood.

g. Test the hypothesis that the coefficients on female and marital status are zero.
Show how to do the test using Wald, LM, and LR tests, and then carry out the
tests.

h. Test the hypothesis that all the coefficients in the model save for the constant
term are equal to zero.



Greene-2140242 book January 19, 2011 21:17

15

SIMULATION-BASED
ESTIMATION AND

INFERENCE AND RANDOM
PARAMETER MODELS

Q
15.1 INTRODUCTION

Simulation-based methods have become increasingly popular in econometrics. They
are extremely computer intensive, but steady improvements in recent years in com-
putation hardware and software have reduced that cost enormously. The payoff has
been in the form of methods for solving estimation and inference problems that have
previously been unsolvable in analytic form. The methods are used for two main func-
tions. First, simulation-based methods are used to infer the characteristics of random
variables, including estimators, functions of estimators, test statistics, and so on, by sam-
pling from their distributions. Second, simulation is used in constructing estimators that
involve complicated integrals that do not exist in a closed form that can be evaluated.
In such cases, when the integral can be written in the form of an expectation, simulation
methods can be used to evaluate it to within acceptable degrees of approximation by
estimating the expectation as the mean of a random sample. The technique of maximum
simulated likelihood (MSL) is essentially a classical sampling theory counterpart to the
hierarchical Bayesian estimator considered in Chapter 16. Since the celebrated paper
of Berry, Levinsohn, and Pakes (1995) and the review by McFadden and Train (2000),
maximum simulated likelihood estimation has been used in a large and growing number
of studies.

The following are three examples from earlier chapters that have relied on simula-
tion methods.

Example 15.1 Inferring the Sampling Distribution of the Least Squares
Estimator

In Example 4.1, we demonstrated the idea of a sampling distribution by drawing several
thousand samples from a population and computing a least squares coefficient with each
sample. We then examined the distribution of the sample of linear regression coefficients. A
histogram suggested that the distribution appeared to be normal and centered over the true
population value of the coefficient.

Example 15.2 Bootstrapping the Variance of the LAD Estimator
In Example 4.5, we compared the asymptotic variance of the least absolute deviations (LAD)
estimator to that of the ordinary least squares (OLS) estimator. The form of the asymptotic
variance of the LAD estimator is not known except in the special case of normally distributed
disturbances. We relied, instead, on a random sampling method to approximate features
of the sampling distribution of the LAD estimator. We used a device (bootstrapping) that
allowed us to draw a sample of observations from the population that produces the estimator.
With that random sample, by computing the corresponding sample statistics, we can infer

643
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characteristics of the distribution such as its variance and its 2.5th and 97.5th percentiles
which can be used to construct a confidence interval.

Example 15.3 Least Simulated Sum of Squares
Familiar estimation and inference methods, such as least squares and maximum likelihood,
rely on “closed form” expressions that can be evaluated exactly [at least in principle—
likelihood equations such as (14-4)] may require an iterative solution. Model building and
analysis often require evaluation of expressions that cannot be computed directly. Famil-
iar examples include expectations that involve integrals with no closed form such as the
random effects nonlinear regression model presented in Section 14.9.6.c. The estimation
problem posed there involved nonlinear least squares estimation of the parameters of

E [ yit|xit, ui ] = h(x′
itβ + ui ) .

Minimizing the sum of squares,

S(β) =
∑

i

∑
t

[ yit − h(x′
itβ + ui ) ]2,

is not feasible because ui is not observed. In this formulation,

E [ y|xit] = Eu E [ yit|xit, ui ] =
∫

u

E [ yit|xit, ui ] f (ui )dui ,

so the feasible estimation problem would involve the sum of squares,

S∗(β) =
∑

i

∑
t

[
yit −

∫

u

h(x′
itβ + ui ) f (ui )dui

]2

.

When the function is linear and ui is normally distributed, this is a simple problem—it reduces
to ordinary linear least squares. If either condition is not met, then the integral generally
remains in the estimation problem. Although the integral,

Eu[h(x′
itβ + ui ) ] =

∫

u

h(x′
itβ + ui ) f (ui )dui ,

cannot be computed, if a large sample of R observations from the population of ui , that is,
uir , r = 1, . . . , R, were observed, then by virtue of the law of large numbers, we could rely on

plim(1/R)
∑

r

h(x′
itβ + uir ) = Eu E [ yit|xit, ui ]

=
∫

u

h(x′
itβ + ui ) f (ui )dui . (15-1)

We are suppressing the extra parameter, σu, which would become part of the estimation
problem. A convenient way to formulate the problem is to write ui = σuvi where vi has zero
mean and variance one. By using this device, integrals can be replaced with sums that are
feasible to compute. Our “simulated sum of squares” becomes

Ssimulated(β) =
∑

i

∑
t

[
yit − (1/R)

∑
r

h(x′
itβ + σuvir )

]2

, (15-2)

which can be minimized by conventional methods. As long as (15-1) holds, then

1
nT

∑
i

∑
t

[
yit − (1/R)

∑
r

h(x′
itβ + σuvir )

]2

p→ 1
nT

∑
i

∑
t

[
yit −

∫

v

h(x′
itβ + σuvi ) f (vi )dvi

]2

(15-3)
and it follows that with sufficiently increasing R, the β that minimizes the left-hand side con-
verges (in nT ) to the same parameter vector that minimizes the probability limit of the
right-hand side. We are thus able to substitute a computer simulation for the intractable
computation on the right-hand side of the expression.

This chapter will describe some of the (increasingly) more common applications of
simulation methods in econometrics. We begin in Section 15.2 with the essential tool at
the heart of all the computations, random number generation. Section 15.3 describes
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simulation-based inference using the method of Krinsky and Robb as an alternative
to the delta method (see Section 4.4.4). The method of bootstrapping for inferring the
features of the distribution of an estimator is described in Section 15.4. In Section 15.5,
we will use a Monte Carlo study to learn about the behavior of a test statistic and the
behavior of the fixed effects estimator in some nonlinear models. Sections 15.6 to 15.9
present simulation-based estimation methods. The essential ingredient of this entire set
of results is the computation of integrals. Section 15.6.1 describes an application of a
simulation-based estimator, a nonlinear random effects model. Section 15.6.2 discusses
methods of integration. Then, the methods are applied to the estimation of the random
effects model. Sections 15.7–15.9 describe several techniques and applications, includ-
ing maximum simulated likelihood estimation for random parameter and hierarchical
models. A third major (perhaps the major) application of simulation-based estimation in
the current literature is Bayesian analysis using Markov Chain Monte Carlo (MCMC or
MC2) methods. Bayesian methods are discussed separately in Chapter 16. Sections 15.10
and 15.11 consider two remaining aspects of modeling parameter heterogeneity, estima-
tion of individual specific parameters, and a comparison of modeling with continuous
distributions to modeling with discrete distributions using latent class models.

15.2 RANDOM NUMBER GENERATION

All the techniques we will consider here rely on samples of observations from an under-
lying population. We will sometimes call these “random samples,” though it will emerge
shortly that they are never actually random. One of the important aspects of this entire
body of research is the need to be able to replicate one’s computations. If the samples
of draws used in any kind of simulation-based analysis were truly random, then this
would be impossible. Although the methods we consider here will appear to be ran-
dom, they are, in fact, deterministic—the “samples” can be replicated. For this reason,
the sampling methods described in this section are more often labeled “pseudo–random
number generators.” (This does raise an intriguing question: Is it possible to generate
truly random draws from a population with a computer? The answer for practical pur-
poses is no.) This section will begin with a description of some of the mechanical aspects
of random number generation. We will then detail the methods of generating particular
kinds of random samples. [See Train (2009, Chapter 3) for extensive further discussion.]

15.2.1 GENERATING PSEUDO-RANDOM NUMBERS

Data are generated internally in a computer using pseudo–random number generators.
These computer programs generate sequences of values that appear to be strings of
draws from a specified probability distribution. There are many types of random num-
ber generators, but most take advantage of the inherent inaccuracy of the digital repre-
sentation of real numbers. The method of generation is usually by the following steps:

1. Set a seed.
2. Update the seed by seed j = seed j−1 × s value.
3. xj = seed j × x value.
4. Transform xj if necessary, and then move xj to desired place in memory.
5. Return to step 2, or exit if no additional values are needed.
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Random number generators produce sequences of values that resemble strings of
random draws from the specified distribution. In fact, the sequence of values produced
by the preceding method is not truly random at all; it is a deterministic Markov chain
of values. The set of 32 bits in the random value only appear random when subjected
to certain tests. [See Press et al. (1986).] Because the series is, in fact, deterministic, at
any point that this type of generator produces a value it has produced before, it must
thereafter replicate the entire sequence. Because modern digital computers typically
use 32-bit double words to represent numbers, it follows that the longest string of values
that this kind of generator can produce is 232 − 1 (about 4.3 billion). This length is the
period of a random number generator. (A generator with a shorter period than this
would be inefficient, because it is possible to achieve this period with some fairly simple
algorithms.) Some improvements in the periodicity of a generator can be achieved by
the method of shuffling. By this method, a set of, say, 128 values is maintained in an
array. The random draw is used to select one of these 128 positions from which the draw
is taken and then the value in the array is replaced with a draw from the generator. The
period of the generator can also be increased by combining several generators. [See
L’Ecuyer (1998), Gentle (2002, 2003), and Greene (2007b).]

The deterministic nature of pseudo–random number generators is both a flaw and
a virtue. Many Monte Carlo studies require billions of draws, so the finite period of
any generator represents a nontrivial consideration. On the other hand, being able to
reproduce a sequence of values just by resetting the seed to its initial value allows the
researcher to replicate a study.1 The seed itself can be a problem. It is known that
certain seeds in particular generators will produce shorter series or series that do not
pass randomness tests. For example, congruential generators of the sort just discussed
should be started from odd seeds.

15.2.2 SAMPLING FROM A STANDARD UNIFORM POPULATION

The output of the generator described in Section 15.2.1 will be a pseudo-draw from
the U[0, 1] population. (In principle, the draw should be from the closed interval
[0, 1]. However, the actual draw produced by the generator will be strictly between
zero and one with probability just slightly below one. In the application described,
the draw will be constructed from the sequence of 32 bits in a double word. All but
two of the 231−1 strings of bits will produce a value in (0, 1). The practical result
is consistent with the theoretical one, that the probabilities attached to the termi-
nal points are zero also.) When sampling from a standard uniform, U[0, 1] popula-
tion, the sequence is a kind of difference equation, because given the initial seed, xj

is ultimately a function of xj−1. In most cases, the result at step 3 is a pseudo-draw
from the continuous uniform distribution in the range zero to one, which can then be
transformed to a draw from another distribution by using the fundamental probability
transformation.

1Readers of empirical studies are often interested in replicating the computations. In Monte Carlo studies, at
least in principle, data can be replicated efficiently merely by providing the random number generator and
the seed.
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15.2.3 SAMPLING FROM CONTINUOUS DISTRIBUTIONS

One is usually interested in obtaining a sequence of draws, x1, . . . , xR, from some partic-
ular population such as the normal with mean μ and variance σ 2. A sequence of draws
from U[0, 1], u1, . . . , uR, produced by the random number generator is an intermediate
step. These will be transformed into draws from the desired population. A common
approach is to use the fundamental probability transformation. For continuous distri-
butions, this is done by treating the draw, ur = Fr as if Fr were F(xr ), where F(.) is the
cdf of x. For example, if we desire draws from the exponential distribution with known θ ,
then F(x) = 1−exp(−θx). The inverse transform is x = (−1/θ) ln(1− F). For example,
for a draw of u = 0.4 with θ = 5, the associated x would be (−1/5) ln(1 − .4) = 0.1022.
For the logistic population with cdf F(x) = �(x) = exp(x)/[1 + exp(x)], the inverse
transformation is x = ln[F/(1 − F)]. There are many references, for example, Evans,
Hastings, and Peacock (2000) and Gentle (2003), that contain tables of inverse trans-
formations that can be used to construct random number generators.

One of the most common applications is the draws from the standard normal dis-
tribution. This is complicated because there is no closed form for �−1(F). There are
several ways to proceed. A well-known approximation to the inverse function is given
in Abramovitz and Stegun (1971):

�−1(F) = x ≈ T − c0 + c1T + c2T2

1 + d1T + d2T2 + d3T3
,

where T = [ln(1/H2)]1/2 and H = F if F > 0.5 and 1 − F otherwise. The sign is then
reversed if F < 0.5. A second method is to transform the U[0, 1] values directly to a
standard normal value. The Box–Muller (1958) method is z = (−2 ln u1)

1/2 cos(2πu2),
where u1 and u2 are two independent U[0, 1] draws. A second N[0, 1] draw can be
obtained from the same two values by replacing cos with sin in the transformation. The
Marsaglia–Bray (1964) generator is zi = xi [−(2/v) ln v]1/2, where xi = 2ui − 1, ui is a
random draw from U[0, 1] and v = u2

1 + u2
2, i = 1, 2. The pair of draws is rejected and

redrawn if v ≥ 1.
Sequences of draws from the standard normal distribution can easily be transformed

into draws from other distributions by making use of the results in Section B.4. For
example, the square of a standard normal draw will be a draw from chi-squared[1], and
the sum of K chi-squared[1]s is chi-squared [K]. From this relationship, it is possible to
produce samples from the chi-squared[K], t[n], and F[K, n] distributions.

A related problem is obtaining draws from the truncated normal distribution. The
random variable with truncated normal distribution is obtained from one with a normal
distribution by discarding the part of the range above a value U and below a value L.
The density of the resulting random variable is that of a normal distribution restricted
to the range [L, U]. The truncated normal density is

f (x|L ≤ x ≤ U) = f (x)

Prob[L ≤ x ≤ U]
= (1/σ)φ[(x − μ)/σ ]

�[(U − μ)/σ ] − �[(L− μ)/σ ]
,

where φ(t) = (2π)−1/2 exp(−t2/2) and �(t) is the cdf. An obviously inefficient (albeit
effective) method of drawing values from the truncated normal [μ, σ 2] distribution in
the range [L, U] is simply to draw F from the U[0, 1] distribution and transform it first
to a standard normal variate as discussed previously and then to the N[μ, σ 2] variate by



Greene-2140242 book January 19, 2011 21:17

648 PART III ✦ Estimation Methodology

using x = μ + σ�−1(F). Finally, the value x is retained if it falls in the range [L, U] and
discarded otherwise. This rejection method will require, on average, 1/{�[(U −μ)/σ ]−
�[(L− μ)/σ ]} draws per observation, which could be substantial. A direct transforma-
tion that requires only one draw is as follows: Let Pj = �[( j − μ)/σ ], j = L, U. Then

x = μ + σ�−1[PL + F × (PU − PL)]. (15-4)

15.2.4 SAMPLING FROM A MULTIVARIATE NORMAL POPULATION

A common application involves draws from a multivariate normal distribution with
specified mean μ and covariance matrix �. To sample from this K-variate distribution,
we begin with a draw, z, from the K-variate standard normal distribution. This is done
by first computing K independent standard normal draws, z1, . . . , zK using the method
of the previous section and stacking them in the vector z. Let C be a square root of �

such that CC′ = �. The desired draw is then x = μ + Cz, which will have covariance
matrix E[(x − μ)(x − μ)′] = CE[zz′]C′ = CIC′ = �. For the square root matrix, the
usual device is the Cholesky decomposition, in which C is a lower triangular matrix.
(See Section A.6.11.) For example, suppose we wish to sample from the bivariate normal
distribution with mean vector μ, unit variances and correlation coefficient ρ. Then,

� =
[

1 ρ

ρ 1

]
and C =

[
1 0
ρ

√
1 − ρ2

]
.

The transformation of two draws z1 and z2 is x1 = μ1 + z1 and x2 = μ2 + [ρz1 +
(1−ρ2)1/2z2]. Section 15.3 and Example 15.4 following show a more involved application.

15.2.5 SAMPLING FROM DISCRETE POPULATIONS

There is generally no inverse transformation available for discrete distributions such as
the Poisson. An inefficient, though usually unavoidable method for some distributions
is to draw the Fand then search sequentially for the smallest value that has cdf equal
to or greater than F . For example, a generator for the Poisson distribution is constructed
as follows. The pdf is Prob[x = j] = pj = exp(−μ)μ j/j! where μ is the mean of the
random variable. The generator will use the recursion pj = pj−1 × μ/j, j = 1, . . .

beginning with p0 = exp(−μ). An algorithm that requires only a single random draw
is as follows:

Initialize c = exp(−μ); p = c; x = 0;
Draw F from U[0, 1];
Deliver x * exit with draw x if c > F ;
Iterate x = x + 1; p = p × μ/x; c = c + p;

go to *.

This method is based explicitly on the pdf and cdf of the distribution. Other methods
are suggested by Knuth (1969) and Press et al. (1986, pp. 203–209).

The most common application of random sampling from a discrete distribution is,
fortunately, also the simplest. The method of bootstrapping, and countless other applica-
tions involve random samples of draws from the discrete uniform distribution, Prob(x =
j) = 1/n, j = 1, . . . , n. In the bootstrapping application, we are going to draw random
samples of observations from the sequence of integers 1, . . . , n, where each value must
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be equally likely. In principle, the random draw could be obtained by partitioning the
unit interval into n equal parts, [0, a1), [a1, a2), . . . , [an−2, an−1), [an−1, 1]; a j = j/n, j =
1, . . . , n − 1. Then, random draw F delivers x = j if F falls into interval j . This would
entail a search, which could be time consuming. However, a simple method that will
be much faster is simply to deliver x = the integer part of (n × F + 1.0). (Once again,
we are making use of the practical result that F will equal exactly 1.0 (and x will equal
n + 1) with ignorable probability.)

15.3 SIMULATION-BASED STATISTICAL
INFERENCE: THE METHOD OF KRINSKY
AND ROBB

Most of the theoretical development in this text has concerned the statistical properties
of estimators—that is, the characteristics of sampling distributions such as the mean
(probability limits), variance (asymptotic variance), and quantiles (such as the bound-
aries for confidence intervals). In cases in which these properties cannot be derived
explicitly, it is often possible to infer them by using random sampling methods to draw
samples from the population that produced an estimator and deduce the characteristics
from the features of such a random sample. In Example 4.4, we computed a set of least
squares regression coefficients, b1, . . . , bK, and then examined the behavior of a non-
linear function ck = bk/(1 − bm) using the delta method. In some cases, the asymptotic
properties of nonlinear functions such as these are difficult to derive directly from the
theoretical distribution of the parameters. The sampling methods described here can
be used for that purpose. A second common application is learning about the behav-
ior of test statistics. For example, at the end of Section 5.6 and in Section 14.9.1 [see
(14-47)], we defined a Lagrange multiplier statistic for testing the hypothesis that cer-
tain coefficients are zero in a linear regression model. Under the assumption that the
disturbances are normally distributed, the statistic has a limiting chi-squared distribu-
tion, which implies that the analyst knows what critical value to employ if they use this
statistic. Whether the statistic has this distribution if the disturbances are not normally
distributed is unknown. Monte Carlo methods can be helpful in determining if the guid-
ance of the chi-squared result is useful in more general cases. Finally, in Section 14.7, we
defined a two-step maximum likelihood estimator. Computation of the asymptotic vari-
ance of such an estimator can be challenging. Monte Carlo methods, in particular, boot-
strapping methods, can be used as an effective substitute for the intractible derivation of
the appropriate asymptotic distribution of an estimator. This and the next two sections
will detail these three procedures and develop applications to illustrate their use.

The method of Krinsky and Robb is suggested as a way to estimate the asymptotic
covariance matrix of c = f(b), where b is an estimated parameter vector with asymptotic
covariance matrix � and f(b) defines a set of possibly nonlinear functions of b. We as-
sume that f(b) is a set of continuous and continuously differentiable functions that do not
involve the sample size and whose derivatives do not equal zero at β = plim b. (These
are the conditions underlying the Slutsky theorem in Section D.2.3.) In Section 4.4.4,
we used the delta method to estimate the asymptotic covariance matrix of c; Est. Asy.
Var[c] = GSG′, where S is the estimate of � and G is the matrix of partial derivatives,
G = ∂f(b)/∂b′. The recent literature contains some occasional skepticism about the
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accuracy of the delta method. The method of Krinsky and Robb (1986, 1990, 1991) is
often suggested as an alternative. In a study of the behavior of estimated elasticities
based on a translog model, the authors (1986) advocated an alternative approach based
on Monte Carlo methods and the law of large numbers. We have consistently estimated β

and (σ 2/n)Q−1, the mean and variance of the asymptotic normal distribution of the esti-
mator b, with b and s2(X′X)−1. It follows that we could estimate the mean and variance of
the distribution of a function of b by drawing a random sample of observations from the
asymptotic normal population generating b, and using the empirical mean and variance
of the sample of functions to estimate the parameters of the distribution of the function.
The quantiles of the sample of draws, for example, the 0.025th and 0.975th quantiles, can
be used to estimate the boundaries of a confidence interval of the functions. The mul-
tivariate normal sample would be drawn using the method described in Section 15.2.4.

Krinsky and Robb (1986) reported huge differences in the standard errors produced
by the delta method compared to the simulation-based estimator. In a subsequent paper
(1990), they reported that the entire difference could be attributed to a bug in the soft-
ware they used—upon redoing the computations, their estimates were essentially the
same with the two methods. It is difficult to draw a conclusion about the effectiveness
of the delta method based on the received results—it does seem at this juncture that the
delta method remains an effective device that can often be employed with a hand cal-
culator as opposed to the much more computation-intensive Krinsky and Robb (1986)
technique. Unfortunately, the results of any comparison will depend on the data, the
model, and the functions being computed. The amount of nonlinearity in the sense of
the complexity of the functions seems not to be the answer. Krinsky and Robb’s case
was motivated by the extreme complexity of the elasticities in a translog model. In an-
other study, Hole (2006) examines a similarly complex problem and finds that the delta
method still appears to be the more accurate procedure.

Example 15.4 Long-Run Elasticities
A dynamic version of the demand for gasoline model is estimated in Example 4.4. The model is

ln(G/Pop) t = β1 + β2 ln PG,t + β3 ln( Income/Pop) t + β4 ln Pnc,t
+ β5 ln Puc,t + γ ln (G/Pop) t−1 + εt .

In this model, the short-run price and income elasticities are β2 and β3. The long-run elastici-
ties are φ2 = β2/(1−γ ) and φ3 = β3/(1−γ ) , respectively. To estimate the long-run elasticities,
we estimated the parameters by least squares and then computed these two nonlinear func-
tions of the estimates. Estimates of the full set of model parameters and the estimated asymp-
totic covariance matrix are given in Example 4.4. The delta method was used to estimate the
asymptotic standard errors for the estimates of φ2 and φ3. The three estimates of the specific
parameters and the 3 × 3 submatrix of the estimated asymptotic covariance matrix are

Est.

(
β2
β3
γ

)
=

(
b2
b3
c

)
=

(−0.069532
0.164047
0.830971

)
,

Est.Asy.V ar

(
b2
b3
c

)
=

(
0.00021705 1.61265e− 5 −0.0001109
1.61265e− 5 0.0030279 −0.0021881

−0.0001109 −0.0021881 0.0020943

)
.

The method suggested by Krinsky and Robb would use a random number generator to draw
a large trivariate sample, (b2, b3, c) r , r = 1, . . . , R, from the normal distribution with this mean
vector and covariance matrix, and then compute the sample of observations on f2 and f3
and obtain the empirical mean and variance and the .025 and .975 quantiles from the sample.
The method of drawing such a sample is shown in Section 15.2.4. We will require the square
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TABLE 15.1 Simulation Results

Regression Estimate Simulated Values

Estimate Std.Err. Mean Std.Dev.

β2 −0.069532 0.0147327 −0.068791 0.0138485
β3 0.164047 0.0550265 0.162634 0.0558856
γ 0.830971 0.0457635 0.831083 0.0460514
φ2 −0.411358 0.152296 −0.453815 0.219110
φ3 0.970522 0.162386 0.950042 0.199458

TABLE 15.2 Estimated Confidence Intervals

φ2 φ3

Lower Upper Lower Upper

Delta Method −0.718098 −0.104618 0.643460 1.297585
Krinsky and Robb −0.895125 −0.012505 0.548313 1.351772
Sample Quantiles −0.983866 −0.209776 0.539668 1.321617

root of the covariance matrix. The Cholesky matrix is

C =
(

0.0147326 0 0
0.00109461 0.0550155 0

−0.0075275 −0.0396227 0.0216259

)

The sample is drawn by drawn by obtaining vectors of three random draws from the stan-
dard normal population, vr = (v1, v2, v3) ′

r , r = 1, . . . , R. The draws needed for the estimation
are then obtained by computing br = b + Cvr , where b is the set of least squares esti-
mates. We then compute the sample of estimated long-run elasticities, f2r = b2r /(1−cr ) and
f3r = b3r /(1 − cr ) . The mean and standard deviation of the sample observations constitute
the estimates of the functions and asymptotic standard errors.

Table 15.1 shows the results of these computations based on 1,000 draws from the un-
derlying distribution. The estimates from Example 4.4 using the delta method are shown as
well. The two sets of estimates are in quite reasonable agreement. A 95 percent confidence
interval for φ2 based on the estimates, the t distribution with 51−6 = 45 degrees of freedom
and the delta method would be −0.411358±2.014103(0.152296) . The result for φ3 would be
0.970522 ± 2.014103(0.162386) . These are shown in Table 15.2 with the same computation
using the Krinsky and Robb estimated standard errors. The table also shows the empirical
estimates of these quantiles computed using the 26th and 975th values in the samples. There
is reasonable agreement in the estimates, though there is also evident a considerable amount
of sample variability, even in a sample as large as 1,000.

We note, finally, that it is generally not possible to replicate results such as these across
software platforms, because they use different random number generators. Within a given
platform, replicability can be obtained by setting the seed for the random number generator.

15.4 BOOTSTRAPPING STANDARD ERRORS
AND CONFIDENCE INTERVALS

The technique of bootstrapping is used to obtain a description of the sampling prop-
erties of empirical estimators using the sample data themselves, rather than broad the-
oretical results.2 Suppose that θ̂n is an estimator of a parameter vector θ based on a

2See Efron (1979), Efron and Tibshirani (1994), and Davidson and Hinkley (1997), Brownstone and Kazimi
(1998), Horowitz (2001), and MacKinnon (2002).
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sample Z = [(y1, x1), . . . , (yn, xn)]. An approximation to the statistical properties of
θ̂n can be obtained by studying a sample of bootstrap estimators θ̂(b)m, b = 1, . . . , B,
obtained by sampling m observations, with replacement, from Z and recomputing θ̂ with
each sample. After a total of B times, the desired sampling characteristic is computed
from

�̂ = [
θ̂(1)m, θ̂(2)m, . . . , θ̂(B)m

]
.

The most common application of bootstrapping for consistent estimators when n is
reasonably large is approximating the asymptotic covariance matrix of the estimator θ̂n

with

Est.Asy.Var
[
θ̂n

] = 1
B − 1

B∑
b=1

[
θ̂(b)m − ¯̂θ B

] [
θ̂(b)m − ¯̂θ B

]′
, (15-5)

where ¯̂θ B is the average of the B bootstrapped estimates of θ . There are few theoretical
prescriptions for the number of replications, B. Andrews and Buchinsky (2000) and
Cameron and Trivedi (2005, pp. 361–362) make some suggestions for particular appli-
cations; Davidson and MacKinnon (2000) recommend at least 399. Several hundred is
the norm; we have used 1,000 in our application to follow. This technique was developed
by Efron (1979) and has been appearing with increasing frequency in the applied econo-
metrics literature. [See, for example, Veall (1987, 1992), Vinod (1993), and Vinod and
Raj (1994). Extensive surveys of uses and methods in econometrics appear in Cameron
and Trivedi (2005), Horowitz (2001), and Davidson and MacKinnon (2006).] An appli-
cation of this technique to the least absolute deviations estimator in the linear model is
shown in the following example and in Chapter 4.

The preceding is known as a paired bootstrap. The pairing is the joint sampling
of yi and xi . An alternative approach in a regression context would be to sample the
observations on xi only and then with each xi sampled, generate the accompanying yi

by randomly generating the disturbance, then ŷi (b) = xi (b)′θ̂n + ε̂i (b). This would be
a parametric bootstrap in that in order to simulate the disturbances, we need either to
know (or assume) the data generating process that produces εi . In other contexts, such
as in discrete choice modeling in Chapter 17, one would bootstrap sample the exogenous
data in the model and then generate the dependent variable by this method using the
appropriate underlying DGP. This is the approach used in 15.5.2 and in Greene (2004b)
in a study of the incidental parameters problem in several limited dependent variable
models. The obvious disadvantage of the parametric bootstrap is that one cannot learn
of the influence of an unknown DGP for ε by assuming it is known. For example, if
the bootstrap is being used to accommodate unknown heteroscedasticity in the model,
a parametric bootstrap that assumes homoscedasticity would defeat the purpose. The
more natural application would be a nonparametric-bootstrap, in which both xi and yi ,
and, implicitly, εi , are sampled simultaneously.

Example 15.5 Bootstrapping the Variance of the Median
There are few cases in which an exact expression for the sampling variance of the median
is known. Example 15.7, examines the case of the median of a sample of 500 observations
from the t distribution with 10 degrees of freedom. This is one of those cases in which there
is no exact formula for the asymptotic variance of the median. However, we can use the
bootstrap technique to estimate one empirically. In one run of the experiment, we obtained
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a sample of 500 observations for which we computed the median, −0.00786. We drew 100
samples of 500 with replacement from this sample of 500 and recomputed the median with
each of these samples. The empirical square root of the mean squared deviation around this
estimate of −0.00786 was 0.056. In contrast, consider the same calculation for the mean.
The sample mean is −0.07247. The sample standard deviation is 1.08469, so the standard
error of the mean is 0.04657. (The bootstrap estimate of the standard error of the mean was
0.052.) This agrees with our expectation in that the sample mean should generally be a more
efficient estimator of the mean of the distribution in a large sample. There is another approach
we might take in this situation. Consider the regression model

yi = α + εi ,

where εi has a symmetric distribution with finite variance. The least absolute deviations
estimator of the coefficient in this model is an estimator of the median (which equals the
mean) of the distribution. So, this presents another estimator. Once again, the bootstrap
estimator must be used to estimate the asymptotic variance of the estimator. Using the
same data, we fit this regression model using the LAD estimator. The coefficient estimate is
−.05397 with a bootstrap estimated standard error of 0.05872. The estimated standard error
agrees with the earlier one. The difference in the estimated coefficient stems from the different
computations—the regression estimate is the solution to a linear programming problem while
the earlier estimate is the actual sample median.

The bootstrap estimation procedure has also been suggested as a method of reduc-
ing bias. In principle, we would compute θ̂n− bias(θ̂n) = θ̂n −{E[θ̂n] − θ}. Since neither
θ nor the exact expectation of θ̂n is known, we estimate the first with the mean of the
bootstrap replications and the second with the estimator, itself. The revised estimator is

θ̂n,B = θ̂n −
[

1
B

B∑
b=1

θ̂(b)m − θ̂n

]
= 2θ̂n − ¯̂θ B. (15-6)

(Efron and Tibshirani (1994, p. 138) provide justification for what appears to be the
wrong sign on the correction.) Davidson and MacKinnon (2006) argue that the smaller
bias of the corrected estimator is offset by an increased variance compared to the un-
corrected estimator. [See, as well, Cameron and Trivedi (2005).] The authors offer some
other cautions for practitioners contemplating use of this technique. First, perhaps ob-
viously, the extension of the method to samples with dependent observations presents
some obstacles. For time-series data, the technique makes little sense—none of the boot-
strapped samples will be a time series, so the properties of the resulting estimators will
not satisfy the underlying the assumptions needed to make the technique appropriate.

A second common application of bootstrapping methods is the computation of
confidence intervals for parameters. This calculation will be useful when the underly-
ing data generating process is unknown, and the bootstrap method is being used to
obtain appropriate standard errors for estimated parameters. A natural approach to
bootstrapping confidence intervals for parameters would be to compute the estimated
asymptotic covariance matrix using (15-5) and then form confidence intervals in the
usual fashion. An improvement in terms of the bias of the estimator is provided by the
percentile method [Cameron and Trivedi (2005, p. 364)]. By this technique, during each
bootstrap replication, we compute

t∗
k (b) = θ̂k(b) − θ̂n,k

se.
(
θ̂n,k

) , (15-7)
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where “k” indicates the kth parameter in the model, and θ̂n,k, s.e.(θ̂n,k) and θ̂k(b) are the
original estimator and estimated standard error from the full sample and the bootstrap
replicate. Then, with all B replicates in hand, the bootstrap confidence interval is

θ̂n,k + t∗
k [α/2]se.(θ̂n,k) to θ̂n,k + t∗

k [1 − α/2]s.e.
(
θ̂n,k

)
. (15-8)

(Note that t∗
k [α/2] is negative, which explains the plus sign in left term.) For example, in

our application, next, we compute the estimator and the asymptotic covariance matrix
using the full sample. We compute 1,000 bootstrap replications, and compute the t
ratio in (15-7) for the education coefficient in each of the 1,000 replicates. After the
bootstrap samples are accumulated, we sorted the results from (15-7), and the 25th and
975th largest values provide the values of t*.

Example 15.6 demonstrates the computation of a confidence interval for a coef-
ficient using the bootstrap. The application uses the Cornwell and Rupert panel data
set used in Example 11.1 and several later applications. There are 595 groups of seven
observations in the data set. Bootstrapping with panel data requires an additional el-
ement in the computations. The bootstrap replications are based on sampling over i ,
not t . Thus, the bootstrap sample consists of n blocks of T (or Ti ) observations—the ith
group as a whole is sampled. This produces, then, a block bootstrap sample.

Example 15.6 Bootstrapping Standard Errors and Confidence Intervals
in a Panel

Example 11.1 presents least squares estimates and robust standard errors for the labor
supply equation using Cornwell and Rupert’s panel data set. There are 595 individuals and
seven periods in the data set. As seen in the results in Table 11.1 (reproduced below), using a
clustering correction in a robust covariance matrix for the least squares estimator produces
substantial changes in the estimated standard errors. Table 15.3 reproduces the least squares
coefficients and the standard errors associated with the conventional s2(X′X)−1 and the robust
standard errors using the clustering correction, and presents the bootstrapped standard
errors using 1,000 bootstrap replications. The resemblance between the original estimates
in the leftmost column and the average of the bootstrap replications in the rightmost column
is to be expected; the sample is quite large and the number of replications is large. What is
striking (and reassuring) is the ability of the bootstrapping procedure to detect and mimic the
effect of the clustering that is evident in the second and third columns of estimated standard
errors.

TABLE 15.3 Bootstrap Estimates of Standard Errors for a Wage Equation

Least Squares Standard Cluster Robust Bootstrap Bootstrap
Variable Estimate Err. Std. Err. Std. Err. Coefficient

Constant 5.25112 0.07129 0.1233 0.12421 5.25907
Wks 0.00422 0.00108 0.001538 0.00159 0.00409
South −0.05564 0.01253 0.02610 0.02557 −0.05417
SMSA 0.15167 0.01207 0.02405 0.02383 0.15140
MS 0.04845 0.02057 0.04085 0.04208 0.04676
Exp 0.04010 0.00216 0.004067 0.00418 0.04017
Exp2 −0.00067 0.00004744 0.00009111 0.00009235 −0.00067
Occ −0.14001 0.01466 0.02718 0.02733 −0.13912
Ind 0.04679 0.01179 0.02361 0.02350 0.04728
Union 0.09263 0.01280 0.02362 0.02390 0.09126
Ed 0.05670 0.00261 0.005552 0.00576 0.05656
Fem −0.36779 0.02510 0.04547 0.04562 −0.36855
Blk −0.16694 0.02204 0.04423 0.04663 −0.16811
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FIGURE 15.1 Distributions of Test Statistics.

We also computed a confidence interval for the coefficient on Ed using the conventional,
symmetric approach, bEd ± 1.96s(bEd) , and the percentile method in (15-7)–(15-8). The two
intervals are

Conventional: 0.051583 to 0.061825
Percentile: 0.045560 to 0.067909

Not surprisingly (given the larger standard errors), the percentile method gives a much wider
interval. Figure 15.1 shows a kernel density estimator of the distribution of the t statistics
computed using (15-7). It is substantially wider than the (approximate) standard normal den-
sity shown with it. This demonstrates the impact of the latent effect of the clustering on the
standard errors, and ultimately on the test statistic used to compute the confidence intervals.

15.5 MONTE CARLO STUDIES

Simulated data generated by the methods of the preceding sections have various uses
in econometrics. One of the more common applications is the analysis of the properties
of estimators or in obtaining comparisons of the properties of estimators. For exam-
ple, in time-series settings, most of the known results for characterizing the sampling
distributions of estimators are asymptotic, large-sample results. But the typical time
series is not very long, and descriptions that rely on T, the number of observations,
going to infinity may not be very accurate. Exact finite-sample properties are usually
intractable, however, which leaves the analyst with only the choice of learning about
the behavior of the estimators experimentally.

In the typical application, one would either compare the properties of two or more
estimators while holding the sampling conditions fixed or study how the properties of
an estimator are affected by changing conditions such as the sample size or the value
of an underlying parameter.
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Example 15.7 Monte Carlo Study of the Mean Versus the Median
In Example D.8, we compared the asymptotic distributions of the sample mean and the
sample median in random sampling from the normal distribution. The basic result is that
both estimators are consistent, but the mean is asymptotically more efficient by a factor of

Asy. Var[Median]
Asy. Var[Mean]

= π

2
= 1.5708.

This result is useful, but it does not tell which is the better estimator in small samples, nor does
it suggest how the estimators would behave in some other distribution. It is known that the
mean is affected by outlying observations whereas the median is not. The effect is averaged
out in large samples, but the small-sample behavior might be very different. To investigate
the issue, we constructed the following experiment: We sampled 500 observations from the
t distribution with d degrees of freedom by sampling d + 1 values from the standard normal
distribution and then computing

tir = zi r,d+1√
1
d

∑d
l=1 z2

i r,l

, i = 1, . . . , 500, r = 1, . . . , 100.

The t distribution with a low value of d was chosen because it has very thick tails and because
large outlying values have high probability. For each value of d, we generated R = 100
replications. For each of the 100 replications, we obtained the mean and median. Because
both are unbiased, we compared the mean squared errors around the true expectations using

Md = (1/R)
∑R

r =1(medianr − 0)2

(1/R)
∑R

r =1( x̄r − 0)2
.

We obtained ratios of 0.6761, 1.2779, and 1.3765 for d = 3, 6, and 10, respectively. (You
might want to repeat this experiment with different degrees of freedom.) These results agree
with what intuition would suggest. As the degrees of freedom parameter increases, which
brings the distribution closer to the normal distribution, the sample mean becomes more
efficient—the ratio should approach its limiting value of 1.5708 as d increases. What might
be surprising is the apparent overwhelming advantage of the median when the distribution
is very nonnormal even in a sample as large as 500.

The preceding is a very small application of the technique. In a typical study, there
are many more parameters to be varied and more dimensions upon which the results
are to be studied. One of the practical problems in this setting is how to organize the
results. There is a tendency in Monte Carlo work to proliferate tables indiscriminately.
It is incumbent on the analyst to collect the results in a fashion that is useful to the
reader. For example, this requires some judgment on how finely one should vary the
parameters of interest. One useful possibility that will often mimic the thought process
of the reader is to collect the results of bivariate tables in carefully designed contour
plots.

There are any number of situations in which Monte Carlo simulation offers the
only method of learning about finite-sample properties of estimators. Still, there are a
number of problems with Monte Carlo studies. To achieve any level of generality, the
number of parameters that must be varied and hence the amount of information that
must be distilled can become enormous. Second, they are limited by the design of the
experiments, so the results they produce are rarely generalizable. For our example, we
may have learned something about the t distribution, but the results that would apply
in other distributions remain to be described. And, unfortunately, real data will rarely
conform to any specific distribution, so no matter how many other distributions we
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analyze, our results would still only be suggestive. In more general terms, this problem
of specificity [Hendry (1984)] limits most Monte Carlo studies to quite narrow ranges
of applicability. There are very few that have proved general enough to have provided
a widely cited result.3

15.5.1 A MONTE CARLO STUDY: BEHAVIOR OF A TEST STATISTIC

Monte Carlo methods are often used to study the behavior of test statistics when their
true properties are uncertain. This is often the case with Lagrange multiplier statistics.
For example, Baltagi (2005) reports on the development of several new test statistics for
panel data models such as a test for serial correlation. Examining the behavior of a test
statistic is fairly straightforward. We are interested in two characteristics: the true size of
the test—that is, the probability that it rejects the null hypothesis when that hypothesis
is actually true (the probability of a type 1 error) and the power of the test—that is the
probability that it will correctly reject a false null hypothesis (one minus the probability
of a type 2 error). As we will see, the power of a test is a function of the alternative
against which the null is tested.

To illustrate a Monte Carlo study of a test statistic, we consider how a familiar
procedure behaves when the model assumptions are incorrect. Consider the linear
regression model

yi = α + βxi + γ zi + εi , εi | (xi , zi ) ∼ N[0, σ 2].

The Lagrange multiplier statistic for testing the null hypothesis that γ equals zero for
this model is

LM = e′
0X(X′X)−1X′e0/(e′

0e0/n)

where X = (1, x, z) and e0 is the vector of least squares residuals obtained from the
regression of y on the constant and x (and not z). (See Section 14.6.3.) Under the
assumptions of the preceding model, above, the large sample distribution of the LM
statistic is chi-squared with one degree of freedom. Thus, our testing procedure is to
compute LM and then reject the null hypothesis γ = 0 if LM is greater than the critical
value. We will use a nominal size of 0.05, so the critical value is 3.84. The theory for
the statistic is well developed when the specification of the model is correct. [See, for
example, Godfrey (1988).] We are interested in two specification errors. First, how
does the statistic behave if the normality assumption is not met? Because the LM
statistic is based on the likelihood function, if some distribution other than the normal
governs εi , then the LM statistic would not be based on the OLS estimator. We will
examine the behavior of the statistic under the true specification that εi comes from
a t distribution with five degrees of freedom. Second, how does the statistic behave
if the homoscedasticity assumption is not met? The statistic is entirely wrong if the
disturbances are heteroscedastic. We will examine the case in which the conditional
variance is Var[εi | (xi , zi )] = σ 2[exp(0.2xi )]2.

The design of the experiment is as follows: We will base the analysis on a sample
of 50 observations. We draw 50 observations on xi and zi from independent N[0, 1]
populations at the outset of each cycle. For each of 1,000 replications, we draw a sample
of 50 εi ’s according to the assumed specification. The LM statistic is computed and the

3Two that have withstood the test of time are Griliches and Rao (1969) and Kmenta and Gilbert (1968).
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TABLE 15.4 Size and Power Functions for LM Test

Gamma

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Model −0.1 −0.2 −0.3 −0.4 −0.5 −0.6 −0.7 −0.8 −0.9 −1.0

Normal 0.059 0.090 0.235 0.464 0.691 0.859 0.957 0.989 0.998 1.000 1.000
0.103 0.236 0.451 0.686 0.863 0.961 0.989 0.999 1.000 1.000

t (5) 0.052 0.083 0.169 0.320 0.508 0.680 0.816 0.911 0.956 0.976 0.994
0.080 0.177 0.312 0.500 0.677 0.822 0.921 0.953 0.984 0.993

Het. 0.071 0.098 0.249 0.457 0.666 0.835 0.944 0.984 0.995 0.998 1.000
0.107 0.239 0.442 0.651 0.832 0.940 0.985 0.996 1.000 1.000

proportion of the computed statistics that exceed 3.84 is recorded. The experiment is
repeated for γ = 0 to ascertain the true size of the test and for values of γ including
−1, . . . , −0.2,−0.1, 0, 0.1, 0.2, . . . , 1.0 to assess the power of the test. The cycle of tests
is repeated for the two scenarios, the t (5) distribution and the model with hetero-
scedasticity.

Table 15.4 lists the results of the experiment. The first row shows the expected
results for the LM statistic under the model assumptions for which it is appropriate.
The size of the test appears to be in line with the theoretical results. Comparing the first
and third rows, it appears that the presence of heteroscedasticity seems not to degrade
the power of the statistic. But the different distributional assumption does. Figure 15.2
plots the values in the table, and displays the characteristic form of the power function
for a test statistic.

FIGURE 15.2 Power Functions.
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15.5.2 A MONTE CARLO STUDY: THE INCIDENTAL
PARAMETERS PROBLEM

Section 14.9.6.d examines the maximum likelihood estimator of a panel data model with
fixed effects,

f (yit | xit) = g(yit, x′
itβ + αi , θ)

where the individual effects may be correlated with xit. The extra parameter vector θ

represents M other parameters that might appear in the model, such as the disturbance
variance, σ 2

ε , in a linear regression model with normally distributed disturbance. The
development there considers the mechanical problem of maximizing the log-likelihood

ln L =
n∑

i=1

Ti∑
t=1

ln g(yit, x′
itβ + αi , θ)

with respect to the n+K+Mparameters (α1, . . . , αn, β, θ). A statistical problem with this
estimator that was suggested there is a phenomenon labeled the incidental parameters
problem [see Neyman and Scott (1948), Lancaster (2000)]. With the exception of a very
small number of specific models (such as the Poisson regression model in Section 18.4.1),
the “brute force,” unconditional maximum likelihood estimator of the parameters in
this model is inconsistent. The result is straightforward to visualize with respect to the
individual effects. Suppose that β and θ were actually known. Then, each αi would be
estimated with Ti observations. Because Ti is assumed to be fixed (and small), there is
no asymptotic result to provide consistency for the MLE of αi . But, β and θ are esti-
mated with �i Ti = N observations, so their large sample behavior is less transparent.
One known result concerns the logit model for binary choice (see Sections 17.2–17.4).
Kalbfleisch and Sprott (1970), Andersen (1973), Hsiao (1996), and Abrevaya (1997)
have established that in the binary logit model, if Ti = 2, then plim β̂MLE = 2β. Two
other cases are known with certainty. In the linear regression model with fixed effects
and normally distributed disturbances, the slope estimator, bLSDV is unbiased and con-
sistent, however, the MLE of the variance, σ 2 converges to (T − 1)σ 2/T. (The degrees
of freedom correction will adjust for this, but the MLE does not correct for degrees of
freedom.) Finally, in the Poisson regression model (Section 18.4.7.b), the unconditional
MLE is consistent [see Cameron and Trivedi (1988)]. Almost nothing else is known with
certainty—that is, as a firm theoretical result—about the behavior of the maximum like-
lihood estimator in the presence of fixed effects. The literature appears to take as given
the qualitative wisdom of Hsiao and Abrevaya, that the FE/MLE is inconsistent when
T is small and fixed. (The implication that the severity of the inconsistency declines as
T increases makes sense, but, again, remains to be shown analytically.)

The result for the two-period binary logit model is a standard result for discrete
choice estimation. Several authors, all using Monte Carlo methods have pursued the
result for the logit model for larger values of T. [See, for example, Katz (2001).] Greene
(2004) analyzed the incidental parameters problem for other discrete choice models
using Monte Carlo methods. We will examine part of that study.

The current studies are preceded by a small study in Heckman (1981) which exam-
ined the behavior of the fixed effects MLE in the following experiment:

zit = 0.1t + 0.5zi,t−1 + uit, zi0 = 5 + 10.0ui0,

uit ∼ U[−0.5, 0.5], i = 1, . . . , 100, t = 0, . . . , 8,

Yit = στ τi + βzit + εit, τi ∼ N[0, 1], εit ∼ N[0, 1],
yit = 1 if Yit > 0, 0 otherwise.
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Heckman attempted to learn something about the behavior of the MLE for the probit
model with T = 8. He used values of β = −1.0, −0.1, and 1.0 and στ = 0.5, 1.0, and 3.0.
The mean values of the maximum likelihood estimates of β for the nine cases are as
follows:

β = −1.0 β = −0.1 β = 1.0
στ = 0.5 −0.96 −0.10 0.93
στ = 1.0 −0.95 −0.09 0.91
στ = 3.0 −0.96 −0.10 0.90.

The findings here disagree with the received wisdom. Where there appears to be a bias
(that is, excluding the center column), it seems to be quite small, and toward, not away
from zero.

The Heckman study used a very small sample and, moreover, analyzed the fixed
effects estimator in a random effects model (note that τi is independent of zit). Greene
(2004a), using the same parameter values, number of replications, and sample design,
found persistent biases away from zero on the order of 15–20 percent. Numerous authors
have extended the logit result for T = 2 with larger values of T, and likewise persistently
found biases, away from zero that diminish with increases in T. Greene (2004a) redid
the experiment for the logit model and then replicated it for the probit and ordered
probit models. The experiment is designed as follows: All models are based on the same
index function

wit = αi + βxit + δdit, where β = δ = 1,

xit ∼ N[0, 1], dit = 1[xit + hit > 0], where hit ∼ N[0, 1],
αi =

√
T x̄i + vi , vi ∼ N[0, 1].

The regressors dit and xit are constructed to be correlated. The random term hit is used
to produce independent variation in dit. There is, however, no within group correlation
in xit or dit built into the data generator. (Other experiments suggested that the marginal
distribution of xit mattered little to the outcome of the experiment.) The correlations
between the variables are approximately 0.7 between xit and dit, 0.4 between αi and
xit, and 0.2 between αi and dit. The individual effect is produced from independent
variation, vi as well as the group mean of xit. The latter is scaled by

√
T to maintain the

unit variances of the two parts—without the scaling, the covariance between αi and xit

falls to zero as T increases and x̄i converges to its mean of zero). Thus, the data generator
for the index function satisfies the assumptions of the fixed effects model. The sample
used for the results below contains n = 1,000 individuals. The data generating processes
for the discrete dependent variables are as follows:

probit: yit = 1[wit + εit > 0], εit ∼ N[0, 1],

ordered probit: yit = 1[wit + εit > 0] + 1[wit + εit > 3], εit ∼ N[0, 1],

logit: yit = 1[wit + vit > 0], vit = log[uit/(1 − uit)], uit ∼ U[0, 1].

(The three discrete dependent variables are described in Chapters 17 and 18.)
Table 15.5 reports the results of computing the MLE with 200 replications. Models

were fit with T = 2, 3, 5, 8, 10, and 20. (Note that this includes Heckman’s experiment.)
Each model specification and group size (T) is fit 200 times with random draws for εit

or uit. The data on the regressors were drawn at the beginning of each experiment (that
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TABLE 15.5 Means of Empirical Sampling Distributions, N = 1,000 Individuals
Based on 200 Replications

T = 2 T = 3 T = 5 T = 8 T = 10 T = 20

β δ β δ β δ β δ β δ β δ

Logit Coeff 2.020 2.027 1.698 1.668 1.379 1.323 1.217 1.156 1.161 1.135 1.069 1.062
Logit M.E.a 1.676 1.660 1.523 1.477 1.319 1.254 1.191 1.128 1.140 1.111 1.034 1.052
Probit Coeff 2.083 1.938 1.821 1.777 1.589 1.407 1.328 1.243 1.247 1.169 1.108 1.068
Probit M.E.a 1.474 1.388 1.392 1.354 1.406 1.231 1.241 1.152 1.190 1.110 1.088 1.047
Ord. Probit 2.328 2.605 1.592 1.806 1.305 1.415 1.166 1.220 1.131 1.158 1.058 1.068
aAverage ratio of estimated marginal effect to true marginal effect.

is, for each T) and held constant for the replications. The table contains the average
estimate of the coefficient and, for the binary choice models, the partial effects. The
value at the extreme left corresponds to the received result, the 100 percent bias in
the T = 2 case. The remaining values show, as intuition would suggest, that the bias
decreases with increasing T. The benchmark case of T = 8, appears to be less benign
than Heckman’s results suggested. One encouraging finding for the model builder is that
the biases in the estimated marginal effects appears to be somewhat less than for the
coefficients. Greene (2004b) extends this analysis to some other models, including the
tobit and truncated regression models discussed in Chapter 19. The results there suggest
that the conventional wisdom for the tobit model may not be correct—the incidental
parameters problem seems to appear in the estimator of σ 2 in the tobit model, not in
the estimators of the slopes. This is consistent with the linear regression model, but not
with the binary choice models.

15.6 SIMULATION-BASED ESTIMATION

Sections 15.3–15.5 developed a set of tools for inference about model parameters us-
ing simulation methods. This section will describe methods for using simulation as part
of the estimation process. The modeling framework arises when integrals that cannot
be computed directly appear in the estimation criterion function (sum of squares, log-
likelihood, and so on). To illustrate, and begin the development, in Section 15.6.1, we will
construct a nonlinear model with random effects. Section 15.6.2 will describe how sim-
ulation is used to evaluate integrals for maximum likelihood estimation. Section 15.6.3
will develop an application, the random effects regression model.

15.6.1 RANDOM EFFECTS IN A NONLINEAR MODEL

In Example 11.16, we considered a nonlinear regression model for the number of doctor
visits in the German Socioeconomic Panel. The basic form of the nonlinear regression
model is

E[ yit|xit] = exp(x′
itβ), t = 1, . . . , Ti , i = 1, . . . , n.

In order to accommodate unobserved heterogeneity in the panel data, we extended the
model to include a random effect,

E[ yit|xit, ui ] = exp(x′
itβ + ui ), (15-9)
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where ui is an unobserved random effect with zero mean and constant variance, pos-
sibly normally distributed—we will turn to that shortly. We will now go a step further
and specify a particular probability distribution for yit. Since it is a count, the Poisson
regression model would be a natural choice,

p(yit|xit, ui ) = exp(−μit)μ
yit
it

yit!
, μit = exp(x′

itβ + ui ). (15-10)

Conditioned on xit, and ui , the Ti observations for individual i are independent. That is,
by conditioning on ui , we treat them as data, the same as xit. Thus, the Ti observations
are independent when they are conditioned on xit and ui . The joint density for the Ti

observations for individual i is the product,

p(yi1, yi2, . . . , yi,Ti |Xi , ui ) =
Ti∏

t=1

exp(−μit)μ
yit
it

yit!
, μit = exp(x′

itβ + ui ), t = 1, . . . , Ti .

(15-11)
In principle at this point, the log-likelihood function to be maximized would be

ln L =
n∑

i=1

ln

[
Ti∏

t=1

exp(−μit)μ
yit
it

yit!

]
, μit = exp(x′

itβ + ui ). (15-12)

But, it is not possible to maximize this log-likelihood because the unobserved ui , i =
1, . . . , n, appears in it. The joint distribution of (yi1, yi2, . . . , yi,Ti , ui ) is equal to the
marginal distribution for ui times the conditional distribution of yi = (yi1, . . . , yi,Ti )

given ui :

p(yi1, yi2, . . . , yi,Ti , ui |Xi ) = p(yi1, yi2, . . . , yi,Ti |Xi , ui ) f (ui ),

where f (ui ) is the marginal density for ui . Now, we can obtain the marginal distribution
of (yi1,yi2,. . . ,yi,Ti ) without ui by

p(yi1, yi2, . . . , yi,Ti |Xi ) =
∫

ui

p(yi1, yi2, . . . , yi,Ti |Xi , ui ) f (ui )dui .

For the specific application, with the Poisson conditional distributions for yit|ui and a
normal distribution for the random effect,

p(yi1, yi2, . . . , yi,Ti |Xi ) =
∫ ∞

−∞

[
Ti∏

t=1

exp(−μit)μ
yit
it

yit!

]
1
σ

φ
(ui

σ

)
dui , μit = exp(x′

itβ + ui ).

The log-likelihood function will now be

ln L =
n∑

i=1

ln

{∫ ∞

−∞

[
Ti∏

t=1

exp(−μit)μ
yit
it

yit!

]
1
σ

φ
(ui

σ

)
dui

}
, μit = exp(x′

itβ + ui ). (15-13)

The optimization problem is now free of the unobserved ui , but that complication has
been traded for another one, the integral that remains in the function.

To complete this part of the derivation, we will simplify the log-likelihood function
slightly in a way that will make it fit more naturally into the derivations to follow. Make
the change of variable ui = σwi where wi has mean zero and standard deviation one.
Then, the Jacobian is dui = σdwi , and the limits of integration for wi are the same as for
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ui . Making the substitution and multiplying by the Jacobian, the log-likelihood function
becomes

ln L =
n∑

i=1

ln

{∫ ∞

−∞

[
Ti∏

t=1

exp(−μit)μ
yit
it

yit!

]
φ (wi ) dwi

}
, μit = exp(x′

itβ + σwi ). (15-14)

The log-likelihood is then maximized over (β, σ ). The purpose of the simplification is to
parameterize the model so that the distribution of the variable that is being integrated
out has no parameters of its own. Thus, in (15-14), wi is normally distributed with mean
zero and variance one.

In the next section, we will turn to how to compute the integrals. Section 14.9.6.c
analyzes this model and suggests the Gauss–Hermite quadrature method for computing
the integrals. In this section, we will derive a method based on simulation, Monte Carlo
integration.4

15.6.2 MONTE CARLO INTEGRATION

Integrals often appear in econometric estimators in “open form,” that is, in a form for
which there is no specific closed form function that is equivalent to them. (for example,
the integral,

∫ t
0 θ exp(−θw)dw = 1 − exp(−θ t), is in closed form. The integral in (15-

14) is in open form.) There are various devices available for approximating open form
integrals—Gauss–Hermite and Gauss–Laguerre quadrature noted in Section 14.9.6.c
and in Appendix E2.4 are two. The technique of Monte Carlo integration can often be
used when the integral is in the form

h(y) =
∫

w
g(y|w) f (w)dw = Ew[g(y|w)],

where f (w) is the density of w and and w is a random variable that can be simulated.
[There are some necessary conditions on w and g(y|w) that will be met in the applications
that interest us here. Some details appear in Cameron and Trivedi (2005) and Train
(2003).]

If w1, w2, . . . , wn are a random sample of observations on the random variable w
and g(w) is a function of w with finite mean and variance, then by the law of large
numbers [Theorem D.4 and the corollary in (D-5)],

plim
1
n

n∑
i=1

g(wi ) = E[g(w)].

The function in (15-14) is in this form;

∫ ∞

−∞

[
Ti∏

t=1

exp[− exp(x′
itβ + σwi )][exp(x′

itβ + σwi )]yit ]
yit!

]
φ (wi ) dwi

= Ewi [g(yi1, yi2, . . . , yiTi |wi , Xi , β, σ )]

4The term “Monte Carlo” is in reference to the casino at Monte Carlo, where random number generation is
a crucial element of the business.
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where

g(yi1, yi2, . . . , yiTi |wi , Xi , β, σ ) =
Ti∏

t=1

exp[− exp(x′
itβ + σwi )][exp(x′

itβ + σwi )]yit ]
yit!

and wi is a random variable with standard normal distribution. It follows, then, that

plim
1
R

R∑
r=1

Ti∏
t=1

exp[− exp(x′
itβ + σwir)][exp(x′

itβ + σwir)]yit ]
yit!

=
∫ ∞

−∞

[
Ti∏

t=1

exp[− exp(x′
itβ + σwi )][exp(x′

itβ + σwi )]yit ]
yit!

]
φ (wi ) dwi .

(15-15)

This suggests the strategy for computing the integral. We can use the methods developed
in Section 15.2 to produce the necessary set of random draws on wi from the standard
normal distribution and then compute the approximation to the integral according to
(15-15).

Example 15.8 Fractional Moments of the Truncated Normal
Distribution

The following function appeared in Greene’s (1990) study of the stochastic frontier model:

h( M, ε) =
∫ ∞

0
zM 1

σ
φ

[
z−(−ε−θσ2)

σ

]
dz

∫ ∞
0

1
σ
φ

[
z−(−ε−θσ2)

σ

]
dz

.

The integral only exists in closed form for integer values of M. However, the weighting function
that appears in the integral is of the form

f (z|z > 0) = f (z)
Prob[z > 0]

=
1
σ
φ

(
z−μ

σ

)
∫ ∞

0
1
σ
φ

(
z−μ

σ

)
dz

.

This is a truncated normal distribution. It is the distribution of a normally distributed variable z
with mean μ and standard deviation σ , conditioned on z being greater than zero. The integral
is equal to the expected value of zM given that z is greater than zero when z is normally
distributed with mean μ = −ε − θσ 2 and variance σ 2.

The truncated normal distribution is examined in Section 19.2. The function h( M, ε) is the
expected value of zM when z is the truncation of a normal random variable with mean μ and
standard deviation σ . To evaluate the integral by Monte Carlo integration, we would require
a sample z1, . . . , zR from this distribution. We have the results we need in (15-4) with L = 0
so PL = �[0 − (−ε − θσ 2)/σ ] = �(ε/σ + θσ ) and U = +∞ so PU = 1. Then, a draw on z is
obtained by

z = μ + σ�−1[PL + F (1 − PL ) ].

where F is the primitive draw from U [0, 1]. Finally, the integral is approximated by the simple
average of the draws,

h( M, ε) ≈ 1
R

R∑
r =1

z[ε, θ , σ, Fr ]M .

This is an application of Monte Carlo integration. In certain cases, an integral can
be approximated by computing the sample average of a set of function values. The
approach taken here was to interpret the integral as an expected value. Our basic
statistical result for the behavior of sample means implies that with a large enough
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sample, we can approximate the integral as closely as we like. The general approach
is widely applicable in Bayesian econometrics and has begun to appear in classical
statistics and econometrics as well.5

15.6.2.a Halton Sequences and Random Draws
for Simulation-Based Integration

Monte Carlo integration is used to evaluate the expectation

E[g(x)] =
∫

x
g(x) f (x) dx

where f (x) is the density of the random variable x and g(x) is a smooth function. The
Monte Carlo approximation is

̂E[g(x)] = 1
R

R∑
r=1

g(xr ).

Convergence of the approximation to the expectation is based on the law of large
numbers—a random sample of draws on g(x) will converge in probability to its ex-
pectation. The standard approach to simulation-based integration is to use random
draws from the specified distribution. Conventional simulation-based estimation uses
a random number generator to produce the draws from a specified distribution. The
central component of this approach is drawn from the standard continuous uniform
distribution, U[0, 1]. Draws from other distributions are obtained from these draws by
using transformations. In particular, for a draw from the normal distribution, where ui

is one draw from U[0, 1], vi = �−1(ui ). Given that the initial draws satisfy the necessary
assumptions, the central issue for purposes of specifying the simulation is the number
of draws. Good performance in this connection requires very large numbers of draws.
Results differ on the number needed in a given application, but the general finding is that
when simulation is done in this fashion, the number is large (hundreds or thousands). A
consequence of this is that for large-scale problems, the amount of computation time in
simulation-based estimation can be extremely large. Numerous methods have been de-
vised for reducing the numbers of draws needed to obtain a satisfactory approximation.
One such method is to introduce some autocorrelation into the draws—a small amount
of negative correlation across the draws will reduce the variance of the simulation.
Antithetic draws, whereby each draw in a sequence is included with its mirror image
(wi and −wi for normally distributed draws, wi and 1 − wi for uniform, for example) is
one such method. [See Geweke (1988) and Train (2009, Chapter 9).]

Procedures have been devised in the numerical analysis literature for taking “intel-
ligent” draws from the uniform distribution, rather than random ones. [See Train (1999,
2009) and Bhat (1999) for extensive discussion and further references.] An emerging
literature has documented dramatic speed gains with no degradation in simulation per-
formance through the use of a smaller number of Halton draws or other constructed,
nonrandom sequences instead of a large number of random draws. These procedures
appear to reduce vastly the number of draws needed for estimation (sometimes by a

5See Geweke (1986, 1988, 1989, 2005) for discussion and applications. A number of other references are given
in Poirier (1995, p. 654) and Koop (2003).
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factor of 90 percent or more) and reduce the simulation error associated with a given
number of draws. In one application of the method to be discussed here, Bhat (1999)
found that 100 Halton draws produced lower simulation error than 1,000 random num-
bers.

A Halton sequence is generated as follows: Let r be a prime number. Expand the
sequence of integers g = 1, 2, . . . in terms of the base r as

g =
I∑

i=0

bir i where, by construction, 0 ≤ bi ≤ r − 1 and r I ≤ g < r I+1.

The Halton sequence of values that corresponds to this series is

H(g) =
I∑

i=0

bir−i−1.

For example, using base 5, the integer 37 has b0 = 2, b1 = 2, and b3 = 1. Then

H5(37) = 2 × 5−1 + 2 × 5−2 + 1 × 5−3 = 0.488.

The sequence of Halton values is efficiently spread over the unit interval. The sequence
is not random as the sequence of pseudo-random numbers is; it is a well-defined de-
terministic sequence. But, randomness is not the key to obtaining accurate approxima-
tions to integrals. Uniform coverage of the support of the random variable is the central
requirement. The large numbers of random draws are required to obtain smooth and
dense coverage of the unit interval. Figures 15.3 and 15.4 show two sequences of 1,000
Halton draws and two sequences of 1,000 pseudo-random draws. The Halton draws are
based on r = 7 and r = 9. The clumping evident in the first figure is the feature (among
others) that mandates large samples for simulations.

FIGURE 15.3 Bivariate Distribution of Random Uniform Draws.
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FIGURE 15.4 Bivariate Distribution of Halton (7) and Halton (9).

Example 15.9 Estimating the Lognormal Mean
We are interested in estimating the mean of a standard lognormally distributed variable.
Formally, this is

E [ y] =
∫ ∞

−∞
exp( x)

1√
2π

exp

[
−1

2
x2

]
dx = 1.649.

To use simulation for the estimation, we will average n draws on y = exp( x) where x is drawn
from the standard normal distribution. To examine the behavior of the Halton sequence as
compared to that of a set of random draws, we did the following experiment. Let xi ,t = the
sequence of values for a standard normally distributed variable. We draw t = 1, . . . , 10,000
draws. For i = 1, we used a random number generator. For i = 2, we used the sequence of the
first 10,000 Halton draws using r = 7. The Halton draws were converted to standard normal
using the inverse normal transformation. To finish preparation of the data, we transformed xi ,t
to yi ,t = exp( xi ,t ) Then, for n = 100,110, . . . , 10,000, we averaged the first n observations in
the sample. Figure 15.5 plots the evolution of the sample means as a function of the sample
size. The lower trace is the sequence of Halton-based means. The greater stability of the
Halton estimator is clearly evident in the figure.

15.6.2.b Computing Multivariate Normal Probabilities Using
the GHK Simulator

The computation of bivariate normal probabilities is typically done using quadrature
and requires a large amount of computing effort. Quadrature methods have been
developed for trivariate probabilities as well, but the amount of computing effort
needed at this level is enormous. For integrals of level greater than three, satisfac-
tory (in terms of speed and accuracy) direct approximations remain to be developed.
Our work thus far does suggest an alternative approach. Suppose that x has a K-variate
normal distribution with mean vector 0 and covariance matrix �. (No generality is sacri-
ficed by the assumption of a zero mean, because we could just subtract a nonzero mean
from the random vector wherever it appears in any result.) We wish to compute the
K-variate probability, Prob[a1 < x1 < b1, a2 < x2 < b2, . . . , aK < xK < bK]. Our Monte
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FIGURE 15.5 Estimates of E [exp( x) ] Based on Random Draws and
Halton Sequences, by Sample Size.

Carlo integration technique is well suited for this problem. As a first approach, consider
sampling R observations, xr , r = 1, . . . , R, from this multivariate normal distribution,
using the method described in Section 15.2.4. Now, define

dr = 1[a1 < xr1 < b1, a2 < xr2 < b2, . . . , aK < xr K < bK].

(That is, dr = 1 if the condition is true and 0 otherwise.) Based on our earlier results, it
follows that

plim d̄ = plim
1
R

R∑
r=1

dr = Prob[a1 < x1 < b1, a2 < x2 < b2, . . . , aK < xK < bK].6

This method is valid in principle, but in practice it has proved to be unsatisfactory for
several reasons. For large-order problems, it requires an enormous number of draws
from the distribution to give reasonable accuracy. Also, even with large numbers of
draws, it appears to be problematic when the desired tail area is very small. Nonetheless,
the idea is sound, and recent research has built on this idea to produce some quite
accurate and efficient simulation methods for this computation. A survey of the methods
is given in McFadden and Ruud (1994).7

Among the simulation methods examined in the survey, the GHK smooth recursive
simulator appears to be the most accurate.8 The method is surprisingly simple. The

6This method was suggested by Lerman and Manski (1981).
7A symposium on the topic of simulation methods appears in Review of Economic Statistics, Vol. 76, November
1994. See, especially, McFadden and Ruud (1994), Stern (1994), Geweke, Keane, and Runkle (1994), and
Breslaw (1994). See, as well, Gourieroux and Monfort (1996).
8See Geweke (1989), Hajivassiliou (1990), and Keane (1994). Details on the properties of the simulator are
given in Börsch-Supan and Hajivassil (1993).
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general approach uses

Prob[a1 < x1 < b1, a2 < x2 < b2, . . . , aK < xK < bK] ≈ 1
R

R∑
r=1

K∏
k=1

Qrk,

where Qrk are easily computed univariate probabilities. The probabilities Qrk are com-
puted according to the following recursion: We first factor � using the Cholesky fac-
torization � = CC′, where C is a lower triangular matrix (see Section A.6.11). The
elements of C are lkm, where lkm = 0 if m > k. Then we begin the recursion with

Qr1 = �(b1/ l11) − �(a1/ l11).

Note that l11 = σ11, so this is just the marginal probability, Prob[a1 < x1 < b1]. Now,
using (15-4), we generate a random observation εr1 from the truncated standard normal
distribution in the range

Ar1 to Br1 = a1/ l11 to b1/ l11.

(Note, again, that the range is standardized since l11 = σ11.) For steps k = 2, . . . , K,
compute

Ark =
[

ak −
k−1∑
m=1

lkmεrm

]/
lkk,

Brk =
[

bk −
k−1∑
m=1

lkmεrm

]/
lkk.

Then,

Qrk = �(Brk) − �(Ark).

Finally, in preparation for the next step in the recursion, we generate a random draw
from the truncated standard normal distribution in the range Ark to Brk. This process is
replicated R times, and the estimated probability is the sample average of the simulated
probabilities.

The GHK simulator has been found to be impressively fast and accurate for fairly
moderate numbers of replications. Its main usage has been in computing functions
and derivatives for maximum likelihood estimation of models that involve multivariate
normal integrals. We will revisit this in the context of the method of simulated moments
when we examine the probit model in Chapter 17.

15.6.3 SIMULATION-BASED ESTIMATION OF RANDOM
EFFECTS MODELS

In Section 15.6.2, (15-10), and (15-14), we developed a random effects specification for
the Poisson regression model. For feasible estimation and inference, we replace the
log-likelihood function,

ln L =
n∑

i=1

ln

{∫ ∞

−∞

[
Ti∏

t=1

exp[− exp(x′
itβ + σwi )][exp(x′

itβ + σwi )]yit ]
yit!

]
φ (wi ) dwi

}
,
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with the simulated log-likelihood function,

ln LS =
n∑

i=1

ln

{
1
R

R∑
r=1

Ti∏
t=1

exp[− exp(x′
itβ + σwir)][exp(x′

itβ + σwir)]yit ]
yit!

}
. (15-16)

We now consider how to estimate the estimate the parameters via maximum simulated
likelihood. In spite of its complexity, the simulated log-likelihood will be treated in
the same way that other log-likelihoods were handled in Chapter 14. That is, we treat
ln LS as a function of the unknown parameters conditioned on the data, ln LS(β, σ )

and maximize the function using the methods described in Appendix E, such as the
DFP or BFGS gradient methods. What is needed here to complete the derivation are
expressions for the derivatives of the function. We note that the function is a sum of n
terms; asymptotic results will be obtained in n; each observation can be viewed as one
Ti -variate observation.

In order to develop a general set of results, it will be convenient to write each single
density in the simulated function as

Pitr(β, σ ) = f (yit|xit, wir, β, σ ) = Pitr(θ) = Pitr.

For our specific application in (15-16),

Pitr = exp[− exp(x′
itβ + σwir)][exp(x′

itβ + σwir)]yit ]
yit!

.

The simulated log-likelihod is, then,

ln LS =
n∑

i=1

ln

{
1
R

R∑
r=1

Ti∏
t=1

Pitr(θ)

}
. (15-17)

Continuing this shorthand, then, we will also define

Pir = Pir(θ) =
Ti∏

t=1

Pitr(θ),

so that

ln LS =
n∑

i=1

ln

{
1
R

R∑
r=1

Pir(θ)

}
.

And, finally,

Pi = Pi (θ) = 1
R

R∑
r=1

Pir,

so that

ln LS =
n∑

i=1

lnPi (θ). (15-18)

With this general template, we will be able to accommodate richer specifications of the
index function, now x′

itβ + σwi , and other models such as the linear regression, binary
choice models, and so on, simply by changing the specification of Pitr.

The algorithm will use the usual procedure,

θ̂
(k) = θ̂

(k−1) + update vector,
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starting from an initial value, θ̂
(0)

, and will exit when the update vector is sufficiently
small. A natural initial value would be from a model with no random effects; that is, the
pooled estimator for the linear or Poisson or other model with σ = 0. Thus, at entry to
the iteration (update), we will compute

ln L̂(k−1)
S

=
n∑

i=1

ln

{
1
R

R∑
r=1

Ti∏
t=1

exp
[ − exp

(
x′

itβ̂
(k−1) + σ̂ (k−1)wir

)][
exp

(
x′

itβ̂
(k−1) + σ̂ (k−1)wir

)]yit ]
yit!

}
.

To use a gradient method for the update, we will need the first derivatives of the function.
Computation of an asymptotic covariance matrix may require the Hessian, so we will
obtain this as well.

Before proceeding, we note two important aspects of the computation. First, a
question remains about the number of draws, R, required for the maximum simulated
likelihood estimator to be consistent. The approximated function,

Êw[ f (y|x, w)] = 1
R

R∑
r=1

f (y|x, wr )

is an unbiased estimator of Ew[ f (y|x, w)]. However, what appears in the simulated log-
likelihood is ln Ew[ f (y|x, w)], and the log of the estimator is a biased estimator of the
log of its expectation. To maintain the asymptotic equivalence of the MSL estimator of θ

and the true MLE (if w were observed), it is necessary for the estimators of these terms
in the log-likelihood to converge to their expectations faster than the expectation of ln
L converges to its expectation. The requirement [see Gourieroux and Monfort (1996)]
is that n1/2/R → 0. The estimator remains consistent if n1/2 and R increase at the same
rate; however, the asymptotic covariance matrix of the MSL estimator will then be
larger than that of the true MLE. In practical terms, this suggests that the number of
draws be on the order of n.5+δ for some positive δ. [This does not state, however, what
R should be for a given n; it only establishes the properties of the MSL estimator as
n increases. For better or worse, researchers who have one sample of n observations
often rely on the numerical stability of the estimator with respect to changes in Ras their
guide. Hajivassiliou (2000) gives some suggestions.] Note, as well, that the use of Halton
sequences or any other autocorrelated sequences for the simulation, which is becoming
more prevalent, interrupts this result. The appropriate counterpart to the Gourieroux
and Monfort result for random sampling remains to be derived. One might suspect that
the convergence result would persist, however. The usual standard is several hundred.

Second, it is essential that the same (pseudo- or Halton) draws be used every time
the function or derivatives or any function involving these is computed for observation
i. This can be achieved by creating the pool of draws for the entire sample before
the optimization begins, and simply dipping into the same point in the pool each time a
computation is required for observation i . Alternatively, if computer memory is an issue
and the draws are re-created for each individual each time, the same practical result can
be achieved by setting a preassigned seed for individual i, seed(i) = s(i) for some simple
monotonic function of i , and resetting the seed when draws for individual i are needed.

To obtain the derivatives, we begin with

∂ ln LS

∂θ
=

n∑
i=1

(1/R)
∑R

r=1 ∂
(∏Ti

t=1 Pitr(θ)
) /

∂θ

(1/R)
∑R

r=1

∏Ti
t=1 Pitr(θ)

. (15-19)
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For the derivative term,

∂

Ti∏
t=1

Pitr(θ)/∂θ =
(

Ti∏
t=1

Pitr(θ)

)
∂

(
ln

Ti∏
t=1

Pitr(θ)

)/
∂θ

=
(

Ti∏
t=1

Pitr(θ)

)
Ti∑

t=1

∂ ln Pitr(θ)/∂θ

(15-20)

= Pir(θ)

(
Ti∑

t=1

∂ ln Pitr(θ)/∂θ

)
= Pir(θ)

Ti∑
t=1

gitr(θ)

= Pir(θ)gir(θ).

Now, insert the result of (15-20) in (15-19) to obtain

∂ ln LS(θ)

∂θ
=

n∑
i=1

R∑
r=1

Pir(θ)gir(θ)

R∑
r=1

Pir(θ)

. (15-21)

Define the weight Qir(θ) = Pir(θ)/�R
r=1 Pir(θ) so that 0 < Qir(θ) < 1 and�R

r=1 Qir(θ) = 1.
Then,

∂ ln LS(θ)

∂θ
=

n∑
i=1

R∑
r=1

Qir(θ)gir(θ) =
n∑

i=1

ḡi (θ). (15-22)

To obtain the second derivatives, define Hitr(θ) = ∂2 ln Pitr(θ)/∂θ∂θ ′ and let

Hir(θ) =
Ti∑

t=1

Hitr(θ)

and

H̄i (θ) =
R∑

r=1

Qir(θ)Hir(θ). (15-23)

Then, working from (15-21), the second derivatives matrix breaks into three parts as
follows:

∂2 ln LS(θ)

∂θ∂θ ′ =
n∑

i=1

⎡
⎢⎢⎢⎢⎢⎢⎣

∑R
r=1 Pir(θ)Hir(θ)∑R

r=1 Pir(θ)
+

∑R
r=1 Pir(θ)gir(θ)gir(θ)′∑R

r=1 Pir(θ)

−
[∑R

r=1 Pir(θ)gir(θ)
] [∑R

r=1 Pir(θ)gir(θ)
]′

[∑R
r=1 Pir(θ)

]2

⎤
⎥⎥⎥⎥⎥⎥⎦

.

We can now use (15-20)–(15-23) to combine these terms;

∂2 ln LS

∂θ∂θ ′ =
n∑

i=1

{
H̄i (θ) +

R∑
r=1

Qir(θ) [gir(θ) − ḡi (θ)] [gir(θ) − ḡi (θ)]′
}

. (15-24)
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An estimator of the asymptotic covariance matrix for the MSLE can be obtained by
computing the negative inverse of this matrix.

Example 15.10 Poisson Regression Model with Random Effects
For the Poisson regression model, θ = (β ′, σ ) ′ and

Pitr (θ ) = exp[− exp(x′
itβ + σwir ) ][exp(x′

itβ + σwir ) ]yit ]
yit!

= exp[−μitr (θ ) ]μitr (θ ) yit

yit!

gitr (θ ) = [ yit − μitr (θ ) ]

(
xit
wir

)

Hitr (θ ) = −μitr (θ )

(
xit
wir

)(
xit
wir

)′
.

(15-25)

Estimates of the random effects model parameters would be obtained by using these
expressions in the preceding general template. We will apply these results in an applica-
tion in Chapter 19 where the Poisson regression model is developed in greater detail.

Example 15.11 Maximum Simulated Likelhood Estimation of the
Random Effects Linear Regression Model

The preceding method can also be used to estimate a linear regression model with random
effects. We have already seen two ways to estimate this model, using two-step FGLS in
Section 11.5.3 and by (closed form) maximum likelihood in Section 14.9.6.a. It might seem
reduntant to construct yet a third estimator for the model. However, this third approach will
be the only feasible method when we generalize the model to have other random parame-
ters in the next section. To use the simulation estimator, we define θ = (β, σu, σε) . We will
require

Pitr (θ ) = 1

σε

√
2π

exp

[
− ( yit − x′

itβ − σuwir ) 2

2σ 2
ε

]
,

gitr (θ ) =

⎡
⎢⎢⎣

(
( yit − x′

itβ − σuwir )
σ 2

ε

)(
xit
wir

)

( yit − x′
itβ − σuwir ) 2

σ 3
ε

− 1
σε

⎤
⎥⎥⎦ =

⎡
⎣ (εitr/σ

2
ε )

(
xit
wir

)

(1/σε) [(ε2
itr/σ

2
ε ) − 1]

⎤
⎦ ,

Hitr (θ ) =

⎡
⎢⎣−(1/σ 2

ε )

(
xit
wir

)(
xit
wir

)′
−(2εitr/σ

3
ε )

(
xit
wir

)

−(2εitr/σ
3
ε ) ( x′

it wir ) −(3ε2
itr/σ

4
ε ) + (1/σ 2

ε )

⎤
⎥⎦ .

(15-26)

Note in the computation of the disturbance variance, σ 2
ε , we are using the sum of squared

simulated residuals. However, the estimator of the variance of the heterogeneity, σu, is not
being computed as a mean square. It is essentially the regression coefficient on wir . One
surprising implication is that the actual estimate of σu can be negative. This is the same
result that we have encountered in other situations. In no case is there a natural estimator
of σ 2

u that is based on a sum of squares. However, in this context, there is yet another
surprising aspect of this calculation. In the simulated log-likelihood function, if every wir for
every individual were changed to −wir and σu is changed to −σu, then the exact same value
of the function and all derivatives results. The implication is that the sign of σu is not identified
in this setting. With no loss of generality, it is normalized to positive (+) to be consistent with
the underlying theory that it is a standard deviation.
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15.7 A RANDOM PARAMETERS LINEAR
REGRESSION MODEL

We will slightly reinterpret the random effects model as

yit = β0i + x′
i t1β1 + εit,

β0i = β0 + ui .
(15-27)

This is equivalent to the random effects model, though in (15-27), we reinterpret it as a
regression model with a randomly distributed constant term. In Section 11.11.1, we built
a linear regression model that provided for parameter heterogeneity across individuals,

yit = x′
itβ i + εit,

β i = β + ui ,
(15-28)

where ui has mean vector 0 and covariance matrix �. In that development, we took a
fixed effects approach in that no restriction was placed on the covariance between ui

and xit. Consistent with these assumptions, we constructed an estimator that involved
n regressions of yi on Xi to estimate β one unit at a time. Each estimator is consistent
in Ti . (This is precisely the approach taken in the fixed effects model, where there are
n unit specific constants and a common β. The approach there is to estimate β first and
then to regress yi − Xi bLSDV on di to estimate αi .) In the same way that assuming that
ui is uncorrelated with xit in the fixed effects model provided a way to use FGLS to
estimate the parameters of the random effects model, if we assume in (15-28) that ui

is uncorrelated with Xi , we can extend the random effects model in Section 15.6.3 to a
model in which some or all of the other coefficients in the regression model, not just the
constant term, are randomly distributed. The theoretical proposition is that the model
is now extended to allow individual heterogeneity in all coefficients.

To implement the extended model, we will begin with a simple formulation in which
ui has a diagonal covariance matrix—this specification is quite common in the literature.
The implication is that the random parameters are uncorrelated; βi,k has mean βk and
variance γ 2

k . The model in (15-26) can modified to allow this case with a few minor
changes in notation. Write

β i = β + 	wi (15-29)

where 	 is a diagonal matrix with the standard deviations (γ1, γ2, . . . , γK) of
(ui1, . . . , ui K) on the diagonal and wi is now a random vector with zero means and
unit standard deviations. The parameter vector in the model is now

θ = (β1, . . . , βK, λ1, . . . , λK, σε).

(In an application, some of the γ ’s might be fixed at zero to make the corresponding
parameters nonrandom.) In order to extend the model, the disturbance in (15-26),
εitr = (yit − xitβ − σuwir), becomes

εitr = yit − x′
it(β + 	wir). (15-30)

Now, combine (15-17) and (15-29) with (15-30) to produce

ln LS =
n∑

i=1

ln

{
1
R

R∑
r=1

Ti∏
t=1

1

σε

√
2π

exp

[(
yit − x′

it(β + 	wit)
)2

2σ 2
ε

]}
. (15-31)
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In the derivatives in (15-26), the only change needed to accommodate this extended
model is that the scalar wir becomes the vector (wir,1xit1, wir,2xit,2, . . . , wir,Kxit,K). This is
the element-by-element product of the regressors, xit, and the vector of random draws,
wir, which is the Hadamard product, direct product, or Schur product of the two vectors,
usually denoted xit • wir.

Although only a minor change in notation in the random effects template in
(15-26), this formulation brings a substantial change in the formulation of the model.
The integral in ln L is now a K dimensional integral. Maximum simulated likelihood
estimation proceeds as before, with potentially much more computation as each “draw”
now requires a K-variate vector of pseudo-random draws.

The random parameters model can now be extended to one with a full covariance
matrix, � as we did with the fixed effects case. We will now let 	 in (15-29) be the
Cholesky factorization of �, so � = 		′. (This was already the case for the simpler
model with diagonal �.) The implementation in (15-26) will be a bit complicated. The
derivatives with respect to β are unchanged. For the derivatives with respect to 	, it
is useful to assume for the moment that 	 is a full matrix, not a lower triangular one.
Then, the scalar wir in the derivative expression becomes a K2 × 1 vector in which the
(k − 1) × K + l th element is xit,k × wir,l . The full set of these is the Kronecker product
of xit and wir, xit ⊗ wir. The necessary elements for maximization of the log-likelihood
function are then obtained by discarding the elements for which 	kl are known to be
zero—these correspond to l > k.

In (15-26), for the full model, for computing the MSL estimators, the derivatives
with respect to (β, 	). are equated to zero. The result after some manipulation is

∂ ln LS

∂(β, 	)
=

n∑
i=1

1
R

R∑
r=1

Ti∑
t=1

(yit − x′
it(β + 	wit))

σ 2
ε

[
xit

xit ⊗ wir

]
= 0.

By multiplying this by σ 2
ε , we find, as usual, that σ 2

ε is not needed for computation
of the estimates of (β, 	). Thus, we can view the solution as the counterpart to least
squares, which might call, instead, the least simulated sum of squares estimator. Once
the simulated sum of squares is minimized with respect to β and 	, then the solution
for σ 2

ε can be obtained via the likelihood equation,

∂ ln LS

∂σ 2
ε

=
n∑

i=1

{
1
R

R∑
r=1

[
−Ti

2σ 2
ε

+
∑Ti

t=1

(
yit − x′

it(β + 	vi,r )
)2

2σ 4
ε

]}
= 0.

Multiply both sides of this equation by −2σ 4
ε to obtain the equivalent condition

∂ ln LS

∂σ 2
ε

=
n∑

i=1

{
1
R

R∑
r=1

Ti

[
−σ 2

ε +
∑Ti

t=1

(
yit − x′

it(β + 	vi,r )
)2

Ti

]}
= 0.

By expanding this expression and manipulating it a bit, we find the solution for σ 2
ε is

σ̂ 2
ε =

n∑
i=1

Qi
1
R

R∑
r=1

σ̂ 2
ε,ir, where σ̂ 2

ε,ir =
∑Ti

t=1

(
yit − x′

it(β + 	vi,r )
)2

Ti

and Qi = Ti/�i Ti is a weight for each group that equals 1/n if Ti is the same for all i .
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Example 15.12 Random Parameters Wage Equation
Estimates of the random effects log wage equation from the Cornwell and Rupert study in
Examples 11.7 and 15.6 are shown in Table 15.6. The table presents estimates based on
several assumptions. The encompassing model is

ln Wageit = β1,i + β2,i Wksi ,t + · · · + β12,i Femi + β13,i Blki + εit, (15-32)

βk,i = βk + λkwi k, wi k ∼ N[0, 1], k = 1, . . . , 13. (15-33)

Under the assumption of homogeneity, that is, λk = 0, the pooled OLS estimator is consistent
and efficient. As we saw in Chapter 11, under the random effects assumption, that is λk = 0
for k = 2, . . . , 13 but λ1 �= 0, the OLS estimator is consistent, as are the next three estimators
that explicitly account for the heterogeneity. To consider the full specification, write the model
in the equivalent form

ln Wageit = x′
itβ +

(
λ1wi ,1 +

13∑
k=2

λkwi ,kxi t,k

)
+ εit

= x′
itβ + Wit + εit.

TABLE 15.6 Estimated Wage Equations (Standard Errors in Parentheses)

Feasible Maximum Maximum Random Parameters Max.
Two Likelihood Simulated Simulated Likelihooda

Variable Pooled OLS Step GLS Likelihood a β λ

Wks 0.00422 0.00096 0.00084 0.00086 −0.00029 0.00614
(0.00108) (0.00059) (0.00060) (0.00099) (0.00082) (0.00042)

South −0.05564 −0.00825 0.00577 0.00935 0.04941 0.20997
(0.01253) (0.02246) (0.03159) (0.03106) (0.02002) (0.01702)

SMSA 0.15167 −0.02840 −0.04748 −0.04913 −0.05486 0.01165
(0.01207) (0.01616) (0.01896) (0.03710) (0.01747) (0.02738)

MS 0.04845 −0.07090 −0.04138 −0.04142 −0.06358* 0.02524
(0.02057) (0.01793) (0.01899) (0.02176) (0.01896) (0.03190)

Exp 0.04010 0.08748 0.10721 0.10668 0.09291 0.01803
(0.00216) (0.00225) (0.00248) (0.00290) (0.00216) (0.00092)

Exp2 −0.00067 −0.00076 −0.00051 −0.00050 −0.00019 0.0000812
(0.0000474) (0.0000496) (0.0000545) (0.0000661) (0.0000732) (0.00002)

Occ −0.14001 −0.04322 −0.02512 −0.02437 −0.00963 0.02565
(0.01466) (0.01299) (0.01378) (0.02485) (0.01331) (0.01019)

Ind 0.04679 0.00378 0.01380 0.01610 0.00207 0.02575
(0.01179) (0.01373) (0.01529) (0.03670) (0.01357) (0.02420)

Union 0.09263 0.05835 0.03873 0.03724 0.05749 0.15260
(0.01280) (0.01350) (0.01481) (0.02814) (0.01469) (0.02022)

Ed 0.05670 0.10707 0.13562 0.13952 0.09356 0.00409
(0.00261) (0.00511) (0.01267) (0.03746) (0.00359) (0.00160)

Fem −0.36779 −0.30938 −0.17562 −0.11694 −0.03864 0.28310
(0.02510) (0.04554) (0.11310) (0.10784) (0.02467) (0.00760)

Blk −0.16694 −0.21950 −0.26121 −0.15184 −0.26864 0.02930
(0.02204) (0.05252) (0.13747) (0.08356) (0.03156) (0.03841)

Constant 5.25112 4.04144 3.12622 3.08362 3.81680 0.26347
(0.07129) (0.08330) (0.17761) (0.48917) (0.06905) (0.01628)

σu 0.00000 0.31453 0.15334 0.21164
(0.03070)

σε 0.34936 0.15206 0.83949 0.15326 0.14354
(0.00217) (0.00208)

ln L −1523.254 307.873 568.446 668.630
a Based on 500 Halton draws
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This is still a regression: E [Wit + εit|X] = 0. (For the product terms, E [λkwi ,kxit,k|X] =
λkxit,k E [wi ,k|xitk] = 0.) Therefore, even OLS remains consistent. The heterogeneity induces
heteroscedasticity in Wit so the OLS estimator is inefficient and the conventional covari-
ance matrix will be inappropriate. The random effects estimators of β in the center three
columns of Table 15.6 are also consistent, by a similar logic. However, they likewise are
inefficient. The result at work, which is specific to the linear regression model, is that we
are estimating the mean parameters, βk, and the variance parameters, λk and σε, sepa-
rately. Certainly, if λk is nonzero for k = 2, . . . , 13, then the pooled and RE estimators
that assume they are zero are all inconsistent. With β estimated consistently in an other-
wise misspecified model, we would call the MLE and MSLE pseudo maximum likelihood
estimators. See Section 14.8.

Comparing the ML and MSL estimators of the random effects model, we find the esti-
mates are similar, though in a few cases, noticeably different nonetheless. The estimates
tend to differ most when the estimates themselves have large standard errors (small t ratios).
This is partly due to the different methods of estimation in a finite sample of 595 obser-
vations. We could attribute at least some of the difference to the approximation error in
the simulation compared to the exact evaluation of the (closed form) integral in the MLE.
The difference in the log-likelihood functions would be attributable to this as well. Note,
however, that the difference is smaller than it first appears—the comparison of 586.446 to
307.883 is misleading; the comparison should be of the difference of the two values from
the log-likelihood from the pooled model of −1523.254. This produces a difference of about
14 percent.

The full random parameters model is shown in the last two columns. Based on the
likelihood ratio statistic of 2(668.630 − 568.446) = 200.368 with 12 degrees of freedom,
we would reject the hypothesis that λ2 = λ3 = · · · = λ13 = 0. The 95 percent critical
value with 12 degrees of freedom is 21.03. This random parameters formulation of the
model suggests a need to reconsider the notion of “statistical significance” of the estimated
parameters. In view of (15-33), it may be the case that the mean parameter might well be
significantly different from zero while the corresponding standard deviation, λ, might be large
as well, suggesting that a large proportion of the population remains statistically close to
zero. Consider the estimate of β12, I , the coefficient on Femi . The estimate of the mean,
β12, is −0.03864 with an estimated standard error of 0.02467. This implies a confidence in-
terval for this parameter of −0.03864 ± 1.96(0.02467) = [−0.086993, 0.009713]. But, this
is only the location of the center of the distribution. With an estimate of λk of 0.2831, the
random parameters model suggests that in the population, 95 percent of individuals have
an effect of Femi within −0.03864 ± 1.96(0.2831) = [−0.5935, 0.5163]. This is still cen-
tered near zero but has a different interpretation from the simple confidence interval for β
itself. This analysis suggests that it might be an interesting exercise to estimate βi rather
than just the parameters of the distribution. We will consider that estimation problem in
Section 15.10.

The next example examines a random parameters model in which the covariance
matrix of the random parameters is allowed to be a free, positive definite matrix.
That is

yit = x′
itβ i + εit

β i = β + ui , E[ui |X] = 0, Var[ui |X] = �.
(15-34)

This is the counterpart to the fixed effects model in Section 11.4. Note that the difference
in the specifications is the random effects assumption, E[ui |X] = 0. We continue to use
the Cholesky decomposition of � in the reparameterized model

β i = β + 	wi , E[wi |X] = 0, Var[wi |X] = I.
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Example 15.13 Least Simulated Sum of Squares Estimates of a
Production Function Model

In Example 11.19, we examined Munnell’s production model for gross state product,

ln gspit = β1 + β2 ln pcit + β3 ln hwyit + β4 ln waterit
+β5 ln utilit + β6 ln empit + β7unempit + εit, i = 1, . . . , 48; t = 1, . . . , 17.

The panel consists of state-level data for 17 years. The model in Example 11.19
(and Munnell’s) provide no means for parameter heterogeneity save for the constant term.
We have reestimated the model using the Hildreth and Houck approach. The OLS, feasible
GLS and maximum likelihood estimates are given in Table 15.7. The chi-squared statistic
for testing the null hypothesis of parameter homogeneity is 25,556.26, with 7(47) = 329
degrees of freedom. The critical value from the table is 372.299, so the hypothesis would
be rejected. Unlike the other cases we have examined in this chapter, the FGLS estimates
are very different from OLS in these estimates, in spite of the fact that both estimators are
consistent and the sample is fairly large. The underlying standard deviations are computed
using G as the covariance matrix. [For these data, subtracting the second matrix rendered G
not positive definite so, in the table, the standard deviations are based on the estimates using
only the first term in (11-88).] The increase in the standard errors is striking. This suggests
that there is considerable variation in the parameters across states. We have used (11-89) to
compute the estimates of the state-specific coefficients.

The rightmost columns of Table 15.7 present the maximum simulated likelihood estimates
of the random parameters production function model. They somewhat resemble the OLS
estimates, more so than the FGLS estimates, which are computed by an entirely different
method. The values in parentheses under the parameter estimates are the estimates of the
standard deviations of the distribution of ui , the square roots of the diagonal elements of
�. These are obtained by computing the square roots of the diagonal elements of 		′. The

TABLE 15.7 Estimated Random Coefficients Models

Maximum Simulated
Least Squares Feasible GLS Likelihood

Standard Standard Popn. Std. Std.
Variable Estimate Error Estimate Error Deviation Estimate Err.

Constant 1.9260 0.05250 1.6533 1.08331 7.0782 1.9463 0.03569
(0.0411)

ln pc 0.3120 0.01109 0.09409 0.05152 0.3036 0.2962 0.00882
(0.0730)

ln hwy 0.05888 0.01541 0.1050 0.1736 1.1112 0.09515 0.01157
(0.146)

ln water 0.1186 0.01236 0.07672 0.06743 0.4340 0.2434 0.01929
(0.343)

ln util 0.00856 0.01235 −0.01489 0.09886 0.6322 −0.1855 0.02713
(0.281)

ln emp 0.5497 0.01554 0.9190 0.1044 0.6595 0.6795 0.02274
(0.121)

unemp −0.00727 0.001384 −0.004706 0.002067 0.01266 −0.02318 0.002712
(0.0308)

σε 0.08542 0.2129 0.02748
ln L 853.1372 1567.233
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estimate of 	 is shown here.

	̂ =

0.04114 0 0 0 0 0 0
0.00715 0.07266 0 0 0 0 0

−0.02446 0.12392 0.07247 0 0 0 0
0.09972 −0.00644 0.31916 0.07614 0 0 0

−0.08928 0.02143 −0.25105 0.07583 0.04053 0 0
0.03842 −0.06321 −0.03992 −0.06693 −0.05490 0.00857 0

−0.00833 −0.00257 −0.02478 0.01594 0.00102 −0.00185 0.0018.

An estimate of the correlation matrix for the parameters might also be informative. This is also
derived from 	̂ by computing �̂ = 	̂	̂

′
and then transforming the covariances to correlations

by dividing by the products of the respective standard deviations (the values in parentheses
in Table 15.7). The result is

R =

1
0.0979 1

−0.1680 0.83040 1
0.2907 0.00980 0.3983 1

−0.3180 0.04481 −0.3266 −0.8659 1
0.3176 −0.48890 −0.6622 −0.3277 −0.06073 1

−0.2700 −0.10940 −0.4253 −0.7097 0.94190 −0.08228 1.

15.8 HIERARCHICAL LINEAR MODELS

Example 11.20 examined an application of a “two-level model,” or “hierarchical model,”
for mortgage rates,

RMit = β1i + β2,i Jit + various terms relating to the mortgate + εit.

The second level equation is

β2,i = α1 + α2GFAi + α3 one-year treasury rate + α4 ten-year treasure rate
+α5 credit risk + α6 prepayment risk + · · · + ui .

Recent research in many fields has extended the idea of hierarchical modeling to the
full set of parameters in the model. (Depending on the field studied, the reader may
find these labeled “hierarchical models,” mixed models, “random parameters models,”
or “random effects models.” The last of these generalizes our notion of random effects.)
A two-level formulation of the model in (15-34) might appear as

yit = x′
itβ i + εit,

β i = β + �zi + ui .

(A three-level model is shown in Example 15.14.) This model retains the earlier stochas-
tic specification but adds the measurement equation to the generation of the random
parameters. In principle, this is actually only a minor extension of the model used thus
far. The model of the previous section now becomes

yit = x′
it(β + �zi + 	wi ) + εit,

which is essentially the same as our earlier model in (15-28)–(15-31) with the addition
of product (interaction) terms of the form δklxitkzil, which suggests how it might be
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estimated (simply by adding the interaction terms to the previous formulation). In the
template in (15-26), the term σuwir becomes x′

it(�zi + 	wi ), θ = (β ′, δ′, λ′, σε)
′ where

δ′ is a row vector composed of the rows of �, and λ′ is a row vector composed of the
rows of 	. The scalar term wir in the derivatives is replaced by a column vector of terms
contained in (xit ⊗ zi , xit ⊗ wir).

The hierarchical model can be extended in several useful directions. Recent analyses
have expanded the model to accommodate multilevel stratification in data sets such as
those we considered in the treatment of nested random effects in Section 14.9.6.b. A
three-level model would appear as in the next example that relates to home sales,

yijt = x′
ijtβ ij + εit, t = site, j = neighborhood, i = community,

β ij = β i + �zij + uij (15-35)

β i = π + ri + vi .

Example 15.14 Hierarchical Linear Model of Home Prices
Beron, Murdoch, and Thayer (1999) used a hedonic pricing model to analyze the sale

prices of 76,343 homes in four California counties: Los Angeles, San Bernardino, Riverside,
and Orange. The data set is stratified into 2,185 census tracts and 131 school districts. Home
prices are modeled using a three-level random parameters pricing model. (We will change
their notation somewhat to make roles of the components of the model more obvious.) Let
site denote the specific location (sale), nei denote the neighborhood, and com denote the
community, the highest level of aggregation. The pricing equation is

ln Pricesite,nei,com = π0
nei,com +

K∑
k=1

π k
nei,comxk,site,nei,com + εsite,nei,com,

π k
nei,com = β0,k

com +
L∑

l=1

β l ,k
comzk,nei,com + r k

nei,com, k = 0, . . . , K ,

β l ,k
com = γ 0,l.k +

M∑
m=1

γ m,l,kem,com + ul ,k
com, l = 1, . . . , L .

There are K level-one variables, xk, and a constant in the main equation, L level-two variables,
zl , and a constant in the second-level equations, and M level-three variables, em, and a
constant in the third-level equations. The variables in the model are as follows. The level-one
variables define the hedonic pricing model,

x = house size, number of bathrooms, lot size, presence of central heating,
presence of air conditioning, presence of a pool, quality of the view,
age of the house, distance to the nearest beach.

Levels two and three are measured at the neighborhood and community levels

z = percentage of the neighborhood below the poverty line,
racial makeup of the neighborhood,
percentage of residents over 65,
average time to travel to work

and

e = FBI crime index, average achievement test score in school district,
air quality measure, visibility index.

The model is estimated by maximum simulated likelihood.
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The hierarchical linear model analyzed in this section is also called a “mixed model”
and “random parameters” model. Although the three terms are usually used inter-
changeably, each highlights a different aspect of the structural model in (15-35). The
“hierarchical” aspect of the model refers to the layering of coefficients that is built into
stratified and panel data structures, such as in Example 15.4. The random parameters
feature is a signature feature of the model that relates to the modeling of heterogeneity
across units in the sample. Note that the model in (15-35) and Beron et al.’s applica-
tion could be formulated without the random terms in the lower-level equations. This
would then provide a convenient way to introduce interactions of variables in the linear
regression model. The addition of the random component is motivated on precisely the
same basis that ui appears in the familiar random effects model in Section 11.5 and
(15-39). It is important to bear in mind, in all these structures, strict mean independence
is maintained between ui , and all other variables in the model. In most treatments, we
go yet a step further and assume a particular distribution for ui , typically joint nor-
mal. Finally, the “mixed” model aspect of the specification relates to the underlying
integration that removes the heterogeneity, for example, in (15-13). The unconditional
estimated model is a mixture of the underlying models, where the weights in the mixture
are provided by the underlying density of the random component.

15.9 NONLINEAR RANDOM PARAMETER MODELS

Most of the preceding applications have used the linear regression model to illustrate
and demonstrate the procedures. However, the template used to build the model has
no intrinsic features that limit it to the linear regression. The initial description of the
model and the first example were applied to a nonlinear model, the Poisson regression.
We will examine a random parameters binary choice model in the next section as well.
This random parameters model has been used in a wide variety of settings. One of the
most common is the multinomial choice models that we will discuss in Chapter 18.

The simulation-based random parameters estimator/model is extremely flexible.
[See Train and McFadden (2000) for discussion.] The simulation method, in addition
to extending the reach of a wide variety of model classes, also allows great flexibility in
terms of the model itself. For example, constraining a parameter to have only one sign
is a perennial issue. Use of a lognormal specification of the parameter, βi = exp(β +
σwi ) provides one method of restricting a random parameter to be consistent with a
theoretical restriction. Researchers often find that the lognormal distribution produces
unrealistically large values of the parameter. A model with parameters that vary in a
restricted range that has found use is the random variable with symmetric about zero
triangular distribution,

f (w) = 1[−a ≤ w ≤ 0](a + w)/a2 + 1[0 < w ≤ a](a − w)/a2.

A draw from this distribution with a = 1 can be computed as

w = 1[u ≤ .5][(2u)1/2 − 1] + 1[u > .5][1 − (2(1 − u))1/2],

where u is the U[0, 1] draw. Then, the parameter restricted to the range β±λ is obtained
as β + λw. A further refinement to restrict the sign of the random coefficient is to force
λ = β, so that βi ranges from 0 to 2λ. [Discussion of this sort of model construction is
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given in Train and Sonnier (2003) and Train (2009).] There is a large variety of methods
for simulation that allow the model to be extended beyond the linear model and beyond
the simple normal distribution for the random parameters.

Random parameters models have been implemented in several contemporary com-
puter packages. The PROC MIXED package of routines in SAS uses a kind of general-
ized least squares for linear, Poisson, and binary choice models. The GLAMM program
[Rabe-Hesketh, Skrondal, and Pickles (2005)] written for Stata uses quadrature meth-
ods for several models including linear, Poisson, and binary choice. The RPM and RPL
procedures in LIMDEP/NLOGIT use the methods described here for linear, binary
choice, censored data, multinomial, ordered choice, and several others. Finally, the ML-
Win package (http://cmm.bristol.ac.uk/MLwiN/) is a large implementation of some of
the models discussed here. MLWin uses MCMC methods with noninformative priors to
carry out maximum simulated likelihood estimation.

15.10 INDIVIDUAL PARAMETER ESTIMATES

In our analysis of the various random parameters specifications, we have focused on
estimation of the population parameters, β, �, and 	 in the model,

β i = β + �zi + 	wi ,

for example, in Example 15.13, where we estimated β and � in a model of production.
At a few points, it is noted that it might be useful to estimate the individual specific β i .
We did a similar exercise in analyzing the Hildreth/Houck/Swamy model in Example
11.19 in Section 11.11.1. The model is

yi = Xiβ i + εi

β i = β + ui ,

where no restriction is placed on the correlation between ui and Xi . In this “fixed effects”
case, we obtained a feasible GLS estimator for the population mean, β,

β̂ =
n∑

i=1

Ŵi bi ,

where

Ŵi =
{

n∑
i=1

[
�̂ + σ̂ 2

ε (X′
i Xi )

−1]−1

}−1 [
�̂ + σ̂ 2

ε (X′
i Xi )

−1]−1

and

bi = (X′
i Xi )

−1X′
i yi .

For each group, we then proposed an estimator of E[β i | information in hand about
group i] as

Est. E[β i |yi , Xi ] = bi + Q̂i (β̂ − bi )

where

Q̂i =
{[

s2
i (X′

i Xi )
]−1 + �̂

−1
}−1

�̂
−1

. (15-36)
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The estimator of E[β i |yi , Xi ] is equal to the least squares estimator plus a proportion
of the difference between β̂ and bi . (The matrix Q̂i is between 0 and I. If there were a
single column in Xi , then q̂i would equal (1/γ̂ )/{(1/γ̂ ) + [1/(s2

i /x′
i xi )]}.)

We can obtain an analogous result for the mixed models we have examined in this
chapter. [See Train (2003).] From the initial model assumption, we have

f (yit|xit, β i , θ)

where

β i = β + �zi + 	wi (15-37)

and θ is any other parameters in the model, such as σε in the linear regression model.
For a panel, since we are conditioning on β i , that is, on wi , the Ti observations are
independent, and it follows that

f (yi1, yi2, . . . , yiTi|Xi , β i , θ) = f (yi |Xi , β i , θ) = �t f (yit|xit, β i , θ). (15-38)

This is the contribution of group i to the likelihood function (not its log) for the sample,
given β i ; that is, note that the log of this term is what appears in the simulated log
likelihood function in (15-31) for the normal linear model and in (15-16) for the Poisson
model. The marginal density for β i is induced by the density of wi in (15-37). For
example, if wi is joint normally distributed, then f (β i ) = N[β +�zi , 		′]. As we noted
earlier in Section 15.9, some other distribution might apply. Write this generically as
the marginal density of β i , f (β i |zi , �), where � is the parameters of the underlying
distribution of β i , for example (β, �, 	) in (15-37). Then, the joint distribution of yi

and β i is

f (yi , β i |Xi , zi , θ , �) = f (yi |Xi , β i , θ) f (β i |zi , �).

We will now use Bayes’s theorem to obtain f (β i |yi , Xi , zi , θ , �):

f (β i |yi , Xi , zi , θ , �) = f (yi |Xi , β i , θ) f (β i |zi , �)

f (yi |Xi , zi , θ , �)

= f (yi |Xi , β i , θ) f (β i |zi , �)∫
β i

f (yi , β i |Xi , zi , θ , �)dβ i

= f (yi |Xi , β i , θ) f (β i |zi , �)∫
β i

f (yi |Xi , β i , θ) f (β i |zi , �)dβ i
.

The denominator of this ratio is the integral of the term that appears in the log-likelihood
conditional on β i . We will return momentarily to computation of the integral. We now
have the conditional distribution of β i |yi , Xi , zi , θ , �. The conditional expectation of
β i |yi , Xi , zi , θ , � is

E[β i |yi , Xi , zi , θ , �] =
∫

β i
β i f (yi |Xi , β i , θ) f (β i |zi , �)∫

β i
f (yi |Xi , β i , θ) f (β i |zi , �)dβ i

.
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Neither of these integrals will exist in closed form. However, using the methods already
developed in this chapter, we can compute them by simulation. The simulation estimator
will be

Est.E[β i |yi , Xi , zi , θ , �] = (1/R)
∑R

r=1 β̂ ir
∏Ti

t=1 f (yit|xit, β̂ ir, θ̂)

(1/R)
∑R

r=1

∏Ti
t=1 f (yit|xit, β̂ ir, θ̂)

=
R∑

r=1
Q̂irβ̂ ir

(15-39)

where Q̂ir is defined in (15-20)–(15-21) and

β̂ ir = β̂ + �̂zi + 	wir.

This can be computed after the estimation of the population parameters. (It may be
more efficient to do this computation during the iterations, since everything needed to
do the calculation will be in place and available while the iterations are proceeding.)
For example, for the random parameters linear model, we will use

f (yit|xit, β̂ ir, θ̂) = 1

σ̂ε

√
2π

exp

[
−

(
yit − x′

it(β̂ + �̂zi + 	̂wir)
)2

2σ̂ 2
ε

]
. (15-40)

We can also estimate the conditional variance of β i by estimating first, one element at
a time, E[β2

i,k|yi , Xi , zi , θ , �], then, again one element at a time

Est.Var[β i,k|yi , Xi , zi , θ , �] =
{

Est. E[β2
i,k|yi , Xi , zi , θ , �]

} −{
Est. E[β i,k|yi , Xi , zi , θ , �]

}2
.

(15-41)

With the estimates of the conditional mean and conditional variance in hand, we can
then compute the limits of an interval that resembles a confidence interval as the mean
plus and minus two estimated standard deviations. This will construct an interval that
contains at least 95 percent of the conditional distribution of β i .

Some aspects worth noting about this computation are as follows:

• The preceding suggested interval is a classical (sampling-theory-based) counter-
part to the highest posterior density interval that would be computed for β i for a
hierarchical Bayesian estimator.

• The conditional distribution from which β i is drawn might not be symmetric or
normal, so a symmetric interval of the mean plus and minus two standard deviations
may pick up more or less than 95 percent of the actual distribution. This is likely
to be a small effect. In any event, in any population, whether symmetric or not,
the mean plus and minus two standard deviations will typically encompass at least
95 percent of the mass of the distribution.

• It has been suggested that this classical interval is too narrow because it does not
account for the sampling variability of the parameter estimators used to construct
it. But, the suggested computation should be viewed as a “point” estimate of the
interval, not an interval estimate as such. Accounting for the sampling variability
of the estimators might well suggest that the endpoints of the interval should be
somewhat farther apart. The Bayesian interval that produces the same estimation
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would be narrower because the estimator is posterior to, that is, applies only to the
sample data.

• Perhaps surprisingly so, even if the analysis departs from normal marginal distri-
butions β i , the sample distribution of the n estimated conditional means is not
necessarily normal. Kernel estimators based on the n estimators, for example, can
have a variety of shapes.

• A common misperception found in the Bayesian and classical literatures alike is that
the preceding produces an estimator of β i . In fact, it is an estimator of conditional
mean of the distribution from which β i is an observation. By construction, for
example, every individual with the same (yi . Xi , zi ) has the same prediction even
though the wi and any other stochastic elements of the model, such as εi , will differ
across individuals.

Example 15.15 Individual State Estimates of Private Capital Coefficient
Example 15.13 presents feasible GLS and maximum simulated likelihood estimates of
Munnell’s state production model. We have computed the estimates of E [β2i |yi , Xi ] for the
48 states in the sample using (15-36) for the fixed effects estimates and (15-39) for the ran-
dom effects estimates. Figures 15.6 and 15.7 examine the estimated coefficients for private
capital. Figure 15.6 displays kernel density estimates for the population distributions based
on the fixed and random effects estimates computed using (15-36) and (15-39). The much
narrower distribution corresponds to the random effects estimates. The substantial overall
difference of the distributions is presumably due in large part to the difference between the
fixed effects and random effects assumptions. One might suspect on this basis that the ran-
dom effects assumption is restrictive. Figure 15.7 shows the results based on the random
parameters model, using (15-39) and (15-41) to compute the estimates. As expected, the
range of variation of the estimators in the conditional distributions is much smaller than the
overall range of variation shown in Figure 15.6.

FIGURE 15.6 Kernel Density Estimates of Parameter Distributions.
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FIGURE 15.7 Estimates of Conditional Distributions for Private
Capital Coefficient.

Example 15.16 Mixed Linear Model for Wages
Koop and Tobias (2004) analyzed a panel of 17,919 observations in their study of the rela-
tionship between wages and education, ability and family characteristics. (See the end of
chapter applications in Chapters 3 and 5 and Appendix Table F3.2 for details on the location
of the data.) The variables used in the analysis are

Person id
Education (time varying)
Log of hourly wage (time varying)
Potential experience (time varying)
Time trend (time varying)
Ability (time invariant)
Mother’s education (time invariant)
Father’s education (time invariant)
Dummy variable for residence in a broken home (time invariant)
Number of siblings (time invariant)

This is an unbalanced panel of 2,178 individuals; Figure 15.8 shows a frequency count of
the numbers of observations in the sample. We will estimate the following hierarchical wage
model

ln Wageit = β1,i + β2,i Educationit + β3 Experienceit + β4 Experience2
it

+ β5 Broken Homei + β6 Siblingsi + εit,
β1,i = α1,1 + α1,2 Abilityi + α1,3 Mother’s educationi + α1,4 Father’s educationi + u1,i ,
β2,i = α2,1 + α2,2 Abilityi + α2,3 Mother’s educationi + α2,4 Father’s educationi + u2,i .



Greene-2140242 book January 19, 2011 21:17

CHAPTER 15 ✦ Simulation-Based Estimation and Inference 687

1 2 3 4

224

168

112

Fr
eq

ue
nc

y

56

0
6 7 8 9 10 11 12 135

NUM_OBS
14 15

FIGURE 15.8 Group Sizes for Wage Data Panel.

Estimates are computed using the maximum simulated likelihood method described in
Sections 15.6.3 and 15.7. Estimates of the model parameters appear in Table 15.8. The
four models in Table 15.8 are the pooled OLS estimates, the random effects model, and
the random parameters models, first assuming that the random parameters are uncorrelated
(�21 = 0) and then allowing free correlation (�21 = nonzero). The differences between the
conventional and the robust standard errors in the pooled model are fairly large, which sug-
gests the presence of latent common effects. The formal estimates of the random effects
model confirm this. There are only minor differences between the FGLS and the ML estimates
of the random effects model. But, the hypothesis of the pooled model is soundly rejected by
the likelihood ratio test. The LM statistic [Section 11.5.4 and (11-42)] is 11,709.7, which is far
larger than the critical value of 3.84. So, the hypothesis of the pooled model is firmly rejected.
The likelihood ratio statistic based on the MLEs is 2(10, 840.18 − (−885.674) ) = 23, 451.71,
which produces the same conclusion. An alternative approach would be to test the hypoth-
esis that σ 2

u = 0 using a Wald statistic—the standard t test. The software used for this exer-
cise reparameterizes the log-likelihood in terms of θ1 = σ 2

u /σ 2
ε and θ2 = 1/σ 2

ε . One approach,
based on the delta method (see Section 4.4.4), would be to estimate σ 2

u with the MLE of θ1/θ2.
The asymptotic variance of this estimator would be estimated using Theorem 4.5. Alterna-
tively, we might note that σ 2

ε must be positive in this model, so it is sufficient simply to test the
hypothesis that θ1 = 0. Our MLE of θ1 is 0.999206 and the estimated asymptotic standard
error is 0.03934. Following this logic, then, the test statistic is 0.999206/0.03934 = 25.397.
This is far larger than the critical value of 1.96, so, once again, the hypothesis is rejected.
We do note a problem with the LR and Wald tests. The hypothesis that σ 2

u = 0 produces
a nonstandard test under the null hypothesis, because σ 2

u = 0 is on the boundary of the
parameter space. Our standard theory for likelihood ratio testing (see Chapter 14) requires
the restricted parameters to be in the interior of the parameter space, not on the edge. The
distribution of the test statistic under the null hypothesis is not the familiar chi squared. This
issue is confronted in Breusch and Pagan (1980) and Godfrey (1988) and analyzed at (great)
length by Andrews (1998, 1999, 2000, 2001, 2002) and Andrews and Ploberger (1994, 1995).
The simple expedient in this complex situation is to use the LM statistic, which remains
consistent with the earlier conclusion.
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TABLE 15.8 Estimated Random Parameter Models

Random Effects FGLS Random Random
Pooled OLS [Random Effects MLE] Parameters Parameters

Std.Err. Estimate Std.Err. Estimate Estimate
Variable Estimate (Robust) [MLE] [MLE] (Std.Err.) (Std.Err.)

Exp 0.04157 0.001819 0.04698 0.001468 0.04758 0.04802
(0.002242) [0.04715] [0.001481] (0.001108) (0.001118)

Exp2 −0.00144 0.0001002 −0.00172 0.0000805 −0.001750 −0.001761
(0.000126) [−0.00172] [0.000081] (0.000063) (0.0000631)

Broken −0.02781 0.005296 −0.03185 0.01089 −0.01236 −0.01980
(0.01074) [−0.03224] [0.01172] (0.003669) (0.003534)

Sibs −0.00120 0.0009143 −0.002999 0.001925 0.0000496 −0.001953
(0.001975) [−0.00310] [0.002071] (0.000662) (0.0006599)

Constant 0.09728 0.01589 0.03281 0.02438 0.3277 0.3935
(0.02783) [0.03306] [0.02566] (0.03803) (0.03778)

Ability 0.04232 0.1107
(0.01064) (0.01077)

MEd −0.01393 −0.02887
(0.0040) (0.003990)

FEd −0.007548 0.002657
(0.003252) (0.003299)

σu1 0.172278 0.004187 0.5026
[0.18767] (0.001320)

Educ 0.03854 0.001040 0.04072 0.001758 0.01253 0.007607
(0.002013) [0.04061] [0.001853] (0.003015) (0.002973)

Ability −0.0002560 −0.005316
(0.000869) (0.0008751)

MEd 0.001054 0.002142
(0.000321) (0.0003165)

Fed 0.0007754 0.00006752
(0.000255) (0.00001354)

σu2 0.01622 0.03365
(0.000114)

σu,12 0.0000 −0.01560

0.0000 −0.92259

σε 0.2542736 0.187017 0.192741 0.1919182
[0.187742]

�11 0.004187 0.5026
(0.001320) (0.008775)
0.0000 −0.03104

�21 (0) (0.0001114)
0.01622 0.01298

�22 (0.000113) (0.0006841)

ln L −885.6740 [10480.18] 3550.594 3587.611
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The third and fourth models in Table 15.8 present the mixed model estimates. The first of
them imposes the restriction that �21 = 0, or that the two random parameters are uncorre-
lated. The second mixed model allows �21 to be a free parameter. The implied estimators
for σu1, σu2 and σu,21 are the elements of 		′, or

σ 2
u1 = �2

11,
σu,21 = �11�21,
σ 2

u2 = �2
21 + �2

22.

These estimates are shown separately in the table. Note that in all three random parame-
ters models (including the random effects model which is equivalent to the mixed model
with all αI m = 0 save for α1,1 and α2,1 as well as �21 = �22 = 0.0) , the estimate of
σε is relatively unchanged. The three models decompose the variation across groups in
the parameters differently, but the overall variation of the dependent variable is largely the
same.

The interesting coefficient in the model is β2,i . Reading across the row for Educ, one
might suspect that the random parameters model has washed out the impact of education,
since the “coefficient” declines from 0.04072 to 0.007607. However, in the mixed models,
the “mean” parameter, α2,1, is not the coefficient of interest. The coefficient on education in
the model is β2,i = α2,1 +α2,2 Ability+β2,3 Mother’s education+β2,4 Father’s education+u2,i .
A rough indication of the magnitude of this result can be seen by inserting the sample means
for these variables, 0.052374, 11.4719, and 11.7092, respectively. With these values, the
mean value for the education coefficient is approximately 0.0327. This is comparable, though
somewhat smaller, than the estimates for the pooled and random effects model. Of course,
variation in this parameter across the sample individuals was the objective of this specifica-
tion. Figure 15.9 plots a kernel density estimate for the estimated conditional means for the
2,178 sample individuals. The figure shows the very wide range of variation in the sample
estimates.

FIGURE 15.9 Kernel Density Estimate for Education Coefficient.
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15.11 MIXED MODELS AND LATENT CLASS
MODELS

Sections 15.7–15-10 examined different approaches to modeling parameter heterogene-
ity. The fixed effects approach begun in Section 11.4 is extended to include the full set
of regression coefficients in Section 11.11.1. where

yi = Xiβ i + εi ,

β i = β + ui

and no restriction is placed on E[ui |Xi ]. Estimation produces a feasible GLS estimate
of β. Estimation of β begins with separate least squares estimation with each group,
i—because of the correlation between ui and xit, the pooled estimator is not consis-
tent. The efficient estimator of β is then a mixture of the bi’s. We also examined an
estimator of β i , using the optimal predictor from the conditional distributions, (15-39).
The crucial assumption underlying the analysis is the possible correlation between Xi

and ui . We also considered two modifications of this random coefficients model. First,
a restriction of the model in which some coefficients are nonrandom provides a useful
simplification. The familiar fixed effects model of Section 11.4 is such a case, in which
only the constant term varies across individuals. Second, we considered a hierarchical
form of the model

β i = β + �zi + ui . (15-42)

This approach is applied to an analysis of mortgage rates in Example 11.20. [Plümper
and Troeger’s (2007) FEVD estimator examined in Section 11.4.5 is essentially this
model as well.]

A second approach to random parameters modeling builds from the crucial assump-
tion added to (15-42) that ui and Xi are uncorrelated. The general model is defined in
terms of the conditional density of the random variable, f (yit|xit, β i , θ), and the marginal
density of the random coefficients, f (β i |zi , �), in which � is the separate parameters of
this distribution. This leads to the mixed models examined in this chapter. The random
effects model that we examined in Section 11.5 and several other points is a special
case in which only the constant term is random (like the fixed effects model). We also
considered the specific case in which ui is distributed normally with variance σ 2

u .
A third approach to modeling heterogeneity in parametric models is to use a

discrete distribution, either as an approximation to an underlying continuous distri-
bution, or as the model of the data generating process in its own right. (See Sec-
tion 14.10.) This model adds to the preceding a nonparametric specification of the
variation in β i ,

Prob(β i = β j |zi ) = π j , j = 1, . . . , J.

A somewhat richer, semiparametric form that mimics (15-42) is

Prob(β i = β j |zi ) = π j (zi , �), j = 1, . . . , J.

We continue to assume that the process generating variation in β i across individuals is
independent of the process that produces Xi —that is, in a broad sense, we retain the
random effects approach. This latent class model is gaining popularity in the current
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TABLE 15.9 Estimated Random Parameters Model

Probit RP Mean RP Std. Dev. Empirical Distn.

Constant −1.96 −3.91 2.70 −3.27
(0.23) (0.20) (0.57)

In Sales 0.18 0.36 0.28 0.32
(0.022) (0.019) (0.15)

Relative Size 1.07 6.01 5.99 3.33
(0.14) (0.22) (2.25)

Import 1.13 1.51 0.84 2.01
(0.15) (0.13) (0.58)

FDI 2.85 3.81 6.51 3.76
(0.40) (0.33) (1.69)

Productivity −2.34 −5.10 13.03 −8.15
(0.72) (0.73) (8.29)

Raw materials −0.28 −0.31 1.65 −0.18
(0.081) (0.075) (0.57)

Investment 0.19 0.27 1.42 0.27
(0.039) (0.032) (0.38)

ln L −4114.05 −3498.654

literature. In the last example of this chapter, we will examine a comparison of mixed
and finite mixture models for a nonlinear model.

Example 15.17 Maximum Simulated Likelihood Estimation of a Binary
Choice Model

Bertschek and Lechner (1998) analyzed the product innovations of a sample of German
manufacturing firms. They used a probit model (Sections 17.2–17.4) to study firm innovations.
The model is for Prob[yit = 1|xit, β i ] where

yit = 1 if firm i realized a product innovation in year t and 0 if not.

The independent variables in the model are

Xi t,1 = constant,
Xi t,2 = log of sales,
Xi t,3 = relative size = ratio of employment in business unit to employment in the industry,
Xi t,4 = ratio of industry imports to (industry sales + imports),
Xi t,5 = ratio of industry foreign direct investment to (industry sales + imports),
Xi t,6 = productivity = ratio of industry value added to industry employment,
Xi t,7 = dummy variable indicating firm is in the raw materials sector,
Xi t,8 = dummy variable indicating firm is in the investment goods sector.

The sample consists of 1,270 German firms observed for five years, 1984–1988. (See Ap-
pendix Table F15.1.) The density that enters the log-likelihood is

f ( yit|xit, β i ) = Prob[ yit|x′
itβ i ] = �[(2yit − 1)x′

itβ i ], yit = 0, 1,

where

β i = β + vi , vi ∼ N[0, �].

To be consistent with Bertschek and Lechner (1998) we did not fit any firm-specific time-
invariant components in the main equation for βi .

9 Table 15.9 presents the estimated

9Apparently they did not use the second derivatives to compute the standard errors—we could not replicate
these. Those shown in the Table 15.9 are our results.
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TABLE 15.10 Estimated Latent Class Model

Class 1 Class 2 Class 3 Posterior

Constant −2.32 −2.71 −8.97 −3.38
(0.59) (0.69) (2.20) (2.14)

In Sales 0.32 0.23 0.57 0.34
(0.061) (0.072) (0.18) (0.09)

Relative Size 4.38 0.72 1.42 2.58
(0.89) (0.37) (0.76) (1.30)

Import 0.94 2.26 3.12 1.81
(0.37) (0.53) (1.38) (0.74)

FDI 2.20 2.81 8.37 3.63
(1.16) (1.11) (1.93) (1.98)

Productivity −5.86 −7.70 −0.91 −5.48
(2.70) (4.69) (6.76) (1.78)

Raw Materials −0.11 −0.60 0.86 −0.08
(0.24) (0.42) (0.70) (0.37)

Investment 0.13 0.41 0.47 0.29
(0.11) (0.12) (0.26) (0.13)

ln L −3503.55
Class Prob (Prior) 0.469 0.331 0.200

(0.0352) (0.0333) (0.0246)
Class Prob (Posterior) 0.469 0.331 0.200

(0.394) (0.289) (0.325)
Pred. Count 649 366 255

coefficients for the basic probit model in the first column. These are the values reported
in the 1998 study. The estimates of the means, β, are shown in the second column. There
appear to be large differences in the parameter estimates, although this can be misleading as
there is large variation across the firms in the posterior estimates. The third column presents
the square roots of the implied diagonal elements of � computed as the diagonal elements of
CC′. These estimated standard deviations are for the underlying distribution of the parameter
in the model—they are not estimates of the standard deviation of the sampling distribution of
the estimator. That is shown for the mean parameter in the second column. The fourth col-
umn presents the sample means and standard deviations of the 1,270 estimated conditional
estimates of the coefficients.

The latent class formulation developed in Section 14.10 provides an alternative approach
for modeling latent parameter heterogeneity.10 To illustrate the specification, we will reesti-
mate the random parameters innovation model using a three-class latent class model. Esti-
mates of the model parameters are presented in Table 15.10. The estimated conditional mean
shown, which is comparable to the empirical means in the rightmost column in Table 15.9 for
the random parameters model, are the sample average and standard deviation of the 1,270
firm-specific posterior mean parameter vectors. They are computed using β̂ i = �3

j =1π̂ ijβ̂ j
where π̂ij is the conditional estimator of the class probabilities in (14-102). These estimates
differ considerably from the probit model, but they are quite similar to the empirical means in
Table 15.9. In each case, a confidence interval around the posterior mean contains the one-
class pooled probit estimator. Finally, the (identical) prior and average of the sample posterior
class probabilities are shown at the bottom of the table. The much larger empirical standard
deviations reflect that the posterior estimates are based on aggregating the sample data and
involve, as well, complicated functions of all the model parameters. The estimated numbers
of class members are computed by assigning to each firm the predicted class associated
with the highest posterior class probability.

10See Greene (2001) for a survey. For two examples, Nagin and Land (1993) employed the model to study
age transitions through stages of criminal careers and Wang et al. (1998) and Wedel et al. (1993) used the
Poisson regression model to study counts of patents.
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15.12 SUMMARY AND CONCLUSIONS

This chapter has outlined several applications of simulation-assisted estimation and
inference. The essential ingredient in any of these applications is a random number
generator. We examined the most common method of generating what appear to be
samples of random draws from a population—in fact, they are deterministic Markov
chains that only appear to be random. Random number generators are used directly to
obtain draws from the standard uniform distribution. The inverse probability transfor-
mation is then used to transform these to draws from other distributions. We examined
several major applications involving random sampling:

• Random sampling, in the form of bootstrapping, allows us to infer the characteris-
tics of the sampling distribution of an estimator, in particular its asymptotic variance.
We used this result to examine the sampling variance of the median in random sam-
pling from a nonnormal population. Bootstrapping is also a useful, robust method
of constructing confidence intervals for parameters.

• Monte Carlo studies are used to examine the behavior of statistics when the precise
sampling distribution of the statistic cannot be derived. We examined the behavior
of a certain test statistic and of the maximum likelihood estimator in a fixed effects
model.

• Many integrals that do not have closed forms can be transformed into expectations
of random variables that can be sampled with a random number generator. This
produces the technique of Monte Carlo integration. The technique of maximum
simulated likelihood estimation allows the researcher to formulate likelihood func-
tions (and other criteria such as moment equations) that involve expectations that
can be integrated out of the function using Monte Carlo techniques. We used the
method to fit random parameters models.

The techniques suggested here open up a vast range of applications of Bayesian statis-
tics and econometrics in which the characteristics of a posterior distribution are de-
duced from random samples from the distribution, rather than brute force derivation
of the analytic form. Bayesian methods based on this principle are discussed in the next
chapter.

Key Terms and Concepts

• Antithetic draws
• Block bootstrap
• Bootstrapping
• Cholesky decomposition
• Cholesky factorization
• Delta method
• Direct product
• Discrete uniform

distribution
• Fundamental probability

transformation
• Gauss–Hermite quadrature

• GHK smooth recursive
stimulator

• Hadamard product
• Halton draws
• Hierarchical linear

model
• Incidental parameters

problem
• Kronecker product
• Markov chain
• Maximum stimulated

likelihood

• Mixed model
• Monte Carlo integration
• Monte Carlo study
• Nonparametric bootstrap
• Paired bootstrap
• Parametric bootstrap
• Percentile method
• Period
• Poisson
• Power of a test
• Pseudo maximum likelihood

estimator



Greene-2140242 book January 19, 2011 21:17

694 PART III ✦ Estimation Methodology

• Pseudo–random number
generator

• Random parameters

• Schur product
• Seed
• Simulation

• Size of a test
• Specificity
• Shuffling

Exercises

1. The exponential distribution has density f (x) = θ exp(−θx). How would you obtain
a random sample of observations from an exponential population?

2. TheWeibull population has survival function S(x) = λp exp(−(λx)p). How would
you obtain a random sample of observations from a Weibull population? (The
survival function equals one minus the cdf.)

3. Derive the first order conditions for nonlinear least squares estimation of the pa-
rameters in (15-2). How would you estimate the asymptotic covariance matrix for
your estimator of θ = (β, σ )?

Applications

1. Does the Wald statistic reject the null hypothesis too often? Construct a Monte
Carlo study of the behavior of the Wald statistic for testing the hypothesis that γ

equals zero in the model of Section 15.5.1. Recall, theWald statistic is the square
of the t ratio on the parameter in question. The procedure of the test is to reject
the null hypothesis if the Wald statistic is greater than 3.84, the critical value from
the chi-squared distribution with one degree of freedom. Replicate the study in
Section 15.5.1 that is for all three assumptions about the underlying data.

2. A regression model that describes income as a function of experience is

ln Incomei = β1 + β2Experiencei + β3Experience2
i + εi .

The model implies that ln Income is largest when ∂ ln Income/∂ Experience equals
zero. The value of Experience at which this occurs is where β4 +2β5 Experience = 0,
or Experience* = −β2/β3. Describe how to use the delta method to obtain a con-
fidence interval for Experience*. Now, describe how to use bootstrapping for this
computation. A model of this sort using the Cornwell and Rupert data appears
in Example 15.6. Using your proposals here, carry out the computations for that
model using the Cornwell and Rupert data.
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BAYESIAN ESTIMATION
AND INFERENCE

Q
16.1 INTRODUCTION

The preceding chapters (and those that follow this one) are focused primarily on para-
metric specifications and classical estimation methods. These elements of the economet-
ric method present a bit of a methodological dilemma for the researcher. They appear
to straightjacket the analyst into a fixed and immutable specification of the model. But
in any analysis, there is uncertainty as to the magnitudes, sometimes the signs and, at
the extreme, even the meaning of parameters. It is rare that the presentation of a set
of empirical results has not been preceded by at least some exploratory analysis. Pro-
ponents of the Bayesian methodology argue that the process of “estimation” is not one
of deducing the values of fixed parameters, but rather, in accordance with the scientific
method, one of continually updating and sharpening our subjective beliefs about the
state of the world. Of course, this adherence to a subjective approach to model building
is not necessarily a virtue. If one holds that “models” and “parameters” represent objec-
tive truths that the analyst seeks to discover, then the subjectivity of Bayesian methods
may be less than perfectly comfortable.

Contemporary applications of Bayesian methods typically advance little of this the-
ological debate. The modern practice of Bayesian econometrics is much more pragmatic.
As we will see in several of the following examples, Bayesian methods have produced
some remarkably efficient solutions to difficult estimation problems. Researchers often
choose the techniques on practical grounds, rather than in adherence to their philo-
sophical basis; indeed, for some, the Bayesian estimator is merely an algorithm.1

Bayesian methods have have been employed by econometricians since well be-
fore Zellner’s classic (1971) presentation of the methodology to economists, but un-
til fairly recently, were more or less at the margin of the field. With recent advances
in technique (notably the Gibbs sampler) and the advance of computer software and
hardware that has made simulation-based estimation routine, Bayesian methods
that rely heavily on both have become widespread throughout the social sciences.
There are libraries of work on Bayesian econometrics a rapidly expanding applied

1For example, from the home Web site of MLWin, a widely used program for multilevel (random parameters)
modeling, http://www.cmm.bris.ac.uk/MLwiN/features/mcmc.shtml, we find “Markov Chain Monte Carlo
(MCMC) methods allow Bayesian models to be fitted, where prior distributions for the model parameters
are specified. By default MLwiN sets diffuse priors which can be used to approximate maximum likelihood
estimation.” Train (2001) is an interesting application that compares Bayesian and classical estimators of a
random parameters model.

695
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literature.2 This chapter will introduce the vocabulary and techniques of Bayesian
econometrics. Section 16.2 lays out the essential foundation for the method. The canon-
ical application, the linear regression model, is developed in Section 16.3. Section 16.4
continues the methodological development. The fundamental tool of contemporary
Bayesian econometrics, the Gibbs sampler, is presented in Section 16.5. Three appli-
cations and several more limited examples are presented in Sections 16.6, 16.7, and
16.8. Section 16.6 shows how to use the Gibbs sampler to estimate the parameters of
a probit model without maximizing the likelihood function. This application also in-
troduces the technique of data augmentation. Bayesian counterparts to the panel data
random and fixed effects models are presented in Section 16.7. A hierarchical Bayesian
treatment of the random parameters model is presented in Section 16.8 with a com-
parison to the classical treatment of the same model. Some conclusions are drawn in
Section 16.9. The presentation here is nontechnical. A much more extensive entry level
presentation is given by Lancaster (2004). Intermediate-level presentations appear in
Cameron and Trivedi (2005, Chapter 13), and Koop (2003). A more challenging treat-
ment is offered in Geweke (2005). The other sources listed in footnote 2 are oriented
to applications.

16.2 BAYES THEOREM AND THE
POSTERIOR DENSITY

The centerpiece of the Bayesian methodology is the Bayes’s theorem: for events Aand
B, the conditional probability of event Agiven that B has occurred is

P(A|B) = P(B |A)P(A)

P(B)
. (16-1)

Paraphrased for our applications here, we would write

P(parameters | data) = P(data | parameters)P(parameters)
P(data)

.

In this setting, the data are viewed as constants whose distributions do not involve the
parameters of interest. For the purpose of the study, we treat the data as only a fixed
set of additional information to be used in updating our beliefs about the parameters.
Note the similarity to (12-1). Thus, we write

P(parameters | data) ∝ P(data | parameters)P(parameters)
(16-2)

= Likelihood function × Prior density.

The symbol ∝ means “is proportional to.” In the preceding equation, we have dropped
the marginal density of the data, so what remains is not a proper density until it is scaled
by what will be an inessential proportionality constant. The first term on the right is
the joint distribution of the observed random variables y, given the parameters. As we

2Recent additions to the dozens of books on the subject include Gelman et al. (2004), Geweke (2005), Gill
(2002), Koop (2003), Lancaster (2004), Congdon (2005), and Rossi et al. (2005). Readers with a historical bent
will find Zellner (1971) and Leamer (1978) worthwhile reading. There are also many methodological surveys.
Poirier and Tobias (2006) as well as Poirier (1988, 1995) sharply focus the nature of the methodological
distinctions between the classical (frequentist) and Bayesian approaches.
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shall analyze it here, this distribution is the normal distribution we have used in our
previous analysis—see (12-1). The second term is the prior beliefs of the analyst. The
left-hand side is the posterior density of the parameters, given the current body of data,
or our revised beliefs about the distribution of the parameters after “seeing” the data.
The posterior is a mixture of the prior information and the “current information,” that
is, the data. Once obtained, this posterior density is available to be the prior density
function when the next body of data or other usable information becomes available. The
principle involved, which appears nowhere in the classical analysis, is one of continual
accretion of knowledge about the parameters.

Traditional Bayesian estimation is heavily parameterized. The prior density and the
likelihood function are crucial elements of the analysis, and both must be fully specified
for estimation to proceed. The Bayesian “estimator” is the mean of the posterior density
of the parameters, a quantity that is usually obtained either by integration (when closed
forms exist), approximation of integrals by numerical techniques, or by Monte Carlo
methods, which are discussed in Section 15.6.2.

Example 16.1 Bayesian Estimation of a Probability
Consider estimation of the probability that a production process will produce a defective
product. In case 1, suppose the sampling design is to choose N = 25 items from the
production line and count the number of defectives. If the probability that any item is defec-
tive is a constant θ between zero and one, then the likelihood for the sample of data is

L (θ | data) = θ D (1 − θ ) 25−D ,

where D is the number of defectives, say, 8. The maximum likelihood estimator of θ will
be p = D/25 = 0.32, and the asymptotic variance of the maximum likelihood estimator is
estimated by p(1 − p)/25 = 0.008704.

Now, consider a Bayesian approach to the same analysis. The posterior density is obtained
by the following reasoning:

p(θ | data) = p(θ , data)
p(data)

= p(θ , data)∫
θ

p(θ , data)dθ
= p(data | θ ) p(θ )

p(data)

= Likelihood(data | θ ) × p(θ )
p(data)

where p(θ ) is the prior density assumed for θ . [We have taken some license with the termi-
nology, since the likelihood function is conventionally defined as L (θ | data) .] Inserting the
results of the sample first drawn, we have the posterior density:

p(θ | data) = θ D (1 − θ ) N−D p(θ )∫
θ
θ D (1 − θ ) N−D p(θ )dθ

.

What follows depends on the assumed prior for θ . Suppose we begin with a “noninforma-
tive” prior that treats all allowable values of θ as equally likely. This would imply a uniform
distribution over (0,1). Thus, p(θ ) = 1, 0 ≤ θ ≤ 1. The denominator with this assumption is
a beta integral (see Section E2.3) with parameters a = D + 1 and b = N − D + 1, so the
posterior density is

p(θ | data) = θ D (1 − θ ) N−D

(
�( D + 1)�( N − D + 1)
�( D + 1 + N − D + 1)

) = �( N + 2)θ D (1 − θ ) N−D

�( D + 1)�( N − D + 1)
.

This is the density of a random variable with a beta distribution with parameters (α, β) =
( D+1, N − D+1) . (See Section B.4.6.) The mean of this random variable is ( D+1)/( N +2) =
9/27 = 0.3333 (as opposed to 0.32, the MLE). The posterior variance is [( D+1)/( N− D+1) ]/
[( N + 3) ( N + 2)2] = 0.007936.
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There is a loose end in this example. If the uniform prior were noninformative, that would
mean that the only information we had was in the likelihood function. Why didn’t the Bayesian
estimator and the MLE coincide? The reason is that the uniform prior over [0,1] is not really
noninformative. It did introduce the information that θ must fall in the unit interval. The prior
mean is 0.5 and the prior variance is 1/12. The posterior mean is an average of the MLE and
the prior mean. Another less than obvious aspect of this result is the smaller variance of the
Bayesian estimator. The principle that lies behind this (aside from the fact that the prior did in
fact introduce some certainty in the estimator) is that the Bayesian estimator is conditioned
on the specific sample data. The theory behind the classical MLE implies that it averages
over the entire population that generates the data. This will always introduce a greater degree
of “uncertainty” in the classical estimator compared to its Bayesian counterpart.

16.3 BAYESIAN ANALYSIS OF THE CLASSICAL
REGRESSION MODEL

The complexity of the algebra involved in Bayesian analysis is often extremely bur-
densome. For the linear regression model, however, many fairly straightforward results
have been obtained. To provide some of the flavor of the techniques, we present the full
derivation only for some simple cases. In the interest of brevity, and to avoid the burden
of excessive algebra, we refer the reader to one of the several sources that present the
full derivation of the more complex cases.3

The classical normal regression model we have analyzed thus far is constructed
around the conditional multivariate normal distribution N[Xβ, σ 2I]. The interpreta-
tion is different here. In the sampling theory setting, this distribution embodies the
information about the observed sample data given the assumed distribution and the
fixed, albeit unknown, parameters of the model. In the Bayesian setting, this function
summarizes the information that a particular realization of the data provides about the
assumed distribution of the model parameters. To underscore that idea, we rename this
joint density the likelihood for β and σ 2 given the data, so

L(β, σ 2 | y, X) = [2πσ 2]−n/2e−[(1/(2σ 2))(y−Xβ)′(y−Xβ)]. (16-3)

For purposes of the following results, some reformulation is useful. Let d = n − K (the
degrees of freedom parameter), and substitute

y − Xβ = y − Xb − X(β − b) = e − X(β − b)

in the exponent. Expanding this produces
(

− 1
2σ 2

)
(y − Xβ)′(y − Xβ) =

(
−1

2
ds2

)(
1
σ 2

)
− 1

2
(β − b)′

(
1
σ 2

X′X
)

(β − b).

After a bit of manipulation (note that n/2 = d/2 + K/2), the likelihood may be written

L(β, σ 2 | y, X)

= [2π ]−d/2[σ 2]−d/2e−(d/2)(s2/σ 2)[2π ]−K/2[σ 2]−K/2e−(1/2)(β−b)′[σ 2(X′X)−1]−1(β−b).

3These sources include Judge et al. (1982, 1985), Maddala (1977a), Mittelhammer et al. (2000), and the
canonical reference for econometricians, Zellner (1971). A remarkable feature of the current literature is the
degree to which the analytical components have become ever simpler while the applications have become
progressively more complex. This will become evident in Sections 16.5–16.7.
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This density embodies all that we have to learn about the parameters from the observed
data. Because the data are taken to be constants in the joint density, we may multiply
this joint density by the (very carefully chosen), inessential (because it does not involve
β or σ 2) constant function of the observations,

A=

(
d
2

s2
)(d/2)+1

�

(
d
2

+ 1
) [2π ](d/2) | X′X | −1/2.

For convenience, let v = d/2. Then, multiplying L(β, σ 2 | y, X) by A gives

L(β, σ 2 | y, X) ∝ [vs2]v+1

�(v + 1)

(
1
σ 2

)v

e−vs2(1/σ 2)[2π ]−K/2 | σ 2(X′X)−1 | −1/2

× e−(1/2)(β−b)′[σ 2(X′X)−1]−1(β−b). (16-4)

The likelihood function is proportional to the product of a gamma density for z =
1/σ 2 with parameters λ = vs2 and P = v + 1 [see (B-39); this is an inverted gamma
distribution] and a K-variate normal density for β | σ 2 with mean vector b and covariance
matrix σ 2(X′X)−1. The reason will be clear shortly.

16.3.1 ANALYSIS WITH A NONINFORMATIVE PRIOR

The departure point for the Bayesian analysis of the model is the specification of a prior
distribution. This distribution gives the analyst’s prior beliefs about the parameters of
the model. One of two approaches is generally taken. If no prior information is known
about the parameters, then we can specify a noninformative prior that reflects that. We
do this by specifying a “flat” prior for the parameter in question:4

g(parameter) ∝ constant.

There are different ways that one might characterize the lack of prior information. The
implication of a flat prior is that within the range of valid values for the parameter, all
intervals of equal length—hence, in principle, all values—are equally likely. The second
possibility, an informative prior, is treated in the next section. The posterior density is
the result of combining the likelihood function with the prior density. Because it pools
the full set of information available to the analyst, once the data have been drawn, the
posterior density would be interpreted the same way the prior density was before the
data were obtained.

To begin, we analyze the case in which σ 2 is assumed to be known. This assumption
is obviously unrealistic, and we do so only to establish a point of departure. Using
Bayes’s theorem, we construct the posterior density,

f (β | y, X, σ 2) = L(β | σ 2, y, X)g(β | σ 2)

f (y)
∝ L(β | σ 2, y, X)g(β | σ 2),

4That this “improper” density might not integrate to one is only a minor difficulty. Any constant of integration
would ultimately drop out of the final result. See Zellner (1971, pp. 41–53) for a discussion of noninformative
priors.
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assuming that the distribution of X does not depend on β or σ 2. Because g(β | σ 2) ∝ a
constant, this density is the one in (16-4). For now, write

f (β | σ 2, y, X) ∝ h(σ 2)[2π ]−K/2 |σ 2(X′X)−1|−1/2e−(1/2)(β−b)′[σ 2(X′X)−1]−1(β−b), (16-5)

where

h(σ 2) = [vs2]v+1

�(v + 1)

[
1
σ 2

]v

e−vs2(1/σ 2). (16-6)

For the present, we treat h(σ 2) simply as a constant that involves σ 2, not as a proba-
bility density; (16-5) is conditional on σ 2. Thus, the posterior density f (β | σ 2, y, X) is
proportional to a multivariate normal distribution with mean b and covariance matrix
σ 2(X′X)−1.

This result is familiar, but it is interpreted differently in this setting. First, we have
combined our prior information about β (in this case, no information) and the sample
information to obtain a posterior distribution. Thus, on the basis of the sample data in
hand, we obtain a distribution for β with mean b and covariance matrix σ 2(X′X)−1. The
result is dominated by the sample information, as it should be if there is no prior infor-
mation. In the absence of any prior information, the mean of the posterior distribution,
which is a type of Bayesian point estimate, is the sampling theory estimator.

To generalize the preceding to an unknown σ 2, we specify a noninformative prior
distribution for ln σ over the entire real line.5 By the change of variable formula, if
g(ln σ) is constant, then g(σ 2) is proportional to 1/σ 2.6 Assuming that β and σ 2 are
independent, we now have the noninformative joint prior distribution:

g(β, σ 2) = gβ(β)gσ 2(σ 2) ∝ 1
σ 2

.

We can obtain the joint posterior distribution for β and σ 2 by using

f (β, σ 2 | y, X) = L(β | σ 2, y, X)gσ 2(σ 2) ∝ L(β | σ 2, y, X) × 1
σ 2

. (16-7)

For the same reason as before, we multiply gσ 2(σ 2) by a well-chosen constant, this time
vs2�(v + 1)/�(v + 2) = vs2/(v + 1). Multiplying (16-5) by this constant times gσ 2(σ 2)

and inserting h(σ 2) gives the joint posterior for β and σ 2, given y and X:

f (β, σ 2 | y, X) ∝ [vs2]v+2

�(v + 2)

[
1
σ 2

]v+1

e−vs2(1/σ 2)[2π ]−K/2 |σ 2(X′X)−1|−1/2

× e−(1/2)(β−b)′[σ 2(X′X)−1]−1(β−b).

To obtain the marginal posterior distribution for β, it is now necessary to integrate σ 2

out of the joint distribution (and vice versa to obtain the marginal distribution for σ 2).
By collecting the terms, f (β, σ 2 | y, X) can be written as

f (β, σ 2 | y, X) ∝ A×
(

1
σ 2

)P−1

e−λ(1/σ 2),

5See Zellner (1971) for justification of this prior distribution.
6Many treatments of this model use σ rather than σ 2 as the parameter of interest. The end results are identical.
We have chosen this parameterization because it makes manipulation of the likelihood function with a gamma
prior distribution especially convenient. See Zellner (1971, pp. 44–45) for discussion.
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where

A= [vs2]v+2

�(v + 2)
[2π ]−K/2 |(X′X)−1|−1/2,

P = v + 2 + K/2 = (n − K)/2 + 2 + K/2 = (n + 4)/2,

and

λ = vs2 + 1
2 (β − b)′X′X(β − b),

so the marginal posterior distribution for β is
∫ ∞

0
f (β, σ 2 | y, X)dσ 2 ∝ A

∫ ∞

0

(
1
σ 2

)P−1

e−λ(1/σ 2)dσ 2.

To do the integration, we have to make a change of variable; d(1/σ 2) = −(1/σ 2)2dσ 2,
so dσ 2 = −(1/σ 2)−2 d(1/σ 2). Making the substitution—the sign of the integral changes
twice, once for the Jacobian and back again because the integral from σ 2 = 0 to ∞ is
the negative of the integral from (1/σ 2) = 0 to ∞—we obtain

∫ ∞

0
f (β, σ 2 | y, X)dσ 2 ∝ A

∫ ∞

0

(
1
σ 2

)P−3

e−λ(1/σ 2)d
(

1
σ 2

)

= A× �(P − 2)

λP−2
.

Reinserting the expressions for A, P, and λ produces

f (β | y, X) ∝
[vs2]v+2�(v + K/2)

�(v + 2)
[2π ]−K/2 |X′X|−1/2

[
vs2 + 1

2 (β − b)′X′X(β − b)
]v+K/2 . (16-8)

This density is proportional to a multivariate t distribution7 and is a generalization
of the familiar univariate distribution we have used at various points. This distribu-
tion has a degrees of freedom parameter, d = n − K, mean b, and covariance matrix
(d/(d −2))×[s2(X′X)−1]. Each element of the K-element vector β has a marginal distri-
bution that is the univariate t distribution with degrees of freedom n − K, mean bk, and
variance equal to the kth diagonal element of the covariance matrix given earlier. Once
again, this is the same as our sampling theory result. The difference is a matter of inter-
pretation. In the current context, the estimated distribution is for β and is centered at b.

16.3.2 ESTIMATION WITH AN INFORMATIVE PRIOR DENSITY

Once we leave the simple case of noninformative priors, matters become quite compli-
cated, both at a practical level and, methodologically, in terms of just where the prior
comes from. The integration of σ 2 out of the posterior in (16-7) is complicated by itself.
It is made much more so if the prior distributions of β and σ 2 are at all involved. Partly
to offset these difficulties, researchers usually use what is called a conjugate prior, which

7See, for example, Judge et al. (1985) for details. The expression appears in Zellner (1971, p. 67). Note that
the exponent in the denominator is v + K/2 = n/2.
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is one that has the same form as the conditional density and is therefore amenable to
the integration needed to obtain the marginal distributions.8

Example 16.2 Estimation with a Conjugate Prior
We continue Example 16.1, but we now assume a conjugate prior. For likelihood functions
involving proportions, the beta prior is a common device, for reasons that will emerge shortly.
The beta prior is

p(θ ) = �(α + β)θα−1(1 − θ ) β−1

�(α)�(β)
.

Then, the posterior density becomes

θ D (1 − θ ) N−D �(α + β)θα−1(1 − θ ) β−1

�(α)�(β)∫ 1

0

θ D (1 − θ ) N−D �(α + β)θα−1(1 − θ ) β−1

�(α)�(β)
dθ

= θ D+α−1(1 − θ ) N−D+β−1

∫ 1

0

θ D+α−1(1 − θ ) N−D+β−1dθ

.

The posterior density is, once again, a beta distribution, with parameters ( D +α, N − D +β) .
The posterior mean is

E [θ | data] = D + α

N + α + β
.

(Our previous choice of the uniform density was equivalent to α = β = 1.) Suppose we choose
a prior that conforms to a prior mean of 0.5, but with less mass near zero and one than in the
center, such as α = β = 2. Then, the posterior mean would be (8 + 2)/(25 + 3) = 0.33571.
(This is yet larger than the previous estimator. The reason is that the prior variance is now
smaller than 1/12, so the prior mean, still 0.5, receives yet greater weight than it did in the
previous example.)

Suppose that we assume that the prior beliefs about β may be summarized in a
K-variate normal distribution with mean β0 and variance matrix �0. Once again, it is
illuminating to begin with the case in which σ 2 is assumed to be known. Proceeding in
exactly the same fashion as before, we would obtain the following result: The posterior
density of β conditioned on σ 2 and the data will be normal with

E [β | σ 2, y, X] = {
�−1

0 + [σ 2(X′X)−1]−1
}−1{

�−1
0 β0 + [σ 2(X′X)−1]−1b

}

= Fβ0 + (I − F)b,
(16-9)

where

F = {
�−1

0 + [σ 2(X′X)−1]−1}−1
�−1

0

= {
[prior variance]−1 + [conditional variance]−1}−1[prior variance]−1. (16-10)

This vector is a matrix weighted average of the prior and the least squares (sample)
coefficient estimates, where the weights are the inverses of the prior and the conditional

8Our choice of noninformative prior for ln σ led to a convenient prior for σ 2 in our derivation of the posterior
for β. The idea that the prior can be specified arbitrarily in whatever form is mathematically convenient is
very troubling; it is supposed to represent the accumulated prior belief about the parameter. On the other
hand, it could be argued that the conjugate prior is the posterior of a previous analysis, which could justify
its form. The issue of how priors should be specified is one of the focal points of the methodological debate.
“Non-Bayesians” argue that it is disingenuous to claim the methodological high ground and then base the
crucial prior density in a model purely on the basis of mathematical convenience. In a small sample, this
assumed prior is going to dominate the results, whereas in a large one, the sampling theory estimates will
dominate anyway.
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covariance matrices.9 The smaller the variance of the estimator, the larger its weight,
which makes sense. Also, still taking σ 2 as known, we can write the variance of the
posterior normal distribution as

Var[β | y, X, σ 2] = {
�−1

0 + [σ 2(X′X)−1]−1}−1
. (16-11)

Notice that the posterior variance combines the prior and conditional variances on the
basis of their inverses.10 We may interpret the noninformative prior as having infinite
elements in �0. This assumption would reduce this case to the earlier one.

Once again, it is necessary to account for the unknown σ 2. If our prior over σ 2 is to
be informative as well, then the resulting distribution can be extremely cumbersome.
A conjugate prior for β and σ 2 that can be used is

g(β, σ 2) = gβ|σ 2(β | σ 2)gσ 2(σ 2), (16-12)

where gβ|σ 2(β | σ 2) is normal, with mean β0 and variance σ 2A and

gσ 2(σ 2) =
[
mσ 2

0

]m+1

�(m + 1)

(
1
σ 2

)m

e−mσ 2
0 (1/σ 2). (16-13)

This distribution is an inverted gamma distribution. It implies that 1/σ 2 has a gamma
distribution. The prior mean for σ 2 is σ 2

0 and the prior variance is σ 4
0 /(m − 1).11 The

product in (16-12) produces what is called a normal-gamma prior, which is the natural
conjugate prior for this form of the model. By integrating out σ 2, we would obtain the
prior marginal for β alone, which would be a multivariate t distribution.12 Combining
(16-12) with (16-13) produces the joint posterior distribution for β and σ 2. Finally, the
marginal posterior distribution for β is obtained by integrating out σ 2. It has been shown
that this posterior distribution is multivariate t with

E [β | y, X] = {
[σ̄ 2A]−1 + [σ̄ 2(X′X)−1]−1}−1{[σ̄ 2A]−1β0 + [σ̄ 2(X′X)−1]−1b

}
(16-14)

and

Var[β | y, X] =
(

j
j − 2

) {
[σ̄ 2A]−1 + [σ̄ 2(X′X)−1]−1}−1

, (16-15)

where j is a degrees of freedom parameter and σ̄ 2 is the Bayesian estimate of σ 2. The
prior degrees of freedom m is a parameter of the prior distribution for σ 2 that would
have been determined at the outset. (See the following example.) Once again, it is clear
that as the amount of data increases, the posterior density, and the estimates thereof,
converge to the sampling theory results.

9Note that it will not follow that individual elements of the posterior mean vector lie between those of β0
and b. See Judge et al. (1985, pp. 109–110) and Chamberlain and Leamer (1976).
10Precisely this estimator was proposed by Theil and Goldberger (1961) as a way of combining a previously
obtained estimate of a parameter and a current body of new data. They called their result a “mixed estimator.”
The term “mixed estimation” takes an entirely different meaning in the current literature, as we saw in
Chapter 15.
11You can show this result by using gamma integrals. Note that the density is a function of 1/σ 2 = 1/x
in the formula of (B-39), so to obtain E [σ 2], we use the analog of E [1/x] = λ/(P − 1) and E [(1/x)2] =
λ2/[(P − 1)(P − 2)]. In the density for (1/σ 2), the counterparts to λ and P are mσ 2

0 and m + 1.
12Full details of this (lengthy) derivation appear in Judge et al. (1985, pp. 106–110) and Zellner (1971).
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TABLE 16.1 Estimates of the MPC

Years Estimated MPC Variance of b Degrees of Freedom Estimated σ

1940–1950 0.6848014 0.061878 9 24.954
1950–2000 0.92481 0.000065865 49 92.244

Example 16.3 Bayesian Estimate of the Marginal Propensity
to Consume

In Example 3.2 an estimate of the marginal propensity to consume is obtained using 11 ob-
servations from 1940 to 1950, with the results shown in the top row of Table 16.1. A clas-
sical 95 percent confidence interval for β based on these estimates is (0.1221, 1.2475).
(The very wide interval probably results from the obviously poor specification of the model.)
Based on noninformative priors for β and σ 2, we would estimate the posterior density
for β to be univariate t with nine degrees of freedom, with mean 0.6848014 and variance
(11/9)0.061878 = 0.075628. An HPD interval for β would coincide with the confidence in-
terval. Using the fourth quarter (yearly) values of the 1950–2000 data used in Example 5.3,
we obtain the new estimates that appear in the second row of the table.

We take the first estimate and its estimated distribution as our prior for β and obtain a
posterior density for β based on an informative prior instead. We assume for this exercise
that σ 2 may be taken as known at the sample value of 24.954. Then,

b̄ =
[

1
0.000065865

+ 1
0.061878

]−1 [
0.92481

0.000065865
+ 0.6848014

0.061878

]
= 0.92455

The weighted average is overwhelmingly dominated by the far more precise sample es-
timate from the larger sample. The posterior variance is the inverse in brackets, which is
0.000065795. This is close to the variance of the latter estimate. An HPD interval can be
formed in the familiar fashion. It will be slightly narrower than the confidence interval, because
the variance of the posterior distribution is slightly smaller than the variance of the sampling
estimator. This reduction is the value of the prior information. (As we see here, the prior is
not particularly informative.)

16.4 BAYESIAN INFERENCE

The posterior density is the Bayesian counterpart to the likelihood function. It embod-
ies the information that is available to make inference about the econometric model.
As we have seen, the mean and variance of the posterior distribution correspond to
the classical (sampling theory) point estimator and asymptotic variance, although they
are interpreted differently. Before we examine more intricate applications of Bayesian
inference, it is useful to formalize some other components of the method, point and
interval estimation and the Bayesian equivalent of testing a hypothesis.13

16.4.1 POINT ESTIMATION

The posterior density function embodies the prior and the likelihood and therefore
contains all the researcher’s information about the parameters. But for purposes of
presenting results, the density is somewhat imprecise, and one normally prefers a point

13We do not include prediction in this list. The Bayesian approach would treat the prediction problem as
one of estimation in the same fashion as “parameter” estimation. The value to be forecasted is among the
unknown elements of the model that would be characterized by a prior and would enter the posterior density
in a symmetric fashion along with the other parameters.



Greene-2140242 book January 19, 2011 21:20

CHAPTER 16 ✦ Bayesian Estimation and Inference 705

or interval estimate. The natural approach would be to use the mean of the posterior
distribution as the estimator. For the noninformative prior, we use b, the sampling
theory estimator.

One might ask at this point, why bother? These Bayesian point estimates are iden-
tical to the sampling theory estimates. All that has changed is our interpretation of
the results. This situation is, however, exactly the way it should be. Remember that
we entered the analysis with noninformative priors for β and σ 2. Therefore, the only
information brought to bear on estimation is the sample data, and it would be peculiar
if anything other than the sampling theory estimates emerged at the end. The results do
change when our prior brings out of sample information into the estimates, as we shall
see later.

The results will also change if we change our motivation for estimating β. The
parameter estimates have been treated thus far as if they were an end in themselves.
But in some settings, parameter estimates are obtained so as to enable the analyst to
make a decision. Consider then, a loss function, H(β̂, β), which quantifies the cost of
basing a decision on an estimate β̂ when the parameter is β. The expected, or average
loss is

Eβ[H(β̂, β)] =
∫

β

H(β̂, β) f (β | y, X)dβ, (16-16)

where the weighting function is the marginal posterior density. (The joint density for β

and σ 2 would be used if the loss were defined over both.) The Bayesian point estimate is
the parameter vector that minimizes the expected loss. If the loss function is a quadratic
form in (β̂ − β), then the mean of the posterior distribution is the “minimum expected
loss” (MELO) estimator. The proof is simple. For this case,

E [H(β̂, β) | y, X] = E
[ 1

2 (β̂ − β)′W(β̂ − β) | y, X
]
.

To minimize this, we can use the result that

∂ E [H(β̂, β) | y, X]/∂β̂ = E [∂ H(β̂, β)/∂β̂ | y, X]

= E [−W(β̂ − β) | y, X].

The minimum is found by equating this derivative to 0, whence, because −W is irrele-
vant, β̂ = E [β | y, X]. This kind of loss function would state that errors in the positive
and negative direction are equally bad, and large errors are much worse than small
errors. If the loss function were a linear function instead, then the MELO estimator
would be the median of the posterior distribution. These results are the same in the
case of the noninformative prior that we have just examined.

