

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0

International License.

ISBN 978-0-9997730-3-1

Kubernetes for Full-Stack Developers

Compiled by Jamon Camisso, Hanif Jetha, Katherine Juell

DigitalOcean, New York City, New York, USA

2020-01

Kubernetes for Full-Stack Developers

1. About DigitalOcean
2. Preface - Getting Started with this Book
3. Introduction
4. An Introduction to Kubernetes
5. How To Create a Kubernetes Cluster Using Kubeadm on

Ubuntu 18.04
6. Webinar Series: A Closer Look at Kubernetes
7. An Introduction to Helm, the Package Manager for Kubernetes
8. How To Install Software on Kubernetes Clusters with the Helm

Package Manager
9. Architecting Applications for Kubernetes

10. Modernizing Applications for Kubernetes
11. How To Build a Node.js Application with Docker
12. Containerizing a Node.js Application for Development With

Docker Compose
13. How to Set Up DigitalOcean Kubernetes Cluster Monitoring with

Helm and Prometheus Operator
14. How To Set Up Laravel, Nginx, and MySQL with Docker

Compose
15. How To Migrate a Docker Compose Workflow to Kubernetes
16. Building Optimized Containers for Kubernetes
17. How To Scale a Node.js Application with MongoDB on

Kubernetes Using Helm

18. How To Set Up a Private Docker Registry on Top of
DigitalOcean Spaces and Use It with DigitalOcean Kubernetes

19. How To Deploy a PHP Application with Kubernetes on Ubuntu
18.04

20. How To Automate Deployments to DigitalOcean Kubernetes with
CircleCI

21. How To Set Up a CD Pipeline with Spinnaker on DigitalOcean
Kubernetes

22. Kubernetes Networking Under the Hood
23. How To Inspect Kubernetes Networking
24. An Introduction to Service Meshes
25. How To Back Up and Restore a Kubernetes Cluster on

DigitalOcean Using Velero
26. How To Set Up an Elasticsearch, Fluentd and Kibana (EFK)

Logging Stack on Kubernetes
27. How to Set Up an Nginx Ingress with Cert-Manager on

DigitalOcean Kubernetes
28. How to Protect Private Kubernetes Services Behind a GitHub

Login with oauth2_proxy

About DigitalOcean

DigitalOcean is a cloud services platform delivering the simplicity
developers love and businesses trust to run production applications at
scale. It provides highly available, secure and scalable compute, storage
and networking solutions that help developers build great software faster.

Founded in 2012 with offices in New York and Cambridge, MA,
DigitalOcean offers transparent and affordable pricing, an elegant user
interface, and one of the largest libraries of open source resources
available.

For more information, please visit https://www.digitalocean.com or
follow @digitalocean on Twitter.

https://www.digitalocean.com/
https://twitter.com/digitalocean

Preface - Getting Started with this Book

We recommend that you begin with a set of three or more clean, new
servers to start learning about Kubernetes. You can also run Kubernetes
locally in a development environment using a tool like Minikube. Finally,
you can choose to use a managed Kubernetes solution as long as you have
administrator access to the cluster. The examples in this book will work
with any system running Ubuntu 18.04 and should also work on Debian 9
and 10 systems, from a laptop to a remote server running in a cloud
provider’s environment.

Chapter 2 of this book goes into detail about how to create a Kubernetes
cluster from three new servers. It will be helpful to prepare in advance and
ensure that you can connect to the servers that you will use to create a
cluster. To connect to your servers with a terminal, use one of these guides
based on your computer’s operating system.

Linux and macOS users: How to Connect to Droplets with SSH
Windows users: If you have Bash on Windows or Windows
Subsystem for Linux, you can use the guide above. Otherwise you can
use PuTTY on Windows to connect to your Ubuntu server.

Once you have connected to your servers, everything should be ready
for you to start following along with the examples in this book.

https://kubernetes.io/docs/setup/learning-environment/minikube/
https://www.digitalocean.com/docs/droplets/how-to/connect-with-ssh/
https://www.digitalocean.com/docs/droplets/how-to/connect-with-ssh/putty/

Introduction

Cloud computing is a paradigm shift away from traditional self-managed
infrastructure to highly-available, on-demand, and scalable computing
resources. Instead of building physical servers and managing hardware for
individual applications or customers, cloud computing relies on managing
computing capacity programmatically on public or private clouds. This
approach to running applications means that resources can be provisioned
immediately when they are needed, and only with the resources relevant
for an application.

Kubernetes is a tool that is designed to manage cloud infrastructure and
the applications running on it. It reduces the complexity of coordinating
many physical and virtual machines, networks, and environments so that
developers can focus on building and deploying their applications.
Kubernetes also allows system administrators to focus on application
delivery, availability, and scalability instead of managing individual
servers and networks. Many applications can run simultaneously on a
cloud that is managed with Kubernetes, and each application will only use
the memory, CPU, and network resources that Kubernetes allocates to
them.

This approach of using Kubernetes to programmatically manage and
deploy applications on a cloud requires some familiarity with containers
and building applications that can take advantage of the resilience and
scalability that a tool like Kubernetes offers. The goal of this book is to

familiarize you with Kubernetes, containers, microservices architectures,
and managing applications on a Kubernetes cluster.

Introduction to this book

This book is designed to help newcomers and experienced users alike learn
about Kubernetes. Its chapters are designed to introduce core Kubernetes
concepts, and to build on them to a level where running an application on a
production cluster is a familiar, repeatable, and automated process.

From there, more advanced topics are introduced, like how to manage a
Kubernetes cluster itself. There are numerous tools, networking
configurations, and processes that can be used to deploy, monitor, and run
a cluster. This book will examine each topic in turn so that anyone who
follows along will be able to build, manage, and monitor their own cluster.

This book is based on the Kubernetes for Full-Stack Developers
curriculum found on DigitalOcean Community. It is structured around a
few central topics:

1. Learning Kubernetes core concepts
2. Modernizing applications to work with containers
3. Containerizing applications
4. Deploying applications to Kubernetes
5. Managing cluster operations

You should not feel obliged to follow the topics in any particular order.
If one section is more interesting or relevant to you, explore it and come
back to the others later if you prefer. Likewise, if you are already familiar

https://www.digitalocean.com/community/curriculums/kubernetes-for-full-stack-developers
https://www.digitalocean.com/community

with the concepts and tools in a given section, feel free to skip that one
and focus on other topics.

What You’ll Learn

In terms of concrete learning outcomes, if you follow along with this book
from the beginning, you will be able to:

Explain how containers, pods, and services are used in a Kubernetes
cluster
Determine if containers are appropriate for running an application
Describe and compose application components in terms of a
microservices architecture
Run an application in a standalone Docker container
Modernize an example application to use containers and run on
Kubernetes
Upload and use container images hosted on public or private image
registries
Deploy an application into a Kubernetes cluster manually, using
Helm for dependencies
Monitor an application’s health in a Kubernetes cluster
Monitor internal cluster health using Prometheus, Grafana, and
Alertmanager
Build a Continuous Integration and Deployment (CI/CD) pipeline to
work with Kubernetes
Create a Kubernetes cluster from scratch using Ansible

By the end of this book, you will have created your own Kubernetes
cluster and deployed multiple containerized applications to it. Your
applications will be designed around a microservices architecture so that
you can individually manage and scale each as components in a larger
application. You will also be able to set up and customize monitoring for
your cluster, and the applications within it. These outcomes are just a
small sample of what you can accomplish when using Kubernetes to build
and manage cloud native applications.

An Introduction to Kubernetes

Written by Justin Ellingwood
Kubernetes is a powerful open-source system that manages

containerized applications in a clustered environment. It is designed to
manage distributed applications and services across varied infrastructure.

In this guide, we’ll discuss basic Kubernetes concepts. We will talk
about its system architecture, the problems it solves, and the model that it
uses to handle containerized deployments and scaling.

After reading this guide, you should be familiar with core Kubernetes
concepts like the kube-apiserver, Nodes, Pods, Services, Deployments, and
Volumes.

Other tutorials in this curriculum explore each of these components and
their different use cases in further depth.

Kubernetes is a powerful open-source system, initially developed by
Google, for managing containerized applications in a clustered
environment. It aims to provide better ways of managing related,
distributed components and services across varied infrastructure.

In this guide, we’ll discuss some of Kubernetes’ basic concepts. We will
talk about the architecture of the system, the problems it solves, and the
model that it uses to handle containerized deployments and scaling.

What is Kubernetes?

Kubernetes, at its basic level, is a system for running and coordinating
containerized applications across a cluster of machines. It is a platform

https://www.digitalocean.com/community/tutorials/an-introduction-to-kubernetes

designed to completely manage the life cycle of containerized applications
and services using methods that provide predictability, scalability, and
high availability.

As a Kubernetes user, you can define how your applications should run
and the ways they should be able to interact with other applications or the
outside world. You can scale your services up or down, perform graceful
rolling updates, and switch traffic between different versions of your
applications to test features or rollback problematic deployments.
Kubernetes provides interfaces and composable platform primitives that
allow you to define and manage your applications with high degrees of
flexibility, power, and reliability.

Kubernetes Architecture

To understand how Kubernetes is able to provide these capabilities, it is
helpful to get a sense of how it is designed and organized at a high level.
Kubernetes can be visualized as a system built in layers, with each higher
layer abstracting the complexity found in the lower levels.

At its base, Kubernetes brings together individual physical or virtual
machines into a cluster using a shared network to communicate between
each server. This cluster is the physical platform where all Kubernetes
components, capabilities, and workloads are configured.

The machines in the cluster are each given a role within the Kubernetes
ecosystem. One server (or a small group in highly available deployments)
functions as the master server. This server acts as a gateway and brain for
the cluster by exposing an API for users and clients, health checking other
servers, deciding how best to split up and assign work (known as

“scheduling”), and orchestrating communication between other
components. The master server acts as the primary point of contact with
the cluster and is responsible for most of the centralized logic Kubernetes
provides.

The other machines in the cluster are designated as nodes: servers
responsible for accepting and running workloads using local and external
resources. To help with isolation, management, and flexibility, Kubernetes
runs applications and services in containers, so each node needs to be
equipped with a container runtime (like Docker or rkt). The node receives
work instructions from the master server and creates or destroys
containers accordingly, adjusting networking rules to route and forward
traffic appropriately.

As mentioned above, the applications and services themselves are run
on the cluster within containers. The underlying components make sure
that the desired state of the applications matches the actual state of the
cluster. Users interact with the cluster by communicating with the main
API server either directly or with clients and libraries. To start up an
application or service, a declarative plan is submitted in JSON or YAML
defining what to create and how it should be managed. The master server
then takes the plan and figures out how to run it on the infrastructure by
examining the requirements and the current state of the system. This group
of user-defined applications running according to a specified plan
represents Kubernetes’ final layer.

Master Server Components

As we described above, the master server acts as the primary control plane
for Kubernetes clusters. It serves as the main contact point for
administrators and users, and also provides many cluster-wide systems for
the relatively unsophisticated worker nodes. Overall, the components on
the master server work together to accept user requests, determine the best
ways to schedule workload containers, authenticate clients and nodes,
adjust cluster-wide networking, and manage scaling and health checking
responsibilities.

These components can be installed on a single machine or distributed
across multiple servers. We will take a look at each of the individual
components associated with master servers in this section.

etcd

One of the fundamental components that Kubernetes needs to function is a
globally available configuration store. The etcd project, developed by the
team at CoreOS, is a lightweight, distributed key-value store that can be
configured to span across multiple nodes.

Kubernetes uses etcd to store configuration data that can be accessed
by each of the nodes in the cluster. This can be used for service discovery
and can help components configure or reconfigure themselves according
to up-to-date information. It also helps maintain cluster state with features
like leader election and distributed locking. By providing a simple
HTTP/JSON API, the interface for setting or retrieving values is very
straight forward.

Like most other components in the control plane, etcd can be
configured on a single master server or, in production scenarios,

https://coreos.com/etcd/docs/latest/

distributed among a number of machines. The only requirement is that it
be network accessible to each of the Kubernetes machines.

kube-apiserver

One of the most important master services is an API server. This is the
main management point of the entire cluster as it allows a user to
configure Kubernetes’ workloads and organizational units. It is also
responsible for making sure that the etcd store and the service details of
deployed containers are in agreement. It acts as the bridge between various
components to maintain cluster health and disseminate information and
commands.

The API server implements a RESTful interface, which means that
many different tools and libraries can readily communicate with it. A
client called kubectl is available as a default method of interacting with
the Kubernetes cluster from a local computer.

kube-controller-manager

The controller manager is a general service that has many responsibilities.
Primarily, it manages different controllers that regulate the state of the
cluster, manage workload life cycles, and perform routine tasks. For
instance, a replication controller ensures that the number of replicas
(identical copies) defined for a pod matches the number currently
deployed on the cluster. The details of these operations are written to
etcd, where the controller manager watches for changes through the API
server.

When a change is seen, the controller reads the new information and
implements the procedure that fulfills the desired state. This can involve

scaling an application up or down, adjusting endpoints, etc.

kube-scheduler

The process that actually assigns workloads to specific nodes in the cluster
is the scheduler. This service reads in a workload’s operating
requirements, analyzes the current infrastructure environment, and places
the work on an acceptable node or nodes.

The scheduler is responsible for tracking available capacity on each host
to make sure that workloads are not scheduled in excess of the available
resources. The scheduler must know the total capacity as well as the
resources already allocated to existing workloads on each server.

cloud-controller-manager

Kubernetes can be deployed in many different environments and can
interact with various infrastructure providers to understand and manage
the state of resources in the cluster. While Kubernetes works with generic
representations of resources like attachable storage and load balancers, it
needs a way to map these to the actual resources provided by non-
homogeneous cloud providers.

Cloud controller managers act as the glue that allows Kubernetes to
interact providers with different capabilities, features, and APIs while
maintaining relatively generic constructs internally. This allows
Kubernetes to update its state information according to information
gathered from the cloud provider, adjust cloud resources as changes are
needed in the system, and create and use additional cloud services to
satisfy the work requirements submitted to the cluster.

Node Server Components

In Kubernetes, servers that perform work by running containers are known
as nodes. Node servers have a few requirements that are necessary for
communicating with master components, configuring the container
networking, and running the actual workloads assigned to them.

A Container Runtime

The first component that each node must have is a container runtime.
Typically, this requirement is satisfied by installing and running Docker,
but alternatives like rkt and runc are also available.

The container runtime is responsible for starting and managing
containers, applications encapsulated in a relatively isolated but
lightweight operating environment. Each unit of work on the cluster is, at
its basic level, implemented as one or more containers that must be
deployed. The container runtime on each node is the component that
finally runs the containers defined in the workloads submitted to the
cluster.

kubelet

The main contact point for each node with the cluster group is a small
service called kubelet. This service is responsible for relaying information
to and from the control plane services, as well as interacting with the
etcd store to read configuration details or write new values.

The kubelet service communicates with the master components to
authenticate to the cluster and receive commands and work. Work is
received in the form of a manifest which defines the workload and the

https://www.docker.com/
https://coreos.com/rkt/
https://github.com/opencontainers/runc

operating parameters. The kubelet process then assumes responsibility
for maintaining the state of the work on the node server. It controls the
container runtime to launch or destroy containers as needed.

kube-proxy

To manage individual host subnetting and make services available to other
components, a small proxy service called kube-proxy is run on each node
server. This process forwards requests to the correct containers, can do
primitive load balancing, and is generally responsible for making sure the
networking environment is predictable and accessible, but isolated where
appropriate.

Kubernetes Objects and Workloads

While containers are the underlying mechanism used to deploy
applications, Kubernetes uses additional layers of abstraction over the
container interface to provide scaling, resiliency, and life cycle
management features. Instead of managing containers directly, users
define and interact with instances composed of various primitives
provided by the Kubernetes object model. We will go over the different
types of objects that can be used to define these workloads below.

Pods

A pod is the most basic unit that Kubernetes deals with. Containers
themselves are not assigned to hosts. Instead, one or more tightly coupled
containers are encapsulated in an object called a pod.

A pod generally represents one or more containers that should be
controlled as a single application. Pods consist of containers that operate

closely together, share a life cycle, and should always be scheduled on the
same node. They are managed entirely as a unit and share their
environment, volumes, and IP space. In spite of their containerized
implementation, you should generally think of pods as a single, monolithic
application to best conceptualize how the cluster will manage the pod’s
resources and scheduling.

Usually, pods consist of a main container that satisfies the general
purpose of the workload and optionally some helper containers that
facilitate closely related tasks. These are programs that benefit from being
run and managed in their own containers, but are tightly tied to the main
application. For example, a pod may have one container running the
primary application server and a helper container pulling down files to the
shared filesystem when changes are detected in an external repository.
Horizontal scaling is generally discouraged on the pod level because there
are other higher level objects more suited for the task.

Generally, users should not manage pods themselves, because they do
not provide some of the features typically needed in applications (like
sophisticated life cycle management and scaling). Instead, users are
encouraged to work with higher level objects that use pods or pod
templates as base components but implement additional functionality.

Replication Controllers and Replication Sets

Often, when working with Kubernetes, rather than working with single
pods, you will instead be managing groups of identical, replicated pods.
These are created from pod templates and can be horizontally scaled by
controllers known as replication controllers and replication sets.

A replication controller is an object that defines a pod template and
control parameters to scale identical replicas of a pod horizontally by
increasing or decreasing the number of running copies. This is an easy way
to distribute load and increase availability natively within Kubernetes. The
replication controller knows how to create new pods as needed because a
template that closely resembles a pod definition is embedded within the
replication controller configuration.

The replication controller is responsible for ensuring that the number of
pods deployed in the cluster matches the number of pods in its
configuration. If a pod or underlying host fails, the controller will start
new pods to compensate. If the number of replicas in a controller’s
configuration changes, the controller either starts up or kills containers to
match the desired number. Replication controllers can also perform rolling
updates to roll over a set of pods to a new version one by one, minimizing
the impact on application availability.

Replication sets are an iteration on the replication controller design with
greater flexibility in how the controller identifies the pods it is meant to
manage. Replication sets are beginning to replace replication controllers
because of their greater replica selection capabilities, but they are not able
to do rolling updates to cycle backends to a new version like replication
controllers can. Instead, replication sets are meant to be used inside of
additional, higher level units that provide that functionality.

Like pods, both replication controllers and replication sets are rarely the
units you will work with directly. While they build on the pod design to
add horizontal scaling and reliability guarantees, they lack some of the
fine grained life cycle management capabilities found in more complex
objects.

Deployments

Deployments are one of the most common workloads to directly create
and manage. Deployments use replication sets as a building block, adding
flexible life cycle management functionality to the mix.

While deployments built with replications sets may appear to duplicate
the functionality offered by replication controllers, deployments solve
many of the pain points that existed in the implementation of rolling
updates. When updating applications with replication controllers, users are
required to submit a plan for a new replication controller that would
replace the current controller. When using replication controllers, tasks
like tracking history, recovering from network failures during the update,
and rolling back bad changes are either difficult or left as the user’s
responsibility.

Deployments are a high level object designed to ease the life cycle
management of replicated pods. Deployments can be modified easily by
changing the configuration and Kubernetes will adjust the replica sets,
manage transitions between different application versions, and optionally
maintain event history and undo capabilities automatically. Because of
these features, deployments will likely be the type of Kubernetes object
you work with most frequently.

Stateful Sets

Stateful sets are specialized pod controllers that offer ordering and
uniqueness guarantees. Primarily, these are used to have more fine-grained
control when you have special requirements related to deployment
ordering, persistent data, or stable networking. For instance, stateful sets

are often associated with data-oriented applications, like databases, which
need access to the same volumes even if rescheduled to a new node.

Stateful sets provide a stable networking identifier by creating a unique,
number-based name for each pod that will persist even if the pod needs to
be moved to another node. Likewise, persistent storage volumes can be
transferred with a pod when rescheduling is necessary. The volumes
persist even after the pod has been deleted to prevent accidental data loss.

When deploying or adjusting scale, stateful sets perform operations
according to the numbered identifier in their name. This gives greater
predictability and control over the order of execution, which can be useful
in some cases.

Daemon Sets

Daemon sets are another specialized form of pod controller that run a copy
of a pod on each node in the cluster (or a subset, if specified). This is most
often useful when deploying pods that help perform maintenance and
provide services for the nodes themselves.

For instance, collecting and forwarding logs, aggregating metrics, and
running services that increase the capabilities of the node itself are
popular candidates for daemon sets. Because daemon sets often provide
fundamental services and are needed throughout the fleet, they can bypass
pod scheduling restrictions that prevent other controllers from assigning
pods to certain hosts. As an example, because of its unique
responsibilities, the master server is frequently configured to be
unavailable for normal pod scheduling, but daemon sets have the ability to
override the restriction on a pod-by-pod basis to make sure essential
services are running.

Jobs and Cron Jobs

The workloads we’ve described so far have all assumed a long-running,
service-like life cycle. Kubernetes uses a workload called jobs to provide a
more task-based workflow where the running containers are expected to
exit successfully after some time once they have completed their work.
Jobs are useful if you need to perform one-off or batch processing instead
of running a continuous service.

Building on jobs are cron jobs. Like the conventional cron daemons on
Linux and Unix-like systems that execute scripts on a schedule, cron jobs
in Kubernetes provide an interface to run jobs with a scheduling
component. Cron jobs can be used to schedule a job to execute in the
future or on a regular, reoccurring basis. Kubernetes cron jobs are
basically a reimplementation of the classic cron behavior, using the cluster
as a platform instead of a single operating system.

Other Kubernetes Components

Beyond the workloads you can run on a cluster, Kubernetes provides a
number of other abstractions that help you manage your applications,
control networking, and enable persistence. We will discuss a few of the
more common examples here.

Services

So far, we have been using the term “service” in the conventional, Unix-
like sense: to denote long-running processes, often network connected,
capable of responding to requests. However, in Kubernetes, a service is a
component that acts as a basic internal load balancer and ambassador for

pods. A service groups together logical collections of pods that perform
the same function to present them as a single entity.

This allows you to deploy a service that can keep track of and route to
all of the backend containers of a particular type. Internal consumers only
need to know about the stable endpoint provided by the service.
Meanwhile, the service abstraction allows you to scale out or replace the
backend work units as necessary. A service’s IP address remains stable
regardless of changes to the pods it routes to. By deploying a service, you
easily gain discoverability and can simplify your container designs.

Any time you need to provide access to one or more pods to another
application or to external consumers, you should configure a service. For
instance, if you have a set of pods running web servers that should be
accessible from the internet, a service will provide the necessary
abstraction. Likewise, if your web servers need to store and retrieve data,
you would want to configure an internal service to give them access to
your database pods.

Although services, by default, are only available using an internally
routable IP address, they can be made available outside of the cluster by
choosing one of several strategies. The NodePort configuration works by
opening a static port on each node’s external networking interface. Traffic
to the external port will be routed automatically to the appropriate pods
using an internal cluster IP service.

Alternatively, the LoadBalancer service type creates an external load
balancer to route to the service using a cloud provider’s Kubernetes load
balancer integration. The cloud controller manager will create the
appropriate resource and configure it using the internal service service
addresses.

Volumes and Persistent Volumes

Reliably sharing data and guaranteeing its availability between container
restarts is a challenge in many containerized environments. Container
runtimes often provide some mechanism to attach storage to a container
that persists beyond the lifetime of the container, but implementations
typically lack flexibility.

To address this, Kubernetes uses its own volumes abstraction that
allows data to be shared by all containers within a pod and remain
available until the pod is terminated. This means that tightly coupled pods
can easily share files without complex external mechanisms. Container
failures within the pod will not affect access to the shared files. Once the
pod is terminated, the shared volume is destroyed, so it is not a good
solution for truly persistent data.

Persistent volumes are a mechanism for abstracting more robust storage
that is not tied to the pod life cycle. Instead, they allow administrators to
configure storage resources for the cluster that users can request and claim
for the pods they are running. Once a pod is done with a persistent volume,
the volume’s reclamation policy determines whether the volume is kept
around until manually deleted or removed along with the data
immediately. Persistent data can be used to guard against node-based
failures and to allocate greater amounts of storage than is available
locally.

Labels and Annotations

A Kubernetes organizational abstraction related to, but outside of the other
concepts, is labeling. A label in Kubernetes is a semantic tag that can be

attached to Kubernetes objects to mark them as a part of a group. These
can then be selected for when targeting different instances for
management or routing. For instance, each of the controller-based objects
use labels to identify the pods that they should operate on. Services use
labels to understand the backend pods they should route requests to.

Labels are given as simple key-value pairs. Each unit can have more
than one label, but each unit can only have one entry for each key. Usually,
a “name” key is used as a general purpose identifier, but you can
additionally classify objects by other criteria like development stage,
public accessibility, application version, etc.

Annotations are a similar mechanism that allows you to attach arbitrary
key-value information to an object. While labels should be used for
semantic information useful to match a pod with selection criteria,
annotations are more free-form and can contain less structured data. In
general, annotations are a way of adding rich metadata to an object that is
not helpful for selection purposes.

Conclusion

Kubernetes is an exciting project that allows users to run scalable, highly
available containerized workloads on a highly abstracted platform. While
Kubernetes’ architecture and set of internal components can at first seem
daunting, their power, flexibility, and robust feature set are unparalleled in
the open-source world. By understanding how the basic building blocks fit
together, you can begin to design systems that fully leverage the
capabilities of the platform to run and manage your workloads at scale.

How To Create a Kubernetes Cluster
Using Kubeadm on Ubuntu 18.04

Written by bsder
In this guide, you will set up a Kubernetes cluster from scratch using

Ansible and Kubeadm, and then deploy a containerized Nginx application
to it. You will be able to use the cluster that you create in this tutorial in
subsequent tutorials.

While the first tutorial in this curriculum introduces some of the
concepts and terms that you will encounter when running an application in
Kubernetes, this tutorial focuses on the steps required to build a working
Kubernetes cluster.

This tutorial uses Ansible to automate some of the more repetitive tasks
like user creation, dependency installation, and network setup in the
cluster. If you would like to create a cluster manually, the tutorial provides
a list of resources that includes the official Kubernetes documentation,
which you can use instead of Ansible.

By the end of this tutorial you should have a functioning Kubernetes
cluster that consists of three Nodes (a master and two worker Nodes). You
will also deploy Nginx to the cluster to confirm that everything works as
intended.

The author selected the Free and Open Source Fund to receive a
donation as part of the Write for DOnations program.

Kubernetes is a container orchestration system that manages containers
at scale. Initially developed by Google based on its experience running

https://www.digitalocean.com/community/tutorials/how-to-create-a-kubernetes-cluster-using-kubeadm-on-ubuntu-18-04
https://www.brightfunds.org/funds/foss-nonprofits
https://do.co/w4do-cta
https://kubernetes.io/

containers in production, Kubernetes is open source and actively
developed by a community around the world.

Note: This tutorial uses version 1.14 of Kubernetes, the official
supported version at the time of this article’s publication. For up-to-date
information on the latest version, please see the current release notes in
the official Kubernetes documentation.

Kubeadm automates the installation and configuration of Kubernetes
components such as the API server, Controller Manager, and Kube DNS. It
does not, however, create users or handle the installation of operating-
system-level dependencies and their configuration. For these preliminary
tasks, it is possible to use a configuration management tool like Ansible or
SaltStack. Using these tools makes creating additional clusters or
recreating existing clusters much simpler and less error prone.

In this guide, you will set up a Kubernetes cluster from scratch using
Ansible and Kubeadm, and then deploy a containerized Nginx application
to it.

Goals

Your cluster will include the following physical resources:

One master node
The master node (a node in Kubernetes refers to a server) is
responsible for managing the state of the cluster. It runs Etcd, which
stores cluster data among components that schedule workloads to
worker nodes.
Two worker nodes

https://kubernetes.io/docs/setup/release/notes/
https://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm/
https://www.ansible.com/
https://saltstack.com/
https://github.com/coreos/etcd

Worker nodes are the servers where your workloads
(i.e. containerized applications and services) will run. A worker will
continue to run your workload once they’re assigned to it, even if the
master goes down once scheduling is complete. A cluster’s capacity
can be increased by adding workers.

After completing this guide, you will have a cluster ready to run
containerized applications, provided that the servers in the cluster have
sufficient CPU and RAM resources for your applications to consume.
Almost any traditional Unix application including web applications,
databases, daemons, and command line tools can be containerized and
made to run on the cluster. The cluster itself will consume around 300-
500MB of memory and 10% of CPU on each node.

Once the cluster is set up, you will deploy the web server Nginx to it to
ensure that it is running workloads correctly.

Prerequisites

An SSH key pair on your local Linux/macOS/BSD machine. If you
haven’t used SSH keys before, you can learn how to set them up by
following this explanation of how to set up SSH keys on your local
machine.
Three servers running Ubuntu 18.04 with at least 2GB RAM and 2
vCPUs each. You should be able to SSH into each server as the root
user with your SSH key pair.
Ansible installed on your local machine. If you’re running Ubuntu
18.04 as your OS, follow the “Step 1 - Installing Ansible” section in
How to Install and Configure Ansible on Ubuntu 18.04 to install

https://nginx.org/en/
https://www.digitalocean.com/community/tutorials/ssh-essentials-working-with-ssh-servers-clients-and-keys#generating-and-working-with-ssh-keys
https://www.digitalocean.com/community/tutorials/how-to-install-and-configure-ansible-on-ubuntu-18-04#step-1-%E2%80%94-installing-ansible

Ansible. For installation instructions on other platforms like macOS
or CentOS, follow the official Ansible installation documentation.
Familiarity with Ansible playbooks. For review, check out
Configuration Management 101: Writing Ansible Playbooks.
Knowledge of how to launch a container from a Docker image. Look
at “Step 5 — Running a Docker Container” in How To Install and Use
Docker on Ubuntu 18.04 if you need a refresher.

Step 1 — Setting Up the Workspace Directory and Ansible
Inventory File

In this section, you will create a directory on your local machine that will
serve as your workspace. You will configure Ansible locally so that it can
communicate with and execute commands on your remote servers. Once
that’s done, you will create a hosts file containing inventory information
such as the IP addresses of your servers and the groups that each server
belongs to.

Out of your three servers, one will be the master with an IP displayed as
master_ip. The other two servers will be workers and will have the IPs
worker_1_ip and worker_2_ip.

Create a directory named ~/kube-cluster in the home directory of
your local machine and cd into it:
mkdir ~/kube-cluster

cd ~/kube-cluster

This directory will be your workspace for the rest of the tutorial and
will contain all of your Ansible playbooks. It will also be the directory
inside which you will run all local commands.

http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#installing-the-control-machine
https://www.digitalocean.com/community/tutorials/configuration-management-101-writing-ansible-playbooks
https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-18-04#step-5-%E2%80%94-running-a-docker-container

Create a file named ~/kube-cluster/hosts using nano or your
favorite text editor:
nano ~/kube-cluster/hosts

Add the following text to the file, which will specify information about
the logical structure of your cluster:

~/kube-cluster/hosts
[masters]

master ansible_host=master_ip ansible_user=root

[workers]

worker1 ansible_host=worker_1_ip ansible_user=root

worker2 ansible_host=worker_2_ip ansible_user=root

[all:vars]

ansible_python_interpreter=/usr/bin/python3

You may recall that inventory files in Ansible are used to specify server
information such as IP addresses, remote users, and groupings of servers
to target as a single unit for executing commands. ~/kube-

cluster/hosts will be your inventory file and you’ve added two
Ansible groups (masters and workers) to it specifying the logical structure
of your cluster.

In the masters group, there is a server entry named “master” that lists
the master node’s IP (master_ip) and specifies that Ansible should run
remote commands as the root user.

Similarly, in the workers group, there are two entries for the worker
servers (worker_1_ip and worker_2_ip) that also specify the

http://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html

ansible_user as root.
The last line of the file tells Ansible to use the remote servers’ Python 3

interpreters for its management operations.
Save and close the file after you’ve added the text.
Having set up the server inventory with groups, let’s move on to

installing operating system level dependencies and creating configuration
settings.

Step 2 — Creating a Non-Root User on All Remote Servers

In this section you will create a non-root user with sudo privileges on all
servers so that you can SSH into them manually as an unprivileged user.
This can be useful if, for example, you would like to see system
information with commands such as top/htop, view a list of running
containers, or change configuration files owned by root. These operations
are routinely performed during the maintenance of a cluster, and using a
non-root user for such tasks minimizes the risk of modifying or deleting
important files or unintentionally performing other dangerous operations.

Create a file named ~/kube-cluster/initial.yml in the
workspace:
nano ~/kube-cluster/initial.yml

Next, add the following play to the file to create a non-root user with
sudo privileges on all of the servers. A play in Ansible is a collection of
steps to be performed that target specific servers and groups. The
following play will create a non-root sudo user:

~/kube-cluster/initial.yml

- hosts: all

 become: yes

 tasks:

 - name: create the 'ubuntu' user

 user: name=ubuntu append=yes state=present

createhome=yes shell=/bin/bash

 - name: allow 'ubuntu' to have passwordless

sudo

 lineinfile:

 dest: /etc/sudoers

 line: 'ubuntu ALL=(ALL) NOPASSWD: ALL'

 validate: 'visudo -cf %s'

 - name: set up authorized keys for the ubuntu

user

 authorized_key: user=ubuntu key="{{item}}"

 with_file:

 - ~/.ssh/id_rsa.pub

Here’s a breakdown of what this playbook does:

Creates the non-root user ubuntu.
Configures the sudoers file to allow the ubuntu user to run sudo
commands without a password prompt.
Adds the public key in your local machine (usually
~/.ssh/id_rsa.pub) to the remote ubuntu user’s authorized

key list. This will allow you to SSH into each server as the ubuntu
user.

Save and close the file after you’ve added the text.
Next, execute the playbook by locally running:

ansible-playbook -i hosts ~/kube-

cluster/initial.yml

The command will complete within two to five minutes. On completion,
you will see output similar to the following:

Output
PLAY [all] ****

TASK [Gathering Facts] ****

ok: [master]

ok: [worker1]

ok: [worker2]

TASK [create the 'ubuntu' user] ****

changed: [master]

changed: [worker1]

changed: [worker2]

TASK [allow 'ubuntu' user to have passwordless

sudo] ****

changed: [master]

changed: [worker1]

changed: [worker2]

TASK [set up authorized keys for the ubuntu user]

changed: [worker1] => (item=ssh-rsa AAAAB3...)

changed: [worker2] => (item=ssh-rsa AAAAB3...)

changed: [master] => (item=ssh-rsa AAAAB3...)

PLAY RECAP ****

master : ok=5 changed=4

unreachable=0 failed=0

worker1 : ok=5 changed=4

unreachable=0 failed=0

worker2 : ok=5 changed=4

unreachable=0 failed=0

Now that the preliminary setup is complete, you can move on to
installing Kubernetes-specific dependencies.

Step 3 — Installing Kubernetetes’ Dependencies

In this section, you will install the operating-system-level packages
required by Kubernetes with Ubuntu’s package manager. These packages
are:

Docker - a container runtime. It is the component that runs your
containers. Support for other runtimes such as rkt is under active
development in Kubernetes.

https://coreos.com/rkt/

kubeadm - a CLI tool that will install and configure the various
components of a cluster in a standard way.
kubelet - a system service/program that runs on all nodes and
handles node-level operations.
kubectl - a CLI tool used for issuing commands to the cluster
through its API Server.

