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ABSTRACT
Persian (Farsi) language named entity recognition is a
challenging, difficult, yet important task in natural language pro-
cessing. This paper presents an approach based on a Local
F ilters model to recognize Persian (Farsi) language
named entities. It uses multiple dictionaries, which are freely
available on the Web. A dictionary is a collection of phrases
that describe named entities. The framework is composed of
two stages: (1) detection of named entity candidates using dic-
tionaries for lookups and (2) filtering of false positives based.
Dictionary lookups are performed using an efficient prefix-tree
data structure. Our dictionary − based recognizer performs
on Persian (Farsi) language with up to 88.95% preci-
sion, 79.65% recall, and an 82.73% F1 score using ASEM.

General Terms:
Natural language Processing, Named Entity Recognition

Keywords:
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1. INTRODUCTION
Named entity recognition (NER) is widely acknowledged as one
of the central tasks in natural language processing (NLP). The
essential goal of NER is to identify and classify certain proper
nouns, such as person names (PER), organizations (ORG), loca-
tions (LOC), and so on. NER has attracted much attention in the re-
search community for a long time. A named entity (NE) is a phrase
representing an item of a class.

So far many corpora have been developed in other languages and
base on them several different models and methods have been
applied for Named entity recognition (NER). The models and
methods can be divided into two main approaches: the first one
obeys a statistical approach which utilizes annotated corpora and
the second one is the rule-based non-statistical approach which is
based on machine learning and human knowledge. Some reported
methods are as follow: Semi-supervised Named Entity Recog-
nition [10, 2, 3, 4], Building a Corpus-Derived Gazetteer [11],
An Approach for Named Entity Recognition in Poorly Structured

Data[12], Chinese and Disambiguation Based on Wikipedia[13],
Resolution in Legal Text[14], Incorporating Linguistic Expertise
Using ILP[15], Multiobjective Optimization Approach [16], Hid-
den Markov Models [17, 1].

This work presents a dictionary-based NER framework. Our
dictionary-based recognizer is composed of two stages. In the first
stage, an input text and available dictionaries are prepared for a
dictionary-based NE detector. Then, the detector finds candidates
for NES and their positions in the input text by matching the string
in the dictionary against the text. In the filtering stage, false posi-
tives are removed. The local filters, together with the part-of-speech
filter, are used to improve the quality of the NE recognition by fil-
tering out noisy matches of the first stage.

In the task of named entity classification (NEC), a class or type is
assigned to an NE. For instance, the ”IRAN” classes for an NEC
task are person, location, organization, and miscellaneous.

2. NAMED ENTITY RECOGNITION
Named Entity Recognition Systems have been created that use lin-
guistic grammar-based techniques and statistical models. Hand-
crafted grammar-based systems are usually obtained better preci-
sion, however, lower recall in months of work by experienced lin-
guists cost calculation. Statistical NER systems typically require a
large amount of manually annotated training data. usually find the
sequence of tags that maximizes the probability p(N |S),where S
is the sequence of words in a sentence, and N is the sequence of
named-entity tags assigned to the words in [5].

NER are sequence of words, which refer to persons,
organizations, locations, etc. These types can be more
fine-grained. For example, the class person can be subdivided into
several subclasses like (pesaran) which means boys. The actual
type hierarchy can be simple or more complex like trees or even
graphs. NER are defined to include numerical expressions, such as
money or dates; however, we do not include them.

2.1 Features
Our integration is done by feeding the output of the rule-based sys-
tem as features to machine-learning classifiers. We call these fea-
tures the rule-based features. Most of NER systems relay a set of
feature functions that represent a machine-readable characteristic

1



International Journal of Computer Applications (0975 8887)
Volume 100 - No. 4, August 2014

of a word. Choice of features for a NER system is the most im-
portant aspect of any NER system. Now we consider most popular
features for a NER system and their types. These three categories
of features are the ones mainly used for existing systems:

(word features) case: (AllCaps, Capitalized, MixCase).
morphology: (prefix, suffix, stem). PoS: (proper name,
common noun, foreign word). function: (n-gram, length,
lower-case).

(dictionaries:) general gazetteers: (stop words, capitalized
nouns, abbreviations). entities: (locations, organizations, first
names, last names). entity cues:

(document features include metadata of the document:)
local syntax: (position in sentence, in document). meta
information: (URI, lists, tables).