16.4.2 INTERVAL ESTIMATION

The counterpart to a confidence interval in this setting is an interval of the posterior
distribution that contains a specified probability. Clearly, it is desirable to have this
interval be as narrow as possible. For a unimodal density, this corresponds to an interval
within which the density function is higher than any points outside it, which justifies the
term highest posterior density (HPD) interval. For the case we have analyzed, which
involves a symmetric distribution, we would form the HPD interval for β around the
least squares estimate b, with terminal values taken from the standard t tables.
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16.4.3 HYPOTHESIS TESTING

The Bayesian methodology treats the classical approach to hypothesis testing with a
large amount of skepticism. Two issues are especially problematic. First, a close ex-
amination of only the work we have done in Chapter 5 will show that because we are
using consistent estimators, with a large enough sample, we will ultimately reject any
(nested) hypothesis unless we adjust the significance level of the test downward as the
sample size increases. Second, the all-or-nothing approach of either rejecting or not
rejecting a hypothesis provides no method of simply sharpening our beliefs. Even the
most committed of analysts might be reluctant to discard a strongly held prior based on
a single sample of data, yet this is what the sampling methodology mandates. (Note, for
example, the uncomfortable dilemma this creates in footnote 20 in Chapter 10.) The
Bayesian approach to hypothesis testing is much more appealing in this regard. Indeed,
the approach might be more appropriately called “comparing hypotheses,” because it
essentially involves only making an assessment of which of two hypotheses has a higher
probability of being correct.

The Bayesian approach to hypothesis testing bears large similarity to Bayesian
estimation.14 We have formulated two hypotheses, a “null,” denoted H0, and an alter-
native, denoted H1. These need not be complementary, as in H0: “statement A is true”
versus H1: “statement A is not true,” since the intent of the procedure is not to reject
one hypothesis in favor of the other. For simplicity, however, we will confine our at-
tention to hypotheses about the parameters in the regression model, which often are
complementary. Assume that before we begin our experimentation (data gathering,
statistical analysis) we are able to assign prior probabilities P(H0) and P(H1) to the two
hypotheses. The prior odds ratio is simply the ratio

Oddsprior = P(H0)

P(H1)
. (16-17)

For example, one’s uncertainty about the sign of a parameter might be summarized in
a prior odds over H0: β ≥ 0 versus H1: β < 0 of 0.5/0.5 = 1. After the sample evidence is
gathered, the prior will be modified, so the posterior is, in general,

Oddsposterior = B01 × Oddsprior.

The value B01 is called the Bayes factor for comparing the two hypotheses. It summarizes
the effect of the sample data on the prior odds. The end result, Oddsposterior, is a new
odds ratio that can be carried forward as the prior in a subsequent analysis.

The Bayes factor is computed by assessing the likelihoods of the data observed
under the two hypotheses. We return to our first departure point, the likelihood of the
data, given the parameters:

f (y | β, σ 2, X) = [2πσ 2]−n/2e(−1/(2σ 2))(y−Xβ)′(y−Xβ). (16-18)

Based on our priors for the parameters, the expected, or average likelihood, assuming
that hypothesis j is true ( j = 0, 1), is

f (y | X, Hj ) = Eβ,σ 2 [ f (y | β, σ 2, X, Hj )] =
∫

σ 2

∫

β

f (y | β, σ 2, X, Hj )g(β, σ 2) dβ dσ 2.

14For extensive discussion, see Zellner and Siow (1980) and Zellner (1985, pp. 275–305).
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(This conditional density is also the predictive density for y.) Therefore, based on the
observed data, we use Bayes’s theorem to reassess the probability of Hj ; the posterior
probability is

P(Hj | y, X) = f (y | X, Hj )P(Hj )

f (y)
.

The posterior odds ratio is P(H0 | y, X)/P(H1 | y, X), so the Bayes factor is

B01 = f (y | X, H0)

f (y | X, H1)
.

Example 16.4 Posterior Odds for the Classical Regression Model
Zellner (1971) analyzes the setting in which there are two possible explanations for the vari-
ation in a dependent variable y:

Model 0: y = x′
0β0 + ε0

and
Model 1: y = x′

1β1 + ε1.

We will briefly sketch his results. We form informative priors for [β, σ 2] j , j = 0, 1, as spec-
ified in (16-12) and (16-13), that is, multivariate normal and inverted gamma, respectively.
Zellner then derives the Bayes factor for the posterior odds ratio. The derivation is lengthy
and complicated, but for large n, with some simplifying assumptions, a useful formulation
emerges. First, assume that the priors for σ 2

0 and σ 2
1 are the same. Second, assume that

[|A−1
0 |/|A−1

0 + X′
0X0|]/[|A−1

1 |/|A−1
1 + X′

1X1|] →1. The first of these would be the usual situation,
in which the uncertainty concerns the covariation between yi and xi , not the amount of resid-
ual variation (lack of fit). The second concerns the relative amounts of information in the prior
(A) versus the likelihood (X′X). These matrices are the inverses of the covariance matrices,
or the precision matrices. [Note how these two matrices form the matrix weights in the
computation of the posterior mean in (16-9).] Zellner (p. 310) discusses this assumption at
some length. With these two assumptions, he shows that as n grows large,15

B01 ≈
(

s2
0

s2
1

)−(n+m)/2

=
(

1 − R2
0

1 − R2
1

)−(n+m)/2

.

Therefore, the result favors the model that provides the better fit using R2 as the fit measure.
If we stretch Zellner’s analysis a bit by interpreting model 1 as “the model” and model 0 as
“no model” (that is, the relevant part of β0 = 0, so R2

0 = 0), then the ratio simplifies to

B01 = (
1 − R2

1

)(n+m)/2
.

Thus, the better the fit of the regression, the lower the Bayes factor in favor of model 0 (no
model), which makes intuitive sense.

Zellner and Siow (1980) have continued this analysis with noninformative priors for β and
σ 2

j . Specifically, they use the flat prior for ln σ [see (16-7)] and a multivariate Cauchy prior
(which has infinite variances) for β. Their main result (3.10) is

B01 =
1
2

√
π

�[(k + 1)/2]

(
n − K

2

)k/2

(1 − R2) (n−K−1)/2.

This result is very much like the previous one, with some slight differences due to degrees of
freedom corrections and the several approximations used to reach the first one.

15A ratio of exponentials that appears in Zellner’s result (his equation 10.50) is omitted. To the order of
approximation in the result, this ratio vanishes from the final result. (Personal correspondence from A.
Zellner to the author.)
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16.4.4 LARGE-SAMPLE RESULTS

Although all statistical results for Bayesian estimators are necessarily “finite sample”
(they are conditioned on the sample data), it remains of interest to consider how the
estimators behave in large samples.16 Do Bayesian estimators “converge” to some-
thing? To do this exercise, it is useful to envision having a sample that is the entire
population. Then, the posterior distribution would characterize this entire population,
not a sample from it. It stands to reason in this case, at least intuitively, that the pos-
terior distribution should coincide with the likelihood function. It will (as usual) save
for the influence of the prior. But as the sample size grows, one should expect the like-
lihood function to overwhelm the prior. It will, unless the strength of the prior grows
with the sample size (that is, for example, if the prior variance is of order 1/n). An
informative prior will still fade in its influence on the posterior unless it becomes more
informative as the sample size grows.

The preceding suggests that the posterior mean will converge to the maximum like-
lihood estimator. The MLE is the parameter vector that is at the mode of the likelihood
function. The Bayesian estimator is the posterior mean, not the mode, so a remain-
ing question concerns the relationship between these two features. The Bernstein–von
Mises “theorem” [See Cameron and Trivedi (2005, p. 433) and Train (2003, Chapter 12)]
states that the posterior mean and the maximum likelihood estimator will coverge to
the same probability limit and have the same limiting normal distribution. A form of
central limit theorem is at work.

But for remaining philosophical questions, the results suggest that for large samples,
the choice between Bayesian and frequentist methods can be one of computational
efficiency. (This is the thrust of the application in Section 16.8. Note, as well, footnote 1
at the beginning of this chapter. In an infinite sample, the maintained “uncertainty” of
the Bayesian estimation framework would have to arise from deeper questions about
the model. For example, the mean of the entire population is its mean; there is no
uncertainty about the “parameter.”)

16.5 POSTERIOR DISTRIBUTIONS AND THE
GIBBS SAMPLER

The preceding analysis has proceeded along a set of steps that includes formulating the
likelihood function (the model), the prior density over the objects of estimation, and
the posterior density. To complete the inference step, we then analytically derived the
characteristics of the posterior density of interest, such as the mean or mode, and the
variance. The complicated element of any of this analysis is determining the moments
of the posterior density, for example, the mean:

θ̂ = E[θ | data] =
∫

θ

θ p(θ | data)dθ . (16-19)

16The standard preamble in econometric studies, that the analysis to follow is “exact” as opposed to approxi-
mate or “large sample,” refers to this aspect—the analysis is conditioned on and, by implication, applies only
to the sample data in hand. Any inference outside the sample, for example, to hypothesized random samples
is, like the sampling theory counterpart, approximate.
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There are relatively few applications for which integrals such as this can be derived in
closed form. (This is one motivation for conjugate priors.) The modern approach to
Bayesian inference takes a different strategy. The result in (16-19) is an expectation.
Suppose it were possible to obtain a random sample, as large as desired, from the
population defined by p(θ | data). Then, using the same strategy we used throughout
Chapter 15 for simulation-based estimation, we could use that sample’s characteristics,
such as mean, variance, quantiles, and so on, to infer the characteristics of the posterior
distribution. Indeed, with an (essentially) infinite sample, we would be freed from having
to limit our attention to a few simple features such as the mean and variance and we
could view any features of the posterior distribution that we like. The (much less)
complicated part of the analysis is the formulation of the posterior density.

It remains to determine how the sample is to be drawn from the posterior density.
This element of the strategy is provided by a remarkable (and remarkably useful) result
known as the Gibbs sampler. [See Casella and George (1992).] The central result of the
Gibbs sampler is as follows: We wish to draw a random sample from the joint population
(x, y). The joint distribution of x and y is either unknown or intractable and it is not
possible to sample from the joint distribution. However, assume that the conditional
distributions f (x | y) and f (y | x) are known and simple enough that it is possible to draw
univariate random samples from both of them. The following iteration will produce a
bivariate random sample from the joint distribution:

Gibbs Sampler

1. Begin the cycle with a value of x0 that is in the right range of x | y,

2. Draw an observation y0 | x0,

3. Draw an observation xt | yt−1,

4. Draw an observation yt | xt .

Iteration of steps 3 and 4 for several thousand cycles will eventually produce a random
sample from the joint distribution. (The first several thousand draws are discarded to
avoid the influence of the initial conditions—this is called the burn in.) [Some technical
details on the procedure appear in Cameron and Trivedi (Chapter Section 13.5).]

Example 16.5 Gibbs Sampling from the Normal Distribution
To illustrate the mechanical aspects of the Gibbs sampler, consider random sampling from
the joint normal distribution. We consider the bivariate normal distribution first. Suppose we
wished to draw a random sample from the population

(
x1

x2

)
∼ N

[(
0
0

)
,

(
1 ρ

ρ 1

)]
.

As we have seen in Chapter 15, a direct approach is to use the fact that linear functions of
normally distributed variables are normally distributed. [See (B-80).] Thus, we might trans-
form a series of independent normal draws (u1, u2) ′ by the Cholesky decomposition of the
covariance matrix

(
x1

x2

)

i

=
[

1 0
θ1 θ2

](
u1

u2

)

i

= Lui ,
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where θ1 = ρ and θ2 =
√

1 − ρ2. The Gibbs sampler would take advantage of the result

x1 | x2 ∼ N[ρx2, (1 − ρ2) ],

and

x2 | x1 ∼ N[ρx1, (1 − ρ2) ].

To sample from a trivariate, or multivariate population, we can expand the Gibbs sequence
in the natural fashion. For example, to sample from a trivariate population, we would use the
Gibbs sequence

x1 | x2, x3 ∼ N[β1,2x2 + β1,3x3, �1 | 2,3],

x2 | x1, x3 ∼ N[β2,1x1 + β2,3x3, �2 | 1,3],

x3 | x1, x2 ∼ N[β3,1x1 + β3,2x2, �3 | 1,2],

where the conditional means and variances are given in Theorem B.7. This defines a three-
step cycle.

The availability of the Gibbs sampler frees the researcher from the necessity of de-
riving the analytical properties of the full, joint posterior distribution. Because the for-
mulation of conditional priors is straightforward, and the derivation of the conditional
posteriors is only slightly less so, this tool has facilitated a vast range of applications that
previously were intractable. For an example, consider, once again, the classical normal
regression model. From (16-7), the joint posterior for (β, σ 2) is

p(β, σ 2 | y, X) ∝ [vs2]v+2

�(v + 2)

[
1
σ 2

]v+1

exp(−vs2/σ 2)[2π ]−K/2 | σ 2(X′X)−1 | −1/2

× exp(−(1/2)(β − b)′[σ 2(X′X)−1]−1(β − b).

If we wished to use a simulation approach to characterizing the posterior distribution,
we would need to draw a K + 1 variate sample of observations from this intractable
distribution. However, with the assumed priors, we found the conditional posterior for
β in (16-5):

p(β | σ 2, y, X) = N[b, σ 2(X′X)−1].

From (16-6), we can deduce that the conditional posterior for σ 2 | β, y, X is an inverted
gamma distribution with parameters mσ 2

0 = vσ̂ 2 and m = v in (16-13):

p(σ 2 | β, y, X) = [vσ̂ 2]v+1

�(v + 1)

[
1
σ 2

]v

exp(−vσ̂ 2/σ 2), σ̂ 2 = �i=1(yi − x′
iβ)2

n − K
.

This sets up a Gibbs sampler for sampling from the joint posterior of β and σ 2. We
would cycle between random draws from the multivariate normal for β and the inverted
gamma distribution for σ 2 to obtain a K + 1 variate sample on (β, σ 2). [Of course, for
this application, we do know the marginal posterior distribution for β—see (16-8).]

The Gibbs sampler is not truly a random sampler; it is a Markov chain—each “draw”
from the distribution is a function of the draw that precedes it. The random input at
each cycle provides the randomness, which leads to the popular name for this strategy,
Markov–Chain Monte Carlo or MCMC or MC2 (pick one) estimation. In its simplest
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form, it provides a remarkably efficient tool for studying the posterior distributions in
very complicated models. The example in the next section shows a striking example of
how to locate the MLE for a probit model without computing the likelihood function
or its derivatives. In Section 16.8, we will examine an extension and refinement of the
strategy, the Metropolis–Hasting algorithm.

In the next several sections, we will present some applications of Bayesian inference.
In Section 16.9, we will return to some general issues in classical and Bayesian estimation
and inference.

16.6 APPLICATION: BINOMIAL PROBIT MODEL

Consider inference about the binomial probit model for a dependent variable that is
generated as follows (see Sections 17.2–17.4):

y∗
i = x′

iβ + εi , εi ∼ N[0, 1], (16-20)

yi = 1 if y∗
i > 0, otherwise yi = 0. (16-21)

(Theoretical moivation for the model appears in Section 17.3.) The data consist of
(y, X) = (yi , xi ), i = 1, . . . , n. The random variable yi has a Bernoulli distribution with
probabilities

Prob[yi = 1 | xi ] = �(x′
iβ),

Prob[yi = 0 | xi ] = 1 − �(x′
iβ).

The likelihood function for the observed data is

L(y | X, β) =
n∏

i=1

[�(x′
iβ)]yi [1 − �(x′

iβ)]1−yi .

(Once again, we cheat a bit on the notation—the likelihood function is actually the
joint density for the data, given X and β.) Classical maximum likelihood estimation of
β is developed in Section 17.3. To obtain the posterior mean (Bayesian estimator), we
assume a noninformative, flat (improper) prior for β,

p(β) ∝ 1.

The posterior density would be

p(β | y, X) =
∏n

i=1
[�(x′

iβ)]yi [1 − �(x′
iβ)]1−yi (1)∫

β

∏n

i=1
[�(x′

iβ)]yi [1 − �(x′
iβ)]1−yi (1)dβ

,

and the estimator would be the posterior mean,

β̂ = E[β | y, X] =

∫

β

β
∏n

i=1
[�(x′

iβ)]yi [1 − �(x′
iβ)]1−yi dβ

∫

β

∏n

i=1
[�(x′

iβ)]yi [1 − �(x′
iβ)]1−yi dβ

. (16-22)

Evaluation of the integrals in (16-22) is hopelessly complicated, but a solution using
the Gibbs sampler and a technique known as data augmentation, pioneered by Albert



Greene-2140242 book January 19, 2011 21:20

712 PART III ✦ Estimation Methodology

and Chib (1993a) is surprisingly simple. We begin by treating the unobserved y∗
i ’s as

unknowns to be estimated, along with β. Thus, the (K + n) × 1 parameter vector is
θ = (β, y∗). We now construct a Gibbs sampler. Consider, first, p(β | y∗, y, X). If y∗

i is
known, then yi is known [see (16-21)]. It follows that

p(β | y∗, y, X) = p(β | y∗, X).

This posterior defines a linear regression model with normally distributed disturbances
and known σ 2 = 1. It is precisely the model we saw in Section 16.3.1, and the posterior
we need is in (16-5), with σ 2 = 1. So, based on our earlier results, it follows that

p(β | y∗, y, X) = N[b∗, (X′X)−1], (16-23)

where

b∗ = (X′X)−1X′y∗.

For y∗
i , ignoring yi for the moment, it would follow immediately from (16-20) that

p(y∗
i | β, X) = N[x′

iβ, 1].

However, yi is informative about y∗
i . If yi equals one, we know that y∗

i > 0 and if yi

equals zero, then y∗
i ≤ 0. The implication is that conditioned on β, X, and y, y∗

i has the
truncated (above or below zero) normal distribution that is developed in Sections 19.2.1
and 19.2.2. The standard notation for this is

p(y∗
i | yi = 1, β, xi ) = N+[x′

iβ, 1],
(16-24)

p(y∗
i | yi = 0, β, xi ) = N−[x′

iβ, 1].

Results (16-23) and (16-24) set up the components for a Gibbs sampler that we can
use to estimate the posterior means E[β | y, X] and E[y∗ | y, X]. The following is our
algorithm:

Gibbs Sampler for the Binomial Probit Model
1. Compute X′X once at the outset and obtain L such that LL′ = (X′X)−1.
2. Start β at any value such as 0.
3. Result (15-4) shows how to transform a draw from U[0, 1] to a draw from the trun-

cated normal with underlying mean μ and standard deviation σ . For this application,
the draw is

y∗
i,r (r) = x′

iβr−1 + �−1[1 − (1 − U)�(x′
iβr−1)] if yi = 1,

y∗
i,r (r) = x′

iβr−1 + �−1[U�(−x′
iβr−1)] if yi = 0.

This step is used to draw the n observations on y∗
i,r (r).

4. Section 15.2.4 shows how to draw an observation from the multivariate normal
population. For this application, we use the results at step 3 to compute b∗ =
(X′X)−1X′y∗(r). We obtain a vector, v, of K draws from the N[0, 1] population,
then β(r) = b∗ + Lv.

The iteration cycles between steps 3 and 4. This should be repeated several thousand
times, discarding the burn-in draws, then the estimator of β is the sample mean of the
retained draws. The posterior variance is computed with the variance of the retained
draws. Posterior estimates of y∗

i would typically not be useful.
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TABLE 16.2 Probit Estimates for Grade Equation

Maximum Likelihood Posterior Means and Std. Devs

Variable Estimate Standard Error Posterior Mean Posterior S.D.

Constant −7.4523 2.5425 −8.6286 2.7995
GPA 1.6258 0.6939 1.8754 0.7668
TUCE 0.05173 0.08389 0.06277 0.08695
PSI 1.4263 0.5950 1.6072 0.6257

Example 16.6 Gibbs Sampler for a Probit Model
In Examples 14.15 and 14.16, we examined Spector and Mazzeo’s (1980) widely traveled
data on a binary choice outcome. (The example used the data for a different model.) The
binary probit model studied in the paper was

Prob(GRADEi = 1 | β, xi ) = (β1 + β2GPAi + β3TUCEi + β4PSIi ) .

The variables are defined in Example 14.15. Their probit model is studied in Example 17.3.
The sample contains 32 observations. Table 16.2 presents the maximum likelihood estimates
and the posterior means and standard deviations for the probit model. For the Gibbs sampler,
we used 5,000 draws, and discarded the first 1,000.

The results in Table 16.2 suggest the similarity of the posterior mean estimated with the
Gibbs sampler to the maximum likelihood estimate. However, the sample is quite small, and
the differences between the coefficients are still fairly substantial. For a striking example of
the behavior of this procedure, we now revisit the German health care data examined in
Example 14.17, and several other examples throughout the book. The probit model to be
estimated is

Prob(Doctor visitsit > 0) = (β1 + β2 Ageit + β3 Educationit + β4 Incomeit

+ β5 Kidsit + β6 Marriedit + β7 Femaleit) .

The sample contains data on 7,293 families and a total of 27,326 observations. We are pooling
the data for this application. Table 16.3 presents the probit results for this model using the
same procedure as before. (We used only 500 draws, and discarded the first 100.)

The similarity is what one would expect given the large sample size. We note before
proceeding to other applications, notwithstanding the striking similarity of the Gibbs sampler
to the MLE, that this is not an efficient method of estimating the parameters of a probit
model. The estimator requires generation of thousands of samples of potentially thousands
of observations. We used only 500 replications to produce Table 16.3. The computations
took about five minutes. Using Newton’s method to maximize the log-likelihood directly took
less than five seconds. Unless one is wedded to the Bayesian paradigm, on strictly practical
grounds, the MLE would be the preferred estimator.

TABLE 16.3 Probit Estimates for Doctor Visits Equation

Maximum Likelihood Posterior Means and Std. Devs

Variable Estimate Standard Error Posterior Mean Posterior S.D.

Constant −0.12433 0.058146 −0.12628 0.054759
Age 0.011892 0.00079568 0.011979 0.00080073
Education −0.014966 0.0035747 −0.015142 0.0036246
Income −0.13242 0.046552 −0.12669 0.047979
Kids −0.15212 0.018327 −0.15149 0.018400
Married 0.073522 0.020644 0.071977 0.020852
Female 0.35591 0.016017 0.35582 0.015913
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This application of the Gibbs sampler demonstrates in an uncomplicated case how
the algorithm can provide an alternative to actually maximizing the log-likelihood. We
do note that the similarity of the method to the EM algorithm in Section E.3.7 is not
coincidental. Both procedures use an estimate of the unobserved, censored data, and
both estimate β by using OLS using the predicted data.

16.7 PANEL DATA APPLICATION: INDIVIDUAL
EFFECTS MODELS

We consider a panel data model with common individual effects,

yit = αi + x′
itβ + εit, εit ∼ N

[
0, σ 2

ε

]
.

In the Bayesian framework, there is no need to distinguish between fixed and random
effects. The classical distinction results from an asymmetric treatment of the data and
the parameters. So, we will leave that unspecified for the moment. The implications will
emerge later when we specify the prior densities over the model parameters.

The likelihood function for the sample under normality of εit is

p
(
y | α1, . . . , αn, β, σ 2

ε , X
) =

n∏
i=1

Ti∏
t=1

1

σε

√
2π

exp
(

− (yit − αi − x′
itβ)2

2σ 2
ε

)
.

The remaining analysis hinges on the specification of the prior distributions. We will
consider three cases. Each illustrates an aspect of the methodology.

First, group the full set of location (regression) parameters in one (n + K) × 1
slope vector, γ . Then, with the disturbance variance, θ = (α, β, σ 2

ε ) = (γ , σ 2
ε ). Define a

conformable data matrix, Z = (D, X), where D contains the n dummy variables so that
we may write the model,

y = Zγ + ε

in the familiar fashion for our common effects linear regression. (See Chapter 11.) We
now assume the uniform-inverse gamma prior that we used in our earlier treatment of
the linear model,

p
(
γ , σ 2

ε

) ∝ 1/σ 2
ε .

The resulting (marginal) posterior density for γ is precisely that in (16-8) (where now
the slope vector includes the elements of α). The density is an (n + K) variate t with
mean equal to the OLS estimator and covariance matrix [(�i Ti − n − K)/(�i Ti − n −
K − 2)]s2(Z′Z)−1. Because OLS in this model as stated means the within estimator, the
implication is that with this noninformative prior over (α, β), the model is equivalent
to the fixed effects model. Note, again, this is not a consequence of any assumption
about correlation between effects and included variables. That has remained unstated;
though, by implication, we would allow correlation between D and X.

Some observers are uncomfortable with the idea of a uniform prior over the entire
real line. [See, for example, Koop (2003, pp. 22–23). Others, for example, Zellner (1971,
p. 20), are less concerned. Cameron and Trivedi (2005, pp. 425–427) suggest a middle
ground.] Formally, our assumption of a uniform prior over the entire real line is an
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improper prior, because it cannot have a positive density and integrate to one over
the entire real line. As such, the posterior appears to be ill defined. However, note
that the “improper” uniform prior will, in fact, fall out of the posterior, because it
appears in both numerator and denominator. [Zellner (1971, p. 20) offers some more
methodological commentary.] The practical solution for location parameters, such as a
vector of regression slopes, is to assume a nearly flat, “almost uninformative” prior. The
usual choice is a conjugate normal prior with an arbitrarily large variance. (It should
be noted, of course, that as long as that variance is finite, even if it is large, the prior is
informative. We return to this point in Section 16.9.)

Consider, then, the conventional normal-gamma prior over (γ , σ 2
ε ) where the condi-

tional (on σ 2
ε ) prior normal density for the slope parameters has mean γ 0 and covariance

matrix σ 2
ε A, where the (n + K) × (n + K) matrix, A, is yet to be specified. [See the dis-

cussion after (16-13).] The marginal posterior mean and variance for γ for this set of
assumptions are given in (16-14) and (16-15). We reach a point that presents two rather
serious dilemmas for the researcher. The posterior was simple with our uniform, non-
informative prior. Now, it is necessary actually to specify A, which is potentially large.
(In one of our main applications in this text, we are analyzing models with n = 7,293
constant terms and about K = 7 regressors.) It is hopelessly optimistic to expect to be
able to specify all the variances and covariances in a matrix this large, unless we actually
have the results of an earlier study (in which case we would also have a prior estimate
of γ ). A practical solution that is frequently chosen is to specify A to be a diagonal
matrix with extremely large diagonal elements, thus emulating a uniform prior without
having to commit to one. The second practical issue then becomes dealing with the
actual computation of the order (n + K) inverse matrix in (16-14) and (16-15). Under
the strategy chosen, to make A a multiple of the identity matrix, however, there are
forms of partitioned inverse matrices that will allow solution to the actual computation.

Thus far, we have assumed that each αi is generated by a different normal distribu-
tion, −γ 0 and A, however specified, have (potentially) different means and variances
for the elements of α. The third specification we consider is one in which all αi ’s in the
model are assumed to be draws from the same population. To produce this specification,
we use a hierarchical prior for the individual effects. The full model will be

yit = αi + x′
itβ + εit, εit ∼ N

[
0, σ 2

ε

]
,

p
(
β

∣∣ σ 2
ε

) = N
[
β0, σ

2
ε A

]
,

p
(
σ 2

ε

) = Gamma
(
σ 2

0 , m
)
,

p(αi ) = N
[
μα, τ 2

α

]
,

p(μα) = N[a, Q],

p
(
τ 2
α

) = Gamma
(
τ 2

0 , v
)
.

We will not be able to derive the posterior density (joint or marginal) for the parame-
ters of this model. However, it is possible to set up a Gibbs sampler that can be used
to infer the characteristics of the posterior densities statistically. The sampler will be
driven by conditional normal posteriors for the location parameters, [β | α, σ 2

ε , μα, τ 2
α ],

[αi | β, σ 2
ε , μα, τ 2

α ], and [μα | β, α, σ 2
ε, τ

2
α ] and conditional gamma densities for the scale

(variance) parameters, [σ 2
ε | α, β, μα, τ 2

α ] and [τ 2
α | α, β, σ 2

ε , μα]. [The procedure is
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developed at length by Koop (2003, pp. 152–153).] The assumption of a common distri-
bution for the individual effects and an independent prior for β produces a Bayesian
counterpart to the random effects model.

16.8 HIERARCHICAL BAYES ESTIMATION
OF A RANDOM PARAMETERS MODEL

We now consider a Bayesian approach to estimation of the random parameters model.17

For an individual i, the conditional density for the dependent variable in period t is
f (yit | xit, β i ) where β i is the individual specific K×1 parameter vector and xit is individ-
ual specific data that enter the probability density.18 For the sequence of T observations,
assuming conditional (on β i ) independence, person i’s contribution to the likelihood
for the sample is

f (yi | Xi , β i ) =
T∏

t=1

f (yit | xit, β i ). (16-25)

where yi = (yi1, . . . , yiT) and Xi = [xi1, . . . , xiT]. We will suppose that β i is distributed
normally with mean β and covariance matrix �. (This is the “hierarchical” aspect of
the model.) The unconditional density would be the expected value over the possible
values of β i ;

f (yi | Xi , β, �) =
∫

β i

T∏
t=1

f (yit | xit, β i )φK[β i | β, �] dβ i , (16-26)

where φK[β i | β, �] denotes the K variate normal prior density for β i given β and �.
Maximum likelihood estimation of this model, which entails estimation of the “deep”
parameters, β, �, then estimation of the individual specific parameters, β i is consid-
ered in Section 15.10. We now consider the Bayesian approach to estimation of the
parameters of this model.

To approach this from a Bayesian viewpoint, we will assign noninformative prior
densities to β and �. As is conventional, we assign a flat (noninformative) prior to
β. The variance parameters are more involved. If it is assumed that the elements of
β i are conditionally independent, then each element of the (now) diagonal matrix �

may be assigned the inverted gamma prior that we used in (16-13). A full matrix � is
handled by assigning to � an inverted Wishart prior density with parameters scalar K
and matrix K × I. [The Wishart density is a multivariate counterpart to the chi-squared

17Note that, there is occasional confusion as to what is meant by “random parameters” in a random param-
eters (RP) model. In the Bayesian framework we discuss in this chapter, the “randomness” of the random
parameters in the model arises from the “uncertainty” of the analyst. As developed at several points in this
book (and in the literature), the randomness of the parameters in the RP model is a characterization of the
heterogeneity of parameters across individuals. Consider, for example, in the Bayesian framework of this
section, in the RP model, each vector β i is a random vector with a distribution (defined hierarchically). In
the classical framework, each β i represents a single draw from a parent population.
18To avoid a layer of complication, we will embed the time-invariant effect �zi in x′

itβ. A full treatment in
the same fashion as the latent class model would be substantially more complicated in this setting (although
it is quite straightforward in the maximum simulated likelihood approach discussed in Section 15.7).



Greene-2140242 book January 19, 2011 21:20

CHAPTER 16 ✦ Bayesian Estimation and Inference 717

distribution. Discussion may be found in Zellner (1971, pp. 389–394).] This produces
the joint posterior density,


(β1, . . . , βn, β, � | all data) =
{

n∏
i=1

T∏
t=1

f (yit | xit, β i )φK[β i | β, �]

}
× p(β, �).

(16-27)

This gives the joint density of all the unknown parameters conditioned on the observed
data. Our Bayesian estimators of the parameters will be the posterior means for these
(n + 1)K + K(K + 1)/2 parameters. In principle, this requires integration of (16-27)
with respect to the components. As one might guess at this point, that integration is
hopelessly complex and not remotely feasible.

However, the techniques of Markov–Chain Monte Carlo (MCMC) simulation esti-
mation (the Gibbs sampler) and the Metropolis–Hastings algorithm enable us to sample
from the (hopelessly complex) joint density �(β1, . . . , βn, β, � | all data) in a remark-
ably simple fashion. Train (2001 and 2002, Chapter 12) describe how to use these results
for this random parameters model.19 The usefulness of this result for our current prob-
lem is that it is, indeed, possible to partition the joint distribution, and we can easily
sample from the conditional distributions. We begin by partitioning the parameters
into γ = (β, �) and δ = (β1, . . . , βn). Train proposes the following strategy: To obtain
a draw from γ | δ, we will use the Gibbs sampler to obtain a draw from the distribution
of (β | �, δ) and then one from the distribution of (� | β, δ). We will lay out this first,
then turn to sampling from δ | β, �.

Conditioned on δ and �, β has a K-variate normal distribution with mean β̄ =
(1/n)|�n

i=1β i and covariance matrix (1/n)�. To sample from this distribution we will
first obtain the Cholesky factorization of � = LL′ where L is a lower triangular matrix.
[See Section A.6.11.] Let v be a vector of K draws from the standard normal distribution.
Then, β̄ + Lv has mean vector β̄ + L × 0 = β̄ and covariance matrix LIL′ = �, which
is exactly what we need. So, this shows how to sample a draw from the conditional
distribution β.

To obtain a random draw from the distribution of � | β, δ, we will require a random
draw from the inverted Wishart distribution. The marginal posterior distribution of
� | β, δ is inverted Wishart with parameters scalar K + n and matrix W = (KI + nV),
where V = (1/n)

∑n
i=1(β i − β̄)(β i − β̄)′. Train (2001) suggests the following strategy

for sampling a matrix from this distribution: Let M be the lower triangular Cholesky
factor of W−1, so MM′ = W−1. Obtain K +n draws of vk = K standard normal variates.
Then, obtain S = M

(∑K+n
k=1 vkv′

k

)
M′. Then, � j = S−1 is a draw from the inverted Wishart

distribution. [This is fairly straightforward, as it involves only random sampling from the
standard normal distribution. For a diagonal � matrix, that is, uncorrelated parameters
in β i , it simplifies a bit further. A draw for the nonzero kth diagonal element can be
obtained using (1 + nVkk)/

∑K+n
r=1 v2

rk.]

19Train describes use of this method for “mixed (random parameters) multinomial logit” models. By writing
the densities in generic form, we have extended his result to any general setting that involves a parameter
vector in the fashion described above. The classical version of this appears in Section 15.10 for the binomial
probit model and in Section 18.2.7 for the mixed logit model.
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The difficult step is sampling β i . For this step, we use the Metropolis–Hastings
(M–H) algorithm suggested by Chib and Greenberg (1995, 1996) and Gelman et al.
(2004). The procedure involves the following steps:

1. Given β and � and “tuning constant” τ (to be described next), compute d = τLv
where L is the Cholesky factorization of � and v is a vector of K independent
standard normal draws.

2. Create a trial value β i1 = β i0 + d where β i0 is the previous value.
3. The posterior distribution for β i is the likelihood that appears in (16-26) times the

joint normal prior density, φK[β i | β, �]. Evaluate this posterior density at the trial
value β i1 and the previous value β i0. Let

R10 = f (yi | Xi , β i1)φK(β i1 | β, �)

f (yi | Xi , β i0)φK(β i0 | β, �)
.

4. Draw one observation, u, from the standard uniform distribution, U[0, 1].
5. If u < R10, then accept the trial (new) draw. Otherwise, reuse the old one.

This M–H iteration converges to a sequence of draws from the desired density. Overall,
then, the algorithm uses the Gibbs sampler and the Metropolis–Hastings algorithm
to produce the sequence of draws for all the parameters in the model. The sequence
is repeated a large number of times to produce each draw from the joint posterior
distribution. The entire sequence must then be repeated N times to produce the sample
of N draws, which can then be analyzed, for example, by computing the posterior mean.

Some practical details remain. The tuning constant, τ is used to control the iteration.
A smaller τ increases the acceptance rate. But at the same time, a smaller τ makes new
draws look more like old draws so this slows down the process. Gelman et al. (2004)
suggest τ = 0.4 for K = 1 and smaller values down to about 0.23 for higher dimensions,
as will be typical. Each multivariate draw takes many runs of the MCMC sampler. The
process must be started somewhere, though it does not matter much where. Nonetheless,
a “burn-in” period is required to eliminate the influence of the starting value. Typical
applications use several draws for this burn in period for each run of the sampler. How
many sample observations are needed for accurate estimation is not certain, though
several hundred would be a minimum. This means that there is a huge amount of com-
putation done by this estimator. However, the computations are fairly simple. The only
complicated step is computation of the acceptance criterion at step 3 of the M–H itera-
tion. Depending on the model, this may, like the rest of the calculations, be quite simple.

16.9 SUMMARY AND CONCLUSIONS

This chapter has introduced the major elements of the Bayesian approach to estimation
and inference. The contrast between Bayesian and classical, or frequentist, approaches
to the analysis has been the subject of a decades-long dialogue among practitioners and
philosophers. As the frequency of applications of Bayesian methods have grown dra-
matically in the modern literature, however, the approach to the body of techniques has
typically become more pragmatic. The Gibbs sampler and related techniques includ-
ing the Metropolis–Hastings algorithm have enabled some remarkable simplifications
of heretofore intractable problems. For example, recent developments in commercial
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software have produced a wide choice of “mixed” estimators which are various im-
plementations of the maximum likelihood procedures and hierarchical Bayes proce-
dures (such as the Sawtooth and MLWin programs). Unless one is dealing with a small
sample, the choice between these can be based on convenience. There is little method-
ological difference. This returns us to the practical point noted earlier. The choice
between the Bayesian approach and the sampling theory method in this application
would not be based on a fundamental methodological criterion, but on purely practical
considerations—the end result is the same.

This chapter concludes our survey of estimation and inference methods in econo-
metrics. We will now turn to two major areas of applications, time series and (broadly)
macroeconometrics, and microeconometrics which is primarily oriented to cross-section
and panel data applications.

Key Terms and Concepts

• Bayes factor
• Bayes’s theorem
• Bernstein–von Mises

theorem
• Burn in
• Central limit theorem
• Conjugate prior
• Data augmentation
• Gibbs sampler
• Hierarchical Bayes
• Hierarchical prior
• Highest posterior density

(HPD) interval
• Improper prior

• Informative prior
• Inverted gamma distribution
• Inverted Wishart
• Joint posterior distribution
• Likelihood function
• Loss function
• Markov–Chain Monte Carlo

(MCMC)
• Metropolis–Hastings

algorithm
• Multivariate t distribution
• Noninformative prior
• Normal-gamma prior
• Posterior density

• Posterior mean
• Precision matrix
• Predictive density
• Prior beliefs
• Prior density
• Prior distribution
• Prior odds ratio
• Prior probabilities
• Sampling theory
• Uniform prior
• Uniform-inverse

gamma prior

Exercise

1. Suppose the distribution of yi | λ is Poisson,

f (yi | λ) = exp(−λ)λyi

yi !
= exp(−λ)λyi

�(yi + 1)
, yi = 0, 1, . . . , λ > 0.

We will obtain a sample of observations, yi , . . . , yn. Suppose our prior for λ is the
inverted gamma, which will imply

p(λ) ∝ 1
λ

.

a. Construct the likelihood function, p(y1, . . . , yn | λ).
b. Construct the posterior density

p(λ | y1, . . . , yn) = p(y1, . . . , yn | λ)p(λ)∫ ∞

0
p(y1, . . . , yn | λ)p(λ)dλ

.

c. Prove that the Bayesian estimator ofλ is the posterior mean, E[λ | y1, . . . , yn] = ȳ.
d. Prove that the posterior variance is Var[λ | yl , . . . , yn] = ȳ/n.
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(Hint: You will make heavy use of gamma integrals in solving this problem. Also, you
will find it convenient to use �i yi = nȳ.)

Application

1. Consider a model for the mix of male and female children in families. Let Ki

denote the family size (number of children), Ki = 1, . . . . Let Fi denote the number
of female children, Fi = 0, . . . , Ki . Suppose the density for the number of female
children in a family with Ki children is binomial with constant success probability θ :

p(Fi |Ki , θ) =
(

Ki

Fi

)
θ Fi (1 − θ)Ki −Fi .

We are interested in analyzing the “probability,” θ . Suppose the (conjugate) prior
over θ is a beta distribution with parameters a and b:

p(θ) = �(a + b)

�(a)�(b)
θa−1(1 − θ)b−1.

Your sample of 25 observations is given here:

Ki 2 1 1 5 5 4 4 5 1 2 4 4 2 4 3 2 3 2 3 5 3 2 5 4 1

Fi 1 1 1 3 2 3 2 4 0 2 3 1 1 3 2 1 3 1 2 4 2 1 1 4 1

(a) Compute the classical maximum likelihood estimate of θ .
(b) Form the posterior density for θ given (Ki , Fi ), i = 1, . . . , 25 conditioned on a

and b.
(c) Using your sample of data, compute the posterior mean assuming a = b = 1.
(d) Using your sample of data, compute the posterior mean assuming a = b = 2.
(e) Using your sample of data, compute the posterior mean assuming a = 1 and

b = 2.
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DISCRETE CHOICE

Q
17.1 INTRODUCTION

This is the first of three chapters that will survey models used in microeconometrics.
The analysis of individual choice that is the focus of this field is fundamentally about
modeling discrete outcomes such as purchase decisions, for example whether or not to
buy insurance, voting behavior, choice among a set of alternative brands, travel modes
or places to live, and responses to survey questions about the strength of preferences
or about self-assessed health or well-being. In these and any number of other cases,
the “dependent variable” is not a quantitative measure of some economic outcome,
but rather an indicator of whether or not some outcome occurred. It follows that the
regression methods we have used up to this point are largely inappropriate. We turn,
instead, to modeling probabilities and using econometric tools to make probabilistic
statements about the occurrence of these events. We will also examine models for
counts of occurrences. These are closer to familiar regression models, but are, once
again, about discrete outcomes of behavioral choices. As such, in this setting as well,
we will be modeling probabilities of events, rather than conditional mean functions.

The models that are analyzed in this and the next chapter are built on a platform of
preferences of decision makers. We take a random utility view of the choices that are
observed. The decision maker is faced with a situation or set of alternatives and reveals
something about their underlying preferences by the choice that he or she makes. The
choice(s) made will be affected by observable influences—this is, of course, the ultimate
objective of advertising—and by unobservable characteristics of the chooser. The blend
of these fundamental bases for individual choice is at the core of the broad range of
models that we will examine here.1

This chapter and Chapter 18 will describe four broad frameworks for analysis:

Binary Choice: The individual faces a pair of choices and makes that choice between
the two that provides the greater utility. Many such settings involve the choice between
taking an action and not taking that action, for example the decision whether or not to
purchase health insurance. In other cases, the decision might be between two distinctly
different choices, such as the decision whether to travel to and from work via public or
private transportation. In the binary choice case, the 0/1 outcome is merely a label for
“no/yes”—the numerical values are a mere convenience.

Multinomial Choice: The individual chooses among more than two choices, once
again, making the choice that provides the greatest utility. In the previous exam-
ple, private travel might involve a choice of being a driver or passenger while public

1See Greene and Hensher (2010, Chapter 4) for an historical perspective on this approach to model specifi-
cation.

721
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transport might involve a choice between bus and train. At one level, this is a minor
variation of the binary choice case—the latter is, of course, a special case of the former.
But, more elaborate models of multinomial choice allow a rich specification of con-
sumer preferences. In the multinomial case, the observed response is simply a label for
the selected choice; it might be a brand, the name of a place, or the type of travel mode.
Numerical assignments are not meaningful in this setting.

Ordered Choice: The individual reveals the strength of his or her preferences with
respect to a single outcome. Familiar cases involve survey questions about strength of
feelings about a particular commodity such as a movie, or self-assessments of social
outcomes such as health in general or self-assessed well-being. In the ordered choice
setting, opinions are given meaningful numeric values, usually 0, 1, . . . , J for some up-
per limit, J . For example, opinions might be labelled 0, 1, 2, 3, 4 to indicate the strength
of preferences, for example, for a product, a movie, a candidate or a piece of legisla-
tion. But, in this context, the numerical values are only a ranking, not a quantitative
measure. Thus a “1” is greater than a “0” in a qualitative sense, but not by one unit,
and the difference between a “2” and a “1” is not the same as that between a “1” and
a “0.”

In these three cases, although the numerical outcomes are merely labels of some
nonquantitative outcome, the analysis will nonetheless have a regresson-style motiva-
tion. Throughout, the models will be based on the idea that observed “covariates” are
relevant in explaining the observed choices. For example, in the binary outcome “did
or did not purchase health insurance,” a conditioning model suggests that covariates
such as age, income, and family situation will help to explain the choice. This chapter
will describe a range of models that have been developed around these considerations.
We will also be interested in a fourth application of discrete outcome models:

Event Counts: The observed outcome is a count of the number of occurrences. In
many cases, this is similar to the preceding three settings in that the “dependent variable”
measures an individual choice, such as the number of visits to the physician or the
hospital, the number of derogatory reports in one’s credit history, or the number of
visits to a particular recreation site. In other cases, the event count might be the outcome
of some natural process, such as incidence of a disease in a population or the number
of defects per unit of time in a production process. In this setting, we will be doing a
more familiar sort of regression modeling. However, the models will still be constructed
specifically to accommodate the discrete nature of the observed response variable.

We will consider these four cases in turn. The four broad areas have many elements
in common; however, there are also substantive differences between the particular
models and analysis techniques used in each. This chapter will develop the first topic,
models for binary choices. In each section, we will begin with an overview of applications
and then present the single basic model that is the centerpiece of the methodology,
and, finally, examine some recently developed extensions of the model. This chapter
contains a very lengthy discussion of models for binary choices. This analysis is as long
as it is because, first, the models discussed are used throughout microeconometrics—
the central model of binary choice in this area is as ubiquitous as linear regression.
Second, all the econometric issues and features that are encountered in the other areas
will appear in the analysis of binary choice, where we can examine them in a fairly
straightforward fashion.
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It will emerge that, at least in econometric terms, the models for multinomial and
ordered choice considered in Chapter 18 can be built from the two fundamental building
blocks, the model of random utility and the translation of that model into a description
of binary choices. There are relatively few new econometric issues that arise here. Chap-
ter 18 will be largely devoted to suggesting different approaches to modeling choices
among multiple alternatives and models for ordered choices. Once again, models of
preference scales, such as movie or product ratings, or self-assessments of health or well-
being, can be naturally built up from the fundamental model of random utility. Finally,
Chapter 18 will develop the well-known Poisson regression model for counts of events.
We will then extend the model to demonstrate some recent applications and innovations.

Chapters 17 and 18 are a lengthy but far from complete survey of topics in esti-
mating qualitative response (QR) models. None of these models can consistently be
estimated with linear regression methods. In most cases, the method of estimation is
maximum likelihood. Therefore, readers interested in the mechanics of estimation may
want to review the material in Appendices D and E before continuing. The various
properties of maximum likelihood estimators are discussed in Chapter 14. We shall
assume throughout these chapters that the necessary conditions behind the optimality
properties of maximum likelihood estimators are met and, therefore, we will not derive
or establish these properties specifically for the QR models. Detailed proofs for most of
these models can be found in surveys by Amemiya (1981), McFadden (1984), Maddala
(1983), and Dhrymes (1984). Additional commentary on some of the issues of interest
in the contemporary literature is given by Manski and McFadden (1981) and Maddala
and Flores-Lagunes (2001). Agresti (2002) and Cameron and Trivedi (2005) contain
numerous theoretical developments and applications. Greene (2008) and Hensher and
Greene (2010) provide, among many others, general surveys of discrete choice models
and methods.2

17.2 MODELS FOR BINARY OUTCOMES

For purposes of studying individual behavior, we will construct models that link the
decision or outcome to a set of factors, at least in the spirit of regression. Our approach
will be to analyze each of them in the general framework of probability models:

Prob(event j occurs) = Prob(Y = j) = F[relevant effects, parameters]. (17-1)

The study of qualitative choice focuses on appropriate specification, estimation, and
use of models for the probabilities of events, where in most cases, the “event” is an
individual’s choice among a set of two or more alternatives.

Example 17.1 Labor Force Participation Model
In Example 5.2 we estimated an earnings equation for the subsample of 428 married women
who participated in the formal labor market taken from a full sample of 753 observations.
The semilog earnings equation is of the form

ln earnings = β1 + β2 age + β3 age2 + β4 education + β5 kids + ε,

2There are dozens of book length surveys of discrete choice models. Two others that are heavily oriented to
application of the methods are Train (2003) and Hensher, Rose, and Greene (2005).
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where earnings is hourly wage times hours worked, education is measured in years of school-
ing, and kids is a binary variable which equals one if there are children under 18 in the house-
hold. What of the other 325 individuals? The underlying labor supply model described a
market in which labor force participation was the outcome of a market process whereby the
demanders of labor services were willing to offer a wage based on expected marginal product
and individuals themselves made a decision whether or not to accept the offer depending
on whether it exceeded their own reservation wage. The first of these depends on, among
other things, education, while the second (we assume) depends on such variables as age,
the presence of children in the household, other sources of income (husband’s), and marginal
tax rates on labor income. The sample we used to fit the earnings equation contains data
on all these other variables. The models considered in this chapter would be appropriate for
modeling the outcome y = 1 if in the labor force, and 0 if not.

Models for explaining a binary (0/1) dependent variable are typically motivated
in two contexts. The labor force participation model in Example 17.1 describes a pro-
cess of individual choice between two alternatives in which the choice is influenced by
observable effects (children, tax rates) and unobservable aspects of the preferences of
the individual. The relationship between voting behavior and income is another exam-
ple. In other cases, the binary choice model arises in a setting in which the nature of
the observed data dictate the special treatment of a binary dependent variable model.
In these cases, the analyst is essentially interested in a regression-like model of the
sort considered in Chapters 2 through 7. With data on the variable of interest and a
set of covariates, they are interested in specifying a relationship between the former
and the latter, more or less along the lines of the models we have already studied.
For example, in a model of the demand for tickets for sporting events, in which the
variable of interest is number of tickets, it could happen that the observation consists
only of whether the sports facility was filled to capacity (demand greater than or equal
to capacity so Y = 1) or not (Y = 0). It will generally turn out that the models and
techniques used in both cases are the same. Nonetheless, it is useful to examine both
of them.

17.2.1 RANDOM UTILITY MODELS FOR INDIVIDUAL CHOICE

An interpretation of data on individual choices is provided by the random utility model.
Let Ua and Ub represent an individual’s utility of two choices. For example, Ua might
be the utility of rental housing and Ub that of home ownership. The observed choice
between the two reveals which one provides the greater utility, but not the unobservable
utilities. Hence, the observed indicator equals 1 if Ua > Ub and 0 if Ua ≤ Ub. A common
formulation is the linear random utility model,

Ua = w′βa + za
′γ a + εa and Ub = w′βb + zb

′γ b + εb. (17-2)

In (17-2), the observable (measurable) vector of characteristics of the individual is
denoted w; this might include gender, age, income, and other demographics. The vectors
za and zb denote features (attributes) of the two choices that might be choice specific.
In a voting context, for example, the attributes might be indicators of the competing
candidates’ positions on important issues. The random terms, εa and εb represent the
stochastic elements that are specific to and known only by the individual, but not by the
observer (analyst). To continue our voting example, εa might represent an intangible,
general “preference” for candidate a.
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The completion of the model for the determination of the observed outcome
(choice) is the revelation of the ranking of the preferences by the choice the indi-
vidual makes. Thus, if we denote by Y = 1 the consumer’s choice of alternative a, we
infer from Y = 1 that Ua > Ub. Since the outcome is ultimately driven by the random
elements in the utility functions, we have

Prob[Y = 1|w, za, zb] = Prob[Ua > Ub]

= Prob[(w′βa + za
′γ a + εa) − (x′βb + zb

′γ b + εb) > 0 | w, za, zb]

= Prob[(w′(βa − βb) + za
′γ a − zb

′γ b + εa − εb) > 0 | w, za, zb]

= Prob[x′β + ε > 0 | x],

where x′β collects all the observable elements of the difference of the two utility func-
tions and ε denotes the difference between the two random elements.

Example 17.2 Structural Equations for a Binary Choice Model
Nakosteen and Zimmer (1980) analyzed a model of migration based on the following struc-
ture:3 For a given individual, the market wage that can be earned at the present location
is

y∗
p = w′

pβ p + εp.

Variables in the equation include age, sex, race, growth in employment, and growth in per
capita income. If the individual migrates to a new location, then his or her market wage would
be

y∗
m = w′

mβm + εm.

Migration entails costs that are related both to the individual and to the labor market:

C∗ = z′α + u.

Costs of moving are related to whether the individual is self-employed and whether that
person recently changed his or her industry of employment. They migrate if the benefit
y∗

m − y∗
p is greater than the cost, C. The net benefit of moving is

M∗ = y∗
m − y∗

p − C∗

= w′
mβm − w′

pβ p − z′α + (εm − εp − u)

= x′β + ε.

Because M∗ is unobservable, we cannot treat this equation as an ordinary regression. The
individual either moves or does not. After the fact, we observe only y∗

m if the individual has
moved or y∗

p if he or she has not. But we do observe that M = 1 for a move and M = 0 for
no move.

3A number of other studies have also used variants of this basic formulation. Some important examples are
Willis and Rosen (1979) and Robinson and Tomes (1982). The study by Tunali (1986) examined in Example
17.6 is another application. The now standard approach, in which “participation” equals one if wage offer
(x′

wβw + εw) minus reservation wage (x′
r βr + εr ) is positive, is also used in Fernandez and Rodriguez-Poo

(1997). Brock and Durlauf (2000) describe a number of models and situations involving individual behavior
that give rise to binary choice models.
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17.2.2 A LATENT REGRESSION MODEL

Discrete dependent-variable models are often cast in the form of index function models.
We view the outcome of a discrete choice as a reflection of an underlying regression.
As an often-cited example, consider the decision to make a large purchase. The theory
states that the consumer makes a marginal benefit/marginal cost calculation based on
the utilities achieved by making the purchase and by not making the purchase and by
using the money for something else. We model the difference between benefit and cost
as an unobserved variable y∗ such that

y∗ = x′β + ε.

Note that this is the result of the “net utility” calculation in the previous section and in
Example 17.2. We assume that ε has mean zero and has either a standardized logistic
with variance π2/3 or a standard normal distribution with variance one or some other
specific distribution with known variance. We do not observe the net benefit of the
purchase (i.e., net utility), only whether it is made or not. Therefore, our observation is

y = 1 if y∗ > 0,

y = 0 if y∗ ≤ 0. (17-3)

In this formulation, x′β is called the index function. The assumption of known variance
of ε is an innocent normalization. Suppose the variance of ε is scaled by an unrestricted
parameter σ 2. The latent regression will be y∗ = x′β + σε. But, (y∗/σ) = x′(β/σ) + ε

is the same model with the same data. The observed data will be unchanged; y is still
0 or 1, depending only on the sign of y∗ not on its scale. This means that there is no
information about σ in the sample data so σ cannot be estimated. The parameter vector
β in this model is only “identified up to scale.” The assumption of zero for the threshold
in (17-3) is likewise innocent if the model contains a constant term (and not if it does
not).4 Let a be the supposed nonzero threshold and α be the unknown constant term
and, for the present, x and β contain the rest of the index not including the constant
term. Then, the probability that y equals one is

Prob(y∗ > a | x) = Prob(α + x′β + ε > a | x) = Prob[(α − a) + x′β + ε > 0 | x].

Because α is unknown, the difference (α − a) remains an unknown parameter. The end
result is that if the model contains a constant term, it is unchanged by the choice of the
threshold in (17-3). The choice of zero is a normalization with no significance. With the
two normalizations, then,

Prob(y∗ > 0 | x) = Prob(ε > −x′β | x).

A remaining detail in the model is the choice of the specific distribution for ε. We will
consider several. The overwhelming majority of applications are based either on the
normal or the logistic distribution. If the distribution is symmetric, as are the normal
and logistic, then

Prob(y∗ > 0 | x) = Prob(ε < x′β | x) = F(x′β), (17-4)

4Unless there is some compelling reason, binomial probability models should not be estimated without
constant terms.
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where F(t) is the cdf of the random variable, ε. This provides an underlying structural
model for the probability.

17.2.3 FUNCTIONAL FORM AND REGRESSION

Consider the model of labor force participation suggested in Example 17.1. The respon-
dent either works or seeks work (Y = 1) or does not (Y = 0) in the period in which our
survey is taken. We believe that a set of factors, such as age, marital status, education,
and work history, gathered in a vector x, explain the decision, so that

Prob(Y = 1 | x) = F(x, β)

Prob(Y = 0 | x) = 1 − F(x, β). (17-5)

The set of parameters β reflects the impact of changes in x on the probability. For
example, among the factors that might interest us is the marginal effect of marital status
on the probability of labor force participation. The problem at this point is to devise a
suitable model for the right-hand side of the equation. One possibility is to retain the
familiar linear regression,

F(x, β) = x′β.

Because E[y | x] = 0[1−F(x, β)]+1[F(x, β)] = F(x, β), we can construct the regression
model,

y = E[y | x] + y − E[y | x]

= x′β + ε. (17-6)

The linear probability model has a number of shortcomings. A minor complication
arises because ε is heteroscedastic in a way that depends on β. Because x′β + ε must
equal 0 or 1, ε equals either −x′β or 1−x′β, with probabilities 1− F and F , respectively.
Thus, you can easily show that in this model,

Var[ε | x] = x′β(1 − x′β). (17-7)

We could manage this complication with an FGLS estimator in the fashion of Chap-
ter 9, though this only solves the estimation problem, not the theoretical one. A more
serious flaw is that without some ad hoc tinkering with the disturbances, we cannot be
assured that the predictions from this model will truly look like probabilities. We cannot
constrain x′β to the 0–1 interval. Such a model produces both nonsense probabilities
and negative variances. For these reasons, the linear probability model is becoming
less frequently used except as a basis for comparison to some other more appropriate
models.5

5The linear model is not beyond redemption. Aldrich and Nelson (1984) analyze the properties of the model
at length. Judge et al. (1985) and Fomby, Hill, and Johnson (1984) give interesting discussions of the ways we
may modify the model to force internal consistency. But the fixes are sample dependent, and the resulting
estimator, such as it is, may have no known sampling properties. Additional discussion of weighted least
squares appears in Amemiya (1977) and Mullahy (1990). Finally, its shortcomings notwithstanding, the linear
probability model is applied by Caudill (1988), Heckman, and MaCurdy (1985), and Heckman and Snyder
(1997). An exchange on the usefulness of the approach is Angrist (2001) and Moffitt (2001). See Angrist and
Pischke (2009) for some applications.
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FIGURE 17.1 Model for a Probability.

Our requirement, then, is a model that will produce predictions consistent with the
underlying theory in (17-4). For a given regressor vector, we would expect

lim
x′β→+∞

Prob(Y = 1 | x) = 1

lim
x′β→−∞

Prob(Y = 1 | x) = 0. (17-8)

See Figure 17.1. In principle, any proper, continuous probability distribution defined
over the real line will suffice. The normal distribution has been used in many analyses,
giving rise to the probit model,

Prob(Y = 1 | x) =
∫ x′β

−∞
φ(t)dt = �(x′β). (17-9)

The function �(t) is a commonly used notation for the standard normal distribution
function. Partly because of its mathematical convenience, the logistic distribution,

Prob(Y = 1 | x) = exp(x′β)

1 + exp(x′β)
= 	(x′β). (17-10)

has also been used in many applications. We shall use the notation 	(.) to indicate the
logistic cumulative distribution function. This model is called the logit model for reasons
we shall discuss in the next section. Both of these distributions have the familiar bell
shape of symmetric distributions. Other models which do not assume symmetry, such
as the Gumbel model,

Prob(Y = 1 | x) = exp[− exp(−x′β)],
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and complementary log log model,

Prob(Y = 1 | x) = 1 − exp[− exp(x′β)],

have also been employed. Still other distributions have been suggested,6 but the probit
and logit models are still the most common frameworks used in econometric applica-
tions.

The question of which distribution to use is a natural one. The logistic distribution is
similar to the normal except in the tails, which are considerably heavier. (It more closely
resembles a t distribution with seven degrees of freedom.) Therefore, for intermediate
values of x′β (say, between −1.2 and +1.2), the two distributions tend to give similar
probabilities. The logistic distribution tends to give larger probabilities to Y = 1 when
x′β is extremely small (and smaller probabilities to Y = 1 when x′β is very large)
than the normal distribution. It is difficult to provide practical generalities on this basis,
however, as they would require knowledge of β. We should expect different predictions
from the two models, however, if the sample contains (1) very few “responses” (Y’s
equal to 1) or very few “nonresponses” (Y’s equal to 0) and (2) very wide variation in
an important independent variable, particularly if (1) is also true. There are practical
reasons for favoring one or the other in some cases for mathematical convenience, but
it is difficult to justify the choice of one distribution or another on theoretical grounds.
Amemiya (1981) discusses a number of related issues, but as a general proposition, the
question is unresolved. In most applications, the choice between these two seems not to
make much difference. However, as seen in the following example, the symmetric and
asymmetric distributions can give substantively different results, and here, the guidance
on how to choose is unfortunately sparse.

The probability model is a regression:

E[y | x] = F(x′β).

Whatever distribution is used, it is important to note that the parameters of the model,
like those of any nonlinear regression model, are not necessarily the marginal effects
we are accustomed to analyzing. In general,

∂ E[y | x]
∂x

=
[

dF(x′β)

d(x′β)

]
× β = f (x′β) × β, (17-11)

where f (.) is the density function that corresponds to the cumulative distribution, F(.).
For the normal distribution, this result is

∂ E[y | x]
∂x

= φ(x′β) × β, (17-12)

where φ(t) is the standard normal density. For the logistic distribution,

d	(x′β)

d(x′β)
= exp(x′β)

[1 + exp(x′β)]2
= 	(x′β)[1 − 	(x′β)],

so, in the logit model,

∂ E[y | x]
∂x

= 	(x′β)[1 − 	(x′β)]β. (17-13)

6See, for example, Maddala (1983, pp. 27–32), Aldrich and Nelson (1984), and Greene (2001).
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It is obvious that these values will vary with the values of x. In interpreting the estimated
model, it will be useful to calculate this value at, say, the means of the regressors and,
where necessary, other pertinent values. For convenience, it is worth noting that the
same scale factor applies to all the slopes in the model.

For computing marginal effects, one can evaluate the expressions at the sample
means of the data or evaluate the marginal effects at every observation and use the sam-
ple average of the individual marginal effects—this produces the average partial effects.
In large samples these generally give roughly the same answer (see Section 17.3.2). But
that is not so in small- or moderate-sized samples. Current practice favors averaging
the individual marginal effects when it is possible to do so.

Another complication for computing marginal effects in a binary choice model
arises because x will often include dummy variables—for example, a labor force par-
ticipation equation will often contain a dummy variable for marital status. Because the
derivative is with respect to a small change, it is not appropriate to apply (17-12) for the
effect of a change in a dummy variable, or a change of state. The appropriate marginal
effect for a binary independent variable, say, d, would be

Marginal effect = Prob[Y = 1 | x̄(d), d = 1] − Prob[Y = 1 | x̄(d), d = 0], (17-14)

where x̄(d), denotes the means of all the other variables in the model. Simply taking the
derivative with respect to the binary variable as if it were continuous provides an approx-
imation that is often surprisingly accurate. In Example 17.3, for the binary variable PSI,
the difference in the two probabilities for the probit model is (0.5702 − 0.1057) = 0.4645,
whereas the derivative approximation reported in Table 17.1 is 0.468. Nonetheless, it
might be optimistic to rely on this outcome. We will revisit this computation in the
examples and discussion to follow.

17.3 ESTIMATION AND INFERENCE IN
BINARY CHOICE MODELS

With the exception of the linear probability model, estimation of binary choice models
is usually based on the method of maximum likelihood. Each observation is treated as
a single draw from a Bernoulli distribution (binomial with one draw). The model with
success probability F(x′β) and independent observations leads to the joint probability,
or likelihood function,

Prob(Y1 = y1, Y2 = y2, . . . , Yn = yn | X) =
∏
yi =0

[1 − F(x′
iβ)]

∏
yi =1

F(x′
iβ).

where X denotes [xi ]i=1,...,n. The likelihood function for a sample of n observations can
be conveniently written as

L(β | data) =
n∏

i=1

[F(x′
iβ)]yi [1 − F(x′

iβ)]1−yi . (17-15)
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Taking logs, we obtain

ln L =
n∑

i=1

{
yi ln F(x′

iβ) + (1 − yi ) ln[1 − F(x′
iβ)]

}
.7 (17-16)

The likelihood equations are

∂ ln L
∂β

=
n∑

i=1

[
yi fi

Fi
+ (1 − yi )

− fi

(1 − Fi )

]
xi = 0, (17-17)

where fi is the density, dFi/d(x′
iβ). [In (17-17) and later, we will use the subscript i to

indicate that the function has an argument x′
iβ.] The choice of a particular form for Fi

leads to the empirical model.
Unless we are using the linear probability model, the likelihood equations in (17-17)

will be nonlinear and require an iterative solution. All of the models we have seen thus
far are relatively straightforward to analyze. For the logit model, by inserting (17-10)
and (17-13) in (17-17), we get, after a bit of manipulation, the likelihood equations

∂ ln L
∂β

=
n∑

i=1

(yi − 	i )xi = 0. (17-18)

Note that if xi contains a constant term, the first-order conditions imply that the average
of the predicted probabilities must equal the proportion of ones in the sample.8 This
implication also bears some similarity to the least squares normal equations if we view
the term yi − 	i as a residual.9 For the normal distribution, the log-likelihood is

ln L =
∑
yi =0

ln[1 − �(x′
iβ)] +

∑
yi =1

ln �(x′
iβ). (17-19)

The first-order conditions for maximizing ln L are

∂ ln L
∂β

=
∑
yi =0

−φi

1 − �i
xi +

∑
yi =1

φi

�i
xi =

∑
yi =0

λ0i xi +
∑
yi =1

λ1i xi .

Using the device suggested in footnote 7, we can reduce this to

∂ log L
∂β

=
n∑

i=1

[
qiφ(qi x′

iβ)

�(qi x′
iβ)

]
xi =

n∑
i=1

λi xi = 0, (17-20)

where qi = 2yi − 1.
The actual second derivatives for the logit model are quite simple:

H = ∂2 ln L
∂β∂β ′ = −

∑
i

	i (1 − 	i )xi x′
i . (17-21)

7If the distribution is symmetric, as the normal and logistic are, then 1− F(x′β) = F(−x′β). There is a further
simplification. Let q = 2y − 1. Then ln L = �i ln F(qi x′

i β).
8The same result holds for the linear probability model. Although regularly observed in practice, the result
has not been proven for the probit model.
9This sort of construction arises in many models. The first derivative of the log-likelihood with respect to the
constant term produces the generalized residual in many settings. See, for example, Chesher, Lancaster, and
Irish (1985) and the equivalent result for the tobit model in Section 19.3.2
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The second derivatives do not involve the random variable yi , so Newton’s method
is also the method of scoring for the logit model. Note that the Hessian is always
negative definite, so the log-likelihood is globally concave. Newton’s method will usually
converge to the maximum of the log-likelihood in just a few iterations unless the data
are especially badly conditioned. The computation is slightly more involved for the
probit model. A useful simplification is obtained by using the variable λ(yi , x′

iβ) = λi

that is defined in (17-20). The second derivatives can be obtained using the result that
for any z, dφ(z)/dz = −zφ(z). Then, for the probit model,

H = ∂2 ln L
∂β∂β ′ =

n∑
i=1

−λi (λi + x′
iβ)xi x′

i . (17-22)

This matrix is also negative definite for all values of β. The proof is less obvious
than for the logit model.10 It suffices to note that the scalar part in the summation is
Var[ε | ε ≤ β ′x]−1 when y = 1 and Var[ε | ε ≥ −β ′x]−1 when y = 0. The unconditional
variance is one. Because truncation always reduces variance—see Theorem 18.2—in
both cases, the variance is between zero and one, so the value is negative.11

The asymptotic covariance matrix for the maximum likelihood estimator can be
estimated by using the inverse of the Hessian evaluated at the maximum likelihood
estimates. There are also two other estimators available. The Berndt, Hall, Hall, and
Hausman estimator [see (14-18) and Example 14.4] would be

B =
n∑

i=1

g2
i xi x′

i ,

where gi = (yi − �i ) for the logit model [see (17-18)] and gi = λi for the probit model
[see (17-20)]. The third estimator would be based on the expected value of the Hessian.
As we saw earlier, the Hessian for the logit model does not involve yi , so H = E [H].
But because λi is a function of yi [see (17-20)], this result is not true for the probit model.
Amemiya (1981) showed that for the probit model,

E
[
∂2 ln L
∂β ∂β ′

]

probit
=

n∑
i=1

λ0iλ1i xi x′
i . (17-23)

Once again, the scalar part of the expression is always negative [note in (17-20) that λ0i is
always negative and λi1 is always positive]. The estimator of the asymptotic covariance
matrix for the maximum likelihood estimator is then the negative inverse of whatever
matrix is used to estimate the expected Hessian. Since the actual Hessian is generally
used for the iterations, this option is the usual choice. As we shall see later, though, for
certain hypothesis tests, the BHHH estimator is a more convenient choice.

17.3.1 ROBUST COVARIANCE MATRIX ESTIMATION

The probit maximum likelihood estimator is often labeled a quasi-maximum likeli-
hood estimator (QMLE) in view of the possibility that the normal probability model
might be misspecified. White’s (1982a) robust “sandwich” estimator for the asymptotic

10See, for example, Amemiya (1985, pp. 273–274) and Maddala (1983, p. 63).
11See Johnson and Kotz (1993) and Heckman (1979). We will make repeated use of this result in Chapter 19.
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covariance matrix of the QMLE (see Section 14.8 for discussion),

Est. Asy. Var[β̂] = [Ĥ]−1B̂[Ĥ]−1,

has been used in a number of studies based on the probit model [e.g., Fernandez and
Rodriguez-Poo (1997), Horowitz (1993), and Blundell, Laisney, and Lechner (1993)].
If the probit model is correctly specified, then plim(1/n)B̂ = plim(1/n)(−Ĥ) and either
single matrix will suffice, so the robustness issue is moot. On the other hand, the probit
(Q-) maximum likelihood estimator is not consistent in the presence of any form of
heteroscedasticity, unmeasured heterogeneity, omitted variables (even if they are or-
thogonal to the included ones), nonlinearity of the functional form of the index, or an
error in the distributional assumption [with some narrow exceptions as described by
Ruud (1986)]. Thus, in almost any case, the sandwich estimator provides an appropriate
asymptotic covariance matrix for an estimator that is biased in an unknown direction.
[See Section 14.8 and Freedman (2006).] White raises this issue explicitly, although it
seems to receive little attention in the literature: “It is the consistency of the QMLE for
the parameters of interest in a wide range of situations which insures its usefulness as
the basis for robust estimation techniques” (1982a, p. 4). His very useful result is that
if the quasi-maximum likelihood estimator converges to a probability limit, then the
sandwich estimator can, under certain circumstances, be used to estimate the asymp-
totic covariance matrix of that estimator. But there is no guarantee that the QMLE will
converge to anything interesting or useful. Simply computing a robust covariance ma-
trix for an otherwise inconsistent estimator does not give it redemption. Consequently,
the virtue of a robust covariance matrix in this setting is unclear.

17.3.2 MARGINAL EFFECTS AND AVERAGE PARTIAL EFFECTS

The predicted probabilities, F(x′β̂) = F̂ and the estimated partial effects f (x′β̂) × β̂ =
f̂ β̂ are nonlinear functions of the parameter estimates. To compute standard errors, we
can use the linear approximation approach (delta method) discussed in Section 4.4.4.
For the predicted probabilities,

Asy. Var[F̂] = [∂ F̂/∂β̂]′V[∂ F̂/∂β̂],

where

V = Asy. Var[β̂].

The estimated asymptotic covariance matrix of β̂ can be any of the three described
earlier. Let z = x′β̂. Then the derivative vector is

[∂ F̂/∂β̂] = [dF̂/dz][∂z/∂β̂] = f̂ x.

Combining terms gives

Asy. Var[F̂] = f̂ 2x′ Vx,

which depends, of course, on the particular x vector used. This result is useful when a
marginal effect is computed for a dummy variable. In that case, the estimated effect is

F̂ = [F̂ | (d = 1)] − [F̂ | (d = 0)]. (17-24)
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The asymptotic variance would be

Asy. Var[F̂] = [∂F̂/∂β̂]′V[∂F̂/∂β̂], (17-25)

where

[∂F̂/∂β̂] = f̂ 1

(
x̄(d)

1

)
− f̂ 0

(
x̄(d)

0

)
.

For the other marginal effects, let γ̂ = f̂ β̂. Then

Asy. Var[γ̂ ] =
[

∂ γ̂

∂β̂
′

]
V

[
∂ γ̂

∂β̂ ′

]′
.

The matrix of derivatives is

f̂

(
∂β̂

∂β̂
′

)
+ β̂

(
d f̂
dz

) (
∂z

∂β̂
′

)
= f̂ I +

(
d f̂
dz

)
β̂x′.

For the probit model, df/dz = −zφ, so

Asy. Var[γ̂ ] = φ2[I − (x′β)βx′]V[I − (x′β)xβ ′].

For the logit model, f̂ = 	̂(1 − 	̂), so

d f̂
dz

= (1 − 2	̂)

(
d	̂

dz

)
= (1 − 2	̂)	̂(1 − 	̂).

Collecting terms, we obtain

Asy. Var[γ̂ ] = [	(1 − 	)]2[I + (1 − 2	)βx′]V[I + (1 − 2	)xβ ′].

As before, the value obtained will depend on the x vector used.

Example 17.3 Probability Models
The data listed in Appendix Table F14.1 were taken from a study by Spector and Mazzeo
(1980), which examined whether a new method of teaching economics, the Personalized
System of Instruction (PSI), significantly influenced performance in later economics courses.
The “dependent variable” used in our application is GRADE, which indicates the whether
a student’s grade in an intermediate macroeconomics course was higher than that in the
principles course. The other variables are GPA, their grade point average; TUCE, the score
on a pretest that indicates entering knowledge of the material; and PSI, the binary variable
indicator of whether the student was exposed to the new teaching method. (Spector and
Mazzeo’s specific equation was somewhat different from the one estimated here.)

Table 17.1 presents four sets of parameter estimates. The slope parameters and deriva-
tives were computed for four probability models: linear, probit, logit, and complementary
log log. The last three sets of estimates are computed by maximizing the appropriate log-
likelihood function. Inference is discussed in the next section, so standard errors are not
presented here. The scale factor given in the last row is the density function evaluated at
the means of the variables. Also, note that the slope given for PSI is the derivative, not the
change in the function with PSI changed from zero to one with other variables held constant.

If one looked only at the coefficient estimates, then it would be natural to conclude that
the four models had produced radically different estimates. But a comparison of the columns
of slopes shows that this conclusion is clearly wrong. The models are very similar; in fact,
the logit and probit models results are nearly identical.

The data used in this example are only moderately unbalanced between 0s and 1s for
the dependent variable (21 and 11). As such, we might expect similar results for the probit
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TABLE 17.1 Estimated Probability Models

Linear Logistic Probit Complementary log log

Variable Coefficient Slope Coefficient Slope Coefficient Slope Coefficient Slope

Constant −1.498 — −13.021 — −7.452 — −10.631 —
GPA 0.464 0.464 2.826 0.534 1.626 0.533 2.293 0.477
TUCE 0.010 0.010 0.095 0.018 0.052 0.017 0.041 0.009
PSI 0.379 0.379 2.379 0.450 1.426 0.468 1.562 0.325
f (x̄ ′β̂) 1.000 0.189 0.328 0.208

and logit models.12 One indicator is a comparison of the coefficients. In view of the different
variances of the distributions, one for the normal and π2/3 for the logistic, we might expect to
obtain comparable estimates by multiplying the probit coefficients by π/

√
3 ≈ 1.8. Amemiya

(1981) found, through trial and error, that scaling by 1.6 instead produced better results. This
proportionality result is frequently cited. The result in (17-11) may help to explain the finding.
The index x′β is not the random variable. The marginal effect in the probit model for, say, xk is
φ (x′β p)βpk, whereas that for the logit is 	(1−	)βl k. (The subscripts p and l are for probit and
logit.) Amemiya suggests that his approximation works best at the center of the distribution,
where F = 0.5, or x′β = 0 for either distribution. Suppose it is. Then φ (0) = 0.3989 and
	(0) [1 − 	(0) ] = 0.25. If the marginal effects are to be the same, then 0.3989 βpk = 0.25βl k,
or βl k = 1.6βpk, which is the regularity observed by Amemiya. Note, though, that as we
depart from the center of the distribution, the relationship will move away from 1.6. Because
the logistic density descends more slowly than the normal, for unbalanced samples such as
ours, the ratio of the logit coefficients to the probit coefficients will tend to be larger than 1.6.
The ratios for the ones in Table 17.1 are closer to 1.7 than 1.6.

The computation of the derivatives of the conditional mean function is useful when the vari-
able in question is continuous and often produces a reasonable approximation for a dummy
variable. Another way to analyze the effect of a dummy variable on the whole distribution is
to compute Prob(Y = 1) over the range of x′β (using the sample estimates) and with the two
values of the binary variable. Using the coefficients from the probit model in Table 17.1, we
have the following probabilities as a function of GPA, at the mean of TUCE:

PSI = 0: Prob(GRADE = 1) = �[−7.452 + 1.626GPA + 0.052(21.938) ],

PSI = 1: Prob(GRADE = 1) = �[−7.452 + 1.626GPA + 0.052(21.938) + 1.426].

Figure 17.2 shows these two functions plotted over the range of GPA observed in the sample,
2.0 to 4.0. The marginal effect of PSI is the difference between the two functions, which ranges
from only about 0.06 at GPA = 2 to about 0.50 at GPA of 3.5. This effect shows that the
probability that a student’s grade will increase after exposure to PSI is far greater for students
with high GPAs than for those with low GPAs. At the sample mean of GPA of 3.117, the effect
of PSI on the probability is 0.465. The simple derivative calculation of (17-12) is given in Table
17.1; the estimate is 0.468. But, of course, this calculation does not show the wide range of
differences displayed in Figure 17.2.

Table 17.2 presents the estimated coefficients and marginal effects for the probit and
logit models in Table 17.2. In both cases, the asymptotic covariance matrix is computed
from the negative inverse of the actual Hessian of the log-likelihood. The standard errors for
the estimated marginal effect of PSI are computed using (17-24) and (17-25) since PSI is a
binary variable. In comparison, the simple derivatives produce estimates and standard errors
of (0.449, 0.181) for the logit model and (0.464, 0.188) for the probit model. These differ only
slightly from the results given in the table.

12One might be tempted in this case to suggest an asymmetric distribution for the model, such as the Gumbel
distribution. However, the asymmetry in the model, to the extent that it is present at all, refers to the values
of ε, not to the observed sample of values of the dependent variable.
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FIGURE 17.2 Effect of PSI on Predicted Probabilities.

17.3.2.a Average Partial Effects

The preceding has emphasized computing the partial effects for the average individual in
the sample. Current practice has many applications based, instead, on “average partial
effects.” [See, e.g., Wooldridge (2002a).] The underlying logic is that the quantity of
interest is

APE = Ex

[
∂ E[y | x]

∂x

]
.

In practical terms, this suggests the computation

ÂPE = ¯̂γ = 1
n

n∑
i=1

f (x′
i β̂)β̂.

TABLE 17.2 Estimated Coefficients and Standard Errors (standard errors
in parentheses)

Logistic Probit

Variable Coefficient t Ratio Slope t Ratio Coefficient t Ratio Slope t Ratio

Constant −13.021 −2.641 — — −7.452 −2.931 — —
(4.931) (2.542)

GPA 2.826 2.238 0.534 2.252 1.626 2.343 0.533 2.294
(1.263) (0.237) (0.694) (0.232)

TUCE 0.095 0.672 0.018 0.685 0.052 0.617 0.017 0.626
(0.142) (0.026) (0.084) (0.027)

PSI 2.379 2.234 0.456 2.521 1.426 2.397 0.464 2.727
(1.065) (0.181) (0.595) (0.170)

log-likelihood −12.890 −12.819
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This does raise two questions. Because the computation is (marginally) more burden-
some than the simple marginal effects at the means, one might wonder whether this
produces a noticeably different answer. That will depend on the data. Save for small
sample variation, the difference in these two results is likely to be small. Let

γ̄k = APEk = 1
n

n∑
i=1

∂Pr(yi = 1 | xi )

∂xik
= 1

n

n∑
i=1

F ′(x′
iβ)βk = 1

n

n∑
i=1

γk(xi )

denote the computation of the average partial effect. We compute this at the MLE, β̂.
Now, expand this function in a second-order Taylor series around the point of sample
means, x̄, to obtain

γ̄k = 1
n

n∑
i=1

[
γk(x̄) +

k∑
m=1

∂γk(x̄)

∂ x̄m
(xim − x̄m)

+ 1
2

K∑
l=1

K∑
m=1

∂2γk(x̄)

∂ x̄l∂ x̄m
(xil − x̄l )(xim − x̄m)

]
+ ,

where  is the remaining higher-order terms. The first of the three terms is the marginal
effect computed at the sample means. The second term is zero by construction. That
leaves the remainder plus an average of a term that is a function of the variances and
covariances of the data and the curvature of the probability function at the means. Little
can be said to characterize these two terms in any particular sample, but one might guess
they are likely to be small. We will examine an application in Example 17.4.

Based on the sample of observations on the partial effects, a natural estimator of
the variance of the partial effects would seem to be

σ̂ 2
γ,k = 1

n − 1

n∑
i=1

(
γ̂k(xi ) − ¯̂γ k

)2 = 1
n − 1

n∑
i=1

(
P̂Ei,k − ÂPEk

)2
.

See, for example, Contoyannis et al. (2004, p. 498), who report that they computed the
“sample standard deviation of the partial effects.” Since ÂPEk = ¯̂γ k is the mean of a
sample, notwithstanding the following consideration, the preceding estimator should
be further divided by the sample size since we are computing the standard error of
the mean of a sample. This seems not to be the norm in the literature. This estimator
should not be viewed as an alternative to the delta method applied to the partial effects
evaluated at the means of the data, γ̂ (x̄). The delta method produces an estimator of
the asymptotic variance of an estimator of the population parameter, γ (μx), that is, of
a function of β̂. The asymptotic covariance matrix computed using the delta method
for γ̂ (x̄) would be Ĝ(x̄)V̂Ĝ′(x̄) where Ĝ(x̄) is the matrix of partial derivatives and V̂
is the estimator of the asymptotic variance of β̂. This variance estimator converges to
zero because β̂ converges to β and x̄ converges to a vector of constants. The estimator
above does not converge to zero; it converges to the variance of the random variable
PEi,k.

The “asymptotic variance” of the partial effects estimator is intended to reflect the
variation of the parameter estimator, β̂, whereas the preceding estimator generates the
variation from the heterogeneity of the sample data while holding the parameter fixed
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at β̂. For example, for a logit model,

γ̂k(xi ) = β̂k	
(
x′

i β̂
) [

1 − 	
(
x′

i β̂
)] = β̂kδ̂i ,

and δ̂i is the same for all k. It follows that

σ̂ 2
γ,k = β̂

2
k

[
1

n − 1

n∑
i=1

(δ̂i − ¯̂δ)2

]
= β̂

2
ks2

δ̂
.

A surprising consequence is that if one computes t ratios for the average partial effects
using σ̂ 2

γ,k, the values will all equal the same 1/sδ̂ . This might signal that something is
amiss. (This is somewhat apparent in the Contoyannis et al. results on their page 498;
however, not enough digits were reported to see the effect clearly.)

A search for applications that use the delta method to estimate standard errors for
average partial effects in nonlinear models yields hundreds of occurrences. However,
we could not locate any that document in detail the precise formulas used. (One au-
thor, noting the complexity of computation, recommended bootstrapping instead.) A
complicated flaw with the sample variance estimator (notwithstanding all the preced-
ing) is that the estimator (whether scaled by 1/n or not) neglects the fact that all n
observations used to compute the estimated APE are correlated; they all use the same
estimator of β. The preceding estimator treats the estimates of PEi as if they were a
random sample. They would be if they were based on the true β. But the estimators
based on the same β̂ are not uncorrelated. The delta method will account for the asymp-
totic (co)variation of the terms in the sum of functions of β̂. To use the delta method
to estimate the asymptotic standard errors for the average partial effects, ÂPEk, we
should use

Est. Asy. Var
[

¯̂γ
] = 1

n2
Est. Asy. Var

[
n∑

i=1

γ̂ i

]

= 1
n2

n∑
i=1

n∑
j=1

Est. Asy. Cov
[
γ̂ i , γ̂ j

]

= 1
n2

n∑
i=1

n∑
j=1

Gi (β̂)V̂G′
j (β̂)

=
[

1
n

n∑
i=1

Gi (β̂)

]
V̂

⎡
⎣1

n

n∑
j=1

G′
j (β̂)

⎤
⎦ ,

where

Gi (β̂) = ∂ f
(
x′

i β̂
)
β̂

∂β̂
′ = f

(
x′

i β̂
)

I + f ′ (x′
i β̂

)
β̂x′

i .

This treats the APE as a point estimator of a population parameter—one that converges
in probability to what we assume is its population counterpart. But, it is conditioned on
the sample data; convergence is with respect to β̂. This looks like a formidable amount
of computation—Example 17.4 uses a sample of 27,326 observations, so it appears we
need a double sum of roughly 750 million terms. However, the computation is actually



Greene-2140242 book January 19, 2011 21:21

CHAPTER 17 ✦ Discrete Choice 739

TABLE 17.3 Estimated Parameters and Partial Effects

Parameter Estimates Marginal Effects Average Partial Effects

Variable Estimate Std.Error Estimate Std.Error Estimate Std.Error Naive S.E.

Constant 0.25112 0.09114
Age 0.02071 0.00129 0.00497 0.00031 0.00471 0.00029 0.00043
Income −0.18592 0.07506 −0.04466 0.01803 −0.04229 0.01707 0.00386
Kids −0.22947 0.02954 −0.05512 0.00710 −0.05220 0.00669 0.00476
Education −0.04559 0.00565 −0.01095 0.00136 −0.01037 0.00128 0.00095
Married 0.08529 0.03329 0.02049 0.00800 0.01940 0.00757 0.00177

linear in n, not quadratic, because the same matrix is used in the center of each product.
The estimator of the asymptotic covariance matrix for the APE is simply

Est. Asy. Var
[

¯̂γ
] = G

(
β̂
)
V̂G′ (β̂)

.

The appropriate covariance matrix is computed by making the same adjustment as
in the partial effects—the derivative matrices are averaged over the observations rather
than being computed at the means of the data.

Example 17.4 Average Partial Effects
We estimated a binary logit model for y = 1(DocVis > 0) using the German health care
utilization data examined in Example 7.6 (and several later examples). The model is

Prob(DocVisit > 0) = 	(β1 + β2 Ageit + β3 Incomeit + β4 Kidsit + β5 Educationit + β6 Marriedit) .

No account of the panel nature of the data set was taken for this exercise. The sample contains
27,326 observations, which should be large enough to reveal the large sample behavior of the
computations. Table 17.3 presents the parameter estimates for the logit probability model
and both the marginal effects and the average partial effects, each with standard errors
computed using the results given earlier. (The partial effects for the two dummy variables,
Kids and Married, are computed using the approximation, rather than using the discrete
differences.) The results do suggest the similarity of the computations. The values in the last
column are based on the naive estimator that ignores the covariances and is not divided by
the 1/n for the variance of the mean.

17.3.2.b Interaction Effects

Models with interaction effects, such as

Prob(DocVisit > 0) = 	(β1 + β2 Ageit + β3 Incomeit + β4Kidsit

+β5 Educationit + β6 Marriedit + β7 Ageit × Educationit),

have attracted considerable attention in recent applications of binary choice models.13

A practical issue concerns the computation of partial effects by standard computer
packages. Write the model as

Prob(DocVisit > 0) = 	(β1x1it + β2x2it + β3x3it + β4x4it + β5x5it + β6x6it + β7x7it).

Estimation of the model parameters is routine. Rote computation of partial effects using
(17-11) will produce

PE7 = ∂Prob(DocVis > 0)/∂x7 = β7	(x′β)[1 − 	(x′β)],

13See, for example, Ai and Norton (2004) and Greene (2010).



Greene-2140242 book January 19, 2011 21:21

740 PART IV ✦ Cross Sections, Panel Data, and Microeconometrics

which is what common computer packages will dutifully report. The problem is that
x7 = x2x5, and PE7 in the previous equation is not the partial effect for x7. Moreover,
the partial effects for x2 and x5 will also be misreported by the rote computation. To
revert back to our original specification,

∂Prob(DocVis > 0 | x)/∂ Age = 	(x′β)[1 − 	(x′β)](β2 + β7 Education),

∂Prob(DocVis > 0 | x)/∂ Education = 	(x′β)[1 − 	(x′β)](β5 + β7 Age),

and what is computed as “∂Prob(DocVis > 0 | x)/∂Age × Education” is meaningless.
The practical problem motivating Ai and Norton (2004) was that the computer package
does not know that x7 is x2x5, so it computes a partial effect for x7 as if it could vary
“partially” from the other variables. The (now) obvious solution is for the analyst to
force the correct computations of the relevant partial effects by whatever software they
are using, perhaps by programming the computations themselves.

The practical complication raises a theoretical question that is less clear cut. What
is the “interaction effect” in the model? In a linear model based on the preceding, we
would have

∂2 E[y | x]/∂x2∂x5 = β7,

which is unambiguous. However, in this nonlinear binary choice model, the correct
result is

∂2 E[y | x]/∂x2∂x5 = 	(x′β)[1 − 	(x′β)]β7 + 	(x′β)[1 − 	(x′β)]

× [1 − 2	(x′β)](β2 + β7 Education)(β5 + β7 Age).

Not only is β7 not the interesting effect, but there is also a complicated additional term.
Loosely, we can associate the first term as a “direct” effect—note that it is the naive term
PE7 from earlier. The second part can be attributed to the fact that we are differentiating
a nonlinear model—essentially, the second part of the partial effect results from the
nonlinearity of the function. The existence of an “interaction effect” in this model is
inescapable—notice that the second part is nonzero (generally) even if β7 does equal
zero. Whether this is intended to represent an “interaction” in some economic sense is
unclear. In the absence of the product term in the model, probably not. We can see an
implication of this in Figure 17.1. At the point where x′β = 0, where the probability
equals one half, the probability function is linear. At that point, (1 − 2	) will equal
zero and the functional form effect will be zero as well. When x′β departs from zero,
the probability becomes nonlinear. (These same effects can be shown for the probit
model—at x′β = 0, the second derivative of the probit probability is −x′βφ(x′β) = 0.)

We developed an extensive application of interaction effects in a nonlinear model
in Example 7.6. In that application, using the same data for the numerical exercise, we
analyzed a nonlinear regression E[y | x] = exp(x′β). The results obtained in that study
were general, and will apply to the application here, where the nonlinear regression is
E[y | x] = 	(x′β) or �(x′β).

Example 17.5 Interaction Effect
We added the interaction term, Age × Education, to the model in Example 17.4. The model
is now

Prob(DocVisit > 0) = 	(β1 + β2 Ageit + β3 Incomeit + β4 Kidsit

+ β5 Educationit + β6 Marriedit + β7 Ageit × Educationit) .
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Estimation of the model produces an estimate of β7 of −0.00112. The naive average partial
effect for x7 is −0.000254. This is the first part in the earlier decomposition. The second,
functional form term (averaged over the sample observations) is 0.0000634, so the estimated
interaction effect, the sum of the two terms is −0.000191. The naive calculation errs by about
(−0.000254/ − 0.000191 − 1) × 100 percent = 33 percent.

17.3.3 MEASURING GOODNESS OF FIT

There have been many fit measures suggested for QR models.14 At a minimum, one
should report the maximized value of the log-likelihood function, ln L. Because the hy-
pothesis that all the slopes in the model are zero is often interesting, the log-likelihood
computed with only a constant term, ln L0 [see (17-29)], should also be reported. An ana-
log to the R2 in a conventional regression is McFadden’s (1974) likelihood ratio index,

LRI = 1 − ln L
ln L0

.

This measure has an intuitive appeal in that it is bounded by zero and one. (See Sec-
tion 14.6.5.) If all the slope coefficients are zero, then it equals zero. There is no way
to make LRI equal 1, although one can come close. If Fi is always one when y equals
one and zero when y equals zero, then ln L equals zero (the log of one) and LRI equals
one. It has been suggested that this finding is indicative of a “perfect fit” and that LRI
increases as the fit of the model improves. To a degree, this point is true. Unfortunately,
the values between zero and one have no natural interpretation. If F(x′

iβ) is a proper
cdf, then even with many regressors the model cannot fit perfectly unless x′

iβ goes to
+∞ or −∞. As a practical matter, it does happen. But when it does, it indicates a flaw
in the model, not a good fit. If the range of one of the independent variables contains
a value, say, x∗, such that the sign of (x − x∗) predicts y perfectly and vice versa, then
the model will become a perfect predictor. This result also holds in general if the sign
of x′β gives a perfect predictor for some vector β.15 For example, one might mistakenly
include as a regressor a dummy variable that is identical, or nearly so, to the dependent
variable. In this case, the maximization procedure will break down precisely because
x′β is diverging during the iterations. [See McKenzie (1998) for an application and
discussion.] Of course, this situation is not at all what we had in mind for a good fit.

Other fit measures have been suggested. Ben-Akiva and Lerman (1985) and Kay
and Little (1986) suggested a fit measure that is keyed to the prediction rule,

R2
BL = 1

n

n∑
i=1

[
yi F̂ i + (1 − yi )(1 − F̂ i )

]
,

which is the average probability of correct prediction by the prediction rule. The diffi-
culty in this computation is that in unbalanced samples, the less frequent outcome will
usually be predicted very badly by the standard procedure, and this measure does not
pick up that point. Cramer (1999) has suggested an alternative measure that directly

14See, for example, Cragg and Uhler (1970), Amemiya (1981), Maddala (1983), McFadden (1974), Ben-Akiva
and Lerman (1985), Kay and Little (1986), Veall and Zimmermann (1992), Zavoina and McKelvey (1975),
Efron (1978), and Cramer (1999). A survey of techniques appears in Windmeijer (1995).
15See McFadden (1984) and Amemiya (1985). If this condition holds, then gradient methods will find that β.
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considers this failure,

λ = (average F̂ | yi = 1) − (average F̂ | yi = 0)

= (average(1 − F̂) | yi = 0) − (average(1 − F̂) | yi = 1).

Cramer’s measure heavily penalizes the incorrect predictions, and because each propor-
tion is taken within the subsample, it is not unduly influenced by the large proportionate
size of the group of more frequent outcomes.

A useful summary of the predictive ability of the model is a 2 × 2 table of the hits
and misses of a prediction rule such as

ŷ = 1 if F̂ > F∗ and 0 otherwise. (17-26)

The usual threshold value is 0.5, on the basis that we should predict a one if the model
says a one is more likely than a zero. It is important not to place too much emphasis on
this measure of goodness of fit, however. Consider, for example, the naive predictor

ŷ = 1 if P > 0.5 and 0 otherwise, (17-27)

where P is the simple proportion of ones in the sample. This rule will always predict
correctly 100P percent of the observations, which means that the naive model does not
have zero fit. In fact, if the proportion of ones in the sample is very high, it is possible to
construct examples in which the second model will generate more correct predictions
than the first! Once again, this flaw is not in the model; it is a flaw in the fit measure.16

The important element to bear in mind is that the coefficients of the estimated model
are not chosen so as to maximize this (or any other) fit measure, as they are in the linear
regression model where b maximizes R2.

Another consideration is that 0.5, although the usual choice, may not be a very good
value to use for the threshold. If the sample is unbalanced—that is, has many more ones
than zeros, or vice versa—then by this prediction rule it might never predict a one (or
zero). To consider an example, suppose that in a sample of 10,000 observations, only
1,000 have Y = 1. We know that the average predicted probability in the sample will be
0.10. As such, it may require an extreme configuration of regressors even to produce
an F of 0.2, to say nothing of 0.5. In such a setting, the prediction rule may fail every
time to predict when Y = 1. The obvious adjustment is to reduce F∗. Of course, this
adjustment comes at a cost. If we reduce the threshold F∗ so as to predict y = 1 more
often, then we will increase the number of correct classifications of observations that
do have y = 1, but we will also increase the number of times that we incorrectly classify
as ones observations that have y = 0.17 In general, any prediction rule of the form in
(17-26) will make two types of errors: It will incorrectly classify zeros as ones and ones
as zeros. In practice, these errors need not be symmetric in the costs that result. For
example, in a credit scoring model [see Boyes, Hoffman, and Low (1989)], incorrectly
classifying an applicant as a bad risk is not the same as incorrectly classifying a bad
risk as a good one. Changing F∗ will always reduce the probability of one type of error

16See Amemiya (1981).
17The technique of discriminant analysis is used to build a procedure around this consideration. In this
setting, we consider not only the number of correct and incorrect classifications, but also the cost of each type
of misclassification.
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while increasing the probability of the other. There is no correct answer as to the best
value to choose. It depends on the setting and on the criterion function upon which the
prediction rule depends.

The likelihood ratio index and various modifications of it are obviously related
to the likelihood ratio statistic for testing the hypothesis that the coefficient vector is
zero. Cramer’s measure is oriented more toward the relationship between the fitted
probabilities and the actual values. It is usefully tied to the standard prediction rule
ŷ = 1[F̂ > 0.5]. Whether these have a close relationship to any type of fit in the familiar
sense is a question that needs to be studied. In some cases, it appears so. But the maxi-
mum likelihood estimator, on which all the fit measures are based, is not chosen so as to
maximize a fitting criterion based on prediction of y as it is in the linear regression model
(which maximizes R2). It is chosen to maximize the joint density of the observed depen-
dent variables. It remains an interesting question for research whether fitting y well or
obtaining good parameter estimates is a preferable estimation criterion. Evidently, they
need not be the same thing.

Example 17.6 Prediction with a Probit Model
Tunali (1986) estimated a probit model in a study of migration, subsequent remigration, and
earnings for a large sample of observations of male members of households in Turkey. Among
his results, he reports the summary shown here for a probit model: The estimated model is
highly significant, with a likelihood ratio test of the hypothesis that the coefficients (16 of them)
are zero based on a chi-squared value of 69 with 16 degrees of freedom.18 The model predicts
491 of 690, or 71.2 percent, of the observations correctly, although the likelihood ratio index
is only 0.083. A naive model, which always predicts that y = 0 because P < 0.5, predicts
487 of 690, or 70.6 percent, of the observations correctly. This result is hardly suggestive
of no fit. The maximum likelihood estimator produces several significant influences on the
probability but makes only four more correct predictions than the naive predictor.19

Predicted

D = 0 D = 1 Total

Actual D = 0 471 16 487
D = 1 183 20 203
Total 654 36 690

17.3.4 HYPOTHESIS TESTS

For testing hypotheses about the coefficients, the full menu of procedures is available.
The simplest method for a single restriction would be based on the usual t tests, using the
standard errors from the information matrix. Using the asymptotic normal distribution
of the estimator, we would use the standard normal table rather than the t table for
critical points. For more involved restrictions, it is possible to use the Wald test. For a
set of restrictions Rβ = q, the statistic is

W = (Rβ̂ − q)′{R(Est. Asy. Var[β̂])R′}−1(Rβ̂ − q).

18This view actually understates slightly the significance of his model, because the preceding predictions are
based on a bivariate model. The likelihood ratio test fails to reject the hypothesis that a univariate model
applies, however.
19It is also noteworthy that nearly all the correct predictions of the maximum likelihood estimator are the
zeros. It hits only 10 percent of the ones in the sample.
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For example, for testing the hypothesis that a subset of the coefficients, say, the last M,
are zero, the Wald statistic uses R = [0 | IM] and q = 0. Collecting terms, we find that
the test statistic for this hypothesis is

W = β̂ ′
MV−1

M β̂M, (17-28)

where the subscript M indicates the subvector or submatrix corresponding to the M
variables and V is the estimated asymptotic covariance matrix of β̂.

Likelihood ratio and Lagrange multiplier statistics can also be computed. The like-
lihood ratio statistic is

LR = −2[ln L̂R − ln L̂U],

where L̂R and L̂U are the log-likelihood functions evaluated at the restricted and unre-
stricted estimates, respectively. A common test, which is similar to the F test that all the
slopes in a regression are zero, is the likelihood ratio test that all the slope coefficients in
the probit or logit model are zero. For this test, the constant term remains unrestricted.
In this case, the restricted log-likelihood is the same for both probit and logit models,

ln L0 = n[P ln P + (1 − P) ln(1 − P)], (17-29)

where P is the proportion of the observations that have dependent variable equal to 1.
It might be tempting to use the likelihood ratio test to choose between the probit

and logit models. But there is no restriction involved, and the test is not valid for this
purpose. To underscore the point, there is nothing in its construction to prevent the
chi-squared statistic for this “test” from being negative.

The Lagrange multiplier test statistic is LM = g′Vg, where g is the first derivatives
of the unrestricted model evaluated at the restricted parameter vector and V is any of
the three estimators of the asymptotic covariance matrix of the maximum likelihood es-
timator, once again computed using the restricted estimates. Davidson and MacKinnon
(1984) find evidence that E [H] is the best of the three estimators to use, which gives

LM =
(

n∑
i=1

gi xi

)′ [ n∑
i=1

E [−hi ]xi x′
i

]−1 (
n∑

i=1

gi xi

)
, (17-30)

where E [−hi ] is defined in (17-21) for the logit model and in (17-23) for the probit
model.

For the logit model, when the hypothesis is that all the slopes are zero,

LM = nR2,

where R2 is the uncentered coefficient of determination in the regression of (yi − ȳ) on
xi and ȳ is the proportion of 1s in the sample. An alternative formulation based on the
BHHH estimator, which we developed in Section 14.6.3 is also convenient. For any of
the models (probit, logit, Gumbel, etc.), the first derivative vector can be written as

∂ ln L
∂β

=
n∑

i=1

gi xi = X′Gi,
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where G(n × n) = diag[g1, g2, . . . , gn] and i is an n × 1 column of 1s. The BHHH esti-
mator of the Hessian is (X′G′GX), so the LM statistic based on this estimator is

LM = n
[

1
n

i′(GX)(X′G′GX)−1(X′G′)i
]

= nR2
i , (17-31)

where R2
i is the uncentered coefficient of determination in a regression of a column of

ones on the first derivatives of the logs of the individual probabilities.
All the statistics listed here are asymptotically equivalent and under the null hy-

pothesis of the restricted model have limiting chi-squared distributions with degrees of
freedom equal to the number of restrictions being tested. We consider some examples
in the next section.

Example 17.7 Testing for Structural Break in a Logit Model
The model in Example 17.4, based on Riphahn, Wambach, and Million (2003), is

Prob(DocVisit > 0) = 	(β1 + β2 Ageit + β3 Incomeit + β4 Kidsit

+ β5 Educationit + β6 Marriedit) .

In the original study, the authors split the sample on the basis of gender, and fit separate mod-
els for male and female headed households. We will use the preceding results to test for the
appropriateness of the sample splitting. This test of the pooling hypothesis is a counterpart
to the Chow test of structural change in the linear model developed in Section 6.4.1. Since
we are not using least squares (in a linear model), we use the likelihood based procedures
rather than an F test as we did earlier. Estimates of the three models are shown in Table 17.4.
The chi-squared statistic for the likelihood ratio test is

LR = −2[−17673.09788 − (−9541.77802 − 7855.96999) ] = 550.69744.

The 95 percent critical value for six degrees of freedom is 12.592. To carry out the Wald
test for this hypothesis there are two numerically identical ways to proceed. First, using the
estimates for Male and Female samples separately, we can compute a chi-squared statistic
to test the hypothesis that the difference of the two coefficients is zero. This would be

W = [β̂Male − β̂Female]′[Est. Asy. Var( β̂Male) + Est. Asy. Var( β̂Female) ]−1[β̂Male − β̂Female]

= 538.13629.

Another way to obtain the same result is to add to the pooled model the original 6 vari-
ables now multiplied by the Female dummy variable. We use the augmented X matrix

TABLE 17.4 Estimated Models for Pooling Hypothesis

Pooled Sample Male Female

Variable Estimate Std.Error Estimate Std.Error Estimate Std.Error

Constant 0.25112 0.09114 −0.20881 0.11475 0.44767 0.16016
Age 0.02071 0.00129 0.02375 0.00178 0.01331 0.00202
Income −0.18592 0.07506 −0.23059 0.10415 −0.17182 0.11225
Kids −0.22947 0.02954 −0.26149 0.04054 −0.27153 0.04539
Education −0.04559 0.00565 −0.04251 0.00737 −0.00170 0.00970
Married 0.08529 0.03329 0.17451 0.04833 0.03621 0.04864
ln L −17,673.09788 −9,541.77802 −7,855.96999
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X∗ = [X, female × X]. The model with 12 variables is now estimated, and a test of the
pooling hypothesis is done by testing the joint hypothesis that the coefficients on these
6 additional variables are zero. The Lagrange multiplier test is carried out by using this aug-
mented model as well. To apply (17-31), the necessary derivatives are in (17-18). For the logit
model, the derivative matrix is simply G∗ = diag[yi − 	(x∗′

i β) ]. For the LM test, the vector
β that is used is the one for the restricted model. Thus, β̂

∗ = ( β̂
′
Pooled, 0, 0, 0, 0, 0, 0) ′. The

estimated probabilities that appear in G* are simply those obtained from the pooled model.
Then,

LM = i′G∗X∗ × [(X∗′G′∗) (G∗X) ]−1X∗′G∗′i = 548.17052.

The pooling hypothesis is rejected by all three procedures.

17.3.5 ENDOGENOUS RIGHT-HAND-SIDE VARIABLES IN BINARY
CHOICE MODELS

The analysis in Example 17.8 (Labor Supply Model) suggests that the presence of en-
dogenous right-hand-side variables in a binary choice model presents familiar problems
for estimation. The problem is made worse in nonlinear models because even if one
has an instrumental variable readily at hand, it may not be immediately clear what is
to be done with it. The instrumental variable estimator described in Chapter 8 is based
on moments of the data, variances, and covariances. In this binary choice setting, we
are not using any form of least squares to estimate the parameters, so the IV method
would appear not to apply. Generalized method of moments is a possibility. Consider
the model

y∗
i = x′

iβ + γ wi + εi ,

yi = 1(y∗
i > 0),

E[εi | wi ] = g(wi ) 
= 0.

Thus, wi is endogenous in this model. The maximum likelihood estimators considered
earlier will not consistently estimate (β, γ ). [Without an additional specification that
allows us to formalize Prob(yi = 1 | xi , wi ), we cannot state what the MLE will, in fact,
estimate.] Suppose that we have a “relevant” (see Section 8.2) instrumental variable, zi

such that

E[εi | zi , xi ] = 0,

E[wi zi ] 
= 0.

A natural instrumental variable estimator would be based on the “moment” condition

E
[(

y∗
i − x′

iβ − γ wi
) (

xi

zi

)]
= 0.

However, y∗
i is not observed, yi is. But, the “residual,” yi − x′

iβ − γ wi , would have no
meaning even if the true parameters were known.20 One approach that was used in
Avery et al. (1983), Butler and Chatterjee (1997), and Bertschek and Lechner (1998) is
to assume that the instrumental variable is orthogonal to the residual [y−�(x′

iβ + γ wi )];

20One would proceed in precisely this fashion if the central specification were a linear probability model
(LPM) to begin with. See, for example, Eisenberg and Rowe (2006) or Angrist (2001) for an application and
some analysis of this case.
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that is,

E
[

[yi − �(x′
iβ + γ wi )]

(
xi

zi

)]
= 0.

This form of the moment equation, based on observables, can form the basis of a straight-
forward two-step GMM estimator. (See Chapter 13 for details.)

This GMM estimator is not less parametric than the full information maximum like-
lihood estimator described later because the probit model based on the normal distribu-
tion is still invoked to specify the moment equation.21 Nothing is gained in simplicity or
robustness of this approach to full information maximum likelihood estimation, which
we now consider. (As Bertschek and Lechner argue, however, the gains might come
in terms of practical implementation and computation time. The same considerations
motivated Avery et al.)

The maximum likelihood estimator requires a full specification of the model, in-
cluding the assumption that underlies the endogeneity of wi . This becomes essentially
a simultaneous equations model. The model equations are

y∗
i = x′

iβ + γ wi + εi ,yi = 1[y∗
i > 0],

wi = z′
iα + ui ,

(εi , ui ) ∼ N
[(

0
0

)
,

(
1 ρσu

ρσu σ 2
u

)]
.

(We are assuming that there is a vector of instrumental variables, zi .) Probit estimation
based on yi and (xi , wi ) will not consistently estimate (β, γ ) because of the correlation
between wi and εi induced by the correlation between ui and εi . Several methods
have been proposed for estimation of this model. One possibility is to use the partial
reduced form obtained by inserting the second equation in the first. This becomes a
probit model with probability Prob(yi = 1 | xi , zi ) = �(x′

iβ
∗ + z′

iα
∗). This will produce

consistent estimates of β∗ = β/(1 + γ 2σ 2
u + 2γ σuρ)1/2 and α∗ = γα/(1 + γ 2σ 2

u +
2γ σuρ)1/2 as the coefficients on xi and zi , respectively. (The procedure will estimate
a mixture of β∗ and α∗ for any variable that appears in both xi and zi .) In addition,
linear regression of wi on zi produces estimates of α and σ 2

u . But there is no method of
moments estimator of ρ or γ produced by this procedure, so this estimator is incomplete.
Newey (1987) suggested a “minimum chi-squared” estimator that does estimate all
parameters. A more direct, and actually simpler approach is full information maximum
likelihood.

The log-likelihood is built up from the joint density of yi and wi , which we write as
the product of the conditional and the marginal densities,

f (yi , wi ) = f (yi | wi ) f (wi ).

To derive the conditional distribution, we use results for the bivariate normal, and write

εi | ui = [
(ρσu)/σ

2
u

]
ui + vi ,

21This is precisely the platform that underlies the GLIM/GEE treatment of binary choice models in, for
example, the widely used programs SAS and Stata.
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where vi is normally distributed with Var[vi ] = (1 − ρ2). Inserting this in the first
equation, we have

y∗
i | wi = x′

iβ + γ wi + (ρ/σu)ui + vi .

Therefore,

Prob[yi = 1 | xi , wi ] = �

[
x′

iβ + γ wi + (ρ/σu)ui√
1 − ρ2

]
. (17-32)

Inserting the expression for ui = (wi − z′
iα), and using the normal density for the

marginal distribution of wi in the second equation, we obtain the log-likelihood function
for the sample,

ln L =
n∑

i=1

ln �

[
(2yi − 1)

(
x′

iβ + γ wi + (ρ/σu)(wi − z′
iα)√

1 − ρ2

)]
+ ln

[
1
σu

φ

(
wi − z′

iα

σu

)]
.

Example 17.8 Labor Supply Model
In Examples 5.2 and 17.1, we examined a labor suppy model for married women using
Mroz’s (1987) data on labor supply. The wife’s labor force participation equation suggested
in Example 17.1 is

Prob (LFPi = 1) = �
(
β1 + β2 Agei + β3 Age2

i + β4 Educationi + β5 Kidsi

)
.

A natural extension of this model would be to include the husband’s hours in the equation,

Prob
(
LFPi = 1) = �(β1 + β2 Agei + β3 Age2

i + β4 Educationi + β5 Kidsi + γ HHrsi

)
.

It would also be natural to assume that the husband’s hours would be correlated with the
determinants (observed and unobserved) of the wife’s labor force participation. The auxiliary
equation might be

HHrsi = α1 + α2 HAgei + α3 HEducationi + α4 Family Incomei + ui .

As before, we use the Mroz (1987) labor supply data described in Example 5.2. Table 17.5
reports the single-equation and maximum likelihood estimates of the parameters of the two
equations. Comparing the two sets of probit estimates, it appears that the (assumed) en-
dogeneity of the husband’s hours is not substantially affecting the estimates. There are two

TABLE 17.5 Estimated Labor Supply Model

Probit Regression Maximum Likelihood

Constant −3.86704 (1.41153) −5.08405 (1.43134)
Age 0.18681 (0.065901) 0.17108 (0.063321)
Age2 −0.00243 (0.000774) −0.00219 (0.0007629)
Education 0.11098 (0.021663) 0.09037 (0.029041)
Kids −0.42652 (0.13074) −0.40202 (0.12967)
Husband hours −0.000173 (0.0000797) 0.00055 (0.000482)
Constant 2,325.38 (167.515) 2,424.90 (158.152)
Husband age −6.71056 (2.73573) −7.3343 (2.57979)
Husband education 9.29051 (7.87278) 2.1465 (7.28048)
Family income 55.72534 (19.14917) 63.4669 (18.61712)
σu 588.2355 586.994
ρ 0.0000 −0.4221 (0.26931)
ln L −489.0766 −5,868.432 −6,357.093
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simple ways to test the hypothesis that ρ equals zero. The FIML estimator produces an
estimated asymptotic standard error with the estimate of ρ, so a Wald test can be carried
out. For the preceding results, the Wald statistic would be (−0.4221/0.26921)2 = 2.458. The
critical value from the chi-squared table for one degree of freedom would be 3.84, so we
would not reject the hypothesis. The second approach would use the likelihood ratio test.
Under the null hypothesis of exogeneity, the probit model and the regression equation can
be estimated independently. The log-likelihood for the full model would be the sum of the
two log-likelihoods, which would be −6357.508 based on the following results. Without the
restriction ρ = 0, the combined log likelihood is −6357.093. Twice the difference is 0.831,
which is also well under the 3.84 critical value, so on this basis as well, we would not reject
the null hypothesis that ρ = 0.

Blundell and Powell (2004) label the foregoing the control function approach to
accommodating the endogeneity. As noted, the estimator is fully parametric. They pro-
pose an alternative semiparametric approach that retains much of the functional form
specification, but works around the specific distributional assumptions. Adapting their
model to our earlier notation, their departure point is a general specification that pro-
duces, once again, a control function,

E[yi | xi , wi , ui ] = F(x′
iβ + γ wi , ui ).

Note that (17-32) satisfies the assumption; however, they reach this point without assum-
ing either joint or marginal normality. The authors propose a three-step, semiparametric
approach to estimating the structural parameters. In an application somewhat similar to
Example 17.8, they apply the technique to a labor force participation model for British
men in which a variable of interest is a dummy variable for education greater than 16
years, the endogenous variable in the participation equation, also of interest, is earned
income of the spouse, and an instrumental variable is a welfare benefit entitlement.
Their findings are rather more substantial than ours; they find that when the endogene-
ity of other family income is accommodated in the equation, the education coefficient
increases by 40 percent and remains significant, but the coefficient on other income
increases by more than tenfold.

In the control function model noted earlier, where E[yi | xi , wi , ui ] = F(x′
iβ + γ wi ,

ui ) and wi = zi
′α+ui , since the covariance of wi and ui is the issue, it might seem natural

to solve the problem by replacing wi with zi
′a where a is an estimator of α, or some

other prediction of wi based only on exogenous variables. The earlier development
shows that the appropriate approach is to add the estimated residual to the equation,
instead. The issue is explored in detail by Terza, Basu, and Rathouz (2008), who reach
the same conclusion in a general model.

The residual inclusion method also suggests a two-step approach. Rewrite the log-
likelihood function as

ln L =
n∑

i=1

ln � [(2yi − 1)(x′
iβ

∗ + γ ∗wi + τ ε̃i )] +
n∑

i=1

ln
[

1
σu

φ(ε̃i )

]
,

where β∗ = (1/
√

1 − ρ2)β, γ ∗ = (1/
√

1 − ρ2)γ, τ = (ρ/
√

1 − ρ2) and ε̃i =
(wi − z′

iα)/σu.
The parameters in the regression, α and σu, can be consistently estimated by a

linear regression of w on z. The scaled residual ẽi = (wi − z′
i a)/su can now be computed

and inserted into the log-likelihood. Note that the second term in the log-likelihood
involves parameters that have already been estimated at the first step. The second-step
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log-likelihood is, then,

ln L =
n∑

i=1

ln � [(2yi − 1)(x′
iβ

∗ + γ ∗wi + τ ẽi )] .

This can be maximized using the methods developed in Section 17.3. The estimator
of ρ can be recovered from ρ = τ /(1 + τ 2)1/2. Estimators of β and γ follow, and the
delta method can be used to construct standard errors. Since this is a two-step esti-
mator, the resulting estimator of the asymptotic covariance matrix would be further
adjusted using the Murphy and Topel (2002) results in Section 14.7. Bootstrapping the
entire apparatus (see Section 15.4) would be an alternative way to estimate an asymp-
totic covariance matrix. The original (one-step) log-likelihood is not very complicated,
and full information estimation is fairly straightforward. The preceding demonstrates
how the alternative two-step method would proceed and emphasizes once again, the
appropriateness of the “residual inclusion” method.

The case in which the endogenous variable in the main equation is, itself, a binary
variable occupies a large segment of the recent literature. Consider the model

T∗
i = z′

iα + ui , Ti = 1[w∗
i > 0],

y∗
i = x′

iβ + γ Ti + εi , yi = 1[y∗
i > 0],

(
εi

ui

)
∼ N

[(
0
0

)
,

(
1 ρ

ρ 1

)]
,

where Ti is a binary variable indicating some kind of program participation (e.g., gradu-
ating from high school or college, receiving some kind of job training, purchasing health
insurance, etc.). The model in this form (and several similar ones) is a “treatment
effects” model. The subject of treatment effects models is surveyed in many studies,
including Angrist (2001) and Angrist and Pischke (2009, 2010). The main object of es-
timation is γ (at least superficially). In these settings, the observed outcome may be yi *
(e.g., income or hours) or yi (e.g., labor force participation). We have considered the
first case in Chapter 8, and will revisit it in Chapter 19. The case just examined is that in
which yi and T∗

i are the observed variables. The preceding analysis has suggested that
problems of endogeneity will intervene in all cases. We will examine this model in some
detail in Section 17.5.5 and in Chapter 19.

17.3.6 ENDOGENOUS CHOICE-BASED SAMPLING

In some studies [e.g., Boyes, Hoffman, and Low (1989), Greene (1992)], the mix of ones
and zeros in the observed sample of the dependent variable is deliberately skewed in
favor of one outcome or the other to achieve a more balanced sample than random
sampling would produce. The sampling is said to be choice based. In the studies noted,
the dependent variable measured the occurrence of loan default, which is a relatively
uncommon occurrence. To enrich the sample, observations with y = 1 (default) were
oversampled. Intuition should suggest (correctly) that the bias in the sample should
be transmitted to the parameter estimates, which will be estimated so as to mimic the
sample, not the population, which is known to be different. Manski and Lerman (1977)
derived the weighted endogenous sampling maximum likelihood (WESML) estima-
tor for this situation. The estimator requires that the true population proportions, ω1
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and ω0, be known. Let p1 and p0 be the sample proportions of ones and zeros. Then the
estimator is obtained by maximizing a weighted log-likelihood,

ln L =
n∑

i=1

wi ln F(qi x′
iβ),

where wi = yi (ω1/p1) + (1 − yi )(ω0/p0). Note that wi takes only two different values.
The derivatives and the Hessian are likewise weighted. A final correction is needed
after estimation; the appropriate estimator of the asymptotic covariance matrix is the
sandwich estimator discussed in Section 17.3.1, H−1BH−1 (with weighted B and H),
instead of B or H alone. (The weights are not squared in computing B.)22

Example 17.9 Credit Scoring
In Example 7.10, we examined the spending patterns of a sample of 10,499 cardholders for a
major credit card vendor. The sample of cardholders is a subsample of 13,444 applicants for
the credit card. Applications for credit cards, then (1992) and now are processed by a major
nationwide processor, Fair Isaacs, Inc. The algorithm used by the processors is proprietary.
However, conventional wisdom holds that a few variables are important in the process, such
as Age, Income, whether the applicant owns his or her home, whether he or she is self-
employed, and how long he or she has lived at their current address. The number of major
and minor derogatory reports (60-day and 30-day delinquencies) are also very influential
variables in credit scoring. The probit model we will use to “model the model” is

Prob(Cardholder = 1) = Prob(C = 1 | x)

= �(β1 + β2 Age + β3 Income + β4 OwnRent

+ β5 Months Living at Current Address

+ β6 Self-Employed

+β7 Number of major derogatory reports

+ β8 Number of minor derogatory reports) .

In the data set, 78.1 percent of the applicants are cardholders. In the population, at that time,
the true proportion was roughly 23.2 percent, so the sample is substantially choice based
on this variable. The sample was deliberately skewed in favor of cardholders for purposes
of the original study [Greene (1992)]. The weights to be applied for the WESML estimator
are 0.232/0.781 = 0.297 for the observations with C = 1 and 0.768/0.219 = 3.507 for
observations with C = 0. Table 17.6 presents the unweighted and weighted estimates for this
application. The change in the estimates produced by the weighting is quite modest, save for
the constant term. The results are consistent with the conventional wisdom that Income and
OwnRent are two important variables in a credit application and self-employment receives a
substantial negative weight. But, as might be expected, the single most significant influence
on cardholder status is major derogatory reports. Since lenders are strongly focused on
default probability, past evidence of default behavior will be a major consideration.

17.3.7 SPECIFICATION ANALYSIS

In his survey of qualitative response models, Amemiya (1981) reports the following
widely cited approximations for the linear probability (LP) model: Over the range of

22WESML and the choice-based sampling estimator are not the free lunch they may appear to be. That which
the biased sampling does, the weighting undoes. It is common for the end result to be very large standard
errors, which might be viewed as unfortunate, insofar as the purpose of the biased sampling was to balance
the data precisely to avoid this problem.
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TABLE 17.6 Estimated Card Application Equation (t ratios in parentheses)

Unweighted Weighted

Variable Estimate Standard Error Estimate Standard Error

Constant 0.31783 0.05094 (6.24) −1.13089 0.04725 (−23.94)
Age 0.00184 0.00154 (1.20) 0.00156 0.00145 (1.07)
Income 0.00095 0.00025 (3.86) 0.00094 0.00024 (3.92)
OwnRent 0.18233 0.03061 (5.96) 0.23967 0.02968 (8.08)
CurrentAddress 0.02237 0.00120 (18.67) 0.02106 0.00109 (19.40)
SelfEmployed −0.43625 0.05585 (−7.81) −0.47650 0.05851 (−8.14)
Major Derogs −0.69912 0.01920 (−36.42) −0.64792 0.02525 (−25.66)
Minor Derogs −0.04126 0.01865 (−2.21) −0.04285 0.01778 (−2.41)

probabilities of 30 to 70 percent,

β̂LP ≈ 0.4βprobit for the slopes,

β̂LP ≈ 0.25β logit for the slopes.

Aside from confirming our intuition that least squares approximates the nonlinear
model and providing a quick comparison for the three models involved, the practi-
cal usefulness of the formula is somewhat limited. Still, it is a striking result.23 A series
of studies has focused on reasons why the least squares estimates should be proportional
to the probit and logit estimates. A related question concerns the problems associated
with assuming that a probit model applies when, in fact, a logit model is appropriate or
vice versa.24 The approximation would seem to suggest that with this type of misspeci-
fication, we would once again obtain a scaled version of the correct coefficient vector.
(Amemiya also reports the widely observed relationship β̂ logit ≈ 1.6β̂probit, which fol-
lows from the results for the linear probability model. This result is apparent in Table
17.1 where the ratios of the three slopes range from 1.6 to 1.9.)

In the linear regression model, we considered two important specification problems:
the effect of omitted variables and the effect of heteroscedasticity. In the classical model,
y = X1β1 + X2β2 + ε, when least squares estimates b1 are computed omitting X2,

E [b1] = β1 + [X′
1X1]−1X′

1X2β2.

Unless X1 and X2 are orthogonal or β2 = 0, b1 is biased. If we ignore heteroscedasticity,
then although the least squares estimator is still unbiased and consistent, it is inefficient
and the usual estimate of its sampling covariance matrix is inappropriate. Yatchew and
Griliches (1984) have examined these same issues in the setting of the probit and logit
models. Their general results are far more pessimistic. In the context of a binary choice
model, they find the following:

23This result does not imply that it is useful to report 2.5 times the linear probability estimates with the probit
estimates for comparability. The linear probability estimates are already in the form of marginal effects,
whereas the probit coefficients must be scaled downward. If the sample proportion happens to be close to
0.5, then the right scale factor will be roughly φ[�−1(0.5)] = 0.3989. But the density falls rapidly as P moves
away from 0.5.
24See Ruud (1986) and Gourieroux et al. (1987).
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1. If x2 is omitted from a model containing x1 and x2, (i.e. β2 
= 0) then

plim β̂1 = c1β1 + c2β2,

where c1 and c2 are complicated functions of the unknown parameters. The impli-
cation is that even if the omitted variable is uncorrelated with the included one, the
coefficient on the included variable will be inconsistent.

2. If the disturbances in the underlying regression are heteroscedastic, then the max-
imum likelihood estimators are inconsistent and the covariance matrix is inappro-
priate.

The second result is particularly troubling because the probit model is most often used
with microeconomic data, which are frequently heteroscedastic.

Any of the three methods of hypothesis testing discussed here can be used to analyze
these specification problems. The Lagrange multiplier test has the advantage that it can
be carried out using the estimates from the restricted model, which sometimes brings
a large saving in computational effort. This situation is especially true for the test for
heteroscedasticity.25

To reiterate, the Lagrange multiplier statistic is computed as follows. Let the null
hypothesis, H0, be a specification of the model, and let H1 be the alternative. For example,
H0 might specify that only variables x1 appear in the model, whereas H1 might specify
that x2 appears in the model as well. The statistic is

LM = g′
0V−1

0 g0,

where g0 is the vector of derivatives of the log-likelihood as specified by H1 but evaluated
at the maximum likelihood estimator of the parameters assuming that H0 is true, and
V−1

0 is any of the three consistent estimators of the asymptotic variance matrix of the
maximum likelihood estimator under H1, also computed using the maximum likelihood
estimators based on H0. The statistic has a limiting chi-squared distribution with degrees
of freedom equal to the number of restrictions.

17.3.7.a Omitted Variables

The hypothesis to be tested is

H0: y∗ = x′
1β1 + ε,

H1: y∗ = x′
1β1 + x′

2β2 + ε,
(17-33)

so the test is of the null hypothesis that β2 = 0. The Lagrange multiplier test would be
carried out as follows:

1. Estimate the model in H0 by maximum likelihood. The restricted coefficient vector
is [β̂1, 0].

2. Let x be the compound vector, [x1, x2].

The statistic is then computed according to (17-30) or (17-31). It is noteworthy that in
this case as in many others, the Lagrange multiplier is the coefficient of determination
in a regression. The likelihood ratio test is equally straightforward. Using the estimates
of the two models, the statistic is simply 2(ln L1 − ln L0).

25The results in this section are based on Davidson and MacKinnon (1984) and Engle (1984). A symposium
on the subject of specification tests in discrete choice models is Blundell (1987).
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17.3.7.b Heteroscedasticity

We use the general formulation analyzed by Harvey (1976) (see Section 14.9.2.a),26

Var[ε] = [exp(z′γ )]2.

This model can be applied equally to the probit and logit models. We will derive the
results specifically for the probit model; the logit model is essentially the same. Thus,

y∗ = x′β + ε,

Var[ε | x, z] = [exp(z′γ )]2. (17-34)

The presence of heteroscedasticity makes some care necessary in interpreting the coef-
ficients for a variable wk that could be in x or z or both,

∂ Prob(Y = 1 | x, z)
∂wk

= φ

[
x′β

exp(z′γ )

]
βk − (x′β)γk

exp(z′γ )
.

Only the first (second) term applies if wk appears only in x (z). This implies that the
simple coefficient may differ radically from the effect that is of interest in the estimated
model. This effect is clearly visible in the next example.

The log-likelihood is

ln L =
n∑

i=1

{
yi ln F

(
x′

iβ

exp(z′
iγ )

)
+ (1 − yi ) ln

[
1 − F

(
x′

iβ

exp(z′
iγ )

)]}
. (17-35)

To be able to estimate all the parameters, z cannot have a constant term. The derivatives
are

∂ ln L
∂β

=
n∑

i=1

[
fi (yi − Fi )

Fi (1 − Fi )

]
exp(−z′

iγ )xi ,

∂ ln L
∂γ

=
n∑

i=1

[
fi (yi − Fi )

Fi (1 − Fi )

]
exp(−z′

iγ )zi (−x′
iβ),

(17-36)

which implies a difficult log-likelihood to maximize. But if the model is estimated as-
suming that γ = 0, then we can easily test for homoscedasticity. Let

wi =
[

xi

(−x′
i β̂)zi

]
, (17-37)

computed at the maximum likelihood estimator, assuming that γ = 0. Then (17-30) or
(17-31) can be used as usual for the Lagrange multiplier statistic.

Davidson and MacKinnon carried out a Monte Carlo study to examine the true sizes
and power functions of these tests. As might be expected, the test for omitted variables
is relatively powerful. The test for heteroscedasticity may well pick up some other form
of misspecification, however, including perhaps the simple omission of z from the index
function, so its power may be problematic. It is perhaps not surprising that the same
problem arose earlier in our test for heteroscedasticity in the linear regression model.

26See Knapp and Seaks (1992) for an application. Other formulations are suggested by Fisher and Nagin
(1981), Hausman and Wise (1978), and Horowitz (1993).
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Example 17.10 Specification Tests in a Labor Force
Participation Model

Using the data described in Example 17.1, we fit a probit model for labor force participation
based on the specification

Prob[LFP = 1] = F (constant, age, age2, family income, education, kids) .

For these data, P = 428/753 = 0.568393. The restricted (all slopes equal zero, free constant
term) log-likelihood is 325× ln(325/753) +428× ln(428/753) = −514.8732. The unrestricted
log-likelihood for the probit model is −490.8478. The chi-squared statistic is, therefore,
48.05072. The critical value from the chi-squared distribution with five degrees of freedom is
11.07, so the joint hypothesis that the coefficients on age, age2, family income, and kids are
all zero is rejected.

Consider the alternative hypothesis, that the constant term and the coefficients on age,
age2, family income, and education are the same whether kids equals one or zero, against the
alternative that an altogether different equation applies for the two groups of women, those
with kids = 1 and those with kids = 0. To test this hypothesis, we would use a counterpart to
the Chow test of Section 6.4.1 and Example 6.9. The restricted model in this instance would
be based on the pooled data set of all 753 observations. The log-likelihood for the pooled
model—which has a constant term, age, age2, family income, and education is −496.8663.
The log-likelihoods for this model based on the 524 observations with kids = 1 and the 229
observations with kids = 0 are −347.87441 and −141.60501, respectively. The log-likelihood
for the unrestricted model with separate coefficient vectors is thus the sum, −489.47942.
The chi-squared statistic for testing the five restrictions of the pooled model is twice the
difference, LR = 2[−489.47942 − (−496.8663) ] = 14.7738. The 95 percent critical value
from the chi-squared distribution with 5 degrees of freedom is 11.07, so at this significance
level, the hypothesis that the constant terms and the coefficients on age, age2, family income,
and education are the same is rejected. (The 99 percent critical value is 15.09.)

Table 17.7 presents estimates of the probit model with a correction for heteroscedasticity
of the form

Var[εi ] = exp(γ1kids + γ2family income) .

The three tests for homoscedasticity give

LR = 2[−487.6356 − (−490.8478) ] = 6.424,

LM = 2.236 based on the BHHH estimator,

Wald = 6.533 (2 restrictions) .

The 95 percent critical value for two restrictions is 5.99, so the LM statistic conflicts with the
other two.

TABLE 17.7 Estimated Coefficients

Estimate (Std. Er) Marg. Effect* Estimate (St. Er.) Marg. Effect*

Constant β1 −4.157(1.402) — −6.030(2.498) —
Age β2 0.185(0.0660) −0.00837(0.0028) 0.264(0.118) −0.00825(.00649)
Age2 β3 −0.0024(0.00077) — −0.0036(0.0014) —
Income β4 0.0458(0.0421) 0.0180(0.0165) 0.424(0.222) 0.0552(0.0240)
Education β5 0.0982(0.0230) 0.0385(0.0090) 0.140(0.0519) 0.0289(0.00869)
Kids β6 −0.449(0.131) −0.171(0.0480) −0.879(0.303) −0.167(0.0779)
Kids γ1 0.000 — −0.141(0.324) —
Income γ2 0.000 — 0.313(0.123) —
ln L −490.8478 −487.6356
Correct Preds. 0s: 106, 1s: 357 0s: 115, 1s: 358

*Marginal effect and estimated standard error include both mean (β) and variance (γ ) effects.
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17.4 BINARY CHOICE MODELS FOR PANEL DATA

Qualitative response models have been a growth industry in econometrics. The recent
literature, particularly in the area of panel data analysis, has produced a number of new
techniques. The availability of high-quality panel data sets on microeconomic behavior
has maintained an interest in extending the models of Chapter 11 to binary (and other
discrete choice) models. In this section, we will survey a few results from this rapidly
growing literature.

The structural model for a possibly unbalanced panel of data would be written

y∗
it = x′

itβ + εit, i = 1, . . . , n, t = 1, . . . , Ti ,

yit = 1 if y∗
it > 0, and 0 otherwise, (17-38)

The second line of this definition is often written

yit = 1(x′
itβ + εit > 0)

to indicate a variable that equals one when the condition in parentheses is true and
zero when it is not. Ideally, we would like to specify that εit and εis are freely corre-
lated within a group, but uncorrelated across groups. But doing so will involve
computing joint probabilities from a Ti variate distribution, which is generally prob-
lematic.27 (We will return to this issue later.) A more promising approach is an effects
model,

y∗
it = x′

itβ + vit + ui , i = 1, . . . , n, t = 1, . . . , Ti ,

yit = 1 if y∗
it > 0, and 0 otherwise, (17-39)

where, as before (see Sections 11.4 and 11.5), ui is the unobserved, individual spe-
cific heterogeneity. Once again, we distinguish between “random” and “fixed” effects
models by the relationship between ui and xit. The assumption that ui is unrelated
to xit, so that the conditional distribution f (ui | xit) is not dependent on xit, produces
the random effects model. Note that this places a restriction on the distribution of the
heterogeneity.

If that distribution is unrestricted, so that ui and xit may be correlated, then we have
what is called the fixed effects model. The distinction does not relate to any intrinsic
characteristic of the effect itself.

As we shall see shortly, this is a modeling framework that is fraught with difficulties
and unconventional estimation problems. Among them are the following: Estimation
of the random effects model requires very strong assumptions about the heterogeneity;

27A “limited information” approach based on the GMM estimation method has been suggested by Avery,
Hansen, and Hotz (1983). With recent advances in simulation-based computation of multinormal integrals
(see Section 15.6.2.b), some work on such a panel data estimator has appeared in the literature. See, for
example, Geweke, Keane, and Runkle (1994, 1997). The GEE estimator of Diggle, Liang, and Zeger (1994)
[see also, Liang and Zeger (1986) and Stata (2006)] seems to be another possibility. However, in all these
cases, it must be remembered that the procedure specifies estimation of a correlation matrix for a Ti vector
of unobserved variables based on a dependent variable that takes only two values. We should not be too
optimistic about this if Ti is even moderately large.
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the fixed effects model encounters an incidental parameters problem that renders the
maximum likelihood estimator inconsistent.

17.4.1 THE POOLED ESTIMATOR

To begin, it is useful to consider the pooled estimator that results if we simply ignore
the heterogeneity, ui in (17-39) and fit the model as if the cross-section specification of
Section 17.2.2 applies. In this instance, the adage that “ignoring the heterogeneity does
not make it go away,” applies even more forcefully than in the linear regression case.

If the fixed effects model is appropriate, then all the preceding results for omitted
variables, including the Yatchew and Griliches result (1984) apply. The pooled MLE
that ignores fixed effects will be inconsistent—possibly wildly so. (Note that since the
estimator is ML, not least squares, converting the data to deviations from group means
is not a solution—converting the binary dependent variable to deviations will produce
a continuous variable with unknown properties.)

The random effects case is more benign. From (17-39), the marginal probability
implied by the model is

Prob(yit = 1 | xit) = Prob(vit + ui > −x′
itβ)

= F
[
x′

itβ/
(
1 + σ 2

u

)1/2]

= F(x′
itδ).

The implication is that based on the marginal distributions, we can consistently estimate
δ (but not β or σu separately) by pooled MLE. [This result is explored at length in
Wooldridge (2002).] This would be a “pseudo MLE” since the log-likelihood function is
not the true log-likelihood for the full set of observed data, but it is the correct product of
the marginal distributions for yit | xit. (This would be the binary choice case counterpart
to consistent estimation of β in a linear random effects model by pooled ordinary least
squares.) The implication, which is absent in the linear case is that ignoring the random
effects in a pooled model produces an attenuated (inconsistent—downward biased)
estimate of β; the scale factor that produces δ is 1/(1 + σ 2

u )1/2 which is between zero
and one. The implication for the partial effects is less clear. In the model specification,
the partial effect is

PE(xit, ui ) = ∂ E[yit | xit, ui ]/∂xit = β × f (x′
itβ + ui ),

which is not computable. The useful result would be

Eu[PE(xit, ui )] = βEu[ f (x′
itβ + ui )].

Wooldridge (2002a) shows that the end result, assuming normality of both vit and ui

is Eu[PE(xit, ui )] = δφ(x′
itδ). Thus far, surprisingly, it would seem that simply pooling

the data and using the simple MLE “works.” The estimated standard errors will be
incorrect, so a correction such as the cluster estimator shown in Section 14.8.4 would
be appropriate. Three considerations suggest that one might want to proceed to the full
MLE in spite of these results: (1) The pooled estimator will be inefficient compared to
the full MLE; (2) the pooled estimator does not produce an estimator of σu that might
be of interest in its own right; (3) the FIML estimator is available in contemporary
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software and is no more difficult to estimate then the pooled estimator. Note that the
pooled estimator is not justified (over the FIML approach) on robustness considera-
tions because the same normality and random effects assumptions that are needed to
obtain the FIML estimator will be needed to obtain the preceding results for the pooled
estimator.

17.4.2 RANDOM EFFECTS MODELS

A specification that has the same structure as the random effects model of Section 11.5
has been implemented by Butler and Moffitt (1982). We will sketch the derivation to
suggest how random effects can be handled in discrete and limited dependent variable
models such as this one. Full details on estimation and inference may be found in Butler
and Moffitt (1982) and Greene (1995a). We will then examine some extensions of the
Butler and Moffitt model.

The random effects model specifies

εit = vit + ui ,

where vit and ui are independent random variables with

E [vit | X] = 0; Cov[vit, v js | X] = Var[vit | X] = 1, if i = j and t = s; 0 otherwise,

E [ui | X] = 0; Cov[ui , u j | X] = Var[ui | X] = σ 2
u , if i = j; 0 otherwise,

Cov[vit, u j | X] = 0 for all i, t, j,

and X indicates all the exogenous data in the sample, xit for all i and t.28 Then,

E [εit | X] = 0,

Var[εit | X] = σ 2
v + σ 2

u = 1 + σ 2
u ,

and

Corr[εit, εis | X] = ρ = σ 2
u

1 + σ 2
u
.

The new free parameter is σ 2
u = ρ/(1 − ρ).

Recall that in the cross-section case, the marginal probability associated with an
observation is

P(yi | xi ) =
∫ Ui

Li

f (εi )dεi , (Li , Ui ) = (−∞, −x′
iβ) if yi = 0 and (−x′

iβ, +∞) if yi = 1.

This simplifies to �[(2yi − 1)x′
iβ] for the normal distribution and 	[(2yi − 1)x′

iβ]
for the logit model. In the fully general case with an unrestricted covariance matrix,
the contribution of group i to the likelihood would be the joint probability for all Ti

observations;

Li = P(yi1, . . . , yiTi | X) =
∫ UiTi

LiTi

. . .

∫ Ui1

Li1

f (εi1, εi2, . . . , εiTi )dεi1dεi2 . . . dεiTi . (17-40)

28See Wooldridge (1999) for discussion of this assumption.
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The integration of the joint density, as it stands, is impractical in most cases. The special
nature of the random effects model allows a simplification, however. We can obtain
the joint density of the vit’s by integrating ui out of the joint density of (εi1, . . . , εiTi , ui )

which is

f (εi1, . . . , εiTi , ui ) = f (εi1, . . . , εiTi | ui ) f (ui ).

So,

f (εi1, εi2, . . . , εiTi ) =
∫ +∞

−∞
f (εi1, εi2, . . . , εiTi | ui ) f (ui ) dui .

The advantage of this form is that conditioned on ui , the εit’s are independent, so

f (εi1, εi2, . . . , εiTi ) =
∫ +∞

−∞

Ti∏
t=1

f (εit | ui ) f (ui ) dui .

Inserting this result in (17-40) produces

Li = P[yi1, . . . , yiTi | X] =
∫ UiTi

LiTi

. . .

∫ Ui1

Li1

∫ +∞

−∞

Ti∏
t=1

f (εit | ui ) f (ui ) dui dεi1 dεi2 . . . dεiTi .

This may not look like much simplification, but in fact, it is. Because the ranges of
integration are independent, we may change the order of integration:

Li = P[yi1, . . . , yiTi | X] =
∫ +∞

−∞

[∫ UiTi

LiTi

. . .

∫ Ui1

Li1

Ti∏
t=1

f (εit | ui ) dεi1 dεi2 . . . dεiTi

]
f (ui ) dui .

Conditioned on the common ui , the ε’s are independent, so the term in square brackets
is just the product of the individual probabilities. We can write this as

Li = P[yi1, . . . , yiTi | X] =
∫ +∞

−∞

[
Ti∏

t=1

(∫ Uit

Lit

f (εit | ui ) dεit

)]
f (ui ) dui . (17-41)

Now, consider the individual densities in the product. Conditioned on ui , these are the
now-familiar probabilities for the individual observations, computed now at x′

itβ + ui .
This produces a general model for random effects for the binary choice model. Collecting
all the terms, we have reduced it to

Li = P[yi1, . . . , yiTi | X] =
∫ +∞

−∞

[
Ti∏

t=1

Prob(Yit = yit | x′
itβ + ui )

]
f (ui ) dui . (17-42)

It remains to specify the distributions, but the important result thus far is that the
entire computation requires only one-dimensional integration. The inner probabilities
may be any of the models we have considered so far, such as probit, logit, Gumbel, and
so on. The intricate part that remains is to determine how to do the outer integration.
Butler and Moffitt’s method assuming that ui is normally distributed is detailed in
Section 14.9.6.c.

A number of authors have found the Butler and Moffitt formulation to be a satis-
factory compromise between a fully unrestricted model and the cross-sectional variant
that ignores the correlation altogether. An application that includes both group and
time effects is Tauchen, Witte, and Griesinger’s (1994) study of arrests and criminal
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behavior. The Butler and Moffitt approach has been criticized for the restriction of
equal correlation across periods. But it does have a compelling virtue that the model
can be efficiently estimated even with fairly large Ti using conventional computational
methods. [See Greene (2007b).]

A remaining problem with the Butler and Moffitt specification is its assumption of
normality. In general, other distributions are problematic because of the difficulty of
finding either a closed form for the integral or a satisfactory method of approximating the
integral. An alternative approach that allows some flexibility is the method of maximum
simulated likelihood (MSL), which was discussed in Section 15.6. The transformed
likelihood we derived in (17-42) is an expectation:

Li =
∫ +∞

−∞

[
Ti∏

t=1

Prob(Yit = yit | x′
itβ + ui )

]
f (ui ) dui

= Eui

[
Ti∏

t=1

Prob(Yit = yit | x′
itβ + ui )

]
.

This expectation can be approximated by simulation rather than quadrature. First, let θ

now denote the scale parameter in the distribution of ui . This would be σu for a normal
distribution, for example, or some other scaling for the logistic or uniform distribution.
Then, write the term in the likelihood function as

Li = Eui

[
Ti∏

t=1

F(yit, x′
itβ + θui )

]
= Eui [h(ui )].

The function is smooth, continuous, and continuously differentiable. If this expectation
is finite, then the conditions of the law of large numbers should apply, which would
mean that for a sample of observations ui1, . . . , ui R,

plim
1
R

R∑
r=1

h(uir ) = Eu[h(ui )].

This suggests, based on the results in Chapter 15, an alternative method of maximizing
the log-likelihood for the random effects model. A sample of person-specific draws from
the population ui can be generated with a random number generator. For the Butler
and Moffitt model with normally distributed ui , the simulated log-likelihood function is

ln LSimulated =
n∑

i=1

ln

{
1
R

R∑
r=1

[
Ti∏

t=1

F [(2yik − 1)(x′
itβ + σuuir )]

]}
. (17-43)

This function is maximized with respect β and σu. Note that in the preceding, as in the
quadrature approximated log-likelihood, the model can be based on a probit, logit, or
any other functional form desired.

We have examined two approaches to estimation of a probit model with random ef-
fects. GMM estimation is another possibility. Avery, Hansen, and Hotz (1983), Bertschek
and Lechner (1998), and Inkmann (2000) examine this approach; the latter two offer
some comparison with the quadrature and simulation-based estimators considered here.
(Our application in Example 17.23 will use the Bertschek and Lechner data.)
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17.4.3 FIXED EFFECTS MODELS

The fixed effects model is

y∗
it = αi dit + x′

itβ + εit, i = 1, . . . , n, t = 1, . . . , Ti ,
(17-44)

yit = 1 if y∗
it > 0, and 0 otherwise,

where dit is a dummy variable that takes the value one for individual i and zero otherwise.
For convenience, we have redefined xit to be the nonconstant variables in the model. The
parameters to be estimated are the K elements of β and the n individual constant terms.
Before we consider the several virtues and shortcomings of this model, we consider
the practical aspects of estimation of what are possibly a huge number of parameters,
(n + K) − n is not limited here, and could be in the thousands in a typical application.
The log-likelihood function for the fixed effects model is

ln L =
n∑

i=1

Ti∑
t=1

ln P(yit | αi + x′
itβ), (17-45)

where P(.) is the probability of the observed outcome, for example, �[qit(αi + x′
itβ)]

for the probit model or 	[qit(αi + x′
itβ)] for the logit model, where qit = 2yit − 1. What

follows can be extended to any index function model, but for the present, we’ll confine
our attention to symmetric distributions such as the normal and logistic, so that the
probability can be conveniently written as Prob(Yit = yit | xit) = P[qit(αi + x′

itβ)]. It will
be convenient to let zit = αi + x′

itβ so Prob(Yit = yit | xit) = P(qitzit).
In our previous application of this model, in the linear regression case, we found

that estimation of the parameters was made possible by a transformation of the data
to deviations from group means which eliminated the person specific constants from
the estimator. (See Section 11.4.1.) Save for the special case discussed later, that will
not be possible here, so that if one desires to estimate the parameters of this model,
it will be necessary actually to compute the possibly huge number of constant terms
at the same time. This has been widely viewed as a practical obstacle to estimation of
this model because of the need to invert a potentially large second derivatives matrix,
but this is a misconception. [See, for example, Maddala (1987), p. 317.] The method
for estimation of nonlinear fixed effects models such as the probit and logit models is
detailed in Section 14.9.6.d.

The problems with the fixed effects estimator are statistical, not practical. The
estimator relies on Ti increasing for the constant terms to be consistent—in essence,
each αi is estimated with Ti observations. But, in this setting, not only is Ti fixed, it is
likely to be quite small. As such, the estimators of the constant terms are not consistent
(not because they converge to something other than what they are trying to estimate, but
because they do not converge at all). The estimator of β is a function of the estimators
of α, which means that the MLE of β is not consistent either. This is the incidental
parameters problem. [See Neyman and Scott (1948) and Lancaster (2000).] There is, as
well, a small sample (small Ti ) bias in the estimators. How serious this bias is remains
a question in the literature. Two pieces of received wisdom are Hsiao’s (1986) results
for a binary logit model [with additional results in Abrevaya (1997)] and Heckman and
MaCurdy’s (1980) results for the probit model. Hsiao found that for Ti = 2, the bias in
the MLE of β is 100 percent, which is extremely pessimistic. Heckman and MaCurdy
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found in a Monte Carlo study that in samples of n = 100 and T = 8, the bias appeared to
be on the order of 10 percent, which is substantive, but certainly less severe than Hsiao’s
results suggest. No other theoretical results have been shown for other models, although
in very few cases, it can be shown that there is no incidental parameters problem. (The
Poisson model mentioned in Section 14.9.6.d is one of these special cases.) The fixed
effects approach does have some appeal in that it does not require an assumption of
orthogonality of the independent variables and the heterogeneity. An ongoing pursuit
in the literature is concerned with the severity of the tradeoff of this virtue against the
incidental parameters problem. Some commentary on this issue appears in Arellano
(2001). Results of our own investigation appear in Section 15.5.2 and Greene (2004).

17.4.4 A CONDITIONAL FIXED EFFECTS ESTIMATOR

Why does the incidental parameters problem arise here and not in the linear regression
model?29 Recall that estimation in the regression model was based on the deviations
from group means, not the original data as it is here. The result we exploited there
was that although f (yit | Xi ) is a function of αi , f (yit | Xi , ȳi ) is not a function of αi ,
and we used the latter in estimation of β. In that setting, ȳi is a minimal sufficient
statistic for αi . Sufficient statistics are available for a few distributions that we will
examine, but not for the probit model. They are available for the logit model, as we now
examine.

A fixed effects binary logit model is

Prob(yit = 1 | xit) = eαi +x′
itβ

1 + eαi +x′
itβ

.

The unconditional likelihood for the nT independent observations is

L =
∏

i

∏
t

(Fit)
yit(1 − Fit)

1−yit .

Chamberlain (1980) [following Rasch (1960) and Andersen (1970)] observed that the
conditional likelihood function,

Lc =
n∏

i=1

Prob

(
Yi1 = yi1, Yi2 = yi2, . . . , YiTi = yiTi

∣∣∣∣∣
Ti∑

t=1

yit

)
,

is free of the incidental parameters, αi . The joint likelihood for each set of Ti observa-
tions conditioned on the number of ones in the set is

Prob

(
Yi1 = yi1, Yi2 = yi2, . . . , YiTi = yiTi

∣∣∣∣∣
Ti∑

t=1

yit, data

)

=
exp

(∑Ti
t=1 yitx′

itβ
)

∑
�t dit=Si

exp
(∑Ti

t=1 ditx′
itβ

) . (17-46)

29The incidental parameters problem does show up in ML estimation of the FE linear model, where Neyman
and Scott (1948) discovered it, in estimation of σ 2

ε . The MLE of σ 2
ε is e′e/nT, which converges to [(T −

1)/T]σ 2
ε < σ 2

ε .
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The function in the denominator is summed over the set of all
(Ti

Si

)
different sequences

of Ti zeros and ones that have the same sum as Si = ∑Ti
t=1 yit.30

Consider the example of Ti = 2. The unconditional likelihood is

L =
∏

i

Prob(Yi1 = yi1)Prob(Yi2 = yi2).

For each pair of observations, we have these possibilities:

1. yi1 = 0 and yi2 = 0. Prob(0, 0 | sum = 0) = 1.
2. yi1 = 1 and yi2 = 1. Prob(1, 1 | sum = 2) = 1.

The ith term in Lc for either of these is just one, so they contribute nothing to the con-
ditional likelihood function.31 When we take logs, these terms (and these observations)
will drop out. But suppose that yi1 = 0 and yi2 = 1. Then

3. Prob(0, 1 | sum = 1) = Prob(0, 1 and sum = 1)

Prob(sum = 1)
= Prob(0, 1)

Prob(0, 1) + Prob(1, 0)
.

Therefore, for this pair of observations, the conditional probability is

1

1 + eαi +x′
i1β

eαi +x′
i2β

1 + eαi +x′
i2β

1

1 + eαi +x′
i1β

eαi +x′
i2β

1 + eαi +x′
i2β

+ eαi +x′
i1β

1 + eαi +x′
i1β

1

1 + eαi +x′
i2β

= ex′
i2β

ex′
i1β + ex′

i2β
.

By conditioning on the sum of the two observations, we have removed the heterogeneity.
Therefore, we can construct the conditional likelihood function as the product of these
terms for the pairs of observations for which the two observations are (0, 1). Pairs of
observations with one and zero are included analogously. The product of the terms such
as the preceding, for those observation sets for which the sum is not zero or Ti , constitutes
the conditional likelihood. Maximization of the resulting function is straightforward and
may be done by conventional methods.

As in the linear regression model, it is of some interest to test whether there is
indeed heterogeneity. With homogeneity (αi = α), there is no unusual problem, and
the model can be estimated, as usual, as a logit model. It is not possible to test the
hypothesis using the likelihood ratio test, however, because the two likelihoods are
not comparable. (The conditional likelihood is based on a restricted data set.) None
of the usual tests of restrictions can be used because the individual effects are never
actually estimated.32 Hausman’s (1978) specification test is a natural one to use here,

30The enumeration of all these computations stands to be quite a burden—see Arellano (2000, p. 47) or
Baltagi (2005, p. 235). In fact, using a recursion suggested by Krailo and Pike (1984), the computation even
with Ti up to 100 is routine.
31In the probit model when we encounter this situation, the individual constant term cannot be estimated
and the group is removed from the sample. The same effect is at work here.
32This produces a difficulty for this estimator that is shared by the semiparametric estimators discussed in
the next section. Because the fixed effects are not estimated, it is not possible to compute probabilities or
marginal effects with these estimated coefficients, and it is a bit ambiguous what one can do with the results of
the computations. The brute force estimator that actually computes the individual effects might be preferable.
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however. Under the null hypothesis of homogeneity, both Chamberlain’s conditional
maximum likelihood estimator (CMLE) and the usual maximum likelihood estima-
tor are consistent, but Chamberlain’s is inefficient. (It fails to use the information that
αi = α, and it may not use all the data.) Under the alternative hypothesis, the un-
conditional maximum likelihood estimator is inconsistent,33 whereas Chamberlain’s
estimator is consistent and efficient. The Hausman test can be based on the chi-squared
statistic

χ2 = (β̂CML − β̂ML)′(Var[CML] − Var[ML])−1(β̂CML − β̂ML). (17-47)

The estimated covariance matrices are those computed for the two maximum likelihood
estimators. For the unconditional maximum likelihood estimator, the row and column
corresponding to the constant term are dropped. A large value will cast doubt on the
hypothesis of homogeneity. (There are K degrees of freedom for the test.) It is possible
that the covariance matrix for the maximum likelihood estimator will be larger than
that for the conditional maximum likelihood estimator. If so, then the difference matrix
in brackets is assumed to be a zero matrix, and the chi-squared statistic is therefore
zero.

Example 17.11 Binary Choice Models for Panel Data
In Example 17.4, we fit a pooled binary Iogit model y = 1(DocVis > 0) using the German
health care utilization data examined in appendix Table F7.1. The model is

Prob(DocVisit > 0) = 	(β1 + β2 Ageit + β3 Incomeit + β4 Kidsit

+ β5 Educationit + β6 Marriedit) .

No account of the panel nature of the data set was taken in that exercise. The sample con-
tains a total of 27,326 observations on 7,293 families with Ti dispersed from one to seven.
Table 17.8 lists estimates of parameter estimates and estimated standard errors for pro-
bit and Iogit random and fixed effects models. There is a surprising amount of variation
across the estimators. The coefficients are in bold to facilitate reading the table. It is gen-
erally difficult to compare across the estimators. The three estimators would be expected
to produce very different estimates in any of the three specifications—recall, for example,
the pooled estimator is inconsistent in either the fixed or random effects cases. The Iogit
results include two fixed effects estimators. The line market “U” is the unconditional (in-
consistent) estimator. The one marked “C” is Chamberlain’s consistent estimator. Note for
all three fixed effects estimators, it is necessary to drop from the sample any groups that
have DocVisit equal to zero or one for every period. There were 3,046 such groups, which
is about 42 percent of the sample. We also computed the probit random effects model in
two ways, first by using the Butler and Moffitt method, then by using maximum simulated
likelihood estimation. In this case, the estimators are very similar, as might be expected.
The estimated correlation coefficient, ρ, is computed as σ 2

u /(σ 2
ε + σ 2

u ) . For the probit model,
σ 2

ε = 1. The MSL estimator computes su = 0.9088376, from which we obtained ρ. The
estimated partial effects for the models are shown in Table 17.9. The average of the fixed
effects constant terms is used to obtain a constant term for the fixed effects case. Once again
there is a considerable amount of variation across the different estimators. On average, the
fixed effects models tend to produce much larger values than the pooled or random effects
models.

33Hsiao (2003) derives the result explicitly for some particular cases.
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TABLE 17.9 Estimated Partial Effects for Panel Data Binary Choice Models

Model Age Income Kids Education Married

Logit, Pa 0.0048133 −0.043213 −0.053598 −0.010596 0.019936
Logit: RE,Qb 0.0064213 0.0035835 −0.035448 −0.010397 0.0041049
Logit: F,Uc 0.024871 −0.014477 −0.020991 −0.027711 −0.013609
Logit: F,Cd 0.0072991 −0.0043387 −0.0066967 −0.0078206 −0.0044842
Probit, Pa 0.0048374 −0.043883 −0.053414 −0.010597 0.019783
Probit RE.Qb 0.0056049 −0.0008836 −0.042792 −0.0093756 0.0045426
Probit:RE,Se 0.0071455 −0.0010582 −0.054655 −0.011917 0.0059878
Probit: F,Uc 0.023958 −0.013152 −0.018495 −0.027659 −0.012557

aPooled estimator
bButler and Moffitt estimator
cUnconditional fixed effects estimator
dConditional fixed effects estimator
eMaximum simulated likelihood estimator

Example 17.12 Fixed Effects Logit Models: Magazine Prices Revisited
The fixed effects model does have some appeal, but the incidental parameters problem is
a significant shortcoming of the unconditional probit and logit estimators. The conditional
MLE for the fixed effects logit model is a fairly common approach. A widely cited application
of the model is Cecchetti’s (1986) analysis of changes in newsstand prices of magazines.
Cecchetti’s model was

Prob(Price change in year i of magazine t) = 	(α j + x′
itβ) ,

where the variables in xit are (1) time since last price change, (2) inflation since last change,
(3) previous fixed price change, (4) current inflation, (5) industry sales growth, and (6) sales
volatility. The fixed effect in the model is indexed “ j ” rather than “i ” as it is defined as a three-
year interval for magazine i . Thus, a magazine that had been on the newstands for nine years
would have three constants, not just one. In addition to estimating several specifications of
the price change model, Cecchetti used the Hausman test in (17-47) to test for the existence
of the common effects. Some of Cecchetti’s results appear in Table 17.10.

Willis (2006) argued that Cecchetti’s estimates were inconsistent and the Hausman test is
invalid because right-hand-side variables (1), (2), and (6) are all functions of lagged dependent
variables. This state dependence invalidates the use of the sum of the observations for
the group as a sufficient statistic in the Chamberlain estimator and the Hausman tests. He
proposes, instead, a method suggested by Heckman and Singer (1984b) to incorporate the
unobserved heterogeneity in the unconditional likelihood function. The Heckman and Singer
model can be formulated as a latent class model (see Sections 14.10 and 17.4.7) in which
the classes are defined by different constant terms—the remaining parameters in the model

TABLE 17.10 Models for Magazine Price Changes (standard errors in
parentheses)

Unconditional Conditional Conditional Heckman
Pooled FE FE Cecchetti FE Willis and Singer

β1 −1.10 (0.03) −0.07 (0.03) 1.12 (3.66) 1.02 (0.28) −0.09 (0.04)
β2 6.93 (1.12) 8.83 (1.25) 11.57 (1.68) 19.20 (7.51) 8.23 (1.53)
β5 −0.36 (0.98) −1.14 (1.06) 5.85 (1.76) 7.60 (3.46) −0.13 (1.14)
Constant 1 −1.90 (0.14) −1.94 (0.20)
Constant 2 −29.15 (1.1e11)
ln L −500.45 −473.18 −82.91 −83.72 −499.65
Sample size 1026 1026 543 1026
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are constrained to be equal across classes. Willis fit the Heckman and Singer model with
two classes to a restricted version of Cecchetti’s model using variables (1), (2), and (5). The
results in Table 17.10 show some of the results from Willis’s Table I. (Willis reports that he
could not reproduce Cecchetti’s results—the ones in Cecchetti’s second column would be
the counterparts—because of some missing values. In fact, Willis’s estimates are quite far
from Cecchetti’s results, so it will be difficult to compare them. Both are reported here.)

The two “mass points” reported by Willis are shown in Table 17.10. He reports that these
two values (−1.94 and −29.15) correspond to class probabilities of 0.88 and 0.12, though it is
difficult to make the translation based on the reported values. He does note that the change
in the log-likelihood in going from one mass point (pooled logit model) to two is marginal,
only from −500.45 to −499.65. There is another anomaly in the results that is consistent
with this finding. The reported standard error for the second “mass point” is 1.1 × 1011, or
essentially +∞. The finding is consistent with overfitting the latent class model. The results
suggest that the better model is a one-class (pooled) model.

17.4.5 MUNDLAK’S APPROACH, VARIABLE ADDITION,
AND BIAS REDUCTION

Thus far, both the fixed effects (FE) and the random effects (RE) specifications present
problems for modeling binary choice with panel data. The MLE of the FE model is
inconsistent even when the model is properly specified—this is the incidental parameters
problem. (And, like the linear model, the FE probit and logit models do not allow
time-invariant regressors.) The random effects specification requires a strong, often
unreasonable, assumption that the effects and the regressors are uncorrelated. Of the
two, the FE model is the more appealing, though with modern longitudinal data sets
with many demographics, the problem of time-invariant variables would seem to be
compelling. This would seem to recommend the conditional estimator in Section 17.4.4,
save for yet another complication. With no estimates of the constant terms, neither
probabilities nor partial effects can be computed with the results. We are left making
inferences about ratios of coefficient. Two approaches have been suggested for finding
a middle ground: Mundlak’s (1978) approach that involves projecting the effects on the
group means of the time-varying variables and recent developments such as Fernandez-
Val’s (2009) approach that involves correcting the bias in the FE MLE.

The Mundlak (1978) [and Chamberlain (1984) and Wooldridge, e.g., (2002a)] ap-
proach augments (17-44) as follows:

y∗
it = αi + x′

itβ + εit

Prob(yit = 1 | xit) = F(αi + x′
itβ)

αi = α + x̄′
iδ + ui ,

where we have used x̄i generically for the group means of the time varying variables in
xit. The reduced form of the model is

Prob(yit = 1 | xit) = F(α + x̄′
iδ + x′

itβ + ui ).

(Wooldridge and Chamberlain also suggest using all years of xit rather than the group
means. This raises a problem in unbalanced panels, however. We will ignore this pos-
sibility.) The projection of αi on x̄i produces a random effects formulation. As in the
linear model (see Section 11.5.6), it also suggests a means of testing for fixed vs. random
effects. Since δ = 0 produces the pure random effects model, a joint Wald test of the
null hypothesis that δ equals zero can be used.
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TABLE 17.11 Estimated Random Effects Models

Constant Age Income Kids Education Married

Random 0.03411 0.02014 −0.00318 −0.15379 −0.03369 0.01633
Effects (0.09635) (0.00132) (0.06667) (0.02704) (0.00629) (0.03135)
Augmented 0.37485 0.05035 −0.03057 −0.04202 −0.05449 −0.02645
Model (0.10501) (0.00357) (0.09318) (0.03751) (0.03307) (0.05180)

−0.03659 −0.35065 −0.22509 0.02387 0.14668
Means (0.00384) (0.13984) (0.05499) (0.03374) (0.06607)

Example 17.13 Panel Data Random Effects Estimators
Example 17.11 presents several estimators of panel data estimators for the probit and logit
models. Pooled, random effects, and fixed effects estimates are given for the probit model

Prob(DocVisit > 0) = �(β1 + β2 Ageit + β3 Incomeit + β4 Kidsit

+β5 Educationit + β6 Marriedit) .

We continue that analysis here by considering Mundlak’s approach to the common effects
model. Table 17.11 presents the random effects model from earlier, and the augmented
estimator that contains the group means of the variables, all of which are time varying.
The addition of the group means to the regression brings large changes to the estimates
of the parameters, which might suggest the appropriateness of the fixed effects model. A
formal test is carried by computing a Wald statistic for the null hypothesis that the last five
coefficients in the augmented model equal zero. The chi-squared statistic equals 113.282
with five degrees of freedom. The critical value from the chi-squared table for 95 percent
significance is 11.07, so the hypothesis that δ equals zero, that is, the hypothesis of the
random effects model (restrictions), is rejected. The two log likelihoods are −16, 273.96
for the REM and −16, 222.06 for the augmented REM. The LR statistic would be twice the
difference, or 103.8. This produces the same conclusion. The FEM appears to be the preferred
model.