Create a file named ~/kube-cluster/kube-

dependencies.yml in the workspace:
nano ~/kube-cluster/kube-dependencies.yml

Add the following plays to the file to install these packages to your
servers:

~/kube-cluster/kube-dependencies.yml
- hosts: all

 become: yes

 tasks:

 - name: install Docker

 apt:

 name: docker.io

 state: present

 update_cache: true

 - name: install APT Transport HTTPS

 apt:

 name: apt-transport-https

 state: present

 - name: add Kubernetes apt-key

 apt_key:

 url:

https://packages.cloud.google.com/apt/doc/apt-

key.gpg

 state: present

 - name: add Kubernetes' APT repository

 apt_repository:

 repo: deb http://apt.kubernetes.io/

kubernetes-xenial main

 state: present

 filename: 'kubernetes'

 - name: install kubelet

 apt:

 name: kubelet=1.14.0-00

 state: present

 update_cache: true

 - name: install kubeadm

 apt:

 name: kubeadm=1.14.0-00

 state: present

- hosts: master

 become: yes

 tasks:

 - name: install kubectl

 apt:

 name: kubectl=1.14.0-00

 state: present

 force: yes

The first play in the playbook does the following:

Installs Docker, the container runtime.
Installs apt-transport-https, allowing you to add external
HTTPS sources to your APT sources list.
Adds the Kubernetes APT repository’s apt-key for key verification.
Adds the Kubernetes APT repository to your remote servers’ APT
sources list.
Installs kubelet and kubeadm.

The second play consists of a single task that installs kubectl on your
master node.

Note: While the Kubernetes documentation recommends you use the
latest stable release of Kubernetes for your environment, this tutorial uses
a specific version. This will ensure that you can follow the steps
successfully, as Kubernetes changes rapidly and the latest version may not
work with this tutorial.

Save and close the file when you are finished.
Next, execute the playbook by locally running:

ansible-playbook -i hosts ~/kube-cluster/kube-

dependencies.yml

On completion, you will see output similar to the following:

Output
PLAY [all] ****

TASK [Gathering Facts] ****

ok: [worker1]

ok: [worker2]

ok: [master]

TASK [install Docker] ****

changed: [master]

changed: [worker1]

changed: [worker2]

TASK [install APT Transport HTTPS] *****

ok: [master]

ok: [worker1]

changed: [worker2]

TASK [add Kubernetes apt-key] *****

changed: [master]

changed: [worker1]

changed: [worker2]

TASK [add Kubernetes' APT repository] *****

changed: [master]

changed: [worker1]

changed: [worker2]

TASK [install kubelet] *****

changed: [master]

changed: [worker1]

changed: [worker2]

TASK [install kubeadm] *****

changed: [master]

changed: [worker1]

changed: [worker2]

PLAY [master] *****

TASK [Gathering Facts] *****

ok: [master]

TASK [install kubectl] ******

ok: [master]

PLAY RECAP ****

master : ok=9 changed=5

unreachable=0 failed=0

worker1 : ok=7 changed=5

unreachable=0 failed=0

worker2 : ok=7 changed=5

unreachable=0 failed=0

After execution, Docker, kubeadm, and kubelet will be installed on
all of the remote servers. kubectl is not a required component and is
only needed for executing cluster commands. Installing it only on the
master node makes sense in this context, since you will run kubectl
commands only from the master. Note, however, that kubectl
commands can be run from any of the worker nodes or from any machine
where it can be installed and configured to point to a cluster.

All system dependencies are now installed. Let’s set up the master node
and initialize the cluster.

Step 4 — Setting Up the Master Node

In this section, you will set up the master node. Before creating any
playbooks, however, it’s worth covering a few concepts such as Pods and
Pod Network Plugins, since your cluster will include both.

A pod is an atomic unit that runs one or more containers. These
containers share resources such as file volumes and network interfaces in
common. Pods are the basic unit of scheduling in Kubernetes: all
containers in a pod are guaranteed to run on the same node that the pod is
scheduled on.

Each pod has its own IP address, and a pod on one node should be able
to access a pod on another node using the pod’s IP. Containers on a single
node can communicate easily through a local interface. Communication
between pods is more complicated, however, and requires a separate

networking component that can transparently route traffic from a pod on
one node to a pod on another.

This functionality is provided by pod network plugins. For this cluster,
you will use Flannel, a stable and performant option.

Create an Ansible playbook named master.yml on your local
machine:
nano ~/kube-cluster/master.yml

Add the following play to the file to initialize the cluster and install
Flannel:

~/kube-cluster/master.yml
- hosts: master

 become: yes

 tasks:

 - name: initialize the cluster

 shell: kubeadm init --pod-network-

cidr=10.244.0.0/16 >> cluster_initialized.txt

 args:

 chdir: $HOME

 creates: cluster_initialized.txt

 - name: create .kube directory

 become: yes

 become_user: ubuntu

 file:

 path: $HOME/.kube

 state: directory

https://github.com/coreos/flannel

 mode: 0755

 - name: copy admin.conf to user's kube config

 copy:

 src: /etc/kubernetes/admin.conf

 dest: /home/ubuntu/.kube/config

 remote_src: yes

 owner: ubuntu

 - name: install Pod network

 become: yes

 become_user: ubuntu

 shell: kubectl apply -f

https://raw.githubusercontent.com/coreos/flannel/a

70459be0084506e4ec919aa1c114638878db11b/Documentat

ion/kube-flannel.yml >> pod_network_setup.txt

 args:

 chdir: $HOME

 creates: pod_network_setup.txt

Here’s a breakdown of this play:

The first task initializes the cluster by running kubeadm init.
Passing the argument --pod-network-cidr=10.244.0.0/16
specifies the private subnet that the pod IPs will be assigned from.
Flannel uses the above subnet by default; we’re telling kubeadm to
use the same subnet.

The second task creates a .kube directory at /home/ubuntu. This
directory will hold configuration information such as the admin key
files, which are required to connect to the cluster, and the cluster’s
API address.
The third task copies the /etc/kubernetes/admin.conf file
that was generated from kubeadm init to your non-root user’s
home directory. This will allow you to use kubectl to access the
newly-created cluster.
The last task runs kubectl apply to install Flannel. kubectl
apply -f descriptor.[yml|json] is the syntax for telling
kubectl to create the objects described in the descriptor.
[yml|json] file. The kube-flannel.yml file contains the
descriptions of objects required for setting up Flannel in the
cluster.

Save and close the file when you are finished.
Execute the playbook locally by running:

ansible-playbook -i hosts ~/kube-

cluster/master.yml

On completion, you will see output similar to the following:

Output
PLAY [master] ****

TASK [Gathering Facts] ****

ok: [master]

TASK [initialize the cluster] ****

changed: [master]

TASK [create .kube directory] ****

changed: [master]

TASK [copy admin.conf to user's kube config] *****

changed: [master]

TASK [install Pod network] *****

changed: [master]

PLAY RECAP ****

master : ok=5 changed=4

unreachable=0 failed=0

To check the status of the master node, SSH into it with the following
command:
ssh ubuntu@master_ip

Once inside the master node, execute:
kubectl get nodes

You will now see the following output:

Output
NAME STATUS ROLES AGE VERSION

master Ready master 1d v1.14.0

The output states that the master node has completed all initialization
tasks and is in a Ready state from which it can start accepting worker

nodes and executing tasks sent to the API Server. You can now add the
workers from your local machine.

Step 5 — Setting Up the Worker Nodes

Adding workers to the cluster involves executing a single command on
each. This command includes the necessary cluster information, such as
the IP address and port of the master’s API Server, and a secure token.
Only nodes that pass in the secure token will be able join the cluster.

Navigate back to your workspace and create a playbook named
workers.yml:
nano ~/kube-cluster/workers.yml

Add the following text to the file to add the workers to the cluster:

~/kube-cluster/workers.yml
- hosts: master

 become: yes

 gather_facts: false

 tasks:

 - name: get join command

 shell: kubeadm token create --print-join-

command

 register: join_command_raw

 - name: set join command

 set_fact:

 join_command: "{{

join_command_raw.stdout_lines[0] }}"

- hosts: workers

 become: yes

 tasks:

 - name: join cluster

 shell: "{{ hostvars['master'].join_command

}} >> node_joined.txt"

 args:

 chdir: $HOME

 creates: node_joined.txt

Here’s what the playbook does:

The first play gets the join command that needs to be run on the
worker nodes. This command will be in the following
format:kubeadm join --token <token> <master-ip>:
<master-port> --discovery-token-ca-cert-hash

sha256:<hash>. Once it gets the actual command with the proper
token and hash values, the task sets it as a fact so that the next play
will be able to access that info.
The second play has a single task that runs the join command on all
worker nodes. On completion of this task, the two worker nodes will
be part of the cluster.

Save and close the file when you are finished.
Execute the playbook by locally running:

ansible-playbook -i hosts ~/kube-

cluster/workers.yml

On completion, you will see output similar to the following:

Output
PLAY [master] ****

TASK [get join command] ****

changed: [master]

TASK [set join command] *****

ok: [master]

PLAY [workers] *****

TASK [Gathering Facts] *****

ok: [worker1]

ok: [worker2]

TASK [join cluster] *****

changed: [worker1]

changed: [worker2]

PLAY RECAP *****

master : ok=2 changed=1

unreachable=0 failed=0

worker1 : ok=2 changed=1

unreachable=0 failed=0

worker2 : ok=2 changed=1

unreachable=0 failed=0

With the addition of the worker nodes, your cluster is now fully set up
and functional, with workers ready to run workloads. Before scheduling
applications, let’s verify that the cluster is working as intended.

Step 6 — Verifying the Cluster

A cluster can sometimes fail during setup because a node is down or
network connectivity between the master and worker is not working
correctly. Let’s verify the cluster and ensure that the nodes are operating
correctly.

You will need to check the current state of the cluster from the master
node to ensure that the nodes are ready. If you disconnected from the
master node, you can SSH back into it with the following command:
ssh ubuntu@master_ip

Then execute the following command to get the status of the cluster:
kubectl get nodes

You will see output similar to the following:

Output
NAME STATUS ROLES AGE VERSION

master Ready master 1d v1.14.0

worker1 Ready <none> 1d v1.14.0

worker2 Ready <none> 1d v1.14.0

If all of your nodes have the value Ready for STATUS, it means that
they’re part of the cluster and ready to run workloads.

If, however, a few of the nodes have NotReady as the STATUS, it
could mean that the worker nodes haven’t finished their setup yet. Wait for
around five to ten minutes before re-running kubectl get nodes and
inspecting the new output. If a few nodes still have NotReady as the
status, you might have to verify and re-run the commands in the previous
steps.

Now that your cluster is verified successfully, let’s schedule an example
Nginx application on the cluster.

Step 7 — Running An Application on the Cluster

You can now deploy any containerized application to your cluster. To keep
things familiar, let’s deploy Nginx using Deployments and Services to see
how this application can be deployed to the cluster. You can use the
commands below for other containerized applications as well, provided
you change the Docker image name and any relevant flags (such as ports
and volumes).

Still within the master node, execute the following command to create a
deployment named nginx:
kubectl create deployment nginx --image=nginx

A deployment is a type of Kubernetes object that ensures there’s always
a specified number of pods running based on a defined template, even if
the pod crashes during the cluster’s lifetime. The above deployment will
create a pod with one container from the Docker registry’s Nginx Docker
Image.

Next, run the following command to create a service named nginx that
will expose the app publicly. It will do so through a NodePort, a scheme

https://hub.docker.com/_/nginx/

that will make the pod accessible through an arbitrary port opened on each
node of the cluster:
kubectl expose deploy nginx --port 80 --target-

port 80 --type NodePort

Services are another type of Kubernetes object that expose cluster
internal services to clients, both internal and external. They are also
capable of load balancing requests to multiple pods, and are an integral
component in Kubernetes, frequently interacting with other components.

Run the following command:
kubectl get services

This will output text similar to the following:

Output
NAME TYPE CLUSTER-IP

EXTERNAL-IP PORT(S) AGE

kubernetes ClusterIP 10.96.0.1 <none>

443/TCP 1d

nginx NodePort 10.109.228.209 <none>

80:nginx_port/TCP 40m

From the third line of the above output, you can retrieve the port that
Nginx is running on. Kubernetes will assign a random port that is greater
than 30000 automatically, while ensuring that the port is not already
bound by another service.

To test that everything is working, visit
http://worker_1_ip:nginx_port or
http://worker_2_ip:nginx_port through a browser on your
local machine. You will see Nginx’s familiar welcome page.

If you would like to remove the Nginx application, first delete the
nginx service from the master node:
kubectl delete service nginx

Run the following to ensure that the service has been deleted:
kubectl get services

You will see the following output:

Output
NAME TYPE CLUSTER-IP

EXTERNAL-IP PORT(S) AGE

kubernetes ClusterIP 10.96.0.1 <none>

443/TCP 1d

Then delete the deployment:
kubectl delete deployment nginx

Run the following to confirm that this worked:
kubectl get deployments

Output
No resources found.

Conclusion

In this guide, you’ve successfully set up a Kubernetes cluster on Ubuntu
18.04 using Kubeadm and Ansible for automation.

If you’re wondering what to do with the cluster now that it’s set up, a
good next step would be to get comfortable deploying your own
applications and services onto the cluster. Here’s a list of links with
further information that can guide you in the process:

Dockerizing applications - lists examples that detail how to
containerize applications using Docker.
Pod Overview - describes in detail how Pods work and their
relationship with other Kubernetes objects. Pods are ubiquitous in
Kubernetes, so understanding them will facilitate your work.
Deployments Overview - provides an overview of deployments. It is
useful to understand how controllers such as deployments work since
they are used frequently in stateless applications for scaling and the
automated healing of unhealthy applications.
Services Overview - covers services, another frequently used object
in Kubernetes clusters. Understanding the types of services and the
options they have is essential for running both stateless and stateful
applications.

Other important concepts that you can look into are Volumes, Ingresses
and Secrets, all of which come in handy when deploying production
applications.

Kubernetes has a lot of functionality and features to offer. The
Kubernetes Official Documentation is the best place to learn about
concepts, find task-specific guides, and look up API references for various
objects.

https://docs.docker.com/engine/examples/
https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/

Webinar Series: A Closer Look at
Kubernetes

Written by Janakiram MSV
In this webinar based tutorial, you will learn how Kubernetes primitives

work together as you deploy a Pod in Kubernetes, expose it a Service, and
scale it through a Replication Controller.

This article supplements a webinar series on deploying and managing
containerized workloads in the cloud. The series covers the essentials of
containers, including managing container lifecycles, deploying multi-
container applications, scaling workloads, and working with Kubernetes. It
also highlights best practices for running stateful applications.

This article supplements the fourth session in the series, A Closer Look
at Kubernetes.

Kubernetes is an open source container orchestration tool for managing
containerized applications. In the previous tutorial in this series, you
configured Kubernetes on DigitalOcean. Now that the cluster is up and
running, you can deploy containerized applications on it.

In this tutorial, you will learn how these primitives work together as you
deploy a Pod in Kubernetes, expose it as a Service, and scale it through a
Replication Controller.

Prerequisites

To complete this tutorial, you should first complete the previous tutorial in
this series, Getting Started with Kubernetes.

https://www.digitalocean.com/community/tutorials/webinar-series-a-closer-look-at-kubernetes
https://go.digitalocean.com/containers-and-microservices-webinars-series
https://kubernetes.io/
https://www.digitalocean.com/community/tutorials/webinar-series-getting-started-with-kubernetes
https://www.digitalocean.com/community/tutorials/webinar-series-getting-started-with-kubernetes

Step 1 – Understanding Kubernetes Primitives

Kubernetes exposes an API that clients use to create, scale, and terminate
applications. Each operation targets one of more objects that Kubernetes
manages. These objects form the basic building blocks of Kubernetes.
They are the primitives through which you manage containerized
applications.

The following is a summary of the key API objects of Kubernetes:

Clusters: Pool of compute, storage, and network resources.
Nodes: Host machines running within the cluster.
Namespaces: Logical partitions of a cluster.
Pods: Units of deployment.
Labels and Selectors: Key-Value pairs for identification and service
discovery.
Services: Collection of Pods belonging to the same application.
Replica Set: Ensures availability and scalability.
Deployment: Manages application lifecycle.

Let’s look at these in more detail.
The Nodes that run a Kubernetes cluster are also treated as objects.

They can be managed like any other API objects of Kubernetes. To enable
logical separation of applications, Kubernetes supports creation of
Namespaces. For example, an organization may logically partition a
Kubernetes cluster for running development, test, staging, and production
environment. Each environment can be placed into a dedicated Namespace
that is managed independently. Kubernetes exposes its API through the
Master Node.

Though Kubernetes runs Docker containers, these containers cannot be
directly deployed. Instead, the applications need to be packaged in a
format that Kubernetes understands. This format enables Kubernetes to
manage containerized applications efficiently. These applications may
contain one or more containers that need to work together.

The fundamental unit of packaging and deployment in Kubernetes is
called a Pod. Each Pod may contain one or more containers that need to be
managed together. For example, a web server (Nginx) container and a
cache (Redis) container can be packaged together as a Pod. Kubernetes
treats all the containers that belong to a Pod as a logical unit. Each time a
new Pod is created, it results in the creation of all the containers declared
in the Pod definition. All the containers in a Pod share the same context
such as the IP address, hostname, and storage. They communicate with
each other through interprocess communication (IPC) rather than remote
calls or REST APIs.

Once the containers are packaged and deployed on Kubernetes, they
need to be exposed for internal and external access. Certain containers like
databases and caches do not need to be exposed to the outside world. Since
APIs and web frontends will be accessed directly by other consumers and
end-users, they will have to be exposed to the public. In Kubernetes,
containers are exposed internally or externally based on a policy. This
mechanism will reduce the risks of exposing sensitive workloads such as
databases to the public.

Pods in Kubernetes are exposed through Services. Each Service is
declared as an internal or external endpoint along with the port and
protocol information. Internal consumers including other Pods and

external consumers such as API clients rely on Kubernetes Services for
basic interaction. Services support TCP and UDP protocols.

Each object in Kubernetes, such as a Pod or Service, is associated with
additional metadata called Labels and Selectors. Labels are key/value
pairs attached to a Kubernetes object. These labels uniquely identify one
or more API objects. Selectors associate one Kubernetes object with
another. For example, a Selector defined in a Service helps Kubernetes
find all the Pods with a Label that match the value of the Selector. This
association enables dynamic discovery of objects. New objects that are
created at runtime with the same Labels will be instantly discovered and
associated with the corresponding Selectors. This service discovery
mechanism enables efficient dynamic configuration such as scale-in and
scale-out operations.

One of the advantages of switching to containers is rapid scaling.
Because containers are lightweight when compared to virtual machines,
you can scale them in a few seconds. For a highly-available and scalable
setup, you will need to deploy multiple instances of your applications and
ensure a minimum number of instances of these application are always
running. To address this configuration of containerized applications,
Kubernetes introduced the concept of Replica Sets, which are designed to
run one or more Pods all the time. When multiple instances of Pods need
to run in a cluster, they are packaged as Replica Sets. Kubernetes will
ensure that the number of Pods defined in the Replica Set are always in a
running mode. If a Pod is terminated due to a hardware or configuration
issue, the Kubernetes control plane will immediately launch another Pod.

A Deployment object is a combination of Pods and Replica Sets. This
primitive brings PaaS-like capabilities to Kubernetes applications. It lets

you perform a rolling upgrade of an existing deployment with minimal
downtime. Deployments also enable patterns such as canary deploys and
blue/green deployments. They handle the essential parts of application
lifecycle management (ALM) of containerized applications.

Step 2 – Listing Kubernetes Nodes and Namespaces

Assuming you have followed the steps to set up the Kubernetes Cluster in
DigitalOcean, run the following commands to list all the Nodes and
available Namespaces:
kubectl get nodes

Output
NAME STATUS ROLES AGE

VERSION

spc3c97hei-master-1 Ready master 10m

v1.8.7

spc3c97hei-worker-1 Ready <none> 4m

v1.8.7

spc3c97hei-worker-2 Ready <none> 4m

v1.8.7

kubectl get namespaces

Output
NAME STATUS AGE

default Active 11m

kube-public Active 11m

https://www.digitalocean.com/community/tutorials/webinar-series-getting-started-with-kubernetes

kube-system Active 11m

stackpoint-system Active 4m

When no Namespace is specified, kubectl targets the default
Namespace.

Now let’s launch an application.

Step 3– Creating and Deploying a Pod

Kubernetes objects are declared in YAML files and submitted to
Kubernetes via the kubectl CLI. Let’s define a Pod and deploy it.

Create a new YAML file called Simple-Pod.yaml:
nano Simple-Pod.yaml

Add the following code which defines a Pod with one container based
on the Nginx web server. It is exposed on port 80 over the TCP protocol.
Notice that the definition contains the labels name and env. We’ll use
those labels to identify and configure specific Pods.

Simple-Pod.yaml
apiVersion: "v1"

kind: Pod

metadata:

 name: web-pod

 labels:

 name: web

 env: dev

spec:

 containers:

 - name: myweb

 image: nginx

 ports:

 - containerPort: 80

 name: http

 protocol: TCP

Run the following command to create a Pod.
kubectl create -f Simple-Pod.yaml

Output
pod "web-pod" created

Let’s verify the creation of the Pod.
kubectl get pods

Output
NAME READY STATUS RESTARTS AGE

web-pod 1/1 Running 0 2m

In the next step, we will make this Pod accessible to the public Internet.

Step 4 – Exposing Pods through a Service

Services expose a set of Pods either internally or externally. Let’s define a
Service that makes the Nginx pod publicly available. We’ll expose Nginx
through a NodePort, a scheme that makes the Pod accessible through an
arbitrary port opened on each Node of the cluster.

Create a new file called Simple-Service.yaml that contains this
code which defines the service for Nginx:

Simple-Service.yaml

apiVersion: v1

kind: Service

metadata:

 name: web-svc

 labels:

 name: web

 env: dev

spec:

 selector:

 name: web

 type: NodePort

 ports:

 - port: 80

 name: http

 targetPort: 80

 protocol: TCP

The Service discovers all the Pods in the same Namespace that match
the Label with name: web. The selector section of the YAML file
explicitly defines this association.

We specify that the Service is of type NodePort through type: NodePort
declaration.

Then use kubectl to submit it to the cluster.
kubectl create -f Simple-Service.yml

You’ll see this output indicating the service was created successfully:

Output
service "web-svc" created

Let’s get the port on which the Pod is available.
kubectl get services

Output
NAME TYPE CLUSTER-IP EXTERNAL-IP

PORT(S) AGE

kubernetes ClusterIP 10.3.0.1 <none>

443/TCP 28m

web-svc NodePort 10.3.0.143 <none>

80:32097/TCP 38s

From this output, we see that the Service is available on port 32097.
Let’s try to connect to one of the Worker Nodes.

Use the DigitalOcean Console to get the IP address of one of the Worker
Nodes.

The Droplets in the DigitalOcean console associated with your Kubernetes Cluster.

Use the curl command to make an HTTP request to one of the nodes
on port 31930.
curl http://your_worker_1_ip_address:32097

You’ll see the response containing the Nginx default home page:

Output
<!DOCTYPE html>

<html>

 <head>

 <title>Welcome to nginx!</title>

...

 Commercial support is available at

 nginx.com.

</p>

 <p>Thank you for using nginx.</p>

 </body>

</html>

You’ve defined a Pod and a Service. Now let’s look at scaling with
Replica Sets.

Step 5 – Scaling Pods through Replica Set

A Replica Set ensures that at least a minimum number of Pods are running
in the cluster. Let’s delete the current Pod and recreate three Pods through
the Replica Set.

First, delete the existing Pod.
kubectl delete pod web-pod

Output
pod "web-pod" deleted

Now create a new Replica Set declaration. The definition of the Replica
Set is identical to a Pod. The key difference is that it contains the replica

element that defines the number of Pods that need to run. Like a Pod, it
also contains Labels as metadata that help in service discovery.

Create the file Simple-RS.yml and add this code to the file:

Simple-RS.yml
apiVersion: apps/v1beta2

kind: ReplicaSet

metadata:

 name: web-rs

 labels:

 name: web

 env: dev

spec:

 replicas: 3

 selector:

 matchLabels:

 name: web

 template:

 metadata:

 labels:

 name: web

 env: dev

 spec:

 containers:

 - name: myweb

 image: nginx

 ports:

 - containerPort: 80

 name: http

 protocol: TCP

Save and close the file.
Now create the Replica Set:

kubectl create -f Simple-RS.yml

Output
replicaset "web-rs" created

Then check the number of Pods:
kubectl get pods

Output
NAME READY STATUS RESTARTS AGE

web-rs-htb58 1/1 Running 0 38s

web-rs-khtld 1/1 Running 0 38s

web-rs-p5lzg 1/1 Running 0 38s

When we access the Service through the NodePort, the request will be
sent to one of the Pods managed by the Replica Set.

Let’s test the functionality of a Replica Set by deleting one of the Pods
and seeing what happens:
kubectl delete pod web-rs-p5lzg

Output
pod "web-rs-p5lzg" deleted

Look at the pods again:
kubectl get pods

Output
NAME READY STATUS

RESTARTS AGE

web-rs-htb58 1/1 Running 0

2m

web-rs-khtld 1/1 Running 0

2m

web-rs-fqh2f 0/1 ContainerCreating 0

2s

web-rs-p5lzg 1/1 Running 0

2m

web-rs-p5lzg 0/1 Terminating 0

2m

As soon as the Pod is deleted, Kubernetes has created another one to
ensure the desired count is maintained.

Now let’s look at Deployments.

Step 6 – Dealing with Deployments

Though you can deploy containers as Pods and Replica Sets, Deployments
make upgrading and patching your application easier. You can upgrade a
Pod in-place using a Deployment, which you cannot do with a Replica Set.
This makes it possible to roll out a new version of an application with
minimal downtime. They bring PaaS-like capabilities to application
management.

Delete the existing Replica Set before creating a Deployment. This will
also delete the associated Pods:

kubectl delete rs web-rs

Output
replicaset "web-rs" deleted

Now define a new Deployment. Create the file Simple-

Deployment.yaml and add the following code:

Simple-Deployment.yaml
apiVersion: apps/v1beta2

kind: Deployment

metadata:

 name: web-dep

 labels:

 name: web

 env: dev

spec:

 replicas: 3

 selector:

 matchLabels:

 name: web

 template:

 metadata:

 labels:

 name: web

 spec:

 containers:

 - name: myweb

 image: nginx

 ports:

 - containerPort: 80

Create a deployment and verify the creation.
kubectl create -f Simple-Deployment.yml

Output
deployment "web-dep" created

View the deployments:
kubectl get deployments

Output
NAME DESIRED CURRENT UP-TO-DATE

AVAILABLE AGE

web-dep 3 3 3 3

1m

Since the Deployment results in the creation of Pods, there will be three
Pods running as per the replicas declaration in the YAML file.
kubectl get pods

Output
NAME READY STATUS

RESTARTS AGE

web-dep-8594f5c765-5wmrb 1/1 Running 0

2m

web-dep-8594f5c765-6cbsr 1/1 Running 0

2m

web-dep-8594f5c765-sczf8 1/1 Running 0

2m

The Service we created earlier will continue to route the requests to the
Pods created by the Deployment. That’s because of the Labels that contain
the same values as the original Pod definition.

Clean up the resources by deleting the Deployment and Service.
kubectl delete deployment web-dep

Output
deployment "web-dep" deleted

kubectl delete service web-svc

Output
service "web-svc" deleted

For more details on Deployments, refer to the Kubernetes
documentation.

Conclusion

In this tutorial, you explored the basic building blocks of Kubernetes as
you deployed an Nginx web server using a Pod, a Service, a Replica Set,
and a Deployment.

In the next part of this series, you will learn how to package, deploy,
scale, and manage a multi-container application.

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

An Introduction to Helm, the Package
Manager for Kubernetes

Written by Brian Boucheron
Setting up and running an application on a Kubernetes cluster can

involve creating multiple interdependent Kubernetes resources. Each Pod,
Service, Deployment, and ReplicaSet requires its own YAML manifest file
that must be authored and tested before an application is made available in
a cluster.

Helm is a package manager for Kubernetes that allows developers and
operators to more easily package, configure, and deploy applications and
services onto Kubernetes clusters. Helm packages are called charts, which
consist of YAML configuration files and templates that reduce or
eliminate the need to write YAML manifests from scratch to deploy an
application.

By the end of this tutorial, you should be familiar with Helm charts, and
be able to decide if using a chart to deploy an application requires more or
less work than writing YAML files directly.

Deploying applications to Kubernetes – the powerful and popular
container-orchestration system – can be complex. Setting up a single
application can involve creating multiple interdependent Kubernetes
resources – such as pods, services, deployments, and replicasets – each
requiring you to write a detailed YAML manifest file.

Helm is a package manager for Kubernetes that allows developers and
operators to more easily package, configure, and deploy applications and

https://www.digitalocean.com/community/tutorials/an-introduction-to-helm-the-package-manager-for-kubernetes
https://www.helm.sh/

services onto Kubernetes clusters.
Helm is now an official Kubernetes project and is part of the Cloud

Native Computing Foundation, a non-profit that supports open source
projects in and around the Kubernetes ecosystem.

In this article we will give an overview of Helm and the various
abstractions it uses to simplify deploying applications to Kubernetes. If
you are new to Kubernetes, it may be helpful to read An Introduction to
Kubernetes first to familiarize yourself with the basics concepts.

An Overview of Helm

Most every programming language and operating system has its own
package manager to help with the installation and maintenance of
software. Helm provides the same basic feature set as many of the package
managers you may already be familiar with, such as Debian’s apt, or
Python’s pip.

Helm can:

Install software.
Automatically install software dependencies.
Upgrade software.
Configure software deployments.
Fetch software packages from repositories.

Helm provides this functionality through the following components:

A command line tool, helm, which provides the user interface to all
Helm functionality.

https://www.cncf.io/
https://www.digitalocean.com/community/tutorials/an-introduction-to-kubernetes

A companion server component, tiller, that runs on your
Kubernetes cluster, listens for commands from helm, and handles the
configuration and deployment of software releases on the cluster.
The Helm packaging format, called charts.
An official curated charts repository with prepackaged charts for
popular open-source software projects.

We’ll investigate the charts format in more detail next.

Charts

Helm packages are called charts, and they consist of a few YAML
configuration files and some templates that are rendered into Kubernetes
manifest files. Here is the basic directory structure of a chart:

Example chart directory
package-name/

 charts/

 templates/

 Chart.yaml

 LICENSE

 README.md

 requirements.yaml

 values.yaml

These directories and files have the following functions:

charts/: Manually managed chart dependencies can be placed in this
directory, though it is typically better to use requirements.yaml
to dynamically link dependencies.

https://github.com/helm/charts

templates/: This directory contains template files that are combined
with configuration values (from values.yaml and the command
line) and rendered into Kubernetes manifests. The templates use the
Go programming language’s template format.
Chart.yaml: A YAML file with metadata about the chart, such as chart
name and version, maintainer information, a relevant website, and
search keywords.
LICENSE: A plaintext license for the chart.
README.md: A readme file with information for users of the chart.
requirements.yaml: A YAML file that lists the chart’s dependencies.
values.yaml: A YAML file of default configuration values for the
chart.

The helm command can install a chart from a local directory, or from a
.tar.gz packaged version of this directory structure. These packaged
charts can also be automatically downloaded and installed from chart
repositories or repos.

We’ll look at chart repositories next.

Chart Repositories

A Helm chart repo is a simple HTTP site that serves an index.yaml file
and .tar.gz packaged charts. The helm command has subcommands
available to help package charts and create the required index.yaml
file. These files can be served by any web server, object storage service, or
a static site host such as GitHub Pages.

Helm comes preconfigured with a default chart repository, referred to as
stable. This repo points to a Google Storage bucket at

https://golang.org/pkg/text/template

https://kubernetes-charts.storage.googleapis.com.
The source for the stable repo can be found in the helm/charts Git
repository on GitHub.

Alternate repos can be added with the helm repo add command.
Some popular alternate repositories are:

The official incubator repo that contains charts that are not yet ready
for stable. Instructions for using incubator can be found on the
official Helm charts GitHub page.
Bitnami Helm Charts which provide some charts that aren’t covered
in the official stable repo.

Whether you’re installing a chart you’ve developed locally, or one from
a repo, you’ll need to configure it for your particular setup. We’ll look into
configs next.

Chart Configuration

A chart usually comes with default configuration values in its
values.yaml file. Some applications may be fully deployable with
default values, but you’ll typically need to override some of the
configuration to meet your needs.

The values that are exposed for configuration are determined by the
author of the chart. Some are used to configure Kubernetes primitives, and
some may be passed through to the underlying container to configure the
application itself.

Here is a snippet of some example values:

values.yaml

https://github.com/helm/charts/tree/master/stable
https://github.com/helm/charts/tree/master/incubator
https://github.com/helm/charts
https://bitnami.com/stacks/helm

service:

 type: ClusterIP

 port: 3306

These are options to configure a Kubernetes Service resource. You can
use helm inspect values chart-name to dump all of the
available configuration values for a chart.

These values can be overridden by writing your own YAML file and
using it when running helm install, or by setting options individually
on the command line with the --set flag. You only need to specify those
values that you want to change from the defaults.

A Helm chart deployed with a particular configuration is called a
release. We will talk about releases next.

Releases

During the installation of a chart, Helm combines the chart’s templates
with the configuration specified by the user and the defaults in
value.yaml. These are rendered into Kubernetes manifests that are then
deployed via the Kubernetes API. This creates a release, a specific
configuration and deployment of a particular chart.

This concept of releases is important, because you may want to deploy
the same application more than once on a cluster. For instance, you may
need multiple MySQL servers with different configurations.

You also will probably want to upgrade different instances of a chart
individually. Perhaps one application is ready for an updated MySQL
server but another is not. With Helm, you upgrade each release
individually.

You might upgrade a release because its chart has been updated, or
because you want to update the release’s configuration. Either way, each
upgrade will create a new revision of a release, and Helm will allow you to
easily roll back to previous revisions in case there’s an issue.

Creating Charts

If you can’t find an existing chart for the software you are deploying, you
may want to create your own. Helm can output the scaffold of a chart
directory with helm create chart-name. This will create a folder
with the files and directories we discussed in the Charts section above.

From there, you’ll want to fill out your chart’s metadata in
Chart.yaml and put your Kubernetes manifest files into the
templates directory. You’ll then need to extract relevant configuration
variables out of your manifests and into values.yaml, then include
them back into your manifest templates using the templating system.

The helm command has many subcommands available to help you test,
package, and serve your charts. For more information, please read the
official Helm documentation on developing charts.

Conclusion

In this article we reviewed Helm, the package manager for Kubernetes. We
overviewed the Helm architecture and the individual helm and tiller
components, detailed the Helm charts format, and looked at chart
repositories. We also looked into how to configure a Helm chart and how
configurations and charts are combined and deployed as releases on

https://golang.org/pkg/text/template
https://docs.helm.sh/developing_charts

Kubernetes clusters. Finally, we touched on the basics of creating a chart
when a suitable chart isn’t already available.

For more information about Helm, take a look at the official Helm
documentation. To find official charts for Helm, check out the official
helm/charts Git repository on GitHub.

https://docs.helm.sh/
https://github.com/helm/charts

How To Install Software on Kubernetes
Clusters with the Helm Package Manager

Written by Brian Boucheron
The previous Helm tutorial introduced the concept of package

management in a Kubernetes cluster. In this hands-on tutorial, we will set
up Helm and use it to install, reconfigure, rollback, then delete an instance
of the Kubernetes Dashboard application.

