POWER GRID INTERCONNECTION IN NORTHEAST ASIA: VIEW FROM EAST RUSSIA

Sergei Podkovalnikov Energy Systems Institute, Irkutsk, Russia

- Current State and Perspectives of East Russian Electric Power Industry
- Potential Effects of Power Systems Interconnections in Northeast Asia
- Electric Ties of Russia with Northeast Asian Countries
- Methodology for Study of Interstate Electric Ties in the Region
- Formation of Power Grid Interconnection in the Region

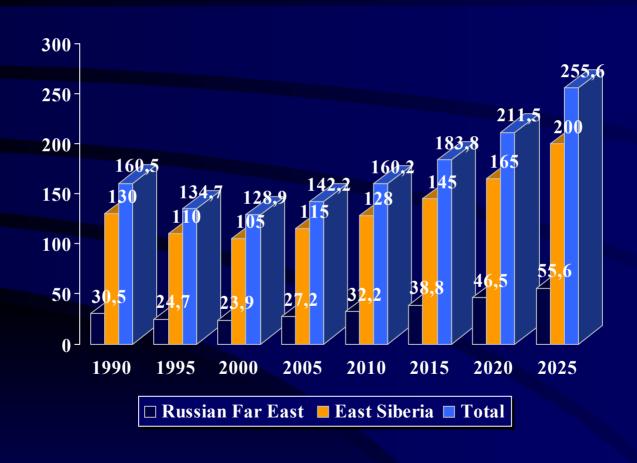
Map of East Russian Interconnected EPSs LEGEND вилойск Existing Under Power Plants & Construction Transmission Lines каск. вилойсь Ø Hvdro Co-generation MERBAPTOBCKAS PP3C CMPTWTCKA9*PP3C-2 **Thermal** 500 kV 0 3 C СИБИРИ BOLYANCKAN LEC 220 kV NCTB-KINGKCKRA PEC ТЕЛЬНЯНСКАЯ ГЭС TOHCKER PP3C-2 тонские тэц CAS T3H-2 **Т**КРАСНОЯРСК, ТЭЦ-З НЕРЮНГРИНСКАЯ ГРЭС красноярская гэс ЗЕЙСКАЯ ГЭС охинска PROTEKNE TOU ABAKAHCKAG TEH инжанская гэс ВАРНАУЛЬСКАЯ ТЭН-З MPKYTCKAR T3H-10 найнская гэс тонь змениская гр УАГОЯНСКАЯ ГЭС CASHO-MOMBHCKAS PEC вийская тэц-1 MPKYTCKALT P консонольские лэц o.Cax TYSCHOLS PP3C-1 PACKHOOSEPCKAR PPSC CAPANOPCICIA PPOC DE TT RECENTACIONALE пиживурейской гэс китай CARAPOBCKOE TEL монголия Territory, Population, Mln. km² Mln. East Siberian IEPS 2.5 8.5 Russian Far East IEPS месмрийская тэц

an 400

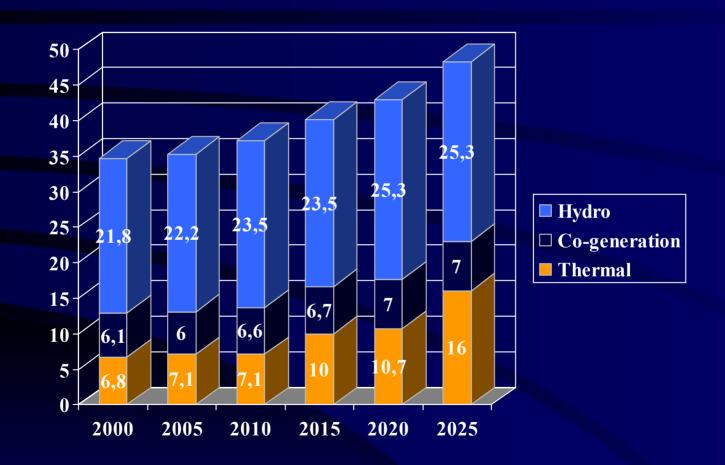
Workshop on Power Grid Interconnection in Northeast Asia, Poiiing China May 14 16 2001