A series of recent studies has sought to maintain the fixed effects specification while
correcting the bias due to the incidental parameters problem. There are two broad
approaches. Hahn and Kuersteiner (2004), Hahn and Newey (2005), and Fernandez-
Val (2009) have developed an approximate, “large T” result for plim(β̂FE,MLE − β)

that produces a direct correction to the estimator, itself. Fernandez-Val (2009) develops
corrections for the estimated constant terms as well. Arellano and Hahn (2006, 2007)
propose a modification of the log-likelihood function with, in turn, different first-order
estimation equations, that produces an approximately unbiased estimator of β. In a
similar fashion to the second of these approaches, Carro (2007) modifies the first-order
conditions (estimating equations) from the original log-likelihood function, once again
to produce an approximately unbiased estimator of β. (In general, given the overall
approach of using a large T approximation, the payoff to these estimators is to reduce
the bias of the FE,MLE from O(1/T) to O(1/T2), which is a considerable reduction.)
These estimators are not yet in widespread use. The received evidence suggests that
in the simple case we are considering here, the incidental parameters problem is a
secondary concern when T reaches say 10 or so. For some modern public use data
sets, such as the BHPS or GSOEP which are beyond their 15th wave, the incidental
parameters problem may not be too severe. However, most of the studies mentioned
above are concerned with dynamic models (see Section 17.4.6), where the problem is
possibly more severe than in the static case. Research in this area is ongoing.
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17.4.6 DYNAMIC BINARY CHOICE MODELS

A random or fixed effects model that explicitly allows for lagged effects would be

yit = 1(x′
itβ + αi + γ yi,t−1 + εit > 0).

Lagged effects, or persistence, in a binary choice setting can arise from three sources,
serial correlation in εit, the heterogeneity, αi , or true state dependence through the
term γ yi,t−1. Chiappori (1998) [and see Arellano (2001)] suggests an application to
the French automobile insurance market in which the incentives built into the pricing
system are such that having an accident in one period should lower the probability of
having one in the next (state dependence), but some drivers remain more likely to have
accidents than others in every period, which would reflect the heterogeneity instead.
State dependence is likely to be particularly important in the typical panel which has
only a few observations for each individual. Heckman (1981a) examined this issue at
length. Among his findings were that the somewhat muted small sample bias in fixed
effects models with T = 8 was made much worse when there was state dependence.
A related problem is that with a relatively short panel, the initial conditions, yi0, have
a crucial impact on the entire path of outcomes. Modeling dynamic effects and initial
conditions in binary choice models is more complex than in the linear model, and by
comparison there are relatively fewer firm results in the applied literature.34

The correlation between αi and yi,t−1 in the dynamic binary choice model makes
yi,t−1 endogenous. Thus, the estimators we have examined thus far will not be consis-
tent. Two familiar alternative approaches that have appeared in recent applications are
due to Heckman (1981) and Wooldridge (2005), both of which build on the random
effects specification. Heckman’s approach provides a separate equation for the initial
condition,

Prob(yi1 = 1 | xi1, zi , αi ) = �(x′
i1δ + z′

iτ + θαi )

Prob(yit = 1 | xit, yi,t−1, αi ) = �(x′
itβ + γ yi,t−1 + αi ), t = 2, . . . , Ti ,

where zi is a set of “instruments” observed at the first period that are not contained in
xit. The conditional log-likelihood is

ln L| α =
n∑

i=1

ln

{
� [(2yi1 − 1)(x′

i1δ + z′
iτ + θαi )]

Ti∏
t=2

� [(2yit − 1)(x′
i1β + γ yi,t−1 + αi )]

}

=
n∑

i=1

ln Li | αi .

We now adopt the random effects approach and further assume that αi is normally
distributed with mean zero and variance σ 2

α . The random effects log-likelihood function
can be maximized with respect to (δ, τ , θ, β, γ, σα) using either the Butler and Moffitt

34A survey of some of these results is given by Hsiao (2003). Most of Hsiao (2003) is devoted to the linear
regression model. A number of studies specifically focused on discrete choice models and panel data have
appeared recently, including Beck, Epstein, Jackman, and O’Halloran (2001), Arellano (2001) and Greene
(2001). Vella and Verbeek (1998) provide an application to the joint determination of wages and union
membership. Other important references are Aguirregabiria and Mira (2010), Carro (2007), and Fernandez–
Val (2009). Stewart (2006) and Arulampalam and Stewart (2007) provide several results for practitioners.
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quadrature method or the maximum simulated likelihood method described in Section
17.4.2. Stewart and Arulampalam (2007) suggest a useful shortcut for formulating the
Heckman model. Let Dit = 1 in period 1 and 0 in every other period and let Cit = 1− Dit.
Then, the two parts may be combined in

ln L| α=
n∑

i=1

ln
Ti∏

t=1

{
�

[
(2yit − 1)

〈
Cit(x′

i1β + γ yi,t−1) + Dit(x′
itδ + z′

iτ ) + (1 + λDit)αi
〉]}

.

In this form, the model can be viewed as a random parameters (random constant term)
model in which there is heteroscedasticity in the random part of the constant term.

Wooldridge’s approach builds on the Mundlak device of the previous section. Start-
ing from the same point, he suggests a model for the random effect conditioned on the
initial value. Thus,

αi | yi1, zi ∼ N
[
α0 + ηyi1 + z′

iτ , σ 2
α

]
.

Assembling the parts, Wooldridge’s model is a bit simpler than Heckman’s;

Prob(yit = 1 | xit, yi1, ui )

= �[(2yit − 1)(α0 + x′
itβ + γ yi,t−1 + ηyi1 + z′

iτ + ui )], t = 2, . . . , Ti .

Much of the contemporary literature has focused on methods of avoiding the strong
parametric assumptions of the probit and logit models. Manski (1987) and Honore and
Kyriazidou (2000) show that Manski’s (1986) maximum score estimator can be applied to
the differences of unequal pairs of observations in a two-period panel with fixed effects.
However, the limitations of the maximum score estimator have motivated research on
other approaches. An extension of lagged effects to a parametric model is Chamberlain
(1985), Jones and Landwehr (1988), and Magnac (1997), who added state dependence to
Chamberlain’s fixed effects logit estimator. Unfortunately, once the identification issues
are settled, the model is only operational if there are no other exogenous variables in
it, which limits its usefulness for practical application. Lewbel (2000) has extended his
fixed effects estimator to dynamic models as well.

Dong and Lewbel (2010) have extended Lewbel’s “special regressor” method to
dynamic binary choice models and have devised an estimator based on an IV linear
regression. Honore and Kyriazidou (2000) have combined the logic of the conditional
logit model and Manski’s maximum score estimator. They specify

Prob(yi0 = 1 | xi , αi ) = p0(xi , αi ) where xi = (xi1, xi2, . . . , xiT),

Prob(yit = 1 | xi , αi , yi0, yi1, . . . , yi,t−1) = F(x′
itβ + αi + γ yi,t−1) t = 1, . . . , T.

The analysis assumes a single regressor and focuses on the case of T = 3. The resulting
estimator resembles Chamberlain’s but relies on observations for which xit = xi,t−1,
which rules out direct time effects as well as, for practical purposes, any continuous
variable. The restriction to a single regressor limits the generality of the technique as
well. The need for observations with equal values of xit is a considerable restriction, and
the authors propose a kernel density estimator for the difference, xit − xi,t−1, instead
which does relax that restriction a bit. The end result is an estimator that converges
(they conjecture) but to a nonnormal distribution and at a rate slower than n−1/3.

Semiparametric estimators for dynamic models at this point in the development are
still primarily of theoretical interest. Models that extend the parametric formulations to
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include state dependence have a much longer history, including Heckman (1978, 1981a,
1981b), Heckman and MaCurdy (1980), Jakubson (1988), Keane (1993), and Beck et al.
(2001) to name a few.35 In general, even without heterogeneity, dynamic models ul-
timately involve modeling the joint outcome (yi0, . . . , yiT), which necessitates some
treatment involving multivariate integration. Example 17.14 describes an application.
Stewart (2006) provides another.

Example 17.14 An Intertemporal Labor Force Participation Equation
Hyslop (1999) presents a model of the labor force participation of married women. The focus
of the study is the high degree of persistence in the participation decision. Data used in the
study were the years 1979–1985 of the Panel Study of Income Dynamics. A sample of 1,812
continuously married couples were studied. Exogenous variables that appeared in the model
were measures of permanent and transitory income and fertility captured in yearly counts of
the number of children from 0–2, 3–5, and 6–17 years old. Hyslop’s formulation, in general
terms, is

(initial condition) yi 0 = 1(x′
i 0β0 + vi 0 > 0) ,

(dynamic model) yit = 1(x′
itβ + γ yi ,t−1 + αi + vit > 0)

(heterogeneity correlated with participation) αi = z′
i δ + ηi ,

(stochastic specification)

ηi | Xi ∼ N
[
0, σ 2

η

]
,

vi 0 | Xi ∼ N
[
0, σ 2

0

]
,

wit | Xi ∼ N
[
0, σ 2

w

]
,

vit = ρvi ,t−1 + wit, σ 2
η + σ 2

w = 1.

Corr[vi 0, vit] = ρt , t = 1, . . . , T − 1.

The presence of the autocorrelation and state dependence in the model invalidate the simple
maximum likelihood procedures we examined earlier. The appropriate likelihood function is
constructed by formulating the probabilities as

Prob( yi 0, yi 1, . . .) = Prob( yi 0) × Prob( yi 1 | yi 0) × · · · × Prob( yi T | yi ,T−1) .

This still involves a T = 7 order normal integration, which is approximated in the study using
a simulator similar to the GHK simulator discussed in 15.6.2.b. Among Hyslop’s results are a
comparison of the model fit by the simulator for the multivariate normal probabilities with the
same model fit using the maximum simulated likelihood technique described in Section 15.6.

17.4.7 A SEMIPARAMETRIC MODEL FOR INDIVIDUAL
HETEROGENEITY

The panel data analysis considered thus far has focused on modeling heterogeneity
with the fixed and random effects specifications. Both assume that the heterogeneity is
continuously distributed among individuals. The random effects model is fully paramet-
ric, requiring a full specification of the likelihood for estimation. The fixed effects model

35Beck et al. (2001) is a bit different from the others mentioned in that in their study of “state failure,” they
observe a large sample of countries (147) observed over a fairly large number of years, 40. As such, they are
able to formulate their models in a way that makes the asymptotics with respect to T appropriate. They can
analyze the data essentially in a time-series framework. Sepanski (2000) is another application that combines
state dependence and the random coefficient specification of Akin, Guilkey, and Sickles (1979).
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is essentially semiparametric. It requires no specific distributional assumption, however,
it does require that the realizations of the latent heterogeneity be treated as parameters,
either estimated in the unconditional fixed effects estimator or conditioned out of the
likelihood function when possible. As noted in the preceding example, Heckman and
Singer’s (1984b) model provides a less stringent model specification based on a discrete
distribution of the latent heterogeneity. A straightforward method of implementing
their model is to cast it as a latent class model in which the classes are distinguished
by different constant terms and the associated probabilities. The class probabilities are
treated as parameters to be estimated with the model parameters.

Example 17.15 Semiparametric Models of Heterogeneity
We have extended the random effects and fixed effects logit models in Example 17.11 by
fitting the Heckman and Singer (1984b) model. Table 17.12 shows the specification search
and the results under different specifications. The first column of results shows the estimated
fixed effects model from Example 17.11. The conditional estimates are shown in parentheses.
Of the 7,293 groups in the sample, 3,056 are not used in estimation of the fixed effects models
because the sum of Doctorit is either 0 or Ti for the group. The mean and standard deviation
of the estimated underlying heterogeneity distribution are computed using the estimates of
αi for the remaining 4,237 groups. The remaining five columns in the table show the results
for different numbers of latent classes in the Heckman and Singer model. The listed constant
terms are the “mass points” of the underlying distributions. The associated class probabilities
are shown in parentheses under them. The mean and standard deviation are derived from the

TABLE 17.12 Estimated Heterogeneity Models

Number of Classes

Fixed Effect 1 2 3 4 5

β1 0.10475 0.020708 0.030325 0.033684 0.034083 0.034159
(0.084760)

β2 −0.060973 −0.18592 0.025550 −0.0058013 −0.0063516 −0.013627
(−0.050383)

β3 −0.088407 −0.22947 −0.24708 −0.26388 −0.26590 −0.26626
(−0.077764)

β4 −0.11671 −0.045588 −0.050924 −0.058022 −0.059751 −0.059176
(−0.090816)

β5 −0.057318 0.085293 0.042974 0.037944 0.029227 0.030699
(−0.52072)

α1 −2.62334 0.25111 0.91764 1.71669 1.94536 2.76670
(1.00000) (0.62681) (0.34838) (0.29309) (0.11633)

α2 −1.47800 −2.23491 −1.76371 1.18323
(0.37319) (0.18412) (0.21714) (0.26468)

α3 −0.28133 −0.036739 −1.96750
(0.46749) (0.46341) (0.19573)

α4 −4.03970 −0.25588
(0.026360) (0.40930)

α5 −6.48191
(0.013960)

Mean −2.62334 0.00000 0.023613 0.055059 0.063685 0.054705
Std. Dev. 3.13415 0.00000 1.158655 1.40723 1.48707 1.62143
ln L −9458.638 −17673.10 −16353.14 −16278.56 −16276.07 −16275.85

(−6299.02)
AIC 1.00349 1.29394 1.19748 1.19217 1.19213 1.19226
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2- to 5-point discrete distributions shown. It is noteworthy that the mean of the distribution
is relatively stable, but the standard deviation rises monotonically. The search for the best
model would be based on the AIC. As noted in Section 14.10, using a likelihood ratio test in
this context is dubious, as the number of degrees of freedom is ambiguous. Based on the
AIC, the four-class model is the preferred specification.

17.4.8 MODELING PARAMETER HETEROGENEITY

In Section 11.11, we examined specifications that extend the underlying heterogeneity
to all the parameters of the model. We have considered two approaches. The random
parameters, or mixed models discussed in Chapter 15 allow parameters to be distributed
continuously across individuals. The latent class model in Section 14.10 specifies a dis-
crete distribution instead. (The Heckman and Singer model in the previous section
applies this method to the constant term.) Most of the focus to this point, save for
Example 14.17, has been on linear models.

The random effects model can be cast as a model with a random constant term;

y∗
it = αi + x′

itβ + εit, i = 1, . . . , n, t = 1, . . . , Ti ,

yit = 1 if y∗
it > 0, and 0 otherwise,

where αi = α+σuui . This is simply a reinterpretation of the model we just analyzed. We
might, however, now extend this formulation to the full parameter vector. The resulting
structure is

y∗
it = x′

itβ i + εit, i = 1, . . . , n, t = 1, . . . , Ti ,

yit = 1 if y∗
it > 0, and 0 otherwise,

where β i = β + �ui where � is a nonnegative definite diagonal matrix—some of its
diagonal elements could be zero for nonrandom parameters. The method of estimation
is maximum simulated likelihood. The simulated log-likelihood is now

ln LSimulated =
n∑

i=1

ln

{
1
R

R∑
r=1

[
Ti∏

t=1

F[qit(x′
it(β + �uir ))]

]}
.

The simulation now involves R draws from the multivariate distribution of u. Because
the draws are uncorrelated—� is diagonal—this is essentially the same estimation prob-
lem as the random effects model considered previously. This model is estimated in
Example 17.16. Example 17.16 also presents a similar model that assumes that the
distribution of β i is discrete rather than continuous.

Example 17.16 Parameter Heterogeneity in a Binary Choice Model
We have extended the logit model for doctor visits from Example 17.15 to allow the param-
eters to vary randomly across individuals. The random parameters logit model is

Prob (Doctorit = 1) = 	(β1i + β2i Ageit + β3i Incomeit + β4i Kidsit + β5i Educit + β6i Marriedit) ,

where the two models for the parameter variation we have employed are:

Continuous: βki = βk + σkuki , uki ∼ N[0, 1], k = 1, . . . , 6, Cov[uki, umi] = 0,
Discrete: βki = β1

k with probability π1,
β2

k with probability π2,
β3

k with probability π3.



Greene-2140242 book January 19, 2011 21:21

774 PART IV ✦ Cross Sections, Panel Data, and Microeconometrics

TABLE 17.13 Estimated Heterogeneous Parameter Models

Pooled Random Parameters Latent Class

Variable Estimate: β Estimate: β Estimate: σ Estimate: β Estimate: β Estimate: β

Constant 0.25111 −0.034964 0.81651 0.96605 −0.18579 −1.52595
(0.091135) (0.075533) (0.016542) (0.43757) (0.23907) (0.43498)

Age 0.020709 0.026306 0.025330 0.049058 0.032248 0.019981
(0.0012852) (0.0011038) (0.0004226) (0.0069455) (0.0031462) (0.0062550)

Income −0.18592 −0.0043649 0.10737 −0.27917 −0.068633 0.45487
(0.075064) (0.062445) (0.038276) (0.37149) (0.16748) (0.31153)

Kids −0.22947 −0.17461 0.55520 −0.28385 −0.28336 −0.11708
(0.029537) (0.024522) (0.023866) (0.14279) (0.066404) (0.12363)

Education −0.045588 −0.040510 0.037915 −0.025301 −0.057335 −0.09385
(0.0056465) (0.0047520) (0.0013416) (0.027768) (0.012465) (0.027965)

Married 0.085293 0.014618 0.070696 −0.10875 0.025331 0.23571
(0.033286) (0.027417) (0.017362) (0.17228) (0.075929) (0.14369)

Class 1.00000 1.00000 0.34833 0.46181 0.18986
Prob. (0.00000) (0.00000) (0.038495) (0.028062) (0.022335)
ln L −17673.10 −16271.72 −16265.59

We have chosen a three-class latent class model for the illustration. In an application, one
might undertake a systematic search, such as in Example 17.15, to find a preferred speci-
fication. Table 17.13 presents the fixed parameter (pooled) logit model and the two random
parameters versions. (There are infinite variations on these specifications that one might
explore—see Chapter 15 for discussion—we have shown only the simplest to illustrate the
models.36)

Figure 17.3 shows the implied distribution for the coefficient on age. For the continuous
distribution, we have simply plotted the normal density. For the discrete distribution, we first
obtained the mean (0.0358) and standard deviation (0.0107). Notice that the distribution is
tighter than the estimated continuous normal (mean, 0.026, standard deviation, 0.0253). To
suggest the variation of the parameter (purely for purpose of the display, because the distri-
bution is discrete), we placed the mass of the center interval, 0.462, between the midpoints of
the intervals between the center mass point and the two extremes. With a width of 0.0145 the
density is 0.461 / 0.0145 = 31.8. We used the same interval widths for the outer segments.
This range of variation covers about five standard deviations of the distribution.

17.4.9 NONRESPONSE, ATTRITION, AND INVERSE PROBABILITY
WEIGHTING

Missing observations is a common problem in the analysis of panel data. Nicoletti and
Peracchi (2005) suggest several reasons that, for example, panels become unbalanced:

• Demographic events such as death;
• Movement out of the scope of the survey, such as institutionalization or emigration;

36We have arrived (once again) at a point where the question of replicability arises. Nonreplicability is
an ongoing challenge in empirical work in economics. (See, for example, Example 17.12.) The problem is
particularly acute in analyses that involve simulation such as Monte Carlo studies and random parameter
models. In the interest of replicability, we note that the random parameter estimates in Table 17.14 were
computed with NLOGIT [Econometric Software (2007)] and are based on 50 Halton draws. We used the first
six sequences (prime numbers 2, 3, 5, 7, 11, 13) and discarded the first 10 draws in each sequence.
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• Refusal to respond at subsequent waves;
• Absence of the person at the address;
• Other types of noncontact.

The GSOEP that we (from Riphahn, Wambach, and Million (2003)) have used in many
examples in this text is one such data set. Jones, Koolman, and Rice (2006) (JKR)
list several other applications, including the British Household Panel Survey (BHPS),
the European Community Household Panel (ECHP), and the Panel Study of Income
Dynamics (PSID).

If observations are missing completely at random (MCAR, see Section 4.7.4) then
the problem of nonresponse can be ignored, though for estimation of dynamic mod-
els, either the analysis will have to be restricted to observations with uninterrupted
sequences of observations, or some very strong assumptions and interpolation methods
will have to be employed to fill the gaps. (See Section 4.7.4 for discussion of the termi-
nology and issues in handling missing data.) The problem for estimation arises when
observations are missing for reasons that are related to the outcome variable of interest.
Nonresponse bias and a related problem, attrition bias (individuals leave permanently
during the study) result when conventional estimators, such as least squares or the pro-
bit maximum likelihood estimator being used here, are applied to samples in which
observations are present or absent from the sample for reasons related to the outcome
variable. It is a form of sample selection bias, that we will examine further in Chapter 19.

Verbeek and Nijman (1992) have suggested a test for endogeneity of the sample
response pattern. (We will adopt JKR’s notation and terminology for this.) Let h denote
the outcome of interest and x denote the relevant set of covariates. Let R denote the
pattern of response. If nonresponse is (completely) random, then E[h | x, R] = E[h | x].
This suggests a variable addition test (neglecting other panel data effects); a pooled
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model that contains R in addition to x can provide the means for a simple test of
endogeneity. JKR (and Verbeek and Nijman) suggest using the number of waves at
which the individual is present as the measure of R. Thus, adding R to the pooled
model, we can use a simple t test for the hypothesis.

Devising an estimator given that (non)response is nonignorable requires a more
detailed understanding of the process generating the response pattern. The crucial
issue is whether the sample selection is based “on unobservables” or “on observables.”
Selection on unobservables results when, after conditioning on the relevant variables,
x and other information, z, the sampling mechanism is still nonrandom with respect to
the disturbances in the models. Selection on unobservables is at the heart of the sample
selectivity methodology pioneered by Heckman (1979) that we will study in Chapter 19.
(Some applications of the role of unobservables in biased estimation are discussed in
Chapter 8, where we examine sources of endogeneity in regression models.) If selection
is on observables and then conditioned on an appropriate specification involving the
observable information, (x,z), a consistent estimator of the model parameters will be
available by “purging” the estimator of the endogeneity of the sampling mechanism.

JKR adopt an inverse probability weighted (IPW) estimator devised by Robins,
Rotnitsky and Zhao (1995), Fitzgerald, Gottshalk, and Moffitt (1998), Moffitt, Fitzger-
ald and Gottshalk (1999), and Wooldridge (2002). The estimator is based on the general
MCAR assumption that P(R = 1 | h, x, z) = P(R = 1 | x, z). That is, the observable
covariates convey all the information that determines the response pattern—the prob-
ability of nonresponse does not vary systematically with the outcome variable once the
exogenous information is accounted for. Implementing this idea in an estimator would
require that x and z be observable when R = 0, that is, the exogenous data be avail-
able for the nonresponders. This will typically not be the case; in an unbalanced panel,
the entire observation is missing. Wooldridge (2002) proposed a somewhat stronger
assumption that makes estimation feasible: P(R = 1 | h, x, z) = P(R = 1 | z) where z is
a set of covariates available at wave 1 (entry to the study). To compute Wooldridge’s
IPW estimator, we will begin with the sample of all individuals who are present at wave
1 of the study. (In our Example 17.17, based on the GSOEP data, not all individuals
are present at the first wave.) At wave 1, (xi1, zi1) are observed for all individuals to be
studied; zi1 contains information on observables that are not included in the outcome
equation and that predict the response pattern at subsequent waves, including the re-
sponse variable at the first wave. At wave 1, then, P(Ri1 = 1 | xi1, zi1) = 1. Wooldridge
suggests using a probit model for P(Rit = 1 | xi1, zi1), t = 2, . . . , T for the remain-
ing waves to obtain predicted probabilities of response, p̂it. The IPW estimator then
maximizes the weighted log likelihood

ln LIPW =
n∑

i=1

T∑
t=1

Rit

p̂it
ln Lit.

Inference based on the weighted log-likelihood function can proceed as in Section 17.3.
A remaining detail concerns whether the use of the predicted probabilities in the
weighted log-likelihood function makes it necessary to correct the standard errors for
two-step estimation. The case here is not an application of the two-step estimators we
considered in Section 14.7, since the first step is not used to produce an estimated param-
eter vector in the second. Wooldridge (2002) shows that the standard errors computed
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without the adjustment are “conservative” in that they are larger than they would be
with the adjustment.

Example 17.17 Nonresponse in the GSOEP Sample
Of the 7,293 individuals in the GSOEP data that we have used in several earlier examples,
3,874 were present at wave 1 (1984) of the sample. The pattern of the number of waves
present by these 3,874 is shown in Figure 17.4. The waves are 1984–1988, 1991, and 1994.
A dynamic model would be based on the 1,600 of those present at wave 1 who were also
present for the next four waves. There is a substantial amount of nonresponse in these data.
Not all individuals exit the sample with the first nonresponse, however, so the resulting panel
remains unbalanced. The impression suggested by Figure 17.4 could be a bit misleading—
the nonresponse pattern is quite different from simple attrition. For example, of the 3,874
individuals who responded at wave 1, 364 did not respond at wave 2 but returned to the
sample at wave 3.

To employ the Verbeek and Nijman test, we used the entire sample of 27,326 household
years of data. The pooled probit model for DocVis > 0 produced the results at the left in
Table 17.14. A t (Wald) test of the hypothesis that the coefficient on number of waves present
is zero is strongly rejected, so we proceed to the inverse probability weighted estimator. For
computing the inverse probability weights, we used the following specification:

xi 1 = constant, age, income, educ, kids, married

zi 1 = female, handicapped dummy, percentage handicapped,
university, working, blue collar, white collar, public servant, yi 1

yi 1 = Doctor Visits > 0 in period 1.

This first-year data vector is used as the observed explanatory variables in probit models for
waves 2–7 for the 3,874 individuals who were present at wave 1. There are 3,874 observations
for each of these probit models, since all were observed at wave 1. Fitted probabilities for Rit
are computed for waves 2–7, while Ri 1 = 1. The sample means of these probabilities which
equals the proportion of the 3,874 who responded at each wave are 1.000, 0.730, 0.672,
0.626, 0.682, 0.568, and 0.386, respectively. Table 17.14 presents the estimated models for
several specifications In each case, it appears that the weighting brings some moderate
changes in the parameters and, uniformly, reductions in the standard errors.
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TABLE 17.14 Inverse Probability Weighted Estimators

Random Effects—
Pooled Model Mundlak Fixed Effects

Variable Endog. Test Unwtd. IPW Unwtd. IPW Unwtd. IPW

Constant 0.26411 0.03369 −0.02373 0.09838 0.13237
(0.05893) (0.07684) (0.06385) (0.16081) (0.17019)

Age 0.01369 0.01667 0.01831 0.05141 0.05656 0.06210 0.06841
(0.00080) (0.00107) (0.00088) (0.00422) (0.00388) (0.00506) (0.00465)

Income −0.12446 −0.17097 −0.22263 0.05794 0.01699 0.07880 0.03603
(0.04636) (0.05981) (0.04801) (0.11256) (0.10580) (0.12891) (0.12193)

Education −0.02925 −0.03614 −0.03513 −0.06456 −0.07058 −0.07752 −0.08574
(0.00351) (0.00449) (0.00365) (0.06104) (0.05792) (0.06582) (0.06149)

Kids −0.13130 −0.13077 −0.13277 −0.04961 −0.03427 −0.05776 −0.03546
(0.01828) (0.02303) (0.01950) (0.04500) (0.04356) (0.05296) (0.05166)

Married 0.06759 0.06237 0.07015 −0.06582 −0.09235 −0.07939 −0.11283
(0.02060) (0.02616) (0.02097) (0.06596) (0.06330) (0.08146) (0.07838)

Mean Age −0.03056 −0.03401
(0.00479) (0.00455)

Mean Income −0.66388 −0.78077
(0.18646) (0.18866)

Mean 0.02656 0.02899
Education (0.06160) (0.05848)

Mean Kids −0.17524 −0.20615
(0.07266) (0.07464)

Mean Married 0.22346 0.25763
(0.08719) (0.08433)

Number −0.02977
of Waves (0.00450)

ρ 0.46538 0.48616

17.5 BIVARIATE AND MULTIVARIATE PROBIT
MODELS

In Chapter 10, we analyzed a number of different multiple-equation extensions of the
classical and generalized regression model. A natural extension of the probit model
would be to allow more than one equation, with correlated disturbances, in the same
spirit as the seemingly unrelated regressions model. The general specification for a
two-equation model would be

y∗
1 = x′

1β1 + ε1, y1 = 1 if y∗
1 > 0, 0 otherwise,

y∗
2 = x′

2β2 + ε2, y2 = 1 if y∗
2 > 0, 0 otherwise,(

ε1

ε2
|x1, x2

)
∼ N

[(
0
0

)
,

(
1 ρ

ρ 1

)]
.

(17-48)

This bivariate probit model is interesting in its own right for modeling the joint deter-
mination of two variables, such as doctor and hospital visits in the next example. It also
provides the framework for modeling in two common applications. In many cases, a
treatment effect, or endogenous influence, takes place in a binary choice context. The
bivariate probit model provides a specification for analyzing a case in which a probit



Greene-2140242 book January 19, 2011 21:21

CHAPTER 17 ✦ Discrete Choice 779

model contains an endogenous binary variable in one of the equations. In Example
17.21, we will extend (17-48) to

W∗ = x′
1β1 + ε1, W = 1 if W∗ > 0, 0 otherwise,

y∗ = x′
2β2 + γ W + ε2, y = 1 if y∗ > 0, 0 otherwise, (17-49)

(
ε1

ε2
|x1, x2

)
∼ N

[(
0
0

)
,

(
1 ρ

ρ 1

)]
.

This model extends the case in Section 17.3.5, where W∗, rather than W, appears on the
right-hand side of the second equation. In the example, W denotes whether a liberal
arts college supports a women’s studies program on the campus while y is a binary
indicator of whether the economics department provides a gender economics course.
A second common application, in which the first equation is an endogenous sampling
rule, is another variant of the bivariate probit model:

S∗ = x′
1β1 + ε1, S = 1 if S∗ > 0, 0 otherwise,

y∗ = x′
2β2 + ε2, y = 1 if y∗ > 0, 0 otherwise, (17-50)

(
ε1

ε2
|x1, x2

)
∼ N

[(
0
0

)
,

(
1 ρ

ρ 1

)]
,

(y, x2) observed only when S = 1.

In Example 17.22, we will study an application in which S is the result of a credit card
application (or any sort of loan application) while y2 is a binary indicator for whether
the individual defaults on the credit account (loan). This is a form of endogenous sam-
pling (in this instance, sampling on unobservables) that has some commonality with the
attrition problem that we encountered in Section 17.4.9.

At the end of this section, we will extend (17-48) to more than two equations. This
will allow direct treatment of multiple binary outcomes. It will also allow a more general
panel data model for T periods than is provided by the random effects specification.

17.5.1 MAXIMUM LIKELIHOOD ESTIMATION

The bivariate normal cdf is

Prob(X1 < x1, X2 < x2) =
∫ x2

−∞

∫ x1

−∞
φ2(z1, z2, ρ) dz1dz2,

which we denote �2(x1, x2, ρ). The density is37

φ2(x1, x2, ρ) = e−(1/2)(x2
1 +x2

2 −2ρx1x2)/(1−ρ2)

2π(1 − ρ2)1/2
.

To construct the log-likelihood, let qi1 = 2yi1 − 1 and qi2 = 2yi2 − 1. Thus, qij = 1 if
yij = 1 and −1 if yij = 0 for j = 1 and 2. Now let

zij = x′
ijβ j and wij = qijzij, j = 1, 2,

37See Section B.9.
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and

ρi∗ = qi1qi2ρ.

Note the notational convention. The subscript 2 is used to indicate the bivariate normal
distribution in the density φ2 and cdf �2. In all other cases, the subscript 2 indicates the
variables in the second equation. As before, φ(.) and �(.) without subscripts denote the
univariate standard normal density and cdf.

The probabilities that enter the likelihood function are

Prob(Y1 = yi1, Y2 = yi2 | x1, x2) = �2(wi1, wi2, ρi∗),

which accounts for all the necessary sign changes needed to compute probabilities for
y’s equal to zero and one. Thus,38

ln L =
n∑

i=1

ln �2(wi1, wi2, ρi∗).

The derivatives of the log-likelihood then reduce to

∂ ln L
∂β j

=
n∑

i=1

(
qijgij

�2

)
xij, j = 1, 2,

∂ ln L
∂ρ

=
n∑

i=1

qi1qi2φ2

�2
,

(17-51)

where

gi1 = φ(wi1)�

[
wi2 − ρi∗wi1√

1 − ρ2
i∗

]
(17-52)

and the subscripts 1 and 2 in gi1 are reversed to obtain gi2. Before considering the
Hessian, it is useful to note what becomes of the preceding if ρ = 0. For ∂ ln L/∂β1, if ρ =
ρi∗ = 0, then gi1 reduces to φ(wi1)�(wi2), φ2 is φ(wi1)φ(wi2), and �2 is �(wi1)�(wi2).
Inserting these results in (17-51) with qi1 and qi2 produces (17-20). Because both func-
tions in ∂ ln L/∂ρ factor into the product of the univariate functions, ∂ ln L/∂ρ reduces
to

∑n
i=1 λi1λi2, where λij, j = 1, 2, is defined in (17-20). (This result will reappear in the

LM statistic shown later.)
The maximum likelihood estimates are obtained by simultaneously setting the three

derivatives to zero. The second derivatives are relatively straightforward but tedious.
Some simplifications are useful. Let

δi = 1√
1 − ρ2

i∗
,

vi1 = δi (wi2 − ρi∗wi1), so gi1 = φ(wi1)�(vi1),

vi2 = δi (wi1 − ρi∗wi2), so gi2 = φ(wi2)�(vi2).

By multiplying it out, you can show that

δiφ(wi1)φ(vi1) = δiφ(wi2)φ(vi2) = φ2.

38To avoid further ambiguity, and for convenience, the observation subscript will be omitted from �2 =
�2(wi1, wi2, ρi∗ ) and from φ2 = φ2(wi1, wi2, ρi∗ ).
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Then

∂2 ln L
∂β1∂β ′

1
=

n∑
i=1

xi1x′
i1

[−wi1gi1

�2
− ρi∗φ2

�2
− g2

i1

�2
2

]
,

∂2 ln L
∂β1∂β ′

2
=

n∑
i=1

qi1qi2xi1x′
i2

[
φ2

�2
− gi1gi2

�2
2

]
,

∂2 ln L
∂β1∂ρ

=
n∑

i=1

qi2xi1
φ2

�2

[
ρi∗δivi1 − wi1 − gi1

�2

]
,

∂2 ln L
∂ρ2

=
n∑

i=1

φ2

�2

[
δ2

i ρi∗(1 − w′
i R

−1
i wi ) + δ2

i wi1wi2 − φ2

�2

]
,

(17-53)

where w′
i R

−1
i wi = δ2

i (w
2
i1 + w2

i2 − 2ρi∗wi1wi2). (For β2, change the subscripts in
∂2 ln L/∂β1∂β ′

1 and ∂2 ln L/∂β1∂ρ accordingly.) The complexity of the second deriva-
tives for this model makes it an excellent candidate for the Berndt et al. estimator of
the variance matrix of the maximum likelihood estimator.

Example 17.18 Tetrachoric Correlation
Returning once again to the health care application of Examples 17.4 and several others, we
now consider a second binary variable,

Hospitalit = 1 if HospVisit > 0 and 0 otherwise.

Our previous analyses have focused on

Doctorit = 1 if DocVisit > 0 and 0 otherwise.

A simple bivariate frequency count for these two variables is

Hospital

Doctor 0 1 Total

0 9,715 420 10,135
1 15,216 1,975 17,191
Total 24,931 2,395 27,326

Looking at the very large value in the lower-left cell, one might surmise that these two binary
variables (and the underlying phenomena that they represent) are negatively correlated. The
usual Pearson, product moment correlation would be inappropriate as a measure of this cor-
relation since it is used for continuous variables. Consider, instead, a bivariate probit “model,”

H ∗
it = μ1 + ε1,it, Hospitalit = 1( H ∗

it > 0) ,
D∗

it = μ2 + ε2,it, Doctorit = 1( D∗
it > 0) ,

where (ε1, ε2) have a bivariate normal distribution with means (0, 0), variances (1, 1) and cor-
relation ρ. This is the model in (17-48) without independent variables. In this representation,
the tetrachoric correlation, which is a correlation measure for a pair of binary variables,
is precisely the ρ in this model—it is the correlation that would be measured between the
underlying continuous variables if they could be observed. This suggests an interpretation
of the correlation coefficient in a bivariate probit model—as the conditional tetrachoric cor-
relation. It also suggests a method of easily estimating the tetrachoric correlation coefficient
using a program that is built into nearly all commercial software packages.

Applied to the hospital/doctor data defined earlier, we obtained an estimate of ρ of
0.31106, with an estimated asymptotic standard error of 0.01357. Apparently, our earlier
intuition was incorrect.
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17.5.2 TESTING FOR ZERO CORRELATION

The Lagrange multiplier statistic is a convenient device for testing for the absence
of correlation in this model. Under the null hypothesis that ρ equals zero, the model
consists of independent probit equations, which can be estimated separately. Moreover,
in the multivariate model, all the bivariate (or multivariate) densities and probabilities
factor into the products of the marginals if the correlations are zero, which makes
construction of the test statistic a simple matter of manipulating the results of the
independent probits. The Lagrange multiplier statistic for testing H0: ρ = 0 in a bivariate
probit model is39

LM =

[∑n
i=1 qi1qi2

φ(wi1)φ(wi2)

�(wi1)�(wi2)

]2

∑n
i=1

[φ(wi1)φ(wi2)]2

�(wi1)�(−wi1)�(wi2)�(−wi2)

.

As usual, the advantage of the LM statistic is that it obviates computing the bivariate
probit model. But the full unrestricted model is now fairly common in commercial soft-
ware, so that advantage is minor. The likelihood ratio or Wald test can often be used with
equal ease. To carry out the likelihood ratio test, we note first that if ρ equals zero, then
the bivariate probit model becomes two independent univariate probits models. The
log-likelihood in that case would simply be the sum of the two separate log-likelihoods.
The test statistic would be

λLR = 2[ln LBIVARIATE − (ln L1 + ln L2)].

This would converge to a chi-squared variable with one degree of freedom. The Wald
test is carried out by referring

λWALD =
[
ρ̂MLE/

√
Est. Asy. Var[ρ̂MLE]

]2

to the chi-squared distribution with one degree of freedom. For 95 percent significance,
the critical value is 3.84 (or one can refer the positive square root to the standard normal
critical value of 1.96). Example 17.19 demonstrates.

17.5.3 PARTIAL EFFECTS

There are several “partial effects” one might want to evaluate in a bivariate probit
model.40 A natural first step would be the derivatives of Prob[y1 = 1, y2 = 1 | x1, x2].
These can be deduced from (17-51) by multiplying by �2, removing the sign carrier, qij,
and differentiating with respect to x j rather than β j . The result is

∂�2(x′
1β1, x′

2β2, ρ)

∂x1
= φ(x′

1β1)�

(
x′

2β2 − ρx′
1β1√

1 − ρ2

)
β1.

Note, however, the bivariate probability, albeit possibly of interest in its own right, is not
a conditional mean function. As such, the preceding does not correspond to a regression
coefficient or a slope of a conditional expectation.

39This is derived in Kiefer (1982).
40See Greene (1996b) and Christofides et al. (1997, 2000).



Greene-2140242 book January 19, 2011 21:21

CHAPTER 17 ✦ Discrete Choice 783

For convenience in evaluating the conditional mean and its partial effects, we will
define a vector x = x1 ∪ x2 and let x′

1β1 = x′γ 1. Thus, γ 1 contains all the nonzero
elements of β1 and possibly some zeros in the positions of variables in x that appear
only in the other equation; γ 2 is defined likewise. The bivariate probability is

Prob[y1 = 1, y2 = 1 | x] = �2[x′γ 1, x′γ 2, ρ].

Signs are changed appropriately if the probability of the zero outcome is desired in
either case. (See 17-48.) The partial effects of changes in x on this probability are
given by

∂�2

∂x
= g1γ 1 + g2γ 2,

where g1 and g2 are defined in (17-52). The familiar univariate cases will arise if ρ =
0, and effects specific to one equation or the other will be produced by zeros in the
corresponding position in one or the other parameter vector. There are also some
conditional mean functions to consider. The unconditional mean functions are given by
the univariate probabilities:

E [yj | x] = �(x′γ j ), j = 1, 2,

so the analysis of (17-11) and (17-12) applies. One pair of conditional mean functions
that might be of interest are

E [y1 | y2 = 1, x] = Prob[y1 = 1 | y2 = 1, x] = Prob[y1 = 1, y2 = 1 | x]
Prob[y2 = 1 | x]

= �2(x′γ 1, x′γ 2, ρ)

�(x′γ 2)

and similarly for E [y2 | y1 = 1, x]. The partial effects for this function are given by

∂ E [y1 | y2 = 1, x]
∂x

=
(

1
�(x′γ 2)

) [
g1γ 1 +

(
g2 − �2

φ(x′γ 2)

�(x′γ 2)

)
γ 2

]
.

Finally, one might construct the nonlinear conditional mean function

E [y1 | y2, x] = �2[x′γ 1, (2y2 − 1)x′γ 2, (2y2 − 1)ρ]
�[(2y2 − 1)x′γ 2]

.

The derivatives of this function are the same as those presented earlier, with sign changes
in several places if y2 = 0 is the argument.

Example 17.19 Bivariate Probit Model for Health Care Utilization
We have extended the bivariate probit model of the previous example by specifying a set of
independent variables,

x i = Constant, Femalei , Ageit, Incomeit, Kidsit, Educationit, Marriedit.

We have specified that the same exogenous variables appear in both equations. (There is no
requirement that different variables appear in the equations, nor that a variable be excluded
from each equation.) The correct analogy here is to the seemingly unrelated regressions
model, not to the linear simultaneous equations model. Unlike the SUR model of Chapter 10,
it is not the case here that having the same variables in the two equations implies that the
model can be fit equation by equation, one equation at a time. That result only applies to the
estimation of sets of linear regression equations.
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TABLE 17.15 Estimated Bivariate Probit Modela

Doctor Hospital

Model Estimates Partial Effects Model Estimates

Variable Univariate Bivariate Direct Indirect Total Univariate Bivariate

Constant −0.1243 −0.1243 −1.3328 −1.3385
(0.05815) (0.05814) (0.08320) (0.07957)

Female 0.3559 0.3551 0.09650 −0.00724 0.08926 0.1023 0.1050
(0.01602) (0.01604) (0.004957) (0.001515) (0.005127) (0.02195) (0.02174)

Age 0.01189 0.01188 0.003227 −0.00032 0.002909 0.004605 0.00461
(0.0007957) (0.000802) (0.000231) (0.000073) (0.000238) (0.001082) (0.001058)

Income −0.1324 −0.1337 −0.03632 −0.003064 −0.03939 0.03739 0.04441
(0.04655) (0.04628) (0.01260) (0.004105) (0.01254) (0.06329) (0.05946)

Kids −0.1521 −0.1523 −0.04140 0.001047 −0.04036 −0.01714 −0.01517
(0.01833) (0.01825) (0.005053) (0.001773) (0.005168) (0.02562) (0.02570)

Education −0.01497 −0.01484 −0.004033 0.001512 −0.002521 −0.02196 −0.02191
(0.003575) (0.003575) (0.000977) (0.00035) (0.0010) (0.005215) (0.005110)

Married 0.07352 0.07351 0.01998 0.003303 0.02328 −0.04824 −0.04789
(0.02064) (0.02063) (0.005626) (0.001917) (0.005735) (0.02788) (0.02777)

a Estimated correlation coefficient = 0.2981 (0.0139).

Table 17.15 contains the estimates of the parameters of the univariate and bivariate probit
models. The tests of the null hypothesis of zero correlation strongly reject the hypothesis
that ρ equals zero. The t statistic for ρ based on the full model is 0.2981 / 0.0139 = 21.446,
which is much larger than the critical value of 1.96. For the likelihood ratio test, we compute

λLR = 2{−25285.07 − [−17422.72 + (−8073.604) ]} = 422.508.

Once again, the hypothesis is rejected. (The Wald statistic is 21.4462 = 459.957.) The LM
statistic is 383.953. The coefficient estimates agree with expectations. The income coefficient
is statistically significant in the doctor equation, but not in the hospital equation, suggesting,
perhaps, that physican visits are at least to some extent discretionary while hospital visits
occur on an emergency basis that would be much less tied to income. The table also contains
the decomposition of the partial effects for E [y1 | y2 = 1]. The direct effect is [g1/�(x′γ2) ]γ 1
in the definition given earlier. The mean estimate of E [y1 | y2 = 1] is 0.821285. In the table in
Example 17.8, this would correspond to the raw proportion P( D = 1, H = 1) / P( H = 1) =
(1975 / 27326) / (2395 / 27326) = 0.8246.

17.5.4 A PANEL DATA MODEL FOR BIVARIATE BINARY RESPONSE

Extending multiple equation models to accommodate unobserved common effects in
panel data settings is straightforward in theory, but complicated in practice. For the
bivariate probit case, for example, the natural extension of (17-48) would be

y∗
1,it = x′

1,itβ1 + ε1,it + α1,i , y1,it = 1 if y∗
1,it > 0, 0 otherwise,

y∗
2,it = x′

2,itβ2 + ε2,it + α2,i , y2,it = 1 if y∗
2,it > 0, 0 otherwise,

(
ε1

ε2
|x1, x2

)
∼ N

[(
0
0

)
,

(
1 ρ

ρ 1

)]
.

The complication will be in how to treat (α1, α2). A fixed effects treatment will require
estimation of two full sets of dummy variable coefficients, will likely encounter the
incidental parameters problem in double measure, and will be complicated in practical
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terms. As in all earlier cases, the fixed effects case also preempts any specification
involving time-invariant variables. It is also unclear in a fixed effects model, how any
correlation between α1 and α2 would be handled. It should be noted that strictly from
a consistency standpoint, these considerations are moot. The two equations can be
estimated separately, only with some loss of efficiency. The analogous situation would
be the seemingly unrelated regressions model in Chapter 10. A random effects treatment
(perhaps accommodated with Mundlak’s approach of adding the group means to the
equations as in Section 17.4.5) offers greater promise. If (α1, α2) = (u1,u2) are normally
distributed random effects, with(

u1,i

u2,i

∣∣X1,i , X2,i

)
∼ N

[(
0
0

)
,

(
σ 2

1 ρσ1σ2

ρσ1σ2 σ 2
2

)]
,

then the unconditional log likelihood for the bivariate probit model,

ln L =
n∑

i=1

ln
∫

u1,u2

Ti∏
t=1

�2(w1,it | u1,i , w2,it | u2,i , ρ
∗
it) f (u1,i , u2,i )du1,i du2,i ,

can be maximized using simulation or quadrature as we have done in previous appli-
cations. A possible variation on this specification would specify that the same common
effect enter both equations. In that instance, the integration would only be over a single
dimension. In this case, there would only be a single new parameter to estimate, σ 2, the
variance of the common random effect while ρ would equal one. A refinement on this
form of the model would allow the scaling to be different in the two equations by plac-
ing ui in the first equation and θui in the second. This would introduce the additional
scaling parameter, but ρ would still equal one. This is the formulation of a common
random effect used in Heckman’s formulation of the dynamic panel probit model in
the Section 17.4.6.

Example 17.20 Bivariate Random Effects Model for Doctor and
Hospital Visits

We will extend the pooled bivariate probit model presented in Example 17.19 by allowing
a general random effects formulation, with free correlation between the time-varying com-
ponents (ε1, ε2) and between the time-invariant effects, (u1, u2) . We used simulation to fit
the model. Table 17.16 presents the pooled and random effects estimates. The log-likelihood
functions for the pooled and random effects models are −25, 285.07 and −23,769.67, respec-
tively. Two times the difference is 3,030.76. This would be a chi squared with three degrees
of freedom (for the three free elements in the covariance matrix of u1 and u2) . The 95 percent
critical value is 7.81, so the pooling hypothesis would be rejected. The change in the correla-
tion coefficient from 0.2981 to 0.1501 suggests that we have decomposed the disturbance in
the model into a time-varying part and a time-invariant part. The latter seems to be the smaller
of the two. Although the time-invariant elements are more highly correlated, their variances
are only 0.22332 = 0.0499 and 0.63382 = 0.4017 compared to 1.0 for both ε1 and ε2.

17.5.5 ENDOGENOUS BINARY VARIABLE IN A RECURSIVE
BIVARIATE PROBIT MODEL

Section 17.3.5 examines a case in which there is an endogenous variable in a binary
choice (probit) model. The model is

W∗ = x′
1β1 + ε1,

y∗ = x′
2β2 + γ W∗ + ε2, y = 1 if y∗ > 0, 0 otherwise,

(
ε1

ε2
|x1, x2

)
∼ N

[(
0
0

)
,

(
1 ρ

ρ 1

)]
.
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TABLE 17.16 Estimated Random Effects Bivariate Probit Model
Doctor Hospital

Pooled Random Effects Pooled Random Effects

Constant −0.1243 −0.2976 −1.3385 −1.5855
(0.05814) (0.09650) (0.07957) (0.10853)

Female 0.3551 0.4548 0.1050 0.1280
(0.01604) (0.02857) (0.02174) (0.02954)

Age 0.01188 0.01983 0.00461 0.00496
(0.000802) (0.00130) (0.001058) (0.00139)

Income −0.1337 −0.01059 0.04441 0.13358
(0.04628) (0.06488) (0.05946) (0.07728)

Kids −0.1523 −0.1544 −0.01517 0.02155
(0.01825) (0.02692) (0.02570) (0.03211)

Education −0.01484 −0.02573 −0.02191 −0.02444
(0.003575) (0.00612) (0.005110) (0.00675)

Married 0.07351 0.02876 −0.04789 −0.10504
(0.02063) (0.03167) (0.02777) (0.03547)

Corr(ε1, ε2) 0.2981 0.1501 0.2981 0.1501
Corr(u1, u2) 0.0000 0.5382 0.0000 0.5382
Std. Dev. u 0.0000 0.2233 0.0000 0.6338
Std. Dev. ε 1.0000 1.0000 1.0000 1.0000

The application examined there involved a labor force participation model that was
conditioned on an endogenous variable, the spouse’s hours of work. In many cases, the
endogenous variable in the equation is also binary. In the application we will examine
next, the presence of a gender economics course in the economics curriculum at liberal
arts colleges is conditioned on whether or not there is a women’s studies program on
the campus. The model in this case becomes

W∗ = x′
1β1 + ε1, W = 1 if W∗ > 0, 0 otherwise,

y∗ = x′
2β2 + γ W + ε2, y = 1 if y∗ > 0, 0 otherwise,

(
ε1

ε2
|x1, x2

)
∼ N

[(
0
0

)
,

(
1 ρ

ρ 1

)]
.

This model illustrates a number of interesting aspects of the bivariate probit model.
Note that this model is qualitatively different from the bivariate probit model in (17-48);
the first dependent variable, W, appears on the right-hand side of the second equation.41

This model is a recursive, simultaneous-equations model. Surprisingly, the endogenous
nature of one of the variables on the right-hand side of the second equation can be ig-
nored in formulating the log-likelihood. [The model appears in Maddala (1983, p. 123).]
We can establish this fact with the following (admittedly trivial) argument: The term that
enters the log-likelihood is P(y = 1, W = 1) = P(y = 1 | W = 1)P(W = 1). Given the
model as stated, the marginal probability for W is just �(x′

1β1), whereas the conditional
probability is �2(· · ·)/�(x′

1β1). The product returns the bivariate normal probability

41Eisenberg and Rowe (2006) is another application of this model. In their study, they analyzed the joint
(recursive) effect of W = veteran status on y, smoking behavior. The estimator they used was two-stage least
squares and GMM.
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we had earlier. The other three terms in the log-likelihood are derived similarly, which
produces (Maddala’s results with some sign changes):

P(y = 1, W = 1) = �(x′
2β2 + γ, x′

1β1, ρ),

P(y = 1, W = 0) = �(x′
2β2, −x′

1β1, −ρ),

P(y = 0, W = 1) = �[−(x′
2β2 + γ ), x′

1β1, −ρ),

P(y = 0, W = 0) = �(−x′
2β2, −x′

1β1, ρ).

These terms are exactly those of (17-48) that we obtain just by carrying W in the
second equation with no special attention to its endogenous nature. We can ignore the
simultaneity in this model and we cannot in the linear regression model because, in this
instance, we are maximizing the log-likelihood, whereas in the linear regression case,
we are manipulating certain sample moments that do not converge to the necessary
population parameters in the presence of simultaneity.

Example 17.21 Gender Economics Courses at Liberal Arts Colleges
Burnett (1997) proposed the following bivariate probit model for the presence of a gender
economics course in the curriculum of a liberal arts college:

Prob[G = 1, W = 1 | xG, xW ] = �2(x′
GβG + γ W, x′

WβW, ρ) .

The dependent variables in the model are

G = presence of a gender economics course
W = presence of a women’s studies program on the campus.

The independent variables in the model are

z1 = constant term,
z2 = academic reputation of the college, coded 1 (best), 2, . . . to 141,
z3 = size of the full-time economics faculty, a count,
z4 = percentage of the economics faculty that are women, proportion (0 to 1),
z5 = religious affiliation of the college, 0 = no, 1 = yes,
z6 = percentage of the college faculty that are women, proportion (0 to 1),
z7–z10 = regional dummy variables, South, Midwest, Northeast, West.

The regressor vectors are

xG = z1, z2, z3, z4, z5 (gender economics course equation),

xW = z2, z5, z6, z7 − z10 (women’s studies program equation).

Maximum likelihood estimates of the parameters of Burnett’s model were computed by
Greene (1998) using her sample of 132 liberal arts colleges; 31 of the schools offer gender
economics, 58 have women’s studies, and 29 have both. (See Appendix Table F17.1.) The
estimated parameters are given in Table 17.17. Both bivariate probit and the single-equation
estimates are given. The estimate of ρ is only 0.1359, with a standard error of 1.2359. The Wald
statistic for the test of the hypothesis that ρ equals zero is (0.1359/1.2539)2 = 0.011753.
For a single restriction, the critical value from the chi-squared table is 3.84, so the hypothesis
cannot be rejected. The likelihood ratio statistic for the same hypothesis is 2[−85.6317 −
(−85.6458) ] = 0.0282, which leads to the same conclusion. The Lagrange multiplier statistic
is 0.003807, which is consistent. This result might seem counterintuitive, given the setting.
Surely “gender economics” and “women’s studies” are highly correlated, but this finding does
not contradict that proposition. The correlation coefficient measures the correlation between
the disturbances in the equations, the omitted factors. That is, ρ measures (roughly) the
correlation between the outcomes after the influence of the included factors is accounted
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TABLE 17.17 Estimates of a Recursive Simultaneous Bivariate Probit Model
(estimated standard errors in parentheses)

Single Equation Bivariate Probit

Variable Coefficient Standard Err. Coefficient Standard Err.

Gender Economics Equation
Constant −1.4176 (0.8768) −1.1911 (2.2155)
AcRep −0.01143 (0.003610) −0.01233 (0.007937)
WomStud 1.1095 (0.4699) 0.8835 (2.2603)
EconFac 0.06730 (0.05687) 0.06769 (0.06952)
PctWecon 2.5391 (0.8997) 2.5636 (1.0144)
Relig −0.3482 (0.4212) −0.3741 (0.5264)

Women’s Studies Equation
AcRep −0.01957 (0.004117) −0.01939 (0.005704)
PctWfac 1.9429 (0.9001) 1.8914 (0.8714)
Relig −0.4494 (0.3072) −0.4584 (0.3403)
South 1.3597 (0.5948) 1.3471 (0.6897)
West 2.3386 (0.6449) 2.3376 (0.8611)
North 1.8867 (0.5927) 1.9009 (0.8495)
Midwest 1.8248 (0.6595) 1.8070 (0.8952)

ρ 0.0000 (0.0000) 0.1359 (1.2539)
ln L −85.6458 −85.6317

for. Thus, the value 0.1359 measures the effect after the influence of women’s studies is
already accounted for. As discussed in the next paragraph, the proposition turns out to be
right. The single most important determinant (at least within this model) of whether a gender
economics course will be offered is indeed whether the college offers a women’s studies
program.

The partial effects in this model are fairly involved, and as before, we can consider sev-
eral different types. Consider, for example, z2, academic reputation. There is a direct effect
produced by its presence in the gender economics course equation. But there is also an
indirect effect. Academic reputation enters the women’s studies equation and, therefore, in-
fluences the probability that W equals one. Because W appears in the gender economics
course equation, this effect is transmitted back to y. The total effect of academic reputation
and, likewise, religious affiliation is the sum of these two parts. Consider first the gender
economics variable, y. The conditional mean is

E [G | xG, xW ] = Prob[W = 1]E [G | W = 1, xG, xW ]

+ Prob[W = 0]E [G | W = 0, xG, xW ]

= �2(x′
GβG + γ , x′

WβW, ρ) + �2(x′
GβG, −x′

WβW, −ρ) .

Derivatives can be computed using our earlier results. We are also interested in the effect
of religious affiliation. Because this variable is binary, simply differentiating the conditional
mean function may not produce an accurate result. Instead, we would compute the con-
ditional mean function with this variable set to one and then zero, and take the difference.
Finally, what is the effect of the presence of a women’s studies program on the probability
that the college will offer a gender economics course? To compute this effect, we would
compute

Prob[G = 1 | W = 1, xG, xW ] − Prob[G = 1 | W = 0, xG, xW ].
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TABLE 17.18 Partial Effects in Gender Economics Model

Direct Indirect Total (Std. Error) (Type of Variable, Mean)

Gender Economics Equation
AcRep −0.002022 −0.001453 −0.003476 (0.001126) (Continuous, 119.242)
PctWecon +0.4491 +0.4491 (0.1568) (Continuous, 0.24787)
EconFac +0.01190 +0.1190 (0.01292) (Continuous, 6.74242)
Relig −0.06327 −0.02306 −0.08632 (0.08220) (Binary, 0.57576)
WomStud +0.1863 +0.1863 (0.0868) (Endogenous, 0.43939)
PctWfac +0.14434 +0.14434 (0.09051) (Continuous, 0.35772)

Women’s Studies Equation
AcRep −0.00780 −0.00780 (0.001654) (Continuous, 119.242)
PctWfac +0.77489 +0.77489 (0.3591) (Continuous, 0.35772)
Relig −0.17777 −0.17777 (0.11946) (Binary, 0.57576)

In all cases, standard errors for the estimated partial effects can be computed using the delta
method or the method of Krinsky and Robb.

Table 17.18 presents the estimates of the partial effects and some descriptive statistics for
the data. The calculations were simplified slightly by using the restricted model with ρ = 0.
Computations of the marginal effects still require the preceding decomposition, but they
are simplified by the result that if ρ equals zero, then the bivariate probabilities factor into
the products of the marginals. Numerically, the strongest effect appears to be exerted by
the representation of women on the faculty; its coefficient of +0.4491 is by far the largest.
This variable, however, cannot change by a full unit because it is a proportion. An increase
of 1 percent in the presence of women on the economics faculty raises the probability by
only +0.004, which is comparable in scale to the effect of academic reputation. The effect of
women on the faculty is likewise fairly small, only 0.0014 per 1 percent change. As might have
been expected, the single most important influence is the presence of a women’s studies
program, which increases the likelihood of a gender economics course by a full 0.1863. Of
course, the raw data would have anticipated this result; of the 31 schools that offer a gender
economics course, 29 also have a women’s studies program and only two do not. Note finally
that the effect of religious affiliation (whatever it is) is mostly direct.

17.5.6 ENDOGENOUS SAMPLING IN A BINARY CHOICE MODEL

We have encountered several instances of nonrandom sampling in the binary choice
setting. In Section 17.3.6, we examined an application in credit scoring in which the
balance in the sample of responses of the outcome variable, C = 1 for acceptance of
an application and C = 0 for rejection, is different from the known proportions in the
population. The sample was specifically skewed in favor of observations with C = 1
to enrich the data set. A second type of nonrandom sampling arose in the analysis
of nonresponse/attrition in the GSOEP in Example 17.17. The data suggest that the
observed sample is not random with respect to individuals’ presence in the sample
at different waves of the panel. The first of these represents selection specifically on
an observable outcome—the observed dependent variable. We constructed a model
for the second of these that relied on an assumption of selection on a set of certain
observables—the variables that entered the probability weights. We will now examine
a third form of nonrandom sample selection, based crucially on the unobservables in
the two equations of a bivariate probit model.
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We return to the banking application of Example 17.9. In that application, we
examined a binary choice model,

Prob(Cardholder = 1) = Prob(C = 1 | x)

= �(β1 + β2 Age + β3 Income + β4 OwnRent

+β5 Months at Current Address

+β6 Self-Employed

+β7 Number of Major Derogatory Reports

+β8 Number of Minor Derogatory Reports).

From the point of view of the lender, cardholder status is not the interesting outcome in
the credit history, default is. The more interesting equation describes Prob(Default =
1 | z, C = 1). The natural approach, then, would be to construct a binary choice model
for the interesting default variable using the historical data for a sample of cardholders.
The problem with the approach is that the sample is not randomly drawn—applicants
are screened with an eye specifically toward whether or not they seem likely to default.
In this application, and in general, there are three economic agents, the credit scorer
(e.g., Fair Isaacs), the lender, and the borrower. Each of them has latent characteristics
in the equations that determine their behavior. It is these latent characteristics that
drive, in part, the application/scoring process and, ultimately, the consumer behavior.

A model that can accommodate these features is (17-50),

S∗ = x′
1β1 + ε1, S = 1 if S∗ > 0, 0 otherwise,

y∗ = x′
2β2 + ε2, y = 1 if y∗ > 0, 0 otherwise,

(
ε1

ε2
|x1, x2

)
∼ N

[(
0
0

)
,

(
1 ρ

ρ 1

)]
,

(y, x2) observed only when S = 1,

which contains an observation rule, S = 1, and a behavioral outcome, y = 0 or 1. The
endogeneity of the sampling rule implies that

Prob(y = 1 | S = 1, x2) 
= �(x′
2β).

From properties of the bivariate normal distribution, the appropriate probability is

Prob(y = 1 | S = 1, x1, x2) = �

[
x′

2β2 + ρx′
1β1√

1 − ρ2

]
.

If ρ is not zero, then in using the simple univariate probit model, we are omitting from
our model any variables that are in x1 but not in x2, and in any case, the estimator is
inconsistent by a factor (1 − ρ2)−1/2. To underscore the source of the bias, if ρ equals
zero, the conditional probability returns to the model that would be estimated with the
selected sample. Thus, the bias arises because of the correlation of (i.e., the selection
on) the unobservables, ε1 and ε2. This model was employed by Wynand and van Praag
(1981) in the first application of Heckman’s (1979) sample selection model in a nonlinear
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setting, to insurance purchases, by Boyes, Hoffman, and Lowe (1989) in a study of
bank lending, by Greene (1992) to the credit card application begun in Example 17.9
and continued in Example 17.22, and hundreds of applications since. [Some discussion
appears in Maddala (1983) as well.]

Given that the forms of the probabilities are known, the appropriate log-likelihood
function for estimation of β1, β2 and ρ is easily obtained. The log-likelihood must be
constructed for the joint or the marginal probabilities, not the conditional ones. For
the “selected observations,” that is, (y = 0, S = 1) or (y = 1, S = 1), the relevant
probability is simply

Prob(y = 0 or 1 | S = 1) × Prob(S = 1) = �2[(2y − 1)x′
2β2, x′

1β1, (2y − 1)ρ]

For the observations with S = 0, the probability that enters the likelihood function is
simply Prob(S = 0 | x1) = �(−x′

1β1). Estimation is then based on a simpler form of the
bivariate probit log-likelihood that we examined in Section 17.5.1. Partial effects and
postestimation analysis would follow the analysis for the bivariate probit model. The
desired partial effects would differ by the application, whether one desires the partial
effects from the conditional, joint, or marginal probability would vary. The necessary
results are in Section 17.5.3.

Example 17.22 Cardholder Status and Default Behavior
In Example 17.9, we estimated a logit model for cardholder status,

Prob(Car dholder = 1) = Prob(C = 1 | x)

= �(β1 + β2Age + β3Income + β4OwnRent

+ β5 Current Address + β6SelfEmployed

+ β7 Major Derogatory Reports

+ β8 Minor Derogatory Reports) ,

using a sample of 13,444 applications for a credit card. The complication in that example
was that the sample was choice based. In the data set, 78.1 percent of the applicants are
cardholders. In the population, at that time, the true proportion was roughly 23.2 percent,
so the sample is substantially choice based on this variable. The sample was deliberately
skewed in favor of cardholders for purposes of the original study [Greene (1992)]. The weights
to be applied for the WESML estimator are 0.232/0.781 = 0.297 for the observations with
C = 1 and 0.768/0.219 = 3.507 for observations with C = 0. Of the 13,444 applicants in
the sample, 10,499 were accepted (given the credit cards). The “default rate” in the sample
is 996/10,499 or 9.48 percent. This is slightly less than the population rate at the time, 10.3
percent. For purposes of a less complicated numerical example, we will ignore the choice-
based sampling nature of the data set for the present. An orthodox treatment of both the
selection issue and the choice-based sampling treatment is left for the exercises [and pursued
in Greene (1992).]

We have formulated the cardholder equation so that it probably resembles the policy
of credit scorers, both then and now. A major derogatory report results when a credit ac-
count that is being monitored by the credit reporting agency is more than 60 days late in
payment. A minor derogatory report is generated when an account is 30 days delinquent.
Derogatory reports are a major contributor to credit decisions. Contemporary credit pro-
cessors such as Fair Isaacs place extremely heavy weight on the “credit score,” a single
variable that summarizes the credit history and credit-carrying capacity of an individual.
We did not have access to credit scores at the time of this study. The selection equation



Greene-2140242 book January 19, 2011 21:21

792 PART IV ✦ Cross Sections, Panel Data, and Microeconometrics

TABLE 17.19 Estimated Joint Cardholder and Default Probability Models

Endogenous Sample Model Uncorrelated Equations

Variable/Equation Estimate Standard Error Estimate Standard Error

Cardholder Equation
Constant 0.30516 0.04781 (6.38) 0.31783 0.04790 (6.63)
Age 0.00226 0.00145 (1.56) 0.00184 0.00146 (1.26)
Current Address 0.00091 0.00024 (3.80) 0.00095 0.00024 (3.94)
OwnRent 0.18758 0.03030 (6.19) 0.18233 0.03048 (5.98)
Income 0.02231 0.00093 (23.87) 0.02237 0.00093 (23.95)
SelfEmployed −0.43015 0.05357 ( −8.03) −0.43625 0.05413 (−8.06)
Major Derogatory −0.69598 0.01871 (−37.20) −0.69912 0.01839 (−38.01)
Minor Derogatory −0.04717 0.01825 (−2.58) −0.04126 0.01829 (−2.26)

Default Equation
Constant −0.96043 0.04728 (−20.32) −0.81528 0.04104 (−19.86)
Dependents 0.04995 0.01415 (3.53) 0.04993 0.01442 (3.46)
Income −0.01642 0.00122 (−13.41) −0.01837 0.00119 (−15.41)
Expend/Income −0.16918 0.14474 (−1.17) −0.14172 0.14913 (−0.95)
Correlation 0.41947 0.11762 (3.57) 0.000 0.00000 (0)
Log Likelihood −8,660.90650 −8,670.78831

was given earlier. The default equation is a behavioral model. There is no obvious stan-
dard for this part of the model. We have used three variables, Dependents, the number of
dependents in the household, Income, and Exp Income which equals the ratio of the aver-
age credit card expenditure in the 12 months after the credit card was issued to average
monthly income. Default status is measured for the first 12 months after the credit card was
issued.

Estimation results are presented in Table 17.19. These are broadly consistent with the
earlier results—the model with no correlation from Example 17.9 are repeated in Table 17.19.
There are two tests we can employ for endogeneity of the selection. The estimate of ρ is
0.41947 with a standard error of 0.11762. The t ratio for the test that ρ equals zero is 3.57,
by which we can reject the hypothesis. Alternatively, the likelihood ratio statistic based on
the values in Table 17.19 is 2(8,670.78831 − 8,660.90650) = 19.76362. This is larger than
the critical value of 3.84, so the hypothesis of zero correlation is rejected. The results are
as might be expected, with one counterintuitive result, that a larger credit burden, expendi-
ture to income ratio, appears to be associated with lower default probabilities, though not
significantly so.

17.5.7 A MULTIVARIATE PROBIT MODEL

In principle, a multivariate probit model would simply extend (17-48) to more than
two outcome variables just by adding equations. The resulting equation system, again
analogous to the seemingly unrelated regressions model, would be

y∗
m = x′

mβm + εm, ym = 1 if y∗
m > 0, 0 otherwise, m = 1, . . . , M,

E[εm | x1, . . . , xM] = 0,

Var[εm | x1, . . . , xM] = 1,

Cov[εj , εm | x1, . . . , xM] = ρ jm,

(ε1, . . . , εM) ∼ NM[0, R].
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The joint probabilities of the observed events, [yi1, yi2 . . . , yi M | xi1, xi2, . . . , xi M], i =
1, . . . , n that form the basis for the log-likelihood function are the M-variate normal
probabilities,

Li = �M(qi1x′
i1β1, . . . , qi Mx′

i MβM, R∗),
where

qim = 2yim − 1,

R∗
jm = qijqimρ jm.

The practical obstacle to this extension is the evaluation of the M-variate normal in-
tegrals and their derivatives. Some progress has been made on using quadrature for
trivariate integration (see Section 14.9.6.c), but existing results are not sufficient to al-
low accurate and efficient evaluation for more than two variables in a sample of even
moderate size. However, given the speed of modern computers, simulation-based in-
tegration using the GHK simulator or simulated likelihood methods (see Chapter 15)
do allow for estimation of relatively large models. We consider an application in Exam-
ple 17.23.42

The multivariate probit model in another form presents a useful extension of the
random effects probit model for panel data (Section 17.4.2). If the parameter vectors
in all equations are constrained to be equal, we obtain what Bertschek and Lechner
(1998) call the “panel probit model,”

y∗
it = x′

itβ + εit, yit = 1 if y∗
it > 0, 0 otherwise, i = 1, . . . , n, t = 1, . . . , T,

(εi1, . . . , εiT) ∼ N[0, R].

The Butler and Moffitt (1982) approach for this model (see Section 17.4.2) has proved
useful in many applications. But, their underlying assumption that Cov[εit, εis] = ρ is
a substantive restriction. By treating this structure as a multivariate probit model with
the restriction that the coefficient vector be the same in every period, one can obtain
a model with free correlations across periods.43 Hyslop (1999), Bertschek and Lechner
(1998), Greene (2004 and Example 17.16), and Cappellari and Jenkins (2006) are
applications.

Example 17.23 A Multivariate Probit Model for Product Innovations
Bertschek and Lechner applied the panel probit model to an analysis of the product innovation
activity of 1,270 German firms observed in five years, 1984–1988, in response to imports and
foreign direct investment. [See Bertschek (1995).] The probit model to be estimated is based

42Studies that propose improved methods of simulating probabilities include Pakes and Pollard (1989) and
especially Börsch-Supan and Hajivassiliou (1993), Geweke (1989), and Keane (1994). A symposium in the
November 1994 issue of Review of Economics and Statistics presents discussion of numerous issues in speci-
fication and estimation of models based on simulation of probabilities. Applications that employ simulation
techniques for evaluation of multivariate normal integrals are now fairly numerous. See, for example, Hyslop
(1999) (Example 17.14), which applies the technique to a panel data application with T = 7. Example 17.23
develops a five-variate application.
43By assuming the coefficient vectors are the same in all periods, we actually obviate the normalization that
the diagonal elements of R are all equal to one as well. The restriction identifies T − 1 relative variances
ρt t = σ 2

T/σ 2
T . This aspect is examined in Greene (2004).
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TABLE 17.20 Estimated Pooled Probit Model

Estimated Standard Errors Marginal Effects

Variable Estimate a SE(1)b SE(2)c SE(3)d SE(4)e Partial Std. Err. t ratio

Constant −1.960 0.239 0.377 0.230 0.373 — –— —
ln Sales 0.177 0.0250 0.0375 0.0222 0.0358 0.0683f 0.0138 4.96
Rel Size 1.072 0.206 0.306 0.142 0.269 0.413f 0.103 4.01
Imports 1.134 0.153 0.246 0.151 0.243 0.437f 0.0938 4.66
FDI 2.853 0.467 0.679 0.402 0.642 1.099f 0.247 4.44
Prod. −2.341 1.114 1.300 0.715 1.115 −0.902f 0.429 −2.10
Raw Mtl −0.279 0.0966 0.133 0.0807 0.126 −0.110g 0.0503 −2.18
Inv Good 0.188 0.0404 0.0630 0.0392 0.0628 0.0723g 0.0241 3.00

aRecomputed. Only two digits were reported in the earlier paper.
bObtained from results in Bertschek and Lechner, Table 9.
cBased on the Avery et al. (1983) GMM estimator.
dSquare roots of the diagonals of the negative inverse of the Hessian
eBased on the cluster estimator.
fCoefficient scaled by the density evaluated at the sample means
gComputed as the difference in the fitted probability with the dummy variable equal to one, then zero.

on the latent regression

y∗
it = β1 +

8∑
k=2

xk,itβk + εit, yit = 1( y∗
it > 0) , i = 1, . . . , 1, 270, t = 1984, . . . , 1988,

where

yit = 1 if a product innovation was realized by firm i in year t, 0 otherwise,
x2,it = Log of industry sales in DM,
x3,it = Import share = ratio of industry imports to (industry sales plus imports),
x4,it = Relative firm size = ratio of employment in business unit to employment,

in the industry (times 30),
x5,it = FDI share = Ratio of industry foreign direct investment to,

(industry sales plus imports),
x6,it = Productivity = Ratio of industry value added to industry employment,
x7,it = Raw materials sector = 1 if the firm is in this sector,
x8,it = Investment goods sector = 1 if the firm is in this sector.

The coefficients on import share (β3) and FDI share (β5) were of particular interest. The ob-
jectives of the study were the empirical investigation of innovation and the methodological
development of an estimator that could obviate computing the five-variate normal probabil-
ities necessary for a full maximum likelihood estimation of the model.

Table 17.20 presents the single-equation, pooled probit model estimates.44 Given the
structure of the model, the parameter vector could be estimated consistently with any single
period’s data. Hence, pooling the observations, which produces a mixture of the estimators,
will also be consistent. Given the panel data nature of the data set, however, the conventional
standard errors from the pooled estimator are dubious. Because the marginal distribution

44We are grateful to the authors of this study who have generously loaned us their data for our continued
analysis. The data are proprietary and cannot be made publicly available, unlike the other data sets used in
our examples.
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TABLE 17.21 Estimated Constrained Multivariate Probit Model (estimated
standard errors in parentheses)

Full Maximum Likelihood Random Effects
Coefficients Using GHK Simulator ρ = 0.578 (0.0189)

Constant −1.797∗∗ (0.341) −2.839 (0.534)
ln Sales 0.154∗∗ (0.0334) 0.245 (0.0523)
Relative size 0.953∗∗ (0.160) 1.522 (0.259)
Imports 1.155∗∗ (0.228) 1.779 (0.360)
FDI 2.426∗∗ (0.573) 3.652 (0.870)
Productivity −1.578 (1.216) −2.307 (1.911)
Raw material −0.292∗∗ (0.130) −0.477 (0.202)
Investment goods 0.224∗∗ (0.0605) 0.331 (0.0952)
log-likelihood −3,522.85 −3,535.55

Estimated Correlations

1984, 1985 0.460∗∗ (0.0301)
1984, 1986 0.599∗∗ (0.0323)
1985, 1986 0.643∗∗ (0.0308)
1984, 1987 0.540∗∗ (0.0308)
1985, 1987 0.546∗∗ (0.0348)
1986, 1987 0.610∗∗ (0.0322)
1984, 1988 0.483∗∗ (0.0364)
1985, 1988 0.446∗∗ (0.0380)
1986, 1988 0.524∗∗ (0.0355)
1987, 1988 0.605∗∗ (0.0325)

∗Indicates significant at 95 percent level,
∗∗ Indicates significant at 99 percent level based on a two-tailed test.

will produce a consistent estimator of the parameter vector, this is a case in which the
cluster estimator (see Section 14.8.4) provides an appropriate asymptotic covariance matrix.
Note that the standard errors in column SE(4) of the table are considerably higher than the
uncorrected ones in columns 1–3.

The pooled estimator is consistent, so the further development of the estimator is a matter
of (1) obtaining a more efficient estimator of β and (2) computing estimates of the cross-period
correlation coefficients. The FIML estimates of the model can be computed using the GHK
simulator.45 The FIML estimates and the random effects model using the Butler and Moffit
(1982) quadrature method are reported in Table 17.21. The correlations reported are based on
the FIML estimates. Also noteworthy in Table 17.21 is the divergence of the random effects
estimates from the FIML estimates. The log-likelihood function is −3,535.55 for the random
effects model and −3,522.85 for the unrestricted model. The chi-squared statistic for the
nine restrictions of the equicorrelation model is 25.4. The critical value from the chi-squared
table for nine degrees of freedom is 16.9 for 95 percent and 21.7 for 99 percent significance,
so the hypothesis of the random effects model would be rejected.

17.6 SUMMARY AND CONCLUSIONS

This chapter has surveyed a large range of techniques for modeling a binary choice
variable. The model for choice between two outcomes provides the framework for a

45The full computation required about one hour of computing time. Computation of the single-equation
(pooled) estimators required only about 1/100 of the time reported by the authors for the same models,
which suggests that the evolution of computing technology may play a significant role in advancing the FIML
estimators.
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large proportion of the analysis of microeconomic data. Thus, we have given a very
large amount of space to this model in its own right. In addition, many issues in model
specification and estimation that appear in more elaborate settings, such as those we
will examine in the next chapter, can be formulated as extensions of the binary choice
model of this chapter. Binary choice modeling provides a convenient point to study
endogeneity in a nonlinear model, issues of nonresponse in panel data sets, and general
problems of estimation and inference with longitudinal data. The binary probit model
in particular has provided the laboratory case for theoretical econometricians such as
those who have developed methods of bias reduction for the fixed effects estimator in
dynamic nonlinear models.

We began the analysis with the fundamental parametric probit and logit models
for binary choice. Estimation and inference issues such as the computation of ap-
propriate covariance matrices for estimators and partial effects are considered here.
We then examined familiar issues in modeling, including goodness of fit and speci-
fication issues such as the distributional assumption, heteroscedasticity and missing
variables. As in other modeling settings, endogeneity of some right-hand variables
presents a substantial complication in the estimation and use of nonlinear models
such as the probit model. We examined the problem of endogenous right-hand-side
variables, and in two applications, problems of endogenous sampling. The analysis of
binary choice with panel data provides a setting to examine a large range of issues
that reappear in other applications. We reconsidered the familiar pooled, fixed and
random effects estimator estimators, and found that much of the wisdom obtained
in the linear case does not carry over to the nonlinear case. The incidental parame-
ters problem, in particular, motivates a considerable amount of effort to reconstruct
the estimators of binary choice models. Finally, we considered some multivariate ex-
tensions of the probit model. As before, the models are useful in their own right.
Once again, they also provide a convenient setting in which to examine broader issues,
such as more detailed models of endogeneity nonrandom sampling, and computation
requiring simulation.

Chapter 18 will continue the analysis of discrete choice models with three frame-
works: unordered multinomial choice, ordered choice, and models for count data. Most
of the estimation and specification issues we have examined in this chapter will reappear
in these settings.

Key Terms and Concepts

• Attributes
• Attrition bias
• Average partial effect
• Binary choice model
• Bivariate probit
• Butler and Moffitt method
• Characteristics
• Choice-based sampling
• Chow test
• Complementary log log

model

• Conditional likelihood
function

• Control function
• Event count
• Fixed effects model
• Generalized residual
• Goodness of fit

measure
• Gumbel model
• Heterogeneity
• Heteroscedasticity

• Incidental parameters
problem

• Index function model
• Initial conditions
• Interaction effect
• Inverse probability

weighted (IPW)
• Lagrange multiplier test
• Latent regression
• Likelihood equations
• Likelihood ratio test
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• Linear probability model
• Logit
• Marginal effects
• Maximum likelihood
• Maximum simulated

likelihood (MSL)
• Method of scoring
• Microeconometrics
• Minimal sufficient statistic
• Multinomial choice
• Multivariate probit model

• Nonresponse bias
• Ordered choice model
• Persistence
• Probit
• Quadrature
• Qualitative response (QR)
• Quasi-maximum likelihood

estimator (QMLE)
• Random effects model
• Random parameters logit

model

• Random utility model
• Recursive model
• Robust covariance

estimation
• Sample selection bias
• Selection on unobservables
• State dependence
• Tetrachoric correlation
• Unbalanced sample

Exercises

1. A binomial probability model is to be based on the following index function model:

y∗ = α + βd + ε,

y = 1, if y∗ > 0,

y = 0 otherwise.

The only regressor, d, is a dummy variable. The data consist of 100 observations
that have the following:

y

0 1
0 24 28

d
1 32 16

Obtain the maximum likelihood estimators of α and β, and estimate the asymptotic
standard errors of your estimates. Test the hypothesis that β equals zero by using a
Wald test (asymptotic t test) and a likelihood ratio test. Use the probit model and
then repeat, using the logit model. Do your results change? (Hint: Formulate the
log-likelihood in terms of α and δ = α + β.)

2. Suppose that a linear probability model is to be fit to a set of observations on a
dependent variable y that takes values zero and one, and a single regressor x that
varies continuously across observations. Obtain the exact expressions for the least
squares slope in the regression in terms of the mean(s) and variance of x, and
interpret the result.

3. Given the data set

y 1 0 0 1 1 0 0 1 1 1
x 9 2 5 4 6 7 3 5 2 6

,

estimate a probit model and test the hypothesis that x is not influential in determin-
ing the probability that y equals one.

4. Construct the Lagrange multiplier statistic for testing the hypothesis that all the
slopes (but not the constant term) equal zero in the binomial logit model. Prove
that the Lagrange multiplier statistic is nR2 in the regression of (yi = p) on the x’s,
where p is the sample proportion of 1s.
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5. The following hypothetical data give the participation rates in a particular type of
recycling program and the number of trucks purchased for collection by 10 towns
in a small mid-Atlantic state:

Town 1 2 3 4 5 6 7 8 9 10

Trucks 160 250 170 365 210 206 203 305 270 340
Participation% 11 74 8 87 62 83 48 84 71 79

The town of Eleven is contemplating initiating a recycling program but wishes to
achieve a 95 percent rate of participation. Using a probit model for your analysis,
a. How many trucks would the town expect to have to purchase to achieve its goal?

(Hint: You can form the log-likelihood by replacing yi with the participation rate
(for example, 0.11 for observation 1) and (1 − yi ) with 1—the rate in (17-16).

b. If trucks cost $20,000 each, then is a goal of 90 percent reachable within a budget
of $6.5 million? (That is, should they expect to reach the goal?)

c. According to your model, what is the marginal value of the 301st truck in terms
of the increase in the percentage participation?

6. A data set consists of n = n1 + n2 + n3 observations on y and x. For the first n1

observations, y = 1 and x = 1. For the next n2 observations, y = 0 and x = 1. For
the last n3 observations, y = 0 and x = 0. Prove that neither (17-18) nor (17-20)
has a solution.

7. Prove (17-29).
8. In the panel data models estimated in Section 17.4, neither the logit nor the probit

model provides a framework for applying a Hausman test to determine whether
fixed or random effects is preferred. Explain. (Hint: Unlike our application in the
linear model, the incidental parameters problem persists here.)

Applications

1. Appendix Table F17.2 provides Fair’s (1978) Redbook survey on extramarital af-
fairs. The data are described in Application 1 at the end of Chapter 18 and in
Appendix F. The variables in the data set are as follows:

id = an identification number
C = constant, value = 1

yrb = a constructed measure of time spent in extramarital affairs
v1 = a rating of the marriage, coded 1 to 4
v2 = age, in years, aggregated
v3 = number of years married
v4 = number of children, top coded at 5
v5 = religiosity, 1 to 4, 1 = not, 4 = very
v6 = education, coded 9, 12, 14, 16, 17, 20
v7 = occupation
v8 = husband’s occupation

and three other variables that are not used. The sample contains a survey of
6,366 married women, conducted by Redbook magazine. For this exercise, we will
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analyze, first, the binary variable

A= 1 if yrb > 0, 0 otherwise.

The regressors of interest are v1 to v8; however, not necessarily all of them belong
in your model. Use these data to build a binary choice model for A. Report all
computed results for the model. Compute the marginal effects for the variables
you choose. Compare the results you obtain for a probit model to those for a logit
model. Are there any substantial differences in the results for the two models?
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DISCRETE CHOICES
AND EVENT COUNTS

Q
18.1 INTRODUCTION

Chapter 17 presented most of the econometric issues that arise in analyzing discrete
dependent variables, including specification, estimation, inference, and a variety of vari-
ations on the basic model. All of these were developed in the context of a model of
binary choice, the choice between two alternatives. This chapter will use those results
in extending the choice model to three specific settings:

Multinomial Choice: The individual chooses among more than two choices, once
again, making the choice that provides the greatest utility. Applications include the
choice among political candidates, how to commute to work, where to live, or what
brand of car, appliance, or food product to buy.

Ordered Choice: The individual reveals the strength of their preferences with respect
to a single outcome. Familiar cases involve survey questions about strength of feelings
regarding a particular commodity such as a movie, a book, or a consumer product,
or self-assessments of social outcomes such as health in general or self-assessed well-
being. Although preferences will probably vary continuously in the space of individual
utility, the expression of those preferences for purposes of analyses is given in a discrete
outcome on a scale with a limited number of choices, such as the typical five-point scale
used in marketing surveys.

Event Counts: The observed outcome is a count of the number of occurrences. In
many cases, this is similar to the preceding settings in that the “dependent variable”
measures an individual choice, such as the number of visits to the physician or the
hospital, the number of derogatory reports in one’s credit history, or the number of
visits to a particular recreation site. In other cases, the event count might be the out-
come of some less focused natural process, such as incidence of a disease in a population
or the number of defects per unit of time in a production process, the number of traffic
accidents that occur at a particular location per month, or the number of messages that
arrive at a switchboard per unit of time over the course of a day. In this setting, we will
be doing a more familiar sort of regression modeling.

Most of the methodological underpinnings needed to analyze these cases were
presented in Chapter 17. In this chapter, we will be able to develop variations on
these basic model types that accommodate different choice situations. As in Chap-
ter 17, we are focused on discrete outcomes, so the analysis is framed in terms of models
of the probabilities attached to those outcomes.

800
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18.2 MODELS FOR UNORDERED
MULTIPLE CHOICES

Some studies of multiple-choice settings include the following:

1. Hensher (1986, 1991), McFadden (1974), and many others have analyzed the travel
mode of urban commuters. In Greene (2007b), Hensher and Greene analyze com-
muting between Sydney and Melbourne by a sample of individuals who choose
among air, train, bus, and car as the mode of travel.

2. Schmidt and Strauss (1975a, b) and Boskin (1974) have analyzed occupational
choice among multiple alternatives.

3. Rossi and Allenby (1999, 2003) studied consumer brand choices in a repeated
choice (panel data) model.

4. Train (2003) studied the choice of electricity supplier by a sample of California
electricity customers.

5. Hensher, Rose, and Greene (2006) analyzed choices of automobile models by a
sample of consumers offered a hypothetical menu of features.

In each of these cases, there is a single decision among two or more alternatives. In
this and the next section, we will encounter two broad types of multinomial choice
sets, unordered choices and ordered choices. All of the choice sets listed above are
unordered. In contrast, a bond rating or a preference scale is, by design, a ranking; that
is, its purpose. Quite different techniques are used for the two types of models. We will
examined models for ordered choices in Section 18.3. This section will examine models
for unordered choice sets. General references on the topics discussed here include
Hensher, Louviere, and Swait (2000), Train (2009), and Hensher, Rose, and Greene
(2006).

18.2.1 RANDOM UTILITY BASIS OF THE MULTINOMIAL
LOGIT MODEL

Unordered choice models can be motivated by a random utility model. For the ith
consumer faced with J choices, suppose that the utility of choice j is

Uij = z′
ijθ + εij.

If the consumer makes choice j in particular, then we assume that Uij is the maximum
among the J utilities. Hence, the statistical model is driven by the probability that choice
j is made, which is

Prob(Uij > Uik) for all other k �= j.

The model is made operational by a particular choice of distribution for the disturbances.
As in the binary choice case, two models are usually considered, logit and probit. Be-
cause of the need to evaluate multiple integrals of the normal distribution, the probit
model has found rather limited use in this setting. The logit model, in contrast, has been
widely used in many fields, including economics, market research, politics, finance, and
transportation engineering. Let Yi be a random variable that indicates the choice made.
McFadden (1974a) has shown that if (and only if) the J disturbances are independent
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and identically distributed with Gumbel (type 1 extreme value) distributions,

F(εij) = exp(−exp(−εij)), (18-1)

then

Prob(Yi = j) = exp(z′
ijθ)

∑J
j=1 exp(z′

ijθ)
, (18-2)

which leads to what is called the conditional logit model. (lt is often labeled the multi-
nomial logit model, but this wording conflicts with the usual name for the model dis-
cussed in the next section, which differs slightly. Although the distinction turns out to
be purely artificial, we will maintain it for the present.)

Utility depends on zij, which includes aspects specific to the individual as well as to
the choices. It is useful to distinguish them. Let zij = [xij, wi ] and partition θ conformably
into [β ′, α′]′. Then xij varies across the choices and possibly across the individuals as
well. The components of xij are typically called the attributes of the choices. But, wi

contains the characteristics of the individual and is, therefore, the same for all choices.
If we incorporate this fact in the model, then (18-2) becomes

Prob(Yi = j) = exp(x′
ijβ + w′

iα)
∑J

j=1 exp(x′
ijβ + w′

iα)
= exp(x′

ijβ) exp(w′
iα)[∑J

j=1 exp(x′
ijβ)

]
exp(w′

iα)
. (18-3)

Terms that do not vary across alternatives—that is, those specific to the individual—fall
out of the probability. This is as expected in a model that compares the utilities of the
alternatives.

For example, in a model of a shopping center choice by individuals in various cities
that depends on the number of stores at the mall, Sij, the distance from the central
business district, Dij and the shoppers’ incomes, Ii , the utilities for three choices would
be

Ui1 = Di1β1 + Si1β2 + α + γ Ii + εi1;
Ui2 = Di2β1 + Si2β2 + α + γ Ii + εi2;
Ui3 = Di3β1 + Si3β2 + α + γ Ii + εi3.

The choice of alternative 1, for example, reveals that

Ui1 − Ui2 = (Di1 − Di2)β1 + (Si1 − Si2)β2 + (εi1 − εi2) > 0 and

Ui1 − Ui3 = (Di1 − Di3)β1 + (Si1 − Si3)β2 + (εi1 − εi3) > 0.

The constant term and Income have fallen out of the comparison. The result follows
from the fact that random utility model is ultimately based on comparisons of pairs of
alternatives, not the alternatives themselves. Evidently, if the model is to allow individ-
ual specific effects, then it must be modified. One method is to create a set of dummy
variables (alternative specific constants), Aj , for the choices and multiply each of them
by the common w. We then allow the coefficients on these choice invariant character-
istics to vary across the choices instead of the characteristics. Analogously to the linear
model, a complete set of interaction terms creates a singularity, so one of them must be
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dropped. For this example, the matrix of attributes and characteristics would be

Zi =

⎡
⎢⎣

Si1 Di1 1 0 Ii 0

Si2 Di2 0 1 0 Ii

Si3 Di3 0 0 0 0

⎤
⎥⎦

The probabilities for this model would be

Prob(Yi = j |Z i ) =

exp

⎛
⎝

Storesij β1 + Distanceij β2

A1α1 + A2α2 + A3α3

A1 Incomeiγ1 + A2 Incomeiγ2 + A3 Incomeiγ3

⎞
⎠

∑3
j=1 exp

⎛
⎝

Storesij β1 + Distanceij β2

A1α1 + A2α2 + A3α3

A1 Incomeiγ1 + A2 Incomeiγ2 + A3 Incomeiγ3

⎞
⎠

, α3 = γ3 = 0.

18.2.2 THE MULTINOMIAL LOGIT MODEL

To set up the model that applies when data are individual specific, it will help to con-
sider an example. Schmidt and Strauss (1975a, b) estimated a model of occupational
choice based on a sample of 1,000 observations drawn from the Public Use Sample for
three years: l960, 1967, and 1970. For each sample, the data for each individual in the
sample consist of the following:

1. Occupation: 0 = menial, 1 = blue collar, 2 = craft, 3 = white collar, 4 = professional.
(Note the slightly different numbering convention, starting at zero, which is
standard.)

2. Characteristics: constant, education, experience, race, sex.

The model for occupational choice is

Prob(Yi = j | wi ) = exp(w′
iα j )∑4

j=0 exp(w′
iα j )

, j = 0, 1, . . . , 4. (18-4)

(The binomial logit model in Section 17.3 is conveniently produced as the special case
of J = 1.)

The model in (18-4) is a multinomial logit model.1 The estimated equations provide
a set of probabilities for the J + 1 choices for a decision maker with characteristics
wi . Before proceeding, we must remove an indeterminacy in the model. If we define
α∗

j = α j +q for any vector q, then recomputing the probabilities in (18-4) usingα∗
j instead

of α j produces the identical set of probabilities because all the terms involving q drop
out. A convenient normalization that solves the problem is α0 = 0. (This arises because
the probabilities sum to one, so only J parameter vectors are needed to determine the
J + 1 probabilities.) Therefore, the probabilities are

Prob(Yi = j | wi ) = Pij = exp(w′
iα j )

1 + ∑J
k=1 exp(w′

iαk)
, j = 0, 1, . . . , J. (18-5)

1Nerlove and Press (1973).



Greene-2140242 book January 19, 2011 21:23

804 PART IV ✦ Cross Sections, Panel Data, and Microeconometrics

The form of the binomial model examined in Section 17.3 results if J = 1. The model
implies that we can compute J log-odds

ln
[

Pij

Pik

]
= w′

i (α j − αk) = w′
iα j if k = 0.

From the point of view of estimation, it is useful that the odds ratio, Pij/Pik, does not
depend on the other choices, which follows from the independence of the disturbances
in the original model. From a behavioral viewpoint, this fact is not very attractive. We
shall return to this problem in Section 18.2.4.

The log-likelihood can be derived by defining, for each individual, dij = 1 if alter-
native j is chosen by individual i , and 0 if not, for the J + 1 possible outcomes. Then,
for each i , one and only one of the dij’s is 1. The log-likelihood is a generalization of
that for the binomial probit or logit model:

ln L =
n∑

i=1

J∑
j=0

dij ln Prob(Yi = j | wi ).

The derivatives have the characteristically simple form

∂ ln L
∂α j

=
n∑

i=1

(dij − Pij)wi for j = 1, . . . , J.

The exact second derivatives matrix has J 2 K × K blocks,2

∂2 ln L
∂α j∂α′

l
= −

n∑
i=1

Pij[1( j = l) − Pil]wi w′
i ,

where 1( j = l) equals 1 if j equals l and 0 if not. Because the Hessian does not involve
dij, these are the expected values, and Newton’s method is equivalent to the method
of scoring. It is worth noting that the number of parameters in this model proliferates
with the number of choices, which is inconvenient because the typical cross section
sometimes involves a fairly large number of regressors.

The coefficients in this model are difficult to interpret. It is tempting to associate α j

with the jth outcome, but that would be misleading. By differentiating (18-5), we find
that the partial effects of the characteristics on the probabilities are

δij = ∂ Pij

∂wi
= Pij

[
α j −

J∑
k=0

Pik αk

]
= Pij[α j − ᾱ]. (18-6)

Therefore, every subvector of α enters every partial effect, both through the probabili-
ties and through the weighted average that appears in δij. These values can be computed
from the parameter estimates. Although the usual focus is on the coefficient estimates,
equation (18-6) suggests that there is at least some potential for confusion. Note, for
example, that for any particular wik, ∂Pij/∂wik need not have the same sign as αjk. Stan-
dard errors can be estimated using the delta method. (See Section 4.4.4.) For pur-
poses of the computation, let α = [0, α′

1, α
′
2, . . . , α

′
J ]′. We include the fixed 0 vector for

outcome 0 because although α0 = 0, δi0 = −Pi0 ᾱ, which is not 0. Note as well that

2If the data were in the form of proportions, such as market shares, then the appropriate log-likelihood and
derivatives are �i � j ni ln pij and �i � j ni (pij − Pij)wi , respectively. The terms in the Hessian are multiplied
by ni .
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Asy. Cov[α̂0, α̂ j ] = 0 for j = 0, . . . , J . Then

Asy. Var[δ̂ij] =
J∑

l=0

J∑
m=0

(
∂δij

∂α′
l

)
Asy. Cov[α̂′

l , α̂
′
m]

(
∂δ′

ij

∂αm

)
,

∂δij

∂α′
l

= [1( j = l) − Pil][PijI + δijw′
i ] − Pij[δilw′

i ].

Finding adequate fit measures in this setting presents the same difficulties as in
the binomial models. As before, it is useful to report the log-likelihood. If the model
contains no covariates and no constant term, then the log-likelihood will be

ln Lc =
J∑

j=0

nj ln
(

1
J + 1

)
,

where nj is the number of individuals who choose outcome j . If the characteristic vector
includes only a constant term, then the restricted log-likelihood is

ln L0 =
J∑

j=0

nj ln
(nj

n

)
=

J∑
j=0

nj ln pj ,

where pj is the sample proportion of observations that make choice j . A useful table
will give a listing of hits and misses of the prediction rule “predict Yi = j if P̂ij is the
maximum of the predicted probabilities.”3

Example 18.1 Hollingshead Scale of Occupations
Fair’s (1977) study of extramarital affairs is based on a cross section of 601 responses to a
survey by Psychology Today. One of the covariates is a category of occupations on a seven-
point scale, the Hollingshead (1975) scale. [See, also, Bornstein and Bradley (2003).] The
Hollingshead scale is intended to be a measure on a prestige scale, a fact which we’ll ignore
(or disagree with) for the present. The seven levels on the scale are, broadly,

1. Higher executives,
2. Managers and proprietors of medium-sized businesses,
3. Administrative personnel and owners of small businesses,
4. Clerical and sales workers and technicians,
5. Skilled manual employees,
6. Machine operators and semiskilled employees,
7. Unskilled employees.

Among the other variables in the data set are Age, Sex, and Education. The data are given
in Appendix Table F18.1. Table 18.1 lists estimates of a multinomial logit model. (We em-
phasize that the data are a self-selected sample of Psychology Today readers in 1976, so
it is unclear what contemporary population would be represented. The following serves as
an uncluttered numerical example that readers could reproduce. Note, as well, that at least
by some viewpoint, the outcome for this experiment is ordered.) The log-likelihood for the
model is −770.28141 while that for the model with only the constant terms is −982.20533.
The likelihood ratio statistic for the hypothesis that all 18 coefficients of the model are zero
is 423.85, which is far larger than the critical value of 28.87. In the estimated parameters, it
appears that only gender is consistently statistically significant. However, it is unclear how

3It is common for this rule to predict all observation with the same value in an unbalanced sample or a model
with little explanatory power. This is not a contradiction of an estimated model with many “significant”
coefficients, because the coefficients are not estimated so as to maximize the number of correct predictions.
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TABLE 18.1 Estimated Multinomial Logit Model for Occupation (t ratios in
parentheses)

α0 α1 α2 α3 α4 α5 α6

Parameters

Constant 0.0 3.1506 2.0156 −1.9849 −6.6539 −15.0779 −12.8919
(0.0) (1.14) (1.28) (−1.38) (−5.49) (−9.18) (−4.61)

Age 0.0 −0.0244 −0.0361 −0.0123 0.0038 0.0225 0.0588
(0.0) (−0.73) (−1.64) (−0.63) (0.25) (1.22) (1.92)

Sex 0.0 6.2361 4.6294 4.9976 4.0586 5.2086 5.8457
(0.0) (5.08) (4.39) (4.82) (3.98) (5.02) (4.57)

Education 0.0 −0.4391 −0.1661 0.0684 0.4288 0.8149 0.4506
(0.0) (−2.62) (−1.75) (0.79) (5.92) (8.56) (2.92)

Partial Effects

Age −0.0001 −0.0002 −0.0028 −0.0022 0.0006 0.0036 0.0011
(−.19) (−0.92) (−2.23) (−1.15) (0.23) (1.89) (1.90)

Sex −0.2149 0.0164 0.0233 0.1041 −0.1264 0.1667 0.0308
(−4.24) (1.98) (1.00) (2.87) (−2.15) (4.20) (2.35)

Education −0.0187 −0.0069 −0.0387 −0.0460 0.0278 0.0810 0.0015
(−2.22) (−2.31) (−6.29) (−5.1) (2.12) (8.61) (0.56)

to interpret the fact that Education is significant in some of the parameter vectors and not
others. The partial effects give a similarly unclear picture, though in this case, the effect can
be associated with a particular outcome. However, we note that the implication of a test of
significance of a partial effect in this model is itself ambiguous. For example, Education is
not “significant” in the partial effect for outcome 6, though the coefficient on Education in
α6 is. This is an aspect of modeling with multinomial choice models that calls for careful
interpretation by the model builder.

18.2.3 THE CONDITIONAL LOGIT MODEL

When the data consist of choice-specific attributes instead of individual-specific char-
acteristics, the natural model formulation would be

Prob(Yi = j | xi1, xi2, . . . , xiJ) = Prob(Yi = j | Xi ) = Pij = exp(x′
ijβ)

∑J
j=1 exp(x′

ijβ)
. (18-7)

Here, in accordance with the convention in the literature, we let j = 1, 2, . . . , J for a
total of J alternatives. The model is otherwise essentially the same as the multinomial
logit. Even more care will be required in interpreting the parameters, however. Once
again, an example will help to focus ideas.

In this model, the coefficients are not directly tied to the marginal effects. The
marginal effects for continuous variables can be obtained by differentiating (18-7) with
respect to a particular xm to obtain

∂Pij

∂xim
= [Pij(1( j = m) − Pim)]β, m = 1, . . . , J.

It is clear that through its presence in Pij and Pim, every attribute set xm affects all the
probabilities. Hensher (1991) suggests that one might prefer to report elasticities of the
probabilities. The effect of attribute k of choice m on Pij would be

∂ ln Pj

∂ ln xmk
= xmk[1( j = m) − Pim]βk.



Greene-2140242 book January 19, 2011 21:23

CHAPTER 18 ✦ Discrete Choices and Event Counts 807

Because there is no ambiguity about the scale of the probability itself, whether one
should report the derivatives or the elasticities is largely a matter of taste.

Estimation of the conditional logit model is simplest by Newton’s method or the
method of scoring. The log-likelihood is the same as for the multinomial logit model.
Once again, we define dij = 1 if Yi = j and 0 otherwise. Then

ln L =
n∑

i=1

J∑
j=1

dij ln Prob(Yi = j).

Market share and frequency data are common in this setting. If the data are in this form,
then the only change needed is, once again, to define dij as the proportion or frequency.

Because of the simple form of L, the gradient and Hessian have particularly con-
venient forms: Let x̄i = ∑J

j=1 Pijxij. Then,

∂ ln L
∂β

=
n∑

i=1

J∑
j=1

dij(xij − x̄i ),

(18-8)∂2 ln L
∂β∂β ′ = −

n∑
i=1

J∑
j=1

Pij(xij − x̄i )(xij − x̄i )
′,

The usual problems of fit measures appear here. The log-likelihood ratio and tab-
ulation of actual versus predicted choices will be useful. There are two possible con-
strained log-likelihoods. The model cannot contain a constant term, so the constraint
β = 0 renders all probabilities equal to 1/J . The constrained log-likelihood for this
constraint is then Lc = −n ln J . Of course, it is unlikely that this hypothesis would fail
to be rejected. Alternatively, we could fit the model with only the J − 1 choice-specific
constants, which makes the constrained log-likelihood the same as in the multinomial
logit model, ln L∗

0 = ∑
j n j ln pj where, as before, nj is the number of individuals who

choose alternative j .

18.2.4 THE INDEPENDENCE FROM IRRELEVANT
ALTERNATIVES ASSUMPTION

We noted earlier that the odds ratios in the multinomial logit or conditional logit mod-
els are independent of the other alternatives. This property is convenient as regards
estimation, but it is not a particularly appealing restriction to place on consumer behav-
ior. The property of the logit model whereby Pij/Pim is independent of the remaining
probabilities is called the independence from irrelevant alternatives (IIA).

The independence assumption follows from the initial assumption that the distur-
bances are independent and homoscedastic. Later we will discuss several models that
have been developed to relax this assumption. Before doing so, we consider a test that
has been developed for testing the validity of the assumption. Hausman and McFadden
(1984) suggest that if a subset of the choice set truly is irrelevant, then, omitting it from
the model altogether will not change parameter estimates systematically. Exclusion of
these choices will be inefficient but will not lead to inconsistency. But if the remaining
odds ratios are not truly independent from these alternatives, then the parameter esti-
mates obtained when these choices are excluded will be inconsistent. This observation



Greene-2140242 book January 19, 2011 21:23

808 PART IV ✦ Cross Sections, Panel Data, and Microeconometrics

is the usual basis for Hausman’s specification test. The statistic is

χ2 = (β̂s − β̂ f )
′[V̂s − V̂f ]−1(β̂s − β̂ f ),

where s indicates the estimators based on the restricted subset, f indicates the estimator
based on the full set of choices, and V̂s and V̂ f are the respective estimates of the
asymptotic covariance matrices. The statistic has a limiting chi-squared distribution
with K degrees of freedom.4

18.2.5 NESTED LOGIT MODELS

If the independence from irrelevant alternatives test fails, then an alternative to the
multinomial logit model will be needed. A natural alternative is a multivariate probit
model:

Uij = x′
ijβ + εij, j = 1, . . . , J, [εi1, εi2, . . . , εiJ] ∼ N[0, �]. (18-9)

We had considered this model earlier but found that as a general model of consumer
choice, its failings were the practical difficulty of computing the multinormal integral
and estimation of an unrestricted correlation matrix. Hausman and Wise (1978) point
out that for a model of consumer choice, the probit model may not be as impractical
as it might seem. First, for J choices, the comparisons implicit in Uij > Uim for m �= j
involve the J − 1 differences, ε j − εm. Thus, starting with a J -dimensional problem, we
need only consider derivatives of (J − 1)-order probabilities. Therefore, to come to a
concrete example, a model with four choices requires only the evaluation of bivariate
normal integrals, which, albeit still complicated to estimate, is well within the received
technology. For larger models, however, other specifications have proved more useful.

One way to relax the homoscedasticity assumption in the conditional logit model
that also provides an intuitively appealing structure is to group the alternatives into
subgroups that allow the variance to differ across the groups while maintaining the IIA
assumption within the groups. This specification defines a nested logit model. To fix
ideas, it is useful to think of this specification as a two- (or more) level choice problem
(although, once again, the model arises as a modification of the stochastic specification
in the original conditional logit model, not necessarily as a model of behavior). Suppose,
then, that the J alternatives can be divided into B subgroups (branches) such that the
choice set can be written

[c1, . . . , cJ ] = [(c1|1, . . . , cJ1|1), (c1|2, . . . , cJ2|2) . . . , (c1|B, . . . , cJB|B)].

Logically, we may think of the choice process as that of choosing among the B choice
sets and then making the specific choice within the chosen set. This method produces
a tree structure, which for two branches and, say, five choices (twigs) might look as
follows:

Choice

Branch1 Branch2

c1 | 1 c2 | 1 c1 | 2 c2 | 2 c3 | 2

4McFadden (1987) shows how this hypothesis can also be tested using a Lagrange multiplier test.
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Suppose as well that the data consist of observations on the attributes of the choices
xij|b and attributes of the choice sets zib.

To derive the mathematical form of the model, we begin with the unconditional
probability

Prob[twigj, branchb] = Pijb = exp(x′
ij|bβ + z′

ibγ )
∑B

b=1

∑Jb
j=1 exp(x′

ij|bβ + z′
ibγ )

.

Now write this probability as

Pijb = Pij|b Pb

=
(

exp(x′
ij|bβ)

∑Jb
j=1 exp(x′

ij|bβ)

) (
exp(z′

ibγ )∑L
l=1 exp(z′

ibγ )

) (∑Jb
j=1 exp(x′

ij|bβ)
) (∑L

l=1 exp(z′
ibγ )

)
(∑L

l=1

∑Jl
j=1 exp(x′

ij|bβ + z′
ibγ )

) .

Define the inclusive value for the lth branch as

IVib = ln

⎛
⎝

Jb∑
j=1

exp(x′
ij|bβ)

⎞
⎠ .

Then, after canceling terms and using this result, we find

Pij|b = exp(x′
ij|bβ)

∑Jb
j=1 exp(x′

ij|bβ)
and Pb = exp[τb(z′

ibγ + IVib)]∑B
b=1 exp[τb(z′

ibγ + IVib)]
,

where the new parameters τl must equal 1 to produce the original model. Therefore,
we use the restriction τl = 1 to recover the conditional logit model, and the preceding
equation just writes this model in another form. The nested logit model arises if this
restriction is relaxed. The inclusive value coefficients, unrestricted in this fashion, allow
the model to incorporate some degree of heteroscedasticity. Within each branch, the
IIA restriction continues to hold. The equal variance of the disturbances within the jth
branch are now5

σ 2
b = π2

6τb
. (18-10)

With τ j = 1, this reverts to the basic result for the multinomial logit model.
As usual, the coefficients in the model are not directly interpretable. The derivatives

that describe covariation of the attributes and probabilities are

∂ ln Prob[choice = m, branch = b]
∂x(k) in choice M and branch B

= {1(b = B)[1(m = M ) − PM|B] + τB[1(b = B) − PB]PM | B}βk.

The nested logit model has been extended to three and higher levels. The complexity
of the model increases rapidly with the number of levels. But the model has been found to
be extremely flexible and is widely used for modeling consumer choice in the marketing
and transportation literatures, to name a few.

5See Hensher, Louviere, and Swaite (2000). See Greene and Hensher (2002) for alternative formulations of
the nested logit model.
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There are two ways to estimate the parameters of the nested logit model. A limited
information, two-step maximum likelihood approach can be done as follows:

1. Estimate β by treating the choice within branches as a simple conditional logit
model.

2. Compute the inclusive values for all the branches in the model. Estimate γ and the
τ parameters by treating the choice among branches as a conditional logit model
with attributes zib and Iib.

Because this approach is a two-step estimator, the estimate of the asymptotic covariance
matrix of the estimates at the second step must be corrected. [See Section 14.7 and
McFadden (1984).] For full information maximum likelihood (FIML) estimation of the
model, the log-likelihood is

ln L =
n∑

i=1

ln[Prob(twig | branch)i × Prob(branch)i ].

[See Hensher (1986, 1991) and Greene (2007a).] The information matrix is not block
diagonal in β and (γ , τ ), so FIML estimation will be more efficient than two-step esti-
mation. The FIML estimator is now available in several commercial computer packages.
The two-step estimator is rarely used in current research.

To specify the nested logit model, it is necessary to partition the choice set into
branches. Sometimes there will be a natural partition, such as in the example given
by Maddala (1983) when the choice of residence is made first by community, then by
dwelling type within the community. In other instances, however, the partitioning of
the choice set is ad hoc and leads to the troubling possibility that the results might be
dependent on the branches so defined. (Many studies in this literature present several
sets of results based on different specifications of the tree structure.) There is no well
defined testing procedure for discriminating among tree structures, which is a problem-
atic aspect of the model.

18.2.6 THE MULTINOMIAL PROBIT MODEL

A natural alternative model that relaxes the independence restrictions built into the
multinomial logit (MNL) model is the multinomial probit model (MNP). The structural
equations of the MNP model are

Uij = x′
ijβ + εij, j = 1, . . . , J, [εi1, εi2, . . . , εiJ] ∼ N[0, �].

The term in the log-likelihood that corresponds to the choice of alternative q is

Prob[choiceiq] = Prob[Uiq > Uij, j = 1, . . . , J, j �= q].

The probability for this occurrence is

Prob[choicei q] = Prob[εi1 − εiq < (xiq − xi1)
′β, . . . , εiJ − εiq < (xiq − xiJ)

′β]

for the J − 1 other choices, which is a cumulative probability from a (J − 1)-variate
normal distribution. Because we are only making comparisons, one of the variances
in this J − 1 variate structure—that is, one of the diagonal elements in the reduced
�—must be normalized to 1.0. Because only comparisons are ever observable in this
model, for identification, J −1 of the covariances must also be normalized, to zero. The
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MNP model allows an unrestricted (J − 1) × (J − 1) correlation structure and J − 2
free standard deviations for the disturbances in the model. (Thus, a two-choice model
returns to the univariate probit model of Section 17.2.) For more than two choices, this
specification is far more general than the MNL model, which assumes that � = I. (The
scaling is absorbed in the coefficient vector in the MNL model.) It adds the unrestricted
correlations to the heteroscedastic model of the previous section.

The main obstacle to implementation of the MNP model has been the difficulty in
computing the multivariate normal probabilities for any dimensionality higher than 2.
Recent results on accurate simulation of multinormal integrals, however, have made
estimation of the MNP model feasible. (See Section 15.6.2.b and a symposium in the
November 1994 issue of the Review of Economics and Statistics.) Yet some practical
problems remain. Computation is exceedingly time consuming. It is also necessary to
ensure that � remain a positive definite matrix. One way often suggested is to construct
the Cholesky decomposition of �, LL′, where L is a lower triangular matrix, and es-
timate the elements of L. The normalizations and zero restrictions can be imposed by
making the last row of the J × J matrix � equal (0, 0, . . . , 1) and using LL′ to create
the upper (J − 1)× (J − 1) matrix. The additional normalization restriction is obtained
by imposing L11 = 1.

Identification appears to be a serious problem with the MNP model. Although
the unrestricted MNP model is fully identified in principle, convergence to satisfactory
results in applications with more than three choices appears to require many additional
restrictions on the standard deviations and correlations, such as zero restrictions or
equality restrictions in the case of the standard deviations.

18.2.7 THE MIXED LOGIT MODEL

Another variant of the multinomial logit model is the random parameters logit model
(RPL) (also called the mixed logit model). [See Revelt and Train (1996); Bhat (1996);
Berry, Levinsohn, and Pakes (1995); Jain, Vilcassim, and Chintagunta (1994); and
Hensher and Greene (2004).] Train’s (2003) formulation of the RPL model (which
encompasses the others) is a modification of the MNL model. The model is a random
coefficients formulation. The change to the basic MNL model is the parameter specifi-
cation in the distribution of the parameters across individuals, i :

βik = βk + z′
iθk + σkuik, (18-11)

where uik, k = 1, . . . , K, is multivariate normally distributed with correlation matrix
R, σk is the standard deviation of the kth distribution, βk + z′

iθk is the mean of the
distribution, and zi is a vector of person specific characteristics (such as age and income)
that do not vary across choices. This formulation contains all the earlier models. For
example, if θk = 0 for all the coefficients and σk = 0 for all the coefficients except for
choice-specific constants, then the original MNL model with a normal-logistic mixture
for the random part of the MNL model arises (hence the name).

The model is estimated by simulating the log-likelihood function rather than direct
integration to compute the probabilities, which would be infeasible because the mix-
ture distribution composed of the original εij and the random part of the coefficient is
unknown. For any individual,

Prob[choice q | ui ] = MNL probability | βi (ui ),
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with all restrictions imposed on the coefficients. The appropriate probability is

Eu[Prob(choice q | u)] =
∫

u1,...,uk

Prob[choice q | u] f (u)du,

which can be estimated by simulation, using

Est. Eu[Prob(choice q | u)] = 1
R

R∑
r=1

Prob[choice q | β i (uir)],

where uir is the r th of R draws for observation i . (There are nkR draws in total. The
draws for observation i must be the same from one computation to the next, which can
be accomplished by assigning to each individual their own seed for the random number
generator and restarting it each time the probability is to be computed.) By this method,
the log-likelihood and its derivatives with respect to (βk, θk, σk), k = 1, . . . , K and R
are simulated to find the values that maximize the simulated log-likelihood.

The mixed model enjoys two considerable advantages not available in any of the
other forms suggested. In a panel data or repeated-choices setting (see Section 18.2.11),
one can formulate a random effects model simply by making the variation in the coef-
ficients time invariant. Thus, the model is changed to

Uijt = x′
ijtβ it + εijt, i = 1, . . . , n, j = 1, . . . , J, t = 1, . . . , T,

βit,k = βk + z′
itθk + σkuik.

The time variation in the coefficients is provided by the choice-invariant variables, which
may change through time. Habit persistence is carried by the time-invariant random
effect, uik. If only the constant terms vary and they are assumed to be uncorrelated,
then this is logically equivalent to the familiar random effects model. But, much greater
generality can be achieved by allowing the other coefficients to vary randomly across
individuals and by allowing correlation of these effects.6 A second degree of flexibility
is in (18-11). The random components, ui are not restricted to normality. Other distribu-
tions that can be simulated will be appropriate when the range of parameter variation
consistent with consumer behavior must be restricted, for example to narrow ranges or
to positive values.

18.2.8 A GENERALIZED MIXED LOGIT MODEL

The development of functional forms for multinomial choice models begins with the
conditional (now usually called the multinomial) logit model that we considered in
Section 18.2.3. Subsequent proposals including the multinomial probit and nested logit
models (and a wide range of variations on these themes) were motivated by a desire to
extend the model beyond the IIA assumptions. These were achieved by allowing corre-
lation across the utility functions or heteroscedasticity such as that in the heteroscedastic
extreme value model in (18-12). That issue has been settled in the current generation
of multinomial choice models, culminating with the mixed logit model that appears to
provide all the flexibility needed to depart from the IIA assumptions. [See McFadden
and Train (2000) for a strong endorsement of this idea.]

6See Hensher (2001) for an application to transportation mode choice in which each individual is observed in
several choice situations. A stated choice experiment in which consumers make several choices in sequence
about automobile features appears in Hensher, Rose, and Greene (2006).
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Recent research in choice modeling has focused on enriching the models to ac-
commodate individual heterogeneity in the choice specification. To a degree, including
observable characteristics, such as household income in our application to follow, serves
this purpose. In this case, the observed heterogeneity enters the deterministic part of
the utility functions. The heteroscedastic HEV model shown in (18-13) moves the ob-
servable heterogeneity to the scaling of the utility function instead of the mean. The
mixed logit model in (18-11) accommodates both observed and unobserved hetero-
geneity in the preference parameters. A recent thread of research including Keane
(2006), Feibig, Keane, Louviere, and Wasi (2009), and Greene and Hensher (2010) has
considered functional forms that accommodate individual heterogeneity in both taste
parameters (marginal utilities) and overall scaling of the preference structure. Feibig
et al.’s generalized mixed logit model is

Ui, j = x′
ijβ i + εij,

β i = σiβ + [γ + σi (1 − γ )]vi

σi = exp[σ̄ + τwi ]

where 0 ≤ γ ≤ 1 and wi is an additional source of unobserved random variation in
preferences. In this formulation, the weighting parameter, γ , distributes the individual
heterogeneity in the preference weights, vi and the overall scaling parameter σi . Hetero-
geneity across individuals in the overall scaling of preference structures is introduced by
a nonzero τ while σ̄ is chosen so that Ew[σi ] = 1. Greene and Hensher (2010) proposed
including the observable heterogeneity already in the mixed logit model, and adding it
to the scaling parameter as well. Also allowing the random parameters to be correlated
(via the nonzero elements in 	), produces a multilayered form of the generalized mixed
logit model,

β i = σi [β + 
zi ] + [γ + σi (1 − γ )]	vi

σi = exp[σ̄ + δ′hi + τwi ].

Ongoing research has continued to produce refinements that will accommodate realistic
forms of individual heterogeneity in the basic multinomial logit framework.

18.2.9 APPLICATION: CONDITIONAL LOGIT MODEL
FOR TRAVEL MODE CHOICE

Hensher and Greene [Greene (2007a)] report estimates of a model of travel mode
choice for travel between Sydney and Melbourne, Australia. The data set contains 210
observations on choice among four travel modes, air, train, bus, and car. (See Appendix
Table F18.2.) The attributes used for their example were: choice-specific constants; two
choice-specific continuous measures; GC, a measure of the generalized cost of the travel
that is equal to the sum of in-vehicle cost, INVC, and a wagelike measure times INVT, the
amount of time spent traveling; and TTME, the terminal time (zero for car); and for the
choice between air and the other modes, HINC, the household income. A summary of
the sample data is given in Table 18.2. The sample is choice based so as to balance it
among the four choices—the true population allocation, as shown in the last column of
Table 18.2, is dominated by drivers.
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TABLE 18.2 Summary Statistics for Travel Mode Choice Data

Number True
GC TTME INVC INVT HINC Choosing p Prop.

Air 102.648 61.010 85.522 133.710 34.548 58 0.28 0.14
113.522 46.534 97.569 124.828 41.274

Train 130.200 35.690 51.338 608.286 34.548 63 0.30 0.13
106.619 28.524 37.460 532.667 23.063

Bus 115.257 41.657 33.457 629.462 34.548 30 0.14 0.09
108.133 25.200 33.733 618.833 29.700

Car 94.414 0 20.995 573.205 34.548 59 0.28 0.64
89.095 0 15.694 527.373 42.220

Note: The upper figure is the average for all 210 observations. The lower figure is the mean for the observations
that made that choice.

The model specified is

Uij = αairdi,air + αtraindi,train + αbusdi,bus + βGGCij + βTTTMEij + γHdi,airHINCi + εij,

where for each j, εij has the same independent, type 1 extreme value distribution,

Fε(εij) = exp(−exp(−εij)),

which has standard deviation π2/6. The mean is absorbed in the constants. Estimates
of the conditional logit model are shown in Table 18.3. The model was fit with and
without the corrections for choice-based sampling. Because the sample shares do not
differ radically from the population proportions, the effect on the estimated parame-
ters is fairly modest. Nonetheless, it is apparent that the choice-based sampling is not
completely innocent. A cross tabulation of the predicted versus actual outcomes is
given in Table 18.4. The predictions are generated by tabulating the integer parts of
mjk = ∑210

i=1 p̂ijdik, j, k= air, train, bus, car, where p̂ij is the predicted probability of out-
come j for observation i and dik is the binary variable which indicates if individual i
made choice k.

Are the odds ratios train/bus and car/bus really independent from the presence of
the air alternative? To use the Hausman test, we would eliminate choice air, from the
choice set and estimate a three-choice model. Because 58 respondents chose this mode,

TABLE 18.3 Parameter Estimates

Unweighted Sample Choice-Based Weighting

Estimate t Ratio Estimate t Ratio

βG −0.015501 −3.517 −0.01333 −2.711
βT −0.09612 −9.207 −0.13405 −5.216
γH 0.01329 1.295 −0.00108 −0.097
αair 5.2074 6.684 6.5940 4.075
αtrain 3.8690 8.731 3.6190 4.317
αbus 3.1632 7.025 3.3218 3.822
Log-likelihood at β = 0 −291.1218 −291.1218
Log-likelihood (sample shares) −283.7588 −218.9929
Log-likelihood at convergence −199.1284 −147.5896
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TABLE 18.4 Predicted Choices Based on Model Probabilities (predictions
based on choice-based sampling in parentheses)

Air Train Bus Car Total (Actual)

Air 32 (30) 8 (3) 5 (3) 13 (23) 58
Train 7 (3) 37 (30) 5 (3) 14 (27) 63
Bus 3 (1) 5 (2) 15 (14) 6 (12) 30
Car 16 (5) 13 (5) 6 (3) 25 (45) 59
Total (Predicted) 58 (39) 63 (40) 30 (23) 59 (108) 210

TABLE 18.5 Results for IIA Test

Full-Choice Set Restricted-Choice Set

βG βT αtrain αbus βG βT αtrain αbus

Estimate −0.0155 −0.0961 3.869 3.163 −0.0639 −0.0699 4.464 3.105

Estimated Asymptotic Covariance Matrix Estimated Asymptotic Covariance Matrix

βG 0.194e-4 0.000101
βT −0.46e-6 0.000109 −0.000013 0.000221
αtrain −0.00060 −0.0038 0.196 −0.00244 −0.00759 0.410
αbus −0.00026 −0.0038 0.161 0.203 −0.00113 −0.00753 0.336 0.371

Note: 0.nnne-p indicates times 10 to the negative p power.
H = 33.3367. Critical chi-squared[4] = 9.488.

we would lose 58 observations. In addition, for every data vector left in the sample,
the air-specific constant and the interaction, di,air × HINCi would be zero for every
remaining individual. Thus, these parameters could not be estimated in the restricted
model. We would drop these variables. The test would be based on the two estimators
of the remaining four coefficients in the model, [βG, βT, αtrain, αbus]. The results for the
test are as shown in Table 18.5

The hypothesis that the odds ratios for the other three choices are independent
from air would be rejected based on these results, as the chi-squared statistic exceeds
the critical value.

Because IIA was rejected, the authors estimated a nested logit model of the fol-
lowing type:

Travel Determinants

FLY GROUND (Income)

AIR TRAIN BUS CAR (G cost, T time)

Note that one of the branches has only a single choice, so the conditional prob-
ability, Pj |fly = Pair|fly = 1. The estimates marked “unconditional” in Table 18.6 are
the simple conditional (multinomial) logit (MNL) model for choice among the four
alternatives that was reported earlier. Both inclusive value parameters are constrained
(by construction) to equal 1.0000. The FIML estimates are obtained by maximizing the
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TABLE 18.6 Estimates of a Mode Choice Model (standard
errors in parentheses)

Parameter FIML Estimate Unconditional

αair 6.042 (1.199) 5.207 (0.779)
αbus 4.096 (0.615) 3.163 (0.450)
αtrain 5.065 (0.662) 3.869 (0.443)
βGC −0.03159 (0.00816) −0.1550 (0.00441)
βTTME −0.1126 (0.0141) −0.09612 (0.0104)
γH 0.01533 (0.00938) 0.01329 (0.0103)
τfly 0.5860 (0.141) 1.0000 (0.000)
τground 0.3890 (0.124) 1.0000 (0.000)
σfly 2.1886 (0.525) 1.2825 (0.000)
σground 3.2974 (1.048) 1.2825 (0.000)
ln L −193.6561 −199.1284

full log-likelihood for the nested logit model. In this model,

Prob(choice | branch) = P(αairdair + αtraindtrain + αbusdbus + βGGC + βTTTME),

Prob(branch) = P(γ dairHINC + τfly IVfly + τground IVground),

Prob(choice, branch) = Prob(choice | branch) × Prob(branch).

The likelihood ratio statistic for the nesting (heteroscedasticity) against the null hy-
pothesis of homoscedasticity is −2[−199.1284− (−193.6561)] = 10.945. The 95 percent
critical value from the chi-squared distribution with two degrees of freedom is 5.99, so
the hypothesis is rejected. We can also carry out a Wald test. The asymptotic covariance
matrix for the two inclusive value parameters is [0.01977 / 0.009621, 0.01529]. The Wald
statistic for the joint test of the hypothesis that τfly = τground = 1, is

W = (0.586 − 1.0 0.389 − 1.0)

[
0.1977 0.009621

0.009621 0.01529

]−1 (
0.586 − 1.0
0.389 − 1.0

)
= 24.475.

The hypothesis is rejected, once again.
The choice model was reestimated under the assumptions of a heteroscedastic

extreme value (HEV) specification. In its simplest form, this model allows a separate
variance,

σ 2
j = π2/

(
6θ2

j

)
(18-12)

for each εij in (18-1). (One of the θ ’s must be normalized to 1.0 because we can only
compare ratios of variances.) The results for this model are shown in Table 18.7. This
model is less restrictive than the nested logit model. To make them comparable, we note
that we found that σair = π /(τfly

√
6) = 2.1886 and σtrain = σbus = σcar = π /(τground

√
6) =

3.2974. The HEV model thus relaxes an additional restriction because it has three free
variances whereas the nested logit model has two. On the other hand, the important de-
gree of freedom is that the HEV model does not impose the IIA assumptions anywhere
in the choices, whereas the nested logit does, within each branch. Table 18.7 contains two
additional results for HEV specifications. In the one denoted “Heteroscedastic HEV
Model,” we have allowed heteroscedasticity across individuals as well as across choices
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TABLE 18.7 Estimates of a Heteroscedastic Extreme Value Model
(standard errors in parentheses)

Heteroscedastic Restricted
Parameter HEV Model HEV Model HEV Model Nested Logit Model

αair 7.8326 (10.951) 5.1815 (6.042) 2.973 (0.995) 6.062 (1.199)
αbus 7.1718 (9.135) 5.1302 (5.132) 4.050 (0.494) 4.096 (0.615)
αtrain 6.8655 (8.829) 4.8654 (5.071) 3.042 (0.429) 5.065 (0.662)
βGC −0.05156 (0.0694) −0.03326 (0.0378) −0.0289 (0.00580) −0.03159 (0.00816)
βTTME −0.1968 (0.288) −0.1372 (0.164) −0.0828 (0.00576) −0.1126 (0.0141)
γ 0.04024 (0.0607) 0.03557 (0.0451) 0.0238 (0.0186) 0.01533 (0.00938)
τfly 0.5860 (0.141)
τground 0.3890 (0.124)
θair 0.2485 (0.369) 0.2890 (0.321) 0.4959 (0.124)
θtrain 0.2595 (0.418) 0.3629 (0.482) 1.0000 (0.000)
θbus 0.6065 (1.040) 0.6895 (0.945) 1.0000 (0.000)
θcar 1.0000 (0.000) 1.0000 (0.000) 1.0000 (0.000)
φ 0.0000 (0.000) 0.00552 (0.00573) 0.0000 (0.000)

Implied Standard
Deviations

σair 5.161 (7.667)
σtrain 4.942 (7.978)
σbus 2.115 (3.623)
σcar 1.283 (0.000)
ln L −195.6605 −194.5107 −200.3791 −193.6561

by specifying
θij = θ j × exp (φHINCi ). (18-13)

[See Salisbury and Feinberg (2010) and Louviere and Swait (2010) for applications of
this type of HEV model.]

In the “Restricted HEV Model,” the variance of εi,Air is allowed to differ from the
others. Finally, the nested logit model has different variance for Air and (Train, Bus,
Car).

A primary virtue of the HEV model, the nested logit model, and other alternative
models is that they relax the IIA assumption. This assumption has implications for
the cross elasticities between attributes in the different probabilities. Table 18.8 lists
the estimated elasticities of the estimated probabilities with respect to changes in the
generalized cost variable. Elasticities are computed by averaging the individual sample
values rather than computing them once at the sample means. The implication of the IIA
assumption can be seen in the table entries. Thus, in the estimates for the multinomial
logit (MNL) model, the cross elasticities for each attribute are all equal. In the nested
logit model, the IIA property only holds within the branch. Thus, in the first column, the
effect of GC of air affects all ground modes equally, whereas the effect of GC for train
is the same for bus and car, but different from these two for air. All these elasticities
vary freely in the HEV model.

Table 18.9 lists the estimates of the parameters of the multinomial probit and ran-
dom parameters logit models. For the multinomial probit model, we fit three specifi-
cations: (1) free correlations among the choices, which implies an unrestricted 3 × 3
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TABLE 18.8 Estimated Elasticities with Respect
to Generalized Cost

Cost Is That of Alternative

Effect on Air Train Bus Car

Multinomial Logit
Air −1.136 0.498 0.238 0.418
Train 0.456 −1.520 0.238 0.418
Bus 0.456 0.498 −1.549 0.418
Car 0.456 0.498 0.238 −1.061

Nested Logit
Air −0.858 0.332 0.179 0.308
Train 0.314 −4.075 0.887 1.657
Bus 0.314 1.595 −4.132 1.657
Car 0.314 1.595 0.887 −2.498

Heteroscedastic Extreme Value
Air −1.040 0.367 0.221 0.441
Train 0.272 −1.495 0.250 0.553
Bus 0.688 0.858 −6.562 3.384
Car 0.690 0.930 1.254 −2.717

TABLE 18.9 Parameter Estimates for Normal-Based Multinomial Choice Models

Multinomial Probit Random Parameters Logit

Parameter Unrestricted Homoscedastic Uncorrelated Unrestricted Constants Uncorrelated

αair 1.358 3.005 3.171 5.519 4.807 12.603
σair 4.940 1.000a 3.629 4.009d 3.225b 2.803c

αtrain 4.298 2.409 4.277 5.776 5.035 13.504
σtrain 1.899 1.000a 1.581 1.904 1.290b 1.373
αbus 3.609 1.834 3.533 4.813 4.062 11.962
σbus 1.000a 1.000a 1.000a 1.424 3.147b 1.287
αcar 0.000a 0.000a 0.000a 0.000a 0.000a 0.000
σcar 1.000a 1.000 1.000a 1.283a 1.283a 1.283a

βG −0.0351 −0.0113 −0.0325 −0.0326 −0.0317 −0.0544
σβG — — — 0.000a 0.000a 0.00561
βT −0.0769 −0.0563 −0.0918 −0.126 −0.112 −0.2822
σβT — — — 0.000a 0.000a 0.182
γH 0.0593 0.0126 0.0370 0.0334 0.0319 0.0846
σγ — — — 0.000a 0.000a 0.0768
ρAT 0.581 0.000a 0.000a 0.543 0.000a 0.000a

ρAB 0.576 0.000a 0.000a 0.532 0.000a 0.000a

ρBT 0.718 0.000a 0.000a 0.993 0.000a 0.000a

log L −196.9244 −208.9181 −199.7623 −193.7160 −199.0073 −175.5333

aRestricted to this fixed value.
bComputed as the square root of (π2/6 + θ2

j ), θair = 2.959, θtrain = 0.136, θbus = 0.183, θcar = 0.000.
cθair = 2.492, θtrain = 0.489, θbus = 0.108, θcar = 0.000.
dDerived standard deviations for the random constants are θair = 3.798, θtrain = 1.182, θbus = 0.0712, θcar = 0.000.

correlation matrix and two free standard deviations; (2) uncorrelated disturbances,
but free standard deviations, a model that parallels the heteroscedastic extreme value
model; and (3) uncorrelated disturbances and equal standard deviations, a model that
is the same as the original conditional logit model save for the normal distribution of
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the disturbances instead of the extreme value assumed in the logit model. In this case,
the scaling of the utility functions is different by a factor of (π2/6)1/2 = 1.283, as the
probit model assumes ε j has a standard deviation of 1.0.

We also fit three variants of the random parameters logit. In these cases, the choice-
specific variance for each utility function is σ 2

j + θ2
j where σ 2

j is the contribution of the
logit model, which is π2 / 6 = 1.645, and θ2

j is the estimated constant specific variance
estimated in the random parameters model. The combined estimated standard devia-
tions are given in the table. The estimates of the specific parameters, θ j , are given in the
footnotes. The estimated models are (1) unrestricted variation and correlation among
the three intercept parameters—this parallels the general specification of the multino-
mial probit model; (2) only the constant terms randomly distributed but uncorrelated,
a model that is parallel to the multinomial probit model with no cross-equation cor-
relation and to the heteroscedastic extreme value model shown in Table 18.7 and (3)
random but uncorrelated parameters. This model is more general than the others but is
somewhat restricted as the parameters are assumed to be uncorrelated. Identification
of the correlation matrix is weak in this model—after all, we are attempting to estimate
a 6 × 6 correlation matrix for all unobserved variables. Only the estimated parameters
are shown in Table 18.9. Estimated standard errors are similar to (although generally
somewhat larger than) those for the basic multinomial logit model.

The standard deviations and correlations shown for the multinomial probit model
are parameters of the distribution of εij, the overall randomness in the model. The coun-
terparts in the random parameters model apply to the distributions of the parameters.
Thus, the full disturbance in the model in which only the constants are random is
εiair + uair for air, and likewise for train and bus. Likewise, the correlations shown
for the first two models are directly comparable, although it should be noted that in the
random parameters model, the disturbances have a distribution that is that of a sum
of an extreme value and a normal variable, while in the probit model, the disturbances
are normally distributed. With these considerations, the “unrestricted” models in each
case are comparable and are, in fact, fairly similar.

None of this discussion suggests a preference for one model or the other. The
likelihood values are not comparable, so a direct test is precluded. Both relax the IIA
assumption, which is a crucial consideration. The random parameters model enjoys
a significant practical advantage, as discussed earlier, and also allows a much richer
specification of the utility function itself. But, the question still warrants additional
study. Both models are making their way into the applied literature.

18.2.10 ESTIMATING WILLINGNESS TO PAY

One of the standard applications of choice models is to estimate how much consumers
value the attributes of the choices. Recall that we are not able to observe the scale of
the utilities in the choice model. However, we can use the marginal utility of income,
also scaled in the same unobservable way, to effect the valuation. In principle, we could
estimate

WTP = (Marginal Utility of Attribute/σ)/(Marginal Utility of Income/σ)

= (βattribute/σ)/(γIncome/σ),
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where σ is the unknown scaling of the utility functions. Note that σ cancels out of the
ratio. In our application, for example, we might assess how much consumers would be
willing to pay to have shorter waits at the terminal for the public modes of transportation
by using

WTPtime = −β
T̂TME

/γIncome.

(We use the negative because additional time spent waiting at the terminal provides
disutility, as evidenced by its coefficient’s negative sign.) In settings in which income is
not observed, researchers often use the negative of the coefficient on a cost variable
as a proxy for the marginal utility of income. Standard errors for estimates of WTP
can be computed using the delta method or the method of Krinsky and Robb. (See
Sections 4.4.4 and 15.3.)

In the basic multinomial logit model, the estimator of WTP is a simple ratio of
parameters. In our estimated model in Table 18.3, for example, using the household
income coefficient as the numeraire, the estimate of WTP for a shorter wait at the
terminal is −0.09612/0.01329 = 7.239. The units of measurement must be resolved
in this computation, since terminal time is measured in minutes while the cost is in
$1,000/year. Multiplying this result by $60 minutes/hour and dividing by the equivalent
hourly income of income times 8,760/1,000 gives $49.54 per hour of waiting time. To
compute the estimated asymptotic standard error, for convenience, we first rescaled
the terminal time to hours by dividing it by 60 and the income variable to $/hour by
multiplying it by 1,000/8,760. The resulting estimated asymptotic distribution for the
estimators is(

β̂
T̂TME

γ̂HINC

)
∼ N

[(−5.76749
0.11639

)
,

(
0.392365 0.00193095
0.00193095 0.00808177

)]
.

The derivatives of WTP
T̂TME

= −β
T̂TME

/γH are −1/γH for βTTME and –WTP/γH

for γH. This provides an estimator of 38.8304 for the standard error. The confidence
interval for this parameter would be −26.56 to +125.63. This seems extremely wide. We
will return to this issue later.

In the mixed logit model, if either of the coefficients in the computation is random,
then the preceding simple computation above will not reveal the heterogeneity in the re-
sult. In many studies of WTP using mixed logit models, it is common to allow the utility
parameter on the attribute (numerator) to be random and treat the numeraire (income
or cost coefficient) as nonrandom. Using our mode choice application, we refit the
model with β

T̂TME,i
= β

T̂TME
+ σ

T̂TME
vi and all other coefficients nonrandom. We then

used the method described in Section 15.10 to estimate E[β
T̂TME,i

|Xi , choicei ]/γH to
estimate the expected WTP for each individual in the sample. Income and terminal
time were scaled as before. Figure 18.1 displays a kernel estimator of the estimates
of WTPi by this method. Note that the distribution is roughly centered on our earlier
estimate of $49.53. The density estimator reveals the heterogeneity in the population
of this parameter.

Willingness to pay measures computed as suggested above are ultimately based
on a ratio of two asymptotically normally distributed parameter estimators. In general,
ratios of normally distributed random variables do not have a finite variance. This often
becomes apparent when using the delta method, as it seems previously. A number of
writers, notably, Daly, Hess, and Train (2009), have documented the problem of extreme
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FIGURE 18.1 Estimated Willingness to Pay for Decreased Terminal
Time.

results of WTP computations, and why they should be expected. One solution suggested,
for example, by Train and Weeks (2005), Sonnier, Ainsle, and Otter (2007), and Scarpa,
Thiene, and Train (2008), is to recast the original model in willingness to pay space. In
the multinomial logit case, this amounts to a trivial reparameterization of the model.
Using our application as an example, we would write

Uij = α j + βGC[GCi + β
T̂TME

/βGCTTMEi ] + γH AAIRHINCi + εij

= α j + βGC[GCi + λ
T̂TME

TTMEi ] + γH AAIRHINCi + εij.

This obviously returns the original model, though in the process, it transforms a linear
estimation problem into a nonlinear one. But, in principle, with the model reparame-
terized in “WTP space,” we have sidestepped the problem noted earlier – λ

T̂TME
is the

estimator of WTP with no further transformation of the parameters needed. As noted,
this will return the numerically identical results for a multinomial logit model. It will not
return the identical results for a mixed logit model, in which we write λTTME,i = λ

T̂TME
+ θ

T̂TME
v

T̂TME,i
. Greene and Hensher (2010b) apply this method to the generalized

mixed logit model in Section 18.2.8.

18.2.11 PANEL DATA AND STATED CHOICE EXPERIMENTS

Panel data in the unordered discrete choice setting typically come in the form of se-
quential choices. Train (2009, Chapter 6) reports an analysis of the site choices of 258
anglers who chose among 59 possible fishing sites for a total of 962 visits. Allenby and
Rossi (1999) modeled brand choice for a sample of shoppers who made multiple store
trips. The mixed logit model is a framework that allows the counterpart to a random
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effects model. The random utility model would appear

Uij,t = x′
ij,tβ i + εij,t,

where conditioned on β i , a multinomial logit model applies. The random coefficients
carry the common effects across choice situations. For example, if the random coeffi-
cients include choice-specific constant terms, then the random utility model becomes
essentially a random effects model. A modification of the model that resembles Mund-
lak’s correction for the random effects model is

β i = β0 + 
zi + 	ui ,

where, typically, zi would contain demographic and socioeconomic information.
The stated choice experiment is similar to the repeated choice situation, with a

crucial difference. In a stated choice survey, the respondent is asked about his or her
preferences over a series of hypothetical choices, often including one or more that are
actually available and others that might not be available (yet). Hensher, Rose, and
Greene (2006) describe a survey of Australian commuters who were asked about hypo-
thetical commutation modes in a choice set that included the one they currently took
and a variety of proposed alternatives. Revelt and Train (2000) analyzed a stated choice
experiment in which California electricity consumers were asked to choose among al-
ternative hypothetical energy suppliers. The advantage of the stated choice experiment
is that it allows the analyst to study choice situations over a range of variation of the
attributes or a range of choices that might not exist within the observed, actual out-
comes. Thus, the original work on the MNL by McFadden et al. concerned survey data
on whether commuters would ride a (then-hypothetical) underground train system to
work in the San Francisco Bay area. The disadvantage of stated choice data is that
they are hypothetical. Particularly when they are mixed with revealed preference data,
the researcher must assume that the same preference patterns govern both types of
outcomes. This is likely to be a dubious assumption. One method of accommodating
the mixture of underlying preferences is to build different scaling parameters into the
model for the stated and revealed preference components of the model. Greene and
Hensher (2007) suggested a nested logit model that groups the hypothetical choices in
one branch of a tree and the observed choices in another.

18.2.12 AGGREGATE MARKET SHARE DATA—THE BLP RANDOM
PARAMETERS MODEL

We note, finally, an important application of the mixed logit model, the structural de-
mand model of Berry, Levinsohn, and Pakes (1995). (Demand models for differenti-
ated products such as automobiles [BLP (1995), Goldberg (1995)], ready-to-eat cereals
[Nevo (2001)], and consumer electronics [Das, Olley, and Pakes (1996)], have been
constructed using the mixed logit model with market share data.7 A basic structure is
defined for

Markets, denoted t = 1, . . . , T,

Consumers in the markets, denoted i = 1, . . . , nt ,

Products, denoted j = 1, . . . , J.

7We draw heavily on Nevo (2000) for this discussion.
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The definition of a market varies by application; BLP analyzed the U.S. national auto-
mobile market for 20 years; Nevo examined a cross section of cities over 20 quarters so
the city-quarter is a market; Das et al. defined a market as the annual sales to consumers
in particular income levels.

For market t , we base the analysis on average prices, pjt, aggregate quantities qjt,
consumer incomes yi observed product attributes, xjt and unobserved (by the analyst)
product attributes, �jt. The indirect utility function for consumer i , for product j in
market t is

uijt = αi (yi − pjt) + xjt
′β i + �jt + εijt, (18-14)

where αi is the marginal utility of income and β i are marginal utilities attached to
specific observable attributes of the products. The fact that some unobservable product
attributes, �jt will be reflected in the prices implies that prices will be endogenous
in a demand model that is based on only the observable attributes. Heterogeneity in
preferences is reflected (as we did earlier) in the formulation of the random parameters,

(
αi

βi

)
=

(
α

β

)
+

(
π ′
�

)
di +

(
γ wi

	vi

)
, (18-15)

where di is a vector of demographics such as gender and age while α, β, π , �, γ , and 	

are structural parameters to be estimated (assuming they are identified). A utility func-
tion is also defined for an “outside good” that is (presumably) chosen if the consumer
chooses none of the brands, 1, . . . , J :

ui0t = αi yi + �0t + π ′
0di + εi0t .

Since there is no variation in income across the choices, αi yi will fall out of the logit
probabilities, as we saw earlier. A normalization is used instead, ui0t = εi0t , so that
comparisons of utilities are against the outside good. The resulting model can be recon-
structed by inserting (18-15) into (18-14),

uijt = αi yi + δjt(xjt, pjt, �jt : α, β) + τijt(xjt, pjt, vi , wi : π , �, γ, 	) + εijt

δjt = x′
jtβ − αpjt + �jt

τjt = [−pjt, x′
jt]

[(
π ′
�

)
di +

(
γ wi

	vi

)]
.

The preceding model defines the random utility model for consumer i in market t . Each
consumer is assumed to purchase the one good that maximizes utility. The market share
of the jth product in this market is obtained by summing over the choices made by those
consumers. With the assumption of homogeneous tastes (	 = 0 and γ = 0) and i.i.d.,
type I extreme value distributions for εijt, it follows that the market share of product
j is

sjt = exp(x′
jtβ − αpjt + �jt)

1 + ∑J
k=1 exp(x′

ktβ − αpkt + �kt )
.

The IIA assumptions produce the familiar problems of peculiar and unrealistic sub-
stitution patterns among the goods. Alternatives considered include a nested logit, a
“generalized extreme value” model and, finally, the mixed logit model, now applied to
the aggregate data.
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Estimation cannot proceed along the lines of Section 18.2.7 because �jt is unob-
served and pjt is, therefore, endogenous. BLP propose, instead to use a GMM estimator,
based on the moment equations

E{[Sjt − sjt(xjt, pjt|α, β)]zjt} = 0

for a suitable set of instruments. Layering in the random parameters specification, we
obtain an estimation based on method of simulated moments, rather than a maximum
simulated log likelihood. The simulated moments would be based on

Ew,v[sjt(xjt, pjt|αi , β i )] =
∫

w,v

{
sjt[xjt, pjt|αi (w), β i (v)]

}
dF(w) dF(v).

These would be simulated using the method of Section 18.2.7.

18.3 RANDOM UTILITY MODELS FOR ORDERED
CHOICES

The analysts at bond rating agencies such as Moody’s and Standard and Poor provide an
evaluation of the quality of a bond that is, in practice, a discrete listing of the continuously
varying underlying features of the security. The rating scales are as follows:

Rating S&P Rating Moody’s Rating

Highest quality AAA Aaa
High quality AA Aa
Upper medium quality A A
Medium grade BBB Baa
Somewhat speculative BB Ba
Low grade, speculative B B
Low grade, default possible CCC Caa
Low grade, partial recovery possible CC Ca
Default, recovery unlikely C C

For another example, Netflix (http://www.netflix.com) is an Internet company that rents
movies. Subscribers order the film online for download or home delivery of a DVD.
The next time the customer logs onto the Web site, they are invited to rate the movie
on a five-point scale, where five is the highest, most favorable rating. The ratings of
the many thousands of subscribers who rented that movie are averaged to provide a
recommendation to prospective viewers. As of April 5, 2009, the average rating of the
2007 movie National Treasure: Book of Secrets given by approximately 12,900 visitors
to the site was 3.8. Many other Internet sellers of products and services, such as Barnes
and Noble, Amazon, Hewlett Packard, and Best Buy, employ rating schemes such as
this. Many recently developed national survey data sets, such as the British Household
Panel Data Set (BHPS) (http://www.iser.essex.ac.uk/survey/bhps) and the German So-
cioeconomic Panel (GSOEP) (http://www.diw.de/en/soep), contain questions that elicit
self-assessed ratings of health, health satisfaction, or overall well-being. Like the other
examples listed, these survey questions are answered on a discrete scale, such as the
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zero to 10 scale of the question about health satisfaction in the GSOEP. Ratings such as
these provide applications of the models and methods that interest us in this section.8

For any individual respondent, we hypothesize that there is a continuously varying
strength of preferences that underlies the rating they submit. For convenience and
consistency with what follows, we will label that strength of preference “utility,” U∗.
Continuing the Netflix example, we describe utility as ranging over the entire real line:

−∞ < U∗
im < +∞

where i indicates the individual and m indicates the movie. Individuals are invited to
“rate” the movie on an integer scale from 1 to 5. Logically, then, the translation from
underlying utility to a rating could be viewed as a censoring of the underlying utility,

Rim = 1 if − ∞ < U∗
im ≤ μ1,

Rim = 2 if μ1 < U∗
im ≤ μ2,

Rim = 3 if μ2 < U∗
im ≤ μ3,

Rim = 4 if μ3 < U∗
im ≤ μ4,

Rim = 5 if μ4 < U∗
im < ∞.

The same mapping would characterize the bond ratings, since the qualities of bonds that
produce the ratings will vary continuously, and the self-assessed health and well-being
questions in the panel survey data sets based on an underlying utility or preference
structure. The crucial feature of the description thus far is that underlying the discrete
response is a continuous range of preferences. Therefore, the observed rating represents
a censored version of the true underlying preferences. Providing a rating of five could
be an outcome ranging from general enjoyment to wild enthusiasm. Note that the
thresholds, μ j , number (J − 1) where J is the number of possible ratings (here, five) –
J−1 values are needed to divide the range of utility into J cells. The thresholds are an
important element of the model; they divide the range of utility into cells that are then
identified with the observed outcomes. Importantly, the difference between two levels
of a rating scale (for example, one compared to two, two compared to three) is not the
same as on a utility scale. Hence we have a strictly nonlinear transformation captured
by the thresholds, which are estimable parameters in an ordered choice model.

The model as suggested thus far provides a crude description of the mechanism
underlying an observed rating. Any individual brings their own set of characteristics to
the utility function, such as age, income, education, gender, where they live, family situ-
ation, and so on, which we denote xi1, xi2, . . . , xi K. They also bring their own aggregate
of unmeasured and unmeasurable (by the statistician) idiosyncrasies, denoted εim How
these features enter the utility function is uncertain, but it is conventional to use a linear
function, which produces a familiar random utility function,

U∗
im = β0 + β1xi1 + β2xi2 + · · · + βKxiK + εim.

8Greene and Hensher (2010) provide a survey of ordered choice modeling. Other textbook and monograph
treatments include DeMaris (2004), Long (1997), Johnson and Abbot (1999), and Long and Freese (2006).
Introductions to the model also appear in journal articles such as Winship and Mare (1984), Becker and
Kennedy (1992), Daykin and Moffatt (2002), and Boes and Winkelmann (2006).
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Example 18.2 Movie Ratings
The Web site http://www.IMDb.com invites visitors to rate movies that they have seen, in the
same fashion as the Netflix site. This site uses a 10 point scale. On December 1, 2008, they
reported the results in Figure 18.2 for the movie National Treasure: Book of Secrets for 41,771
users of the site. The figure at the left shows the overall ratings. The panel at the right shows
how the average rating varies across age, gender, and whether the rater is a U.S. viewer or not.

The rating mechanism we have constructed is

Rim = 1 if −∞ < x′
i β + εim ≤ μ1,

Rim = 2 if μ1 < x′
i β + εim ≤ μ2,

· · ·
Rim = 9 if μ8 < x′

i β + εim ≤ μ9,

Rim = 10 if μ9 < x′
i β + εim < ∞.

Relying on a central limit to aggregate the innumerable small influences that add up to the
individual idiosyncrasies and movie attraction, we assume that the random component, εim,
is normally distributed with zero mean and (for now) constant variance. The assumption of
normality will allow us to attach probabilities to the ratings. In particular, arguably the most
interesting one is

Prob( Rim = 10 | xi ) = Prob[εim > μ9 − xi
′β].

The structure provides the framework for an econometric model of how individuals rate
movies (that they rent from Netflix). The resemblance of this model to familiar models of
binary choice is more than superficial. For example, one might translate this econometric
model directly into a probit model by focusing on the variable

Eim = 1 if Rim = 10

Eim = 0 if Rim < 10.

Thus, the model is an extension of a binary choice model to a setting of more than two choices.
But, the crucial feature of the model is the ordered nature of the observed outcomes and the
correspondingly ordered nature of the underlying preference scale.

FIGURE 18.2 IMDb.com Ratings (http://www.imdb.com/title/
tt0465234/ratings).
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The model described here is an ordered choice model. (The choice of the normal
distribution for the random term makes it an ordered probit model.) Ordered choice
models are appropriate for a wide variety of settings in the social and biological sci-
ences. The essential ingredient is the mapping from an underlying, naturally ordered
preference scale to a discrete ordered observed outcome, such as the rating scheme just
described. The model of ordered choice pioneered by Aitcheson and Silvey (1957),
Snell (1964), and Walker and Duncan (1967) and articulated in its modern form by
Zavoina and McElvey (1975) has become a widely used tool in many fields. The num-
ber of applications in the current literature is large and increasing rapidly, including

• Bond ratings [Terza (1985a)],
• Congressional voting on a Medicare bill [McElvey and Zavoina (1975)],
• Credit ratings [Cheung (1996) , Metz, and Cantor (2006)],
• Driver injury severity in car accidents [Eluru, Bhat, and Hensher (2008)],
• Drug reactions [Fu, Gordon, Liu, Dale, and Christensen (2004)],
• Education [Machin and Vignoles (2005), Carneiro, Hansen, and Heckman (2003),

Cunha, Heckman, and Navarro (2007)],
• Financial failure of firms [Hensher and Jones (2007)],
• Happiness [Winkelmann (2005), Zigante (2007)],
• Health status [Jones, Koolman, and Rice (2003)],
• Life satisfaction [Clark, Georgellis, and Sanfey (2001), Groot and ven den Brink

(2003)],
• Monetary policy [Eichengreen, Watson, and Grossman (1985)],
• Nursing labor supply [Brewer, Kovner, Greene, and Cheng (2008)],
• Obesity [Greene, Harris, Hollingsworth, and Maitra (2008)],
• Political efficacy [King, Murray, Salomon, and Tandon (2004)],
• Pollution [Wang and Kockelman (2009)],
• Promotion and rank in nursing [Pudney and Shields (2000)],
• Stock price movements [Tsay (2005)],
• Tobacco use [Harris and Zhao (2007), Kasteridis, Munkin, and Yen (2008)],
• Work disability [Kapteyn et al. (2007)].

18.3.1 THE ORDERED PROBIT MODEL

The ordered probit model is built around a latent regression in the same manner as the
binomial probit model. We begin with

y∗ = x′β + ε.

As usual, y∗ is unobserved. What we do observe is

y = 0 if y∗ ≤ 0

= 1 if 0 < y∗ ≤ μ1

= 2 if μ1 < y∗ ≤ μ2

...

= J if μJ−1 ≤ y∗,

which is a form of censoring. The μ’s are unknown parameters to be estimated with β.
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FIGURE 18.3 Probabilities in the Ordered Probit Model.

We assume that ε is normally distributed across observations.9 For the same rea-
sons as in the binomial probit model (which is the special case of J = 1), we nor-
malize the mean and variance of ε to zero and one. We then have the following
probabilities:

Prob(y = 0 | x) = �(−x′β),

Prob(y = 1 | x) = �(μ1 − x′β) − �(−x′β),

Prob(y = 2 | x) = �(μ2 − x′β) − �(μ1 − x′β),

...

Prob(y = J | x) = 1 − �(μJ−1 − x′β).

For all the probabilities to be positive, we must have

0 < μ1 < μ2 < · · · < μJ−1.

Figure 18.3 shows the implications of the structure. This is an extension of the uni-
variate probit model we examined in Chapter 17. The log-likelihood function and its
derivatives can be obtained readily, and optimization can be done by the usual means.

As usual, the partial effects of the regressors x on the probabilities are not equal
to the coefficients. It is helpful to consider a simple example. Suppose there are three
categories. The model thus has only one unknown threshold parameter. The three

9Other distributions, particularly the logistic, could be used just as easily. We assume the normal purely for
convenience. The logistic and normal distributions generally give similar results in practice.
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probabilities are

Prob(y = 0 | x) = 1 − �(x′β),

Prob(y = 1 | x) = �(μ − x′β) − �(−x′β),

Prob(y = 2 | x) = 1 − �(μ − x′β).

For the three probabilities, the partial effects of changes in the regressors are

∂ Prob(y = 0 | x)

∂x
= −φ(x′β)β,

∂ Prob(y = 1 | x)

∂x
= [φ(−x′β) − φ(μ − x′β)]β,

∂ Prob(y = 2 | x)

∂x
= φ(μ − x′β)β.

Figure 18.4 illustrates the effect. The probability distributions of y and y∗ are shown in
the solid curve. Increasing one of the x’s while holding β and μ constant is equivalent
to shifting the distribution slightly to the right, which is shown as the dashed curve.
The effect of the shift is unambiguously to shift some mass out of the leftmost cell.
Assuming that β is positive (for this x), Prob(y = 0 | x) must decline. Alternatively,
from the previous expression, it is obvious that the derivative of Prob(y = 0 | x) has the
opposite sign from β. By a similar logic, the change in Prob(y = 2 | x) [or Prob(y = J | x)

in the general case] must have the same sign as β. Assuming that the particular β is
positive, we are shifting some probability into the rightmost cell. But what happens
to the middle cell is ambiguous. It depends on the two densities. In the general case,
relative to the signs of the coefficients, only the signs of the changes in Prob(y = 0 | x)

and Prob(y = J | x) are unambiguous! The upshot is that we must be very careful

FIGURE 18.4 Effects of Change in x on Predicted Probabilities.
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in interpreting the coefficients in this model. Indeed, without a fair amount of extra
calculation, it is quite unclear how the coefficients in the ordered probit model should
be interpreted.

Example 18.3 Rating Assignments
Marcus and Greene (1985) estimated an ordered probit model for the job assignments of
new Navy recruits. The Navy attempts to direct recruits into job classifications in which they
will be most productive. The broad classifications the authors analyzed were technical jobs
with three clearly ranked skill ratings: “medium skilled,” “highly skilled,” and “nuclear quali-
fied/highly skilled.” Because the assignment is partly based on the Navy’s own assessment
and needs and partly on factors specific to the individual, an ordered probit model was
used with the following determinants: (1) ENSPE = a dummy variable indicating that the
individual entered the Navy with an “A school” (technical training) guarantee; (2) EDMA =
educational level of the entrant’s mother; (3) AFQT = score on the Armed Forces Qualifying
Test; (4) EDYRS = years of education completed by the trainee; (5) MARR = a dummy variable
indicating that the individual was married at the time of enlistment; and (6) AGEAT = trainee’s
age at the time of enlistment. (The data used in this study are not available for distribution.)
The sample size was 5,641. The results are reported in Table 18.10. The extremely large t
ratio on the AFQT score is to be expected, as it is a primary sorting device used to assign
job classifications.

To obtain the marginal effects of the continuous variables, we require the standard normal
density evaluated at −x̄ ′β̂ = −0.8479 and μ̂ − x̄ ′β̂ = 0.9421. The predicted probabilities are
�(−0.8479) = 0.198, �(0.9421) − �(−0.8479) = 0.628, and 1 − �(0.9421) = 0.174. (The
actual frequencies were 0.25, 0.52, and 0.23.) The two densities are φ (−0.8479) = 0.278 and
φ (0.9421) = 0.255. Therefore, the derivatives of the three probabilities with respect to AFQT,
for example, are

∂ P0

∂AFQT
= (−0.278)0.039 = −0.01084,

∂ P1

∂AFQT
= (0.278 − 0.255)0.039 = 0.0009,

∂ P2

∂AFQT
= 0.255(0.039) = 0.00995.

Note that the marginal effects sum to zero, which follows from the requirement that the
probabilities add to one. This approach is not appropriate for evaluating the effect of a dummy
variable. We can analyze a dummy variable by comparing the probabilities that result when
the variable takes its two different values with those that occur with the other variables held
at their sample means. For example, for the MARR variable, we have the results given in
Table 18.11.

TABLE 18.10 Estimated Rating
Assignment Equation

Mean of
Variable Estimate t Ratio Variable

Constant −4.34 — —
ENSPA 0.057 1.7 0.66
EDMA 0.007 0.8 12.1
AFQT 0.039 39.9 71.2
EDYRS 0.190 8.7 12.1
MARR −0.48 −9.0 0.08
AGEAT 0.0015 0.1 18.8
μ 1.79 80.8 —
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TABLE 18.11 Marginal Effect of a Binary Variable

−β̂ ′x μ̂ − β̂ ′x Prob[y = 0] Prob[y = 1] Prob[y = 2]

MARR = 0 −0.8863 0.9037 0.187 0.629 0.184
MARR = 1 −0.4063 1.3837 0.342 0.574 0.084
Change 0.155 −0.055 −0.100

18.3.2 A SPECIFICATION TEST FOR THE ORDERED CHOICE
MODEL

The basic formulation of the ordered choice model implies that for constructed binary
variables,

wij = 1 if yi ≤ j, 0 otherwise, j = 1, 2, . . . , J − 1, (18-16)

Prob(wij = 1 | xi ) = F(xi
′β−μ j ).

The first of these, when j = 1, is the binary choice model of Section 17.2. One implication
is that we could estimate the slopes, but not the threshold parameters, in the ordered
choice model just by using wi1 and xi in a binary probit or logit model. (Note that this
result also implies the validity of combining adjacent cells in the ordered choice model.)
But, (18-16) also defines a set of J−1 binary choice models with different constants but
common slope vector, β. This equality of the parameter vectors in (18-16) has been
labeled the parallel regression assumption. Although it is merely an implication of the
model specification, this has been viewed as an implicit restriction on the model. [See,
for example, Long (1997, p. 141).] Brant (1990) suggests a test of the parallel regressions
assumption based on (18-16). One can, in principle, fit J − 1 such binary choice models
separately. Each will produce its own constant term and a consistent estimator of the
common β. Brant’s Wald test examines the linear restrictions β1 = β2 = · · · = β J−1, or
H0: βq − β1 = 0, q = 2, . . . , J − 1. The Wald statistic will be

χ2[(J − 2)K] = (Rβ̂
∗
)′[R × Asy.Var[β̂

∗
] × R′]−1(Rβ̂

∗
),

where β̂
∗

is obtained by stacking the individual binary logit or probit estimates of β

(without the constant terms). [See Brant (1990), Long (1997), or Greene and Hensher
(2010, page 187) for details on computing the statistic.]

Rejection of the null hypothesis calls the model specification into question. An
alternative model in which there is a different β for each value of y has two problems:
it does not force the probabilities to be positive and it is internally inconsistent. On the
latter point, consider the suggested latent regression, y∗ = x′β j +ε. If the “β” is different
for each j , then it is not possible to construct a data generating mechanism for y∗ (or,
for example, simulate it); the realized value of y∗ cannot be defined without knowing
y (that is, the realized j), since the applicable β depends on j , but y is supposed to be
determined from y∗ through, for example, (18-16). There is no parametric restriction
other than the one we seek to avoid that will preserve the ordering of the probabilities
for all values of the data and maintain the coherency of the model. This still leaves
the question of what specification failure would logically explain the finding. Some
suggestions in Brant (1990) include (1) misspecification of the latent regression, x′β;
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(2) heteroscedasticity of ε; and (3) misspecification of the distributional form for the
latent variable, that is, “nonlogistic link function.”