By the end of this tutorial, you will have a working Kubernetes
dashboard that you can use to administer your cluster. You will also have
Helm set up so that you can install any of the supported open source
applications in Helm’s official chart repository, as well as your own
custom Helm charts.

Helm is a package manager for Kubernetes that allows developers and
operators to more easily configure and deploy applications on Kubernetes
clusters.

In this tutorial we will set up Helm and use it to install, reconfigure,
rollback, then delete an instance of the Kubernetes Dashboard application.
The dashboard is an official web-based Kubernetes GUI.

For a conceptual overview of Helm and its packaging ecosystem, please
read our article An Introduction to Helm.

Prerequisites

For this tutorial you will need:

https://www.digitalocean.com/community/tutorials/how-to-install-software-on-kubernetes-clusters-with-the-helm-package-manager
https://github.com/kubernetes/dashboard
https://github.com/helm/charts/tree/master/stable
https://www.helm.sh/
https://github.com/kubernetes/dashboard
https://www.digitalocean.com/community/tutorials/an-introduction-to-helm-the-package-manager-for-kubernetes

A Kubernetes 1.8+ cluster with role-based access control (RBAC)
enabled.
The kubectl command-line tool installed on your local machine,
configured to connect to your cluster. You can read more about
installing kubectl in the official documentation.
You can test your connectivity with the following command:
kubectl cluster-info

If you see no errors, you’re connected to the cluster. If you access
multiple clusters with kubectl, be sure to verify that you’ve
selected the correct cluster context:
kubectl config get-contexts

[secondary_label Output]

CURRENT NAME CLUSTER

AUTHINFO NAMESPACE

* do-nyc1-k8s-example do-nyc1-k8s-

example do-nyc1-k8s-example-admin

 docker-for-desktop docker-for-

desktop-cluster docker-for-desktop

In this example the asterisk (*) indicates that we are connected to the
do-nyc1-k8s-example cluster. To switch clusters run:
kubectl config use-context context-name

When you are connected to the correct cluster, continue to Step 1 to
begin installing Helm.

Step 1 — Installing Helm

https://kubernetes.io/docs/tasks/tools/install-kubectl/

First we’ll install the helm command-line utility on our local machine.
Helm provides a script that handles the installation process on MacOS,
Windows, or Linux.

Change to a writable directory and download the script from Helm’s
GitHub repository:
cd /tmp

curl

https://raw.githubusercontent.com/kubernetes/helm/

master/scripts/get > install-helm.sh

Make the script executable with chmod:
chmod u+x install-helm.sh

At this point you can use your favorite text editor to open the script and
inspect it to make sure it’s safe. When you are satisfied, run it:
./install-helm.sh

You may be prompted for your password. Provide it and press ENTER.

Output
helm installed into /usr/local/bin/helm

Run 'helm init' to configure helm.

Next we will finish the installation by installing some Helm
components on our cluster.

Step 2 — Installing Tiller

Tiller is a companion to the helm command that runs on your cluster,
receiving commands from helm and communicating directly with the
Kubernetes API to do the actual work of creating and deleting resources.

To give Tiller the permissions it needs to run on the cluster, we are going
to make a Kubernetes serviceaccount resource.

Note: We will bind this serviceaccount to the cluster-admin
cluster role. This will give the tiller service superuser access to the
cluster and allow it to install all resource types in all namespaces. This is
fine for exploring Helm, but you may want a more locked-down
configuration for a production Kubernetes cluster.

Please refer to the official Helm RBAC documentation for more
information on setting up different RBAC scenarios for Tiller.

Create the tiller serviceaccount:
kubectl -n kube-system create serviceaccount

tiller

Next, bind the tiller serviceaccount to the cluster-admin role:
kubectl create clusterrolebinding tiller --

clusterrole cluster-admin --serviceaccount=kube-

system:tiller

Now we can run helm init, which installs Tiller on our cluster, along
with some local housekeeping tasks such as downloading the stable repo
details:
helm init --service-account tiller

Output
. . .

Tiller (the Helm server-side component) has been

installed into your Kubernetes Cluster.

https://docs.helm.sh/using_helm/#role-based-access-control

Please note: by default, Tiller is deployed with

an insecure 'allow unauthenticated users' policy.

For more information on securing your installation

see: https://docs.helm.sh/using_helm/#securing-

your-helm-installation

Happy Helming!

To verify that Tiller is running, list the pods in thekube-system
namespace:
kubectl get pods --namespace kube-system

Output
NAME READY

STATUS RESTARTS AGE

. . .

kube-dns-64f766c69c-rm9tz 3/3

Running 0 22m

kube-proxy-worker-5884 1/1

Running 1 21m

kube-proxy-worker-5885 1/1

Running 1 21m

kubernetes-dashboard-7dd4fc69c8-c4gwk 1/1

Running 0 22m

tiller-deploy-5c688d5f9b-lccsk 1/1

Running 0 40s

The Tiller pod name begins with the prefix tiller-deploy-.
Now that we’ve installed both Helm components, we’re ready to use

helm to install our first application.

Step 3 — Installing a Helm Chart

Helm software packages are called charts. Helm comes preconfigured with
a curated chart repository called stable. You can browse the available
charts in their GitHub repo. We are going to install the Kubernetes
Dashboard as an example.

Use helm to install the kubernetes-dashboard package from the
stable repo:
helm install stable/kubernetes-dashboard --name

dashboard-demo

Output
NAME: dashboard-demo

LAST DEPLOYED: Wed Aug 8 20:11:07 2018

NAMESPACE: default

STATUS: DEPLOYED

. . .

Notice the NAME line, highlighted in the above example output. In this
case we specified the name dashboard-demo. This is the name of our
release. A Helm release is a single deployment of one chart with a specific
configuration. You can deploy multiple releases of the same chart with,
each with its own configuration.

If you don’t specify your own release name using --name, Helm will
create a random name for you.

We can ask Helm for a list of releases on this cluster:
helm list

https://github.com/helm/charts/tree/master/stable
https://github.com/kubernetes/dashboard

Output
NAME REVISION UPDATED

STATUS CHART NAMESPACE

dashboard-demo 1 Wed Aug 8 20:11:11

2018 DEPLOYED kubernetes-dashboard-0.7.1

default

We can now use kubectl to verify that a new service has been
deployed on the cluster:
kubectl get services

Output
NAME TYPE

CLUSTER-IP EXTERNAL-IP PORT(S) AGE

dashboard-demo-kubernetes-dashboard ClusterIP

10.32.104.73 <none> 443/TCP 51s

kubernetes ClusterIP

10.32.0.1 <none> 443/TCP 34m

Notice that by default the service name corresponding to our release is a
combination of the Helm release name and the chart name.

Now that we’ve deployed the application, let’s use Helm to change its
configuration and update the deployment.

Step 4 — Updating a Release

The helm upgrade command can be used to upgrade a release with a
new or updated chart, or update the it’s configuration options.

We’re going to make a simple change to our dashboard-demo
release to demonstrate the update and rollback process: we’ll update the

name of the dashboard service to just dashboard, instead of
dashboard-demo-kubernetes-dashboard.

The kubernetes-dashboard chart provides a
fullnameOverride configuration option to control the service name.
Let’s run helm upgrade with this option set:
helm upgrade dashboard-demo stable/kubernetes-

dashboard --set fullnameOverride="dashboard"

You’ll see output similar to the initial helm install step.
Check if your Kubernetes services reflect the updated values:

kubectl get services

Output
NAME TYPE CLUSTER-IP

EXTERNAL-IP PORT(S) AGE

kubernetes ClusterIP 10.32.0.1

<none> 443/TCP 36m

dashboard ClusterIP 10.32.198.148

<none> 443/TCP 40s

Our service name has been updated to the new value.
Note: At this point you may want to actually load the Kubernetes

Dashboard in your browser and check it out. To do so, first run the
following command:
kubectl proxy

This creates a proxy that lets you access remote cluster resources from
your local computer. Based on the previous instructions your dashboard
service is named kubernetes-dashboard and it’s running in the

default namespace. You may now access the dashboard at the following
url:
http://localhost:8001/api/v1/namespaces/default/se

rvices/https:dashboard:/proxy/

If necessary, substitute your own service name and namespace for the
highlighted portions. Instructions for actually using the dashboard are out
of scope for this tutorial, but you can read the official Kubernetes
Dashboard docs for more information.

Next we’ll look at Helm’s ability to roll back releases.

Step 5 — Rolling Back a Release

When we updated our dashboard-demo release in the previous step, we
created a second revision of the release. Helm retains all the details of
previous releases in case you need to roll back to a prior configuration or
chart.

Use helm list to inspect the release again:
helm list

Output
NAME REVISION UPDATED

STATUS CHART NAMESPACE

dashboard-demo 2 Wed Aug 8 20:13:15 2018

DEPLOYED kubernetes-dashboard-0.7.1 default

The REVISION column tells us that this is now the second revision.
Use helm rollback to roll back to the first revision:

helm rollback dashboard-demo 1

https://github.com/kubernetes/dashboard/wiki

You should see the following output, indicating that the rollback
succeeded:

Output
Rollback was a success! Happy Helming!

At this point, if you run kubectl get services again, you will
notice that the service name has changed back to its previous value. Helm
has re-deployed the application with revision 1’s configuration.

Next we’ll look into deleting releases with Helm.

Step 6 — Deleting a Release

Helm releases can be deleted with the helm delete command:
helm delete dashboard-demo

Output
release "dashboard-demo" deleted

Though the release has been deleted and the dashboard application is no
longer running, Helm saves all the revision information in case you want
to re-deploy the release. If you tried to helm install a new
dashboard-demo release right now, you’d get an error:
Error: a release named dashboard-demo already

exists.

If you use the --deleted flag to list your deleted releases, you’ll see
that the release is still around:
helm list --deleted

Output

NAME REVISION UPDATED

STATUS CHART NAMESPACE

dashboard-demo 3 Wed Aug 8 20:15:21

2018 DELETED kubernetes-dashboard-0.7.1

default

To really delete the release and purge all old revisions, use the --
purge flag with the helm delete command:
helm delete dashboard-demo --purge

Now the release has been truly deleted, and you can reuse the release
name.

Conclusion

In this tutorial we installed the helm command-line tool and its tiller
companion service. We also explored installing, upgrading, rolling back,
and deleting Helm charts and releases.

For more information about Helm and Helm charts, please see the
official Helm documentation.

https://docs.helm.sh/

Architecting Applications for Kubernetes

Written by Justin Ellingwood
How you architect and design your applications will determine how you

build and deploy them to Kubernetes. One design method that works well
for applications that run on Kubernetes is called The Twelve-Factor App.
It is a useful framework for building applications that will run on
Kubernetes. Some of its core principles include separating code from
configuration, making applications stateless, ensuring app processes are
disposable (can be started and stopped with no side effects), and
facilitating easy scaling. This tutorial will guide you through designing,
scaling, and containerizing your applications using Twelve-Factor as a
framework.

Designing and running applications with scalability, portability, and
robustness in mind can be challenging, especially as system complexity
grows. The architecture of an application or system significantly impacts
how it must be run, what it expects from its environment, and how closely
coupled it is to related components. Following certain patterns during the
design phase and adhering to certain operational practices can help counter
some of the most common problems that applications face when running
in highly distributed environments.

While software design patterns and development methodologies can
produce applications with the right scaling characteristics, the
infrastructure and environment influence the deployed system’s operation.
Technologies like Docker and Kubernetes help teams package software

https://www.digitalocean.com/community/tutorials/architecting-applications-for-kubernetes
https://12factor.net/
https://www.docker.com/
https://kubernetes.io/

and then distribute, deploy, and scale on platforms of distributed
computers. Learning how to best harness the power of these tools can help
you manage applications with greater flexibility, control, and
responsiveness.

In this guide, we will discuss some of the principles and patterns you
may wish to adopt to help you scale and manage your workloads on
Kubernetes. While Kubernetes can run many types of workloads, choices
you make can affect the ease of operation and the possibilities available on
deployment. How you architect and build your applications, package your
services within containers, and configure life cycle management and
behavior within Kubernetes can each influence your experience.

Designing for Application Scalability

When producing software, many requirements affect the patterns and
architecture you choose to employ. With Kubernetes, one of the most
important factors is the ability to scale horizontally, adjusting the number
of identical copies of your application to distribute load and increase
availability. This is an alternative to vertical scaling, which attempts to
manipulate the same factors by deploying on machines with greater or
fewer resources.

In particular, microservices is a software design pattern that works well
for scalable deployments on clusters. Developers create small, composable
applications that communicate over the network through well-defined
REST APIs instead of larger compound programs that communicate
through through internal programming mechanisms. Decomposing
monolithic applications into discrete single-purpose components makes it

possible to scale each function independently. Much of the complexity and
composition that would normally exist at the application level is
transferred to the operational realm where it can be managed by platforms
like Kubernetes.

Beyond specific software patterns, cloud native applications are
designed with a few additional considerations in mind. Cloud native
applications are programs that follow a microservices architecture pattern
with built-in resiliency, observability, and administrative features to adapt
to the environment provided by clustered platforms in the cloud.

For example, cloud native applications are constructed with health
reporting metrics to enable the platform to manage life cycle events if an
instance becomes unhealthy. They produce (and make available for export)
robust telemetry data to alert operators to problems and allow them to
make informed decisions. Applications are designed to handle regular
restarts and failures, changes in backend availability, and high load
without corrupting data or becoming unresponsive.

Following 12 Factor Application Philosophy

One popular methodology that can help you focus on the characteristics
that matter most when creating cloud-ready web apps is the Twelve-Factor
App philosophy. Written to help developers and operations teams
understand the core qualities shared by web services designed to run in the
cloud, the principles apply very well to software that will live in a
clustered environment like Kubernetes. While monolithic applications can
benefit from following these recommendations, microservices
architectures designed around these principles work particularly well.

A quick summary of the Twelve Factors are:

https://12factor.net/

1. Codebase: Manage all code in version control systems (like Git or
Mercurial). The codebase comprehensively dictates what is deployed.

2. Dependencies: Dependencies should be managed entirely and
explicitly by the codebase, either vendored (stored with the code) or
version pinned in a format that a package manager can install from.

3. Config: Separate configuration parameters from the application and
define them in the deployment environment instead of baking them
into the application itself.

4. Backing services: Local and remote services are both abstracted as
network-accessible resources with connection details set in
configuration.

5. Build, release, run: The build stage of your application should be
completely separate from your application release and operations
processes. The build stage creates a deployment artifact from source
code, the release stage combines the artifact and configuration, and
the run stage executes the release.

6. Processes: Applications are implemented as processes that should not
rely on storing state locally. State should be offloaded to a backing
service as described in the fourth factor.

7. Port binding: Applications should natively bind to a port and listen
for connections. Routing and request forwarding should be handled
externally.

8. Concurrency: Applications should rely on scaling through the process
model. Running multiple copies of an application concurrently,
potentially across multiple servers, allows scaling without adjusting
application code.

9. Disposability: Processes should be able to start quickly and stop
gracefully without serious side effects.

10. Dev/prod parity: Your testing, staging, and production environments
should match closely and be kept in sync. Differences between
environments are opportunities for incompatibilities and untested
configurations to appear.

11. Logs: Applications should stream logs to standard output so external
services can decide how to best handle them.

12. Admin processes: One-off administration processes should be run
against specific releases and shipped with the main process code.

By adhering to the guidelines provided by the Twelve Factors, you can
create and run applications using a model that fits the Kubernetes
execution environment. The Twelve Factors encourage developers to focus
on their application’s primary responsibility, consider the operating
conditions and interfaces between components, and use inputs, outputs,
and standard process management features to run predictably in
Kubernetes.

Containerizing Application Components

Kubernetes uses containers to run isolated, packaged applications across
its cluster nodes. To run on Kubernetes, your applications must be
encapsulated in one or more container images and executed using a
container runtime like Docker. While containerizing your components is a
requirement for Kubernetes, it also helps reinforce many of the principles
from the twelve factor app methodology discussed above, allowing easy
scaling and management.

For instance, containers provide isolation between the application
environment and the external host system, support a networked, service-
oriented approach to inter-application communication, and typically take
configuration through environmental variables and expose logs written to
standard error and standard out. Containers themselves encourage process-
based concurrency and help maintain dev/prod parity by being
independently scalable and bundling the process’s runtime environment.
These characteristics make it possible to package your applications so that
they run smoothly on Kubernetes.

Guidelines on Optimizing Containers

The flexibility of container technology allows many different ways of
encapsulating an application. However, some methods work better in a
Kubernetes environment than others.

Most best practices on containerizing your applications have to do with
image building, where you define how your software will be set up and run
from within a container. In general, keeping image sizes small and
composable provides a number of benefits. Size-optimized images can
reduce the time and resources required to start up a new container on a
cluster by keeping footprint manageable and reusing existing layers
between image updates.

A good first step when creating container images is to do your best to
separate your build steps from the final image that will be run in
production. Building software generally requires extra tooling, takes
additional time, and produces artifacts that might be inconsistent from
container to container or unnecessary to the final runtime environment
depending on the environment. One way to cleanly separate the build

process from the runtime environment is to use Docker multi-stage builds.
Multi-stage build configurations allow you to specify one base image to
use during your build process and define another to use at runtime. This
makes it possible to build software using an image with all of the build
tools installed and copy the resulting artifacts to a slim, streamlined image
that will be used each time afterwards.

With this type of functionality available, it is usually a good idea to
build production images on top of a minimal parent image. If you wish to
completely avoid the bloat found in “distro”-style parent layers like
ubuntu:16.04 (which includes a rather complete Ubuntu 16.04
environment), you could build your images with scratch — Docker’s
most minimal base image — as the parent. However, the scratch base
layer doesn’t provide access to many core tools and will often break
assumptions about the environment that some software holds. As an
alternative, the Alpine Linux alpine image has gained popularity by
being a solid, minimal base environment that provides a tiny, but fully
featured Linux distribution.

For interpreted languages like Python or Ruby, the paradigm shifts
slightly since there is no compilation stage and the interpreter must be
available to run the code in production. However, since slim images are
still ideal, many language-specific, optimized images built on top of
Alpine Linux are available on Docker Hub. The benefits of using a smaller
image for interpreted languages are similar to those for compiled
languages: Kubernetes will be able to quickly pull all of the necessary
container images onto new nodes to begin doing meaningful work.

Deciding on Scope for Containers and Pods

https://docs.docker.com/develop/develop-images/multistage-build/
https://alpinelinux.org/
https://hub.docker.com/

While your applications must be containerized to run on a Kubernetes
cluster, pods are the smallest unit of abstraction that Kubernetes can
manage directly. A pod is a Kubernetes object composed of one or more
closely coupled containers. Containers in a pod share a life cycle and are
managed together as a single unit. For example, the containers are always
scheduled on the same node, are started or stopped in unison, and share
resources like filesystems and IP space.

At first, it can be difficult to discover the best way to divide your
applications into containers and pods. This makes it important to
understand how Kubernetes handles these components and what each layer
of abstraction provides for your systems. A few considerations can help
you identify some natural points of encapsulation for your application
with each of these abstractions.

One way to determine an effective scope for your containers is to look
for natural development boundaries. If your systems operate using a
microservices architecture, well-designed containers are frequently built
to represent discrete units of functionality that can often be used in a
variety of contexts. This level of abstraction allows your team to release
changes to container images and then deploy this new functionality to any
environment where those images are used. Applications can be built by
composing individual containers that each fulfill a given function but may
not accomplish an entire process alone.

In contrast to the above, pods are usually constructed by thinking about
which parts of your system might benefit most from independent
management. Since Kubernetes uses pods as its smallest user-facing
abstraction, these are the most primitive units that the Kubernetes tools
and API can directly interact with and control. You can start, stop, and

restart pods, or use higher level objects built upon pods to introduce
replication and life cycle management features. Kubernetes doesn’t allow
you to manage the containers within a pod independently, so you should
not group containers together that might benefit from separate
administration.

Because many of Kubernetes’ features and abstractions deal with pods
directly, it makes sense to bundle items that should scale together in a
single pod and to separate those that should scale independently. For
example, separating your web servers from your application servers in
different pods allows you to scale each layer independently as needed.
However, bundling a web server and a database adaptor into the same pod
can make sense if the adaptor provides essential functionality that the web
server needs to work properly.

Enhancing Pod Functionality by Bundling Supporting
Containers

With this in mind, what types of containers should be bundled in a single
pod? Generally, a primary container is responsible for fulfilling the core
functions of the pod, but additional containers may be defined that modify
or extend the primary container or help it connect to a unique deployment
environment.

For instance, in a web server pod, an Nginx container might listen for
requests and serve content while an associated container updates static
files when a repository changes. It may be tempting to package both of
these components within a single container, but there are significant
benefits to implementing them as separate containers. Both the web server
container and the repository puller can be used independently in different

contexts. They can be maintained by different teams and can each be
developed to generalize their behavior to work with different companion
containers.

Brendan Burns and David Oppenheimer identified three primary
patterns for bundling supporting containers in their paper on design
patterns for container-based distributed systems. These represent some of
the most common use cases for packaging containers together in a pod:

Sidecar: In this pattern, the secondary container extends and enhances
the primary container’s core functionality. This pattern involves
executing non-standard or utility functions in a separate container.
For example, a container that forwards logs or watches for updated
configuration values can augment the functionality of a pod without
significantly changing its primary focus.
Ambassador: The ambassador pattern uses a supplemental container
to abstract remote resources for the main container. The primary
container connects directly to the ambassador container which in turn
connects to and abstracts pools of potentially complex external
resources, like a distributed Redis cluster. The primary container does
not have to know or care about the actual deployment environment to
connect to external services.
Adaptor: The adaptor pattern is used to translate the primary
container’s data, protocols, or interfaces to align with the standards
expected by outside parties. Adaptor containers enable uniform
access to centralized services even when the applications they serve
may only natively support incompatible interfaces.

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45406.pdf

Extracting Configuration into ConfigMaps and Secrets

While application configuration can be baked into container images, it’s
best to make your components configurable at runtime to support
deployment in multiple contexts and allow more flexible administration.
To manage runtime configuration parameters, Kubernetes offers two
objects called ConfigMaps and Secrets.

ConfigMaps are a mechanism used to store data that can be exposed to
pods and other objects at runtime. Data stored within ConfigMaps can be
presented as environment variables or mounted as files in the pod. By
designing your applications to read from these locations, you can inject
the configuration at runtime using ConfigMaps and modify the behavior of
your components without having to rebuild the container image.

Secrets are a similar Kubernetes object type used to securely store
sensitive data and selectively allow pods and other components access as
needed. Secrets are a convenient way of passing sensitive material to
applications without storing them as plain text in easily accessible
locations in your normal configuration. Functionally, they work in much
the same way as ConfigMaps, so applications can consume data from
ConfigMaps and Secrets using the same mechanisms.

ConfigMaps and Secrets help you avoid putting configuration directly
in Kubernetes object definitions. You can map the configuration key
instead of the value, allowing you to update configuration on the fly by
modifying the ConfigMap or Secret. This gives you the opportunity to
alter the active runtime behavior of pods and other Kubernetes objects
without modifying the Kubernetes definitions of the resources.

Implementing Readiness and Liveness Probes

Kubernetes includes a great deal of out-of-the-box functionality for
managing component life cycles and ensuring that your applications are
always healthy and available. However, to take advantage of these
features, Kubernetes has to understand how it should monitor and interpret
your application’s health. To do so, Kubernetes allows you to define
liveness and readiness probes.

Liveness probes allow Kubernetes to determine whether an application
within a container is alive and actively running. Kubernetes can
periodically run commands within the container to check basic application
behavior or can send HTTP or TCP network requests to a designated
location to determine if the process is available and able to respond as
expected. If a liveness probe fails, Kubernetes restarts the container to
attempt to reestablish functionality within the pod.

Readiness probes are a similar tool used to determine whether a pod is
ready to serve traffic. Applications within a container may need to perform
initialization procedures before they are ready to accept client requests or
they may need to reload upon being notified of a new configuration. When
a readiness probe fails, instead of restarting the container, Kubernetes
stops sending requests to the pod temporarily. This allows the pod to
complete its initialization or maintenance routines without impacting the
health of the group as a whole.

By combining liveness and readiness probes, you can instruct
Kubernetes to automatically restart pods or remove them from backend
groups. Configuring your infrastructure to take advantage of these

capabilities allows Kubernetes to manage the availability and health of
your applications without additional operations work.

Using Deployments to Manage Scale and Availability

Earlier, when discussing some pod design fundamentals, we also
mentioned that other Kubernetes objects build on these primitives to
provide more advanced functionality. A deployment, one such compound
object, is probably the most commonly defined and manipulated
Kubernetes object.

Deployments are compound objects that build on other Kubernetes
primatives to add additional capabilities. They add life cycle management
capabilities to intermediary objects called replicasets, like the ability to
perform rolling updates, rollback to earlier versions, and transition
between states. These replicasets allow you to define pod templates to spin
up and manage multiple copies of a single pod design. This helps you
easily scale out your infrastructure, manage availability requirements, and
automatically restart pods in the event of failure.

These additional features provide an administrative framework and self-
healing capabilities to the relatively simple pod abstraction. While pods
are the units that ultimately run the workloads you define, they are not the
units that you should usually be provisioning and managing. Instead, think
of pods as a building block that can run applications robustly when
provisioned through higher-level objects like deployments.

Creating Services and Ingress Rules to Manage Access to
Application Layers

Deployments allow you to provision and manage sets of interchangeable
pods to scale out your applications and meet user demands. However,
routing traffic to the provisioned pods is a separate concern. As pods are
swapped out as part of rolling updates, restarted, or moved due to host
failures, the network addresses previously associated with the running
group will change. Kubernetes services allow you to manage this
complexity by maintaining routing information for dynamic pools of pods
and controlling access to various layers of your infrastructure.

In Kubernetes, services are specific mechanisms that control how traffic
gets routed to sets of pods. Whether forwarding traffic from external
clients or managing connections between several internal components,
services allow you to control how traffic should flow. Kubernetes will then
update and maintain all of the information needed to forward connections
to the relevant pods, even as the environment shifts and the networking
landscape changes.

Accessing Services Internally

To effectively use services, you first must determine the intended
consumers for each group of pods. If your service will only be used by
other applications deployed within your Kubernetes cluster, the clusterIP
service type allows you to connect to a set of pods using a stable IP
address that is only routable from within the cluster. Any object deployed
on the cluster can communicate with the group of replicated pods by
sending traffic directly to the service’s IP address. This is the simplest
service type, which works well for internal application layers.

An optional DNS addon enables Kubernetes to provide DNS names for
services. This allows pods and other objects to communicate with services

by name instead of by IP address. This mechanism does not change service
usage significantly, but name-based identifiers can make it simpler to
hook up components or define interactions without knowing the service IP
address ahead of time.

Exposing Services for Public Consumption

If the interface should be publicly accessible, your best option is usually
the load balancer service type. This uses your specific cloud provider’s
API to provision a load balancer, which serves traffic to the service pods
through a publicly exposed IP address. This allows you to route external
requests to the pods in your service, offering a controlled network channel
to your internal cluster network.

Since the load balancer service type creates a load balancer for every
service, it can potentially become expensive to expose Kubernetes services
publicly using this method. To help alleviate this, Kubernetes ingress
objects can be used to describe how to route different types of requests to
different services based on a predetermined set of rules. For instance,
requests for “example.com” might go to service A, while requests for
“sammytheshark.com” might be routed to service B. Ingress objects
provide a way of describing how to logically route a mixed stream of
requests to their target services based on predefined patterns.

Ingress rules must be interpreted by an ingress controller — typically
some sort of load balance, like Nginx — deployed within the cluster as a
pod, which implements the ingress rules and forwards traffic to
Kubernetes services accordingly. Currently, the ingress object type is in
beta, but there are several working implementations that can be used to

minimize the number of external load balancers that cluster owners are
required to run.

Using Declarative Syntax to Manage Kubernetes State

Kubernetes offers quite a lot of flexibility in defining and controlling the
resources deployed to your cluster. Using tools like kubectl, you can
imperatively define ad-hoc objects to immediately deploy to your cluster.
While this can be useful for quickly deploying resources when learning
Kubernetes, there are drawbacks to this approach that make it undesirable
for long-term production administration.

One of the major problems with imperative management is that it does
not leave any record of the changes you’ve deployed to your cluster. This
makes it difficult or impossible to recover in the event of failures or to
track operational changes as they’re applied to your systems.

Fortunately, Kubernetes provides an alternative declarative syntax that
allows you to fully define resources within text files and then use
kubectl to apply the configuration or change. Storing these
configuration files in a version control repository is a simple way to
monitor changes and integrate with the review processes used for other
parts of your organization. File-based management also makes it simple to
adapt existing patterns to new resources by copying and editing existing
definitions. Storing your Kubernetes object definitions in versioned
directories allows you to maintain a snapshot of your desired cluster state
at each point in time. This can be invaluable during recovery operations,
migrations, or when tracking down the root cause of unintended changes
introduced to your system.

Conclusion

Managing the infrastructure that will run your applications and learning
how to best leverage the features offered by modern orchestrations
environments can be daunting. However, many of the benefits offered by
systems like Kubernetes and technologies like containers become more
clear when your development and operations practices align with the
concepts the tooling is built around. Architecting your systems using the
patterns Kubernetes excels at and understanding how certain features can
alleviate some of the challenges associated with highly complex
deployments can help improve your experience running on the platform.

Modernizing Applications for Kubernetes

Written by Hanif Jetha
The previous tutorial explored key ideas and application design

techniques to build applications that will run effectively on Kubernetes.
This guide will focus on modernizing an existing application to run on
Kubernetes. To prepare for migration, there are some important
application-level changes to implement that will maximize your app’s
portability and observability in Kubernetes.

You will learn how to extract configuration data from code and
externalize application state using databases and data stores for persistent
data. You will also build in health checks and code instrumentation for
logging and monitoring, thereby creating an infrastructure to identify
errors in your cluster more effectively. After covering application logic,
this tutorial examines some best practices for containerizing your app with
Docker.

Finally, this guide discusses some core Kubernetes components for
managing and scaling your app. Specifically, you will learn how to use
Pods, ConfigMaps, Secrets, and Services to deploy and manage a
modernized application on Kubernetes.

Modern stateless applications are built and designed to run in software
containers like Docker, and be managed by container clusters like
Kubernetes. They are developed using Cloud Native and Twelve Factor
principles and patterns, to minimize manual intervention and maximize
portability and redundancy. Migrating virtual-machine or bare metal-

https://www.digitalocean.com/community/tutorials/modernizing-applications-for-kubernetes
https://github.com/cncf/toc/blob/master/DEFINITION.md
https://12factor.net/

based applications into containers (known as “containerizing”) and
deploying them inside of clusters often involves significant shifts in how
these apps are built, packaged, and delivered.

Building on Architecting Applications for Kubernetes, in this
conceptual guide, we’ll discuss high-level steps for modernizing your
applications, with the end goal of running and managing them in a
Kubernetes cluster. Although you can run stateful applications like
databases on Kubernetes, this guide focuses on migrating and modernizing
stateless applications, with persistent data offloaded to an external data
store. Kubernetes provides advanced functionality for efficiently
managing and scaling stateless applications, and we’ll explore the
application and infrastructure changes necessary for running scalable,
observable, and portable apps on Kubernetes.

Preparing the Application for Migration

Before containerizing your application or writing Kubernetes Pod and
Deployment configuration files, you should implement application-level
changes to maximize your app’s portability and observability in
Kubernetes. Kubernetes is a highly automated environment that can
automatically deploy and restart failing application containers, so it’s
important to build in the appropriate application logic to communicate
with the container orchestrator and allow it to automatically scale your
app as necessary.

Extract Configuration Data

One of the first application-level changes to implement is extracting
application configuration from application code. Configuration consists of

https://www.digitalocean.com/community/tutorials/architecting-applications-for-kubernetes

any information that varies across deployments and environments, like
service endpoints, database addresses, credentials, and various parameters
and options. For example, if you have two environments, say staging
and production, and each contains a separate database, your
application should not have the database endpoint and credentials
explicitly declared in the code, but stored in a separate location, either as
variables in the running environment, a local file, or external key-value
store, from which the values are read into the app.

Hardcoding these parameters into your code poses a security risk as this
config data often consists of sensitive information, which you then check
in to your version control system. It also increases complexity as you now
have to maintain multiple versions of your application, each consisting of
the same core application logic, but varying slightly in configuration. As
applications and their configuration data grow, hardcoding config into app
code quickly becomes unwieldy.

By extracting configuration values from your application code, and
instead ingesting them from the running environment or local files, your
app becomes a generic, portable package that can be deployed into any
environment, provided you supply it with accompanying configuration
data. Container software like Docker and cluster software like Kubernetes
have been designed around this paradigm, building in features for
managing configuration data and injecting it into application containers.
These features will be covered in more detail in the Containerizing and
Kubernetes sections.

Here’s a quick example demonstrating how to externalize two config
values DB_HOST and DB_USER from a simple Python Flask app’s code.

https://www.digitalocean.com/community/tutorials/modernizing-applications-for-kubernetes#inject-configuration
https://www.digitalocean.com/community/tutorials/modernizing-applications-for-kubernetes#injecting-configuration-data-with-kubernetes
http://flask.pocoo.org/

We’ll make them available in the app’s running environment as env vars,
from which the app will read them:

hardcoded_config.py
from flask import Flask

DB_HOST = 'mydb.mycloud.com'

DB_USER = 'sammy'

app = Flask(__name__)

@app.route('/')

def print_config():

 output = 'DB_HOST: {} -- DB_USER:

{}'.format(DB_HOST, DB_USER)

 return output

Running this simple app (consult the Flask Quickstart to learn how) and
visiting its web endpoint will display a page containing these two config
values.

Now, here’s the same example with the config values externalized to the
app’s running environment:

env_config.py
import os

from flask import Flask

http://flask.pocoo.org/docs/1.0/quickstart/

DB_HOST = os.environ.get('APP_DB_HOST')

DB_USER = os.environ.get('APP_DB_USER')

app = Flask(__name__)

@app.route('/')

def print_config():

 output = 'DB_HOST: {} -- DB_USER:

{}'.format(DB_HOST, DB_USER)

 return output

Before running the app, we set the necessary config variables in the
local environment:
export APP_DB_HOST=mydb.mycloud.com

export APP_DB_USER=sammy

flask run

The displayed web page should contain the same text as in the first
example, but the app’s config can now be modified independently of the
application code. You can use a similar approach to read in config
parameters from a local file.

In the next section we’ll discuss moving application state outside of
containers.

Offload Application State

Cloud Native applications run in containers, and are dynamically
orchestrated by cluster software like Kubernetes or Docker Swarm. A
given app or service can be load balanced across multiple replicas, and any
individual app container should be able to fail, with minimal or no

disruption of service for clients. To enable this horizontal, redundant
scaling, applications must be designed in a stateless fashion. This means
that they respond to client requests without storing persistent client and
application data locally, and at any point in time if the running app
container is destroyed or restarted, critical data is not lost.

For example, if you are running an address book application and your
app adds, removes and modifies contacts from an address book, the
address book data store should be an external database or other data store,
and the only data kept in container memory should be short-term in nature,
and disposable without critical loss of information. Data that persists
across user visits like sessions should also be moved to external data
stores like Redis. Wherever possible, you should offload any state from
your app to services like managed databases or caches.