13.5

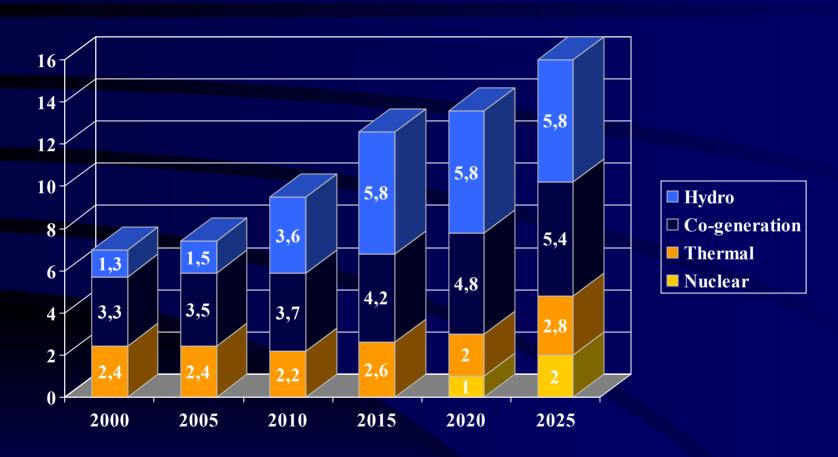
кинопк 🗻

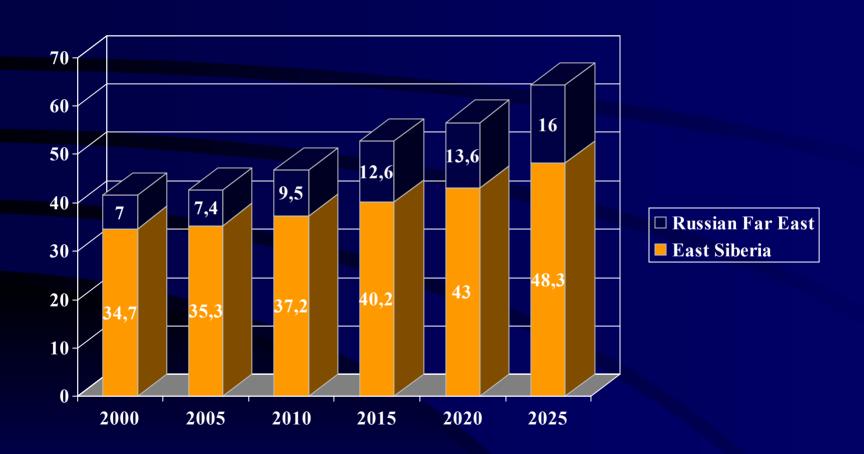

ВЛАДИВОСТОКСКАЯ ТЭЦ-2

3.8


Total

китаи


Electricity Consumption of East Russia, Bln.kWh/year

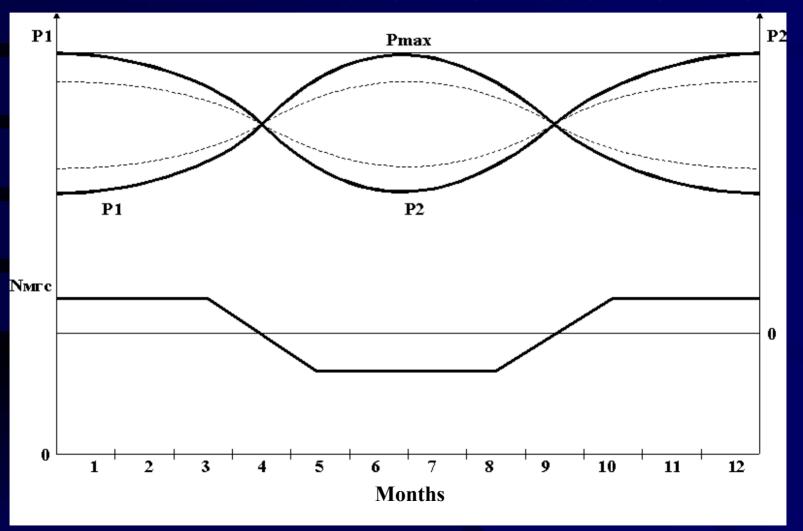

Capacity Mix of East Siberia, GW

Capacity Mix of Russian Far East, GW

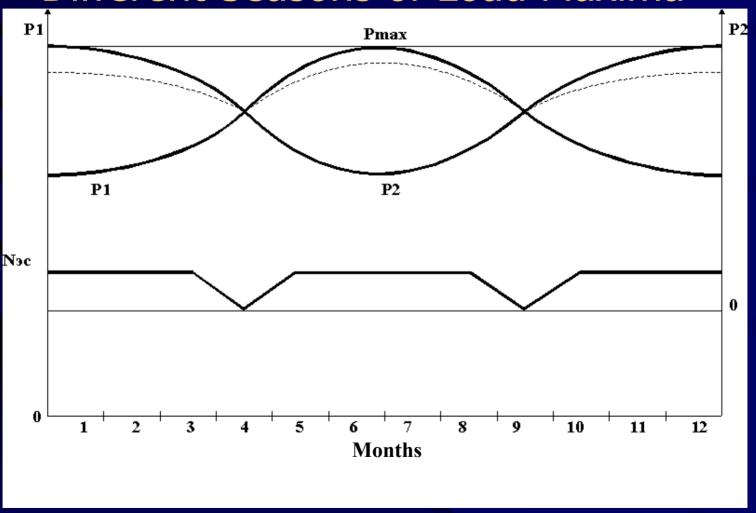
Capacity of East Russia, GW

Large Power Plants of East Russia

	Po	wer Plants	Installed Capacity, GW			
Hydro	East Siberia	Sayano-Shushensk	6.4			
		Krasnoyarsk	6			
		Bratsk	4.5			
		Ust-Ilimsk	3.8			
	Far East	Zeya	1.3			
		Subtotal		22		
Thermal	East Siberia	Irkutsk	1.1			
		Berezovsk	1.6			
		Nazarovsk	1.3			
		Krasnoyarsk	1.25			
		Gusinoozyorsk	1.25			
	Far East Primorye		1.5			
		Subtotal		8		