2.2 Dictionaries
Dictionary or gazetteer is a collection of words or phrases referring
to a particular entity. For example, the phrase ”Bushehr” appear-
ing in the dictionary with location names refers to the city in Iran,
whereas the word ”Aghayi” which means Mr. refers to the list
of role names for persons. A dictionary can contain instances of
one type like locations, or several types. Dictionaries of names will
be used as features in trained approaches or a way to identify all
candidates in a given text. Dictionaries provide powerful features
that improve the performance of the NER and NEC systems. Com-
monly used dictionaries for NER can be created from:

(Wikipedia) (e.g. titles of the pages, anchor texts).

(knowledge bases like) (Persian corpus named BIJANKHAN [6],
DBpedia [7] )

Lookup Techniques: The lookup technique is a crucial part of a
system that uses dictionaries. Main techniques for making lookups
in dictionaries are: fullmatching, matching based on stemming
or lemmatization, matching that uses Soundex, approximate
matching.

Exact Matching: It is a type of matching whereby a dictionary
entry is exactly matched against a text. However, phrases in a text
having different word forms cannot be matched.

Lemmatization: In contrast to stemming, lemmatization strives to
improve the problems where stemmer fails. Lemmatization is a pro-
cess of determining the basis form of a word.

Soundex: As an alternative to stemming and lemmatization, the
Soundex algorithm provides a string modi
cation technique. Soundex is a word modi
cation technique that converts a word into its sound as uttered in En-
glish. Namely, words are decoded such that the similarly spelled or
pronounced words build the same code. For example, the Soundex
of the words ”Iranian” and ”Iran” is ”IR48”.

Approximate matching: The words in a text can be written with
typos. An approximate matching is a method of finding similar
strings for a given pattern. An example of such operations are:
insertion of a single letter into a string, deletion of a single letter
from a string, replacement of a letter from a string by the new let-
ter. Typically, approximate string matching algorithms use the edit
distance that equals or is less than two. However, computing ap-
proximate matches for huge dictionaries is a time consuming step.

Fig. 1. An example of dictionaries with phrases.

3. DICTIONARY-BASED NER
In this section, we describe our approach to dictionary-based
named entity recognition. A named entity is a phrase represent-
ing an item of a class. A dictionary is a collection of phrases
that describe named entities. For example, the phrase ”Bashgah
Pajoheshgaran Javan” or ”BPJ” is a named entity of the
class ”Organization”.

The dictionary-based recognizer is composed of two stages. In the
first stage, an input text and available dictionaries are prepared for
a dictionary-based named entity detector. The detector finds can-
didates for named entities and their positions in the input text by
matching the string in the dictionary against an input text. In the
second stage, NE candidates representing false positives are filtered
out. Furthermore, the system performs postprocessing of the NER
result like re-finding missed NER and combining adjacent NER
into a single entity.

3.1 Creating Dictionaries
An essential component of the DB-NER is dictionaries. The dictio-
naries for the DBNER tool can be created from different sources.
In our work, we use entity repositories provided by the National
Library and Archives Organisation of Iran (NLAI).

3.1.1 National Library and Archives Organisation of Iran
NLAI . Nowadays, many structured Web resources are available
in RDF (Resource Description Framework) format. The National
Library and Archives Organisation provides such a resource for
Iran. The library provides repositories of the entities for several
classes like ”person”, ”location”, ”organization” and ”article
titles” like ”Ayandih hosh masnoei”. Therefore, it is easy to
create typed dictionaries from the library repositories. As a result,
not only entities, but also the titles of articles can be found by a
NER system that uses such kind of source as dictionaries. Addi-
tionally, the fields with first names, last names, family names, and
full names are used to create the dictionaries for person names. A
small example of such dictionaries is shown in Figure 1.

3.2 Text Preprocessing
In the preprocessing step, an input text as well as dictionaries are
prepared for the NE candidates detector . The preprocessing is an
essential step needed by our DB-NER, because:

(1) NEs appearing in the input text can differ from the dictionary
phrases.
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Fig. 2. An example of a prefix tree containing six words.

(2) raw dictionaries often contain noisy entries like phrases con-
sisting only of stop words or symbols.