For stateful applications that require a persistent data store (like a
replicated MySQL database), Kubernetes builds in features for attaching
persistent block storage volumes to containers and Pods. To ensure that a
Pod can maintain state and access the same persistent volume after a
restart, the StatefulSet workload must be used. StatefulSets are ideal for
deploying databases and other long-running data stores to Kubernetes.

Stateless containers enable maximum portability and full use of
available cloud resources, allowing the Kubernetes scheduler to quickly
scale your app up and down and launch Pods wherever resources are
available. If you don’t require the stability and ordering guarantees
provided by the StatefulSet workload, you should use the Deployment
workload to manage and scale and your applications.

To learn more about the design and architecture of stateless, Cloud
Native microservices, consult our Kubernetes White Paper.

http://assets.digitalocean.com/white-papers/running-digitalocean-kubernetes.pdf

Implement Health Checks

In the Kubernetes model, the cluster control plane can be relied on to
repair a broken application or service. It does this by checking the health
of application Pods, and restarting or rescheduling unhealthy or
unresponsive containers. By default, if your application container is
running, Kubernetes sees your Pod as “healthy.” In many cases this is a
reliable indicator for the health of a running application. However, if your
application is deadlocked and not performing any meaningful work, the
app process and container will continue to run indefinitely, and by default
Kubernetes will keep the stalled container alive.

To properly communicate application health to the Kubernetes control
plane, you should implement custom application health checks that
indicate when an application is both running and ready to receive traffic.
The first type of health check is called a readiness probe, and lets
Kubernetes know when your application is ready to receive traffic. The
second type of check is called a liveness probe, and lets Kubernetes know
when your application is healthy and running. The Kubelet Node agent can
perform these probes on running Pods using 3 different methods:

HTTP: The Kubelet probe performs an HTTP GET request against an
endpoint (like /health), and succeeds if the response status is
between 200 and 399
Container Command: The Kubelet probe executes a command inside
of the running container. If the exit code is 0, then the probe succeeds.
TCP: The Kubelet probe attempts to connect to your container on a
specified port. If it can establish a TCP connection, then the probe
succeeds.

You should choose the appropriate method depending on the running
application(s), programming language, and framework. The readiness and
liveness probes can both use the same probe method and perform the same
check, but the inclusion of a readiness probe will ensure that the Pod
doesn’t receive traffic until the probe begins succeeding.

When planning and thinking about containerizing your application and
running it on Kubernetes, you should allocate planning time for defining
what “healthy” and “ready” mean for your particular application, and
development time for implementing and testing the endpoints and/or
check commands.

Here’s a minimal health endpoint for the Flask example referenced
above:

env_config.py
. . .

@app.route('/')

def print_config():

 output = 'DB_HOST: {} -- DB_USER:

{}'.format(DB_HOST, DB_USER)

 return output

@app.route('/health')

def return_ok():

 return 'Ok!', 200

A Kubernetes liveness probe that checks this path would then look
something like this:

pod_spec.yaml
. . .

 livenessProbe:

 httpGet:

 path: /health

 port: 80

 initialDelaySeconds: 5

 periodSeconds: 2

The initialDelaySeconds field specifies that Kubernetes
(specifically the Node Kubelet) should probe the /health endpoint after
waiting 5 seconds, and periodSeconds tells the Kubelet to probe
/health every 2 seconds.

To learn more about liveness and readiness probes, consult the
Kubernetes documentation.

Instrument Code for Logging and Monitoring

When running your containerized application in an environment like
Kubernetes, it’s important to publish telemetry and logging data to
monitor and debug your application’s performance. Building in features to
publish performance metrics like response duration and error rates will
help you monitor your application and alert you when your application is
unhealthy.

One tool you can use to monitor your services is Prometheus, an open-
source systems monitoring and alerting toolkit, hosted by the Cloud
Native Computing Foundation (CNCF). Prometheus provides several
client libraries for instrumenting your code with various metric types to
count events and their durations. For example, if you’re using the Flask

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/
https://prometheus.io/

Python framework, you can use the Prometheus Python client to add
decorators to your request processing functions to track the time spent
processing requests. These metrics can then be scraped by Prometheus at
an HTTP endpoint like /metrics.

A helpful method to use when designing your app’s instrumentation is
the RED method. It consists of the following three key request metrics:

Rate: The number of requests received by your application
Errors: The number of errors emitted by your application
Duration: The amount of time it takes your application to serve a
response

This minimal set of metrics should give you enough data to alert on
when your application’s performance degrades. Implementing this
instrumentation along with the health checks discussed above will allow
you to quickly detect and recover from a failing application.

To learn more about signals to measure when monitoring your
applications, consult Monitoring Distributed Systems from the Google
Site Reliability Engineering book.

In addition to thinking about and designing features for publishing
telemetry data, you should also plan how your application will log in a
distributed cluster-based environment. You should ideally remove
hardcoded configuration references to local log files and log directories,
and instead log directly to stdout and stderr. You should treat logs as a
continuous event stream, or sequence of time-ordered events. This output
stream will then get captured by the container enveloping your
application, from which it can be forwarded to a logging layer like the

https://github.com/prometheus/client_python
https://landing.google.com/sre/book/chapters/monitoring-distributed-systems.html#xref_monitoring_golden-signals

EFK (Elasticsearch, Fluentd, and Kibana) stack. Kubernetes provides a lot
of flexibility in designing your logging architecture, which we’ll explore
in more detail below.

Build Administration Logic into API

Once your application is containerized and up and running in a cluster
environment like Kubernetes, you may no longer have shell access to the
container running your app. If you’ve implemented adequate health
checking, logging, and monitoring, you can quickly be alerted on, and
debug production issues, but taking action beyond restarting and
redeploying containers may be difficult. For quick operational and
maintenance fixes like flushing queues or clearing a cache, you should
implement the appropriate API endpoints so that you can perform these
operations without having to restart containers or exec into running
containers and execute series of commands. Containers should be treated
as immutable objects, and manual administration should be avoided in a
production environment. If you must perform one-off administrative tasks,
like clearing caches, you should expose this functionality via the API.

Summary

In these sections we’ve discussed application-level changes you may wish
to implement before containerizing your application and moving it to
Kubernetes. For a more in-depth walkthrough on building Cloud Native
apps, consult Architecting Applications for Kubernetes.

We’ll now discuss some considerations to keep in mind when building
containers for your apps.

https://www.digitalocean.com/community/tutorials/architecting-applications-for-kubernetes

Containerizing Your Application

Now that you’ve implemented app logic to maximize its portability and
observability in a cloud-based environment, it’s time to package your app
inside of a container. For the purposes of this guide, we’ll use Docker
containers, but you should use whichever container implementation best
suits your production needs.

Explicitly Declare Dependencies

Before creating a Dockerfile for your application, one of the first steps is
taking stock of the software and operating system dependencies your
application needs to run correctly. Dockerfiles allow you to explicitly
version every piece of software installed into the image, and you should
take advantage of this feature by explicitly declaring the parent image,
software library, and programming language versions.

Avoid latest tags and unversioned packages as much as possible, as
these can shift, potentially breaking your application. You may wish to
create a private registry or private mirror of a public registry to exert more
control over image versioning and to prevent upstream changes from
unintentionally breaking your image builds.

To learn more about setting up a private image registry, consult Deploy
a Registry Server from the Docker official documentation and the
Registries section below.

Keep Image Sizes Small

When deploying and pulling container images, large images can
significantly slow things down and add to your bandwidth costs.

https://docs.docker.com/registry/deploying/
https://www.digitalocean.com/community/tutorials/modernizing-applications-for-kubernetes#publish-image-to-a-registry

Packaging a minimal set of tools and application files into an image
provides several benefits:

Reduce image sizes
Speed up image builds
Reduce container start lag
Speed up image transfer times
Improve security by reducing attack surface

Some steps you can consider when building your images:

Use a minimal base OS image like alpine or build from scratch
instead of a fully featured OS like ubuntu
Clean up unnecessary files and artifacts after installing software
Use separate “build” and “runtime” containers to keep production
application containers small
Ignore unnecessary build artifacts and files when copying in large
directories

For a full guide on optimizing Docker containers, including many
illustrative examples, consult Building Optimized Containers for
Kubernetes.

Inject Configuration

Docker provides several helpful features for injecting configuration data
into your app’s running environment.

One option for doing this is specifying environment variables and their
values in the Dockerfile using the ENV statement, so that configuration

https://www.digitalocean.com/community/tutorials/building-optimized-containers-for-kubernetes

data is built-in to images:

Dockerfile
...

ENV MYSQL_USER=my_db_user

...

Your app can then parse these values from its running environment and
configure its settings appropriately.

You can also pass in environment variables as parameters when starting
a container using docker run and the -e flag:
docker run -e MYSQL_USER='my_db_user' IMAGE[:TAG]

Finally, you can use an env file, containing a list of environment
variables and their values. To do this, create the file and use the --env-
file parameter to pass it in to the command:
docker run --env-file var_list IMAGE[:TAG]

If you’re modernizing your application to run it using a cluster manager
like Kubernetes, you should further externalize your config from the
image, and manage configuration using Kubernetes’ built-in ConfigMap
and Secrets objects. This allows you to separate configuration from image
manifests, so that you can manage and version it separately from your
application. To learn how to externalize configuration using ConfigMaps
and Secrets, consult the ConfigMaps and Secrets section below.

Publish Image to a Registry

Once you’ve built your application images, to make them available to
Kubernetes, you should upload them to a container image registry. Public
registries like Docker Hub host the latest Docker images for popular open

https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/
https://kubernetes.io/docs/concepts/configuration/secret/
https://www.digitalocean.com/community/tutorials/modernizing-applications-for-kubernetes#injecting-configuration-data-with-kubernetes
https://hub.docker.com/

source projects like Node.js and nginx. Private registries allow you publish
your internal application images, making them available to developers and
infrastructure, but not the wider world.

You can deploy a private registry using your existing infrastructure
(e.g. on top of cloud object storage), or optionally use one of several
Docker registry products like Quay.io or paid Docker Hub plans. These
registries can integrate with hosted version control services like GitHub so
that when a Dockerfile is updated and pushed, the registry service will
automatically pull the new Dockerfile, build the container image, and
make the updated image available to your services.

To exert more control over the building and testing of your container
images and their tagging and publishing, you can implement a continuous
integration (CI) pipeline.

Implement a Build Pipeline

Building, testing, publishing and deploying your images into production
manually can be error-prone and does not scale well. To manage builds
and continuously publish containers containing your latest code changes to
your image registry, you should use a build pipeline.

Most build pipelines perform the following core functions:

Watch source code repositories for changes
Run smoke and unit tests on modified code
Build container images containing modified code
Run further integration tests using built container images
If tests pass, tag and publish images to registry

https://hub.docker.com/_/node/
https://hub.docker.com/_/nginx/
https://quay.io/

(Optional, in continuous deployment setups) Update Kubernetes
Deployments and roll out images to staging/production clusters

There are many paid continuous integration products that have built-in
integrations with popular version control services like GitHub and image
registries like Docker Hub. An alternative to these products is Jenkins, a
free and open-source build automation server that can be configured to
perform all of the functions described above. To learn how to set up a
Jenkins continuous integration pipeline, consult How To Set Up
Continuous Integration Pipelines in Jenkins on Ubuntu 16.04.

Implement Container Logging and Monitoring

When working with containers, it’s important to think about the logging
infrastructure you will use to manage and store logs for all your running
and stopped containers. There are multiple container-level patterns you
can use for logging, and also multiple Kubernetes-level patterns.

In Kubernetes, by default containers use the json-file Docker
logging driver, which captures the stdout and stderr streams and writes
them to JSON files on the Node where the container is running.
Sometimes logging directly to stderr and stdout may not be enough for
your application container, and you may want to pair the app container
with a logging sidecar container in a Kubernetes Pod. This sidecar
container can then pick up logs from the filesystem, a local socket, or the
systemd journal, granting you a little more flexibility than simply using
the stderr and stdout streams. This container can also do some processing
and then stream enriched logs to stdout/stderr, or directly to a logging

https://jenkins.io/
https://www.digitalocean.com/community/tutorials/how-to-set-up-continuous-integration-pipelines-in-jenkins-on-ubuntu-16-04
https://docs.docker.com/config/containers/logging/configure/

backend. To learn more about Kubernetes logging patterns, consult the
Kubernetes logging and monitoring section of this tutorial.

How your application logs at the container level will depend on its
complexity. For simple, single-purpose microservices, logging directly to
stdout/stderr and letting Kubernetes pick up these streams is the
recommended approach, as you can then leverage the kubectl logs
command to access log streams from your Kubernetes-deployed
containers.

Similar to logging, you should begin thinking about monitoring in a
container and cluster-based environment. Docker provides the helpful
docker stats command for grabbing standard metrics like CPU and
memory usage for running containers on the host, and exposes even more
metrics through the Remote REST API. Additionally, the open-source tool
cAdvisor (installed on Kubernetes Nodes by default) provides more
advanced functionality like historical metric collection, metric data
export, and a helpful web UI for sorting through the data.

However, in a multi-node, multi-container production environment,
more complex metrics stacks like Prometheus and Grafana may help
organize and monitor your containers’ performance data.

Summary

In these sections, we briefly discussed some best practices for building
containers, setting up a CI/CD pipeline and image registry, as well as some
considerations for increasing observability into your containers.

To learn more about optimizing containers for Kubernetes, consult
Building Optimized Containers for Kubernetes.

https://www.digitalocean.com/community/tutorials/modernizing-applications-for-kubernetes#logging-and-monitoring
https://docs.docker.com/develop/sdk/
https://github.com/google/cadvisor
https://prometheus.io/
https://grafana.com/
https://www.digitalocean.com/community/tutorials/building-optimized-containers-for-kubernetes

To learn more about CI/CD, consult An Introduction to Continuous
Integration, Delivery, and Deployment and An Introduction to CI/CD
Best Practices.

In the next section, we’ll explore Kubernetes features that allow you to
run and scale your containerized app in a cluster.

Deploying on Kubernetes

At this point, you’ve containerized your app and implemented logic to
maximize its portability and observability in Cloud Native environments.
We’ll now explore Kubernetes features that provide simple interfaces for
managing and scaling your apps in a Kubernetes cluster.

Write Deployment and Pod Configuration Files

Once you’ve containerized your application and published it to a registry,
you can now deploy it into a Kubernetes cluster using the Pod workload.
The smallest deployable unit in a Kubernetes cluster is not a container but
a Pod. Pods typically consist of an application container (like a
containerized Flask web app), or an app container and any “sidecar”
containers that perform some helper function like monitoring or logging.
Containers in a Pod share storage resources, a network namespace, and
port space. They can communicate with each other using localhost and
can share data using mounted volumes. Addtionally, the Pod workload
allows you to define Init Containers that run setup scripts or utilities
before the main app container begins running.

Pods are typically rolled out using Deployments, which are Controllers
defined by YAML files that declare a particular desired state. For example,

https://www.digitalocean.com/community/tutorials/an-introduction-to-continuous-integration-delivery-and-deployment
https://www.digitalocean.com/community/tutorials/an-introduction-to-ci-cd-best-practices
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/

an application state could be running three replicas of the Flask web app
container and exposing port 8080. Once created, the control plane
gradually brings the actual state of the cluster to match the desired state
declared in the Deployment by scheduling containers onto Nodes as
required. To scale the number of application replicas running in the
cluster, say from 3 up to 5, you update the replicas field of the
Deployment configuration file, and then kubectl apply the new
configuration file. Using these configuration files, scaling and deployment
operations can all be tracked and versioned using your existing source
control services and integrations.

Here’s a sample Kubernetes Deployment configuration file for a Flask
app:

flask_deployment.yaml
apiVersion: apps/v1

kind: Deployment

metadata:

 name: flask-app

 labels:

 app: flask-app

spec:

 replicas: 3

 selector:

 matchLabels:

 app: flask-app

 template:

 metadata:

 labels:

 app: flask-app

 spec:

 containers:

 - name: flask

 image: sammy/flask_app:1.0

 ports:

 - containerPort: 8080

This Deployment launches 3 Pods that run a container called flask
using the sammy/flask_app image (version 1.0) with port 8080
open. The Deployment is called flask-app.

To learn more about Kubernetes Pods and Deployments, consult the
Pods and Deployments sections of the official Kubernetes documentation.

Configure Pod Storage

Kubernetes manages Pod storage using Volumes, Persistent Volumes (PVs)
and Persistent Volume Claims (PVCs). Volumes are the Kubernetes
abstraction used to manage Pod storage, and support most cloud provider
block storage offerings, as well as local storage on the Nodes hosting the
running Pods. To see a full list of supported Volume types, consult the
Kubernetes documentation.

For example, if your Pod contains two NGINX containers that need to
share data between them (say the first, called nginx serves web pages,
and the second, called nginx-sync fetches the pages from an external
location and updates the pages served by the nginx container), your Pod
spec would look something like this (here we use the emptyDir Volume
type):

https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#emptydir

pod_volume.yaml
apiVersion: v1

kind: Pod

metadata:

 name: nginx

spec:

 containers:

 - name: nginx

 image: nginx

 volumeMounts:

 - name: nginx-web

 mountPath: /usr/share/nginx/html

 - name: nginx-sync

 image: nginx-sync

 volumeMounts:

 - name: nginx-web

 mountPath: /web-data

 volumes:

 - name: nginx-web

 emptyDir: {}

We use a volumeMount for each container, indicating that we’d like to
mount the nginx-web volume containing the web page files at
/usr/share/nginx/html in the nginx container and at /web-
data in the nginx-sync container. We also define a volume called
nginx-web of type emptyDir.

In a similar fashion, you can configure Pod storage using cloud block
storage products by modifying the volume type from emptyDir to the
relevant cloud storage volume type.

The lifecycle of a Volume is tied to the lifecycle of the Pod, but not to
that of a container. If a container within a Pod dies, the Volume persists
and the newly launched container will be able to mount the same Volume
and access its data. When a Pod gets restarted or dies, so do its Volumes,
although if the Volumes consist of cloud block storage, they will simply be
unmounted with data still accessible by future Pods.

To preserve data across Pod restarts and updates, the PersistentVolume
(PV) and PersistentVolumeClaim (PVC) objects must be used.

PersistentVolumes are abstractions representing pieces of persistent
storage like cloud block storage volumes or NFS storage. They are created
separately from PersistentVolumeClaims, which are demands for pieces of
storage by developers. In their Pod configurations, developers request
persistent storage using PVCs, which Kubernetes matches with available
PV Volumes (if using cloud block storage, Kubernetes can dynamically
create PersistentVolumes when PersistentVolumeClaims are created).

If your application requires one persistent volume per replica, which is
the case with many databases, you should not use Deployments but use the
StatefulSet controller, which is designed for apps that require stable
network identifiers, stable persistent storage, and ordering guarantees.
Deployments should be used for stateless applications, and if you define a
PersistentVolumeClaim for use in a Deployment configuration, that PVC
will be shared by all the Deployment’s replicas.

To learn more about the StatefulSet controller, consult the Kubernetes
documentation. To learn more about PersistentVolumes and

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

PersistentVolume claims, consult the Kubernetes storage documentation.

Injecting Configuration Data with Kubernetes

Similar to Docker, Kubernetes provides the env and envFrom fields for
setting environment variables in Pod configuration files. Here’s a sample
snippet from a Pod configuration file that sets the HOSTNAME

environment variable in the running Pod to my_hostname :

sample_pod.yaml
...

 spec:

 containers:

 - name: nginx

 image: nginx:1.7.9

 ports:

 - containerPort: 80

 env:

 - name: HOSTNAME

 value: my_hostname

...

This allows you to move configuration out of Dockerfiles and into Pod
and Deployment configuration files. A key advantage of further
externalizing configuration from your Dockerfiles is that you can now
modify these Kubernetes workload configurations (say, by changing the
HOSTNAME value to my_hostname_2) separately from your application
container definitions. Once you modify the Pod configuration file, you can
then redeploy the Pod using its new environment, while the underlying

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

container image (defined via its Dockerfile) does not need to be rebuilt,
tested, and pushed to a repository. You can also version these Pod and
Deployment configurations separately from your Dockerfiles, allowing
you to quickly detect breaking changes and further separate config issues
from application bugs.

Kubernetes provides another construct for further externalizing and
managing configuration data: ConfigMaps and Secrets.

ConfigMaps and Secrets

ConfigMaps allow you to save configuration data as objects that you then
reference in your Pod and Deployment configuration files, so that you can
avoid hardcoding configuration data and reuse it across Pods and
Deployments.

Here’s an example, using the Pod config from above. We’ll first save
the HOSTNAME environment variable as a ConfigMap, and then reference
it in the Pod config:
kubectl create configmap hostname --from-

literal=HOSTNAME=my_host_name

To reference it from the Pod configuration file, we use the the
valueFrom and configMapKeyRef constructs:

sample_pod_configmap.yaml
...

 spec:

 containers:

 - name: nginx

 image: nginx:1.7.9

 ports:

 - containerPort: 80

 env:

 - name: HOSTNAME

 valueFrom:

 configMapKeyRef:

 name: hostname

 key: HOSTNAME

...

So the HOSTNAME environment variable’s value has been completely
externalized from configuration files. We can then update these variables
across all Deployments and Pods referencing them, and restart the Pods
for the changes to take effect.

If your applications use configuration files, ConfigMaps additionally
allow you to store these files as ConfigMap objects (using the --from-
file flag), which you can then mount into containers as configuration
files.

Secrets provide the same essential functionality as ConfigMaps, but
should be used for sensitive data like database credentials as the values are
base64-encoded.

To learn more about ConfigMaps and Secrets consult the Kubernetes
documentation.

Create Services

Once you have your application up and running in Kubernetes, every Pod
will be assigned an (internal) IP address, shared by its containers. If one of

https://kubernetes.io/docs/concepts/configuration/

these Pods is removed or dies, newly started Pods will be assigned
different IP addresses.

For long-running services that expose functionality to internal and/or
external clients, you may wish to grant a set of Pods performing the same
function (or Deployment) a stable IP address that load balances requests
across its containers. You can do this using a Kubernetes Service.

Kubernetes Services have 4 types, specified by the type field in the
Service configuration file:

ClusterIP: This is the default type, which grants the Service a
stable internal IP accessible from anywhere inside of the cluster.
NodePort: This will expose your Service on each Node at a static
port, between 30000-32767 by default. When a request hits a Node at
its Node IP address and the NodePort for your service, the request
will be load balanced and routed to the application containers for
your service.
LoadBalancer: This will create a load balancer using your cloud
provider’s load balancing product, and configure a NodePort and
ClusterIP for your Service to which external requests will be
routed.
ExternalName: This Service type allows you to map a Kubernetes
Service to a DNS record. It can be used for accessing external
services from your Pods using Kubernetes DNS.

Note that creating a Service of type LoadBalancer for each
Deployment running in your cluster will create a new cloud load balancer
for each Service, which can become costly. To manage routing external

requests to multiple services using a single load balancer, you can use an
Ingress Controller. Ingress Controllers are beyond the scope of this article,
but to learn more about them you can consult the Kubernetes
documentation. A popular simple Ingress Controller is the NGINX Ingress
Controller.

Here’s a simple Service configuration file for the Flask example used in
the Pods and Deployments section of this guide:

flask_app_svc.yaml
apiVersion: v1

kind: Service

metadata:

 name: flask-svc

spec:

 ports:

 - port: 80

 targetPort: 8080

 selector:

 app: flask-app

 type: LoadBalancer

Here we choose to expose the flask-app Deployment using this
flask-svc Service. We create a cloud load balancer to route traffic
from load balancer port 80 to exposed container port 8080.

To learn more about Kubernetes Services, consult the Services section
of the Kubernetes docs.

Logging and Monitoring

https://kubernetes.io/docs/concepts/services-networking/ingress/
https://github.com/kubernetes/ingress-nginx
https://www.digitalocean.com/community/tutorials/modernizing-applications-for-kubernetes#write-deployment-and-pod-configuration-files
https://kubernetes.io/docs/concepts/services-networking/service/

Parsing through individual container and Pod logs using kubectl logs
and docker logs can get tedious as the number of running applications
grows. To help you debug application or cluster issues, you should
implement centralized logging. At a high level, this consists of agents
running on all the worker nodes that process Pod log files and streams,
enrich them with metadata, and forward the logs off to a backend like
Elasticsearch. From there, log data can be visualized, filtered, and
organized using a visualization tool like Kibana.

In the container-level logging section, we discussed the recommended
Kubernetes approach of having applications in containers log to the
stdout/stderr streams. We also briefly discussed logging sidecar containers
that can grant you more flexibility when logging from your application.
You could also run logging agents directly in your Pods that capture local
log data and forward them directly to your logging backend. Each
approach has its pros and cons, and resource utilization tradeoffs (for
example, running a logging agent container inside of each Pod can become
resource-intensive and quickly overwhelm your logging backend). To
learn more about different logging architectures and their tradeoffs,
consult the Kubernetes documentation.

In a standard setup, each Node runs a logging agent like Filebeat or
Fluentd that picks up container logs created by Kubernetes. Recall that
Kubernetes creates JSON log files for containers on the Node (in most
installations these can be found at
/var/lib/docker/containers/). These should be rotated using a
tool like logrotate. The Node logging agent should be run as a DaemonSet
Controller, a type of Kubernetes Workload that ensures that every Node
runs a copy of the DaemonSet Pod. In this case the Pod would contain the

https://github.com/elastic/elasticsearch
https://github.com/elastic/kibana
https://kubernetes.io/docs/concepts/cluster-administration/logging/
https://www.elastic.co/products/beats/filebeat
https://github.com/fluent/fluentd
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/

logging agent and its configuration, which processes logs from files and
directories mounted into the logging DaemonSet Pod.

Similar to the bottleneck in using kubectl logs to debug container
issues, eventually you may need to consider a more robust option than
simply using kubectl top and the Kubernetes Dashboard to monitor
Pod resource usage on your cluster. Cluster and application-level
monitoring can be set up using the Prometheus monitoring system and
time-series database, and Grafana metrics dashboard. Prometheus works
using a “pull” model, which scrapes HTTP endpoints (like
/metrics/cadvisor on the Nodes, or the /metrics application
REST API endpoints) periodically for metric data, which it then processes
and stores. This data can then be analyzed and visualized using Grafana
dashboard. Prometheus and Grafana can be launched into a Kubernetes
cluster like any other Deployment and Service.

For added resiliency, you may wish to run your logging and monitoring
infrastructure on a separate Kubernetes cluster, or using external logging
and metrics services.

Conclusion

Migrating and modernizing an application so that it can efficiently run in a
Kubernetes cluster often involves non-trivial amounts of planning and
architecting of software and infrastructure changes. Once implemented,
these changes allow service owners to continuously deploy new versions
of their apps and easily scale them as necessary, with minimal amounts of
manual intervention. Steps like externalizing configuration from your app,
setting up proper logging and metrics publishing, and configuring health

https://prometheus.io/
https://github.com/grafana/grafana

checks allow you to fully take advantage of the Cloud Native paradigm
that Kubernetes has been designed around. By building portable containers
and managing them using Kubernetes objects like Deployments and
Services, you can fully use your available compute infrastructure and
development resources.

How To Build a Node.js Application with
Docker

Written by Kathleen Juell
This tutorial is a first step towards writing an example Node.js

application that will run on Kubernetes. When building and scaling an
application on Kubernetes, the starting point is typically creating a Docker
image, which you can then run as a Pod in a Kubernetes cluster. The image
includes your application code, dependencies, environment variables, and
application runtime environment. Using an image ensures that the
environment in your container is standardized and contains only what is
necessary to build and run your application.

In this tutorial, you will create an application image for a static website
that uses the Express Node.js framework and Bootstrap front-end library.
You will then push the image to Docker Hub for future use and then run a
container using that image. Finally, you will pull the stored image from
your Docker Hub repository and run another container, demonstrating how
you can quickly recreate and scale your application. As you move through
this curriculum, subsequent tutorials will expand on this initial image until
it is up and running directly on Kubernetes.

The Docker platform allows developers to package and run applications
as containers. A container is an isolated process that runs on a shared
operating system, offering a lighter weight alternative to virtual machines.
Though containers are not new, they offer benefits — including process

https://www.digitalocean.com/community/tutorials/how-to-build-a-node-js-application-with-docker
https://www.docker.com/

isolation and environment standardization — that are growing in
importance as more developers use distributed application architectures.

When building and scaling an application with Docker, the starting
point is typically creating an image for your application, which you can
then run in a container. The image includes your application code,
libraries, configuration files, environment variables, and runtime. Using
an image ensures that the environment in your container is standardized
and contains only what is necessary to build and run your application.

In this tutorial, you will create an application image for a static website
that uses the Express framework and Bootstrap. You will then build a
container using that image and push it to Docker Hub for future use.
Finally, you will pull the stored image from your Docker Hub repository
and build another container, demonstrating how you can recreate and scale
your application.

Prerequisites

To follow this tutorial, you will need: - One Ubuntu 18.04 server, set up
following this Initial Server Setup guide. - Docker installed on your server,
following Steps 1 and 2 of How To Install and Use Docker on Ubuntu
18.04. - Node.js and npm installed, following these instructions on
installing with the PPA managed by NodeSource. - A Docker Hub account.
For an overview of how to set this up, refer to this introduction on getting
started with Docker Hub.

Step 1 — Installing Your Application Dependencies

https://expressjs.com/
https://getbootstrap.com/
https://hub.docker.com/
https://www.digitalocean.com/community/tutorials/initial-server-setup-with-ubuntu-18-04
https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-18-04
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-18-04#installing-using-a-ppa
https://docs.docker.com/docker-hub/

To create your image, you will first need to make your application files,
which you can then copy to your container. These files will include your
application’s static content, code, and dependencies.

First, create a directory for your project in your non-root user’s home
directory. We will call ours node_project, but you should feel free to
replace this with something else:
mkdir node_project

Navigate to this directory:
cd node_project

This will be the root directory of the project.
Next, create a package.json file with your project’s dependencies

and other identifying information. Open the file with nano or your
favorite editor:
nano package.json

Add the following information about the project, including its name,
author, license, entrypoint, and dependencies. Be sure to replace the author
information with your own name and contact details:

~/node_project/package.json
{

 "name": "nodejs-image-demo",

 "version": "1.0.0",

 "description": "nodejs image demo",

 "author": "Sammy the Shark <sammy@example.com>",

 "license": "MIT",

 "main": "app.js",

 "keywords": [

https://docs.npmjs.com/files/package.json

 "nodejs",

 "bootstrap",

 "express"

],

 "dependencies": {

 "express": "^4.16.4"

 }

}

This file includes the project name, author, and license under which it is
being shared. Npm recommends making your project name short and
descriptive, and avoiding duplicates in the npm registry. We’ve listed the
MIT license in the license field, permitting the free use and distribution of
the application code.

Additionally, the file specifies: - "main": The entrypoint for the
application, app.js. You will create this file next. - "dependencies":
The project dependencies — in this case, Express 4.16.4 or above.

Though this file does not list a repository, you can add one by following
these guidelines on adding a repository to your package.json file. This
is a good addition if you are versioning your application.

Save and close the file when you’ve finished making changes.
To install your project’s dependencies, run the following command:

npm install

This will install the packages you’ve listed in your package.json
file in your project directory.

We can now move on to building the application files.

Step 2 — Creating the Application Files

https://docs.npmjs.com/files/package.json#name
https://www.npmjs.com/
https://opensource.org/licenses/MIT
https://docs.npmjs.com/files/package.json#repository

We will create a website that offers users information about sharks. Our
application will have a main entrypoint, app.js, and a views directory
that will include the project’s static assets. The landing page,
index.html, will offer users some preliminary information and a link
to a page with more detailed shark information, sharks.html. In the
views directory, we will create both the landing page and
sharks.html.

First, open app.js in the main project directory to define the project’s
routes:
nano app.js

The first part of the file will create the Express application and Router
objects, and define the base directory and port as constants:

~/node_project/app.js
const express = require('express');

const app = express();

const router = express.Router();

const path = __dirname + '/views/';

const port = 8080;

The require function loads the express module, which we then use
to create the app and router objects. The router object will perform
the routing function of the application, and as we define HTTP method
routes we will add them to this object to define how our application will
handle requests.

This section of the file also sets a couple of constants, path and port:
- path: Defines the base directory, which will be the views subdirectory

within the current project directory. - port: Tells the app to listen on and
bind to port 8080.

Next, set the routes for the application using the router object:

~/node_project/app.js
...

router.use(function (req,res,next) {

 console.log('/' + req.method);

 next();

});

router.get('/', function(req,res){

 res.sendFile(path + 'index.html');

});

router.get('/sharks', function(req,res){

 res.sendFile(path + 'sharks.html');

});

The router.use function loads a middleware function that will log
the router’s requests and pass them on to the application’s routes. These
are defined in the subsequent functions, which specify that a GET request
to the base project URL should return the index.html page, while a
GET request to the /sharks route should return sharks.html.

Finally, mount the router middleware and the application’s static
assets and tell the app to listen on port 8080:

https://expressjs.com/en/guide/writing-middleware.html

~/node_project/app.js
...

app.use(express.static(path));

app.use('/', router);

app.listen(port, function () {

 console.log('Example app listening on port

8080!')

})

The finished app.js file will look like this:

~/node_project/app.js
const express = require('express');

const app = express();

const router = express.Router();

const path = __dirname + '/views/';

const port = 8080;

router.use(function (req,res,next) {

 console.log('/' + req.method);

 next();

});

router.get('/', function(req,res){

 res.sendFile(path + 'index.html');

});

router.get('/sharks', function(req,res){

 res.sendFile(path + 'sharks.html');

});

app.use(express.static(path));

app.use('/', router);

app.listen(port, function () {

 console.log('Example app listening on port

8080!')

})

Save and close the file when you are finished.
Next, let’s add some static content to the application. Start by creating

the views directory:
mkdir views

Open the landing page file, index.html:
nano views/index.html

Add the following code to the file, which will import Boostrap and
create a jumbotron component with a link to the more detailed
sharks.html info page:

~/node_project/views/index.html
<!DOCTYPE html>

<html lang="en">

https://getbootstrap.com/docs/4.0/components/jumbotron/

<head>

 <title>About Sharks</title>

 <meta charset="utf-8">

 <meta name="viewport" content="width=device-

width, initial-scale=1">

 <link rel="stylesheet"

href="https://stackpath.bootstrapcdn.com/bootstrap

/4.1.3/css/bootstrap.min.css" integrity="sha384-

MCw98/SFnGE8fJT3GXwEOngsV7Zt27NXFoaoApmYm81iuXoPkF

OJwJ8ERdknLPMO" crossorigin="anonymous">

 <link href="css/styles.css" rel="stylesheet">

 <link href="https://fonts.googleapis.com/css?

family=Merriweather:400,700" rel="stylesheet"

type="text/css">

</head>

<body>

 <nav class="navbar navbar-dark bg-dark navbar-

static-top navbar-expand-md">

 <div class="container">

 <button type="button" class="navbar-

toggler collapsed" data-toggle="collapse" data-

target="#bs-example-navbar-collapse-1" aria-

expanded="false"> Toggle

navigation

 </button> <a class="navbar-brand"

href="#">Everything Sharks

 <div class="collapse navbar-collapse"

id="bs-example-navbar-collapse-1">

 <ul class="nav navbar-nav mr-

auto">

 <li class="active nav-item">Home

 <li class="nav-item">Sharks

 </div>

 </div>

 </nav>

 <div class="jumbotron">

 <div class="container">

 <h1>Want to Learn About Sharks?</h1>

 <p>Are you ready to learn about

sharks?</p>

 <p><a class="btn btn-primary btn-lg"

href="/sharks" role="button">Get Shark Info

 </p>

 </div>

 </div>

 <div class="container">

 <div class="row">

 <div class="col-lg-6">

 <h3>Not all sharks are alike</h3>

 <p>Though some are dangerous,

sharks generally do not attack humans. Out of the

500 species known to researchers, only 30 have

been known to attack humans.