Example 18.4 Brant Test for an Ordered Probit Model of Health
Satisfaction

In Example 17.4, we studied the health care usage of a sample of households in the
German Socioeconomic Panel (GSOEP). The data include a self-reported measure of “health
satisfaction,” (HSAT) that is coded 0–10. This variable provides a natural application of the
ordered choice models in this chapter. The data are an unbalanced panel. For purposes of
this exercise, we have used the fifth (1984) wave of the data set, which is a cross section of
4,483 observations. We then collapsed the 10 cells into 5 [(0–2),(3–5), (6–8),(9),(10)] for this
example. The utility function is

HSAT∗
i = β1 + β2 AGEi + β3 INCOMEi + β4 KIDSi

+ β5 EDUCi + β6 MARRIEDi β7 WORKINGi + εi .

Variables KIDS, MARRIED, and WORKING, are binary indicators of whether there are children
in the household, marital status, and whether the individual was working at the time of the
survey. (These data are examined further in Example 18.6.) The model contains six variables,
and there are four binary choice models fit, so there are ( J−2) ( K ) = (3) (6) = 18 restrictions.
The chi-squared for the probit model is 87.836. The critical value for 95 percent is 28.87, so
the homogeneity restriction is rejected. The corresponding value for the logit model is 77.84,
which leads to the same conclusion.

18.3.3 BIVARIATE ORDERED PROBIT MODELS

There are several extensions of the ordered probit model that follow the logic of the
bivariate probit model we examined in Section 17.5. A direct analog to the base case
two-equation model is used in the study in Example 18.5.

Example 18.5 Calculus and Intermediate Economics Courses
Butler et al. (1994) analyzed the relationship between the level of calculus attained and
grades in intermediate economics courses for a sample of Vanderbilt students. The two-step
estimation approach involved the following strategy. (We are stylizing the precise formulation
a bit to compress the description.) Step 1 involved a direct application of the ordered probit
model of Section 18.3.1 to the level of calculus achievement, which is coded 0, 1, . . . , 6:

m∗
i = x′

i β + εi , εi | xi ∼ N[0, 1],

mi = 0 if −∞ < m∗
i ≤ 0

= 1 if 0 < m∗
i ≤ μ1

· · ·
= 6 if μ5 < m∗

i < +∞.

The authors argued that although the various calculus courses can be ordered discretely
by the material covered, the differences between the levels cannot be measured directly.
Thus, this is an application of the ordered probit model. The independent variables in this
first-step model included SAT scores, foreign language proficiency, indicators of intended
major, and several other variables related to areas of study.

The second step of the estimator involves regression analysis of the grade in the interme-
diate microeconomics or macroeconomics course. Grades in these courses were translated
to a granular continuous scale (A = 4.0, A− = 3.7, etc.). A linear regression is specified,

Gradei = z′
i δ + ui , where ui | zi ∼ N

[
0, σ 2

u

]
.
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Independent variables in this regression include, among others, (1) dummy variables for
which outcome in the ordered probit model applies to the student (with the zero reference
case omitted), (2) grade in the last calculus course, (3) several other variables related to
prior courses, (4) class size, (5) freshman GPA, and so on. The unobservables in the Grade
equation and the math attainment are clearly correlated, a feature captured by the additional
assumption that (εi , ui | xi , zi ) ∼ N2[(0, 0) , (1, σ 2

u ) , ρσu]. A nonzero ρ captures this “selection”
effect. With this in place, the dummy variables in (1) have now become endogenous. The
solution is a “selection” correction that we will examine in detail in Chapter 19. The modified
equation becomes

Gradei | mi = z′
i δ + E [ui | mi ] + vi

= z′
i δ + (ρσu) [λ(x′

i β, μ1, . . . , μ5) ] + vi .

They thus adopt a “control function” approach to accommodate the endogeneity of the math
attainment dummy variables. [See Section 17.3.5 and (17-32) for another application of this
method.] The term λ(x′

i β, μ1, . . . , μ5) is a generalized residual that is constructed using the
estimates from the first-stage ordered probit model. [A precise statement of the form of this
variable is given in Li and Tobias (2006).] Linear regression of the course grade on zi and this
constructed regressor is computed at the second step. The standard errors at the second
step must be corrected for the use of the estimated regressor using what amounts to a
Murphy and Topel (2002) correction. (See Section 14.7.)

Li and Tobias (2006) in a replication of and comment on Butler et al. (1994), after roughly
replicating the classical estimation results with a Bayesian estimator, observe that the pre-
ceding Grade equation above could also be treated as an ordered probit model. The resulting
bivariate ordered probit model would be

m∗
i = x′

i β + εi , and g∗
i = z′

i δ + ui ,
mi = 0 if −∞ < m∗

i ≤ 0 gi = 0 if −∞ < g∗
i ≤ 0

= 1 if 0 < m∗
i ≤ μ1 = 1 if 0 < g∗

i ≤ α1

· · · · · ·
= 6 if μ5 < m∗

i < +∞. = 11 if μ9 < g∗
i < +∞

where

(εi , ui | xi , zi ) ∼ N2

[
(0, 0) ,

(
1, σ 2

u

)
, ρσu

]
.

Li and Tobias extended their analysis to this case simply by “transforming” the dependent
variable in Butler et al.’s second equation. Computing the log-likelihood using sets of bi-
variate normal probabilities is fairly straightforward for the bivariate ordered probit model.
[See Greene (2007).] However, the classical study of these data using the bivariate ordered
approach remains to be done, so a side-by-side comparison to Li and Tobias’s Bayesian
alternative estimator is not possible. The endogeneity of the calculus dummy variables
in (1) remains a feature of the model, so both the MLE and the Bayesian posterior
are less straightforward than they might appears. Whether the results in Section 17.5.5
on the recursive bivariate probit model extend to this case also remains to be
determined.

The bivariate ordered probit model has been applied in a number of settings in the
recent empirical literature, including husband and wife’s education levels [Magee et al.
(2000)], family size [(Calhoun (1991)], and many others. In two early contributions to
the field of pet econometrics, Butler and Chatterjee analyze ownership of cats and dogs
(1995) and dogs and televisions (1997).
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18.3.4 PANEL DATA APPLICATIONS

The ordered probit model is used to model discrete scales that represent indicators
of a continuous underlying variable such as strength of preference, performance, or
level of attainment. Many of the recently assembled national panel data sets con-
tain survey questions that ask about subjective assessments of health, satisfaction, or
well-being, all of which are applications of this interpretation. Examples include the
following:

• The European Community Household Panel (ECHP) includes questions about job
satisfaction [see D’Addio (2004)].

• The British Household Panel Survey (BHPS) includes questions about health status
[see Contoyannis et al. (2004)].

• The German Socioeconomic Household Panel (GSOEP) includes questions about
subjective well-being [see Winkelmann (2004)] and subjective assessment of health
satisfaction [see Riphahn et al. (2003) and Example 18.4].

Ostensibly, the applications would fit well into the ordered probit frameworks already
described. However, given the panel nature of the data, it will be desirable to augment
the model with some accommodation of the individual heterogeneity that is likely to
be present. The two standard models, fixed and random effects, have both been applied
to the analyses of these survey data.

18.3.4.a Ordered Probit Models with Fixed Effects

D’Addio et al. (2003), using methodology developed by Frijters et al. (2004) and Ferrer-
i-Carbonel et al. (2004), analyzed survey data on job satisfaction using the Danish
component of the European Community Household Panel. Their estimator for an or-
dered logit model is built around the logic of Chamberlain’s estimator for the binary
logit model. [See Section 17.4.4.] Because the approach is robust to individual specific
threshold parameters and allows time-invariant variables, it differs sharply from the
fixed effects models we have considered thus far as well as from the ordered probit
model of Section 18.3.1.10 Unlike Chamberlain’s estimator for the binary logit model,
however, their conditional estimator is not a function of minimal sufficient statistics. As
such, the incidental parameters problem remains an issue.

Das and van Soest (2000) proposed a somewhat simpler approach. [See, as well,
Long’s (1997) discussion of the “parallel regressions assumption,” which employs this
device in a cross-section framework.] Consider the base case ordered logit model with
fixed effects,

y∗
it = αi + x′

itβ + εit, εit | Xi ∼ N[0, 1],

yit = j if μ j−1 < y∗
it < μ j , j = 0, 1, . . . , J and μ−1 = −∞, μ0 = 0, μJ = +∞.

The model assumptions imply that

Prob(yit = j | Xi ) = �(μ j − αi − x′
itβ) − �(μ j−1 − αi − x′

itβ),

10Cross-section versions of the ordered probit model with individual specific thresholds appear in Terza
(1985a), Pudney and Shields (2000), and Greene (2007).
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where �(t) is the cdf of the logistic distribution. Now, define a binary variable

wit, j = 1 if yit > j, j = 0, . . . , J − 1.

It follows that

Prob[wit, j = 1 | Xi ] = �(αi − μ j + x′
itβ)

= �(θi + x′
itβ).

The “ j ” specific constant, which is the same for all individuals, is absorbed in θi . Thus,
a fixed effects binary logit model applies to each of the J − 1 binary random variables,
wit, j . The method in Section 17.4.4 can now be applied to each of the J − 1 random
samples. This provides J − 1 estimators of the parameter vector β (but no estimator of
the threshold parameters). The authors propose to reconcile these different estimators
by using a minimum distance estimator of the common true β. (See Section 13.3.) The
minimum distance estimator at the second step is chosen to minimize

q =
J−1∑
j=0

J−1∑
m=0

(β̂ j − β)′
[
V−1

jm

]
(β̂m − β),

where [V−1
jm ] is the j, m block of the inverse of the (J − 1)K × (J − 1)K partitioned

matrix V that contains Asy. Cov[β̂ j , β̂m]. The appropriate form of this matrix for a set
of cross-section estimators is given in Brant (1990). Das and van Soest (2000) used the
counterpart for Chamberlain’s fixed effects estimator but do not provide the specifics
for computing the off-diagonal blocks in V.

The full ordered probit model with fixed effects, including the individual specific
constants, can be estimated by unconditional maximum likelihood using the results in
Section 14.9.6.d. The likelihood function is concave [see Pratt (1981)], so despite its
superficial complexity, the estimation is straightforward. (In the following application,
with more than 27,000 observations and 7,293 individual effects, estimation of the full
model required roughly five seconds of computation.) No theoretical counterpart to
the Hsiao (1986, 2003) and Abrevaya (1997) results on the small T bias (incidental
parameters problem) of the MLE in the presence of fixed effects has been derived
for the ordered probit model. The Monte Carlo results in Greene (2004) (see, as well,
Section 15.5.2), suggest that biases comparable to those in the binary choice models
persist in the ordered probit model as well. As in the binary choice case, the complication
of the fixed effects model is the small sample bias, not the computation. The Das and
van Soest approach finesses this problem—their estimator is consistent—but at the cost
of losing the information needed to compute partial effects or predicted probabilities.

18.3.4.b Ordered Probit Models with Random Effects

The random effects ordered probit model model has been much more widely used than
the fixed effects model. Applications include Groot and van den Brink (2003), who stud-
ied training levels of employees, with firm effects; Winkelmann (2003b), who examined
subjective measures of well-being with individual and family effects; Contoyannis et al.
(2004), who analyzed self-reported measures of health status; and numerous others.
In the simplest case, the method of the Butler and Moffitt (1982) quadrature method
(Section 14.9.6.c) can be extended to this model.
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Example 18.6 Health Satisfaction
The GSOEP German Health Care data that we have used in Examples 11.16, 17.4, and others
includes a self-reported measure of health satisfaction, HSAT, that takes values 0, 1, . . . , 10.11

This is a typical application of a scale variable that reflects an underlying continuous variable,
“health.” The frequencies and sample proportions for the reported values are as follows:

HSAT Frequency Proportion

0 447 1.6%
1 255 0.9%
2 642 2.3%
3 1,173 4.2%
4 1,390 5.0%
5 4,233 15.4%
6 2,530 9.2%
7 4,231 15.4%
8 6,172 22.5%
9 3,061 11.2%

10 3,192 11.6%

We have fit pooled and panel data versions of the ordered probit model to these data. The
model used is

y∗
it = β1 +β2 Ageit +β3 Incomeit +β4 Kidsitβ6 Educationit +β6 Marriedit +β7 Workingit + εit +ci,

where ci will be the common fixed or random effect. (We are interested in comparing the fixed
and random effects estimators, so we have not included any time-invariant variables such
as gender in the equation.) Table 18.12 lists five estimated models. (Standard errors for the
estimated threshold parameters are omitted.) The first is the pooled ordered probit model. The
second and third are fixed effects. Column 2 shows the unconditional fixed effects estimates
using the results of Section 14.9.6.d. Column 3 shows the Das and van Soest estimator. For
the minimum distance estimator, we used an inefficient weighting matrix, the block-diagonal
matrix in which the j th block is the inverse of the j th asymptotic covariance matrix for the
individual logit estimators. With this weighting matrix, the estimator is

β̂MDE =
[

9∑
j =0

V−1
j

]−1 9∑
j =0

V−1
j β̂ j ,

and the estimator of the asymptotic covariance matrix is approximately equal to the bracketed
inverse matrix. The fourth set of results is the random effects estimator computed using
the maximum simulated likelihood method. This model can be estimated using Butler and
Moffitt’s quadrature method; however, we found that even with a large number of nodes,
the quadrature estimator converged to a point where the log-likelihood was far lower than
the MSL estimator, and at parameter values that were implausibly different from the other
estimates. Using different starting values and different numbers of quadrature points did not
change this outcome. The MSL estimator for a random constant term (see Section 15.6.3)
is considerably slower but produces more reasonable results. The fifth set of results is the
Mundlak form of the random effects model, which includes the group means in the models
as controls to accommodate possible correlation between the latent heterogeneity and the
included variables. As noted in Example 18.3, the components of the ordered choice model
must be interpreted with some care. By construction, the partial effects of the variables on

11In the original data set, 40 (of 27,326) observations on this variable were coded with noninteger values
between 6 and 7. For purposes of our example, we have recoded all 40 observations to 7.
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TABLE 18.12 Estimated Ordered Probit Models for Health Satisfaction

(5)
(2) (3) (4) Random Effects

Mundlak Controls(1) Fixed Effects Fixed Effects Random
Variable Pooled Unconditional Conditional Effects Variables Means

Constant 2.4739 3.8577 3.2603
(0.04669) (0.05072) (0.05323)

Age −0.01913 −0.07162 −0.1011 −0.03319 −0.06282 0.03940
(0.00064) (0.002743) (0.002878) (0.00065) (0.00234) (0.002442)

Income 0.1811 0.2992 0.4353 0.09436 0.2618 0.1461
(0.03774) (0.07058) (0.07462) (0.03632) (0.06156) (0.07695)

Kids 0.06081 −0.06385 −0.1170 0.01410 −0.05458 0.1854
(0.01459) (0.02837) (0.03041) (0.01421) (0.02566) (0.03129)

Education 0.03421 0.02590 0.06013 0.04728 0.02296 0.02257
(0.002828) (0.02677) (0.02819) (0.002863) (0.02793) (0.02807)

Married 0.02574 0.05157 0.08505 0.07327 0.04605 −0.04829
(0.01623) (0.04030) (0.04181) (0.01575) (0.03506) (0.03963)

Working 0.1292 −0.02659 −0.007969 0.07108 −0.02383 0.2702
(0.01403) (0.02758) (0.02830) (0.01338) (0.02311) (0.02856)

μ1 0.1949 0.3249 0.2726 0.2752
μ2 0.5029 0.8449 0.7060 0.7119
μ3 0.8411 1.3940 1.1778 1.1867
μ4 1.111 1.8230 1.5512 1.5623
μ5 1.6700 2.6992 2.3244 2.3379
μ6 1.9350 3.1272 2.6957 2.7097
μ7 2.3468 3.7923 3.2757 3.2911
μ8 3.0023 4.8436 4.1967 4.2168
μ9 3.4615 5.5727 4.8308 4.8569
σu 0.0000 0.0000 1.0078 0.9936
ln L −56,813.52 −41,875.63 −53,215.54 −53,070.43

TABLE 18.13 Estimated Marginal Effects: Pooled Model

HSAT Age Income Kids Education Married Working

0 0.0006 −0.0061 −0.0020 −0.0012 −0.0009 −0.0046
1 0.0003 −0.0031 −0.0010 −0.0006 −0.0004 −0.0023
2 0.0008 −0.0072 −0.0024 −0.0014 −0.0010 −0.0053
3 0.0012 −0.0113 −0.0038 −0.0021 −0.0016 −0.0083
4 0.0012 −0.0111 −0.0037 −0.0021 −0.0016 −0.0080
5 0.0024 −0.0231 −0.0078 −0.0044 −0.0033 −0.0163
6 0.0008 −0.0073 −0.0025 −0.0014 −0.0010 −0.0050
7 0.0003 −0.0024 −0.0009 −0.0005 −0.0003 −0.0012
8 −0.0019 0.0184 0.0061 0.0035 0.0026 0.0136
9 −0.0021 0.0198 0.0066 0.0037 0.0028 0.0141

10 −0.0035 0.0336 0.0114 0.0063 0.0047 0.0233

the probabilities of the outcomes must change sign, so the simple coefficients do not show
the complete picture implied by the estimated model. Table 18.13 shows the partial effects
for the pooled model to illustrate the computations.

Winkelmann (2003b) used the random effects approach to analyze the subjec-
tive well-being (SWB) question (also coded 0 to 10) in the German Socioeconomic
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Panel (GSOEP) data set. The ordered probit model in this study is based on the latent
regression

y∗
imt = x′

imtβ + εimt + uim + vi .

The independent variables include age, gender, employment status, income, family size,
and an indicator for good health. An unusual feature of the model is the nested random
effects (see Section 14.9.6.b), which include a family effect, vi , as well as the individual
family member (i in family m) effect, uim. The GLS/MLE approach we applied to
the linear regression model in Section 14.9.6.b is unavailable in this nonlinear setting.
Winkelmann instead employed a Hermite quadrature procedure to maximize the log-
likelihood function.

Contoyannis, Jones, and Rice (2004) analyzed a self-assessed health scale that
ranged from 1 (very poor) to 5 (excellent) in the British Household Panel Survey. Their
model accommodated a variety of complications in survey data. The latent regression
underlying their ordered probit model is

h∗
it = x′

itβ + H′
i,t−1γ + αi + εit,

where xit includes marital status, race, education, household size, age, income, and num-
ber of children in the household. The lagged value, Hi,t−1, is a set of binary variables
for the observed health status in the previous period. (This is the same device that was
used by Butler et al. in Example 18.5.) In this case, the lagged values capture state
dependence—the assumption that the health outcome is redrawn randomly in each
period is inconsistent with evident runs in the data. The initial formulation of the re-
gression is a fixed effects model. To control for the possible correlation between the
effects, αi , and the regressors, and the initial conditions problem that helps to explain
the state dependence, they use a hybrid of Mundlak’s (1978) correction and a suggestion
by Wooldridge (2002a) for modeling the initial conditions,

αi = α0 + x̄′α1 + H′
i,1δ + ui ,

where ui is exogenous. Inserting the second equation into the first produces a random
effects model that can be fit using the quadrature method we considered earlier.

18.3.5 EXTENSIONS OF THE ORDERED PROBIT MODEL

The basic specification of the ordered probit model can be extended in the same direc-
tions as we considered in constructing models for binary choice in Chapter 17. These
include heteroscedasticity in the random utility function [see Section 17.3.7.b, Keele
and Park (2005), and Wang and Kockelman (2005), for an application] and heterogene-
ity in the preferences (i.e., random parameters and latent classes). [An extensive study
of heterogeneity in health satisfaction based on 22 waves of the GSOEP is Jones and
Schurer (2010).] Two specification issues that are specific to the ordered choice model
are accommodating heterogeneity in the threshold parameters and reconciling differ-
ences in the meaning of the preference scale across different groups. We will sketch
the model extensions in this section. Further details are given in Chapters 6 and 7 of
Hensher and Greene (2010).
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18.3.5.a Threshold Models—Generalized Ordered Choice Models

The model analyzed thus far assumes that the thresholds μ j are the same for every
individual in the sample. Terza (1985a), Pudney and Shields (2000), King, Murray,
Salomon, and Tandon (KMST, 2004), Boes and Winkelmann (2006a), Greene, Harris,
Hollingsworth and Maitra (2008), and Greene and Hensher (2009) all present applica-
tions that include individual variation in the thresholds of the ordered choice model.

In his analysis of bond ratings, Terza (1985) suggested the generalization,

μij = μ j + xi
′δ.

With three outcomes, the probabilities are formed from

y∗
i = α + x′

iβ + εi ,

and

yi = 0 if y∗
i ≤ 0,

1 if 0 < y∗
i ≤ μ + xi

′δ,

2 if y∗
i > μ + xi

′δ.

For three outcomes, the model has two thresholds, μ0 = 0 and μ1 = μ + x′
iδ. The three

probabilities can be written

P0 = Prob(yi = 0 | xi ) = �[−(α + x′
iβ)]

P1 = Prob(yi = 1 | xi ) = �[(μ + xi
′δ) − (α + x′

iβ)] − �[−(α + x′
iβ)]

P2 = Prob(yi = 2 | xi ) = 1 − �[(μ + xi
′δ) − (α + x′

iβ)].

For applications of this approach, see, for example, Kerkhofs and Lindeboom (1995),
Groot and van den Brink (2003) and Lindeboom and van Doorslayer (2003). Note
that if δ is unrestricted, then Prob(yi = 1 | xi ) can be negative. This is a shortcoming
of the model when specified in this form. Subsequent development of the generalized
model involves specifications that avoid this internal inconsistency. Note, as well, that
if the model is recast in terms of μ and γ = [α,(β − δ)], then the model is not distin-
guished from the original ordered probit model with a constant threshold parameter.
This identification issue emerges prominently in Pudney and Shield’s (2000) continued
development of this model.

Pudney and Shields’s (2000) “generalized ordered probit model,” was also formu-
lated to accommodate observable individual heterogeneity in the threshold parameters.
Their application was in the context of job promotion for UK nurses in which the steps
on the promotion ladder are individual specific. In their setting, in contrast to Terza’s,
some of the variables in the threshold equations are explicitly different from those
in the regression. The authors constructed a generalized model and a test of “thresh-
old constancy” by defining qi to include a constant term and those variables that are
unique to the threshold model Variables that are common to both the thresholds and
the regression are placed in xi and the model is reparameterized as

Pr(yi = g | xi , qi ) = �[q′
iδg − x′

i (β − δg)] − [q′
iδg−1 − x′

i (β − δg−1)].
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An important point noted by the authors is that the same model results if these common
variables are placed in the thresholds instead. This is a minor algebraic result, but it
exposes an ambiguity in the interpretation of the model—whether a particular variable
affects the regression or the thresholds is one of the issues that was developed in the
original model specification.

As will be evident in the application in the next section, the specification of the
threshold parameters is a crucial feature of the ordered choice model. KMST (2004),
Greene (2007a), Eluru, Bhat, and Hensher (2008), and Greene and Hensher (2009)
employ a “hierarchical ordered probit,” or HOPIT model,

y∗
i = x′

iβ + εi ,

yi = j if μi, j−1 ≤ y∗
i < μij,

μ0 = 0,

μi, j = exp(λ j + z′
iγ ) (case 1),

or μi, j = exp(λ j + z′
iγ j ) (case 2).

Case 2 is the Terza (1985) and Pudney and Shields (2000) model with an exponential
rather than linear function for the thresholds. This formulation addresses two problems:
(1) The thresholds are mathematically distinct from the regression; (2) by this construc-
tion, the threshold parameters must be positive. With a slight modification, the ordering
of the thresholds can also be imposed. In case 1,

μi, j = [exp(λ1) + exp(λ2) + · · · + exp(λ j )] × exp(z′
iγ ),

and in case 2,
μi, j = μi, j−1 + exp(λ j + z′

iγ j ).

In practical terms, the model can now be fit with the constraint that all predicted prob-
abilities are greater than zero. This is a numerical solution to the problem of ordering
the thresholds for all data vectors.

This extension of the ordered choice model shows a case of identification through
functional form. As we saw in the previous two models, the parameters (λ j , γ j , β) would
not be separately identified if all the functions were linear. The contemporary literature
views models that are unidentified without a change in functional form with some
skepticism. However, the underlying theory of this model does not insist on linearity of
the thresholds (or the utility function, for that matter), but it does insist on the ordering of
the thresholds, and one might equally criticize the original model for being unidentified
because the model builder insists on a linear form. That is, there is no obvious reason
that the threshold parameters must be linear functions of the variables, or that linearity
enjoys some claim to first precedence in the utility function. This is a methodological
issue that cannot be resolved here. The nonlinearity of the preceding specification,
or others that resemble it, does provide the benefit of a simple way to achieve other
fundamental results, for example, coherency of the model (all positive probabilities).

18.3.5.b Thresholds and Heterogeneity—Anchoring Vignettes

The introduction of observed heterogeneity into the threshold parameters attempts to
deal with a fundamentally restrictive assumption of the ordered choice model. Survey
respondents rarely view the survey questions exactly the same way. This is certainly true
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FIGURE 18.5 Differential Item Functioning in Ordered Choices.

in surveys of health satisfaction or subjective well-being. [See Boes and Winkelmann
(2006b) and Ferrer-i-Carbonell and Frijters (2004).] KMST (2004) identify two very
basic features of survey data that will make this problematic. First, they often measure
concepts that are definable only with reference to examples, such as freedom, health,
satisfaction, and so on. Second, individuals do, in fact, often understand survey ques-
tions very differently, particularly with respect to answers at the extremes. A widely
used term for this interpersonal incomparability is differential item functioning (DIF).
Kapteyn, Smith, and Van Soest (KSV, 2007) and Van Soest, Delaney, Harmon, Kapteyn,
and Smith (2007) suggest the results in Figure 18.5 to describe the implications of DIF.
The figure shows the distribution of Health (or drinking behavior in the latter study) in
two hypothetical countries. The density for country A (the upper figure) is to the left
of that for country B, implying that, on average, people in country A are less healthy
than those in country B. But, the people in the two countries culturally offer very differ-
ent response scales if asked to report their health on a five-point scale, as shown. In the
figure, those in country A have a much more positive view of a given, objective health
status than those in country B. A person in country A with health status indicated by
the dotted line would report that they are in “Very Good” health while a person in



Greene-2140242 book January 19, 2011 21:23

842 PART IV ✦ Cross Sections, Panel Data, and Microeconometrics

country B with the same health status would report only “Fair.” A simple frequency of
the distribution of self-assessments of health status in the two countries would suggest
that people in country A are much healthier than those in country B when, in fact, the
opposite is true. Correcting for the influences of DIF in such a situation would be essen-
tial to obtaining a meaningful comparison of the two countries. The impact of DIF is an
accepted feature of the model within a population but could be strongly distortionary
when comparing very disparate groups, such as across countries, as in KMST (political
groups), Murray, Tandon, Mathers, and Sudana (2002) (health outcomes), Tandon et al.
(2004), and KSV (work disability), Sirven, Santos-Egglmann, and Spagnoli (2008), and
Gupta, Kristensens, and Possoli (2008) (health), Angelini et al. (2008) (life satisfaction),
Kristensen and Johansson (2008), and Bago d’Uva et al. (2008), all of whom used the
ordered probit model to make cross group comparisons.

KMST proposed the use of anchoring vignettes to resolve this difference in per-
ceptions across groups. The essential approach is to use a series of examples that, it
is believed, all respondents will agree on to estimate each respondent’s DIF and cor-
rect for it. The idea of using vignettes to anchor perceptions in survey questions is not
itself new; KMST cite a number of earlier uses. The innovation is their method for
incorporating the approach in a formal model for the ordered choices. The bivariate
and multivariate probit models that they develp combine the elements described in
Sections 18.3.1–18.3.3 and the HOPIT model in Section 18.3.5.

18.4 MODELS FOR COUNTS OF EVENTS

We have encountered behavioral variables that involve counts of events at several
points in this text. In Examples 14.10 and 17.20, we examined the number of times an
individual visited the physician using the GSOEP data. The credit default data that we
used in Examples 7.10 and 17.22 also include another behavioral variable, the number
of derogatory reports in an individual’s credit history. Finally, in Example 17.23, we ana-
lyzed data on firm innovation. Innovation is often analyzed [for example, by Hausman,
Hall, and Griliches (1984) and many others] in terms of the number of patents that the
firm obtains (or applies for). In each of these cases, the variable of interest is a count
of events. This obviously differs from the discrete dependent variables we analyzed in
the previous two sections. A count is a quantitative measure that is, at least in principle,
amenable to analysis using multiple linear regression. However, the typical preponder-
ance of zeros and small values and the discrete nature of the outcome variable suggest
that the regression approach can be improved by a method that explicitly accounts for
these aspects.

Like the basic multinomial logit model for unordered data in Section 18.2 and the
simple probit and logit models for binary and ordered data in Sections 17.2 and 18.3,
the Poisson regression model is the fundamental starting point for the analysis of count
data. We will develop the elements of modeling for count data in this framework in
Sections 18.4.1–18.4.3, and then turn to more elaborate, flexible specifications in subse-
quent sections. Sections 18.4.4 and 18.4.5 will present the negative binomial and other
alternatives to the Poisson functional form. Section 18.4.6 will describe the implications
for the model specification of some complicating features of observed data, truncation,
and censoring. Truncation arises when certain values, such as zero, are absent from
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the observed data because of the sampling mechanism, not as a function of the data
generating process. Data on recreation site visitation that are gathered at the site, for
example, will, by construction, not contain any zeros. Censoring arises when certain
ranges of outcomes are all coded with the same value. In the example analyzed the re-
sponse variable is censored at 12, though values larger than 12 are possible “in the field.”
As we have done in the several earlier treatments, in Section 18.4.7, we will examine
extensions of the count data models that are made possible when the analysis is based
on panel data. Finally, Section 18.4.8 discusses some behavioral models that involve
more than one equation. For an example, based on the large number of zeros in the ob-
served data, it appears that our count of doctor visits might be generated by a two-part
process, a first step in which the individual decides whether or not to visit the physician
at all, and a second decision, given the first, how many times to do so. The “hurdle
model” that applies here and some related variants are discussed in Sections 18.4.8
and 18.4.9.

18.4.1 THE POISSON REGRESSION MODEL

The Poisson regression model specifies that each yi is drawn from a Poisson population
with parameter λi , which is related to the regressors xi . The primary equation of the
model is

Prob(Y = yi | xi ) = e−λi λ
yi
i

yi !
, yi = 0, 1, 2, . . . . (18-17)

The most common formulation for λi is the loglinear model,

ln λi = x′
iβ.

It is easily shown that the expected number of events per period is given by

E [yi | xi ] = Var[yi | xi ] = λi = ex′
i β,

so
∂ E [yi | xi ]

∂xi
= λiβ.

With the parameter estimates in hand, this vector can be computed using any data vector
desired.

In principle, the Poisson model is simply a nonlinear regression. But it is far easier
to estimate the parameters with maximum likelihood techniques. The log-likelihood
function is

ln L =
n∑

i=1

[−λi + yi x′
iβ − ln yi !].

The likelihood equations are

∂ ln L
∂β

=
n∑

i=1

(yi − λi )xi = 0.

The Hessian is

∂2 ln L
∂β∂β ′ = −

n∑
i=1

λi xi x′
i .
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The Hessian is negative definite for all x and β. Newton’s method is a simple algo-
rithm for this model and will usually converge rapidly. At convergence, [

∑n
i=1 λ̂i xi x′

i ]
−1

provides an estimator of the asymptotic covariance matrix for the parameter estimator.
Given the estimates, the prediction for observation i is λ̂i = exp(xi β̂). A standard error
for the prediction interval can be formed by using a linear Taylor series approximation.
The estimated variance of the prediction will be λ̂2

i x′
i Vxi , where V is the estimated

asymptotic covariance matrix for β̂.

For testing hypotheses, the three standard tests are very convenient in this model.
The Wald statistic is computed as usual. As in any discrete choice model, the likelihood
ratio test has the intuitive form

LR = 2
n∑

i=1

ln
(

P̂i

P̂restricted,i

)
,

where the probabilities in the denominator are computed with using the restricted
model. Using the BHHH estimator for the asymptotic covariance matrix, the LM
statistic is simply

LM =
[

n∑
i=1

xi (yi − λ̂i )

]′ [ n∑
i=1

xi x′
i (yi − λ̂i )

2

]−1 [
n∑

i=1

xi (yi − λ̂i )

]
= i′G(G′G)−1G′i,

(18-18)

where each row of G is simply the corresponding row of X multiplied by ei = (yi − λ̂i ), λ̂i

is computed using the restricted coefficient vector, and i is a column of ones.

18.4.2 MEASURING GOODNESS OF FIT

The Poisson model produces no natural counterpart to the R2 in a linear regression
model, as usual, because the conditional mean function is nonlinear and, moreover,
because the regression is heteroscedastic. But many alternatives have been suggested.12

A measure based on the standardized residuals is

R2
p = 1 −

∑n
i=1

[
yi −λ̂i√

λ̂i

]2

∑n
i=1

[
yi −ȳ√

ȳ

]2 .

This measure has the virtue that it compares the fit of the model with that provided by a
model with only a constant term. But it can be negative, and it can rise when a variable
is dropped from the model. For an individual observation, the deviance is

di = 2[yi ln(yi/λ̂i ) − (yi − λ̂i )] = 2[yi ln(yi/λ̂i ) − ei ],

where, by convention, 0 ln(0) = 0. If the model contains a constant term, then
∑n

i=1 ei =
0. The sum of the deviances,

G2 =
n∑

i=1

di = 2
n∑

i=1

yi ln(yi/λ̂i ),

12See the surveys by Cameron and Windmeijer (1993), Gurmu and Trivedi (1994), and Greene (1995b).
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is reported as an alternative fit measure by some computer programs. This statistic will
equal 0.0 for a model that produces a perfect fit. (Note that because yi is an integer
while the prediction is continuous, it could not happen.) Cameron and Windmeijer
(1993) suggest that the fit measure based on the deviances,

R2
d = 1 −

∑n
i=1

[
yi log

(
yi

λ̂i

)
− (yi − λ̂i )

]

∑n
i=1

[
yi log

(
yi

ȳ

)] ,

has a number of desirable properties. First, denote the log-likelihood function for the
model in which ψi is used as the prediction (e.g., the mean) of yi as �(ψi , yi ). The Poisson
model fit by MLE is, then, �(λ̂i , yi ), the model with only a constant term is �(ȳ, yi ), and
a model that achieves a perfect fit (by predicting yi with itself) is l(yi , yi ). Then

R2
d = �(λ̂, yi ) − �(ȳ, yi )

�(yi , yi ) − �(ȳ, yi )
.

Both numerator and denominator measure the improvement of the model over one
with only a constant term. The denominator measures the maximum improvement,
since one cannot improve on a perfect fit. Hence, the measure is bounded by zero and
one and increases as regressors are added to the model.13 We note, finally, the passing
resemblance of R2

d to the “pseudo-R2,” or “likelihood ratio index” reported by some
statistical packages (for example, Stata),

R2
LRI = 1 − �(λ̂i , yi )

�(ȳ, yi )
.

Many modifications of the Poisson model have been analyzed by economists. In this
and the next few sections, we briefly examine a few of them.

18.4.3 TESTING FOR OVERDISPERSION

The Poisson model has been criticized because of its implicit assumption that the vari-
ance of yi equals its mean. Many extensions of the Poisson model that relax this as-
sumption have been proposed by Hausman, Hall, and Griliches (1984), McCullagh and
Nelder (1983), and Cameron and Trivedi (1986), to name but a few.

The first step in this extended analysis is usually a test for overdispersion in the
context of the simple model. A number of authors have devised tests for “overdisper-
sion” within the context of the Poisson model. [See Cameron and Trivedi (1990), Gurmu
(1991), and Lee (1986).] We will consider three of the common tests, one based on a
regression approach, one a conditional moment test, and a third, a Lagrange multiplier
test, based on an alternative model.

Cameron and Trivedi (1990) offer several different tests for overdispersion. A sim-
ple regression-based procedure used for testing the hypothesis

H0: Var[yi ] = E [yi ],

H1: Var[yi ] = E [yi ] + αg(E [yi ]),

13Note that multiplying both numerator and denominator by 2 produces the ratio of two likelihood ratio
statistics, each of which is distributed as chi-squared.
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is carried out by regressing

zi = (yi − λ̂i )
2 − yi

λ̂i
√

2
,

where λ̂i is the predicted value from the regression, on either a constant term or λ̂i with-
out a constant term. A simple t test of whether the coefficient is significantly different
from zero tests H0 versus H1.

The next section presents the negative binomial model. This model relaxes the
Poisson assumption that the mean equals the variance. The Poisson model is obtained
as a parametric restriction on the negative binomial model, so a Lagrange multiplier
test can be computed. In general, if an alternative distribution for which the Poisson
model is obtained as a parametric restriction, such as the negative binomial model, can
be specified, then a Lagrange multiplier statistic can be computed. [See Cameron and
Trivedi (1986, p. 41).] The LM statistic is

LM =
[∑n

i=1 ŵi [(yi − λ̂i )
2 − yi ]√

2
∑n

i=1 ŵi λ̂
2
i

]2

. (18-19)

The weight, ŵi , depends on the assumed alternative distribution. For the negative bi-
nomial model discussed later, ŵi equals 1.0. Thus, under this alternative, the statistic is
particularly simple to compute:

LM = (e′e − nȳ)2

2 λ̂
′
λ̂

. (18-20)

The main advantage of this test statistic is that one need only estimate the Poisson model
to compute it. Under the hypothesis of the Poisson model, the limiting distribution of
the LM statistic is chi-squared with one degree of freedom.

18.4.4 HETEROGENEITY AND THE NEGATIVE BINOMIAL
REGRESSION MODEL

The assumed equality of the conditional mean and variance functions is typically taken
to be the major shortcoming of the Poisson regression model. Many alternatives have
been suggested [see Hausman, Hall, and Griliches (1984), Cameron and Trivedi (1986,
1998), Gurmu and Trivedi (1994), Johnson and Kotz (1993), and Winkelmann (2003)
for discussion]. The most common is the negative binomial model, which arises from a
natural formulation of cross-section heterogeneity. [See Hilbe (2007).] We generalize
the Poisson model by introducing an individual, unobserved effect into the conditional
mean,

ln μi = x′
iβ + εi = ln λi + ln ui ,

where the disturbance εi reflects either specification error, as in the classical regression
model, or the kind of cross-sectional heterogeneity that normally characterizes micro-
economic data. Then, the distribution of yi conditioned on xi and ui (i.e., εi ) remains
Poisson with conditional mean and variance μi :

f (yi | xi , ui ) = e−λi ui (λi ui )
yi

yi !
.
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The unconditional distribution f (yi | xi ) is the expected value (over ui ) of f (yi | xi , ui ),

f (yi | xi ) =
∫ ∞

0

e−λi ui (λi ui )
yi

yi !
g(ui ) dui .

The choice of a density for ui defines the unconditional distribution. For mathematical
convenience, a gamma distribution is usually assumed for ui = exp(εi ).14 As in other
models of heterogeneity, the mean of the distribution is unidentified if the model con-
tains a constant term (because the disturbance enters multiplicatively) so E [exp(εi )] is
assumed to be 1.0. With this normalization,

g(ui ) = θθ

�(θ)
e−θui uθ−1

i .

The density for yi is then

f (yi | xi ) =
∫ ∞

0

e−λi ui (λi ui )
yi

yi !
θθuθ−1

i e−θui

�(θ)
dui

= θθλ
yi
i

�(yi + 1)�(θ)

∫ ∞

0
e−(λi +θ)ui uθ+yi −1

i dui

= θθλ
yi
i �(θ + yi )

�(yi + 1)�(θ)(λi + θ)θ+yi

= �(θ + yi )

�(yi + 1)�(θ)
r yi

i (1 − ri )
θ , where ri = λi

λi + θ
,

which is one form of the negative binomial distribution. The distribution has conditional
mean λi and conditional variance λi (1 + (1/θ)λi ). [This model is Negbin 2 in Cameron
and Trivedi’s (1986) presentation.] The negative binomial model can be estimated by
maximum likelihood without much difficulty. A test of the Poisson distribution is often
carried out by testing the hypothesis α = 1/θ = 0 using the Wald or likelihood ratio test.

18.4.5 FUNCTIONAL FORMS FOR COUNT DATA MODELS

The equidispersion assumption of the Poisson regression model, E[yi | xi ] = Var[yi | xi ],
is a major shortcoming. Observed data rarely, if ever, display this feature. The very large
amount of research activity on functional forms for count models is often focused on
testing for equidispersion and building functional forms that relax this assumption.
In practice, the Poisson model is typically only the departure point for an extended
specification search.

One easily remedied minor issue concerns the units of measurement of the data. In
the Poisson and negative binomial models, the parameter λi is the expected number of
events per unit of time or space. Thus, there is a presumption in the model formulation,

14An alternative approach based on the normal distribution is suggested in Terza (1998), Greene (1995a,
1997a, 2007d), Winkelmann (1997), and Riphahn, Wambach, and Million (2003). The normal-Poisson mixture
is also easily extended to the random effects model discussed in the next section. There is no closed form
for the normal-Poisson mixture model, but it can be easily approximated by using Hermite quadrature or
simulation. See Sections 14.9.6.b and 17.4.8.
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for example, the Poisson, that the same amount of time is observed for each i . In a spatial
context, such as measurements of the incidence of a disease per group of Ni persons, or
the number of bomb craters per square mile (London, 1940), the assumption would be
that the same physical area or the same size of population applies to each observation.
Where this differs by individual, it will introduce a type of heteroscedasticity in the
model. The simple remedy is to modify the model to account for the exposure, Ti , of
the observation as follows:

Prob(yi = j | xi , Ti ) = exp(−Tiφi )(Tiφi )
j

j!
, φi = exp(x′

iβ), j = 0, 1, . . . .

The original model is returned if we write λi = exp(x′
iβ + ln Ti ). Thus, when the ex-

posure differs by observation, the appropriate accommodation is to include the log of
exposure in the regression part of the model with a coefficient of 1.0. (For less than
obvious reasons, the term “offset variable” is commonly associated with the exposure
variable Ti ·) Note that if Ti is the same for all i, ln Ti will simply vanish into the constant
term of the model (assuming one is included in xi ).

The recent literature, mostly associating the result with Cameron and Trivedi’s
(1986, 1998) work, defines two familiar forms of the negative binomial model. The
Negbin 2 (NB2) form of the probability is

Prob(Y = yi | xi ) = �(θ + yi )

�(yi + 1)�(θ)
r yi

i (1 − ri )
θ ,

λi = exp(x′
iβ), (18-21)

ri = λi/(θ + λi ).

This is the default form of the model in the received econometrics packages that
provide an estimator for this model. The Negbin 1 (NB1) form of the model results
if θ in the preceding is replaced with θi = θλi . Then, ri reduces to r = 1/(1 + θ), and
the density becomes

Prob(Y = yi | xi ) = �(θλi + yi )

�(yi + 1)�(θλi )
r yi (1 − r)θλi . (18-22)

This is not a simple reparameterization of the model. The results in Example 18.7
demonstrate that the log-likelihood functions are not equal at the maxima, and the
parameters are not simple transformations in one model versus the other. We are not
aware of a theory that justifies using one form or the other for the negative binomial
model. Neither is a restricted version of the other, so we cannot carry out a likelihood
ratio test of one versus the other. The more general Negbin P (NBP) family does nest
both of them, so this may provide a more general, encompassing approach to finding
the right specification. [See Greene (2005, 2008).] The Negbin P model is obtained by
replacing θ in the Negbin 2 form with θλ2−P

i . We have examined the cases of P = 1 and
P = 2 in (18-21) and (18-22). The full model is

Prob(Y = yi | xi ) = �(θλ
Q
i + yi )

�(yi + 1)�
(
θλ

Q
i

)
(

λi

θλ
Q
i + λi

)yi
(

θλ
Q
i

θλ
Q
i + λi

)θλ
Q
i

, Q = 2 − P.
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The conditional mean function for the three cases considered is

E[yi | xi ] = exp(x′
iβ) = λi .

The parameter P is picking up the scaling. A general result is that for all three variants
of the model,

Var[yi | xi ] = λi
(
1 + αλP−1

i

)
, where α = 1/θ.

Thus, the NB2 form has a variance function that is quadratic in the mean while the NB1
form’s variance is a simple multiple of the mean. There have been many other functional
forms proposed for count data models, including the generalized Poisson, gamma, and
Polya-Aeppli forms described in Winkelmann (2003) and Greene (2007a, Chapter 24).

The heteroscedasticity in the count models is induced by the relationship between
the variance and the mean. The single parameter θ picks up an implicit overall scaling, so
it does not contribute to this aspect of the model. As in the linear model, microeconomic
data are likely to induce heterogeneity in both the mean and variance of the response
variable. A specification that allows independent variation of both will be of some virtue.
The result

Var[yi | xi ] = λi
(
1 + (1/θ)λP−1

i

)

suggests that a convenient platform for separately modeling heteroscedasticity will be
the dispersion parameter, θ , which we now parameterize as

θi = θ exp(z′
iδ).

Operationally, this is a relatively minor extension of the model. But, it is likely to
introduce quite a substantial increase in the flexibility of the specification. Indeed, a
heterogeneous Negbin P model is likely to be sufficiently parameterized to accommo-
date the behavior of most data sets. (Of course, the specialized models discussed in
Section 18.4.8, for example, the zero inflation models, may yet be more appropriate for
a given situation.)

Example 18.7 Count Data Models for Doctor Visits
The study by Riphahn et al. (2003) that provided the data we have used in numerous earlier
examples analyzed the two count variables DocVis (visits to the doctor) and HospVis (visits
to the hospital). The authors were interested in the joint determination of these two count
variables. One of the issues considered in the study was whether the data contained evidence
of moral hazard, that is, whether health care utilization as measured by these two outcomes
was influenced by the subscription to health insurance. The data contain indicators of two
levels of insurance coverage, PUBLIC, which is the main source of insurance, and ADDON,
which is a secondary optional insurance. In the sample of 27,326 observations (family/years),
24,203 individuals held the public insurance. (There is quite a lot of within group variation in
this. Individuals did not routinely obtain the insurance for all periods.) Of these 24,203, 23,689
had only public insurance and 514 had both types. (One could not have only the ADDON
insurance.) To explore the issue, we have analyzed the DocVis variable with the count data
models described in this section. The exogenous variables in our model are

xit = (1, Age, Education, Income, Kids, Public) .

(Variables are described in Appendix Table F7.1.)
Table 18.14 presents the estimates of the several count models. In all specifications, the

coefficient on PUBLIC is positive, large, and highly statistically significant, which is consistent
with the results in the authors’ study. The various test statistics strongly reject the hypothesis
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TABLE 18.14 Estimated Models for DOCVIS (standard errors in parentheses)

Negbin 2
Variable Poisson Negbin 2 Heterogeneous Negbin 1 Negbin P

Constant 0.7162 0.7628 0.7928 0.6848 0.6517
(0.03287) (0.07247) (0.07459) (0.06807) (0.07759)

Age 0.01844 0.01803 0.01704 0.01585 0.01907
(0.0003316) (0.0007915) (0.0008146) (0.0007042) (0.0008078)

Education −0.03429 −0.03839 −0.03581 −0.02381 −0.03388
(0.001797) (0.003965) (0.004036) (0.003702) (0.004308)

Income −0.4751 −0.4206 −0.4108 −0.1892 −0.3337
(0.02198) (0.04700) (0.04752) (0.04452) (0.05161)

Kids −0.1582 −0.1513 −0.1568 −0.1342 −0.1622
(0.007956) (0.01738) (0.01773) (0.01647) (0.01856)

Public 0.2364 0.2324 0.2411 0.1616 0.2195
(0.01328) (0.02900) (0.03006) (0.02678) (0.03155)

P 0.0000 2.0000 2.0000 1.0000 1.5473
(0.0000) (0.0000) (0.0000) (0.0000) (0.03444)

θ 0.0000 1.9242 2.6060 6.1865 3.2470
(0.0000) (0.02008) (0.05954) (0.06861) (0.1346)

δ (Female) 0.0000 0.0000 −0.3838 0.0000 0.0000
(0.0000) (0.0000) (0.02046) (0.0000) (0.0000)

δ (Married) 0.0000 0.0000 −0.1359 0.0000 0.0000
(0.0000) (0.0000) (0.02307) (0.0000) (0.0000)

ln L −104,440.3 −60,265.49 −60,121.77 −60,260.68 −60,197.15

of equidispersion. Cameron and Trivedi’s (1990) semiparametric tests from the Poisson model
(see Section 18.4.3 have t statistics of 22.147 for gi = μi and 22.504 for gi = μ2

i . Both of
these are far larger than the critical value of 1.96. The LM statistic is 972,714.48, which is
also larger than the (any) critical value. On these bases, we would reject the hypothesis of
equidispersion. The Wald and likelihood ratio tests based on the negative binomial models
produce the same conclusion. For comparing the different negative binomial models, note
that Negbin 2 is the worst of the three by the likelihood function, although NB1 and NB2
are not directly comparable. On the other hand, note that in the NBP model, the estimate
of P is more than 10 standard errors from 1.0000 or 2.000, so both NB1 and NB2 are
rejected in favor of the unrestricted NBP form of the model. The NBP and the heterogeneous
NB2 model are not nested either, but comparing the log-likelihoods, it does appear that the
heterogeneous model is substantially superior. We computed the Vuong statistic based on
the individual contributions to the log-likelihoods, with vi = ln Li (NBP) − ln Li (NB2-H) . (See
Section 14.6.6). The value of the statistic is −3.27. On this basis, we would reject NBP in
favor of NB2-H. Finally, with regard to the original question, the coefficient on PUBLIC is
larger than 10 times the estimated standard error in every specification. We would conclude
that the results are consistent with the proposition that there is evidence of moral hazard.

18.4.6 TRUNCATION AND CENSORING IN MODELS FOR COUNTS

Truncation and censoring are relatively common in applications of models for counts.
Truncation arises as a consequence of discarding what appear to be unusable data,
such as the zero values in survey data on the number of uses of recreation facilities
[Shaw (1988), Bockstael et al. (1990)]. In this setting, a more common case which also
gives rise to truncation is on-site sampling. When one is interested in visitation by the
entire population, which will naturally include zero visits, but one draws their sample
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FIGURE 18.6 Number of Doctor Visits. 1988 Wave of GSOEP
Data.

“on-site,” the distribution of visits is truncated at zero by construction. Every visitor has
visited at least once. Shaw (1988), Englin and Shonkwiler (1995), Grogger and Carson
(1991), Creel and Loomis (1990), Egan and Herriges (2006), and Martinez-Espinera
and Amoako-Tuffour (2008) are among a number of studies that have treated trunca-
tion due to on-site sampling in environmental and recreation applications. Truncation
will also arise when data are trimmed to remove what appear to be unusual values.
Figure 18.6 displays a histogram for the number of doctor visits in the 1988 wave of the
GSOEP data that we have used in several examples. There is a suspiciously large spike
at zero and an extremely long right tail of what might seem to be atypical observations.
For modeling purposes, it might be tempting to remove these “non-Poisson” appearing
observations in these tails. (Other models might be a better solution.) The distribution
that characterizes what remains in the sample is a truncated distribution. Truncation is
not innocent. If the entire population is of interest, then conventional statistical infer-
ence (such as estimation) on the truncated sample produces a systematic bias known
as (of course) “truncation bias.” This would arise, for example, if an ordinary Poisson
model intended to characterize the full population is fit to the sample from a truncated
population.

Censoring, in contrast, is generally a feature of the sampling design. In the applica-
tion in Example 18.9, the dependent variable is the self-reported number of extramarital
affairs in a survey taken by the magazine Psychology Today. The possible answers are
0, 1, 2, 3, 4–10 (coded as 7) and “monthly, weekly or daily” coded as 12. The two upper
categories are censored. Similarly, in the doctor visits data in the previous paragraph,
recognizing the possibility of truncation bias due to data trimming, we might, instead,
simply censor the distribution of values at 15. The resulting variable would take values
0, . . . , 14, “15 or more.” In both cases, applying conventional estimation methods leads to
predictable biases. However, it is also possible to reconstruct the estimators specifically
to account for the truncation or censoring in the data.
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Truncation and censoring produce similar effects on the distribution of the random
variable and on the features of the population such as the mean. For the truncation
case, suppose that the original random variable has a Poisson distribution—all these
results can be directly extended to the negative binomial or any of the other models
considered earlier—with

P(yi = j | xi ) = exp(−λi )λ
j
i /j! = Pi, j .

If the distribution is truncated at value C—that is, only values C + 1, . . . are observed—
then the resulting random variable has probability distribution

P(yi = j | xi , yi > C) = P(yi = j | xi )

P(yi > C | xi )
= P(yi = j | xi )

1 − P(yi ≤ C | xi )
.

The original distribution must be scaled up so that it sums to one for the cells that
remain in the truncated distribution. The leading case is truncation at zero, that is, “left
truncation,” which, for the Poisson model produces

P(yi = j | xi , yi > 0) = exp(−λi )λ
j
i

j![1 − exp(−λi )]
= Pi, j

1 − Pi,0
, j = 1, . . . .

[See, e.g., Mullahy (1986), Shaw (1988), Grogger and Carson (1991), Greene (1998),
and Winkelmann (1987).] The conditional mean function is

E(yi | xi , yi > 0) = 1
[1 − exp(−λi )]

∞∑
j=1

j exp(−λi )λ
j
i

j!
= λi

[1 − exp(−λi )]
> λi .

The second equality results because the sum can be started at zero—the first term
is zero—and this produces the expected value of the original variable. As might be
expected, truncation “from below” has the effect of increasing the expected value. It
can be shown that it decreases the conditional variance however. The partial effects are

δi = ∂ E[yi | xi , yi > 0]
∂xi

=
[

1 − Pi,0 − λi Pi,0(
1 − Pi,0

)2

]
λiβ. (18-23)

The term outside the brackets is the partial effects in the absence of the truncation while
the bracketed term rises from slighter greater than 0.5 to 1.0 as λi increases from just
above zero.

Example 18.8 Major Derogatory Reports
In Section 17.5.6 and Examples 17.9 and 17.22, we examined a binary choice model for the
accept/reject decision for a sample of applicants for a major credit card. Among the variables
in that model is “Major Derogatory Reports” (MDRs). This is an interesting behavioral variable
in its own right that can be appropriately modeled using the count data specifications in this
chapter. In the sample of 13,444 individuals, 10,833 had zero MDRs while the values for the
remaining 2,561 ranged from 1 to 22. This preponderance of zeros exceeds by far what one
would anticipate in a Poisson model that was dispersed enough to produce the distribution
of remaining individuals. As we will pursue an Example 18.11, a natural approach for these
data is to treat the extremely large block of zeros explicitly in an extended model. For present
purposes, we will consider the nonzero observations apart from the zeros and examine the
effect of accounting for left truncation at zero on the estimated models. Estimation results
are shown in Table 18.15. The first column of results compared to the second shows the
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TABLE 18.15 Estimated Truncated Poison Regression Model (t ratios in
parentheses)

Poisson Full Sample Poisson Truncated Poisson

Constant 0.8756 (17.10) 0.8698 (16.78) 0.7400 (11.99)
Age 0.0036 (2.38) 0.0035 (2.32) 0.0049 (2.75)
Income −0.0039 (−4.78) −0.0036 (−3.83) −0.0051 (−4.51)
OwnRent −0.1005 (−3.52) −0.1020 (−3.56) −0.1415 (−4.18)
Self-Employed −0.0325 (−0.62) −0.0345 (−0.66) −0.0515 (−0.82)
Dependents 0.0445 (4.69) 0.0440 (4.62) 0.0606 (5.48)
MthsCurAdr 0.00004 (0.23) 0.00005 (0.25) 0.00007 (0.30)
ln L −5,379.30 −5,378.79 −5,097.08

Average Partial Effects
Age 0.0017 0.0085 0.0084
Income −0.0018 −0.0087 −0.0089
OwnRent −0.0465 −0.2477 −0.2460
Self-Employed −0.0150 −0.0837 −0.0895
Dependents 0.0206 0.1068 0.1054
MthsCurAdr 0.00002 0.00012 0.00013
Cond’l. Mean 0.4628 2.4295 2.4295
Scale factor 0.4628 2.4295 1.7381

suspected impact of incorrectly including the zero observations. The coefficients change only
slightly, but the partial effects are far smaller when the zeros are included in the estimation.
It was not possible to fit the truncated negative binomial with these data.

Censoring is handled similarly. The usual case is “right censoring,” in which realized
values greater than or equal to C are all given the value C. In this case, we have a two-
part distribution [see Terza (1985b)]. The observed random variable, yi is constructed
from an underlying random variable, y∗

i by

yi = Min(y∗
i , C).

Probabilities are constructed using the axioms of probability. This produces

Prob(yi = j | xi ) = Pi, j , j = 0, 1, . . . , C − 1,

Prob(yi = C | xi ) =
∞∑

j=C

Pi, j = 1 −
C−1∑
j=0

Pi, j .

In this case, the conditional mean function is

E[yi | xi ] =
C−1∑
j=0

j Pi, j +
∞∑

j=C

CPi, j

=
∞∑
j=0

j Pi, j −
∞∑

j=C

( j − C)Pi, j

= λi −
∞∑

j=C

( j − C)Pi, j < λi .
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The infinite sum is computed by using the complement. Thus,

E[yi |xi ] = λi −
⎡
⎣

∞∑
j=0

( j − C)Pi, j −
C−1∑
j=0

( j − C)Pi, j

⎤
⎦

= λi − (λi − C) +
C−1∑
j=0

( j − C)Pi, j

= C −
C−1∑
j=0

(C − j)Pi, j .

Example 18.9 Extramarital Affairs
In 1969, the popular magazine Psychology Today published a 101-question survey on sex
and asked its readers to mail in their answers. The results of the survey were discussed in
the July 1970 issue. From the approximately 2,000 replies that were collected in electronic
form (of about 20,000 received), Professor Ray Fair (1978) extracted a sample of 601 ob-
servations on men and women then currently married for the first time and analyzed their
responses to a question about extramarital affairs. Fair’s analysis in this frequently cited study
suggests several interesting econometric questions. [In addition, his 1977 companion paper
in Econometrica on estimation of the tobit model contributed to the development of the EM
algorithm, which was published by and is usually associated with Dempster, Laird, and Rubin
(1977).]

Fair used the tobit model that we discuss in Chapter 19 as a platform The nonexperimental
nature of the data (which can be downloaded from the Internet at http://fairmodel.econ.yale
.edu/rayfair/work.ss.htm and are given in Appendix Table F18.1). provides a laboratory case
that we can use to examine the relationships among the tobit, truncated regression, and
probit models. Although the tobit model seems to be a natural choice for the model for these
data, given the cluster of zeros, the fact that the behavioral outcome variable is a count that
typically takes a small value suggests that the models for counts that we have examined in
this chapter might be yet a better choice. Finally, the preponderance of zeros in the data that
initially motivated the tobit model suggests that even the standard Poisson model, although
an improvement, might still be inadequate. We will pursue that aspect of the data later. In this
example, we will focus on just the censoring issue. Other features of the models and data
are reconsidered in the exercises.

The study was based on 601 observations on the following variables (full details on data
coding are given in the data file and Appendix Table F18.1):

y = number of affairs in the past year, 0, 1, 2, 3, 4–10 coded as 7
“monthly, weekly, or daily,” coded as 12. Sample mean = 1.46
Frequencies = (451, 34, 17, 19, 42, 38),

z1 = sex = 0 for female, 1 for male. Sample mean = 0.476,
z2 = age. Sample mean = 32.5,
z3 = number of years married. Sample mean = 8.18,
z4 = children, 0 = no, 1 = yes. Sample mean = 0.715,
z5 = religiousness, 1 = anti, . . . , 5 = very. Sample mean = 3.12,
z6= education, years, 9 = grade school, 12 = high school, . . . , 20 = Ph.D or other Sample

mean = 16.2,
z7 = occupation, “Hollingshead scale,” 1–7. Sample mean = 4.19,
z8 = self-rating of marriage, 1 = very unhappy, . . . , 5 = very happy. Sample mean = 3.93.
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TABLE 18.16 Censored Poisson and Negative Binomial Distributions

Poisson Regression Negative Binomial Regression

Standard Marginal Standard Marginal
Variable Estimate Error Effect Estimate Error Effect

Based on Uncensored Poisson Distribution

Constant 2.53 0.197 — 2.19 0.859 —
z2 −0.0322 0.00585 −0.0470 −0.0262 0.0180 −0.00393
z3 0.116 0.00991 0.168 0.0848 0.0401 0.127
z5 −0.354 0.0309 −0.515 −0.422 0.171 −0.632
z7 0.0798 0.0194 0.116 0.0604 0.0909 0.0906
z8 −0.409 0.0274 −0.596 −0.431 0.167 −0.646
α 7.015 0.945
ln L −1,427.037 −728.2441

Based on Poisson Distribution Right Censored at y = 4

Constant 1.90 0.283 — 4.79 1.16 —
z2 −0.0328 0.00838 −0.0235 −0.0166 0.0250 −0.00428
z3 0.105 0.0140 0.0755 0.174 0.0568 0.045
z5 −0.323 0.0437 −0.232 −0.723 0.198 −0.186
z7 0.0798 0.0275 0.0572 0.0900 0.116 0.0232
z8 −0.390 0.0391 −0.279 −0.854 0.216 −0.220
α 9.40 1.35
ln L −747.7541 −482.0505

The tobit model was fit to y using a constant term and all eight variables. A restricted model
was fit by excluding z1, z4, and z6, none of which was individually statistically significant in
the model. We are able to match exactly Fair’s results for both equations. The tobit model
should only be viewed as an approximation for these data. The dependent variable is a
count, not a continuous measurement. The Poisson regression model, or perhaps one of
the many variants of it, should be a preferable modeling framework. Table 18.16 presents
estimates of the Poisson and negative binomial regression models. There is ample evidence
of overdispersion in these data; the t ratio on the estimated overdispersion parameter is
7.015/0.945 = 7.42, which is strongly suggestive. The large absolute value of the coefficient
is likewise suggestive.

Responses of 7 and 12 do not represent the actual counts. It is unclear what the effect
of the first recoding would be, because it might well be the mean of the observations in this
group. But the second is clearly a censored observation. To remove both of these effects,
we have recoded both the values 7 and 12 as 4 and treated this observation (appropriately)
as a censored observation, with 4 denoting “4 or more.” As shown in the third and fourth
sets of results in Table 18.16, the effect of this treatment of the data is greatly to reduce
the measured effects. Although this step does remove a deficiency in the data, it does not
remove the overdispersion; at this point, the negative binomial model is still the preferred
specification.

18.4.7 PANEL DATA MODELS

The familiar approaches to accommodating heterogeneity in panel data have fairly
straightforward extensions in the count data setting. [Hausman, Hall, and Griliches
(1984) give full details for these models.] We will examine them for the Poisson model.
The authors [and Allison (2000)] also give results for the negative binomial model.
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18.4.7.a Robust Covariance Matrices for Pooled Estimators

The standard asymptotic covariance matrix estimator for the Poisson model is

Est. Asy. Var[β̂] =
[
−∂2 ln L

∂β̂∂β̂ ′

]−1

=
[

n∑
i=1

λ̂i xi x′
i

]−1

= [X′�̂X]−1,

where �̂ is a diagonal matrix of predicted values. The BHHH estimator is

Est. Asy. Var[β̂] =
[

n∑
i=1

(
∂ ln Pi

∂β̂

) (
∂ ln Pi

∂β̂

)′]−1

=
[

n∑
i=1

(
yi − λ̂′

i

)2xi x′
i

]−1

= [X′Ê2X]−1,

where Ê is a diagonal matrix of residuals. The Poisson model is one in which the MLE is
robust to certain misspecifications of the model, such as the failure to incorporate latent
heterogeneity in the mean (that is, one fits the Poisson model when the negative binomial
is appropriate). In this case, a robust covariance matrix is the “sandwich” estimator,

Robust Est. Asy. Var[β̂] = [X′�̂X]−1[X′Ê2X][X′�̂X]−1,

which is appropriate to accommodate this failure of the model. It has become common
to employ this estimator with all specifications, including the negative binomial. One
might question the virtue of this. Because the negative binomial model already accounts
for the latent heterogeneity, it is unclear what additional failure of the assumptions of
the model this estimator would be robust to. The questions raised in Section 14.8.3 and
14.8.4 about robust covariance matrices would be relevant here.

A related calculation is used when observations occur in groups that may be corre-
lated. This would include a random effects setting in a panel in which observations have
a common latent heterogeneity as well as more general, stratified, and clustered data
sets. The parameter estimator is unchanged in this case (and an assumption is made
that the estimator is still consistent), but an adjustment is made to the estimated asymp-
totic covariance matrix. The calculation is done as follows: Suppose the n observations
are assembled in G clusters of observations, in which the number of observations in
the ith cluster is ni . Thus,

∑G
i=1ni = n. Denote by β the full set of model parameters

in whatever variant of the model is being estimated. Let the observation-specific gra-
dients and Hessians be gij = ∂ ln Lij/∂β = (yij − λij)xij and Hij = ∂2 ln Lij/∂β∂β ′ =
−λijxijx′

ij. The uncorrected estimator of the asymptotic covariance matrix based on the
Hessian is

VH = −H−1 =
⎛
⎝−

G∑
i=1

ni∑
j=1

Hij

⎞
⎠

−1

.

The corrected asymptotic covariance matrix is

Est. Asy. Var[β̂] = VH

(
G

G − 1

) ⎡
⎣

G∑
i=1

⎛
⎝

ni∑
j=1

gij

⎞
⎠

⎛
⎝

ni∑
j=1

gij

⎞
⎠

′⎤
⎦ VH.
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Note that if there is exactly one observation per cluster, then this is G/(G − 1) times
the sandwich (robust) estimator.

18.4.7.b Fixed Effects

Consider first a fixed effects approach. The Poisson distribution is assumed to have
conditional mean

log λit = β ′xit + αi , (18-24)

where now, xit has been redefined to exclude the constant term. The approach used
in the linear model of transforming yit to group mean deviations does not remove the
heterogeneity, nor does it leave a Poisson distribution for the transformed variable.
However, the Poisson model with fixed effects can be fit using the methods described
for the probit model in Section 17.4.3. The extension to the Poisson model requires only
the minor modifications, git = (yit − λit) and hit = − λit. Everything else in that deriva-
tion applies with only a simple change in the notation. The first-order conditions for
maximizing the log-likelihood function for the Poisson model will include

∂ ln L
∂αi

=
Ti∑

t=1

(yit − eαi μit) = 0 where μit = ex′
itβ .

This implies an explicit solution for αi in terms of β in this model,

α̂i = ln
(

(1/Ti )
∑Ti

t=1 yit

(1/Ti )
∑Ti

t=1 μ̂it

)
= ln

(
ȳi

¯̂μi

)
. (18-25)

Unlike the regression or the probit model, this does not require that there be within-
group variation in yit—all the values can be the same. It does require that at least one
observation for individual i be nonzero, however. The rest of the solution for the fixed
effects estimator follows the same lines as that for the probit model. An alternative
approach, albeit with little practical gain, would be to concentrate the log-likelihood
function by inserting this solution for αi back into the original log-likelihood, and then
maximizing the resulting function of β. While logically this makes sense, the approach
suggested earlier for the probit model is simpler to implement.

An estimator that is not a function of the fixed effects is found by obtaining the
joint distribution of (yi1, . . . , yiTi ) conditional on their sum. For the Poisson model, a
close cousin to the multinomial logit model discussed earlier is produced:

p

(
yi1, yi2, . . . , yiTi

∣∣∣∣∣
Ti∑

i=1

yit

)
=

(∑Ti
t=1 yit

)
!

(∏Ti
t=1 yit!

)
Ti∏

t=1

pyit
it , (18-26)

where

pit = ex′
itβ+αi

∑Ti
t=1 ex′

itβ+αi
= ex′

itβ

∑Ti
t=1 ex′

itβ
. (18-27)

The contribution of group i to the conditional log-likelihood is

ln Li =
Ti∑

t=1

yit ln pit.
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Note, once again, that the contribution to ln L of a group in which yit = 0 in every
period is zero. Cameron and Trivedi (1998) have shown that these two approaches give
identical results.

Hausman, Hall, and Griliches (1984) (HHG) report the following conditional den-
sity for the fixed effects negative binomial (FENB) model:

p

(
yi1, yi2, . . . , yiTi

∣∣∣∣∣
Ti∑

t=1

yit

)
=

�
(

1 + ∑Ti
t=1 yit

)
�

(∑Ti
t=1 λit

)

�
(∑Ti

t=1 yit + ∑Ti
t=1 λit

)
Ti∏

t=1

�(yit + λit)

�(1 + yit)�(λit)
,

which is free of the fixed effects. This is the default FENB formulation used in popular
software packages such as SAS, Stata, and LIMDEP. Researchers accustomed to the
admonishments that fixed effects models cannot contain overall constants or time-
invariant covariates are sometimes surprised to find (perhaps accidentally) that this
fixed effects model allows both. [This issue is explored at length in Allison (2000) and
Allison and Waterman (2002).] The resolution of this apparent contradiction is that the
HHG FENB model is not obtained by shifting the conditional mean function by the
fixed effect, ln λit = x′

itβ + αi , as it is in the Poisson model. Rather, the HHG model is
obtained by building the fixed effect into the model as an individual specific θi in the
Negbin 1 form in (18-22). The conditional mean functions in the models are as follows
(we have changed the notation slightly to conform to our earlier formulation):

NB1(HHG): E[yit | xit] = θiφit = θi exp(x′
itβ),

NB2: E[yit | xit] = exp(αi )φit = λit = exp(x′
itβ + αi ).

The conditional variances are

NB1(HHG): Var[yit | xit] = θiφit[1 + θi ],

NB2: Var[yit | xit] = λit[1 + θλit].

Letting μi = ln θi , it appears that the HHG formulation does provide a fixed effect in
the mean, as now, E[yit | xit] = exp(x′

itβ + μi ). Indeed, by this construction, it appears
(as the authors suggest) that there are separate effects in both the mean and the variance.
They make this explicit by writing θi = exp(μi )γi so that in their model,

E[yit | xit] = γi exp(x′
itβ + μi ),

Var[yit | xit] = γi exp(x′
itβ + μi )/[1 + γi exp(μi )].

The contradiction arises because the authors assert that μi and γi are separate parame-
ters. In fact, they cannot vary separately only θi can vary autonomously. The firm-specific
effect in the HHG model is still isolated in the scaling parameter, which falls out of the
conditional density. The mean is homogeneous, which explains why a separate constant,
or a time-invariant regressor (or another set of firm-specific effects) can reside there.
[See Greene (2007d) and Allison and Waterman (2002) for further discussion.]

18.4.7.c Random Effects

The fixed effects approach has the same flaws and virtues in this setting as in the
probit case. It is not necessary to assume that the heterogeneity is uncorrelated with
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the included exogenous variables. If the uncorrelatedness of the regressors and the
heterogeneity can be maintained, then the random effects model is an attractive alter-
native model. Once again, the approach used in the linear regression model, partial de-
viations from the group means followed by generalized least squares (see Section 11.5),
is not usable here. The approach used is to formulate the joint probability conditioned
upon the heterogeneity, then integrate it out of the joint distribution. Thus, we form

p(yi1, . . . , yiTi | ui ) =
Ti∏

t=1

p(yit | ui ).

Then the random effect is swept out by obtaining

p(yi1, . . . , yiTi ) =
∫

ui

p(yi1, . . . , yiTi , ui ) dui

=
∫

ui

p(yi1, . . . , yiTi | ui )g(ui ) dui

= Eui [p(yi1, . . . , yiTi | ui )].

This is exactly the approach used earlier to condition the heterogeneity out of the
Poisson model to produce the negative binomial model. If, as before, we take p(yit | ui )

to be Poisson with mean λit = exp(x′
itβ + ui ) in which exp(ui ) is distributed as gamma

with mean 1.0 and variance 1/α, then the preceding steps produce a negative binomial
distribution,

p(yi1, . . . , yiTi ) =
[∏Ti

t=1 λ
yit
it

]
�

(
θ + ∑Ti

t=1 yit

)

[
�(θ)

∏Ti
t=1 yit!

] [(∑Ti
t=1 λit

)∑Ti
t=1

yit

] Qθ
i (1 − Qi )

∑Ti
t=1

yit , (18-28)

where

Qi = θ

θ + ∑Ti
t=1 λit

.

For estimation purposes, we have a negative binomial distribution for Yi = �t yit with
mean �i = �tλit.

Like the fixed effects model, introducing random effects into the negative bino-
mial model adds some additional complexity. We do note, because the negative bi-
nomial model derives from the Poisson model by adding latent heterogeneity to the
conditional mean, adding a random effect to the negative binomial model might well
amount to introducing the heterogeneity a second time. However, one might prefer
to interpret the negative binomial as the density for yit in its own right and treat the
common effects in the familiar fashion. Hausman et al.’s (1984) random effects nega-
tive binomial (RENB) model is a hierarchical model that is constructed as follows. The
heterogeneity is assumed to enter λit additively with a gamma distribution with mean 1,
�(θi , θi ). Then, θi/(1+θi ) is assumed to have a beta distribution with parameters a and b



Greene-2140242 book January 19, 2011 21:23

860 PART IV ✦ Cross Sections, Panel Data, and Microeconometrics

[see Appendix B.4.6)]. The resulting unconditional density after the heterogeneity is
integrated out is

p(yi1, yi2, . . . , yiTi ) =
�(a + b)�

(
a + ∑Ti

t=1 λit

)
�

(
b + ∑Ti

t=1 yit

)

�(a)�(b)�
(

a + ∑Ti
t=1 λit + b + ∑Ti

t=1 yit

) .

As before, the relationship between the heterogeneity and the conditional mean func-
tion is unclear, because the random effect impacts the parameter of the scedastic
function. An alternative approach that maintains the essential flavor of the Poisson
model (and other random effects models) is to augment the NB2 form with the random
effect,

Prob(Y = yit | xit, εi ) = �(θ + yit)

�(yit + 1)�(θ)
r yit

it (1 − rit)
θ ,

λit = exp(x′
itβ + εi ),

rit = λit/(θ + λit).

We then estimate the parameters by forming the conditional (on εi ) log-likelihood and
integrating εi out either by quadrature or simulation. The parameters are simpler to
interpret by this construction. Estimates of the two forms of the random effects model
are presented in Example 18.10 for a comparison.

There is a mild preference in the received literature for the fixed effects estimators
over the random effects estimators. The virtue of dispensing with the assumption of
uncorrelatedness of the regressors and the group specific effects is substantial. On the
other hand, the assumption does come at a cost. To compute the probabilities or the
marginal effects, it is necessary to estimate the constants, αi . The unscaled coefficients
in these models are of limited usefulness because of the nonlinearity of the conditional
mean functions.

Other approaches to the random effects model have been proposed. Greene (1994,
1995a), Riphahn et al. (2003), and Terza (1995) specify a normally distributed hetero-
geneity, on the assumption that this is a more natural distribution for the aggregate of
small independent effects. Brannas and Johanssen (1994) have suggested a semipara-
metric approach based on the GMM estimator by superimposing a very general form of
heterogeneity on the Poisson model. They assume that conditioned on a random effect
εit, yit is distributed as Poisson with mean εitλit. The covariance structure of εit is allowed
to be fully general. For t, s = 1, . . . , T, Var[εit] = σ 2

i , Cov[εit, ε js] = γij(|t − s|). For a
long time series, this model is likely to have far too many parameters to be identified
without some restrictions, such as first-order homogeneity (β i = β ∀ i), uncorrelated-
ness across groups, [γij(.) = 0 for i �= j], groupwise homoscedasticity (σ 2

i = σ 2 ∀ i), and
nonautocorrelatedness [γ (r) = 0 ∀ r �= 0]. With these assumptions, the estimation pro-
cedure they propose is similar to the procedures suggested earlier. If the model imposes
enough restrictions, then the parameters can be estimated by the method of moments.
The authors discuss estimation of the model in its full generality. Finally, the latent class
model discussed in Section 14.10 and the random parameters model in Section 15.9
extend naturally to the Poisson model. Indeed, most of the received applications of
the latent class structure have been in the Poisson regression framework. [See Greene
(2001) for a survey.]
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Example 18.10 Panel Data Models for Doctor Visits
The German health care panel data set contains 7,293 individuals with group sizes ranging
from 1 to 7. Table 18.17 presents the fixed and random effects estimates of the equation
for DocVis. The pooled estimates are also shown for comparison. Overall, the panel data
treatments bring large changes in the estimates compared to the pooled estimates. There
is also a considerable amount of variation across the specifications. With respect to the
parameter of interest, Public, we find that the size of the coefficient falls substantially with
all panel data treatments. Whether using the pooled, fixed, or random effects specifications,
the test statistics (Wald, LR) all reject the Poisson model in favor of the negative binomial.
Similarly, either common effects specification is preferred to the pooled estimator. There is no
simple basis for choosing between the fixed and random effects models, and we have further
blurred the distinction by suggesting two formulations of each of them. We do note that the
two random effects estimators are producing similar results, which one might hope for. But,
the two fixed effects estimators are producing very different estimates. The NB1 estimates
include two coefficients, Income and Education, which are positive, but negative in every
other case. Moreover, the coefficient on Public, which is large and significant throughout the
table, has become small and less significant with the fixed effects estimators.

We also fit a three-class latent class model for these data. (See Section 14.10.) The
three class probabilities were modeled as functions of Married and Female, which appear
from the results to be significant determinants of the class sorting. The average prior prob-
abilities for the three classes are 0.09212, 0.49361, and 0.41427. The coefficients on Public
in the three classes, with associated t ratios are 0.3388 (11.541), 0.1907 (3.987), and 0.1084
(4.282). The qualitative result concerning evidence of moral hazard suggested at the outset of
Example 18.7 appears to be supported in a variety of specifications (with FE-NB1 the sole
exception).

18.4.8 TWO-PART MODELS: ZERO INFLATION AND HURDLE
MODELS

Mullahy (1986), Heilbron (1989), Lambert (1992), Johnson and Kotz (1993), and Greene
(1994) have analyzed an extension of the hurdle model in which the zero outcome can
arise from one of two regimes.15 In one regime, the outcome is always zero. In the other,
the usual Poisson process is at work, which can produce the zero outcome or some
other. In Lambert’s application, she analyzes the number of defective items produced
by a manufacturing process in a given time interval. If the process is under control, then
the outcome is always zero (by definition). If it is not under control, then the number
of defective items is distributed as Poisson and may be zero or positive in any period.
The model at work is therefore

Prob(yi = 0|xi ) = Prob(regime 1) + Prob(yi = 0|xi , regime 2)Prob(regime 2),

Prob(yi = j |xi ) = Prob(yi = j |xi , regime 2)Prob(regime 2), j = 1, 2, . . . .

Let z denote a binary indicator of regime 1(z = 0) or regime 2 (z = 1), and let y∗ denote
the outcome of the Poisson process in regime 2. Then the observed y is z× y∗. A natural
extension of the splitting model is to allow zto be determined by a set of covariates. These
covariates need not be the same as those that determine the conditional probabilities
in the Poisson process. Thus, the model is

Prob(zi = 0 | wi ) = F(wi , γ ), (Regime 1 : y will equal zero.)

Prob(yi = j | xi , zi = 1) = exp(−λi )λ
j
i

j!
.(Regime 2 : y will be a count outcome.)

15The model is variously labeled the “with zeros,” or WZ, model [Mullahy (1986)], the zero inflated Poisson,
or ZIP, model [Lambert (1992)], and “zero-altered poisson,” or ZAP, model [Greene (1994)]
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The zero inflation model can also be viewed as a type of latent class model. The two
class probabilities are F(wi , γ ) and 1 − F(wi , γ ), and the two regimes are y = 0 and
the Poisson or negative binomial data generating process.16 The extension of the ZIP
formulation to the negative binomial model is widely labeled the ZINB model.17 [See
Zaninotti and Falischetti (2010) for an application.]

The mean of this random variable in the Poisson case is

E[yi |xi , wi ] = Fi × 0 + (1 − Fi ) × E[y∗
i |xi , zi = 1] = (1 − Fi )λi .

Lambert (1992) and Greene (1994) consider a number of alternative formulations,
including logit and probit models discussed in Sections 17.2 and 17.3, for the probability
of the two regimes.

It might be of interest to test simply whether there is a regime splitting mechanism at
work or not. Unfortunately, the basic model and the zero-inflated model are not nested.
Setting the parameters of the splitting model to zero, for example, does not produce
Prob[z = 0] = 0. In the probit case, this probability becomes 0.5, which maintains the
regime split. The preceding tests for over- or underdispersion would be rather indirect.
What is desired is a test of non-Poissonness. An alternative distribution may (but need
not) produce a systematically different proportion of zeros than the Poisson. Testing
for a different distribution, as opposed to a different set of parameters, is a difficult
procedure. Because the hypotheses are necessarily nonnested, the power of any test is
a function of the alternative hypothesis and may, under some, be small. Vuong (1989)
has proposed a test statistic for nonnested models that is well suited for this setting
when the alternative distribution can be specified. (See Section 14.6.6.) Let f j (yi |xi )

denote the predicted probability that the random variable Y equals yi under the as-
sumption that the distribution is f j (yi |xi ), for j = 1, 2, and let

mi = ln
(

f1(yi |xi )

f2(yi |xi )

)
.

Then Vuong’s statistic for testing the nonnested hypothesis of model 1 versus model 2 is

v =
√

n
[ 1

n�n
i=1mi

]
√

1
n�n

i=1 (mi − m̄)2
=

√
nm̄

sm
.

This is the standard statistic for testing the hypothesis that E[mi ] equals zero. Vuong
shows that v has a limiting standard normal distribution. As he notes, the statistic is
bidirectional. If |v| is less than two, then the test does not favor one model or the other.
Otherwise, large values favor model 1 whereas small (negative) values favor model 2.
Carrying out the test requires estimation of both models and computation of both sets
of predicted probabilities. In Greene (1994), it is shown that the Vuong test has some
power to discern the zero inflation phenomenon. The logic of the testing procedure is to
allow for overdispersion by specifying a negative binomial count data process and then
examine whether, even allowing for the overdispersion, there still appear to be excess
zeros. In his application, that appears to be the case.

16Harris and Zhao (2007) applied this approach to a survey of teenage smokers and nonsmokers in Australia,
using an ordered probit model. (See Section 18.3.)
17Greene (2005) presents a survey of two-part models, including the zero inflation models.
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TABLE 18.18 Estimated Zero Inflated Count Models

Poisson Negative Binomial

Zero Inflation Zero Inflation

Poisson Zero Negative Zero
Regression Regression Regime Binomial Regression Regime

Constant −1.33276 0.75483 2.06919 −1.54536 −0.39628 4.18910
Age 0.01286 0.00358 −0.01741 0.01807 −0.00280 −0.14339
Income −0.02577 −0.05127 −0.03023 −0.02482 −0.05502 −0.33903
OwnRent −0.17801 −0.15593 −0.01738 −0.18985 −0.28591 −0.50026
Self Employment 0.04691 −0.01257 0.07920 0.06817
Dependents 0.13760 0.06038 −0.09098 0.14054 0.08599 −0.32897
Cur. Add. 0.00195 0.00046 0.00245 0.00257
α 6.41435 4.85653
ln L −15,467.71 −11,569.74 −10,582.88 −10,516.46
Vuong 20.6981 4.5943

Example 18.11 Zero Inflation Models for Major Derogatory Reports
In Example 18.8, we examined the counts of major derogatory reports for a sample of 13,444
credit card applicants. It was noted that there are over 10,800 zeros in the counts. One
might guess that among credit card users, there is a certain (probably large) proportion of
individuals who would never generate an MDR, and some other proportion who might or
might not, depending on circumstances. We propose to extend the count models in Exam-
ple 18.8 to accommodate the zeros. The extensions to the ZIP and ZINB models are shown
in Table 18.18. Only the coefficients are shown for purpose of the comparisons. Vuong’s
diagnostic statistic appears to confirm intuition that the Poisson model does not adequately
describe the data; the value is 20.6981. Using the model parameters to compute a prediction
of the number of zeros, it is clear that the splitting model does perform better than the basic
Poisson regression. For the simple Poisson model, the average probability of zero times the
sample size gives a prediction of 8,609. For the ZIP model, the value is 10,914.8, which is a
dramatic improvement. By the likelihood ratio test, the negative binomial is clearly preferred;
comparing the two zero inflation models, the difference in the log-likelihood functions is over
1,000. As might be expected, the Vuong statistic falls considerably, to 4.5943. However, the
simple model with no zero inflation is still rejected by the test.

In some settings, the zero outcome of the data generating process is qualitatively
different from the positive ones. The zero or nonzero value of the outcome is the
result of a separate decision whether or not to “participate” in the activity. On deciding
to participate, the individual decides separately how much, that is, how intensively.
Mullahy (1986) argues that this fact constitutes a shortcoming of the Poisson (or negative
binomial) model and suggests a hurdle model as an alternative.18 In his formulation,
a binary probability model determines whether a zero or a nonzero outcome occurs
and then, in the latter case, a (truncated) Poisson distribution describes the positive
outcomes. The model is

Prob(yi = 0|xi ) = e−θ

Prob(yi = j |xi ) = (1 − e−θ )
exp(−λi )λ

j
i

j![1 − exp(−λi )]
, j = 1, 2, . . . .

18For a similar treatment in continuous data application, see Cragg (1971).
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This formulation changes the probability of the zero outcome and scales the remaining
probabilities so that they sum to one. Mullahy suggests some formulations and applies
they model to a sample of observations on daily beverage consumption. Mullahy’s
formulation adds a new restriction that Prob(yi = 0|xi ) no longer depends on the
covariates, however. The natural next step is to parameterize this probability. This
extension of the hurdle model would combine a binary choice model like those in
Section 17.2 and 17.3 with a truncated count model as shown in Section 18.4.6. This would
produce, for example, for a logit participation equation and a Poisson intensity equation,

Prob(yi = 0|wi ) = �(w′
iγ )

Prob(yi = j |xi , wi , yi > 0) = [1 − �(w′
iγ )] exp(−λi )λ

j
i

j![1 − exp(−λi )]
.

The conditional mean function in the hurdle model is

E[yi |xi , wi ] = [1 − F(w′
iγ )]λi

[1 − exp(−λi )]
, λi = exp(x′

iβ),

where F(.) is the probability model used for the participation equation (probit or logit).
The partial effects are obtained by differentiating with respect to the two sets of vari-
ables separately,

∂ E[yi |xi , wi ]
∂xi

= [1 − F(w′
iγ )]δi ,

∂ E[yi |xi , wi ]
∂wi

=
{ − f (w′

iγ )λi

[1 − exp(−λi )]

}
γ ,

where δi is defined in (18-23) and f (.) is the density corresponding to F(.). For variables
that appear in both xi and wi , the effects are added. For dummy variables, the preceding
would be an approximation; the appropriate result would be obtained by taking the
difference of the conditional means with the variable fixed at one and zero.

It might be of interest to test for hurdle effects. The hurdle model is similar to
the zero inflation model in that a model without hurdle effects is not nested within the
hurdle model; setting γ = 0 produces either F = α, a constant, or F = 1/2 if the constant
term is also set to zero. Neither serves the purpose. Nor does forcing γ = β in a model
with wi = xi and F = � with a Poisson intensity equation, which might be intuitively
appealing. A complementary log log model with

Prob(yi = 0|wi ) = exp[− exp(w′
iγ )]

does produce the desired result if wi = xi . In this case, “hurdle effects” are absent
if γ = β. The strategy in this case, then, would be a test of this restriction. But, this
formulation is otherwise restrictive, first in the choice of variables and second in its
unconventional functional form. The more general approach to this test would be the
Vuong test used earlier to test the zero inflation model against the simpler Poisson or
negative binomial model.

The hurdle model bears some similarity to the zero inflation model; however, the
behavioral implications are different. The zero inflation model can usefully be viewed
as a latent class model. The splitting probability defines a regime determination. In
the hurdle model, the splitting equation represents a behavioral outcome on the same
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TABLE 18.19 Estimated Hurdle Model for Doctor Visits

Participation Equation Intensity Equation

Parameter Partial Effect Parameter Partial Effect
Total Partial Effect

(Poisson Model)

Constant −0.0598 1.1203
Age 0.0221 0.0244 0.0113 0.0538 0.0782 ( 0.0625)
Income 0.0725 0.0800 −0.5152 −2.4470 −2.3670 (−1.8130)
Kids −0.0842 −0.4000 −0.4000 (−0.4836)
Public 0.2411 0.2663 0.1966 0.9338 1.2001 ( 0.9744)
Education −0.0291 −0.0321 −0.0321
Married −0.0233 −0.0258 −0.0258
Working −0.3624 −0.4003 −0.4003

level as the intensity (count) equation. Both of these modifications substantially alter
the Poisson formulation. First, note that the equality of the mean and variance of the
distribution no longer follows; both modifications induce overdispersion. On the other
hand, the overdispersion does not arise from heterogeneity; it arises from the nature of
the process generating the zeros. As such, an interesting identification problem arises
in this model. If the data do appear to be characterized by overdispersion, then it seems
less than obvious whether it should be attributed to heterogeneity or to the regime
splitting mechanism. Mullahy (1986) argues the point more strongly. He demonstrates
that overdispersion will always induce excess zeros. As such, in a splitting model, we may
misinterpret the excess zeros as due to the splitting process instead of the heterogeneity.

Example 18.12 Hurdle Model for Doctor Visits
The hurdle model is a natural specification for models of utilization of the health care system,
and has been used in a number of studies. Table 18.19 shows the parameter estimates for
a hurdle model for doctor visits based on the entire pooled sample of 27,326 observations.
The decomposition of the partial effects shows that the participation and intensity decisions
each contribute substantively to the effects of Age, Income, and Public insurance. The value
of the Vuong statistic is 51.16, strongly in favor of the hurdle model compared to the pooled
Poisson model with no hurdle effects. The effect of the hurdle model on the partial effects is
shown in the last column where the results for the Poisson model are shown in parentheses.

18.4.9 ENDOGENOUS VARIABLES AND ENDOGENOUS
PARTICIPATION

As in other situations, one would expect to find endogenous variables in models for
counts. For example, in the study on which we have relied for our examples of health care
utilization, Riphahn, Wambach, and Million (RWM, 2003), the authors were interested
in the role of insurance (specifically the Add-On insurance) in the usage variable. One
might expect the choice to buy insurance to be at least partly influenced by some of the
same factors that motivate usage of the health care system. Insurance purchase might
well be endogenous in a model such as the hurdle model in Example 18.12.

The Poisson model presents a complication for modeling endogeneity that arises in
some other cases as well. For simplicity, consider a continuous variable, such as Income,
to continue our ongoing example. A model of income determination and doctor visits
might appear

Income = z′
iγ + ui ,

Prob(DocVisi = j |xi , Incomei ) = exp(−λi ), λ
j
i /j!, λi = exp(x′

iβ + δ Incomei ).
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Endogeneity as we have analyzed it, for example, in Chapter 8 and Sections 17.3.5 and
17.5.5, arises through correlation between the endogenous variable and the unobserved
omitted factors in the main equation. But, the Poisson model does not contain any
unobservables. This is a major shortcoming of the specification as a “regression” model;
all of the regression variation of the dependent variable arises through variation of
the observables. There is no accommodation for unobserved heterogeneity or omitted
factors. This is the compelling motivation for the negative binomial model or, in RWM’s
case, the Poisson-normal mixture model. [See Terza (2010, pp. 555–556) for discussion
of this issue.] If the model is reformulated to accommodate heterogeneity, as in

λi = exp(x′
iβ + δ Incomei + εi ),

then Incomei will be endogenous if ui and εi are correlated.
A bivariate normal model for (ui , εi ) with zero means, variances σ 2

u and σ 2
ε and

correlation ρ provides a convenient (and the usual) platform to operationalize this
idea. By projecting εi on ui , we have

εi = (ρσε/σu)ui + vi ,

where vi is normally distributed with mean zero and variance σ 2
ε (1 − ρ2). It will prove

convenient to parameterize these based on the regression and the specific parameters
as follows:

εi = ρσε(Incomei − z′
iγ )/σu + vi ,

= τ [(Incomei − z′
iγ )/σu] + θwi .

where wi will be normally distributed with mean zero and variance one while τ = ρσε

and θ2 = σ 2
ε (1 − ρ2). Then, combining terms,

εi = τ u∗
i + θwi .

With this parameterization, the conditional mean function in the Poisson regression
model is

λi = exp(x′
iβ + δ Incomei + τu∗

i + θwi ).

The parameters to be estimated are β, γ , δ, σε, σu, and ρ. There are two ways to proceed.
A two-step method can be based on the fact that γ and σu can consistently be estimated
by linear regression of Income on z. After this first step, we can compute values of u∗

i
and formulate the Poisson regression model in terms of

λ̂i (wi ) = exp[xi
′β + δ Incomei + τ ûi + θwi ].

The log-likelihood to be maximized at the second step is

ln L(β, δ, τ, θ |w) =
n∑

i=1

−λ̂i (wi ) + yi ln λ̂i (wi ) − ln yi !.

A remaining complication is that the unobserved heterogeneity, wi remains in the equa-
tion so it must be integrated out of the log-likelihood function. The unconditional log-
likelihood function is obtained by integrating the standard normally distributed wi out
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of the conditional densities.

ln L(β, γ , τ, θ) =
n∑

i=1

ln

{∫ ∞

−∞

[
exp

(−λ̂i (wi )
) (

λ̂i (wi )
)yi

yi !

]
φ(wi )dwi

}
.

The method of Butler and Moffitt or maximum simulated likelihood that we used to fit
a probit model in Section 17.4.2 can be used to estimate β, δ, τ , and θ . Estimates of ρ

and σε can be deduced from the last two of these; σ 2
ε = θ2 + τ 2 and ρ = τ/σε. This is the

control function method discussed in Section 17.3.5 and is also the “residual inclusion”
method discussed by Terza, Basu, and Rathouz (2008).

The full set of parameters can be estimated in a single step using full information
maximum likelihood. To estimate all parameters simultaneously and efficiently, we
would form the log-likelihood from joint density of DocVis and Income as P(DocVis|
Income) f (Income). Thus,

f (DocVis, Income) = exp [−λi (wi )] [λi (wi )]
yi

yi !
1
σu

φ

(
Income − z′

iγ

σu

)

λi (wi ) = exp
(
x′

iβ + δ Incomei + τ(Incomei − z′
iγ )/σu + θwi

)

As before, the unobserved wi must be integrated out of the log-likelihood function.
Either quadrature or simulation can be used. The parameters to be estimated by max-
imizing the full log-likelihood are (β, γ , δ, σu, σε, ρ). The invariance principle has
been used to simplify the estimation a bit by parameterizing the log-likelihood function
in terms of τ and θ . Some additional simplification can also be obtained by using the
Olsen (1978) [and Tobin (1958)] transformations, η = 1/σu and α = (1/σu)γ .

An endogenous binary variable, such as Public or AddOn in our DocVis example
is handled similarly but is a bit simpler. The structural equations of the model are

T∗ = z′
iγ + ui , u ∼ N[0, 1],

T = 1(T∗ > 0),

λ = exp(x′β + δT + ε) ε ∼ N[0, σ 2
ε ],

with Cov(u, ε) = ρσε. The endogeneity of T is implied by a nonzero ρ. We use the
bivariate normal result

u = (ρ/σε)ε + v

where v is normally distributed with mean zero and variance 1 – ρ2. Then, using our
earlier results for the probit model (Section 17.2),

P(T|ε) = �

[
(2T − 1)

(
z′γ + (ρ/σε)ε√

1 − ρ2

)]
, T = 0, 1.

It will be convenient once again to write ε = σεw where w ∼ N[0, 1]. Making the
substitution, we have

P(T|w) = �

[
(2T − 1)

(
z′γ + ρw√

1 − ρ2

)]
, T = 0, 1.
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The probability density function for y|T, w is Poisson with λ(w) = exp(x′β +δT +σεw).
Combining terms,

P(y, T|w) = exp [−λ(w)] [λ(w)]y

y!
�

[
(2T − 1)

(
z′γ + ρw√

1 − ρ2

)]
.

This last result provides the terms that enter the log-likelihood for (β, γ , δ, ρ, σε). As
before, the unobserved heterogeneity, w, must be integrated out of the log-likelihood,
so either the quadrature or simulation method discussed in Chapter 17 is used to ob-
tain the parameter estimates. Note that this model may also be estimated in two steps,
with γ obtained in the first-step probit. The two-step method will not be appreciably
simpler, since the second term in the density must remain to identify ρ. The residual
inclusion method is not fesible here since T∗ is not observed.

This same set of methods is used to allow for endogeneity of the participation
equation in the hurdle model in Section 18.4.8. Mechanically, the hurdle model with
endogenous participation is essentially the same as the endogenous binary variable.
[See Greene (2005, 2007).]

18.5 SUMMARY AND CONCLUSIONS

The analysis of individual decisions in microeconometrics is largely about discrete de-
cisions such as whether to participate in an activity or not, whether to make a purchase
or not, or what brand of product to buy. This chapter and Chapter 17 have developed
the four essential models used in that type of analysis. Random utility, the binary choice
model, and regression-style modeling of probabilities developed in Chapter 17 are the
three fundamental building blocks of discrete choice modeling. This chapter extended
those tools into the three primary areas of choice modeling, unordered choice mod-
els, ordered choice models, and models for counts. In each case, we developed a core
modeling framework that provides the broad platform and then developed a variety of
extensions.

In the analysis of unordered choice models, such as brand or location, the multino-
mial logit (MNL) model has provided the essential starting point. The MNL works well
to provide a basic framework, but as a behavioral model in its own right, it has some
important shortcomings. Much of the recent research in this area has focused on relax-
ing these behavioral assumptions. The most recent research in this area, on the mixed
logit model, has produced broadly flexible functional forms that can match behavioral
modeling to empirical specification and estimation.

The ordered choice model is a natural extension of the binary choice setting and
also a convenient bridge between models of choice between two alternatives and more
complex models of choice among multiple alternatives. We began this analysis with the
ordered probit and logit model pioneered by Zavoina and McKelvey (1975). Recent
developments of this model have produced the same sorts of extensions to panel data
and modeling heterogeneity that we considered in Chapter 17 for binary choice. We
also examined some multiple-equation specifications. For all its versatility, the famil-
iar ordered choice models have an important shortcoming in the assumed constancy
underlying preference behind the rating scale. The current work on differential item
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functioning, such as King et al. (2004), has produced significant progress on filling this
gap in the theory.

Finally, we examined probability models for counts of events. Here, the Poisson
regression model provides the broad framework for the analysis. The Poisson model
has two shortcomings that have motivated the current stream of research. The functional
form binds the mean of the random variable to its variance, producing an unrealistic
regression specification. Second, the basic model has no component that accommodates
unmeasured heterogeneity. (This second feature is what produces the first.) Current
research has produced a rich variety of models for counts, such as two-part behavioral
models that account for many different aspects of the decision-making process and the
mechanisms that generate the observed data.

Key Terms and Concepts

• Bivariate ordered probit
• Censoring
• Choice-based sample
• Conditional logit

model
• Count data
• Deviance
• Differential item

functioning (DIF)
• Event count
• Exposure
• Full information maximum

likelihood (FIML)
• Heterogeneity
• Hurdle model
• Identification through

functional form
• Inclusive value

• Independence from
irrelevant alternatives (IIA)

• Lagrange multiplier test
• Limited information
• Log-odds
• Loglinear model
• Method of simulated

moments
• Mixed logit model
• Multinomial choice
• Multinomial logit model
• Multinomial probit model

(MNP)
• Negative binomial model
• Negbin 1 (NB1) form
• Negbin 2 (NB2) form
• Negbin P (NBP) model
• Nested logit model

• Nonnested models
• Ordered choice model
• Overdispersion
• Parallel regression

assumption
• Poisson regression model
• Random coefficients
• Random parameters logit

model (RPL)
• Revealed preference data
• Specification error
• Stated choice experiment
• Subjective well-being
• Unordered choice model
• Willingness to pay space
• Zero inflated Poisson model

(ZIP)

Exercises

1. We are interested in the ordered probit model. Our data consist of 250 observations,
of which the responses are

y 0 1 2 3 4
| − − − − − − − − − − − − −

n 50 40 45 80 35

Using the preceding data, obtain maximum likelihood estimates of the unknown
parameters of the model. (Hint: Consider the probabilities as the unknown param-
eters.)

2. For the zero-inflated Poisson (ZIP) model in Section 18.4.8, we derived the condi-
tional mean function, E[yi |xi , wi ] = (1 − Fi )λi .

a. For the same model, now obtain Var[yi |xi , wi ]. Then, obtain τi = Var[yi |xi ,
wi ]/E[yi |xi , wi ]. Does the zero inflation produce overdispersion? (That is, is the
ratio greater than one?)

b. Obtain the partial effect for a variable zi that appears in both wi and xi .
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3. Consider estimation of a Poisson regression model for yi |xi . The data are truncated
on the left—these are on-site observations at a recreasion site, so zeros do not
appear in the data set. The data are censored on the right—any response greater
than 5 is recorded as a 5. Construct the log-likelihood for a data set drawn under
this sampling scheme.

Applications

1. Appendix Table F17.2 provides Fair’s (1978) Redbook Magazine survey on extra-
marital affairs. The variables in the data set are as follows:

id = an identification number
C = constant, value = 1
yrb = a constructed measure of time spent in extramarital affairs
v1 = a rating of the marriage, coded 1 to 5
v2 = age, in years, aggregated
v3 = number of years married
v4 = number of children, top coded at 5
v5 = religiosity, 1 to 4, 1 = not, 4 = very
v6 = education, coded 9, 12, 14, 16, 17, 20
v7 = occupation
v8 = husband’s occupation

and three other variables that are not used. The sample contains a survey of 6,366
married women. For this exercise,we will analyze, first, the binary variable A= 1 if
yrb > 0,0 otherwise. The regressors of interest are v1 to v8; however, not necessarily
all of them belong in your model. Use these data to build a binary choice model for
A. Report all computed results for the model. Compute the partial effects for the
variables you choose. Compare the results you obtain for a probit model to those
for a logit model. Are there any substantial differences in the results for the two
models?

2. Continuing the analysis of the first application, we now consider the self-reported
rating, v1. This is a natural candidate for an ordered choice model, because the
simple five-item coding is a censored version of what would be a continuous scale on
some subjective satisfaction variable. Analyze this variable using an ordered probit
model. What variables appear to explain the response to this survey question? (Note:
The variable is coded 1, 2, 3, 4, 5. Some programs accept data for ordered choice
modeling in this form, for example, Stata, while others require the variable to be
coded 0, 1, 2, 3, 4, for example, LIMDEP. Be sure to determine which is appropriate
for the program you are using and transform the data if necessary.) Can you obtain
the partial effects for your model? Report them as well. What do they suggest about
the impact of the different independent variables on the reported ratings?

3. Several applications in the preceding chapters using the German health care data
have examined the variable DocVis, the reported number of visits to the doctor.
The data are described in Appendix Table F7.1. A second count variable in that
data set that we have not examined is HospVis, the number of visits to hospital. For
this application, we will examine this variable. To begin, we treat the full sample
(27,326) observations as a cross section.
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a. Begin by fitting a Poisson regression model to this variable. The exogenous vari-
ables are listed in Appendix Table F7.1. Determine an appropriate specification
for the right-hand side of your model. Report the regression results and the
partial effects.

b. Estimate the model using ordinary least squares and compare your least squares
results to the partial effects you computed in part a. What do you find?

c. Is there evidence of overdispersion in the data? Test for overdispersion. Now,
reestimate the model using a negative binomial specification.What is the result?
Do your results change? Use a likelihood ratio test to test the hypothesis of the
negative binomial model against the Poisson.

4. The GSOEP data are an unbalanced panel, with 7,293 groups. Continue your anal-
ysis in Application 3 by fitting the Poisson model with fixed and with random ef-
fects and compare your results. (Recall, like the linear model, the Poisson fixed
effects model may not contain any time-invariant variables.) How do the panel
data results compare to the pooled results?

5. Appendix Table F18.3 contains data on ship accidents reported in McCullagh and
Nelder (1983). The data set contains 40 observations on the number of incidents of
wave damage for oceangoing ships. Regressors include “aggregate months of ser-
vice”, and three sets of dummy variables, Type (1, . . . , 5), operation period (1960–
1974 or 1975–1979), and construction period (1960–1964, 1965–1969, or 1970–1974).
There are six missing values on the dependent variable, leaving 34 usable observa-
tions.
a. Fit a Poisson model for these data, using the log of service months, four types of

dummy variables, two construction period variables, and one operation period
dummy variable. Report your results.

b. The authors note that the rate of accidents is supposed to be per period, but the
exposure (aggregate months) differs by ship. Reestimate your model constrain-
ing the coefficient on log of service months to equal one.

c. The authors take overdispersion as a given in these data. Do you find evidence
of over dispersion? Show your results.
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LIMITED DEPENDENT
VARIABLES—TRUNCATION,
CENSORING, AND SAMPLE

SELECTION

Q
19.1 INTRODUCTION

This chapter is concerned with truncation and censoring. As we saw in Section 18.4.6,
these features complicate the analysis of data that might otherwise be amenable to
conventional estimation methods such as regression. “Truncation” effects arise when
one attempts to make inferences about a larger population from a sample that is drawn
from a distinct subpopulation. For example, studies of income based on incomes above
or below some poverty line may be of limited usefulness for inference about the whole
population. Truncation is essentially a characteristic of the distribution from which
the sample data are drawn. Censoring is a more common feature of recent studies. To
continue the example, suppose that instead of being unobserved, all incomes below the
poverty line are reported as if they were at the poverty line. The censoring of a range
of values of the variable of interest introduces a distortion into conventional statistical
results that is similar to that of truncation. Unlike truncation, however, censoring is
essentially a defect in the sample data. Presumably, if they were not censored, the data
would be a representative sample from the population of interest. We will also examine
a form of truncation called the sample selection problem. Although most empirical
work in this area involves censoring rather than truncation, we will study the simpler
model of truncation first. It provides most of the theoretical tools we need to analyze
models of censoring and sample selection.

The discussion will examine the general characteristics of truncation, censoring,
and sample selection, and then, in each case, develop a major area of application of the
principles. The stochastic frontier model [Aigner, Lovell, and Schmidt (1977), Fried,
Lovell, and Schmidt (2008)] is a leading application of results for truncated distributions
in empirical models. Censoring appears prominently in the analysis of labor supply and
in modeling of duration data. Finally, the sample selection model has appeared in all
areas of the social sciences and plays a significant role in the evaluation of treatment
effects and program evaluation.

19.2 TRUNCATION

In this section, we are concerned with inferring the characteristics of a full population
from a sample drawn from a restricted part of that population.

873
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19.2.1 TRUNCATED DISTRIBUTIONS

A truncated distribution is the part of an untruncated distribution that is above or below
some specified value. For instance, in Example 19.2, we are given a characteristic of the
distribution of incomes above $100,000. This subset is a part of the full distribution of
incomes which range from zero to (essentially) infinity.

THEOREM 19.1 Density of a Truncated Random Variable
If a continuous random variable x has pdf f (x) and a is a constant, then1

f (x | x > a) = f (x)

Prob(x > a)
.

The proof follows from the definition of conditional probability and amounts
merely to scaling the density so that it integrates to one over the range above a.
Note that the truncated distribution is a conditional distribution.

Most recent applications based on continuous random variables use the truncated
normal distribution. If x has a normal distribution with mean μ and standard deviation
σ, then

Prob(x > a) = 1 − �

(
a − μ

σ

)
= 1 − �(α),

where α = (a − μ)/σ and �(.) is the standard normal cdf. The density of the truncated
normal distribution is then

f (x | x > a) = f (x)

1 − �(α)
= (2πσ 2)−1/2e−(x−μ)2/(2σ 2)

1 − �(α)
=

1
σ

φ

(
x − μ

σ

)

1 − �(α)
,

where φ(.) is the standard normal pdf. The truncated standard normal distribution, with
μ = 0 and σ = 1, is illustrated for a = −0.5, 0, and 0.5 in Figure 19.1. Another truncated
distribution that has appeared in the recent literature, this one for a discrete random
variable, is the truncated at zero Poisson distribution,

Prob[Y = y | y > 0] = (e−λλy)/y!
Prob[Y > 0]

= (e−λλy)/y!
1 − Prob[Y = 0]

= (e−λλy)/y!
1 − e−λ

, λ > 0, y = 1, . . .

This distribution is used in models of uses of recreation and other kinds of facilities
where observations of zero uses are discarded.2

For convenience in what follows, we shall call a random variable whose distribution
is truncated a truncated random variable.

1The case of truncation from above instead of below is handled in an analogous fashion and does not require
any new results.
2See Shaw (1988). An application of this model appears in Section 18.4.6 and Example 18.8.
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FIGURE 19.1 Truncated Normal Distributions.

19.2.2 MOMENTS OF TRUNCATED DISTRIBUTIONS

We are usually interested in the mean and variance of the truncated random variable.
They would be obtained by the general formula:

E [x | x > a] =
∫ ∞

a
x f (x | x > a) dx

for the mean and likewise for the variance.

Example 19.1 Truncated Uniform Distribution
If x has a standard uniform distribution, denoted U (0, 1) , then

f ( x) = 1, 0 ≤ x ≤ 1.

The truncated at x = 1
3 distribution is also uniform:

f

(
x | x >

1
3

)
= f ( x)

Prob
(
x > 1

3

) = 1(
2
3

) = 3
2

,
1
3

≤ x ≤ 1.

The expected value is

E

[
x | x >

1
3

]
=

∫ 1

1/3

x

(
3
2

)
dx = 2

3
.

For a variable distributed uniformly between L and U , the variance is (U − L ) 2/12.
Thus,

Var
[
x | x >

1
3

]
= 1

27
.

The mean and variance of the untruncated distribution are 1
2 and 1

12 , respectively.
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Example 19.1 illustrates two results.

1. If the truncation is from below, then the mean of the truncated variable is greater
than the mean of the original one. If the truncation is from above, then the mean
of the truncated variable is smaller than the mean of the original one.

2. Truncation reduces the variance compared with the variance in the untruncated
distribution.

Henceforth, we shall use the terms truncated mean and truncated variance to refer to
the mean and variance of the random variable with a truncated distribution.

For the truncated normal distribution, we have the following theorem:3

THEOREM 19.2 Moments of the Truncated Normal Distribution
If x ∼ N[μ, σ 2] and a is a constant, then

E [x | truncation] = μ + σλ(α), (19-1)

Var[x | truncation] = σ 2[1 − δ(α)], (19-2)

where α = (a − μ)/σ, φ(α) is the standard normal density and

λ(α) = φ(α)/[1 − �(α)] if truncation is x > a, (19-3a)

λ(α) = −φ(α)/�(α) if truncation is x < a, (19-3b)

and

δ(α) = λ(α)[λ(α) − α]. (19-4)

An important result is

0 < δ(α) < 1 for all values of α,

which implies point 2 after Example 19.1. A result that we will use at several points below
is dφ(α)/dα = −αφ(α). The function λ(α) is called the inverse Mills ratio. The function
in (19-3a) is also called the hazard function for the standard normal distribution.

Example 19.2 A Truncated Lognormal Income Distribution
“The typical ‘upper affluent American’ . . . makes $142,000 per year . . . . The people surveyed
had household income of at least $100,000.”4 Would this statistic tell us anything about the
“typical American”? As it stands, it probably does not (popular impressions notwithstanding).
The 1987 article where this appeared went on to state, “If you’re in that category, pat yourself
on the back—only 2 percent of American households make the grade, according to the
survey.” Because the degree of truncation in the sample is 98 percent, the $142,000 was
probably quite far from the mean in the full population.

Suppose that incomes, x, in the population were lognormally distributed—see Sec-
tion B.4.4. Then the log of income, y, had a normal distribution with, say, mean μ and

3Details may be found in Johnson, Kotz, and Balakrishnan (1994, pp. 156–158). Proofs appear in Cameron
and Trivedi (2005).
4See New York Post (1987).
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standard deviation, σ . Suppose that the survey was large enough for us to treat the sam-
ple average as the true mean. Assuming so, we’ll deduce μ and σ and then determine the
population mean income.

Two useful numbers for this example are In 100 = 4.605 and In 142 = 4.956. The article
states that

Prob[x ≥ 100] = Prob[exp( y) ≥ 100] = 0.02,

or

Prob( y < 4.605) = 0.98.

This implies that

Prob[( y − μ)/σ < (4.605 − μ)/σ ] = 0.98.

Because �[(4.605 − μ)/σ ] = 0.98, we know that

�−1(0.98) = 2.054 = (4.605 − μ)/σ,

or

4.605 = μ + 2.054σ.

The article also states that

E [x | x > 100] = E [exp( y) | exp( y) > 100] = 142,

or

E [exp( y) | y > 4.645] = 142.

To proceed, we need another result for the lognormal distribution:

If y ∼ N[μ, σ 2], then E [exp( y) | y > a] = exp(μ + σ 2/2) × �(σ − (a − μ)/σ )
1 − �( (a − μ)/σ )

.

[See Johnson, Kotz, and Balakrishnan (1995, p. 241).] For our application, we would equate
this expression to 142, and a to In 100 = 4.605. This provides a second equation. To estimate
the two parameters, we used the method of moments. We solved the minimization problem

Minimizeμ,σ [4.605 − (μ + 2.054σ ) ]2

+ [142�( (μ − 4.605)/σ )− exp(μ + σ 2/2)�(σ − (4.605 − μ)/σ ) ]2.

The two solutions are 2.89372 and 0.83314 for μ and σ , respectively. To obtain the mean
income, we now use the result that if y ∼ N[μ, σ 2] and x = exp( y) , then E [x] = exp(μ + σ 2/2) .
Inserting our values for μ and σ gives E [x] = $25,554. The 1987 Statistical Abstract of
the United States gives the mean of household incomes across all groups for the United
States as about $25,000. So, the estimate based on surprisingly little information would have
been relatively good. These meager data did, indeed, tell us something about the average
American.

19.2.3 THE TRUNCATED REGRESSION MODEL

In the model of the earlier examples, we now assume that

μi = x′
iβ

is the deterministic part of the classical regression model. Then

yi = x′
iβ + εi ,
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where

εi | xi ∼ N[0, σ 2],

so that

yi | xi ∼ N[x′
iβ, σ 2]. (19-5)

We are interested in the distribution of yi given that yi is greater than the truncation
point a. This is the result described in Theorem 19.2. It follows that

E [yi | yi > a] = x′
iβ + σ

φ[(a − x′
iβ)/σ ]

1 − �[(a − x′
iβ)/σ ]

. (19-6)

The conditional mean is therefore a nonlinear function of a, σ, x, and β.
The partial effects in this model in the subpopulation can be obtained by writing

E [yi | yi > a] = x′
iβ + σλ(αi ), (19-7)

where now αi = (a − x′
iβ)/σ . For convenience, let λi = λ(αi ) and δi = δ(αi ). Then

∂E [yi | yi > a]
∂xi

= β + σ(dλi/dαi )
∂αi

∂xi

= β + σ
(
λ2

i − αiλi
)
(−β/σ)

= β
(
1 − λ2

i + αiλi
)

= β(1 − δi ).

(19-8)

Note the appearance of the scale factor 1 − δi from the truncated variance. Because
(1 − δi ) is between zero and one, we conclude that for every element of xi , the marginal
effect is less than the corresponding coefficient. There is a similar attenuation of the
variance. In the subpopulation yi > a, the regression variance is not σ 2 but

Var[yi | yi > a] = σ 2(1 − δi ). (19-9)

Whether the partial effect in (19-7) or the coefficient β itself is of interest depends on the
intended inferences of the study. If the analysis is to be confined to the subpopulation,
then (19-7) is of interest. If the study is intended to extend to the entire population,
however, then it is the coefficients β that are actually of interest.

One’s first inclination might be to use ordinary least squares to estimate the param-
eters of this regression model. For the subpopulation from which the data are drawn,
we could write (19-6) in the form

yi | yi > a = E [yi | yi > a] + ui = x′
iβ + σλi + ui , (19-10)

where ui is yi minus its conditional expectation. By construction, ui has a zero mean,
but it is heteroscedastic:

Var[ui ] = σ 2(1 − λ2
i + λiαi

) = σ 2(1 − δi ),
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which is a function of xi . If we estimate (19-10) by ordinary least squares regression of
y on X, then we have omitted a variable, the nonlinear term λi . All the biases that arise
because of an omitted variable can be expected.5

Without some knowledge of the distribution of x, it is not possible to determine
how serious the bias is likely to be. A result obtained by Chung and Goldberger
(1984) is broadly suggestive. If E [x | y] in the full population is a linear function of
y, then plim b = βτ for some proportionality constant τ . This result is consistent with
the widely observed (albeit rather rough) proportionality relationship between least
squares estimates of this model and maximum likelihood estimates.6 The proportional-
ity result appears to be quite general. In applications, it is usually found that, compared
with consistent maximum likelihood estimates, the OLS estimates are biased toward
zero. (See Example 19.5.)

19.2.4 THE STOCHASTIC FRONTIER MODEL

A lengthy literature commencing with theoretical work by Knight (1933), Debreu
(1951), and Farrell (1957) and the pioneering empirical study by Aigner, Lovell, and
Schmidt (ALS, 1977) has been directed at models of production that specifically ac-
count for the textbook proposition that a production function is a theoretical ideal.7 If
y = f (x) defines a production relationship between inputs, x, and an output, y, then for
any given x, the observed value of y must be less than or equal to f (x). The implication
for an empirical regression model is that in a formulation such as y = h(x, β) + u, u
must be negative. Because the theoretical production function is an ideal—the frontier
of efficient production—any nonzero disturbance must be interpreted as the result of in-
efficiency. A strictly orthodox interpretation embedded in a Cobb–Douglas production
model might produce an empirical frontier production model such as

ln y = β1 +
∑

k

βk ln xk − u, u ≥ 0.

The gamma model described in Example 4.7 was an application. One-sided distur-
bances such as this one present a particularly difficult estimation problem. The primary
theoretical problem is that any measurement error in ln y must be embedded in the
disturbance. The practical problem is that the entire estimated function becomes a slave
to any single errantly measured data point.

Aigner, Lovell, and Schmidt proposed instead a formulation within which observed
deviations from the production function could arise from two sources: (1) productive
inefficiency, as we have defined it earlier and that would necessarily be negative, and
(2) idiosyncratic effects that are specific to the firm and that could enter the model with
either sign. The end result was what they labeled the stochastic frontier:

ln y = β1 +
∑

k

βk ln xk − u + v, u ≥ 0, v ∼ N
[
0, σ 2

v

]
.

= β1 +
∑

k

βk ln xk + ε.

5See Heckman (1979) who formulates this as a “specification error.”
6See the appendix in Hausman and Wise (1977) and Greene (1983) as well.
7A survey by Greene (2008a) appears in Fried, Lovell, and Schmidt (2008). Kumbhakar and Lovell (2000) is
a comprehensive reference on the subject.
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The frontier for any particular firm is h(x, β)+v, hence the name stochastic frontier. The
inefficiency term is u, a random variable of particular interest in this setting. Because
the data are in log terms, u is a measure of the percentage by which the particular
observation fails to achieve the frontier, ideal production rate.

To complete the specification, they suggested two possible distributions for the in-
efficiency term: the absolute value of a normally distributed variable, which has the
truncated at zero distribution shown in Figure 19.1, and an exponentially distributed
variable. The density functions for these two compound variables are given by Aigner,
Lovell, and Schmidt; let ε = v − u, λ = σu/σv, σ = (σ 2

u + σ 2
v )1/2, and �(z) = the prob-

ability to the left of z in the standard normal distribution (see Section B.4.1). For the
“half-normal” model,

ln h(εi | β, λ, σ ) =
[
−ln σ +

(
1
2

)
ln

2
π

− 1
2

(
εi

σ

)2

+ ln �

(−εiλ

σ

)]
,

whereas for the exponential model

ln h(εi | β, θ, σv) =
[

ln θ + 1
2
θ2σ 2

v + θεi + ln �

(
− εi

σv

− θσv

)]
.

Both these distributions are asymmetric. We thus have a regression model with a
nonnormal distribution specified for the disturbance. The disturbance, ε, has a nonzero
mean as well; E [ε] = −σu(2/π)1/2 for the half-normal model and −1/θ for the expo-
nential model. Figure 19.2 illustrates the density for the half-normal model with σ = 1
and λ = 2. By writing β0 = β1 + E [ε] and ε∗ = ε− E [ε], we obtain a more conventional
formulation

ln y = β0 +
∑

k

βk ln xk + ε∗,

FIGURE 19.2 Density for the Disturbance in the Stochastic Frontier
Model.
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which does have a disturbance with a zero mean but an asymmetric, nonnormal distribu-
tion. The asymmetry of the distribution of ε∗ does not negate our basic results for least
squares in this classical regression model. This model satisfies the assumptions of the
Gauss–Markov theorem, so least squares is unbiased and consistent (save for the con-
stant term) and efficient among linear unbiased estimators. In this model, however, the
maximum likelihood estimator is not linear, and it is more efficient than least squares.

The log-likelihood function for the half normal model is given in ALS (1977):

ln L = −n ln σ + n
2

ln
2
π

− 1
2

n∑
i=1

(εi

σ

)2
+

n∑
i=1

ln �

(−εiλ

σ

)
. (19-11)

Maximization programs for this model are built into modern software packages such as
Stata, NLOGIT, and TSP. The log-likelihood is simple enough that it can also be readily
adapted to the generic optimization routines in, for example, MatLab or Gauss. Some
treatments in the literature use the parameterization employed by Battese and Coelli
(1992) and Coelli (1996), γ = σ 2

u /σ 2. This is a one-to-one transformation of λ; λ =
(γ /(1 − γ ))1/2, so which parameterization is employed is a matter of convenience; the
empirical results will be the same. The log-likelihood function for the exponential model
can be built up from the density given earlier. For the half-normal model, we would also
rely on the invariance of maximum likelihood estimators to recover estimates of the
structural variance parameters, σ 2

v = σ 2/(1 + λ2) and σ 2
u = σ 2λ2/(1 + λ2).8 (Note, the

variance of the truncated variable, ui , is notσ 2
u ; using (19-2), it reduces to (1−2/π)σ 2

u ].) In
addition, a structural parameter of interest is the proportion of the total variance of ε that
is due to the inefficiency term. For the half-normal model, Var[ε] = Var[u] + Var[v] =
(1 − 2/π)σ 2

u + σ 2
v whereas for the exponential model, the counterpart is 1/θ2 + σ 2

v .
Modeling in the stochastic frontier setting is rather unlike what we are accustomed

to up to this point, in that the disturbance, specifically ui , not the model parameters, is
the central focus of the analysis. The reason is that in this context, the disturbance, ui ,
rather than being the catchall for the unknown and unknowable factors omitted from
the equation, has a particular interpretation—it is the firm-specific inefficiency. Ideally,
we would like to estimate ui for each firm in the sample to compare them on the basis
of their productive efficiency. Unfortunately, the data do not permit a direct estimate,
because with estimates of β in hand, we are only able to compute a direct estimate of
εi = yi − x′

iβ. Jondrow et al. (1982), however, have derived a useful approximation that
is now the standard measure in these settings,

E[ui |εi ] = σλ

1 + λ2

[
φ(zi )

1 − �(zi )
− zi

]
, zi = εiλ

σ

for the half-normal model, and

E[ui |εi ] = zi + σv

φ(zi/σv)

�(zi/σv)
, zi = −(

εi + θσ 2
v

)

for the exponential model.These values can be computed using the maximum likelihood
estimates of the structural parameters in the model. In some cases in which researchers

8A vexing problem for estimation of the model is that if the ordinary least squares residuals are skewed in
the positive (wrong) direction (See Figure 19.2), OLS with λ̂ = 0 will be the MLE. OLS residuals with a
positive skew are apparently inconsistent with a model in which, in theory, they should have a negative skew.
[See Waldman (1982) for theoretical development of this result.]
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are interested in discovering best practice [e.g., WHO (2000), Tandon et al. (2000)], the
estimated values are sorted and the ranks of the individuals in the sample become of
interest.

Research in this area since the methodological developments beginning in the 1930s
and the building of the empirical foundations in 1977 and 1982 has proceeded in several
directions. Most theoretical treatments of “inefficiency” as envisioned here attribute
it to aspects of management of the firm. It remains to establish a firm theoretical con-
nection between the theory of firm behavior and the stochastic frontier model as a
device for measurement of inefficiency.

In the context of the model, many studies have developed alternative, more flexible
functional forms that (it is hoped) can provide a more realistic model for inefficiency.
Two that are relevant in this chapter are Stevenson’s (1980) truncated normal model
and the normal-gamma frontier. One intuitively appealing form of the truncated normal
model is

Ui ∼ N
[
μ + z′

iα, σ 2
u

]
,

ui = |Ui |.
The original normal–half-normal model results if μ equals zero and α equals zero. This
is a device by which the environmental variables noted in the next paragraph can enter
the model of inefficiency. A truncated normal model is presented in Example 19.3. The
half-normal, truncated normal, and exponential models all take the form of distribution
shown in Figure 19.1. The gamma model,

f (u) = [θ P/�(P)] exp(−θu)uP−1,

is a flexible model that presents the advantage that the distribution of inefficiency
can move away from zero. If P is greater than one, then the density at u = 0 equals
zero and the entire distribution moves away from the origin. The implication is that
the distribution of inefficiency among firms can move away from zero. The gamma
model is estimated by simulation methods—either Bayesian MCMC [Huang (2003)
and Tsionas (2002)] or maximum simulated likelihood [Greene (2003)]. Many other
functional forms have been proposed. [See Greene (2008) for a survey.]

There are usually elements in the environment in which the firm operates that
impact the firm’s output and/or costs but are not, themselves, outputs, inputs, or input
prices. In Example 19.3, the costs of the Swiss railroads are affected by three variables;
track width, long tunnels, and curvature. It is not yet specified how such factors should be
incorporated into the model; four candidates are in the mean and variance of ui , directly
in the function, or in the variance of vi . [See Hadri, Guermat, and Whittaker (2003) and
Kumbhakar (1997c).] All of these can be found in the received studies. This aspect of
the model was prominent in the discussion of the famous World Health Organization
efficiency study of world health systems [WHO (2000), Tandon, Murray, Lauer, and
Evans (2000), and Greene (2004)]. In Example 19.3, we have placed the environmental
factors in the mean of the inefficiency distribution. This produces a rather extreme
set of results for the JLMS estimates of inefficiency—many railroads are estimated
to be extremely inefficient. An alternative formulation would be a “heteroscedastic”
model in which σu,i = σu exp(z′

iδ) or σv,i = σv exp(z′
iη), or both. We can see from the

JLMS formula that the term heteroscedastic is actually a bit misleading, since both
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standard deviations enter (now) λi , which is, in turn, a crucial parameter in the mean
of inefficiency.

How should inefficiency be modeled in panel data, such as in our example? It
might be tempting to treat it as a time-invariant “effect” [as in Schmidt and Sickles
(1984) and Pitt and Lee (1984) in two pioneering papers]. Greene (2004) argued that a
preferable approach would be to allow inefficiency to vary freely over time in a panel,
and to the extent that there is a common time-invariant effect in the model, that should
be treated as unobserved heterogeneity, not inefficiency. A string of studies, including
Battese and Coelli (1992, 1995), Cuesta (2000), Kumbhakar (1997a) Kumbhakar and
Orea (2004), and many others have proposed hybrid forms that treat the core random
part of inefficiency as a time-invariant firm-specific effect that is modified over time by
a deterministic, possibly firm-specific, function. The Battese-Coelli form,

uit = exp[−η(t − T)]|Ui | where Ui N
[
0, σ 2

u

]
,

has been used in a number of applications. Cuesta (2000) suggests allowing η to vary
across firms, producing a model that bears some relationship to a fixed-effects specifi-
cation. This thread of the literature is one of the most active ongoing pursuits.

Is it reasonable to use a possibly restrictive parametric approach to modeling in-
efficiency? Sickles (2005) and Kumbhakar, Simar, Park, and Tsionas (2007) are among
numerous studies that have explored less parametric approaches to efficiency analysis.
Proponents of data envelopment analysis [see, e.g., Simar and Wilson (2000, 2007)] have
developed methods that impose absolutely no parametric structure on the production
function. Among the costs of this high degree of flexibility is a difficulty to include envi-
ronmental effects anywhere in the analysis, and the uncomfortable implication that any
unmeasured heterogeneity of any sort is necessarily included in the measure of ineffi-
ciency. That is, data envelopment analysis returns to the deterministic frontier approach
where this section began.

Example 19.3 Stochastic Cost Frontier for Swiss Railroads
Farsi, Filippini, and Greene (2005) analyzed the cost efficiency of Swiss railroads. In order to
use the stochastic frontier approach to analyze costs of production, rather than production,
we rely on the fundamental duality of production and cost [see Samuelson (1938), Shephard
(1953), and Kumbhakar and Lovell (2000)]. An appropriate cost frontier model for a firm that
produces more than one output—the Swiss railroads carry both freight and passengers—will
appear as the following:

ln(C/PK ) = α +
K−1∑
k=1

βk ln( Pk/PK ) +
M∑

m=1

γm ln Qm + v + u.

The requirement that the cost function be homogeneous of degree one in the input prices
has been imposed by normalizing total cost, C, and the first K − 1 prices by the K th input
price. In this application, the three factors are labor, capital, and electricity—the third is
used as the numeraire in the cost function. Notice that the inefficiency term, u, enters the
cost function positively; actual cost is above the frontier cost. [The MLE is modified simply by
replacing εi with −εi in (19-11).] In analyzing costs of production, we recognize that there is an
additional source of inefficiency that is absent when we analyze production. On the production
side, inefficiency measures the difference between output and frontier output, which arises
because of technical inefficiency. By construction, if output fails to reach the efficient level
for the given input usage, then costs must be higher than frontier costs. However, costs can
be excessive even if the firm is technically efficient if it is “allocatively inefficient.” That is, the
firm can be technically efficient while not using inputs in the cost minimizing mix (equating
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the ratio of marginal products to the input price ratios). It follows that on the cost side, “u”
can contain both elements of inefficiency while on the production side, we would expect to
measure only technical inefficiency. [See Kumbhakar (1997b).]

The data for this study are an unbalanced panel of 50 railroads with Ti ranging from 1
to 13. (Thirty-seven of the firms are observed 13 times, 8 are observed 12 times, and the
remaining 5 are observed 10, 7, 7, 3, and 1 times.) The variables we will use here are

CT: Total costs adjusted for inflation (1,000 Swiss franc)
QP: Total passenger-output in passenger-kilometers
QF: Total goods-output in ton-kilometers
PL: Labor price adjusted for inflation (in Swiss Francs per person per year)
PK: Capital price with capital stock proxied by total number of seats
PE: Price of electricity (Swiss franc per kWh)

Logs of costs and prices (ln CT, ln PK, ln PL) are normalized by PE. We will also use these
environmental variables:

NARROW T: Dummy for the networks with narrow track (1 m wide) The usual
width is 1.435m.

TUNNEL: Dummy for networks that have tunnels with an average length
of more than 300 meters.

VIRAGE: Dummy for the networks whose minimum radius of curvature is
100 meters or less.

The full data set is given in Appendix Table F19.1. Several other variables not used here are
presented in the appendix table. In what follows, we will ignore the panel data aspect of the
data set. This would be a focal point of a more extensive study.

There have been dozens of models proposed for the inefficiency component of the
stochastic frontier model. Table 19.1 presents several different forms. The basic half-normal
model is given in the first column. The estimated cost function parameters across the different

TABLE 19.1 Estimated Stochastic Frontier Cost Functionsa

Model

Half Truncated
Variable Normal Normal Exponential Gamma Heterosced Heterogen

Constant −10.0799 −9.80624 −10.1838 −10.1944 −9.82189 −10.2891
ln QP 0.64220 0.62573 0.64403 0.64401 0.61976 0.63576
ln QF 0.06904 0.07708 0.06803 0.06810 0.07970 0.07526
ln PK 0.26005 0.26625 0.25883 0.25886 0.25464 0.25893
ln PL 0.53845 0.50474 0.56138 0.56047 0.53953 0.56036
Constant 0.44116 −2.48218b

Narrow 0.29881 2.16264b 0.14355
Virage −0.20738 −1.52964b −0.10483
Tunnel 0.01118 0.35748b −0.01914
σ 0.44240 0.38547 (0.34325) (0.34288) 0.45392c 0.40597
λ 1.27944 2.35055 0.91763
P 1.0000 1.22920
θ 13.2922 12.6915
σu (0.34857) (0.35471) (0.07523) (0.09685) 0.37480c 0.27448
σv (0.27244) (0.15090) 0.33490 0.33197 0.25606 0.29912
Mean E[u|ε] 0.27908 0.52858 0.075232 0.096616 0.29499 0.21926
ln L −210.495 −200.67 −211.42 −211.091 −201.731 −208.349

aEstimates in parentheses are derived from other MLEs.
bEstimates used in computation of σu.
cObtained by averaging λ = σu,i /σv over observations.
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FIGURE 19.3 Kernel Density Estimator for JLMS Estimates.

forms are broadly similar, as might be expected as (α, β) are consistently estimated in all
cases. There are fairly pronounced differences in the implications for the components of ε,
however.

There is an ambiguity in the model as to whether modifications to the distribution of ui
will affect the mean of the distribution, the variance, or both. The following results suggest
that it is both for these data. The gamma and exponential models appear to remove most
of the inefficiency from the data. Note that the estimates of σu are considerably smaller
under these specifications, and σv is correspondingly larger. The second to last row shows
the sample averages of the Jondrow estimators—this estimates Eε E [u|ε] = E [u]. There is
substantial difference across the specifications.

The estimates in the rightmost two columns illustrate two different placements of the mea-
sured heterogeneity: in the variance of ui and directly in the cost function. The log-likelihood
function appears to favor the first of these. However, the models are not nested and involve
the same number of parameters. We used the Vuong test (see Section 14.6.6), instead and
obtained a value of −2.65 in favor of the heteroscedasticity model. Figure 19.3 describes the
values of E [ui |εi ] estimated for the sample observations for the half-normal, heteroscedastic
and heterogeneous models. The smaller estimate of σu for the third of these is evident in the
figure, which suggests a somewhat tighter concentration of values than the other two.

19.3 CENSORED DATA

A very common problem in microeconomic data is censoring of the dependent variable.
When the dependent variable is censored, values in a certain range are all transformed
to (or reported as) a single value. Some examples that have appeared in the empirical
literature are as follows:9

1. Household purchases of durable goods [Tobin (1958)]
2. The number of extramarital affairs [Fair (1977, 1978)]

9More extensive listings may be found in Amemiya (1984) and Maddala (1983).
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3. The number of hours worked by a woman in the labor force [Quester and Greene
(1982)]

4. The number of arrests after release from prison [Witte (1980)]
5. Household expenditure on various commodity groups [Jarque (1987)]
6. Vacation expenditures [Melenberg and van Soest (1996)]

Each of these studies analyzes a dependent variable that is zero for a significant frac-
tion of the observations. Conventional regression methods fail to account for the
qualitative difference between limit (zero) observations and nonlimit (continuous)
observations.

19.3.1 THE CENSORED NORMAL DISTRIBUTION

The relevant distribution theory for a censored variable is similar to that for a truncated
one. Once again, we begin with the normal distribution, as much of the received work
has been based on an assumption of normality. We also assume that the censoring point
is zero, although this is only a convenient normalization. In a truncated distribution,
only the part of distribution above y = 0 is relevant to our computations. To make the
distribution integrate to one, we scale it up by the probability that an observation in
the untruncated population falls in the range that interests us. When data are censored,
the distribution that applies to the sample data is a mixture of discrete and continuous
distributions. Figure 19.4 illustrates the effects.

To analyze this distribution, we define a new random variable y transformed from
the original one, y∗, by

y = 0 if y∗ ≤ 0,

y = y∗ if y∗ > 0.

FIGURE 19.4 Partially Censored Distribution.

Capacity Seats demanded

Capacity Tickets sold
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The distribution that applies if y∗ ∼ N[μ, σ 2] is Prob(y = 0) = Prob(y∗ ≤ 0) =
�(−μ/σ) = 1 − �(μ/σ), and if y∗ > 0, then y has the density of y∗.

This distribution is a mixture of discrete and continuous parts. The total probability
is one, as required, but instead of scaling the second part, we simply assign the full
probability in the censored region to the censoring point, in this case, zero.

THEOREM 19.3 Moments of the Censored Normal Variable
If y∗ ∼ N[μ, σ 2] and y = a if y∗ ≤ a or else y = y∗, then

E [y] = �a + (1 − �)(μ + σλ),

and

Var[y] = σ 2(1 − �)[(1 − δ) + (α − λ)2�],

where

�[(a − μ)/σ ] = �(α) = Prob(y∗ ≤ a) = �, λ = φ/(1 − �),

and

δ = λ2 − λα.

Proof: For the mean,

E [y] = Prob(y = a) × E [y | y = a] + Prob(y > a) × E [y | y > a]

= Prob(y∗ ≤ a) × a + Prob(y∗ > a) × E [y∗ | y∗ > a]

= �a + (1 − �)(μ + σλ)

using Theorem 19.2. For the variance, we use a counterpart to the decomposition
in (B-69), that is, Var[y] = E [conditional variance] + Var[conditional mean],
and Theorem 19.2.

For the special case of a = 0, the mean simplifies to

E [y | a = 0] = �(μ/σ)(μ + σλ), where λ = φ(μ/σ)

�(μ/σ)
.

For censoring of the upper part of the distribution instead of the lower, it is only neces-
sary to reverse the role of � and 1 − � and redefine λ as in Theorem 19.2.

Example 19.4 Censored Random Variable
We are interested in the number of tickets demanded for events at a certain arena. Our only
measure is the number actually sold. Whenever an event sells out, however, we know that the
actual number demanded is larger than the number sold. The number of tickets demanded
is censored when it is transformed to obtain the number sold. Suppose that the arena in
question has 20,000 seats and, in a recent season, sold out 25 percent of the time. If the
average attendance, including sellouts, was 18,000, then what are the mean and standard
deviation of the demand for seats? According to Theorem 19.3, the 18,000 is an estimate of

E [sales] = 20,000(1 − �) + [μ + σλ]�.

Because this is censoring from above, rather than below, λ = −φ (α)/�(α) . The argu-
ment of �, φ, and λ is α = (20,000 − μ)/σ . If 25 percent of the events are sellouts, then
� = 0.75. Inverting the standard normal at 0.75 gives α = 0.675. In addition, if α = 0.675,
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then −φ (0.675)/0.75 = λ = − 0.424. This result provides two equations in μ and σ , (a)
18,000 = 0.25(20,000) + 0.75(μ − 0.424σ ) and (b) 0.675σ = 20,000 − μ. The solutions are
σ = 2426 and μ = 18,362.

For comparison, suppose that we were told that the mean of 18,000 applies only to the
events that were not sold out and that, on average, the arena sells out 25 percent of the
time. Now our estimates would be obtained from the equations (a) 18,000 = μ − 0.424σ and
(b) 0.675σ = 20,000 − μ. The solutions are σ = 1820 and μ = 18,772.

19.3.2 THE CENSORED REGRESSION (TOBIT) MODEL

The regression model based on the preceding discussion is referred to as the censored
regression model or the tobit model [in reference to Tobin (1958), where the model
was first proposed]. The regression is obtained by making the mean in the preceding
correspond to a classical regression model. The general formulation is usually given in
terms of an index function,

y∗
i = x′

iβ + εi ,

yi = 0 if y∗
i ≤ 0,

yi = y∗
i if y∗

i > 0.

There are potentially three conditional mean functions to consider, depending on the
purpose of the study. For the index variable, sometimes called the latent variable,
E [y∗

i | xi ] is x′
iβ. If the data are always censored, however, then this result will usu-

ally not be useful. Consistent with Theorem 19.3, for an observation randomly drawn
from the population, which may or may not be censored,

E [yi | xi ] = �

(
x′

iβ

σ

)
(x′

iβ + σλi ),

where

λi = φ[(0 − x′
iβ)/σ ]

1 − �[(0 − x′
iβ)/σ ]

= φ(x′
iβ/σ)

�(x′
iβ/σ)

. (19-12)

Finally, if we intend to confine our attention to uncensored observations, then the re-
sults for the truncated regression model apply. The limit observations should not be
discarded, however, because the truncated regression model is no more amenable to
least squares than the censored data model. It is an unresolved question which of these
functions should be used for computing predicted values from this model. Intuition
suggests that E [yi | xi ] is correct, but authors differ on this point. For the setting in
Example 19.4, for predicting the number of tickets sold, say, to plan for an upcoming
event, the censored mean is obviously the relevant quantity. On the other hand, if the
objective is to study the need for a new facility, then the mean of the latent variable y∗

i
would be more interesting.

There are differences in the partial effects as well. For the index variable,

∂E [y∗
i | xi ]

∂xi
= β.

But this result is not what will usually be of interest, because y∗
i is unobserved. For the

observed data, yi , the following general result will be useful:10

10See Greene (1999) for the general result and Rosett and Nelson (1975) and Nakamura and Nakamura
(1983) for applications based on the normal distribution.
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THEOREM 19.4 Partial Effects in the Censored Regression Model
In the censored regression model with latent regression y∗ = x′β+ε and observed
dependent variable, y = a if y∗ ≤ a, y = b if y∗ ≥ b, and y = y∗ otherwise,
where a and b are constants, let f (ε) and F(ε) denote the density and cdf of ε.
Assume that ε is a continuous random variable with mean 0 and variance σ 2, and
f (ε | x) = f (ε). Then

∂E [y | x]
∂x

= β × Prob[a < y∗ < b].

Proof: By definition,

E [y | x] = a Prob[y∗ ≤ a | x] + b Prob[y∗ ≥ b | x]

+ Prob[a < y∗ < b | x]E [y∗ | a < y∗ < b | x].

Let α j = ( j − x′β)/σ, Fj = F(α j ), f j = f (α j ), and j = a, b. Then

E [y | x] = aFa + b(1 − Fb) + (Fb − Fa)E [y∗ | a < y∗ < b, x].

Because y∗ = x′β + σ [(y∗ − β ′x)/σ ], the conditional mean may be written

E [y∗ | a < y∗ < b, x] = x′β + σ E
[

y∗ − x′β
σ

∣∣∣∣
a − x′β

σ
<

y∗ − x′β
σ

<
b − x′β

σ

]

= x′β + σ

∫ αb

αa

(ε/σ ) f (ε/σ )

Fb − Fa
d
(

ε

σ

)
.

Collecting terms, we have

E [y | x] = aFa + b(1 − Fb) + (Fb − Fa)β
′x + σ

∫ αb

αa

(
ε

σ

)
f
(

ε

σ

)
d
(

ε

σ

)
.

Now, differentiate with respect to x. The only complication is the last term, for
which the differentiation is with respect to the limits of integration. We
use Leibnitz’s theorem and use the assumption that f (ε) does not involve x.
Thus,

∂E [y | x]
∂x

=
(−β

σ

)
a fa −

(−β

σ

)
bfb + (Fb − Fa)β + (x′β)( fb − fa)

(−β

σ

)

+ σ [αb fb − αa fa]
(−β

σ

)
.

After inserting the definitions of αa and αb, and collecting terms, we find all terms
sum to zero save for the desired result,

∂ E [y | x]
∂x

= (Fb − Fa)β = β × Prob[a < y∗
i < b].
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Note that this general result includes censoring in either or both tails of the distribu-
tion, and it does not assume that ε is normally distributed. For the standard case with
censoring at zero and normally distributed disturbances, the result specializes to

∂E [yi | xi ]
∂xi

= β�

(
x′

iβ

σ

)
.

Although not a formal result, this does suggest a reason why, in general, least squares
estimates of the coefficients in a tobit model usually resemble the MLEs times the
proportion of nonlimit observations in the sample.

McDonald and Moffitt (1980) suggested a useful decomposition of ∂E [yi | xi ]/∂xi ,

∂E [yi | xi ]
∂xi

= β × {
�i [1 − λi (αi + λi )] + φi (αi + λi )

}
,

where αi = x′
iβ/σ , �i = �(αi ) and λi = φi/�i . Taking the two parts separately, this

result decomposes the slope vector into

∂ E [yi | xi ]
∂xi

= Prob[yi > 0]
∂ E [yi | xi , yi > 0]

∂xi
+ E [yi | xi , yi > 0]

∂ Prob[yi > 0]
∂xi

.

Thus, a change in xi has two effects: It affects the conditional mean of y∗
i in the positive

part of the distribution, and it affects the probability that the observation will fall in
that part of the distribution.

19.3.3 ESTIMATION

The tobit model has become so routine and been incorporated in so many computer
packages that despite formidable obstacles in years past, estimation is now essentially
on the level of ordinary linear regression. The log-likelihood for the censored regression
model is

ln L =
∑
yi >0

−1
2

[
log(2π) + ln σ 2 + (yi − x′

iβ)2

σ 2

]
+

∑
yi =0

ln
[

1 − �

(
x′

iβ

σ

)]
. (19-13)

The two parts correspond to the classical regression for the nonlimit observations and
the relevant probabilities for the limit observations, respectively. This likelihood is a
nonstandard type, because it is a mixture of discrete and continuous distributions. In
a seminal paper, Amemiya (1973) showed that despite the complications, proceeding
in the usual fashion to maximize ln L would produce an estimator with all the familiar
desirable properties attained by MLEs.

The log-likelihood function is fairly involved, but Olsen’s (1978) reparameterization
simplifies things considerably. With γ = β/σ and θ = 1/σ , the log-likelihood is

ln L =
∑
yi >0

−1
2

[ln(2π) − ln θ2 + (θyi − x′
iγ )2] +

∑
yi =0

ln[1 − �(x′
iγ )]. (19-14)

The results in this setting are now very similar to those for the truncated regression.
The Hessian is always negative definite, so Newton’s method is simple to use and
usually converges quickly. After convergence, the original parameters can be recov-
ered using σ = 1/θ and β = γ /θ . The asymptotic covariance matrix for these esti-
mates can be obtained from that for the estimates of [γ , θ ] using the delta method:
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TABLE 19.2 Tobit Estimates of an Hours Worked Equation

White Wives Black Wives

Coefficient Slope Coefficient Slope
Least

Squares
Scaled
OLS

Constant −1803.13 −2753.87
(−8.64) (−9.68)

Small kids −1324.84 −385.89 −824.19 −376.53 −352.63 −766.56
(−19.78) (−10.14)

Education −48.08 −14.00 22.59 10.32 11.47 24.93
difference (−4.77) (1.96)

Relative wage 312.07 90.90 286.39 130.93 123.95 269.46
(5.71) (3.32)

Second marriage 175.85 51.51 25.33 11.57 13.14 28.57
(3.47) (0.41)

Mean divorce 417.39 121.58 481.02 219.75 219.22 476.57
probability (6.52) (5.28)

High divorce 670.22 195.22 578.66 264.36 244.17 530.80
probability (8.40) (5.33)

σ 1,559 618 1,511 826
Sample size 7459 2798
Proportion working 0.29 0.46

Est. Asy. Var[β̂, σ̂ ] = Ĵ Asy. Var[γ̂ , θ̂ ]Ĵ′, where

J =
[
∂β/∂γ ′ ∂β/∂θ

∂σ/∂γ ′ ∂σ/∂θ

]
=

[
(1/θ)I (−1/θ2)γ

0′ (−1/θ2)

]
.

Researchers often compute ordinary least squares estimates despite their incon-
sistency. Almost without exception, it is found that the OLS estimates are smaller
in absolute value than the MLEs. A striking empirical regularity is that the maxi-
mum likelihood estimates can often be approximated by dividing the OLS estimates
by the proportion of nonlimit observations in the sample.11 The effect is illustrated
in the last two columns of Table 19.2. Another strategy is to discard the limit ob-
servations, but we now see that just trades the censoring problem for the truncation
problem.

Example 19.5 Estimated Tobit Equations for Hours Worked
In their study of the number of hours worked in a survey year by a large sample of wives,
Quester and Greene (1982) were interested in whether wives whose marriages were statisti-
cally more likely to dissolve hedged against that possibility by spending, on average, more
time working. They reported the tobit estimates given in Table 19.2. The last figure in the
table implies that a very large proportion of the women reported zero hours, so least squares
regression would be inappropriate.

The figures in parentheses are the ratio of the coefficient estimate to the estimated asymp-
totic standard error. The dependent variable is hours worked in the survey year. “Small kids”
is a dummy variable indicating whether there were children in the household. The “education
difference” and “relative wage” variables compare husband and wife on these two dimen-
sions. The wage rate used for wives was predicted using a previously estimated regression
model and is thus available for all individuals, whether working or not. “Second marriage” is a

11This concept is explored further in Greene (1980b), Goldberger (1981), and Chung and Goldberger (1984).
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dummy variable. Divorce probabilities were produced by a large microsimulation model pre-
sented in another study [Orcutt, Caldwell, and Wertheimer (1976)]. The variables used here
were dummy variables indicating “mean” if the predicted probability was between 0.01 and
0.03 and “high” if it was greater than 0.03. The “slopes” are the marginal effects described
earlier.

Note the marginal effects compared with the tobit coefficients. Likewise, the estimate of
σ is quite misleading as an estimate of the standard deviation of hours worked.

The effects of the divorce probability variables were as expected and were quite large. One
of the questions raised in connection with this study was whether the divorce probabilities
could reasonably be treated as independent variables. It might be that for these individuals,
the number of hours worked was a significant determinant of the probability.

19.3.4 TWO-PART MODELS AND CORNER SOLUTIONS

The tobit model contains a restriction that might be unreasonable in an economic setting.
Consider a behavioral outcome, y = charitable donation. Two implications of the tobit
model are that

Prob(y > 0 | x) = Prob(x′β + ε > 0 | x) = �(x′β/σ)

and [from (19-7)]

E[y | y > 0, x] = x′β + σφ(x′β/σ)/�(x′β/σ).

Differentiating both of these, we find from (17-11) and (19-8),

∂Prob(y > 0 | x)/∂x = [φ(x′β/σ)/σ ]β = a positive multiple of β,

∂ E[y | y > 0, x]/∂x = {[1 − δ(x′β/σ)]/σ }β = a positive multiple of β.

Thus, any variable that appears in the model affects the participation probability and
the intensity equation with the same sign. In the case suggested, for example, it is
conceivable that age might affect participation and intensity in different directions.
Fin and Schmidt (1984) suggest another application, loss due to fire in buildings; older
buildings might be more likely to have fires but, because of the greater value of newer
buildings, the actual damage might be greater in newer buildings. This fact would require
the coefficient on age to have different signs in the two functions, which is impossible
in the tobit model because they are the same coefficient.

In an early study in this literature, Cragg (1971) proposed a somewhat more general
model in which the probability of a limit observation is independent of the regression
model for the nonlimit data. One can imagine, for instance, the decision of whether or
not to purchase a car as being different from the decision of how much to spend on the
car, having decided to buy one.

A more general model that accommodates these objections is as follows:

1. Participation equation

Prob[y∗
i > 0] = �(x′

iγ ), di = 1 if y∗
i > 0,

Prob[y∗
i ≤ 0] = 1 − �(x′

iγ ), di = 0 if y∗
i ≤ 0.

(19-15)

2. Intensity equation for nonlimit observations

E[yi | di = 1] = x′
iβ + σλi ,
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according to Theorem 19.2. This two-part model is a combination of the truncated re-
gression model of Section 19.2 and the univariate probit model of Section 17.3, which
suggests a method of analyzing it. Note that it is precisely the same approach we con-
sidered in Section 18.4.8 and Example 18.12 where we used a hurdle model to model
doctor visits. The tobit model returns if γ = β/σ . The parameters of the regression (in-
tensity) equation can be estimated independently using the truncated regression model
of Section 19.2. An application is Melenberg and van Soest (1996).

Lin and Schmidt (1984) considered testing the restriction of the tobit model. Based
only on the tobit model, they devised a Lagrange multiplier statistic that, although a
bit cumbersome algebraically, can be computed without great difficulty. If one is able
to estimate the truncated regression model, the tobit model, and the probit model
separately, then there is a simpler way to test the hypothesis. The tobit log-likelihood
is the sum of the log-likelihoods for the truncated regression and probit models. To
show this result, add and subtract

∑
yi =1 ln �(x′

iβ) in (19-13). This produces the log-
likelihood for the truncated regression model (considered in the exercises) plus (17-20)
for the probit model. Therefore, a likelihood ratio statistic can be computed using

λ = −2[ln LT − (ln LP + ln LTR)],

where

LT = likelihood for the tobit model in (19-13), with the same coefficients

LP = likelihood for the probit model in (17-17), fit separately

LTR = likelihood for the truncated regression model, fit separately

The two-part model just considered extends the tobit model, but it stops a bit short
of the generality we might achieve. In the preceding hurdle model, we have assumed
that the same regressors appear in both equations. Although this produces a convenient
way to retreat to the tobit model as a parametric restriction, it couples the two decisions
perhaps unreasonably. In our example to follow, where we model extramarital affairs,
the decision whether or not to spend any time in an affair may well be an entirely
different decision from how much time to spend having once made that commitment.
The obvious way to proceed is to reformulate the hurdle model as

1. Participation equation

Prob[d∗
i > 0] = �(z′

iγ ), di = 1 if d∗
i > 0,

Prob[d∗
i ≤ 0] = 1 − �(z′

iγ ), di = 0 if d∗
i ≤ 0. (19-16)

2. Intensity equation for nonlimit observations

E[yi | di = 1] = x′
iβ + σλi .

This extension, however, omits an important element; it seems unlikely that the two
decisions would be uncorrelated; that is, the implicit disturbances in the equations
should be correlated. The combination of these produces what has been labeled a type-
II tobit model. [Amemiya (1985) identified five possible permutations of the model
specification and observation mechanism. The familiar tobit model is type I; this is
type-II.] The full model is
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1. Participation equation

d∗
i = z′

iγ + ui , ui ∼ N[0, 1]

di = 1 if d∗
i > 0, 0 otherwise.

2. Intensity equation

y∗
i = x′

iβ + εi , εi ∼ N[0, σ 2].

3. Observation mechanism

(a) y∗
i = 0 if di = 0 and yi = y∗

i if di = 1.

(b) yi = y∗
i if di = 1 and yi is unobserved if di = 0.

4. Endogeneity

(ui , εi ) ∼ bivariate normal with correlation ρ.

Mechanism (a) produces Amemiya’s type II model. Amemiya blends these two in-
terpretations. In the statement of the model, he presents (a), but in the subsequent
discussion, assumes (b). The difference is substantive if xi is observed in case (b). Oth-
erwise, they are the same, and “yi = 0” is not actually meaningful. Amemiya notes,
“y∗

i = 0 merely signifies the event d∗
i ≤ 0.” If xi is observed when di = 0, then these ob-

servations will contribute to the likelihood for the full sample. If not, then they will not.
We will develop this idea later when we consider Heckman’s selection model [which is
case (b) without observed xi when di = 0].

There are two estimation strategies that can be used to fit the type II model. A two-
step method can proceed as follows: The probit model for di can be estimated using
maximum likelihood as shown in Section 17.3. For the second step, we make use of our
theorems on truncation (and Theorem 19.5 that will appear later) to write

E[yi | di = 1, xi , zi ] = x′
iβ + E[εi | di = 1, xi , zi ]

= x′
iβ + ρσ

φ(z′
iγ )

�(z′
iγ )

(19-17)

= x′
iβ + ρσλi .

Since we have estimated γ at step 1, we can compute λ̂i = φ(z′
i γ̂ )/�(z′

i γ̂ ) using the
first-step estimates, and we can estimate β and θ = (ρσ) by least squares regression of
yi on xi and λ̂i . It will be necessary to correct the asymptotic covariance matrix that
is computed for (β̂, θ̂ ). This is a template application of the Murphy and Topel (2002)
results that appear in Section 14.7. The second approach is full information maximum
likelihood, estimating all the parameters in both equations simultaneously. We will
return to the details of estimation of the type II tobit model in Section 19.5 where
we examine Heckman’s model of “sample selection” model (which is the type II tobit
model).

Many of the applications of the tobit model in the received literature are con-
structed not to accommodate censoring of the underlying data, but, rather, to model
the appearance of a large cluster of zeros. Cragg’s application is clearly related to this
phenomenon. Consider, for example, survey data on purchases of consumer durables,
firm expenditure on research and development, or consumer savings. In each case, the
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FIGURE 19.5 Hypothetical Spending Data.

observed data will consist of zero or some positive amount. Arguably, there are two
decisions at work in these scenarios: First, whether to engage in the activity or not, and
second, given that the answer to the first question is yes, how intensively to engage in
it—how much to spend, for example. This is precisely the motivation behind the hurdle
model. This specification has been labeled a “corner solution model”; see Wooldridge
(2002a, pp. 518–519).

In practical terms, the difference between the hurdle model and the tobit model
should be evident in the data. Often overlooked in tobit analyses is that the model
predicts not only a cluster of zeros (or limit observations), but also a grouping of obser-
vations near zero (or the limit point). For example, the tobit model is surely misspec-
ified for the sort of (hypothetical) spending data shown in Figure 19.5 for a sample of
1,000 observations. Neglecting for the moment the earlier point about the underlying
decision process, Figure 19.6 shows the characteristic appearance of a (substantively)
censored variable. The implication for the model builder is that an appropriate speci-
fication would consist of two equations, one for the “participation decision,” and one
for the distribution of the positive dependent variable. Formally, we might, continuing
the development of Cragg’s specification, model the first decision with a binary choice
(e.g., probit or logit model). The second equation is a model for y | y > 0, for which
the truncated regression model of Section 19.2.3 is a natural candidate. As we will
see, this is essentially the model behind the sample selection treatment developed in
Section 19.5.

Two practical issues frequently intervene at this point. First, one might well have
a model in mind for the intensity (regression) equation, but none for the participation
equation. This is the usual backdrop for the uses of the tobit model, which produces the
considerations in the previous section. The second issue concerns the appropriateness
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FIGURE 19.6 Hypothetical Censored Data.

of the truncation or censoring model to data such as those in Figure 19.6. If we consider
only the nonlimit observations in Figure 19.5, the underlying distribution does not
appear to be truncated at all. The truncated regression model in Section 19.2.3 fit to these
data will not depart significantly from ordinary least squares [because the underlying
probability in the denominator of (19-6) will equal one and the numerator will equal
zero]. But, this is not the case of a tobit model forced on these same data. Forcing
the model in (19-13) on data such as these will significantly distort the estimator—all
else equal, it will significantly attenuate the coefficients, the more so the larger is the
proportion of limit observations in the sample. Once again, this stands as a caveat for
the model builder. The tobit model is manifestly misspecified for data such as those in
Figure 19.5.

Example 19.6 Two-Part Model for Extramarital Affairs
In Example 18.9, we examined Fair’s (1977) Psychology Today survey data on extramarital
affairs. The 601 observations in the data set are mostly zero—451 of the 601. This feature
of the data motivated the author to use a tobit model to analyze these data. In our example,
we reconsidered the model, since the nonzero observations were a count, not a continuous
variable. Another data set in Fair’s study was the Redbook Magazine survey of 6,366 married
women. Once again, the outcome variable of interest was extramarital affairs. However, in
this instance, the outcome data were transformed to a measure of time spent, which, being
continuous, lends itself more naturally to the tobit model we are studying here. The variables
in the data set are as follows (excluding three unidentified and not used):

id = Identification number
C = Constant, value = 1
yrb = Constructed measure of time spent in extramarital affairs
v1 = Rating of the marriage, coded 1 to 4
v2 = Age, in years, aggregated
v3 = Number of years married
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TABLE 19.3 Estimated Censored Regression Models (t-ratios in parentheses)

Model

Linear Truncated Hurdle Hurdle
OLS Tobit Regression Probit Tobit/σ Participation Intensity

Constant 3.62346 7.83653 8.89449 2.21010 1.74189 1.56419 4.84602
(13.63) (10.98) (2.90) (12.60) (17.75) (5.87)

RateMarr −0.42053 −1.53071 −0.44303 −0.42874 −0.34024 −0.42582 −0.24603
(−14.79) (−20.85) (−1.45) (−23.40) (−23.61) (−.46)

Age −0.01457 −0.10514 −0.22394 −0.03542 −0.02337 −0.01903
(−1.59) (−4.24) (−1.83) (−5.87) (−.77)

YrsMarr −0.01599 0.12829 −0.94437 0.06563 0.02852 −0.16822
(−1.62) ( 4.86) (−7.27) (10.18) (−6.52)

NumKids −0.01705 −0.02777 −0.02280 −0.00394 −0.00617 0.14024 −0.28365
(−.57) (−0.36) (−0.06) (−0.21) (11.55) (−1.49)

Religious −0.24374 −0.94350 −0.50490 −0.22281 −0.20972 −0.21466 −0.05452
(−7.83) (−11.11) (−1.29) (−10.88) (−10.64) (−0.19)

Education −0.01743 −0.08598 −0.06406 −0.02373 −0.01911 0.00338
(−1.24) (−2.28) (−0.38) (−2.60) (0.09)

Wife Occ. 0.06577 0.31284 0.00805 0.09539 0.06954 0.01505
(2.10) (3.82) (0.02) (4.75) (0.19)

Hus. Occ. 0.00405 0.01421 −0.09946 0.00659 0.00316 −0.02911
(0.19) (0.26) (−0.41) (0.49) (−0.53)

σ 2.14351 4.49887 5.46846 3.43748
ln L R2 = 0.05479 −7,804.38 −3,463.71 −3,469.58

v4 = Number of children, top coded at 5
v5 = Religiosity, 1 to 4, 1 = not, 4 = very
v6 = Education, coded 9, 12, 14, 16, 17, 20
v7 = Wife’s Occupation—Hollingshead scale
v8 = Husband’s occupation—Hollingshead scale

This is a cross section of 6,366 observations with 4,313 zeros and 2,053 positive values.
Table 19.3 presents estimates of various models for yrb. The leftmost column presents

the OLS estimates. The least squares estimator is inconsistent in this model. The empirical
regularity that the OLS estimator appears to be biased toward zero, the more so is the smaller
the proportion of limit observations. Here, the ratio, based on the tobit estimates in the second
column, appears to be about 4 or 5 to 1. Likewise, the OLS estimator of σ appears to be
greatly underestimated. This would be expected, as the OLS estimator is treating the limit
observations, which have no variation in the dependent variable, as if they were nonlimit
observations. The third set of results is the truncated regression estimator. In principle, the
truncated regression estimator is also consistent. However, it will be less efficient as it is
based on less information. In our example, this estimator seems to be quite erratic, again
compared to the tobit estimator. Note, for example, the coefficient on years married, which,
although it is “significant” in both cases, changes sign. The t ratio on Religiousness falls from
−11.11 to −1.29 in the truncation model. The probit estimator based on yrb > 0 appears
next. As a rough check on the corner solution aspect of our model, we would expect the
normalized tobit coefficients (β/σ ) to approximate the probit coefficients, which they appear
to. However, the likelihood ratio statistic for testing the internal consistency based on the
three estimated models is 2[7,804.38 − 3,463.71 − 3,469.58] = 1,742.18 with nine degrees
of freedom. The hypothesis of parameter constancy implied by the tobit model is rejected.
The last two sets of results are for a hurdle model in which the intensity equation is fit by the
two-step method.
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19.3.5 SOME ISSUES IN SPECIFICATION

Two issues that commonly arise in microeconomic data, heteroscedasticity and nonnor-
mality, have been analyzed at length in the tobit setting.12

19.3.5.a Heteroscedasticity

Maddala and Nelson (1975), Hurd (1979), Arabmazar and Schmidt (1982a,b), and
Brown and Moffitt (1982) all have varying degrees of pessimism regarding how in-
consistent the maximum likelihood estimator will be when heteroscedasticity occurs.
Not surprisingly, the degree of censoring is the primary determinant. Unfortunately, all
the analyses have been carried out in the setting of very specific models—for example,
involving only a single dummy variable or one with groupwise heteroscedasticity—so
the primary lesson is the very general conclusion that heteroscedasticity emerges as an
obviously serious problem.

One can approach the heteroscedasticity problem directly. Petersen and Waldman
(1981) present the computations needed to estimate a tobit model with heteroscedastic-
ity of several types. Replacing σ with σi in the log-likelihood function and including σ 2

i
in the summations produces the needed generality. Specification of a particular model
for σi provides the empirical model for estimation.