3.2.1 Tokenization. The tokennizer splits the text into very sim-
ple tokens such as numbers, punctuation and words of different
types. In the default set of rules, the following kinds of Token
and SpaceToken are possible: word; number; symbol; Punctuation;
SpaceToken. Also, there is an English Tokeniser in this system.
It is a processing resource that comprises a normal tokeniser and
a JAPE transducer. The transducer has the role of adapting the
generic output of the tokeniser to the requirements of the English
part-of-speech tagger.

languages have different punctuation styles. For example, compare
the date 1393/04/15 in Persian and the same date 09/06/2014 in
English. As a result, the word tokenization is a language-dependent
task and is usually solved using hand-crafted rules or system trained
on manually tokenized texts. As a result, the word tokenization is
able to disambiguate part-of-word punctuation and end-of-sentence
punctuation. One of the first steps for keeping the dictionaries and
the text in an unified form is tokenization.

3.3 Dictionaries Preprocessing
Each dictionary phrase is tokenized, conflated, and optionally mod-
ified as described in previous Section. However, most dictionaries
suffer from noise. Therefore, cleaning of dictionaries is performed
before the dictionaries are used by a NE candidates detector. In our
approach, the phrases consisting only of stop words are removed.
Additionally, a disambiguating term in parentheses of a phrase is
removed.

3.3.1 Efficient Storage and Reading of Dictionaries. Since the
dictionaries used by DB-NER are large and cannot fit into the main
memory of a desktop machine, we need a technique for efficient
storing and reading of the dictionaries.

The Berkeley DB [8] allows us to store and process different op-
erations over millions of phrases in the dictionaries efficiently. In
comparison to relational databases, the Berkeley DB (BDB) has a
simpler interface for data management. The BDB API is imple-
mented in the form of ordered key-value storage, which is partially
loaded (cached) from the hard drive into the main memory. There-
fore, the BDB is an appropriate choice for our DB-NER framework,
which allows running DB-NER on a desktop machine.

3.3.2 Prefix Tree. To allow efficient lookups into dictionaries, a
prefix-tree data structure is used. The prefix tree, known as trie, is
a general tree where each node represents a prefix of a string by
traversing from the root to the node. The root of a trie denotes an
empty prefix. Figure 2 shows an example of the prefix tree.

3.3.3 Token Trie. Each phrase in a dictionary is a sequence of
tokens. For space and time efficiency, each node in a prefix tree
is encoded as a single token in Figure 3. Such a modification of a
prefix tree is called a token trie. To manage huge dictionaries, the

Fig. 3. An example of a token trie implemented via Berkeley DBs key-
value storage.

implementation of the token trie uses ordered key-value storage. A
token trie is constructed as follows:

(1) each token has an unique integer identifier tokenId.
(2) each node of a trie has an unique integer identifier trieId.
(3) root of a trie has zero as an identifier.
(4) root of the trie does not refer to any token.

3.4 Candidates Detection
Given prepared dictionaries and an input text, the DB-NER
searches for NE candidates in the text. Specifically, for each dic-
tionary, the system tries to find the longest dictionary match of the
text snippet starting from the first token. To this end, the system
proceeds to compute the longest match starting from the next to-
ken. As a result, a list of NE candidates for a dictionary is found. In
this way, lists of NE candidates are computed for each dictionary.

3.4.1 Partial Labeling Algorithm. Our high-precision partial la-
beling algorithm is presented as Algorithm 1. To label a sentence
s, we first recognize candidate entities in the sentence. Candidate
entities consist of sequences of capitalized words. However, we
also use statistics drawn from web text to decide if candidate enti-
ties that are connected by connectorwords (va, barayi, az, dar)
which means (of, for, the, and, in) should be joined into a single
candidate by using an independence test with a manually chosen
threshold. For example, ”Islamic Republic of Iran” should be
one candidate entity, but ”Europe and Asia” should be two. All
tokens that are not part of candidate entities are labeled with ′O′ la-
bels, indicating nonentity tokens. Next, we consider each candidate
entity. The FULLY COV ERED function tests whether or not all
tokens in a candidate entity can be labeled using the gazetteers. If
so, the candidate entity is labeled according to the classes in the
gazetteers. If any tokens cannot be labeled with gazetteer matches,
then the whole candidate is marked with ′UNK ′ labels, indicating
that we do not know the label of those tokens.

3.4.2 Exact and fuzzy phrase search. The system uses either an
exact or a fuzzy phrase search to check if the text contains a dictio-
nary phrase. In the exact phrase search, an either original or modi-
fied string of text and dictionaries are used. The fuzzy phrase search
strategy employs the original, unmodified text and dictionaries.

3.4.3 Exact Phrase Search. In the exact phrase search, each dic-
tionary is kept in a cacheable out-memory key-value storage in the
form of a token trie. A match is found if the tokens of a phrase
in a text snippet and in the token trie match exactly. In our imple-
mentation, tokens of the input text and dictionary phrases undergo
string modifications as introduced in previous Section The match is
defined over the modified tokens.
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Table 1. Algorithm 1: The dictionary-driven partial
labeling algorithm.