 </p>

 </div>

 <div class="col-lg-6">

 <h3>Sharks are ancient</h3>

 <p>There is evidence to suggest

that sharks lived up to 400 million years ago.

 </p>

 </div>

 </div>

 </div>

</body>

</html>

The top-level navbar here allows users to toggle between the Home and
Sharks pages. In the navbar-nav subcomponent, we are using
Bootstrap’s active class to indicate the current page to the user. We’ve
also specified the routes to our static pages, which match the routes we
defined in app.js:

~/node_project/views/index.html

https://getbootstrap.com/docs/4.0/components/navbar/

...

<div class="collapse navbar-collapse" id="bs-

example-navbar-collapse-1">

 <ul class="nav navbar-nav mr-auto">

 <li class="active nav-item"><a href="/"

class="nav-link">Home

 <li class="nav-item"><a href="/sharks"

class="nav-link">Sharks

</div>

...

Additionally, we’ve created a link to our shark information page in our
jumbotron’s button:

~/node_project/views/index.html
...

<div class="jumbotron">

 <div class="container">

 <h1>Want to Learn About Sharks?</h1>

 <p>Are you ready to learn about sharks?</p>

 <p><a class="btn btn-primary btn-lg"

href="/sharks" role="button">Get Shark Info

 </p>

 </div>

</div>

...

There is also a link to a custom style sheet in the header:

~/node_project/views/index.html
...

<link href="css/styles.css" rel="stylesheet">

...

We will create this style sheet at the end of this step.
Save and close the file when you are finished.
With the application landing page in place, we can create our shark

information page, sharks.html, which will offer interested users more
information about sharks.

Open the file:
nano views/sharks.html

Add the following code, which imports Bootstrap and the custom style
sheet and offers users detailed information about certain sharks:

~/node_project/views/sharks.html
<!DOCTYPE html>

<html lang="en">

<head>

 <title>About Sharks</title>

 <meta charset="utf-8">

 <meta name="viewport" content="width=device-

width, initial-scale=1">

 <link rel="stylesheet"

href="https://stackpath.bootstrapcdn.com/bootstrap

/4.1.3/css/bootstrap.min.css" integrity="sha384-

MCw98/SFnGE8fJT3GXwEOngsV7Zt27NXFoaoApmYm81iuXoPkF

OJwJ8ERdknLPMO" crossorigin="anonymous">

 <link href="css/styles.css" rel="stylesheet">

 <link href="https://fonts.googleapis.com/css?

family=Merriweather:400,700" rel="stylesheet"

type="text/css">

</head>

<nav class="navbar navbar-dark bg-dark navbar-

static-top navbar-expand-md">

 <div class="container">

 <button type="button" class="navbar-

toggler collapsed" data-toggle="collapse" data-

target="#bs-example-navbar-collapse-1" aria-

expanded="false"> Toggle

navigation

 </button> <a class="navbar-brand"

href="/">Everything Sharks

 <div class="collapse navbar-collapse"

id="bs-example-navbar-collapse-1">

 <ul class="nav navbar-nav mr-auto">

 <li class="nav-item"><a href="/"

class="nav-link">Home

 <li class="active nav-item">Sharks

 </div>

 </div>

</nav>

<div class="jumbotron text-center">

 <h1>Shark Info</h1>

</div>

<div class="container">

 <div class="row">

 <div class="col-lg-6">

 <p>

 <div class="caption">Some sharks

are known to be dangerous to humans, though many

more are not. The sawshark, for example, is not

considered a threat to humans.

 </div>

 <img

src="https://assets.digitalocean.com/articles/dock

er_node_image/sawshark.jpg" alt="Sawshark">

 </p>

 </div>

 <div class="col-lg-6">

 <p>

 <div class="caption">Other sharks

are known to be friendly and welcoming!</div>

 <img

src="https://assets.digitalocean.com/articles/dock

er_node_image/sammy.png" alt="Sammy the Shark">

 </p>

 </div>

 </div>

</div>

</html>

Note that in this file, we again use the active class to indicate the
current page.

Save and close the file when you are finished.
Finally, create the custom CSS style sheet that you’ve linked to in

index.html and sharks.html by first creating a css folder in the
views directory:
mkdir views/css

Open the style sheet:
nano views/css/styles.css

Add the following code, which will set the desired color and font for our
pages:

~/node_project/views/css/styles.css
.navbar {

 margin-bottom: 0;

}

body {

 background: #020A1B;

 color: #ffffff;

 font-family: 'Merriweather', sans-serif;

}

h1,

h2 {

 font-weight: bold;

}

p {

 font-size: 16px;

 color: #ffffff;

}

.jumbotron {

 background: #0048CD;

 color: white;

 text-align: center;

}

.jumbotron p {

 color: white;

 font-size: 26px;

}

.btn-primary {

 color: #fff;

 text-color: #000000;

 border-color: white;

 margin-bottom: 5px;

}

img,

video,

audio {

 margin-top: 20px;

 max-width: 80%;

}

div.caption: {

 float: left;

 clear: both;

}

In addition to setting font and color, this file also limits the size of the
images by specifying a max-width of 80%. This will prevent them from
taking up more room than we would like on the page.

Save and close the file when you are finished.
With the application files in place and the project dependencies

installed, you are ready to start the application.
If you followed the initial server setup tutorial in the prerequisites, you

will have an active firewall permitting only SSH traffic. To permit traffic
to port 8080 run:
sudo ufw allow 8080

To start the application, make sure that you are in your project’s root
directory:
cd ~/node_project

Start the application with node app.js:
node app.js

Navigate your browser to http://your_server_ip:8080. You
will see the following landing page:

Application Landing Page

Click on the Get Shark Info button. You will see the following
information page:

Shark Info Page

You now have an application up and running. When you are ready, quit
the server by typing CTRL+C. We can now move on to creating the
Dockerfile that will allow us to recreate and scale this application as
desired.

Step 3 — Writing the Dockerfile

Your Dockerfile specifies what will be included in your application
container when it is executed. Using a Dockerfile allows you to define
your container environment and avoid discrepancies with dependencies or
runtime versions.

Following these guidelines on building optimized containers, we will
make our image as efficient as possible by minimizing the number of
image layers and restricting the image’s function to a single purpose —
recreating our application files and static content.

https://www.digitalocean.com/community/tutorials/building-optimized-containers-for-kubernetes

In your project’s root directory, create the Dockerfile:
nano Dockerfile

Docker images are created using a succession of layered images that
build on one another. Our first step will be to add the base image for our
application that will form the starting point of the application build.

Let’s use the node:10-alpine image, since at the time of writing
this is the recommended LTS version of Node.js. The alpine image is
derived from the Alpine Linux project, and will help us keep our image
size down. For more information about whether or not the alpine image
is the right choice for your project, please see the full discussion under the
Image Variants section of the Docker Hub Node image page.

Add the following FROM instruction to set the application’s base image:

~/node_project/Dockerfile
FROM node:10-alpine

This image includes Node.js and npm. Each Dockerfile must begin with
a FROM instruction.

By default, the Docker Node image includes a non-root node user that
you can use to avoid running your application container as root. It is a
recommended security practice to avoid running containers as root and to
restrict capabilities within the container to only those required to run its
processes. We will therefore use the node user’s home directory as the
working directory for our application and set them as our user inside the
container. For more information about best practices when working with
the Docker Node image, see this best practices guide.

To fine-tune the permissions on our application code in the container,
let’s create the node_modules subdirectory in /home/node along

https://hub.docker.com/_/node/
https://nodejs.org/en/
https://alpinelinux.org/
https://hub.docker.com/_/node/
https://docs.docker.com/engine/security/security/#linux-kernel-capabilities
https://github.com/nodejs/docker-node/blob/master/docs/BestPractices.md

with the app directory. Creating these directories will ensure that they
have the permissions we want, which will be important when we create
local node modules in the container with npm install. In addition to
creating these directories, we will set ownership on them to our node user:

~/node_project/Dockerfile
...

RUN mkdir -p /home/node/app/node_modules && chown

-R node:node /home/node/app

For more information on the utility of consolidating RUN instructions,
see this discussion of how to manage container layers.

Next, set the working directory of the application to
/home/node/app:

~/node_project/Dockerfile
...

WORKDIR /home/node/app

If a WORKDIR isn’t set, Docker will create one by default, so it’s a good
idea to set it explicitly.

Next, copy the package.json and package-lock.json (for npm
5+) files:

~/node_project/Dockerfile
...

COPY package*.json ./

Adding this COPY instruction before running npm install or
copying the application code allows us to take advantage of Docker’s
caching mechanism. At each stage in the build, Docker will check to see if

https://www.digitalocean.com/community/tutorials/building-optimized-containers-for-kubernetes#managing-container-layers

it has a layer cached for that particular instruction. If we change
package.json, this layer will be rebuilt, but if we don’t, this
instruction will allow Docker to use the existing image layer and skip
reinstalling our node modules.

To ensure that all of the application files are owned by the non-root
node user, including the contents of the node_modules directory, switch
the user to node before running npm install:

~/node_project/Dockerfile
...

USER node

After copying the project dependencies and switching our user, we can
run npm install:

~/node_project/Dockerfile
...

RUN npm install

Next, copy your application code with the appropriate permissions to
the application directory on the container:

~/node_project/Dockerfile
...

COPY --chown=node:node . .

This will ensure that the application files are owned by the non-root
node user.

Finally, expose port 8080 on the container and start the application:

~/node_project/Dockerfile

...

EXPOSE 8080

CMD ["node", "app.js"]

EXPOSE does not publish the port, but instead functions as a way of
documenting which ports on the container will be published at runtime.
CMD runs the command to start the application — in this case, node
app.js. Note that there should only be one CMD instruction in each
Dockerfile. If you include more than one, only the last will take effect.

There are many things you can do with the Dockerfile. For a complete
list of instructions, please refer to Docker’s Dockerfile reference
documentation.

The complete Dockerfile looks like this:

~/node_project/Dockerfile
FROM node:10-alpine

RUN mkdir -p /home/node/app/node_modules && chown

-R node:node /home/node/app

WORKDIR /home/node/app

COPY package*.json ./

USER node

RUN npm install

https://github.com/nodejs/docker-node/blob/master/docs/BestPractices.md#cmd
https://docs.docker.com/engine/reference/builder/

COPY --chown=node:node . .

EXPOSE 8080

CMD ["node", "app.js"]

Save and close the file when you are finished editing.
Before building the application image, let’s add a .dockerignore

file. Working in a similar way to a .gitignore file, .dockerignore
specifies which files and directories in your project directory should not
be copied over to your container.

Open the .dockerignore file:
nano .dockerignore

Inside the file, add your local node modules, npm logs, Dockerfile, and
.dockerignore file:

~/node_project/.dockerignore
node_modules

npm-debug.log

Dockerfile

.dockerignore

If you are working with Git then you will also want to add your .git
directory and .gitignore file.

Save and close the file when you are finished.
You are now ready to build the application image using the docker

build command. Using the -t flag with docker build will allow
you to tag the image with a memorable name. Because we are going to

https://docs.docker.com/engine/reference/builder/#dockerignore-file
https://git-scm.com/docs/gitignore
https://git-scm.com/
https://docs.docker.com/engine/reference/commandline/build/

push the image to Docker Hub, let’s include our Docker Hub username in
the tag. We will tag the image as nodejs-image-demo, but feel free to
replace this with a name of your own choosing. Remember to also replace
your_dockerhub_username with your own Docker Hub username:
docker build -t your_dockerhub_username/nodejs-

image-demo .

The . specifies that the build context is the current directory.
It will take a minute or two to build the image. Once it is complete,

check your images:
docker images

You will see the following output:

Output
REPOSITORY

TAG IMAGE ID CREATED

SIZE

your_dockerhub_username/nodejs-image-demo

latest 1c723fb2ef12 8 seconds

ago 73MB

node

10-alpine f09e7c96b6de 3 weeks

ago 70.7MB

It is now possible to create a container with this image using docker
run. We will include three flags with this command: - -p: This publishes
the port on the container and maps it to a port on our host. We will use port
80 on the host, but you should feel free to modify this as necessary if you
have another process running on that port. For more information about

https://docs.docker.com/engine/reference/commandline/run/

how this works, see this discussion in the Docker docs on port binding. - -
d: This runs the container in the background. - --name: This allows us to
give the container a memorable name.

Run the following command to build the container:
docker run --name nodejs-image-demo -p 80:8080 -d

your_dockerhub_username/nodejs-image-demo

Once your container is up and running, you can inspect a list of your
running containers with docker ps:
docker ps

You will see the following output:

Output
CONTAINER ID IMAGE

COMMAND CREATED STATUS

PORTS NAMES

e50ad27074a7

your_dockerhub_username/nodejs-image-demo

"node app.js" 8 seconds ago Up 7

seconds 0.0.0.0:80->8080/tcp nodejs-

image-demo

With your container running, you can now visit your application by
navigating your browser to http://your_server_ip. You will see
your application landing page once again:

https://docs.docker.com/v17.09/engine/userguide/networking/default_network/binding/
https://docs.docker.com/engine/reference/commandline/ps/

Application Landing Page

Now that you have created an image for your application, you can push
it to Docker Hub for future use.

Step 4 — Using a Repository to Work with Images

By pushing your application image to a registry like Docker Hub, you
make it available for subsequent use as you build and scale your
containers. We will demonstrate how this works by pushing the application
image to a repository and then using the image to recreate our container.

The first step to pushing the image is to log in to the Docker Hub
account you created in the prerequisites:
docker login -u your_dockerhub_username

When prompted, enter your Docker Hub account password. Logging in
this way will create a ~/.docker/config.json file in your user’s
home directory with your Docker Hub credentials.

You can now push the application image to Docker Hub using the tag
you created earlier, your_dockerhub_username/nodejs-image-
demo:
docker push your_dockerhub_username/nodejs-image-

demo

Let’s test the utility of the image registry by destroying our current
application container and image and rebuilding them with the image in our
repository.

First, list your running containers:
docker ps

You will see the following output:

Output
CONTAINER ID IMAGE

COMMAND CREATED STATUS

PORTS NAMES

e50ad27074a7

your_dockerhub_username/nodejs-image-demo "node

app.js" 3 minutes ago Up 3 minutes

0.0.0.0:80->8080/tcp nodejs-image-demo

Using the CONTAINER ID listed in your output, stop the running
application container. Be sure to replace the highlighted ID below with
your own CONTAINER ID:
docker stop e50ad27074a7

List your all of your images with the -a flag:
docker images -a

You will see the following output with the name of your image,
your_dockerhub_username/nodejs-image-demo, along with
the node image and the other images from your build:

Output
REPOSITORY

TAG IMAGE ID CREATED

SIZE

your_dockerhub_username/nodejs-image-demo

latest 1c723fb2ef12 7 minutes

ago 73MB

<none>

<none> 2e3267d9ac02 4 minutes

ago 72.9MB

<none>

<none> 8352b41730b9 4 minutes

ago 73MB

<none>

<none> 5d58b92823cb 4 minutes

ago 73MB

<none>

<none> 3f1e35d7062a 4 minutes

ago 73MB

<none>

<none> 02176311e4d0 4 minutes

ago 73MB

<none>

<none> 8e84b33edcda 4 minutes

ago 70.7MB

<none>

<none> 6a5ed70f86f2 4 minutes

ago 70.7MB

<none>

<none> 776b2637d3c1 4 minutes

ago 70.7MB

node

10-alpine f09e7c96b6de 3 weeks

ago 70.7MB

Remove the stopped container and all of the images, including unused
or dangling images, with the following command:
docker system prune -a

Type y when prompted in the output to confirm that you would like to
remove the stopped container and images. Be advised that this will also
remove your build cache.

You have now removed both the container running your application
image and the image itself. For more information on removing Docker
containers, images, and volumes, please see How To Remove Docker
Images, Containers, and Volumes.

With all of your images and containers deleted, you can now pull the
application image from Docker Hub:
docker pull your_dockerhub_username/nodejs-image-

demo

List your images once again:

https://www.digitalocean.com/community/tutorials/how-to-remove-docker-images-containers-and-volumes

docker images

You will see your application image:

Output
REPOSITORY TAG

IMAGE ID CREATED SIZE

your_dockerhub_username/nodejs-image-demo

latest 1c723fb2ef12 11 minutes

ago 73MB

You can now rebuild your container using the command from Step 3:
docker run --name nodejs-image-demo -p 80:8080 -d

your_dockerhub_username/nodejs-image-demo

List your running containers:
docker ps

Output
CONTAINER ID IMAGE

COMMAND CREATED STATUS

PORTS NAMES

f6bc2f50dff6

your_dockerhub_username/nodejs-image-demo

"node app.js" 4 seconds ago Up 3

seconds 0.0.0.0:80->8080/tcp nodejs-

image-demo

Visit http://your_server_ip once again to view your running
application.

Conclusion

In this tutorial you created a static web application with Express and
Bootstrap, as well as a Docker image for this application. You used this
image to create a container and pushed the image to Docker Hub. From
there, you were able to destroy your image and container and recreate
them using your Docker Hub repository.

If you are interested in learning more about how to work with tools like
Docker Compose and Docker Machine to create multi-container setups,
you can look at the following guides: - How To Install Docker Compose on
Ubuntu 18.04. - How To Provision and Manage Remote Docker Hosts with
Docker Machine on Ubuntu 18.04.

For general tips on working with container data, see: - How To Share
Data between Docker Containers. - How To Share Data Between the
Docker Container and the Host.

If you are interested in other Docker-related topics, please see our
complete library of Docker tutorials.

https://www.digitalocean.com/community/tutorials/how-to-install-docker-compose-on-ubuntu-18-04
https://www.digitalocean.com/community/tutorials/how-to-provision-and-manage-remote-docker-hosts-with-docker-machine-on-ubuntu-18-04
https://www.digitalocean.com/community/tutorials/how-to-share-data-between-docker-containers
https://www.digitalocean.com/community/tutorials/how-to-share-data-between-the-docker-container-and-the-host
https://www.digitalocean.com/community/tags/docker/tutorials

Containerizing a Node.js Application for
Development With Docker Compose

Written by Kathleen Juell
This tutorial is a second step towards writing an example Node.js

application that will run on Kubernetes. Building on the previous tutorial,
you will create two containers — one for the Node.js application and
another for a MongoDB database — and coordinate running them with
Docker Compose.

This tutorial demonstrates how to use multiple containers with
persistent data. It also highlights the importance of separating the
application code from the data store. This design will ensure that the final
Docker image for the Node.js application is stateless and that it will be
ready to run on Kubernetes by the end of this curriculum.

If you are actively developing an application, using Docker can simplify
your workflow and the process of deploying your application to
production. Working with containers in development offers the following
benefits: - Environments are consistent, meaning that you can choose the
languages and dependencies you want for your project without worrying
about system conflicts. - Environments are isolated, making it easier to
troubleshoot issues and onboard new team members. - Environments are
portable, allowing you to package and share your code with others.

This tutorial will show you how to set up a development environment
for a Node.js application using Docker. You will create two containers —
one for the Node application and another for the MongoDB database —

https://www.digitalocean.com/community/tutorials/containerizing-a-node-js-application-for-development-with-docker-compose
https://www.docker.com/
https://nodejs.org/
https://www.mongodb.com/

with Docker Compose. Because this application works with Node and
MongoDB, our setup will do the following: - Synchronize the application
code on the host with the code in the container to facilitate changes during
development. - Ensure that changes to the application code work without a
restart. - Create a user and password-protected database for the
application’s data. - Persist this data.

At the end of this tutorial, you will have a working shark information
application running on Docker containers:

Complete Shark Collection

Prerequisites

To follow this tutorial, you will need: - A development server running
Ubuntu 18.04, along with a non-root user with sudo privileges and an
active firewall. For guidance on how to set these up, please see this Initial
Server Setup guide. - Docker installed on your server, following Steps 1

https://docs.docker.com/compose/
https://www.digitalocean.com/community/tutorials/initial-server-setup-with-ubuntu-18-04

and 2 of How To Install and Use Docker on Ubuntu 18.04. - Docker
Compose installed on your server, following Step 1 of How To Install
Docker Compose on Ubuntu 18.04.

Step 1 — Cloning the Project and Modifying Dependencies

The first step in building this setup will be cloning the project code and
modifying its package.json file, which includes the project’s
dependencies. We will add nodemon to the project’s
devDependencies, specifying that we will be using it during
development. Running the application with nodemon ensures that it will
be automatically restarted whenever you make changes to your code.

First, clone the nodejs-mongo-mongoose repository from the
DigitalOcean Community GitHub account. This repository includes the
code from the setup described in How To Integrate MongoDB with Your
Node Application, which explains how to integrate a MongoDB database
with an existing Node application using Mongoose.

Clone the repository into a directory called node_project:
git clone https://github.com/do-community/nodejs-

mongo-mongoose.git node_project

Navigate to the node_project directory:
cd node_project

Open the project’s package.json file using nano or your favorite
editor:
nano package.json

Beneath the project dependencies and above the closing curly brace,
create a new devDependencies object that includes nodemon:

https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-18-04
https://www.digitalocean.com/community/tutorials/how-to-install-docker-compose-on-ubuntu-18-04
https://docs.npmjs.com/files/package.json
https://www.npmjs.com/package/nodemon
https://docs.npmjs.com/files/package.json#devdependencies
https://github.com/do-community/nodejs-mongo-mongoose
https://github.com/do-community
https://www.digitalocean.com/community/tutorials/how-to-integrate-mongodb-with-your-node-application
https://mongoosejs.com/

~/node_project/package.json
...

"dependencies": {

 "ejs": "^2.6.1",

 "express": "^4.16.4",

 "mongoose": "^5.4.10"

 },

 "devDependencies": {

 "nodemon": "^1.18.10"

 }

}

Save and close the file when you are finished editing.
With the project code in place and its dependencies modified, you can

move on to refactoring the code for a containerized workflow.

Step 2 — Configuring Your Application to Work with
Containers

Modifying our application for a containerized workflow means making
our code more modular. Containers offer portability between
environments, and our code should reflect that by remaining as decoupled
from the underlying operating system as possible. To achieve this, we will
refactor our code to make greater use of Node’s process.env property,
which returns an object with information about your user environment at
runtime. We can use this object in our code to dynamically assign
configuration information at runtime with environment variables.

https://nodejs.org/api/process.html#process_process_env

Let’s begin with app.js, our main application entrypoint. Open the
file:
nano app.js

Inside, you will see a definition for a port constant, as well a listen
function that uses this constant to specify the port the application will
listen on:

~/home/node_project/app.js
...

const port = 8080;

...

app.listen(port, function () {

 console.log('Example app listening on port

8080!');

});

Let’s redefine the port constant to allow for dynamic assignment at
runtime using the process.env object. Make the following changes to
the constant definition and listen function:

~/home/node_project/app.js
...

const port = process.env.PORT || 8080;

...

app.listen(port, function () {

 console.log(`Example app listening on

${port}!`);

});

https://www.digitalocean.com/community/tutorials/understanding-variables-scope-hoisting-in-javascript#constants
https://expressjs.com/en/4x/api.html#app.listen

Our new constant definition assigns port dynamically using the value
passed in at runtime or 8080. Similarly, we’ve rewritten the listen
function to use a template literal, which will interpolate the port value
when listening for connections. Because we will be mapping our ports
elsewhere, these revisions will prevent our having to continuously revise
this file as our environment changes.

When you are finished editing, save and close the file.
Next, we will modify our database connection information to remove

any configuration credentials. Open the db.js file, which contains this
information:
nano db.js

Currently, the file does the following things: - Imports Mongoose, the
Object Document Mapper (ODM) that we’re using to create schemas and
models for our application data. - Sets the database credentials as
constants, including the username and password. - Connects to the
database using the mongoose.connect method.

For more information about the file, please see Step 3 of How To
Integrate MongoDB with Your Node Application.

Our first step in modifying the file will be redefining the constants that
include sensitive information. Currently, these constants look like this:

~/node_project/db.js
...

const MONGO_USERNAME = 'sammy';

const MONGO_PASSWORD = 'your_password';

const MONGO_HOSTNAME = '127.0.0.1';

const MONGO_PORT = '27017';

https://www.digitalocean.com/community/tutorials/how-to-work-with-strings-in-javascript#string-literals-and-string-values
https://mongoosejs.com/docs/api.html#connection_Connection
https://www.digitalocean.com/community/tutorials/how-to-integrate-mongodb-with-your-node-application#step-3-%E2%80%94-creating-mongoose-schemas-and-models
https://www.digitalocean.com/community/tutorials/how-to-integrate-mongodb-with-your-node-application

const MONGO_DB = 'sharkinfo';

...

Instead of hardcoding this information, you can use the process.env
object to capture the runtime values for these constants. Modify the block
to look like this:

~/node_project/db.js
...

const {

 MONGO_USERNAME,

 MONGO_PASSWORD,

 MONGO_HOSTNAME,

 MONGO_PORT,

 MONGO_DB

} = process.env;

...

Save and close the file when you are finished editing.
At this point, you have modified db.js to work with your application’s

environment variables, but you still need a way to pass these variables to
your application. Let’s create an .env file with values that you can pass
to your application at runtime.

Open the file:
nano .env

This file will include the information that you removed from db.js:
the username and password for your application’s database, as well as the
port setting and database name. Remember to update the username,
password, and database name listed here with your own information:

~/node_project/.env
MONGO_USERNAME=sammy

MONGO_PASSWORD=your_password

MONGO_PORT=27017

MONGO_DB=sharkinfo

Note that we have removed the host setting that originally appeared in
db.js. We will now define our host at the level of the Docker Compose
file, along with other information about our services and containers.

Save and close this file when you are finished editing.
Because your .env file contains sensitive information, you will want to

ensure that it is included in your project’s .dockerignore and
.gitignore files so that it does not copy to your version control or
containers.

Open your .dockerignore file:
nano .dockerignore

Add the following line to the bottom of the file:

~/node_project/.dockerignore
...

.gitignore

.env

Save and close the file when you are finished editing.
The .gitignore file in this repository already includes .env, but

feel free to check that it is there:
nano .gitignore

~~/node_project/.gitignore

...

.env

...

At this point, you have successfully extracted sensitive information
from your project code and taken measures to control how and where this
information gets copied. Now you can add more robustness to your
database connection code to optimize it for a containerized workflow.

Step 3 — Modifying Database Connection Settings

Our next step will be to make our database connection method more robust
by adding code that handles cases where our application fails to connect to
our database. Introducing this level of resilience to your application code
is a recommended practice when working with containers using Compose.

Open db.js for editing:
nano db.js

You will see the code that we added earlier, along with the url constant
for Mongo’s connection URI and the Mongoose connect method:

~/node_project/db.js
...

const {

 MONGO_USERNAME,

 MONGO_PASSWORD,

 MONGO_HOSTNAME,

 MONGO_PORT,

 MONGO_DB

} = process.env;

https://docs.docker.com/compose/startup-order/
https://mongoosejs.com/docs/api.html#mongoose_Mongoose-connect

const url =

`mongodb://${MONGO_USERNAME}:${MONGO_PASSWORD}@${M

ONGO_HOSTNAME}:${MONGO_PORT}/${MONGO_DB}?

authSource=admin`;

mongoose.connect(url, {useNewUrlParser: true});

Currently, our connect method accepts an option that tells Mongoose
to use Mongo’s new URL parser. Let’s add a few more options to this
method to define parameters for reconnection attempts. We can do this by
creating an options constant that includes the relevant information, in
addition to the new URL parser option. Below your Mongo constants, add
the following definition for an options constant:

~/node_project/db.js
...

const {

 MONGO_USERNAME,

 MONGO_PASSWORD,

 MONGO_HOSTNAME,

 MONGO_PORT,

 MONGO_DB

} = process.env;

const options = {

 useNewUrlParser: true,

 reconnectTries: Number.MAX_VALUE,

https://mongoosejs.com/docs/deprecations.html

 reconnectInterval: 500,

 connectTimeoutMS: 10000,

};

...

The reconnectTries option tells Mongoose to continue trying to
connect indefinitely, while reconnectInterval defines the period
between connection attempts in milliseconds. connectTimeoutMS
defines 10 seconds as the period that the Mongo driver will wait before
failing the connection attempt.

We can now use the new options constant in the Mongoose connect
method to fine tune our Mongoose connection settings. We will also add a
promise to handle potential connection errors.

Currently, the Mongoose connect method looks like this:

~/node_project/db.js
...

mongoose.connect(url, {useNewUrlParser: true});

Delete the existing connect method and replace it with the following
code, which includes the options constant and a promise:

~/node_project/db.js
...

mongoose.connect(url, options).then(function() {

 console.log('MongoDB is connected');

})

 .catch(function(err) {

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises

 console.log(err);

});

In the case of a successful connection, our function logs an appropriate
message; otherwise it will catch and log the error, allowing us to
troubleshoot.

The finished file will look like this:

~/node_project/db.js
const mongoose = require('mongoose');

const {

 MONGO_USERNAME,

 MONGO_PASSWORD,

 MONGO_HOSTNAME,

 MONGO_PORT,

 MONGO_DB

} = process.env;

const options = {

 useNewUrlParser: true,

 reconnectTries: Number.MAX_VALUE,

 reconnectInterval: 500,

 connectTimeoutMS: 10000,

};

const url =

`mongodb://${MONGO_USERNAME}:${MONGO_PASSWORD}@${M

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/catch

ONGO_HOSTNAME}:${MONGO_PORT}/${MONGO_DB}?

authSource=admin`;

mongoose.connect(url, options).then(function() {

 console.log('MongoDB is connected');

})

 .catch(function(err) {

 console.log(err);

});

Save and close the file when you have finished editing.
You have now added resiliency to your application code to handle cases

where your application might fail to connect to your database. With this
code in place, you can move on to defining your services with Compose.

Step 4 — Defining Services with Docker Compose

With your code refactored, you are ready to write the docker-
compose.yml file with your service definitions. A service in Compose is
a running container, and service definitions — which you will include in
your docker-compose.yml file — contain information about how
each container image will run. The Compose tool allows you to define
multiple services to build multi-container applications.

Before defining our services, however, we will add a tool to our project
called wait-for to ensure that our application only attempts to connect
to our database once the database startup tasks are complete. This wrapper
script uses netcat to poll whether or not a specific host and port are
accepting TCP connections. Using it allows you to control your

https://github.com/Eficode/wait-for
https://www.digitalocean.com/community/tutorials/how-to-use-netcat-to-establish-and-test-tcp-and-udp-connections-on-a-vps

application’s attempts to connect to your database by testing whether or
not the database is ready to accept connections.

Though Compose allows you to specify dependencies between services
using the depends_on option, this order is based on whether or not the
container is running rather than its readiness. Using depends_on won’t
be optimal for our setup, since we want our application to connect only
when the database startup tasks, including adding a user and password to
the admin authentication database, are complete. For more information
on using wait-for and other tools to control startup order, please see the
relevant recommendations in the Compose documentation.

Open a file called wait-for.sh:
nano wait-for.sh

Paste the following code into the file to create the polling function:

~/node_project/app/wait-for.sh
#!/bin/sh

original script:

https://github.com/eficode/wait-

for/blob/master/wait-for

TIMEOUT=15

QUIET=0

echoerr() {

 if ["$QUIET" -ne 1]; then printf "%s\n" "$*"

1>&2; fi

https://docs.docker.com/compose/compose-file/#depends_on
https://docs.docker.com/compose/startup-order/

}

usage() {

 exitcode="$1"

 cat << USAGE >&2

Usage:

 $cmdname host:port [-t timeout] [-- command

args]

 -q | --quiet Do not

output any status messages

 -t TIMEOUT | --timeout=timeout Timeout in

seconds, zero for no timeout

 -- COMMAND ARGS Execute

command with args after the test finishes

USAGE

 exit "$exitcode"

}

wait_for() {

 for i in `seq $TIMEOUT` ; do

 nc -z "$HOST" "$PORT" > /dev/null 2>&1

 result=$?

 if [$result -eq 0] ; then

 if [$# -gt 0] ; then

 exec "$@"

 fi

 exit 0

 fi

 sleep 1

 done

 echo "Operation timed out" >&2

 exit 1

}

while [$# -gt 0]

do

 case "$1" in

 :)

 HOST=$(printf "%s\n" "$1"| cut -d : -f 1)

 PORT=$(printf "%s\n" "$1"| cut -d : -f 2)

 shift 1

 ;;

 -q | --quiet)

 QUIET=1

 shift 1

 ;;

 -t)

 TIMEOUT="$2"

 if ["$TIMEOUT" = ""]; then break; fi

 shift 2

 ;;

 --timeout=*)

 TIMEOUT="${1#*=}"

 shift 1

 ;;

 --)

 shift

 break

 ;;

 --help)

 usage 0

 ;;

 *)

 echoerr "Unknown argument: $1"

 usage 1

 ;;

 esac

done

if ["$HOST" = "" -o "$PORT" = ""]; then

 echoerr "Error: you need to provide a host and

port to test."

 usage 2

fi

wait_for "$@"

Save and close the file when you are finished adding the code.
Make the script executable:

chmod +x wait-for.sh

Next, open the docker-compose.yml file:

nano docker-compose.yml

First, define the nodejs application service by adding the following
code to the file:

~/node_project/docker-compose.yml
version: '3'

services:

 nodejs:

 build:

 context: .

 dockerfile: Dockerfile

 image: nodejs

 container_name: nodejs

 restart: unless-stopped

 env_file: .env

 environment:

 - MONGO_USERNAME=$MONGO_USERNAME

 - MONGO_PASSWORD=$MONGO_PASSWORD

 - MONGO_HOSTNAME=db

 - MONGO_PORT=$MONGO_PORT

 - MONGO_DB=$MONGO_DB

 ports:

 - "80:8080"

 volumes:

 - .:/home/node/app

 - node_modules:/home/node/app/node_modules

 networks:

 - app-network

 command: ./wait-for.sh db:27017 --

/home/node/app/node_modules/.bin/nodemon app.js

The nodejs service definition includes the following options: -
build: This defines the configuration options, including the context
and dockerfile, that will be applied when Compose builds the
application image. If you wanted to use an existing image from a registry
like Docker Hub, you could use the image instruction instead, with
information about your username, repository, and image tag. - context:
This defines the build context for the image build — in this case, the
current project directory. - dockerfile: This specifies the
Dockerfile in your current project directory as the file Compose will
use to build the application image. For more information about this file,
please see How To Build a Node.js Application with Docker. - image,
container_name: These apply names to the image and container. -
restart: This defines the restart policy. The default is no, but we have
set the container to restart unless it is stopped. - env_file: This tells
Compose that we would like to add environment variables from a file
called .env, located in our build context. - environment: Using this
option allows you to add the Mongo connection settings you defined in the
.env file. Note that we are not setting NODE_ENV to development,
since this is Express’s default behavior if NODE_ENV is not set. When
moving to production, you can set this to production to enable view
caching and less verbose error messages. Also note that we have specified
the db database container as the host, as discussed in Step 2. - ports:
This maps port 80 on the host to port 8080 on the container. - volumes:

https://hub.docker.com/
https://docs.docker.com/compose/compose-file/#image
https://www.digitalocean.com/community/tutorials/how-to-build-a-node-js-application-with-docker
https://expressjs.com/
https://github.com/expressjs/express/blob/dc538f6e810bd462c98ee7e6aae24c64d4b1da93/lib/application.js#L71
https://expressjs.com/en/advanced/best-practice-performance.html#set-node_env-to-production
https://www.digitalocean.com/community/tutorials/containerizing-a-node-js-application-for-development-with-docker-compose#step-2-%E2%80%94-configuring-your-application-to-work-with-containers

We are including two types of mounts here: - The first is a bind mount that
mounts our application code on the host to the /home/node/app
directory on the container. This will facilitate rapid development, since
any changes you make to your host code will be populated immediately in
the container. - The second is a named volume, node_modules. When
Docker runs the npm install instruction listed in the application
Dockerfile, npm will create a new node_modules directory on the
container that includes the packages required to run the application. The
bind mount we just created will hide this newly created node_modules
directory, however. Since node_modules on the host is empty, the bind
will map an empty directory to the container, overriding the new
node_modules directory and preventing our application from starting.
The named node_modules volume solves this problem by persisting the
contents of the /home/node/app/node_modules directory and
mounting it to the container, hiding the bind.
**Keep the following points in mind when using

this approach**:

- Your bind will mount the contents of the

`node_modules` directory on the container to the

host and this directory will be owned by `root`,

since the named volume was created by Docker.