TOTAL				30		

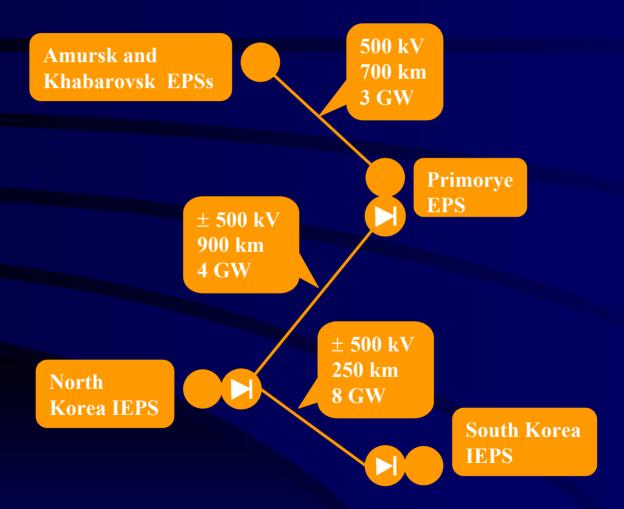

Prospective Large Power Projects

Region	Project	Capacity, GW	Yearly Output, TWh	
East Siberia	Boguchunsk Hydro (under construction)	3	17.6	
	Moksk Hydro	1.3	5.3	
	Beresovsk Thermal (under construction)	6.4	40	
	Subtotal	10.7	62.9	
Russian Far East	Bureysk Hydro (under construction)	2.4	8.8	
	Uchursk Hydro	3.7	17.2	
	Urgal Thermal	1.2	7.5	
	Primorye Nuclear	2	15	
	Tugursk Tidal	6.8	16	
	Subtotal	16.1	64.5	
	ΓΟΤΑL	26.8	127.4	


Effects of Power Systems Interconnection in Northeast Asia

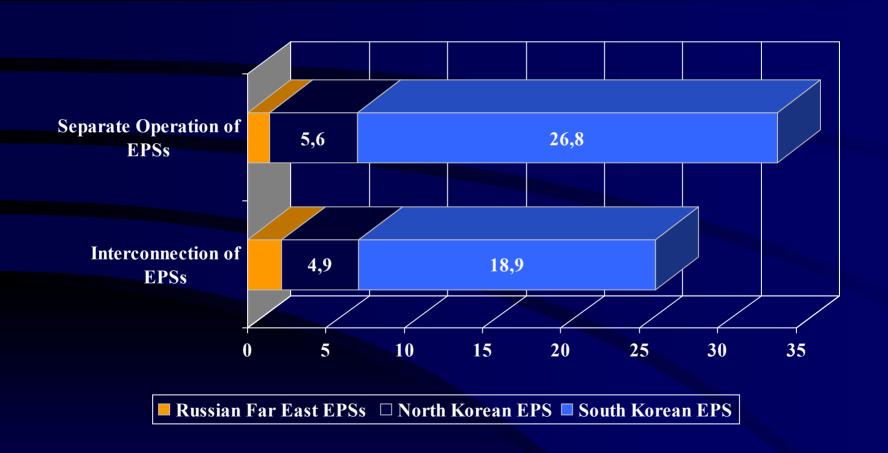
- Decrease of Required Installed Capacity of Power Plants
- Decrease of Fuel Cost
- Improvement of Interconnected Power Systems Reliability
- Environmental Burden Relieve