Example 19.7 Multiplicative Heteroscedasticity in the Tobit Model
Petersen and Waldman (1981) analyzed the volume of short interest in a cross section of
common stocks. The regressors included a measure of the market component of heteroge-
neous expectations as measured by the firm’s BETA coefficient; a company-specific measure
of heterogeneous expectations, NONMARKET; the NUMBER of analysts making earnings
forecasts for the company; the number of common shares to be issued for the acquisition
of another firm, MERGER; and a dummy variable for the existence of OPTIONs. They report
the results listed in Table 19.4 for a model in which the variance is assumed to be of the form
σ 2

i = exp(x′
i α) . The values in parentheses are the ratio of the coefficient to the estimated

asymptotic standard error.
The effect of heteroscedasticity on the estimates is extremely large. We do note, however,

a common misconception in the literature. The change in the coefficients is often misleading.
The marginal effects in the heteroscedasticity model will generally be very similar to those
computed from the model which assumes homoscedasticity. (The calculation is pursued in
the exercises.)

A test of the hypothesis that α = 0 (except for the constant term) can be based on the
likelihood ratio statistic. For these results, the statistic is −2[−547.3 − (−466.27) ] = 162.06.
This statistic has a limiting chi-squared distribution with five degrees of freedom. The sample
value exceeds the critical value in the table of 11.07, so the hypothesis can be rejected.

In the preceding example, we carried out a likelihood ratio test against the hypoth-
esis of homoscedasticity. It would be desirable to be able to carry out the test without
having to estimate the unrestricted model. A Lagrange multiplier test can be used for

12Two symposia that contain numerous results on these subjects are Blundell (1987) and Duncan (1986b).
An application that explores these two issues in detail is Melenberg and van Soest (1996). Developing speci-
fication tests for the tobit model has been a popular enterprise. A sampling of the received literature includes
Nelson (1981); Bera, Jarque, and Lee (1982); Chesher and Irish (1987); Chesher, Lancaster, and Irish (1985);
Gourieroux et al. (1984, 1987); Newey (1986); Rivers andVuong (1988); Horowitz and Neumann (1989); and
Pagan and Vella (1989). Newey (1985a,b) are useful references on the general subject of conditional moment
testing. More general treatments of specification testing are Godfrey (1988) and Ruud (1984).
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TABLE 19.4 Estimates of a Tobit Model (standard errors
in parentheses)

Homoscedastic Heteroscedastic

β β α

Constant −18.28 (5.10) −4.11 (3.28) −0.47 (0.60)
Beta 10.97 (3.61) 2.22 (2.00) 1.20 (1.81)
Nonmarket 0.65 (7.41) 0.12 (1.90) 0.08 (7.55)
Number 0.75 (5.74) 0.33 (4.50) 0.15 (4.58)
Merger 0.50 (5.90) 0.24 (3.00) 0.06 (4.17)
Option 2.56 (1.51) 2.96 (2.99) 0.83 (1.70)
ln L −547.30 −466.27
Sample size 200 200

that purpose. Consider the heteroscedastic tobit model in which we specify that

σ 2
i = σ 2[exp(w′

iα)]2. (19-18)

This model is a fairly general specification that includes many familiar ones as special
cases. The null hypothesis of homoscedasticity is α = 0. (We used this specification in the
probit model in Section 17.3.7 and in the linear regression model in Section 9.7.1) Using
the BHHH estimator of the Hessian as usual, we can produce a Lagrange multiplier
statistic as follows: Let zi = 1 if yi is positive and 0 otherwise,

ai = zi

(
εi

σ 2

)
+ (1 − zi )

(
(−1)λi

σ

)
,

bi = zi

((
ε2

i /σ
2 − 1

)

2σ 2

)
+ (1 − zi )

(
(x′

iβ)λi

2σ 3

)
, (19-19)

λi = φ(x′
iβ/σ)

1 − �(x′
iβ/σ)

.

The data vector is gi = [ai x′
i , bi , bi w′

i ]
′. The sums are taken over all observations, and

all functions involving unknown parameters (εi , φi , �i , x′
iβ, σ, λi ) are evaluated at the

restricted (homoscedastic) maximum likelihood estimates. Then,

LM = i′G[G′G]−1G′i = nR2 (19-20)

in the regression of a column of ones on the K + 1 + P derivatives of the log-likelihood
function for the model with multiplicative heteroscedasticity, evaluated at the estimates
from the restricted model. (If there were no limit observations, then it would reduce to
the Breusch–Pagan statistic discussed in Section 9.5.2.) Given the maximum likelihood
estimates of the tobit model coefficients, it is quite simple to compute. The statistic
has a limiting chi-squared distribution with degrees of freedom equal to the number of
variables in wi .

19.3.5.b Nonnormality

Nonnormality is an especially difficult problem in this setting. It has been shown that
if the underlying disturbances are not normally distributed, then the estimator based
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on (19-13) is inconsistent. Research is ongoing both on alternative estimators and on
methods for testing for this type of misspecification.13

One approach to the estimation is to use an alternative distribution. Kalbfleisch and
Prentice (2002) present a unifying treatment that includes several distributions such as
the exponential, lognormal, and Weibull. (Their primary focus is on survival analysis
in a medical statistics setting, which is an interesting convergence of the techniques in
very different disciplines.) Of course, assuming some other specific distribution does not
necessarily solve the problem and may make it worse. A preferable alternative would
be to devise an estimator that is robust to changes in the distribution. Powell’s (1981,
1984) least absolute deviations (LAD) estimator appears to offer some promise.14 The
main drawback to its use is its computational complexity. An extensive application of
the LAD estimator is Melenberg and van Soest (1996). Although estimation in the
nonnormal case is relatively difficult, testing for this failure of the model is worthwhile
to assess the estimates obtained by the conventional methods. Among the tests that
have been developed are Hausman tests, Lagrange multiplier tests [Bera and Jarque
(1981, 1982), Bera, Jarque, and Lee (1982)], and conditional moment tests [Nelson
(1981)].

19.3.6 PANEL DATA APPLICATIONS

Extension of the familiar panel data results to the tobit model parallel the probit model,
with the attendant problems. The random effects or random parameters models dis-
cussed in Chapter 17 can be adapted to the censored regression model using simulation
or quadrature. The same reservations with respect to the orthogonality of the effects and
the regressors will apply here, as will the applicability of the Mundlak (1978) correction
to accommodate it.

Most of the attention in the theoretical literature on panel data methods for the tobit
model has been focused on fixed effects. The departure point would be the maximum
likelihood estimator for the static fixed effects model,

y∗
it = αi + x′

itβ + εit, εit ∼ N[0, σ 2],

yit = Max(0, yit).

However, there are no firm theoretical results on the behavior of the MLE in this
model. Intuition might suggest, based on the findings for the binary probit model, that
the MLE would be biased in the same fashion, away from zero. Perhaps surprisingly, the
results in Greene (2004) persistently found that not to be the case in a variety of model
specifications. Rather, the incidental parameters, such as it is, manifests in a downward
bias in the estimator of σ , not an upward (or downward) bias in the MLE of β. However,
this is less surprising when the tobit estimator is juxtaposed with the MLE in the linear
regression model with fixed effects. In that model, the MLE is the within-groups (LSDV)
estimator, which is unbiased and consistent. But, the ML estimator of the disturbance
variance in the linear regression model is e′

LSDVeLSDV/(nT ), which is biased downward

13See Duncan (1983, 1986b), Goldberger (1983), Pagan and Vella (1989), Lee (1996), and Fernandez (1986).
14See Duncan (1986a,b) for a symposium on the subject and Amemiya (1984). Additional references are
Newey, Powell, and Walker (1990); Lee (1996); and Robinson (1988).
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by a factor of (T −1)/T. [This is the result found in the original source on the incidental
parameters problem, Neyman and Scott (1948).] So, what evidence there is suggests
that unconditional estimation of the tobit model behaves essentially like that for the
linear regression model. That does not settle the problem, however; if the evidence is
correct, then it implies that although consistent estimation of β is possible, appropriate
statistical inference is not. The bias in the estimation of σ shows up in any estimator of
the asymptotic covariance of the MLE of β.

Unfortunately, there is no conditional estimator of β for the tobit (or truncated re-
gression) model. First differencing or taking group mean deviations does not preserve
the model. Because the latent variable is censored before observation, these transforma-
tions are not meaningful. Some progress has been made on theoretical, semiparametric
estimators for this model. See, for example, Honorè and Kyriazidou (2000) for a survey.
Much of the theoretical development has also been directed at dynamic models where
the benign result of the previous paragraph (such as it is) is lost once again. Arellano
(2001) contains some general results. Hahn and Kuersteiner (2004) have characterized
the bias of the MLE, and suggested methods of reducing the bias of the estimators in
dynamic binary choice and censored regression models.

19.4 MODELS FOR DURATION

The leading application of the censoring models we examined in Section 19.3 is models
for durations and events. We consider the time until some kind of transition as the
duration, and the transition, itself, as the event. The length of a spell of unemployment
(until rehire or exit from the market), the duration of a strike, the amount of time until
a patient ends a health-related spell in connection with a disease or operation, and
the length of time between origination and termination (via prepayment, default, or
some other mechanism) of a mortgage are all examples of durations and transitions.
The role that censoring plays in these scenarios is that in almost all cases in which we
as analysts study duration data, some or even many of the spells we observe do not end
in transitions. For example, in studying the lengths of unemployment spells, many of
the individuals in the sample may still be unemployed at the time the study ends—the
analyst observes (or believes) that the spell will end some time after the observation
window closes. These data on spell lengths are, by construction, censored. Models of
duration will generally account explicitly for censoring of the duration data.

This section is concerned with models of duration. In some aspects, the regression-
like models we have studied, such as the discrete choice models, are the appropriate
tools. As in the previous two chapters, however, the models are nonlinear, and the famil-
iar regression methods are not appropriate. Most of this analysis focuses on maximum
likelihood estimators. In modeling duration, although an underlying regression model
is, in fact, at work, it is generally not the conditional mean function that is of interest.
More likely, as we will explore next, the objects of estimation are certain probabilities
of events, for example in the conditional probability of a transition in a given interval
given that the spell has lasted up to the point of interest. These are known as “hazard
models”—the probability is labeled the hazard function—and are a central focus of this
type of analysis.
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19.4.1 MODELS FOR DURATION DATA15

Intuition might suggest that the longer a strike persists, the more likely it is that it will
end within, say, the next week. Or is it? It seems equally plausible to suggest that the
longer a strike has lasted, the more difficult must be the problems that led to it in the
first place, and hence the less likely it is that it will end in the next short time interval.
A similar kind of reasoning could be applied to spells of unemployment or the interval
between conceptions. In each of these cases, it is not only the duration of the event, per
se, that is interesting, but also the likelihood that the event will end in “the next period”
given that it has lasted as long as it has.

Analysis of the length of time until failure has interested engineers for decades.
For example, the models discussed in this section were applied to the durability of
electric and electronic components long before economists discovered their usefulness.
Likewise, the analysis of survival times—for example, the length of survival after the
onset of a disease or after an operation such as a heart transplant—has long been a
staple of biomedical research. Social scientists have recently applied the same body of
techniques to strike duration, length of unemployment spells, intervals between con-
ception, time until business failure, length of time between arrests, length of time from
purchase until a warranty claim is made, intervals between purchases, and so on.

This section will give a brief introduction to the econometric analysis of duration
data. As usual, we will restrict our attention to a few straightforward, relatively uncom-
plicated techniques and applications, primarily to introduce terms and concepts. The
reader can then wade into the literature to find the extensions and variations. We will
concentrate primarily on what are known as parametric models. These apply familiar
inference techniques and provide a convenient departure point. Alternative approaches
are considered at the end of the discussion.

19.4.2 DURATION DATA

The variable of interest in the analysis of duration is the length of time that elapses
from the beginning of some event either until its end or until the measurement is taken,
which may precede termination. Observations will typically consist of a cross section of
durations, t1, t2, . . . , tn. The process being observed may have begun at different points
in calendar time for the different individuals in the sample. For example, the strike
duration data examined in Example 19.8 are drawn from nine different years.

Censoring is a pervasive and usually unavoidable problem in the analysis of du-
ration data. The common cause is that the measurement is made while the process is
ongoing. An obvious example can be drawn from medical research. Consider analyzing
the survival times of heart transplant patients. Although the beginning times may be
known with precision, at the time of the measurement, observations on any individuals
who are still alive are necessarily censored. Likewise, samples of spells of unemployment
drawn from surveys will probably include some individuals who are still unemployed
at the time the survey is taken. For these individuals, duration, or survival, is at least the

15There are a large number of highly technical articles on this topic, but relatively few accessible sources for
the uninitiated. A particularly useful introductory survey is Kiefer (1988), upon which we have drawn heavily
for this section. Other useful sources are Kalbfleisch and Prentice (2002), Heckman and Singer (1984a),
Lancaster (1990), Florens, Fougere, and Mouchart (1996) and Cameron and Trivedi (2005, Chapters 17–19).
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observed ti , but not equal to it. Estimation must account for the censored nature of the
data for the same reasons as considered in Section 19.3. The consequences of ignoring
censoring in duration data are similar to those that arise in regression analysis.

In a conventional regression model that characterizes the conditional mean and
variance of a distribution, the regressors can be taken as fixed characteristics at the
point in time or for the individual for which the measurement is taken. When measuring
duration, the observation is implicitly on a process that has been under way for an
interval of time from zero to t. If the analysis is conditioned on a set of covariates (the
counterparts to regressors) xt , then the duration is implicitly a function of the entire
time path of the variable x(t), t = (0, t), which may have changed during the interval.
For example, the observed duration of employment in a job may be a function of the
individual’s rank in the firm. But their rank may have changed several times between
the time they were hired and when the observation was made. As such, observed rank
at the end of the job tenure is not necessarily a complete description of the individual’s
rank while they were employed. Likewise, marital status, family size, and amount of
education are all variables that can change during the duration of unemployment and
that one would like to account for in the duration model. The treatment of time-varying
covariates is a considerable complication.16

19.4.3 A REGRESSION-LIKE APPROACH: PARAMETRIC
MODELS OF DURATION

We will use the term spell as a catchall for the different duration variables we might
measure. Spell length is represented by the random variable T. A simple approach to
duration analysis would be to apply regression analysis to the sample of observed spells.
By this device, we could characterize the expected duration, perhaps conditioned on
a set of covariates whose values were measured at the end of the period. We could
also assume that conditioned on an x that has remained fixed from T = 0 to T = t, t
has a normal distribution, as we commonly do in regression. We could then characterize
the probability distribution of observed duration times. But, normality turns out not to
be particularly attractive in this setting for a number of reasons, not least of which is
that duration is positive by construction, while a normally distributed variable can take
negative values. (Lognormality turns out to be a palatable alternative, but it is only one
among a long list of candidates.)

19.4.3.a Theoretical Background

Suppose that the random variable T has a continuous probability distribution f (t),
where t is a realization of T. The cumulative probability is

F(t) =
∫ t

0
f (s) ds = Prob(T ≤ t).

We will usually be more interested in the probability that the spell is of length at least
t, which is given by the survival function,

S(t) = 1 − F(t) = Prob(T ≥ t).

16See Petersen (1986) for one approach to this problem.
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Consider the question raised in the introduction: Given that the spell has lasted until
time t , what is the probability that it will end in the next short interval of time, say, �t?
It is

l(t, �t) = Prob(t ≤ T ≤ t + �t | T ≥ t).

A useful function for characterizing this aspect of the distribution is the hazard rate,

λ(t) = lim
�t→0

Prob(t ≤ T ≤ t + �t | T ≥ t)
�t

= lim
�t→0

F(t + �t) − F(t)
�t S(t)

= f (t)
S(t)

.

Roughly, the hazard rate is the rate at which spells are completed after duration t , given
that they last at least until t . As such, the hazard function gives an answer to our original
question.

The hazard function, the density, the CDF, and the survival function are all related.
The hazard function is

λ(t) = −d ln S(t)
dt

,

so

f (t) = S(t)λ(t).

Another useful function is the integrated hazard function

�(t) =
∫ t

0
λ(s) ds,

for which

S(t) = e−�(t),

so

�(t) = −ln S(t).

The integrated hazard function is generalized residual in this setting. [See Chesher and
Irish (1987) and Example 19.8.]

19.4.3.b Models of the Hazard Function

For present purposes, the hazard function is more interesting than the survival rate
or the density. Based on the previous results, one might consider modeling the hazard
function itself, rather than, say, modeling the survival function and then obtaining the
density and the hazard. For example, the base case for many analyses is a hazard rate
that does not vary over time. That is, λ(t) is a constant λ. This is characteristic of a
process that has no memory; the conditional probability of “failure” in a given short
interval is the same regardless of when the observation is made. Thus,

λ(t) = λ.

From the earlier definition, we obtain the simple differential equation,

−d ln S(t)
dt

= λ.

The solution is

ln S(t) = k − λt,
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or

S(t) = Ke−λt ,

where K is the constant of integration. The terminal condition that S(0) = 1 implies
that K = 1, and the solution is

S(t) = e−λt .

This solution is the exponential distribution, which has been used to model the time
until failure of electronic components. Estimation of λ is simple, because with an expo-
nential distribution, E [t] = 1/λ. The maximum likelihood estimator of λ would be the
reciprocal of the sample mean.

A natural extension might be to model the hazard rate as a linear function, λ(t) =
α + βt . Then �(t) = αt + 1

2βt2 and f (t) = λ(t)S(t) = λ(t) exp[−�(t)]. To avoid a
negative hazard function, one might depart from λ(t) = exp[g(t, θ)], where θ is a vector
of parameters to be estimated. With an observed sample of durations, estimation of
α and β is, at least in principle, a straightforward problem in maximum likelihood.
[Kennan (1985) used a similar approach.]

A distribution whose hazard function slopes upward is said to have positive duration
dependence. For such distributions, the likelihood of failure at time t , conditional upon
duration up to time t , is increasing in t . The opposite case is that of decreasing hazard
or negative duration dependence. Our question in the introduction about whether the
strike is more or less likely to end at time t given that it has lasted until time t can be
framed in terms of positive or negative duration dependence. The assumed distribution
has a considerable bearing on the answer. If one is unsure at the outset of the analysis
whether the data can be characterized by positive or negative duration dependence,
then it is counterproductive to assume a distribution that displays one characteristic
or the other over the entire range of t . Thus, the exponential distribution and our sug-
gested extension could be problematic. The literature contains a cornucopia of choices
for duration models: normal, inverse normal [inverse Gaussian; see Lancaster (1990)],
lognormal, F , gamma, Weibull (which is a popular choice), and many others.17 To il-
lustrate the differences, we will examine a few of the simpler ones. Table 19.5 lists the
hazard functions and survival functions for four commonly used distributions. Each in-
volves two parameters, a location parameter λ, and a scale parameter, p. [Note that in
the benchmark case of the exponential distribution, λ is the hazard function. In all other
cases, the hazard function is a function of λ, p, and, where there is duration dependence,
t as well. Different authors, for example, Kiefer (1988), use different parameterizations
of these models. We follow the convention of Kalbfleisch and Prentice (2002).]

All these are distributions for a nonnegative random variable. Their hazard func-
tions display very different behaviors, as can be seen in Figure 19.7. The hazard function
for the exponential distribution is constant, that for the Weibull is monotonically in-
creasing or decreasing depending on p, and the hazards for lognormal and loglogistic
distributions first increase and then decrease. Which among these or the many alterna-
tives is likely to be best in any application is uncertain.

17Three sources that contain numerous specifications are Kalbfleisch and Prentice (2002), Cox and Oakes
(1985), and Lancaster (1990).
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TABLE 19.5 Survival Distributions

Distribution Hazard Function, λ(t) Survival Function, S(t)

Exponential λ, S(t) = e−λt

Weibull λp(λt)p−1, S(t) = e−(λt)p

Lognormal f (t) = (p/t)φ[p ln(λt)] S(t) = �[−p ln(λt)]
[ln t is normally distributed with mean −ln λ and standard deviation 1/p.]

Loglogistic λ(t) = λp(λt)p−1/[1 + (λt)p], S(t) = 1/[1 + (λt)p]
[ln t has a logistic distribution with mean −ln λ and variance π2/(3p2).]
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FIGURE 19.7 Parametric Hazard Functions.

19.4.3.c Maximum Likelihood Estimation

The parameters λ and p of these models can be estimated by maximum likelihood.
For observed duration data, t1, t2, . . . , tn, the log-likelihood function can be formulated
and maximized in the ways we have become familiar with in earlier chapters. Censored
observations can be incorporated as in Section 19.3 for the tobit model. [See (19-13).]
As such,

ln L(θ) =
∑

uncensored
observations

ln f (t | θ) +
∑

censored
observations

ln S(t | θ),

where θ = (λ, p). For some distributions, it is convenient to formulate the log-likelihood
function in terms of f (t) = λ(t)S(t) so that

ln L =
∑

uncensored
observations

ln λ(t | θ) +
∑

all
observations

ln S(t | θ).
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Inference about the parameters can be done in the usual way. Either the BHHH estima-
tor or actual second derivatives can be used to estimate asymptotic standard errors for
the estimates. The transformation w = p(ln t + ln λ) for these distributions greatly facil-
itates maximum likelihood estimation. For example, for the Weibull model, by defining
w = p(ln t + ln λ), we obtain the very simple density f (w) = exp[w − exp(w)] and sur-
vival function S(w) = exp(− exp(w)).18 Therefore, by using ln t instead of t , we greatly
simplify the log-likelihood function. Details for these and several other distributions
may be found in Kalbfleisch and Prentice (2002, pp. 68–70). The Weibull distribution is
examined in detail in the next section.

19.4.3.d Exogenous Variables

One limitation of the models given earlier is that external factors are not given a role
in the survival distribution. The addition of “covariates” to duration models is fairly
straightforward, although the interpretation of the coefficients in the model is less so.
Consider, for example, the Weibull model. (The extension to other distributions will be
similar.) Let

λi = e−x′
i β,

where xi is a constant term and a set of variables that are assumed not to change from
time T = 0 until the “failure time,” T = ti . Making λi a function of a set of regressors
is equivalent to changing the units of measurement on the time axis. For this reason,
these models are sometimes called accelerated failure time models. Note as well that
in all the models listed (and generally), the regressors do not bear on the question of
duration dependence, which is a function of p.

Let σ = 1/p and let δi = 1 if the spell is completed and δi = 0 if it is censored. As
before, let

wi = p ln(λi ti ) = (ln ti − x′
iβ)

σ
,

and denote the density and survival functions f (wi ) and S(wi ). The observed random
variable is

ln ti = σwi + x′
iβ.

The Jacobian of the transformation from wi to ln ti is dwi/d ln ti = 1/σ , so the density
and survival functions for ln ti are

f (ln ti | xi , β, σ ) = 1
σ

f
(

ln ti − x′
iβ

σ

)
, and S(ln ti | xi , β, σ ) = S

(
ln ti − x′

iβ

σ

)
.

The log-likelihood for the observed data is

ln L(β, σ | data) =
n∑

i=1

[δi ln f (ln ti | xi , β, σ ) + (1 − δi ) ln S(ln ti | xi , β, σ )].

18The transformation is exp(w) = (λt)p so t = (1/λ)[exp(w)]1/p. The Jacobian of the transformation is
dt/dw = [exp(w)]1/p/(λp). The density in Table 19.5 is λp[exp(w)]−(1/p)−1[exp(− exp(w))]. Multiplying by
the Jacobian produces the result, f (w) = exp[w − exp(w)]. The survival function is the antiderivative,
[exp(− exp(w))].
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For the Weibull model, for example (see footnote 18),

f (wi ) = exp(wi − ewi ),

and

S(wi ) = exp(−ewi ).

Making the transformation to ln ti and collecting terms reduces the log-likelihood to

ln L(β, σ | data) =
∑

i

[
δi

(
ln ti − x′

iβ

σ
− ln σ

)
− exp

(
ln ti − x′

iβ

σ

)]
.

(Many other distributions, including the others in Table 19.5, simplify in the same way.
The exponential model is obtained by settingσ to one.) The derivatives can be equated to
zero using the methods described in Section E.3. The individual terms can also be used to
form the BHHH estimator of the asymptotic covariance matrix for the estimator.19 The
Hessian is also simple to derive, so Newton’s method could be used instead.20

Note that the hazard function generally depends on t , p, and x. The sign of an
estimated coefficient suggests the direction of the effect of the variable on the hazard
function when the hazard is monotonic. But in those cases, such as the loglogistic, in
which the hazard is nonmonotonic, even this may be ambiguous. The magnitudes of
the effects may also be difficult to interpret in terms of the hazard function. In a few
cases, we do get a regression-like interpretation. In the Weibull and exponential models,
E [t | xi ] = exp(x′

iβ)�[(1/p) + 1], whereas for the lognormal and loglogistic models,
E [ln t | xi ] = x′

iβ. In these cases, βk is the derivative (or a multiple of the derivative)
of this conditional mean. For some other distributions, the conditional median of t
is easily obtained. Numerous cases are discussed by Kiefer (1988), Kalbfleisch and
Prentice (2002), and Lancaster (1990).

19.4.3.e Heterogeneity

The problem of heterogeneity in duration models can be viewed essentially as the result
of an incomplete specification. Individual specific covariates are intended to incorpo-
rate observation specific effects. But if the model specification is incomplete and if
systematic individual differences in the distribution remain after the observed effects
are accounted for, then inference based on the improperly specified model is likely to
be problematic. We have already encountered several settings in which the possibility
of heterogeneity mandated a change in the model specification; the fixed and random
effects regression, logit, and probit models all incorporate observation-specific effects.
Indeed, all the failures of the linear regression model discussed in the preceding chap-
ters can be interpreted as a consequence of heterogeneity arising from an incomplete
specification.

There are a number of ways of extending duration models to account for het-
erogeneity. The strictly nonparametric approach of the Kaplan–Meier estimator (see
Section 19.4.4) is largely immune to the problem, but it is also rather limited in how

19Note that the log-likelihood function has the same form as that for the tobit model in Section 19.3.2. By
just reinterpreting the nonlimit observations in a tobit setting, we can, therefore, use this framework to apply
a wide range of distributions to the tobit model. [See Greene (1995a) and references given therein.]
20See Kalbfleisch and Prentice (2002) for numerous other examples.
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much information can be culled from it. One direct approach is to model heterogeneity
in the parametric model. Suppose that we posit a survival function conditioned on the
individual specific effect vi . We treat the survival function as S(ti |vi ). Then add to that
a model for the unobserved heterogeneity f (vi ). (Note that this is a counterpart to the
incorporation of a disturbance in a regression model and follows the same procedures
that we used in the Poisson model with random effects.) Then

S(t) = Ev[S(t | v)] =
∫

v

S(t | v) f (v) dv.

The gamma distribution is frequently used for this purpose.21 Consider, for example,
using this device to incorporate heterogeneity into the Weibull model we used earlier.
As is typical, we assume that v has a gamma distribution with mean 1 and variance
θ = 1/k. Then

f (v) = kk

�(k)
e−kvvk−1,

and

S(t | v) = e−(vλt)p
.

After a bit of manipulation, we obtain the unconditional distribution,

S(t) =
∫ ∞

0
S(t | v) f (v) dv = [1 + θ(λt)p]−1/θ .

The limiting value, with θ = 0, is the Weibull survival model, so θ = 0 corresponds to
Var[v] = 0, or no heterogeneity.22 The hazard function for this model is

λ(t) = λp(λt)p−1[S(t)]θ ,

which shows the relationship to the Weibull model.
This approach is common in parametric modeling of heterogeneity. In an impor-

tant paper on this subject, Heckman and Singer (1984b) argued that this approach
tends to overparameterize the survival distribution and can lead to rather serious er-
rors in inference. They gave some dramatic examples to make the point. They also
expressed some concern that researchers tend to choose the distribution of hetero-
geneity more on the basis of mathematical convenience than on any sensible economic
basis.

19.4.4 NONPARAMETRIC AND SEMIPARAMETRIC APPROACHES

The parametric models are attractive for their simplicity. But by imposing as much
structure on the data as they do, the models may distort the estimated hazard rates.
It may be that a more accurate representation can be obtained by imposing fewer
restrictions.

21See, for example, Hausman, Hall, and Griliches (1984), who use it to incorporate heterogeneity in the
Poisson regression model. The application is developed in Section 18.4.4.
22For the strike data analyzed in Figure 19.7, the maximum likelihood estimate of θ is 0.0004, which suggests
that at least in the context of the Weibull model, latent heterogeneity does not appear to be a feature of
these data.



Greene-2140242 book January 19, 2011 21:25

910 PART IV ✦ Cross Sections, Panel Data, and Microeconometrics

The Kaplan–Meier (1958) product limit estimator is a strictly empirical, nonpara-
metric approach to survival and hazard function estimation. Assume that the obser-
vations on duration are sorted in ascending order so that t1 ≤ t2 and so on and, for
now, that no observations are censored. Suppose as well that there are K distinct sur-
vival times in the data, denoted Tk; K will equal n unless there are ties. Let nk denote
the number of individuals whose observed duration is at least Tk. The set of individ-
uals whose duration is at least Tk is called the risk set at this duration. (We borrow,
once again, from biostatistics, where the risk set is those individuals still “at risk” at
time Tk). Thus, nk is the size of the risk set at time Tk. Let hk denote the number of ob-
served spells completed at time Tk. A strictly empirical estimate of the survivor function
would be

Ŝ(Tk) =
k∏

i=1

ni − hi

ni
= ni − hi

n1
.

The estimator of the hazard rate is

λ̂(Tk) = hk

nk
. (19-21)

Corrections are necessary for observations that are censored. Lawless (1982),
Kalbfleisch and Prentice (2002), Kiefer (1988), and Greene (1995a) give details. Susin
(2001) points out a fundamental ambiguity in this calculation (one which he argues ap-
pears in the 1958 source). The estimator in (19-21) is not a “rate” as such, as the width
of the time window is undefined, and could be very different at different points in the
chain of calculations. Because many intervals, particularly those late in the observation
period, might have zeros, the failure to acknowledge these intervals should impart an
upward bias to the estimator. His proposed alternative computes the counterpart to
(19-21) over a mesh of defined intervals as follows:

λ̂
(

Ib
a

) =
∑b

j=a h j∑b
j=a n j bj

,

where the interval is from t = a to t = b, h j is the number of failures in each period in
this interval, nj is the number of individuals at risk in that period and bj is the width of
the period. Thus, an interval (a, b) is likely to include several “periods.”

Cox’s (1972) approach to the proportional hazard model is another popular, semi-
parametric method of analyzing the effect of covariates on the hazard rate. The model
specifies that

λ(ti ) = exp(x′
iβ)λ0(ti )

The function λ0 is the “baseline” hazard, which is the individual heterogeneity. In princi-
ple, this hazard is a parameter for each observation that must be estimated. Cox’s partial
likelihood estimator provides a method of estimating β without requiring estimation of
λ0. The estimator is somewhat similar to Chamberlain’s estimator for the logit model
with panel data in that a conditioning operation is used to remove the heterogeneity.
(See Section 17.4.4.) Suppose that the sample contains K distinct exit times, T1, . . . , TK.
For any time Tk, the risk set, denoted Rk, is all individuals whose exit time is at least Tk.
The risk set is defined with respect to any moment in time T as the set of individuals who
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have not yet exited just prior to that time. For every individual i in risk set Rk, ti ≥ Tk.
The probability that an individual exits at time Tk given that exactly one individual exits
at this time (which is the counterpart to the conditioning in the binary logit model in
Chapter 17) is

Prob[ti = Tk | risk setk] = ex′
i β

∑
j∈Rk

ex′
j β

.

Thus, the conditioning sweeps out the baseline hazard functions. For the simplest case
in which exactly one individual exits at each distinct exit time and there are no censored
observations, the partial log-likelihood is

ln L =
K∑

k=1

⎡
⎣x′

kβ − ln
∑
j∈Rk

ex′
j β

⎤
⎦ .

If mk individuals exit at time Tk, then the contribution to the log-likelihood is the sum
of the terms for each of these individuals.

The proportional hazard model is a common choice for modeling durations be-
cause it is a reasonable compromise between the Kaplan–Meier estimator and the pos-
sibly excessively structured parametric models. Hausman and Han (1990) and Meyer
(1988), among others, have devised other, “semiparametric” specifications for hazard
models.

Example 19.8 Survival Models for Strike Duration
The strike duration data given in Kennan (1985, pp. 14–16) have become a familiar standard
for the demonstration of hazard models. Appendix Table F19.2 lists the durations, in days, of
62 strikes that commenced in June of the years 1968 to 1976. Each involved at least 1,000
workers and began at the expiration or reopening of a contract. Kennan reported the actual
duration. In his survey, Kiefer (1985), using the same observations, censored the data at
80 days to demonstrate the effects of censoring. We have kept the data in their original form;
the interested reader is referred to Kiefer for further analysis of the censoring problem.23

Parameter estimates for the four duration models are given in Table 19.6. The estimate
of the median of the survival distribution is obtained by solving the equation S( t) = 0.5. For
example, for the Weibull model,

S( M) = 0.5 = exp[−(λM) P ],

or

M = [( ln 2) 1/p]/λ.

For the exponential model, p = 1. For the lognormal and loglogistic models, M = 1/λ. The
delta method is then used to estimate the standard error of this function of the parameter
estimates. (See Section 4.4.4.) All these distributions are skewed to the right. As such, E [t]
is greater than the median. For the exponential and Weibull models, E [t] = [1/λ]�[(1/p) +
1]; for the normal, E [t] = (1/λ) [exp(1/p2) ]1/2. The implied hazard functions are shown in
Figure 19.7.

The variable x reported with the strike duration data is a measure of unanticipated ag-
gregate industrial production net of seasonal and trend components. It is computed as the
residual in a regression of the log of industrial production in manufacturing on time, time
squared, and monthly dummy variables. With the industrial production variable included as

23Our statistical results are nearly the same as Kiefer’s despite the censoring.
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TABLE 19.6 Estimated Duration Models (estimated standard errors
in parentheses)

λ p Median Duration

Exponential 0.02344 (0.00298) 1.00000 (0.00000) 29.571 (3.522)
Weibull 0.02439 (0.00354) 0.92083 (0.11086) 27.543 (3.997)
Loglogistic 0.04153 (0.00707) 1.33148 (0.17201) 24.079 (4.102)
Lognormal 0.04514 (0.00806) 0.77206 (0.08865) 22.152 (3.954)

a covariate, the estimated Weibull model is

−ln λ = 3.7772 − 9.3515 x, p = 1.00288,

(0.1394) (2.973) (0.1217) ,

median strike length = 27.35(3.667) days, E [t] = 39.83 days.

Note that the Weibull model is now almost identical to the exponential model ( p = 1) .
Because the hazard conditioned on x is approximately equal to λi , it follows that the hazard
function is increasing in “unexpected” industrial production. A 1 percent increase in x leads
to a 9.35 percent increase in λ, which because p ≈ 1 translates into a 9.35 percent decrease
in the median strike length or about 2.6 days. (Note that M = ln 2/λ.)

The proportional hazard model does not have a constant term. (The baseline hazard is an
individual specific constant.) The estimate of β is −9.0726, with an estimated standard error
of 3.225. This is very similar to the estimate obtained for the Weibull model.

19.5 INCIDENTAL TRUNCATION AND
SAMPLE SELECTION

The topic of sample selection, or incidental truncation, has been the subject of an
enormous recent literature, both theoretical and applied.24 This analysis combines both
of the previous topics.

Example 19.9 Incidental Truncation
In the high-income survey discussed in Example 19.2, respondents were also included in the
survey if their net worth, not including their homes, was at least $500,000. Suppose that
the survey of incomes was based only on people whose net worth was at least $500,000.
This selection is a form of truncation, but not quite the same as in Section 19.2. This selection
criterion does not necessarily exclude individuals whose incomes at the time might be quite
low. Still, one would expect that, on average, individuals with a high net worth would have a
high income as well. Thus, the average income in this subpopulation would in all likelihood
also be misleading as an indication of the income of the typical American. The data in such
a survey would be nonrandomly selected or incidentally truncated.

Econometric studies of nonrandom sampling have analyzed the deleterious effects
of sample selection on the properties of conventional estimators such as least squares;
have produced a variety of alternative estimation techniques; and, in the process, have

24A large proportion of the analysis in this framework has been in the area of labor economics. See, for
example, Vella (1998), which is an extensive survey for practitioners. The results, however, have been applied
in many other fields, including, for example, long series of stock market returns by financial economists (“sur-
vivorship bias”) and medical treatment and response in long-term studies by clinical researchers (“attrition
bias”). Some studies that comment on methodological issues are Heckman (1990), Manski (1989, 1990, 1992),
and Newey, Powell, and Walker (1990).
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yielded a rich crop of empirical models. In some cases, the analysis has led to a reinter-
pretation of earlier results.

19.5.1 INCIDENTAL TRUNCATION IN A BIVARIATE DISTRIBUTION

Suppose that y and z have a bivariate distribution with correlation ρ. We are interested
in the distribution of y given that z exceeds a particular value. Intuition suggests that if
y and z are positively correlated, then the truncation of z should push the distribution
of y to the right. As before, we are interested in (1) the form of the incidentally trun-
cated distribution and (2) the mean and variance of the incidentally truncated random
variable. Because it has dominated the empirical literature, we will focus first on the
bivariate normal distribution.

The truncated joint density of y and z is

f (y, z | z > a) = f (y, z)
Prob(z > a)

.

To obtain the incidentally truncated marginal density for y, we would then integrate z
out of this expression. The moments of the incidentally truncated normal distribution
are given in Theorem 19.5.25

THEOREM 19.5 Moments of the Incidentally Truncated Bivariate
Normal Distribution

If y and z have a bivariate normal distribution with means μy and μz, standard
deviations σy and σz, and correlation ρ, then

E [y | z > a] = μy + ρσyλ(αz),

Var[y | z > a] = σ 2
y [1 − ρ2δ(αz)],

where

αz = (a − μz)/σz, λ(αz) = φ(αz)/[1 − �(αz)], and δ(αz) = λ(αz)[λ(αz) − αz].

Note that the expressions involving z are analogous to the moments of the truncated
distribution of x given in Theorem 19.2. If the truncation is z< a, then we make the
replacement λ(αz) = −φ(αz)/�(αz).

As expected, the truncated mean is pushed in the direction of the correlation if the
truncation is from below and in the opposite direction if it is from above. In addition,
the incidental truncation reduces the variance, because both δ(α) and ρ2 are between
zero and one.

19.5.2 REGRESSION IN A MODEL OF SELECTION

To motivate a regression model that corresponds to the results in Theorem 19.5, we
consider the following example.

25Much more general forms of the result that apply to multivariate distributions are given in Johnson and
Kotz (1974). See also Maddala (1983, pp. 266–267).
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Example 19.10 A Model of Labor Supply
A simple model of female labor supply that has been examined in many studies consists of
two equations:26

1. Wage equation. The difference between a person’s market wage, what she could com-
mand in the labor market, and her reservation wage, the wage rate necessary to make
her choose to participate in the labor market, is a function of characteristics such as age
and education as well as, for example, number of children and where a person lives.

2. Hours equation. The desired number of labor hours supplied depends on the wage, home
characteristics such as whether there are small children present, marital status, and so
on.

The problem of truncation surfaces when we consider that the second equation describes
desired hours, but an actual figure is observed only if the individual is working. (In most
such studies, only a participation equation, that is, whether hours are positive or zero, is
observable.) We infer from this that the market wage exceeds the reservation wage. Thus,
the hours variable in the second equation is incidentally truncated.

To put the preceding examples in a general framework, let the equation that deter-
mines the sample selection be

z∗
i = w′

iγ + ui ,

and let the equation of primary interest be

yi = x′
iβ + εi .

The sample rule is that yi is observed only when z∗
i is greater than zero. Suppose as

well that εi and ui have a bivariate normal distribution with zero means and correlation
ρ. Then we may insert these in Theorem 19.5 to obtain the model that applies to the
observations in our sample:

E [yi | yi is observed] = E [yi | z∗
i > 0]

= E [yi | ui > −w′
iγ ]

= x′
iβ + E [εi | ui > −w′

iγ ]

= x′
iβ + ρσελi (αu)

= x′
iβ + βλλi (αu),

where αu = −w′
iγ /σu and λ(αu) = φ(w′

iγ /σu)/�(w′
iγ /σu). So,

yi | z∗
i > 0 = E [yi | z∗

i > 0] + vi

= x′
iβ + βλλi (αu) + vi .

Least squares regression using the observed data—for instance, OLS regression of hours
on its determinants, using only data for women who are working—produces inconsistent
estimates of β. Once again, we can view the problem as an omitted variable. Least
squares regression of y on x and λ would be a consistent estimator, but if λ is omitted,
then the specification error of an omitted variable is committed. Finally, note that the
second part of Theorem 19.5 implies that even if λi were observed, then least squares
would be inefficient. The disturbance vi is heteroscedastic.

26See, for example, Heckman (1976). This strand of literature begins with an exchange by Gronau (1974) and
Lewis (1974).
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The marginal effect of the regressors on yi in the observed sample consists of two
components. There is the direct effect on the mean of yi , which is β. In addition, for a
particular independent variable, if it appears in the probability that z∗

i is positive, then
it will influence yi through its presence in λi . The full effect of changes in a regressor
that appears in both xi and wi on y is

∂ E [yi | z∗
i > 0]

∂xik
= βk − γk

(
ρσε

σu

)
δi (αu),

where27

δi = λ2
i − αiλi .

Suppose that ρ is positive and E [yi ] is greater when z∗
i is positive than when it is negative.

Because 0 < δi < 1, the additional term serves to reduce the marginal effect. The change
in the probability affects the mean of yi in that the mean in the group z∗

i > 0 is higher.
The second term in the derivative compensates for this effect, leaving only the marginal
effect of a change given that z∗

i > 0 to begin with. Consider Example 19.12, and suppose
that education affects both the probability of migration and the income in either state.
If we suppose that the income of migrants is higher than that of otherwise identical
people who do not migrate, then the marginal effect of education has two parts, one
due to its influence in increasing the probability of the individual’s entering a higher-
income group and one due to its influence on income within the group. As such, the
coefficient on education in the regression overstates the marginal effect of the education
of migrants and understates it for nonmigrants. The sizes of the various parts depend
on the setting. It is quite possible that the magnitude, sign, and statistical significance of
the effect might all be different from those of the estimate of β, a point that appears
frequently to be overlooked in empirical studies.

In most cases, the selection variable z∗ is not observed. Rather, we observe only
its sign. To consider our two examples, we typically observe only whether a woman is
working or not working or whether an individual migrated or not. We can infer the sign
of z∗, but not its magnitude, from such information. Because there is no information on
the scale of z∗, the disturbance variance in the selection equation cannot be estimated.
(We encountered this problem in Chapter 17 in connection with the probit model.)
Thus, we reformulate the model as follows:

selection mechanism: z∗
i = w′

iγ + ui , zi = 1 if z∗
i > 0 and 0 otherwise;

Prob(zi = 1 | wi ) = �(w′
iγ ); and

Prob(zi = 0 | wi ) = 1 − �(w′
iγ ).

regression model: yi = x′
iβ + εi observed only if zi = 1,

(ui , εi ) ∼ bivariate normal [0, 0, 1, σε, ρ].

(19-22)

Suppose that, as in many of these studies, zi and wi are observed for a random sample
of individuals but yi is observed only when zi = 1. This model is precisely the one we

27We have reversed the sign of αu in (Theorem 19.5) because a = 0, and α = w′γ /σM is somewhat more
convenient. Also, as such, ∂λ/∂α = −δ.
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examined earlier, with

E [yi | zi = 1, xi , wi ] = x′
iβ + ρσελ(w′

iγ ).

19.5.3 TWO-STEP AND MAXIMUM LIKELIHOOD ESTIMATION

The parameters of the sample selection model can be estimated by maximum like-
lihood.28 However, Heckman’s (1979) two-step estimation procedure is usually used
instead. Heckman’s method is as follows:29

1. Estimate the probit equation by maximum likelihood to obtain estimates of γ .
For each observation in the selected sample, compute λ̂i = φ(w′

i γ̂ )/�(w′
i γ̂ ) and

δ̂i = λ̂i (λ̂i + w′
i γ̂ ).

2. Estimate β and βλ = ρσε by least squares regression of y on x and λ̂.

It is possible also to construct consistent estimators of the individual parameters ρ

and σε. At each observation, the true conditional variance of the disturbance would be

σ 2
i = σ 2

ε (1 − ρ2δi ).

The average conditional variance for the sample would converge to

plim
1
n

n∑
i=1

σ 2
i = σ 2

ε (1 − ρ2δ̄),

which is what is estimated by the least squares residual variance e′e/n. For the square
of the coefficient on λ, we have

plim b2
λ = ρ2σ 2

ε ,

whereas based on the probit results we have

plim
1
n

n∑
i=1

δ̂i = δ̄.

We can then obtain a consistent estimator of σ 2
ε using

σ̂ 2
ε = 1

n
e′e + ˆ̄δb2

λ.

Finally, an estimator of ρ2 is

ρ̂2 = b2
λ

σ̂ 2
ε

, (19-23)

which provides a complete set of estimators of the model’s parameters.30

To test hypotheses, an estimate of the asymptotic covariance matrix of [b′, bλ] is
needed. We have two problems to contend with. First, we can see in Theorem 19.5 that

28See Greene (1995a).
29Perhaps in a mimicry of the “tobit” estimator described earlier, this procedure has come to be known as
the “Heckit” estimator.
30Note that ρ̂2 is not a sample correlation and, as such, is not limited to [0, 1]. See Greene (1981) for discussion.
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the disturbance term in

(yi | zi = 1, xi , wi ) = x′
iβ + ρσελi + vi (19-24)

is heteroscedastic;

Var[vi | zi = 1, xi , wi ] = σ 2
ε (1 − ρ2δi ).

Second, there are unknown parameters in λi . Suppose that we assume for the moment
that λi and δi are known (i.e., we do not have to estimate γ ). For convenience, let
x∗

i = [xi , λi ], and let b∗ be the least squares coefficient vector in the regression of y on
x∗ in the selected data. Then, using the appropriate form of the variance of ordinary
least squares in a heteroscedastic model from Chapter 9, we would have to estimate

Var[b∗] = σ 2
ε [X′

∗X∗]−1

[
n∑

i=1

(1 − ρ2δi )x∗
i x∗′

i

]
[X′

∗X∗]−1

= σ 2
ε [X′

∗X∗]−1[X′
∗(I − ρ2)X∗][X′

∗X∗]−1,

where I − ρ2 is a diagonal matrix with (1 − ρ2δi ) on the diagonal. Without any other
complications, this result could be computed fairly easily using X, the sample estimates
of σ 2

ε and ρ2, and the assumed known values of λi and δi .
The parameters in γ do have to be estimated using the probit equation. Rewrite

(19-24) as

(yi | zi = 1, xi , wi ) = x′
iβ + βλλ̂i + vi − βλ(λ̂i − λi ).

In this form, we see that in the preceding expression we have ignored both an additional
source of variation in the compound disturbance and correlation across observations;
the same estimate of γ is used to compute λ̂i for every observation. Heckman has
shown that the earlier covariance matrix can be appropriately corrected by adding a
term inside the brackets,

Q = ρ̂2(X′
∗̂W)Est. Asy. Var[γ̂ ](W′̂X∗) = ρ̂2F̂V̂F̂ ′,

where V̂ = Est. Asy. Var[γ̂ ], the estimator of the asymptotic covariance of the probit
coefficients. Any of the estimators in (17-22) to (17-24) may be used to compute V̂. The
complete expression is31

Est. Asy. Var[b, bλ] = σ̂ 2
ε [X′

∗X∗]−1[X′
∗(I − ρ̂2̂)X∗ + Q][X′

∗X∗]−1.

The sample selection model can also be estimated by maximum likelihood. The full
log-likelihood function for the data is built up from

Prob(selection) × density | selection for observations with zi = 1,

and

Prob(nonselection) for observations with zi = 0.

31This matrix formulation is derived in Greene (1981). Note that the Murphy and Topel (1985) results for
two-step estimators given in Theorem 14.8 would apply here as well. Asymptotically, this method would give
the same answer. The Heckman formulation has become standard in the literature.
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Combining the parts produces the full log-likelihood function,

ln L =
∑
z=1

ln

[
exp

(−(1/2)ε2
i /σ

2
ε

)

σε

√
2π

�

(
ρεi/σε + w′

iγ√
1 − ρ2

)]
+

∑
z=0

[1 − ln �(w′
iγ )],

where εi = yi −x′
iβ. Note, the FIML estimator with its assumption of bivariate normality

is not less robust than the two-step estimator. because the latter also requires bivariate
normality to form the conditional mean for the regression.

Two virtues of the FIML estimator will be the greater efficiency brought by using
the likelihood function rather than the method of moments and, second, the estimation
of ρ subject to the constraint −1 < ρ < 1. (This is typically done by reparameterizing
the model in terms of the monotonic inverse hyperbolic tangent, τ = (1/2) ln [(1 +
ρ)/(1 − ρ)] = atanh(ρ). The transformed parameter, τ , is unrestricted. The inverse
transformation is ρ = [exp(2τ) − 1]/[exp(2τ) + 1] which is bounded between zero
and one.) One possible drawback (it might be argued) could be the complexity of
the likelihood function that would make estimation more difficult than the two-step
estimator. However, the MLE for the selection model appears as a built-in procedure
in modern software such as Stata and NLOGIT, and it is straightforward to implement
in Gauss and MatLab, so this might be a moot point. Surprisingly, the MLE is by far less
common than the two-step estimator in the received applications. The estimation of ρ

is the difficult part of the estimaton process (this is often the case). It is quite common
for the method of moments estimator and the FIML estimator to be very different—
our application in Example 19.11 is a case. Perhaps surprisingly so, the moment-based
estimator of ρ in (19-23) is not bounded by zero and one. [See Greene (1981).] This
would seem to recommend the MLE.

The fully parametric bivariate normality assumption of the model has been viewed
as a potential drawback. However, relatively little progress has been made on devising
informative semi- and nonparametric estimators—see, for one example, Gallant and
Nychka (1987). The obstacle here is that, ultimately, the model hangs on a parame-
terization of the correlation of the unobservables in the two equations. So, method of
moment estimators or kernel-based estimators must still incorporate this feature of a
bivariate distribution. Some results have been obtained using the method of copula
functions. [See Smith (2003, 2005) and Trivedi and Zimmer (2007).]

Example 19.11 Female Labor Supply
Examples 17.1 and 17.8 proposed a labor force participation model for a sample of 753
married women in a sample analyzed by Mroz (1987). The data set contains wage and hours
information for the 428 women who participated in the formal market (LFP=1). Following
Mroz, we suppose that for these 428 individuals, the offered wage exceeded the reservation
wage and, moreover, the unobserved effects in the two wage equations are correlated. As
such, a wage equation based on the market data should account for the sample selection
problem. We specify a simple wage model:

Wage = β1 + β2 Exper + β3 Exper 2 + β4 Education + β5 City + ε

where Exper is labor market experience and City is a dummy variable indicating that the
individual lived in a large urban area. Maximum likelihood, Heckman two-step, and ordinary
least squares estimates of the wage equation are shown in Table 19.7. The maximum likeli-
hood estimates are FIML estimates—the labor force participation equation is reestimated at
the same time. Only the parameters of the wage equation are shown next. Note as well that
the two-step estimator estimates the single coefficient on λi and the structural parameters σ
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TABLE 19.7 Estimated Selection Corrected Wage Equation

Two-Step Maximum Likelihood Least Squares

Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

β1 −0.971 (2.06) −1.963 (1.684) −2.56 (0.929)
β2 0.021 (0.0625) 0.0279 (0.0756) 0.0325 (0.0616)
β3 0.000137 (0.00188) −0.0001 (0.00234) −0.000260 (0.00184)
β4 0.417 (0.100) 0.457 (0.0964) 0.481 (0.0669)
β5 0.444 (0.316) 0.447 (0.427) (0.449) 0.318
(ρσ ) −1.098 (1.266)
ρ −0.343 −0.132 (0.224) 0.000
σ 3.200 3.108 (0.0837) 3.111

and ρ are deduced by the method of moments. The maximum likelihood estimator computes
estimates of these parameters directly. [Details on maximum likelihood estimation may be
found in Maddala (1983).]

The differences between the two-step and maximum likelihood estimates in Table 19.7
are surprisingly large. The difference is even more striking in the marginal effects. The effect
for education is estimated as 0.417 + 0.0641 for the two-step estimators and 0.480 in total
for the maximum likelihood estimates. For the kids variable, the marginal effect is −0.293 for
the two-step estimates and only −0.11003 for the MLEs. Surprisingly, the direct test for a
selection effect in the maximum likelihood estimates, a nonzero ρ, fails to reject the hypothesis
that ρ equals zero.

In some settings, the selection process is a nonrandom sorting of individuals into
two or more groups. The mover-stayer model in the next example is a familiar case.

Example 19.12 A Mover-Stayer Model for Migration
The model of migration analyzed by Nakosteen and Zimmer (1980) fits into the framework
described in this section. The equations of the model are

net benefit of moving: M∗
i = w′

i γ + ui ,

income if moves: I i 1 = x′
i 1β1 + εi 1,

income if stays: I i 0 = x′
i 0β0 + εi 0.

One component of the net benefit is the market wage individuals could achieve if they move,
compared with what they could obtain if they stay. Therefore, among the determinants of
the net benefit are factors that also affect the income received in either place. An analysis
of income in a sample of migrants must account for the incidental truncation of the mover’s
income on a positive net benefit. Likewise, the income of the stayer is incidentally truncated
on a nonpositive net benefit. The model implies an income after moving for all observations,
but we observe it only for those who actually do move. Nakosteen and Zimmer (1980) applied
the selectivity model to a sample of 9,223 individuals with data for two years (1971 and 1973)
sampled from the Social Security Administration’s Continuous Work History Sample. Over
the period, 1,078 individuals migrated and the remaining 8,145 did not. The independent
variables in the migration equation were as follows:

SE = self-employment dummy variable; 1 if yes

�EMP = rate of growth of state employment

�PCI = growth of state per capita income

x = age, race (nonwhite= 1), sex (female= 1)

�SIC = 1 if individual changes industry
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TABLE 19.8 Estimated Earnings Equations

Migrant Nonmigrant
Migration Earnings Earnings

Constant −1.509 9.041 8.593
SE −0.708 (−5.72) −4.104 (−9.54) −4.161 (−57.71)
�EMP −1.488 (−2.60) — —
�PCI 1.455 (3.14) — —
Age −0.008 (−5.29) — —
Race −0.065 (−1.17) — —
Sex −0.082 (−2.14) — —
�SIC 0.948 (24.15) −0.790 (−2.24) −0.927 (−9.35)
λ — 0.212 (0.50) 0.863 (2.84)

The earnings equations included �SIC and SE. The authors reported the results given in
Table 19.8. The figures in parentheses are asymptotic t ratios.

19.5.4 SAMPLE SELECTION IN NONLINEAR MODELS

The preceding analysis has focused on an extension of the linear regression (or the
estimation of simple averages of the data). The method of analysis changes in nonlinear
models. To begin, it is not necessarily obvious what the impact of the sample selection
is on the response variable, or how it can be accommodated in a model. Consider the
model analyzed by Boyes, Hoffman, and Lowe (1989):

yi1 = 1 if individual i defaults on a loan, 0 otherwise,

yi2 = 1 if the individual is granted a loan, 0 otherwise.

Wynand and van Praag (1981) also used this framework to analyze consumer insurance
purchases in the first application of the selection methodology in a nonlinear model.
Greene (1992) applied the same model to y1 = default on credit card loans, in which
yi2 denotes whether an application for the card was accepted or not. [Mohanty (2002)
also used this model to analyze teen employment in California.] For a given individual,
y1 is not observed unless yi2 = 1. Following the lead of the linear regression case in
Section 19.5.3, a natural approach might seem to be to fit the second (selection) equa-
tion using a univariate probit model, compute the inverse Mills ratio, λi , and add it
to the first equation as an additional “control” variable to accommodate the selection
effect. [This is the approach used by Wynand and van Praag (1981) and Greene (1994).]
The problems with this control function approach are, first, it is unclear what in the
model is being “controlled” and, second, assuming the first model is correct, the ap-
propriate model conditioned on the sample selection is unlikely to contain an inverse
Mills ratio anywhere in it. [See Terza (2010) for discussion.] That result is specific to the
linear model, where it arises as E[εi | selection]. What would seem to be the apparent
counterpart for this probit model,

Prob(yi1 = 1 | selection on yi2 = 1) = �(x′
i1 β1 + θλi ),

is not, in fact, the appropriate conditional mean, or probability. For this particular ap-
plication, the appropriate conditional probability (extending the bivariate probit model
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of Section 17.5) would be

Prob[yi1 = 1 | yi2 = 1] = �2(x′
i1β1, x′

i2β2, ρ)

�(x′
i2β2)

.

We would use this result to build up the likelihood function for the three observed out-
comes, as follows: The three types of observations in the sample, with their unconditional
probabilities, are

yi2 = 0: Prob(yi2 = 0 | xi1, xi2) = 1 − �(x′
i2β2),

yi1 = 0, yi2 = 1: Prob(yi1 = 0, yi2 = 1| xi1, xi2) = �2(−x′
i1β1, x′

i2β2, −ρ),

yi1 = 1, yi2 = 1: Prob(yi1 = 1, yi2 = 1| xi1, xi2) = �2(x′
i1β1, x′

i2β2, ρ).

(19-25)

The log-likelihood function is based on these probabilities.32 An application appears in
Section 17.5.6.

Example 19.13 Doctor Visits and Insurance
Continuing our analysis of the utilization of the German health care system, we observe that
the data set contains an indicator of whether the individual subscribes to the “Public” health
insurance or not. Roughly 87 percent of the observations in the sample do. We might ask
whether the selection on public insurance reveals any substantive difference in visits to the
physician. We estimated a logit specification for this model in Example 17.4. Using (19-25)
as the framework, we define yi 2 to be presence of insurance and yi 1 to be the binary variable
defined to equal 1 if the individual makes at least one visit to the doctor in the survey year.

The estimation results are given in Table 19.9. Based on these results, there does appear
to be a very strong relationship. The coefficients do change somewhat in the conditional
model. A Wald test for the presence of the selection effect against the null hypothesis that ρ
equals zero produces a test statistic of (−7.188)2 = 51.667, which is larger than the critical
value of 3.84. Thus, the hypothesis is rejected. A likelihood ratio statistic is computed as
the difference between the log-likelihood for the full model and the sum of the two separate
log-likelihoods for the independent probit models when ρ equals zero. The result is

λLR = 2[−23969.58 − (−15536.39 + (−8471.508) ) = 77.796

The hypothesis is rejected once again. Partial effects were computed using the results in
Section 17.5.3.

The large correlation coefficient can be misleading. The estimated −0.9299 does not
state that the presence of insurance makes it much less likely to go to the doctor. This is
the correlation among the unobserved factors in each equation. The factors that make it
more likely to purchase insurance make it less likely to use a physician. To obtain a simple
correlation between the two variables, we might use the tetrachoric correlation defined in
Example 17.18. This would be computed by fitting a bivariate probit model for the two binary
variables without any other variables. The estimated value is 0.120.

More general cases are typically much less straightforward. Greene (2005, 2006,
2010) and Terza (1998, 2010) present sample selection models for nonlinear specifica-
tions based on the underlying logic of the Heckman model in Section 19.5.3, that the
influence of the incidental truncation acts on the unobservable variables in the model.
(That is the source of the “selection bias” in conventional estimators.) The modeling
extension introduces the unobservables into the model in a natural fashion that parallels
the regression model. Terza (2010) presents a survey of the general results.

32Extensions of the bivariate probit model to other types of censoring are discussed in Poirier (1980) and
Abowd and Farber (1982).
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TABLE 19.9 Estimated Probit Equations for Doctor Visits

Independent: No Selection Sample Selection Model

Standard Partial Standard Partial
Variable Estimate Error Effect Estimate Error Effect

Constant 0.05588 0.06564 −9.4366 0.06760
Age 0.01331 0.0008399 0.004971 0.01284 0.0008131 0.005042
Income −0.1034 0.05089 −0.03860 −0.1030 0.04582 −0.04060
Kids −0.1349 0.01947 −0.05059 −0.1264 0.01790 −0.04979
Education −0.01920 0.004254 −0.007170 0.03660 0.004744 0.002703
Married 0.03586 0.02172 0.01343 0.03564 0.02016 0.01404
ln L −15,536.39
Constant 3.3585 0.06959 3.2699 0.06916
Age 0.0001868 0.0009744 −0.0002679 0.001036
Education −0.1854 0.003941 −0.1807 0.003936
Female 0.1150 0.02186 0.0000a 0.2230 0.02101 0.01446a

ln L −8,471.508
ρ 0.0000 0.0000 −0.9299 0.1294
ln L −24,007.90 −23,969.58

aIndirect effect from second equation.

The generic model will take the form

1. Probit selection equation:

z∗
i = w′

iα + ui in which ui ∼ N[0, 1], (19-26)

zi = 1 if z∗
i > 0, 0 otherwise.

2. Nonlinear index function model with unobserved heterogeneity and sample selec-
tion:

μi | εi = x′
iβ + σεi , εi ∼ N[0, 1],

yi | xi , εi ∼ density g(yi | xi , εi ) = f (yi | x′
iβ + σεi ), (19-27)

yi , xi are observed only when zi = 1,

[ui , εi ] ∼ N[(0, 1), (1, ρ, 1)].

For example, in a Poisson regression model, the conditional mean function becomes
E(yi | xi ) = λi = exp(x′

iβ + σεi ) = exp(μi ). (We used this specification of the model
in Chapter 18 to introduce random effects in the Poisson regression model for panel
data.)

The log-likelihood function for the full model is the joint density for the observed
data. When zi equals one, (yi , xi , zi , wi ) are all observed. To obtain the joint density
p(yi , zi = 1 | xi , wi ), we proceed as follows:

p(yi , zi = 1 | xi , wi ) =
∫ ∞

−∞
p(yi , zi = 1 | xi , wi , εi ) f (εi )dεi .

Conditioned on εi , zi and yi are independent. Therefore, the joint density is the product,

p(yi , zi = 1 | xi , wi , εi ) = f (yi | x′
iβ + σεi )Prob(zi = 1 | wi , εi ).
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The first part, f (yi | x′
iβ + σεi ) is the conditional index function model in (19-27). By

joint normality, f (ui | εi ) = N[ρεi , (1 − ρ2)], so ui | εi = ρεi + (ui − ρεi ) = ρεi + vi

where E[vi ] = 0 and Var[vi ] = (1 − ρ2). Therefore,

Prob(zi = 1 | wi , εi ) = �

(
w′

iα + ρεi√
1 − ρ2

)
.

Combining terms and using the earlier approach, the unconditional joint density is

p(yi , zi = 1 | xi , wi ) =
∫ ∞

−∞
f (yi | x′

iβ + σεi )�

(
w′

iα + ρεi√
1 − ρ2

)
exp

(−ε2
i

/
2
)

√
2π

dεi . (19-28)

The other part of the likelihood function for the observations with zi = 0 will be

Prob(zi = 0 | wi ) =
∫ ∞

−∞
Prob(zi = 0 | wi , εi ) f (εi )dεi .

=
∫ ∞

−∞

[
1 − �

(
w′

iα + ρεi√
1 − ρ2

)]
f (εi )dεi (19-29)

=
∫ ∞

−∞
�

(
−(w′

iα + ρεi )√
1 − ρ2

)
exp

(−ε2
i

/
2
)

√
2π

dεi .

For convenience, we can use the invariance principle to reparameterize the likelihood
function in terms of γ = α/

√
1 − ρ2 and τ = ρ/

√
1 − ρ2. Combining all the preceding

terms, the log-likelihood function to be maximized is

ln L =
n∑

i=1

ln
∫ ∞

−∞
[(1−zi )+zi f (yi | x′

iβ+σεi )]�[(2zi −1)(w′
iγ +τεi )]φ(εi )dεi . (19-30)

This can be maximized with respect to (β, σ, γ , τ ) using quadrature or simulation. When
done, ρ can be recovered from ρ = τ /(1 + τ 2)1/2 and α = (1 − ρ2)1/2γ . All that differs
from one model to another is the specification of f (yi | x′

iβ+σεi ). This is the specification
used in Terza (1998) and Terza and Kenkel (2001). (In these two papers, the authors
also analyzed E[yi | zi = 1]. This estimator was based on nonlinear least squares, but as
earlier, it is necessary to integrate the unobserved heterogeneity out of the conditional
mean function.) Greene (2010) applies the method to a stochastic frontier model.

19.5.5 PANEL DATA APPLICATIONS OF SAMPLE
SELECTION MODELS

The development of methods for extending sample selection models to panel data
settings parallels the literature on cross-section methods. It begins with Hausman and
Wise (1979) who devised a maximum likelihood estimator for a two-period model with
attrition—the “selection equation” was a formal model for attrition from the sample.
Subsequent research has drawn the analogy between attrition and sample selection in
a variety of applications, such as Keane et al. (1988) and Verbeek and Nijman (1992),
and produced theoretical developments including Wooldridge (2002a, b).

The direct extension of panel data methods to sample selection brings several new
issues for the modeler. An immediate question arises concerning the nature of the
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selection itself. Although much of the theoretical literature [e.g., Kyriazidou (1997,
2001)] treats the panel as if the selection mechanism is run anew in every period, in
practice, the selection process often comes in two very different forms. First, selection
may take the form of selection of the entire group of observations into the panel data
set. Thus, the selection mechanism operates once, perhaps even before the observation
window opens. Consider the entry (or not) of eligible candidates for a job training
program. In this case, it is not appropriate to build the model to allow entry, exit, and
then reentry. Second, for most applications, selection comes in the form of attrition or
retention. Once an observation is “deselected,” it does not return. Leading examples
would include “survivorship” in time-series–cross-section models of firm performance
and attrition in medical trials and in panel data applications involving large national
survey data bases, such as Contoyannis et al. (2004). Each of these cases suggests the
utility of a more structured approach to the selection mechanism.

19.5.5.a Common Effects in Sample Selection Models

A formal “effects” treatment for sample selection was first suggested in complete form
by Verbeek (1990), who formulated a random effects model for the probit equation and
a fixed effects approach for the main regression. Zabel (1992) criticized the specification
for its asymmetry in the treatment of the effects in the two equations. He also argued that
the likelihood function that neglected correlation between the effects and regressors in
the probit model would render the FIML estimator inconsistent. His proposal involved
fixed effects in both equations. Recognizing the difficulty of fitting such a model, he
then proposed using the Mundlak correction. The full model is

y∗
it = ηi + x′

itβ + εit, ηi = x̄′
iπ + τwi , wi ∼ N[0, 1],

d∗
it = θi + z′

itα + uit, θi = z̄′
iδ + ωvi , vi ∼ N[0, 1], (19-31)

(εit, uit) ∼ N2[(0, 0), (σ 2, 1, ρσ )].

The “selectivity” in the model is carried through the correlation between εit and uit. The
resulting log-likelihood is built up from the contribution of individual i ,

Li =
∫ ∞

−∞

∏
dit=0

�[−z′
itα − z̄′

iδ − ωvi ]φ(vi )dvi

×
∫ ∞

−∞

∫ ∞

−∞

∏
dit=1

�

[
z′

itα + z̄′
iδ + ωvi + (ρ/σ)εit√

1 − ρ2

]

× 1
σ

φ
(εit

σ

)
φ2(vi , wi )dvi dwi , (19-32)

εit = yit − x′
itβ − x̄′

iπ − τwi .

The log-likelihood is then ln L = ∑
i ln Li .

The log-likelihood requires integration in two dimensions for any selected obser-
vations. Vella (1998) suggested two-step procedures to avoid the integration. However,
the bivariate normal integration is actually the product of two univariate normals, be-
cause in the preceding specification, vi and wi are assumed to be uncorrelated. As
such, the likelihood function in (19-32) can be readily evaluated using familiar sim-
ulation or quadrature techniques. [See Sections 14.9.6.c and 15.6. Vella and Verbeek
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(1999) suggest this in a footnote, but do not pursue it.] To show this, note that the
first line in the log-likelihood is of the form Ev[

∏
d=0 �(. . .)] and the second line is of

the form Ew[Ev[�(. . .)φ(. . .)/σ ]]. Either of these expectations can be satisfactorily ap-
proximated with the average of a sufficient number of draws from the standard normal
populations that generate wi and vi . The term in the simulated likelihood that follows
this prescription is

LS
i = 1

R

R∑
r=1

∏
dit=0

�[−z′
itα − z̄′

iδ − ωvi,r ]

× 1
R

R∑
r=1

∏
dit=1

�

[
z′

itα + z̄′
iδ + ωvi,r + (ρ/σ)εit,r√

1 − ρ2

]
1
σ

φ
(εit,r

σ

)
, (19-33)

εit,r = yit − x′
itβ − x̄′

iπ − τwi,r .

Maximization of this log-likelihood with respect to (β,σ,ρ,α,δ,π ,τ,ω) by conventional
gradient methods is quite feasible. Indeed, this formulation provides a means by which
the likely correlation between vi and wi can be accommodated in the model. Suppose
that wi and vi are bivariate standard normal with correlation ρvw . We can project wi on
vi and write

wi = ρvwvi + (
1 − ρ2

vw

)1/2
hi ,

where hi has a standard normal distribution. To allow the correlation, we now simply
substitute this expression for wi in the simulated (or original) log-likelihood and add
ρvw to the list of parameters to be estimated. The simulation is still over independent
normal variates, vi and hi .

Notwithstanding the preceding derivation, much of the recent attention has focused
on simpler two-step estimators. Building on Ridder and Wansbeek (1990) and Verbeek
and Nijman (1992) [see Vella (1998) for numerous additional references], Vella and
Verbeek (1999) purpose a two-step methodology that involves a random effects frame-
work similar to the one in (19-31). As they note, there is some loss in efficiency by not
using the FIML estimator. But, with the sample sizes typical in contemporary panel
data sets, that efficiency loss may not be large. As they note, their two-step template
encompasses a variety of models including the tobit model examined in the preceding
sections and the mover-stayer model noted earlier.

The Vella and Verbeek model requires some fairly intricate maximum likelihood
procedures. Wooldridge (1995) proposes an estimator that, with a few probably—but
not necessarily—innocent assumptions, can be based on straightforward applications
of conventional, everyday methods. We depart from a fixed effects specification,

y∗
it = ηi + x′

itβ + εit,

d∗
it = θi + z′

itα + uit,

(εit, uit) ∼ N2[(0, 0), (σ 2, 1, ρσ )].

Under the mean independence assumption E[εit | ηi , θi , zi1, . . . , zit,vi1, . . . , vit, di1, . . . ,

dit] = ρuit, it will follow that

E[yit | xi1, . . . , xiT, ηi , θi , zi1, . . . , zit, vi1, . . . , vit, di1, . . . , dit] = ηi + x′
itβ + ρuit.
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This suggests an approach to estimating the model parameters; however, it requires
computation of uit. That would require estimation of θi , which cannot be done, at least
not consistently—and that precludes simple estimation of uit. To escape the dilemma,
Wooldridge (2002c) suggests Chamberlain’s approach to the fixed effects model,

θi = f0 + z′
i1f1 + z′

i2f2 + · · · + z′
itfT + hi .

With this substitution,

d∗
it = z′

itα + f0 + z′
i1f1 + z′

i2f2 + · · · + z′
itfT + hi + uit

= z′
itα + f0 + z′

i1f1 + z′
i2f2 + · · · + z′

itfT + wit,

where wit is independent of zit, t = 1, . . . , T. This now implies that

E[yit | xi1, . . . , xit, ηi , θi , zi1, . . . , zit, vi1, . . . , vit, di1, . . . , dit] = ηi + x′
itβ + ρ(wit − hi )

= (ηi − ρhi ) + x′
itβ + ρwit.

To complete the estimation procedure, we now compute T cross-sectional probit mod-
els (reestimating f0, f1, . . . each time) and compute λ̂it from each one. The resulting
equation,

yit = ai + x′
itβ + ρλ̂it + vit,

now forms the basis for estimation of β and ρ by using a conventional fixed effects linear
regression with the observed data.

19.5.5.b Attrition

The recent literature or sample selection contains numerous analyses of two-period
models, such as Kyriazidou (1997, 2001). They generally focus on non- and semipara-
metric analyses. An early parametric contribution of Hausman and Wise (1979) is also
a two-period model of attrition, which would seem to characterize many of the stud-
ies suggested in the current literature. The model formulation is a two-period random
effects specification:

yi1 = x′
i1β + εi1 + ui (first period regression),

yi2 = x′
i2β + εi2 + ui (second period regression).

Attrition is likely in the second period (to begin the study, the individual must have
been observed in the first period). The authors suggest that the probability that an
observation is made in the second period varies with the value of yi2 as well as some
other variables,

z∗
i2 = δyi2 + x′

i2θ + w′
i2α + vi2.

Attrition occurs if z∗
i2 ≤ 0, which produces a probit model,

zi2 = 1
(
z∗

i2 > 0
)

(attrition indicator observed in period 2).

An observation is made in the second period if zi2 = 1, which makes this an early
version of the familiar sample selection model. The reduced form of the observation
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equation is

z∗
i2 = x′

i2(δβ + θ) + w′
i2α + δεi2 + vi2

= x′
i2π + w′

i2α + hi2

= r′
i2γ + hi2.

The variables in the probit equation are all those in the second period regression plus
any additional ones dictated by the application. The estimable parameters in this model
are β, γ , σ 2 = Var[εit + ui ], and two correlation coefficients,

ρ12 = Corr[εi1 + ui , εi2 + ui ] = Var[ui ]/σ 2,

and

ρ23 = Corr[hi2, εi2 + ui ].

All disturbances are assumed to be normally distributed. (Readers are referred to the
paper for motivation and details on this specification.)

The authors propose a full information maximum likelihood estimator. Estimation
can be simplified somewhat by using two steps. The parameters of the probit model can
be estimated first by maximum likelihood. Then the remaining parameters are estimated
by maximum likelihood, conditionally on these first-step estimates. The Murphy and
Topel adjustment is made after the second step. [See Greene (2007a).]

The Hausman and Wise model covers the case of two periods in which there is
a formal mechanism in the model for retention in the second period. It is unclear
how the procedure could be extended to a multiple-period application such as that in
Contoyannis et al. (2004), which involved a panel data set with eight waves. In addition,
in that study, the variables in the main equations were counts of hospital visits and phys-
ican visits, which complicates the use of linear regression. A workable solution to the
problem of attrition in a multiperiod panel is the inverse probability weighted estimator
[Wooldridge (2002a, 2006b) and Rotnitzky and Robins (2005)]. In the Contoyannis ap-
plication, there are eight waves in the panel. Attrition is taken to be “ignorable” so that
the unobservables in the attrition equation and in the main equation(s) of interest are
uncorrelated. (Note that Hausman and Wise do not make this assumption.) This enables
Contoyannis et al. to fit a “retention” probit equation for each observation present at
wave 1, for waves 2–8, using characteristics observed at the entry to the panel. (This
defines, then, “selection (retention) on observables.”) Defining dit to be the indicator
for presence (dit = 1) or absence (dit = 0) of observation i in wave t , it will follow that
the sequence of observations will begin at 1 and either stay at 1 or change to 0 for the
remaining waves. Let p̂it denote the predicted probability from the probit estimator at
wave t . Then, their full log-likelihood is constructed as

ln L =
n∑

i=1

T∑
t=1

dit

p̂it
ln Lit.

Wooldridge (2002b) presents the underlying theory for the properties of this weighted
maximum likelihood estimator. [Further details on the use of the inverse probability
weighted estimator in the Contoyannis et al. (2004) study appear in Jones, Koolman,
and Rice (2006) and in Section 17.4.9.]
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19.6 EVALUATING TREATMENT EFFECTS

The leading recent application of models of selection and endogeneity is the evalu-
ation of “treatment effects.” The central focus is on analysis of the effect of partici-
pation in a treatment, T, on an outcome variable, y—examples include job training
programs [LaLonde (1986), Business Week (2009; Example 19.14)] and education [e.g.,
test scores, Angrist and Lavy (1999), Van der Klaauw (2002)]. Wooldridge and Imbens
(2009, pp. 22–23) cite a number of labor market applications. Recent more narrow ex-
amples include Munkin and Trivedi’s (2007) analysis of the effect of dental insurance
and Jones and Rice’s (2010) survey that notes a variety of techniques and applications
in health economics.

Example 19.14 German Labor Market Interventions
“Germany long had the highest ratio of unfilled jobs to unemployed people in Europe. Then, in
2003, Berlin launched the so-called Hartz reforms, ending generous unemployment benefits
that went on indefinitely. Now payouts for most recipients drop sharply after a year, spurring
people to look for work. From 12.7% in 2005, unemployment fell to 7.1% last November.
Even now, after a year of recession, Germany’s jobless rate has risen to just 8.6%.

At the same time, lawmakers introduced various programs intended to make it easier for
people to learn new skills. One initiative instructed the Federal Labor Agency, which had tra-
ditionally pushed the long-term unemployed into government-funded make-work positions,
to cooperate more closely with private employers to create jobs. That program last year paid
Dutch staffing agency Randstad to teach 15,000 Germans information technology, business
English, and other skills. And at a Daimler truck factory in Wörth, 55 miles west of Stuttgart,
several dozen short-term employees at risk of being laid off got government help to continue
working for the company as mechanic trainees.

Under a second initiative, Berlin pays part of the wages of workers hired from the ranks
of the jobless. Such payments make employers more willing to take on the costs of training
new workers. That extra training, in turn, helps those workers keep their jobs after the aid
expires, a study by the government-funded Institute for Employment Research found. Café
Nenninger in the city of Kassel, for instance, used the program to train an unemployed single
mother. Co-owner Verena Nenninger says she was willing to take a chance on her in part
because the government picked up about a third of her salary the first year. ‘It was very
helpful, because you never know what’s going to happen,’ Nenninger says” [Business Week
(2009)].

Empirical measurement of treatment effects, such as the impact of going to college
or participating in a job training program, presents a large variety of econometric com-
plications. The natural, ultimate objective of an analysis of a “treatment” or intervention
would be the “effect of treatment on the treated.” For example, what is the effect of a
college education on the lifetime income of someone who goes to college? Measuring
this effect econometrically encounters at least two compelling computations:

Endogeneity of the treatment: The analyst risks attributing to the treatment causal
effects that should be attributed to factors that motivate both the treatment and the
outcome. In our example, the individual who goes to college might well have succeeded
(more) in life than their counterpart who did not go to college even if they (themselves)
did not attend college.

Missing counterfactual: The preceding thought experiment is not actually the effect
we wish to measure. In order to measure the impact of college attendance on lifetime
earnings in a pure sense, we would have to run an individual’s lifetime twice, once with
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college attendance and once without. Any individual is observed in only one of the two
states, so the pure measurement is impossible.

Accommodating these two problems forms the focal point of this enormous and
still growing literature. Rubin’s causal model (1974, 1978) provides a useful framework
for the analysis. Every individual in a population has a potential outcome, y and can be
exposed to the treatment, C. We will denote by Ci the indicator whether or not the in-
dividual receives the treatment. Thus, the potential outcomes are yi | (Ci = 1) = yi1 and
yi | (Ci = 0) = yi0. The average treatment effect, averaged across the entire population is

ATE = E[yi1 − yi0].

The compelling complication is that the individual will exist in only one of the two states,
so it is not possible to estimate ATE without further assumptions. More specifically, what
the researcher would prefer see is the average treatment effect on the treated,

ATET = E[yi1 − yi0 | Ci = 1]

and note that the second term is the missing counterfactual.
One of the major themes of the recent research is to devise robust methods of

estimation that do not rely heavily on fragile assumptions such as identification by
functional form (e.g., relying on bivariate normality) and identification by exclusion
restrictions (e.g., relying on basic instrumental variable estimators). This is a challenging
exercise—we have relied heavily on these assumptions in most of the work in this
book up to this point. For purposes of the general specification, we will denote by x
the exogenous information that will be brought to bear on this estimation problem.
The vector x may (usually will) be a set of variables that will appear in a regression
model, but it is useful to think more generally than that and consider x rather to be an
information set. Certain minimal assumptions are necessary to make any headway at
all. The following appear at different points in the analysis.

Conditional independence: Receiving the treatment, Ci , does not depend on the
outcome variable once the effect of x on the outcome is accounted for. If assignment to
the treatment group is completely random, then we would omit the effect of x in this
assumption. This assumption is extended for regression approaches with the conditional
mean assumption: E[yi0 | xi , Ci = 1] = E[yi0 | xi , Ci = 0] = E[yi0 | x]. This states that
the outcome in the untreated state does not affect the participation.

Distribution of potential outcomes: The model that is used for the outcomes is the
same for treated and nontreated, f (y | x, T = 1) = f (y | x, T = 0). In a regression
context, this would mean that the same regression applies in both states and that the
disturbance is uncorrelated with T, or that T is exogenous. This is a very strong as-
sumption that we will relax later. For the present, it removes one of the complica-
tions noted previously, so a step in the model-building exercise will be to relax this
assumption.

Overlap assumption: For any value of x, 0 < Prob(Ci = 1 | x) < 1. The strict inequal-
ity in this assumption means that for any x, the population will contain a mix of treated
and nontreated individuals. The usefulness of the overlap assumption is that with it, we
can expect to find, for any treated individual, an individual who looks like them but is
not treated. This assumption will be useful for regression approaches.
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The following sections will describe three major parts of the research agenda on
treatment effects: regression analysis with control functions in Section 19.6.1, propensity
score matching in Section 19.6.2, and regression discontinuity design in Section 19.6.3. A
fourth area, instrumental variable estimation, was developed in Chapter 8. As noted, this
is a huge and rapidly growing literature. For example, Imbens and Wooldridge’s (2009)
survey paper runs 85 pages and includes nearly 300 references, most of them since 2000.
Our purpose here is to provide some of the vocabulary and a superficial introduction
to methods. The survey papers by Imbens and Wooldridge (2009) and Jones and Rice
(2010) provide greater detail. The conference volume by Millment, Smith, and Vytlacil
(2008) contains many theoretical contributions and empirical applications.33 A Journal
of Business and Economic Statistics symposium [Angrist (2001)] raised many of the
important questions on whether and how it is possible to measure treatment effects.

19.6.1 REGRESSION ANALYSIS OF TREATMENT EFFECTS

The basic model of selectivity outlined earlier has been extended in an impressive variety
of directions. An interesting application that has found wide use is the measurement of
treatment effects and program effectiveness.

An earnings equation that accounts for the value of a college education is

earningsi = x′
iβ + δCi + εi ,

where Ci is a dummy variable indicating whether or not the individual attended college.
The same format has been used in any number of other analyses of programs, experi-
ments, and treatments. The question is: Does δ measure the value of a college education
(assuming that the rest of the regression model is correctly specified)? The answer is
no if the typical individual who chooses to go to college would have relatively high
earnings whether or not he or she went to college. The problem is one of self-selection.
If our observation is correct, then least squares estimates of δ will actually overestimate
the treatment effect. The same observation applies to estimates of the treatment effects
in other settings in which the individuals themselves decide whether or not they will
receive the treatment.

To put this in a more familiar context, suppose that we model program participation
(e.g., whether or not the individual goes to college) as

C∗
i = w′

iγ + ui ,

Ci = 1 if C∗
i > 0, 0 otherwise.

We also suppose that, consistent with our previous conjecture, ui and εi are correlated.
Coupled with our earnings equation, we find that

E [yi | Ci = 1, xi , wi ] = x′
iβ + δ + E [εi | Ci = 1, xi , wi ]

= x′
iβ + δ + ρσελ(−w′

iγ )
(19-34)

once again. [See (19-24).] Evidently, a viable strategy for estimating this model is to use
the two-step estimator discussed earlier. The net result will be a different estimate of δ

33In the initial essay in the volume, Goldberger (2008) reproduces Goldberger (1972) in which the author
explores the endogeneity issue in detail with specific reference to the Head Start program of the 1960s.
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that will account for the self-selected nature of program participation. For nonpartici-
pants, the counterpart to (19-34) is

E [yi | Ci = 0, xi , wi ] = x′
iβ + ρσε

[ −φ(w′
iγ )

1 − �(w′
iγ )

]
. (19-35)

The difference in expected earnings between participants and nonparticipants is, then,

E [yi | Ci = 1, xi , wi ] − E [yi | Ci = 0, xi , wi ] = δ + ρσε

[
φi

�i (1 − �i )

]
. (19-36)

If the selectivity correction λi is omitted from the least squares regression, then this
difference is what is estimated by the least squares coefficient on the treatment dummy
variable. But because (by assumption) all terms are positive, we see that least squares
overestimates the treatment effect. Note, finally, that simply estimating separate equa-
tions for participants and nonparticipants does not solve the problem. In fact, doing
so would be equivalent to estimating the two regressions of Example 19.12 by least
squares, which, as we have seen, would lead to inconsistent estimates of both sets of
parameters.

To describe the problem created by selection on the unobservables, we will drop
the independence assumptions. The model with endogenous participation and different
outcome equations would be

C∗
i = w′

iγ + ui , Ci = 1 if C∗
i > 0 and 0 otherwise,

yi0 = x′
iβ0 + εi0,

yi1 = x′
iβ1 + εi1.

It is useful to combine the second and third equations in

yi j = Ci (x′
iβ1 + εi1) + (1 − Ci )(x′

iβ0 + εi0), j = 0, 1.

We assume joint normality for the three disturbances;
⎛
⎝

ui

εi0

εi1

⎞
⎠ ∼ N

⎡
⎣

⎛
⎝

0
0
0

⎞
⎠ ,

⎛
⎝

1 ρ0θ0 ρ1θ1

ρ0θ0 θ2
0 θ01

ρ1θ1 θ01 θ2
1

⎞
⎠

⎤
⎦ .

The variance in the participation equation is normalized to one for a binary outcome,
as described earlier (Section 17.2). Endogeneity of the participation is implied by the
nonzero values of the correlations ρ0 and ρ1. The familiar problem of the missing coun-
terfactual appears here in our inability to estimate θ01. The data will never contain
information on both states simultaneously, so it will be impossible to estimate a co-
variance of yi0 and yi1 (conditioned on xi or otherwise). Thus, the parameter θ01 is not
identified (estimable)—we normalize it to zero. The parameters of this model after the
two normalizations can be estimated by two-step least squares as suggested in Sec-
tion 19.5.3, or by full information maximum likelihood. The average treatment effect
on the treated would be

ATET = E[yi1 | Ci = 1, xi , wi ] − E[yi0 | Ci = 1, xi , wi ]

= x′
i (β1 − β0) + (ρ1θ1 − ρ0θ0)

φ
(
w′

iγ
)

�
(
w′

iγ
) .
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[See (19-34).] If the treatment assignment is completely random, then ρ1 = ρ0 = 0, and
we are left with the first term. But, of course, it is the nonrandomness of the treatment
assignment that brought us to this point. Finally, if the two coefficient vectors differ only
in their constant terms, β0,0 and β1,0, then we are left with the same δ that appears in
(19-36)—the ATET would be β0,1 + Ci (β1,0 − β0,0).

There are many variations of this model in the empirical literature. They have been
applied to the analysis of education,34 the Head Start program,35 and a host of other
settings.36 This strand of literature is particularly important because the use of dummy
variable models to analyze treatment effects and program participation has a long
history in empirical economics. This analysis has called into question the interpretation
of a number of received studies.

19.6.1.a The Normality Assumption

Some research has cast some skepticism on the selection model based on the normal
distribution. [See Goldberger (1983) for an early salvo in this literature.] Among the
findings are that the parameter estimates are surprisingly sensitive to the distributional
assumption that underlies the model. Of course, this fact in itself does not invalidate the
normality assumption, but it does call its generality into question. On the other hand,
the received evidence is convincing that sample selection, in the abstract, raises serious
problems, distributional questions aside. The literature—for example, Duncan (1986b),
Manski (1989, 1990), and Heckman (1990)—has suggested some promising approaches
based on robust and nonparametric estimators. These approaches obviously have the
virtue of greater generality. Unfortunately, the cost is that they generally are quite
limited in the breadth of the models they can accommodate. That is, one might gain
the robustness of a nonparametric estimator at the cost of being unable to make use of
the rich set of accompanying variables usually present in the panels to which selectivity
models are often applied. For example, the nonparametric bounds approach of Manski
(1990) is defined for two regressors. Other methods [e.g., Duncan (1986b)] allow more
elaborate specifications.

Recent research includes specific attempts to move away from the normality as-
sumption.37 An example is Martins (2001), building on Newey (1991), which takes the
core specification as given in (19-22) as the platform but constructs an alternative to the
assumption of bivariate normality. Martins’s specification modifies the Heckman model
by employing an equation of the form

E [yi | zi = 1, xi , wi ] = x′
iβ + μ(w′

iγ )

where the latter “selectivity correction” is not the inverse Mills ratio, but some other
result from a different model. The correction term is estimated using Klein and Spady’s
(1993) semiparametric binary choice estimator. Whether the conditional mean in the
selected sample should even remain a linear index function remains to be settled. Not
surprisingly, Martins’s results, based on two-step least squares differ only slightly from

34Willis and Rosen (1979).
35Goldberger (1972, 2008).
36A useful summary of the issues is Barnow, Cain, and Goldberger (1981). See, also, Imbens and Wooldridge
(2009).
37Again, Angrist (2001) is an important contribution to this literature.
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the conventional results based on normality. This approach is arguably only a fairly
small step away from the tight parameterization of the Heckman model. Other non-
and semiparametric specifications, for example, Honorè and Kyriazidou (1997, 2000)
represent more substantial departures from the normal model, but are much less op-
erational.38 The upshot is that the issue remains unsettled. For better or worse, the
empirical literature on the subject continues to be dominated by Heckman’s original
model built around the joint normal distribution.

19.6.1.b Estimating the Effect of Treatment on the Treated

Consider a regression approach to analyzing treatment effects in a two-period setting,

yit = θt + x′
itβ + γ Ci + ui + εit, t = 0, 1,

where Ci is the treatment dummy variable and ui is the unobserved individual effect.
The setting is the pre- and posttreatment analysis of the sort considered in this section,
where we examine the impact of a job training program on post training earnings.
Because there are two periods, a natural approach to the analysis is to examine the
changes,

�yi = (θ1 − θ0) + γ�Ci + (�xit)
′β + �εit,

where �Ci = 1 for the treated and 0 for the nontreated individuals, and the first differ-
ences eliminate the unobserved individual effects. In the absence of controls (regressors,
xit), or assuming that the controls are unchanged, the estimator of the effect of the treat-
ment will be

γ̂ = [�y | (�Ci = 1)] − [�y | (Ci = 0)],

which is the difference in differences estimator. This simplifies the problem considerably
but has several shortcomings. Most important, by using the simple differences, we have
lost our ability to discern what induced the change, whether it was the program or
something else, presumably in xit.

Even without the normality assumption, the preceding regression approach is more
tightly structured than many are comfortable with. A considerable amount of research
has focused on what assumptions are needed to reach that model and whether they are
likely to be appropriate in a given setting.39 The overall objective of the analysis of the
preceding two sections is to evaluate the effect of a treatment, Ci , on the individual
treated. The implicit counterfactual is an observation on what the “response” (depen-
dent variable) of the treated individual would have been had they not been treated.
But, of course, an individual will be in one state or the other, not both. Denote by y0

the random variable that is the outcome variable in the absence of the treatment and
by y1 the outcome when the treatment has taken place. The average treatment effect,

38This particular work considers selection in a “panel” (mainly two periods). But, the panel data setting for
sample selection models is more involved than a cross-section analysis. In a panel data set, the “selection” is
likely to be a decision at the beginning of Period 1 to be in the data set for all subsequent periods. As such,
something more intricate than the model we have considered here is called for.
39A sampling of the more important parts of the literature on this issue includes Heckman (1992, 1997),
Imbens and Angrist (1994), Manski (1996), and Wooldridge (2002a, Chapter 18).
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averaged over the entire population is

ATE = E[y1 − y0].

This is the impact of the treatment on an individual drawn at random from the entire
population. However, the desired quantity is not necessarily the ATE, but the average
treatment effect on the treated, which would be

ATE |T = E[y1 − y0 | C = 1].

The difficulty of measuring this is, once again, the counterfactual, E[y0 | C = 1]. Whether
these two measures will be the same is at the center of the much of the discussion
on this subject. If treatment is completely randomly assigned, then E[yj | C = 1] =
E[yj | C = 0] = E[yj | C = j], j = 0, 1. This means that with completely random
treatment assignment

ATE = E[y1 | C = 1] − E[y0 | C = 0].

To put this in our example, if college attendance were completely randomly distributed
throughout the population, then the impact of college attendance on income (neglecting
other covariates at this point) could be measured simply by averaging the incomes of
college attendees and subtracting the average income of nonattendees. The preceding
theory might work for the treatment “having brown eyes,” but it is unlikely to work
for college attendance. Not only is the college attendance treatment not randomly
distributed, but the treatment “assignment” is surely related to expectations about y1

versus y0, and, at a minimum, y0 itself. (College is expensive.) More generally, the
researcher faces the difficulty in calculating treatment effects that assignment to the
treatment might not be exogenous.

The control function approach that we used in (19-34)–(19-36) is used to account
for the endogeneity of the treatment assignment in the regression context. The very
specific assumptions of the bivariate normal distribution of the unobservables some-
what simplifies the estimation, because they make explicit what control function (λi )

is appropriate to use in the regression. As Wooldridge (2002a, p. 622) points out, how-
ever, the binary variable in the treatment effects regression represents simply an en-
dogenous variable in a linear equation, amenable to instrumental variable estimation
(assuming suitable instruments are available). Barnow, Cain, and Goldberger (1981)
proposed a two-stage least squares estimator, with instrumental variable equal to the
predicted probability from the probit treatment assignment model. This is slightly
less parametric than (19-36) because, in principle, its validity does not rely on joint nor-
mality of the disturbances. Wooldridge (2002a, pp. 621–633) discusses the underlying
assumptions.

19.6.2 PROPENSITY SCORE MATCHING

If the treatment assignment is “completely ignorable,” then, as noted, estimation of
the treatment effects is greatly simplified. Suppose, as well, that there are observable
variables that influence both the outcome and the treatment assignment. Suppose it
is possible to obtain pairs of individuals matched by a common xi , one with Ci = 0,
the other with Ci = 1. If done with a sufficient number of pairs so as to average over
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the population of xi ’s, then a matching estimator, the average value of (yi | Ci =, 1) −
(yi | Ci = 0), would estimate E[y1 − y0], which is what we seek. Of course, it is optimistic
to hope to find a large sample of such matched pairs, both because the sample overall
is finite and because there may be many regressors, and the “cells” in the distribution
of xi are likely to be thinly populated. This will be worse when the regressors are
continuous, for example, with a “family income” variable. Rosenbaum and Rubin (1983)
and others40 suggested, instead, matching on the propensity score, F(xi ) = Prob(Ci =
1 | xi ). Individuals with similar propensity scores are paired and the average treatment
effect is then estimated by the differences in outcomes. Various strategies are suggested
by the authors for obtaining the necessary subsamples and for verifying the conditions
under which the procedures will be valid. [See, e.g., Becker and Ichino (2002) and
Greene (2007c).]

Example 19.15 Treatment Effects on Earnings
LaLonde (1986) analyzed the results of a labor market experiment, The National Supported
Work Demonstration, in which a group of disadvantaged workers lacking basic job skills
were given work experience and counseling in a sheltered environment. Qualified applicants
were assigned to training positions randomly. The treatment group received the benefits of the
program. Those in the control group “were left to fend for themselves.” [The demonstration
was run in numerous cities in the mid-1970s. See LaLonde (1986, pp. 605–609) for details
on the NSW experiments.] The training period was 1976–1977; the outcome of interest for
the sample examined here was posttraining 1978 earnings. LaLonde reports a large variety
of estimates of the treatment effect, for different subgroups and using different estimation
methods. Nonparametric estimates for the group in our sample are roughly $900 for the
income increment in the posttraining year. (See LaLonde, p. 609.) Similar results are reported
from a two-step regression-based estimator similar to (19-34) to (19-36). (See LaLonde’s
footnote to Table 6, p. 616.)

LaLonde’s data are fairly well traveled, having been used in replications and extensions
in, for example, Dehejia and Wahba (1999), Becker and Ichino (2002), and Greene (2007b, c).
We have reestimated the matching estimates reported in Becker and Ichino. The data in the
file used there (and here) contain 2,490 control observations and 185 treatment observations
on the following variables:

t = treatment dummy variable,
age = age in years,

educ = education in years,
marr = dummy variable for married,

black = dummy variable for black,
hisp = dummy variable for Hispanic,

nodegree = dummy for no degree (not used),
re74 = real earnings in 1974,
re75 = real earnings in 1975,
re78 = real earnings in 1978,

40Other important references in this literature are Becker and Ichino (1999), Dehejia and Wahba (1999),
LaLonde (1986), Heckman, Ichimura, and Todd (1997, 1998), Heckman, Ichimura, Smith, and Todd (1998),
Heckman, LaLonde, and Smith (1999), Heckman, Tobias, and Vytlacil (2003), and Heckman and Vytlacil
(2000).
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Transformed variables added to the equation are

age2 = age squared,

educ2 = educ squared,

re742 = re74 squared,

re752 = re75 squared,
black74 = black times 1(r e74 = 0) .

We also scaled all earnings variables by 10,000 before beginning the analysis. (See Appendix
Table F19.3. The data are downloaded from the Web site http://www.nber.org/%7Erdehejia/
nswdata.html. The two specific subsamples are in http://www.nber.org/%7Erdehejia//psid
controls.txt and http://www.nber.org/%7Erdehejia/nswre74 treated.txt.) (We note that
Becker and Ichino report they were unable to replicate Dehejia and Wahba’s results, al-
though they could come reasonably close. We, in turn, were not able to replicate either set
of results, though we, likewise, obtained quite similar results.)

The analysis proceeded as follows: A logit model in which the included variables were a
constant, age, age2, education, education2, marr, black, hisp, re74, re75, re742, re752, and
black74 was computed for the treatment assignment. The fitted probabilities are used for the
propensity scores. By means of an iterative search, the range of propensity scores was parti-
tioned into eight regions within which, by a simple F test, the mean scores of the treatments
and controls were not statistically different. The partitioning is shown in Table 19.10. The
1,347 observations are all the treated observations and the 1,162 control observations are
those whose propensity scores fell within the range of the scores for the treated observations.

Within each interval, each treated observation is paired with a small number of the nearest
control observations. We found the average difference between treated observation and
control to equal $1,574.35. Becker and Ichino reported $1,537.94.

As an experiment, we refit the propensity score equation using a probit model, retaining
the fitted probabilities. We then used the two-step estimator described earlier to fit (19-34)
and (19-35) using the entire sample. The estimates of δ, ρ, and σ were −1.01437, 0.35519,
1.38426). Using the results from the probit model, we averaged the result in (19-36) for the
entire sample, obtaining an estimated treatment effect of $1,476.30.

TABLE 19.10 Empirical Distribution of Propensity Scores

Percent Lower Upper

0–5 0.000591 0.000783 Sample size = 1,347
5–10 0.000787 0.001061 Average score = 0.137238

10–15 0.001065 0.001377 Std. Dev score = 0.274079
15–20 0.001378 0.001748
20–25 0.001760 0.002321 Lower Upper # Obs
25–30 0.002340 0.002956 1 0.000591 0.098016 1041
30–35 0.002974 0.004057 2 0.098016 0.195440 63
35–40 0.004059 0.005272 3 0.195440 0.390289 65
40–45 0.005278 0.007486 4 0.390289 0.585138 36
45–50 0.007557 0.010451 5 0.585138 0.779986 32
50–55 0.010563 0.014643 6 0.779986 0.877411 17
55–60 0.014686 0.022462 7 0.877411 0.926123 7
60–65 0.022621 0.035060 8 0.926123 0.974835 86
65–70 0.035075 0.051415
70–75 0.051415 0.076188
75–80 0.076376 0.134189
80–85 0.134238 0.320638
85–90 0.321233 0.616002
90–95 0.624407 0.949418
95–100 0.949418 0.974835
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19.6.3 REGRESSION DISCONTINUITY

There are many situations in which there is no possibility of randomized assignment
of treatments. Examples include student outcomes and policy interventions in schools.
Angrist and Lavy (1999), for example, studied the effect of class sizes on test scores.
Van der Klaauw studied financial aid offers that were tied to SAT scores and grade
point averages. In these cases, the natural experiment approach advocated by Angrist
and Pischke (2009) is an appealing way to proceed, when it is feasible. The regression
discontinuity design presents an alternative strategy. The conditions under which the
approach can be effective are when (1) the outcome, y, is a continuous variable; (2) the
outcome varies smoothly with an assignment variable, A, and (3) treatment is “sharply”
assigned based on the value of A, specifically C = 1(A > A∗) where A∗ is a fixed
threshold or cutoff value. [A “fuzzy design is based on Prob(C = 1 | A) = F(A). The
identification problems with fuzzy design are much more complicated than with sharp
design. Readers are referred to Van der Klaauw (2002) for further discussion of fuzzy
design.] We assume, then, that

y = f (A, C) + ε.

Suppose, for example, the outcome variable is a test score, and that an administrative
treatment such as a special education program is funded based on the poverty rates of
certain communities. The ideal conditions for a regression discontinuity design based on
these assumptions is shown in Figure 19.8. The logic of the calculation is that the points
near the threshold value, which have “essentially” the same stimulus value, constitute
a nearly random sample of observations which are segmented by the treatment.

The method requires that E[ε | A, C] = E[ε | A]—the assignment variable—be ex-
ogenous to the experiment. The result in Figure 19.8 is consistent with

y = f (A) + αC + ε,

FIGURE 19.8 Regression Discontinuity.
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where α will be the treatment effect to be estimated. The specification of f (A) can be
problematic; assuming a linear function when something more general is appropriate
will bias the estimate of α. For this reason, nonparametric methods, such as the LOWESS
regression (see Section 12.3.5) might be attractive. This is likely to enable the analyst to
make fuller use of the observations that are more distant from the cutoff point. [See Van
der Klaaus (2002).] Identification of the treatment effect begins with the assumption
that f (A) is continuous at A∗, so that

lim
A↑A∗ f (A) = lim

A↓A∗ f (A) = f (A∗).

Then

lim
A↓A∗ E[y | A] − lim

A↑A∗ E[y | A] = f (A∗) + α + lim
A↓A∗ E[ε | A] − f (A∗) − lim

A↑A∗ E[ε | A]

= α.

With this in place, the treatment effect can be estimated by the difference of the average
outcomes for those individuals “close” to the threshold value, A∗. Details on regression
discontinuity design are provided by Trochim (1984, 2000) and Van der Klaauw (2002).

19.7 SUMMARY AND CONCLUSIONS

This chapter has examined settings in which, in principle, the linear regression model of
Chapter 2 would apply, but the data generating mechanism produces a nonlinear form:
truncation, censoring, and sample selection or endogenous sampling. For each case, we
develop the basic theory of the effect and then use the results in a major area of research
in econometrics.

In the truncated regression model, the range of the dependent variable is restricted
substantively. Certainly all economic data are restricted in this way—aggregate income
data cannot be negative, for example. But when data are truncated so that plausible
values of the dependent variable are precluded, for example, when zero values for ex-
penditure are discarded, the data that remain are analyzed with models that explicitly
account for the truncation. The stochastic frontier model is based on a composite dis-
turbance in which one part follows the assumptions of the familiar regression model
while the second component is built on a platform of the truncated regression.

When data are censored, values of the dependent variable that could in principle be
observed are masked. Ranges of values of the true variable being studied are observed
as a single value. The basic problem this presents for model building is that in such
a case, we observe variation of the independent variables without the corresponding
variation in the dependent variable that might be expected. Consistent estimation,
and useful interpretation of estimation results are based on maximum likelihood or
some other technique that explicitly accounts for the censoring mechanism. The most
common case of censoring in observed data arises in the context of duration analysis,
or survival functions (which borrows a term from medical statistics where this style
of model building originated). It is useful to think of duration, or survival data, as
the measurement of time between transitions or changes of state. We examined three
modeling approaches that correspond to the description in Chapter 12; nonparametric
(survival tables), semiparametric (the proportional hazard models), and parametric
(various forms such as the Weibull model).
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Finally, the issue of sample selection arises when the observed data are not drawn
randomly from the population of interest. Failure to account for this nonrandom sam-
pling produces a model that describes only the nonrandom subsample, not the larger
population. In each case, we examined the model specification and estimation tech-
niques which are appropriate for these variations of the regression model. Maximum
likelihood is usually the method of choice, but for the third case, a two-step estimator
has become more common. The leading contemporary application of selection meth-
ods and endogenous sampling is in the measure of treatment effects. We considered
three approaches to analysis of treatment effects; regression methods, propensity score
matching, and regression discontinuity.

Key Terms and Concepts

• Accelerated failure time
model

• Attenuation
• Average treatment effect
• Average treatment effect on

the treated
• Censored regression model
• Censored variable
• Censoring
• Conditional mean

assumption
• Conditional moment test
• Control function
• Corner solution model
• Data envelopment analysis
• Degree of truncation
• Delta method
• Difference in differences
• Duration model
• Exponential
• Exponential model
• Fuzzy design
• Generalized residual
• Hazard function
• Hazard rate
• Heterogeneity
• Heteroscedasticity

• Hurdle model
• Incidental truncation
• Instrumetal variable

estimation
• Integrated hazard function
• Inverse probability

weighted estimator
• Inverse Mills ratio
• Lagrange multiplier test
• Matching estimator
• Mean independence

assumption
• Missing counterfactual
• Negative duration

dependence
• Olsen’s reparameterization
• Parametric
• Parametric model
• Partial likelihood
• Positive duration

dependence
• Product limit estimator
• Propensity score
• Proportional hazard
• Regression discontinuity

design
• Risk set

• Rubin causal model
• Sample selection
• Selection on observables
• Selection on unobservables
• Semiparametric estimator
• Semiparametric model
• Specification error
• Stochastic frontier model
• Survival function
• Time-varying covariate
• Tobit model
• Treatment effect
• Truncated distribution
• Truncated mean
• Truncated normal

distribution
• Truncated random variable
• Truncated standard normal

distribution
• Truncated variance
• Truncation
• Two-step estimation
• Type II tobit model
• Weibull model
• Weibull survival model

Exercises

1. The following 20 observations are drawn from a censored normal distribution:

3.8396 7.2040 0.00000 0.00000 4.4132 8.0230
5.7971 7.0828 0.00000 0.80260 13.0670 4.3211
0.00000 8.6801 5.4571 0.00000 8.1021 0.00000
1.2526 5.6016
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The applicable model is

y∗
i = μ + εi ,

yi = y∗
i if μ + εi > 0, 0 otherwise,

εi ∼ N[0, σ 2].

Exercises 1 through 4 in this section are based on the preceding information. The
OLS estimator of μ in the context of this tobit model is simply the sample mean.
Compute the mean of all 20 observations. Would you expect this estimator to over-
or underestimate μ? If we consider only the nonzero observations, then the trun-
cated regression model applies. The sample mean of the nonlimit observations
is the least squares estimator in this context. Compute it and then comment on
whether this sample mean should be an overestimate or an underestimate of the true
mean.

2. We now consider the tobit model that applies to the full data set.
a. Formulate the log-likelihood for this very simple tobit model.
b. Reformulate the log-likelihood in terms of θ = 1/σ and γ = μ/σ . Then derive

the necessary conditions for maximizing the log-likelihood with respect to θ

and γ .
c. Discuss how you would obtain the values of θ and γ to solve the problem in

part b.
d. Compute the maximum likelihood estimates of μ and σ .

3. Using only the nonlimit observations, repeat Exercise 2 in the context of the trun-
cated regression model. Estimate μ and σ by using the method of moments esti-
mator outlined in Example 19.2. Compare your results with those in the previous
exercises.

4. Continuing to use the data in Exercise 1, consider once again only the nonzero
observations. Suppose that the sampling mechanism is as follows: y∗ and another
normally distributed random variable z have population correlation 0.7. The two
variables, y∗ and z, are sampled jointly. When z is greater than zero, y is re-
ported. When z is less than zero, both z and y are discarded. Exactly 35 draws
were required to obtain the preceding sample. Estimate μ and σ. (Hint: Use Theo-
rem 19.5.)

5. Derive the partial effects for the tobit model with heteroscedasticity that is de-
scribed in Section 19.3.5.a.

6. Prove that the Hessian for the tobit model in (19-14) is negative definite after
Olsen’s transformation is applied to the parameters.

Applications

1. We examined Ray Fair’s famous analysis (Journal of Political Economy, 1978) of a
Psychology Today survey on extramarital affairs in Example 18.9 using a Poisson
regression model. Although the dependent variable used in that study was a count,
Fair (1978) used the tobit model as the platform for his study. You can reproduce
the tobit estimates in Fair’s paper easily with any software package that contains
a tobit estimator—most do. The data appear in Appendix Table F18.1. Reproduce
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Fair’s least squares and tobit estimates. Compute the partial effects for the model
and interpret all results.

2. The Mroz (1975) data used in Example 19.11 (see Appendix Table F5.1) also de-
scribe a setting in which the Tobit model has been frequently applied. The sample
contains 753 observations on labor market outcomes for married women, including
the following variables:

lfp = indicator (0/1) for whether in the formal labor market (lfp = 1)

or not (lfp = 0),

whrs = wife’s hours worked,

kl6 = number of children under 6 years old in the household,

k618 = number of children from 6 to 18 years old in the household,

wa = wife’s age,

we = wife’s education,

ww = wife’s hourly wage,

hhrs = husband’s hours worked,

ha = husband’s age,

hw = husband’s wage,

faminc = family income from other sources,

wmed = wife’s mother’s education

wfed = wife’s father’s education

cit = dummy variable for living in an urban area,

ax = labor market experience = age − we − 5,

and several variables that will not be useful here. Using these data, estimate a tobit
model for the wife’s hours worked. Report all results including partial effects and
relevant diagnostic statistics. Repeat the analysis for the wife’s labor earnings, ww
times whrs. Which is a more plausible model?

3. Continuing the analysis of the previous application, note that these data conform
precisely to the description of “corner solutions” in Section 19.3.4. The dependent
variable is not censored in the fashion usually assumed for a tobit model. To inves-
tigate whether the dependent variable is determined by a two-part decision process
(yes/no and, if yes, how much), specify and estimate a two-equation model in which
the first equation analyzes the binary decision lfp = 1 if whrs > 0 and 0 otherwise
and the second equation analyzes whrs | whrs > 0. What is the appropriate model?
What do you find? Report all results.

4. StochasticFrontier Model. Section 10.5.1 presents estimates of a Cobb–Douglas
cost function using Nerlove’s 1955 data on the U.S. electric power industry. Chris-
tensen and Greene’s 1976 update of this study used 1970 data for this industry. The
Christensen and Greene data are given in Appendix Table F4.4. These data have
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provided a standard test data set for estimating different forms of production and
cost functions, including the stochastic frontier model discussed in Section 19.2.4. It
has been suggested that one explanation for the apparent finding of economies of
scale in these data is that the smaller firms were inefficient for other reasons. The
stochastic frontier might allow one to disentangle these effects. Use these data to
fit a frontier cost function which includes a quadratic term in log output in addi-
tion to the linear term and the factor prices. Then examine the estimated Jondrow
et al. residuals to see if they do indeed vary negatively with output, as suggested.
(This will require either some programming on your part or specialized software.
The stochastic frontier model is provided as an option in Stata, TSP, and LIMDEP.
Or, the likelihood function can be programmed fairly easily for RATS, MatLab,
or GAUSS.) (Note: For a cost frontier as opposed to a production frontier, it is
necessary to reverse the sign on the argument in the � function that appears in the
log-likelihood.)
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20

SERIAL CORRELATION

Q
20.1 INTRODUCTION

Time-series data often display autocorrelation, or serial correlation of the disturbances
across periods. Consider, for example, the plot of the least squares residuals in the
following example.

Example 20.1 Money Demand Equation
Appendix Table F5.2 contains quarterly data from 1950.1 to 2000.4 on the U.S. money stock
(M1) and output (real GDP) and the price level (CPI U). Consider a simple (extremely) model
of money demand,1

ln M1t = β1 + β2 ln GDPt + β3 ln CPIt + εt .

A plot of the least squares residuals is shown in Figure 20.1. The pattern in the residuals
suggests that knowledge of the sign of a residual in one period is a good indicator of the sign of
the residual in the next period. This knowledge suggests that the effect of a given disturbance
is carried, at least in part, across periods. This sort of “memory” in the disturbances creates
the long, slow swings from positive values to negative ones that is evident in Figure 20.1. One
might argue that this pattern is the result of an obviously naive model, but that is one of the
important points in this discussion. Patterns such as this usually do not arise spontaneously;
to a large extent, they are, indeed, a result of an incomplete or flawed model specification.

One explanation for autocorrelation is that relevant factors omitted from the time-
series regression, like those included, are correlated across periods. This fact may be
due to serial correlation in factors that should be in the regression model. It is easy to
see why this situation would arise. Example 20.2 shows an obvious case.

Example 20.2 Autocorrelation Induced by Misspecification
of the Model

In Examples 2.3, 4.2 and 4.8, we examined yearly time-series data on the U.S. gasoline market
from 1953 to 2004. The evidence in the examples was convincing that a regression model
of variation in ln G/Pop should include, at a minimum, a constant, ln PG and ln income/Pop.
Other price variables and a time trend also provide significant explanatory power, but these
two are a bare minimum. Moreover, we also found on the basis of a Chow test of structural
change that apparently this market changed structurally after 1974. Figure 20.2 displays
plots of four sets of least squares residuals. Parts (a) through (c) show clearly that as the
specification of the regression is expanded, the autocorrelation in the “residuals” diminishes.
Part (c) shows the effect of forcing the coefficients in the equation to be the same both before
and after the structural shift. In part (d), the residuals in the two subperiods 1953 to 1974 and
1975 to 2004 are produced by separate unrestricted regressions. This latter set of residuals
is almost nonautocorrelated. (Note also that the range of variation of the residuals falls as

1Because this chapter deals exclusively with time-series data, we shall use the index t for observations and T
for the sample size throughout.

943
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FIGURE 20.1 Autocorrelated Least Squares Residuals.

the model is improved, i.e., as its fit improves.) The full equation is

ln
Gt

Popt
= β1 + β2 ln PGt + β3 ln

I t

Popt
+ β4 ln PNCt + β5 ln PUCt

+ β6 ln PPTt + β7 ln PNt + β8 ln PDt + β9 ln PSt + β10t + εt .

Finally, we consider an example in which serial correlation is an anticipated part of the
model.

Example 20.3 Negative Autocorrelation in the Phillips Curve
The Phillips curve [Phillips (1957)] has been one of the most intensively studied relationships
in the macroeconomics literature. As originally proposed, the model specifies a negative re-
lationship between wage inflation and unemployment in the United Kingdom over a period of
100 years. Recent research has documented a similar relationship between unemployment
and price inflation. It is difficult to justify the model when cast in simple levels; labor market
theories of the relationship rely on an uncomfortable proposition that markets persistently
fall victim to money illusion, even when the inflation can be anticipated. Current research
[e.g., Staiger et al. (1996)] has reformulated a short-run (disequilibrium) “expectations aug-
mented Phillips curve” in terms of unexpected inflation and unemployment that deviates from
a long-run equilibrium or “natural rate.” The expectations-augmented Phillips curve can
be written as

�pt − E [�pt | �t−1] = β[ut − u∗] + εt

where �pt is the rate of inflation in year t, E [�pt | �t−1] is the forecast of �pt made in period
t − 1 based on information available at time t − 1, �t−1, ut is the unemployment rate and u∗

is the natural, or equilibrium rate. (Whether u∗ can be treated as an unchanging parameter,
as we are about to do, is controversial.) By construction, [ut − u∗] is disequilibrium, or cycli-
cal unemployment. In this formulation, εt would be the supply shock (i.e., the stimulus that
produces the disequilibrium situation). To complete the model, we require a model for the
expected inflation. For the present, we’ll assume that economic agents are rank empiricists.
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FIGURE 20.2 Unstandardized Residuals (Bars mark mean res. and
+/ − 2s(e) ).

The forecast of next year’s inflation is simply this year’s value. This produces the estimating
equation

�pt − �pt−1 = β1 + β2ut + εt

where β2 = β and β1 = −βu∗. Note that there is an implied estimate of the natural rate of un-
employment embedded in the equation. After estimation, u∗ can be estimated by −b1/b2. The
equation was estimated with the 1950.1–2000.4 data in Appendix Table F5.2 that were used
in Example 20.1 (minus two quarters for the change in the rate of inflation). Least squares
estimates (with standard errors in parentheses) are as follows:

�pt − �pt−1 = 0.49189 − 0.090136 ut + et

(0.7405) (0.1257) R2 = 0.002561, T = 202.

The implied estimate of the natural rate of unemployment is 5.46 percent, which is in line with
other recent estimates. The estimated asymptotic covariance of b1 and b2 is −0.08973. Using
the delta method, we obtain a standard error of 2.2062 for this estimate, so a confidence in-
terval for the natural rate is 5.46 percent ±1.96 (2.21 percent) = (1.13 percent, 9.79 percent)
(which seems fairly wide, but, again, whether it is reasonable to treat this as a parameter is at
least questionable). The regression of the least squares residuals on their past values gives a
slope of −0.4263 with a highly significant t ratio of −6.725. We thus conclude that the resid-
uals (and, apparently, the disturbances) in this model are highly negatively autocorrelated.
This is consistent with the striking pattern in Figure 20.3.
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FIGURE 20.3 Negatively Autocorrelated Residuals.

The problems for estimation and inference caused by autocorrelation are similar to
(although, unfortunately, more involved than) those caused by heteroscedasticity. As
before, least squares is inefficient, and inference based on the least squares estimates
is adversely affected. Depending on the underlying process, however, GLS and FGLS
estimators can be devised that circumvent these problems. There is one qualitative dif-
ference to be noted. In Section 20.13, we will examine models in which the generalized
regression model can be viewed as an extension of the regression model to the con-
ditional second moment of the dependent variable. In the case of autocorrelation, the
phenomenon arises in almost all cases from a misspecification of the model. Views differ
on how one should react to this failure of the classical assumptions, from a pragmatic
one that treats it as another “problem” in the data to an orthodox methodological view
that it represents a major specification issue—see, for example, “A Simple Message to
Autocorrelation Correctors: Don’t” [Mizon (1995).]

We should emphasize that the models we shall examine here are quite far removed
from the classical regression. The exact or small-sample properties of the estimators are
rarely known, and only their asymptotic properties have been derived.

20.2 THE ANALYSIS OF TIME-SERIES DATA

The treatment in this chapter will be the first structured analysis of time-series data in
the text. Time-series analysis requires some revision of the interpretation of both data
generation and sampling that we have maintained thus far.
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A time-series model will typically describe the path of a variable yt in terms of
contemporaneous (and perhaps lagged) factors xt , disturbances (innovations), εt , and
its own past, yt−1, . . . . For example,

yt = β1 + β2xt + β3 yt−1 + εt .

The time series is a single occurrence of a random event. For example, the quarterly
series on real output in the United States from 1950 to 2000 that we examined in Ex-
ample 20.1 is a single realization of a process, GDPt . The entire history over this period
constitutes a realization of the process. At least in economics, the process could not be
repeated. There is no counterpart to repeated sampling in a cross section or replication
of an experiment involving a time-series process in physics or engineering. Nonethe-
less, were circumstances different at the end of World War II, the observed history
could have been different. In principle, a completely different realization of the en-
tire series might have occurred. The sequence of observations, {yt }t=∞

t=−∞ is a time-series
process, which is characterized by its time ordering and its systematic correlation be-
tween observations in the sequence. The signature characteristic of a time-series process
is that empirically, the data generating mechanism produces exactly one realization of
the sequence. Statistical results based on sampling characteristics concern not random
sampling from a population, but from distributions of statistics constructed from sets
of observations taken from this realization in a time window, t = 1, . . . , T. Asymptotic
distribution theory in this context concerns behavior of statistics constructed from an
increasingly long window in this sequence.

The properties of yt as a random variable in a cross section are straightforward
and are conveniently summarized in a statement about its mean and variance or the
probability distribution generating yt . The statement is less obvious here. It is common
to assume that innovations are generated independently from one period to the next,
with the familiar assumptions

E [εt ] = 0,

Var[εt ] = σ 2
ε ,

and

Cov[εt , εs] = 0 for t �= s.

In the current context, this distribution of εt is said to be covariance stationary or
weakly stationary. Thus, although the substantive notion of “random sampling” must
be extended for the time series εt , the mathematical results based on that notion apply
here. It can be said, for example, that εt is generated by a time-series process whose
mean and variance are not changing over time. As such, by the method we will discuss
in this chapter, we could, at least in principle, obtain sample information and use it to
characterize the distribution of εt . Could the same be said of yt ? There is an obvious
difference between the series εt and yt ; observations on yt at different points in time
are necessarily correlated. Suppose that the yt series is weakly stationary and that, for
the moment, β2 = 0. Then we could say that

E [yt ] = β1 + β3 E [yt−1] + E [εt ] = β1/(1 − β3)

and

Var[yt ] = β2
3 Var[yt−1] + Var[εt ],
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or

γ0 = β2
3γ0 + σ 2

ε ,

so that

γ0 = σ 2
ε

1 − β2
3
.

Thus, γ0, the variance of yt , is a fixed characteristic of the process generating yt . Note
how the stationarity assumption, which apparently includes |β3| < 1, has been used. The
assumption that |β3| < 1 is needed to ensure a finite and positive variance.2 Finally, the
same results can be obtained for nonzero β2 if it is further assumed that xt is a weakly
stationary series.3

Alternatively, consider simply repeated substitution of lagged values into the ex-
pression for yt :

yt = β1 + β3(β1 + β3 yt−2 + εt−1) + εt (20-1)

and so on. We see that, in fact, the current yt is an accumulation of the entire history of
the innovations, εt . So if we wish to characterize the distribution of yt , then we might
do so in terms of sums of random variables. By continuing to substitute for yt−2, then
yt−3, . . . in (20-1), we obtain an explicit representation of this idea,

yt =
∞∑

i=0

β i
3(β1 + εt−i ).

Do sums that reach back into infinite past make any sense? We might view the
process as having begun generating data at some remote, effectively “infinite” past. As
long as distant observations become progressively less important, the extension to an
infinite past is merely a mathematical convenience. The diminishing importance of past
observations is implied by |β3| < 1. Notice that, not coincidentally, this requirement is
the same as that needed to solve for γ0 in the preceding paragraphs. A second possibility
is to assume that the observation of this time series begins at some time 0 [with (x0, ε0)

called the initial conditions], by which time the underlying process has reached a state
such that the mean and variance of yt are not (or are no longer) changing over time. The
mathematics are slightly different, but we are led to the same characterization of the
random process generating yt . In fact, the same weak stationarity assumption ensures
both of them.

Except in very special cases, we would expect all the elements in the T component
random vector (y1, . . . , yT) to be correlated. In this instance, said correlation is called
“autocorrelation.” As such, the results pertaining to estimation with independent or
uncorrelated observations that we used in the previous chapters are no longer usable.
In point of fact, we have a sample of but one observation on the multivariate random
variable [yt , t = 1, . . . , T]. There is a counterpart to the cross-sectional notion of pa-
rameter estimation, but only under assumptions (e.g., weak stationarity) that establish
that parameters in the familiar sense even exist. Even with stationarity, it will emerge

2The current literature in macroeconometrics and time series analysis is dominated by analysis of cases in
which β3 = 1 (or counterparts in different models). We will return to this subject in Chapter 21.
3See Section 20.4.1 on the stationarity assumption.
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that for estimation and inference, none of our earlier finite-sample results are usable.
Consistency and asymptotic normality of estimators are somewhat more difficult to
establish in time-series settings because results that require independent observations,
such as the central limit theorems, are no longer usable. Nonetheless, counterparts to our
earlier results have been established for most of the estimation problems we consider
here.

20.3 DISTURBANCE PROCESSES

The preceding section has introduced a bit of the vocabulary and aspects of time-series
specification. To obtain the theoretical results, we need to draw some conclusions about
autocorrelation and add some details to that discussion.

20.3.1 CHARACTERISTICS OF DISTURBANCE PROCESSES

In the usual time-series setting, the disturbances are assumed to be homoscedastic but
correlated across observations, so that

E [εε′ | X] = σ 2�,

where σ 2� is a full, positive definite matrix with a constant σ 2 = Var[εt | X] on the
diagonal. As will be clear in the following discussion, we shall also assume that �ts is
a function of |t − s|, but not of t or s alone, which is a stationarity assumption. (See
the preceding section.) It implies that the covariance between observations t and s is a
function only of |t − s|, the distance apart in time of the observations. Because σ 2 is not
restricted, we normalize �tt = 1. We define the autocovariances:

Cov[εt , εt−s | X] = Cov[εt+s, εt | X] = σ 2�t,t−s = γs = γ−s .

Note that σ 2�tt = γ0. The correlation between εt and εt−s is their autocorrelation,

Corr[εt , εt−s | X] = Cov[εt , εt−s | X]√
Var[εt | X]Var[εt−s | X]

= γs

γ0
= ρs = ρ−s .

We can then write

E [εε′ | X] = � = γ0R,

where � is an autocovariance matrix and R is an autocorrelation matrix—the ts element
is an autocorrelation coefficient

ρts = γ|t−s|
γ0

.

(Note that the matrix � = γ0R is the same as σ 2�. The name change conforms to stan-
dard usage in the literature.) We will usually use the abbreviation ρs to denote the
autocorrelation between observations s periods apart.

Different types of processes imply different patterns in R. For example, the most
frequently analyzed process is a first-order autoregression or AR(1) process,

εt = ρεt−1 + ut ,
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where ut is a stationary, nonautocorrelated (white noise) process and ρ is a parameter.
We will verify later that for this process, ρs = ρs . Higher-order autoregressive processes
of the form

εt = θ1εt−1 + θ2εt−2 + · · · + θpεt−p + ut

imply more involved patterns, including, for some values of the parameters, cyclical
behavior of the autocorrelations.4 Stationary autoregressions are structured so that
the influence of a given disturbance fades as it recedes into the more distant past but
vanishes only asymptotically. For example, for the AR(1), Cov[εt , εt−s] is never zero,
but it does become negligible if |ρ| is less than 1. Moving-average processes, conversely,
have a short memory. For the MA(1) process,

εt = ut − λut−1,

the memory in the process is only one period: γ0 = σ 2
u (1 + λ2), γ1 = −λσ 2

u , but γs = 0
if s > 1.

20.3.2 AR(1) DISTURBANCES

Time-series processes such as the ones listed here can be characterized by their order, the
values of their parameters, and the behavior of their autocorrelations.5 We shall consider
various forms at different points. The received empirical literature is overwhelmingly
dominated by the AR(1) model, which is partly a matter of convenience. Processes more
involved than this model are usually extremely difficult to analyze. There is, however,
a more practical reason. It is very optimistic to expect to know precisely the correct
form of the appropriate model for the disturbance in any given situation. The first-order
autoregression has withstood the test of time and experimentation as a reasonable model
for underlying processes that probably, in truth, are impenetrably complex. AR(1) works
as a first pass—higher-order models are often constructed as a refinement—as in the
following example.

The first-order autoregressive disturbance, or AR(1) process, is represented in the
autoregressive form as

εt = ρεt−1 + ut , (20-2)

where

E [ut | X] = 0,

E
[
u2

t

∣∣ X
] = σ 2

u ,

and

Cov[ut , us | X] = 0 if t �= s.

Because ut is white noise, the conditional moments equal the unconditional moments.
Thus E[εt | X] = E[εt ] and so on.

4This model is considered in more detail in Section 20.9.2.
5See Box and Jenkins (1984) for an authoritative study.
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By repeated substitution, we have

εt = ut + ρut−1 + ρ2ut−2 + · · · . (20-3)

From the preceding moving-average form, it is evident that each disturbance εt embodies
the entire past history of the u’s, with the most recent observations receiving greater
weight than those in the distant past. Depending on the sign of ρ, the series will exhibit
clusters of positive and then negative observations or, if ρ is negative, regular oscillations
of sign (as in Example 20.3).

Because the successive values of ut are uncorrelated, the variance of εt is the vari-
ance of the right-hand side of (20-3):

Var[εt ] = σ 2
u + ρ2σ 2

u + ρ4σ 2
u + · · · . (20-4)

To proceed, a restriction must be placed on ρ,

|ρ| < 1, (20-5)

because otherwise, the right-hand side of (20-4) will become infinite. This result is the
stationarity assumption discussed earlier. With (20-5), which implies that lims→∞ ρs = 0,

E [εt ] = 0 and

Var[εt ] = σ 2
u

1 − ρ2
= σ 2

ε . (20-6)

With the stationarity assumption, there is an easier way to obtain the variance

Var[εt ] = ρ2 Var[εt−1] + σ 2
u

because Cov[ut , εs] = 0 if t > s. With stationarity, Var[εt−1] = Var[εt ], which implies
(20-6). Proceeding in the same fashion,

Cov[εt , εt−1] = E [εtεt−1] = E [εt−1(ρεt−1 + ut )] = ρ Var[εt−1] = ρσ 2
u

1 − ρ2
. (20-7)

By repeated substitution in (20-2), we see that for any s,

εt = ρsεt−s +
s−1∑
i=0

ρi ut−i

(e.g., εt = ρ3εt−3 + ρ2ut−2 + ρut−1 + ut ). Therefore, because εs is not correlated with
any ut for which t > s (i.e., any subsequent ut ), it follows that

Cov[εt , εt−s] = E [εtεt−s] = ρsσ 2
u

1 − ρ2
. (20-8)

Dividing by γ0 = σ 2
u /(1 − ρ2) provides the autocorrelations:

Corr[εt , εt−s] = ρs = ρs. (20-9)

With the stationarity assumption, the autocorrelations fade over time. Depending on
the sign of ρ, they will either be declining in geometric progression or alternating in



Greene-2140242 book January 19, 2011 21:28

952 PART V ✦ Time Series and Macroeconometrics

sign if ρ is negative. Collecting terms, we have

σ 2� = σ 2
u

1 − ρ2

⎡
⎢⎢⎢⎢⎢⎢⎣

1 ρ ρ2 ρ3 · · · ρT−1

ρ 1 ρ ρ2 · · · ρT−2

ρ2 ρ 1 ρ · · · ρT−3

...
...

...
... · · · ρ

ρT−1 ρT−2 ρT−3 · · · ρ 1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (20-10)

20.4 SOME ASYMPTOTIC RESULTS FOR
ANALYZING TIME-SERIES DATA

Because � is not equal to I, the now-familiar complications will arise in establishing the
properties of estimators of β, in particular of the least squares estimator. The finite sam-
ple properties of the OLS and GLS estimators remain intact. Least squares will continue
to be unbiased; The earlier general proof allows for autocorrelated disturbances. The
Aitken theorem (Theorem 9.4) and the distributional results for normally distributed
disturbances can still be established conditionally on X. (However, even these will be
complicated when X contains lagged values of the dependent variable.) But, finite sam-
ple properties are of very limited usefulness in time-series contexts. Nearly all that can be
said about estimators involving time-series data is based on their asymptotic properties.

As we saw in our analysis of heteroscedasticity, whether least squares is consistent
or not, depends on the matrices

QT = (1/T )X′X,

and

Q∗
T = (1/T )X′�X.

In our earlier analyses, we were able to argue for convergence of QT to a positive definite
matrix of constants, Q, by invoking laws of large numbers. But, these theorems assume
that the observations in the sums are independent, which as suggested in Section 20.2, is
surely not the case here. Thus, we require a different tool for this result. We can expand
the matrix Q∗

T as

Q∗
T = 1

T

T∑
t=1

T∑
s=1

ρtsxt x′
s, (20-11)

where x′
t and x′

s are rows of X and ρts is the autocorrelation between εt and εs . Sufficient
conditions for this matrix to converge are that QT converge and that the correlations
between disturbances die off reasonably rapidly as the observations become further
apart in time. For example, if the disturbances follow the AR(1) process described
earlier, then ρts = ρ|t−s| and if x t is sufficiently well behaved, Q∗

T will converge to a
positive definite matrix Q∗ as T → ∞.

Asymptotic normality of the least squares and GLS estimators will depend on the
behavior of sums such as

√
T w̄T =

√
T

(
1
T

T∑
t=1

xtεt

)
=

√
T

(
1
T

X′ε
)

.
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Asymptotic normality of least squares is difficult to establish for this general model. The
central limit theorems we have relied on thus far do not extend to sums of dependent
observations. The results of Amemiya (1985), Mann and Wald (1943), and Anderson
(1971) do carry over to most of the familiar types of autocorrelated disturbances, in-
cluding those that interest us here, so we shall ultimately conclude that ordinary least
squares, GLS, and instrumental variables continue to be consistent and asymptotically
normally distributed, and, in the case of OLS, inefficient. This section will provide a
brief introduction to some of the underlying principles that are used to reach these
conclusions.

20.4.1 CONVERGENCE OF MOMENTS—THE ERGODIC THEOREM

The discussion thus far has suggested (appropriately) that stationarity (or its absence) is
an important characteristic of a process. The points at which we have encountered this
notion concerned requirements that certain sums converge to finite values. In particular,
for the AR(1) model, εt = ρεt−1 + ut , for the variance of the process to be finite, we
require |ρ| < 1, which is a sufficient condition. However, this result is only a byproduct.
Stationarity (at least, the weak stationarity we have examined) is only a characteristic
of the sequence of moments of a distribution.

DEFINITION 20.1 Strong Stationarity
A time-series process, {zt }t=∞

t=−∞ is strongly stationary, or “stationary,” if the joint
probability distribution of any set of k observations in the sequence [zt , zt+1, . . . ,

zt+k−1] is the same regardless of the origin, t , in the time scale.

For example, in (20-2), if we add ut ∼ N[0, σ 2
u ], then the resulting process {εt }t=∞

t=−∞ can
easily be shown to be strongly stationary.

DEFINITION 20.2 Weak Stationarity
A time-series process, {zt }t=∞

t=−∞ is weakly stationary (or covariance stationary) if
E [zt ] is finite and is the same for all t and if the covariances between any two
observations (labeled their autocovariance), Cov[zt , zt−k], is a finite function only
of model parameters and their distance apart in time, k, but not of the absolute
location of either observation on the time scale.

Weak stationary is obviously implied by strong stationary, although it requires less
because the distribution can, at least in principle, be changing on the time axis. The
distinction is rarely necessary in applied work. In general, save for narrow theoretical
examples, it will be difficult to come up with a process that is weakly but not strongly
stationary. The reason for the distinction is that in much of our work, only weak sta-
tionary is required, and, as always, when possible, econometricians will dispense with
unnecessary assumptions.
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As we will discover shortly, stationarity is a crucial characteristic at this point in
the analysis. If we are going to proceed to parameter estimation in this context, we
will also require another characteristic of a time series, ergodicity. There are various
ways to delineate this characteristic, none of them particularly intuitive. We borrow one
definition from Davidson and MacKinnon (1993, p. 132) which comes close:

DEFINITION 20.3 Ergodicity
A strongly stationary time-series process, {zt }t=∞

t=−∞, is ergodic if for any two
bounded functions that map vectors in the a and b dimensional real vector spaces
to real scalars, f : Ra → R1 and g : Rb → R1,

lim
k→∞

|E [ f (zt , zt+1, . . . , zt+a)g(zt+k, zt+k+1, . . . , zt+k+b)]|
= |E [ f (zt , zt+1, . . . , zt+a−1)]| |E [g(zt+k, zt+k+1, . . . , zt+k+b−1)]| .

The definition states essentially that if events are separated far enough in time, then they
are “asymptotically independent.” An implication is that in a time series, every obser-
vation will contain at least some unique information. Ergodicity is a crucial element of
our theory of estimation. When a time series has this property (with stationarity), then
we can consider estimation of parameters in a meaningful sense.6 The analysis relies
heavily on the following theorem:

THEOREM 20.1 The Ergodic Theorem
If {zt }t=∞

t=−∞ is a time-series process that is strongly stationary and ergodic and
E [|zt |] is a finite constant, and if z̄T = (1/T )

∑T
t=1 zt , then z̄T

a.s.−→ μ, where
μ = E [zt ]. Note that the convergence is almost surely not in probability (which is
implied) or in mean square (which is also implied). [See White (2001, p. 44) and
Davidson and MacKinnon (1993, p. 133).]

What we have in the ergodic theorem is, for sums of dependent observations, a coun-
terpart to the laws of large numbers that we have used at many points in the preceding
chapters. Note, once again, the need for this extension is that to this point, our laws of
large numbers have required sums of independent observations. But, in this context, by
design, observations are distinctly not independent.

6Much of the analysis in later chapters will encounter nonstationary series, which are the focus of most of
the current literature—tests for nonstationarity largely dominate the recent study in time-series analysis.
Ergodicity is a much more subtle and difficult concept. For any process that we will consider, ergodicity
will have to be a given, at least at this level. A classic reference on the subject is Doob (1953). Another
authoritative treatise is Billingsley (1995). White (2001) provides a concise analysis of many of these concepts
as used in econometrics, and some useful commentary.
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For this result to be useful, we will require an extension.

THEOREM 20.2 Ergodicity of Functions
If {zt }t=∞

t=−∞ is a time-series process that is strongly stationary and ergodic and if
yt = f {zt } is a measurable function in the probability space that defines zt , then yt

is also stationary and ergodic. Let {zt }t=∞
t=−∞ define a K×1 vector valued stochastic

process—each element of the vector is an ergodic and stationary series, and the
characteristics of ergodicity and stationarity apply to the joint distribution of the
elements of {zt }t=∞

t=−∞. Then, the ergodic theorem applies to functions of {zt }t=∞
t=−∞.

[See White (2001, pp. 44–45) for discussion.]

Theorem 20.2 produces the results we need to characterize the least squares (and other)
estimators. In particular, our minimal assumptions about the data are

ASSUMPTION 20.1. Ergodic Data Series: In the regression model, yt = x′
tβ + εt ,

[xt , εt ]t=∞
t=−∞ is a jointly stationary and ergodic process.

By analyzing terms element by element we can use these results directly to assert
that averages of wt = xtεt , Qtt = xt x′

t , and Q∗
tt = ε2

t xt x′
t will converge to their population

counterparts, 0, Q and Q∗.

20.4.2 CONVERGENCE TO NORMALITY—A CENTRAL LIMIT
THEOREM

To form a distribution theory for least squares, GLS, ML, and GMM, we will need a
counterpart to the central limit theorem. In particular, we need to establish a large
sample distribution theory for quantities of the form

√
T

(
1
T

T∑
t=1

xtεt

)
=

√
T w̄.

As noted earlier, we cannot invoke the familiar central limit theorems (Lindeberg–Levy,
Lindeberg–Feller, Liapounov) because the observations in the sum are not independent.
But, with the assumptions already made, we do have an alternative result. Some needed
preliminaries are as follows:

DEFINITION 20.4 Martingale Sequence
A vector sequence zt is a martingale sequence if E [zt | zt−1, zt−2, . . .] = zt−1.

An important example of a martingale sequence is the random walk,

zt = zt−1 + ut ,

where Cov[ut , us] = 0 for all t �= s. Then

E [zt | zt−1, zt−2, . . .] = E [zt−1 | zt−1, zt−2, . . .] + E [ut | zt−1, zt−2, . . .] = zt−1 + 0 = zt−1.
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DEFINITION 20.5 Martingale Difference Sequence
A vector sequence zt is a martingale difference sequence if E [zt | zt−1, zt−2, . . .]= 0.

With Definition 20.5, we have the following broadly encompassing result:

THEOREM 20.3 Martingale Difference Central Limit Theorem
If zt is a vector valued stationary and ergodic martingale difference sequence, with
E [zt z′

t ] = �, where � is a finite positive definite matrix, and if z̄T = (1/T)
∑T

t=1 zt ,

then
√

T z̄T
d−→ N[0,�]. [For discussion, see Davidson and MacKinnon (1993,

Sections. 4.7 and 4.8).]7

Theorem 20.3 is a generalization of the Lindeberg–Levy central limit theorem. It is not
yet broad enough to cover cases of autocorrelation, but it does go beyond Lindeberg–
Levy, for example, in extending to the GARCH model of Section 20.13.3. [Forms of
the theorem that surpass Lindeberg–Feller (D.19) and Liapounov (Theorem D.20) by
allowing for different variances at each time, t , appear in Ruud (2000, p. 479) and White
(2001, p. 133). These variants extend beyond our requirements in this treatment.] But,
looking ahead, this result encompasses what will be a very important application. Sup-
pose in the classical linear regression model, {xt }t=∞

t=−∞ is a stationary and ergodic mul-
tivariate stochastic process and {εt }t=∞

t=−∞ is an i.i.d. process—that is, not autocorrelated
and not heteroscedastic. Then, this is the most general case of the classical model that
still maintains the assumptions about εt that we made in Chapter 2. In this case, the
process {wt }t=∞

t=−∞ = {xtεt }t=∞
t=−∞ is a martingale difference sequence, so that with suffi-

cient assumptions on the moments of xt we could use this result to establish consistency
and asymptotic normality of the least squares estimator. [See, e.g., Hamilton (1994,
pp. 208–212).]

We now consider a central limit theorem that is broad enough to include the case
that interested us at the outset, stochastically dependent observations on xt and auto-
correlation in εt .8 Suppose as before that {zt }t=∞

t=−∞ is a stationary and ergodic stochastic
process. We consider

√
T z̄T . The following conditions are assumed:9

1. Asymptotic uncorrelatedness: E [zt | zt−k, zt−k−1, . . .] converges in mean square to
zero as k→ ∞. Note that is similar to the condition for ergodicity. White (2001)
demonstrates that a (nonobvious) implication of this assumption is E [zt ] = 0.

7For convenience, we are bypassing a step in this discussion—establishing multivariate normality requires that
the result first be established for the marginal normal distribution of each component, then that every linear
combination of the variables also be normally distributed (See Theorems D.17 and D.18A.). Our interest at
this point is merely to collect the useful end results. Interested users may find the detailed discussions of the
many subtleties and narrower points in White (2001) and Davidson and MacKinnon (1993, Chapter 4).
8Detailed analysis of this case is quite intricate and well beyond the scope of this book. Some fairly terse
analysis may be found in White (2001, pp. 122–133) and Hayashi (2000).
9See Hayashi (2000, p. 405) who attributes the results to Gordin (1969).
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2. Summability of autocovariances: With dependent observations,

lim
T→∞

Var[
√

T z̄T] =
∞∑

t=0

∞∑
s=0

Cov[zt , z′
s] =

∞∑
k=−∞

�k = �∗.

To begin, we will need to assume that this matrix is finite, a condition called
summability. Note this is the condition needed for convergence of Q∗

T in (20-11). If
the sum is to be finite, then the k = 0 term must be finite, which gives us a necessary
condition

E [zt z′
t ] = �0, a finite matrix.

3. Asymptotic negligibility of innovations: Let

rtk = E [zt | zt−k, zt−k−1, . . .] − E [zt | zt−k−1, zt−k−2, . . .].

An observation zt may be viewed as the accumulated information that has entered the
process since it began up to time t . Thus, it can be shown that

zt =
∞∑

s=0

rts .

The vector rtk can be viewed as the information in this accumulated sum that entered
the process at time t − k. The condition imposed on the process is that

∑∞
s=0

√
E [r′

tsrts]
be finite. In words, condition (3) states that information eventually becomes negligible
as it fades far back in time from the current observation. The AR(1) model (as usual)
helps to illustrate this point. If zt = ρzt−1 + ut , then

rt0 = E [zt | zt , zt−1, . . .] − E [zt | zt−1, zt−2, . . .] = zt − ρzt−1 = ut

rt1 = E [zt | zt−1, zt−2 . . .] − E [zt | zt−2, zt−3 . . .]

= E [ρzt−1 + ut | zt−1, zt−2 . . .] − E [ρ(ρzt−2 + ut−1) + ut | zt−2, zt−3, . . .]

= ρ(zt−1 − ρzt−2)

= ρut−1.

By a similar construction, rtk = ρkut−k from which it follows that zt = ∑∞
s=0 ρsut−s , which

we saw earlier in (20-3). You can verify that if |ρ| < 1, the negligibility condition will be
met.

With all this machinery in place, we now have the theorem we will need:

THEOREM 20.4 Gordin’s Central Limit Theorem
If zt is strongly stationary and ergodic and if conditions (1)–(3) are met, then√

T z̄T
d−→ N[0, �∗].

We will be able to employ these tools when we consider the least squares, IV, and GLS
estimators in the discussion to follow.
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20.5 LEAST SQUARES ESTIMATION

The least squares estimator is

b = (X′X)−1X′y = β +
(

X′X
T

)−1 (
X′ε
T

)
.

Unbiasedness follows from the results in Chapter 4—no modification is needed. We
know from Chapter 9 that the Gauss–Markov theorem has been lost—assuming it
exists (that remains to be established), the GLS estimator is efficient and OLS is not.
How much information is lost by using least squares instead of GLS depends on the
data. Broadly, least squares fares better in data that have long periods and little cyclical
variation, such as aggregate output series. As might be expected, the greater is the
auto- correlation in ε, the greater will be the benefit to using generalized least squares
(when this is possible). Even if the disturbances are normally distributed, the usual
F and t statistics do not have those distributions. So, not much remains of the finite
sample properties we obtained in Chapter 4. The asymptotic properties remain to be
established.

20.5.1 ASYMPTOTIC PROPERTIES OF LEAST SQUARES

The asymptotic properties of b are straightforward to establish given our earlier results.
If we assume that the process generating xt is stationary and ergodic, then by Theo-
rems 20.1 and 20.2, (1/T)(X′X) converges to Q and we can apply the Slutsky theorem
to the inverse. If εt is not serially correlated, then wt = xtεt is a martingale difference
sequence, so (1/T)(X′ε) converges to zero. This establishes consistency for the simple
case. On the other hand, if [xt , εt ] are jointly stationary and ergodic, then we can invoke
the ergodic theorems 20.1 and 20.2 for both moment matrices and establish consistency.
Asymptotic normality is a bit more subtle. For the case without serial correlation in εt ,
we can employ Theorem 20.3 for

√
T w̄. The involved case is the one that interested us at

the outset of this discussion, that is, where there is autocorrelation in εt and dependence
in xt . Theorem 20.4 is in place for this case. Once again, the conditions described in the
preceding section must apply and, moreover, the assumptions needed will have to be
established both for xt and εt . Commentary on these cases may be found in Davidson
and MacKinnon (1993), Hamilton (1994), White (2001), and Hayashi (2000). Formal
presentation extends beyond the scope of this text, so at this point, we will proceed,
and assume that the conditions underlying Theorem 20.4 are met. The results suggested
here are quite general, albeit only sketched for the general case. For the remainder
of our examination, at least in this chapter, we will confine attention to fairly simple
processes in which the necessary conditions for the asymptotic distribution theory will
be fairly evident.

There is an important exception to the results in the preceding paragraph. If the
regression contains any lagged values of the dependent variable, then least squares will
no longer be unbiased or consistent. To take the simplest case, suppose that

yt = βyt−1 + εt ,

εt = ρεt−1 + ut ,
(20-12)
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and assume |β| < 1, |ρ| < 1. In this model, the regressor and the disturbance are
correlated. There are various ways to approach the analysis. One useful way is to rear-
range (20-12) by subtracting ρyt−1 from yt . Then,

yt = (β + ρ)yt−1 − βρyt−2 + ut , (20-13)

which is a classical regression with stochastic regressors. Because ut is an innovation in
period t , it is uncorrelated with both regressors, and least squares regression of yt on
(yt−1, yt−2) estimates ρ1 = (β + ρ) and ρ2 = −βρ. What is estimated by regression of yt on
yt−1 alone? Let γk = Cov[yt , yt−k] = Cov[yt , yt+k]. By stationarity, Var[yt ] = Var[yt−1],
and Cov[yt , yt−1] = Cov[yt−1, yt−2], and so on. These and (20-13) imply the following
relationships:

γ0 = ρ1γ1 + ρ2γ2 + σ 2
u ,

γ1 = ρ1γ0 + ρ2γ1,

γ2 = ρ1γ1 + ρ2γ0.

(20-14)

(These are the Yule–Walker equations for this model.) The slope in the simple regression
estimates γ1/γ0, which can be found in the solutions to these three equations. (An
alternative approach is to use the left-out variable formula, which is a useful way to
interpret this estimator.) In this case, we see that the slope in the short regression is an
estimator of (β + ρ) − βρ(γ1/γ0). In either case, solving the three equations in (20-14)
for γ0, γ1, and γ2 in terms of ρ1, ρ2, and σ 2

u produces

plim b = β + ρ

1 + βρ
. (20-15)

This result is between β (when ρ = 0) and 1 (when both β and ρ = 1). Therefore, least
squares is inconsistent unless ρ equals zero. The more general case that includes re-
gressors, xt , involves more complicated algebra but gives essentially the same result.
This is a general result; When the equation contains a lagged dependent variable in
the presence of autocorrelation, OLS and GLS are inconsistent. The problem can be
viewed as one of an omitted variable.

20.5.2 ESTIMATING THE VARIANCE OF THE LEAST
SQUARES ESTIMATOR

As usual, s2(X′X)−1 is an inappropriate estimator of σ 2(X′X)−1(X′�X)(X′X)−1, both
because s2 is a biased estimator of σ 2 and because the matrix is incorrect. Generalities
are scarce, but in general, for economic time series that are positively related to their
past values, the standard errors conventionally estimated by least squares are likely to
be too small. For slowly changing, trending aggregates such as output and consumption,
this is probably the norm. For highly variable data such as inflation, exchange rates,
and market returns, the situation is less clear. Nonetheless, as a general proposition,
one would normally not want to rely on s2(X′X)−1 as an estimator of the asymptotic
covariance matrix of the least squares estimator.

In view of this situation, if one is going to use least squares, then it is desirable to
have an appropriate estimator of the covariance matrix of the least squares estimator.
There are two approaches. If the form of the autocorrelation is known, then one can
estimate the parameters of � directly and compute a consistent estimator. Of course,
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if so, then it would be more sensible to use feasible generalized least squares instead
and not waste the sample information on an inefficient estimator. The second approach
parallels the use of the White estimator for heteroscedasticity.

The extension of White’s result to the more general case of autocorrelation is much
more difficult than in the heteroscedasticity case. The natural counterpart for estimating

Q∗ = 1
n

n∑
i=1

n∑
j=1

σi j xi x′
j

(20-16)
in Section 9.2.3 would be

Q̂∗ = 1
T

T∑
t=1

T∑
s=1

et esxt x′
s .

But there are two problems with this estimator, one theoretical, which applies to Q∗ as
well, and one practical, which is specific to the latter.

Unlike the heteroscedasticity case, the matrix in (20-16) is 1/T times a sum of
T 2 terms, so it is difficult to conclude yet that it will converge to anything at all. This
application is most likely to arise in a time-series setting. To obtain convergence, it is
necessary to assume that the terms involving unequal subscripts in (20-16) diminish in
importance as T grows. A sufficient condition is that terms with subscript pairs |t − s|
grow smaller as the distance between them grows larger. In practical terms, observation
pairs are progressively less correlated as their separation in time grows. Intuitively, if
one can think of weights with the diagonal elements getting a weight of 1.0, then in the
sum, the weights in the sum grow smaller as we move away from the diagonal. If we
think of the sum of the weights rather than just the number of terms, then this sum falls
off sufficiently rapidly that as n grows large, the sum is of order T rather than T 2. Thus,
we achieve convergence of Q∗ by assuming that the rows of X are well behaved and
that the correlations diminish with increasing separation in time. (See Section 9.2.2 for
a more formal statement of this condition.)

The practical problem is that Q̂∗ need not be positive definite. Newey and West
(1987a) have devised an estimator that overcomes this difficulty:

Q̂∗ = S0 + 1
T

L∑
l=1

T∑
t=l+1

wlet et−l(xt x′
t−l + xt−lx′

t ),

wl = 1 − l
(L+ 1)

.

(20-17)

[See (9-27).] The Newey–West autocorrelation consistent covariance estimator is sur-
prisingly simple and relatively easy to implement.10 There is a final problem to be solved.
It must be determined in advance how large L is to be. In general, there is little the-
oretical guidance. Current practice specifies L ≈ T1/4. Unfortunately, the result is not
quite as crisp as that for the heteroscedasticity consistent estimator.

We have the result that b and bIV are asymptotically normally distributed, and
we have an appropriate estimator for the asymptotic covariance matrix. We have not

10Both estimators are now standard features in modern econometrics computer programs. Further results on
different weighting schemes may be found in Hayashi (2000, pp. 406–410).
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TABLE 20.1 Robust Covariance Estimation

Variable OLS Estimate OLS SE Corrected SE

Constant −1.6331 0.2286 0.3335
ln Output 0.2871 0.04738 0.07806
ln CPI 0.9718 0.03377 0.06585

R2 = 0.98952, d = 0.02477, r = 0.98762.

specified the distribution of the disturbances, however. Thus, for inference purposes,
the F statistic is approximate at best. Moreover, for more involved hypotheses, the
likelihood ratio and Lagrange multiplier tests are unavailable. That leaves the Wald
statistic, including asymptotic “t ratios,” as the main tool for statistical inference. We
will examine a number of applications in the chapters to follow.

The White and Newey–West estimators are standard in the econometrics literature.
We will encounter them at many points in the discussion to follow.

Example 20.4 Autocorrelation Consistent Covariance Estimation
For the model shown in Example 20.1, the regression results with the uncorrected standard
errors and the Newey–West autocorrelation robust covariance matrix for lags of five quarters
are shown in Table 20.1. The effect of the very high degree of autocorrelation is evident.

20.6 GMM ESTIMATION

The GMM estimator in the regression model with autocorrelated disturbances is pro-
duced by the empirical moment equations

1
T

T∑
t=1

xt
(

yt − x′
t β̂GMM

) = 1
T

X′ε̂
(
β̂GMM

) = m̄
(
β̂GMM

) = 0. (20-18)

The estimator is obtained by minimizing

q = m̄′(β̂GMM

)
W m̄

(
β̂GMM

)

where W is a positive definite weighting matrix. The optimal weighting matrix would be

W = {
Asy. Var[

√
T m̄(β)]

}−1
,

which is the inverse of

Asy. Var[
√

T m̄(β)] = Asy. Var

[
1√
T

n∑
i=1

xiεi

]
= plim

n→∞

1
T

T∑
t=1

T∑
s=1

σ 2ρtsxt x′
s = σ 2Q∗.

The optimal weighting matrix would be [σ 2Q∗]−1. As in the heteroscedasticity case, this
minimization problem is an exactly identified case, so, the weighting matrix is actually
irrelevant to the solution. The GMM estimator for the regression model with autocor-
related disturbances is ordinary least squares. We can use the results in Section 20.5.2
to construct the asymptotic covariance matrix. We will require the assumptions in Sec-
tion 20.4 to obtain convergence of the moments and asymptotic normality. We will wish
to extend this simple result in one instance. In the common case in which xt contains
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lagged values of yt , we will want to use an instrumental variable estimator. We will
return to that estimation problem in Section 20.9.3.

20.7 TESTING FOR AUTOCORRELATION

The available tests for autocorrelation are based on the principle that if the true distur-
bances are autocorrelated, then this fact can be detected through the autocorrelations of
the least squares residuals. The simplest indicator is the slope in the artificial regression

et = ret−1 + vt ,

et = yt − x′
t b,

r =
(

T∑
t=2

et et−1

)/(
T−1∑
t=1

e2
t

)
.

(20-19)

If there is autocorrelation, then the slope in this regression will be an estimator of
ρ = Corr[εt , εt−1]. The complication in the analysis lies in determining a formal means
of evaluating when the estimator is “large,” that is, on what statistical basis to reject
the null hypothesis that ρ equals zero. As a first approximation, treating (20-19) as a
classical linear model and using a t or F (squared t) test to test the hypothesis is a
valid way to proceed based on the Lagrange multiplier principle. We used this device
in Example 20.3. The tests we consider here are refinements of this approach.

20.7.1 LAGRANGE MULTIPLIER TEST

The Breusch (1978)–Godfrey (1978) test is a Lagrange multiplier test of H0: no auto-
correlation versus H1: εt = AR(P) or εt = MA(P). The same test is used for either struc-
ture. The test statistic is

LM = T
(

e′X0(X′
0X0)

−1X′
0e

e′e

)
= TR2

0, (20-20)

where X0 is the original X matrix augmented by P additional columns containing the
lagged OLS residuals, et−1, . . . , et−P. The test can be carried out simply by regressing the
ordinary least squares residuals et on xt0 (filling in missing values for lagged residuals
with zeros) and referring TR2

0 to the tabled critical value for the chi-squared distribution
with P degrees of freedom.11 Because X′e = 0, the test is equivalent to regressing et on
the part of the lagged residuals that is unexplained by X. There is therefore a compelling
logic to it; if any fit is found, then it is due to correlation between the current and lagged
residuals. The test is a joint test of the first P autocorrelations of εt , not just the first.

20.7.2 BOX AND PIERCE’S TEST AND LJUNG’S REFINEMENT

An alternative test that is asymptotically equivalent to the LM test when the null hy-
pothesis, ρ = 0, is true and when X does not contain lagged values of y is due to Box

11A warning to practitioners: Current software varies on whether the lagged residuals are filled with zeros
or the first P observations are simply dropped when computing this statistic. In the interest of replicability,
users should determine which is the case before reporting results.
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and Pierce (1970). The Q test is carried out by referring

Q = T
P∑

j=1

r2
j , (20-21)

where r j = (
∑T

t= j+1 et et− j )/(
∑T

t=1 e2
t ), to the critical values of the chi-squared table with

P degrees of freedom. A refinement suggested by Ljung and Box (1979) is

Q′ = T(T + 2)

P∑
j=1

r2
j

T − j
. (20-22)

The essential difference between the Godfrey–Breusch and the Box–Pierce tests
is the use of partial correlations (controlling for X and the other variables) in the
former and simple correlations in the latter. Under the null hypothesis, there is no
autocorrelation in εt , and no correlation between xt and εs in any event, so the two tests
are asymptotically equivalent. On the other hand, because it does not condition on xt ,
the Box–Pierce test is less powerful than the LM test when the null hypothesis is false,
as intuition might suggest.

20.7.3 THE DURBIN–WATSON TEST

The Durbin–Watson statistic12 was the first formal procedure developed for testing for
autocorrelation using the least squares residuals. The test statistic is

d =
∑T

t=2(et − et−1)
2

∑T
t=1 e2

t

= 2(1 − r) − e2
1 + e2

T∑T
t=1 e2

t

, (20-23)

where r is the same first-order autocorrelation that underlies the preceding two statistics.
If the sample is reasonably large, then the last term will be negligible, leaving d ≈ 2(1−r).
The statistic takes this form because the authors were able to determine the exact
distribution of this transformation of the autocorrelation and could provide tables of
critical values. Usable critical values that depend only on T and K are presented in
tables such as those at the end of this book. The one-sided test for H0: ρ = 0 against
H1: ρ > 0 is carried out by comparing d to values dL(T, K) and dU(T, K). If d < dL, the
null hypothesis is rejected; if d > dU , the hypothesis is not rejected. If d lies between dL

and dU , then no conclusion is drawn.

20.7.4 TESTING IN THE PRESENCE OF A LAGGED
DEPENDENT VARIABLE

The Durbin–Watson test is not likely to be valid when there is a lagged dependent
variable in the equation.13 The statistic will usually be biased toward a finding of no
autocorrelation. Three alternatives have been devised. The LM and Q tests can be used
whether or not the regression contains a lagged dependent variable. (In the absence of
a lagged dependent variable, they are asymptotically equivalent.) As an alternative to
the standard test, Durbin (1970) derived a Lagrange multiplier test that is appropriate

12Durbin and Watson (1950, 1951, 1971).
13This issue has been studied by Nerlove and Wallis (1966), Durbin (1970), and Dezhbaksh (1990).
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in the presence of a lagged dependent variable. The test may be carried out by referring

h = r
√

T
/(

1 − Ts2
c

)
, (20-24)

where s2
c is the estimated variance of the least squares regression coefficient on yt−1,

to the standard normal tables. Large values of h lead to rejection of H0. The test has
the virtues that it can be used even if the regression contains additional lags of yt , and
it can be computed using the standard results from the initial regression without any
further regressions. If s2

c > 1/T, however, then it cannot be computed. An alternative
is to regress et on xt , yt−1, . . . , et−1, and any additional lags that are appropriate for et

and then to test the joint significance of the coefficient(s) on the lagged residual(s) with
the standard F test. This method is a minor modification of the Breusch–Godfrey test.
Under H0, the coefficients on the remaining variables will be zero, so the tests are the
same asymptotically.

20.7.5 SUMMARY OF TESTING PROCEDURES

The preceding has examined several testing procedures for locating autocorrelation in
the disturbances. In all cases, the procedure examines the least squares residuals. We
can summarize the procedures as follows:

LM test. LM = TR2 in a regression of the least squares residuals on [xt , et−1, . . .

et−P]. Reject H0 if LM > χ2
∗ [P]. This test examines the covariance of the residuals

with lagged values, controlling for the intervening effect of the independent variables.
Q test. Q = T(T + 2)

∑P
j=1 r2

j /(T − j). Reject H0 if Q > χ2
∗ [P]. This test examines

the raw correlations between the residuals and P lagged values of the residuals.
Durbin–Watson test. d = 2(1 − r). Reject H0: ρ = 0 if d < d∗

L. This test looks
directly at the first-order autocorrelation of the residuals.
Durbin’s test. FD = the F statistic for the joint significance of P lags of the residu-
als in the regression of the least squares residuals on [xt , yt−1, . . . yt−R, et−1, . . . et−P].
Reject H0 if FD > F∗[P, T − K − P]. This test examines the partial correlations be-
tween the residuals and the lagged residuals, controlling for the intervening effect of
the independent variables and the lagged dependent variable.

The Durbin–Watson test has some major shortcomings. The inconclusive region is large
if T is small or moderate. The bounding distributions, while free of the parameters β

and σ , do depend on the data (and assume that X is nonstochastic). An exact version
based on an algorithm developed by Imhof (1980) avoids the inconclusive region, but is
rarely used. The LM and Box–Pierce statistics do not share these shortcomings—their
limiting distributions are chi-squared independently of the data and the parameters.
For this reason, the LM test has become the standard method in applied research.

20.8 EFFICIENT ESTIMATION WHEN � IS KNOWN

As a prelude to deriving feasible estimators for β in this model, we consider full gen-
eralized least squares estimation assuming that � is known. In the next section, we will
turn to the more realistic case in which � must be estimated as well.
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If the parameters of � are known, then the GLS estimator,

β̂ = (X′�−1X)−1(X′�−1y), (20-25)

and the estimate of its sampling variance,

Est. Var[β̂] = σ̂ 2
ε [X′�−1X]−1, (20-26)

where

σ̂ 2
ε = (y − Xβ̂)′�−1(y − Xβ̂)

T
(20-27)

can be computed in one step. For the AR(1) case, data for the transformed model are

y∗ =

⎡
⎢⎢⎢⎢⎢⎢⎣

√
1 − ρ2 y1

y2 − ρy1

y3 − ρy2
...

yT − ρyT−1

⎤
⎥⎥⎥⎥⎥⎥⎦

, X∗ =

⎡
⎢⎢⎢⎢⎢⎢⎣

√
1 − ρ2x1

x2 − ρx1

x3 − ρx2
...

xT − ρxT−1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (20-28)

These transformations are variously labeled partial differences, quasi differences,
or pseudo-differences. Note that in the transformed model, every observation except
the first contains a constant term. What was the column of 1s in X is transformed to
[(1 − ρ2)1/2, (1 − ρ), (1 − ρ), . . .]. Therefore, if the sample is relatively small, then the
problems with measures of fit noted in Section 3.5 will reappear.

The variance of the transformed disturbance is

Var[εt − ρεt−1] = Var[ut ] = σ 2
u .

The variance of the first disturbance is also σ 2
u ; [see (20-6)]. This can be estimated using

(1 − ρ2)σ̂ 2
ε .