- If you have a pre-existing `node_modules`

directory on the host, it will override the

`node_modules` directory created on the container.

The setup that we're building in this tutorial

assumes that you do **not** have a pre-existing

`node_modules` directory and that you won't be

https://docs.docker.com/storage/bind-mounts/
https://docs.docker.com/storage/volumes/
https://docs.npmjs.com/files/folders.html#node-modules

working with `npm` on your host. This is in

keeping with a [twelve-factor approach to

application development](https://12factor.net/),

which minimizes dependencies between execution

environments.

networks: This specifies that our application service will join the
app-network network, which we will define at the bottom on the
file.
command: This option lets you set the command that should be
executed when Compose runs the image. Note that this will override
the CMD instruction that we set in our application Dockerfile.
Here, we are running the application using the wait-for script,
which will poll the db service on port 27017 to test whether or not
the database service is ready. Once the readiness test succeeds, the
script will execute the command we have set,
/home/node/app/node_modules/.bin/nodemon app.js,
to start the application with nodemon. This will ensure that any
future changes we make to our code are reloaded without our having
to restart the application.

Next, create the db service by adding the following code below the
application service definition:

~/node_project/docker-compose.yml
...

 db:

 image: mongo:4.1.8-xenial

 container_name: db

 restart: unless-stopped

 env_file: .env

 environment:

 - MONGO_INITDB_ROOT_USERNAME=$MONGO_USERNAME

 - MONGO_INITDB_ROOT_PASSWORD=$MONGO_PASSWORD

 volumes:

 - dbdata:/data/db

 networks:

 - app-network

Some of the settings we defined for the nodejs service remain the
same, but we’ve also made the following changes to the image,
environment, and volumes definitions: - image: To create this
service, Compose will pull the 4.1.8-xenial Mongo image from
Docker Hub. We are pinning a particular version to avoid possible future
conflicts as the Mongo image changes. For more information about
version pinning, please see the Docker documentation on Dockerfile best
practices. - MONGO_INITDB_ROOT_USERNAME,
MONGO_INITDB_ROOT_PASSWORD: The mongo image makes these
environment variables available so that you can modify the initialization
of your database instance. MONGO_INITDB_ROOT_USERNAME and
MONGO_INITDB_ROOT_PASSWORD together create a root user in the
admin authentication database and ensure that authentication is enabled
when the container starts. We have set
MONGO_INITDB_ROOT_USERNAME and
MONGO_INITDB_ROOT_PASSWORD using the values from our .env
file, which we pass to the db service using the env_file option. Doing

https://hub.docker.com/_/mongo
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/samples/library/mongo/#environment-variables

this means that our sammy application user will be a root user on the
database instance, with access to all of the administrative and operational
privileges of that role. When working in production, you will want to
create a dedicated application user with appropriately scoped privileges.

Note: Keep in mind that these variables will not take effect if you start
the container with an existing data directory in place.

dbdata:/data/db: The named volume dbdata will persist the
data stored in Mongo’s default data directory, /data/db. This will
ensure that you don’t lose data in cases where you stop or remove
containers.

We’ve also added the db service to the app-network network with
the networks option.

As a final step, add the volume and network definitions to the bottom of
the file:

~/node_project/docker-compose.yml
...

networks:

 app-network:

 driver: bridge

volumes:

 dbdata:

 node_modules:

The user-defined bridge network app-network enables
communication between our containers since they are on the same Docker

https://docs.mongodb.com/manual/reference/built-in-roles/#root
https://docs.mongodb.com/manual/reference/configuration-options/#storage.dbPath

daemon host. This streamlines traffic and communication within the
application, as it opens all ports between containers on the same bridge
network, while exposing no ports to the outside world. Thus, our db and
nodejs containers can communicate with each other, and we only need to
expose port 80 for front-end access to the application.

Our top-level volumes key defines the volumes dbdata and
node_modules. When Docker creates volumes, the contents of the
volume are stored in a part of the host filesystem,
/var/lib/docker/volumes/, that’s managed by Docker. The
contents of each volume are stored in a directory under
/var/lib/docker/volumes/ and get mounted to any container that
uses the volume. In this way, the shark information data that our users will
create will persist in the dbdata volume even if we remove and recreate
the db container.

The finished docker-compose.yml file will look like this:

~/node_project/docker-compose.yml
version: '3'

services:

 nodejs:

 build:

 context: .

 dockerfile: Dockerfile

 image: nodejs

 container_name: nodejs

 restart: unless-stopped

 env_file: .env

 environment:

 - MONGO_USERNAME=$MONGO_USERNAME

 - MONGO_PASSWORD=$MONGO_PASSWORD

 - MONGO_HOSTNAME=db

 - MONGO_PORT=$MONGO_PORT

 - MONGO_DB=$MONGO_DB

 ports:

 - "80:8080"

 volumes:

 - .:/home/node/app

 - node_modules:/home/node/app/node_modules

 networks:

 - app-network

 command: ./wait-for.sh db:27017 --

/home/node/app/node_modules/.bin/nodemon app.js

 db:

 image: mongo:4.1.8-xenial

 container_name: db

 restart: unless-stopped

 env_file: .env

 environment:

 - MONGO_INITDB_ROOT_USERNAME=$MONGO_USERNAME

 - MONGO_INITDB_ROOT_PASSWORD=$MONGO_PASSWORD

 volumes:

 - dbdata:/data/db

 networks:

 - app-network

networks:

 app-network:

 driver: bridge

volumes:

 dbdata:

 node_modules:

Save and close the file when you are finished editing.
With your service definitions in place, you are ready to start the

application.

Step 5 — Testing the Application

With your docker-compose.yml file in place, you can create your
services with the docker-compose up command. You can also test
that your data will persist by stopping and removing your containers with
docker-compose down.

First, build the container images and create the services by running
docker-compose up with the -d flag, which will then run the
nodejs and db containers in the background:
docker-compose up -d

You will see output confirming that your services have been created:

Output

https://docs.docker.com/compose/reference/up/
https://docs.docker.com/compose/reference/down/

...

Creating db ... done

Creating nodejs ... done

You can also get more detailed information about the startup processes
by displaying the log output from the services:
docker-compose logs

You will see something like this if everything has started correctly:

Output
...

nodejs | [nodemon] starting `node app.js`

nodejs | Example app listening on 8080!

nodejs | MongoDB is connected

...

db | 2019-02-22T17:26:27.329+0000 I ACCESS

[conn2] Successfully authenticated as principal

sammy on admin

You can also check the status of your containers with docker-
compose ps:
docker-compose ps

You will see output indicating that your containers are running:

Output
 Name Command State

Ports

--

https://docs.docker.com/compose/reference/ps/

db docker-entrypoint.sh mongod Up

27017/tcp

nodejs ./wait-for.sh db:27017 -- ... Up

0.0.0.0:80->8080/tcp

With your services running, you can visit
http://your_server_ip in the browser. You will see a landing page
that looks like this:

Application Landing Page

Click on the Get Shark Info button. You will see a page with an entry
form where you can enter a shark name and a description of that shark’s
general character:

Shark Info Form

In the form, add a shark of your choosing. For the purpose of this
demonstration, we will add Megalodon Shark to the Shark Name field,
and Ancient to the Shark Character field:

Filled Shark Form

Click on the Submit button. You will see a page with this shark
information displayed back to you:

Shark Output

As a final step, we can test that the data you’ve just entered will persist
if you remove your database container.

Back at your terminal, type the following command to stop and remove
your containers and network:
docker-compose down

Note that we are not including the --volumes option; hence, our
dbdata volume is not removed.

The following output confirms that your containers and network have
been removed:

Output
Stopping nodejs ... done

Stopping db ... done

Removing nodejs ... done

Removing db ... done

Removing network node_project_app-network

Recreate the containers:
docker-compose up -d

Now head back to the shark information form:

Shark Info Form

Enter a new shark of your choosing. We’ll go with Whale Shark and
Large:

Enter New Shark

Once you click Submit, you will see that the new shark has been added
to the shark collection in your database without the loss of the data you’ve
already entered:

Complete Shark Collection

Your application is now running on Docker containers with data
persistence and code synchronization enabled.

Conclusion

By following this tutorial, you have created a development setup for your
Node application using Docker containers. You’ve made your project more
modular and portable by extracting sensitive information and decoupling
your application’s state from your application code. You have also
configured a boilerplate docker-compose.yml file that you can revise
as your development needs and requirements change.

As you develop, you may be interested in learning more about designing
applications for containerized and Cloud Native workflows. Please see
Architecting Applications for Kubernetes and Modernizing Applications
for Kubernetes for more information on these topics.

To learn more about the code used in this tutorial, please see How To
Build a Node.js Application with Docker and How To Integrate MongoDB
with Your Node Application. For information about deploying a Node
application with an Nginx reverse proxy using containers, please see How
To Secure a Containerized Node.js Application with Nginx, Let’s Encrypt,
and Docker Compose.

https://github.com/cncf/toc/blob/master/DEFINITION.md
https://www.digitalocean.com/community/tutorials/architecting-applications-for-kubernetes
https://www.digitalocean.com/community/tutorials/modernizing-applications-for-kubernetes
https://www.digitalocean.com/community/tutorials/how-to-build-a-node-js-application-with-docker
https://www.digitalocean.com/community/tutorials/how-to-integrate-mongodb-with-your-node-application
https://www.nginx.com/
https://www.digitalocean.com/community/tutorials/how-to-secure-a-containerized-node-js-application-with-nginx-let-s-encrypt-and-docker-compose

How to Set Up DigitalOcean Kubernetes
Cluster Monitoring with Helm and
Prometheus Operator

Written by Eddie Zaneski and Hanif Jetha
Along with tracing and logging, monitoring and alerting are essential

components of a Kubernetes observability stack. Setting up monitoring for
your Kubernetes cluster allows you to track your resource usage and
analyze and debug application errors.

One popular monitoring solution is the open-source Prometheus,
Grafana, and Alertmanager stack. In this tutorial you will learn how to use
the Helm package manager for Kubernetes to install all three of these
monitoring tools into your Kubernetes cluster.

By the end of this tutorial, you will have cluster monitoring set up with
a standard set of dashboards to view graphs and health metrics for your
cluster, Prometheus rules for collecting health data, and alerts to notify
you when something is not performing or behaving properly.

Along with tracing and logging, monitoring and alerting are essential
components of a Kubernetes observability stack. Setting up monitoring for
your Kubernetes cluster allows you to track your resource usage and
analyze and debug application errors.

A monitoring system usually consists of a time-series database that
houses metric data and a visualization layer. In addition, an alerting layer
creates and manages alerts, handing them off to integrations and external
services as necessary. Finally, one or more components generate or expose

https://www.digitalocean.com/community/tutorials/how-to-set-up-digitalocean-kubernetes-cluster-monitoring-with-helm-and-prometheus-operator
https://prometheus.io/
https://grafana.com/
https://github.com/prometheus/alertmanager
https://helm.sh/

the metric data that will be stored, visualized, and processed for alerts by
this monitoring stack.

One popular monitoring solution is the open-source Prometheus,
Grafana, and Alertmanager stack:

Prometheus is a time series database and monitoring tool that works
by polling metrics endpoints and scraping and processing the data
exposed by these endpoints. It allows you to query this data using
PromQL, a time series data query language.
Grafana is a data visualization and analytics tool that allows you to
build dashboards and graphs for your metrics data.
Alertmanager, usually deployed alongside Prometheus, forms the
alerting layer of the stack, handling alerts generated by Prometheus
and deduplicating, grouping, and routing them to integrations like
email or PagerDuty.

In addition, tools like kube-state-metrics and node_exporter expose
cluster-level Kubernetes object metrics as well as machine-level metrics
like CPU and memory usage.

Implementing this monitoring stack on a Kubernetes cluster can be
complicated, but luckily some of this complexity can be managed with the
Helm package manager and CoreOS’s Prometheus Operator and kube-
prometheus projects. These projects bake in standard configurations and
dashboards for Prometheus and Grafana, and abstract away some of the
lower-level Kubernetes object definitions. The Helm prometheus-
operator chart allows you to get a full cluster monitoring solution up
and running by installing Prometheus Operator and the rest of the

https://prometheus.io/
https://grafana.com/%3E
https://github.com/prometheus/alertmanager
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://www.pagerduty.com/
https://github.com/kubernetes/kube-state-metrics
https://github.com/prometheus/node_exporter
https://helm.sh/
https://github.com/coreos/prometheus-operator
https://github.com/coreos/kube-prometheus
https://github.com/helm/charts/tree/master/stable/prometheus-operator

components listed above, along with a default set of dashboards, rules, and
alerts useful for monitoring Kubernetes clusters.

In this tutorial, we will demonstrate how to install the prometheus-
operator Helm chart on a DigitalOcean Kubernetes cluster. By the end
of the tutorial, you will have installed a full monitoring stack into your
cluster.

Prerequisites

To follow this tutorial, you will need:

A DigitalOcean Kubernetes cluster.
The kubectl command-line interface installed on your local
machine and configured to connect to your cluster. You can read more
about installing and configuring kubectl in its official
documentation.
The Helm package manager (2.10+) installed on your local machine
and Tiller installed on your cluster, as detailed in How To Install
Software on Kubernetes Clusters with the Helm Package Manager.

Step 1 — Creating a Custom Values File

Before we install the prometheus-operator Helm chart, we’ll create
a custom values file that will override some of the chart’s defaults with
DigitalOcean-specific configuration parameters. To learn more about
overriding default chart values, consult the Helm Install section of the
Helm docs.

To begin, create and open a file called custom-values.yaml on
your local machine using nano or your favorite editor:

https://www.digitalocean.com/products/kubernetes/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://helm.sh/
https://www.digitalocean.com/community/tutorials/how-to-install-software-on-kubernetes-clusters-with-the-helm-package-manager
https://helm.sh/docs/helm/#helm-install

nano custom-values.yaml

Copy and paste in the following custom values, which enable persistent
storage for the Prometheus, Grafana, and Alertmananger components, and
disable monitoring for Kubernetes control plane components not exposed
on DigitalOcean Kubernetes:

custom-values.yaml
Define persistent storage for Prometheus (PVC)

prometheus:

 prometheusSpec:

 storageSpec:

 volumeClaimTemplate:

 spec:

 accessModes: ["ReadWriteOnce"]

 storageClassName: do-block-storage

 resources:

 requests:

 storage: 5Gi

Define persistent storage for Grafana (PVC)

grafana:

 # Set password for Grafana admin user

 adminPassword: your_admin_password

 persistence:

 enabled: true

 storageClassName: do-block-storage

 accessModes: ["ReadWriteOnce"]

 size: 5Gi

Define persistent storage for Alertmanager (PVC)

alertmanager:

 alertmanagerSpec:

 storage:

 volumeClaimTemplate:

 spec:

 accessModes: ["ReadWriteOnce"]

 storageClassName: do-block-storage

 resources:

 requests:

 storage: 5Gi

Change default node-exporter port

prometheus-node-exporter:

 service:

 port: 30206

 targetPort: 30206

Disable Etcd metrics

kubeEtcd:

 enabled: false

Disable Controller metrics

kubeControllerManager:

 enabled: false

Disable Scheduler metrics

kubeScheduler:

 enabled: false

In this file, we override some of the default values packaged with the
chart in its values.yaml file.

We first enable persistent storage for Prometheus, Grafana, and
Alertmanager so that their data persists across Pod restarts. Behind the
scenes, this defines a 5 Gi Persistent Volume Claim (PVC) for each
component, using the DigitalOcean Block Storage storage class. You
should modify the size of these PVCs to suit your monitoring storage
needs. To learn more about PVCs, consult Persistent Volumes from the
official Kubernetes docs.

Next, replace your_admin_password with a secure password that
you’ll use to log in to the Grafana metrics dashboard with the admin user.

We’ll then configure a different port for node-exporter. Node-exporter
runs on each Kubernetes node and provides OS and hardware metrics to
Prometheus. We must change its default port to get around the
DigitalOcean Kubernetes firewall defaults, which will block port 9100 but
allow ports in the range 30000-32767. Alternatively, you can configure a
custom firewall rule for node-exporter. To learn how, consult How to
Configure Firewall Rules from the official DigitalOcean Cloud Firewalls
docs.

Finally, we’ll disable metrics collection for three Kubernetes control
plane components that do not expose metrics on DigitalOcean Kubernetes:

https://github.com/helm/charts/blob/master/stable/prometheus-operator/values.yaml
https://www.digitalocean.com/products/block-storage/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://grafana.com/
https://github.com/prometheus/node_exporter
https://www.digitalocean.com/docs/networking/firewalls/how-to/configure-rules/
https://www.digitalocean.com/community/tutorials/an-introduction-to-kubernetes#master-server-components

the Kubernetes Scheduler and Controller Manager, and etcd cluster data
store.

To see the full list of configurable parameters for the prometheus-
operator chart, consult the Configuration section from the chart repo
README or the default values file.

When you’re done editing, save and close the file. We can now install
the chart using Helm.

Step 2 — Installing the prometheus-operator Chart

The prometheus-operator Helm chart will install the following
monitoring components into your DigitalOcean Kubernetes cluster:

Prometheus Operator, a Kubernetes Operator that allows you to
configure and manage Prometheus clusters. Kubernetes Operators
integrate domain-specific logic into the process of packaging,
deploying, and managing applications with Kubernetes. To learn
more about Kubernetes Operators, consult the CoreOS Operators
Overview. To learn more about Prometheus Operator, consult this
introductory post on the Prometheus Operator and the Prometheus
Operator GitHub repo. Prometheus Operator will be installed as a
Deployment.
Prometheus, installed as a StatefulSet.
Alertmanager, a service that handles alerts sent by the Prometheus
server and routes them to integrations like PagerDuty or email. To
learn more about Alertmanager, consult Alerting from the
Prometheus docs. Alertmanager will be installed as a StatefulSet.

https://github.com/helm/charts/tree/master/stable/prometheus-operator#configuration
https://coreos.com/operators/
https://coreos.com/blog/the-prometheus-operator.html
https://github.com/coreos/prometheus-operator
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://prometheus.io/docs/practices/alerting/

Grafana, a time series data visualization tool that allows you to
visualize and create dashboards for your Prometheus metrics. Grafana
will be installed as a Deployment.
node-exporter, a Prometheus exporter that runs on cluster nodes and
provides OS and hardware metrics to Prometheus. Consult the node-
exporter GitHub repo to learn more. node-exporter will be installed as
a DaemonSet.
kube-state-metrics, an add-on agent that listens to the Kubernetes API
server and generates metrics about the state of Kubernetes objects
like Deployments and Pods. You can learn more by consulting the
kube-state-metrics GitHub repo. kube-state-metrics will be installed
as a Deployment.

By default, along with scraping metrics generated by node-exporter,
kube-state-metrics, and the other components listed above, Prometheus
will be configured to scrape metrics from the following components:

kube-apiserver, the Kubernetes API server.
CoreDNS, the Kubernetes cluster DNS server.
kubelet, the primary node agent that interacts with kube-apiserver to
manage Pods and containers on a node.
cAdvisor, a node agent that discovers running containers and collects
their CPU, memory, filesystem, and network usage metrics.

On your local machine, let’s begin by installing the prometheus-
operator Helm chart and passing in the custom values file we created
above:

https://github.com/prometheus/node_exporter
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://github.com/kubernetes/kube-state-metrics
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/
https://coredns.io/
https://kubernetes.io/docs/concepts/overview/components/#kubelet
https://kubernetes.io/docs/tasks/debug-application-cluster/resource-usage-monitoring/#cadvisor

helm install --namespace monitoring --name doks-

cluster-monitoring -f custom-values.yaml

stable/prometheus-operator

Here we run helm install and install all components into the
monitoring namespace, which we create at the same time. This allows
us to cleanly separate the monitoring stack from the rest of the Kubernetes
cluster. We name the Helm release doks-cluster-monitoring and
pass in the custom values file we created in Step 1. Finally, we specify that
we’d like to install the prometheus-operator chart from the Helm
stable directory.

You should see the following output:

Output
NAME: doks-cluster-monitoring

LAST DEPLOYED: Mon Apr 22 10:30:42 2019

NAMESPACE: monitoring

STATUS: DEPLOYED

RESOURCES:

==> v1/PersistentVolumeClaim

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

doks-cluster-monitoring-grafana Pending do-

block-storage 10s

==> v1/ServiceAccount

NAME

https://www.digitalocean.com/community/tutorials/how-to-set-up-digitalocean-kubernetes-cluster-monitoring-with-helm-and-prometheus-operator#step-1-%E2%80%94-creating-a-custom-values-file
https://github.com/helm/charts/tree/master/stable

SECRETS AGE

doks-cluster-monitoring-grafana

1 10s

doks-cluster-monitoring-kube-state-metrics

1 10s

. . .

==> v1beta1/ClusterRoleBinding

NAME

AGE

doks-cluster-monitoring-kube-state-metrics

9s

psp-doks-cluster-monitoring-prometheus-node-

exporter 9s

NOTES:

The Prometheus Operator has been installed. Check

its status by running:

 kubectl --namespace monitoring get pods -l

"release=doks-cluster-monitoring"

Visit https://github.com/coreos/prometheus-

operator for instructions on how

to create & configure Alertmanager and Prometheus

instances using the Operator.

This indicates that Prometheus Operator, Prometheus, Grafana, and the
other components listed above have successfully been installed into your
DigitalOcean Kubernetes cluster.

Following the note in the helm install output, check the status of
the release’s Pods using kubectl get pods:
kubectl --namespace monitoring get pods -l

"release=doks-cluster-monitoring"

You should see the following:

Output
NAME

READY STATUS RESTARTS AGE

doks-cluster-monitoring-grafana-9d7f984c5-hxnw6

2/2 Running 0 3m36s

doks-cluster-monitoring-kube-state-metrics-

dd8557f6b-9rl7j 1/1 Running 0

3m36s

doks-cluster-monitoring-pr-operator-9c5b76d78-

9kj85 1/1 Running 0 3m36s

doks-cluster-monitoring-prometheus-node-exporter-

2qvxw 1/1 Running 0 3m36s

doks-cluster-monitoring-prometheus-node-exporter-

7brwv 1/1 Running 0 3m36s

doks-cluster-monitoring-prometheus-node-exporter-

jhdgz 1/1 Running 0 3m36s

This indicates that all the monitoring components are up and running,
and you can begin exploring Prometheus metrics using Grafana and its

preconfigured dashboards.

Step 3 — Accessing Grafana and Exploring Metrics Data

The prometheus-operator Helm chart exposes Grafana as a
ClusterIP Service, which means that it’s only accessible via a cluster-
internal IP address. To access Grafana outside of your Kubernetes cluster,
you can either use kubectl patch to update the Service in place to a
public-facing type like NodePort or LoadBalancer, or kubectl
port-forward to forward a local port to a Grafana Pod port.

In this tutorial we’ll forward ports, but to learn more about kubectl
patch and Kubernetes Service types, you can consult Update API Objects
in Place Using kubectl patch and Services from the official Kubernetes
docs.

Begin by listing running Services in the monitoring namespace:
kubectl get svc -n monitoring

You should see the following Services:

Output
NAME

TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

AGE

alertmanager-operated

ClusterIP None <none>

9093/TCP,6783/TCP 34m

doks-cluster-monitoring-grafana

ClusterIP 10.245.105.130 <none> 80/TCP

34m

https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://kubernetes.io/docs/concepts/services-networking/service/

doks-cluster-monitoring-kube-state-metrics

ClusterIP 10.245.140.151 <none>

8080/TCP 34m

doks-cluster-monitoring-pr-alertmanager

ClusterIP 10.245.197.254 <none>

9093/TCP 34m

doks-cluster-monitoring-pr-operator

ClusterIP 10.245.14.163 <none>

8080/TCP 34m

doks-cluster-monitoring-pr-prometheus

ClusterIP 10.245.201.173 <none>

9090/TCP 34m

doks-cluster-monitoring-prometheus-node-exporter

ClusterIP 10.245.72.218 <none>

30206/TCP 34m

prometheus-operated

ClusterIP None <none>

9090/TCP 34m

We are going to forward local port 8000 to port 80 of the doks-
cluster-monitoring-grafana Service, which will in turn forward
to port 3000 of a running Grafana Pod. These Service and Pod ports are
configured in the stable/grafana Helm chart values file:
kubectl port-forward -n monitoring svc/doks-

cluster-monitoring-grafana 8000:80

You should see the following output:

Output

https://github.com/helm/charts/blob/master/stable/grafana/values.yaml#L81

Forwarding from 127.0.0.1:8000 -> 3000

Forwarding from [::1]:8000 -> 3000

This indicates that local port 8000 is being forwarded successfully to a
Grafana Pod.

Visit http://localhost:8000 in your web browser. You should
see the following Grafana login page:

Grafana Login Page

Enter admin as the username and the password you configured in
custom-values.yaml. Then, hit Log In.

You’ll be brought to the following Home Dashboard:

Grafana Home Page

In the left-hand navigation bar, select the Dashboards button, then click
on Manage:

Grafana Dashboard Tab

You’ll be brought to the following dashboard management interface,
which lists the dashboards installed by the prometheus-operator

Helm chart:

Grafana Dashboard List

These dashboards are generated by kubernetes-mixin, an open-
source project that allows you to create a standardized set of cluster
monitoring Grafana dashboards and Prometheus alerts. To learn more,
consult the Kubernetes Mixin GitHub repo.

Click in to the Kubernetes / Nodes dashboard, which visualizes CPU,
memory, disk, and network usage for a given node:

https://github.com/kubernetes-monitoring/kubernetes-mixin

Grafana Nodes Dashboard

Describing each dashboard and how to use it to visualize your cluster’s
metrics data goes beyond the scope of this tutorial. To learn more about
the USE method for analyzing a system’s performance, you can consult
Brendan Gregg’s The Utilization Saturation and Errors (USE) Method
page. Google’s SRE Book is another helpful resource, in particular
Chapter 6: Monitoring Distributed Systems. To learn how to build your
own Grafana dashboards, check out Grafana’s Getting Started page.

In the next step, we’ll follow a similar process to connect to and explore
the Prometheus monitoring system.

Step 4 — Accessing Prometheus and Alertmanager

To connect to the Prometheus Pods, we once again have to use kubectl
port-forward to forward a local port. If you’re done exploring

http://www.brendangregg.com/usemethod.html
https://landing.google.com/sre/books/
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/
https://grafana.com/docs/guides/getting_started/

Grafana, you can close the port-forward tunnel by hitting CTRL-C.
Alternatively you can open a new shell and port-forward connection.

Begin by listing running Services in the monitoring namespace:
kubectl get svc -n monitoring

You should see the following Services:

Output
NAME

TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

AGE

alertmanager-operated

ClusterIP None <none>

9093/TCP,6783/TCP 34m

doks-cluster-monitoring-grafana

ClusterIP 10.245.105.130 <none> 80/TCP

34m

doks-cluster-monitoring-kube-state-metrics

ClusterIP 10.245.140.151 <none>

8080/TCP 34m

doks-cluster-monitoring-pr-alertmanager

ClusterIP 10.245.197.254 <none>

9093/TCP 34m

doks-cluster-monitoring-pr-operator

ClusterIP 10.245.14.163 <none>

8080/TCP 34m

doks-cluster-monitoring-pr-prometheus

ClusterIP 10.245.201.173 <none>

9090/TCP 34m

doks-cluster-monitoring-prometheus-node-exporter

ClusterIP 10.245.72.218 <none>

30206/TCP 34m

prometheus-operated

ClusterIP None <none>

9090/TCP 34m

We are going to forward local port 9090 to port 9090 of the doks-
cluster-monitoring-pr-prometheus Service:
kubectl port-forward -n monitoring svc/doks-

cluster-monitoring-pr-prometheus 9090:9090

You should see the following output:

Output
Forwarding from 127.0.0.1:9090 -> 9090

Forwarding from [::1]:9090 -> 9090

This indicates that local port 9090 is being forwarded successfully to a
Prometheus Pod.

Visit http://localhost:9090 in your web browser. You should
see the following Prometheus Graph page:

Prometheus Graph Page

From here you can use PromQL, the Prometheus query language, to
select and aggregate time series metrics stored in its database. To learn
more about PromQL, consult Querying Prometheus from the official
Prometheus docs.

In the Expression field, type machine_cpu_cores and hit Execute.
You should see a list of time series with the metric
machine_cpu_cores that reports the number of CPU cores on a given
node. You can see which node generated the metric and which job scraped
the metric in the metric labels.

Finally, in the top navigation bar, click on Status and then Targets to see
the list of targets Prometheus has been configured to scrape. You should
see a list of targets corresponding to the list of monitoring endpoints
described at the beginning of Step 2.

To learn more about Promtheus and how to query your cluster metrics,
consult the official Prometheus docs.

We’ll follow a similar process to connect to AlertManager, which
manages Alerts generated by Prometheus. You can explore these Alerts by

https://prometheus.io/docs/prometheus/latest/querying/basics/
https://www.digitalocean.com/community/tutorials/how-to-set-up-digitalocean-kubernetes-cluster-monitoring-with-helm-and-prometheus-operator#step-2-%E2%80%94-installing-the-prometheus-operator-chart
https://prometheus.io/docs/introduction/overview/

clicking into Alerts in the Prometheus top navigation bar.
To connect to the Alertmanager Pods, we will once again use kubectl

port-forward to forward a local port. If you’re done exploring
Prometheus, you can close the port-forward tunnel by hitting CTRL-C.
Alternatively you can open a new shell and port-forward connection.

Begin by listing running Services in the monitoring namespace:
kubectl get svc -n monitoring

You should see the following Services:

Output
NAME

TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

AGE

alertmanager-operated

ClusterIP None <none>

9093/TCP,6783/TCP 34m

doks-cluster-monitoring-grafana

ClusterIP 10.245.105.130 <none> 80/TCP

34m

doks-cluster-monitoring-kube-state-metrics

ClusterIP 10.245.140.151 <none>

8080/TCP 34m

doks-cluster-monitoring-pr-alertmanager

ClusterIP 10.245.197.254 <none>

9093/TCP 34m

doks-cluster-monitoring-pr-operator

ClusterIP 10.245.14.163 <none>

8080/TCP 34m

doks-cluster-monitoring-pr-prometheus

ClusterIP 10.245.201.173 <none>

9090/TCP 34m

doks-cluster-monitoring-prometheus-node-exporter

ClusterIP 10.245.72.218 <none>

30206/TCP 34m

prometheus-operated

ClusterIP None <none>

9090/TCP 34m

We are going to forward local port 9093 to port 9093 of the doks-
cluster-monitoring-pr-alertmanager Service.
kubectl port-forward -n monitoring svc/doks-

cluster-monitoring-pr-alertmanager 9093:9093

You should see the following output:

Output
Forwarding from 127.0.0.1:9093 -> 9093

Forwarding from [::1]:9093 -> 9093

This indicates that local port 9093 is being forwarded successfully to
an Alertmanager Pod.

Visit http://localhost:9093 in your web browser. You should
see the following Alertmanager Alerts page:

Alertmanager Alerts Page

From here, you can explore firing alerts and optionally silencing them.
To learn more about Alertmanager, consult the official Alertmanager
documentation.

Conclusion

In this tutorial, you installed a Prometheus, Grafana, and Alertmanager
monitoring stack into your DigitalOcean Kubernetes cluster with a

https://prometheus.io/docs/alerting/alertmanager/

standard set of dashboards, Prometheus rules, and alerts. Since this was
done using Helm, you can use helm upgrade, helm rollback, and
helm delete to upgrade, roll back, or delete the monitoring stack. To
learn more about these functions, consult How To Install Software on
Kubernetes Clusters with the Helm Package Manager.

The prometheus-operator chart helps you get cluster monitoring
up and running quickly using Helm. You may wish to build, deploy, and
configure Prometheus Operator manually. To do so, consult the
Prometheus Operator and kube-prometheus GitHub repos.

https://www.digitalocean.com/community/tutorials/how-to-install-software-on-kubernetes-clusters-with-the-helm-package-manager
https://github.com/coreos/prometheus-operator
file:///tmp/calibre_4.9.1_tmp_4WUNfk/_TYIoV_pdf_out/EPUB/text/%3Chttps://github.com/coreos/kube-prometheus

How To Set Up Laravel, Nginx, and
MySQL with Docker Compose

Written by Faizan Bashir
In this tutorial, you will build a web application using the Laravel

framework, with Nginx as the web server and MySQL as the database, all
inside Docker containers. You will define the entire stack configuration in
a docker-compose file, along with configuration files for PHP, MySQL,
and Nginx.

The author selected The FreeBSD Foundation to receive a donation as
part of the Write for DOnations program.

Over the past few years, Docker has become a frequently used solution
for deploying applications thanks to how it simplifies running and
deploying applications in ephemeral containers. When using a LEMP
application stack, for example, with PHP, Nginx, MySQL and the Laravel
framework, Docker can significantly streamline the setup process.

Docker Compose has further simplified the development process by
allowing developers to define their infrastructure, including application
services, networks, and volumes, in a single file. Docker Compose offers
an efficient alternative to running multiple docker container

create and docker container run commands.
In this tutorial, you will build a web application using the Laravel

framework, with Nginx as the web server and MySQL as the database, all
inside Docker containers. You will define the entire stack configuration in

https://www.digitalocean.com/community/tutorials/how-to-set-up-laravel-nginx-and-mysql-with-docker-compose
https://www.brightfunds.org/organizations/the-freebsd-foundation
https://do.co/w4do-cta
https://docs.docker.com/
https://www.docker.com/resources/what-container
https://php.net/docs.php
https://nginx.org/en/
https://dev.mysql.com/doc/
https://laravel.com/docs/5.6
https://docs.docker.com/compose/

a docker-compose file, along with configuration files for PHP,
MySQL, and Nginx.