Input: Sentence s, dictionary D

Output: Labels for s
C =RECOGNIZE CANDIDATE ENTITIES(s);
LABEL NON ENTITY TOKENS(′O′);
foreach Candidate c ∈ C do
. if FULLY COV ERED(c;D) then
. LABELWITHGAZETTEERS(c;D);
. else
. LABEL(c, ′UNK ′);
. end
end

Table 2. An example sentence of Bijankhan dataset
for Persian (Farsi) language. The BIO tags have

following format: ”B” for first token of an NE, ”I”
for inter token of an NE, and ”O” for not an NE. The
named entity tag ”O” denotes none of the four classes

(person, location, organization, miscellaneous).
token named entity BIO tag named entity tag
AvA AvA kolali B Person
kolali AvA kolali I Person

in O
Bushehr Bushehr B Location

3.4.4 Fuzzy Phrase Search. Fuzzy phrase searches use an ap-
proximate string matching algorithm that can ignore the suffixes
of each word in a phrase. The char trie data structure used by fuzzy
search allows partial phrase matching as well. In particular, the first
letters of a word are matched exactly, whereas the remaining part
of the word is ignored.

3.5 Candidates Filtering
Dictionaries used in a DB-NER may contain noisy phrases. There-
fore, the result of the detection step will contain a large number
of incorrect NE candidates. A PoS filtering step is performed to
remove false positives.

3.5.1 Part-of-Speech Filtering. Dictionaries contain ambiguous
words. One of the solutions is to filter out all ambiguous words.
However, it leads to a low recall and additional effort needed for
checking the words for ambiguity, which is not straightforward.
Specifically, the DB-NER system allows the following PoS filters:
Noun-Filter and Proper-Noun-Filter.

3.5.2 Local Filtering. The PoS filtering can fail in some cases
and filter out correctly named entities from the resulting set. There
are three frequent reasons for this incorrect filtering. First, the PoS
tagger can make wrong suggestions. Second, NE candidates do not
contain nouns. Therefore, the PoS filter removes these NE candi-
dates.

3.6 Postprocessing
The resulting output of the filtering step is post processed as fol-
lows:

(1) reactivating of NEs that are filtered out by the PoS filter.
(2) combining of adjacent NEs.
(3) merging of filtered lists with NEs into final list of NEs.

Table 3. Dictionaries used by the
DB −NER. The AEM value is not

defined for role names, because role names
do not refer to any of entities.

dictionary name unique phrases AEM
First names 1.232.004 6.1
Last names 1.176.221 5.2
Full name 9.288.600 1.1
Locations 256.700 1.3

Organizations 1.389.287 1.6
Miscellaneous 328.390 1.4

Products 14.317 1.2

4. EXPERIMENTAL RESULTS
In this section, we describe the configuration of the dictionary-
based named entity recognizer. We introduce the data set for eval-
uation of DB-NER and the PoS tagger it uses.

4.1 Bijankhan Dataset
The Bijankhan corpus [9] is a tagged corpus that is suitable for nat-
ural language processing research on the Persian (Farsi) language.
The four main NE types used in the dataset are persons, locations,
organizations, and miscellaneous (everything else). The Bijankhan
corpus is subdivided into the following sets:

(1) a training set to learn the parameters of a NER system.
(2) a development set for tuning of system parameters.
(3) a test set for comparison of the NER systems.
(4) unlabeled set for different purposes.

In our experiments, we use a slight modification of the original
format used in the Bijankhan dataset. Our format has the structure
as depicted in Table 2.

4.2 Dictionaries
DB-NER uses dictionaries created from the National Library and
Archives Organisation of Iran (NLAI). For evaluation of the sys-
tem, we use several typed dictionaries that are listed in Table 3.
The dictionary with first names has the largest average number of
entities per named entity or mention (AEM) among used dictionar-
ies. For example, the name ”Morteza” refers to 65.397 entities.
In contrast to first names, names of products are less ambiguous in
GNL, such that only 1.2 entities on average are connected with a
single product name.