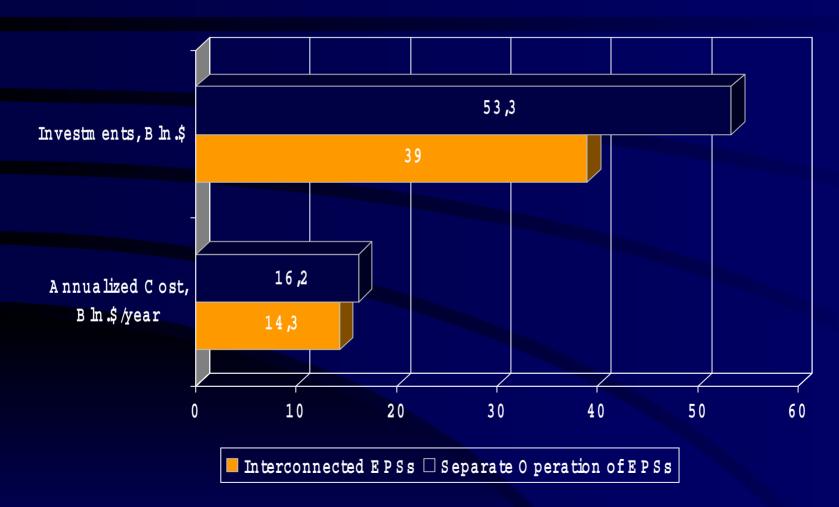
Effect of Interconnecting Power Systems with Different Seasons of Load Maxima


Utilization of Power Plants Capacity in Interconnected Power Systems with Different Seasons of Load Maxima

Prospective Electric Ties of East Russia with Northeast Asian Countries

ISET	Length, km	Voltage, kV	Transfer Capability, GW	Transmit. Electricity, TWh/year	Cost for ISET, \$ Bln.	Cost for Power Plants, \$ Bln.	Total Cost, \$ Bln.
Phase I (up to 2015)							
Bratsk-Beijing	2600	± 600	3	18	1.5	2.7 (Boguchansk Hydro)	4.2
Bureya Hydro – Kharbin	700	± 400	1	3	0.3	1.8 (Bureya Hydro)	2.1
Phase II (2015 – 2025)							
RFE – KPDR – Republic of Korea	1100/ 700	± 500	4/8	8.5	2	2.8 (Primirye Nuclear)	4.8
Sakhalin – Japan	470	± 500	4	23	2.6	4.1 (Sakhalin Gas)	6.7
Phase III (beyond 2025)							
Far East Nuclear – China – Republic of Korea	2300	± 500	2.5	18	3	4 (Far East Nuclear)	7
Uchursk Hydro – China – Republic of Korea	3500	± 500	3.5	17	4.5	6 (Uchursk Hydro)	10.5


Scheme of Electric Tie «Russian Far East - North Korea - South Korea»


Electricity Exchange via Electric Tie «Russian Far East - North Korea - South Korea», Bln.kWh/year

Commissioning New Capacities, GW

Costs for New Capacities

Interconnection Effects for Russia

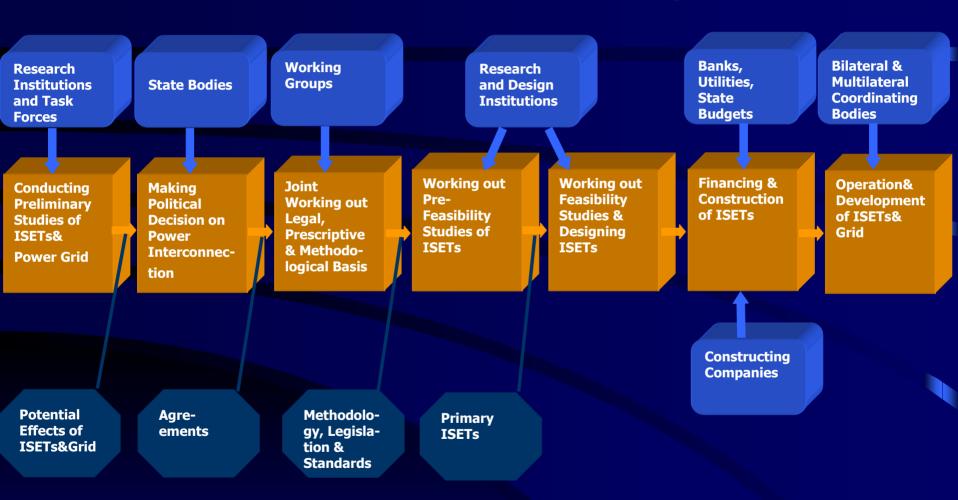
Effects	Estimates
Benefit from export amounts to	\$ 420-585 Mln./year
Increasing capacity factor results in	reduction of fixed costs by 15 %
Commissioning large power units of	
1000 MW instead of 640 MW on	
Primorye Nuclear brings about	investment decrease by more than
	25 %
Receiving electricity from abroad in	
peak hours is	0.4 Bln.kWh/year
Decreasing power under-supply by	235 MWh/year
Fossil fuel saving is about	2.5 Mln.tce/year
Carbon oxide emission reduction is	
nearly	6 Mln.t/year
Workshop on	