Prerequisites

Before you start, you will need:

One Ubuntu 18.04 server, and a non-root user with sudo privileges.
Follow the Initial Server Setup with Ubuntu 18.04 tutorial to set this
up.
Docker installed, following Steps 1 and 2 of How To Install and Use
Docker on Ubuntu 18.04.
Docker Compose installed, following Step 1 of How To Install
Docker Compose on Ubuntu 18.04.

Step 1 — Downloading Laravel and Installing
Dependencies

As a first step, we will get the latest version of Laravel and install the
dependencies for the project, including Composer, the application-level
package manager for PHP. We will install these dependencies with Docker
to avoid having to install Composer globally.

First, check that you are in your home directory and clone the latest
Laravel release to a directory called laravel-app:
cd ~

git clone https://github.com/laravel/laravel.git

laravel-app

Move into the laravel-app directory:
cd ~/laravel-app

https://www.digitalocean.com/community/tutorials/initial-server-setup-with-ubuntu-18-04
https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-18-04
https://www.digitalocean.com/community/tutorials/how-to-install-docker-compose-on-ubuntu-18-04
https://github.com/composer/docker

Next, use Docker’s composer image to mount the directories that you
will need for your Laravel project and avoid the overhead of installing
Composer globally:
docker run --rm -v $(pwd):/app composer install

Using the -v and --rm flags with docker run creates an ephemeral
container that will be bind-mounted to your current directory before being
removed. This will copy the contents of your ~/laravel-app directory
to the container and also ensure that the vendor folder Composer creates
inside the container is copied to your current directory.

As a final step, set permissions on the project directory so that it is
owned by your non-root user:
sudo chown -R $USER:$USER ~/laravel-app

This will be important when you write the Dockerfile for your
application image in Step 4, as it will allow you to work with your
application code and run processes in your container as a non-root user.

With your application code in place, you can move on to defining your
services with Docker Compose.

Step 2 — Creating the Docker Compose File

Building your applications with Docker Compose simplifies the process of
setting up and versioning your infrastructure. To set up our Laravel
application, we will write a docker-compose file that defines our web
server, database, and application services.

Open the file:
nano ~/laravel-app/docker-compose.yml

https://hub.docker.com/r/library/composer/

In the docker-compose file, you will define three services: app,
webserver, and db. Add the following code to the file, being sure to
replace the root password for MYSQL_ROOT_PASSWORD, defined as an
environment variable under the db service, with a strong password of your
choice:

~/laravel-app/docker-compose.yml

version: '3'

services:

 #PHP Service

 app:

 build:

 context: .

 dockerfile: Dockerfile

 image: digitalocean.com/php

 container_name: app

 restart: unless-stopped

 tty: true

 environment:

 SERVICE_NAME: app

 SERVICE_TAGS: dev

 working_dir: /var/www

 networks:

 - app-network

https://docs.docker.com/compose/compose-file/#environment

 #Nginx Service

 webserver:

 image: nginx:alpine

 container_name: webserver

 restart: unless-stopped

 tty: true

 ports:

 - "80:80"

 - "443:443"

 networks:

 - app-network

 #MySQL Service

 db:

 image: mysql:5.7.22

 container_name: db

 restart: unless-stopped

 tty: true

 ports:

 - "3306:3306"

 environment:
 MYSQL_DATABASE: laravel<^>
 MYSQL_ROOT_PASSWORD: your_mysql_root_password

 SERVICE_TAGS: dev

 SERVICE_NAME: mysql

 networks:

- app-network

The services defined here include:

app: This service definition contains the Laravel application and
runs a custom Docker image, digitalocean.com/php, that you
will define in Step 4. It also sets the working_dir in the container
to /var/www.
webserver: This service definition pulls the nginx:alpine
image from Docker and exposes ports 80 and 443.
db: This service definition pulls the mysql:5.7.22 image from
Docker and defines a few environmental variables, including a
database called laravel for your application and the root password
for the database. You are free to name the database whatever you
would like, and you should replace
your_mysql_root_password with your own strong password.
This service definition also maps port 3306 on the host to port 3306
on the container.

Each container_name property defines a name for the container,
which corresponds to the name of the service. If you don’t define this
property, Docker will assign a name to each container by combining a

 app network

#Docker Networks

networks:

 app-network:

 driver: bridge

https://hub.docker.com/_/nginx/
https://hub.docker.com/_/mysql/

historically famous person’s name and a random word separated by an
underscore.

To facilitate communication between containers, the services are
connected to a bridge network called app-network. A bridge network
uses a software bridge that allows containers connected to the same bridge
network to communicate with each other. The bridge driver automatically
installs rules in the host machine so that containers on different bridge
networks cannot communicate directly with each other. This creates a
greater level of security for applications, ensuring that only related
services can communicate with one another. It also means that you can
define multiple networks and services connecting to related functions:
front-end application services can use a frontend network, for example,
and back-end services can use a backend network.

Let’s look at how to add volumes and bind mounts to your service
definitions to persist your application data.

Step 3 — Persisting Data

Docker has powerful and convenient features for persisting data. In our
application, we will make use of volumes and bind mounts for persisting
the database, and application and configuration files. Volumes offer
flexibility for backups and persistence beyond a container’s lifecycle,
while bind mounts facilitate code changes during development, making
changes to your host files or directories immediately available in your
containers. Our setup will make use of both.

Warning: By using bind mounts, you make it possible to change the host
filesystem through processes running in a container, including creating,

https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/bind-mounts/

modifying, or deleting important system files or directories. This is a
powerful ability with security implications, and could impact non-Docker
processes on the host system. Use bind mounts with care.

In the docker-compose file, define a volume called dbdata under
the db service definition to persist the MySQL database:

~/laravel-app/docker-compose.yml
...

#MySQL Service

db:

 ...

 volumes:

 - dbdata:/var/lib/mysql

 networks:

 - app-network

 ...

The named volume dbdata persists the contents of the
/var/lib/mysql folder present inside the container. This allows you to
stop and restart the db service without losing data.

At the bottom of the file, add the definition for the dbdata volume:

~/laravel-app/docker-compose.yml
...

#Volumes

volumes:

 dbdata:

 driver: local

With this definition in place, you will be able to use this volume across
services.

Next, add a bind mount to the db service for the MySQL configuration
files you will create in Step 7:

~/laravel-app/docker-compose.yml
...

#MySQL Service

db:

 ...

 volumes:

 - dbdata:/var/lib/mysql

 - ./mysql/my.cnf:/etc/mysql/my.cnf

 ...

This bind mount binds ~/laravel-app/mysql/my.cnf to
/etc/mysql/my.cnf in the container.

Next, add bind mounts to the webserver service. There will be two:
one for your application code and another for the Nginx configuration
definition that you will create in Step 6:

~/laravel-app/docker-compose.yml
#Nginx Service

webserver:

 ...

 volumes:

 - ./:/var/www

 - ./nginx/conf.d/:/etc/nginx/conf.d/

 networks:

 - app-network

The first bind mount binds the application code in the ~/laravel-
app directory to the /var/www directory inside the container. The
configuration file that you will add to ~/laravel-

app/nginx/conf.d/ will also be mounted to
/etc/nginx/conf.d/ in the container, allowing you to add or modify
the configuration directory’s contents as needed.

Finally, add the following bind mounts to the app service for the
application code and configuration files:

~/laravel-app/docker-compose.yml
#PHP Service

app:

 ...

 volumes:

 - ./:/var/www

 -

./php/local.ini:/usr/local/etc/php/conf.d/local.in

i

 networks:

 - app-network

The app service is bind-mounting the ~/laravel-app folder, which
contains the application code, to the /var/www folder in the container.
This will speed up the development process, since any changes made to
your local application directory will be instantly reflected inside the
container. You are also binding your PHP configuration file,

~/laravel-app/php/local.ini, to
/usr/local/etc/php/conf.d/local.ini inside the container.
You will create the local PHP configuration file in Step 5.

Your docker-compose file will now look like this:

~/laravel-app/docker-compose.yml

version: '3'

services:

 #PHP Service

 app:

 build:

 context: .

 dockerfile: Dockerfile

 image: digitalocean.com/php

 container_name: app

 restart: unless-stopped

 tty: true

 environment:

 SERVICE_NAME: app

 SERVICE_TAGS: dev

 working_dir: /var/www

 volumes:

 - ./:/var/www

 - ./php/local.ini:/usr/local/etc/php/conf.d/l

networks:

 networks:

 - app-network

 #Nginx Service

 webserver:

 image: nginx:alpine

 container_name: webserver

 restart: unless-stopped

 tty: true

 ports:

 - "80:80"

 - "443:443"

 volumes:

 - ./:/var/www

 - ./nginx/conf.d/:/etc/nginx/conf.d/

 networks:

 - app-network

 #MySQL Service

 db:

 image: mysql:5.7.22

 container_name: db

 restart: unless-stopped

 tty: true

 ports:

 - "3306:3306"

environment:

Save the file and exit your editor when you are finished making
changes.

With your docker-compose file written, you can now build the
custom image for your application.

Step 4 — Creating the Dockerfile

 environment:
 MYSQL_DATABASE: laravel<^>
 MYSQL_ROOT_PASSWORD: your_mysql_root_password

 SERVICE_TAGS: dev

 SERVICE_NAME: mysql

 volumes:

 - dbdata:/var/lib/mysql/

 - ./mysql/my.cnf:/etc/mysql/my.cnf

 networks:

 - app-network

#Docker Networks

networks:

 app-network:

 driver: bridge

#Volumes

volumes:

 dbdata:

 driver: local

Docker allows you to specify the environment inside of individual
containers with a Dockerfile. A Dockerfile enables you to create custom
images that you can use to install the software required by your
application and configure settings based on your requirements. You can
push the custom images you create to Docker Hub or any private registry.

Our Dockerfile will be located in our ~/laravel-app directory.
Create the file:
nano ~/laravel-app/Dockerfile

This Dockerfile will set the base image and specify the necessary
commands and instructions to build the Laravel application image. Add
the following code to the file:

~/laravel-app/php/Dockerfile
FROM php:7.2-fpm

Copy composer.lock and composer.json

COPY composer.lock composer.json /var/www/

Set working directory

WORKDIR /var/www

Install dependencies

RUN apt-get update && apt-get install -y \

 build-essential \

 mysql-client \

 libpng-dev \

 libjpeg62-turbo-dev \

https://hub.docker.com/

 libfreetype6-dev \

 locales \

 zip \

 jpegoptim optipng pngquant gifsicle \

 vim \

 unzip \

 git \

 curl

Clear cache

RUN apt-get clean && rm -rf /var/lib/apt/lists/*

Install extensions

RUN docker-php-ext-install pdo_mysql mbstring zip

exif pcntl

RUN docker-php-ext-configure gd --with-gd --with-

freetype-dir=/usr/include/ --with-jpeg-

dir=/usr/include/ --with-png-dir=/usr/include/

RUN docker-php-ext-install gd

Install composer

RUN curl -sS https://getcomposer.org/installer |

php -- --install-dir=/usr/local/bin --

filename=composer

Add user for laravel application

RUN groupadd -g 1000 www

RUN useradd -u 1000 -ms /bin/bash -g www www

Copy existing application directory contents

COPY . /var/www

Copy existing application directory permissions

COPY --chown=www:www . /var/www

Change current user to www

USER www

Expose port 9000 and start php-fpm server

EXPOSE 9000

CMD ["php-fpm"]

First, the Dockerfile creates an image on top of the php:7.2-fpm
Docker image. This is a Debian-based image that has the PHP FastCGI
implementation PHP-FPM installed. The file also installs the prerequisite
packages for Laravel: mcrypt, pdo_mysql, mbstring, and imagick
with composer.

The RUN directive specifies the commands to update, install, and
configure settings inside the container, including creating a dedicated user
and group called www. The WORKDIR instruction specifies the
/var/www directory as the working directory for the application.

Creating a dedicated user and group with restricted permissions
mitigates the inherent vulnerability when running Docker containers,
which run by default as root. Instead of running this container as root,
we’ve created the www user, who has read/write access to the /var/www

https://hub.docker.com/_/php/
https://php-fpm.org/

folder thanks to the COPY instruction that we are using with the --chown
flag to copy the application folder’s permissions.

Finally, the EXPOSE command exposes a port in the container, 9000,
for the php-fpm server. CMD specifies the command that should run once
the container is created. Here, CMD specifies "php-fpm", which will
start the server.

Save the file and exit your editor when you are finished making
changes.

You can now move on to defining your PHP configuration.

Step 5 — Configuring PHP

Now that you have defined your infrastructure in the docker-compose
file, you can configure the PHP service to act as a PHP processor for
incoming requests from Nginx.

To configure PHP, you will create the local.ini file inside the php
folder. This is the file that you bind-mounted to
/usr/local/etc/php/conf.d/local.ini inside the container in
Step 2. Creating this file will allow you to override the default php.ini
file that PHP reads when it starts.

Create the php directory:
mkdir ~/laravel-app/php

Next, open the local.ini file:
nano ~/laravel-app/php/local.ini

To demonstrate how to configure PHP, we’ll add the following code to
set size limitations for uploaded files:

~/laravel-app/php/local.ini

The upload_max_filesize and post_max_size directives set
the maximum allowed size for uploaded files, and demonstrate how you
can set php.ini configurations from your local.ini file. You can put
any PHP-specific configuration that you want to override in the
local.ini file.

Save the file and exit your editor.
With your PHP local.ini file in place, you can move on to

configuring Nginx.

Step 6 — Configuring Nginx

With the PHP service configured, you can modify the Nginx service to use
PHP-FPM as the FastCGI server to serve dynamic content. The FastCGI
server is based on a binary protocol for interfacing interactive programs
with a web server. For more information, please refer to this article on
Understanding and Implementing FastCGI Proxying in Nginx.

To configure Nginx, you will create an app.conf file with the service
configuration in the ~/laravel-app/nginx/conf.d/ folder.

First, create the nginx/conf.d/ directory:
mkdir -p ~/laravel-app/nginx/conf.d

Next, create the app.conf configuration file:
nano ~/laravel-app/nginx/conf.d/app.conf

Add the following code to the file to specify your Nginx configuration:

~/laravel-app/nginx/conf.d/app.conf

upload_max_filesize=40M

post_max_size=40M

https://www.digitalocean.com/community/tutorials/understanding-and-implementing-fastcgi-proxying-in-nginx

server {

 listen 80;

 index index.php index.html;

 error_log /var/log/nginx/error.log;

 access_log /var/log/nginx/access.log;

 root /var/www/public;

 location ~ \.php$ {

 try_files $uri =404;

 fastcgi_split_path_info ^(.+\.php)(/.+)$;

 fastcgi_pass app:9000;

 fastcgi_index index.php;

 include fastcgi_params;

 fastcgi_param SCRIPT_FILENAME

$document_root$fastcgi_script_name;

 fastcgi_param PATH_INFO

$fastcgi_path_info;

 }

 location / {

 try_files $uri $uri/ /index.php?

$query_string;

 gzip_static on;

 }

}

The server block defines the configuration for the Nginx web server
with the following directives: - listen: This directive defines the port
on which the server will listen to incoming requests. - error_log and
access_log: These directives define the files for writing logs. - root:

https://www.digitalocean.com/community/tutorials/understanding-nginx-server-and-location-block-selection-algorithms

This directive sets the root folder path, forming the complete path to any
requested file on the local file system.

In the php location block, the fastcgi_pass directive specifies that
the app service is listening on a TCP socket on port 9000. This makes the
PHP-FPM server listen over the network rather than on a Unix socket.
Though a Unix socket has a slight advantage in speed over a TCP socket, it
does not have a network protocol and thus skips the network stack. For
cases where hosts are located on one machine, a Unix socket may make
sense, but in cases where you have services running on different hosts, a
TCP socket offers the advantage of allowing you to connect to distributed
services. Because our app container is running on a different host from
our webserver container, a TCP socket makes the most sense for our
configuration.

Save the file and exit your editor when you are finished making
changes.

Thanks to the bind mount you created in Step 2, any changes you make
inside the nginx/conf.d/ folder will be directly reflected inside the
webserver container.

Next, let’s look at our MySQL settings.

Step 7 — Configuring MySQL

With PHP and Nginx configured, you can enable MySQL to act as the
database for your application.

To configure MySQL, you will create the my.cnf file in the mysql
folder. This is the file that you bind-mounted to /etc/mysql/my.cnf

inside the container in Step 2. This bind mount allows you to override the
my.cnf settings as and when required.

To demonstrate how this works, we’ll add settings to the my.cnf file
that enable the general query log and specify the log file.

First, create the mysql directory:
mkdir ~/laravel-app/mysql

Next, make the my.cnf file:
nano ~/laravel-app/mysql/my.cnf

In the file, add the following code to enable the query log and set the log
file location:

~/laravel-app/mysql/my.cnf

This my.cnf file enables logs, defining the general_log setting as
1 to allow general logs. The general_log_file setting specifies
where the logs will be stored.

Save the file and exit your editor.
Our next step will be to start the containers.

Step 8 — Running the Containers and Modifying
Environment Settings

[mysqld]

general_log = 1

general_log_file = /var/lib/mysql/general.log

Now that you have defined all of your services in your docker-
compose file and created the configuration files for these services, you
can start the containers. As a final step, though, we will make a copy of the
.env.example file that Laravel includes by default and name the copy
.env, which is the file Laravel expects to define its environment:
cp .env.example .env

We will configure the specific details of our setup in this file once we
have started the containers.

With all of your services defined in your docker-compose file, you
just need to issue a single command to start all of the containers, create
the volumes, and set up and connect the networks:
docker-compose up -d

When you run docker-compose up for the first time, it will
download all of the necessary Docker images, which might take a while.
Once the images are downloaded and stored in your local machine,
Compose will create your containers. The -d flag daemonizes the process,
running your containers in the background.

Once the process is complete, use the following command to list all of
the running containers:
docker ps

You will see the following output with details about your app,
webserver, and db containers:

Output
CONTAINER ID NAMES IMAGE

STATUS PORTS

c31b7b3251e0 db

mysql:5.7.22 Up 2 seconds

0.0.0.0:3306->3306/tcp

ed5a69704580 app

digitalocean.com/php Up 2 seconds

9000/tcp

5ce4ee31d7c0 webserver

nginx:alpine Up 2 seconds

0.0.0.0:80->80/tcp, 0.0.0.0:443->443/tcp

The CONTAINER ID in this output is a unique identifier for each
container, while NAMES lists the service name associated with each. You
can use both of these identifiers to access the containers. IMAGE defines
the image name for each container, while STATUS provides information
about the container’s state: whether it’s running, restarting, or stopped.

You can now modify the .env file on the app container to include
specific details about your setup.

Open the file using docker-compose exec, which allows you to
run specific commands in containers. In this case, you are opening the file
for editing:
docker-compose exec app nano .env

Find the block that specifies DB_CONNECTION and update it to reflect
the specifics of your setup. You will modify the following fields: -
DB_HOST will be your db database container. - DB_DATABASE will be
the laravel database. - DB_USERNAME will be the username you will
use for your database. In this case, we will use laraveluser. -
DB_PASSWORD will be the secure password you would like to use for this
user account.

/var/www/.env
DB_CONNECTION=mysql

DB_HOST=db

DB_PORT=3306

DB_DATABASE=laravel

DB_USERNAME=laraveluser

DB_PASSWORD=your_laravel_db_password

Save your changes and exit your editor.
Next, set the application key for the Laravel application with the php

artisan key:generate command. This command will generate a
key and copy it to your .env file, ensuring that your user sessions and
encrypted data remain secure:
docker-compose exec app php artisan key:generate

You now have the environment settings required to run your application.
To cache these settings into a file, which will boost your application’s load
speed, run:
docker-compose exec app php artisan config:cache

Your configuration settings will be loaded into
/var/www/bootstrap/cache/config.php on the container.

As a final step, visit http://your_server_ip in the browser. You
will see the following home page for your Laravel application:

Laravel Home Page

With your containers running and your configuration information in
place, you can move on to configuring your user information for the
laravel database on the db container.

Step 9 — Creating a User for MySQL

The default MySQL installation only creates the root administrative
account, which has unlimited privileges on the database server. In general,
it’s better to avoid using the root administrative account when interacting
with the database. Instead, let’s create a dedicated database user for our
application’s Laravel database.

To create a new user, execute an interactive bash shell on the db
container with docker-compose exec:
docker-compose exec db bash

Inside the container, log into the MySQL root administrative account:
[environment second]

mysql -u root -p

You will be prompted for the password you set for the MySQL root
account during installation in your docker-compose file.

Start by checking for the database called laravel, which you defined
in your docker-compose file. Run the show databases command
to check for existing databases:
[environment second]

show databases;

You will see the laravel database listed in the output:

Output
[environment second]

+--------------------+

| Database |

+--------------------+

| information_schema |

| laravel |

| mysql |

| performance_schema |

| sys |

+--------------------+

5 rows in set (0.00 sec)

Next, create the user account that will be allowed to access this
database. Our username will be laraveluser, though you can replace
this with another name if you’d prefer. Just be sure that your username and
password here match the details you set in your .env file in the previous
step:
[environment second]

GRANT ALL ON laravel.* TO 'laraveluser'@'%'

IDENTIFIED BY 'your_laravel_db_password';

Flush the privileges to notify the MySQL server of the changes:
[environment second]

FLUSH PRIVILEGES;

Exit MySQL:
[environment second]

EXIT;

Finally, exit the container:
[environment second]

exit

You have configured the user account for your Laravel application
database and are ready to migrate your data and work with the Tinker
console.

Step 10 — Migrating Data and Working with the Tinker
Console

With your application running, you can migrate your data and experiment
with the tinker command, which will initiate a PsySH console with
Laravel preloaded. PsySH is a runtime developer console and interactive

http://psysh.org/

debugger for PHP, and Tinker is a REPL specifically for Laravel. Using the
tinker command will allow you to interact with your Laravel
application from the command line in an interactive shell.

First, test the connection to MySQL by running the Laravel artisan
migrate command, which creates a migrations table in the database
from inside the container:
docker-compose exec app php artisan migrate

This command will migrate the default Laravel tables. The output
confirming the migration will look like this:

Output
Migration table created successfully.

Migrating: 2014_10_12_000000_create_users_table

Migrated: 2014_10_12_000000_create_users_table

Migrating:

2014_10_12_100000_create_password_resets_table

Migrated:

2014_10_12_100000_create_password_resets_table

Once the migration is complete, you can run a query to check if you are
properly connected to the database using the tinker command:
docker-compose exec app php artisan tinker

Test the MySQL connection by getting the data you just migrated:
\DB::table('migrations')->get();

You will see output that looks like this:

Output

=> Illuminate\Support\Collection {#2856

 all: [

 {#2862

 +"id": 1,

 +"migration":

"2014_10_12_000000_create_users_table",

 +"batch": 1,

 },

 {#2865

 +"id": 2,

 +"migration":

"2014_10_12_100000_create_password_resets_table",

 +"batch": 1,

 },

],

 }

You can use tinker to interact with your databases and to experiment
with services and models.

With your Laravel application in place, you are ready for further
development and experimentation. ## Conclusion

You now have a LEMP stack application running on your server, which
you’ve tested by accessing the Laravel welcome page and creating MySQL
database migrations.

Key to the simplicity of this installation is Docker Compose, which
allows you to create a group of Docker containers, defined in a single file,
with a single command. If you would like to learn more about how to do
CI with Docker Compose, take a look at How To Configure a Continuous

https://www.digitalocean.com/community/tutorials/how-to-configure-a-continuous-integration-testing-environment-with-docker-and-docker-compose-on-ubuntu-16-04

Integration Testing Environment with Docker and Docker Compose on
Ubuntu 16.04. If you want to streamline your Laravel application
deployment process then How to Automatically Deploy Laravel
Applications with Deployer on Ubuntu 16.04 will be a relevant resource.

https://www.digitalocean.com/community/tutorials/how-to-configure-a-continuous-integration-testing-environment-with-docker-and-docker-compose-on-ubuntu-16-04
https://www.digitalocean.com/community/tutorials/automatically-deploy-laravel-applications-deployer-ubuntu

How To Migrate a Docker Compose
Workflow to Kubernetes

Written by Kathleen Juell
To run your services on a distributed platform like Kubernetes, you will

need to translate your Docker Compose service definitions to Kubernetes
objects. Kompose is a conversion tool that helps developers move their
Docker Compose workflows to container clusters like Kubernetes.

In this tutorial, you will translate your Node.js application’s Docker
Compose services into Kubernetes objects using kompose. You will use the
object definitions that kompose provides as a starting point and make
adjustments to ensure that your setup will use Secrets, Services, and
PersistentVolumeClaims in the way that Kubernetes expects. By the end of
the tutorial, you will have a single-instance Node.js application with a
MongoDB database running on a Kubernetes cluster.

When building modern, stateless applications, containerizing your
application’s components is the first step in deploying and scaling on
distributed platforms. If you have used Docker Compose in development,
you will have modernized and containerized your application by: -
Extracting necessary configuration information from your code. -
Offloading your application’s state. - Packaging your application for
repeated use.

You will also have written service definitions that specify how your
container images should run.

https://www.digitalocean.com/community/tutorials/how-to-migrate-a-docker-compose-workflow-to-kubernetes
http://kompose.io/
https://www.digitalocean.com/community/tutorials/architecting-applications-for-kubernetes#containerizing-application-components
https://docs.docker.com/compose/

To run your services on a distributed platform like Kubernetes, you will
need to translate your Compose service definitions to Kubernetes objects.
This will allow you to scale your application with resiliency. One tool that
can speed up the translation process to Kubernetes is kompose, a
conversion tool that helps developers move Compose workflows to
container orchestrators like Kubernetes or OpenShift.

In this tutorial, you will translate Compose services to Kubernetes
objects using kompose. You will use the object definitions that kompose
provides as a starting point and make adjustments to ensure that your setup
will use Secrets, Services, and PersistentVolumeClaims in the way that
Kubernetes expects. By the end of the tutorial, you will have a single-
instance Node.js application with a MongoDB database running on a
Kubernetes cluster. This setup will mirror the functionality of the code
described in Containerizing a Node.js Application with Docker Compose
and will be a good starting point to build out a production-ready solution
that will scale with your needs.

Prerequisites

A Kubernetes 1.10+ cluster with role-based access control (RBAC)
enabled. This setup will use a DigitalOcean Kubernetes cluster, but
you are free to create a cluster using another method.
The kubectl command-line tool installed on your local machine or
development server and configured to connect to your cluster. You can
read more about installing kubectl in the official documentation.
Docker installed on your local machine or development server. If you
are working with Ubuntu 18.04, follow Steps 1 and 2 of How To Install

https://kubernetes.io/
http://assets.digitalocean.com/white-papers/running-digitalocean-kubernetes.pdf
http://kompose.io/
https://www.openshift.com/
https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://nodejs.org/
https://www.mongodb.com/
https://www.digitalocean.com/community/tutorials/containerizing-a-node-js-application-for-development-with-docker-compose
https://www.digitalocean.com/products/kubernetes/
https://www.digitalocean.com/community/tutorials/how-to-create-a-kubernetes-1-11-cluster-using-kubeadm-on-ubuntu-18-04
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://www.docker.com/
https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-18-04

and Use Docker on Ubuntu 18.04; otherwise, follow the official
documentation for information about installing on other operating
systems. Be sure to add your non-root user to the docker group, as
described in Step 2 of the linked tutorial.
A Docker Hub account. For an overview of how to set this up, refer to
this introduction to Docker Hub.

Step 1 — Installing kompose

To begin using kompose, navigate to the project’s GitHub Releases page,
and copy the link to the current release (version 1.18.0 as of this writing).
Paste this link into the following curl command to download the latest
version of kompose:
curl -L

https://github.com/kubernetes/kompose/releases/down

load/v1.18.0/kompose-linux-amd64 -o kompose

For details about installing on non-Linux systems, please refer to the
installation instructions.

Make the binary executable:
chmod +x kompose

Move it to your PATH:
sudo mv ./kompose /usr/local/bin/kompose

To verify that it has been installed properly, you can do a version check:
kompose version

If the installation was successful, you will see output like the following:

Output
1.18.0 (06a2e56)

https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-18-04
https://docs.docker.com/install/
https://hub.docker.com/
https://docs.docker.com/docker-hub/
https://github.com/kubernetes/kompose/releases
https://github.com/kubernetes/kompose/blob/master/README.md#installation

With kompose installed and ready to use, you can now clone the
Node.js project code that you will be translating to Kubernetes.

Step 2 — Cloning and Packaging the Application

To use our application with Kubernetes, we will need to clone the project
code and package the application so that the kubelet service can pull the
image.

Our first step will be to clone the node-mongo-docker-dev repository
from the DigitalOcean Community GitHub account. This repository
includes the code from the setup described in Containerizing a Node.js
Application for Development With Docker Compose, which uses a demo
Node.js application to demonstrate how to set up a development
environment using Docker Compose. You can find more information about
the application itself in the series From Containers to Kubernetes with
Node.js.

Clone the repository into a directory called node_project:
git clone https://github.com/do-community/node-

mongo-docker-dev.git node_project

Navigate to the node_project directory:
cd node_project

The node_project directory contains files and directories for a shark
information application that works with user input. It has been modernized
to work with containers: sensitive and specific configuration information
has been removed from the application code and refactored to be injected at
runtime, and the application’s state has been offloaded to a MongoDB
database.

https://github.com/do-community/node-mongo-docker-dev.git
https://github.com/do-community
https://www.digitalocean.com/community/tutorials/containerizing-a-node-js-application-for-development-with-docker-compose
https://www.digitalocean.com/community/tutorial_series/from-containers-to-kubernetes-with-node-js

For more information about designing modern, stateless applications,
please see Architecting Applications for Kubernetes and Modernizing
Applications for Kubernetes.

The project directory includes a Dockerfile with instructions for
building the application image. Let’s build the image now so that you can
push it to your Docker Hub account and use it in your Kubernetes setup.

Using the docker build command, build the image with the -t flag,
which allows you to tag it with a memorable name. In this case, tag the
image with your Docker Hub username and name it node-kubernetes
or a name of your own choosing:
docker build -t your_dockerhub_username/node-

kubernetes .

The . in the command specifies that the build context is the current
directory.

It will take a minute or two to build the image. Once it is complete,
check your images:
docker images

You will see the following output:

Output
REPOSITORY TAG

IMAGE ID CREATED SIZE

your_dockerhub_username/node-kubernetes latest

9c6f897e1fbc 3 seconds ago 90MB

node 10-alpine

94f3c8956482 12 days ago 71MB

Next, log in to the Docker Hub account you created in the prerequisites:

https://www.digitalocean.com/community/tutorials/architecting-applications-for-kubernetes
https://www.digitalocean.com/community/tutorials/modernizing-applications-for-kubernetes
https://docs.docker.com/engine/reference/commandline/build/

docker login -u your_dockerhub_username

When prompted, enter your Docker Hub account password. Logging in
this way will create a ~/.docker/config.json file in your user’s
home directory with your Docker Hub credentials.

Push the application image to Docker Hub with the docker push
command. Remember to replace your_dockerhub_username with
your own Docker Hub username:
docker push your_dockerhub_username/node-kubernetes

You now have an application image that you can pull to run your
application with Kubernetes. The next step will be to translate your
application service definitions to Kubernetes objects.

Step 3 — Translating Compose Services to Kubernetes
Objects with kompose

Our Docker Compose file, here called docker-compose.yaml, lays out
the definitions that will run our services with Compose. A service in
Compose is a running container, and service definitions contain
information about how each container image will run. In this step, we will
translate these definitions to Kubernetes objects by using kompose to
create yaml files. These files will contain specs for the Kubernetes objects
that describe their desired state.

We will use these files to create different types of objects: Services,
which will ensure that the Pods running our containers remain accessible;
Deployments, which will contain information about the desired state of our
Pods; a PersistentVolumeClaim to provision storage for our database data;
a ConfigMap for environment variables injected at runtime; and a Secret
for our application’s database user and password. Some of these definitions

https://docs.docker.com/engine/reference/commandline/push/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/
https://kubernetes.io/docs/concepts/configuration/secret/

will be in the files kompose will create for us, and others we will need to
create ourselves.

First, we will need to modify some of the definitions in our docker-
compose.yaml file to work with Kubernetes. We will include a reference
to our newly-built application image in our nodejs service definition and
remove the bind mounts, volumes, and additional commands that we used
to run the application container in development with Compose.
Additionally, we’ll redefine both containers’ restart policies to be in line
with the behavior Kubernetes expects.

Open the file with nano or your favorite editor:
nano docker-compose.yaml

The current definition for the nodejs application service looks like
this:

~/node_project/docker-compose.yaml
...

services:

 nodejs:

 build:

 context: .

 dockerfile: Dockerfile

 image: nodejs

 container_name: nodejs

 restart: unless-stopped

 env_file: .env

 environment:

 - MONGO_USERNAME=$MONGO_USERNAME

https://docs.docker.com/storage/bind-mounts/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/compose/compose-file/#command
https://github.com/kubernetes/kompose/blob/master/docs/user-guide.md#restart

 - MONGO_PASSWORD=$MONGO_PASSWORD

 - MONGO_HOSTNAME=db

 - MONGO_PORT=$MONGO_PORT

 - MONGO_DB=$MONGO_DB

 ports:

 - "80:8080"

 volumes:

 - .:/home/node/app

 - node_modules:/home/node/app/node_modules

 networks:

 - app-network

 command: ./wait-for.sh db:27017 --

/home/node/app/node_modules/.bin/nodemon app.js

...

Make the following edits to your service definition: - Use your node-
kubernetes image instead of the local Dockerfile. - Change the
container restart policy from unless-stopped to always. -
Remove the volumes list and the command instruction.

The finished service definition will now look like this:

~/node_project/docker-compose.yaml
...

services:

 nodejs:

 image: your_dockerhub_username/node-kubernetes

 container_name: nodejs

 restart: always

 env_file: .env

 environment:

 - MONGO_USERNAME=$MONGO_USERNAME

 - MONGO_PASSWORD=$MONGO_PASSWORD

 - MONGO_HOSTNAME=db

 - MONGO_PORT=$MONGO_PORT

 - MONGO_DB=$MONGO_DB

 ports:

 - "80:8080"

 networks:

 - app-network

...

Next, scroll down to the db service definition. Here, make the following
edits: - Change the restart policy for the service to always. - Remove
the .env file. Instead of using values from the .env file, we will pass the
values for our MONGO_INITDB_ROOT_USERNAME and
MONGO_INITDB_ROOT_PASSWORD to the database container using the
Secret we will create in Step 4.

The db service definition will now look like this:

~/node_project/docker-compose.yaml
...

 db:

 image: mongo:4.1.8-xenial

 container_name: db

 restart: always

 environment:

https://www.digitalocean.com/community/tutorials/how-to-migrate-a-docker-compose-workflow-to-kubernetes#step-4-%E2%80%94-creating-kubernetes-secrets

 - MONGO_INITDB_ROOT_USERNAME=$MONGO_USERNAME

 - MONGO_INITDB_ROOT_PASSWORD=$MONGO_PASSWORD

 volumes:

 - dbdata:/data/db

 networks:

 - app-network

...

Finally, at the bottom of the file, remove the node_modules volumes
from the top-level volumes key. The key will now look like this:

~/node_project/docker-compose.yaml
...

volumes:

 dbdata:

Save and close the file when you are finished editing.
Before translating our service definitions, we will need to write the

.env file that kompose will use to create the ConfigMap with our non-
sensitive information. Please see Step 2 of Containerizing a Node.js
Application for Development With Docker Compose for a longer
explanation of this file.