Corresponding results have been derived for higher-order autoregressive processes.
For the AR(2) model,

εt = θ1εt−1 + θ2εt−2 + ut , (20-29)

the transformed data for generalized least squares are obtained by

z∗1 =
[

(1 + θ2)
[
(1 − θ2)

2 − θ2
1

]

1 − θ2

]1/2

z1,

z∗2 = (
1 − θ2

2

)1/2z2 − θ1
(
1 − θ2

1

)1/2

1 − θ2
z1,

z∗t = zt − θ1zt−1 − θ2zt−2, t > 2,

(20-30)

where zt is used for yt or xt . The transformation becomes progressively more complex
for higher-order processes.14

14See Box and Jenkins (1984) and Fuller (1976).
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Note that in both the AR(1) and AR(2) models, the transformation to y∗ and X∗
involves “starting values” for the processes that depend only on the first one or two
observations. We can view the process as having begun in the infinite past. Because the
sample contains only T observations, however, it is convenient to treat the first one
or two (or P) observations as shown and consider them as “initial values.” Whether
we view the process as having begun at time t = 1 or in the infinite past is ultimately
immaterial in regard to the asymptotic properties of the estimators.

The asymptotic properties for the GLS estimator are quite straightforward given
the apparatus we assembled in Section 20.4. We begin by assuming that {xt , εt } are
jointly an ergodic, stationary process. Then, after the GLS transformation, {x∗t , ε∗t }
is also stationary and ergodic. Moreover, ε∗t is nonautocorrelated by construction. In
the transformed model, then, {w∗t } = {x∗tε∗t } is a stationary and ergodic martingale
difference series. We can use the ergodic theorem to establish consistency and the central
limit theorem for martingale difference sequences to establish asymptotic normality for
GLS in this model. Formal arrangement of the relevant results is left as an exercise.

20.9 ESTIMATION WHEN � IS UNKNOWN

For an unknown �, there are a variety of approaches. Any consistent estimator of �(ρ)

will suffice—recall from Theorem (9.5) in Section 9.3.1, all that is needed for efficient
estimation of β is a consistent estimator of �(ρ). The complication arises, as might be
expected, in estimating the autocorrelation parameter(s).

20.9.1 AR(1) DISTURBANCES

The AR(1) model is the one most widely used and studied. The most common procedure
is to begin FGLS with a natural estimator of ρ, the autocorrelation of the residuals.
Because b is consistent, we can use r . Others that have been suggested include Theil’s
(1971) estimator, r [(T−K)/(T−1)] and Durbin’s (1970), the slope on yt−1 in a regression
of yt on yt−1, x t and x t−1. The second step is FGLS based on (20-25)–(20-28). This is the
Prais and Winsten (1954) estimator. The Cochrane and Orcutt (1949) estimator (based
on computational ease) omits the first observation.

It is possible to iterate any of these estimators to convergence. Because the estima-
tor is asymptotically efficient at every iteration, nothing is gained by doing so. Unlike
the heteroscedastic model, iterating when there is autocorrelation does not produce the
maximum likelihood estimator. The iterated FGLS estimator, regardless of the estima-
tor of ρ, does not account for the term (1/2) ln(1 − ρ2) in the log-likelihood function
[see the following (20-31)].

Maximum likelihood estimators can be obtained by maximizing the log-likelihood
with respect to β, σ 2

u , and ρ. The log-likelihood function may be written

ln L = −
∑T

t=1 u2
t

2σ 2
u

+ 1
2

ln(1 − ρ2) − T
2

(
ln 2π + ln σ 2

u

)
, (20-31)

where, as before, the first observation is computed differently from the others using
(20-28). The MLE for this model is developed in Section 14.9.2.b. Based on the MLE,
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the standard approximations to the asymptotic variances of the estimators are

Est. Asy. Var
[
β̂ML

] = σ̂ 2
ε,ML

[
X′�̂−1

MLX
]−1

,

Est. Asy. Var
[
σ̂ 2

u,ML

] = 2σ̂ 4
u,ML/T,

Est. Asy. Var[ρ̂ML] = (
1 − ρ̂2

ML

)/
T.

(20-32)

All the foregoing estimators have the same asymptotic properties. The available evi-
dence on their small-sample properties comes from Monte Carlo studies and is, unfor-
tunately, only suggestive. Griliches and Rao (1969) find evidence that if the sample is
relatively small and ρ is not particularly large, say, less than 0.3, then least squares is as
good as or better than FGLS. The problem is the additional variation introduced into
the sampling variance by the variance of r . Beyond these, the results are rather mixed.
Maximum likelihood seems to perform well in general, but the Prais–Winsten estimator
is evidently nearly as efficient. Both estimators have been incorporated in all contem-
porary software. In practice, the Prais and Winsten (1954) and Beach and MacKinnon
(1978a) maximum likelihood estimators are probably the most common choices.

20.9.2 APPLICATION: ESTIMATION OF A MODEL
WITH AUTOCORRELATION

The model of the U.S. gasoline market that appears in Example 6.9 is

ln
Gt

popt
= β1 + β2 ln

It

popt
+ β3 ln PG,t + β4 ln PNC,t + β5 ln PUC,t + β6t + εt .

The results in Figure 20.2 suggest that the specification may be incomplete, and, if so,
there may be autocorrelation in the disturbances in this specification. Least squares
estimates of the parameters using the data in Appendix Table F2.2 appear in the first
row of Table 20.2. [The dependent variable is ln(Gas expenditure / (price × popula-
tion)). These are the OLS results reported in Example 6.9.] The first five autocorre-
lations of the least squares residuals are 0.667, 0.438, 0.142, −0.018, and −0.198. This
produces Box–Pierce and Box–Ljung statistics of 36.217 and 38.789, respectively, both
of which are larger than the critical value from the chi-squared table of 11.07. We
regressed the least squares residuals on the independent variables and five lags of

TABLE 20.2 Parameter Estimates (standard errors in parentheses)

β1 β2 β3 β4 β5 β6 ρ

OLS −26.68 1.6250 −0.05392 −0.0834 −0.08467 −0.01393 0.0000
R2 = 0.96493 (2.000) (0.1952) (0.04216) (0.1765) (0.1024) (0.00477) (0.0000)
Prais– −18.58 0.7447 −0.1138 −0.1364 −0.008956 0.006689 0.9567
Winsten (1.768) (0.1761) (0.03689) (0.1528) (0.07213) (0.004974) (0.04078)
Cochrane– −18.76 0.7300 −0.1080 −0.06675 0.04190 −0.0001653 0.9695
Orcutt (1.382) (0.1377) (0.02885) (0.1201) (0.05713) (0.004082) (0.03434)

Maximum −16.25 0.4690 −0.1387 −0.09682 −0.001485 0.01280 0.9792
Likelihood (1.391) (0.1350) (0.02794) (0.1270) (0.05198) (0.004427) (0.02816)
AR(2) −19.45 0.8116 −0.09538 −0.09099 0.04091 −0.001374 0.8610

(1.495) (0.1502) (0.03117) (0.1297) (0.06558) (0.004227) (0.07053)
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FIGURE 20.4 Least Squares Residuals.

the residuals. (The missing values in the first five years were filled with zeros.) The
coefficients on the lagged residuals and the associated t statistics are 0.741 (4.635),

0.153 (0.789), −0.246 (−1.262), 0.0942(0.472), and −0.125 (−0.658). The R2 in this re-
gression is 0.549086, which produces a chi-squared value of 28.55. This is larger than
the critical value of 11.07, so once again, the null hypothesis of zero autocorrelation is
rejected. Finally, the Durbin–Watson statistic is 0.425007. For 5 regressors and 52 obser-
vations, the critical value of dL is 1.36, so on this basis as well, the null hypothesis ρ = 0
would pe rejected. The plot of the residuals shown in Figure 20.4 seems consistent with
this conclusion.

The Prais and Winsten FGLS estimates appear in the second row of Table 20.2
followed by the Cochrane and Orcutt results then the maximum likelihood estimates.
[The autocorrelation coefficient computed using (1−d/2) (see Section 20.7.3) is 0.78750.
The MLE is computed using the Beach and MacKinnon algorithm. See Section 14.9.2.b.]
Finally, we fit the AR(2) model by first regressing the least squares residuals, et , on et−1

and et−2 (without a constant term and filling the first two observations with zeros). The
two estimates are 0.751941 and −0.022464, respectively. With the estimates of θ1 and θ2,
we transformed the data using y∗

t = yt − θ1 yt−1 − θ2 yt−2 and likewise for each regressor.
Two observations are then discarded, so the AR(2) regression uses 50 observations
while the Prais–Winsten estimator uses 52 and the Cochrane–Orcutt regression uses 51.
In each case, the autocorrelation of the FGLS residuals is computed and reported in
the last column of the table.

One might want to examine the residuals after estimation to ascertain whether the
AR(1) model is appropriate. In the results just presented, there are two large autocorre-
lation coefficients listed with the residual based tests, and in computing the LM statistic,
we found that the first two coefficients were statistically significant. If the AR(1) model
is appropriate, then one should find that only the coefficient on the first lagged residual
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is statistically significant in this auxiliary, second-step regression. Another indicator is
provided by the FGLS residuals, themselves. After computing the FGLS regression,
the estimated residuals,

ε̂ = yt − x′
t β̂

will still be autocorrelated. In our results using the Prais–Winsten estimates, the auto-
correlation of the FGLS residuals is 0.957. The associated Durbin–Watson statistic is
0.0867. This is to be expected. However, if the model is correct, then the transformed
residuals

ût = ε̂t − ρ̂ε̂t−1

should be at least close to nonautocorrelated. But, for our data, the autocorrelation of
these adjusted residuals is only 0.292 with a Durbin–Watson statistic of 1.416. The value
of dL for one regressor (ut−1) and 50 observations is 1.50. It appears on this basis that,
in fact, the AR(1) model has largely completed the specification.

20.9.3 ESTIMATION WITH A LAGGED DEPENDENT VARIABLE

In Section 20.5.1, we considered the problem of estimation by least squares when the
model contains both autocorrelation and lagged dependent variable(s). Because the
OLS estimator is inconsistent, the residuals on which an estimator of ρ would be based
are likewise inconsistent. Therefore, ρ̂ will be inconsistent as well. The consequence
is that the FGLS estimators described earlier are not usable in this case. There is,
however, an alternative way to proceed, based on the method of instrumental variables.
The method of instrumental variables was introduced in Section 8.3.2. To review, the
general problem is that in the regression model, if

plim(1/T )X′ε �= 0,

then the least squares estimator is not consistent. A consistent estimator is

bIV = (Z′X)−1(Z′y),

where Z is a set of K variables chosen such that plim(1/T)Z′ε = 0 but plim(1/T)Z′X �=
0. For the purpose of consistency only, any such set of instrumental variables will suffice.
The relevance of that here is that the obstacle to consistent FGLS is, at least for the
present, is the lack of a consistent estimator of ρ. By using the technique of instrumental
variables, we may estimate β consistently, then estimate ρ and proceed.

Hatanaka (1974, 1976) has devised an efficient two-step estimator based on this prin-
ciple. To put the estimator in the current context, we consider estimation of the model

yt = x′
tβ + γ yt−1 + εt ,

εt = ρεt−1 + ut .

To get to the second step of FGLS, we require a consistent estimator of the slope pa-
rameters. These estimates can be obtained using an IV estimator, where the column
of Z corresponding to yt−1 is the only one that need be different from that of X. An
appropriate instrument can be obtained by using the fitted values in the regression of
yt on xt and xt−1. The residuals from the IV regression are then used to construct

ρ̂ =
∑T

t=3 ε̂t ε̂t−1∑T
t=3 ε̂2

t

, (20-33)
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where

ε̂t = yt − b′
IVxt − cIV yt−1.

FGLS estimates may now be computed by regressing y∗t = yt − ρ̂yt−1 on

x∗t = xt − ρ̂xt−1,

y∗t−1 = yt−1 − ρ̂yt−2,

ε̂t−1 = yt−1 − b′
IVxt−1 − cIV yt−2.

Let d be the coefficient on ε̂t−1 in this regression. The efficient estimator of ρ is

ˆ̂ρ = ρ̂ + d.

Appropriate asymptotic standard errors for the estimators, including ˆ̂ρ, are obtained
from the s2[X′∗X∗]−1 computed at the second step. Hatanaka shows that these estimators
are asymptotically equivalent to maximum likelihood estimators.15

20.10 AUTOREGRESSIVE CONDITIONAL
HETEROSCEDASTICITY

Heteroscedasticity is often associated with cross-sectional data, whereas time series are
usually studied in the context of homoscedastic processes. In analyses of macroeconomic
data, Engle (1982, 1983) and Cragg (1982) found evidence that for some kinds of data,
the disturbance variances in time-series models were less stable than usually assumed.
Engle’s results suggested that in models of inflation, large and small forecast errors
appeared to occur in clusters, suggesting a form of heteroscedasticity in which the
variance of the forecast error depends on the size of the previous disturbance. He
suggested the autoregressive, conditionally heteroscedastic, or ARCH, model as an
alternative to the usual time-series process. More recent studies of financial markets
suggest that the phenomenon is quite common. The ARCH model has proven to be
useful in studying the volatility of inflation [Coulson and Robins (1985)], the term
structure of interest rates [Engle, Hendry, and Trumble (1985)], the volatility of stock
market returns [Engle, Lilien, and Robins (1987)], and the behavior of foreign exchange
markets [Domowitz and Hakkio (1985) and Bollerslev and Ghysels (1996)], to name
but a few. This section will describe specification, estimation, and testing, in the basic
formulations of the ARCH model and some extensions.16

Example 20.5 Stochastic Volatility
Figure 20.5 shows Bollerslev and Ghysel’s 1974 data on the daily percentage nominal return
for the Deutschmark/Pound exchange rate. (These data are given in Appendix Table F20.1.)
The variation in the series appears to be fluctuating, with several clusters of large and small
movements.

15See Section 14.9.2.b.
16Engle and Rothschild (1992) give a survey of this literature which describes many extensions. Mills (1993)
also presents several applications. See, as well, Bollerslev (1986) and Li, Ling, and McAleer (2001). See
McCullough and Renfro (1999) for discussion of estimation of this model.
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FIGURE 20.5 Nominal Exchange Rate Returns.

20.10.1 THE ARCH(1) MODEL

The simplest form of this model is the ARCH(1) model,

yt = x′
tβ + εt ,

εt = ut

√
α0 + α1ε

2
t−1,

(20-34)

where ut is distributed as standard normal.17 It follows that E [εt | xt , εt−1] = 0, so that
E [εt | xt ] = 0 and E [yt | xt ] = x′

tβ. Therefore, this model is a classical regression model.
But

Var[εt | εt−1] = E
[
ε2

t

∣∣ εt−1
] = E

[
u2

t

][
α0 + α1ε

2
t−1

] = α0 + α1ε
2
t−1,

so εt is conditionally heteroscedastic, not with respect to xt as we considered in Chapter 9,
but with respect to εt−1. The unconditional variance of εt is

Var[εt ] = Var
{
E [εt | εt−1]

} + E
{

Var[εt | εt−1]
} = α0 + α1 E

[
ε2

t−1

] = α0 + α1 Var[εt−1].

If the process generating the disturbances is weakly (covariance) stationary (see Defi-
nition 19.2),18 then the unconditional variance is not changing over time so

Var[εt ] = Var[εt−1] = α0 + α1 Var[εt−1] = α0

1 − α1
.

17The assumption that ut has unit variance is not a restriction. The scaling implied by any other variance
would be absorbed by the other parameters.
18This discussion will draw on the results and terminology of time-series analysis in Section 20.3. The reader
may wish to peruse this material at this point.
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For this ratio to be finite and positive, |α1| must be less than 1. Then, unconditionally,
εt is distributed with mean zero and variance σ 2 = α0/(1 − α1). Therefore, the model
obeys the classical assumptions, and ordinary least squares is the most efficient linear
unbiased estimator of β.

But there is a more efficient nonlinear estimator. The log-likelihood function for
this model is given by Engle (1982). Conditioned on starting values y0 and x0 (and ε0),
the conditional log-likelihood for observations t = 1, . . . , T is the one we examined in
Section 14.9.2.a for the general heteroscedastic regression model [see (14-52)],

ln L = −T
2

ln(2π) − 1
2

T∑
t=1

ln
(
α0 + α1ε

2
t−1

) − 1
2

T∑
t=1

ε2
t

α0 + α1ε
2
t−1

, εt = yt − β ′xt .

(20-35)

Maximization of log L can be done with the conventional methods, as discussed in
Appendix E.19

20.10.2 ARCH(q), ARCH-IN-MEAN, AND GENERALIZED
ARCH MODELS

The natural extension of the ARCH(1) model presented before is a more general model
with longer lags. The ARCH(q) process,

σ 2
t = α0 + α1ε

2
t−1 + α2ε

2
t−2 + · · · + αqε

2
t−q,

is a qth order moving average [MA(q)] process. [Once again, see Engle (1982).] This
section will generalize the ARCH(q) model, as suggested by Bollerslev (1986), in the
direction of the autoregressive-moving average (ARMA) models of Section 22.2.1. The
discussion will parallel his development, although many details are omitted for brevity.
The reader is referred to that paper for background and for some of the less critical
details.

Among the many variants of the capital asset pricing model (CAPM) is an intertem-
poral formulation by Merton (1980) that suggests an approximate linear relationship
between the return and variance of the market portfolio. One of the possible flaws
in this model is its assumption of a constant variance of the market portfolio. In this
connection, then, the ARCH-in-Mean, or ARCH-M, model suggested by Engle, Lilien,
and Robins (1987) is a natural extension. The model states that

yt = β ′xt + δσ 2
t + εt ,

Var[εt | �t ] = ARCH(q).

Among the interesting implications of this modification of the standard model is that
under certain assumptions, δ is the coefficient of relative risk aversion. The ARCH-M
model has been applied in a wide variety of studies of volatility in asset returns, including

19Engle (1982) and Judge et al. (1985, pp. 441–444) suggest a four-step procedure based on the method
of scoring that resembles the two-step method we used for the multiplicative heteroscedasticity model in
Section 8.8.1. However, the full MLE is now incorporated in most modern software, so the simple regres-
sion based methods, which are difficult to generalize, are less attractive in the current literature. But, see
McCullough and Renfro (1999) and Fiorentini, Calzolari, and Panattoni (1996) for commentary and some
cautions related to maximum likelihood estimation.
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the daily Standard and Poor’s Index [French, Schwert, and Stambaugh (1987)] and
weekly New York Stock Exchange returns [Chou (1988)]. A lengthy list of applications
is given in Bollerslev, Chou, and Kroner (1992).

The ARCH-M model has several noteworthy statistical characteristics. Unlike the
standard regression model, misspecification of the variance function does affect the
consistency of estimators of the parameters of the mean. [See Pagan and Ullah (1988)
for formal analysis of this point.] Recall that in the classical regression setting, weighted
least squares is consistent even if the weights are misspecified as long as the weights are
uncorrelated with the disturbances. That is not true here. If the ARCH part of the model
is misspecified, then conventional estimators of β and δ will not be consistent. Bollerslev,
Chou, and Kroner (1992) list a large number of studies that called into question the
specification of the ARCH-M model, and they subsequently obtained quite different
results after respecifying the model. A closely related practical problem is that the
mean and variance parameters in this model are no longer uncorrelated. In analysis
up to this point, we made quite profitable use of the block diagonality of the Hessian
of the log-likelihood function for the model of heteroscedasticity. But the Hessian for
the ARCH-M model is not block diagonal. In practical terms, the estimation problem
cannot be segmented as we have done previously with the heteroscedastic regression
model. All the parameters must be estimated simultaneously.

The model of generalized autoregressive conditional heteroscedasticity (GARCH)
is defined as follows.20 The underlying regression is the usual one in (20-34). Conditioned
on an information set at time t, denoted �t , the distribution of the disturbance is assumed
to be

εt | �t ∼ N
[
0, σ 2

t

]
,

where the conditional variance is

σ 2
t = α0 + δ1σ

2
t−1 + δ2σ

2
t−2 + · · · + δpσ

2
t−p + α1ε

2
t−1 + α2ε

2
t−2 + · · · + αqε

2
t−q. (20-36)

Define

zt = [
1, σ 2

t−1, σ
2
t−2, . . . , σ

2
t−p, ε

2
t−1, ε

2
t−2, . . . , ε

2
t−q

]′

and

γ = [α0, δ1, δ2, . . . , δp, α1, . . . , αq]′ = [α0, δ
′, α′]′.

Then

σ 2
t = γ ′zt .

Notice that the conditional variance is defined by an autoregressive-moving average
[ARMA (p, q)] process in the innovations ε2

t . The difference here is that the mean of
the random variable of interest yt is described completely by a heteroscedastic, but
otherwise ordinary, regression model. The conditional variance, however, evolves over
time in what might be a very complicated manner, depending on the parameter values
and on p and q. The model in (20-36) is a GARCH(p, q) model, where p refers, as

20As have most areas in time-series econometrics, the line of literature on GARCH models has progressed
rapidly in recent years and will surely continue to do so. We have presented Bollerslev’s model in some detail,
despite many recent extensions, not only to introduce the topic as a bridge to the literature, but also because it
provides a convenient and interesting setting in which to discuss several related topics such as double-length
regression and pseudo–maximum likelihood estimation.
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before, to the order of the autoregressive part.21 As Bollerslev (1986) demonstrates with
an example, the virtue of this approach is that a GARCH model with a small number
of terms appears to perform as well as or better than an ARCH model with many.

The stationarity conditions are important in this context to ensure that the moments
of the normal distribution are finite. The reason is that higher moments of the normal
distribution are finite powers of the variance. A normal distribution with variance σ 2

t
has fourth moment 3σ 4

t , sixth moment 15σ 6
t , and so on. [The precise relationship of

the even moments of the normal distribution to the variance is μ2k = (σ 2)k(2k)!/(k!2k).]
Simply ensuring that σ 2

t is stable does not ensure that higher powers are as well.22

Bollerslev presents a useful figure that shows the conditions needed to ensure stability
for moments up to order 12 for a GARCH(1, 1) model and gives some additional
discussion. For example, for a GARCH(1, 1) process, for the fourth moment to exist,
3α2

1 + 2α1δ1 + δ2
1 must be less than 1.

It is convenient to write (20-36) in terms of polynomials in the lag operator;

σ 2
t = α0 + D(L)σ 2

t + A(L)ε2
t .

The stationarity condition for such an equation is that the roots of the characteristic
equation, 1 − D(z) = 0, must lie outside the unit circle. For the present, we will as-
sume that this case is true for the model we are considering and that A(1) + D(1) < 1.
[This assumption is stronger than that needed to ensure stationarity in a higher-order
autoregressive model, which would depend only on D(L).] The implication is that the
GARCH process is covariance stationary with E [εt ] = 0 (unconditionally), Var[εt ] =
α0/[1 − A(1) − D(1)], and Cov[εt , εs] = 0 for all t �= s. Thus, unconditionally the model
is the classical regression model that we examined in Chapters 2–6.

The usefulness of the GARCH specification is that it allows the variance to evolve
over time in a way that is much more general than the simple specification of the ARCH
model. For the example discussed in his paper, Bollerslev reports that although Engle
and Kraft’s (1983) ARCH(8) model for the rate of inflation in the GNP deflator appears
to remove all ARCH effects, a closer look reveals GARCH effects at several lags. By
fitting a GARCH(1, 1) model to the same data, Bollerslev finds that the ARCH effects
out to the same eight-period lag as fit by Engle and Kraft and his observed GARCH
effects are all satisfactorily accounted for.

20.10.3 MAXIMUM LIKELIHOOD ESTIMATION
OF THE GARCH MODEL

Bollerslev describes a method of estimation based on the BHHH algorithm. As he
shows, the method is relatively simple, although with the line search and first derivative
method that he suggests, it probably involves more computation and more iterations
than necessary. Following the suggestions of Harvey (1976), it turns out that there is a
simpler way to estimate the GARCH model that is also very illuminating. This model is
actually very similar to the more conventional model of multiplicative heteroscedasticity
that we examined in Section 14.9.2.a.

21We have changed Bollerslev’s notation slightly so as not to conflict with our previous presentation. He used
β instead of our δ in (20-36) and b instead of our β in (20-34).
22The conditions cannot be imposed a priori. In fact, there is no nonzero set of parameters that guarantees
stability of all moments, even though the normal distribution has finite moments of all orders. As such, the
normality assumption must be viewed as an approximation.
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For normally distributed disturbances, the log-likelihood for a sample of T obser-
vations is23

ln L =
T∑

t=1

−1
2

[
ln(2π) + ln σ 2

t + ε2
t

σ 2
t

]
=

T∑
t=1

ln ft (θ) =
T∑

t=1

lt (θ),

where εt = yt − x′
tβ and θ = (β ′, α0, α

′, δ′)′ = (β ′, γ ′)′. Derivatives of ln L are obtained
by summation. Let lt denote ln ft (θ). The first derivatives with respect to the variance
parameters are

∂lt

∂γ
= −1

2

[
1
σ 2

t
− ε2

t(
σ 2

t

)2

]
∂σ 2

t

∂γ
= 1

2

(
1
σ 2

t

)
∂σ 2

t

∂γ

(
ε2

t

σ 2
t

− 1
)

= 1
2

(
1
σ 2

t

)
gtvt = btvt .

(20-37)

Note that E [vt ] = 0. Suppose, for now, that there are no regression parameters.
Newton’s method for estimating the variance parameters would be

γ̂ i+1 = γ̂ i − H−1g, (20-38)

where H indicates the Hessian and g is the first derivatives vector. Following Harvey’s
suggestion (see Section 14.9.2.a), we will use the method of scoring instead. To do this,
we make use of E [vt ] = 0 and E [ε2

t /σ
2
t ] = 1. After taking expectations in (20-37), the it-

eration reduces to a linear regression of v∗t = (1/
√

2)vt on regressors w∗t = (1/
√

2)gt/σ
2
t .

That is,

γ̂ i+1 = γ̂ i + [W′
∗W∗]−1W′

∗v∗ = γ̂ i + [W′
∗W∗]−1

(
∂ ln L
∂γ

)
, (20-39)

where row t of W∗ is w′
∗t

. The iteration has converged when the slope vector is zero,
which happens when the first derivative vector is zero. When the iterations are complete,
the estimated asymptotic covariance matrix is simply

Est. Asy. Var[γ̂ ] = [Ŵ′
∗W∗]−1

based on the estimated parameters.
The usefulness of the result just given is that E [∂2 ln L/∂γ ∂β ′] is, in fact, zero. Be-

cause the expected Hessian is block diagonal, applying the method of scoring to the full
parameter vector can proceed in two parts, exactly as it did in Section 14.9.2.a for the
multiplicative heteroscedasticity model. That is, the updates for the mean and variance
parameter vectors can be computed separately. Consider then the slope parameters, β.
The same type of modified scoring method as used earlier produces the iteration

β̂ i+1 = β̂ i +
[

T∑
t=1

xt x′
t

σ 2
t

+ 1
2

(
dt

σ 2
t

)(
dt

σ 2
t

)′]−1 [
T∑

t=1

xtεt

σ 2
t

+ 1
2

(
dt

σ 2
t

)
vt

]

= β̂ i +
[

T∑
t=1

xt x′
t

σ 2
t

+ 1
2

(
dt

σ 2
t

)(
dt

σ 2
t

)′]−1 (
∂ ln L
∂β

)
(20-40)

= β̂ i + hi ,

23There are three minor errors in Bollerslev’s derivation that we note here to avoid the apparent inconsisten-
cies. In his (22), 1

2 ht should be 1
2 h−1

t . In (23), −2h−2
t should be −h−2

t . In (28), h ∂h/∂ω should, in each case,
be (1/h) ∂h/∂ω. [In his (8), α0α1 should be α0 + α1, but this has no implications for our derivation.]
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which has been referred to as a double-length regression. [See Orme (1990) and David-
son and MacKinnon (1993, Chapter 14).] The update vector hi is the vector of slopes
in an augmented or double-length generalized regression,

hi = [C′�−1C]−1[C′�−1a], (20-41)

where C is a 2T × K matrix whose first T rows are the X from the original regression
model and whose next T rows are (1/

√
2)d′

t/σ
2
t , t = 1, . . . , T; a is a 2T ×1 vector whose

first T elements are εt and whose next T elements are (1/
√

2)vt/σ
2
t , t = 1, . . . , T; and

� is a diagonal matrix with 1/σ 2
t in positions 1, . . . , T and ones below observation T.

At convergence, [C′�−1C]−1 provides the asymptotic covariance matrix for the MLE.
The resemblance to the familiar result for the generalized regression model is striking,
but note that this result is based on the double-length regression.

The iteration is done simply by computing the update vectors to the current pa-
rameters as defined earlier.24 An important consideration is that to apply the scoring
method, the estimates of β and γ are updated simultaneously. That is, one does not use
the updated estimate of γ in (20-39) to update the weights for the GLS regression to
compute the new β in (20-40). The same estimates (the results of the prior iteration) are
used on the right-hand sides of both (20-39) and (20-40). The remaining problem is to
obtain starting values for the iterations. One obvious choice is b, the OLS estimator, for
β, e′e/T = s2 for α0, and zero for all the remaining parameters. The OLS slope vector
will be consistent under all specifications. A useful alternative in this context would be
to start α at the vector of slopes in the least squares regression of e2

t , the squared OLS
residual, on a constant and q lagged values.25 As discussed later, an LM test for the
presence of GARCH effects is then a by-product of the first iteration. In principle, the
updated result of the first iteration is an efficient two-step estimator of all the parame-
ters. But having gone to the full effort to set up the iterations, nothing is gained by not
iterating to convergence. One virtue of allowing the procedure to iterate to convergence
is that the resulting log-likelihood function can be used in likelihood ratio tests.

20.10.4 TESTING FOR GARCH EFFECTS

The preceding development appears fairly complicated. In fact, it is not, because at each
step, nothing more than a linear least squares regression is required. The intricate part
of the computation is setting up the derivatives. On the other hand, it does take a fair
amount of programming to get this far.26 As Bollerslev suggests, it might be useful to
test for GARCH effects first.

The simplest approach is to examine the squares of the least squares residuals.
The autocorrelations (correlations with lagged values) of the squares of the residuals
provide evidence about ARCH effects. An LM test of ARCH(q) against the hypothesis
of no ARCH effects [ARCH(0), the classical model] can be carried out by computing
χ2 = TR2 in the regression of e2

t on a constant and q lagged values. Under the null

24See Fiorentini et al. (1996) on computation of derivatives in GARCH models.
25A test for the presence of q ARCH effects against none can be carried out by carrying TR2 from this
regression into a table of critical values for the chi-squared distribution. But in the presence of GARCH
effects, this procedure loses its validity.
26Because this procedure is available as a preprogrammed procedure in many computer programs, including
TSP, E-Views, Stata, RATS, LIMDEP, and Shazam, this warning might itself be overstated.
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TABLE 20.3 Maximum Likelihood Estimates of a GARCH(1, 1) Model29

μ α0 α1 δ α0/(1 − α1 − δ)

Estimate −0.006190 0.01076 0.1531 0.8060 0.2631
Std. Error 0.00873 0.00312 0.0273 0.0302 0.594
t ratio −0.709 3.445 5.605 26.731 0.443

ln L = −1106.61, ln LOLS = −1311.09, ȳ = −0.01642, s2 = 0.221128

hypothesis of no ARCH effects, the statistic has a limiting chi-squared distribution with
q degrees of freedom. Values larger than the critical table value give evidence of the
presence of ARCH (or GARCH) effects.

Bollerslev suggests a Lagrange multiplier statistic that is, in fact, surprisingly simple
to compute. The LM test for GARCH(p, 0) against GARCH(p, q) can be carried out
by referring T times the R2 in the linear regression defined in (20-42) to the chi-squared
critical value with q degrees of freedom. There is, unfortunately, an indeterminacy in
this test procedure. The test for ARCH(q) against GARCH(p, q) is exactly the same
as that for ARCH(p) against ARCH(p + q). For carrying out the test, one can use as
starting values a set of estimates that includes δ = 0 and any consistent estimators for
β and α. Then TR2 for the regression at the initial iteration provides the test statistic.27

A number of recent papers have questioned the use of test statistics based solely
on normality. Wooldridge (1991) is a useful summary with several examples.

Example 20.6 GARCH Model for Exchange Rate Volatility
Bollerslev and Ghysels analyzed the exchange rate data in Example 20.7 using a GARCH(1, 1)
model,

yt = μ + εt ,

E [εt | εt−1] = 0,

Var[εt | εt−1] = σ 2
t = α0 + α1ε

2
t−1 + δσ 2

t−1.

The least squares residuals for this model are simply et = yt − ȳ. Regression of the squares
of these residuals on a constant and 10 lagged squared values using observations 11–1974
produces an R2 = 0.09795. With T = 1964, the chi-squared statistic is 192.37, which is larger
than the critical value from the table of 18.31. We conclude that there is evidence of GARCH
effects in these residuals. The maximum likelihood estimates of the GARCH model are given
in Table 20.3. Note the resemblance between the OLS unconditional variance (0.221128) and
the estimated equilibrium variance from the GARCH model, 0.2631.

20.10.5 PSEUDO–MAXIMUM LIKELIHOOD ESTIMATION

We now consider an implication of nonnormality of the disturbances. Suppose that the
assumption of normality is weakened to only

E [εt | �t ] = 0, E
[

ε2
t

σ 2
t

∣∣∣∣ �t

]
= 1, E

[
ε4

t

σ 4
t

∣∣∣∣ �t

]
= κ < ∞,

27Bollerslev argues that in view of the complexity of the computations involved in estimating the GARCH
model, it is useful to have a test for GARCH effects. This case is one (as are many other maximum likelihood
problems) in which the apparatus for carrying out the test is the same as that for estimating the model. Having
computed the LM statistic for GARCH effects, one can proceed to estimate the model just by allowing the
program to iterate to convergence. There is no additional cost beyond waiting for the answer.
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where σ 2
t is as defined earlier. Now the normal log-likelihood function is inappropriate.

In this case, the nonlinear (ordinary or weighted) least squares estimator would have the
properties discussed in Chapter 7. It would be more difficult to compute than the MLE
discussed earlier, however. It has been shown [see White (1982a) and Weiss (1982)]
that the pseudo-MLE obtained by maximizing the same log-likelihood as if it were
correct produces a consistent estimator despite the misspecification.29 The asymptotic
covariance matrices for the parameter estimators must be adjusted, however.

The general result for cases such as this one [see Gourieroux, Monfort, and Trognon
(1984)] is that the appropriate asymptotic covariance matrix for the pseudo-MLE of a
parameter vector θ would be

Asy. Var[θ̂ ] = H−1FH−1, (20-42)

where

H = −E
[
∂2 ln L
∂θ ∂θ ′

]
,

and

F = E
[(

∂ ln L
∂θ

)(
∂ ln L
∂θ ′

)]

(i.e., the BHHH estimator), and ln L is the used but inappropriate log-likelihood func-
tion. For current purposes, H and F are still block diagonal, so we can treat the mean and
variance parameters separately. In addition, E [vt ] is still zero, so the second derivative
terms in both blocks are quite simple. (The parts involving ∂2σ 2

t /∂γ ∂γ ′ and ∂2σ 2
t /∂β ∂β ′

fall out of the expectation.) Taking expectations and inserting the parts produces the
corrected asymptotic covariance matrix for the variance parameters:

Asy. Var[γ̂ PMLE] = [W′
∗W∗]−1B′B[W′

∗W∗]−1,

where the rows of W∗ are defined in (20-39) and those of B are in (20-37). For the slope
parameters, the adjusted asymptotic covariance matrix would be

Asy. Var[β̂PMLE] = [C′�−1C]−1

[
T∑

t=1

bt b′
t

]
[C′�−1C]−1,

where the outer matrix is defined in (20-41) and, from the first derivatives given in
(20-37) and (20-40),30

bt = xtεt

σ 2
t

+ 1
2

(
vt

σ 2
t

)
dt .

28These data have become a standard data set for the evaluation of software for estimating GARCH models.
The values given are the benchmark estimates. Standard errors differ substantially from one method to the
next. Those given are the Bollerslev and Wooldridge (1992) results. See McCullough and Renfro (1999).
29White (1982a) gives some additional requirements for the true underlying density of εt . Gourieroux,
Monfort, and Trognon (1984) also consider the issue. Under the assumptions given, the expectations of
the matrices in (20-36) and (20-41) remain the same as under normality. The consistency and asymptotic
normality of the pseudo-MLE can be argued under the logic of GMM estimators.
30McCullough and Renfro (1999) examined several approaches to computing an appropriate asymptotic
covariance matrix for the GARCH model, including the conventional Hessian and BHHH estimators and
three sandwich style estimators, including the one suggested earlier and two based on the method of scoring
suggested by Bollerslev and Wooldridge (1992). None stand out as obviously better, but the Bollerslev and
QMLE estimator based on an actual Hessian appears to perform well in Monte Carlo studies.
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20.11 SUMMARY AND CONCLUSIONS

This chapter has examined the generalized regression model with serial correlation in
the disturbances. We began with some general results on analysis of time-series data.
When we consider dependent observations and serial correlation, the laws of large num-
bers and central limit theorems used to analyze independent observations no longer
suffice. We presented some useful tools that extend these results to time-series settings.
We then considered estimation and testing in the presence of autocorrelation. As usual,
OLS is consistent but inefficient. The Newey–West estimator is a robust estimator for
the asymptotic covariance matrix of the OLS estimator. This pair of estimators also
constitute the GMM estimator for the regression model with autocorrelation. We then
considered two-step feasible generalized least squares and maximum likelihood estima-
tion for the special case usually analyzed by practitioners, the AR(1) model. The model
with a correction for autocorrelation is a restriction on a more general model with
lagged values of both dependent and independent variables. We considered a means of
testing this specification as an alternative to “fixing” the problem of autocorrelation.
The final section, on ARCH and GARCH effects, describes an extension of the models
of autoregression to the conditional variance of ε as opposed to the conditional mean.
This model embodies elements of both autocorrelation and heteroscedasticity. The set
of methods plays a fundamental role in the modern analysis of volatility in financial data.

Key Terms and Concepts

• AR(1)
• ARCH
• ARCH-in-mean
• Asymptotic negligibility
• Asymptotic normality
• Autocorrelation
• Autocorrelation coefficient
• Autocorrelation matrix
• Autocovariance
• Autocovariance matrix
• Autoregressive form
• Autoregressive processes
• Cochrane–Orcutt estimator
• Common factors
• Common factor model
• Covariance stationarity
• Double-length regression
• Durbin–Watson test

• Efficient two-step estimator
• Ergodicity
• Ergodic theorem
• Expectations-augmented

Phillips curve
• First-order autoregression
• GARCH
• GMM estimator
• Initial conditions
• Innovation
• Lagrange multiplier test
• Martingale sequence
• Martingale difference

sequence
• Moving average form
• Moving-average process
• Newey–West

autocorrelation consistent

covariance estimator
• Newey–West robust

covariance matrix estimator
• Partial difference
• Prais–Winsten estimator
• Pseudo-differences
• Pseudo-MLE
• Q test
• Quasi differences
• Random walk
• Stationarity
• Stationarity conditions
• Summability
• Time-series process
• Time window
• Weakly stationary
• White noise
• Yule–Walker equations

Exercises

1. Does first differencing reduce autocorrelation? Consider the models yt = β ′xt +εt ,

where εt = ρεt−1 + ut and εt = ut −λut−1. Compare the autocorrelation of εt in the
original model with that of vt in yt − yt−1 = β ′(xt − xt−1) + vt , where vt = εt − εt−1.
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2. Derive the disturbance covariance matrix for the model

yt = β ′xt + εt ,

εt = ρεt−1 + ut − λut−1.

What parameter is estimated by the regression of the OLS residuals on their lagged
values?

3. The following regression is obtained by ordinary least squares, using 21 observa-
tions. (Estimated asymptotic standard errors are shown in parentheses.)

yt = 1.3 + 0.97yt−1 + 2.31xt , D − W = 1.21.

(0.3) (0.18) (1.04)

Test for the presence of autocorrelation in the disturbances.
4. It is commonly asserted that the Durbin–Watson statistic is only appropriate for

testing for first-order autoregressive disturbances. What combination of the coef-
ficients of the model is estimated by the Durbin–Watson statistic in each of the
following cases: AR(1), AR(2), MA(1)? In each case, assume that the regression
model does not contain a lagged dependent variable. Comment on the impact on
your results of relaxing this assumption.

Applications

1. The data used to fit the expectations augmented Phillips curve in Example 20.3 are
given in Appendix Table F5.2. Using these data, reestimate the model given in the
example. Carry out a formal test for first-order autocorrelation using the LM statis-
tic. Then, reestimate the model using an AR(1) model for the disturbance process.
Because the sample is large, the Prais–Winsten and Cochrane–Orcutt estimators
should give essentially the same answer. Do they? After fitting the model, obtain
the transformed residuals and examine them for first-order autocorrelation. Does
the AR(1) model appear to have adequately “fixed” the problem?

2. Data for fitting an improved Phillips curve model can be obtained from many
sources, including the Bureau of Economic Analysis’s (BEA) own Web site, www.
economagic.com, and so on. Obtain the necessary data and expand the model of
Example 20.3. Does adding additional explanatory variables to the model reduce
the extreme pattern of the OLS residuals that appears in Figure 20.3?

3. (This exercise requires appropriate computer software. The computations required
can be done with RATS, EViews, Stata, TSP, LIMDEP, and a variety of other
software using only preprogrammed procedures.) Quarterly data on the consumer
price index for 1950.1 to 2000.4 are given in Appendix Table F5.2. Use these data
to fit the model proposed by Engle and Kraft (1983). The model is

πt = β0 + β1πt−1 + β2πt−2 + β3πt−3 + β4πt−4 + εt ,

where πt = 100 ln[pt/pt−1] and pt is the price index.
a. Fit the model by ordinary least squares, then use the tests suggested in the text

to see if ARCH effects appear to be present.
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b. The authors fit an ARCH(8) model with declining weights,

σ 2
t = α0 +

8∑
i=1

(
9 − i

36

)
ε2

t−i .

Fit this model. If the software does not allow constraints on the coefficients, you
can still do this with a two-step least squares procedure, using the least squares
residuals from the first step. What do you find?

c. Bollerslev (1986) recomputed this model as a GARCH(1, 1). Use the
GARCH(1, 1) to form and refit your model.
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NONSTATIONARY DATA

Q
21.1 INTRODUCTION

Most economic variables that exhibit strong trends, such as GDP, consumption, or the
price level, are not stationary and are thus not amenable to the analysis of the pre-
vious three chapters. In many cases, stationarity can be achieved by simple differenc-
ing or some other simple transformation. But, new statistical issues arise in analyzing
nonstationary series that are understated by this superficial observation. This chapter
will survey a few of the major issues in the analysis of nonstationary data.1 We begin in
Section 21.2 with results on analysis of a single nonstationary time series. Section 21.3 ex-
amines the implications of nonstationarity for analyzing regression relationship. Finally,
Section 21.4 turns to the extension of the time-series results to panel data.

21.2 NONSTATIONARY PROCESSES
AND UNIT ROOTS

This section will begin the analysis of nonstationary time series with some basic results
for univariate time series. The fundamental results concern the characteristics of non-
stationary series and statistical tests for identification of nonstationarity in observed
data.

21.2.1 INTEGRATED PROCESSES AND DIFFERENCING

A process that figures prominently in recent work is the random walk with drift,

yt = μ + yt−1 + εt .

By direct substitution,

yt =
∞∑

i=0

(μ + εt−i ).

That is, yt is the simple sum of what will eventually be an infinite number of random
variables, possibly with nonzero mean. If the innovations are being generated by the
same zero-mean, constant-variance distribution, then the variance of yt would obviously
be infinite. As such, the random walk is clearly a nonstationary process, even if μ equals

1With panel data, this is one of the rapidly growing areas in econometrics, and the literature advances rapidly.
We can only scratch the surface. Several recent surveys and books provide useful extensions. Two that will
be very helpful are Enders (2004) and Tsay (2005).

982
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zero. On the other hand, the first difference of yt ,

zt = yt − yt−1 = μ + εt ,

is simply the innovation plus the mean of zt , which we have already assumed is stationary.
The series yt is said to be integrated of order one, denoted I(1), because taking a

first difference produces a stationary process. A nonstationary series is integrated of
order d, denoted I(d), if it becomes stationary after being first differenced d times. A
further generalization of the ARMA model would be the series

zt = (1 − L)d yt = �d yt .

The resulting model is denoted an autoregressive integrated moving-average model, or
ARIMA (p, d, q).2 In full, the model would be

�d yt = μ + γ1�
d yt−1 + γ2�

d yt−2 + · · · + γp�
d yt−p + εt − θ1εt−1 − · · · − θqεt−q,

where

�yt = yt − yt−1 = (1 − L)yt .

This result may be written compactly as

C(L)[(1 − L)d yt ] = μ + D(L)εt ,

where C(L) and D(L) are the polynomials in the lag operator and (1 − L)d yt = �d yt is
the dth difference of yt .

An I(1) series in its raw (undifferenced) form will typically be constantly growing, or
wandering about with no tendency to revert to a fixed mean. Most macroeconomic flows
and stocks that relate to population size, such as output or employment, are I(1). An I(2)

series is growing at an ever-increasing rate. The price-level data in Appendix Table F21.1
and shown later appear to be I(2). Series that are I(3) or greater are extremely unusual,
but they do exist. Among the few manifestly I(3) series that could be listed, one would
find, for example, the money stocks or price levels in hyperinflationary economies such
as interwar Germany or Hungary after World War II.

Example 21.1 A Nonstationary Series
The nominal GNP and price deflator variables in Appendix Table F21.1 are strongly trended,
so the mean is changing over time. Figures 21.1 through 21.3 plot the log of the GNP deflator
series in Table F21.1 and its first and second differences. The original series and first differ-
ences are obviously nonstationary, but the second differencing appears to have rendered the
series stationary.

The first 10 autocorrelations of the log of the GNP deflator series are shown in Table 21.1.
The autocorrelations of the original series show the signature of a strongly trended, nonsta-
tionary series. The first difference also exhibits nonstationarity, because the autocorrelations
are still very large after a lag of 10 periods. The second difference appears to be stationary,
with mild negative autocorrelation at the first lag, but essentially none after that. Intuition
might suggest that further differencing would reduce the autocorrelation further, but that
would be incorrect. We leave as an exercise to show that, in fact, for values of γ less than
about 0.5, first differencing of an AR(1) process actually increases autocorrelation.

2There are yet further refinements one might consider, such as removing seasonal effects from zt by differ-
encing by quarter or month. See Harvey (1990) and Davidson and MacKinnon (1993). Some recent work has
relaxed the assumption that d is an integer. The fractionally integrated series, or ARFIMA has been used to
model series in which the very long-run multipliers decay more slowly than would be predicted otherwise.
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FIGURE 21.1 Quarterly Data on log GNP Deflator.
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FIGURE 21.2 First Difference of log GNP Deflator.

21.2.2 RANDOM WALKS, TRENDS, AND SPURIOUS REGRESSIONS

In a seminal paper, Granger and Newbold (1974) argued that researchers had not paid
sufficient attention to the warning of very high autocorrelation in the residuals from
conventional regression models. Among their conclusions were that macroeconomic
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FIGURE 21.3 Second Difference of log GNP Deflator.

TABLE 21.1 Autocorrelations for ln GNP Deflator

Autocorrelation Function Autocorrelation Function Autocorrelation Function
Lag Original Series, log Price First Difference of log Price Second Difference of log Price

1 1.000 0.812 −0.395
2 1.000 0.765 −0.112
3 0.999 0.776 0.258
4 0.999 0.682 −0.101
5 0.999 0.631 −0.022
6 0.998 0.592 0.076
7 0.998 0.523 −0.163
8 0.997 0.513 0.052
9 0.997 0.488 −0.054

10 0.997 0.491 0.062

data, as a rule, were integrated and that in regressions involving the levels of such data,
the standard significance tests were usually misleading. The conventional t and F tests
would tend to reject the hypothesis of no relationship when, in fact, there might be none.
The general result at the center of these findings is that conventional linear regression,
ignoring serial correlation, of one random walk on another is virtually certain to sug-
gest a significant relationship, even if the two are, in fact, independent. Among their
extreme conclusions, Granger and Newbold suggested that researchers use a critical t
value of 11.2 rather than the standard normal value of 1.96 to assess the significance
of a coefficient estimate. Phillips (1986) took strong issue with this conclusion. Based
on a more general model and on an analytical rather than a Monte Carlo approach,
he suggested that the normalized statistic tβ/

√
T be used for testing purposes rather

than tβ itself. For the 50 observations used by Granger and Newbold, the appropriate
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critical value would be close to 15! If anything, Granger and Newbold were too opti-
mistic.

The random walk with drift,

zt = μ + zt−1 + εt , (21-1)

and the trend stationary process,

zt = μ + βt + εt , (21-2)

where, in both cases, εt is a white noise process, appear to be reasonable characteriza-
tions of many macroeconomic time series.3 Clearly both of these will produce strongly
trended, nonstationary series,4 so it is not surprising that regressions involving such
variables almost always produce significant relationships. The strong correlation would
seem to be a consequence of the underlying trend, whether or not there really is any
regression at work. But Granger and Newbold went a step further. The intuition is less
clear if there is a pure random walk at work,

zt = zt−1 + εt , (21-3)

but even here, they found that regression “relationships” appear to persist even in
unrelated series.

Each of these three series is characterized by a unit root. In each case, the data-
generating process (DGP) can be written

(1 − L)zt = α + vt , (21-4)

where α = μ, β, and 0, respectively, and vt is a stationary process. Thus, the characteristic
equation has a single root equal to one, hence the name. The upshot of Granger and
Newbold’s and Phillips’s findings is that the use of data characterized by unit roots has
the potential to lead to serious errors in inferences.

In all three settings, differencing or detrending would seem to be a natural first step.
On the other hand, it is not going to be immediately obvious which is the correct way
to proceed—the data are strongly trended in all three cases—and taking the incorrect
approach will not necessarily improve matters. For example, first differencing in (21-1)
or (21-3) produces a white noise series, but first differencing in (21-2) trades the trend for
autocorrelation in the form of an MA(1) process. On the other hand, detrending—that
is, computing the residuals from a regression on time—is obviously counterproductive in
(21-1) and (21-3), even though the regression of zt on a trend will appear to be significant
for the reasons we have been discussing, whereas detrending in (21-2) appears to be the
right approach.5 Because none of these approaches is likely to be obviously preferable

3The analysis to follow has been extended to more general disturbance processes, but that complicates
matters substantially. In this case, in fact, our assumption does cost considerable generality, but the extension
is beyond the scope of our work. Some references on the subject are Phillips and Perron (1988) and Davidson
and MacKinnon (1993).
4The constant term μ produces the deterministic trend in the random walk with drift. For convenience,
suppose that the process starts at time zero. Then zt = ∑t

s=0(μ + εs) = μt + ∑t
s=0 εs . Thus, zt consists of

a deterministic trend plus a stochastic trend consisting of the sum of the innovations. The result is a variable
with increasing variance around a linear trend.
5See Nelson and Kang (1984).
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at the outset, some means of choosing is necessary. Consider nesting all three models
in a single equation,

zt = μ + βt + zt−1 + εt .

Now subtract zt−1 from both sides of the equation and introduce the artificial parame-
ter γ .

zt − zt−1 = μγ + βγ t + (γ − 1)zt−1 + εt

= α0 + α1t + (γ − 1)zt−1 + εt ,
(21-5)

where, by hypothesis, γ = 1. Equation (21-5) provides the basis for a variety of tests
for unit roots in economic data. In principle, a test of the hypothesis that γ − 1 equals
zero gives confirmation of the random walk with drift, because if γ equals 1 (and α1

equals zero), then (21-1) results. If γ − 1 is less than zero, then the evidence favors
the trend stationary (or some other) model, and detrending (or some alternative) is
the preferable approach. The practical difficulty is that standard inference procedures
based on least squares and the familiar test statistics are not valid in this setting. The
issue is discussed in the next section.

21.2.3 TESTS FOR UNIT ROOTS IN ECONOMIC DATA

The implications of unit roots in macroeconomic data are, at least potentially, profound.
If a structural variable, such as real output, is truly I(1), then shocks to it will have per-
manent effects. If confirmed, then this observation would mandate some rather serious
reconsideration of the analysis of macroeconomic policy. For example, the argument
that a change in monetary policy could have a transitory effect on real output would
vanish.6 The literature is not without its skeptics, however. This result rests on a razor’s
edge. Although the literature is thick with tests that have failed to reject the hypothesis
that γ = 1, many have also not rejected the hypothesis that γ ≥ 0.95, and at 0.95 (or
even at 0.99), the entire issue becomes moot.7

Consider the simple AR(1) model with zero-mean, white noise innovations,

yt = γ yt−1 + εt .

The downward bias of the least squares estimator when γ approaches one has been
widely documented.8 For |γ | < 1, however, the least squares estimator

c =
∑T

t=2 yt yt−1∑T
t=2 y2

t−1

does have

plim c = γ

6The 1980s saw the appearance of literally hundreds of studies, both theoretical and applied, of unit roots
in economic data. An important example is the seminal paper by Nelson and Plosser (1982). There is little
question but that this observation is an early part of the radical paradigm shift that has occurred in empirical
macroeconomics.
7A large number of issues are raised in Maddala (1992, pp. 582–588).
8See, for example, Evans and Savin (1981, 1984).



Greene-2140242 book January 19, 2011 21:30

988 PART V ✦ Time Series and Macroeconometrics

and
√

T(c − γ )
d−→ N[0, 1 − γ 2].

Does the result hold up if γ = 1? The case is called the unit root case, because in the
ARMA representation C(L)yt = εt , the characteristic equation 1−γ z = 0 has one root
equal to one. That the limiting variance appears to go to zero should raise suspicions.
The literature on the question dates back to Mann and Wald (1943) and Rubin (1950).
But for econometric purposes, the literature has a focal point at the celebrated papers
of Dickey and Fuller (1979, 1981). They showed that if γ equals one, then

T(c − γ )
d−→ v,

where v is a random variable with finite, positive variance, and in finite samples,
E [c] < 1.9

There are two important implications in the Dickey–Fuller results. First, the estima-
tor of γ is biased downward if γ equals one. Second, the OLS estimator of γ converges
to its probability limit more rapidly than the estimators to which we are accustomed.
That is, the variance of c under the null hypothesis is O(1/T2), not O(1/T). (In a
mean squared error sense, the OLS estimator is superconsistent.) It turns out that the
implications of this finding for the regressions with trended data are considerable.

We have already observed that in some cases, differencing or detrending is required
to achieve stationarity of a series. Suppose, though, that the preceding AR(1) model
is fit to an I(1) series, despite that fact. The upshot of the preceding discussion is that
the conventional measures will tend to hide the true value of γ ; the sample estimate is
biased downward, and by dint of the very small true sampling variance, the conventional
t test will tend, incorrectly, to reject the hypothesis that γ = 1. The practical solution to
this problem devised by Dickey and Fuller was to derive, through Monte Carlo methods,
an appropriate set of critical values for testing the hypothesis that γ equals one in an
AR(1) regression when there truly is a unit root. One of their general results is that
the test may be carried out using a conventional t statistic, but the critical values for
the test must be revised: The standard t table is inappropriate. A number of variants
of this form of testing procedure have been developed. We will consider several of
them.

21.2.4 THE DICKEY–FULLER TESTS

The simplest version of the model to be analyzed is the random walk,

yt = γ yt−1 + εt , εt ∼ N[0, σ 2], and Cov[εt , εs] = 0 ∀ t �= s.

Under the null hypothesis that γ = 1, there are two approaches to carrying out the test.
The conventional t ratio

DFτ = γ̂ − 1
Est. Std. Error(γ̂ )

9A full derivation of this result is beyond the scope of this book. For the interested reader, a fairly compre-
hensive treatment at an accessible level is given in Chapter 17 of Hamilton (1994, pp. 475–542).
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TABLE 21.2 Critical Values for the Dickey–Fuller DFτ Test

Sample Size

25 50 100 ∞
F ratio (D–F)a 7.24 6.73 6.49 6.25
F ratio (standard) 3.42 3.20 3.10 3.00

AR modelb (random walk)
0.01 −2.66 −2.62 −2.60 −2.58
0.025 −2.26 −2.25 −2.24 −2.23
0.05 −1.95 −1.95 −1.95 −1.95
0.10 −1.60 −1.61 −1.61 −1.62
0.975 1.70 1.66 1.64 1.62

AR model with constant (random walk with drift)
0.01 −3.75 −3.59 −3.50 −3.42
0.025 −3.33 −3.23 −3.17 −3.12
0.05 −2.99 −2.93 −2.90 −2.86
0.10 −2.64 −2.60 −2.58 −2.57
0.975 0.34 0.29 0.26 0.23

AR model with constant and time trend (trend stationary)
0.01 −4.38 −4.15 −4.04 −3.96
0.025 −3.95 −3.80 −3.69 −3.66
0.05 −3.60 −3.50 −3.45 −3.41
0.10 −3.24 −3.18 −3.15 −3.13
0.975 −0.50 −0.58 −0.62 −0.66
aFrom Dickey and Fuller (1981, p. 1063). Degrees of freedom are 2 and T − p − 3.
bFrom Fuller (1976, p. 373 and 1996, Table 10.A.2).

with the revised set of critical values may be used for a one-sided test. Critical values for
this test are shown in the top panel of Table 21.2. Note that in general, the critical value
is considerably larger in absolute value than its counterpart from the t distribution. The
second approach is based on the statistic

DFγ = T(γ̂ − 1).

Critical values for this test are shown in the top panel of Table 21.2.
The simple random walk model is inadequate for many series. Consider the rate

of inflation from 1950.2 to 2000.4 (plotted in Figure 21.4) and the log of GDP over the
same period (plotted in Figure 21.5). The first of these may be a random walk, but it
is clearly drifting. The log GDP series, in contrast, has a strong trend. For the first of
these, a random walk with drift may be specified,

yt = μ + zt ,

zt = γ zt−1 + εt ,

or

yt = μ(1 − γ ) + γ yt−1 + εt .

For the second type of series, we may specify the trend stationary form,

yt = μ + βt + zt ,

zt = γ zt−1 + εt
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or
yt = [μ(1 − γ ) + γβ] + β(1 − γ ) + γ yt−1 + εt .

The tests for these forms may be carried out in the same fashion. For the model with
drift only, the center panels of Tables 21.2 and 21.3 are used. When the trend is included,
the lower panel of each table is used.



Greene-2140242 book January 19, 2011 21:30

CHAPTER 21 ✦ Nonstationary Data 991

TABLE 21.3 Critical Values for the Dickey–Fuller DFγ Test

Sample Size

25 50 100 ∞
AR modela (random walk)
0.01 −11.8 −12.8 −13.3 −13.8
0.025 −9.3 −9.9 −10.2 −10.5
0.05 −7.3 −7.7 −7.9 −8.1
0.10 −5.3 −5.5 −5.6 −5.7
0.975 1.78 1.69 1.65 1.60

AR model with constant (random walk with drift)
0.01 −17.2 −18.9 −19.8 −20.7
0.025 −14.6 −15.7 −16.3 −16.9
0.05 −12.5 −13.3 −13.7 −14.1
0.10 −10.2 −10.7 −11.0 −11.3
0.975 0.65 0.53 0.47 0.41

AR model with constant and time trend (trend stationary)
0.01 −22.5 −25.8 −27.4 −29.4
0.025 −20.0 −22.4 −23.7 −24.4
0.05 −17.9 −19.7 −20.6 −21.7
0.10 −15.6 −16.8 −17.5 −18.3
0.975 −1.53 −1.667 −1.74 −1.81
aFrom Fuller (1976, p. 373 and 1996, Table 10.A.1).

Example 21.2 Tests for Unit Roots
Cecchetti and Rich (2001) studied effect of recent monetary policy on the U.S. economy. The
data used in their study were the following variables:

π = one period rate of inflation = the rate of change in the CPI
y = log of real GDP
i = nominal interest rate = the quarterly average yield on a 90-day T-bill

�m = change in the log of the money stock, M1
i − π = ex post real interest rate

�m− π = real growth in the money stock

Data used in their analysis were from the period 1959.1 to 1997.4. As part of their analysis,
they checked each of these series for a unit root and suggested that the hypothesis of a unit
root could only be rejected for the last two variables. We will reexamine these data for the
longer interval, 1950.2 to 2000.4. The data are in Appendix Table F5.2. Figures 21.6 through
21.9 show the behavior of the last four variables. The first two are shown in Figures 21.4 and
21.5. Only the real output figure shows a strong trend, so we will use the random walk with
drift for all the variables except this one.

The Dickey–Fuller tests are carried out in Table 21.4. There are 203 observations used in
each one. The first observation is lost when computing the rate of inflation and the change
in the money stock, and one more is lost for the difference term in the regression. The
critical values from interpolating to the second row, last column in each panel for 95 percent
significance and a one-tailed test are −3.68 and −24.2, respectively, for DFτ and DFγ for the
output equation, which contains the time trend, and −3.14 and −16.8 for the other equations,
which contain a constant but no trend. For the output equation ( y) , the test statistics are

DFτ = 0.9584940384 − 1
.017880922

= −2.32 > −3.44,
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and

DFγ = 202(0.9584940384 − 1) = −8.38 > −21.2.

Neither is less than the critical value, so we conclude (as have others) that there is a unit root
in the log GDP process. The results of the other tests are shown in Table 21.4. Surprisingly,
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these results do differ sharply from those obtained by Cecchetti and Rich (2001) for π and
�m. The sample period appears to matter; if we repeat the computation using Cecchetti
and Rich’s interval, 1959.4 to 1997.4, then DFτ equals −3.51. This is borderline, but less
contradictory. For �m we obtain a value of −4.204 for DFτ when the sample is restricted to
the shorter interval.
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TABLE 21.4 Unit Root Tests (Standard errors of estimates in parentheses)

μ β γ DFτ DFγ Conclusion

π 0.332 0.659 −6.40 −68.88 Reject H0

(0.0696) (0.0532) R2 = 0.432, s = 0.643

y 0.320 0.00033 0.958 −2.35 −8.48 Do not reject H0

(0.134) (0.00015) (0.0179) R2 = 0.999, s = 0.001

i 0.228 0.961 −2.14 −7.88 Do not reject H0

(0.109) (0.0182) R2 = 0.933, s = 0.743

�m 0.448 0.596 −7.05 −81.61 Reject H0

(0.0923) (0.0573) R2 = 0.351, s = 0.929

i − π 0.615 0.557 −7.57 −89.49 Reject H0

(0.185) (0.0585) R2 = 0.311, s = 2.395

�m − π 0.0700 0.490 −8.25 −103.02 Reject H0

(0.0833) (0.0618) R2 = 0.239, s = 1.176

The Dickey–Fuller tests described in this section assume that the disturbances in the
model as stated are white noise. An extension which will accommodate some forms of
serial correlation is the augmented Dickey–Fuller test. The augmented Dickey–Fuller
test is the same one as described earlier, carried out in the context of the model

yt = μ + βt + γ yt−1 + γ1�yt−1 + · · · + γp�yt−p + εt .

The random walk form is obtained by imposing μ = 0 and β = 0; the random walk
with drift has β = 0; and the trend stationary model leaves both parameters free. The
two test statistics are

DFτ = γ̂ − 1
Est. Std. Error(γ̂ )

,

exactly as constructed before, and

DFγ = T(γ̂ − 1)

1 − γ̂1 − · · · − γ̂p
.

The advantage of this formulation is that it can accommodate higher-order autoregres-
sive processes in εt .

An alternative formulation may prove convenient. By subtracting yt−1 from both
sides of the equation, we obtain

�yt = μ + βt + γ ∗yt−1 +
p∑

j=1

φ j�yt− j + εt ,

where

φ j = −
p∑

k= j+1

γk and γ ∗ =
(

p∑
i=1

γi

)
− 1.

The unit root test is carried out as before by testing the null hypothesis γ ∗ = 0 against
γ ∗ < 0.10 The t test, DFτ , may be used. If the failure to reject the unit root is taken as

10It is easily verified that one of the roots of the characteristic polynomial is 1/(γ1 + γ2 + · · · + γp).
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evidence that a unit root is present, that is, γ ∗ = 0, then the model specializes to the
AR(p − 1) model in the first differences which is an ARIMA(p − 1, 1, 0) model for yt .
For a model with a time trend,

�yt = μ + βt + γ ∗yt−1 +
p−1∑
j=1

φ j�yt− j + εt ,

the test is carried out by testing the joint hypothesis that β = γ ∗ = 0. Dickey and Fuller
(1981) present counterparts to the critical F statistics for testing the hypothesis. Some of
their values are reproduced in the first row of Table 21.2. (Authors frequently focus on
γ ∗ and ignore the time trend, maintaining it only as part of the appropriate formulation.
In this case, one may use the simple test of γ ∗ = 0 as before, with the DFτ critical values.)

The lag length, p, remains to be determined. As usual, we are well advised to
test down to the right value instead of up. One can take the familiar approach and
sequentially examine the t statistic on the last coefficient—the usual t test is appropriate.
An alternative is to combine a measure of model fit, such as the regression s2 with one
of the information criteria. The Akaike and Schwarz (Bayesian) information criteria
would produce the two information measures

IC(p) = ln
(

e′e
T − pmax − K∗

)
+ (p + K∗)

(
A∗

T − pmax − K∗

)
,

K∗ = 1 for random walk, 2 for random walk with drift, 3 for trend stationary,

A∗ = 2 for Akaike criterion, ln(T − pmax − K∗) for Bayesian criterion,

pmax = the largest lag length being considered.

The remaining detail is to decide upon pmax. The theory provides little guidance here.
On the basis of a large number of simulations, Schwert (1989) found that

pmax = integer part of [12 × (T/100).25]

gave good results.
Many alternatives to the Dickey–Fuller tests have been suggested, in some cases

to improve on the finite sample properties and in others to accommodate more general
modeling frameworks. The Phillips (1987) and Phillips and Perron (1988) statistic may
be computed for the same three functional forms,

yt = δt + γ yt−1 + γ1�yt−1 + · · · + γp�yt−p + εt , (21-6)

where δt may be 0, μ, or μ+βt . The procedure modifies the two Dickey–Fuller statistics
we previously examined:

Zτ =
√

c0

a

(
γ̂ − 1

v

)
− 1

2
(a − c0)

Tv√
as2

,

Zγ = T(γ̂ − 1)

1 − γ̂1 − · · · − γ̂p
− 1

2

(
T2v2

s2

)
(a − c0),



Greene-2140242 book January 19, 2011 21:30

996 PART V ✦ Time Series and Macroeconometrics

where

s2 =
∑T

t=1 e2
t

T − K
,

v2 = estimated asymptotic variance of γ̂ ,

c j = 1
T

T∑
s= j+1

et et−s, j = 0, . . . , L = jth autocovariance of residuals,

c0 = [(T − K)/T]s2,

a = c0 + 2
L∑

j=1

(
1 − j

L+ 1

)
c j .

[Note the Newey–West (Bartlett) weights in the computation of a. As before, the analyst
must choose L.] The test statistics are referred to the same Dickey–Fuller tables we have
used before.

Elliot, Rothenberg, and Stock (1996) have proposed a method they denote the
ADF-GLS procedure, which is designed to accommodate more general formulations
of ε; the process generating εt is assumed to be an I(0) stationary process, possibly an
ARMA(r, s). The null hypothesis, as before, is γ = 1 in (21-6) where δt = μ or μ + βt .
The method proceeds as follows:

Step 1. Linearly regress

y∗ =

⎡
⎢⎣

y1

y2 − r̄ y1

· · ·
yT − r̄ yT−1

⎤
⎥⎦ on X∗ =

⎡
⎢⎣

1
1 − r̄
· · ·

1 − r̄

⎤
⎥⎦ or X∗ =

⎡
⎢⎣

1 1
1 − r̄ 2 − r̄
· · ·

1 − r̄ T − r̄ (T − 1)

⎤
⎥⎦

for the random walk with drift and trend stationary cases, respectively. (Note that the
second column of the matrix is simply r̄ + (1 − r̄)t.) Compute the residuals from this
regression, ỹt = yt − δ̂t . r̄ = 1 − 7/T for the random walk model and 1 − 13.5/T for the
model with a trend.

Step 2. The Dickey–Fuller DFτ test can now be carried out using the model

ỹt = γ ỹt−1 + γ1�ỹt−1 + · · · + γp�ỹt−p + ηt .

If the model does not contain the time trend, then the t statistic for (γ − 1) may be
referred to the critical values in the center panel of Table 21.2. For the trend stationary
model, the critical values are given in a table presented in Elliot et al. The 97.5 percent
critical values for a one-tailed test from their table is −3.15.

As in many such cases of a new technique, as researchers develop large and small
modifications of these tests, the practitioner is likely to have some difficulty deciding how
to proceed. The Dickey–Fuller procedures have stood the test of time as robust tools
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that appear to give good results over a wide range of applications. The Phillips–Perron
tests are very general but appear to have less than optimal small sample properties.
Researchers continue to examine it and the others such as Elliot et al. method. Other
tests are catalogued in Maddala and Kim (1998).

Example 21.3 Augmented Dickey–Fuller Test for a Unit Root in GDP
The Dickey–Fuller 1981 JASA paper is a classic in the econometrics literature—it is probably
the single most frequently cited paper in the field. It seems appropriate, therefore, to revisit at
least some of their work. Dickey and Fuller apply their methodology to a model for the log of
a quarterly series on output, the Federal Reserve Board Production Index. The model used is

yt = μ + βt + γ yt−1 + φ ( yt−1 − yt−2) + εt . (21-7)

The test is carried out by testing the joint hypothesis that both β and γ ∗ are zero in the model

yt − yt−1 = μ∗ + βt + γ ∗yt−1 + φ ( yt−1 − yt−2) + εt .

(If γ = 0, then μ∗ will also by construction.) We will repeat the study with our data on real GDP
from Appendix Table F5.2 using observations 1950.1 to 2000.4.

We will use the augmented Dickey–Fuller test first. Thus, the first step is to determine
the appropriate lag length for the augmented regression. Using Schwert’s suggestion, we
find that the maximum lag length should be allowed to reach pmax = {the integer part of
12[204/100].25} = 14. The specification search uses observations 18 to 204, because as many
as 17 coefficients will be estimated in the equation

yt = μ + βt + γ yt−1 +
p∑

j =1

γ j �yt− j + εt .

In the sequence of 14 regressions with j = 14, 13, . . . , the only statistically significant lagged
difference is the first one, in the last regression, so it would appear that the model used by
Dickey and Fuller would be chosen on this basis. The two information criteria produce a similar
conclusion. Both of them decline monotonically from j = 14 all the way down to j = 1, so on
this basis, we end the search with j = 1, and proceed to analyze Dickey and Fuller’s model.

The linear regression results for the equation in (21-7) are

yt = 0.368 + 0.000391t + 0.952yt−1 + 0.36025�yt−1 + et , s = 0.00912

(0.125) (0.000138) (0.0167) (0.0647) R2 = 0.999647.

The two test statistics are

DFτ = 0.95166 − 1
0.016716

= −2.892

and

DFγ = 201(0.95166 − 1)
1 − 0.36025

= −15.263.

Neither statistic is less than the respective critical values, which are −3.70 and −24.5. On
this basis, we conclude, as have many others, that there is a unit root in log GDP.

For the Phillips and Perron statistic, we need several additional intermediate statistics. Fol-
lowing Hamilton (1994, p. 512), we choose L = 4 for the long-run variance calculation. Other
values we need are T = 202, γ̂ = 0.9516613, s2 = 0.00008311488, v2 = 0.00027942647, and
the first five autocovariances, c0 = 0.000081469, c1 = −0.00000351162, c2 =0.00000688053,
c3 = 0.000000597305, and c4 = −0.00000128163. Applying these to the weighted sum pro-
duces a = 0.0000840722, which is only a minor correction to c0. Collecting the results, we
obtain the Phillips–Perron statistics, Zτ = −2.89921 and Zγ = −15.44133. Because these are
applied to the same critical values in the Dickey–Fuller tables, we reach the same conclusion
as before—we do not reject the hypothesis of a unit root in log GDP.
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21.2.5 THE KPSS TEST OF STATIONARITY

Kwitkowski et al. (1992) (KPSS) have devised an alternative to the Dickey–Fuller test
for stationarity of a time series. The procedure is a test of nonstationarity against the
null hypothesis of stationarity in the model

yt = α + βt + γ

t∑
i=1

zi + εt , t = 1, . . . , T

= α + βt + γ Z t + εt ,

where εt is a stationary series and zt is an i.i.d. stationary series with mean zero and
variance one. (These are merely convenient normalizations because a nonzero mean
would move to α and a nonunit variance is absorbed in γ .) If γ equals zero, then the
process is stationary if β = 0 and trend stationary if β �= 0. Because Z t , is I(1), yt is
nonstationary if γ is nonzero.

The KPSS test of the null hypothesis, H0 : γ = 0, against the alternative that γ

is nonzero reverses the strategy of the Dickey–Fuller statistic (which tests the null
hypothesis γ < 1 against the alternative γ = 1). Under the null hypothesis, α and β can
be estimated by OLS. Let et denote the tth OLS residual,

et = yt − a − bt,

and let the sequence of partial sums be

Et =
t∑

i=1

ei , t = 1, . . . , T.

(Note ET = 0.) The KPSS statistic is

KPSS =
∑T

t=1 E2
t

T 2σ̂ 2
,

where

σ̂ 2 =
∑T

t=1 e2
t

T
+ 2

L∑
j=1

(
1 − j

L+ 1

)
r j and r j =

∑T
s= j+1 eses− j

T
,

and L is chosen by the analyst. [See (20-17).] Under normality of the disturbances, εt ,
the KPSS statistic is an LM statistic. The authors derive the statistic under more general
conditions. Critical values for the test statistic are estimated by simulation. Table 21.5
gives the values reported by the authors (in their Table 1, p. 166).

Example 21.4 Is There a Unit Root in GDP?
Using the data used for the Dickey–Fuller tests in Example 21.3, we repeated the procedure
using the KPSS test with L = 10. The two statistics are 1.953 without the trend and 0.312

TABLE 21.5 Critical Values for the KPSS Test

Upper Tail Percentiles

Critical Value 0.100 0.050 0.025 0.010

β = 0 0.347 0.463 0.573 0.739
β �= 0 0.119 0.146 0.176 0.216
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with it. Comparing these results to the values in Table 21.4 we conclude (again) that there is,
indeed, a unit root in In GDP. Or, more precisely, we conclude that In GDP is not a stationary
series, nor even a trend stationary series.

21.3 COINTEGRATION

Studies in empirical macroeconomics almost always involve nonstationary and trending
variables, such as income, consumption, money demand, the price level, trade flows, and
exchange rates. Accumulated wisdom and the results of the previous sections suggest
that the appropriate way to manipulate such series is to use differencing and other
transformations (such as seasonal adjustment) to reduce them to stationarity and then to
analyze the resulting series as VARs or with the methods of Box and Jenkins. But recent
research and a growing literature has shown that there are more interesting, appropriate
ways to analyze trending variables.

In the fully specified regression model

yt = βxt + εt ,

there is a presumption that the disturbances εt are a stationary, white noise series.11

But this presumption is unlikely to be true if yt and xt are integrated series. Generally,
if two series are integrated to different orders, then linear combinations of them will
be integrated to the higher of the two orders. Thus, if yt and xt are I(1)—that is, if both
are trending variables—then we would normally expect yt − βxt to be I(1) regardless
of the value of β, not I(0) (i.e., not stationary). If yt and xt are each drifting upward
with their own trend, then unless there is some relationship between those trends, the
difference between them should also be growing, with yet another trend. There must
be some kind of inconsistency in the model. On the other hand, if the two series are
both I(1), then there may be a β such that

εt = yt − βxt

is I(0). Intuitively, if the two series are both I(1), then this partial difference between
them might be stable around a fixed mean. The implication would be that the series are
drifting together at roughly the same rate. Two series that satisfy this requirement are
said to be cointegrated, and the vector [1, −β] (or any multiple of it) is a cointegrating
vector. In such a case, we can distinguish between a long-run relationship between yt

and xt , that is, the manner in which the two variables drift upward together, and the
short-run dynamics, that is, the relationship between deviations of yt from its long-run
trend and deviations of xt from its long-run trend. If this is the case, then differencing of
the data would be counterproductive, since it would obscure the long-run relationship
between yt and xt . Studies of cointegration and a related technique, error correction,
are concerned with methods of estimation that preserve the information about both
forms of covariation.12

11If there is autocorrelation in the model, then it has been removed through an appropriate transformation.
12See, for example, Engle and Granger (1987) and the lengthy literature cited in Hamilton (1994). A survey
paper on VARs and cointegration is Watson (1994).
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Example 21.5 Cointegration in Consumption and Output
Consumption and income provide one of the more familiar examples of the phenomenon
described previously. The logs of GDP and consumption for 1950.1 to 2000.4 are plotted
in Figure 21.10. Both variables are obviously nonstationary. We have already verified that
there is a unit root in the income data. We leave as an exercise for the reader to verify that
the consumption variable is likewise I (1) . Nonetheless, there is a clear relationship between
consumption and output. To see where this discussion of relationships among variables
is going, consider a simple regression of the log of consumption on the log of income,
where both variables are manipulated in mean deviation form (so, the regression includes
a constant). The slope in that regression is 1.056765. The residuals from the regression,
ut = [lnCons∗, lnGDP∗][1, −1.056765]′ (where the “∗” indicates mean deviations) are plotted
in Figure 21.11. The trend is clearly absent from the residuals. But, it remains to verify whether
the series of residuals is stationary. In the ADF regression of the least squares residuals
on a constant (random walk with drift), the lagged value and the lagged first difference,
the coefficient on ut−1 is 0.838488 (0.0370205) and that on ut−1 − ut−2 is −0.098522. (The
constant differs trivially from zero because two observations are lost in computing the ADF
regression.) With 202 observations, we find DFτ = −4.63 and DFγ = −29.55. Both are well
below the critical values, which suggests that the residual series does not contain a unit
root. We conclude (at least it appears so) that even after accounting for the trend, although
neither of the original variables is stationary, there is a linear combination of them that is. If
this conclusion holds up after a more formal treatment of the testing procedure, we will state
that logGDP and log consumption are cointegrated.

Example 21.6 Several Cointegrated Series
The theory of purchasing power parity specifies that in long-run equilibrium, exchange rates
will adjust to erase differences in purchasing power across different economies. Thus, if p1
and p0 are the price levels in two countries and E is the exchange rate between the two
currencies, then in equilibrium,

vt = Et
p1t

p0t
= μ, a constant.
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The price levels in any two countries are likely to be strongly trended. But allowing for short-
term deviations from equilibrium, the theory suggests that for a particular β = ( ln μ, −1, 1) ,
in the model

ln Et = β1 + β2 ln p1t + β3 ln p0t + εt ,

εt = ln vt would be a stationary series, which would imply that the logs of the three variables
in the model are cointegrated.

We suppose that the model involves M variables, yt = [y1t , . . . , yMt ]′, which indi-
vidually may be I(0) or I(1), and a long-run equilibrium relationship,

y′
tγ − x′

tβ = 0.

The “regressors” may include a constant, exogenous variables assumed to be I(0),
and/or a time trend. The vector of parameters γ is the cointegrating vector. In the short
run, the system may deviate from its equilibrium, so the relationship is rewritten as

y′
tγ − x′

tβ = εt ,

where the equilibrium error εt must be a stationary series. In fact, because there are M
variables in the system, at least in principle, there could be more than one cointegrating
vector. In a system of M variables, there can only be up to M − 1 linearly independent
cointegrating vectors. A proof of this proposition is very simple, but useful at this point.

Proof: Suppose that γ i is a cointegrating vector and that there are M linearly
independent cointegrating vectors. Then, neglecting x′

tβ for the moment, for
every γ i , y′

tγ i is a stationary series νti. Any linear combination of a set of sta-
tionary series is stationary, so it follows that every linear combination of the
cointegrating vectors is also a cointegrating vector. If there are M such M × 1



Greene-2140242 book January 19, 2011 21:30

1002 PART V ✦ Time Series and Macroeconometrics

linearly independent vectors, then they form a basis for the M-dimensional
space, so any M × 1 vector can be formed from these cointegrating vectors,
including the columns of an M × M identity matrix. Thus, the first column of
an identity matrix would be a cointegrating vector, or yt1 is I(0). This result is a
contradiction, because we are allowing yt1 to be I(1). It follows that there can
be at most M − 1 cointegrating vectors.

The number of linearly independent cointegrating vectors that exist in the equilib-
rium system is called its cointegrating rank. The cointegrating rank may range from 1 to
M − 1. If it exceeds one, then we will encounter an interesting identification problem.
As a consequence of the observation in the preceding proof, we have the unfortunate
result that, in general, if the cointegrating rank of a system exceeds one, then without
out-of-sample, exact information, it is not possible to estimate behavioral relationships
as cointegrating vectors. Enders (1995) provides a useful example.

Example 21.7 Multiple Cointegrating Vectors
We consider the logs of four variables, money demand m, the price level p, real income y,
and an interest rate r . The basic relationship is

m = γ0 + γ1 p + γ2 y + γ3r + ε.

The price level and real income are assumed to be I (1) . The existence of long-run equilibrium
in the money market implies a cointegrating vector α1. If the Fed follows a certain feedback
rule, increasing the money stock when nominal income ( y + p) is low and decreasing it when
nominal income is high—which might make more sense in terms of rates of growth—then
there is a second cointegrating vector in which γ1 = γ2 and γ3 = 0. Suppose that we label
this vector α2. The parameters in the money demand equation, notably the interest elasticity,
are interesting quantities, and we might seek to estimate α1 to learn the value of this quantity.
But since every linear combination of α1 and α2 is a cointegrating vector, to this point we are
only able to estimate a hash of the two cointegrating vectors.

In fact, the parameters of this model are identifiable from sample information (in principle).
We have specified two cointegrating vectors,

α1 = [1, −γ10, −γ11, −γ12, −γ13]

and

α2 = [1, −γ20, γ21, γ21, 0]′.

Although it is true that every linear combination of α1 and α2 is a cointegrating vector, only
the original two vectors, as they are, have a 1 in the first position of both and a 0 in the
last position of the second. (The equality restriction actually overidentifies the parameter
matrix.) This result is, of course, exactly the sort of analysis that we used in establishing the
identifiability of a simultaneous equations system.

21.3.1 COMMON TRENDS

If two I(1) variables are cointegrated, then some linear combination of them is I(0).
Intuition should suggest that the linear combination does not mysteriously create a
well-behaved new variable; rather, something present in the original variables must be
missing from the aggregated one. Consider an example. Suppose that two I(1) variables
have a linear trend,

y1t = α + βt + ut ,

y2t = γ + δt + vt ,
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where ut and vt are white noise. A linear combination of y1t and y2t with vector (1, θ)

produces the new variable,

zt = (α + θγ ) + (β + θδ)t + ut + θvt ,

which, in general, is still I(1). In fact, the only way the zt series can be made stationary
is if θ = −β/δ. If so, then the effect of combining the two variables linearly is to remove
the common linear trend, which is the basis of Stock and Watson’s (1988) analysis of the
problem. But their observation goes an important step beyond this one. The only way
that y1t and y2t can be cointegrated to begin with is if they have a common trend of some
sort. To continue, suppose that instead of the linear trend t , the terms on the right-hand
side, y1 and y2, are functions of a random walk, wt = wt−1 + ηt , where ηt is white noise.
The analysis is identical. But now suppose that each variable yit has its own random
walk component wit, i = 1, 2. Any linear combination of y1t and y2t must involve both
random walks. It is clear that they cannot be cointegrated unless, in fact, w1t = w2t .
That is, once again, they must have a common trend. Finally, suppose that y1t and y2t

share two common trends,

y1t = α + βt + λwt + ut ,

y2t = γ + δt + πwt + vt .

We place no restriction on λ and π . Then, a bit of manipulation will show that it is not
possible to find a linear combination of y1t and y2t that is cointegrated, even though
they share common trends. The end result for this example is that if y1t and y2t are
cointegrated, then they must share exactly one common trend.

As Stock and Watson determined, the preceding is the crux of the cointegration
of economic variables. A set of M variables that are cointegrated can be written as a
stationary component plus linear combinations of a smaller set of common trends. If
the cointegrating rank of the system is r , then there can be up to M− r linear trends
and M− r common random walks. [See Hamilton (1994, p. 578).] (The two-variable
case is special. In a two-variable system, there can be only one common trend in total.)
The effect of the cointegration is to purge these common trends from the resultant
variables.

21.3.2 ERROR CORRECTION AND VAR REPRESENTATIONS

Suppose that the two I(1) variables yt and zt are cointegrated and that the cointegrating
vector is [1, −θ ]. Then all three variables, �yt = yt − yt−1, �zt , and (yt − θzt ) are I(0).
The error correction model

�yt = x′
tβ + γ (�zt ) + λ(yt−1 − θzt−1) + εt

describes the variation in yt around its long-run trend in terms of a set of I(0) exogenous
factors xt , the variation of zt around its long-run trend, and the error correction (yt −θzt ),
which is the equilibrium error in the model of cointegration. There is a tight connection
between models of cointegration and models of error correction. The model in this form
is reasonable as it stands, but in fact, it is only internally consistent if the two variables
are cointegrated. If not, then the third term, and hence the right-hand side, cannot be
I(0), even though the left-hand side must be. The upshot is that the same assumption
that we make to produce the cointegration implies (and is implied by) the existence
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of an error correction model.13 As we will examine in the next section, the utility of
this representation is that it suggests a way to build an elaborate model of the long-run
variation in yt as well as a test for cointegration. Looking ahead, the preceding suggests
that residuals from an estimated cointegration model—that is, estimated equilibrium
errors—can be included in an elaborate model of the long-run covariation of yt and
zt . Once again, we have the foundation of Engel and Granger’s approach to analyzing
cointegration.

Pesaran, Shin, and Smith (2001) suggest a method of testing for a relationship in
levels between a yt and xt when there exits significant lags in the error correction form.
Their bounds test accommodates the possibility that the regressors may be trend or
difference stationary. The critical values they provide give a band that covers the polar
cases in which all regressors are I(0), or are I(1), or are mutually cointegrated. The
statistic is able to test for the existence of a levels equation regardless of whether the
variables are I(0), I(1), or are cointegrated. In their application, yt is real earnings in
the UK while xt includes a measure of productivity, the unemployment rate, union-
ization of the workforce, a “replacement ratio” that measures the difference between
unemployment benefits and real wages, and a “wedge” between the real product wage
and the real consumption wage. It is found that wages and productivity have unit roots.
The issue then is to discern whether unionization, the wedge, and the unemployment
rate, which might be I(0), have level effects in the model.

Consider the VAR representation of the model

yt = �yt−1 + εt ,

where the vector yt is [yt , zt ]′. Now take first differences to obtain

yt − yt−1 = (� − I)yt−1 + εt ,

or

�yt = �yt−1 + εt .

If all variables are I(1), then all M variables on the left-hand side are I(0). Whether
those on the right-hand side are I(0) remains to be seen. The matrix � produces linear
combinations of the variables in yt . But as we have seen, not all linear combinations
can be cointegrated. The number of such independent linear combinations is r < M.
Therefore, although there must be a VAR representation of the model, cointegration
implies a restriction on the rank of �. It cannot have full rank; its rank is r . From another
viewpoint, a different approach to discerning cointegration is suggested. Suppose that
we estimate this model as an unrestricted VAR. The resultant coefficient matrix should
be short-ranked. The implication is that if we fit the VAR model and impose short rank
on the coefficient matrix as a restriction—how we could do that remains to be seen—
then if the variables really are cointegrated, this restriction should not lead to a loss
of fit. This implication is the basis of Johansen’s (1988) and Stock and Watson’s (1988)
analysis of cointegration.

13The result in its general form is known as the Granger representation theorem. See Hamilton (1994, p. 582).
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21.3.3 TESTING FOR COINTEGRATION

A natural first step in the analysis of cointegration is to establish that it is indeed a
characteristic of the data. Two broad approaches for testing for cointegration have
been developed. The Engle and Granger (1987) method is based on assessing whether
single-equation estimates of the equilibrium errors appear to be stationary. The second
approach, due to Johansen (1988, 1991) and Stock and Watson (1988), is based on
the VAR approach. As noted earlier, if a set of variables is truly cointegrated, then
we should be able to detect the implied restrictions in an otherwise unrestricted VAR.
We will examine these two methods in turn.

Let yt denote the set of M variables that are believed to be cointegrated. Step one of
either analysis is to establish that the variables are indeed integrated to the same order.
The Dickey–Fuller tests discussed in Section 21.2.4 can be used for this purpose. If the
evidence suggests that the variables are integrated to different orders or not at all, then
the specification of the model should be reconsidered.

If the cointegration rank of the system is r , then there are r independent vectors,
γ i = [1, −θ i ], where each vector is distinguished by being normalized on a different
variable. If we suppose that there are also a set of I(0) exogenous variables, includ-
ing a constant, in the model, then each cointegrating vector produces the equilibrium
relationship

y′
tγ i = x′

tβ + εit,

which we may rewrite as

yit = Y′
itθ i + x′

tβ + εit.

We can obtain estimates of θ i by least squares regression. If the theory is correct and if
this OLS estimator is consistent, then residuals from this regression should estimate the
equilibrium errors. There are two obstacles to consistency. First, because both sides of
the equation contain I(1) variables, the problem of spurious regressions appears. Sec-
ond, a moment’s thought should suggest that what we have done is extract an equation
from an otherwise ordinary simultaneous equations model and propose to estimate its
parameters by ordinary least squares. As we examined in Chapter 10, consistency is
unlikely in that case. It is one of the extraordinary results of this body of theory that in
this setting, neither of these considerations is a problem. In fact, as shown by a number
of authors [see, e.g., Davidson and MacKinnon (1993)], not only is ci , the OLS estimator
of θ i , consistent, it is superconsistent in that its asymptotic variance is O(1/T2) rather
than O(1/T) as in the usual case. Consequently, the problem of spurious regressions
disappears as well. Therefore, the next step is to estimate the cointegrating vector(s),
by OLS. Under all the assumptions thus far, the residuals from these regressions, eit,
are estimates of the equilibrium errors, εit. As such, they should be I(0). The natural
approach would be to apply the familiar Dickey–Fuller tests to these residuals. The
logic is sound, but the Dickey–Fuller tables are inappropriate for these estimated er-
rors. Estimates of the appropriate critical values for the tests are given by Engle and
Granger (1987), Engle and Yoo (1987), Phillips and Ouliaris (1990), and Davidson and
MacKinnon (1993). If autocorrelation in the equilibrium errors is suspected, then an
augmented Engle and Granger test can be based on the template

�eit = δei,t−1 + φ1(�ei,t−1) + · · · + ut .
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If the null hypothesis that δ = 0 cannot be rejected (against the alternative δ < 0), then
we conclude that the variables are not cointegrated. (Cointegration can be rejected by
this method. Failing to reject does not confirm it, of course. But having failed to reject
the presence of cointegration, we will proceed as if our finding had been affirmative.)

Example 21.8 (Continued) Cointegration in Consumption and Output
In the example presented at the beginning of this discussion, we proposed precisely the sort
of test suggested by Phillips and Ouliaris (1990) to determine if (log) consumption and (log)
GDP are cointegrated. As noted, the logic of our approach is sound, but a few considerations
remain. The Dickey–Fuller critical values suggested for the test are appropriate only in a few
cases, and not when several trending variables appear in the equation. For the case of only
a pair of trended variables, as we have here, one may use infinite sample values in the
Dickey–Fuller tables for the trend stationary form of the equation. (The drift and trend would
have been removed from the residuals by the original regression, which would have these
terms either embedded in the variables or explicitly in the equation.) Finally, there remains an
issue of how many lagged differences to include in the ADF regression. We have specified
one, although further analysis might be called for. [A lengthy discussion of this set of issues
appears in Hayashi (2000, pp. 645–648).] Thus, but for the possibility of this specification
issue, the ADF approach suggested in the introduction does pass muster. The sample value
found earlier was −4.63. The critical values from the table are −3.45 for 5 percent and −3.67
for 2.5 percent. Thus, we conclude (as have many other analysts) that log consumption and
log GDP are cointegrated.

The Johansen (1988, 1992) and Stock and Watson (1988) methods are similar, so
we will describe only the first one. The theory is beyond the scope of this text, although
the operational details are suggestive. To carry out the Johansen test, we first formulate
the VAR:

yt = �1yt−1 + �2yt−2 + · · · + � pyt−p + εt .

The order of the model, p, must be determined in advance. Now, let zt denote the vector
of M(p − 1) variables,

zt = [�yt−1, �yt−2, . . . , �yt−p+1].

That is, zt contains the lags 1 to p−1 of the first differences of all M variables. Now, using
the T available observations, we obtain two T × M matrices of least squares residuals:

D = the residuals in the regressions of �yt on zt ,

E = the residuals in the regressions of yt−p on zt .

We now require the M2 canonical correlations between the columns in D and those
in E. To continue, we will digress briefly to define the canonical correlations. Let d∗

1
denote a linear combination of the columns of D, and let e∗

1 denote the same from
E. We wish to choose these two linear combinations so as to maximize the correlation
between them. This pair of variables are the first canonical variates, and their correlation
r∗

1 is the first canonical correlation. In the setting of cointegration, this computation has
some intuitive appeal. Now, with d∗

1 and e∗
1 in hand, we seek a second pair of variables d∗

2
and e∗

2 to maximize their correlation, subject to the constraint that this second variable
in each pair be orthogonal to the first. This procedure continues for all M pairs of
variables. It turns out that the computation of all these is quite simple. We will not need
to compute the coefficient vectors for the linear combinations. The squared canonical
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correlations are simply the ordered characteristic roots of the matrix

R∗ = R−1/2
DD RDER−1

EEREDR−1/2
DD ,

where Rij is the (cross-) correlation matrix between variables in set i and set j , for
i, j = D, E.

Finally, the null hypothesis that there are r or fewer cointegrating vectors is tested
using the test statistic

TRACE TEST = −T
M∑

i=r+1

ln[1 − (r∗
i )2].

If the correlations based on actual disturbances had been observed instead of esti-
mated, then we would refer this statistic to the chi-squared distribution with M − r
degrees of freedom. Alternative sets of appropriate tables are given by Johansen and
Juselius (1990) and Osterwald-Lenum (1992). Large values give evidence against the
hypothesis of r or fewer cointegrating vectors.

21.3.4 ESTIMATING COINTEGRATION RELATIONSHIPS

Both of the testing procedures discussed earlier involve actually estimating the coin-
tegrating vectors, so this additional section is actually superfluous. In the Engle and
Granger framework, at a second step after the cointegration test, we can use the resid-
uals from the static regression as an error correction term in a dynamic, first-difference
regression, as shown in Section 21.3.2. One can then “test down” to find a satisfactory
structure. In the Johansen test shown earlier, the characteristic vectors corresponding to
the canonical correlations are the sample estimates of the cointegrating vectors. Once
again, computation of an error correction model based on these first step results is a
natural next step. We will explore these in an application.

21.3.5 APPLICATION: GERMAN MONEY DEMAND

The demand for money has provided a convenient and well targeted illustration of
methods of cointegration analysis. The central equation of the model is

mt − pt = μ + βyt + γ it + εt , (21-8)

where mt , pt , and yt are the logs of nominal money demand, the price level, and output,
and i is the nominal interest rate (not the log of). The equation involves trending
variables (mt , pt , yt ), and one that we found earlier appears to be a random walk with
drift (it ). As such, the usual form of statistical inference for estimation of the income
elasticity and interest semielasticity based on stationary data is likely to be misleading.

Beyer (1998) analyzed the demand for money in Germany over the period 1975
to 1994. A central focus of the study was whether the 1990 reunification produced a
structural break in the long-run demand function. (The analysis extended an earlier
study by the same author that was based on data that predated the reunification.) One
of the interesting questions pursued in this literature concerns the stability of the long-
term demand equation,

(m − p)t − yt = μ + γ it + εt . (21-9)
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TABLE 21.6 Augmented Dickey–Fuller Tests for Variables in the Beyer Model

Variable m 
m 
2m p 
p 
2p 
4p 

4p

Spec. TS RW RW TS RW/D RW RW/D RW
lag 0 4 3 4 3 2 2 2
DFτ −1.82 −1.61 −6.87 −2.09 −2.14 −10.6 −2.66 −5.48
Crit. Value −3.47 −1.95 −1.95 −3.47 −2.90 −1.95 −2.90 −1.95

Variable y 
y RS 
RS RL 
RL (m − p) 
(m − p)

Spec. TS RW/D TS RW TS RW RW/D RW/D
lag 4 3 1 0 1 0 0 0
DFτ −1.83 −2.91 −2.33 −5.26 −2.40 −6.01 −1.65 −8.50
Crit. Value −3.47 −2.90 −2.90 −1.95 −2.90 −1.95 −3.47 −2.90

The left-hand side is the log of the inverse of the velocity of money, as suggested by
Lucas (1988). An issue to be confronted in this specification is the exogeneity of the
interest variable—exogeneity [in the Engle, Hendry, and Richard (1993) sense] of in-
come is moot in the long-run equation as its coefficient is assumed (per Lucas) to equal
one. Beyer explored this latter issue in the framework developed by Engle et al. (see
Section 21.3.5).

The analytical platform of Beyer’s study is a long-run function for the real money
stock M3 (we adopt the author’s notation)

(m − p)∗ = δ0 + δ1 y + δ2RS + δ3RL + δ4�4 p, (21-10)

where RS is a short-term interest rate, RL is a long-term interest rate, and �4 p is the
annual inflation rate—the data are quarterly. The first step is an examination of the
data. Augmented Dickey–Fuller tests suggest that for these German data in this period,
mt and pt are I(2), while (mt − pt ), yt , �4 pt , RSt , and RLt are all I(1). Some of Beyer’s
results which produced these conclusions are shown in Table 21.6. Note that although
both mt and pt appear to be I(2), their simple difference (linear combination) is I(1),
that is, integrated to a lower order. That produces the long-run specification given by
(21-10). The Lucas specification is layered onto this to produce the model for the long-
run velocity

(m − p − y)∗ = δ∗
0 + δ∗

2RS + δ∗
3RL + δ∗

4�4 p. (21-11)

21.3.5.a Cointegration Analysis and a Long-Run Theoretical Model

For (21-10) to be a valid model, there must be at least one cointegrating vector that
transforms zt = [(mt − pt ), yt , RSt , RLt , �4 pt ] to stationarity. The Johansen trace test
described in Section 21.3.3 was applied to the VAR consisting of these five I(1) vari-
ables. A lag length of two was chosen for the analysis. The results of the trace test
are a bit ambiguous; the hypothesis that r = 0 is rejected, albeit not strongly (sample
value = 90.17 against a 95 percent critical value = 87.31) while the hypothesis that
r ≤ 1 is not rejected (sample value = 60.15 against a 95 percent critical value of 62.99).
(These borderline results follow from the result that Beyer’s first three eigenvalues—
canonical correlations in the trace test statistic—are nearly equal. Variation in the test
statistic results from variation in the correlations.) On this basis, it is concluded that the
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cointegrating rank equals one. The unrestricted cointegrating vector for the equation,
with a time trend added is found to be

(m − p) = 0.936y − 1.780�4 p + 1.601RS − 3.279RL + 0.002t. (21-12)

(These are the coefficients from the first characteristic vector of the canonical correlation
analysis in the Johansen computations detailed in Section 21.3.3.) An exogeneity test—
we have not developed this in detail; see Beyer (1998, p. 59), Hendry and Ericsson (1991),
and Engle and Hendry (1993)—confirms weak exogeneity of all four right-hand-side
variables in this specification. The final specification test is for the Lucas formulation
and elimination of the time trend, both of which are found to pass, producing the
cointegration vector

(m − p − y) = −1.832�4 p + 4.352RS − 10.89RL.

The conclusion drawn from the cointegration analysis is that a single-equation
model for the long-run money demand is appropriate and a valid way to proceed. A
last step before this analysis is a series of Granger causality tests for feedback between
changes in the money stock and the four right-hand-side variables in (21-12) (not in-
cluding the trend). The test results are generally favorable, with some mixed results for
exogeneity of GDP.

21.3.5.b Testing for Model Instability

Let zt = [(mt − pt ), yt , �4 pt , RSt , RLt ] and let z0
t−1 denote the entire history of zt up

to the previous period. The joint distribution for zt , conditioned on z0
t−1 and a set of

parameters � factors one level further into

f
(
zt

∣∣ z0
t−1, �

) = f
[
(m − p)t

∣∣ yt , �4 pt , RSt , RLt , z0
t−1, �1

]

× g
(

yt , �4 pt , RSt , RLt
∣∣ z0

t−1, �2
)
.

The result of the exogeneity tests carried out earlier implies that the conditional distri-
bution may be analyzed apart from the marginal distribution—that is, the implication
of the Engle, Hendry, and Richard results noted earlier. Note the partitioning of the
parameter vector. Thus, the conditional model is represented by an error correction
form that explains �(m − p)t in terms of its own lags, the error correction term and
contemporaneous and lagged changes in the (now established) weakly exogenous vari-
ables as well as other terms such as a constant term, trend, and certain dummy variables
which pick up particular events. The error correction model specified is

�(m − p)t =
4∑

i=1

ci�(m − p)t−i +
4∑

i=0

d1,i�
(
�4pt−i

) +
4∑

i=0

d2,i�yt−i

+
4∑

i=0

d3,i�RSt−i +
4∑

i=0

d4,i�RLt−i + λ(m − p − y)t−1 (21-13)

+ γ1RSt−1 + γ2RLt−1 + d′
tφ + ωt ,

where dt is the set of additional variables, including the constant and five one-period
dummy variables that single out specific events such as a currency crisis in September,
1992 [Beyer (1998, p. 62, fn. 4)]. The model is estimated by least squares, “stepwise
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simplified and reparameterized.” (The number of parameters in the equation is reduced
from 32 to 15.14)

The estimated form of (21-13) is an autoregressive distributed lag model. We pro-
ceed to use the model to solve for the long-run, steady-state growth path of the real
money stock, (21-10). The annual growth rates �4m = gm, �4 p = gp, �4 y = gy and
(assumed) �4RS = gRS = �4RL = gRL = 0 are used for the solution15

1
4
(gm − gp) = c4

4
(gm − gp) − d1,1gp + d2,2

2
gy + γ1RS + γ2RL + λ(m − p − y).

This equation is solved for (m − p)∗ under the assumption that gm = (gy + gp),

(m − p)∗ = δ̂0 + δ̂1gy + y + δ̂2�4 p + δ̂3RS + δ̂4RL.

Analysis then proceeds based on this estimated long-run relationship.
The primary interest of the study is the stability of the demand equation pre- and

postunification. A comparison of the parameter estimates from the same set of pro-
cedures using the period 1976–1989 shows them to be surprisingly similar, [(1.22 −
3.67gy), 1, −3.67, 3.67, −6.44] for the earlier period and [(1.25 − 2.09gy), 1, −3.625,

3.5, −7.25] for the later one. This suggests, albeit informally, that the function has not
changed (at least by much). A variety of testing procedures for structural break led
to the conclusion that in spite of the dramatic changes of 1990, the long-run money
demand function had not materially changed in the sample period.

21.4 NONSTATIONARY PANEL DATA

In Section 11.11, we began to examine panel data settings in which T, the number
of observations in each group (e.g., country), became large as well as n. Applications
include cross-country studies of growth using the Penn World Tables [Im, Pesaran,
and Shin (2003) and Sala-i-Martin (1996)], studies of purchasing power parity [Pedroni
(2001)], and analyses of health care expenditures [McCoskey and Selden (1998)]. In the
small T cases of longitudinal, microeconomic data sets, the time-series properties of the
data are a side issue that is usually of little interest. But when T is growing at essentially
the same rate as n, for example, in the cross-country studies, these properties become a
central focus of the analysis.

The large T, large n case presents several complications for the analyst. In the lon-
gitudinal analysis, pooling of the data is usually a given, although we developed several
extensions of the models to accommodate parameter heterogeneity (see Section 11.11).
In a long-term cross-country model, any type of pooling would be especially suspect.
The time series are long, so this would seem to suggest that the appropriate modeling
strategy would be simply to analyze each country separately. But this would neglect the
hypothsized commonalities across countries such as a (proposed) common growth rate.
Thus, the recent “time-series panel data” literature seeks to reconcile these opposing
features of the data.

14The equation ultimately used is �(mt − pt ) = h[�(m− p)t−4, ��4 pt , �2 yt−2, �RSt−1 + �RSt−3, �2RLt ,

RSt−1, RLt−1, �4 pt−1, (m − p − y)t−1, dt ].
15The division of the coefficients is done because the intervening lags do not appear in the estimated equation.
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As in the single time-series cases examined earlier in this chapter, long-term aggre-
gate series are usually nonstationary, which calls conventional methods (such as those
in Section 11.11) into question. A focus of the recent literature, for example, is on test-
ing for unit roots in an analog to the platform for the augmented Dickey–Fuller tests
(Section 21.2),

�yit = ρi yi,t−1 +
Li∑

m=1

γim�yi,t−m + αi + βi t + εit.

Different formulations of this model have been analyzed, for example, by Levin, Lin, and
Chu (2002), who assume ρi = ρ; Im, Pesaran, and Shin (2003), who relax that restriction;
and Breitung (2000), who considers various mixtures of the cases. An extension of the
KPSS test in Section 21.2.5 that is particularly simple to compute is Hadri’s (2000) LM
statistic,

LM = 1
n

n∑
i=1

(∑T
t=1 E2

it

T 2σ̂ 2
ε

)
=

∑n
i=1 KPSSi

n
.

This is the sample average of the KPSS statistics for the n countries. Note that it includes
two assumptions: that the countries are independent and that there is a common σ 2

ε for
all countries. An alternative is suggested that allows σ 2

ε to vary across countries.
As it stands, the preceding model would suggest that separate analyses for each

country would be appropriate. An issue to consider, then, would be how to combine,
if possible, the separate results in some optimal fashion. Maddala and Wu (1999), for
example, suggested a “Fisher-type” chi-squared test based on P = −2�i ln pi , where pi

is the p-value from the individual tests. Under the null hypothesis that ρi equals zero,
the limiting distribution is chi-squared with 2n degrees of freedom.

Analysis of cointegration, and models of cointegrated series in the panel data set-
ting, parallel the single time-series case, but also differ in a crucial respect. [See, e.g.,
Kao (1999), McCoskey and Kao (1999), and Pedroni (2000, 2004)]. Whereas in the sin-
gle time-series case, the analysis of cointegration focuses on the long-run relationships
between, say, xt and zt for two variables for the same country, in the panel data setting,
say, in the analysis of exchange rates, inflation, purchasing power parity or international
R & D spillovers, interest may focus on a long-run relationship between xit and xmt for
two different countries (or n countries). This substantially complicates the analyses. It is
also well beyond the scope of this text. Extensive surveys of these issues may be found
in Baltagi (2005, Chapter 12) and Smith (2000).

21.5 SUMMARY AND CONCLUSIONS

This chapter has completed our survey of techniques for the analysis of time-series
data. Most of the results in this chapter focus on the internal structure of the individ-
ual time series, themselves. While the empirical distinction between, say, AR(p) and
MA(q) series may seem ad hoc, the Wold decomposition assures that with enough
care, a variety of models can be used to analyze a time series. This chapter described
what is arguably the fundamental tool of modern macroeconometrics: the tests for
nonstationarity. Contemporary econometric analysis of macroeconomic data has added
considerable structure and formality to trending variables, which are more common than
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not in that setting. The variants of the Dickey–Fuller and KPSS tests for unit roots are an
indispensable tool for the analyst of time-series data. Section 21.4 then considered the
subject of cointegration. This modeling framework is a distinct extension of the regres-
sion modeling where this discussion began. Cointegrated relationships and equilibrium
relationships form the basis of the time-series counterpart to regression relationships.
But, in this case, it is not the conditional mean as such that is of interest. Here, both the
long-run equilibrium and short-run relationships around trends are of interest and are
studied in the data.

Key Terms and Concepts

• Autoregressive integrated
moving-average (ARIMA)
process

• Augmented Dickey–Fuller
test

• Bounds test
• Canonical correlation
• Cointegrated
• Cointegration

• Cointegration rank
• Cointegration relationship
• Cointegrating vector
• Common trend
• Data generating process

(DGP)
• Dickey–Fuller test
• Equilibrium error
• Integrated of order one

• KPSS test
• Nonstationary process
• Phillips–Perron test
• Random walk
• Random walk with drift
• Spurious regression
• Superconsistent
• Trend stationary process
• Unit root

Exercise

1. Find the autocorrelations and partial autocorrelations for the MA(2) process

εt = vt − θ1vt−1 − θ2vt−2.

Applications

1. Using the macroeconomic data in Appendix Table F5.2, estimate by least squares
the parameters of the model

ct = β0 + β1 yt + β2ct−1 + β3ct−2 + εt ,

where ct is the log of real consumption and yt is the log of real disposable income.
a. Use the Breusch and Pagan test to examine the residuals for autocorrelation.
b. Is the estimated equation stable? What is the characteristic equation for the au-

toregressive part of this model? What are the roots of the characteristic equation,
using your estimated parameters?

c. What is your implied estimate of the short-run (impact) multiplier for change in
yt on ct ? Compute the estimated long-run multiplier.

2. Carry out an ADF test for a unit root in the rate of inflation using the subset of
the data in Appendix Table F5.2 since 1974.1. (This is the first quarter after the oil
shock of 1973.)

3. Estimate the parameters of the model in Example 10.4 using two-stage least squares.
Obtain the residuals from the two equations. Do these residuals appear to be white
noise series? Based on your findings, what do you conclude about the specification
of the model?
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Q
MATRIX ALGEBRA

A.1 TERMINOLOGY

A matrix is a rectangular array of numbers, denoted

A = [aik] = [A]ik =

⎡
⎢⎣

a11 a12 · · · a1K

a21 a22 · · · a2K

· · ·
an1 an2 · · · anK

⎤
⎥⎦ . (A-1)

The typical element is used to denote the matrix. A subscripted element of a matrix is always
read as arow,column. An example is given in Table A.1. In these data, the rows are identified with
years and the columns with particular variables.

A vector is an ordered set of numbers arranged either in a row or a column. In view of the
preceding, a row vector is also a matrix with one row, whereas a column vector is a matrix with one
column. Thus, in Table A.1, the five variables observed for 1972 (including the date) constitute a
row vector, whereas the time series of nine values for consumption is a column vector.

A matrix can also be viewed as a set of column vectors or as a set of row vectors.1 The
dimensions of a matrix are the numbers of rows and columns it contains. “A is an n × K matrix”
(read “n by K”) will always mean that A has n rows and K columns. If n equals K, then A is a
square matrix. Several particular types of square matrices occur frequently in econometrics.

• A symmetric matrix is one in which aik = aki for all i and k.
• A diagonal matrix is a square matrix whose only nonzero elements appear on the main

diagonal, that is, moving from upper left to lower right.
• A scalar matrix is a diagonal matrix with the same value in all diagonal elements.
• An identity matrix is a scalar matrix with ones on the diagonal. This matrix is always

denoted I. A subscript is sometimes included to indicate its size, or order. For example,
I4 indicates a 4 × 4 identity matrix.

• A triangular matrix is one that has only zeros either above or below the main diagonal. If
the zeros are above the diagonal, the matrix is lower triangular.

A.2 ALGEBRAIC MANIPULATION OF MATRICES

A.2.1 EQUALITY OF MATRICES

Matrices (or vectors) A and B are equal if and only if they have the same dimensions and each
element of A equals the corresponding element of B. That is,

A = B if and only if aik = bik for all i and k. (A-2)

1Henceforth, we shall denote a matrix by a boldfaced capital letter, as is A in (A-1), and a vector as a boldfaced
lowercase letter, as in a. Unless otherwise noted, a vector will always be assumed to be a column vector.

1013
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TABLE A.1 Matrix of Macroeconomic Data

Column

2 3 5
1 Consumption GNP 4 Discount Rate

Row Year (billions of dollars) (billions of dollars) GNP Deflator (N.Y Fed., avg.)

1 1972 737.1 1185.9 1.0000 4.50
2 1973 812.0 1326.4 1.0575 6.44
3 1974 808.1 1434.2 1.1508 7.83
4 1975 976.4 1549.2 1.2579 6.25
5 1976 1084.3 1718.0 1.3234 5.50
6 1977 1204.4 1918.3 1.4005 5.46
7 1978 1346.5 2163.9 1.5042 7.46
8 1979 1507.2 2417.8 1.6342 10.28
9 1980 1667.2 2633.1 1.7864 11.77

Source: Data from the Economic Report of the President (Washington, D.C.: U.S. Government Printing
Office, 1983).

A.2.2 TRANSPOSITION

The transpose of a matrix A, denoted A′, is obtained by creating the matrix whose kth row is
the kth column of the original matrix. Thus, if B = A′, then each column of A will appear as the
corresponding row of B. If A is n × K, then A′ is K × n.

An equivalent definition of the transpose of a matrix is

B = A′ ⇔ bik = aki for all i and k. (A-3)

The definition of a symmetric matrix implies that

if (and only if) A is symmetric, then A = A′. (A-4)

It also follows from the definition that for any A,

(A′)′ = A. (A-5)

Finally, the transpose of a column vector, a, is a row vector:

a′ = [a1 a2 · · · an].

A.2.3 MATRIX ADDITION

The operations of addition and subtraction are extended to matrices by defining

C = A + B = [aik + bik]. (A-6)

A − B = [aik − bik]. (A-7)

Matrices cannot be added unless they have the same dimensions, in which case they are said to be
conformable for addition. A zero matrix or null matrix is one whose elements are all zero. In the
addition of matrices, the zero matrix plays the same role as the scalar 0 in scalar addition; that is,

A + 0 = A. (A-8)

It follows from (A-6) that matrix addition is commutative,

A + B = B + A. (A-9)
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and associative,

(A + B) + C = A + (B + C), (A-10)

and that

(A + B)′ = A′ + B′. (A-11)

A.2.4 VECTOR MULTIPLICATION

Matrices are multiplied by using the inner product. The inner product, or dot product, of two
vectors, a and b, is a scalar and is written

a′b = a1b1 + a2b2 + · · · + anbn. (A-12)

Note that the inner product is written as the transpose of vector a times vector b, a row vector
times a column vector. In (A-12), each term a j bj equals bj a j ; hence

a′b = b′a. (A-13)

A.2.5 A NOTATION FOR ROWS AND COLUMNS OF A MATRIX

We need a notation for the ith row of a matrix. Throughout this book, an untransposed vector
will always be a column vector. However, we will often require a notation for the column vector
that is the transpose of a row of a matrix. This has the potential to create some ambiguity, but the
following convention based on the subscripts will suffice for our work throughout this text:

• ak, or al or am will denote column k, l, or m of the matrix A,
• ai , or a j or at or as will denote the column vector formed by the transpose of row

i, j, t , or s of matrix A. Thus, a′
i is row i of A.

(A-14)

For example, from the data in Table A.1 it might be convenient to speak of xi , where i = 1972
as the 5 × 1 vector containing the five variables measured for the year 1972, that is, the transpose
of the 1972 row of the matrix. In our applications, the common association of subscripts “i” and
“ j” with individual i or j , and “t” and “s” with time periods t and s will be natural.

A.2.6 MATRIX MULTIPLICATION AND SCALAR MULTIPLICATION

For an n × K matrix A and a K × M matrix B, the product matrix, C = AB, is an n × M matrix
whose ikth element is the inner product of row i of A and column k of B. Thus, the product matrix
C is

C = AB ⇒ cik = a′
i bk. (A-15)

[Note our use of (A-14) in (A-15).] To multiply two matrices, the number of columns in the first
must be the same as the number of rows in the second, in which case they are conformable for
multiplication.2 Multiplication of matrices is generally not commutative. In some cases, AB may
exist, but BA may be undefined or, if it does exist, may have different dimensions. In general,
however, even if AB and BA do have the same dimensions, they will not be equal. In view of
this, we define premultiplication and postmultiplication of matrices. In the product AB, B is
premultiplied by A, whereas A is postmultiplied by B.

2A simple way to check the conformability of two matrices for multiplication is to write down the dimensions
of the operation, for example, (n × K) times (K × M). The inner dimensions must be equal; the result has
dimensions equal to the outer values.
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Scalar multiplication of a matrix is the operation of multiplying every element of the matrix
by a given scalar. For scalar c and matrix A,

cA = [caik]. (A-16)

The product of a matrix and a vector is written

c = Ab.

The number of elements in b must equal the number of columns in A; the result is a vector with
number of elements equal to the number of rows in A. For example,⎡

⎣
5
4
1

⎤
⎦ =

⎡
⎣

4 2 1
2 6 1
1 1 0

⎤
⎦

⎡
⎣

a
b
c

⎤
⎦ .

We can interpret this in two ways. First, it is a compact way of writing the three equations

5 = 4a + 2b + 1c,

4 = 2a + 6b + 1c,

1 = 1a + 1b + 0c.

Second, by writing the set of equations as
⎡
⎣

5
4
1

⎤
⎦ = a

⎡
⎣

4
2
1

⎤
⎦ + b

⎡
⎣

2
6
1

⎤
⎦ + c

⎡
⎣

1
1
0

⎤
⎦ ,

we see that the right-hand side is a linear combination of the columns of the matrix where the
coefficients are the elements of the vector. For the general case,

c = Ab = b1a1 + b2a2 + · · · + bKaK. (A-17)

In the calculation of a matrix product C = AB, each column of C is a linear combination of the
columns of A, where the coefficients are the elements in the corresponding column of B. That is,

C = AB ⇔ ck = Abk. (A-18)

Let ek be a column vector that has zeros everywhere except for a one in the kth position.
Then Aek is a linear combination of the columns of A in which the coefficient on every column
but the kth is zero, whereas that on the kth is one. The result is

ak = Aek. (A-19)

Combining this result with (A-17) produces

(a1 a2 · · · an) = A(e1 e2 · · · en) = AI = A. (A-20)

In matrix multiplication, the identity matrix is analogous to the scalar 1. For any matrix or vector
A, AI = A. In addition, IA = A, although if A is not a square matrix, the two identity matrices
are of different orders.

A conformable matrix of zeros produces the expected result: A0 = 0.

Some general rules for matrix multiplication are as follows:

• Associative law: (AB)C = A(BC). (A-21)
• Distributive law: A(B + C) = AB + AC. (A-22)
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• Transpose of a product: (AB)′ = B′A′. (A-23)
• Transpose of an extended product: (ABC)′ = C′B′A′. (A-24)

A.2.7 SUMS OF VALUES

Denote by i a vector that contains a column of ones. Then,
n∑

i=1

xi = x1 + x2 + · · · + xn = i′x. (A-25)

If all elements in x are equal to the same constant a, then x = ai and
n∑

i=1

xi = i′(ai) = a(i′i) = na. (A-26)

For any constant a and vector x,
n∑

i=1

axi = a
n∑

i=1

xi = ai′x. (A-27)

If a = 1/n, then we obtain the arithmetic mean,

x̄ = 1
n

n∑
i=1

xi = 1
n

i′x, (A-28)

from which it follows that
n∑

i=1

xi = i′x = nx̄.

The sum of squares of the elements in a vector x is
n∑

i=1

x2
i = x′x; (A-29)

while the sum of the products of the n elements in vectors x and y is
n∑

i=1

xi yi = x′y. (A-30)

By the definition of matrix multiplication,

[X′X]kl = [x′
kxl ] (A-31)

is the inner product of the kth and lth columns of X. For example, for the data set given in
Table A.1, if we define X as the 9 × 3 matrix containing (year, consumption, GNP), then

[X′X]23 =
1980∑

t=1972

consumptiont GNPt = 737.1(1185.9) + · · · + 1667.2(2633.1)

= 19,743,711.34.

If X is n × K, then [again using (A-14)]

X′X =
n∑

i=1

xi x′
i .
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This form shows that the K × K matrix X′X is the sum of n K × K matrices, each formed from
a single row (year) of X. For the example given earlier, this sum is of nine 3 × 3 matrices, each
formed from one row (year) of the original data matrix.

A.2.8 A USEFUL IDEMPOTENT MATRIX

A fundamental matrix in statistics is the “centering matrix” that is used to transform data to
deviations from their mean. First,

i x̄ = i
1
n

i′x =

⎡
⎢⎢⎣

x̄
x̄
...

x̄

⎤
⎥⎥⎦ = 1

n
ii′x. (A-32)

The matrix (1/n)ii′ is an n × n matrix with every element equal to 1/n. The set of values in
deviations form is

⎡
⎢⎣

x1 − x̄
x2 − x̄

· · ·
xn − x̄

⎤
⎥⎦ = [x − ix̄] =

[
x − 1

n
ii′x

]
. (A-33)

Because x = Ix,
[

x − 1
n

ii′x

]
=

[
Ix − 1

n
ii′x

]
=

[
I − 1

n
ii′

]
x = M0x. (A-34)

Henceforth, the symbol M0 will be used only for this matrix. Its diagonal elements are all
(1 − 1/n), and its off-diagonal elements are −1/n. The matrix M0 is primarily useful in com-
puting sums of squared deviations. Some computations are simplified by the result

M0i =
[

I − 1
n

ii′
]

i = i − 1
n

i(i′i) = 0,

which implies that i′M0 = 0′. The sum of deviations about the mean is then

n∑
i=1

(xi − x̄ ) = i′[M0x] = 0′x = 0. (A-35)

For a single variable x, the sum of squared deviations about the mean is

n∑
i=1

(xi − x̄ )2 =
(

n∑
i=1

x2
i

)
− nx̄2. (A-36)

In matrix terms,

n∑
i=1

(xi − x̄ )2 = (x − x̄ i)′(x − x̄ i) = (M0x)′(M0x) = x′M0′M0x.

Two properties of M0 are useful at this point. First, because all off-diagonal elements of M0

equal −1/n, M0 is symmetric. Second, as can easily be verified by multiplication, M0 is equal to
its square; M0M0 = M0.
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DEFINITION A.1 Idempotent Matrix
An idempotent matrix, M, is one that is equal to its square, that is, M2 = MM = M. If M
is a symmetric idempotent matrix (all of the idempotent matrices we shall encounter are
symmetric), then M′M = M.

Thus, M0 is a symmetric idempotent matrix. Combining results, we obtain

n∑
i=1

(xi − x̄ )2 = x′M0x. (A-37)

Consider constructing a matrix of sums of squares and cross products in deviations from the
column means. For two vectors x and y,

n∑
i=1

(xi − x̄ )(yi − ȳ) = (M0x)′(M0y), (A-38)

so
⎡
⎢⎢⎢⎣

n∑
i=1

(xi − x̄ )2
n∑

i=1

(xi − x̄ )(yi − ȳ)

n∑
i=1

(yi − ȳ)(xi − x̄ )

n∑
i=1

(yi − ȳ)2

⎤
⎥⎥⎥⎦ =

[
x′M0x x′M0y

y′M0x y′M0y

]
. (A-39)

If we put the two column vectors x and y in an n × 2 matrix Z = [x, y], then M0Z is the n × 2
matrix in which the two columns of data are in mean deviation form. Then

(M0Z)′(M0Z) = Z′M0M0Z = Z′M0Z.

A.3 GEOMETRY OF MATRICES

A.3.1 VECTOR SPACES

The K elements of a column vector

a =

⎡
⎢⎣

a1

a2

· · ·
aK

⎤
⎥⎦

can be viewed as the coordinates of a point in a K-dimensional space, as shown in Figure A.1
for two dimensions, or as the definition of the line segment connecting the origin and the point
defined by a.

Two basic arithmetic operations are defined for vectors, scalar multiplication and addition. A
scalar multiple of a vector, a, is another vector, say a∗, whose coordinates are the scalar multiple
of a’s coordinates. Thus, in Figure A.1,

a =
[

1
2

]
, a∗ = 2a =

[
2
4

]
, a∗∗ = −1

2
a =

[
− 1

2

−1

]
.
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FIGURE A.1 Vector Space.

The set of all possible scalar multiples of a is the line through the origin, 0 and a. Any scalar
multiple of a is a segment of this line. The sum of two vectors a and b is a third vector whose
coordinates are the sums of the corresponding coordinates of a and b. For example,

c = a + b =
[

1
2

]
+

[
2
1

]
=

[
3
3

]
.

Geometrically, c is obtained by moving in the distance and direction defined by b from the tip of a
or, because addition is commutative, from the tip of b in the distance and direction of a. Note that
scalar multiplication and addition of vectors are special cases of (A-16) and (A-6) for matrices.

The two-dimensional plane is the set of all vectors with two real-valued coordinates. We label
this set R

2 (“R two,” not “R squared”). It has two important properties.

• R
2 is closed under scalar multiplication; every scalar multiple of a vector in R

2 is also
in R

2.
• R

2 is closed under addition; the sum of any two vectors in the plane is always a vector
in R

2.

DEFINITION A.2 Vector Space
A vector space is any set of vectors that is closed under scalar multiplication and
addition.

Another example is the set of all real numbers, that is, R
1, that is, the set of vectors with one real

element. In general, that set of K-element vectors all of whose elements are real numbers is a
K-dimensional vector space, denoted R

K. The preceding examples are drawn in R
2.
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FIGURE A.2 Linear Combinations of Vectors.

A.3.2 LINEAR COMBINATIONS OF VECTORS AND BASIS VECTORS

In Figure A.2, c = a + b and d = a∗ + b. But since a∗ = 2a, d = 2a + b. Also, e = a + 2b and
f = b + (−a) = b − a. As this exercise suggests, any vector in R

2 could be obtained as a linear
combination of a and b.

DEFINITION A.3 Basis Vectors
A set of vectors in a vector space is a basis for that vector space if they are linearly inde-
pendent and any vector in the vector space can be written as a linear combination of that
set of vectors.

As is suggested by Figure A.2, any pair of two-element vectors, including a and b, that point
in different directions will form a basis for R

2. Consider an arbitrary set of vectors in R
2, a, b, and

c. If a and b are a basis, then we can find numbers α1 and α2 such that c = α1a + α2b. Let

a =
[

a1

a2

]
, b =

[
b1

b2

]
, c =

[
c1

c2

]
.

Then

c1 = α1a1 + α2b1,

c2 = α1a2 + α2b2.
(A-40)
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The solutions to this pair of equations are

α1 = b2c1 − b1c2

a1b2 − b1a2
, α2 = a1c2 − a2c1

a1b2 − b1a2
. (A-41)

This result gives a unique solution unless (a1b2 − b1a2) = 0. If (a1b2 − b1a2) = 0, then
a1/a2 = b1/b2, which means that b is just a multiple of a. This returns us to our original condition,
that a and b must point in different directions. The implication is that if a and b are any pair of
vectors for which the denominator in (A-41) is not zero, then any other vector c can be formed
as a unique linear combination of a and b. The basis of a vector space is not unique, since any
set of vectors that satisfies the definition will do. But for any particular basis, only one linear
combination of them will produce another particular vector in the vector space.

A.3.3 LINEAR DEPENDENCE

As the preceding should suggest, K vectors are required to form a basis for R
K. Although the

basis for a vector space is not unique, not every set of K vectors will suffice. In Figure A.2, a and
b form a basis for R

2, but a and a∗ do not. The difference between these two pairs is that a and b
are linearly independent, whereas a and a∗ are linearly dependent.

DEFINITION A.4 Linear Dependence
A set of k ≥ 2 vectors is linearly dependent if at least one of the vectors in the set can be
written as a linear combination of the others.

Because a∗ is a multiple of a, a and a∗ are linearly dependent. For another example, if

a =
[

1
2

]
, b =

[
3
3

]
, and c =

[
10
14

]
,

then

2a + b − 1
2

c = 0,

so a, b, and c are linearly dependent. Any of the three possible pairs of them, however, are linearly
independent.

DEFINITION A.5 Linear Independence
A set of vectors is linearly independent if and only if the only solution to

α1a1 + α2a2 + · · · + αKaK = 0

is

α1 = α2 = · · · = αK = 0.

The preceding implies the following equivalent definition of a basis.
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DEFINITION A.6 Basis for a Vector Space
A basis for a vector space of K dimensions is any set of K linearly independent vectors in
that vector space.

Because any (K + 1)st vector can be written as a linear combination of the K basis vectors, it
follows that any set of more than K vectors in R

K must be linearly dependent.

A.3.4 SUBSPACES

DEFINITION A.7 Spanning Vectors
The set of all linear combinations of a set of vectors is the vector space that is spanned by
those vectors.

For example, by definition, the space spanned by a basis for R
K is R

K. An implication of this
is that if a and b are a basis for R

2 and c is another vector in R
2, the space spanned by [a, b, c] is,

again, R
2. Of course, c is superfluous. Nonetheless, any vector in R

2 can be expressed as a linear
combination of a, b, and c. (The linear combination will not be unique. Suppose, for example,
that a and c are also a basis for R

2.)
Consider the set of three coordinate vectors whose third element is zero. In particular,

a′ = [a1 a2 0] and b′ = [b1 b2 0].

Vectors a and b do not span the three-dimensional space R
3. Every linear combination of a and

b has a third coordinate equal to zero; thus, for instance, c′ = [1 2 3] could not be written as a
linear combination of a and b. If (a1b2 − a2b1) is not equal to zero [see (A-41)]; however, then
any vector whose third element is zero can be expressed as a linear combination of a and b. So,
although a and b do not span R

3, they do span something, the set of vectors in R
3 whose third

element is zero. This area is a plane (the “floor” of the box in a three-dimensional figure). This
plane in R

3 is a subspace, in this instance, a two-dimensional subspace. Note that it is not R
2; it

is the set of vectors in R
3 whose third coordinate is 0. Any plane in R

3 that contains the origin,
(0, 0, 0), regardless of how it is oriented, forms a two-dimensional subspace. Any two independent
vectors that lie in that subspace will span it. But without a third vector that points in some other
direction, we cannot span any more of R

3 than this two-dimensional part of it. By the same logic,
any line in R

3 that passes through the origin is a one-dimensional subspace, in this case, the set
of all vectors in R

3 whose coordinates are multiples of those of the vector that define the line.
A subspace is a vector space in all the respects in which we have defined it. We emphasize
that it is not a vector space of lower dimension. For example, R

2 is not a subspace of R
3. The

essential difference is the number of dimensions in the vectors. The vectors in R
3 that form a

two-dimensional subspace are still three-element vectors; they all just happen to lie in the same
plane.

The space spanned by a set of vectors in R
K has at most K dimensions. If this space has fewer

than K dimensions, it is a subspace, or hyperplane. But the important point in the preceding
discussion is that every set of vectors spans some space; it may be the entire space in which the
vectors reside, or it may be some subspace of it.
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A.3.5 RANK OF A MATRIX

We view a matrix as a set of column vectors. The number of columns in the matrix equals the
number of vectors in the set, and the number of rows equals the number of coordinates in each
column vector.

DEFINITION A.8 Column Space
The column space of a matrix is the vector space that is spanned by its column
vectors.

If the matrix contains K rows, its column space might have K dimensions. But, as we have seen,
it might have fewer dimensions; the column vectors might be linearly dependent, or there might
be fewer than K of them. Consider the matrix

A =

⎡
⎣

1 5 6
2 6 8
7 1 8

⎤
⎦ .

It contains three vectors from R
3, but the third is the sum of the first two, so the column space of

this matrix cannot have three dimensions. Nor does it have only one, because the three columns
are not all scalar multiples of one another. Hence, it has two, and the column space of this matrix
is a two-dimensional subspace of R

3.

DEFINITION A.9 Column Rank
The column rank of a matrix is the dimension of the vector space that is spanned by its
column vectors.

It follows that the column rank of a matrix is equal to the largest number of linearly inde-
pendent column vectors it contains. The column rank of A is 2. For another specific example,
consider

B =

⎡
⎢⎢⎣

1 2 3
5 1 5
6 4 5
3 1 4

⎤
⎥⎥⎦ .

It can be shown (we shall see how later) that this matrix has a column rank equal to 3. Each
column of B is a vector in R

4, so the column space of B is a three-dimensional subspace of R
4.

Consider, instead, the set of vectors obtained by using the rows of B instead of the columns.
The new matrix would be

C =

⎡
⎣

1 5 6 3
2 1 4 1
3 5 5 4

⎤
⎦ .

This matrix is composed of four column vectors from R
3. (Note that C is B′.) The column space of

C is at most R
3, since four vectors in R

3 must be linearly dependent. In fact, the column space of
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C is R
3. Although this is not the same as the column space of B, it does have the same dimension.

Thus, the column rank of C and the column rank of B are the same. But the columns of C are
the rows of B. Thus, the column rank of C equals the row rank of B. That the column and row
ranks of B are the same is not a coincidence. The general results (which are equivalent) are as
follows.

THEOREM A.1 Equality of Row and Column Rank
The column rank and row rank of a matrix are equal. By the definition of row rank and
its counterpart for column rank, we obtain the corollary,

the row space and column space of a matrix have the same dimension. (A-42)

Theorem A.1 holds regardless of the actual row and column rank. If the column rank of a
matrix happens to equal the number of columns it contains, then the matrix is said to have full
column rank. Full row rank is defined likewise. Because the row and column ranks of a matrix
are always equal, we can speak unambiguously of the rank of a matrix. For either the row rank
or the column rank (and, at this point, we shall drop the distinction),

rank(A) = rank(A′) ≤ min(number of rows, number of columns). (A-43)

In most contexts, we shall be interested in the columns of the matrices we manipulate. We shall
use the term full rank to describe a matrix whose rank is equal to the number of columns it
contains.

Of particular interest will be the distinction between full rank and short rank matrices. The
distinction turns on the solutions to Ax = 0. If a nonzero x for which Ax = 0 exists, then A does not
have full rank. Equivalently, if the nonzero x exists, then the columns of A are linearly dependent
and at least one of them can be expressed as a linear combination of the others. For example, a
nonzero set of solutions to

[
1 3 10
2 3 14

]⎡
⎣

x1

x2

x3

⎤
⎦ =

[
0
0

]

is any multiple of x′ = (2, 1, − 1
2 ).

In a product matrix C = AB, every column of C is a linear combination of the columns of
A, so each column of C is in the column space of A. It is possible that the set of columns in C
could span this space, but it is not possible for them to span a higher-dimensional space. At best,
they could be a full set of linearly independent vectors in A’s column space. We conclude that the
column rank of C could not be greater than that of A. Now, apply the same logic to the rows of
C, which are all linear combinations of the rows of B. For the same reason that the column rank
of C cannot exceed the column rank of A, the row rank of C cannot exceed the row rank of B.
Row and column ranks are always equal, so we can conclude that

rank(AB) ≤ min(rank(A), rank(B)). (A-44)

A useful corollary to (A-44) is

If A is M × n and B is a square matrix of rank n, then rank(AB) = rank(A). (A-45)
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Another application that plays a central role in the development of regression analysis is,
for any matrix A,

rank(A) = rank(A′A) = rank(AA′
). (A-46)

A.3.6 DETERMINANT OF A MATRIX

The determinant of a square matrix—determinants are not defined for nonsquare matrices—is
a function of the elements of the matrix. There are various definitions, most of which are not
useful for our work. Determinants figure into our results in several ways, however, that we can
enumerate before we need formally to define the computations.

PROPOSITION
The determinant of a matrix is nonzero if and only if it has full rank.

Full rank and short rank matrices can be distinguished by whether or not their determinants
are nonzero. There are some settings in which the value of the determinant is also of interest, so
we now consider some algebraic results.

It is most convenient to begin with a diagonal matrix

D =

⎡
⎢⎣

d1 0 0 · · · 0

0 d2 0 · · · 0
· · ·

0 0 0 · · · dK

⎤
⎥⎦ .

The column vectors of D define a “box” in R
K whose sides are all at right angles to one another.3

Its “volume,” or determinant, is simply the product of the lengths of the sides, which we denote

|D| = d1d2 . . . dK =
K∏

k=1

dk. (A-47)

A special case is the identity matrix, which has, regardless of K, |IK| = 1. Multiplying D by a
scalar c is equivalent to multiplying the length of each side of the box by c, which would multiply
its volume by cK. Thus,

|cD| = cK|D|. (A-48)

Continuing with this admittedly special case, we suppose that only one column of D is multiplied
by c. In two dimensions, this would make the box wider but not higher, or vice versa. Hence,
the “volume” (area) would also be multiplied by c. Now, suppose that each side of the box were
multiplied by a different c, the first by c1, the second by c2, and so on. The volume would, by an
obvious extension, now be c1c2 . . . cK|D|. The matrix with columns defined by [c1d1 c2d2 . . .] is
just DC, where C is a diagonal matrix with ci as its ith diagonal element. The computation just
described is, therefore,

|DC| = |D| · |C|. (A-49)

(The determinant of C is the product of the ci ’s since C, like D, is a diagonal matrix.) In particular,
note what happens to the whole thing if one of the ci ’s is zero.

3Each column vector defines a segment on one of the axes.
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For 2 × 2 matrices, the computation of the determinant is∣∣∣∣
a c
b d

∣∣∣∣ = ad − bc. (A-50)

Notice that it is a function of all the elements of the matrix. This statement will be true, in
general. For more than two dimensions, the determinant can be obtained by using an expansion
by cofactors. Using any row, say, i , we obtain

|A| =
K∑

k=1

aik(−1)i+k|Aik|, k = 1, . . . , K, (A-51)

where Aik is the matrix obtained from A by deleting row i and column k. The determinant of
Aik is called a minor of A.4 When the correct sign, (−1)i+k, is added, it becomes a cofactor. This
operation can be done using any column as well. For example, a 4 × 4 determinant becomes a
sum of four 3 × 3s, whereas a 5 × 5 is a sum of five 4 × 4s, each of which is a sum of four 3 × 3s,
and so on. Obviously, it is a good idea to base (A-51) on a row or column with many zeros in
it, if possible. In practice, this rapidly becomes a heavy burden. It is unlikely, though, that you
will ever calculate any determinants over 3 × 3 without a computer. A 3 × 3, however, might be
computed on occasion; if so, the following shortcut due to P. Sarrus will prove useful:

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
= a11a22a33 + a12a23a31 + a13a32a21 − a31a22a13 − a21a12a33 − a11a23a32.

Although (A-48) and (A-49) were given for diagonal matrices, they hold for general matrices
C and D. One special case of (A-48) to note is that of c = −1. Multiplying a matrix by −1 does
not necessarily change the sign of its determinant. It does so only if the order of the matrix is odd.
By using the expansion by cofactors formula, an additional result can be shown:

|A| = |A′| (A-52)

A.3.7 A LEAST SQUARES PROBLEM

Given a vector y and a matrix X, we are interested in expressing y as a linear combination of the
columns of X. There are two possibilities. If y lies in the column space of X, then we shall be able
to find a vector b such that

y = Xb. (A-53)

Figure A.3 illustrates such a case for three dimensions in which the two columns of X both have
a third coordinate equal to zero. Only y’s whose third coordinate is zero, such as y0 in the figure,
can be expressed as Xb for some b. For the general case, assuming that y is, indeed, in the column
space of X, we can find the coefficients b by solving the set of equations in (A-53). The solution
is discussed in the next section.

Suppose, however, that y is not in the column space of X. In the context of this example,
suppose that y’s third component is not zero. Then there is no b such that (A-53) holds. We can,
however, write

y = Xb + e, (A-54)

where e is the difference between y and Xb. By this construction, we find an Xb that is in the
column space of X, and e is the difference, or “residual.” Figure A.3 shows two examples, y and y∗.

4If i equals k, then the determinant is a principal minor.
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Third coordinate

First coordinate

Second coordinate

x1
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(Xb)*

FIGURE A.3 Least Squares Projections.

For the present, we consider only y. We are interested in finding the b such that y is as close as
possible to Xb in the sense that e is as short as possible.

DEFINITION A.10 Length of a Vector
The length, or norm, of a vector e is given by the Pythagorean theorem:

‖e‖ =
√

e′e. (A-55)

The problem is to find the b for which

‖e‖ = ‖y − Xb‖
is as small as possible. The solution is that b that makes e perpendicular, or orthogonal, to Xb.

DEFINITION A.11 Orthogonal Vectors
Two nonzero vectors a and b are orthogonal, written a ⊥ b, if and only if

a′b = b′a = 0.

Returning once again to our fitting problem, we find that the b we seek is that for which

e ⊥ Xb.

Expanding this set of equations gives the requirement

(Xb)′e = 0

= b′X′y − b′X′Xb

= b′[X′y − X′Xb],
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or, assuming b is not 0, the set of equations

X′y = X′Xb.

The means of solving such a set of equations is the subject of Section A.5.
In Figure A.3, the linear combination Xb is called the projection of y into the column space

of X. The figure is drawn so that, although y and y∗ are different, they are similar in that the
projection of y lies on top of that of y∗. The question we wish to pursue here is, Which vector, y
or y∗, is closer to its projection in the column space of X? Superficially, it would appear that y is
closer, because e is shorter than e∗. Yet y∗ is much more nearly parallel to its projection than y, so
the only reason that its residual vector is longer is that y∗ is longer compared with y. A measure
of comparison that would be unaffected by the length of the vectors is the angle between the
vector and its projection (assuming that angle is not zero). By this measure, θ∗ is smaller than θ ,
which would reverse the earlier conclusion.

THEOREM A.2 The Cosine Law
The angle θ between two vectors a and b satisfies

cos θ = a′b
‖a‖ · ‖b‖ .

The two vectors in the calculation would be y or y∗ and Xb or (Xb)∗. A zero cosine implies
that the vectors are orthogonal. If the cosine is one, then the angle is zero, which means that the
vectors are the same. (They would be if y were in the column space of X.) By dividing by the
lengths, we automatically compensate for the length of y. By this measure, we find in Figure A.3
that y∗ is closer to its projection, (Xb)∗ than y is to its projection, Xb.

A.4 SOLUTION OF A SYSTEM OF LINEAR
EQUATIONS

Consider the set of n linear equations

Ax = b, (A-56)

in which the K elements of x constitute the unknowns. A is a known matrix of coefficients, and b
is a specified vector of values. We are interested in knowing whether a solution exists; if so, then
how to obtain it; and finally, if it does exist, then whether it is unique.

A.4.1 SYSTEMS OF LINEAR EQUATIONS

For most of our applications, we shall consider only square systems of equations, that is, those in
which A is a square matrix. In what follows, therefore, we take n to equal K. Because the number
of rows in A is the number of equations, whereas the number of columns in A is the number of
variables, this case is the familiar one of “n equations in n unknowns.”

There are two types of systems of equations.
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DEFINITION A.12 Homogeneous Equation System
A homogeneous system is of the form Ax = 0.

By definition, a nonzero solution to such a system will exist if and only if A does not have full
rank. If so, then for at least one column of A, we can write the preceding as

ak = −
∑
m
=k

xm

xk
am.

This means, as we know, that the columns of A are linearly dependent and that |A| = 0.

DEFINITION A.13 Nonhomogeneous Equation System
A nonhomogeneous system of equations is of the form Ax = b, where b is a nonzero
vector.

The vector b is chosen arbitrarily and is to be expressed as a linear combination of the columns
of A. Because b has K elements, this solution will exist only if the columns of A span the entire
K-dimensional space, R

K.5 Equivalently, we shall require that the columns of A be linearly
independent or that |A| not be equal to zero.

A.4.2 INVERSE MATRICES

To solve the system Ax = b for x, something akin to division by a matrix is needed. Suppose that
we could find a square matrix B such that BA = I. If the equation system is premultiplied by this
B, then the following would be obtained:

BAx = Ix = x = Bb. (A-57)

If the matrix B exists, then it is the inverse of A, denoted

B = A−1.

From the definition,

A−1A = I.

In addition, by premultiplying by A, postmultiplying by A−1, and then canceling terms, we find

AA−1 = I

as well.
If the inverse exists, then it must be unique. Suppose that it is not and that C is a different

inverse of A. Then CAB = CAB, but (CA)B = IB = B and C(AB) = C, which would be a

5If A does not have full rank, then the nonhomogeneous system will have solutions for some vectors b, namely,
any b in the column space of A. But we are interested in the case in which there are solutions for all nonzero
vectors b, which requires A to have full rank.
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contradiction if C did not equal B. Because, by (A-57), the solution is x = A−1b, the solution to
the equation system is unique as well.

We now consider the calculation of the inverse matrix. For a 2 × 2 matrix, AB = I implies
that

[
a11 a12

a21 a22

][
b11 b12

b21 b22

]
=

[
1 0
0 1

]
or

⎡
⎢⎢⎣

a11b11 + a12b21 = 1

a11b12 + a12b22 = 0

a21b11 + a22b21 = 0

a21b12 + a22b22 = 1

⎤
⎥⎥⎦ .

The solutions are
[

b11 b12

b21 b22

]
= 1

a11a22 − a12a21

[
a22 −a12

−a21 a11

]
= 1

|A|

[
a22 −a12

−a21 a11

]
. (A-58)

Notice the presence of the reciprocal of |A| in A−1. This result is not specific to the 2 × 2 case.
We infer from it that if the determinant is zero, then the inverse does not exist.

DEFINITION A.14 Nonsingular Matrix
A matrix is nonsingular if and only if its inverse exists.

The simplest inverse matrix to compute is that of a diagonal matrix. If

D =

⎡
⎢⎣

d1 0 0 · · · 0

0 d2 0 · · · 0
· · ·

0 0 0 · · · dK

⎤
⎥⎦, then D−1 =

⎡
⎢⎣

1/d1 0 0 · · · 0

0 1/d2 0 · · · 0
· · ·

0 0 0 · · · 1/dK

⎤
⎥⎦,

which shows, incidentally, that I−1 = I.
We shall use aik to indicate the ikth element of A−1. The general formula for computing an

inverse matrix is

aik = |Cki |
|A| , (A-59)

where |Cki | is the kith cofactor of A. [See (A-51).] It follows, therefore, that for A to be non-
singular, |A| must be nonzero. Notice the reversal of the subscripts

Some computational results involving inverses are

|A−1| = 1
|A| , (A-60)

(A−1)−1 = A, (A-61)

(A−1)′ = (A′)−1. (A-62)

If A is symmetric, then A−1 is symmetric. (A-63)

When both inverse matrices exist,

(AB)−1 = B−1A−1. (A-64)
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Note the condition preceding (A-64). It may be that AB is a square, nonsingular matrix when
neither A nor B is even square. (Consider, e.g., A′A.) Extending (A-64), we have

(ABC)−1 = C−1(AB)−1 = C−1B−1A−1. (A-65)

Recall that for a data matrix X, X′X is the sum of the outer products of the rows X. Suppose
that we have already computed S = (X′X)−1 for a number of years of data, such as those given in
Table A.1. The following result, which is called an updating formula, shows how to compute the
new S that would result when a new row is added to X: For symmetric, nonsingular matrix A,

[A ± bb′]−1 = A−1 ∓
[

1
1 ± b′A−1b

]
A−1bb′A−1. (A-66)

Note the reversal of the sign in the inverse. Two more general forms of (A-66) that are occasionally
useful are

[A ± bc′]−1 = A−1 ∓
[

1
1 ± c′A−1b

]
A−1bc′A−1. (A-66a)

[A ± BCB′]−1 = A−1 ∓ A−1B[C−1 ± B′A−1B]−1B′A−1. (A-66b)

A.4.3 NONHOMOGENEOUS SYSTEMS OF EQUATIONS

For the nonhomogeneous system

Ax = b,

if A is nonsingular, then the unique solution is

x = A−1b.

A.4.4 SOLVING THE LEAST SQUARES PROBLEM

We now have the tool needed to solve the least squares problem posed in Section A3.7. We found
the solution vector, b to be the solution to the nonhomogenous system X′y = X′Xb. Let a equal
the vector X′y and let A equal the square matrix X′X. The equation system is then

Ab = a.

By the preceding results, if A is nonsingular, then

b = A−1a = (X′X)−1(X′y)

assuming that the matrix to be inverted is nonsingular. We have reached the irreducible minimum.
If the columns of X are linearly independent, that is, if X has full rank, then this is the solution
to the least squares problem. If the columns of X are linearly dependent, then this system has no
unique solution.

A.5 PARTITIONED MATRICES

In formulating the elements of a matrix, it is sometimes useful to group some of the elements in
submatrices. Let

A =

⎡
⎣

1 4 5
2 9 3

8 9 6

⎤
⎦ =

[
A11 A12

A21 A22

]
.
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A is a partitioned matrix. The subscripts of the submatrices are defined in the same fashion as
those for the elements of a matrix. A common special case is the block-diagonal matrix:

A =
[

A11 0

0 A22

]
,

where A11 and A22 are square matrices.

A.5.1 ADDITION AND MULTIPLICATION
OF PARTITIONED MATRICES

For conformably partitioned matrices A and B,

A + B =
[

A11 + B11 A12 + B12

A21 + B21 A22 + B22

]
, (A-67)

and

AB =
[

A11 A12

A21 A22

][
B11 B12

B21 B22

]
=

[
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]
. (A-68)

In all these, the matrices must be conformable for the operations involved. For addition, the
dimensions of Aik and Bik must be the same. For multiplication, the number of columns in Aij

must equal the number of rows in B jl for all pairs i and j . That is, all the necessary matrix products
of the submatrices must be defined. Two cases frequently encountered are of the form

[
A1

A2

]′[
A1

A2

]
= [A′

1 A′
2]

[
A1

A2

]
= [A′

1A1 + A′
2A2], (A-69)

and
[

A11 0

0 A22

]′[
A11 0

0 A22

]
=

[
A′

11A11 0

0 A′
22A22

]
. (A-70)

A.5.2 DETERMINANTS OF PARTITIONED MATRICES

The determinant of a block-diagonal matrix is obtained analogously to that of a diagonal matrix:
∣∣∣∣
A11 0

0 A22

∣∣∣∣ = |A11| · |A22| . (A-71)

The determinant of a general 2 × 2 partitioned matrix is
∣∣∣∣
A11 A12

A21 A22

∣∣∣∣ = |A22| ·
∣∣A11 − A12A−1

22 A21

∣∣ = |A11| ·
∣∣A22 − A21A−1

11 A12

∣∣. (A-72)

A.5.3 INVERSES OF PARTITIONED MATRICES

The inverse of a block-diagonal matrix is

[
A11 0

0 A22

]−1

=
[

A−1
11 0

0 A−1
22

]
, (A-73)

which can be verified by direct multiplication.
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For the general 2 × 2 partitioned matrix, one form of the partitioned inverse is

[
A11 A12

A21 A22

]−1

=
[

A−1
11

(
I + A12F2A21A−1

11

) −A−1
11 A12F2

−F2A21A−1
11 F2

]
, (A-74)

where

F2 = (
A22 − A21A−1

11 A12

)−1
.

The upper left block could also be written as

F1 = (
A11 − A12A−1

22 A21

)−1
.

A.5.4 DEVIATIONS FROM MEANS

Suppose that we begin with a column vector of n values x and let

A =

⎡
⎢⎢⎢⎢⎣

n
n∑

i=1

xi

n∑
i=1

xi

n∑
i=1

x2
i

⎤
⎥⎥⎥⎥⎦

=
[

i′i i′x
x′i x′x

]
.

We are interested in the lower-right-hand element of A−1. Upon using the definition of F2 in
(A-74), this is

F2 = [x′x − (x′i)(i′i)−1(i′x)]−1 =
{

x′
[

Ix − i

(
1
n

)
i′x

]}−1

=
{

x′
[

I −
(

1
n

)
ii′

]
x

}−1

= (x′M0x)−1.

Therefore, the lower-right-hand value in the inverse matrix is

(x′M0x)−1 = 1∑n
i=1 (xi − x̄ )2

= a22.

Now, suppose that we replace x with X, a matrix with several columns. We seek the lower-right
block of (Z′Z)−1, where Z = [i, X]. The analogous result is

(Z′Z)22 = [X′X − X′i(i′i)−1i′X]−1 = (X′M0X)−1,

which implies that the K × K matrix in the lower-right corner of (Z′Z)−1 is the inverse of the
K × K matrix whose jkth element is

∑n
i=1(xij − x̄ j )(xik − x̄k). Thus, when a data matrix contains a

column of ones, the elements of the inverse of the matrix of sums of squares and cross products will
be computed from the original data in the form of deviations from the respective column means.

A.5.5 KRONECKER PRODUCTS

A calculation that helps to condense the notation when dealing with sets of regression models
(see Chapter 10) is the Kronecker product. For general matrices A and B,

A ⊗ B =

⎡
⎢⎢⎣

a11B a12B · · · a1KB
a21B a22B · · · a2KB

· · ·
an1B an2B · · · anKB

⎤
⎥⎥⎦ . (A-75)
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Notice that there is no requirement for conformability in this operation. The Kronecker product
can be computed for any pair of matrices. If A is K × Land B is m×n, then A⊗B is (Km)× (Ln).

For the Kronecker product,

(A ⊗ B)−1 = (A−1 ⊗ B−1), (A-76)

If A is M × M and B is n × n, then

|A ⊗ B| = |A|n|B|M,

(A ⊗ B)′ = A′ ⊗ B′,

trace(A ⊗ B) = tr(A)tr(B).

For A, B, C, and D such that the products are defined is

(A ⊗ B)(C ⊗ D) = AC ⊗ BD.

A.6 CHARACTERISTIC ROOTS AND VECTORS

A useful set of results for analyzing a square matrix A arises from the solutions to the set of
equations

Ac = λc. (A-77)

The pairs of solutions are the characteristic vectors c and characteristic roots λ. If c is any nonzero
solution vector, then kc is also for any value of k. To remove the indeterminancy, c is normalized
so that c′c = 1.

The solution then consists of λ and the n − 1 unknown elements in c.

A.6.1 THE CHARACTERISTIC EQUATION

Solving (A-77) can, in principle, proceed as follows. First, (A-77) implies that

Ac = λIc,

or that

(A − λI)c = 0.

This equation is a homogeneous system that has a nonzero solution only if the matrix (A − λI) is
singular or has a zero determinant. Therefore, if λ is a solution, then

|A − λI | = 0. (A-78)

This polynomial in λ is the characteristic equation of A. For example, if

A =
[

5 1
2 4

]
,

then

|A − λI| =
∣∣∣∣
5 − λ 1

2 4 − λ

∣∣∣∣= (5 − λ)(4 − λ) − 2(1) = λ2 − 9λ + 18.

The two solutions are λ = 6 and λ = 3.
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In solving the characteristic equation, there is no guarantee that the characteristic roots will
be real. In the preceding example, if the 2 in the lower-left-hand corner of the matrix were −2
instead, then the solution would be a pair of complex values. The same result can emerge in the
general n × n case. The characteristic roots of a symmetric matrix such as X′X are real, however.6

This result will be convenient because most of our applications will involve the characteristic
roots and vectors of symmetric matrices.

For an n × n matrix, the characteristic equation is an nth-order polynomial in λ. Its solutions
may be n distinct values, as in the preceding example, or may contain repeated values of λ, and
may contain some zeros as well.

A.6.2 CHARACTERISTIC VECTORS

With λ in hand, the characteristic vectors are derived from the original problem,

Ac = λc,

or

(A − λI)c = 0. (A-79)

Neither pair determines the values of c1 and c2. But this result was to be expected; it was the
reason c′c = 1 was specified at the outset. The additional equation c′c = 1, however, produces
complete solutions for the vectors.

A.6.3 GENERAL RESULTS FOR CHARACTERISTIC
ROOTS AND VECTORS

A K × K symmetric matrix has K distinct characteristic vectors, c1, c2, . . . cK. The corresponding
characteristic roots, λ1, λ2, . . . , λK, although real, need not be distinct. The characteristic vectors of
a symmetric matrix are orthogonal,7 which implies that for every i 
= j, c′

i c j = 0.8 It is convenient
to collect the K-characteristic vectors in a K × K matrix whose ith column is the ci corresponding
to λi ,

C = [c1 c2 · · · cK],

and the K-characteristic roots in the same order, in a diagonal matrix,

� =

⎡
⎢⎣

λ1 0 · · · 0
0 λ2 · · · 0

· · ·
0 0 · · · λK

⎤
⎥⎦ .

Then, the full set of equations

Ack = λkck

is contained in

AC = C�. (A-80)

6A proof may be found in Theil (1971).
7For proofs of these propositions, see Strang (1988).
8This statement is not true if the matrix is not symmetric. For instance, it does not hold for the characteristic
vectors computed in the first example. For nonsymmetric matrices, there is also a distinction between “right”
characteristic vectors, Ac = λc, and “left” characteristic vectors, d′A = λd′, which may not be equal.
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Because the vectors are orthogonal and c′
i ci = 1, we have

C′C =

⎡
⎢⎢⎢⎣

c′
1c1 c′

1c2 · · · c′
1cK

c′
2c1 c′

2c2 · · · c′
2cK

...

c′
Kc1 c′

Kc2 · · · c′
KcK

⎤
⎥⎥⎥⎦ = I. (A-81)

Result (A-81) implies that

C′ = C−1. (A-82)

Consequently,

CC′ = CC−1 = I (A-83)

as well, so the rows as well as the columns of C are orthogonal.

A.6.4 DIAGONALIZATION AND SPECTRAL DECOMPOSITION
OF A MATRIX

By premultiplying (A-80) by C′ and using (A-81), we can extract the characteristic roots of A.

DEFINITION A.15 Diagonalization of a Matrix
The diagonalization of a matrix A is

C′AC = C′C� = I� = �. (A-84)

Alternatively, by postmultiplying (A-80) by C′ and using (A-83), we obtain a useful representation
of A.

DEFINITION A.16 Spectral Decomposition of a Matrix
The spectral decomposition of A is

A = C�C′ =
K∑

k=1

λkckc′
k. (A-85)

In this representation, the K × K matrix A is written as a sum of K rank one matrices. This sum
is also called the eigenvalue (or, “own” value) decomposition of A. In this connection, the term
signature of the matrix is sometimes used to describe the characteristic roots and vectors. Yet
another pair of terms for the parts of this decomposition are the latent roots and latent vectors
of A.

A.6.5 RANK OF A MATRIX

The diagonalization result enables us to obtain the rank of a matrix very easily. To do so, we can
use the following result.
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THEOREM A.3 Rank of a Product
For any matrix A and nonsingular matrices B and C, the rank of BAC is equal to the rank
of A.

Proof: By (A-45), rank(BAC) = rank[(BA)C] = rank(BA). By (A-43), rank(BA) =
rank(A′B′), and applying (A-45) again, rank(A′B′) = rank(A′) because B′ is nonsingular
if B is nonsingular [once again, by (A-43)]. Finally, applying (A-43) again to obtain
rank(A′) = rank(A) gives the result.

Because C and C′ are nonsingular, we can use them to apply this result to (A-84). By an obvious
substitution,

rank(A) = rank(�). (A-86)

Finding the rank of � is trivial. Because � is a diagonal matrix, its rank is just the number of
nonzero values on its diagonal. By extending this result, we can prove the following theorems.
(Proofs are brief and are left for the reader.)

THEOREM A.4 Rank of a Symmetric Matrix
The rank of a symmetric matrix is the number of nonzero characteristic roots it
contains.

Note how this result enters the spectral decomposition given earlier. If any of the character-
istic roots are zero, then the number of rank one matrices in the sum is reduced correspondingly.
It would appear that this simple rule will not be useful if A is not square. But recall that

rank(A) = rank(A′A). (A-87)

Because A′A is always square, we can use it instead of A. Indeed, we can use it even if A is square,
which leads to a fully general result.

THEOREM A.5 Rank of a Matrix
The rank of any matrix A equals the number of nonzero characteristic roots in A′A.

The row rank and column rank of a matrix are equal, so we should be able to apply
Theorem A.5 to AA′ as well. This process, however, requires an additional result.

THEOREM A.6 Roots of an Outer Product Matrix
The nonzero characteristic roots of AA′ are the same as those of A′A.
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The proof is left as an exercise. A useful special case the reader can examine is the characteristic
roots of aa′ and a′a, where a is an n × 1 vector.

If a characteristic root of a matrix is zero, then we have Ac = 0. Thus, if the matrix has a zero
root, it must be singular. Otherwise, no nonzero c would exist. In general, therefore, a matrix is
singular; that is, it does not have full rank if and only if it has at least one zero root.

A.6.6 CONDITION NUMBER OF A MATRIX

As the preceding might suggest, there is a discrete difference between full rank and short rank
matrices. In analyzing data matrices such as the one in Section A.2, however, we shall often
encounter cases in which a matrix is not quite short ranked, because it has all nonzero roots, but
it is close. That is, by some measure, we can come very close to being able to write one column
as a linear combination of the others. This case is important; we shall examine it at length in our
discussion of multicollinearity in Section 4.7.1. Our definitions of rank and determinant will fail
to indicate this possibility, but an alternative measure, the condition number, is designed for that
purpose. Formally, the condition number for a square matrix A is

γ =
[

maximum root
minimum root

]1/2

. (A-88)

For nonsquare matrices X, such as the data matrix in the example, we use A = X′X. As a further
refinement, because the characteristic roots are affected by the scaling of the columns of X, we
scale the columns to have length 1 by dividing each column by its norm [see (A-55)]. For the
X in Section A.2, the largest characteristic root of A is 4.9255 and the smallest is 0.0001543.
Therefore, the condition number is 178.67, which is extremely large. (Values greater than 20 are
large.) That the smallest root is close to zero compared with the largest means that this matrix is
nearly singular. Matrices with large condition numbers are difficult to invert accurately.

A.6.7 TRACE OF A MATRIX

The trace of a square K × K matrix is the sum of its diagonal elements:

tr(A) =
K∑

k=1

akk.

Some easily proven results are

tr(cA) = c(tr(A)), (A-89)

tr(A′) = tr(A), (A-90)

tr(A + B) = tr(A) + tr(B), (A-91)

tr(IK) = K. (A-92)

tr(AB) = tr(BA). (A-93)

a′a = tr(a′a) = tr(aa′)

tr(A′A) =
K∑

k=1

a′
kak =

K∑
i=1

K∑
k=1

a2
ik.

The permutation rule can be extended to any cyclic permutation in a product:

tr(ABCD) = tr(BCDA) = tr(CDAB) = tr(DABC). (A-94)
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By using (A-84), we obtain

tr(C′AC) = tr(ACC′
) = tr(AI) = tr(A) = tr(�). (A-95)

Because � is diagonal with the roots of A on its diagonal, the general result is the following.

THEOREM A.7 Trace of a Matrix
The trace of a matrix equals the sum of its characteristic roots. (A-96)

A.6.8 DETERMINANT OF A MATRIX

Recalling how tedious the calculation of a determinant promised to be, we find that the following
is particularly useful. Because

C′AC = �,

|C′AC| = |�|.
(A-97)

Using a number of earlier results, we have, for orthogonal matrix C,

|C′AC| = |C′| · |A| · |C| = |C′| · |C| · |A| = |C′C| · |A| = |I| · |A| = 1 · |A|
= |A|
= |�|.

(A-98)

Because |�| is just the product of its diagonal elements, the following is implied.

THEOREM A.8 Determinant of a Matrix
The determinant of a matrix equals the product of its characteristic roots.

(A-99)

Notice that we get the expected result if any of these roots is zero. The determinant is the
product of the roots, so it follows that a matrix is singular if and only if its determinant is zero
and, in turn, if and only if it has at least one zero characteristic root.

A.6.9 POWERS OF A MATRIX

We often use expressions involving powers of matrices, such as AA = A2. For positive integer
powers, these expressions can be computed by repeated multiplication. But this does not show
how to handle a problem such as finding a B such that B2 = A, that is, the square root of a matrix.
The characteristic roots and vectors provide a solution. Consider first

AA = A2 = (C�C′)(C�C′) = C�C′C�C′ = C�I�C′ = C��C′

= C�2C′.
(A-100)

Two results follow. Because �2 is a diagonal matrix whose nonzero elements are the squares of
those in �, the following is implied.

For any symmetric matrix, the characteristic roots of A2 are the squares of those of A,

and the characteristic vectors are the same. (A-101)
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The proof is obtained by observing that the second line in (A-100) is the spectral decomposi-
tion of the matrix B = AA. Because A3 = AA2 and so on, (A-101) extends to any positive integer.
By convention, for any A, A0 = I. Thus, for any symmetric matrix A, AK = C�KC′, K = 0, 1, . . . .
Hence, the characteristic roots of AK are λK, whereas the characteristic vectors are the same as
those of A. If A is nonsingular, so that all its roots λi are nonzero, then this proof can be extended
to negative powers as well.