4.3 Evaluation Methodology
We consider the usual metrics for the evaluation of a NER system.
Since NER is a subtask of natural language processing, the evalua-
tion of the NER system must be performed from the point of view
of human linguists. The following aspects are important for such
an evaluation:

(1) boundaries of the named entities
(2) type labels of the named entities
(3) positions of the named entities

There are different guidelines for evaluation of a NER system:

MUC (the message understanding conference). For the MUC
evaluation metric, the score is based on correct type
detection and exact match detection.
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Table 4. Comparison of Stanford’s NER and different configurations of the DBNER.

Stanford’s NER

Setting Evaluation Metric Precision Recall F1 AEM

Stanford ESEM 68.02% 58.04% 61.37% ∅
Stanford ASEM 81.35% 68.01% 72.82% ∅

Dictionary-Based NER: exact phrase search

Setting Evaluation Metric Precision Recall F1 AEM

ORIGNNF ASEM 30.84% 79.00% 43.37% 306
ORIGPNF ASEM 79.33% 60.40% 72.82% 701

ORIGPNF,LF ASEM 31.33% 79.40% 43.82% 211
ORIGPNF,LF ASEM 78.33% 72.40% 81.82% 340

LEMMPNF,LF ASEM 88.95% 79.65% 82.73% 375
LEMMPNF,LF ESEM 84.86% 71.40% 72.70% 340

Dictionary-Based NER: fuzzy phrase search

Setting Evaluation Metric Precision Recall F1 AEM

RATIO0.8PNF,LF ESEM 73.02% 68.04% 70.37% 480
RATIO0.8PNF,LF ASEM 86.35% 78.01% 80.82% 498

CoNLL (the conference on natural language learning). Exact
matching is used for the CoNLL scoring schema. Moreover,
the precision is defined as the ratio between the correct
returned named entities and all returned named entities.

ACE (automatic content extraction). The last evaluation strategy
is ACE, which has several parameters for setting priorities of
evaluation. In an ACE metric, evaluation weights are defined
for all classes of named entities.

Exact and approximate string matching metrics The usual met-
rics are used for evaluation of NER and NEC systems. Since the
NEC task is out of scope for our work, we ignore types of the
named entities. Therefore, for evaluation of our DB-NER frame-
work, we use the following metrics:

(1) exact string evaluation metric (ESEM)
(2) approximate string evaluation metric (ASEM)

The exact string evaluation metric is similar to the metric intro-
duced by the CoNLL community. Specifically, the boundaries and
positions of the named entities are considered.

By the approximate string evaluation metric, we relax one of the
aspects above. In particular, the detected named entity that has (par-
tial) overlapping with the NE from the GT is thereby treated by the
ASEM as true positive.

We present an evaluation of the DB-NER. The experimental results
are depicted in Table 4. The remainder of the section uses the fol-
lowing notations:

(1) ORIG (exact matching of original texts and dictionaries),
LEMM (lemmatization), LIFT (lifting).

(2) RATIO X is a method of dictionary lookups that is based on
fuzzy phrase search.

(3) NNF and PNF are Noun-Filter and Proper-Noun-Filter.
(4) LF is a shortcut for local filters.

The best results of DB-NER are achieved by combining the Proper-
Noun-Filter with the local filtering. The setting that uses lemma-
tized input text and lemmatized dictionaries achieves an 88.95%

precision, 79.65% recall, and an 82.73% F1 score using ASEM.
The result of the DB-NER configuration with lemmatization, lo-
cal filters, and the Proper-Noun-Filter for DB-NER, provides a
higher precision, recall, and F1 score than the result achieved
by Stanford’s NER framework. However, the configuration based
on lemma computation introduce additional dependency because
lemmatization is language specific.

5. CONCLUSIONS
An approach based on a Local F ilters model to recognize
Persian (Farsi) language named entities. We have presented
an approach for named entity recognition that uses dictionaries
to detect named entity candidates to filter out false positives. Our
dictionary-based recognizer is capable to work efficiently with mil-
lions of phrases in each dictionary due to a cacheable prefix-tree
data structure, which is used for dictionary lookups. Our recog-
nizer uses multiple dictionaries created from the entities of Na-
tional Library and Archives Organisation of Iran (NLAI). There-
fore, we tune our system to Persian Iran. In addition, Persian is a
more expressive language and more difficult than English, because
it has a complex morphology. In contrast to the prior works that
are based on machine learning methods, our dictionary-based rec-
ognizer does not need labeled training data.

Our DB −NER performs on Persian (Farsi) language with
up to 88.95% precision, 79.65% recall, and an 82.73% F1 score
using ASEM. This result was achieved by the setting, which uses
lemmatization as a dictionary lookup technique and applies with
local filters.
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