Methodology for Study of Interstate Electric Ties in Northeast Asia: Tasks have to be Solved. I

- Optimization of Capacity Mix of Interconnected Power Systems
- Determination of Power Systems Reliability Indices
- Optimization of Operating Conditions of Interconnected Power Systems and Interstate Electric Ties
- Determination of Export-Import Tariffs

Methodology for Study of Interstate Electric Ties in Northeast Asia: Tasks have to be Solved. II

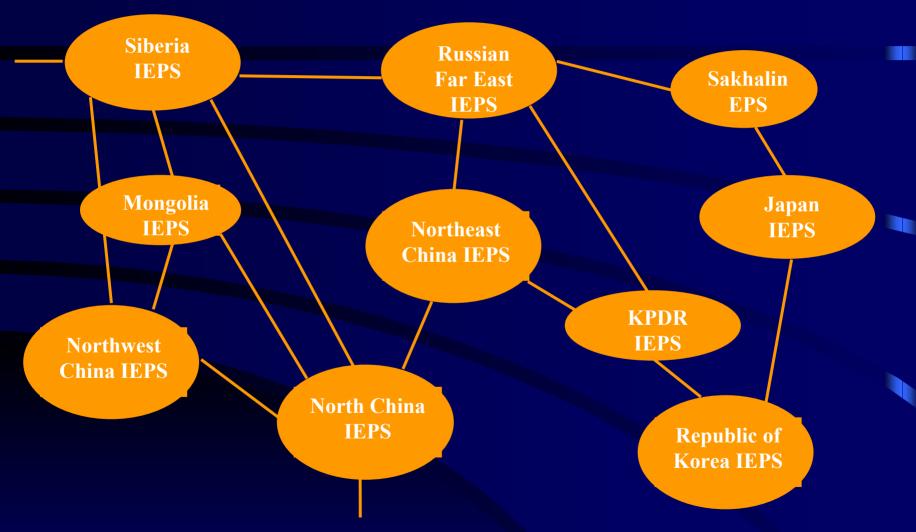
- Assessment of Energy, Economic, Financial and Environmental Effects of Interstate Electric Ties in Total and for Each Country-Participant
- Splitting up Costs of Interstate Electric Ties among Countries-Participants
- Ensuring Energy Security for Countries-Participants


Potential Barriers to Power Systems Interconnection in Northeast Asia. I

- Dependence of Countries-Participants on External Electricity Supply
- Different Technical Standards in Power Industry in Various Countries of the Region
- Different Energy Legislation in Countries of the Region
- Long Distances, Difficult Routes and High Cost for Interstate Electric Ties

Potential Barriers to Power Systems Interconnection in Northeast Asia. II

- Financing
- Necessity to Open up Internal Information for Other Countries
- Necessity to Accord National Energy and Power Strategies and Plans with other Countries of the Region
- Political Tension Between Some Countries


Development of Northeast Asian Power Grid Interconnection Project

Stages of Power Grid Formation

- 1 Reinforcement of Domestic Transmission Lines and Construction of the First Interstate Electric Ties with Concluding Bilateral Agreements
- 2 Reinforcement of Constructed Interstate Electric Ties and Constructing New Ones with Coordination of their Commissioning and Concluding Multilateral Agreements

Power Grid Interconnection in Northeast Asia

Inferences

- Power Integration of the Northeast Asian Countries with Formation of Interstate Electric Ties and Power Grid Interconnection will Bring about Substantial Effects to the Countries-Participants
- There are Barriers to Power Systems
 Interconnections in the Region but they can be
 Overcome
- Development of Methodology, Mathematical Models and Collecting Information on Power Industries of Northeast Asia Countries for Studies of Power Grid Interconnection Project are Required
- Cooperation of all Concerned Organizations of Various Countries is Needed to Develop Northeast Asia Power Grid Interconnection Project