If A−1 exists, then

A−1 = (C�C′)−1 = (C′)−1�−1C−1 = C�−1C′, (A-102)

where we have used the earlier result, C′ = C−1. This gives an important result that is useful for
analyzing inverse matrices.

THEOREM A.9 Characteristic Roots of an Inverse Matrix
If A−1 exists, then the characteristic roots of A−1 are the reciprocals of those of A, and the
characteristic vectors are the same.

By extending the notion of repeated multiplication, we now have a more general result.

THEOREM A.10 Characteristic Roots of a Matrix Power
For any nonsingular symmetric matrix A = C�C′, AK = C�KC′, K = . . . , −2,

−1, 0, 1, 2, . . . .

We now turn to the general problem of how to compute the square root of a matrix. In the
scalar case, the value would have to be nonnegative. The matrix analog to this requirement is that
all the characteristic roots are nonnegative. Consider, then, the candidate

A1/2 = C�1/2C′ = C

⎡
⎢⎣

√
λ1 0 · · · 0
0

√
λ2 · · · 0

· · ·
0 0 · · · √

λn

⎤
⎥⎦ C′. (A-103)

This equation satisfies the requirement for a square root, because

A1/2A1/2 = C�1/2C′C�1/2C′ = C�C′ = A. (A-104)

If we continue in this fashion, we can define the powers of a matrix more generally, still assuming
that all the characteristic roots are nonnegative. For example, A1/3 = C�1/3C′. If all the roots are
strictly positive, we can go one step further and extend the result to any real power. For reasons
that will be made clear in the next section, we say that a matrix with positive characteristic roots
is positive definite. It is the matrix analog to a positive number.

DEFINITION A.17 Real Powers of a Positive Definite Matrix

For a positive definite matrix A, Ar = C�r C′, for any real number, r . (A-105)
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The characteristic roots of Ar are the r th power of those of A, and the characteristic vectors
are the same.

If A is only nonnegative definite—that is, has roots that are either zero or positive—then
(A-105) holds only for nonnegative r .

A.6.10 IDEMPOTENT MATRICES

Idempotent matrices are equal to their squares [see (A-37) to (A-39)]. In view of their importance
in econometrics, we collect a few results related to idempotent matrices at this point. First, (A-101)
implies that if λ is a characteristic root of an idempotent matrix, then λ = λK for all nonnegative
integers K. As such, if A is a symmetric idempotent matrix, then all its roots are one or zero.
Assume that all the roots of A are one. Then � = I, and A = C�C′ = CIC′ = CC′ = I. If the
roots are not all one, then one or more are zero. Consequently, we have the following results for
symmetric idempotent matrices:9

• The only full rank, symmetric idempotent matrix is the identity matrix I. (A-106)• All symmetric idempotent matrices except the identity matrix are singular. (A-107)

The final result on idempotent matrices is obtained by observing that the count of the nonzero
roots of A is also equal to their sum. By combining Theorems A.5 and A.7 with the result that
for an idempotent matrix, the roots are all zero or one, we obtain this result:

• The rank of a symmetric idempotent matrix is equal to its trace. (A-108)

A.6.11 FACTORING A MATRIX

In some applications, we shall require a matrix P such that

P′P = A−1.

One choice is

P = �−1/2C′,

so that

P′P = (C′)′(�−1/2)′�−1/2C′ = C�−1C′,

as desired.10 Thus, the spectral decomposition of A, A = C�C′ is a useful result for this kind of
computation.

The Cholesky factorization of a symmetric positive definite matrix is an alternative represen-
tation that is useful in regression analysis. Any symmetric positive definite matrix A may be written
as the product of a lower triangular matrix L and its transpose (which is an upper triangular matrix)
L′ = U. Thus, A = LU. This result is the Cholesky decomposition of A. The square roots of the
diagonal elements of L, di , are the Cholesky values of A. By arraying these in a diagonal matrix D,
we may also write A = LD−1D2D−1U = L∗D2U∗, which is similar to the spectral decomposition in
(A-85). The usefulness of this formulation arises when the inverse of A is required. Once L is

9Not all idempotent matrices are symmetric. We shall not encounter any asymmetric ones in our work,
however.
10We say that this is “one” choice because if A is symmetric, as it will be in all our applications, there are
other candidates. The reader can easily verify that C�−1/2C′ = A−1/2 works as well.
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computed, finding A−1 = U−1L−1 is also straightforward as well as extremely fast and accurate.
Most recently developed econometric software packages use this technique for inverting positive
definite matrices.

A third type of decomposition of a matrix is useful for numerical analysis when the inverse
is difficult to obtain because the columns of A are “nearly” collinear. Any n × K matrix A for
which n ≥ K can be written in the form A = UWV′, where U is an orthogonal n× K matrix—that
is, U′U = IK—W is a K × K diagonal matrix such that wi ≥ 0, and V is a K × K matrix such
that V′V = IK. This result is called the singular value decomposition (SVD) of A, and wi are the
singular values of A.11 (Note that if A is square, then the spectral decomposition is a singular
value decomposition.) As with the Cholesky decomposition, the usefulness of the SVD arises in
inversion, in this case, of A′A. By multiplying it out, we obtain that (A′A)−1 is simply VW−2V′.
Once the SVD of A is computed, the inversion is trivial. The other advantage of this format is its
numerical stability, which is discussed at length in Press et al. (1986).

Press et al. (1986) recommend the SVD approach as the method of choice for solv-
ing least squares problems because of its accuracy and numerical stability. A commonly used
alternative method similar to the SVD approach is the QR decomposition. Any n × K matrix,
X, with n ≥ K can be written in the form X = QR in which the columns of Q are orthonormal
(Q′Q = I) and R is an upper triangular matrix. Decomposing X in this fashion allows an ex-
tremely accurate solution to the least squares problem that does not involve inversion or direct
solution of the normal equations. Press et al. suggest that this method may have problems with
rounding errors in problems when X is nearly of short rank, but based on other published results,
this concern seems relatively minor.12

A.6.12 THE GENERALIZED INVERSE OF A MATRIX

Inverse matrices are fundamental in econometrics. Although we shall not require them much
in our treatment in this book, there are more general forms of inverse matrices than we have
considered thus far. A generalized inverse of a matrix A is another matrix A+ that satisfies the
following requirements:

1. AA+A = A.

2. A+AA+ = A+.

3. A+A is symmetric.
4. AA+ is symmetric.

A unique A+ can be found for any matrix, whether A is singular or not, or even if A is not
square.13 The unique matrix that satisfies all four requirements is called the Moore–Penrose
inverse or pseudoinverse of A. If A happens to be square and nonsingular, then the generalized
inverse will be the familiar ordinary inverse. But if A−1 does not exist, then A+ can still be
computed.

An important special case is the overdetermined system of equations

Ab = y,

11Discussion of the singular value decomposition (and listings of computer programs for the computations)
may be found in Press et al. (1986).
12The National Institute of Standards and Technology (NIST) has published a suite of benchmark problems
that test the accuracy of least squares computations (http://www.nist.gov/itl/div898/strd). Using these prob-
lems, which include some extremely difficult, ill-conditioned data sets, we found that the QR method would
reproduce all the NIST certified solutions to 15 digits of accuracy, which suggests that the QR method should
be satisfactory for all but the worst problems.
13A proof of uniqueness, with several other results, may be found in Theil (1983).
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where A has n rows, K < n columns, and column rank equal to R ≤ K. Suppose that R equals
K, so that (A′A)−1 exists. Then the Moore–Penrose inverse of A is

A+ = (A′A)−1A′,

which can be verified by multiplication. A “solution” to the system of equations can be
written

b = A+y.

This is the vector that minimizes the length of Ab − y. Recall this was the solution to the least
squares problem obtained in Section A.4.4. If y lies in the column space of A, this vector will be
zero, but otherwise, it will not.

Now suppose that A does not have full rank. The previous solution cannot be computed. An
alternative solution can be obtained, however. We continue to use the matrix A′A. In the spectral
decomposition of Section A.6.4, if A has rank R, then there are R terms in the summation in
(A-85). In (A-102), the spectral decomposition using the reciprocals of the characteristic roots is
used to compute the inverse. To compute the Moore–Penrose inverse, we apply this calculation to
A′A, using only the nonzero roots, then postmultiply the result by A′. Let C1 be the Rcharacteristic
vectors corresponding to the nonzero roots, which we array in the diagonal matrix, �1. Then the
Moore–Penrose inverse is

A+ = C1�
−1
1 C′

1A′,

which is very similar to the previous result.
If A is a symmetric matrix with rank R ≤ K, the Moore–Penrose inverse is computed

precisely as in the preceding equation without postmultiplying by A′. Thus, for a symmetric
matrix A,

A+ = C1�
−1
1 C′

1,

where �−1
1 is a diagonal matrix containing the reciprocals of the nonzero roots of A.

A.7 QUADRATIC FORMS AND DEFINITE MATRICES

Many optimization problems involve double sums of the form

q =
n∑

i=1

n∑
j=1

xi xj aij. (A-109)

This quadratic form can be written

q = x′Ax,

where A is a symmetric matrix. In general, q may be positive, negative, or zero; it depends on A
and x. There are some matrices, however, for which q will be positive regardless of x, and others
for which q will always be negative (or nonnegative or nonpositive). For a given matrix A,

1. If x′Ax > (<) 0 for all nonzero x, then A is positive (negative) definite.
2. If x′Ax ≥ (≤) 0 for all nonzero x, then A is nonnegative definite or positive semidefinite

(nonpositive definite).

It might seem that it would be impossible to check a matrix for definiteness, since x can be
chosen arbitrarily. But we have already used the set of results necessary to do so. Recall that a
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symmetric matrix can be decomposed into

A = C�C′.

Therefore, the quadratic form can be written as

x′Ax = x′C�C′x.

Let y = C′x. Then

x′Ax = y′�y =
n∑

i=1

λi y2
i . (A-110)

If λi is positive for all i , then regardless of y—that is, regardless of x—q will be positive. This case
was identified earlier as a positive definite matrix. Continuing this line of reasoning, we obtain
the following theorem.

THEOREM A.11 Definite Matrices
Let A be a symmetric matrix. If all the characteristic roots of A are positive (negative),
then A is positive definite (negative definite). If some of the roots are zero, then A is
nonnegative (nonpositive) definite if the remainder are positive (negative). If A has both
negative and positive roots, then A is indefinite.

The preceding statements give, in each case, the “if” parts of the theorem. To establish
the “only if” parts, assume that the condition on the roots does not hold. This must lead to a
contradiction. For example, if some λ can be negative, then y′�y could be negative for some y,
so A cannot be positive definite.

A.7.1 NONNEGATIVE DEFINITE MATRICES

A case of particular interest is that of nonnegative definite matrices. Theorem A.11 implies a
number of related results.

• If A is nonnegative definite, then |A| ≥ 0. (A-111)

Proof: The determinant is the product of the roots, which are nonnegative.

The converse, however, is not true. For example, a 2 × 2 matrix with two negative roots is
clearly not positive definite, but it does have a positive determinant.

• If A is positive definite, so is A−1. (A-112)

Proof: The roots are the reciprocals of those of A, which are, therefore positive.

• The identity matrix I is positive definite. (A-113)

Proof: x′Ix = x′x > 0 if x 
= 0.

A very important result for regression analysis is

• If A is n × K with full column rank and n > K, then A′A is positive definite and AA′ is
nonnegative definite. (A-114)

Proof: By assumption, Ax 
= 0. So x′A′Ax = (Ax)′(Ax) = y′y = ∑
j y2

j > 0.
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A similar proof establishes the nonnegative definiteness of AA′. The difference in the latter case is
that because A has more rows than columns there is an x such that A′x = 0. Thus, in the proof, we
only have y′y ≥ 0. The case in which A does not have full column rank is the same as that of AA′.

• If A is positive definite and B is a nonsingular matrix, then B′AB is positive definite.
(A-115)

Proof: x′B′ABx = y′Ay > 0, where y = Bx. But y cannot be 0 because B is nonsingular.

Finally, note that for A to be negative definite, all A’s characteristic roots must be negative. But,
in this case, |A| is positive if A is of even order and negative if A is of odd order.

A.7.2 IDEMPOTENT QUADRATIC FORMS

Quadratic forms in idempotent matrices play an important role in the distributions of many test
statistics. As such, we shall encounter them fairly often. Two central results are of interest.

• Every symmetric idempotent matrix is nonnegative definite. (A-116)

Proof: All roots are one or zero; hence, the matrix is nonnegative definite by definition.

Combining this with some earlier results yields a result used in determining the sampling distri-
bution of most of the standard test statistics.

• If A is symmetric and idempotent, n × n with rank J , then every quadratic form in A can be
written x′Ax = ∑J

j=1 y2
j (A-117)

Proof: This result is (A-110) with λ = one or zero.

A.7.3 COMPARING MATRICES

Derivations in econometrics often focus on whether one matrix is “larger” than another. We now
consider how to make such a comparison. As a starting point, the two matrices must have the
same dimensions. A useful comparison is based on

d = x′Ax − x′Bx = x′(A − B)x.

If d is always positive for any nonzero vector, x, then by this criterion, we can say that A is larger
than B. The reverse would apply if d is always negative. It follows from the definition that

if d > 0 for all nonzero x, then A − B is positive definite. (A-118)

If d is only greater than or equal to zero, then A − B is nonnegative definite. The ordering is not
complete. For some pairs of matrices, d could have either sign, depending on x. In this case, there
is no simple comparison.

A particular case of the general result which we will encounter frequently is.

If A is positive definite and B is nonnegative definite,
then A + B ≥ A. (A-119)

Consider, for example, the “updating formula” introduced in (A-66). This uses a matrix

A = B′B + bb′ ≥ B′B.

Finally, in comparing matrices, it may be more convenient to compare their inverses. The result
analogous to a familiar result for scalars is:

If A > B, then B−1 > A−1. (A-120)
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To establish this intuitive result, we would make use of the following, which is proved in Gold-
berger (1964, Chapter 2):

THEOREM A.12 Ordering for Positive Definite Matrices
If A and B are two positive definite matrices with the same dimensions and if every char-
acteristic root of A is larger than (at least as large as) the corresponding characteristic root
of B when both sets of roots are ordered from largest to smallest, then A − B is positive
(nonnegative) definite.

The roots of the inverse are the reciprocals of the roots of the original matrix, so the theorem can
be applied to the inverse matrices.

A.8 CALCULUS AND MATRIX ALGEBRA14

A.8.1 DIFFERENTIATION AND THE TAYLOR SERIES

A variable y is a function of another variable x written

y = f (x), y = g(x), y = y(x),

and so on, if each value of x is associated with a single value of y. In this relationship, y and x are
sometimes labeled the dependent variable and the independent variable, respectively. Assuming
that the function f (x) is continuous and differentiable, we obtain the following derivatives:

f ′(x) = dy
dx

, f ′′(x) = d2 y
dx2

,

and so on.
A frequent use of the derivatives of f (x) is in the Taylor series approximation. A Taylor

series is a polynomial approximation to f (x). Letting x0 be an arbitrarily chosen expansion point

f (x) ≈ f (x0) +
P∑

i=1

1
i!

di f (x0)

d(x0)i
(x − x0)i . (A-121)

The choice of the number of terms is arbitrary; the more that are used, the more accurate the
approximation will be. The approximation used most frequently in econometrics is the linear
approximation,

f (x) ≈ α + βx, (A-122)

where, by collecting terms in (A-121), α = [ f (x0) − f ′(x0)x0] and β = f ′(x0). The superscript
“0” indicates that the function is evaluated at x0. The quadratic approximation is

f (x) ≈ α + βx + γ x2, (A-123)

where α = [ f 0 − f ′0x0 + 1
2 f ′′0(x0)2], β = [ f ′0 − f ′′0x0] and γ = 1

2 f ′′0.

14For a complete exposition, see Magnus and Neudecker (1988).
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We can regard a function y = f (x1, x2, . . . , xn) as a scalar-valued function of a vector; that
is, y = f (x). The vector of partial derivatives, or gradient vector, or simply gradient, is

∂ f (x)

∂x
=

⎡
⎢⎣

∂y/∂x1

∂y/∂x2

· · ·
∂y/∂xn

⎤
⎥⎦ =

⎡
⎢⎣

f1

f2

· · ·
fn

⎤
⎥⎦ . (A-124)

The vector g(x) or g is used to represent the gradient. Notice that it is a column vector. The shape
of the derivative is determined by the denominator of the derivative.

A second derivatives matrix or Hessian is computed as

H =

⎡
⎢⎣

∂2 y/∂x1∂x1 ∂2 y/∂x1∂x2 · · · ∂2 y/∂x1∂xn

∂2 y/∂x2∂x1 ∂2 y/∂x2∂x2 · · · ∂2 y/∂x2∂xn

· · · · · · · · · · · ·
∂2 y/∂xn∂x1 ∂2 y/∂xn∂x2 · · · ∂2 y/∂xn∂xn

⎤
⎥⎦ = [ fij]. (A-125)

In general, H is a square, symmetric matrix. (The symmetry is obtained for continuous and
continuously differentiable functions from Young’s theorem.) Each column of H is the derivative
of g with respect to the corresponding variable in x′. Therefore,

H =
[

∂(∂y/∂x)

∂x1

∂(∂y/∂x)

∂x2
· · · ∂(∂y/∂x)

∂xn

]
= ∂(∂y/∂x)

∂(x1 x2 · · · xn)
= ∂(∂y/∂x)

∂x′ = ∂2 y
∂x∂x′ .

The first-order, or linear Taylor series approximation is

y ≈ f (x0) +
n∑

i=1

fi (x0)
(

xi − x0
i

)
. (A-126)

The right-hand side is

f (x0) +
[

∂ f (x0)

∂x0

]′
(x − x0) = [ f (x0) − g(x0)′x0] + g(x0)′x = [ f 0 − g0′x0] + g0′x.

This produces the linear approximation,

y ≈ α + β ′x.

The second-order, or quadratic, approximation adds the second-order terms in the expansion,

1
2

n∑
i=1

n∑
j=1

f 0
ij

(
xi − x0

i

)(
xj − x0

j

) = 1
2
(x − x0)′H0(x − x0),

to the preceding one. Collecting terms in the same manner as in (A-126), we have

y ≈ α + β ′x + 1
2

x′�x, (A-127)

where

α = f 0 − g0′x0 + 1
2

x0′H0x0, β = g0 − H0x0 and � = H0.

A linear function can be written

y = a′x = x′a =
n∑

i=1

ai xi ,
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so

∂(a′x)

∂x
= a. (A-128)

Note, in particular, that ∂(a′x)/∂x = a, not a′. In a set of linear functions

y = Ax,

each element yi of y is

yi = a′
i x,

where a′
i is the ith row of A [see (A-14)]. Therefore,

∂yi

∂x
= ai = transpose of ith row of A,

and ⎡
⎢⎢⎣

∂y1/∂x′

∂y2/∂x′

· · ·
∂yn/∂x′

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a′
1

a′
2

· · ·
a′

n

⎤
⎥⎥⎦ .

Collecting all terms, we find that ∂Ax/∂x′ = A, whereas the more familiar form will be

∂Ax
∂x

= A′. (A-129)

A quadratic form is written

x′Ax =
n∑

i=1

n∑
j=1

xi xj aij. (A-130)

For example,

A =
[

1 3
3 4

]
,

so that

x′Ax = 1x2
1 + 4x2

2 + 6x1x2.

Then

∂x′Ax
∂x

=
[

2x1 + 6x2

6x1 + 8x2

]
=

[
2 6
6 8

][
x1

x2

]
= 2Ax, (A-131)

which is the general result when A is a symmetric matrix. If A is not symmetric, then

∂(x′Ax)

∂x
= (A + A′)x. (A-132)

Referring to the preceding double summation, we find that for each term, the coefficient on aij is
xi xj . Therefore,

∂(x′Ax)

∂aij
= xi xj .
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The square matrix whose i jth element is xi xj is xx′, so

∂(x′Ax)

∂A
= xx′. (A-133)

Derivatives involving determinants appear in maximum likelihood estimation. From the
cofactor expansion in (A-51),

∂|A|
∂aij

= (−1)i+ j |Aij| = cij

where |C j i | is the j ith cofactor in A. The inverse of A can be computed using

A−1
ij = |C j i |

|A|
(note the reversal of the subscripts), which implies that

∂ ln|A|
∂aij

= (−1)i+ j |Aij|
|A| ,

or, collecting terms,

∂ ln|A|
∂A

= A−1′.

Because the matrices for which we shall make use of this calculation will be symmetric in our
applications, the transposition will be unnecessary.

A.8.2 OPTIMIZATION

Consider finding the x where f (x) is maximized or minimized. Because f ′(x) is the slope of
f (x), either optimum must occur where f ′(x) = 0. Otherwise, the function will be increasing
or decreasing at x. This result implies the first-order or necessary condition for an optimum
(maximum or minimum):

dy
dx

= 0. (A-134)

For a maximum, the function must be concave; for a minimum, it must be convex. The sufficient
condition for an optimum is.

For a maximum,
d2 y
dx2

< 0;

for a minimum,
d2 y
dx2

> 0.

(A-135)

Some functions, such as the sine and cosine functions, have many local optima, that is, many
minima and maxima. A function such as (cos x)/(1 + x2), which is a damped cosine wave, does
as well but differs in that although it has many local maxima, it has one, at x = 0, at which f (x)

is greater than it is at any other point. Thus, x = 0 is the global maximum, whereas the other
maxima are only local maxima. Certain functions, such as a quadratic, have only a single optimum.
These functions are globally concave if the optimum is a maximum and globally convex if it is a
minimum.

For maximizing or minimizing a function of several variables, the first-order conditions are

∂ f (x)

∂x
= 0. (A-136)
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This result is interpreted in the same manner as the necessary condition in the univariate case.
At the optimum, it must be true that no small change in any variable leads to an improvement
in the function value. In the single-variable case, d2 y/dx2 must be positive for a minimum and
negative for a maximum. The second-order condition for an optimum in the multivariate case is
that, at the optimizing value,

H = ∂2 f (x)

∂x ∂x′ (A-137)

must be positive definite for a minimum and negative definite for a maximum.
In a single-variable problem, the second-order condition can usually be verified by inspection.

This situation will not generally be true in the multivariate case. As discussed earlier, checking the
definiteness of a matrix is, in general, a difficult problem. For most of the problems encountered
in econometrics, however, the second-order condition will be implied by the structure of the
problem. That is, the matrix H will usually be of such a form that it is always definite.

For an example of the preceding, consider the problem

maximizex R = a′x − x′Ax,

where

a′ = (5 4 2),

and

A =
[

2 1 3
1 3 2
3 2 5

]
.

Using some now familiar results, we obtain

∂ R
∂x

= a − 2Ax =
[

5
4
2

]
−

[
4 2 6
2 6 4
6 4 10

][
x1

x2

x3

]
= 0. (A-138)

The solutions are
[

x1

x2

x3

]
=

[
4 2 6
2 6 4
6 4 10

]−1 [
5
4
2

]
=

[
11.25

1.75
−7.25

]
.

The sufficient condition is that

∂2 R(x)

∂x ∂x′ = −2A =
[−4 −2 −6
−2 −6 −4
−6 −4 −10

]
(A-139)

must be negative definite. The three characteristic roots of this matrix are −15.746, −4, and
−0.25403. Because all three roots are negative, the matrix is negative definite, as required.

In the preceding, it was necessary to compute the characteristic roots of the Hessian to verify
the sufficient condition. For a general matrix of order larger than 2, this will normally require a
computer. Suppose, however, that A is of the form

A = B′B,

where B is some known matrix. Then, as shown earlier, we know that A will always be positive
definite (assuming that B has full rank). In this case, it is not necessary to calculate the characteristic
roots of A to verify the sufficient conditions.



Greene-2140242 book January 19, 2011 21:35

1052 PART VI ✦ Appendices

A.8.3 CONSTRAINED OPTIMIZATION

It is often necessary to solve an optimization problem subject to some constraints on the solution.
One method is merely to “solve out” the constraints. For example, in the maximization problem
considered earlier, suppose that the constraint x1 = x2 −x3 is imposed on the solution. For a single
constraint such as this one, it is possible merely to substitute the right-hand side of this equation
for x1 in the objective function and solve the resulting problem as a function of the remaining two
variables. For more general constraints, however, or when there is more than one constraint, the
method of Lagrange multipliers provides a more straightforward method of solving the problem.
We

maximizex f (x) subject to c1(x) = 0,

c2(x) = 0,

· · ·
cJ (x) = 0.

(A-140)

The Lagrangean approach to this problem is to find the stationary points—that is, the points at
which the derivatives are zero—of

L∗(x, λ) = f (x) +
J∑

j=1

λ j c j (x) = f (x) + λ′c(x). (A-141)

The solutions satisfy the equations

∂L∗

∂x
= ∂ f (x)

∂x
+ ∂λ′c(x)

∂x
= 0 (n × 1),

∂L∗

∂λ
= c(x) = 0 (J × 1).

(A-142)

The second term in ∂L∗/∂x is

∂λ′c(x)

∂x
= ∂c(x)′λ

∂x
=

[
∂c(x)′

∂x

]
λ = C′λ, (A-143)

where C is the matrix of derivatives of the constraints with respect to x. The jth row of the J × n
matrix C is the vector of derivatives of the jth constraint, c j (x), with respect to x′. Upon collecting
terms, the first-order conditions are

∂L∗

∂x
= ∂ f (x)

∂x
+ C′λ = 0,

∂L∗

∂λ
= c(x) = 0.

(A-144)

There is one very important aspect of the constrained solution to consider. In the unconstrained
solution, we have ∂ f (x)/∂x = 0. From (A-144), we obtain, for a constrained solution,

∂ f (x)

∂x
= −C′λ, (A-145)

which will not equal 0 unless λ = 0. This result has two important implications:

• The constrained solution cannot be superior to the unconstrained solution. This is implied
by the nonzero gradient at the constrained solution. (That is, unless C = 0 which could
happen if the constraints were nonlinear. But, even if so, the solution is still no better than
the unconstrained optimum.)

• If the Lagrange multipliers are zero, then the constrained solution will equal the uncon-
strained solution.
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To continue the example begun earlier, suppose that we add the following conditions:

x1 − x2 + x3 = 0,

x1 + x2 + x3 = 0.

To put this in the format of the general problem, write the constraints as c(x) = Cx = 0, where

C =
[

1 −1 1
1 1 1

]
.

The Lagrangean function is

R∗(x, λ) = a′x − x′Ax + λ′Cx.

Note the dimensions and arrangement of the various parts. In particular, C is a 2 × 3 matrix, with
one row for each constraint and one column for each variable in the objective function. The vector
of Lagrange multipliers thus has two elements, one for each constraint. The necessary conditions
are

a − 2Ax + C′λ = 0 (three equations), (A-146)

and

Cx = 0 (two equations).

These may be combined in the single equation
[
−2A C′

C 0

][
x
λ

]
=

[
−a
0

]
.

Using the partitioned inverse of (A-74) produces the solutions

λ = −[CA−1C′]−1CA−1a (A-147)

and

x = 1
2

A−1[I − C′(CA−1C′)−1CA−1]a. (A-148)

The two results, (A-147) and (A-148), yield analytic solutions for λ and x. For the specific matrices
and vectors of the example, these are λ = [−0.5 −7.5]′, and the constrained solution vector,
x∗ = [1.5 0 −1.5]′. Note that in computing the solution to this sort of problem, it is not necessary
to use the rather cumbersome form of (A-148). Once λ is obtained from (A-147), the solution
can be inserted in (A-146) for a much simpler computation. The solution

x = 1
2

A−1a + 1
2

A−1C′λ

suggests a useful result for the constrained optimum:

constrained solution = unconstrained solution + [2A]−1C′λ. (A-149)

Finally, by inserting the two solutions in the original function, we find that R = 24.375 and
R∗ = 2.25, which illustrates again that the constrained solution (in this maximization problem)
is inferior to the unconstrained solution.
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A.8.4 TRANSFORMATIONS

If a function is strictly monotonic, then it is a one-to-one function. Each y is associated with
exactly one value of x, and vice versa. In this case, an inverse function exists, which expresses x
as a function of y, written

y = f (x)

and

x = f −1(y).

An example is the inverse relationship between the log and the exponential functions.
The slope of the inverse function,

J = dx
dy

= df −1(y)

dy
= f −1′(y),

is the Jacobian of the transformation from y to x. For example, if

y = a + bx,

then

x = −a
b

+
[

1
b

]
y

is the inverse transformation and

J = dx
dy

= 1
b
.

Looking ahead to the statistical application of this concept, we observe that if y = f (x) were
vertical, then this would no longer be a functional relationship. The same x would be associated
with more than one value of y. In this case, at this value of x, we would find that J = 0, indicating
a singularity in the function.

If y is a column vector of functions, y = f(x), then

J = ∂x
∂y′ =

⎡
⎢⎢⎢⎣

∂x1/∂y1 ∂x1/∂y2 · · · ∂x1/∂yn

∂x2/∂y1 ∂x2/∂y2 · · · ∂x2/∂yn

...

∂xn/∂y1 ∂xn/∂y2 · · · ∂xn/∂yn

⎤
⎥⎥⎥⎦ .

Consider the set of linear functions y = Ax = f(x). The inverse transformation is x = f−1(y),
which will be

x = A−1y,

if A is nonsingular. If A is singular, then there is no inverse transformation. Let J be the matrix
of partial derivatives of the inverse functions:

J =
[

∂xi

∂yj

]
.

The absolute value of the determinant of J,

abs(|J|) = abs

(
det

([
∂x
∂y′

]))
,

is the Jacobian determinant of the transformation from y to x. In the nonsingular case,

abs(|J|) = abs(|A−1|) = 1
abs(|A|) .
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In the singular case, the matrix of partial derivatives will be singular and the determinant of
the Jacobian will be zero. In this instance, the singular Jacobian implies that A is singular or,
equivalently, that the transformations from x to y are functionally dependent. The singular case
is analogous to the single-variable case.

Clearly, if the vector x is given, then y = Ax can be computed from x. Whether x can be
deduced from y is another question. Evidently, it depends on the Jacobian. If the Jacobian is
not zero, then the inverse transformations exist, and we can obtain x. If not, then we cannot
obtain x.

APPENDIX B

Q
PROBABILITY AND

DISTRIBUTION THEORY

B.1 INTRODUCTION

This appendix reviews the distribution theory used later in the book. A previous course in statistics
is assumed, so most of the results will be stated without proof. The more advanced results in the
later sections will be developed in greater detail.

B.2 RANDOM VARIABLES

We view our observation on some aspect of the economy as the outcome of a random process
that is almost never under our (the analyst’s) control. In the current literature, the descriptive
(and perspective laden) term data generating process, or DGP is often used for this underlying
mechanism. The observed (measured) outcomes of the process are assigned unique numeric
values. The assignment is one to one; each outcome gets one value, and no two distinct outcomes
receive the same value. This outcome variable, X, is a random variable because, until the data
are actually observed, it is uncertain what value X will take. Probabilities are associated with
outcomes to quantify this uncertainty. We usually use capital letters for the “name” of a random
variable and lowercase letters for the values it takes. Thus, the probability that X takes a particular
value x might be denoted Prob(X = x).

A random variable is discrete if the set of outcomes is either finite in number or countably
infinite. The random variable is continuous if the set of outcomes is infinitely divisible and, hence,
not countable. These definitions will correspond to the types of data we observe in practice. Counts
of occurrences will provide observations on discrete random variables, whereas measurements
such as time or income will give observations on continuous random variables.

B.2.1 PROBABILITY DISTRIBUTIONS

A listing of the values x taken by a random variable X and their associated probabilities is a
probability distribution, f (x). For a discrete random variable,

f (x) = Prob(X = x). (B-1)
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The axioms of probability require that

1. 0 ≤ Prob(X = x) ≤ 1. (B-2)
2.

∑
x f (x) = 1. (B-3)

For the continuous case, the probability associated with any particular point is zero, and
we can only assign positive probabilities to intervals in the range of x. The probability density
function (pdf) is defined so that f (x) ≥ 0 and

1. Prob(a ≤ x ≤ b) =
∫ b

a

f (x) dx ≥ 0. (B-4)

This result is the area under f (x) in the range from a to b. For a continuous variable,

2.
∫ +∞

−∞
f (x) dx = 1. (B-5)

If the range of x is not infinite, then it is understood that f (x) = 0 any where outside the
appropriate range. Because the probability associated with any individual point is 0,

Prob(a ≤ x ≤ b) = Prob(a ≤ x < b)

= Prob(a < x ≤ b)

= Prob(a < x < b).

B.2.2 CUMULATIVE DISTRIBUTION FUNCTION

For any random variable X, the probability that X is less than or equal to a is denoted F(a). F(x)

is the cumulative distribution function (cdf). For a discrete random variable,

F(x) =
∑
X≤x

f (X ) = Prob(X ≤ x). (B-6)

In view of the definition of f (x),

f (xi ) = F(xi ) − F(xi−1). (B-7)

For a continuous random variable,

F(x) =
∫ x

−∞
f (t) dt, (B-8)

and

f (x) = dF(x)

dx
. (B-9)

In both the continuous and discrete cases, F(x) must satisfy the following properties:

1. 0 ≤ F(x) ≤ 1.
2. If x > y, then F(x) ≥ F(y).
3. F(+∞) = 1.
4. F(−∞) = 0.

From the definition of the cdf,

Prob(a < x ≤ b) = F(b) − F(a). (B-10)

Any valid pdf will imply a valid cdf, so there is no need to verify these conditions separately.
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B.3 EXPECTATIONS OF A RANDOM VARIABLE

DEFINITION B.1 Mean of a Random Variable
The mean, or expected value, of a random variable is

E[x] =

⎧
⎪⎪⎨
⎪⎪⎩

∑
x

x f (x) if x is discrete,

∫

x

x f (x) dx if x is continuous.

(B-11)

The notation
∑

x or
∫

x
, used henceforth, means the sum or integral over the entire range

of values of x. The mean is usually denoted μ. It is a weighted average of the values taken by x,
where the weights are the respective probabilities. It is not necessarily a value actually taken by
the random variable. For example, the expected number of heads in one toss of a fair coin is 1

2 .
Other measures of central tendency are the median, which is the value m such that

Prob(X ≤ m) ≥ 1
2 and Prob(X ≥ m) ≥ 1

2 , and the mode, which is the value of x at which f (x)

takes its maximum. The first of these measures is more frequently used than the second. Loosely
speaking, the median corresponds more closely than the mean to the middle of a distribution. It is
unaffected by extreme values. In the discrete case, the modal value of x has the highest probability
of occurring.

Let g(x) be a function of x. The function that gives the expected value of g(x) is denoted

E[g(x)] =

⎧
⎪⎪⎨
⎪⎪⎩

∑
x

g(x) Prob(X = x) if X is discrete,

∫

x

g(x) f (x) dx if X is continuous.

(B-12)

If g(x) = a + bx for constants a and b, then

E[a + bx] = a + bE[x].

An important case is the expected value of a constant a, which is just a.

DEFINITION B.2 Variance of a Random Variable
The variance of a random variable is

Var[x] = E[(x − μ)2]

=

⎧⎪⎪⎨
⎪⎪⎩

∑
x

(x − μ)2 f (x) if x is discrete,

∫

x

(x − μ)2 f (x) dx if x is continuous.

(B-13)

Var[x], which must be positive, is usually denoted σ 2. This function is a measure of the
dispersion of a distribution. Computation of the variance is simplified by using the following
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important result:

Var[x] = E[x2] − μ2. (B-14)

A convenient corollary to (B-14) is

E[x2] = σ 2 + μ2. (B-15)

By inserting y = a + bx in (B-13) and expanding, we find that

Var[a + bx] = b2 Var[x], (B-16)

which implies, for any constant a, that

Var[a] = 0. (B-17)

To describe a distribution, we usually use σ , the positive square root, which is the standard
deviation of x. The standard deviation can be interpreted as having the same units of measurement
as x and μ. For any random variable x and any positive constant k, the Chebychev inequality states
that

Prob(μ − kσ ≤ x ≤ μ + kσ) ≥ 1 − 1
k2

. (B-18)

Two other measures often used to describe a probability distribution are

skewness = E[(x − μ)3],

and

kurtosis = E[(x − μ)4].

Skewness is a measure of the asymmetry of a distribution. For symmetric distributions,

f (μ − x) = f (μ + x),

and

skewness = 0.

For asymmetric distributions, the skewness will be positive if the “long tail” is in the positive
direction. Kurtosis is a measure of the thickness of the tails of the distribution. A shorthand
expression for other central moments is

μr = E[(x − μ)r ].

Because μr tends to explode as r grows, the normalized measure, μr/σ
r , is often used for descrip-

tion. Two common measures are

skewness coefficient = μ3

σ 3
,

and

degree of excess = μ4

σ 4
− 3.

The second is based on the normal distribution, which has excess of zero.
For any two functions g1(x) and g2(x),

E[g1(x) + g2(x)] = E[g1(x)] + E[g2(x)]. (B-19)

For the general case of a possibly nonlinear g(x),

E[g(x)] =
∫

x

g(x) f (x) dx, (B-20)
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and

Var[g(x)] =
∫

x

(
g(x) − E [g(x)]

)2
f (x) dx. (B-21)

(For convenience, we shall omit the equivalent definitions for discrete variables in the fol-
lowing discussion and use the integral to mean either integration or summation, whichever is
appropriate.)

A device used to approximate E[g(x)] and Var[g(x)] is the linear Taylor series approxi-
mation:

g(x) ≈ [g(x0) − g′(x0)x0] + g′(x0)x = β1 + β2x = g∗(x). (B-22)

If the approximation is reasonably accurate, then the mean and variance of g∗(x) will be ap-
proximately equal to the mean and variance of g(x). A natural choice for the expansion point is
x0 = μ = E(x). Inserting this value in (B-22) gives

g(x) ≈ [g(μ) − g′(μ)μ] + g′(μ)x, (B-23)

so that

E[g(x)] ≈ g(μ), (B-24)

and

Var[g(x)] ≈ [g′(μ)]2 Var[x]. (B-25)

A point to note in view of (B-22) to (B-24) is that E[g(x)] will generally not equal g(E[x]).
For the special case in which g(x) is concave—that is, where g′′(x) < 0—we know from Jensen’s
inequality that E[g(x)] ≤ g(E[x]). For example, E[log(x)] ≤ log(E[x]).

B.4 SOME SPECIFIC PROBABILITY
DISTRIBUTIONS

Certain experimental situations naturally give rise to specific probability distributions. In the
majority of cases in economics, however, the distributions used are merely models of the observed
phenomena. Although the normal distribution, which we shall discuss at length, is the mainstay
of econometric research, economists have used a wide variety of other distributions. A few are
discussed here.1

B.4.1 THE NORMAL DISTRIBUTION

The general form of the normal distribution with mean μ and standard deviation σ is

f (x | μ, σ 2) = 1

σ
√

2π
e−1/2[(x−μ)2/σ 2]. (B-26)

This result is usually denoted x ∼ N [μ, σ 2]. The standard notation x ∼ f (x) is used to state that
“x has probability distribution f (x).” Among the most useful properties of the normal distribution

1A much more complete listing appears in Maddala (1977a, Chapters 3 and 18) and in most mathematical
statistics textbooks. See also Poirier (1995) and Stuart and Ord (1989). Another useful reference is Evans,
Hastings, and Peacock (1993). Johnson et al. (1974, 1993, 1994, 1995, 1997) is an encyclopedic reference on
the subject of statistical distributions.
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is its preservation under linear transformation.

If x ∼ N [μ, σ 2], then (a + bx) ∼ N [a + bμ, b2σ 2]. (B-27)

One particularly convenient transformation is a = −μ/σ and b= 1/σ . The resulting variable
z= (x − μ)/σ has the standard normal distribution, denoted N [0, 1], with density

φ(z) = 1√
2π

e−z2/2. (B-28)

The specific notation φ(z) is often used for this distribution and �(z) for its cdf. It follows from
the definitions above that if x ∼ N [μ, σ 2], then

f (x) = 1
σ

φ

[ x − μ

σ

]
.

Figure B.1 shows the densities of the standard normal distribution and the normal distribution
with mean 0.5, which shifts the distribution to the right, and standard deviation 1.3, which, it can
be seen, scales the density so that it is shorter but wider. (The graph is a bit deceiving unless you
look closely; both densities are symmetric.)

Tables of the standard normal cdf appear in most statistics and econometrics textbooks.
Because the form of the distribution does not change under a linear transformation, it is not
necessary to tabulate the distribution for other values of μ and σ . For any normally distributed
variable,

Prob(a ≤ x ≤ b) = Prob

(
a − μ

σ
≤ x − μ

σ
≤ b − μ

σ

)
, (B-29)

which can always be read from a table of the standard normal distribution. In addition, because
the distribution is symmetric, �(−z) = 1 − �(z). Hence, it is not necessary to tabulate both the
negative and positive halves of the distribution.

FIGURE B.1 The Normal Distribution.
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B.4.2 THE CHI-SQUARED, t, AND F DISTRIBUTIONS

The chi-squared, t, and F distributions are derived from the normal distribution. They arise in
econometrics as sums of n or n1 and n2 other variables. These three distributions have associated
with them one or two “degrees of freedom” parameters, which for our purposes will be the
number of variables in the relevant sum.

The first of the essential results is

• If z ∼ N [0, 1], then x = z2 ∼ chi-squared[1]—that is, chi-squared with one degree of
freedom—denoted

z2 ∼ χ2[1]. (B-30)

This distribution is a skewed distribution with mean 1 and variance 2. The second result is

• If x1, . . . , xn are n independent chi-squared[1] variables, then
n∑

i=1

xi ∼ chi-squared[n]. (B-31)

The mean and variance of a chi-squared variable with n degrees of freedom are n and 2n, respec-
tively. A number of useful corollaries can be derived using (B-30) and (B-31).

• If zi , i = 1, . . . , n, are independent N [0, 1] variables, then
n∑

i=1

z2
i ∼ χ2[n]. (B-32)

• If zi , i = 1, . . . , n, are independent N [0, σ 2] variables, then
n∑

i=1

(zi/σ)2 ∼ χ2[n]. (B-33)

• If x1 and x2 are independent chi-squared variables with n1 and n2 degrees of freedom, re-
spectively, then

x1 + x2 ∼ χ2[n1 + n2]. (B-34)

This result can be generalized to the sum of an arbitrary number of independent chi-squared
variables.

Figure B.2 shows the chi-squared density for three degrees of freedom. The amount of
skewness declines as the number of degrees of freedom rises. Unlike the normal distribution, a
separate table is required for the chi-squared distribution for each value of n. Typically, only a
few percentage points of the distribution are tabulated for each n. The table on the inside back
cover of this book gives lower (left) tail areas for a number of values.

• If x1 and x2 are two independent chi-squared variables with degrees of freedom parameters
n1 and n2, respectively, then the ratio

F [n1, n2] = x1/n1

x2/n2
(B-35)

has the F distribution with n1 and n2 degrees of freedom.

The two degrees of freedom parameters n1 and n2 are the numerator and denominator degrees
of freedom, respectively. Tables of the F distribution must be computed for each pair of values
of (n1, n2). As such, only one or two specific values, such as the 95 percent and 99 percent upper
tail values, are tabulated in most cases.
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FIGURE B.2 The Chi-Squared [3] Distribution.

• If z is an N [0, 1] variable and x is χ2[n] and is independent of z, then the ratio

t[n] = z√
x/n

(B-36)

has the t distribution with n degrees of freedom.

The t distribution has the same shape as the normal distribution but has thicker tails. Figure B.3
illustrates the t distributions with 3 and 10 degrees of freedom with the standard normal distribu-
tion. Two effects that can be seen in the figure are how the distribution changes as the degrees of
freedom increases, and, overall, the similarity of the t distribution to the standard normal. This
distribution is tabulated in the same manner as the chi-squared distribution, with several specific
cutoff points corresponding to specified tail areas for various values of the degrees of freedom
parameter.

Comparing (B-35) with n1 = 1 and (B-36), we see the useful relationship between the t and
F distributions:

• If t ∼ t[n], then t2 ∼ F[1, n].

If the numerator in (B-36) has a nonzero mean, then the random variable in (B-36) has a non-
central t distribution and its square has a noncentral F distribution. These distributions arise in
the F tests of linear restrictions [see (5-6)] when the restrictions do not hold as follows:

1. Noncentral chi-squared distribution. If z has a normal distribution with mean μ and standard
deviation 1, then the distribution of z2 is noncentral chi-squared with parameters 1 and μ2/2.
a. If z ∼ N [μ, �] with J elements, then z′�−1z has a noncentral chi-squared distribution

with J degrees of freedom and noncentrality parameter μ′�−1μ/2, which we denote
χ2

∗[J, μ′�−1μ/2].
b. If z ∼ N [μ, I] and M is an idempotent matrix with rank J, then z′Mz ∼ χ2

∗[J, μ′Mμ/2].
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FIGURE B.3 The Standard Normal, t[3], and t[10] Distributions.

2. Noncentral F distribution. If X1 has a noncentral chi-squared distribution with noncentrality
parameter λ and degrees of freedom n1 and X2 has a central chi-squared distribution with
degrees of freedom n2 and is independent of X1, then

F∗ = X1/n1

X2/n2

has a noncentral F distribution with parameters n1, n2, and λ.2 Note that in each of these
cases, the statistic and the distribution are the familiar ones, except that the effect of the
nonzero mean, which induces the noncentrality, is to push the distribution to the right.

B.4.3 DISTRIBUTIONS WITH LARGE DEGREES OF FREEDOM

The chi-squared, t, and F distributions usually arise in connection with sums of sample observa-
tions. The degrees of freedom parameter in each case grows with the number of observations.
We often deal with larger degrees of freedom than are shown in the tables. Thus, the standard
tables are often inadequate. In all cases, however, there are limiting distributions that we can use
when the degrees of freedom parameter grows large. The simplest case is the t distribution. The
t distribution with infinite degrees of freedom is equivalent to the standard normal distribution.
Beyond about 100 degrees of freedom, they are almost indistinguishable.

For degrees of freedom greater than 30, a reasonably good approximation for the distribution
of the chi-squared variable x is

z = (2x)1/2 − (2n − 1)1/2, (B-37)

which is approximately standard normally distributed. Thus,

Prob(χ 2[n] ≤ a) ≈ �[(2a)1/2 − (2n − 1)1/2].

2The denominator chi-squared could also be noncentral, but we shall not use any statistics with doubly
noncentral distributions.
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As used in econometrics, the F distribution with a large-denominator degrees of freedom is
common. As n2 becomes infinite, the denominator of F converges identically to one, so we can
treat the variable

x = n1 F (B-38)

as a chi-squared variable with n1 degrees of freedom. The numerator degree of freedom will
typically be small, so this approximation will suffice for the types of applications we are likely to
encounter.3 If not, then the approximation given earlier for the chi-squared distribution can be
applied to n1 F .

B.4.4 SIZE DISTRIBUTIONS: THE LOGNORMAL DISTRIBUTION

In modeling size distributions, such as the distribution of firm sizes in an industry or the distribution
of income in a country, the lognormal distribution, denoted LN[μ, σ 2], has been particularly
useful.4

f (x) = 1√
2π σ x

e−1/2[(ln x−μ)/σ ]2
, x > 0.

A lognormal variable x has

E[x] = eμ+σ 2/2,

and

Var[x] = e2μ+σ 2(
eσ 2 − 1

)
.

The relation between the normal and lognormal distributions is

If y ∼ LN[μ, σ 2], ln y ∼ N [μ, σ 2].

A useful result for transformations is given as follows:

If x has a lognormal distribution with mean θ and variance λ2, then

ln x ∼ N(μ, σ 2), where μ = ln θ2 − 1
2 ln(θ2 + λ2) and σ 2 = ln(1 + λ2/θ 2).

Because the normal distribution is preserved under linear transformation,

if y ∼ LN[μ, σ 2], then ln yr ∼ N [rμ, r 2σ 2].

If y1 and y2 are independent lognormal variables with y1 ∼ LN[μ1, σ
2
1 ] and y2 ∼ LN[μ2, σ

2
2 ],

then

y1 y2 ∼ LN
[
μ1 + μ2, σ

2
1 + σ 2

2

]
.

B.4.5 THE GAMMA AND EXPONENTIAL DISTRIBUTIONS

The gamma distribution has been used in a variety of settings, including the study of income
distribution5 and production functions.6 The general form of the distribution is

f (x) = λP

(P)
e−λx xP−1, x ≥ 0, λ > 0, P > 0. (B-39)

Many familiar distributions are special cases, including the exponential distribution (P = 1) and
chi-squared (λ = 1

2 , P = n
2 ). The Erlang distribution results if P is a positive integer. The mean is

P/λ, and the variance is P/λ2. The inverse gamma distribution is the distribution of 1/x, where x

3See Johnson, Kotz, and Balakrishnan (1994) for other approximations.
4A study of applications of the lognormal distribution appears in Aitchison and Brown (1969).
5Salem and Mount (1974).
6Greene (1980a).
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has the gamma distribution. Using the change of variable, y = 1/x, the Jacobian is |dx/dy| = 1/y2.
Making the substitution and the change of variable, we find

f (y) = λP

(P)
e−λ/y y−(P+1), y ≥ 0, λ > 0, P > 0.

The density is defined for positive P. However, the mean is λ/(P − 1) which is defined only if
P > 1 and the variance is λ2/[(P − 1)2(P − 2)] which is defined only for P > 2.

B.4.6 THE BETA DISTRIBUTION

Distributions for models are often chosen on the basis of the range within which the random
variable is constrained to vary. The lognormal distribution, for example, is sometimes used to
model a variable that is always nonnegative. For a variable constrained between 0 and c > 0, the
beta distribution has proved useful. Its density is

f (x) = (α + β)

(α)(β)

(
x
c

)α−1(
1 − x

c

)β−1
1
c
. (B-40)

This functional form is extremely flexible in the shapes it will accommodate. It is symmetric if
α = β, asymmetric otherwise, and can be hump-shaped or U-shaped. The mean is cα/(α + β),
and the variance is c2αβ/[(α +β +1)(α +β)2]. The beta distribution has been applied in the study
of labor force participation rates.7

B.4.7 THE LOGISTIC DISTRIBUTION

The normal distribution is ubiquitous in econometrics. But researchers have found that for some
microeconomic applications, there does not appear to be enough mass in the tails of the normal
distribution; observations that a model based on normality would classify as “unusual” seem not
to be very unusual at all. One approach has been to use thicker-tailed symmetric distributions.
The logistic distribution is one candidate; the cdf for a logistic random variable is denoted

F(x) = �(x) = 1
1 + e−x

.

The density is f (x) = �(x)[1 − �(x)]. The mean and variance of this random variable are zero
and π2/3.

B.4.8 THE WISHART DISTRIBUTION

The Wishart distribution describes the distribution of a random matrix obtained as

W =
n∑

i=1

(xi − μ)(xi − μ)′,

where xi is the ith of n K element random vectors from the multivariate normal distribution with
mean vector, μ, and covariance matrix, �. This is a multivariate counterpart to the chi-squared
distribution. The density of the Wishart random matrix is

f (W) =
exp

[
−1

2
trace

(
�−1W

)] |W|− 1
2 (n−K−1)

2nK/2|�|K/2 π K(K−1)/4
∏K

j=1

(
n + 1 − j

2

) .

The mean matrix is n�. For the individual pairs of elements in W,

Cov[wij, wrs] = n(σirσ js + σisσ jr ).

7Heckman and Willis (1976).
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FIGURE B.4 The Poisson [3] Distribution.

B.4.9 DISCRETE RANDOM VARIABLES

Modeling in economics frequently involves random variables that take integer values. In these
cases, the distributions listed thus far only provide approximations that are sometimes quite
inappropriate. We can build up a class of models for discrete random variables from the Bernoulli
distribution for a single binomial outcome (trial)

Prob(x = 1) = α,

Prob(x = 0) = 1 − α,

where 0 ≤ α ≤ 1. The modeling aspect of this specification would be the assumptions that the suc-
cess probability α is constant from one trial to the next and that successive trials are independent.
If so, then the distribution for x successes in n trials is the binomial distribution,

Prob(X = x) =
(

n
x

)
αx(1 − α)n−x, x = 0, 1, . . . , n.

The mean and variance of x are nα and nα(1 − α), respectively. If the number of trials becomes
large at the same time that the success probability becomes small so that the mean nα is stable,
then, the limiting form of the binomial distribution is the Poisson distribution,

Prob(X = x) = e−λλx

x!
.

The Poisson distribution has seen wide use in econometrics in, for example, modeling patents,
crime, recreation demand, and demand for health services. (See Chapter 18.) An example is
shown in Figure B.4.

B.5 THE DISTRIBUTION OF A FUNCTION
OF A RANDOM VARIABLE

We considered finding the expected value of a function of a random variable. It is fairly common
to analyze the random variable itself, which results when we compute a function of some random
variable. There are three types of transformation to consider. One discrete random variable may
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be transformed into another, a continuous variable may be transformed into a discrete one, and
one continuous variable may be transformed into another.

The simplest case is the first one. The probabilities associated with the new variable are
computed according to the laws of probability. If y is derived from x and the function is one to
one, then the probability that Y = y(x) equals the probability that X = x. If several values of x
yield the same value of y, then Prob(Y = y) is the sum of the corresponding probabilities for x.

The second type of transformation is illustrated by the way individual data on income are typ-
ically obtained in a survey. Income in the population can be expected to be distributed according
to some skewed, continuous distribution such as the one shown in Figure B.5.

Data are often reported categorically, as shown in the lower part of the figure. Thus, the
random variable corresponding to observed income is a discrete transformation of the actual
underlying continuous random variable. Suppose, for example, that the transformed variable y is
the mean income in the respective interval. Then

Prob(Y = μ1) = P(−∞ < X ≤ a),

Prob(Y = μ2) = P(a < X ≤ b),

Prob(Y = μ3) = P(b < X ≤ c),

and so on, which illustrates the general procedure.
If x is a continuous random variable with pdf fx(x) and if y = g(x) is a continuous monotonic

function of x, then the density of y is obtained by using the change of variable technique to find

FIGURE B.5 Censored Distribution.
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the cdf of y:

Prob(y ≤ b) =
∫ b

−∞
fx(g−1(y))|g−1′(y)| dy.

This equation can now be written as

Prob(y ≤ b) =
∫ b

−∞
fy(y) dy.

Hence,

fy(y) = fx(g−1(y))|g−1′(y)|. (B-41)

To avoid the possibility of a negative pdf if g(x) is decreasing, we use the absolute value of the
derivative in the previous expression. The term |g−1′(y)| must be nonzero for the density of y to be
nonzero. In words, the probabilities associated with intervals in the range of y must be associated
with intervals in the range of x. If the derivative is zero, the correspondence y = g(x) is vertical,
and hence all values of y in the given range are associated with the same value of x. This single
point must have probability zero.

One of the most useful applications of the preceding result is the linear transformation of a
normally distributed variable. If x ∼ N [μ, σ 2], then the distribution of

y = x − μ

σ

is found using the preceding result. First, the derivative is obtained from the inverse transformation

y = x
σ

− μ

σ
⇒ x = σ y + μ ⇒ f −1′(y) = dx

dy
= σ.

Therefore,

fy(y) = 1√
2πσ

e−[(σ y+μ)−μ]2/(2σ 2)|σ | = 1√
2π

e−y2/2.

This is the density of a normally distributed variable with mean zero and unit standard deviation
one. This is the result which makes it unnecessary to have separate tables for the different normal
distributions which result from different means and variances.

B.6 REPRESENTATIONS OF A PROBABILITY
DISTRIBUTION

The probability density function (pdf) is a natural and familiar way to formulate the distribution
of a random variable. But, there are many other functions that are used to identify or characterize
a random variable, depending on the setting. In each of these cases, we can identify some other
function of the random variable that has a one-to-one relationship with the density. We have
already used one of these quite heavily in the preceding discussion. For a random variable which
has density function f (x), the distribution function, F(x), is an equally informative function that
identifies the distribution; the relationship between f (x) and F(x) is defined in (B-6) for a discrete
random variable and (B-8) for a continuous one. We now consider several other related functions.

For a continuous random variable, the survival function is S(x) = 1 − F(x) = Prob[X ≥ x].
This function is widely used in epidemiology, where x is time until some transition, such as recovery
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from a disease. The hazard function for a random variable is

h(x) = f (x)

S(x)
= f (x)

1 − F(x)
.

The hazard function is a conditional probability;

h(x) = limt↓0 Prob(X ≤ x ≤ X + t | X ≥ x).

Hazard functions have been used in econometrics in studying the duration of spells, or conditions,
such as unemployment, strikes, time until business failures, and so on. The connection between
the hazard and the other functions is h(x) = −d ln S(x)/dx. As an exercise, you might want to
verify the interesting special case of h(x) = 1/λ, a constant—the only distribution which has this
characteristic is the exponential distribution noted in Section B.4.5.

For the random variable X, with probability density function f (x), if the function

M(t) = E[etx]

exists, then it is the moment generating function. Assuming the function exists, it can be shown
that

dr M(t)/dtr |t=0 = E[xr ].

The moment generating function, like the survival and the hazard functions, is a unique charac-
terization of a probability distribution. When it exists, the moment generating function (MGF)
has a one-to-one correspondence with the distribution. Thus, for example, if we begin with some
random variable and find that a transformation of it has a particular MGF, then we may infer that
the function of the random variable has the distribution associated with that MGF. A convenient
application of this result is the MGF for the normal distribution. The MGF for the standard
normal distribution is Mz(t) = et2/2.

A useful feature of MGFs is the following:

If x and y are independent, then the MGF of x + y is Mx(t)My(t).

This result has been used to establish the contagion property of some distributions, that is, the
property that sums of random variables with a given distribution have that same distribution.
The normal distribution is a familiar example. This is usually not the case. It is for Poisson and
chi-squared random variables.

One qualification of all of the preceding is that in order for these results to hold, the
MGF must exist. It will for the distributions that we will encounter in our work, but in at
least one important case, we cannot be sure of this. When computing sums of random vari-
ables which may have different distributions and whose specific distributions need not be so
well behaved, it is likely that the MGF of the sum does not exist. However, the characteristic
function,

φ(t) = E[eitx], i2 = −1,

will always exist, at least for relatively small t. The characteristic function is the device used to
prove that certain sums of random variables converge to a normally distributed variable—that
is, the characteristic function is a fundamental tool in proofs of the central limit theorem.
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B.7 JOINT DISTRIBUTIONS

The joint density function for two random variables X and Y denoted f (x, y) is defined so that

Prob(a ≤ x ≤ b, c ≤ y ≤ d) =

⎧
⎪⎪⎨
⎪⎪⎩

∑
a≤x≤b

∑
c≤y≤d

f (x, y) if x and y are discrete,

∫ b

a

∫ d

c

f (x, y) dy dx if x and y are continuous.

(B-42)

The counterparts of the requirements for a univariate probability density are

f (x, y) ≥ 0,

∑
x

∑
y

f (x, y) = 1 if x and y are discrete,

∫

x

∫

y

f (x, y) dy dx = 1 if x and y are continuous.

(B-43)

The cumulative probability is likewise the probability of a joint event:

F(x, y) = Prob(X ≤ x, Y ≤ y)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
X≤x

∑
Y≤y

f (x, y) in the discrete case

∫ x

−∞

∫ y

−∞
f (t, s) ds dt in the continuous case.

(B-44)

B.7.1 MARGINAL DISTRIBUTIONS

A marginal probability density or marginal probability distribution is defined with respect to an
individual variable. To obtain the marginal distributions from the joint density, it is necessary to
sum or integrate out the other variable:

fx(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
y

f (x, y) in the discrete case

∫

y

f (x, s) ds in the continuous case,

(B-45)

and similarly for fy(y).
Two random variables are statistically independent if and only if their joint density is the

product of the marginal densities:

f (x, y) = fx(x) fy(y) ⇔ x and y are independent. (B-46)

If (and only if) x and y are independent, then the cdf factors as well as the pdf:

F(x, y) = Fx(x)Fy(y), (B-47)

or

Prob(X ≤ x, Y ≤ y) = Prob(X ≤ x)Prob(Y ≤ y).
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B.7.2 EXPECTATIONS IN A JOINT DISTRIBUTION

The means, variances, and higher moments of the variables in a joint distribution are defined with
respect to the marginal distributions. For the mean of x in a discrete distribution,

E[x] =
∑

x

x fx(x)

=
∑

x

x

[∑
y

f (x, y)

]

=
∑

x

∑
y

x f (x, y).

(B-48)

The means of the variables in a continuous distribution are defined likewise, using integration
instead of summation:

E[x] =
∫

x

x fx(x) dx

=
∫

x

∫

y

x f (x, y) dy dx.

(B-49)

Variances are computed in the same manner:

Var[x] =
∑

x

(
x − E[x]

)2
fx(x)

=
∑

x

∑
y

(
x − E[x]

)2
f (x, y).

(B-50)

B.7.3 COVARIANCE AND CORRELATION

For any function g(x, y),

E[g(x, y)] =

⎧
⎪⎪⎨
⎪⎪⎩

∑
x

∑
y

g(x, y) f (x, y) in the discrete case

∫

x

∫

y

g(x, y) f (x, y) dy dx in the continuous case.
(B-51)

The covariance of x and y is a special case:

Cov[x, y] = E[(x − μx)(y − μy)]

= E[xy] − μxμy (B-52)

= σxy.

If x and y are independent, then f (x, y) = fx(x) fy(y) and

σxy =
∑

x

∑
y

fx(x) fy(y)(x − μx)(y − μy)

=
∑

x

(x − μx) fx(x)
∑

y

(y − μy) fy(y)

= E[x − μx]E[y − μy]

= 0.
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The sign of the covariance will indicate the direction of covariation of X and Y. Its magnitude
depends on the scales of measurement, however. In view of this fact, a preferable measure is the
correlation coefficient:

r [x, y] = ρxy = σxy

σxσy
, (B-53)

where σx and σy are the standard deviations of x and y, respectively. The correlation coefficient
has the same sign as the covariance but is always between −1 and 1 and is thus unaffected by any
scaling of the variables.

Variables that are uncorrelated are not necessarily independent. For example, in the dis-
crete distribution f (−1, 1) = f (0, 0) = f (1, 1) = 1

3 , the correlation is zero, but f (1, 1) does not
equal fx(1) fy(1) = ( 1

3 )( 2
3 ). An important exception is the joint normal distribution discussed sub-

sequently, in which lack of correlation does imply independence.
Some general results regarding expectations in a joint distribution, which can be verified by

applying the appropriate definitions, are

E[ax + by + c] = aE[x] + bE[y] + c, (B-54)

Var[ax + by + c] = a2Var[x] + b2Var[y] + 2ab Cov[x, y]

= Var[ax + by],
(B-55)

and

Cov[ax + by, cx + dy] = ac Var[x] + bd Var[y] + (ad + bc)Cov[x, y]. (B-56)

If X and Y are uncorrelated, then

Var[x + y] = Var[x − y]

= Var[x] + Var[y].
(B-57)

For any two functions g1(x) and g2(y), if x and y are independent, then

E[g1(x)g2(y)] = E[g1(x)]E[g2(y)]. (B-58)

B.7.4 DISTRIBUTION OF A FUNCTION OF BIVARIATE
RANDOM VARIABLES

The result for a function of a random variable in (B-41) must be modified for a joint distribution.
Suppose that x1 and x2 have a joint distribution fx(x1, x2) and that y1 and y2 are two monotonic
functions of x1 and x2:

y1 = y1(x1, x2),

y2 = y2(x1, x2).

Because the functions are monotonic, the inverse transformations,

x1 = x1(y1, y2),

x2 = x2(y1, y2),
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exist. The Jacobian of the transformations is the matrix of partial derivatives,

J =
[
∂x1/∂y1 ∂x1/∂y2

∂x2/∂y1 ∂x2/∂y2

]
=

[
∂x
∂y′

]
.

The joint distribution of y1 and y2 is

fy(y1, y2) = fx[x1(y1, y2), x2(y1, y2)]abs(|J |).

The determinant of the Jacobian must be nonzero for the transformation to exist. A zero deter-
minant implies that the two transformations are functionally dependent.

Certainly the most common application of the preceding in econometrics is the linear trans-
formation of a set of random variables. Suppose that x1 and x2 are independently distributed
N [0, 1], and the transformations are

y1 = α1 + β11x1 + β12x2,

y2 = α2 + β21x1 + β22x2.

To obtain the joint distribution of y1 and y2, we first write the transformations as

y = a + Bx.

The inverse transformation is

x = B−1(y − a),

so the absolute value of the determinant of the Jacobian is

abs|J | = abs|B−1| = 1
abs|B| .

The joint distribution of x is the product of the marginal distributions since they are independent.
Thus,

fx(x) = (2π)−1e−(x2
1
+x2

2 )/2 = (2π)−1e−x′x/2.

Inserting the results for x(y) and J into fy(y1, y2) gives

fy(y) = (2π)−1 1
abs|B|e−(y−a)′(BB′)−1(y−a)/2.

This bivariate normal distribution is the subject of Section B.9. Note that by formulating it as we
did earlier, we can generalize easily to the multivariate case, that is, with an arbitrary number of
variables.

Perhaps the more common situation is that in which it is necessary to find the distribution
of one function of two (or more) random variables. A strategy that often works in this case is
to form the joint distribution of the transformed variable and one of the original variables, then
integrate (or sum) the latter out of the joint distribution to obtain the marginal distribution. Thus,
to find the distribution of y1(x1, x2), we might formulate

y1 = y1(x1, x2)

y2 = x2.
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The absolute value of the determinant of the Jacobian would then be

J = abs

∣∣∣∣∣∣

∂x1

∂y1

∂x1

∂y2

0 1

∣∣∣∣∣∣
= abs

∣∣∣∣
(

∂x1

∂y1

)∣∣∣∣.

The density of y1 would then be

fy1(y1) =
∫

y2

fx[x1(y1, y2), y2] abs|J | dy2.

B.8 CONDITIONING IN A BIVARIATE DISTRIBUTION

Conditioning and the use of conditional distributions play a pivotal role in econometric modeling.
We consider some general results for a bivariate distribution. (All these results can be extended
directly to the multivariate case.)

In a bivariate distribution, there is a conditional distribution over y for each value of x. The
conditional densities are

f (y | x) = f (x, y)

fx(x)
, (B-59)

and

f (x | y) = f (x, y)

fy(y)
.

It follows from (B-46) that.

If x and y are independent, then f (y | x) = fy(y) and f (x | y) = fx(x). (B-60)

The interpretation is that if the variables are independent, the probabilities of events relating
to one variable are unrelated to the other. The definition of conditional densities implies the
important result

f (x, y) = f (y | x) fx(x)

= f (x | y) fy(y).
(B-61)

B.8.1 REGRESSION: THE CONDITIONAL MEAN

A conditional mean is the mean of the conditional distribution and is defined by

E[y | x] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫

y

yf (y | x) dy if y is continuous

∑
y

yf (y | x) if y is discrete.
(B-62)

The conditional mean function E[y | x] is called the regression of y on x.
A random variable may always be written as

y = E[y | x] + (
y − E[y | x]

)

= E[y | x] + ε.



Greene-2140242 book January 19, 2011 21:35

APPENDIX B ✦ Probability and Distribution Theory 1075

B.8.2 CONDITIONAL VARIANCE

A conditional variance is the variance of the conditional distribution:

Var[y | x] = E
[(

y − E[y | x]
)2 ∣∣ x

]

=
∫

y

(
y − E[y | x]

)2
f (y | x) dy, if y is continuous,

(B-63)

or

Var[y | x] =
∑

y

(
y − E[y | x]

)2
f (y | x), if y is discrete. (B-64)

The computation can be simplified by using

Var[y | x] = E[y2 | x] − (
E[y | x]

)2
. (B-65)

The conditional variance is called the scedastic function and, like the regression, is generally
a function of x. Unlike the conditional mean function, however, it is common for the conditional
variance not to vary with x. We shall examine a particular case. This case does not imply, however,
that Var[y | x] equals Var[y], which will usually not be true. It implies only that the conditional
variance is a constant. The case in which the conditional variance does not vary with x is called
homoscedasticity (same variance).

B.8.3 RELATIONSHIPS AMONG MARGINAL
AND CONDITIONAL MOMENTS

Some useful results for the moments of a conditional distribution are given in the following
theorems.

THEOREM B.1 Law of Iterated Expectations

E[y] = Ex[E[y | x]]. (B-66)

The notation Ex[.] indicates the expectation over the values of x. Note that E[y | x] is a
function of x.

THEOREM B.2 Covariance
In any bivariate distribution,

Cov[x, y] = Covx[x, E[y | x]] =
∫

x

(
x − E[x]

)
E[y | x] fx(x) dx. (B-67)

(Note that this is the covariance of x and a function of x.)
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The preceding results provide an additional, extremely useful result for the special case in
which the conditional mean function is linear in x.

THEOREM B.3 Moments in a Linear Regression
If E[y | x] = α + βx, then

α = E[y] − βE[x]

and

β = Cov[x, y]
Var[x]

. (B-68)

The proof follows from (B-66).

The preceding theorems relate to the conditional mean in a bivariate distribution. The follow-
ing theorems, which also appear in various forms in regression analysis, describe the conditional
variance.

THEOREM B.4 Decomposition of Variance
In a joint distribution,

Var[y] = Varx[E[y | x]] + Ex[Var[y | x]]. (B-69)

The notation Varx[.] indicates the variance over the distribution of x. This equation states
that in a bivariate distribution, the variance of y decomposes into the variance of the conditional
mean function plus the expected variance around the conditional mean.

THEOREM B.5 Residual Variance in a Regression
In any bivariate distribution,

Ex[Var[y | x]] = Var[y] − Varx[E[y | x]]. (B-70)

On average, conditioning reduces the variance of the variable subject to the conditioning. For
example, if y is homoscedastic, then we have the unambiguous result that the variance of the
conditional distribution(s) is less than or equal to the unconditional variance of y. Going a
step further, we have the result that appears prominently in the bivariate normal distribution
(Section B.9).
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THEOREM B.6 Linear Regression and Homoscedasticity
In a bivariate distribution, if E[y | x] = α + βx and if Var[y | x] is a constant, then

Var[y | x] = Var[y]
(

1 − Corr2[y, x]
) = σ 2

y

(
1 − ρ2

xy

)
. (B-71)

The proof is straightforward using Theorems B.2 to B.4.

B.8.4 THE ANALYSIS OF VARIANCE

The variance decomposition result implies that in a bivariate distribution, variation in y arises
from two sources:

1. Variation because E[y | x] varies with x:

regression variance = Varx[E[y | x]]. (B-72)

2. Variation because, in each conditional distribution, y varies around the conditional mean:

residual variance = Ex[Var[y | x]]. (B-73)

Thus,

Var[y] = regression variance + residual variance. (B-74)

In analyzing a regression, we shall usually be interested in which of the two parts of the total
variance, Var[y], is the larger one. A natural measure is the ratio

coefficient of determination = regression variance
total variance

. (B-75)

In the setting of a linear regression, (B-75) arises from another relationship that emphasizes the
interpretation of the correlation coefficient.

If E[y | x] = α + βx, then the coefficient of determination = COD = ρ2, (B-76)

where ρ2 is the squared correlation between x and y. We conclude that the correlation coefficient
(squared) is a measure of the proportion of the variance of y accounted for by variation in the
mean of y given x. It is in this sense that correlation can be interpreted as a measure of linear
association between two variables.

B.9 THE BIVARIATE NORMAL DISTRIBUTION

A bivariate distribution that embodies many of the features described earlier is the bivariate
normal, which is the joint distribution of two normally distributed variables. The density is

f (x, y) = 1

2πσxσy

√
1 − ρ2

e−1/2[(ε2
x+ε2

y−2ρεxεy)/(1−ρ2)],

εx = x − μx

σx
, εy = y − μy

σy
.

(B-77)
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The parameters μx, σx, μy, and σy are the means and standard deviations of the marginal distri-
butions of x and y, respectively. The additional parameter ρ is the correlation between x and y.
The covariance is

σxy = ρσxσy. (B-78)

The density is defined only if ρ is not 1 or −1, which in turn requires that the two variables not
be linearly related. If x and y have a bivariate normal distribution, denoted

(x, y) ∼ N2

[
μx, μy, σ

2
x , σ 2

y , ρ
]
,

then

• The marginal distributions are normal:

fx(x) = N
[
μx, σ

2
x

]
,

fy(y) = N
[
μy, σ

2
y

]
.

(B-79)

• The conditional distributions are normal:

f (y | x) = N
[
α + βx, σ 2

y (1 − ρ2)
]
,

α = μy − βμx, β = σxy

σ 2
x

,
(B-80)

and likewise for f (x | y).
• x and y are independent if and only if ρ = 0. The density factors into the product of the two

marginal normal distributions if ρ = 0.

Two things to note about the conditional distributions beyond their normality are their linear
regression functions and their constant conditional variances. The conditional variance is less than
the unconditional variance, which is consistent with the results of the previous section.

B.10 MULTIVARIATE DISTRIBUTIONS

The extension of the results for bivariate distributions to more than two variables is direct. It is
made much more convenient by using matrices and vectors. The term random vector applies to
a vector whose elements are random variables. The joint density is f (x), whereas the cdf is

F(x) =
∫ xn

−∞

∫ xn−1

−∞
· · ·

∫ x1

−∞
f (t) dt1 · · · dtn−1 dtn. (B-81)

Note that the cdf is an n-fold integral. The marginal distribution of any one (or more) of the n
variables is obtained by integrating or summing over the other variables.

B.10.1 MOMENTS

The expected value of a vector or matrix is the vector or matrix of expected values. A mean vector
is defined as

μ =

⎡
⎢⎢⎣

μ1

μ2

...

μn

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

E[x1]
E[x2]

...

E[xn]

⎤
⎥⎥⎦ = E[x]. (B-82)
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Define the matrix

(x − μ)(x − μ)′ =

⎡
⎢⎢⎢⎣

(x1 − μ1)(x1 − μ1) (x1 − μ1)(x2 − μ2) · · · (x1 − μ1)(xn − μn)

(x2 − μ2)(x1 − μ1) (x2 − μ2)(x2 − μ2) · · · (x2 − μ2)(xn − μn)

...
...

(xn − μn)(x1 − μ1) (xn − μn)(x2 − μ2) · · · (xn − μn)(xn − μn)

⎤
⎥⎥⎥⎦.

The expected value of each element in the matrix is the covariance of the two variables in the
product. (The covariance of a variable with itself is its variance.) Thus,

E[(x − μ)(x − μ)′] =

⎡
⎢⎢⎢⎣

σ11 σ12 · · · σ1n

σ21 σ22 · · · σ2n

...
...

σn1 σn2 · · · σnn

⎤
⎥⎥⎥⎦ = E [xx′] − μμ′, (B-83)

which is the covariance matrix of the random vector x. Henceforth, we shall denote the covariance
matrix of a random vector in boldface, as in

Var[x] = �.

By dividing σij by σiσ j , we obtain the correlation matrix:

R =

⎡
⎢⎢⎢⎣

1 ρ12 ρ13 · · · ρ1n

ρ21 1 ρ23 · · · ρ2n

...
...

...
...

ρn1 ρn2 ρn3 · · · 1

⎤
⎥⎥⎥⎦ .

B.10.2 SETS OF LINEAR FUNCTIONS

Our earlier results for the mean and variance of a linear function can be extended to the multi-
variate case. For the mean,

E[a1x1 + a2x2 + · · · + anxn] = E[a′x]

= a1 E[x1] + a2 E[x2] + · · · + an E[xn]

= a1μ1 + a2μ2 + · · · + anμn

= a′μ.

(B-84)

For the variance,

Var[a′x] = E
[(

a′x − E[a′x]
)2]

= E
[{

a′(x − E[x]
)}2]

= E[a′(x − μ)(x − μ)′a]

as E[x] = μ and a′(x − μ) = (x − μ)′a. Because a is a vector of constants,

Var[a′x] = a′ E[(x − μ)(x − μ)′]a = a′�a =
n∑

i=1

n∑
j=1

ai a jσij. (B-85)
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It is the expected value of a square, so we know that a variance cannot be negative. As such,
the preceding quadratic form is nonnegative, and the symmetric matrix � must be nonnegative
definite.

In the set of linear functions y = Ax, the ith element of y is yi = ai x, where ai is the ith row
of A [see result (A-14)]. Therefore,

E[yi ] = aiμ.

Collecting the results in a vector, we have

E[Ax] = Aμ. (B-86)

For two row vectors ai and a j ,

Cov[ai x, a j x] = ai�a′
j .

Because ai�a′
j is the ijth element of A�A′,

Var[Ax] = A�A′. (B-87)

This matrix will be either nonnegative definite or positive definite, depending on the column rank
of A.

B.10.3 NONLINEAR FUNCTIONS

Consider a set of possibly nonlinear functions of x, y = g(x). Each element of y can be approxi-
mated with a linear Taylor series. Let ji be the row vector of partial derivatives of the ith function
with respect to the n elements of x:

ji (x) = ∂gi (x)

∂x′ = ∂yi

∂x′ . (B-88)

Then, proceeding in the now familiar way, we use μ, the mean vector of x, as the expansion point,
so that ji (μ) is the row vector of partial derivatives evaluated at μ. Then

gi (x) ≈ gi (μ) + ji (μ)(x − μ). (B-89)

From this we obtain

E[gi (x)] ≈ gi (μ), (B-90)

Var[gi (x)] ≈ ji (μ)�ji (μ)′, (B-91)

and

Cov[gi (x), g j (x)] ≈ ji (μ)�j j (μ)′. (B-92)

These results can be collected in a convenient form by arranging the row vectors ji (μ) in a matrix
J(μ). Then, corresponding to the preceding equations, we have

E[g(x)] � g(μ), (B-93)

Var[g(x)] � J(μ)�J(μ)′. (B-94)

The matrix J(μ) in the last preceding line is ∂y/∂x′ evaluated at x = μ.
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B.11 THE MULTIVARIATE NORMAL DISTRIBUTION

The foundation of most multivariate analysis in econometrics is the multivariate normal distri-
bution. Let the vector (x1, x2, . . . , xn)

′ = x be the set of n random variables, μ their mean vector,
and � their covariance matrix. The general form of the joint density is

f (x) = (2π)−n/2|�|−1/2e(−1/2)(x−μ)′�−1(x−μ). (B-95)

If R is the correlation matrix of the variables and Rij = σij/(σiσ j ), then

f (x) = (2π)−n/2(σ1σ2 · · · σn)
−1|R|−1/2e(−1/2)εR−1ε, (B-96)

where εi = (xi − μi )/σi .8

Two special cases are of interest. If all the variables are uncorrelated, then ρij = 0 for i 
= j .
Thus, R = I, and the density becomes

f (x) = (2π)−n/2(σ1σ2 · · · σn)
−1e−ε′ε/2

= f (x1) f (x2) · · · f (xn) =
n∏

i=1

f (xi ).
(B-97)

As in the bivariate case, if normally distributed variables are uncorrelated, then they are inde-
pendent. If σi = σ and μ = 0, then xi ∼ N [0, σ 2] and εi = xi/σ , and the density becomes

f (x) = (2π)−n/2(σ 2)−n/2e−x′x/(2σ 2). (B-98)

Finally, if σ = 1,

f (x) = (2π)−n/2e−x′x/2. (B-99)

This distribution is the multivariate standard normal, or spherical normal distribution.

B.11.1 MARGINAL AND CONDITIONAL NORMAL DISTRIBUTIONS

Let x1 be any subset of the variables, including a single variable, and let x2 be the remaining
variables. Partition μ and � likewise so that

μ =
[
μ1

μ2

]
and � =

[
�11 �12

�21 �22

]
.

Then the marginal distributions are also normal. In particular, we have the following theorem.

THEOREM B.7 Marginal and Conditional Normal Distributions
If [x1, x2] have a joint multivariate normal distribution, then the marginal distributions are

x1 ∼ N(μ1, �11), (B-100)

8This result is obtained by constructing 
, the diagonal matrix with σi as its ith diagonal element. Then,
R = 
−1�
−1, which implies that �−1 = 
−1R−1
−1. Inserting this in (B-95) yields (B-96). Note that the
ith element of 
−1(x − μ) is (xi − μi )/σi .
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THEOREM B.7 (Continued)
and

x2 ∼ N(μ2, �22). (B-101)

The conditional distribution of x1 given x2 is normal as well:

x1 | x2 ∼ N(μ1.2, �11.2), (B-102)

where

μ1.2 = μ1 + �12�
−1
22 (x2 − μ2), (B-102a)

�11.2 = �11 − �12�
−1
22 �21. (B-102b)

Proof: We partition μ and � as shown earlier and insert the parts in (B-95). To construct
the density, we use (A-72) to partition the determinant,

|�| = |�22|
∣∣�11 − �12�

−1
22 �21

∣∣,
and (A-74) to partition the inverse,

[
�11 �12

�21 �22

]−1

=
[

�−1
11.2 −�−1

11.2B

−B′�−1
11.2 �−1

22 + B′�−1
11.2B

]
.

For simplicity, we let

B = �12�
−1
22 .

Inserting these in (B-95) and collecting terms produces the joint density as a product of
two terms:

f (x1, x2) = f1.2(x1 | x2) f2(x2).

The first of these is a normal distribution with mean μ1.2 and variance �11.2, whereas the
second is the marginal distribution of x2.

The conditional mean vector in the multivariate normal distribution is a linear function of the
unconditional mean and the conditioning variables, and the conditional covariance matrix is
constant and is smaller (in the sense discussed in Section A.7.3) than the unconditional covariance
matrix. Notice that the conditional covariance matrix is the inverse of the upper left block of �−1;
that is, this matrix is of the form shown in (A-74) for the partitioned inverse of a matrix.

B.11.2 THE CLASSICAL NORMAL LINEAR REGRESSION MODEL

An important special case of the preceding is that in which x1 is a single variable, y, and x2 is
K variables, x. Then the conditional distribution is a multivariate version of that in (B-80) with
β = �−1

xx σxy, where σxy is the vector of covariances of y with x2. Recall that any random variable,
y, can be written as its mean plus the deviation from the mean. If we apply this tautology to the
multivariate normal, we obtain

y = E[y | x] + (
y − E[y | x]

) = α + β ′x + ε,
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where β is given earlier, α = μy − β ′μx, and ε has a normal distribution. We thus have, in this
multivariate normal distribution, the classical normal linear regression model.

B.11.3 LINEAR FUNCTIONS OF A NORMAL VECTOR

Any linear function of a vector of joint normally distributed variables is also normally distributed.
The mean vector and covariance matrix of Ax, where x is normally distributed, follow the general
pattern given earlier. Thus,

If x ∼ N [μ, �], then Ax + b ∼ N [Aμ + b, A�A′]. (B-103)

If A does not have full rank, then A�A′ is singular and the density does not exist in the full
dimensional space of x although it does exist in the subspace of dimension equal to the rank of
�. Nonetheless, the individual elements of Ax + b will still be normally distributed, and the joint
distribution of the full vector is still a multivariate normal.

B.11.4 QUADRATIC FORMS IN A STANDARD NORMAL VECTOR

The earlier discussion of the chi-squared distribution gives the distribution of x′x if x has a standard
normal distribution. It follows from (A-36) that

x′x =
n∑

i=1

x2
i =

n∑
i=1

(xi − x̄ )2 + nx̄2. (B-104)

We know from (B-32) that x′x has a chi-squared distribution. It seems natural, therefore, to invoke
(B-34) for the two parts on the right-hand side of (B-104). It is not yet obvious, however, that
either of the two terms has a chi-squared distribution or that the two terms are independent,
as required. To show these conditions, it is necessary to derive the distributions of idempotent
quadratic forms and to show when they are independent.

To begin, the second term is the square of
√

n x̄, which can easily be shown to have a standard
normal distribution. Thus, the second term is the square of a standard normal variable and has chi-
squared distribution with one degree of freedom. But the first term is the sum of n nonindependent
variables, and it remains to be shown that the two terms are independent.

DEFINITION B.3 Orthonormal Quadratic Form
A particular case of (B-103) is the following:

If x ∼ N [0, I] and C is a square matrix such that C′C = I, then C′x ∼ N [0, I].

Consider, then, a quadratic form in a standard normal vector x with symmetric matrix A:

q = x′Ax. (B-105)

Let the characteristic roots and vectors of A be arranged in a diagonal matrix � and an orthogonal
matrix C, as in Section A.6.3. Then

q = x′C�C′x. (B-106)



Greene-2140242 book January 19, 2011 21:35

1084 PART VI ✦ Appendices

By definition, C satisfies the requirement that C′C = I. Thus, the vector y = C′x has a standard
normal distribution. Consequently,

q = y′�y =
n∑

i=1

λi y2
i . (B-107)

If λi is always one or zero, then

q =
J∑

j=1

y2
j , (B-108)

which has a chi-squared distribution. The sum is taken over the j = 1, . . . , J elements associated
with the roots that are equal to one. A matrix whose characteristic roots are all zero or one is
idempotent. Therefore, we have proved the next theorem.

THEOREM B.8 Distribution of an Idempotent Quadratic Form in
a Standard Normal Vector

If x ∼ N [0, I] and A is idempotent, then x′Ax has a chi-squared distribution with degrees
of freedom equal to the number of unit roots of A, which is equal to the rank of A.

The rank of a matrix is equal to the number of nonzero characteristic roots it has. Therefore,
the degrees of freedom in the preceding chi-squared distribution equals J , the rank of A.

We can apply this result to the earlier sum of squares. The first term is

n∑
i=1

(xi − x̄ )2 = x′M0x,

where M0 was defined in (A-34) as the matrix that transforms data to mean deviation form:

M0 = I − 1
n

ii′.

Because M0 is idempotent, the sum of squared deviations from the mean has a chi-squared
distribution. The degrees of freedom equals the rank M0, which is not obvious except for the
useful result in (A-108), that

• The rank of an idempotent matrix is equal to its trace. (B-109)

Each diagonal element of M0 is 1 − (1/n); hence, the trace is n[1 − (1/n)] = n − 1. Therefore, we
have an application of Theorem B.8.

• If x ∼ N(0, I),
∑n

i=1(xi − x̄ )2 ∼ χ2[n − 1]. (B-110)

We have already shown that the second term in (B-104) has a chi-squared distribution with one
degree of freedom. It is instructive to set this up as a quadratic form as well:

nx̄2 = x′
[

1
n

ii′
]

x = x′[jj′]x, where j =
(

1√
n

)
i. (B-111)

The matrix in brackets is the outer product of a nonzero vector, which always has rank one. You
can verify that it is idempotent by multiplication. Thus, x′x is the sum of two chi-squared variables,
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one with n − 1 degrees of freedom and the other with one. It is now necessary to show that the
two terms are independent. To do so, we will use the next theorem.

THEOREM B.9 Independence of Idempotent Quadratic Forms
If x ∼ N [0, I] and x′Ax and x′Bx are two idempotent quadratic forms in x, then x′Ax and
x′Bx are independent if AB = 0. (B-112)

As before, we show the result for the general case and then specialize it for the example.
Because both A and B are symmetric and idempotent, A = A′A and B = B′B. The quadratic
forms are therefore

x′Ax = x′A′Ax = x′
1x1, where x1 = Ax, and x′Bx = x′

2x2, where x2 = Bx. (B-113)

Both vectors have zero mean vectors, so the covariance matrix of x1 and x2 is

E(x1x′
2) = AIB′ = AB = 0.

Because Ax and Bx are linear functions of a normally distributed random vector, they are, in turn,
normally distributed. Their zero covariance matrix implies that they are statistically independent,9

which establishes the independence of the two quadratic forms. For the case of x′x, the two
matrices are M0 and [I − M0]. You can show that M0[I − M0] = 0 just by multiplying it out.

B.11.5 THE F DISTRIBUTION

The normal family of distributions (chi-squared, F , and t) can all be derived as functions of
idempotent quadratic forms in a standard normal vector. The F distribution is the ratio of two
independent chi-squared variables, each divided by its respective degrees of freedom. Let A and
B be two idempotent matrices with ranks ra and rb, and let AB = 0. Then

x′Ax/ra

x′Bx/rb
∼ F [ra, rb]. (B-114)

If Var[x] = σ 2I instead, then this is modified to

(x′Ax/σ 2)/ra

(x′Bx/σ 2)/rb
∼ F [ra, rb]. (B-115)

B.11.6 A FULL RANK QUADRATIC FORM

Finally, consider the general case,

x ∼ N [μ, �].

We are interested in the distribution of

q = (x − μ)′�−1(x − μ). (B-116)

9Note that both x1 = Ax and x2 = Bx have singular covariance matrices. Nonetheless, every element of x1 is
independent of every element x2, so the vectors are independent.
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First, the vector can be written as z = x − μ, and � is the covariance matrix of z as well as of x.
Therefore, we seek the distribution of

q = z′�−1z = z′(Var[z]
)−1

z, (B-117)

where z is normally distributed with mean 0. This equation is a quadratic form, but not necessarily
in an idempotent matrix.10 Because� is positive definite, it has a square root. Define the symmetric
matrix �1/2 so that �1/2�1/2 = �. Then

�−1 = �−1/2�−1/2,

and

z′�−1z = z′�−1/2′�−1/2z

= (�−1/2z)′(�−1/2z)

= w′w.

Now w = Az, so

E(w) = AE[z] = 0,

and

Var[w] = A�A′ = �−1/2��−1/2 = �0 = I.

This provides the following important result:

THEOREM B.10 Distribution of a Standardized Normal Vector
If x ∼ N [μ, �], then �−1/2(x − μ) ∼ N [0, I].

The simplest special case is that in which x has only one variable, so that the transformation
is just (x − μ)/σ . Combining this case with (B-32) concerning the sum of squares of standard
normals, we have the following theorem.

THEOREM B.11 Distribution of x′�−1x When x Is Normal
If x ∼ N [μ, �], then (x − μ)′�−1(x − μ) ∼ χ2[n].

B.11.7 INDEPENDENCE OF A LINEAR AND A QUADRATIC FORM

The t distribution is used in many forms of hypothesis tests. In some situations, it arises as the
ratio of a linear to a quadratic form in a normal vector. To establish the distribution of these
statistics, we use the following result.

10It will be idempotent only in the special case of � = I.
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THEOREM B.12 Independence of a Linear and a Quadratic Form
A linear function Lx and a symmetric idempotent quadratic form x′Ax in a standard normal
vector are statistically independent if LA = 0.

The proof follows the same logic as that for two quadratic forms. Write x′Ax as x′A′Ax =
(Ax)′(Ax). The covariance matrix of the variables Lx and Ax is LA = 0, which establishes the
independence of these two random vectors. The independence of the linear function and the
quadratic form follows because functions of independent random vectors are also independent.

The t distribution is defined as the ratio of a standard normal variable to the square root of
a chi-squared variable divided by its degrees of freedom:

t[J ] = N [0, 1]{
χ 2[J ]/J

}1/2 .

A particular case is

t[n − 1] =
√

n x̄{
1

n−1

∑n
i=1(xi − x̄ )2

}1/2 =
√

n x̄
s

,

where s is the standard deviation of the values of x. The distribution of the two variables in t[n−1]
was shown earlier; we need only show that they are independent. But

√
n x̄ = 1√

n
i′x = j′x,

and

s2 = x′M0x
n − 1

.

It suffices to show that M0j = 0, which follows from

M0i = [I − i(i′i)−1i′]i = i − i(i′i)−1(i′i) = 0.

APPENDIX C

Q
ESTIMATION AND INFERENCE

C.1 INTRODUCTION

The probability distributions discussed in Appendix B serve as models for the underlying data
generating processes that produce our observed data. The goal of statistical inference in econo-
metrics is to use the principles of mathematical statistics to combine these theoretical distributions
and the observed data into an empirical model of the economy. This analysis takes place in
one of two frameworks, classical or Bayesian. The overwhelming majority of empirical study in
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econometrics has been done in the classical framework. Our focus, therefore, will be on classical
methods of inference. Bayesian methods are discussed in Chapter 16.1

C.2 SAMPLES AND RANDOM SAMPLING

The classical theory of statistical inference centers on rules for using the sampled data effectively.
These rules, in turn, are based on the properties of samples and sampling distributions.

A sample of n observations on one or more variables, denoted x1, x2, . . . , xn is a random
sample if the n observations are drawn independently from the same population, or probability
distribution, f (xi , θ). The sample may be univariate if xi is a single random variable or multi-
variate if each observation contains several variables. A random sample of observations, denoted
[x1, x2, . . . , xn] or {xi }i=1,...,n, is said to be independent, identically distributed, which we denote
i.i.d. The vector θ contains one or more unknown parameters. Data are generally drawn in one
of two settings. A cross section is a sample of a number of observational units all drawn at the
same point in time. A time series is a set of observations drawn on the same observational unit
at a number of (usually evenly spaced) points in time. Many recent studies have been based
on time-series cross sections, which generally consist of the same cross-sectional units observed
at several points in time. Because the typical data set of this sort consists of a large number of
cross-sectional units observed at a few points in time, the common term panel data set is usually
more fitting for this sort of study.

C.3 DESCRIPTIVE STATISTICS

Before attempting to estimate parameters of a population or fit models to data, we normally
examine the data themselves. In raw form, the sample data are a disorganized mass of information,
so we will need some organizing principles to distill the information into something meaningful.
Consider, first, examining the data on a single variable. In most cases, and particularly if the
number of observations in the sample is large, we shall use some summary statistics to describe
the sample data. Of most interest are measures of location—that is, the center of the data—and
scale, or the dispersion of the data. A few measures of central tendency are as follows:

mean: x̄ = 1
n

n∑
i=1

xi ,

median: M = middle ranked observation, (C-1)

sample midrange: midrange = maximum + minimum
2

.

The dispersion of the sample observations is usually measured by the

standard deviation: sx =
[∑n

i=1 (xi − x̄ )2

n − 1

]1/2

. (C-2)

Other measures, such as the average absolute deviation from the sample mean, are also used,
although less frequently than the standard deviation. The shape of the distribution of values is
often of interest as well. Samples of income or expenditure data, for example, tend to be highly

1An excellent reference is Leamer (1978). A summary of the results as they apply to econometrics is contained
in Zellner (1971) and in Judge et al. (1985). See, as well, Poirier (1991, 1995). Recent textbooks on Bayesian
econometrics include Koop (2003), Lancaster (2004) and Geweke (2005).
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skewed while financial data such as asset returns and exchange rate movements are relatively
more symmetrically distributed but are also more widely dispersed than other variables that might
be observed. Two measures used to quantify these effects are the

skewness =
[∑n

i=1 (xi − x̄ )3

s3
x (n − 1)

]
, and kurtosis =

[∑n
i=1 (xi − x̄ )4

s4
x (n − 1)

]
.

(Benchmark values for these two measures are zero for a symmetric distribution, and three for
one which is “normally” dispersed.) The skewness coefficient has a bit less of the intuitive appeal
of the mean and standard deviation, and the kurtosis measure has very little at all. The box and
whisker plot is a graphical device which is often used to capture a large amount of information
about the sample in a simple visual display. This plot shows in a figure the median, the range of
values contained in the 25th and 75th percentile, some limits that show the normal range of values
expected, such as the median plus and minus two standard deviations, and in isolation values that
could be viewed as outliers. A box and whisker plot is shown in Figure C.1 for the income variable
in Example C.1.

If the sample contains data on more than one variable, we will also be interested in measures
of association among the variables. A scatter diagram is useful in a bivariate sample if the sample
contains a reasonable number of observations. Figure C.1 shows an example for a small data set.
If the sample is a multivariate one, then the degree of linear association among the variables can
be measured by the pairwise measures

covariance: sxy =
∑n

i=1 (xi − x̄ )(yi − ȳ)

n − 1
, (C-3)

correlation: rxy = sxy

sxsy
.

If the sample contains data on several variables, then it is sometimes convenient to arrange the
covariances or correlations in a

covariance matrix: S = [sij], (C-4)

or

correlation matrix: R = [rij].

Some useful algebraic results for any two variables (xi , yi ), i = 1, . . . , n, and constants a and
b are

s2
x =

(∑n
i=1 x2

i

) − nx̄2

n − 1
, (C-5)

sxy =
(∑n

i=1 xi yi

) − nx̄ ȳ

n − 1
, (C-6)

−1 ≤ rxy ≤ 1,

rax,by = ab
|ab|rxy, a, b 
= 0, (C-7)

sax = |a|sx,
(C-8)

sax,by = (ab)sxy.
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Note that these algebraic results parallel the theoretical results for bivariate probability distri-
butions. [We note in passing, while the formulas in (C-2) and (C-5) are algebraically the same,
(C-2) will generally be more accurate in practice, especially when the values in the sample are
very widely dispersed.]

Example C.1 Descriptive Statistics for a Random Sample
Appendix Table FC.1 contains a (hypothetical) sample of observations on income and educa-
tion (The observations all appear in the calculations of the means below.) A scatter diagram
appears in Figure C.1. It suggests a weak positive association between income and educa-
tion in these data. The box and whisker plot for income at the left of the scatter plot shows
the distribution of the income data as well.

Means: Ī = 1
20

⎡
⎣

20.5 + 31.5 + 47.7 + 26.2 + 44.0 + 8.28 + 30.8 +
17.2 + 19.9 + 9.96 + 55.8 + 25.2 + 29.0 + 85.5 +
15.1 + 28.5 + 21.4 + 17.7 + 6.42 + 84.9

⎤
⎦ = 31.278,

Ē = 1
20

[
12 + 16 + 18 + 16 + 12 + 12 + 16 + 12 + 10 + 12 +
16 + 20 + 12 + 16 + 10 + 18 + 16 + 20 + 12 + 16

]
= 14.600.

Standard deviations:

sI =
√

1
19 [(20.5 − 31.278)2 + · · · + (84.9 − 31.278)2] = 22.376,

sE =
√

1
19 [(12 − 14.6)2 + · · · + (16 − 14.6)2] = 3.119.

FIGURE C.1 Box and Whisker Plot for Income and Scatter
Diagram for Income and Education.
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Covariance: sI E = 1
19 [20.5(12) + · · · + 84.9(16) − 20(31.28) (14.6) ] = 23.597,

Correlation: r I E = 23.597
(22.376) (3.119)

= 0.3382.

The positive correlation is consistent with our observation in the scatter diagram.

The statistics just described will provide the analyst with a more concise description of
the data than a raw tabulation. However, we have not, as yet, suggested that these measures
correspond to some underlying characteristic of the process that generated the data. We do
assume that there is an underlying mechanism, the data generating process, that produces the
data in hand. Thus, these serve to do more than describe the data; they characterize that process,
or population. Because we have assumed that there is an underlying probability distribution, it
might be useful to produce a statistic that gives a broader view of the DGP. The histogram is a
simple graphical device that produces this result—see Examples C.3 and C.4 for applications. For
small samples or widely dispersed data, however, histograms tend to be rough and difficult to
make informative. A burgeoning literature [see, e.g., Pagan and Ullah (1999) and Li and Racine
(2007)] has demonstrated the usefulness of the kernel density estimator as a substitute for the
histogram as a descriptive tool for the underlying distribution that produced a sample of data.
The underlying theory of the kernel density estimator is fairly complicated, but the computations
are surprisingly simple. The estimator is computed using

f̂ (x∗) = 1
nh

n∑
i=1

K

[
xi − x∗

h

]
,

where x1, . . . , xn are the n observations in the sample, f̂ (x∗) denotes the estimated density func-
tion, x∗ is the value at which we wish to evaluate the density, and h and K[·] are the “bandwidth”
and “kernel function” that we now consider. The density estimator is rather like a histogram,
in which the bandwidth is the width of the intervals. The kernel function is a weight function
which is generally chosen so that it takes large values when x∗ is close to xi and tapers off to
zero in as they diverge in either direction. The weighting function used in the following exam-
ple is the logistic density discussed in Section B.4.7. The bandwidth is chosen to be a function
of 1/n so that the intervals can become narrower as the sample becomes larger (and richer).
The one used for Figure C.2 is h = 0.9Min(s, range/3)/n.2. (We will revisit this method of es-
timation in Chapter 12.) Example C.2 illustrates the computation for the income data used in
Example C.1.

Example C.2 Kernel Density Estimator for the Income Data
Figure C.2 suggests the large skew in the income data that is also suggested by the box and
whisker plot (and the scatter plot) in Example C.1.

C.4 STATISTICS AS ESTIMATORS—SAMPLING
DISTRIBUTIONS

The measures described in the preceding section summarize the data in a random sample. Each
measure has a counterpart in the population, that is, the distribution from which the data were
drawn. Sample quantities such as the means and the correlation coefficient correspond to popu-
lation expectations, whereas the kernel density estimator and the values in Table C.1 parallel the
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FIGURE C.2 Kernel Density Estimate for Income.

TABLE C.1 Income Distribution

Range Relative Frequency Cumulative Frequency

<$10,000 0.15 0.15
10,000–25,000 0.30 0.45
25,000–50,000 0.40 0.85
>50,000 0.15 1.00

population pdf and cdf. In the setting of a random sample, we expect these quantities to mimic
the population, although not perfectly. The precise manner in which these quantities reflect the
population values defines the sampling distribution of a sample statistic.

DEFINITION C.1 Statistic
A statistic is any function computed from the data in a sample.

If another sample were drawn under identical conditions, different values would be obtained
for the observations, as each one is a random variable. Any statistic is a function of these random
values, so it is also a random variable with a probability distribution called a sampling distribution.
For example, the following shows an exact result for the sampling behavior of a widely used
statistic.
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THEOREM C.1 Sampling Distribution of the Sample Mean
If x1, . . . , xn are a random sample from a population with mean μ and variance σ 2, then
x̄ is a random variable with mean μ and variance σ 2/n.
Proof: x̄ = (1/n)�i xi . E [x̄] = (1/n)�iμ = μ. The observations are independent, so
Var[x̄] = (1/n)2 Var[�i xi ] = (1/n2)�iσ

2 = σ 2/n.

Example C.3 illustrates the behavior of the sample mean in samples of four observations
drawn from a chi-squared population with one degree of freedom. The crucial concepts illus-
trated in this example are, first, the mean and variance results in Theorem C.1 and, second, the
phenomenon of sampling variability.

Notice that the fundamental result in Theorem C.1 does not assume a distribution for xi .
Indeed, looking back at Section C.3, nothing we have done so far has required any assumption
about a particular distribution.

Example C.3 Sampling Distribution of a Sample Mean
Figure C.3 shows a frequency plot of the means of 1,000 random samples of four observations
drawn from a chi-squared distribution with one degree of freedom, which has mean 1 and
variance 2.

We are often interested in how a statistic behaves as the sample size increases. Example C.4
illustrates one such case. Figure C.4 shows two sampling distributions, one based on samples of
three and a second, of the same statistic, but based on samples of six. The effect of increasing
sample size in this figure is unmistakable. It is easy to visualize the behavior of this statistic if we
extrapolate the experiment in Example C.4 to samples of, say, 100.

Example C.4 Sampling Distribution of the Sample Minimum
If x1, . . . , xn are a random sample from an exponential distribution with f ( x) = θe−θx , then the
sampling distribution of the sample minimum in a sample of n observations, denoted x(1) , is

f
(
x(1)

) = (nθ )e−(nθ ) x(1) .

Because E [x] = 1/θ and Var[x] = 1/θ2, by analogy E [x(1) ] = 1/(nθ ) and Var[x(1) ] = 1/(nθ ) 2.
Thus, in increasingly larger samples, the minimum will be arbitrarily close to 0. [The
Chebychev inequality in Theorem D.2 can be used to prove this intuitively appealing result.]

Figure C.4 shows the results of a simple sampling experiment you can do to demon-
strate this effect. It requires software that will allow you to produce pseudorandom num-
bers uniformly distributed in the range zero to one and that will let you plot a histogram
and control the axes. (We used NLOGIT. This can be done with Stata, Excel, or several
other packages.) The experiment consists of drawing 1,000 sets of nine random values,
Uij, i = 1, . . . 1,000, j = 1, . . . , 9. To transform these uniform draws to exponential with pa-
rameter θ—we used θ = 1.5, use the inverse probability transform—see Section E.2.3. For
an exponentially distributed variable, the transformation is zij = −(1/θ ) log(1 − Uij) . We then
created z(1) | 3 from the first three draws and z(1) | 6 from the other six. The two histograms
show clearly the effect on the sampling distribution of increasing sample size from just
3 to 6.

Sampling distributions are used to make inferences about the population. To consider a
perhaps obvious example, because the sampling distribution of the mean of a set of normally
distributed observations has mean μ, the sample mean is a natural candidate for an estimate of
μ. The observation that the sample “mimics” the population is a statement about the sampling
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FIGURE C.3 Sampling Distribution of Means of 1,000 Samples of Size 4 from
Chi-Squared [1].
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FIGURE C.4 Histograms of the Sample Minimum of 3 and 6 Observations.

distributions of the sample statistics. Consider, for example, the sample data collected in Fig-
ure C.3. The sample mean of four observations clearly has a sampling distribution, which appears
to have a mean roughly equal to the population mean. Our theory of parameter estimation departs
from this point.

C.5 POINT ESTIMATION OF PARAMETERS

Our objective is to use the sample data to infer the value of a parameter or set of parameters,
which we denote θ . A point estimate is a statistic computed from a sample that gives a single value
for θ . The standard error of the estimate is the standard deviation of the sampling distribution
of the statistic; the square of this quantity is the sampling variance. An interval estimate is a
range of values that will contain the true parameter with a preassigned probability. There will be
a connection between the two types of estimates; generally, if θ̂ is the point estimate, then the
interval estimate will be θ̂± a measure of sampling error.

An estimator is a rule or strategy for using the data to estimate the parameter. It is defined
before the data are drawn. Obviously, some estimators are better than others. To take a simple ex-
ample, your intuition should convince you that the sample mean would be a better estimator of the
population mean than the sample minimum; the minimum is almost certain to underestimate the
mean. Nonetheless, the minimum is not entirely without virtue; it is easy to compute, which is oc-
casionally a relevant criterion. The search for good estimators constitutes much of econometrics.
Estimators are compared on the basis of a variety of attributes. Finite sample properties of estima-
tors are those attributes that can be compared regardless of the sample size. Some estimation prob-
lems involve characteristics that are not known in finite samples. In these instances, estimators are
compared on the basis on their large sample, or asymptotic properties. We consider these in turn.

C.5.1 ESTIMATION IN A FINITE SAMPLE

The following are some finite sample estimation criteria for estimating a single parameter. The ex-
tensions to the multiparameter case are direct. We shall consider them in passing where necessary.
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DEFINITION C.2 Unbiased Estimator
An estimator of a parameter θ is unbiased if the mean of its sampling distribution is θ .
Formally,

E [θ̂ ] = θ

or

E [θ̂ − θ ] = Bias[θ̂ | θ ] = 0

implies that θ̂ is unbiased. Note that this implies that the expected sampling error is zero.
If θ is a vector of parameters, then the estimator is unbiased if the expected value of every
element of θ̂ equals the corresponding element of θ .

If samples of size n are drawn repeatedly and θ̂ is computed for each one, then the average
value of these estimates will tend to equal θ . For example, the average of the 1,000 sample means
underlying Figure C.2 is 0.9038, which is reasonably close to the population mean of one. The
sample minimum is clearly a biased estimator of the mean; it will almost always underestimate
the mean, so it will do so on average as well.

Unbiasedness is a desirable attribute, but it is rarely used by itself as an estimation criterion.
One reason is that there are many unbiased estimators that are poor uses of the data. For example,
in a sample of size n, the first observation drawn is an unbiased estimator of the mean that clearly
wastes a great deal of information. A second criterion used to choose among unbiased estimators
is efficiency.

DEFINITION C.3 Efficient Unbiased Estimator
An unbiased estimator θ̂ 1 is more efficient than another unbiased estimator θ̂ 2 if the sam-
pling variance of θ̂1 is less than that of θ̂2. That is,

Var[θ̂ 1] < Var[θ̂2].

In the multiparameter case, the comparison is based on the covariance matrices of the two
estimators; θ̂1 is more efficient than θ̂2 if Var[θ̂2] − Var[θ̂ 1] is a positive definite matrix.

By this criterion, the sample mean is obviously to be preferred to the first observation as an
estimator of the population mean. If σ 2 is the population variance, then

Var[x1] = σ 2 > Var[x̄] = σ 2

n
.

In discussing efficiency, we have restricted the discussion to unbiased estimators. Clearly,
there are biased estimators that have smaller variances than the unbiased ones we have consid-
ered. Any constant has a variance of zero. Of course, using a constant as an estimator is not likely
to be an effective use of the sample data. Focusing on unbiasedness may still preclude a tolerably
biased estimator with a much smaller variance, however. A criterion that recognizes this possible
tradeoff is the mean squared error.
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DEFINITION C.4 Mean Squared Error
The mean squared error of an estimator is

MSE[θ̂ | θ ] = E [(θ̂ − θ)2]

= Var[θ̂ ] + (
Bias[θ̂ | θ ]

)2
if θ is a scalar,

MSE[θ̂ | θ ] = Var[θ̂ ] + Bias[θ̂ | θ ]Bias[θ̂ | θ ]′ if θ is a vector.

(C-9)

Figure C.5 illustrates the effect. In this example, on average, the biased estimator will be
closer to the true parameter than will the unbiased estimator.

Which of these criteria should be used in a given situation depends on the particulars of that
setting and our objectives in the study. Unfortunately, the MSE criterion is rarely operational;
minimum mean squared error estimators, when they exist at all, usually depend on unknown
parameters. Thus, we are usually less demanding. A commonly used criterion is minimum variance
unbiasedness.

Example C.5 Mean Squared Error of the Sample Variance
In sampling from a normal distribution, the most frequently used estimator for σ 2 is

s2 =
∑n

i =1( xi − x̄ ) 2

n − 1
.

It is straightforward to show that s2 is unbiased, so

Var[s2] = 2σ 4

n − 1
= MSE[s2 | σ 2].

FIGURE C.5 Sampling Distributions.
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[A proof is based on the distribution of the idempotent quadratic form (x − iμ) ′M0(x − iμ) ,
which we discussed in Section B11.4.] A less frequently used estimator is

σ̂ 2 = 1
n

n∑
i =1

( xi − x̄ ) 2 = [(n − 1)/n]s2.

This estimator is slightly biased downward:

E [σ̂ 2] = (n − 1) E (s2)
n

= (n − 1)σ 2

n
,

so its bias is

E [σ̂ 2 − σ 2] = Bias[σ̂ 2 | σ 2] = −1
n

σ 2.

But it has a smaller variance than s2:

Var[σ̂ 2] =
[

n − 1
n

]2 [
2σ 4

n − 1

]
< Var[s2].

To compare the two estimators, we can use the difference in their mean squared errors:

MSE[σ̂ 2 | σ 2] − MSE[s2 | σ 2] = σ 4

[
2n − 1

n2
− 2

n − 1

]
< 0.

The biased estimator is a bit more precise. The difference will be negligible in a large sample,
but, for example, it is about 1.2 percent in a sample of 16.

C.5.2 EFFICIENT UNBIASED ESTIMATION

In a random sample of n observations, the density of each observation is f (xi , θ). Because the n
observations are independent, their joint density is

f (x1, x2, . . . , xn, θ) = f (x1, θ) f (x2, θ) · · · f (xn, θ)

=
n∏

i=1

f (xi , θ) = L(θ | x1, x2, . . . , xn).
(C-10)

This function, denoted L(θ | X), is called the likelihood function for θ given the data X. It is
frequently abbreviated to L(θ). Where no ambiguity can arise, we shall abbreviate it further
to L.

Example C.6 Likelihood Functions for Exponential
and Normal Distributions

If x1, . . . , xn are a sample of n observations from an exponential distribution with parameter
θ , then

L (θ ) =
n∏

i =1

θe−θxi = θne−θ
∑n

i =1
xi .

If x1, . . . , xn are a sample of n observations from a normal distribution with mean μ and
standard deviation σ , then

L (μ, σ ) =
n∏

i =1

(2πσ 2)−1/2e−[1/(2σ2) ]( xi −μ) 2

= (2πσ 2)−n/2e−[1/(2σ2) ]�i ( xi −μ) 2
.

(C-11)
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The likelihood function is the cornerstone for most of our theory of parameter estimation. An
important result for efficient estimation is the following.

THEOREM C.2 Cramér–Rao Lower Bound
Assuming that the density of x satisfies certain regularity conditions, the variance of an
unbiased estimator of a parameter θ will always be at least as large as

[I(θ)]−1 =
(

−E

[
∂2 ln L(θ)

∂θ 2

])−1

=
(

E

[(
∂ ln L(θ)

∂θ

)2
])−1

. (C-12)

The quantity I(θ) is the information number for the sample. We will prove the result that the
negative of the expected second derivative equals the expected square of the first derivative in
Chapter 14. Proof of the main result of the theorem is quite involved. See, for example,
Stuart and Ord (1989).

The regularity conditions are technical in nature. (See Section 14.4.1.) Loosely, they are
conditions imposed on the density of the random variable that appears in the likelihood function;
these conditions will ensure that the Lindeberg–Levy central limit theorem will apply to moments
of the sample of observations on the random vector y = ∂ ln f (xi | θ)/∂θ, i = 1, . . . , n. Among
the conditions are finite moments of x up to order 3. An additional condition normally included
in the set is that the range of the random variable be independent of the parameters.

In some cases, the second derivative of the log likelihood is a constant, so the Cramér–
Rao bound is simple to obtain. For instance, in sampling from an exponential distribution, from
Example C.6,

ln L = n ln θ − θ

n∑
i=1

xi ,

∂ ln L
∂θ

= n
θ

−
n∑

i=1

xi ,

so ∂2 ln L/∂θ2 = −n/θ2 and the variance bound is [I(θ)]−1 = θ2/n. In many situations, the second
derivative is a random variable with a distribution of its own. The following examples show two
such cases.

Example C.7 Variance Bound for the Poisson Distribution
For the Poisson distribution,

f ( x) = e−θ θ x

x!
,

ln L = −nθ +
(

n∑
i =1

xi

)
ln θ −

n∑
i =1

ln( xi !) ,

∂ ln L
∂θ

= −n +
∑n

i =1 xi

θ
,

∂2 ln L
∂θ2

= −∑n
i =1 xi

θ2
.
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The sum of n identical Poisson variables has a Poisson distribution with parameter equal
to n times the parameter of the individual variables. Therefore, the actual distribution of the
first derivative will be that of a linear function of a Poisson distributed variable. Because
E [

∑n
i =1 xi ] = nE [xi ] = nθ , the variance bound for the Poisson distribution is [I (θ ) ]−1 = θ/n.

(Note also that the same result implies that E [∂ ln L/∂θ ] = 0, which is a result we will use in
Chapter 14. The same result holds for the exponential distribution.)

Consider, finally, a multivariate case. If θ is a vector of parameters, then I(θ) is the information
matrix. The Cramér–Rao theorem states that the difference between the covariance matrix of
any unbiased estimator and the inverse of the information matrix,

[I(θ)]−1 =
(

−E

[
∂2 ln L(θ)

∂θ∂θ ′

])−1

=
{

E

[(
∂ ln L(θ)

∂θ

)(
∂ ln L(θ)

∂θ ′

)]}−1

, (C-13)

will be a nonnegative definite matrix.
In many settings, numerous estimators are available for the parameters of a distribution.

The usefulness of the Cramér–Rao bound is that if one of these is known to attain the variance
bound, then there is no need to consider any other to seek a more efficient estimator. Regarding
the use of the variance bound, we emphasize that if an unbiased estimator attains it, then that
estimator is efficient. If a given estimator does not attain the variance bound, however, then we
do not know, except in a few special cases, whether this estimator is efficient or not. It may be
that no unbiased estimator can attain the Cramér–Rao bound, which can leave the question of
whether a given unbiased estimator is efficient or not unanswered.

We note, finally, that in some cases we further restrict the set of estimators to linear functions
of the data.

DEFINITION C.5 Minimum Variance Linear Unbiased
Estimator (MVLUE)

An estimator is the minimum variance linear unbiased estimator or best linear unbiased
estimator (BLUE) if it is a linear function of the data and has minimum variance among
linear unbiased estimators.

In a few instances, such as the normal mean, there will be an efficient linear unbiased estima-
tor; x̄ is efficient among all unbiased estimators, both linear and nonlinear. In other cases, such
as the normal variance, there is no linear unbiased estimator. This criterion is useful because we
can sometimes find an MVLUE without having to specify the distribution at all. Thus, by limiting
ourselves to a somewhat restricted class of estimators, we free ourselves from having to assume
a particular distribution.

C.6 INTERVAL ESTIMATION

Regardless of the properties of an estimator, the estimate obtained will vary from sample to
sample, and there is some probability that it will be quite erroneous. A point estimate will not
provide any information on the likely range of error. The logic behind an interval estimate is
that we use the sample data to construct an interval, [lower (X), upper (X)], such that we can
expect this interval to contain the true parameter in some specified proportion of samples, or



Greene-2140242 book January 19, 2011 21:35

APPENDIX C ✦ Estimation and Inference 1101

equivalently, with some desired level of confidence. Clearly, the wider the interval, the more
confident we can be that it will, in any given sample, contain the parameter being estimated.

The theory of interval estimation is based on a pivotal quantity, which is a function of both the
parameter and a point estimate that has a known distribution. Consider the following examples.

Example C.8 Confidence Intervals for the Normal Mean
In sampling from a normal distribution with mean μ and standard deviation σ ,

z =
√

n( x̄ − μ)
s

∼ t[n − 1],

and

c = (n − 1)s2

σ 2
∼ χ2[n − 1].

Given the pivotal quantity, we can make probability statements about events involving the
parameter and the estimate. Let p(g, θ ) be the constructed random variable, for example, z
or c. Given a prespecified confidence level, 1 − α, we can state that

Prob( lower ≤ p(g, θ ) ≤ upper) = 1 − α, (C-14)

where lower and upper are obtained from the appropriate table. This statement is then ma-
nipulated to make equivalent statements about the endpoints of the intervals. For example,
the following statements are equivalent:

Prob

(
−z ≤

√
n( x̄ − μ)

s
≤ z

)
= 1 − α,

Prob

(
x̄ − zs√

n
≤ μ ≤ x̄ + zs√

n

)
= 1 − α.

The second of these is a statement about the interval, not the parameter; that is, it is the
interval that is random, not the parameter. We attach a probability, or 100(1 − α) percent
confidence level, to the interval itself; in repeated sampling, an interval constructed in this
fashion will contain the true parameter 100(1 − α) percent of the time.

In general, the interval constructed by this method will be of the form

lower(X) = θ̂ − e1,

upper(X) = θ̂ + e2,

where X is the sample data, e1 and e2 are sampling errors, and θ̂ is a point estimate of θ . It is clear
from the preceding example that if the sampling distribution of the pivotal quantity is either t or
standard normal, which will be true in the vast majority of cases we encounter in practice, then
the confidence interval will be

θ̂ ± C1−α/2[se(θ̂)], (C-15)

where se(.) is the (known or estimated) standard error of the parameter estimate and C1−α/2 is
the value from the t or standard normal distribution that is exceeded with probability 1 − α/2.
The usual values for α are 0.10, 0.05, or 0.01. The theory does not prescribe exactly how to
choose the endpoints for the confidence interval. An obvious criterion is to minimize the width
of the interval. If the sampling distribution is symmetric, then the symmetric interval is the
best one. If the sampling distribution is not symmetric, however, then this procedure will not be
optimal.
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Example C.9 Estimated Confidence Intervals for a Normal Mean
and Variance

In a sample of 25, x̄ = 1.63 and s = 0.51. Construct a 95 percent confidence interval for μ.
Assuming that the sample of 25 is from a normal distribution,

Prob

(
−2.064 ≤ 5( x̄ − μ)

s
≤ 2.064

)
= 0.95,

where 2.064 is the critical value from a t distribution with 24 degrees of freedom. Thus, the
confidence interval is 1.63 ± [2.064(0.51)/5] or [1.4195, 1.8405].

Remark: Had the parent distribution not been specified, it would have been natural to use the
standard normal distribution instead, perhaps relying on the central limit theorem. But a sam-
ple size of 25 is small enough that the more conservative t distribution might still be preferable.

The chi-squared distribution is used to construct a confidence interval for the variance
of a normal distribution. Using the data from Example C.9, we find that the usual procedure
would use

Prob

(
12.4 ≤ 24s2

σ 2
≤ 39.4

)
= 0.95,

where 12.4 and 39.4 are the 0.025 and 0.975 cutoff points from the chi-squared (24) distribu-
tion. This procedure leads to the 95 percent confidence interval [0.1581, 0.5032]. By making
use of the asymmetry of the distribution, a narrower interval can be constructed. Allocating
4 percent to the left-hand tail and 1 percent to the right instead of 2.5 percent to each, the two
cutoff points are 13.4 and 42.9, and the resulting 95 percent confidence interval is [0.1455,
0.4659].

Finally, the confidence interval can be manipulated to obtain a confidence interval for
a function of a parameter. For example, based on the preceding, a 95 percent confidence
interval for σ would be [

√
0.1581,

√
0.5032] = [0.3976, 0.7094].

C.7 HYPOTHESIS TESTING

The second major group of statistical inference procedures is hypothesis tests. The classical testing
procedures are based on constructing a statistic from a random sample that will enable the
analyst to decide, with reasonable confidence, whether or not the data in the sample would
have been generated by a hypothesized population. The formal procedure involves a statement
of the hypothesis, usually in terms of a “null” or maintained hypothesis and an “alternative,”
conventionally denoted H0 and H1, respectively. The procedure itself is a rule, stated in terms
of the data, that dictates whether the null hypothesis should be rejected or not. For example,
the hypothesis might state a parameter is equal to a specified value. The decision rule might
state that the hypothesis should be rejected if a sample estimate of that parameter is too far
away from that value (where “far” remains to be defined). The classical, or Neyman–Pearson,
methodology involves partitioning the sample space into two regions. If the observed data (i.e.,
the test statistic) fall in the rejection region (sometimes called the critical region), then the null
hypothesis is rejected; if they fall in the acceptance region, then it is not.

C.7.1 CLASSICAL TESTING PROCEDURES

Since the sample is random, the test statistic, however defined, is also random. The same test
procedure can lead to different conclusions in different samples. As such, there are two ways
such a procedure can be in error:

1. Type I error. The procedure may lead to rejection of the null hypothesis when it is true.
2. Type II error. The procedure may fail to reject the null hypothesis when it is false.
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To continue the previous example, there is some probability that the estimate of the parameter
will be quite far from the hypothesized value, even if the hypothesis is true. This outcome might
cause a type I error.

DEFINITION C.6 Size of a Test
The probability of a type I error is the size of the test. This is conventionally denoted α and
is also called the significance level.

The size of the test is under the control of the analyst. It can be changed just by changing
the decision rule. Indeed, the type I error could be eliminated altogether just by making the
rejection region very small, but this would come at a cost. By eliminating the probability of a
type I error—that is, by making it unlikely that the hypothesis is rejected—we must increase the
probability of a type II error. Ideally, we would like both probabilities to be as small as possible.
It is clear, however, that there is a tradeoff between the two. The best we can hope for is that for
a given probability of type I error, the procedure we choose will have as small a probability of
type II error as possible.

DEFINITION C.7 Power of a Test
The power of a test is the probability that it will correctly lead to rejection of a false null
hypothesis:

power = 1 − β = 1 − Prob(type II error). (C-16)

For a given significance level α, we would like β to be as small as possible. Because β is
defined in terms of the alternative hypothesis, it depends on the value of the parameter.

Example C.10 Testing a Hypothesis About a Mean
For testing H0: μ = μ0 in a normal distribution with known variance σ 2, the decision rule is
to reject the hypothesis if the absolute value of the z statistic,

√
n( x̄ − μ0)/σ, exceeds the

predetermined critical value. For a test at the 5 percent significance level, we set the critical
value at 1.96. The power of the test, therefore, is the probability that the absolute value of
the test statistic will exceed 1.96 given that the true value of μ is, in fact, not μ0. This value
depends on the alternative value of μ, as shown in Figure C.6. Notice that for this test the
power is equal to the size at the point where μ equals μ0. As might be expected, the test
becomes more powerful the farther the true mean is from the hypothesized value.

Testing procedures, like estimators, can be compared using a number of criteria.

DEFINITION C.8 Most Powerful Test
A test is most powerful if it has greater power than any other test of the same size.
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FIGURE C.6 Power Function for a Test.

This requirement is very strong. Because the power depends on the alternative hypothesis, we
might require that the test be uniformly most powerful (UMP), that is, have greater power than
any other test of the same size for all admissible values of the parameter. There are few situations in
which a UMP test is available. We usually must be less stringent in our requirements. Nonetheless,
the criteria for comparing hypothesis testing procedures are generally based on their respective
power functions. A common and very modest requirement is that the test be unbiased.

DEFINITION C.9 Unbiased Test
A test is unbiased if its power (1 − β) is greater than or equal to its size α for all values of
the parameter.

If a test is biased, then, for some values of the parameter, we are more likely to accept the
null hypothesis when it is false than when it is true.

The use of the term unbiased here is unrelated to the concept of an unbiased estimator.
Fortunately, there is little chance of confusion. Tests and estimators are clearly connected, how-
ever. The following criterion derives, in general, from the corresponding attribute of a parameter
estimate.

DEFINITION C.10 Consistent Test
A test is consistent if its power goes to one as the sample size grows to infinity.
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Example C.11 Consistent Test About a Mean
A confidence interval for the mean of a normal distribution is x̄ ± t1−α/2(s/

√
n ) , where x̄ and

s are the usual consistent estimators for μ and σ (see Section D.2.1), n is the sample size,
and t1−α/2 is the correct critical value from the t distribution with n − 1 degrees of freedom.
For testing H0: μ = μ0 versus H1: μ 
= μ0, let the procedure be to reject H0 if the confidence
interval does not contain μ0. Because x̄ is consistent for μ, one can discern if H0 is false as
n → ∞, with probability 1, because x̄ will be arbitrarily close to the true μ. Therefore, this
test is consistent.

As a general rule, a test will be consistent if it is based on a consistent estimator of the
parameter.

C.7.2 TESTS BASED ON CONFIDENCE INTERVALS

There is an obvious link between interval estimation and the sorts of hypothesis tests we have
been discussing here. The confidence interval gives a range of plausible values for the parameter.
Therefore, it stands to reason that if a hypothesized value of the parameter does not fall in this
range of plausible values, then the data are not consistent with the hypothesis, and it should be
rejected. Consider, then, testing

H0: θ = θ0,

H1: θ 
= θ0.

We form a confidence interval based on θ̂ as described earlier:

θ̂ − C1−α/2[se(θ̂)] < θ < θ̂ + C1−α/2[se(θ̂)].

H0 is rejected if θ0 exceeds the upper limit or is less than the lower limit. Equivalently, H0 is
rejected if ∣∣∣∣

θ̂ − θ0

se(θ̂)

∣∣∣∣ > C1−α/2.

In words, the hypothesis is rejected if the estimate is too far from θ0, where the distance is measured
in standard error units. The critical value is taken from the t or standard normal distribution,
whichever is appropriate.

Example C.12 Testing a Hypothesis About a Mean with
a Confidence Interval

For the results in Example C.8, test H0: μ = 1.98 versus H1: μ 
= 1.98, assuming sampling
from a normal distribution:

t =
∣∣∣∣
x̄ − 1.98

s/
√

n

∣∣∣∣ =
∣∣∣∣
1.63 − 1.98

0.102

∣∣∣∣ = 3.43.

The 95 percent critical value for t (24) is 2.064. Therefore, reject H0. If the critical value for
the standard normal table of 1.96 is used instead, then the same result is obtained.

If the test is one-sided, as in

H0: θ ≥ θ0,

H1: θ < θ0,

then the critical region must be adjusted. Thus, for this test, H0 will be rejected if a point estimate
of θ falls sufficiently below θ0. (Tests can usually be set up by departing from the decision criterion,
“What sample results are inconsistent with the hypothesis?”)
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Example C.13 One-Sided Test About a Mean
A sample of 25 from a normal distribution yields x̄ = 1.63 and s = 0.51. Test

H0: μ ≤ 1.5,

H1: μ > 1.5.

Clearly, no observed x̄ less than or equal to 1.5 will lead to rejection of H0. Using the borderline
value of 1.5 for μ, we obtain

Prob

(√
n( x̄ − 1.5)

s
>

5(1.63 − 1.5)
0.51

)
= Prob( t24 > 1.27) .

This is approximately 0.11. This value is not unlikely by the usual standards. Hence, at a
significant level of 0.11, we would not reject the hypothesis.

C.7.3 SPECIFICATION TESTS

The hypothesis testing procedures just described are known as “classical” testing procedures. In
each case, the null hypothesis tested came in the form of a restriction on the alternative. You
can verify that in each application we examined, the parameter space assumed under the null
hypothesis is a subspace of that described by the alternative. For that reason, the models implied
are said to be “nested.” The null hypothesis is contained within the alternative. This approach
suffices for most of the testing situations encountered in practice, but there are common situations
in which two competing models cannot be viewed in these terms. For example, consider a case
in which there are two completely different, competing theories to explain the same observed
data. Many models for censoring and truncation discussed in Chapter 19 rest upon a fragile
assumption of normality, for example. Testing of this nature requires a different approach from the
classical procedures discussed here. These are discussed at various points throughout the book, for
example, in Chapter 19, where we study the difference between fixed and random effects models.

APPENDIX D

Q
LARGE-SAMPLE DISTRIBUTION

THEORY

D.1 INTRODUCTION

Most of this book is about parameter estimation. In studying that subject, we will usually be
interested in determining how best to use the observed data when choosing among competing
estimators. That, in turn, requires us to examine the sampling behavior of estimators. In a few
cases, such as those presented in Appendix C and the least squares estimator considered in
Chapter 4, we can make broad statements about sampling distributions that will apply regardless
of the size of the sample. But, in most situations, it will only be possible to make approximate
statements about estimators, such as whether they improve as the sample size increases and what
can be said about their sampling distributions in large samples as an approximation to the finite
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samples we actually observe. This appendix will collect most of the formal, fundamental theorems
and results needed for this analysis. A few additional results will be developed in the discussion
of time-series analysis later in the book.

D.2 LARGE-SAMPLE DISTRIBUTION THEORY1

In most cases, whether an estimator is exactly unbiased or what its exact sampling variance is in
samples of a given size will be unknown. But we may be able to obtain approximate results about
the behavior of the distribution of an estimator as the sample becomes large. For example, it is
well known that the distribution of the mean of a sample tends to approximate normality as the
sample size grows, regardless of the distribution of the individual observations. Knowledge about
the limiting behavior of the distribution of an estimator can be used to infer an approximate
distribution for the estimator in a finite sample. To describe how this is done, it is necessary, first,
to present some results on convergence of random variables.

D.2.1 CONVERGENCE IN PROBABILITY

Limiting arguments in this discussion will be with respect to the sample size n. Let xn be a sequence
random variable indexed by the sample size.

DEFINITION D.1 Convergence in Probability
The random variable xn converges in probability to a constant c if limn→∞ Prob(|xn −c| >

ε) = 0 for any positive ε.

Convergence in probability implies that the values that the variable may take that are not
close to c become increasingly unlikely as n increases. To consider one example, suppose that the
random variable xn takes two values, zero and n, with probabilities 1 − (1/n) and (1/n), respec-
tively. As n increases, the second point will become ever more remote from any constant but, at the
same time, will become increasingly less probable. In this example, xn converges in probability
to zero. The crux of this form of convergence is that all the mass of the probability distribution
becomes concentrated at points close to c. If xn converges in probability to c, then we write

plim xn = c. (D-1)

We will make frequent use of a special case of convergence in probability, convergence in mean
square or convergence in quadratic mean.

THEOREM D.1 Convergence in Quadratic Mean
If xn has mean μn and variance σ 2

n such that the ordinary limits of μn and σ 2
n are c and 0,

respectively, then xn converges in mean square to c, and

plim xn = c.

1A comprehensive summary of many results in large-sample theory appears in White (2001). The results
discussed here will apply to samples of independent observations. Time-series cases in which observations
are correlated are analyzed in Chapters 20 and 21.
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A proof of Theorem D.1 can be based on another useful theorem.

THEOREM D.2 Chebychev’s Inequality
If xn is a random variable and c and ε are constants, then Prob(|xn − c| > ε) ≤
E[(xn − c)2]/ε2.

To establish the Chebychev inequality, we use another result [see Goldberger (1991, p. 31)].

THEOREM D.3 Markov’s Inequality
If yn is a nonnegative random variable and δ is a positive constant, then
Prob[yn ≥ δ] ≤ E[yn]/δ.
Proof: E[yn] = Prob[yn < δ]E[yn | yn < δ] + Prob[yn ≥ δ]E[yn | yn ≥ δ]. Because yn is non-
negative, both terms must be nonnegative, so E[yn] ≥ Prob[yn ≥ δ]E[yn | yn ≥ δ].
Because E[yn | yn ≥ δ] must be greater than or equal to δ, E[yn] ≥ Prob[yn ≥ δ]δ, which
is the result.

Now, to prove Theorem D.1, let yn be (xn − c)2 and δ be ε2 in Theorem D.3. Then, (xn − c)2 > δ

implies that |xn − c| > ε. Finally, we will use a special case of the Chebychev inequality, where
c = μn, so that we have

Prob(|xn − μn| > ε) ≤ σ 2
n /ε2. (D-2)

Taking the limits of μn and σ 2
n in (D-2), we see that if

lim
n→∞

E[xn] = c, and lim
n→∞

Var[xn] = 0, (D-3)

then

plim xn = c.

We have shown that convergence in mean square implies convergence in probability. Mean-
square convergence implies that the distribution of xn collapses to a spike at plim xn, as shown in
Figure D.1.

Example D.1 Mean Square Convergence of the Sample Minimum
in Exponential Sampling

As noted in Example C.4, in sampling of n observations from an exponential distribution, for
the sample minimum x(1) ,

lim
n→∞

E
[
x(1)

] = lim
n→∞

1
nθ

= 0

and

lim
n→∞

Var
[
x(1)

] = lim
n→∞

1
(nθ ) 2

= 0.

Therefore,

plim x(1) = 0.

Note, in particular, that the variance is divided by n2. Thus, this estimator converges very
rapidly to 0.
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FIGURE D.1 Quadratic Convergence to a Constant, θ .

Convergence in probability does not imply convergence in mean square. Consider the simple
example given earlier in which xn equals either zero or n with probabilities 1 − (1/n) and (1/n).
The exact expected value of xn is 1 for all n, which is not the probability limit. Indeed, if we let
Prob(xn = n2) = (1/n) instead, the mean of the distribution explodes, but the probability limit is
still zero. Again, the point xn = n2 becomes ever more extreme but, at the same time, becomes
ever less likely.

The conditions for convergence in mean square are usually easier to verify than those for
the more general form. Fortunately, we shall rarely encounter circumstances in which it will be
necessary to show convergence in probability in which we cannot rely upon convergence in mean
square. Our most frequent use of this concept will be in formulating consistent estimators.

DEFINITION D.2 Consistent Estimator
An estimator θ̂n of a parameter θ is a consistent estimator of θ if and only if

plim θ̂n = θ. (D-4)

THEOREM D.4 Consistency of the Sample Mean
The mean of a random sample from any population with finite mean μ and finite variance
σ 2 is a consistent estimator of μ.
Proof: E[ x̄n] = μ and Var[x̄n] = σ 2/n. Therefore, x̄n converges in mean square to μ, or
plim x̄n = μ.
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Theorem D.4 is broader than it might appear at first.

COROLLARY TO THEOREM D.4 Consistency of a Mean
of Functions

In random sampling, for any function g(x), if E[g(x)] and Var[g(x)] are finite constants,
then

plim
1
n

n∑
i=1

g(xi ) = E[g(x)]. (D-5)

Proof: Define yi = g(xi ) and use Theorem D.4.

Example D.2 Estimating a Function of the Mean
In sampling from a normal distribution with mean μ and variance 1, E [ex ] = eμ+1/2 and
Var[ex ] = e2μ+2 − e2μ+1. (See Section B.4.4 on the lognormal distribution.) Hence,

plim
1
n

n∑
i =1

exi = eμ+1/2.

D.2.2 OTHER FORMS OF CONVERGENCE AND LAWS
OF LARGE NUMBERS

Theorem D.4 and the corollary just given are particularly narrow forms of a set of results known
as laws of large numbers that are fundamental to the theory of parameter estimation. Laws of
large numbers come in two forms depending on the type of convergence considered. The simpler
of these are “weak laws of large numbers” which rely on convergence in probability as we defined
it above. “Strong laws” rely on a broader type of convergence called almost sure convergence.
Overall, the law of large numbers is a statement about the behavior of an average of a large
number of random variables.

THEOREM D.5 Khinchine’s Weak Law of Large Numbers
If xi , i = 1, . . . , n is a random (i.i.d.) sample from a distribution with finite mean E [xi ] = μ,
then

plim x̄n = μ.

Proofs of this and the theorem below are fairly intricate. Rao (1973) provides one.

Notice that this is already broader than Theorem D.4, as it does not require that the variance of
the distribution be finite. On the other hand, it is not broad enough, because most of the situations
we encounter where we will need a result such as this will not involve i.i.d. random sampling. A
broader result is
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THEOREM D.6 Chebychev’s Weak Law of Large Numbers
If xi , i = 1, . . . , n is a sample of observations such that E [xi ] = μi < ∞ and Var[xi ] =
σ 2

i < ∞ such that σ̄ 2
n /n = (1/n2)�iσ

2
i → 0 as n → ∞, then plim(x̄n − μ̄n) = 0.

There is a subtle distinction between these two theorems that you should notice. The Chebychev
theorem does not state that x̄n converges to μ̄n, or even that it converges to a constant at all.
That would require a precise statement about the behavior of μ̄n. The theorem states that as
n increases without bound, these two quantities will be arbitrarily close to each other—that
is, the difference between them converges to a constant, zero. This is an important notion
that enters the derivation when we consider statistics that converge to random variables, in-
stead of to constants. What we do have with these two theorems are extremely broad condi-
tions under which a sample mean will converge in probability to its population counterpart.
The more important difference between the Khinchine and Chebychev theorems is that the
second allows for heterogeneity in the distributions of the random variables that enter
the mean.

In analyzing time-series data, the sequence of outcomes is itself viewed as a random event.
Consider, then, the sample mean, x̄n. The preceding results concern the behavior of this statistic
as n → ∞ for a particular realization of the sequence x̄1, . . . , x̄n. But, if the sequence, itself, is
viewed as a random event, then limit to which x̄n converges may be also. The stronger notion of
almost sure convergence relates to this possibility.

DEFINITION D.3 Almost Sure Convergence
The random variable xn converges almost surely to the constant c if and only if

Prob
(

lim
n→∞

xn = c
)

= 1.

This is denoted xn
a.s.−→c. It states that the probability of observing a sequence that does not

converge to c ultimately vanishes. Intuitively, it states that once the sequence xn becomes close
to c, it stays close to c.

Almost sure convergence is used in a stronger form of the law of large numbers:

THEOREM D.7 Kolmogorov’s Strong Law of Large Numbers
If xi , i = 1, . . . , n is a sequence of independently distributed random variables such that
E [xi ] = μi < ∞ and Var[xi ] = σ 2

i < ∞ such that
∑∞

i=1 σ 2
i / i2 < ∞ as n → ∞ then

x̄n − μ̄n
a.s.−→ 0.
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THEOREM D.8 Markov’s Strong Law of Large Numbers
If {zi } is a sequence of independent random variables with E[zi ] = μi < ∞ and if for some
δ > 0,

∑∞
i=1 E[|zi − μi |1+δ]/ i1+δ < ∞, then z̄n − μ̄n converges almost surely to 0, which

we denote z̄n − μ̄n
a.s.−→ 0.2

The variance condition is satisfied if every variance in the sequence is finite, but this is not strictly
required; it only requires that the variances in the sequence increase at a slow enough rate that
the sequence of variances as defined is bounded. The theorem allows for heterogeneity in the
means and variances. If we return to the conditions of the Khinchine theorem, i.i.d. sampling, we
have a corollary:

COROLLARY TO THEOREM D.8 (Kolmogorov)
If xi , i = 1, . . . , n is a sequence of independent and identically distributed random variables
such that E[xi ] = μ < ∞ and E[|xi |] < ∞, then x̄n − μ

a.s.−→ 0.

Note that the corollary requires identically distributed observations while the theorem only
requires independence. Finally, another form of convergence encountered in the analysis of time-
series data is convergence in r th mean:

DEFINITION D.4 Convergence in rth Mean
If xn is a sequence of random variables such that E[|xn|r ] < ∞ and limn→∞ E[|xn −c|r ] = 0,
then xn converges in rth mean to c. This is denoted xn

r.m.−→c.

Surely the most common application is the one we met earlier, convergence in means square,
which is convergence in the second mean. Some useful results follow from this definition:

THEOREM D.9 Convergence in Lower Powers
If xn converges in rth mean to c, then xn converges in sth mean to c for any s < r . The
proof uses Jensen’s Inequality, Theorem D.13. Write E[|xn − c|s] = E[(|xn − c|r )s/r ] ≤{

E[(|xn − c|r )]}s/r
and the inner term converges to zero so the full function must also.

2The use of the expected absolute deviation differs a bit from the expected squared deviation that we have
used heretofore to characterize the spread of a distribution. Consider two examples. If z ∼ N[0, σ 2], then
E[|z|] = Prob[z < 0]E[−z | z < 0] + Prob[z ≥ 0]E[z | z ≥ 0] = 0.7979σ . (See Theorem 18.2.) So, finite
expected absolute value is the same as finite second moment for the normal distribution. But if z takes values
[0, n] with probabilities [1 − 1/n, 1/n], then the variance of z is (n − 1), but E[|z − μz|] is 2 − 2/n. For
this case, finite expected absolute value occurs without finite expected second moment. These are different
characterizations of the spread of the distribution.
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THEOREM D.10 Generalized Chebychev’s Inequality
If xn is a random variable and c is a constant such that with E[|xn − c|r ] < ∞ and ε is a
positive constant, then Prob(|xn − c| > ε) ≤ E[|xn − c|r ]/εr .

We have considered two cases of this result already, when r = 1 which is the Markov inequality,
Theorem D.3, and when r = 2, which is the Chebychev inequality we looked at first in Theo-
rem D.2.

THEOREM D.11 Convergence in rth mean and Convergence
in Probability

If xn
r.m.−→ c, for some r > 0, then xn

p−→ c. The proof relies on Theorem D.10. By
assumption, limn→∞ E [|xn − c|r ] = 0 so for some n sufficiently large, E [|xn − c|r ] < ∞.
By Theorem D.10, then, Prob(|xn − c| > ε) ≤ E [|xn − c|r ]/εr for any ε > 0. The denomina-
tor of the fraction is a fixed constant and the numerator converges to zero by our initial
assumption, so limn→∞ Prob(|xn − c| > ε) = 0, which completes the proof.

One implication of Theorem D.11 is that although convergence in mean square is a convenient
way to prove convergence in probability, it is actually stronger than necessary, as we get the same
result for any positive r .

Finally, we note that we have now shown that both almost sure convergence and convergence
in r th mean are stronger than convergence in probability; each implies the latter. But they,
themselves, are different notions of convergence, and neither implies the other.

DEFINITION D.5 Convergence of a Random Vector or Matrix
Let xn denote a random vector and Xn a random matrix, and c and C denote a vector
and matrix of constants with the same dimensions as xn and Xn, respectively. All of the
preceding notions of convergence can be extended to (xn, c) and (Xn, C) by applying the
results to the respective corresponding elements.

D.2.3 CONVERGENCE OF FUNCTIONS

A particularly convenient result is the following.

THEOREM D.12 Slutsky Theorem
For a continuous function g(xn) that is not a function of n,

plim g(xn) = g(plim xn). (D-6)

The generalization of Theorem D.12 to a function of several random variables is direct, as
illustrated in the next example.
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Example D.3 Probability Limit of a Function of ¯̄x and s2

In random sampling from a population with mean μ and variance σ 2, the exact expected
value of x̄2

n/s2
n will be difficult, if not impossible, to derive. But, by the Slutsky theorem,

plim
x̄2

n

s2
n

= μ2

σ 2
.

An application that highlights the difference between expectation and probability is suggested
by the following useful relationships.

THEOREM D.13 Inequalities for Expectations
Jensen’s Inequality. If g(xn) is a concave function of xn, then g

(
E [xn]

)≥ E [g(xn)].
Cauchy–Schwarz Inequality. For two random variables,

E [|xy|] ≤ {
E [x2]

}1/2{
E [y2]

}1/2
.

Although the expected value of a function of xn may not equal the function of the expected
value—it exceeds it if the function is concave—the probability limit of the function is equal to
the function of the probability limit.

The Slutsky theorem highlights a comparison between the expectation of a random variable
and its probability limit. Theorem D.12 extends directly in two important directions. First, though
stated in terms of convergence in probability, the same set of results applies to convergence in
r th mean and almost sure convergence. Second, so long as the functions are continuous, the
Slutsky theorem can be extended to vector or matrix valued functions of random scalars, vectors,
or matrices. The following describe some specific applications. Some implications of the Slutsky
theorem are now summarized.

THEOREM D.14 Rules for Probability Limits
If xn and yn are random variables with plim xn = c and plim yn = d, then

plim(xn + yn) = c + d, (sum rule) (D-7)

plim xn yn = cd, (product rule) (D-8)

plim xn/yn = c/d if d 
= 0. (ratio rule) (D-9)

If Wn is a matrix whose elements are random variables and if plim Wn = �, then

plim W−1
n = �−1. (matrix inverse rule) (D-10)

If Xn and Yn are random matrices with plim Xn = A and plim Yn = B, then

plim XnYn = AB. (matrix product rule) (D-11)

D.2.4 CONVERGENCE TO A RANDOM VARIABLE

The preceding has dealt with conditions under which a random variable converges to a constant,
for example, the way that a sample mean converges to the population mean. To develop a theory
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for the behavior of estimators, as a prelude to the discussion of limiting distributions, we now
consider cases in which a random variable converges not to a constant, but to another random
variable. These results will actually subsume those in the preceding section, as a constant may
always be viewed as a degenerate random variable, that is one with zero variance.

DEFINITION D.6 Convergence in Probability to a Random
Variable

The random variable xn converges in probability to the random variable x if
limn→∞ Prob(|xn − x| > ε) = 0 for any positive ε.

As before, we write plim xn = x to denote this case. The interpretation (at least the intuition) of
this type of convergence is different when x is a random variable. The notion of closeness defined
here relates not to the concentration of the mass of the probability mechanism generating xn at a
point c, but to the closeness of that probability mechanism to that of x. One can think of this as
a convergence of the CDF of xn to that of x.

DEFINITION D.7 Almost Sure Convergence to a Random Variable
The random variable xn converges almost surely to the random variable x if and only if
limn→∞ Prob(|xi − x| > ε for all i ≥ n) = 0 for all ε > 0.

DEFINITION D.8 Convergence in rth Mean to a Random Variable
The random variable xn converges in rth mean to the random variable x if and only if
limn→∞ E [|xn − x|r ] = 0. This is labeled xn

r.m.−→ x. As before, the case r = 2 is labeled
convergence in mean square.

Once again, we have to revise our understanding of convergence when convergence is to a random
variable.

THEOREM D.15 Convergence of Moments
Suppose xn

r.m.−→ x and E [|x|r ] is finite. Then, limn→∞ E [|xn|r ] = E [|x|r ].

Theorem D.15 raises an interesting question. Suppose we let r grow, and suppose that xn
r.m.−→ x

and, in addition, all moments are finite. If this holds for any r , do we conclude that these random
variables have the same distribution? The answer to this longstanding problem in probability
theory—the problem of the sequence of moments—is no. The sequence of moments does not
uniquely determine the distribution. Although convergence in r th mean and almost surely still
both imply convergence in probability, it remains true, even with convergence to a random variable
instead of a constant, that these are different forms of convergence.
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D.2.5 CONVERGENCE IN DISTRIBUTION:
LIMITING DISTRIBUTIONS

A second form of convergence is convergence in distribution. Let xn be a sequence of random
variables indexed by the sample size, and assume that xn has cdf Fn(xn).

DEFINITION D.9 Convergence in Distribution
xn converges in distribution to a random variable x with CDF F(x) if
limn→∞| Fn(xn) − F(x)| = 0 at all continuity points of F(x).

This statement is about the probability distribution associated with xn; it does not imply that
xn converges at all. To take a trivial example, suppose that the exact distribution of the random
variable xn is

Prob(xn = 1) = 1
2

+ 1
n + 1

, Prob(xn = 2) = 1
2

− 1
n + 1

.

As n increases without bound, the two probabilities converge to 1
2 , but xn does not converge to a

constant.

DEFINITION D.10 Limiting Distribution
If xn converges in distribution to x, where Fn(xn) is the CDF of xn, then F(x) is the limiting
distribution of xn. This is written

xn
d−→ x.

The limiting distribution is often given in terms of the pdf, or simply the parametric family. For
example, “the limiting distribution of xn is standard normal.”

Convergence in distribution can be extended to random vectors and matrices, although not
in the element by element manner that we extended the earlier convergence forms. The reason is
that convergence in distribution is a property of the CDF of the random variable, not the variable
itself. Thus, we can obtain a convergence result analogous to that in Definition D.9 for vectors or
matrices by applying definition to the joint CDF for the elements of the vector or matrices. Thus,
xn

d−→ x if limn→∞ |Fn(xn) − F(x)| = 0 and likewise for a random matrix.

Example D.4 Limiting Distribution of tn−1

Consider a sample of size n from a standard normal distribution. A familiar inference problem
is the test of the hypothesis that the population mean is zero. The test statistic usually used
is the t statistic:

tn−1 = x̄n

sn/
√

n
,

where

s2
n =

∑n
i =1( xi − x̄n) 2

n − 1
.
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The exact distribution of the random variable tn−1 is t with n − 1 degrees of freedom. The
density is different for every n:

f ( tn−1) = (n/2)
[(n − 1)/2]

[(n − 1)π ]−1/2

[
1 + t2

n−1

n − 1

]−n/2

, (D-12)

as is the CDF, Fn−1( t) = ∫ t

−∞ fn−1( x) dx. This distribution has mean zero and variance (n−1)/
(n − 3) . As n grows to infinity, tn−1 converges to the standard normal, which is written

tn−1
d−→ N[0, 1].

DEFINITION D.11 Limiting Mean and Variance
The limiting mean and variance of a random variable are the mean and variance of the
limiting distribution, assuming that the limiting distribution and its moments exist.

For the random variable with t[n] distribution, the exact mean and variance are zero and
n/(n − 2), whereas the limiting mean and variance are zero and one. The example might suggest
that the limiting mean and variance are zero and one; that is, that the moments of the limiting
distribution are the ordinary limits of the moments of the finite sample distributions. This situation
is almost always true, but it need not be. It is possible to construct examples in which the exact
moments do not even exist, even though the moments of the limiting distribution are well defined.3

Even in such cases, we can usually derive the mean and variance of the limiting distribution.
Limiting distributions, like probability limits, can greatly simplify the analysis of a problem.

Some results that combine the two concepts are as follows.4

THEOREM D.16 Rules for Limiting Distributions
1. If xn

d−→ x and plim yn = c, then

xn yn
d−→ cx, (D-13)

which means that the limiting distribution of xn yn is the distribution of cx. Also,

xn + yn
d−→ x + c, (D-14)

xn/yn
d−→ x/c, if c 
= 0. (D-15)

2. If xn
d−→ x and g(xn) is a continuous function, then

g(xn)
d−→ g(x). (D-16)

This result is analogous to the Slutsky theorem for probability limits. For
an example, consider the tn random variable discussed earlier. The exact distribu-
tion of t2

n is F[1, n]. But as n −→ ∞, tn converges to a standard normal variable.
According to this result, the limiting distribution of t2

n will be that of the square of a
standard normal, which is chi-squared with one

3See, for example, Maddala (1977a, p. 150).
4For proofs and further discussion, see, for example, Greenberg and Webster (1983).
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THEOREM D.16 (Continued)
degree of freedom. We conclude, therefore, that

F[1, n]
d−→ chi-squared[1]. (D-17)

We encountered this result in our earlier discussion of limiting forms of the standard
normal family of distributions.

3. If yn has a limiting distribution and plim (xn − yn) = 0, then xn has the same limiting
distribution as yn.

The third result in Theorem D.16 combines convergence in distribution and in probability. The
second result can be extended to vectors and matrices.

Example D.5 The F Distribution
Suppose that t1,n and t2,n are a K × 1 and an M × 1 random vector of variables whose
components are independent with each distributed as t with n degrees of freedom. Then, as
we saw in the preceding, for any component in either random vector, the limiting distribution
is standard normal, so for the entire vector, t j ,n

d−→ z j , a vector of independent standard

normally distributed variables. The results so far show that (t′
1,nt1,n)/K

(t′
2,nt2,n)/M

d−→ F [K , M].

Finally, a specific case of result 2 in Theorem D.16 produces a tool known as the Cramér–Wold
device.

THEOREM D.17 Cramer–Wold Device
If xn

d−→ x, then c′xn
d−→ c′x for all conformable vectors c with real valued elements.

By allowing c to be a vector with just a one in a particular position and zeros elsewhere, we see
that convergence in distribution of a random vector xn to x does imply that each component does
likewise.

D.2.6 CENTRAL LIMIT THEOREMS

We are ultimately interested in finding a way to describe the statistical properties of estimators
when their exact distributions are unknown. The concepts of consistency and convergence in
probability are important. But the theory of limiting distributions given earlier is not yet adequate.
We rarely deal with estimators that are not consistent for something, though perhaps not always
the parameter we are trying to estimate. As such,

if plim θ̂n = θ, then θ̂n
d−→ θ.

That is, the limiting distribution of θ̂n is a spike. This is not very informative, nor is it at all what
we have in mind when we speak of the statistical properties of an estimator. (To endow our finite
sample estimator θ̂n with the zero sampling variance of the spike at θ would be optimistic in the
extreme.)

As an intermediate step, then, to a more reasonable description of the statistical properties
of an estimator, we use a stabilizing transformation of the random variable to one that does have
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a well-defined limiting distribution. To jump to the most common application, whereas

plim θ̂n = θ,

we often find that

zn = √
n(θ̂n − θ)

d−→ f (z),

where f (z) is a well-defined distribution with a mean and a positive variance. An estimator
which has this property is said to be root-n consistent. The single most important theorem in
econometrics provides an application of this proposition. A basic form of the theorem is as
follows.

THEOREM D.18 Lindeberg–Levy Central Limit Theorem
(Univariate)

If x1, . . . , xn are a random sample from a probability distribution with finite
mean μ and finite variance σ 2 and x̄n = (1/n)

∑n
i=1 xi , then

√
n( x̄n − μ)

d−→ N[0, σ 2],

A proof appears in Rao (1973, p. 127).

The result is quite remarkable as it holds regardless of the form of the parent distribution. For
a striking example, return to Figure C.2. The distribution from which the data were drawn in that
figure does not even remotely resemble a normal distribution. In samples of only four observations
the force of the central limit theorem is clearly visible in the sampling distribution of the means.
The sampling experiment Example D.6 shows the effect in a systematic demonstration of the
result.

The Lindeberg–Levy theorem is one of several forms of this extremely powerful result. For
our purposes, an important extension allows us to relax the assumption of equal variances. The
Lindeberg–Feller form of the central limit theorem is the centerpiece of most of our analysis in
econometrics.

THEOREM D.19 Lindeberg–Feller Central Limit Theorem
(with Unequal Variances)

Suppose that {xi }, i = 1, . . . , n, is a sequence of independent random variables with finite
means μi and finite positive variances σ 2

i . Let

μ̄n = 1
n

(μ1 + μ2 + · · · + μn), and σ̄ 2
n = 1

n

(
σ 2

1 + σ 2
2 + · · · , σ 2

n

)
.

If no single term dominates this average variance, which we could state as limn→∞ max(σi )/

(nσ̄n) = 0, and if the average variance converges to a finite constant, σ̄ 2 = limn→∞ σ̄ 2
n ,

then
√

n(x̄n − μ̄n)
d−→ N[0, σ̄ 2].
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FIGURE D.2 The Exponential Distribution.

In practical terms, the theorem states that sums of random variables, regardless of their form,
will tend to be normally distributed. The result is yet more remarkable in that it does not require
the variables in the sum to come from the same underlying distribution. It requires, essentially, only
that the mean be a mixture of many random variables, none of which is large compared with their
sum. Because nearly all the estimators we construct in econometrics fall under the purview of the
central limit theorem, it is obviously an important result.

Example D.6 The Lindeberg–Levy Central Limit Theorem
We’ll use a sampling experiment to demonstrate the operation of the central limit theorem.
Consider random sampling from the exponential distribution with mean 1.5—this is the setting
used in Example C.4. The density is shown in Figure D.2.

We’ve drawn 1,000 samples of 3, 6, and 20 observations from this population and com-
puted the sample means for each. For each mean, we then computed zin = √

n( x̄in − μ) ,
where i = 1, . . . , 1,000 and n is 3, 6 or 20. The three rows of figures in Figure D.3 show
histograms of the observed samples of sample means and kernel density estimates of the
underlying distributions for the three samples of transformed means.

Proof of the Lindeberg–Feller theorem requires some quite intricate mathematics [see, e.g.,
Loeve (1977)] that are well beyond the scope of our work here. We do note an important consid-
eration in this theorem. The result rests on a condition known as the Lindeberg condition. The
sample mean computed in the theorem is a mixture of random variables from possibly different
distributions. The Lindeberg condition, in words, states that the contribution of the tail areas
of these underlying distributions to the variance of the sum must be negligible in the limit. The
condition formalizes the assumption in Theorem D.19 that the average variance be positive and
not be dominated by any single term. [For an intuitively crafted mathematical discussion of this
condition, see White (2001, pp. 117–118).] The condition is essentially impossible to verify in
practice, so it is useful to have a simpler version of the theorem that encompasses it.
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THEOREM D.20 Liapounov Central Limit Theorem
Suppose that {xi } is a sequence of independent random variables with finite means μi and
finite positive variances σ 2

i such that E[|xi −μi |2+δ] is finite for some δ > 0. If σ̄n is positive
and finite for all n sufficiently large, then

√
n( x̄n − μ̄n)/σ̄n

d−→ N[0, 1].

This version of the central limit theorem requires only that moments slightly larger than two be
finite.

Note the distinction between the laws of large numbers in Theorems D.5 and D.6 and the
central limit theorems. Neither asserts that sample means tend to normality. Sample means (i.e.,
the distributions of them) converge to spikes at the true mean. It is the transformation of the
mean,

√
n( x̄n −μ)/σ, that converges to standard normality. To see this at work, if you have access

to the necessary software, you might try reproducing Example D.6 using the raw means, x̄in. What
do you expect to observe?

For later purposes, we will require multivariate versions of these theorems. Proofs of the
following may be found, for example, in Greenberg and Webster (1983) or Rao (1973) and
references cited there.

THEOREM D.18A Multivariate Lindeberg–Levy Central
Limit Theorem

If x1, . . . , xn are a random sample from a multivariate distribution with finite mean vector
μ and finite positive definite covariance matrix Q, then

√
n( x̄n − μ)

d−→ N[0, Q],

where

x̄n = 1
n

n∑
i=1

xi .

To get from D.18 to D.18A (and D.19 to D.19A) we need to add a step. Theorem D.18
applies to the individual elements of the vector. A vector has a multivariate normal distri-
bution if the individual elements are normally distributed and if every linear combination
is normally distributed. We can use Theorem D.18 (D.19) for the individual terms and
Theorem D.17 to establish that linear combinations behave likewise. This establishes the
extensions.

The extension of the Lindeberg–Feller theorem to unequal covariance matrices requires
some intricate mathematics. The following is an informal statement of the relevant conditions.
Further discussion and references appear in Fomby, Hill, and Johnson (1984) and Greenberg and
Webster (1983).
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THEOREM D.19A Multivariate Lindeberg–Feller Central
Limit Theorem

Suppose that x1, . . . , xn are a sample of random vectors such that E[xi ] = μi ,

Var[xi ] = Qi , and all mixed third moments of the multivariate distribution are finite.
Let

μ̄n = 1
n

n∑
i=1

μi ,

Q̄n = 1
n

n∑
i=1

Qi .

We assume that

lim
n→∞

Q̄n = Q,

where Q is a finite, positive definite matrix, and that for every i ,

lim
n→∞

(nQ̄n)
−1Qi = lim

n→∞

(
n∑

i=1

Qi

)−1

Qi = 0.

We allow the means of the random vectors to differ, although in the cases that we will
analyze, they will generally be identical. The second assumption states that individual
components of the sum must be finite and diminish in significance. There is also an im-
plicit assumption that the sum of matrices is nonsingular. Because the limiting matrix is
nonsingular, the assumption must hold for large enough n, which is all that concerns us
here. With these in place, the result is

√
n( x̄n − μ̄n)

d−→ N[0, Q].

D.2.7 THE DELTA METHOD

At several points in Appendix C, we used a linear Taylor series approximation to analyze the
distribution and moments of a random variable. We are now able to justify this usage. We complete
the development of Theorem D.12 (probability limit of a function of a random variable), Theorem
D.16 (2) (limiting distribution of a function of a random variable), and the central limit theorems,
with a useful result that is known as the delta method. For a single random variable (sample mean
or otherwise), we have the following theorem.

THEOREM D.21 Limiting Normal Distribution of a Function
If

√
n(zn − μ)

d−→ N[0, σ 2] and if g(zn) is a continuous and continuously differentiable
function with g′(μ) not equal to zero and not involving n, then

√
n[g(zn) − g(μ)]

d−→ N[0, {g′(μ)}2σ 2]. (D-18)
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Notice that the mean and variance of the limiting distribution are the mean and variance of
the linear Taylor series approximation:

g(zn) � g(μ) + g′(μ)(zn − μ).

The multivariate version of this theorem will be used at many points in the text.

THEOREM D.21A Limiting Normal Distribution of a Set
of Functions

If zn is a K × 1 sequence of vector-valued random variables such that
√

n(zn − μ)
d−→

N[0, �] and if c(zn) is a set of J continuous and continuously differentiable functions of
zn with C(μ) not equal to zero, not involving n, then

√
n[c(zn) − c(μ)]

d−→ N[0, C(μ)�C(μ)′], (D-19)

where C(μ) is the J × K matrix ∂c(μ)/∂μ′. The jth row of C(μ) is the vector of partial
derivatives of the jth function with respect to μ′.

D.3 ASYMPTOTIC DISTRIBUTIONS

The theory of limiting distributions is only a means to an end. We are interested in the behavior of
the estimators themselves. The limiting distributions obtained through the central limit theorem
all involve unknown parameters, generally the ones we are trying to estimate. Moreover, our
samples are always finite. Thus, we depart from the limiting distributions to derive the asymptotic
distributions of the estimators.

DEFINITION D.12 Asymptotic Distribution
An asymptotic distribution is a distribution that is used to approximate the true finite sample
distribution of a random variable.5

By far the most common means of formulating an asymptotic distribution (at least by econo-
metricians) is to construct it from the known limiting distribution of a function of the random
variable. If

√
n[(x̄n − μ)/σ ]

d−→ N[0, 1],

5We depart somewhat from some other treatments [e.g., White (2001), Hayashi (2000, p. 90)] at this point,
because they make no distinction between an asymptotic distribution and the limiting distribution, although
the treatments are largely along the lines discussed here. In the interest of maintaining consistency of the
discussion, we prefer to retain the sharp distinction and derive the asymptotic distribution of an estimator, t
by first obtaining the limiting distribution of

√
n(t − θ). By our construction, the limiting distribution of t is

degenerate, whereas the asymptotic distribution of
√

n(t − θ) is not useful.
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FIGURE D.4 True Versus Asymptotic Distribution.

then approximately, or asymptotically, x̄n ∼ N[μ, σ 2/n], which we write as

x̄
a∼ N[μ, σ 2/n].

The statement “x̄n is asymptotically normally distributed with mean μ and variance σ 2/n” says
only that this normal distribution provides an approximation to the true distribution, not that the
true distribution is exactly normal.

Example D.7 Asymptotic Distribution of the Mean of an
Exponential Sample

In sampling from an exponential distribution with parameter θ , the exact distribution of x̄n
is that of θ/(2n) times a chi-squared variable with 2n degrees of freedom. The asymptotic
distribution is N[θ , θ2/n]. The exact and asymptotic distributions are shown in Figure D.4 for
the case of θ = 1 and n = 16.

Extending the definition, suppose that θ̂n is an estimator of the parameter vector θ . The
asymptotic distribution of the vector θ̂n is obtained from the limiting distribution:

√
n(θ̂n − θ)

d−→ N[0, V] (D-20)

implies that

θ̂n
a∼ N

[
θ ,

1
n

V

]
. (D-21)

This notation is read “θ̂n is asymptotically normally distributed, with mean vector θ and covariance
matrix (1/n)V.” The covariance matrix of the asymptotic distribution is the asymptotic covariance
matrix and is denoted

Asy. Var[θ̂n] = 1
n

V.
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Note, once again, the logic used to reach the result; (D-20) holds exactly as n → ∞. We assume
that it holds approximately for finite n, which leads to (D-21).

DEFINITION D.13 Asymptotic Normality and Asymptotic
Efficiency

An estimator θ̂n is asymptotically normal if (D-20) holds. The estimator is asymptotically ef-
ficient if the covariance matrix of any other consistent, asymptotically normally distributed
estimator exceeds (1/n)V by a nonnegative definite matrix.

For most estimation problems, these are the criteria used to choose an estimator.

Example D.8 Asymptotic Inefficiency of the Median in
Normal Sampling

In sampling from a normal distribution with mean μ and variance σ 2, both the mean x̄n and
the median Mn of the sample are consistent estimators of μ. The limiting distributions of both
estimators are spikes at μ, so they can only be compared on the basis of their asymptotic
properties. The necessary results are

x̄n
a∼ N[μ, σ 2/n], and Mn

a∼ N[μ, (π/2)σ 2/n]. (D-22)

Therefore, the mean is more efficient by a factor of π/2. (But, see Example 15.7 for a finite
sample result.)

D.3.1 ASYMPTOTIC DISTRIBUTION OF A NONLINEAR FUNCTION

Theorems D.12 and D.14 for functions of a random variable have counterparts in asymptotic
distributions.

THEOREM D.22 Asymptotic Distribution of a Nonlinear Function
If

√
n(θ̂n−θ)

d−→ N[0, σ 2] and if g(θ) is a continuous and continuously differentiable func-
tion with g′(θ) not equal to zero and not involving n, then g(θ̂n)

a∼ N[g(θ), (1/n){g′(θ)}2σ 2].
If θ̂n is a vector of parameter estimators such that θ̂n

a∼ N[θ, (1/n)V] and if c(θ) is a set of
J continuous functions not involving n, then c(θ̂n)

a∼ N[c(θ), (1/n)C(θ)VC(θ)′], where
C(θ) = ∂c(θ)/∂θ ′.

Example D.9 Asymptotic Distribution of a Function of Two Estimators
Suppose that bn and tn are estimators of parameters β and θ such that

[
bn
tn

]
a∼ N

[(
β
θ

)
,

(
σββ σβθ

σθβ σθθ

)]
.

Find the asymptotic distribution of cn = bn/(1−tn) . Let γ = β/(1−θ ) . By the Slutsky theorem,
cn is consistent for γ . We shall require

∂γ

∂β
= 1

1 − θ
= γβ ,

∂γ

∂θ
= β

(1 − θ ) 2
= γθ .
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Let � be the 2 × 2 asymptotic covariance matrix given previously. Then the asymptotic
variance of cn is

Asy. Var[cn] = (γβ γθ )�

(
γβ

γθ

)
= γ 2

β σββ + γ 2
θ σθθ + 2γβ γθσβθ ,

which is the variance of the linear Taylor series approximation:

γ̂n � γ + γβ (bn − β) + γθ ( tn − θ ) .

D.3.2 ASYMPTOTIC EXPECTATIONS

The asymptotic mean and variance of a random variable are usually the mean and variance of
the asymptotic distribution. Thus, for an estimator with the limiting distribution defined in

√
n(θ̂n − θ)

d−→ N[0, V],

the asymptotic expectation is θ and the asymptotic variance is (1/n)V. This statement implies,
among other things, that the estimator is “asymptotically unbiased.”

At the risk of clouding the issue a bit, it is necessary to reconsider one aspect of the previous
description. We have deliberately avoided the use of consistency even though, in most instances,
that is what we have in mind. The description thus far might suggest that consistency and asymp-
totic unbiasedness are the same. Unfortunately (because it is a source of some confusion), they are
not. They are if the estimator is consistent and asymptotically normally distributed, or CAN. They
may differ in other settings, however. There are at least three possible definitions of asymptotic
unbiasedness:

1. The mean of the limiting distribution of
√

n(θ̂n − θ) is 0.
2. limn→∞ E[θ̂n] = θ . (D-23)
3. plim θn = θ .

In most cases encountered in practice, the estimator in hand will have all three properties, so
there is no ambiguity. It is not difficult to construct cases in which the left-hand sides of all
three definitions are different, however.6 There is no general agreement among authors as to the
precise meaning of asymptotic unbiasedness, perhaps because the term is misleading at the outset;
asymptotic refers to an approximation, whereas unbiasedness is an exact result.7 Nonetheless, the
majority view seems to be that (2) is the proper definition of asymptotic unbiasedness.8 Note,
though, that this definition relies on quantities that are generally unknown and that may not exist.

A similar problem arises in the definition of the asymptotic variance of an estimator. One
common definition is9

Asy. Var[θ̂n] = 1
n

lim
n→∞

E
[{√

n
(
θ̂n − lim

n→∞
E [θ̂n]

)}2]
. (D-24)

6See, for example, Maddala (1977a, p. 150).
7See, for example, Theil (1971, p. 377).
8Many studies of estimators analyze the “asymptotic bias” of, say, θ̂n as an estimator of a parameter θ . In
most cases, the quantity of interest is actually plim [θ̂n − θ ]. See, for example, Greene (1980b) and another
example in Johnston (1984, p. 312).
9Kmenta (1986, p.165).
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This result is a leading term approximation, and it will be sufficient for nearly all applications.
Note, however, that like definition 2 of asymptotic unbiasedness, it relies on unknown and possibly
nonexistent quantities.

Example D.10 Asymptotic Moments of the Sample Variance
The exact expected value and variance of the variance estimator

m2 = 1
n

n∑
i =1

( xi − x̄ ) 2 (D-25)

are

E [m2] = (n − 1)σ 2

n
, (D-26)

and

Var [m2] = μ4 − σ 4

n
− 2(μ4 − 2σ 4)

n2
+ μ4 − 3σ 4

n3
, (D-27)

where μ4 = E [( x −μ) 4]. [See Goldberger (1964, pp. 97–99).] The leading term approximation
would be

Asy. Var [m2] = 1
n

(μ4 − σ 4) .

D.4 SEQUENCES AND THE ORDER
OF A SEQUENCE

This section has been concerned with sequences of constants, denoted, for example, cn, and
random variables, such as xn, that are indexed by a sample size, n. An important characteristic of
a sequence is the rate at which it converges (or diverges). For example, as we have seen, the mean
of a random sample of n observations from a distribution with finite mean, μ, and finite variance,
σ 2, is itself a random variable with variance γ 2

n = σ 2/n. We see that as long as σ 2 is a finite
constant, γ 2

n is a sequence of constants that converges to zero. Another example is the random
variable x(1),n, the minimum value in a random sample of n observations from the exponential
distribution with mean 1/θ defined in Example C.4. It turns out that x(1),n has variance 1/(nθ)2.
Clearly, this variance also converges to zero, but, intuition suggests, faster than σ 2/n does. On
the other hand, the sum of the integers from one to n, Sn = n(n + 1)/2, obviously diverges as
n → ∞, albeit faster (one might expect) than the log of the likelihood function for the exponential
distribution in Example C.6, which is ln L(θ) = n(ln θ − θ x̄n). As a final example, consider the
downward bias of the maximum likelihood estimator of the variance of the normal distribution,
cn = (n − 1)/n, which is a constant that converges to one. (See Example C.5.)

We will define the rate at which a sequence converges or diverges in terms of the order of
the sequence.

DEFINITION D.14 Order nδ

A sequence cn is of order nδ , denoted O(nδ), if and only if plim(1/nδ)cn is a finite nonzero
constant.
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DEFINITION D.15 Order less than nδ

A sequence cn, is of order less than nδ , denoted o(nδ), if and only if plim(1/nδ)cn equals
zero.

Thus, in our examples, γ 2
n is O(n−1), Var[x(1),n] is O(n−2) and o(n−1), Sn is O(n2)(δ equals +2 in

this case), ln L(θ) is O(n)(δ equals +1), and cn is O(1)(δ = 0). Important particular cases that we
will encounter repeatedly in our work are sequences for which δ = 1 or −1.

The notion of order of a sequence is often of interest in econometrics in the context of the
variance of an estimator. Thus, we see in Section D.3 that an important element of our strategy for
forming an asymptotic distribution is that the variance of the limiting distribution of

√
n(x̄n−μ)/σ

is O(1). In Example D.10 the variance of m2 is the sum of three terms that are O(n−1), O(n−2),
and O(n−3). The sum is O(n−1), because n Var[m2] converges to μ4 − σ 4, the numerator of the
first, or leading term, whereas the second and third terms converge to zero. This term is also the
dominant term of the sequence. Finally, consider the two divergent examples in the preceding list.
Sn is simply a deterministic function of n that explodes. However, ln L(θ) = n ln θ − θ�i xi is the
sum of a constant that is O(n) and a random variable with variance equal to n/θ . The random
variable “diverges” in the sense that its variance grows without bound as n increases.

APPENDIX E

Q
COMPUTATION AND

OPTIMIZATION

E.1 INTRODUCTION

The computation of empirical estimates by econometricians involves using digital computers
and software written either by the researchers themselves or by others.1 It is also a surprisingly
balanced mix of art and science. It is important for software users to be aware of how results
are obtained, not only to understand routine computations, but also to be able to explain the
occasional strange and contradictory results that do arise. This appendix will describe some of the
basic elements of computing and a number of tools that are used by econometricians.2 Section E.2

1It is one of the interesting aspects of the development of econometric methodology that the adoption of
certain classes of techniques has proceeded in discrete jumps with the development of software. Noteworthy
examples include the appearance, both around 1970, of G. K. Joreskog’s LISREL [Joreskog and Sorbom
(1981)] program, which spawned a still-growing industry in linear structural modeling, and TSP [Hall (1982)],
which was among the first computer programs to accept symbolic representations of econometric models and
which provided a significant advance in econometric practice with its LSQ procedure for systems of equations.
An extensive survey of the evolution of econometric software is given in Renfro (2007).
2This discussion is not intended to teach the reader how to write computer programs. For those who expect
to do so, there are whole libraries of useful sources. Three very useful works are Kennedy and Gentle (1980),
Abramovitz and Stegun (1971), and especially Press et al. (1986). The third of these provides a wealth of
expertly written programs and a large amount of information about how to do computation efficiently and
accurately. A recent survey of many areas of computation is Judd (1998).
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then describes some techniques for computing certain integrals and derivatives that are recurrent
in econometric applications. Section E.3 presents methods of optimization of functions. Some
examples are given in Section E.4.

E.2 COMPUTATION IN ECONOMETRICS

This section will discuss some methods of computing integrals that appear frequently in econo-
metrics.

E.2.1 COMPUTING INTEGRALS

One advantage of computers is their ability rapidly to compute approximations to complex func-
tions such as logs and exponents. The basic functions, such as these, trigonometric functions, and
so forth, are standard parts of the libraries of programs that accompany all scientific computing
installations.3 But one of the very common applications that often requires some high-level cre-
ativity by econometricians is the evaluation of integrals that do not have simple closed forms and
that do not typically exist in “system libraries.” We will consider several of these in this section.
We will not go into detail on the nuts and bolts of how to compute integrals with a computer;
rather, we will turn directly to the most common applications in econometrics.

E.2.2 THE STANDARD NORMAL CUMULATIVE
DISTRIBUTION FUNCTION

The standard normal cumulative distribution function (cdf) is ubiquitous in econometric models.
Yet this most homely of applications must be computed by approximation. There are a number
of ways to do so.4 Recall that what we desire is

�(x) =
∫ x

−∞
φ(t) dt, where φ(t) = 1√

2π
e−t2/2.

One way to proceed is to use a Taylor series:

�(x) ≈
M∑

i=0

1
i!

di�(x0)

dxi
0

(x − x0)
i .

The normal cdf has some advantages for this approach. First, the derivatives are simple and not
integrals. Second, the function is analytic; as M −→ ∞, the approximation converges to the true
value. Third, the derivatives have a simple form; they are the Hermite polynomials and they can
be computed by a simple recursion. The 0th term in the preceding expansion is �(x) evaluated
at the expansion point. The first derivative of the cdf is the pdf, so the terms from 2 onward are
the derivatives of φ(x), once again evaluated at x0. The derivatives of the standard normal pdf
obey the recursion

φi/φ(x) = −xφi−1/φ(x) − (i − 1)φi−2/φ(x),

where φi is diφ(x)/dxi . The zero and one terms in the sequence are one and −x. The next term
is x2 − 1, followed by 3x − x3 and x4 − 6x2 + 3, and so on. The approximation can be made

3Of course, at some level, these must have been programmed as approximations by someone.
4Many system libraries provide a related function, the error function, erf(x) = (2/

√
π)

∫ x

0
e−t2

dt. If this is
available, then the normal cdf can be obtained from �(x) = 1

2 + 1
2 erf(x/

√
2), x ≥ 0 and �(x) = 1−�(−x), x ≤ 0.
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FIGURE E.1 Approximation to Normal cdf.

more accurate by adding terms. Consider using a fifth-order Taylor series approximation around
the point x = 0, where �(0) = 0.5 and φ(0) = 0.3989423. Evaluating the derivatives at zero and
assembling the terms produces the approximation

�(x) ≈ 1
2 + 0.3989423[x − x3/6 + x5/40].

[Some of the terms (every other one, in fact) will conveniently drop out.] Figure E.1 shows the
actual values (F) and approximate values (FA) over the range −2 to 2. The figure shows two
important points. First, the approximation is remarkably good over most of the range. Second, as
is usually true for Taylor series approximations, the quality of the approximation deteriorates as
one gets far from the expansion point.

Unfortunately, it is the tail areas of the standard normal distribution that are usually of
interest, so the preceding is likely to be problematic. An alternative approach that is used much
more often is a polynomial approximation reported by Abramovitz and Stegun (1971, p. 932):

�(−|x|) = φ(x)

5∑
i=1

ai t i + ε(x), where t = 1/[1 + a0|x|].

(The complement is taken if x is positive.) The error of approximation is less than ±7.5 × 10−8

for all x. (Note that the error exceeds the function value at |x| > 5.7, so this is the operational
limit of this approximation.)

E.2.3 THE GAMMA AND RELATED FUNCTIONS

The standard normal cdf is probably the most common application of numerical integration of a
function in econometrics. Another very common application is the class of gamma functions. For
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positive constant P, the gamma function is

(P) =
∫ ∞

0

t P−1e−t dt.

The gamma function obeys the recursion (P) = (P − 1)(P − 1), so for integer values of
P, (P) = (P−1)! This result suggests that the gamma function can be viewed as a generalization
of the factorial function for noninteger values. Another convenient value is ( 1

2 ) = √
π . By

making a change of variable, it can be shown that for positive constants a, c, and P,
∫ ∞

0

t P−1e−atc
dt =

∫ ∞

0

t−(P+1)e−a/tc
dt =

(
1
c

)
a−P/c

(
P
c

)
. (E-1)

As a generalization of the factorial function, the gamma function will usually overflow for
the sorts of values of P that normally appear in applications. The log of the function should
normally be used instead. The function ln (P) can be approximated remarkably accurately with
only a handful of terms and is very easy to program. A number of approximations appear in the
literature; they are generally modifications of Stirling’s approximation to the factorial function
P! ≈ (2π P)1/2 PPe−P, so

ln (P) ≈ (P − 0.5)ln P − P + 0.5 ln(2π) + C + ε(P),

where C is the correction term [see, e.g., Abramovitz and Stegun (1971, p. 257), Press et al. (1986,
p. 157), or Rao (1973, p. 59)] and ε(P) is the approximation error.5

The derivatives of the gamma function are

dr(P)

dPr
=

∫ ∞

0

(ln t)r t P−1e−t dt.

The first two derivatives of ln (P) are denoted �(P) = ′/ and � ′(P) = (′′ − ′2)/2 and
are known as the digamma and trigamma functions.6 The beta function, denoted β(a, b),

β(a, b) =
∫ 1

0

ta−1(1 − t)b−1 dt = (a)(b)

(a + b)
,

is related.

E.2.4 APPROXIMATING INTEGRALS BY QUADRATURE

The digamma and trigamma functions, and the gamma function for noninteger values of P and
values that are not integers plus 1

2 , do not exist in closed form and must be approximated. Most
other applications will also involve integrals for which no simple computing function exists. The
simplest approach to approximating

F(x) =
∫ U(x)

L(x)

f (t) dt

5For example, one widely used formula is C = z−1/12 − z−3/360 − z−5/1260 + z−7/1680 − q, where z = P
and q = 0 if P > 18, or z = P + J and q = ln[P(P + 1)(P + 2) · · · (P + J − 1)], where J = 18 − INT(P), if
not. Note, in the approximation, we write (P) = (P!)/P + a correction.
6Tables of specific values for the gamma, digamma, and trigamma functions appear in Abramovitz and Stegun
(1971). Most contemporary econometric programs have built-in functions for these common integrals, so the
tables are not generally needed.
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is likely to be a variant of Simpson’s rule, or the trapezoid rule. For example, one approximation
[see Press et al. (1986, p. 108)] is

F(x) ≈ �
[

1
3 f1 + 4

3 f2 + 2
3 f3 + 4

3 f4 + · · · + 2
3 fN−2 + 4

3 fN−1 + 1
3 fN

]
,

where f j is the function evaluated at N equally spaced points in [L, U] including the endpoints
and � = (L− U)/(N − 1). There are a number of problems with this method, most notably that
it is difficult to obtain satisfactory accuracy with a moderate number of points.

Gaussian quadrature is a popular method of computing integrals. The general approach is
to use an approximation of the form

∫ U

L

W(x) f (x) dx ≈
M∑

j=1

w j f (a j ),

where W(x) is viewed as a “weighting” function for integrating f (x), w j is the quadrature weight,
and a j is the quadrature abscissa. Different weights and abscissas have been derived for several
weighting functions. Two weighting functions common in econometrics are

W(x) = xce−x, x ∈ [0, ∞),

for which the computation is called Gauss–Laguerre quadrature, and

W(x) = e−x2
, x ∈ (−∞, ∞),

for which the computation is called Gauss–Hermite quadrature. The theory for deriving weights
and abscissas is given in Press et al. (1986, pp. 121–125). Tables of weights and abscissas for many
values of M are given by Abramovitz and Stegun (1971). Applications of the technique appear
in Chapters 14 and 17.

E.3 OPTIMIZATION

Nonlinear optimization (e.g., maximizing log-likelihood functions) is an intriguing practical prob-
lem. Theory provides few hard and fast rules, and there are relatively few cases in which it is
obvious how to proceed. This section introduces some of the terminology and underlying theory
of nonlinear optimization.7 We begin with a general discussion on how to search for a solution
to a nonlinear optimization problem and describe some specific commonly used methods. We
then consider some practical problems that arise in optimization. An example is given in the final
section.

Consider maximizing the quadratic function

F(θ) = a + b′θ − 1
2 θ ′Cθ ,

where C is a positive definite matrix. The first-order condition for a maximum is

∂ F(θ)

∂θ
= b − Cθ = 0. (E-2)

This set of linear equations has the unique solution

θ = C−1b. (E-3)

7There are numerous excellent references that offer a more complete exposition. Among these are Quandt
(1983), Bazaraa and Shetty (1979), Fletcher (1980), and Judd (1998).
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This is a linear optimization problem. Note that it has a closed-form solution; for any a, b, and C,
the solution can be computed directly.8 In the more typical situation,

∂ F(θ)

∂θ
= 0 (E-4)

is a set of nonlinear equations that cannot be solved explicitly for θ .9 The techniques considered
in this section provide systematic means of searching for a solution.

We now consider the general problem of maximizing a function of several variables:

maximizeθ F(θ), (E-5)

where F(θ) may be a log-likelihood or some other function. Minimization of F(θ) is handled by
maximizing −F(θ). Two special cases are

F(θ) =
n∑

i=1

fi (θ), (E-6)

which is typical for maximum likelihood problems, and the least squares problem,10

fi (θ) = −(yi − f (xi , θ))2. (E-7)

We treated the nonlinear least squares problem in detail in Chapter 7. An obvious way to search
for the θ that maximizes F(θ) is by trial and error. If θ has only a single element and it is known
approximately where the optimum will be found, then a grid search will be a feasible strategy. An
example is a common time-series problem in which a one-dimensional search for a correlation
coefficient is made in the interval (−1, 1). The grid search can proceed in the obvious fashion—
that is, . . . , −0.1, 0, 0.1, 0.2, . . . , then θ̂max−0.1 to θ̂max+0.1 in increments of 0.01, and so on—until
the desired precision is achieved.11 If θ contains more than one parameter, then a grid search
is likely to be extremely costly, particularly if little is known about the parameter vector at the
outset. Nonetheless, relatively efficient methods have been devised. Quandt (1983) and Fletcher
(1980) contain further details.

There are also systematic, derivative-free methods of searching for a function optimum that
resemble in some respects the algorithms that we will examine in the next section. The downhill
simplex (and other simplex) methods12 have been found to be very fast and effective for some
problems. A recent entry in the econometrics literature is the method of simulated annealing.13

These derivative-free methods, particularly the latter, are often very effective in problems with
many variables in the objective function, but they usually require far more function evaluations
than the methods based on derivatives that are considered below. Because the problems typically
analyzed in econometrics involve relatively few parameters but often quite complex functions
involving large numbers of terms in a summation, on balance, the gradient methods are usually
going to be preferable.14

8Notice that the constant a is irrelevant to the solution. Many maximum likelihood problems are presented
with the preface “neglecting an irrelevant constant.” For example, the log-likelihood for the normal linear
regression model contains a term—(n/2) ln(2π)—that can be discarded.
9See, for example, the normal equations for the nonlinear least squares estimators of Chapter 7.
10Least squares is, of course, a minimization problem. The negative of the criterion is used to maintain
consistency with the general formulation.
11There are more efficient methods of carrying out a one-dimensional search, for example, the golden section
method. See Press et al. (1986, Chap. 10).
12See Nelder and Mead (1965) and Press et al. (1986).
13See Goffe, Ferrier, and Rodgers (1994) and Press et al. (1986, pp. 326–334).
14Goffe, Ferrier, and Rodgers (1994) did find that the method of simulated annealing was quite adept at
finding the best among multiple solutions. This problem is common for derivative-based methods, because
they usually have no method of distinguishing between a local optimum and a global one.
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E.3.1 ALGORITHMS

A more effective means of solving most nonlinear maximization problems is by an iterative
algorithm:

Beginning from initial value θ 0, at entry to iteration t, if θ t is not the optimal value for
θ , compute direction vector 
t , step size λt , then

θ t+1 = θ t + λt
t . (E-8)

Figure E.2 illustrates the structure of an iteration for a hypothetical function of two variables.
The direction vector 
t is shown in the figure with θ t . The dashed line is the set of points θ t +
λt
t . Different values of λt lead to different contours; for this θ t and 
t , the best value of λt is
about 0.5.

Notice in Figure E.2 that for a given direction vector 
t and current parameter vector θ t ,
a secondary optimization is required to find the best λt . Translating from Figure E.2, we obtain
the form of this problem as shown in Figure E.3. This subsidiary search is called a line search, as
we search along the line θ t + λt
t for the optimal value of F(.). The formal solution to the line
search problem would be the λt that satisfies

∂ F(θ t + λt
t )

∂λt
= g(θ t + λt
t )

′
t = 0, (E-9)

FIGURE E.2 Iteration.
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FIGURE E.3 Line Search.

where g is the vector of partial derivatives of F(.) evaluated at θ t +λt
t . In general, this problem
will also be a nonlinear one. In most cases, adding a formal search for λt will be too expensive,
as well as unnecessary. Some approximate or ad hoc method will usually be chosen. It is worth
emphasizing that finding the λt that maximizes F(θ t +λt
t ) at a given iteration does not generally
lead to the overall solution in that iteration. This situation is clear in Figure E.3, where the optimal
value of λt leads to F(.) = 2.0, at which point we reenter the iteration.

E.3.2 COMPUTING DERIVATIVES

For certain functions, the programming of derivatives may be quite difficult. Numeric approx-
imations can be used, although it should be borne in mind that analytic derivatives obtained
by formally differentiating the functions involved are to be preferred. First derivatives can be
approximated by using

∂ F(θ)

∂θi
≈ F(· · · θi + ε · · ·) − F(· · · θi − ε · · ·)

2ε
.

The choice of ε is a remaining problem. Extensive discussion may be found in Quandt (1983).
There are three drawbacks to this means of computing derivatives compared with using

the analytic derivatives. A possible major consideration is that it may substantially increase the
amount of computation needed to obtain a function and its gradient. In particular, K +1 function
evaluations (the criterion and K derivatives) are replaced with 2K + 1 functions. The latter may
be more burdensome than the former, depending on the complexity of the partial derivatives
compared with the function itself. The comparison will depend on the application. But in most
settings, careful programming that avoids superfluous or redundant calculation can make the
advantage of the analytic derivatives substantial. Second, the choice of ε can be problematic. If
it is chosen too large, then the approximation will be inaccurate. If it is chosen too small, then
there may be insufficient variation in the function to produce a good estimate of the derivative.
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A compromise that is likely to be effective is to compute εi separately for each parameter, as in

εi = Max[α|θi |, γ ]

[see Goldfeld and Quandt (1971)]. The values α and γ should be relatively small, such as 10−5.
Third, although numeric derivatives computed in this fashion are likely to be reasonably accurate,
in a sum of a large number of terms, say, several thousand, enough approximation error can accu-
mulate to cause the numerical derivatives to differ significantly from their analytic counterparts.
Second derivatives can also be computed numerically. In addition to the preceding problems,
however, it is generally not possible to ensure negative definiteness of a Hessian computed in
this manner. Unless the choice of ε is made extremely carefully, an indefinite matrix is a possi-
bility. In general, the use of numeric derivatives should be avoided if the analytic derivatives are
available.

E.3.3 GRADIENT METHODS

The most commonly used algorithms are gradient methods, in which


t = Wt gt , (E-10)

where Wt is a positive definite matrix and gt is the gradient of F(θ t ):

gt = g(θ t ) = ∂ F(θ t )

∂θ t
. (E-11)

These methods are motivated partly by the following. Consider a linear Taylor series approxima-
tion to F(θ t + λt
t ) around λt = 0:

F(θ t + λt
t ) � F(θ t ) + λt g(θ t )
′
t . (E-12)

Let F(θ t + λt
t ) equal Ft+1. Then,

Ft+1 − Ft � λt g′
t
t .

If 
t = Wt gt , then

Ft+1 − Ft � λt g′
t Wt gt .

If gt is not 0 and λt is small enough, then Ft+1 − Ft must be positive. Thus, if F(θ) is not already
at its maximum, then we can always find a step size such that a gradient-type iteration will lead
to an increase in the function. (Recall that Wt is assumed to be positive definite.)

In the following, we will omit the iteration index t , except where it is necessary to distinguish
one vector from another. The following are some commonly used algorithms.15

Steepest Ascent The simplest algorithm to employ is the steepest ascent method, which uses

W = I so that 
 = g. (E-13)

As its name implies, the direction is the one of greatest increase of F(.). Another virtue is that
the line search has a straightforward solution; at least near the maximum, the optimal λ is

λ = −g′g
g′Hg

, (E-14)

15A more extensive catalog may be found in Judge et al. (1985, Appendix B). Those mentioned here are some
of the more commonly used ones and are chosen primarily because they illustrate many of the important
aspects of nonlinear optimization.
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where

H = ∂2 F(θ)

∂θ ∂θ ′ .

Therefore, the steepest ascent iteration is

θ t+1 = θ t − g′
t gt

g′
t Ht gt

gt . (E-15)

Computation of the second derivatives matrix may be extremely burdensome. Also, if Ht is not
negative definite, which is likely if θ t is far from the maximum, the iteration may diverge. A
systematic line search can bypass this problem. This algorithm usually converges very slowly,
however, so other techniques are usually used.

Newton’s Method The template for most gradient methods in common use is Newton’s
method. The basis for Newton’s method is a linear Taylor series approximation. Expanding the
first-order conditions,

∂ F(θ)

∂θ
= 0,

equation by equation, in a linear Taylor series around an arbitrary θ0 yields

∂ F(θ)

∂θ
� g0 + H0(θ − θ 0) = 0, (E-16)

where the superscript indicates that the term is evaluated at θ0. Solving for θ and then equating
θ to θ t+1 and θ0 to θ t , we obtain the iteration

θ t+1 = θ t − H−1
t g t . (E-17)

Thus, for Newton’s method,

W = −H−1, 
 = −H−1g, λ = 1. (E-18)

Newton’s method will converge very rapidly in many problems. If the function is quadratic, then
this method will reach the optimum in one iteration from any starting point. If the criterion
function is globally concave, as it is in a number of problems that we shall examine in this text,
then it is probably the best algorithm available. This method is very well suited to maximum
likelihood estimation.

Alternatives to Newton’s Method Newton’s method is very effective in some settings, but it
can perform very poorly in others. If the function is not approximately quadratic or if the current
estimate is very far from the maximum, then it can cause wide swings in the estimates and even
fail to converge at all. A number of algorithms have been devised to improve upon Newton’s
method. An obvious one is to include a line search at each iteration rather than use λ = 1. Two
problems remain, however. At points distant from the optimum, the second derivatives matrix
may not be negative definite, and, in any event, the computational burden of computing H may be
excessive.

The quadratic hill-climbing method proposed by Goldfeld, Quandt, and Trotter (1966) deals
directly with the first of these problems. In any iteration, if H is not negative definite, then it is
replaced with

Hα = H − αI, (E-19)
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where α is a positive number chosen large enough to ensure the negative definiteness of Hα .
Another suggestion is that of Greenstadt (1967), which uses, at every iteration,

Hπ = −
n∑

i=1

|πi | ci c′
i , (E-20)

where πi is the ith characteristic root of H and ci is its associated characteristic vector. Other
proposals have been made to ensure the negative definiteness of the required matrix at each
iteration.16

Quasi-Newton Methods: Davidon–Fletcher–Powell A very effective class of algorithms
has been developed that eliminates second derivatives altogether and has excellent convergence
properties, even for ill-behaved problems. These are the quasi-Newton methods, which form

Wt+1 = Wt + Et ,

where Et is a positive definite matrix.17 As long as W0 is positive definite—I is commonly used—
Wt will be positive definite at every iteration. In the Davidon–Fletcher–Powell (DFP) method,
after a sufficient number of iterations, Wt+1 will be an approximation to −H−1. Let

δt = λt
t , and γt = g(θ t+1) − g(θ t ). (E-21)

The DFP variable metric algorithm uses

Wt+1 = Wt + δtδ
′
t

δ′
tγ t

+ Wtγ tγ
′
t Wt

γ ′
t Wtγ t

. (E-22)

Notice that in the DFP algorithm, the change in the first derivative vector is used in W; an estimate
of the inverse of the second derivatives matrix is being accumulated.

The variable metric algorithms are those that update W at each iteration while preserving
its definiteness. For the DFP method, the accumulation of Wt+1 is of the form

Wt+1 = Wt + aa′ + bb′ = Wt + [a b][a b]′.

The two-column matrix [a b] will have rank two; hence, DFP is called a rank two update or
rank two correction. The Broyden–Fletcher–Goldfarb–Shanno (BFGS) method is a rank three
correction that subtracts vdd′ from the DFP update, where v = (γ ′

t Wtγ t ) and

dt =
(

1
δ′

tγ t

)
δt −

(
1

γ ′
t Wtγ t

)
Wtγ t .

There is some evidence that this method is more efficient than DFP. Other methods, such as
Broyden’s method, involve a rank one correction instead. Any method that is of the form

Wt+1 = Wt + QQ′

will preserve the definiteness of W regardless of the number of columns in Q.
The DFP and BFGS algorithms are extremely effective and are among the most widely used

of the gradient methods. An important practical consideration to keep in mind is that although
Wt accumulates an estimate of the negative inverse of the second derivatives matrix for both
algorithms, in maximum likelihood problems it rarely converges to a very good estimate of the
covariance matrix of the estimator and should generally not be used as one.

16See, for example, Goldfeld and Quandt (1971).
17See Fletcher (1980).
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E.3.4 ASPECTS OF MAXIMUM LIKELIHOOD ESTIMATION

Newton’s method is often used for maximum likelihood problems. For solving a maximum like-
lihood problem, the method of scoring replaces H with

H̄ = E[H(θ)], (E-23)

which will be recognized as the asymptotic covariance of the maximum likelihood estimator. There
is some evidence that where it can be used, this method performs better than Newton’s method.
The exact form of the expectation of the Hessian of the log likelihood is rarely known, however.18

Newton’s method, which uses actual instead of expected second derivatives, is generally used
instead.

One-Step Estimation A convenient variant of Newton’s method is the one-step maximum
likelihood estimator. It has been shown that if θ0 is any consistent initial estimator of θ and H∗ is
H, H̄, or any other asymptotically equivalent estimator of Var[g(θ̂MLE)], then

θ1 = θ0 − (H∗)−1g0 (E-24)

is an estimator of θ that has the same asymptotic properties as the maximum likelihood estima-
tor.19 (Note that it is not the maximum likelihood estimator. As such, for example, it should not
be used as the basis for likelihood ratio tests.)

Covariance Matrix Estimation In computing maximum likelihood estimators, a commonly
used method of estimating H simultaneously simplifies the calculation of W and solves the
occasional problem of indefiniteness of the Hessian. The method of Berndt et al. (1974) replaces
W with

Ŵ =
[

n∑
i=1

gi g′
i

]−1

= (G′G)−1, (E-25)

where

gi = ∂ ln f (yi | xi , θ)

∂θ
. (E-26)

Then, G is the n×K matrix with ith row equal to g′
i . Although Ŵ and other suggested estimators of

(−H)−1 are asymptotically equivalent, Ŵ has the additional virtues that it is always nonnegative
definite, and it is only necessary to differentiate the log-likelihood once to compute it.

The Lagrange Multiplier Statistic The use of Ŵ as an estimator of (−H)−1 brings another
intriguing convenience in maximum likelihood estimation. When testing restrictions on parame-
ters estimated by maximum likelihood, one approach is to use the Lagrange multiplier statistic.
We will examine this test at length at various points in this book, so we need only sketch it briefly
here. The logic of the LM test is as follows. The gradient g(θ) of the log-likelihood function equals
0 at the unrestricted maximum likelihood estimators (that is, at least to within the precision of
the computer program in use). If θ̂ r is an MLE that is computed subject to some restrictions on θ ,
then we know that g(θ̂ r ) 
= 0. The LM test is used to test whether, at θ̂ r , gr is significantly different
from 0 or whether the deviation of gr from 0 can be viewed as sampling variation. The covariance
matrix of the gradient of the log-likelihood is −H, so the Wald statistic for testing this hypothesis
is W = g′(−H)−1g. Now, suppose that we use Ŵ to estimate −H−1. Let G be the n × K matrix
with ith row equal to g′

i , and let i denote an n × 1 column of ones. Then the LM statistic can be

18Amemiya (1981) provides a number of examples.
19See, for example, Rao (1973).
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computed as

LM = i′G(G′G)−1G′i.

Because i′i = n,

LM = n[i′G(G′G)−1G′i/n] = nR2
i ,

where R2
i is the uncentered R2 in a regression of a column of ones on the derivatives of the

log-likelihood function.

The Concentrated Log-Likelihood Many problems in maximum likelihood estimation
can be formulated in terms of a partitioning of the parameter vector θ = [θ1, θ2] such that at the
solution to the optimization problem, θ 2,ML, can be written as an explicit function of θ1,ML. When
the solution to the likelihood equation for θ2 produces

θ 2,ML = t(θ1,ML),

then, if it is convenient, we may “concentrate” the log-likelihood function by writing

F∗(θ1, θ2) = F [θ1, t(θ1)] = Fc(θ1).

The unrestricted solution to the problem Maxθ1 Fc(θ1) provides the full solution to the optimiza-
tion problem. Once the optimizing value of θ 1 is obtained, the optimizing value of θ 2 is simply
t(θ̂1,ML). Note that F∗(θ1, θ2) is a subset of the set of values of the log-likelihood function, namely
those values at which the second parameter vector satisfies the first-order conditions.20

E.3.5 OPTIMIZATION WITH CONSTRAINTS

Occasionally, some of or all the parameters of a model are constrained, for example, to be positive
in the case of a variance or to be in a certain range, such as a correlation coefficient. Optimization
subject to constraints is often yet another art form. The elaborate literature on the general
problem provides some guidance—see, for example, Appendix B in Judge et al. (1985)—but
applications still, as often as not, require some creativity on the part of the analyst. In this section,
we will examine a few of the most common forms of constrained optimization as they arise in
econometrics.

Parametric constraints typically come in two forms, which may occur simultaneously in a
problem. Equality constraints can be written c(θ) = 0, where c j (θ) is a continuous and dif-
ferentiable function. Typical applications include linear constraints on slope vectors, such as a
requirement that a set of elasticities in a log-linear model add to one; exclusion restrictions, which
are often cast in the form of interesting hypotheses about whether or not a variable should appear
in a model (i.e., whether a coefficient is zero or not); and equality restrictions, such as the sym-
metry restrictions in a translog model, which require that parameters in two different equations
be equal to each other. Inequality constraints, in general, will be of the form a j ≤ c j (θ) ≤ bj ,
where a j and bj are known constants (either of which may be infinite). Once again, the typical
application in econometrics involves a restriction on a single parameter, such as σ > 0 for a
variance parameter, −1 ≤ ρ ≤ 1 for a correlation coefficient, or β j ≥ 0 for a particular slope
coefficient in a model. We will consider the two cases separately.

In the case of equality constraints, for practical purposes of optimization, there are usually
two strategies available. One can use a Lagrangean multiplier approach. The new optimization
problem is

Maxθ ,λL(θ , λ) = F(θ) + λ′c(θ).

20A formal proof that this is a valid way to proceed is given by Amemiya (1985, pp. 125–127).
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The necessary conditions for an optimum are

∂L(θ , λ)

∂θ
= g(θ) + C(θ)′λ = 0,

∂L(θ , λ)

∂λ
= c(θ) = 0,

where g(θ) is the familiar gradient of F(θ) and C(θ) is a J × K matrix of derivatives with jth row
equal to ∂c j/∂θ ′. The joint solution will provide the constrained optimizer, as well as the Lagrange
multipliers, which are often interesting in their own right. The disadvantage of this approach is
that it increases the dimensionality of the optimization problem. An alternative strategy is to
eliminate some of the parameters by either imposing the constraints directly on the function or
by solving out the constraints. For exclusion restrictions, which are usually of the form θ j = 0, this
step usually means dropping a variable from a model. Other restrictions can often be imposed
just by building them into the model. For example, in a function of θ1, θ2, and θ3, if the restriction
is of the form θ3 = θ1θ2, then θ3 can be eliminated from the model by a direct substitution.

Inequality constraints are more difficult. For the general case, one suggestion is to transform
the constrained problem into an unconstrained one by imposing some sort of penalty function
into the optimization criterion that will cause a parameter vector that violates the constraints, or
nearly does so, to be an unattractive choice. For example, to force a parameter θ j to be nonzero,
one might maximize the augmented function F(θ)−|1/θ j |. This approach is feasible, but it has the
disadvantage that because the penalty is a function of the parameters, different penalty functions
will lead to different solutions of the optimization problem. For the most common problems in
econometrics, a simpler approach will usually suffice. One can often reparameterize a function
so that the new parameter is unconstrained. For example, the “method of squaring” is sometimes
used to force a parameter to be positive. If we require θ j to be positive, then we can define θ j = α2

and substitute α2 for θ j wherever it appears in the model. Then an unconstrained solution for α

is obtained. An alternative reparameterization for a parameter that must be positive that is often
used is θ j = exp(α). To force a parameter to be between zero and one, we can use the function
θ j = 1/[1 + exp(α)]. The range of α is now unrestricted. Experience suggests that a third, less
orthodox approach works very well for many problems. When the constrained optimization is
begun, there is a starting value θ0 that begins the iterations. Presumably, θ 0 obeys the restrictions.
(If not, and none can be found, then the optimization process must be terminated immediately.)
The next iterate, θ 1, is a step away from θ0, by θ1 = θ0 + λ0δ

0. Suppose that θ 1 violates the
constraints. By construction, we know that there is some value θ1

∗ between θ0 and θ1 that does not
violate the constraint, where “between” means only that a shorter step is taken. Therefore, the
next value for the iteration can be θ 1

∗. The logic is true at every iteration, so a way to proceed is to
alter the iteration so that the step length is shortened when necessary when a parameter violates
the constraints.

E.3.6 SOME PRACTICAL CONSIDERATIONS

The reasons for the good performance of many algorithms, including DFP, are unknown. More-
over, different algorithms may perform differently in given settings. Indeed, for some problems,
one algorithm may fail to converge whereas another will succeed in finding a solution without
great difficulty. In view of this, computer programs such as GQOPT,21 Gauss, and MatLab that
offer a menu of different preprogrammed algorithms can be particularly useful. It is sometimes
worth the effort to try more than one algorithm on a given problem.

21Goldfeld and Quandt (1972).
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Step Sizes Except for the steepest ascent case, an optimal line search is likely to be infeasible
or to require more effort than it is worth in view of the potentially large number of function
evaluations required. In most cases, the choice of a step size is likely to be rather ad hoc. But
within limits, the most widely used algorithms appear to be robust to inaccurate line searches.
For example, one method employed by the widely used TSP computer program22 is the method
of squeezing, which tries λ = 1, 1

2 , 1
4 , and so on until an improvement in the function results.

Although this approach is obviously a bit unorthodox, it appears to be quite effective when
used with the Gauss–Newton method for nonlinear least squares problems. (See Chapter 7.) A
somewhat more elaborate rule is suggested by Berndt et al. (1974). Choose an ε between 0 and
1
2 , and then find a λ such that

ε <
F(θ + λ
) − F(θ)

λg′

< 1 − ε. (E-27)

Of course, which value of ε to choose is still open, so the choice of λ remains ad hoc. Moreover,
in neither of these cases is there any optimality to the choice; we merely find a λ that leads to a
function improvement. Other authors have devised relatively efficient means of searching for a
step size without doing the full optimization at each iteration.23

Assessing Convergence Ideally, the iterative procedure should terminate when the gradi-
ent is zero. In practice, this step will not be possible, primarily because of accumulated rounding
error in the computation of the function and its derivatives. Therefore, a number of alternative
convergence criteria are used. Most of them are based on the relative changes in the function
or the parameters. There is considerable variation in those used in different computer programs,
and there are some pitfalls that should be avoided. A critical absolute value for the elements of
the gradient or its norm will be affected by any scaling of the function, such as normalizing it
by the sample size. Similarly, stopping on the basis of small absolute changes in the parameters
can lead to premature convergence when the parameter vector approaches the maximizer. It
is probably best to use several criteria simultaneously, such as the proportional change in both
the function and the parameters. Belsley (1980) discusses a number of possible stopping rules.
One that has proved useful and is immune to the scaling problem is to base convergence on
g′H−1g.

Multiple Solutions It is possible for a function to have several local extrema. It is difficult to
know a priori whether this is true of the one at hand. But if the function is not globally concave,
then it may be a good idea to attempt to maximize it from several starting points to ensure that
the maximum obtained is the global one. Ideally, a starting value near the optimum can facilitate
matters; in some settings, this can be obtained by using a consistent estimate of the parameter
for the starting point. The method of moments, if available, is sometimes a convenient device for
doing so.

No Solution Finally, it should be noted that in a nonlinear setting the iterative algorithm can
break down, even in the absence of constraints, for at least two reasons. The first possibility is
that the problem being solved may be so numerically complex as to defy solution. The second
possibility, which is often neglected, is that the proposed model may simply be inappropriate for
the data. In a linear setting, a low R2 or some other diagnostic test may suggest that the model
and data are mismatched, but as long as the full rank condition is met by the regressor matrix,
a linear regression can always be computed. Nonlinear models are not so forgiving. The failure
of an iterative algorithm to find a maximum of the criterion function may be a warning that the
model is not appropriate for this body of data.

22Hall (1982, p. 147).
23See, for example, Joreskog and Gruvaeus (1970), Powell (1964), Quandt (1983), and Hall (1982).
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E.3.7 THE EM ALGORITHM

The latent class model can be characterized as a missing data model. Consider the mixture model
we used for DocVis in Chapter 14, which we will now generalize to allow more than two classes:

f (yit | xi t , classi = j) = θi t, j (1 − θi t, j )
yit , θi t, j = 1/(1 + λi t, j ), λi t, j = exp(x′

i tβ j ), yit = 0, 1, . . . .

Prob(classi = j | zi ) = exp(z′
iα j )∑ j

j=1 exp(z′
iα j )

, j = 1, 2, . . . , J.

With all parts incorporated, the log-likelihood for this latent class model is

ln LM =
n∑

i=1

ln Li,M

=
n∑

i=1

ln

{
J∑

j=1

exp(z′
iα j )∑J

m=1 exp(z′
iαm)

Ti∏
t=1

(
1

1 + exp(x′
itβ j )

)(1−yit)
(

exp(x′
itβ j )

1 + exp(x′
itβ j )

)yit
}

.

(E-28)

Suppose the actual class memberships were known (i.e., observed). Then, the class probabili-
ties in ln LM would be unnecessary. The appropriate complete data log-likelihood for this case
would be

ln LC =
n∑

i=1

ln Li,C

=
n∑

i=1

ln

{
J∑

j=1

Dij

Ti∏
t=1

(
1

1 + exp(x′
itβ j )

)(1−yit)
(

exp(x′
itβ j )

1 + exp(x′
itβ j )

)yit
}

, (E-29)

where Dij is an observed dummy variable that equals one if individual i is from class j , and zero
otherwise. With this specification, the log-likelihood breaks into J separate log-likelihoods, one
for each (now known) class. The maximum likelihood estimates of β1, . . . , βJ would be obtained
simply by separating the sample into the respective subgroups and estimating the appropriate
model for each group using maximum likelihood. The method we have used to estimate the
parameters of the full model is to replace the Dij variables with their unconditional espectations,
Prob(classi = j |zi ), then maximize the resulting log-likelihood function. This is the essential logic
of the EM (expectation–maximization) algorithm [Dempster et al. (1977)]; however, the method
uses the conditional (posterior) class probabilities instead of the unconditional probabilities. The
iterative steps of the EM algorithm are

(E step) Form the expectation of the missing data log-likelihood, conditional on the pre-
vious parameter estimates and the data in the sample;

(M step) Maximize the expected log-likelihood function. Then either return to the E step
or exit if the estimates have converged.

The EM algorithm can be used in a variety of settings. [See McLachlan and Krishnan (1997).]
It has a particularly appealing form for estimating latent class models. The iterative steps for the
latent class model are as follows:

(E step) Form the conditional (posterior) class probabilities, πij|zi , based on the current
estimates. These are based on the likelihood function.
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(M step) For each class, estimate the class-specific parameters by maximizing a weighted
log-likelihood,

ln LM step, j =
nc∑

i=1

πij ln Li | class = j.

The parameters of the class probability model are also reestimated, as shown
later, when there are variables in zi other than a constant term.

This amounts to a simple weighted estimation. For example, in the latent class linear regression
model, the M step would amount to nothing more than weighted least squares. For nonlinear
models such as the geometric model above, the M step involves maximizing a weighted log-
likelihood function.

For the preceding geometric model, the precise steps are as follows: First, obtain starting
values for β1, . . . , β J , α1, . . . , α J . Recall, α J = 0. Then;

1. Form the contributions to the likelihood function using (E-28),

Li =
J∑

j=1

πij

Ti∏
t=1

f (yit | xi t , β j , classi = j)

=
J∑

j=1

Li | class = j. (E-30)

2. Form the conditional probabilities, wij = Li | class = j∑J
m=1 Li | class = m

. (E-31)

3. For each j , now maximize the weighted log likelihood functions (one at a time),

ln Lj,M(β j ) =
n∑

i=1

wijln
Ti∏

t=1

(
1

1 + exp(x′
i tβ j )

)(1−yit)
(

exp(x′
itβ j )

1 + exp(x′
itβ j )

)yit

(E-32)

4. To update the αj parameters, maximize the following log-likelihood function

ln L(α1, . . . , α J ) =
n∑

i=1

J∑
j=1

wij ln
exp(z′

iα j )∑J
j=1 exp(z′

iα j )
, α J = 0. (E-33)

Step 4 defines a multinomial logit model (with “grouped”) data. If the class probability model
does not contain any variables in zi , other than a constant, then the solutions to this optimization
will be

π̂ j =
∑n

i=1 wij∑n
i=1

∑J
j=1 wij

, then α̂ j = ln
π̂ j

π̂J
. (E-34)

(Note that this preserves the restriction α̂J = 0.) With these in hand, we return to steps 1 and 2
to rebuild the weights, then perform steps 3 and 4. The process is iterated until the estimates of
β1, . . . , β J converge. Step 1 is constructed in a generic form. For a different model, it is necessary
only to change the density that appears at the end of the expresssion in (E-32). For a cross section
instead of a panel, the product term in step 1 becomes simply the log of the single term.

The EM algorithm has an intuitive appeal in this (and other) settings. In practical terms, it is
often found to be a very slow algorithm. It can take many iterations to converge. (The estimates
in Example 14.17 were computed using a gradient method, not the EM algorithm.) In its favor,
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the EM method is very stable. It has been shown [Dempster, Laird, and Rubin (1977)] that the
algorithm always climbs uphill. The log-likelihood improves with each iteration. Applications
differ widely in the methods used to estimate latent class models. Adding to the variety are the
very many Bayesian applications, none of which use either of the methods discussed here.

E.4 EXAMPLES

To illustrate the use of gradient methods, we consider some simple problems.

E.4.1 FUNCTION OF ONE PARAMETER

First, consider maximizing a function of a single variable, f (θ) = ln(θ) − 0.1θ2. The function is
shown in Figure E.4. The first and second derivatives are

f ′(θ) = 1
θ

− 0.2 θ,

f ′′(θ) = −1
θ2

− 0.2.

Equating f ′ to zero yields the solution θ = √
5 = 2.236. At the solution, f ′′ = −0.4, so this

solution is indeed a maximum. To demonstrate the use of an iterative method, we solve this
problem using Newton’s method. Observe, first, that the second derivative is always negative for
any admissible (positive) θ .24 Therefore, it should not matter where we start the iterations; we
shall eventually find the maximum. For a single parameter, Newton’s method is

θt+1 = θt − [ f ′
t / f ′′

t ].

FIGURE E.4 Function of One Variable Parameter.
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24In this problem, an inequality restriction, θ > 0, is required. As is common, however, for our first attempt
we shall neglect the constraint.
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TABLE E.1 Iterations for Newton’s Method

Iteration θ f f ′ f ′′

0 5.00000 −0.890562 −0.800000 −0.240000
1 1.66667 0.233048 0.266667 −0.560000
2 2.14286 0.302956 0.030952 −0.417778
3 2.23404 0.304718 0.000811 −0.400363
4 2.23607 0.304719 0.0000004 −0.400000

The sequence of values that results when 5 is used as the starting value is given in Table E.1. The
path of the iterations is also shown in the table.

E.4.2 FUNCTION OF TWO PARAMETERS: THE GAMMA
DISTRIBUTION

For random sampling from the gamma distribution,

f (yi , β, ρ) = βρ

(ρ)
e−βyi yρ−1

i .

The log-likelihood is ln L(β, ρ) = nρ ln β − n ln (ρ) − β
∑n

i=1 yi + (ρ − 1)
∑n

i=1 ln yi . (See
Section 14.6.4 and Example 13.5.) It is often convenient to scale the log-likelihood by the sample
size. Suppose, as well, that we have a sample with ȳ = 3 and ¯ln y = 1. Then the function to
be maximized is F(β, ρ) = ρ ln β − ln (ρ) − 3β + ρ − 1. The derivatives are

∂ F
∂β

= ρ

β
− 3,

∂ F
∂ρ

= ln β − ′


+ 1 = ln β − �(ρ) + 1,

∂2 F
∂β2

= −ρ

β2
,

∂2 F
∂ρ2

= −(��′′ − ′2)

�2 = −� ′(ρ),
∂2 F
∂β ∂ρ

= 1
β

.

Finding a good set of starting values is often a difficult problem. Here we choose three starting
points somewhat arbitrarily: (ρ0, β0) = (4, 1), (8, 3), and (2, 7). The solution to the problem is
(5.233, 1.7438). We used Newton’s method and DFP with a line search to maximize this function.25

For Newton’s method, λ = 1. The results are shown in Table E.2. The two methods were essentially
the same when starting from a good starting point (trial 1), but they differed substantially when
starting from a poorer one (trial 2). Note that DFP and Newton approached the solution from
different directions in trial 2. The third starting point shows the value of a line search. At this

TABLE E.2 Iterative Solutions to Max(ρ, β)ρ ln β − ln �(ρ) − 3β + ρ − 1

Trial 1 Trial 2 Trial 3

DFP Newton DFP Newton DFP Newton

Iter. ρ β ρ β ρ β ρ β ρ β ρ β

0 4.000 1.000 4.000 1.000 8.000 3.000 8.000 3.000 2.000 7.000 2.000 7.000
1 3.981 1.345 3.812 1.203 7.117 2.518 2.640 0.615 6.663 2.027 −47.7 −233.
2 4.005 1.324 4.795 1.577 7.144 2.372 3.203 0.931 6.195 2.075 — —
3 5.217 1.743 5.190 1.728 7.045 2.389 4.257 1.357 5.239 1.731 — —
4 5.233 1.744 5.231 1.744 5.114 1.710 5.011 1.656 5.251 1.754 — —
5 — — — — 5.239 1.747 5.219 1.740 5.233 1.744 — —
6 — — — — 5.233 1.744 5.233 1.744 — — — —

25The one used is described in Joreskog and Gruvaeus (1970).
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starting value, the Hessian is extremely large, and the second value for the parameter vector
with Newton’s method is (−47.671, −233.35), at which point F cannot be computed and this
method must be abandoned. Beginning with H = I and using a line search, DFP reaches
the point (6.63, 2.03) at the first iteration, after which convergence occurs routinely in three
more iterations. At the solution, the Hessian is [(−1.72038, 0.191153)′, (0.191153, −0.210579)′].
The diagonal elements of the Hessian are negative and its determinant is 0.32574, so it is negative
definite. (The two characteristic roots are −1.7442 and −0.18675). Therefore, this result is indeed
the maximum of the function.

E.4.3 A CONCENTRATED LOG-LIKELIHOOD FUNCTION

There is another way that the preceding problem might have been solved. The first of the necessary
conditions implies that at the joint solution for (β, ρ), β will equal ρ/3. Suppose that we impose
this requirement on the function we are maximizing. The concentrated (over β) log-likelihood
function is then produced:

Fc(ρ) = ρ ln(ρ/3) − ln (ρ) − 3(ρ/3) + ρ − 1

= ρ ln(ρ/3) − ln (ρ) − 1.

This function could be maximized by an iterative search or by a simple one-dimensional grid
search. Figure E.5 shows the behavior of the function. As expected, the maximum occurs at
ρ = 5.233. The value of β is found as 5.23/3 = 1.743.

The concentrated log-likelihood is a useful device in many problems. (See Section 14.9.6.d
for an application.) Note the interpretation of the function plotted in Figure E.5. The original
function of ρ and β is a surface in three dimensions. The curve in Figure E.5 is a projection of
that function; it is a plot of the function values above the line β = ρ/3. By virtue of the first-order
condition, we know that one of these points will be the maximizer of the function. Therefore, we
may restrict our search for the overall maximum of F(β, ρ) to the points on this line.

FIGURE E.5 Concentrated Log-Likelihood.
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APPENDIX F

Q
DATA SETS USED IN

APPLICATIONS

The following data sets are used in the examples and applications in the text. With the exception
of the Bertschek and Lechner file, the data sets themselves can be downloaded either from the
Web site for this text, pages.stern.nyu.edu/∼wgreene/Text/econometricanalysis.htm, or from the
URLs to the publicly accessible archives indicated as “Location.” The points in the text where
the data are used for examples or suggested exercises are noted as “Uses.”

TABLE F1.1 Consumption and Income, 10 Yearly Observations, 2000–2009

Source: Economic Report of the President, 1987, Council of Economic Advisors
Location: Text Web site
Use: Example 1.2

TABLE F2.1 Consumption and Income, 11 Yearly Observations, 1940–1950

Source: Economic Report of the President, U.S. Government Printing Office, Washington, D.C., 1983
Location: Text Web site
Uses: Examples 2.1, 3.2, 16.3

TABLE F2.2 The U.S. Gasoline Market, 52 Yearly Observations 1953–2004

Source: The data were compiled by Professor Chris Bell, Department of Economics, University of North
Carolina, Asheville. Sources: www.bea.gov and www.bls.gov.

Location: Text Web site
Uses: Examples 2.3, 4.2, 4.4, 4.8, 4.9, 6.9, 15.4, 20.2

Sections 6.4, 20.9.2
Applications 4.1, 5.3, 7.5, 7.6

TABLE F3.1 Investment, 15 Yearly Observations, 1968–1982

Source: Economic Report of the President, U.S. Government Printing Office, Washington, D.C., 1983
Location: Text Web site
Uses: Examples 3.1, 3.3

Section 3.2.2
Exercise 3.12

TABLE F3.2 Koop and Tobias Labor Market Experience, 17,919 Observations

Source: Koop and Tobias (2004)
Location: Journal of Applied Econometrics data archive,

http://www.econ.queensu.ca/jae/2004-v19.7/koop-tobias/.
Uses: Example 15.16

Applications 3.1, 5.1, 6.1, 6.2
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TABLE F4.1 Auction Data for Monet Paintings, 430 Observations

Source: Author
Location: Text Web site
Uses: Examples 4.5, 4.10, 5.1, 5.8, 6.2, 11.2

Section 4.7.6
Exercise 4.17

TABLE F4.2 The Longley Data, 15 Yearly Observations, 1947–1962

Source: Longley (1967)
Location: Text Web site
Use: Example 4.11

TABLE F4.3 Movie Buzz Data, 62 Observations

Source: Author
Location: Text Web site
Uses: Examples 4.12, 6.3

TABLE F4.4 Cost Function, 158 1970 Cross-Section Firm Level Observations

Note: The file contains 158 observations. Christensen and Greene used the first 123. The extras are the holding
companies. Use only the first 123 observations to replicate Christensen and Greene.

Source: Christensen and Greene (1976)
Location: Text Web site
Uses: Examples 7.11, 7,12

Applications 4.2, 5.2, 7.4, 10.1, 19.4

TABLE F5.1 Labor Supply Data from Mroz (1987), 753 Observations

Source: 1976 Panel Study of Income Dynamics, Mroz (1987)
Location: Text Web site
Uses: Examples 5.2, 5.5, 6.1, 17.1, 17.8, 17.10, 19.11

Applications 19.2, 19.3

TABLE F5.2 Macroeconomics Data Set, Quarterly, 1950I to 2000IV

Source: Department of Commerce, BEA Web site, and www.economagic.com
Location: Text Web site
Uses: Examples 5.3, 5.6, 5.7, 7.4, 7.8, 8.7, 8.10, 14.7, 16.3, 20.1, 20.3, 20.4, 21.1, 21.2, 21.3, 21.4, 21.5

Applications 5.4, 10.3, 20.1, 20.3, 21.1, 21.2, 21.3
Section 21.2.4

TABLE F5.3 Production for SIC 33: Primary Metals, 27 Statewide Observations

Note: Data are per establishment, labor is a measure of labor input, and capital is the gross value of plant and
equipment. A scale factor used to normalize the capital figure in the original study has been omitted.
Further details on construction of the data are given in Aigner et al. (1977).

Source: Hildebrand and Liu (1957)
Location: Text Web site
Uses: Example 5.4
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TABLE F6.1 Costs for U.S. Airlines, 90 Total Observations on 6 Firms for
1970–1984

Note: These data are a subset of a larger data set provided to the author by Professor Moshe Kim.
Source: Christensen Associates of Madison, Wisconsin
Location: Text Web site
Uses: Examples 6.4, 9.4, 14.6

Applications 9.2, 11.2

TABLE F6.2 Cost Function, 145 U.S. Electricity Producers, Nerlove’s 1955
Data

Note: The data file contains several extra observations that are aggregates of commonly owned firms. Use
only the first 145 for analysis.

Sources: Nerlove (1960) and Christensen and Greene (1976)
Location: Text Web site
Uses: Example 6.6

Section 10.5.1

TABLE F6.3 World Health Organization Panel Data, 840 Total Observations

Note: Variables marked * were updated with more recent sources in Greene (2004a). Missing values for some
of the variables in this data set are filled by using fitted values from a linear regression.

Sources: The World Health Organization [Evans et al. (2000) and www.who.int]
Location: Text Web site
Uses: Examples 6.10, 11.4

TABLE F6.4 Solow’s Technological Change Data, 41 Yearly Observations,
1909–1949

Source: Solow (1957, p. 314). Several variables are omitted
Location: Text Web site
Use: Application 6.3

TABLE F7.1 German Health Care Data, Unbalanced Panel, 7,293 Individuals,
27,326 Observations

Notes: In the applications in the text, the following additional variables are used:
NUMOBS = Number of observations for this person. Repeated in each row of data.
NEWHSAT = HSAT; 40 observations on HSAT recorded between 6 and 7 were changed to 7.
Frequencies are 1 = 1525, 2 = 1079, 3 = 825, 4 = 926, 5 = 1051, 6 = 1000, 7 = 887.
Source: Riphahn et al. (2003)
Location: Journal of Applied Econometrics data archive,
http://qed.econ.queensu.ca/jae/2003-v18.4/riphahn-wambach-million/
Uses: Examples 7.6, 11.16, 11.17, 13.7, 14.5, 14.9, 14.10, 14.14, 14.17, 17.4, 17.5, 17.7, 17.11, 17.13, 17.15, 17.16,

17.17, 17.18, 17.19, 17.20, 18.4, 18.6, 18.7, 18.10, 18.12, 19.13
Section 14.9.5
Applications 14.1, 18.2, 18.3, 18.4

TABLE F7.2 Statewide Data on Transportation Equipment Manufacturing, 25
Observations

Note: “Value added,” “Capital,” and “Labor” in millions of 1957 dollars. Data used in regression examples
are per establishment. Totals are used for the stochastic frontier application in Chapter 19.

Source: Zellner and Revankar (1970, p. 249)
Location: Text Web site
Uses: Example 7.9

Applications 7.1, 7.2
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TABLE F7.3 Expenditure and Default Data, 13,444 Observations

Source: Greene (1992)
Location: Text Web site
Uses: Examples 7.10, 9.1, 17.9, 17.22, 18.8, 18.11

TABLE F8.1 Cornwell and Rupert, Labor Market Data, 595 Individuals, 7 years

Source: See Cornwell and Rupert (1988)
Location: Web site for Baltagi (2005), http://www.wiley.com/legacy/wileychi/baltagi/supp/WAGES.xls
Location (ASCII form): Text Web site
Uses: Examples 8.5, 8.6, 8.8, 11.1, 11.3, 11.5, 11.6, 11.7, 11.8, 11.9, 11.11, 11.15, 14.11, 15.6, 15.12

Applications 8.1, 15.1

TABLE F9.1 Income and Expenditure Data. 100 Cross-Section Observations

Source: Greene (1992)
Location: Text Web site
Uses: Examples 9.1, 9.2, 9.3

TABLE F9.2 Baltagi and Griffin Gasoline Data, 18 OECD Countries, 19 Years

Source: See Baltagi and Griffin (1983) and Baltagi (2005)
Location: Web site for Baltagi (2005), http://www.wiley.com/legacy/wileychi/baltagi/supp/Gasoline.dat
Uses: Example 9.5

TABLE F10.1 Munnell Productivity Data, 48 Continental U.S. States, 17
years,1970–1986

Sources: Munnell (1990) and Baltagi (2005)
Location: Web site for Baltagi (2005), http://www.wiley.com/legacy/wileychi/baltagi/supp/PRODUC.prn
Uses: Examples 10.1, 11.19, 14.12, 15.13, 15.15

TABLE F10.2 Manufacturing Costs, U.S. Economy, 25 Yearly Observations,
1947–1971

Source: Berndt andWood (1975)
Location: Text Web site
Use: Example 10.3

TABLE F10.3 Klein’s Model I, 22 Yearly Observations, 1920–1941

Source: Klein (1950)
Location: Text Web site
Use: Example 10.6

TABLE F10.4 Grunfeld Investment Data, 200 Yearly Observations on 10 Firms
for 1935–1954

Sources: Grunfeld (1958) and Boot and deWitt (1960)
Location: Text Web site
Uses: Example 14.8

Applications 10.2., 11.1
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TABLE F13.1 Dahlberg and Johanssen Expenditure Data, 265 Municipalities,
9 Years

Location: Journal of Applied Econometrics data archive
http://qed.econ.queensu.ca/jae/2000-v15.4/dahlberg-johansson/dj-data.zip

Uses: Example 13.10

TABLE F14.1 Program Effectiveness, 32 Cross-Section Observations

Source: Spector and Mazzeo (1980)
Location: Text Web site
Uses: Examples 14.15, 14.16, 17.3

Section 16.6

TABLE F15.1 Bertschek and Lechner Binary Choice Data, Balanced Panel, 5
years, 1,270 firms

Source: Bertcshek and Lechner (1998)
Location: These data are proprietary and may not be redistributed
Uses: Examples 15.17, 17.23

Section 12.4.1

TABLE F17.1 Burnett Analysis of Liberal Arts College Gender Economics
Courses, 132 Observations

Source: Burnett (1997). Data provided by the author
Location: Text Web site
Use: Example 17.21

TABLE F17.2 Fair, Redbook Survey on Extramarital Affairs, 6,366 Observations

Source: Fair (1978), data provided by the author.
Location: Text Web site
Uses: Example 19.6

Applications 17.1, 18.1, 18.2

TABLE F18.1 Fair’s (1977) Extramarital Affairs Data, 601 Cross-Section
Observations

Note: Several variables not used are denoted X1, . . . , X5.
Source: Fair (1977)
Location: http://fairmodel.econ.yale.edu/rayfair/pdf/1978ADAT.ZIP
Location: Text Web site
Uses: Examples 18.1, 18.9, 19.6

Application 19.1

TABLE F18.2 Data Used to Study Travel Mode Choice, 840 Observations, on
4 Modes for 210 Individuals

Source: Greene and Hensher (1997)
Location: Text Web site
Uses: Sections 18.2.9, 18.2.10

TABLE F18.3 Ship Accidents, 40 Observations, 5 Types, 4 Vintages, and 2
Service Periods

Source: McCullagh and Nelder (1983)
Location: Text Web site
Use: Applications 6.4, 18.5
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TABLE F19.1 Filippini, Farsi, Greene, Swiss Railroads Data, Unalanced Panel
50 Firms, 605 Observations

Source: Authors
Location: Text Web site
Use: Example 19.3

TABLE F19.2 Strike Duration Data, 63 Observations in 9 Years, 1968–1976

Source: Kennan (1985)
Location: Text Web site
Use: Example 19.8

TABLE F19.3 LaLonde (1986) Earnings Data, 2,490 Control Observations and
185 Treatment Observations

Note: We also scaled all earnings variables by 10,000 before beginning the analysis.
Source: LaLonde (1986)
Location: http://www.nber.org/%7Erdehejia/nswdata.htm. The two specific subsamples are in

http://www.nber.org/%7Erdehejia//psid controls.txt and
http://www.nber.org/%7Erdehejia/nswre74 treated.txt

Use: Example 19.15

TABLE F20.1 Bollerslev and Ghysels Exchange Rate Data, 1974 Daily
Observations

Source: Bollerslev (1986)
Location: Text Web site
Uses: Examples 20.5, 20.6

TABLE F21.1 Money, Output, Price Deflator Data, 136 Quarterly Observations,
1950–1983

Sources: National Income and Product Accounts, U.S. Department of Commerce, Bureau of Economic
Analysis, Survey of Current Business: Business Statistics

Location: Text Web site
Uses: Examples 21.1, 21.5

TABLE FC.1 Observations on Income and Education, 20 Observations

Source: Data are artificial
Location: Text Web site
Uses: Examples 6.7, 13.5, 14.4, 15.17, C.1, C.2

Section 14.6.6
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Cramèr, H. Mathematical Methods of Statis-
tics. Princeton: Princeton University
Press, 1948.

Cramer, J. “Predictive Performance of the
Binary Logit Model in Unbalanced
Samples.” Journal of the Royal Statistical
Society, Series D (The Statistician), 48,
1999, pp. 85–94.

Culver, S. and D. Pappell. “Is There a Unit
Root in the Inflation Rate? Evidence
from Sequential Break and Panel Data
Model.” Journal of Applied Economet-
rics, 12, 1997, pp. 435–444.

Cumby, R., J. Huizinga, and M. Obstfeld.
“Two-Step, Two-Stage Least Squares
Estimation in Models with Rational
Expectations.” Journal of Econometrics,
21, 1983, pp. 333–355.

Cuesta, R., “A Production Model with Firm-
Specific Temporal Variation in Technical
Inefficiency: with Application to Spanish
Dairy Farms,” Journal of Productivity
Analysis, 13, 2, 2000, pp. 139–158.

Cunha, F., J. Heckman and S. Navarro, “The
Identification & Economic Content of
Ordered Choice Models with Stochas-
tic Thresholds,” University College
Dublin, Gery Institute, discussion paper
WP/26/2007, 2007.

D’Addio, A., Eriksson, T., and P. Frijters.
“An Analysis of the Determinants of
Job Satisfaction when Individuals’ Base-
line Satisfaction Levels May Differ.”
Working Paper 2003-16, Center for
Applied Microeconometrics, University
of Copenhagen, 2003.

Dahlberg, M., and E. Johansson. “An Ex-
amination of the Dynamic Behaviour of
Local Governments Using GMM Boot-
strapping Methods.”Journal of Applied
Econometrics, 15, 2000, pp. 401–416.

Dale, S., and A. Krueger. “Estimating the
Payoff of Attending a More Selective
College: An Application of Selection

on Observables and Unobservables,”
Quarterly Journal of Economics, 107, 4,
2002, pp. 1491–1527.

Daly, A., S. Hess, and K. Train, Assuring
Finite Moments for Willingness to Pay in
Random Coefficient Models, Institute for
Transport Studies, University of Leeds,
October, 2009.

Das, M., S. Olley, and A. Pakes. “The Evo-
lution of the Market for Consumer
Electronics,” mimeo, Department of
Economics, Harvard University, 1996.

Das, M., and A. van Soest. “A Panel Data
Model for Subjective Information on
Household Income Growth.” Journal of
Economic Behavior and Organization
40, 2000, 409–426.

Dastoor, N. “Some Aspects of Testing
Nonnested Hypotheses.” Journal of
Econometrics, 21, 1983, pp. 213–228.

Davidson, A., and D. Hinkley. Bootstrap Meth-
ods and Their Application. Cambridge:
Cambridge University Press, 1997.

Davidson, J. Econometric Theory. Oxford:
Blackwell, 2000.

Davidson, R., and J. MacKinnon. “Several
Tests for Model Specification in the
Presence of Alternative Hypotheses.”
Econometrica, 49, 1981, pp. 781–793.

Davidson, R., and J. MacKinnon. “Testing Lin-
ear and Loglinear Regressions Against
Box–Cox Alternatives.” Canadian Jour-
nal of Economics, 18, 1985, pp. 499–517.

Davidson, R. and J. MacKinnon. Estimation
and Inference in Econometrics. New
York: Oxford University Press, 1993.

Davidson, R., and J. MacKinnon. Econometric
Theory and Methods. New York: Oxford
University Press, 2004.

Davidson, R. and J. MacKinnon. “Boot-
strap Methods in Econometrics.” In
T. Mills and K. Patterson, eds., Palgrave
Handbook of Econometrics, Volume 1:
Econometric Theory, Hampshire: Pal-
grave Macmillan, 2006.

Daykin, A., and P. Moffatt, “Analyzing
Ordered Responses: A Review of the
Ordered Probit Model,” Understanding
Statistics, I, 3, 2002, pp. 157–166.



Greene-2140242 book June 1, 2011 15:18

References 1169

Deaton, A. “Model Selection Procedures, or,
Does the Consumption Function Exist?”
In G. Chow and P. Corsi, eds., Evalu-
ating the Reliability of Macroceonomic
Models. New York: John Wiley and Sons,
1982.

Deaton, A. “Demand Analysis.” In
Z. Griliches and M. Intriligator, eds.,
Handbook of Econometrics, Vol. 2,
pp. 1767–1839, Amsterdam: North
Holland, 1986.

Deaton A., The Analysis of Household
Surveys: A Microeconometric Approach
to Development Policy. Baltimore: Johns
Hopkins University Press, 1997.

Deaton, A., and J. Muellbauer. Economics
and Consumer Behavior. New York:
Cambridge University Press, 1980.

Deb, P., and P. K. Trivedi. “The Structure of
Demand for Health Care: Latent Class
versus Two-part Models.” Journal of
Health Economics, 21, 2002, pp. 601–
625.

Debreu, G. “The Coefficient of Resource
Utilization.” Econometrica, 19, 3, 1951,
pp. 273–292.

Dehejia, R., and S. Wahba. “Causal Effects in
Non-Experimental Studies: Evaluating
the Valuation of Training Programs.”
Journal of the American Statistical
Association, 94, 1999, pp. 1053–1062.

DeMaris, A. Regression with Social Data:
Modeling Continuous and Limited Re-
sponse Variables. Hoboken, NJ: Wiley,
2004.

Dempster, A., N. Laird, and D. Rubin.
“Maximum Likelihood Estimation from
Incomplete Data via the EM Algorithm.”
Journal of the Royal Statistical Society,
Series B, 39, 1977, pp. 1–38.

Denton, F. “Single Equation Estimators
and Aggregation Restrictions When
Equations Have the Same Set of Regres-
sors.” Journal of Econometrics, 8, 1978,
pp. 173–179.

DesChamps, P. “Full Maximum Likelihood
Estimation of Dynamic Demand Mod-
els.” Journal of Econometrics, 82, 1998,
pp. 335–359.

De Vany, A., Hollywood Economics: How
Extreme Uncertainty Shapes the Film
Industry, New York: Routledge, 2003.

De Vany, A., and D. Walls, “Uncertainty in
the Movies: Can Star Power Reduce the
Terror of the Box Office?” Journal of Cul-
tural Economics, 23, 4, 1999, pp. 285–318.

De Vany, A., and D. Walls, “Does Hollywood
Make Too Many R-rated Movies? Risk,
Stochastic Dominance, and the Illusion
of Expectation,” The Journal of Business,
75, 3, 2002, pp. 425–451.

De Vany, A., and D. Walls, “Movie Stars, Big
Budgets, and Wide Releases: Empirical
Analysis of the Blockbuster Strategy,” in
Arthur De Vany, Hollywood Economics:
How Extreme Uncertainty Shapes the
Film Industry, New York: Routledge,
2003.

Dezhbaksh, H. “The Inappropriate Use of
Serial Correlation Tests in Dynamic
Linear Models.” Review of Economics
and Statistics, 72, 1990, pp. 126–132.

Dhrymes, P. “Restricted and Unrestricted
Reduced Forms.” Econometrica, 41,
1973, pp. 119–134.

Dhrymes, P. Distributed Lags: Problems
of Estimation and Formulation. San
Francisco: Holden Day, 1971.

Dhrymes, P. “Limited Dependent Variables.”
In Z. Griliches and M. Intriligator,
eds., Handbook of Econometrics,Vol. 2,
Amsterdam: North Holland, 1984.

Dickey, D., and W. Fuller. “Distribution of
the Estimators for Autoregressive Time
Series with a Unit Root.” Journal of
the American Statistical Association, 74,
1979, pp. 427–431.

Dickey, D., and W. Fuller. “Likelihood Ratio
Tests for Autoregressive Time Series
with a Unit Root.” Econometrica, 49,
1981, pp. 1057–1072.

Dielman, T. Pooled Cross-Sectional and
Time Series Data Analysis. New York:
Marcel-Dekker, 1989.

Diewert, E. “Applications of Duality Theory.”
In M. Intriligator and D. Kendrick,
Frontiers in Quantitative Economics.
Amsterdam: North Holland, 1974.



Greene-2140242 book June 1, 2011 15:18

1170 References

Diggle, R., P. Liang, and S. Zeger. Analysis
of Longitudinal Data. Oxford: Oxford
University Press, 1994.

Ding, Z., C. Granger, and R. Engle. “A Long
Memory Property of Stock Returns and
a New Model.” Journal of Empirical
Finance, 1, 1993, pp. 83–106.

Domowitz, I., and C. Hakkio. “Conditional
Variance and the Risk Premium in the
Foreign Exchange Market.” Journal
of International Economics, 19, 1985,
pp. 47–66.

Doan, T. RATS 6.3, User’s Manual. Evanston,
IL: Estima, 2007.

Donald, S., and K. Lang, “Inference with
Difference-in-Differences and Other
Panel Data,” Review of Economics and
Statistics, 89, 2, 2007, pp. 221–233.

Dong, Y., and A. Lewbel, “Simple Es-
timators for Binary Choice Models
with Endogenous Regressors,” un-
published manuscript, Department
of Economics, Boston College, 2010
(posted at http://www2.bc.edu/∼lewbel/
simplenew8.pdf).

Doob, J., Stochastic Process. New York: John
Wiley and Sons, 1953.

Doppelhofer, G., R. Miller, and S. Sala-i-
Martin. “Determinants of Long-Term
Growth: A Bayesian Averaging of Clas-
sical Estimates (BACE) Approach.”
NBER Working Paper Number 7750,
June, 2000.

Duan, N., “Smearing Estimate: A Nonpara-
metrics Retransformation Method,”
Journal of the American Statistical
Association, 78, 1983, pp. 605–612.

Dufour, J. “Some Impossibility Theorems
in Econometrics with Applications
to Structural and Dynamic Models.”
Econometrica, 65, 1997, pp. 1365–1389.

Dufour, J. “Identification, Weak Instruments
and Statistical Inference in Economet-
rics.” Scientific Series, Paper Number
2003s-49, CIRANO, University of
Montreal, 2003.

Dufour, J. and J. Jasiak. “Finite Sample Lim-
ited Information Inference Methods for
Structural Equations and Models with

Generated Regressors.” International
Economic Review, 42, 2001, pp. 815–843.

Duncan, G. “A Semiparametric Censored
Regression Estimator.” Journal of
Econometrics, 31, 1986a, pp. 5–34.

Duncan, G., ed. “Continuous/Discrete Econo-
metric Models with Unspecified Error
Distribution.” Journal of Econometrics,
32, 1, 1986b, pp. 1–187.

Durbin, J. “Errors in Variables.” Review of
the International Statistical Institute, 22,
1954, pp. 23–32.

Durbin, J. “Testing for Serial Correlation in
Least Squares Regression When Some of
the Regressors Are Lagged Dependent
Variables.” Econometrica, 38, 1970,
pp. 410–421.

Durbin, J., and G. Watson. “Testing for
Serial Correlation in Least Squares
Regression—I.” Biometrika, 37, 1950,
pp. 409–428.

Durbin, J., and G. Watson. “Testing for
Serial Correlation in Least Squares
Regression—II.” Biometrika, 38, 1951,
pp. 159–178.

Durbin, J., and G. Watson. “Testing for
Serial Correlation in Least Squares
Regression—III.” Biometrika, 58, 1971,
pp. 1–42.

Dwivedi, T., and K. Srivastava. “Optimality
of Least Squares in the Seemingly Un-
related Regressions Model.” Journal of
Econometrics, 7, 1978, pp. 391–395.

Efron, B. “Regression and ANOVA with
Zero-One Data: Measures of Residual
Variation.” Journal of the Ameri-
can Statistical Association, 73, 1978,
pp. 113–212.

Efron, B. “Bootstrapping Methods: An-
other Look at the Jackknife.” Annals of
Statistics, 7, 1979, pp. 1–26.

Efron, B. and R. Tibshirani. An Introduction
to the Bootstrap. New York: Chapman
and Hall, 1994.

Egan, K., and J. Herriges, “Multivariate Count
Data Regression Models with Individual
Panel Data from an On-Site Sample,”
Journal of Environmental Economics and
Management, 52, 2, 2006, pp. 567–581.



Greene-2140242 book June 1, 2011 15:18

References 1171

Eichengreen, B., M. Watson, and R. Gross-
man, “Bank Rate Policy Under the
Interwar Gold Standard: A Dynamic
Probit Approach,” Economic Journal,
95, 1985, pp. 725–745.

Eicker, F. “Limit Theorems for Regression
with Unequal and Dependent Errors.” In
L. LeCam and J. Neyman, eds., Proceed-
ings of the Fifth Berkeley Symposium on
Mathematical Statistics and Probability.
Berkeley: University of California Press,
1967, pp. 59–82.

Eisenberg, D., and B. Rowe. “The Effect of
Serving in the Vietnam War on Smoking
Behavior Later in Life.” Manuscript,
School of Public Health, University of
Michigan, 2006.

Elliot, G., T. Rothenberg, and J. Stock.
“Efficient Tests for an Autoregressive
Unit Root.” Econometrica, 64, 1996,
pp. 813–836.

Eluru, N., C. Bhat, and D. Hensher, “A Mixed
Generalized Ordered Response Model
for Examining Pedestrian and Bicyclist
Injury Severity Levels in Traffic Crashes,”
Accident Analysis and Prevention, 40, 3,
2008, pp. 1033–1054.

Enders, W. Applied Econometric Time Series,
2nd ed. New York: John Wiley and Sons,
2004.

Engle, R. “Autoregressive Conditional Het-
eroscedasticity with Estimates of the
Variance of United Kingdom Infla-
tions.” Econometrica, 50, 1982, pp. 987–
1008.

Engle, R. “Estimates of the Variance of U.S.
Inflation Based on the ARCH Model.”
Journal of Money, Credit, and Banking,
15, 1983, pp. 286–301.

Engle, R. “Wald, Likelihood Ratio, and La-
grange Multiplier Tests in Econometrics.”
In Z. Griliches and M. Intriligator,
eds., Handbook of Econometrics,
Vol. 2. Amsterdam: North Holland,
1984.

Engle, R., and C. Granger. “Co-integration
and Error Correction: Representation,
Estimation, and Testing.” Econometrica,
35, 1987, pp. 251–276.

Engle, R., and D. Hendry. “Testing Super
Exogeneity and Invariance.” Journal of
Econometrics, 56, 1993, pp. 119–139.

Engle, R., D. Hendry, and J. Richard. “Ex-
ogeneity.” Econometrica, 51, 1983,
pp. 277–304.

Engle, R., D. Hendry, and D. Trumble. “Small
Sample Properties of ARCH Estima-
tors and Tests.” Canadian Journal of
Economics, 18, 1985, pp. 66–93.

Engle, R., and D. Kraft. “Multiperiod Forecast
Error Variances of Inflation Estimated
from ARCH Models.” In A. Zellner, ed.,
Applied Time Series Analysis of Eco-
nomic Data. Washington D.C.: Bureau of
the Census, 1983.

Engle, R., and M. Rothschild. “ARCH Models
in Finance.” Journal of Econometrics, 52,
1992, pp. 1–311.

Engle, R., D. Lilen, and R. Robins. “Esti-
mating Time Varying Risk Premia in the
Term Structure: The ARCH-M Model.”
Econometrica, 55, 1987, pp. 391–407.

Engel, R., and B. Yoo. “Forecasting and Test-
ing in Cointegrated Systems.” Journal of
Econometrics, 35, 1987, pp. 143–159.

Englin, J., and J. Shonkwiler, “Estimating So-
cial Welfare Using Count Data Models:
An Application to Long-Run Recreation
Demand Under Conditions of Endoge-
nous Stratification and Truncation,”
Review of Economics and Statistics, 77,
1995, pp. 104–112.

Estes, E., and B. Honorè. “Partially Lin-
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Honoré, B., 251n16, 770, 901
HOPIT model, 840
Horn, A., 313n11
Horn, D. A., 313n11
Horowitz, J., 551, 651n2, 652, 733,

754n26, 898n12
hospital cost function, 506–508
hospital costs, 424–425
Hotz, J., 746, 747, 756n27, 760, 794
Houck, C., 457n27
hours worked, 891–892
Houthakker, H., 308n8
Howrey, E., 456
Hoxby, C., 43, 268, 293
HPD interval, 125, 705
Hsiao, C., 362n39, 384n2, 418,

419n19, 427, 441, 457n27,
458n29, 462, 465, 466,
537n14, 659, 761, 764n33,
769n34, 835

H2SLS, 534
Huang, D., 336n11, 382n251, 470
Huber, P., 111, 244, 582n12, 583

Hudak, S., 431
Huizinga, J., 508n3, 534
Hurd, M., 898
hurdle model, 483, 864–866
Hussain, 415n15
Hwang, H., 332n3
hyperplane, 1023
hypothesis testing and model

selection, 148–188,
1102–1106

acceptance/rejection
methodology, 151

AIC/BIC, 179, 180
Bayesian estimation, 706–707
Bayesian model averaging,

181–183
Bayesian vs. classical testing, 152
binary choice, 743–746
consistency of the test, 152
encompassing model, 175–176
F statistic, 158–159, 183
fit of the regression, 161–167
general linear hypothesis,

152–153
general nonlinear hypothesis,

153–154
general-to-simple approach to

model building, 178–183
GMM estimation, 519–522
J linear restrictions, 163
J test, 176–177, 180
Lagrange multiplier test, 171
large-sample test, 167–171
least squares discrepancy,

157–159
model building, 178–183
model selection, 180–183
nested models, 150
Neyman-Pearson

methodology, 151
nonlinear regression model,

229–231
nonlinear restrictions, 171–173
nonnormal disturbance, 167–171
nontested models, 174–177
null/alternative hypothesis,

149–150
power of the test, 151
RESET test, 177–178
restricted least squares estimator,

161–162
restrictions and hypotheses,

149–150
significance of the regression, 166
size of the test, 151
specification test, 177–178

SUR model, 337–339
t ratio, 156
Wald test, 155–161

hypothesis testing methodology,
148–152

Hyslop, D., 280n3, 771, 793

Ichimura, H., 935n40
Ichino, A., 935
idempotent matrix, 1018–1019, 1042
idempotent quadratic forms, 1046,

1083–1085
identical explanatory variable, 334
identical regressors, 335
identifiability of parameters,

490–491
identification, 267, 281, 515,

524, 550
identification condition, 59, 206, 228
identification problem, 224,

361–366
identification through functional

form, 840
identity matrix, 1013
ignorable case, 134
IIA assumption, 807
Im, E., 332n3, 422n24, 450,

1010, 1011
Imbens, G., 280n3, 933n39
IMDb.com ratings, 826
Imhof, J., 964
impact of the treatment on the

treated, 55
improper prior, 715
“Incentive Effects in the Demand

for Health Care: A Bivariate
Panel Count Data
Estimation” (Riphahn
et al.), 235, 451

incidental parameters problem,
453, 628, 659–661

incidental truncation, 912. See also
sample selection

inclusion of superfluous (irrelevant)
variables, 98

inclusive value, 809
income elasticity (credit card

expenditure), 248–250
independence, 64
independence from irrelevant

alternatives (IIA)
assumption, 807

independence of linear and
quadratic forms, 1086–1087

independent variable, 52, 1047
index function model, 452, 621, 726



Greene-2140242 book June 1, 2011 15:21

1222 Index

indicator, 283
indirect utility function, 223
individual effect, 385
individual effects models, 714–716
individual regression coefficients, 74
inequalities for expectations, 1114
inestimable model, 59–60
inference, 474. See also estimation

and inference
influential observations, 139–142
information matrix, 1100
information matrix equality,

555, 557
informative prior, 699
informative prior density, 701–703
initial conditions, 769, 948
Inkmann, J., 760
innovation, 947
instrumental variable analysis, 268
Instrumental variable estimation.

See endogeneity and
instrumental variable
estimation

instrumental variable estimation
(labor supply equation),
272–273

instrumental variable in regression,
269–270

instrumental variables estimates
(consumption function),
288–289

instrumental variables estimator,
265–270

integral, 663
integrated hazard function, 904
integrated of order one, 983
integrated process and differencing,

982–983
intelligent draw, 665
intensity equation, 892
interaction effects, 201, 239,

739–741
interaction effects (loglinear model

for income), 235–239
interaction terms, 201, 239
interdependent, 356
intertemporal labor force

participation equation, 771
interval estimate, 1095
interval estimation, 91, 115–120,

705, 1100–1102
intrinsic linearity, 206
intrinsically linear equation, 205
intrinsically linear models,

205–207
intrinsically linear regression, 206

invariance, 353, 561
invariance property, 205
invariant, 349
inverse function, 1054
inverse gamma distribution, 1064
inverse Gaussian (Wald)

distribution, 498
inverse matrix, 1030–1032
inverse Mills ratio, 876
inverse probability weighted (IPW)

estimator, 776, 778, 927
inverted gamma distribution, 699
inverted Wishart, 716
investment equation, 68–70
IPW estimator, 776, 778, 927
Irish, M., 731n9, 898n12, 904
iteration, 241, 242
iterative algorithm, 1135
IV analysis, 268
IV estimation. See endogeneity and

instrumental variable
estimation

IV estimator, 265–270, 282

J linear restrictions, 163
J test, 176–177, 180
jackknife technique, 314n15
Jackman, S., 769n34, 771
Jacobian, 229, 589, 1054
Jacobs, R., 213, 398, 402
Jaeger, D., 290
Jain, D., 811
Jakubson, G., 771
Jansen, E., 47n3
Jarque, C., 317, 886, 898n12
Jayatissa, W., 211n15
Jenkins, G., 950n5, 965n14
Jenkins, S., 793
Jennrich, R. I., 221n2
Jensen, M., 602n20
Jensen’s inequality, 1059, 1114
Job Training Partnership Act

(JTPA), 261
Jobson, J., 320n24
Johansen, S., 1004, 1007
Johanssen, P., 860
Johansson, E., 543
Johnson, N., 732n11, 846, 861,

876n3, 913n25, 1059n1,
1064n3

Johnson, R., 133, 193, 339
Johnson, S., 234n6, 320n25, 419n19,

727n15, 1122
Johnston, J., 245, 368n42, 1127n8
joint distribution, 1070–1074
joint distribution function, 1070

joint modeling (pair of event
counts), 478–479

joint posterior distribution, 700
jointly dependent or

endogenous, 356
Jondrow, J., 881
Jones, A., 213, 262, 398, 402, 737,

738, 775, 776, 834, 835, 838,
924, 927

Jones, J., 770
Joreskog, K., 603n21, 1129n1,

1143n23, 1147n25
Jorgenson, D., 187, 223, 271,

347n20, 351n25, 351n26,
352n28, 352n29

JTPA, 261
Judd, K., 1129n2, 1133n7
Judge, C., 490n3
Judge, G., 105n3, 132, 226, 231n4,

306n5, 336n13, 337n14,
374n49, 413n13, 415n14,
419n19, 698n3, 703n9, 727n5,
972n19, 1088n1, 1137n15,
1141

Jung, B., 617
Juselius, K., 1007

k class of estimators, 369
Kakwani, N., 336n12
Kalbfleisch, J., 900, 902n15, 905,

907, 908, 910
Kamlich, R., 217
Kang, H., 986n5
Kao, C., 450, 451, 1011
Kaplan, E., 910
Kay, R., 741
Keane, M., 292n13, 292n14, 668n7,

668n8, 756n27, 771, 793n42,
813, 923

Kelejian, H., 432
Kemp, A., 1059n1
Kenkel, D., 923
Kennan, J., 905, 911
Kennedy, W., 1129n2
Kerman, S., 332n3
kernel density estimation, 485–487
kernel density estimator, 245, 1091

income, 236
least squares residuals, 113

kernel density methods, 482
kernel function, 253–254
kernel weighted regression

estimator, 254
kernels for density estimation, 487
Keuzenkamp, H., 46n2



Greene-2140242 book June 1, 2011 15:21

Index 1223

Keynes’s consumption function,
44–45, 53–54

Khinchine’s weak law of large
numbers, 497, 1110

Kiefer, N., 317, 782n39, 902n15, 905,
908, 910, 911

Kim, I., 997
Kingdon, G., 627
kitchen sink regression, 179
Kiviet, J., 345n16, 440, 536n13, 537n15
Kleibergen, F., 289n10, 290, 294
Kleibergen’s method, 375
Kleidon, A., 456
Klein, L., 42, 372
Klein, R., 483–484
Klein’s model I, 372
Klepper, S., 282n6
KLIC, 575
Klugman, S., 476
Kmenta, J., 202, 207, 323, 338n15,

352n29, 593, 601, 602, 606,
657n3, 1127n9

Knapp, L., 754n26
Knight, F., 879
knots, 199
Kobayashi, M., 211
Koenker, R., 111, 243n10, 244,

245n12, 246, 316, 493
Koh, W., 431
Kolmogorov’s strong law of large

numbers, 1111
Koolman, X., 775, 927
Koop, G., 89–90, 182, 185, 218–186,

665n5, 686, 696, 714, 716,
1088n1

Kotz, S., 732n11, 846, 861, 913n25,
1059n1

KPSS test of stationarity, 998–999
Kraft, D., 980
Krailo, M., 763n30
Kreuger, A., 43, 55, 259, 261, 264,

284, 291
Krinsky, I., 353n31, 649, 650, 789
Krinsky and Robb technique,

649–651
Krishnan, T., 1144
Kronecker product, 334, 675,

1034–1035
Kroner, K., 973
Krotzis, H. M., 179
Kruskal’s theorem, 327
Kuersteiner, G., 768, 901
Kuh, E., 130, 140, 141
Kulasi, F., 450
Kullback-Leibler information

criterion (KLIC), 575

Kumbhakar, S., 344, 633, 879n7, 883
kurtosis, 1058, 1089
Kwiatkowski, D., 998
Kyriazidou, E., 770, 901, 924,

926, 933

labor force participation model,
723–724, 755

labor supply, 914, 918–919
labor supply model, 272–273,

276–277, 748–749
lack of invariance, 173
LAD estimator/estimation,

243–246
Cobb-Douglas production

function, 245–246
computational complexity, 900
least squares, compared, 111–112
Powell’s censored LAD

estimator, 483
quantile regression, 481–482

Lagrange multiplier statistic,
1140–1141. See also
Lagrange multiplier test

GMM estimation, 521, 522
limiting distribution, 570
nonlinear regression model, 231
overdispersion, 845–846
SUR model, 605
zero correlation, 782

Lagrange multiplier test, 316. See
also Lagrange multiplier
statistic

autocorrelation, 962, 964
groupwise heteroscedasticity, 323
hypothesis testing, 171, 229,

230, 744
MLE, 569–570, 591
random effects, 416
SUR model, 337

Lagrangean problem, 124, 202
Lahiri, K., 384n2
Laird, N., 854, 1144, 1146
Laisney, F., 733
LaLonde, R., 195, 928, 935
Lambert, D., 629, 861, 863
Lancaster, T., 626, 628, 659, 696,

731n9, 761, 898n12, 902n15,
905, 908, 1088n1

Land, K., 692n10
Landers, A., 135n16
Landwehr, J., 770
large sample distribution theory,

1106–1129
asymptotic distribution,

1124–1128

asymptotic expectations,
1127–1128

central limit theorem, 1118–1123
convergence in distribution, 1116
convergence in probability,

1107–1110
convergence of functions,

1113–1114
convergence to a random

variable, 1114–1115
delta method, 1123–1124
law of large numbers, 1110–1113
limiting distribution, 1116–1118
sequence/order of sequence,

1128–1129
large sample properties, 103–115
large-sample test, 167–171
latent class linear regression

model, 632
latent class modeling, 628–638
latent class models, 690–692
latent regression model, 726–727
latent roots, 1037
latent variable, 888
latent variable problem, 283n7
latent vector, 1037
Lau, L., 187, 223, 347n20, 351n26,

352n29
Lauer, J., 882
law of iterated expectations, 1075
law of large numbers, 1110–1113
Lawless, J., 910
Layson, K., 233n5
leading term approximation, 1128
Leamer, E., 182, 282n6, 696n2,

703n9, 1088n1
least absolute deviations

estimation. See LAD
estimator/estimation

least simulated sum of squares, 644
least simulated sum of squares

estimates of production
function model, 678–679

least squares, 67–87
least squares attenuation, 139,

280–282
least squares coefficient vector,

67–68
least squares discrepancy, 157–159
least squares dummy variable

(LSDV) model, 400
least squares estimator/estimation,

91–147
assumptions of linear regression

model, 92
asymptotic distribution, 108–109



Greene-2140242 book June 1, 2011 15:21

1224 Index

least squares estimator/estimation
(continued)

asymptotic efficiency, 109–110
asymptotic normality,

105–107
confidence interval, 116–120
consistency, 103–105, 107–108
Cramér-Rao bound, 113, 114
data imputation, 135–137
data problems, 128–142
delta method, 108–109
finite sample properties,

94–103
fixed effects model, 400–402
forecasting, 127–128
Gauss-Markov theorem, 100,

101, 114
inclusion of irrelevant

variables, 98
influential observations,

140–141
interval estimation, 115–120
large sample properties, 103–115
measurement error, 137–139
minimum means squared error

predictor, 93, 94
minimum variance linear

unbiased estimation, 94
missing values, 134–137
MLE, 113–115
multicollinearity, 129–131
omission of relevant variables,

96–98
outliers, 141–142
overview, 92
pooled regression model,

389–390
population orthagonality

conditions, 92–93
prediction, 120–127
pretest estimation, 131–132
principal components, 132–134
random effects model, 412–413
serial correlation, 958–961
smearing, 265
stochastic regressors, 100–101
system method of estimation, 370
unbiased estimation, 95–96
variance of least squares

estimator, 98–99, 101–102
least squares normal equation, 68
least squares problem, 1027–1029,

1032, 1134
least squares regression, 66–72

algebraic aspects, 70–71
investment equation, 68–70

least squares coefficient vector,
67–68

projection, 71–72
least variance ratio estimator, 368
LeCam, L., 560n3
Lechner, M., 691, 733, 746,

760, 793
L’Ecuyer, P., 646
Lee, K., 260, 462
Lee, L., 384n2, 477, 845, 898n12
Lee, M., 384n2, 900n13
Leff, N., 89
left truncation, 852
Leite, P., 119n11
Lerman, S., 741, 750
LeRoy, P., 355n34
Levi, M., 282n6
Levin, A., 450, 1011
Levinsohn, J., 643, 811, 822
Levitt, S., 293
Lewbel, A., 482, 770
Lewis, H., 914n26
Li, M., 833
Li, P., 479
Li, Q., 255, 430, 484n2, 1091
Li, W., 970n16
Liang, P., 756n27
Liapounov central limit

theorem, 1122
life cycle consumption, 495–496
life expectancy, 214
likelihood equation, 553, 557, 731
likelihood function, 474,

549, 1098
likelihood inequality, 558
likelihood ratio, 566
likelihood ratio index, 573, 741
likelihood ratio statistic, 338,

520, 604
likelihood ratio test, 337,

566–567, 744
Lilien, D., 970, 972
LIMDEP/NLOGIT, 682
limited dependent variables,

873–942. See also
microeconometric methods

limited information estimator, 366
limited information maximum

likelihood (LIML)
estimator, 367, 368,
607–608

limited information two-step
maximum likelihood
approach, 810

limiting distribution, 266, 1063,
1116–1118

limiting mean and variance, 1117
limiting normal distribution

function, 1123
set of functions, 1124

LIML estimator, 367, 368,
607–608

Lin, C., 450, 1011
Lindeberg-Feller central limit

theorem, 106, 1119
Lindeberg-Levy central limit

theorem, 497, 502, 559,
1119, 1120

line search, 1135, 1136
linear approximation, 1047
linear dependence/independence,

1022–1023
linear estimator, 99
linear independence, 64
linear instrumental variables

estimation, 292
linear least squares, 46
linear probability model, 727
linear random effects model,

614–616
linear regression and

homoscedasticity, 1077
linear regression model, 51–65. See

also regression modeling
assumptions, listed, 56
classical regression model, 65
data generation, 63
exogeneity of independent

variables, 56
full rank, 59–60
generic form, 52
heteroscedasticity, 62
homoscedasticity, 62
how used, 52, 54
independence, 64
linearity, 55–58
MLE, 608–611
normality, 63–64
spherical disturbance, 61–63
zero overall mean assumption,

60–61
linear Taylor series approach, 108
linear unbiased estimator, 94
linear unobserved effects

model, 421
linearity, 55–58
linearized regression model,

240–242
linearly transformed regression,

86–87
Ling, S., 970n16
Little, R., 134



Greene-2140242 book June 1, 2011 15:21

Index 1225

Little, S., 741
Liu, T., 164n4
Ljung’s refinement (Q test), 963
LM statistic. See Lagrange

multiplier statistic
LM test. See Lagrange multiplier

test
Lo, A., 43
local government expenditures,

543–546
local maximum, 1050
local optimum, 1050
locally weighted smoothed

regression estimator, 253
loess estimator, 253
Loeve, M., 1120
log-likelihood function, 476, 550,

557, 610, 635
log-odds, 804
log-quadratic cost function, 205
logistic distribution, 1065
logistic kernel, 253
logistic probability model, 580
logit model

basic form, 728
conditional, 770, 806–807
fixed effects, 766–767
generalized mixed, 812–813
mixed, 811–812
multinomial, 803–806
nested, 808–810
structural break, 745

loglinear conditional mean, 609
loglinear model, 57, 200, 236, 843
loglinear regression model,

608–609
lognormal mean, 667
Long, S., 825n8, 831
long run elasticities, 650
long-run elasticity, 462
long-run marginal propensity to

consume, 172–173
long-run multiplier, 462, 463
longitudinal data sets. See models

for panel data
Longley, J., 130
loss function, 705
Louviere, J., 801, 809n5
Lovell, K., 164n4, 352n29, 873, 879,

879n7, 880, 881, 883
Lovell, M., 73n3
Low, S., 742, 750, 791, 920
lower triangular matrix, 1013
lowess estimator, 253
LSDV model, 400
Lucas, R., 349n23, 1008

M estimator, 489, 492, 583
M-H algorithm, 717, 718
MA(1) process, 950
Maassen van den Brink, H., 827,

835, 839
MacKinlay, A., 43
MacKinnon, J., 175, 176, 221n2, 225,

226, 229, 256, 276, 288,
313n11, 314, 334n7, 358n37,
367, 369, 489, 490, 493,
508n3, 534, 555, 561, 592,
598, 607, 652, 653, 744,
753n25, 754, 954, 956, 958,
967, 976, 983n2, 986n3

macroeconometric methods,
943–1012

nonstationary data. See
nonstationary data

serial correlation. See serial
correlation

macroeconometrics, 43
MaCurdy, T., 539, 727n5, 761, 771
Maddala, G., 135n17, 384n2,

415n14, 416n16, 418, 450,
463, 626, 698n3, 723, 729n6,
732n10, 741n14, 761, 786,
791, 810, 885n9, 898, 913n25,
919, 987n7, 997, 1011,
1059n1, 1117n3, 1127n6

Madigan, D., 181
magazine prices, 766–767
Magee, L., 833
Magnac, T., 770
Magnus, J., 46n2, 456
major derogatory reports (MDRs),

852–853, 864
Malinvaud, E., 221n2, 505, 511n8
Maloney, W., 388
Mandy, D., 344
Mankiw, G., 520
Mann, H., 953, 988
Manpower Development and

Training Act (MDTA), 196
Manski, C., 509, 723, 750, 770,

912n24, 932, 933n39
Manski’s maximum score

estimator, 770
MAR, 135
Marcus, A., 830
marginal and conditional normal

distributions, 1081–1082
marginal distribution, 1070
marginal effect, 201, 730
marginal effects, 733–734
marginal probability density,

1070

marginal propensity to consume
(MPC), 172–173, 704

Mariano, R., 369, 371
Mariel boatlift, 197–198
market equilibrium model, 354
Markov chain, 646
Markov-Chain Monte Carlo

(MCMC), 682, 710
Markov’s inequality, 1108
Markov’s strong law of large

numbers, 1112
Marsaglia, G., 647
Marsaglia-Bray generator, 647
Marsh, T., 456
Martingale difference central limit

theorem, 956
Martingale difference

sequence, 956
Martingale difference series, 516
Martingale sequence, 955
Martins, M., 932
Martins-Filho, C., 344
matching estimator, 935
Materov, I., 881
matrix. See also matrix algebra

asymptotic covariance, 266, 275,
302, 319, 1125

autocorrelation, 949
autocovariance, 949
block-diagonal, 1033
contiguity, 430
correlation, 1079, 1089
covariance, 297, 1079, 1089
defined, 1013
definite, 1041–1042, 1044–1046
dimensions, 1013
idempotent, 1019, 1042
information, 1100
inverse, 1030–1032
nonsingular, 1031
partitioned, 1032–1035
positive definite, 297
precision, 707
projection, 71
square, 1013
transpose, 1014
weighting, 305, 526
zero, 1014

matrix algebra, 1013–1055. See also
matrix

addition/subtraction, 1014–1015
basis vectors, 1021, 1023
characteristic roots/vectors,

1035, 1041
column space/rank, 1024, 1025
comparing matrices, 1046–1047



Greene-2140242 book June 1, 2011 15:21

1226 Index

matrix algebra (continued)
condition number, 1039
constrained optimization,

1052–1053
definite matrix and quadratic

forms, 1041–1042, 1044–1046
determinant, 1026–1027, 1040
diagonalization, 1037
differentiation, 1047–1048
equality of matrices, 1013–1014
factoring, 1042–1043
generalized inverse, 1043–1044
idempotent matrix, 1018–1019,

1042
idempotent quadratic forms,

1046
inverse matrix, 1030–1032
least squares problem,

1027–1029, 1032
linear dependence/

independence, 1022
multiplication, 1015–1017
notational conventions, 1015
optimization, 1050–1053
partitioned matrix, 1032–1035
powers, 1040–1042
quadratic forms, 1044–1047
rank, 1024–1026, 1037–1039
scalar multiplication, 1016
spectral decomposition, 1037
sums of values, 1017–1018
subspace, 1023
terminology, 1013
trace, 1039–1040
transformations, 1054–1055
transposition, 1014
vector multiplication, 1015
vector spaces, 1019–1020

matrix product rule, 1114
matrix inverse rule, 1114
matrix weighted average, 398
Matyas, L., 384n2, 508n3
maximum empirical likelihood

estimation, 480–481
maximum entropy estimator, 481
maximum likelihood, 349
maximum likelihood estimation

(MLE), 475, 549–642
asymptotic properties, 557–561
asymptotic variance, 560,

561–562
BHHH estimator, 562
binary choice, 779–781
cluster estimator, 586–588
duration models, 906–907
finite mixture model, 629–630

fixed effects in nonlinear models,
624–628

generalized regression model,
592–600

GMM estimation, 583
identification of parameters,

550–551
information matrix equality, 557
KLIC, 575
latent class modeling, 628–638
least squares estimator, 113–115
likelihood equation, 553, 557
likelihood function, 549
likelihood inequality, 558
likelihood ratio, 566
likelihood ratio statistic, 604
likelihood ratio test, 566–567
linear random effects model,

614–616
LM test, 569–570
M estimation, 583–584
nested random effects, 616–620
nonlinear regression models,

608–611
normal linear regression model,

588–592
panel data applications, 613–628,

635–638
principle of maximum likelihood,

551–553
properties, 553–563
pseudo-MLE, 587, 588
pseudo R2, 573
quadrature, 620–624
regularity conditions, 554–555
sandwich estimator, 585
simultaneous equations models,

607–608
SUR model, 600–607
two-step MLE, 576–582
Vuong’s test, 574–576
Wald test, 567–569

maximum score estimator, 770
maximum simulated likelihood

(MSL), 643, 645, 670,
671–693

binary choice, 691–692, 773
hierarchical linear model of

home prices, 680–681
random effects linear regression

model, 673
random parameters production

function model, 678–679
Mazodier, P., 427
Mazzeo, M., 630, 713, 734
MC2, 682, 710

McAleer, M., 174n8, 177n12, 970n16
MCAR, 134, 775
McCallum, B., 107n6, 283–284
McConnell, K., 850
McCoskey, S., 450, 1010, 1011
McCullagh, P., 845, 872
McCulloch, R., 696n2
McCullough, B., 127, 241, 970n16,

972n19, 978n28
McDonald, J., 244n11, 890
McFadden, D., 42, 489, 493, 508n3,

514, 521n10, 564, 643, 668,
723, 741, 801, 807, 808n4,
810, 812

McGuire, T., 349n23
McKelvey, W., 741n14, 827, 869
McKenzie, C., 741
McLachlan, G., 633, 635, 636, 1144
McLaren, K., 345n16, 347n19
MCMC, 682, 710
MDE, 288, 423, 461, 503–508
MDRs, 852–853, 864
MDTA, 196
Mead, R., 1134n12
mean, 1057, 1088
mean absolute error, 128
mean independence, 64, 386
mean independence

assumption, 925
mean square convergence, 108
mean squared error, 1097
mean value theorem, 517–518
mean vector, 1078–1079
mean vs. median, 656
measurement error, 137–139,

261, 395
measures of central tendency, 1057,

1088–1089
median, 1057, 1088
median regression, 243, 244
median v. mean, 656
Medical Expenditure Panel Survey

(MEPS), 384
Meier, P., 910
Melenberg, B., 244n11, 483, 886,

893, 898n12, 900
MELO estimator, 705
MEPS, 384
Merton, R., 972
Messer, K., 314n14
method of instrumental variables,

262. See also endogeneity
and instrumental variable
estimation

method of moment generating
functions, 499



Greene-2140242 book June 1, 2011 15:21

Index 1227

method of moments, 139, 476,
496–503. See also
generalized method of
moments (GMM) estimation

asymptotic properties, 501–503
basis of, 496
data generating process, 503
estimating parameters of

distributions, 497–501
random sampling, 497–501

method of moments estimator, 498
method of scoring, 595,

732, 1140
method of simulated moments, 824
methodological dilemma, 695
Metropolis-Hastings (M-H)

algorithm, 717, 718
Meyer, B., 911
MGF, 1069
Michigan Panel Study of Income

Dynamics (PSID), 384
microeconometric methods,

721–942
binary choice. See binary choice
censoring. See censoring
discrete choice, 721–872
duration models, 901–902
event counts. See models for

counts of events
limited dependent variables,

873–942
multinomial choice. See

multinomial choice
ordered choice models. See

ordered choice models
sample selection. See sample

selection
treatment effects, 928–938
truncation, 873–885

microeconometrics, 42–43
migration equation, 919–920
Miller, R., 182
Million, A., 49, 235, 385, 451, 580,

609, 611, 745, 775, 834,
847n14, 849, 860, 866, 867

Mills, T., 970n16
Min, C., 182
minimal sufficient statistic, 762
minimization, 287
minimum distance estimator

(MDE), 288, 423, 461,
503–508

minimum expected loss (MELO)
estimator, 705

minimum mean squared error
predictor, 93–94

minimum variance linear unbiased
estimation, 94

minimum variance linear unbiased
estimator (MVLUE), 1100

minimum variance
unbiasedness, 1097

minor, 1027
missing at random (MAR), 135
missing completely at random

(MCAR), 134, 775
missing data model, 1144
missing values, 134–137
Mittelhammer, R., 228, 231n4, 473,

514, 582n12, 698n3
mixed estimator, 703n10
mixed fixed growth model for

developing countries, 466
mixed-fixed model, 465
mixed linear model for wages,

686–689
mixed logit model, 811–812
mixed model, 679, 690
mixed (random parameters)

multinomial logit model,
717n19

mixtures of normal
distributions, 499

Mizon, G., 175, 345, 946
MLE. See maximum likelihood

estimation (MLE)
MLWin, 682, 695n1
MNL model, 810
MNP model, 810–811
mode, 1057
model building, 178–183
model selection, 180–183
models for counts of events, 722,

800, 842–869
censoring, 851, 853
doctor visits. See doctor visits
endogenous

variables/endogenous
participation, 866–869

fixed effects, 857–858
functional forms, 847–849
goodness of fit, 844–845
hurdle model, 864–866
negative binomial regression

model, 846–847
overdispersion, 845–846
panel data models, 855–861
Poisson regression model,

843–844
pooled estimator, 856–857
random effects, 858–861
truncation, 850–852

two-part models, 861–866
zero inflation models,

861–864, 865
models for panel data, 383–471

advantage of, 466
Anderson and Hsiao’s IV

estimator, 438–440
Arellano and Bond estimator,

440–449
autocorrelation, 428
balanced/unbalanced panels, 388
Bayesian estimation, 714–716
binary choice, 756–778, 784–785
censoring, 900–901
dynamic panel data models,

438–449, 461–466
endogeneity, 434–451
error components model, 411
event counts, 855–861
extensions, 387
FEVD, 405–408
fixed effects model. See fixed

effects model
general modeling framework,

385–386
Hausman and Taylor’s estimator,

434–437
incidental parameters

problem, 453
literature, 384n2
LSVD model, 400
MLE, 613–628, 635–638
model structure, 386–387
multinomial choice, 821–822
nonlinear regression, 451–455
nonspherical disturbances and

robust covariance
estimation, 425–429

nonstationary data, 450–451,
1010–1011

ordered choice models, 834–838
overview, 383
parameter heterogeneity,

456–466
pooled regression model. See

pooled regression model
random coefficients model,

457–460
random effects model. See

random effects model
sample selection, 923
spatial correlation, 429–434
studies, 384
well-behaved panel data,

388–389
modified zero-order regression, 135



Greene-2140242 book June 1, 2011 15:21

1228 Index

Moffitt, R., 727n5, 813, 890,
898, 923

Mohanty, M., 920
moment, 1078–1079

censored normal variable, 887
central, 499, 1058
conditional moment tests, 900
derivatives of log-likelihood, 555
incidentally truncated

distribution, 913
linear regression, 1076
method of moments. See method

of moments
population moment

equation, 523
truncated distribution, 875–877
uncentered, 497

moment equations, 267, 278, 498
moment-free LIML estimator, 290
moment generating function

(MGF), 1069
Mona Lisa (da Vinci), 149
money demand equation, 599–600,

943
Monfort, A., 174n8, 175n10,

582n12, 585, 668n7, 671,
752n24, 898n12, 978

Monte Carlo integration,
663–673

Monte Carlo studies, 655–661
incidental parameters problem,

659–661
least squares vs. LAD, 111–112
mean vs. median, 656–657
test statistic, 657–658

Moon, H., 450
Moore-Penrose generalized

inverse, 277, 1043–1044
Moran, P., 431
Moro, D., 345n16
Moschino, G., 345n16
most powerful test, 1103
Mouchart, M., 902n15
Mount, T., 418, 1064n5
mover-stayer model for migration,

919–920
movie box office receipts, 192
movie ratings, 826
movie success, 133
moving average form, 951
moving average process, 950
MPC, 172–173, 704
Mroz, T., 156, 748, 918
MSL. See maximum simulated

likelihood (MSL)
Muellbauer, J., 347n19, 351n26

Mullahy, J., 483, 727n5, 861, 864,
865, 866

Muller, M., 647
multicollinearity, 91, 129–131
multinomial choice, 721–722,

801–824
aggregated market share data,

822–824
BLP random parameters model,

822–824
conditional logit model, 806–807
generalized mixed logit model,

812–813
IIA assumption, 807
mixed logit model, 811–812
multinomial logit model, 803–806
multinomial probit model,

810–811
nested logit model, 808–810
panel data, 821–822
stated choice experiment,

821–822
studies, 801
travel mode choice, 813–819
willingness to pay (WTP),

819–821
multinomial logit model, 803–806
multinomial probit model, 810–811
multiple correlation, 84
multiple equations models. See

systems of equations
multiple equations regression

model, 331
multiple imputation, 136–137
multiple linear regression model,

52. See also linear regression
model

multiple regression, 70
multiplicative heteroscedasticity,

320, 594–597, 898
multivariate distribution,

1078–1080
multivariate Lindeberg-Fuller

central limit theorem, 1123
multivariate Lindeberg-Levy

central limit theorem, 1122
multivariate normal distribution,

1081–1087
multivariate normal population, 648
multivariate normal probability,

667–669
multivariate probit model, 792–795
multivariate regression model,

333, 347
multivariate standard normal

distribution, 1081

multivariate t distribution, 701
Mundlak, Y., 411n11, 421, 422, 767,

838, 900
Mundlak’s approach, 421, 767
Munell’s production model for

gross state product, 458
Munkin, M., 477, 479, 928
Munnell, A., 330, 340, 619
Murdoch, J., 680
Murphy, K., 577, 750, 833, 894,

917n31
Murray, C., 213, 647
MVLUE, 1100

Nagin, D., 692n10, 754n26
Nair-Reichert, U., 330, 466
Nakamura, A., 888n10
Nakamura, M., 888n10
Nakosteen, R., 725, 919
National Institute of Standards and

Technology (NIST), 257
National Longitudinal Survey of

Labor Market Experience
(NLS), 384

natural experiment, 197–198
natural experiments literature,

272, 294
Navy recruits, 830
NB1 form, 848
NB2 form, 848
NBP model, 848
nearest neighbor, 252
negative autocorrelation (Phillips

curve), 944
negative binomial model, 479
negative binomial regression

model, 846–847
negative duration dependence, 905
Negbin 1 (NB1) form, 848
Negbin 2 (NB2) form, 848
Negbin P (NBP) model, 848
neighborhood, 253
Nelder, J., 845, 872, 1134n12
Nelson, C., 335n9, 986n5, 987n6
Nelson, F., 888n10, 898, 898n12
Nelson, R., 244n11
Nerlove, M., 147, 202, 204, 251, 349,

384n2, 413n12, 418, 419n19,
462, 537n14, 803, 941, 963n13

nested logit model, 808–810
nested models, 150
nested random effects, 616–620
Netflix, 824
netting out, 74
Neumann, G., 898n12
Newbold, P., 984, 985, 986



Greene-2140242 book June 1, 2011 15:21

Index 1229

Newey, W., 410, 489, 493, 508n3,
514, 520, 521, 521n10,
542n18, 545, 564, 627n28,
747, 898n12, 900n14, 912n24,
932, 960

Newey-West autocorrelation
consistent covariance
estimator, 960

Newey-West autocorrelation robust
covariance matrix, 961

Newey-West estimator, 518
Newton’s method, 241, 595,

611–612, 1138, 1146
Neyman, J., 628, 659, 761,

762n29, 901
Neyman-Pearson methodology, 151
Nickell, S., 418n17, 536n13
Nijman, T., 775, 776, 923, 925
NIST, 257
NLS, 384
NMAR, 135
Nobel Prize, 42
nominal size, 178
noncentral chi-squared distribution,

567n8, 1062
noncentral F distribution, 1063
nonconstructive test, 316
nonhomogeneous equation system,

1030, 1032
noninformative prior, 699
nonlinear consumption function,

231–233
nonlinear cost function, 202–205
nonlinear instrumental variable

estimator, 529
nonlinear instrumental variables

estimation, 286–288
nonlinear least squares, 242, 610
nonlinear least squares criterion

function, 227
nonlinear least squares estimator,

224–225, 240–242
nonlinear model with random

effects, 661–663
nonlinear panel data regression

model, 451–455
nonlinear random parameter

models, 681–682
nonlinear regression model,

222–242
applications, 231–239
assumptions, 222–223
asymptotic normality, 228
Box-Cox transformation,

233–235
consistency, 227

defined, 226
F statistic, 230
first-order conditions, 225–226
general form, 222
hypothesis testing/parametric

restrictions, 229–231
interaction effects (loglinear

model for income), 235–239
Lagrange multiplier statistic, 231
large sample properties, 226–229
nonlinear consumption function,

231–233
nonlinear least squares, 242
nonlinear least squares estimator,

224–225, 240–242
Wald statistic, 230

nonlinear restrictions, 171–173, 207
nonlinear systems, 358n37
nonlinear systems of equations,

345–346
nonlinearity, 202–205
nonnegative definite matrix,

1045–1046
nonnested model, 150, 174–175,

574, 863
nonnormal disturbance, 167–171
nonparametric average cost

function, 254
nonparametric bootstrap, 652
nonparametric estimation, 484–487
nonparametric regression,

252–255
nonrandom sampling, 261
nonresponse (GSOEP sample), 777
nonresponse bias, 775
nonsample information, 366
nonsingular matrix, 1031
nonspherical disturbances and

robust covariance
estimation, 425–429

nonstationary data, 982–1011
ARIMA model, 983
bounds test, 1004
cointegration. See cointegration
Dickey-Fuller tests, 988–997
integrated process and

differencing, 982–984
KPSS test of stationarity, 998–999
panel data, 450–451, 1010–1011
random walk, 984–986
trend stationary process, 986
unit root. See unit root

nonstationary panel data, 450–451,
1010–1011

nonstationary series, 983
nonstochastic regressor, 63

nonzero conditional mean of the
disturbances, 60

normal distribution, 553, 1059–1060
normal equation, 73
normal-gamma prior, 703, 715
normality, 63–64
normalization, 359, 551
normally distributed, 63
not missing at random (NMAR),

135
notational conventions, 49–50, 56
null hypothesis, 149–150
null matrix, 1014
numerical examples, 49
Nymoen, R., 47n3

Oakes, D., 905n17
Oaxaca and Blinder

decomposition, 119
Oberhofer, W., 323, 338n15, 593,

601, 602, 606
Oberhofer-Kmenta conditions, 601,

602, 603n22
observationally equivalent, 362
Obstfeld, M., 508n3, 534
Ohtani, K., 211, 315n16, 335n10
OLS estimator, 290
Olsen, R., 561, 890
Olsen’s reparameterization, 890
omission of relevant variables,

96–98
omitted parameter heterogeneity,

260–261
omitted variable, 97, 259
omitted variable bias, 259
omitted variable formula, 96
omitted variables, 753
one-sided test, 156
one-sided test about a mean, 1106
one-step maximum likelihood

estimator, 1140
one-to-one function, 1054
open form integral, 663
OPG estimator, 562
optimal instruments, 272n1
optimal linear predictor, 93
optimal weighting matrix, 505
optimization, 1050–1053,

1133–1146. See also
computation and
optimization

optimization conditions, 330–331
Orcutt, G., 892, 966
Ord, S., 174n7, 500n1, 554, 555, 557,

1059n1, 1099
order condition, 365, 516



Greene-2140242 book June 1, 2011 15:21

1230 Index

order less than nδ , 1129
order nδ , 1128
ordered choice models, 722, 800,

824–842
anchoring vignettes, 842
applications, 827
bivariate ordered probit model,

832–833
DIF, 841, 842
essential ingredient, 827
extensions of ordered probit

model, 838–842
generalized, 839–840
ordered probit model, 827–831
ordered probit model with fixed

effects, 834–835
ordered probit model with

random effects, 835–838
panel data applications, 834–838
parallel regression assumption,

831
specification test, 831–832

Orea, C., 633
Orme, C., 976
orthogonal partitioned

regression, 73
orthogonal regression, 76
orthogonal vector, 1028
orthogonality condition, 225, 226,

278, 523
orthonormal quadratic form, 1083
Osterwald-Lenum, M., 1007
outer product of gradients (OPG)

estimator, 562
outliers, 141–142
overdispersion, 845–846
overdispersion parameter, 479
overidentification, 278–279
overidentification of labor supply

equation, 279
overidentified, 207, 524, 527
overidentified cases, 506
overidentifying restrictions,

229, 519
overview of book. See textbook

Pagan, A., 316, 338, 344, 388, 416,
457n27, 484n2, 487, 488, 493,
508n3, 601, 604, 615, 687,
898n12, 900n13, 973, 1091

paired bootstrap, 652
Pakes, A., 643, 793n42, 811, 822
Panattoni, L., 972n19, 976n24
panel data binary choice models,

756–778

panel data literature, 384n2
panel data random effects

estimator, 768
panel data sets, 1088. See models

for panel data
Papell, D., 450
paradigm of econometrics, 41–43
parameter heterogeneity, 456–466,

773–774. See also random
parameter models

parameter space, 150, 474,
489–490, 564

parametric bootstrap, 652
parametric estimation and

inference, 474–479, 483
parametric hazard function, 906
parametric models, 298
Parsa, R., 476
partial correlation, 78–79
partial correlation coefficient, 76
partial differences, 965
partial effects, 386
partial fixed effects model, 465
partial likelihood estimator, 910
partial regression, 72–79
partial regression coefficient, 74
partialing out, 74
partially censored distribution, 886
partially linear regression, 250–252
partially linear translog cost

function, 251–252
participation equation, 892
partitioned matrix, 1032–1035
partitioned regression, 72–75
Passmore, W., 503
path diagram, 51
Patterson, K., 473n1
PCGets computer program, 179
pdf, 1056
Peacock, B., 1059n1
Pedroni, P., 450, 1010, 1011
Peel, D., 633, 635, 636
Penn World Tables, 383
percentile method, 653
perfect multicollinearity, 193
period, 646
Perron, P., 995
persistence, 769
Persistence of Memory (Dali), 149
personalized system of instruction

(PSI), 630, 734–736
Pesaran, H., 174n8, 176, 384n2, 1004
Pesaran, M., 174n9, 260, 330, 450,

462, 463, 464, 465, 1010, 1011
Petersen, D., 898
Petersen, T., 903n16

Phillips, A., 944
Phillips, G., 345n16
Phillips, P., 368, 450, 985, 986,

995, 997
Phillips curve, 944–945
Phillips-Perron test, 997
piecewise continuous, 199
piecewise linear regression, 198–200
Pike, M., 763n30
pivotal quantity, 1101
pivotal statistic, 116
placebo effect, 196
plan of the book, 47–48
Ploberger, W., 687
Plosser, C., 987n6
point estimate, 1095
point estimation, 91, 704–705,

1095–1100
Poirier, D., 199n4, 473, 665n5,

696n2, 921n32, 1059n1,
1088n1

Poisson distribution, 648, 1066
Poisson-normal mixture model, 867
Poisson regression model, 843–844
Poisson regression model with

random effects, 673
Polachek, S., 217
Pollard, D., 793n42
pooled model, 339–340
pooled regression model, 389–399

between-groups estimator, 398
binary choice, 757–758
clustering and stratification,

392–394
estimation with first differences,

395–396
event counts, 856–857
least squares estimation, 389–390
robust covariance matrix

estimation, 390–392
robust estimation using group

means, 394–395
within-groups estimator, 397

population averaged model, 389
population moment equation, 523
population orthogonality

conditions, 92–93
population quantity, 66
population regression, 66
population regression equation, 52
positive definite matrix, 297
positive duration dependence, 905
posterior density, 697
posterior density function, 704
posterior mean, 708
Potter, S., 182



Greene-2140242 book June 1, 2011 15:21

Index 1231

Powell, A., 349n23
Powell, J., 244n11, 248n14, 483, 900,

900n14, 912n24
Powell, M., 1143n23
Powell’s censored LAD

estimator, 483
power of the test, 151, 657, 1103
powers (matrix), 1040–1042
practice of econometrics, 43–44
Prais, S., 308n8, 598, 966, 967
Prais and Winsten estimator, 967
Prais and Winsten FGLS

estimator, 600
Prais and Winsten

transformation, 598
precision matrix, 707
precision parameter, 561
predetermined variable, 357, 360
predicting movie success, 133
prediction, 120–127
prediction criterion, 84, 180
prediction error, 121
prediction interval, 121
prediction variance, 121
predictive density, 707
predictive test, 210
predictive test of model stability,

214–215
Prentice, R., 627n27, 900, 902n15,

905, 907, 908, 910
Press, S., 803
Press, W., 646, 648, 1043, 1129n2,

1132, 1133, 1134n11
pretest estimation, 131–132
pretest estimator, 132
principal components, 132–134
principal minor, 1027n4
principle of maximum likelihood,

551–553
prior

conjugate, 701, 702
hierarchical, 715
improper, 715
informative, 699
noninformative, 699
normal-gamma, 703, 715
uniform, 714
uniform-inverse gamma, 714

prior beliefs, 697
prior distribution, 699
prior odds ratio, 706
prior probabilities, 706
private capital coefficient, 685
probability and distribution theory,

1055–1087
analysis of variance, 1077

beta distribution, 1065
bivariate normal distribution,

1077–1078
chi-squared distribution,

1061–1062
classical normal linear regression

model, 1082–1083
conditioning in bivariate

distribution, 1074–1077
cumulative distribution function

(cdf), 1056
discrete random variable, 1066
distribution of function of

bivariate random variables,
1072–1074

distribution of function of
random variable, 1066–1068

expectations of random variable,
1057–1059

exponential distribution,
1064–1065

F distribution, 1061, 1085
full rank quadratic form,

1085–1086
gamma distribution, 1064–1065
idempotent quadratic forms,

1083–1085
independence of linear and

quadratic forms, 1086–1087
joint distribution, 1070–1074
large degrees of freedom,

1063–1064
linear functions of normal

regression, 1083
logistic distribution, 1065
marginal and conditional normal

distributions, 1081–1082
marginal distribution, 1070
moments, 1078–1079
multivariate distribution,

1078–1080
multivariate normal distribution,

1081–1087
normal distribution, 1059–1060
probability distribution,

1055–1056
quadratic forms, 1083–1085
random variable, 1055
representations of a probability

distribution, 1068–1069
t distribution, 1062
Wishart distribution, 1065

probability density function (pdf),
1056

probability distribution, 1055–1056
probability limits, 107, 497, 1114

probability model, 734–736
probit model, 482, 484

basic form, 728
bivariate, 778–792
bivariate ordered, 832–833
Gibbs sampler, 713
HOPIT model, 840
multinomial, 810–811
multivariate, 792–795
ordered, 827–831
prediction, 743
robust covariance matrix

estimation, 733
problem of endogeneity, 264
problem of identification, 357,

361–366
PROC MIXED package, 682
product copula, 478
product innovation, 793–795
product limit estimator, 910
product rule, 1114
production function, 164–166
production function model, 678–679
profit maximization, 348
projection, 71–72, 422, 1029
projection matrix, 71
propensity score matching, 934–936
proportional hazard model,

910, 911
proxy variable, 261
proxy variables, 282–286, 761
Prucha, I., 432
pseudo differences, 965
pseudo-log-likelihood function, 585
pseudo maximum likelihood

estimator, 677
pseudo-MLE, 587, 588, 977–978
pseudo R2, 573
pseudo-random number generator,

645–646
pseudoinverse, 1043
pseudoregressors, 224, 226
PSI, 630, 734–736
PSID, 384
public capital, 340–344
Pudney, S., 827, 834n10, 839, 840
pure space recursive model, 431
Puterman, M., 692n10
Pythagorean theorem, 1028

Q test, 963, 964
QMLE, 732, 733
QR model, 723
quadratic approximation, 1047
quadratic hill-climbing

method, 1138



Greene-2140242 book June 1, 2011 15:21

1232 Index

quadrature
approximating integrals,

1132–1133
bivariate normal

probabilities, 667
Gauss-Hermite, 622, 623, 1133
Gauss-Laguerre, 1133
Gaussian, 1133
MLE, 620–624

quadrature abscissa, 1133
quadrature weight, 1133
qualification indices, 216
qualitative response (QR)

model, 723
Quandt, R., 221n2, 499, 510n6,

1133n7, 1134, 1136, 1137,
1138, 1139n16, 1142n21,
1143n23

quantile regression, 244, 482
quantile regression model, 247–250
quasi differences, 965
quasi-maximum likelihood

estimator (QMLE), 732, 733
quasi-Newton method, 1139
Quester, A., 886, 891

R2, 82–85, 179
Raftery, A., 181
Raj, B., 684n2, 652
Ramaswamy, V., 633, 692n10
Ramsey, J., 499, 510n6
Ramsey’s RESET test, 177–178
random coefficients, 811
random coefficients model, 457–460
random draws, 665–667
random effects geometric

regression model, 624
random effects in nonlinear model,

661–663
random effects linear regression

model, 673
random effects model, 387, 410–425

binary choice, 758–760
Chamberlain’s approach,

421–424
cluster (and panel) robust

covariance matrix, 428–429
error components model, 411
event counts, 858–861
FGLS, 414–416
generalized least squares,

413–414
Hausman test, 419–420
heteroscedasticity, 427–428
least squares estimation, 412–413

Mundlak’s approach, 420–421
nonlinear regression, 454–455
simulation-based estimation,

669–673
testing for random effects,

416–419
random effects negative binomial

(RENB) model, 859
random number generation,

645–649
random parameter models, 383,

387, 456–466, 674–692
Bayesian estimation, 716–718
discrete distributions, 690–692
hierarchical linear models,

679–681
individual parameter estimates,

682–689
latent class models, 690–692
linear regression model,

674–679
nonlinear models, 681–682

random parameters logit (RPL)
model, 811–812

random parameters wage equation,
676–677

random sample, 497, 1088
random utility, 42, 721, 723
random utility models, 724–725
random variable, 1055
random walk, 955, 986
random walk with drift, 982, 986
rank condition, 365, 516
rank two correction, 1139
rank two update, 1139
Rao, A., 463
Rao, C., 560, 627n27, 1122, 1132,

1140n19
Rao, P., 308, 657n3, 967
Rasch, G., 762
rating schemes, 824
ratio rule, 1114
real estate sales, 432–434
recursive model, 359, 785-789
reduced form, 356, 359
reduced-form disturbances, 361
reduced form equation, 272, 283
regional production model (public

capital), 340–344
regressand, 52
regression, 61, 1074. See also

regression modeling
bivariate, 69
difference in differences,

195–198
heteroscedastic, 309

instrumental variable, and,
269–270

intrinsically linear, 206–207
kitchen sink, 179
linearly transformed, 86–87
median, 243–244
modified zero-order, 135
multiple, 70
nonparametric, 252–255
orthogonal, 76
orthogonal partitioned, 73
partial, 72–79
partially linear, 250–252
partitioned, 72–76
piecewise linear, 198–200
pooled, 386
population, 66

regression discontinuity, 937–938
regression function, 52
regression modeling, 48

analysis of variance, 81–82
censored regression model,

888–890
classical normal linear regression

model, 1082–1083
functional form. See functional

form
generalized regression model.

See generalized regression
model and
heteroscedasticity

goodness of fit, 79–86
heteroscedastic regression

model, 308
hypothesis testing. See hypothesis

testing and model selection
latent regression model, 726–727
least squares estimation. See

Least squares estimation
least squares regression, 66–72
linear regression model. See

linear regression model
linearly transformed regression,

86–87
median regression, 243, 244
multivariate regression

model, 347
negative binomial regression

model, 846–847
nonlinear regression model. See

nonlinear regression model
nonparametric regression,

252–255
partial regression, 72–79
partially linear regression,

250–252



Greene-2140242 book June 1, 2011 15:21

Index 1233

partitioned regression, 72–76
Poisson regression model,

843–844
pooled regression model. See

pooled regression model
quantile regression model,

247–250
structural change, 208–215
SUR model. See seemingly

unrelated regression (SUR)
model

truncated regression model,
877–879

regression variance, 1077
regression with constant term, 75
regressor, 52
regular densities, 555–556
regularity conditions, 554–555
rejection region, 151, 1102
Renault, E., 752n24, 898n12
RENB model, 859
Renfro, C., 970n16, 972n19, 978n28,

1129n1
reservation wage, 42
RESET test, 177–178
residual, 66
residual correlation, 393
residual inclusion method, 868
residual maker, 71
residual variance, 1077
residual variance (regression), 1076
response, 195
restricted investment equation,

160–161
restricted least squares estimator,

161–162
restrictions, 366
returns to schooling, 437–438
Revankar, N., 245, 256, 334n8,

349n23
revealed preference data, 822
Revelt, D., 811, 822
reverse equation, 374
reverse regression, 216, 217
Rice, N., 262, 737, 738, 775, 776,

834, 835, 838, 924, 927
Rich, R., 43, 991, 993
Richard, J., 175, 357, 1008, 1009
Ridder, G., 536n13, 925
right censoring, 853
Rilstone, P., 132
Riphahn, R., 43, 49, 235, 385, 451,

580, 609, 611, 745, 775, 834,
847n14, 849, 860, 866, 867

risk set, 910
Rivers, D., 898n12

Robb, L., 353n31, 649, 650, 789, 833
Roberts, H., 216
Robertson, D., 462
Robins, J., 927
Robins, R., 970, 972
Robinson, C., 725n3
Robinson, P., 900n14
robust covariance matrix

estimation, 390–392, 732–733
robust estimation, 309, 394
robust estimator (wage equation),

316, 395
robust standard errors, 429
robustness to unknown

heteroscedasticity, 319
Rodgers, J., 1134n13
Rodriguez-Poo, J., 725n3, 733
Rogers, W., 111, 244
root mean squared error, 128
Rose, A., 450
Rose, J., 801, 812n6, 822
Rosen, H., 542n18, 545
Rosen, S., 725n3, 932n34
Rosenbaum, P., 935
Rosenblatt, D., 486
Rosett, R., 888n10
Rossi, P., 696n2, 801
rotating panel, 384
Rothenberg, T., 996–997
Rothschild, M., 970n16
Rothstein, J., 269
Rotnitzky, A., 927
row vector, 1013
Rowe, B., 746n20, 786n41
Roy’s identity, 224
RPL model, 811–812
RPL procedure, 682
RPM procedure, 682
Rubin, D., 134, 136, 696n2, 718, 854,

935, 1144, 1146
Rubin, H., 368n42, 375, 607, 988
Rubin’s causal model, 929
Runkle, D., 668n7, 756n27, 813, 923
Rupert, P., 272, 391
Ruud, P., 473n1, 475, 508n3, 668,

733, 752n24, 898n12, 956

Sala-i-Martin, X., 182, 183,
450, 1010

Salem, D., 1064n5
Salmon, M., 317
sample discrepancy, 154
sample information, 474
sample midrange, 1088
sample selection, 912–927

attrition, 926–927

bivariate distribution, 913
common effects, 924–926
labor supply, 914, 918–919
maximum likelihood estimation,

917–918
nonlinear models, 920–923
panel data applications, 923–927
regression, 913–916
treatment effects. See evaluation

of treatment effects
two-step estimation, 916–918

sample selection bias, 261, 775
sampling

continuous distributions, 647–648
discrete populations, 648–649
multivariate normal

population, 648
standard uniform population, 646

sampling distribution, 1091–1095
sampling distribution (least squares

estimator), 94–95
sampling theory estimator, 705
sampling variability, 1093
sampling variance, 98, 1095
sampling variance (two-variable

regression model), 99
sandwich estimator, 585, 733
Savin, E., 345n16, 573n10
Savin, N., 987n8
Saxonhouse, G., 460n30
scalar matrix, 1013
scalar multiplication, 1016
scaled log-likelihood function, 509
scatter diagram, 1089
scedastic function, 1075
Schimek, M., 253
Schipp, B., 345n16
Schmidt, P., 164n4, 193, 211, 332n3,

345n16, 369n43, 372n45,
399n5, 422n24, 442, 537, 539,
542, 543, 545, 801, 803, 873,
879, 880, 881, 883, 892,
898, 998

Schur product, 675
Schwarz criterion, 179, 180
Schwert, W., 973, 995
score test, 570
score vector, 557
Scott, E., 628, 659, 761,

762n29, 901
Seaks, T., 162, 192n1, 233n5
season of birth, 294
second derivatives matrix, 1048
second-generation random

coefficients model, 457n28
seed, 645



Greene-2140242 book June 1, 2011 15:21

1234 Index

seemingly unrelated generalized
regression model, 344–345

seemingly unrelated regression
(SUR) model, 332–344

assumptions, 332
basic form, 332
dynamic SUR model, 345n16
FGLS, 336
generalized least squares,

333–335
generalized SUR model, 344–345
GMM estimation, 531–532
identical regressors, 335
MLE, 600–607
pooled model, 339–340
specification test, 337–339
testing hypothesis, 336–337

Segerson, K., 347n19
Selden, T., 450, 1010
selection bias, 921
selection methods. See sample

selection
selection on unobservables, 776, 931
selectivity effect, 284
self-reported data, 135
self-selected data, 135
semilog equation, 190, 200
semilog market, 57
semiparametric, 103, 223
semiparametric estimation, 479–484
semiparametric models of

heterogeneity, 771–773
Sepanski, J., 771n35
serial correlation, 298, 943–981

analysis of time-series data,
946–949

AR(1) disturbance, 950–952,
966–967

ARCH model, 970–974
asymptotic results, 952–957
autocorrelation. See

autocorrelation
Box-Pierce test, 962–963
central limit theorem, 955–957
convergence of moments,

953–955
convergence to normality,

955–957
disturbance processes, 949–952
Durbin-Watson test, 963, 964
ergodicity, 954, 955
estimation when � known,

964–969
estimation when � unknown,

966–970
GARCH model, 973–977

GMM estimation, 961–962
lagged dependent variable,

969–970
least squares estimation, 958–961
LM test, 962, 964
Q test, 963, 964

Sevestre, P., 384n2
share equations, 352
Shaw, D., 850, 851, 874n2
Shea, J., 290
Shephard, R., 351
Shephard’s lemma, 351
Shetty, C., 1133n7
Shields, M., 827, 834, 834n10, 839,

840
Shin, Y., 450, 462, 998, 1010, 1011
short rank, 59
short rank matrix, 1025
shuffling, 646
sibling studies, 284
Sickles, R., 193, 211, 352n29, 456,

771n35, 883
Siegfried, J., 832, 833
significance level, 1103
significance of the regression, 166
significance test, 155
Silva, J., 176n11
Silver, J., 347n20
Silverman’s rule of thumb, 253
“Simple Message to

Autocorrelation Correctors:
Don’t, A” (Mizon), 946

simple-to-general approach to
model building, 178

simplex methods, 1134
simulated annealing, 1134
simulated log likehihood

function, 670
simulation-based estimation,

643–673
bootstrapping, 651–655
functions, 643
GHK simulator, 667–669
Halton sequences, 665–667
Krinsky and Robb technique,

649–651
Monte Carlo integration,

663–669
Monte Carlo studies, 655–661
MSL. See maximum simulated

likelihood (MSL)
overview, 644–645
random draws, 665–667
random effects in nonlinear

model, 661–663
random effects model, 669–673

random number generation,
645–649

simulation-based statistical
inference, 649–651

simultaneous equations bias, 260,
356n35

simultaneous equations models,
354–376

complete system of
equations, 356

GMM estimation, 533–536
Granger causality, 358
Klein’s model I, 372
LIML estimator, 367, 368
matrix form, 358
MLE, 607–608
notational conventions,

358–361
problem of identification,

361–366
single equation estimation and

inference, 366–369
structural form of model, 358
system methods of estimation,

369–374
systems of equations, 355–358
3SLS estimator, 371, 372
2SLS estimator, 367, 368
weak instruments, 374–376

Singer, B., 635, 766, 772,
902n15, 909

single index function, 454
singular value decomposition

(SVD), 1043
singularity of the disturbance

covariance matrix, 353
Siow, A., 706n14, 707
size of the test, 151, 657, 1103
skewness, 1058, 1089
Sklar, A., 477
Sklar’s theorem, 477
Slutsky theorem, 108, 281, 497, 512,

958, 1113
small T asymptotics, 402
smearing, 265
smearing estimator, 123
Smith, M., 477, 918
Smith, R., 260, 330, 451, 462, 463,

464, 465, 1011
smoothing functions, 253
smoothing techniques, 252
Snow, J., 268
Snyder, J., 727n5
sociodemographic differences, 433
software and replication, 49
Solow, R., 219, 220, 385n4



Greene-2140242 book June 1, 2011 15:21

Index 1235

Song, S., 431, 617
Sorbom, D., 1129n1
Spady, R., 483
spanning vector, 1023
spatial autoregression

coefficient, 430
spatial auto correlation, 429–434
spatial error correlation, 433
spatial lags, 433
specification error, 96, 846, 914
specification test, 148, 273–279

AR, 368n42
Hausman, 274–277, 419–420, 437
hypothesis testing, 177–178,

1106
moment restrictions, 520
ordered choice models, 831–832
overidentification, 278–279
SUR model, 337–339
Wu, 274–277

specificity, 657
Spector, L., 630, 713, 734
spectral decomposition

(matrix), 1037
spherical disturbance, 61–63, 298
spherical normal distribution, 1081
spline function, 199
square matrix, 1013
squeezing, 1143
Srivastava, K., 334
Srivastava, V., 332n2, 336n13
stabilizing transformation, 1118
Staiger, D., 272n1, 289n10, 290, 374
Stambaugh, R., 973
standard deviation, 1058, 1088
standard error, 102, 1095
standard error of the regression,

102
standard normal cumulative

distribution function,
1130–1131

standard normal distribution, 1060
standard uniform population, 646
starting values, 242
state dependence, 769
state effect, 392
stated choice experiment, 822
statewide productivity, 619–620
stationarity, 949

ergodic, 564
KPSS test, 998–999
strong, 953
weak, 953

statistic, 1092
statistical properties, 91
statistically independent, 64

statistically significant, 156
statistics. See estimation and

inference; probability and
distribution theory

steepest ascent, 1137–1138
Stegun, I., 502n2, 623, 647, 1129n2,

1131, 1132, 1133
Stengos, T., 782n40
step size, 1143
stepwise model building, 179
Stern, H., 696n2, 718
Stern, S., 132, 668n7
Stewart, M., 769n34
Stirling’s approximation, 1132
stochastic elements, 46
stochastic frontier model, 475–476,

664, 879–885
stochastic regressors, 100–101
stochastic volatility, 970
Stock, J., 181, 182, 272n1, 289n10,

290, 374, 996, 1003, 1004
Stone, R., 347n19
Stone’s expenditure system, 347
Strand, I., 850
Strang, G., 1036n7
stratification, 392–394
Strauss, J., 450
Strauss, R., 801, 803
streams as instruments, 268–269
Street, A., 213, 398, 402
strict exogeneity, 386
strike duration, 911–912
strong stationarity, 953
strongly exogenous, 358
structural change, 208–215

change in subset of
coefficients, 210

Chow test, 208n10, 210, 211
different parameter vectors,

208–209
example (gasoline market),

212–213
example (World Health Report),

213–214
insufficient observations, 209–210
predictive test of model stability,

214–215
unequal variances, 211

structural disturbances, 358
structural equation, 355
structural equation system, 272
structural form, 358
structural model, 283
structural specification, 262
structural vs. nonstructural models,

355n34

Stuart, A., 174n7, 500n1, 554, 555,
557, 1059n1, 1099

study of twins, 284
subjective well-being (SWB), 837
sufficient condition for an

optimum, 1050
sufficient statistics, 500
Suits, D., 192n1, 403n9
sum rule, 1114
summability, 957
subspace, 1023
superconsistent, 1005
SUR model. See seemingly

unrelated regression (SUR)
model

survey questions, 824, 834
survival distribution, 906
survival function, 903,

906, 1068
survival models (strike duration),

911–912
survivorship bias, 261
Susin, S., 910
SVD, 1043
Swait, J., 801, 809n5
Swamy, P., 457n27, 458, 465
Swamy estimator, 465
SWB, 837
Swidinsky, R., 782n40
Swiss railroads, 883–885
symmetric matrix, 1013
symmetry restrictions, 347n20
Symons, J., 462
system methods of estimation,

369–374
systems of demand equations,

347–354
systems of equations, 330–382

Cobb-Douglas cost function,
347–350

complete system of equations,
356

flexible function forms,
350–354

Granger causality, 358
Klein’s model I, 372
LIML estimator, 367–368
nonlinear systems of equations,

345–346
overview, 331–332, 376–377
panel data, 455–456
pooled model, 339–340
problem of identification,

361–366
seemingly unrelated generalized

regression model, 344–345



Greene-2140242 book June 1, 2011 15:21

1236 Index

systems of equations (continued)
simultaneous equations models.

See simultaneous equations
models

Stone’s expenditure system, 347
SUR model. See seemingly

unrelated regression (SUR)
model

systems of demand equations,
347–354

3SLS estimator, 371, 372
translog cost function, 350–354
2SLS estimator, 367–368
weak instruments, 374–376

systems of linear equations,
1029–1030

t distribution, 1062
t ratio, 156
Tahmiscioglu, A., 462
Tandon, A., 213, 882
Taubman, P., 285
Tauchen, H., 410, 759
Tavlas, G., 457n27
Taylor, L., 243n10
Taylor, W., 276, 308, 312n10,

419n20, 434, 435, 437,
447, 539

Taylor series, 352, 502
Taylor series approximation, 1047
television and autism, 292
Telser, L., 333n4
Tennessee STAR experiment, 195
Terza, J., 827, 834n10, 839, 840,

847n14, 853, 860, 920, 921,
923

test statistic, 657–658
testable implications, 150
testing hypothesis. See hypothesis

testing and model selection
tetrachoric correlation, 781
Teukolsky, S., 646, 648, 1043,

1129n2, 1132, 1133, 1134n11
textbook

notational conventions, 49–50
numerical examples, 49
overview/plan, 47–48
software and replication, 49

Thayer, M., 680
Theil, H., 128n12, 282n6, 336n13,

369n43, 371, 607, 703n10,
1036n6, 866, 1043n13,
1127n7

Theil U statistic, 128
theorem

Bernstein-von Mises, 708

Cauchy-Schwarz inequality, 1114
Chebychev’s inequality, 1108
Chebychev’s weak law of large

numbers, 1111
cosine law, 1029
covariance, 1075
Cramér-Rao lower bound,

560, 1099
Cramer-Wold device, 1118
ergodic, 954
ergodicity of functions, 955
Frisch-Waugh-Lovell, 73
Gauss-Markov, 100, 101
generalized Chebychev’s

inequality, 1113
Gordin’s central limit, 957
Granger representation, 1004n13
Jensen’s inequality, 1114
Khinchine’s weak law of large

numbers, 1110
Kolmogorov’s strong law of large

numbers, 1111
law of iterated expectations, 1075
Liapounov central limit, 1122
likelihood inequality, 558
Lindeberg-Feller central

limit, 1119
Lindeberg-Levy central

limit, 1119
Markov’s inequality, 1108
Markov’s strong law of large

numbers, 1112
Martingale difference central

limit, 956
minimum mean squared error

predictor, 94
multivariate Lindeberg-Fuller

central limit, 1123
multivariate Lindeberg-Levy

central limit, 1122
orthogonal partitioned

regression, 73
orthogonal regression, 76
Slutsky, 1113
transformed variable, 87
Wold’s decomposition, 1011

theoretical econometrics, 43
three-stage least squares (3SLS)

estimator, 371, 372, 608
threshold effects/categorical

variables, 194–195
Thursby, J., 211n15, 353n31
Tibshirani, R., 651n2, 653
time effects, 403
time invariant, 391, 400
time-invariant variable (TIV), 404

time profile, 198
time series, 1088
time-series cross-sectional

data, 384
time-series data, 297
time-series modeling. See

macroeconometric methods
time-series panel data

literature, 1010
time-series process, 947
time space dynamic model, 432
time space recursive model, 431
time space simultaneous model, 432
time-varying covariate, 903
time window, 947
TIV, 404
Tobias, J., 90, 185, 218, 686, 696n2,

833, 935n40
Tobin, J., 885, 888
tobit model, 483, 854–855, 888–901
Todd, P., 935n40
Tomes, N., 725n3
Topel, R., 577, 750, 833, 894,

917n31
total variation, 80
Toyoda, T., 211, 315n16
trace (matrix), 1040
TRACE test, 1007
Train, K., 643, 663, 665, 708, 717,

723n2, 801, 811, 812, 822
transcendental logarithmic

(translog) function, 352
transformed variable, 87
translog cost function, 186,

350–354
translog demand system, 223–224
translog function, 352
translog model, 58
transpose, 1014
travel mode choice, 813–819
treatment, 55, 195
treatment effect, 396
treatment effects, 195–198. See

evaluation of treatment
effects

treatment group, 196
Trebbi, F., 374
trend stationary process, 986
Trethaway, M., 234
triangular matrix, 1013
triangular system, 359
trigamma function, 502n2, 1132
Trivedi, P., 47n3, 137, 291n11, 393,

476, 477, 478, 479, 481, 574,
582, 587, 637, 652, 653, 659,
663, 696, 708, 714, 723,



Greene-2140242 book June 1, 2011 15:21

Index 1237

844n12, 845, 846, 847, 848,
850, 858, 902n15, 918, 928

Trognon, A., 427, 582n12, 585,
752n24, 898n12, 978

Trotter, H., 1138
true vs. asymptotic

distribution, 1125
truncated distribution, 874
truncated lognormal income

distribution, 876–877
truncated mean, 876
truncated normal distribution, 664,

874, 875
truncated random variable, 874
truncated regression model,

877–879
truncated standard normal

distribution, 874
truncated uniform distribution, 875
truncated variance, 876
truncation, 873–885

event counts, 850–852
incidental. See sample selection
moments, 875–877
stochastic frontier model,

879–885
truncated distribution, 874
truncated regression model,

877–879
when it arises, 873

truncation bias, 261, 851
Tsay, R., 43, 827, 982n1
Tunali, I., 725n3
twin studies, 284
twins festivals, 284
two-part models, 861–866, 892–897
two-stage least squares (2SLS),

270–272
two-stage least squares (2SLS)

estimator, 357, 367, 368
two-step estimation, 916–917
two-step MLE, 576–582
two-way fixed effects model, 467
two-way random effects model, 468
Type I error, 657, 1102
Type II error, 657, 1102
Type-II tobit model, 893

Uhler, R., 741n14
Ullah, A., 484n2, 487, 488, 493,

973, 1091
UMP test, 1104
unbalanced panel, 388
unbalanced sample, 742
unbiased estimation, 95–96

unbiased estimator, 1096
unbiased test, 1104
unbiasedness, 488
uncentered moment, 497
uncorrelatedness, 62, 224
underidentified, 523
uniform-inverse gamma prior, 714
uniform prior, 714
uniformly most powerful

(UMP), 1104
unit root, 986

economic data, 987–988
example (testing for unit roots),

991–994
GDP, 997, 998–999

unobserved effects model, 420–421
unordered choice models. See

multinomial choice
updating formula, 1032
U.S. gasoline market, 57
U.S. manufacturing, 353
utility maximization, 42

vacation expenditures, 483–484
van Praag, B., 790, 920
van Soest, A., 244n11, 483, 834, 835,

886, 893, 898n12, 900
variable

censored, 886
dependent, 52, 1047
dummy. See binary variable
endogenous, 356, 357
exogenous, 356, 357
explained, 52
explanatory, 52
identical explanatory, 334
independent, 52, 1047
latent, 888
omitted, 97, 259
predetermined, 357–358, 360
proxy, 261, 282–284
random, 1055
time-invariant, 404
transformed, 87

variable addition test, 276, 421
variable metric algorithm, 1139
Varian, H., 456
variance, 61–62

asymptotic, 560
conditional, 304, 1075
decomposition of, 1076
least squares estimator, 98–99,

101–102
prediction, 121
random variable, 1057

regression, 1077
residual, 1077
sampling, 98–99, 1095
truncated, 876

variance decomposition formula, 62
variance inflation factor, 130
Veall, M., 652, 741n14
vector, 1013
vector autoregression models,

331, 546
vector multiplication, 1015
vector spaces, 1019–1020
Vella, F., 508n3, 769n34, 898n12,

900n13, 912n24, 924, 925
Verbeek, M., 769n34, 775, 776, 923,

924, 925
Verbon, H., 456
Vetterling, W., 646, 648, 1043,

1129n2, 1132, 1133, 1134n11
Vilcassim, N., 811
Vinod, H., 241, 652
Volinsky, C., 181
Volker, P., 177n12
Vuong, Q., 574, 863, 898n12
Vuong’s statistic, 863
Vuong’s test, 180, 574–576
Vytlacil, E., 291n12, 627n28, 935n40

wage data panel, 687
wage determination, 330
wage equation, 391–392, 395, 396,

616, 676
Wahba, S., 935
Wald, A., 953, 988
Wald criterion, 158
Wald distance, 155
Wald statistic, 170, 211, 230, 337,

521, 522
Wald test, 155–161, 211, 229
Waldman, D., 317, 898
Walker, J., 900n14, 912n24
Walker, M., 347n19
Wallace, T., 415n15
Wallis, K., 47n, 963n13
Wambach, A., 49, 235, 385, 451,

580, 609, 611, 745, 775, 834,
847n14, 849, 860, 866, 867

Wan, G., 456
Wang, P., 692n10
Wansbeek, T., 366, 536n13, 925
Waterman, R., 858
Watson, G., 963n12
Watson, M., 181, 182, 244, 290,

999n12, 1003, 1004
Waugh, F., 74



Greene-2140242 book June 1, 2011 15:21

1238 Index

weak instruments, 289–291,
374–376

weak stationarity, 953
weakly exogenous, 357
weakly stationary, 947
Webster, C., 1117n4, 1122
Wedel, M., 633, 692n10
Weeks, M., 174n8, 176, 1004
Weibull model, 907, 908, 909
Weibull survival model, 909
weighted endogenous sampling

maximum likelihood
(WESML) estimator, 750,
751n22

weighted least squares, 511, 597
weighting matrix, 305, 504,

511n7, 526
Weinhold, D., 330, 465, 466
Weiss, A., 978
well-behaved data, 105
well-behaved panel data,

388–389
Welsh, R., 130, 140, 141
Wertheimer, R., 892
WESML estimator, 750, 751n22
West, K., 520, 521, 538n16, 960
White, H., 105n4, 174n8, 272n1,

312, 313, 314n14, 315,
358n37, 410, 514, 582n12,
732, 733, 954, 956, 958, 978,
1107, 1124n5

white noise, 950
White’s test, 323
Wichern, D., 133, 339
Wickens, M., 283, 508n3
Wildman, B., 213
willingness to pay (WTP),

819–821

willingness to pay space, 821
Willis, J., 766
Willis, R., 725n3, 932n34, 1065n7
Windmeijer, F., 844n12, 845
Winkelmann, R., 825n8, 834, 835,

837, 839, 841, 846,
847n14, 849

Winsten, C., 598, 966, 967
Winston, R., 349n23
Wise, D., 754n26, 808, 879n6, 923,

926, 927
Wishart density, 716
Wishart distribution, 1065
with zeros (WZ) model,

861n15
within-groups estimator, 397
Witte, A., 759, 886
Wold’s decomposition

theorem, 1011
Wood, D., 353, 354n32
Wooldridge, J., 60, 271, 358n37,

421n23, 422n24, 574, 736,
757, 758n28, 767, 769, 776,
838, 895, 923, 923n39, 925,
926, 927, 934, 978n28

Working, E., 269
World Health Report (2000),

213–214
Wright, J., 181, 182, 289n10
WTP, 819–821
Wu, D., 274, 276
Wu, J., 450
Wu, S., 450, 1011
Wu specification test,

274–277
Wu test, 276
Wynand, P., 790, 920
WZ model, 861n15

Yaron, A., 511n7, 516
Yatchew, A., 250, 251, 752, 757
Yogo, M., 289n10, 374
Young’s theorem, 1048
Yule-Walker equation, 959

Zabel, J., 924
ZAP model, 861n15
Zarembka, P., 233
Zavoina, R., 741n14, 827, 869
Zeger, S., 756n27
Zellner, A., 182, 206, 245, 256,

333n4, 334, 336n11, 371,
382n51, 382n251, 470, 695,
696n2, 698n3, 699n4, 700n5,
701n7, 703n12, 706n14, 707,
714, 715, 717, 1088n1

Zellner’s efficient estimator (ZEF),
336n11

zero-altered Poisson (ZAP) model,
861n15

zero correlation, 782
zero inflated Poisson (ZIP) model,

861n15
zero inflation models, 861–864, 865
zero matrix, 1014
zero-order method, 135
zero overall mean assumption,

60–61
Zhao, X., 827, 863n16
Zimmer, D., 479
Zimmer, M., 725, 919
Zimmermann, K., 741n14
ZINB model, 863
ZIP model, 861n15
Zoega, G., 47n



Greene-2140242 book June 1, 2011 15:21

Percentiles of the Chi-Squared Distribution. Table Entry Is c Such That
Prob[χ2

n ≤ c] = P

n .005 .010 .025 .050 .100 .250 .500 .750 .900 .950 .975 .990 .995

1 .00004 .0002 .001 .004 .02 .10 .45 1.32 2.71 3.84 5.02 6.63 7.88
2 .01 .02 .05 .10 .21 .58 1.39 2.77 4.61 5.99 7.38 9.21 10.60
3 .07 .11 .22 .35 .58 1.21 2.37 4.11 6.25 7.81 9.35 11.34 12.84
4 .21 .30 .48 .71 1.06 1.92 3.36 5.39 7.78 9.49 11.14 13.28 14.86
5 .41 .55 .83 1.15 1.61 2.67 4.35 6.63 9.24 11.07 12.83 15.09 16.75
6 .68 .87 1.24 1.64 2.20 3.45 5.35 7.84 10.64 12.59 14.45 16.81 18.55
7 .99 1.24 1.69 2.17 2.83 4.25 6.35 9.04 12.02 14.07 16.01 18.48 20.28
8 1.34 1.65 2.18 2.73 3.49 5.07 7.34 10.22 13.36 15.51 17.53 20.09 21.95
9 1.73 2.09 2.70 3.33 4.17 5.90 8.34 11.39 14.68 16.92 19.02 21.67 23.59

10 2.16 2.56 3.25 3.94 4.87 6.74 9.34 12.55 15.99 18.31 20.48 23.21 25.19
11 2.60 3.05 3.82 4.57 5.58 7.58 10.34 13.70 17.28 19.68 21.92 24.72 26.76
12 3.07 3.57 4.40 5.23 6.30 8.44 11.34 14.85 18.55 21.03 23.34 26.22 28.30
13 3.57 4.11 5.01 5.89 7.04 9.30 12.34 15.98 19.81 22.36 24.74 27.69 29.82
14 4.07 4.66 5.63 6.57 7.79 10.17 13.34 17.12 21.06 23.68 26.12 29.14 31.32
15 4.60 5.23 6.26 7.26 8.55 11.04 14.34 18.25 22.31 25.00 27.49 30.58 32.80
16 5.14 5.81 6.91 7.96 9.31 11.91 15.34 19.37 23.54 26.30 28.85 32.00 34.27
17 5.70 6.41 7.56 8.67 10.09 12.79 16.34 20.49 24.77 27.59 30.19 33.41 35.72
18 6.26 7.01 8.23 9.39 10.86 13.68 17.34 21.60 25.99 28.87 31.53 34.81 37.16
19 6.84 7.63 8.91 10.12 11.65 14.56 18.34 22.72 27.20 30.14 32.85 36.19 38.58
20 7.43 8.26 9.59 10.85 12.44 15.45 19.34 23.83 28.41 31.41 34.17 37.57 40.00
21 8.03 8.90 10.28 11.59 13.24 16.34 20.34 24.93 29.62 32.67 35.48 38.93 41.40
22 8.64 9.54 10.98 12.34 14.04 17.24 21.34 26.04 30.81 33.92 36.78 40.29 42.80
23 9.26 10.20 11.69 13.09 14.85 18.14 22.34 27.14 32.01 35.17 38.08 41.64 44.18
24 9.89 10.86 12.40 13.85 15.66 19.04 23.34 28.24 33.20 36.42 39.36 42.98 45.56
25 10.52 11.52 13.12 14.61 16.47 19.94 24.34 29.34 34.38 37.65 40.65 44.31 46.93
30 13.79 14.95 16.79 18.49 20.60 24.48 29.34 34.80 40.26 43.77 46.98 50.89 53.67
35 17.19 18.51 20.57 22.47 24.80 29.05 34.34 40.22 46.06 49.80 53.20 57.34 60.27
40 20.71 22.16 24.43 26.51 29.05 33.66 39.34 45.62 51.81 55.76 59.34 63.69 66.77
45 24.31 25.90 28.37 30.61 33.35 38.29 44.34 50.98 57.51 61.66 65.41 69.96 73.17
50 27.99 29.71 32.36 34.76 37.69 42.94 49.33 56.33 63.17 67.50 71.42 76.15 79.49
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