In that tutorial, we added .env to our .gitignore file to ensure that
it would not copy to version control. This means that it did not copy over
when we cloned the node-mongo-docker-dev repository in Step 2 of this
tutorial. We will therefore need to recreate it now.

Create the file:
nano .env

https://www.digitalocean.com/community/tutorials/containerizing-a-node-js-application-for-development-with-docker-compose#step-2-%E2%80%94-configuring-your-application-to-work-with-containers
https://www.digitalocean.com/community/tutorials/containerizing-a-node-js-application-for-development-with-docker-compose
https://github.com/do-community/node-mongo-docker-dev.git
https://www.digitalocean.com/community/tutorials/how-to-migrate-a-docker-compose-workflow-to-kubernetes#step-2-%E2%80%94-cloning-and-packaging-the-application

kompose will use this file to create a ConfigMap for our application.
However, instead of assigning all of the variables from the nodejs service
definition in our Compose file, we will add only the MONGO_DB database
name and the MONGO_PORT. We will assign the database username and
password separately when we manually create a Secret object in Step 4.

Add the following port and database name information to the .env file.
Feel free to rename your database if you would like:

~/node_project/.env
MONGO_PORT=27017

MONGO_DB=sharkinfo

Save and close the file when you are finished editing.
You are now ready to create the files with your object specs. kompose

offers multiple options for translating your resources. You can: - Create
yaml files based on the service definitions in your docker-

compose.yaml file with kompose convert. - Create Kubernetes
objects directly with kompose up. - Create a Helm chart with kompose
convert -c.

For now, we will convert our service definitions to yaml files and then
add to and revise the files kompose creates.

Convert your service definitions to yaml files with the following
command:
kompose convert

You can also name specific or multiple Compose files using the -f flag.
After you run this command, kompose will output information about the

files it has created:

Output

https://www.digitalocean.com/community/tutorials/how-to-migrate-a-docker-compose-workflow-to-kubernetes#step-4-%E2%80%94-creating-kubernetes-secrets
https://github.com/kubernetes/kompose/blob/master/docs/user-guide.md
https://helm.sh/

INFO Kubernetes file "nodejs-service.yaml" created

INFO Kubernetes file "db-deployment.yaml" created

INFO Kubernetes file "dbdata-

persistentvolumeclaim.yaml" created

INFO Kubernetes file "nodejs-deployment.yaml"

created

INFO Kubernetes file "nodejs-env-configmap.yaml"

created

These include yaml files with specs for the Node application Service,
Deployment, and ConfigMap, as well as for the dbdata

PersistentVolumeClaim and MongoDB database Deployment.
These files are a good starting point, but in order for our application’s

functionality to match the setup described in Containerizing a Node.js
Application for Development With Docker Compose we will need to make
a few additions and changes to the files kompose has generated.

Step 4 — Creating Kubernetes Secrets

In order for our application to function in the way we expect, we will need
to make a few modifications to the files that kompose has created. The first
of these changes will be generating a Secret for our database user and
password and adding it to our application and database Deployments.
Kubernetes offers two ways of working with environment variables:
ConfigMaps and Secrets. kompose has already created a ConfigMap with
the non-confidential information we included in our .env file, so we will
now create a Secret with our confidential information: our database
username and password.

https://www.digitalocean.com/community/tutorials/containerizing-a-node-js-application-for-development-with-docker-compose

The first step in manually creating a Secret will be to convert your
username and password to base64, an encoding scheme that allows you to
uniformly transmit data, including binary data.

Convert your database username:
echo -n 'your_database_username' | base64

Note down the value you see in the output.
Next, convert your password:

echo -n 'your_database_password' | base64

Take note of the value in the output here as well.
Open a file for the Secret:

nano secret.yaml

Note: Kubernetes objects are typically defined using YAML, which
strictly forbids tabs and requires two spaces for indentation. If you would
like to check the formatting of any of your yaml files, you can use a linter
or test the validity of your syntax using kubectl create with the --
dry-run and --validate flags:
kubectl create -f your_yaml_file.yaml --dry-run --

validate=true

In general, it is a good idea to validate your syntax before creating
resources with kubectl.

Add the following code to the file to create a Secret that will define your
MONGO_USERNAME and MONGO_PASSWORD using the encoded values
you just created. Be sure to replace the dummy values here with your
encoded username and password:

~/node_project/secret.yaml

https://en.wikipedia.org/wiki/Base64
https://kubernetes.io/docs/concepts/overview/object-management-kubectl/imperative-config/
https://yaml.org/
http://www.yamllint.com/

apiVersion: v1

kind: Secret

metadata:

 name: mongo-secret

data:

 MONGO_USERNAME: your_encoded_username

 MONGO_PASSWORD: your_encoded_password

We have named the Secret object mongo-secret, but you are free to
name it anything you would like.

Save and close this file when you are finished editing. As you did with
your .env file, be sure to add secret.yaml to your .gitignore file
to keep it out of version control.

With secret.yaml written, our next step will be to ensure that our
application and database Pods both use the values we added to the file.
Let’s start by adding references to the Secret to our application
Deployment.

Open the file called nodejs-deployment.yaml:
nano nodejs-deployment.yaml

The file’s container specifications include the following environment
variables defined under the env key:

~/node_project/nodejs-deployment.yaml
apiVersion: extensions/v1beta1

kind: Deployment

...

 spec:

 containers:

 - env:

 - name: MONGO_DB

 valueFrom:

 configMapKeyRef:

 key: MONGO_DB

 name: nodejs-env

 - name: MONGO_HOSTNAME

 value: db

 - name: MONGO_PASSWORD

 - name: MONGO_PORT

 valueFrom:

 configMapKeyRef:

 key: MONGO_PORT

 name: nodejs-env

 - name: MONGO_USERNAME

We will need to add references to our Secret to the MONGO_USERNAME
and MONGO_PASSWORD variables listed here, so that our application will
have access to those values. Instead of including a configMapKeyRef
key to point to our nodejs-env ConfigMap, as is the case with the values
for MONGO_DB and MONGO_PORT, we’ll include a secretKeyRef key
to point to the values in our mongo-secret secret.

Add the following Secret references to the MONGO_USERNAME and
MONGO_PASSWORD variables:

~/node_project/nodejs-deployment.yaml
apiVersion: extensions/v1beta1

kind: Deployment

...

 spec:

 containers:

 - env:

 - name: MONGO_DB

 valueFrom:

 configMapKeyRef:

 key: MONGO_DB

 name: nodejs-env

 - name: MONGO_HOSTNAME

 value: db

 - name: MONGO_PASSWORD

 valueFrom:

 secretKeyRef:

 name: mongo-secret

 key: MONGO_PASSWORD

 - name: MONGO_PORT

 valueFrom:

 configMapKeyRef:

 key: MONGO_PORT

 name: nodejs-env

 - name: MONGO_USERNAME

 valueFrom:

 secretKeyRef:

 name: mongo-secret

 key: MONGO_USERNAME

Save and close the file when you are finished editing.

Next, we’ll add the same values to the db-deployment.yaml file.
Open the file for editing:

nano db-deployment.yaml

In this file, we will add references to our Secret for following variable
keys: MONGO_INITDB_ROOT_USERNAME and
MONGO_INITDB_ROOT_PASSWORD. The mongo image makes these
variables available so that you can modify the initialization of your
database instance. MONGO_INITDB_ROOT_USERNAME and
MONGO_INITDB_ROOT_PASSWORD together create a root user in the
admin authentication database and ensure that authentication is enabled
when the database container starts.

Using the values we set in our Secret ensures that we will have an
application user with root privileges on the database instance, with access
to all of the administrative and operational privileges of that role. When
working in production, you will want to create a dedicated application user
with appropriately scoped privileges.

Under the MONGO_INITDB_ROOT_USERNAME and
MONGO_INITDB_ROOT_PASSWORD variables, add references to the
Secret values:

~/node_project/db-deployment.yaml
apiVersion: extensions/v1beta1

kind: Deployment

...

 spec:

 containers:

 - env:

https://docs.mongodb.com/manual/reference/built-in-roles/#root

 - name: MONGO_INITDB_ROOT_PASSWORD

 valueFrom:

 secretKeyRef:

 name: mongo-secret

 key: MONGO_PASSWORD

 - name: MONGO_INITDB_ROOT_USERNAME

 valueFrom:

 secretKeyRef:

 name: mongo-secret

 key: MONGO_USERNAME

 image: mongo:4.1.8-xenial

...

Save and close the file when you are finished editing.
With your Secret in place, you can move on to creating your database

Service and ensuring that your application container only attempts to
connect to the database once it is fully set up and initialized.

Step 5 — Creating the Database Service and an Application
Init Container

Now that we have our Secret, we can move on to creating our database
Service and an Init Container that will poll this Service to ensure that our
application only attempts to connect to the database once the database
startup tasks, including creating the MONGO_INITDB user and password,
are complete.

For a discussion of how to implement this functionality in Compose,
please see Step 4 of Containerizing a Node.js Application for Development

https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
https://www.digitalocean.com/community/tutorials/containerizing-a-node-js-application-for-development-with-docker-compose#step-4-%E2%80%94-defining-services-with-docker-compose
https://www.digitalocean.com/community/tutorials/containerizing-a-node-js-application-for-development-with-docker-compose

with Docker Compose.
Open a file to define the specs for the database Service:

nano db-service.yaml

Add the following code to the file to define the Service:

~/node_project/db-service.yaml
apiVersion: v1

kind: Service

metadata:

 annotations:

 kompose.cmd: kompose convert

 kompose.version: 1.18.0 (06a2e56)

 creationTimestamp: null

 labels:

 io.kompose.service: db

 name: db

spec:

 ports:

 - port: 27017

 targetPort: 27017

 selector:

 io.kompose.service: db

status:

 loadBalancer: {}

The selector that we have included here will match this Service
object with our database Pods, which have been defined with the label

https://www.digitalocean.com/community/tutorials/containerizing-a-node-js-application-for-development-with-docker-compose

io.kompose.service: db by kompose in the db-

deployment.yaml file. We’ve also named this service db.
Save and close the file when you are finished editing.
Next, let’s add an Init Container field to the containers array in

nodejs-deployment.yaml. This will create an Init Container that we
can use to delay our application container from starting until the db
Service has been created with a Pod that is reachable. This is one of the
possible uses for Init Containers; to learn more about other use cases,
please see the official documentation.

Open the nodejs-deployment.yaml file:
nano nodejs-deployment.yaml

Within the Pod spec and alongside the containers array, we are going
to add an initContainers field with a container that will poll the db
Service.

Add the following code below the ports and resources fields and
above the restartPolicy in the nodejs containers array:

~/node_project/nodejs-deployment.yaml
apiVersion: extensions/v1beta1

kind: Deployment

...

 spec:

 containers:

 ...

 name: nodejs

 ports:

 - containerPort: 8080

https://kubernetes.io/docs/concepts/workloads/pods/init-containers/#what-can-init-containers-be-used-for

 resources: {}

 initContainers:

 - name: init-db

 image: busybox

 command: ['sh', '-c', 'until nc -z

db:27017; do echo waiting for db; sleep 2; done;']

 restartPolicy: Always

...

This Init Container uses the BusyBox image, a lightweight image that
includes many UNIX utilities. In this case, we’ll use the netcat utility to
poll whether or not the Pod associated with the db Service is accepting
TCP connections on port 27017.

This container command replicates the functionality of the wait-for
script that we removed from our docker-compose.yaml file in Step 3.
For a longer discussion of how and why our application used the wait-
for script when working with Compose, please see Step 4 of
Containerizing a Node.js Application for Development with Docker
Compose.

Init Containers run to completion; in our case, this means that our Node
application container will not start until the database container is running
and accepting connections on port 27017. The db Service definition
allows us to guarantee this functionality regardless of the exact location of
the database container, which is mutable.

Save and close the file when you are finished editing.
With your database Service created and your Init Container in place to

control the startup order of your containers, you can move on to checking

https://hub.docker.com/_/busybox
https://www.digitalocean.com/community/tutorials/how-to-use-netcat-to-establish-and-test-tcp-and-udp-connections-on-a-vps
https://github.com/Eficode/wait-for
https://www.digitalocean.com/community/tutorials/how-to-migrate-a-docker-compose-workflow-to-kubernetes#step-3-%E2%80%94-translating-compose-services-to-kubernetes-objects-with-kompose
https://www.digitalocean.com/community/tutorials/containerizing-a-node-js-application-for-development-with-docker-compose#step-4-%E2%80%94-defining-services-with-docker-compose
https://www.digitalocean.com/community/tutorials/containerizing-a-node-js-application-for-development-with-docker-compose

the storage requirements in your PersistentVolumeClaim and exposing your
application service using a LoadBalancer.

Step 6 — Modifying the PersistentVolumeClaim and
Exposing the Application Frontend

Before running our application, we will make two final changes to ensure
that our database storage will be provisioned properly and that we can
expose our application frontend using a LoadBalancer.

First, let’s modify the storage resource defined in the
PersistentVolumeClaim that kompose created for us. This Claim allows us
to dynamically provision storage to manage our application’s state.

To work with PersistentVolumeClaims, you must have a StorageClass
created and configured to provision storage resources. In our case, because
we are working with DigitalOcean Kubernetes, our default StorageClass
provisioner is set to dobs.csi.digitalocean.com —
DigitalOcean Block Storage.

We can check this by typing:
kubectl get storageclass

If you are working with a DigitalOcean cluster, you will see the
following output:

Output
NAME PROVISIONER

AGE

do-block-storage (default)

dobs.csi.digitalocean.com 76m

https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#resources
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#resources
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://www.digitalocean.com/products/kubernetes/
https://www.digitalocean.com/products/block-storage/

If you are not working with a DigitalOcean cluster, you will need to
create a StorageClass and configure a provisioner of your choice. For
details about how to do this, please see the official documentation.

When kompose created dbdata-persistentvolumeclaim.yaml,
it set the storage resource to a size that does not meet the minimum
size requirements of our provisioner. We will therefore need to modify
our PersistentVolumeClaim to use the minimum viable DigitalOcean Block
Storage unit: 1GB. Please feel free to modify this to meet your storage
requirements.

Open dbdata-persistentvolumeclaim.yaml:
nano dbdata-persistentvolumeclaim.yaml

Replace the storage value with 1Gi:

~/node_project/dbdata-persistentvolumeclaim.yaml
apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 creationTimestamp: null

 labels:

 io.kompose.service: dbdata

 name: dbdata

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

https://kubernetes.io/docs/concepts/storage/storage-classes/
https://www.digitalocean.com/docs/volumes/overview/

 storage: 1Gi

status: {}

Also note the accessMode: ReadWriteOnce means that the volume
provisioned as a result of this Claim will be read-write only by a single
node. Please see the documentation for more information about different
access modes.

Save and close the file when you are finished.
Next, open nodejs-service.yaml:

nano nodejs-service.yaml

We are going to expose this Service externally using a DigitalOcean
Load Balancer. If you are not using a DigitalOcean cluster, please consult
the relevant documentation from your cloud provider for information about
their load balancers. Alternatively, you can follow the official Kubernetes
documentation on setting up a highly available cluster with kubeadm, but
in this case you will not be able to use PersistentVolumeClaims to
provision storage.

Within the Service spec, specify LoadBalancer as the Service type:

~/node_project/nodejs-service.yaml
apiVersion: v1

kind: Service

...

spec:

 type: LoadBalancer

 ports:

...

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes
https://www.digitalocean.com/products/load-balancer/
https://kubernetes.io/docs/setup/independent/high-availability/
https://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm/

When we create the nodejs Service, a load balancer will be
automatically created, providing us with an external IP where we can
access our application.

Save and close the file when you are finished editing.
With all of our files in place, we are ready to start and test the

application.

Step 7 — Starting and Accessing the Application

It’s time to create our Kubernetes objects and test that our application is
working as expected.

To create the objects we’ve defined, we’ll use kubectl create with
the -f flag, which will allow us to specify the files that kompose created
for us, along with the files we wrote. Run the following command to create
the Node application and MongoDB database Services and Deployments,
along with your Secret, ConfigMap, and PersistentVolumeClaim:
kubectl create -f nodejs-service.yaml,nodejs-

deployment.yaml,nodejs-env-configmap.yaml,db-

service.yaml,db-deployment.yaml,dbdata-

persistentvolumeclaim.yaml,secret.yaml

You will see the following output indicating that the objects have been
created:

Output
service/nodejs created

deployment.extensions/nodejs created

configmap/nodejs-env created

service/db created

https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#create

deployment.extensions/db created

persistentvolumeclaim/dbdata created

secret/mongo-secret created

To check that your Pods are running, type:
kubectl get pods

You don’t need to specify a Namespace here, since we have created our
objects in the default Namespace. If you are working with multiple
Namespaces, be sure to include the -n flag when running this command,
along with the name of your Namespace.

You will see the following output while your db container is starting and
your application Init Container is running:

Output
NAME READY STATUS

RESTARTS AGE

db-679d658576-kfpsl 0/1 ContainerCreating

0 10s

nodejs-6b9585dc8b-pnsws 0/1 Init:0/1

0 10s

Once that container has run and your application and database containers
have started, you will see this output:

Output
NAME READY STATUS

RESTARTS AGE

db-679d658576-kfpsl 1/1 Running 0

54s

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

nodejs-6b9585dc8b-pnsws 1/1 Running 0

54s

The Running STATUS indicates that your Pods are bound to nodes and
that the containers associated with those Pods are running. READY
indicates how many containers in a Pod are running. For more information,
please consult the documentation on Pod lifecycles.

Note: If you see unexpected phases in the STATUS column, remember
that you can troubleshoot your Pods with the following commands:
kubectl describe pods your_pod

kubectl logs your_pod

With your containers running, you can now access the application. To get
the IP for the LoadBalancer, type:
kubectl get svc

You will see the following output:

Output
NAME TYPE CLUSTER-IP

EXTERNAL-IP PORT(S) AGE

db ClusterIP 10.245.189.250 <none>

27017/TCP 93s

kubernetes ClusterIP 10.245.0.1 <none>

443/TCP 25m12s

nodejs LoadBalancer 10.245.15.56

your_lb_ip 80:30729/TCP 93s

The EXTERNAL_IP associated with the nodejs service is the IP
address where you can access the application. If you see a <pending>

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/

status in the EXTERNAL_IP column, this means that your load balancer is
still being created.

Once you see an IP in that column, navigate to it in your browser:
http://your_lb_ip.

You should see the following landing page:

Application Landing Page

Click on the Get Shark Info button. You will see a page with an entry
form where you can enter a shark name and a description of that shark’s
general character:

Shark Info Form

In the form, add a shark of your choosing. To demonstrate, we will add
Megalodon Shark to the Shark Name field, and Ancient to the Shark
Character field:

Filled Shark Form

Click on the Submit button. You will see a page with this shark
information displayed back to you:

Shark Output

You now have a single instance setup of a Node.js application with a
MongoDB database running on a Kubernetes cluster.

Conclusion

The files you have created in this tutorial are a good starting point to build
from as you move toward production. As you develop your application, you
can work on implementing the following: - Centralized logging and
monitoring. Please see the relevant discussion in Modernizing Applications
for Kubernetes for a general overview. You can also look at How To Set Up
an Elasticsearch, Fluentd and Kibana (EFK) Logging Stack on Kubernetes
to learn how to set up a logging stack with Elasticsearch, Fluentd, and
Kibana. Also check out An Introduction to Service Meshes for information
about how service meshes like Istio implement this functionality. - Ingress
Resources to route traffic to your cluster. This is a good alternative to a
LoadBalancer in cases where you are running multiple Services, which
each require their own LoadBalancer, or where you would like to
implement application-level routing strategies (A/B & canary tests, for
example). For more information, check out How to Set Up an Nginx
Ingress with Cert-Manager on DigitalOcean Kubernetes and the related
discussion of routing in the service mesh context in An Introduction to
Service Meshes. - Backup strategies for your Kubernetes objects. For
guidance on implementing backups with Velero (formerly Heptio Ark) with
DigitalOcean’s Kubernetes product, please see How To Back Up and
Restore a Kubernetes Cluster on DigitalOcean Using Heptio Ark.

https://www.digitalocean.com/community/tutorials/modernizing-applications-for-kubernetes#deploying-on-kubernetes
https://www.digitalocean.com/community/tutorials/modernizing-applications-for-kubernetes
https://www.digitalocean.com/community/tutorials/how-to-set-up-an-elasticsearch-fluentd-and-kibana-efk-logging-stack-on-kubernetes
https://www.elastic.co/
https://www.fluentd.org/
https://www.elastic.co/products/kibana
https://www.digitalocean.com/community/tutorials/an-introduction-to-service-meshes
https://istio.io/
https://www.digitalocean.com/community/tutorials/how-to-set-up-an-nginx-ingress-with-cert-manager-on-digitalocean-kubernetes
https://www.digitalocean.com/community/tutorials/an-introduction-to-service-meshes#routing-and-traffic-configuration
https://www.digitalocean.com/community/tutorials/an-introduction-to-service-meshes
https://github.com/heptio/velero
https://www.digitalocean.com/community/tutorials/how-to-back-up-and-restore-a-kubernetes-cluster-on-digitalocean-using-heptio-ark

Building Optimized Containers for
Kubernetes

Written by Justin Ellingwood
In this article you will learn some strategies for creating high-quality

images and explore a few general goals to help guide your decisions when
containerizing applications. The focus is on building images intended to
be run on Kubernetes, but many of the suggestions apply equally to
running containers on other orchestration platforms and in other contexts.

There are a number of suggestions and best practices that you will learn
about in this tutorial. Some of the more important ones are:

1. Use minimal, shareable parent images to build application images.
This strategy will ensure fast image builds and fast container start-up
times in a cluster.

2. Combine Dockerfile instructions to create clean image layers and
avoid image caching mistakes.

3. Containerize applications by isolating discrete functionality, and
design Pods based on applications with a single, focused
responsibility.

4. Bundle helper containers to enhance the main container’s
functionality or to adapt it to the deployment environment.

5. Run applications as the primary processes in containers so
Kubernetes can manage lifecycle events.

https://www.digitalocean.com/community/tutorials/building-optimized-containers-for-kubernetes

Container images are the primary packaging format for defining
applications within Kubernetes. Used as the basis for pods and other
objects, images play an important role in leveraging Kubernetes’ features
to efficiently run applications on the platform. Well-designed images are
secure, highly performant, and focused. They are able to react to
configuration data or instructions provided by Kubernetes and also
implement endpoints the orchestration system uses to understand internal
application state.

In this article, we’ll introduce some strategies for creating high quality
images and discuss a few general goals to help guide your decisions when
containerizing applications. We will focus on building images intended to
be run on Kubernetes, but many of the suggestions apply equally to
running containers on other orchestration platforms or in other contexts.

Characteristics of Efficient Container Images

Before we go over specific actions to take when building container
images, we will talk about what makes a good container image. What
should your goals be when designing new images? Which characteristics
and what behavior are most important?

Some qualities to aim for are:
A single, well-defined purpose
Container images should have a single discrete focus. Avoid thinking of

container images as virtual machines, where it can make sense to package
related functionality together. Instead, treat your container images like
Unix utilities, maintaining a strict focus on doing one small thing well.

Applications can be coordinated outside of the container scope to compose
complex functionality.

Generic design with the ability to inject configuration at runtime
Container images should be designed with reuse in mind when possible.

For instance, the ability to adjust configuration at runtime is often
required to fulfill basic requirements like testing your images before
deploying to production. Small, generic images can be combined in
different configurations to modify behavior without creating new images.

Small image size
Smaller images have a number of benefits in clustered environments

like Kubernetes. They download quickly to new nodes and often have a
smaller set of installed packages, which can improve security. Pared down
container images make it simpler to debug problems by minimizing the
amount of software involved.

Externally managed state
Containers in clustered environments experience a very volatile life

cycle including planned and unplanned shutdowns due to resource scarcity,
scaling, or node failures. To maintain consistency, aid in recovery and
availability of your services, and to avoid losing data, it is critical that you
store application state in a stable location outside of the container.

Easy to understand
It is important to try to keep container images as simple and easy to

understand as possible. When troubleshooting, being able to easily reason
about the problem by viewing container image configuration or testing
container behavior can help you reach a resolution faster. Thinking of
container images as a packaging format for your application instead of a
machine configuration can help you strike the right balance.

Follow containerized software best practices
Images should aim to work within the container model instead of acting

against it. Avoid implementing conventional system administration
practices, like including full init systems and daemonizing applications.
Log to standard out so Kubernetes can expose the data to administrators
instead of using an internal logging daemon. Each of these differs from
best practices for full operating systems.

Fully leverage Kubernetes features
Beyond conforming to the container model, it’s important to understand

and reconcile with the environment and tooling that Kubernetes provides.
For example, providing endpoints for liveness and readiness checks or
adjusting operation based on changes in the configuration or environment
can help your applications use Kubernetes’ dynamic deployment
environment to their advantage.

Now that we’ve established some of the qualities that define highly
functional container images, we can dive deeper into strategies that help
you achieve these goals.

Reuse Minimal, Shared Base Layers

We can start off by examining the resources that container images are built
from: base images. Each container image is built either from a parent
image, an image used as a starting point, or from the abstract scratch
layer, an empty image layer with no filesystem. A base image is a
container image that serves as a foundation for future images by defining
the basic operating system and providing core functionality. Images are

comprised of one or more image layers built on top of one another to form
a final image.

No standard utilities or filesystem are available when working directly
from scratch, which means that you only have access to extremely
limited functionality. While images created directly from scratch can
be very streamlined and minimal, their main purpose is in defining base
images. Typically, you want to build your container images on top of a
parent image that sets up a basic environment that your applications run in
so that you do not have to construct a complete system for every image.

While there are base images for a variety of Linux distributions, it’s
best to be deliberate about which systems you choose. Each new machine
will have to download the parent image and any additional layers you’ve
added. For large images, this can consume a significant amount of
bandwidth and noticeably lengthen the startup time of your containers on
their first run. There is no way to pare down an image that’s used as a
parent downstream in the container build process, so starting with a
minimal parent is a good idea.

Feature rich environments like Ubuntu allow your application to run in
an environment you’re familiar with, but there are some tradeoffs to
consider. Ubuntu images (and similar conventional distribution images)
tend to be relatively large (over 100MB), meaning that any container
images built from them will inherit that weight.

Alpine Linux is a popular alternative for base images because it
successfully packages a lot of functionality into a very small base image
(~ 5MB). It includes a package manager with sizable repositories and has
most of the standard utilities you would expect from a minimal Linux
environment.

When designing your applications, it’s a good idea to try to reuse the
same parent for each image. When your images share a parent, machines
running your containers will download the parent layer only once.
Afterwards, they will only need to download the layers that differ between
your images. This means that if you have common features or
functionality you’d like to embed in each image, creating a common
parent image to inherit from might be a good idea. Images that share a
lineage help minimize the amount of extra data you need to download on
fresh servers.

Managing Container Layers

Once you’ve selected a parent image, you can define your container image
by adding additional software, copying files, exposing ports, and choosing
processes to run. Certain instructions in the image configuration file (a
Dockerfile if you are using Docker) will add additional layers to your
image.

For many of the same reasons mentioned in the previous section, it’s
important to be mindful of how you add layers to your images due to the
resulting size, inheritance, and runtime complexity. To avoid building
large, unwieldy images, it’s important to develop a good understanding of
how container layers interact, how the build engine caches layers, and how
subtle differences in similar instructions can have a big impact on the
images you create.

Understanding Image Layers and Build Cache

Docker creates a new image layer each time it executes a RUN, COPY, or
ADD instruction. If you build the image again, the build engine will check

each instruction to see if it has an image layer cached for the operation. If
it finds a match in the cache, it uses the existing image layer rather than
executing the instruction again and rebuilding the layer.

This process can significantly shorten build times, but it is important to
understand the mechanism used to avoid potential problems. For file
copying instructions like COPY and ADD, Docker compares the checksums
of the files to see if the operation needs to be performed again. For RUN
instructions, Docker checks to see if it has an existing image layer cached
for that particular command string.

While it might not be immediately obvious, this behavior can cause
unexpected results if you are not careful. A common example of this is
updating the local package index and installing packages in two separate
steps. We will be using Ubuntu for this example, but the basic premise
applies equally well to base images for other distributions:

Package installation example Dockerfile
FROM ubuntu:18.04

RUN apt -y update

RUN apt -y install nginx

. . .

Here, the local package index is updated in one RUN instruction (apt -
y update) and Nginx is installed in another operation. This works
without issue when it is first used. However, if the Dockerfile is updated
later to install an additional package, there may be problems:

Package installation example Dockerfile

FROM ubuntu:18.04

RUN apt -y update

RUN apt -y install nginx php-fpm

. . .

We’ve added a second package to the installation command run by the
second instruction. If a significant amount of time has passed since the
previous image build, the new build might fail. That’s because the package
index update instruction (RUN apt -y update) has not changed, so
Docker reuses the image layer associated with that instruction. Since we
are using an old package index, the version of the php-fpm package we
have in our local records may no longer be in the repositories, resulting in
an error when the second instruction is run.

To avoid this scenario, be sure to consolidate any steps that are
interdependent into a single RUN instruction so that Docker will re-execute
all of the necessary commands when a change occurs:

Package installation example Dockerfile
FROM ubuntu:18.04

RUN apt -y update && apt -y install nginx php-fpm

. . .

The instruction now updates the local package cache whenever the
package list changes.

Reducing Image Layer Size by Tweaking RUN Instructions

The previous example demonstrates how Docker’s caching behavior can
subvert expectations, but there are some other things to keep in mind with
how RUN instructions interact with Docker’s layering system. As

mentioned earlier, at the end of each RUN instruction, Docker commits the
changes as an additional image layer. In order to exert control over the
scope of the image layers produced, you can clean up unnecessary files in
the final environment that will be committed by paying attention to the
artifacts introduced by the commands you run.

In general, chaining commands together into a single RUN instruction
offers a great deal of control over the layer that will be written. For each
command, you can set up the state of the layer (apt -y update),
perform the core command (apt install -y nginx php-fpm),
and remove any unnecessary artifacts to clean up the environment before
it’s committed. For example, many Dockerfiles chain rm -rf

/var/lib/apt/lists/* to the end of apt commands, removing the
downloaded package indexes, to reduce the final layer size:

Package installation example Dockerfile
FROM ubuntu:18.04

RUN apt -y update && apt -y install nginx php-fpm

&& rm -rf /var/lib/apt/lists/*

. . .

To further reduce the size of the image layers you are creating, trying to
limit other unintended side effects of the commands you’re running can be
helpful. For instance, in addition to the explicitly declared packages, apt
also installs “recommended” packages by default. You can include --no-
install-recommends to your apt commands to remove this
behavior. You may have to experiment to find out if you rely on any of the
functionality provided by recommended packages.

We’ve used package management commands in this section as an
example, but these same principles apply to other scenarios. The general
idea is to construct the prerequisite conditions, execute the minimum
viable command, and then clean up any unnecessary artifacts in a single
RUN command to reduce the overhead of the layer you’ll be producing.

Using Multi-stage Builds

Multi-stage builds were introduced in Docker 17.05, allowing developers
to more tightly control the final runtime images they produce. Multi-stage
builds allow you to divide your Dockerfile into multiple sections
representing distinct stages, each with a FROM statement to specify
separate parent images.

Earlier sections define images that can be used to build your application
and prepare assets. These often contain build tools and development files
that are needed to produce the application, but are not necessary to run it.
Each subsequent stage defined in the file will have access to artifacts
produced by previous stages.

The last FROM statement defines the image that will be used to run the
application. Typically, this is a pared down image that installs only the
necessary runtime requirements and then copies the application artifacts
produced by previous stages.

This system allows you worry less about optimizing RUN instructions in
the build stages since those container layers will not be present in the final
runtime image. You should still pay attention to how instructions interact
with layer caching in the build stages, but your efforts can be directed
towards minimizing build time rather than final image size. Paying
attention to instructions in the final stage is still important in reducing

https://docs.docker.com/develop/develop-images/multistage-build/

image size, but by separating the different stages of your container build,
it’s easier to to obtain streamlined images without as much Dockerfile
complexity.

Scoping Functionality at the Container and Pod Level

While the choices you make regarding container build instructions are
important, broader decisions about how to containerize your services often
have a more direct impact on your success. In this section, we’ll talk a bit
more about how to best transition your applications from a more
conventional environment to running on a container platform.

Containerizing by Function

Generally, it is good practice to package each piece of independent
functionality into a separate container image.

This differs from common strategies employed in virtual machine
environments where applications are frequently grouped together within
the same image to reduce the size and minimize the resources required to
run the VM. Since containers are lightweight abstractions that don’t
virtualize the entire operating system stack, this tradeoff is less
compelling on Kubernetes. So while a web stack virtual machine might
bundle an Nginx web server with a Gunicorn application server on a single
machine to serve a Django application, in Kubernetes these might be split
into separate containers.

Designing containers that implement one discrete piece of functionality
for your services offers a number of advantages. Each container can be
developed independently if standard interfaces between services are
established. For instance, the Nginx container could potentially be used to

proxy to a number of different backends or could be used as a load
balancer if given a different configuration.

Once deployed, each container image can be scaled independently to
address varying resource and load constraints. By splitting your
applications into multiple container images, you gain flexibility in
development, organization, and deployment.

Combining Container Images in Pods

In Kubernetes, pods are the smallest unit that can be directly managed by
the control plane. Pods consist of one or more containers along with
additional configuration data to tell the platform how those components
should be run. The containers within a pod are always scheduled on the
same worker node in the cluster and the system automatically restarts
failed containers. The pod abstraction is very useful, but it introduces
another layer of decisions about how to bundle together the components of
your applications.

Like container images, pods also become less flexible when too much
functionality is bundled into a single entity. Pods themselves can be scaled
using other abstractions, but the containers within cannot be managed or
scaled independently. So, to continue using our previous example, the
separate Nginx and Gunicorn containers should probably not be bundled
together into a single pod so that they can be controlled and deployed
separately.

However, there are scenarios where it does make sense to combine
functionally different containers as a unit. In general, these can be
categorized as situations where an additional container supports or

enhances the core functionality of the main container or helps it adapt to
its deployment environment. Some common patterns are:

Sidecar: The secondary container extends the main container’s core
functionality by acting in a supporting utility role. For example, the
sidecar container might forward logs or update the filesystem when a
remote repository changes. The primary container remains focused on
its core responsibility, but is enhanced by the features provided by the
sidecar.
Ambassador: An ambassador container is responsible for discovering
and connecting to (often complex) external resources. The primary
container can connect to an ambassador container on well-known
interfaces using the internal pod environment. The ambassador
abstracts the backend resources and proxies traffic between the
primary container and the resource pool.
Adaptor: An adaptor container is responsible for normalizing the
primary containers interfaces, data, and protocols to align with the
properties expected by other components. The primary container can
operate using native formats and the adaptor container translates and
normalizes the data to communicate with the outside world.

As you might have noticed, each of these patterns support the strategy
of building standard, generic primary container images that can then be
deployed in a variety contexts and configurations. The secondary
containers help bridge the gap between the primary container and the
specific deployment environment being used. Some sidecar containers can
also be reused to adapt multiple primary containers to the same

environmental conditions. These patterns benefit from the shared
filesystem and networking namespace provided by the pod abstraction
while still allowing independent development and flexible deployment of
standardized containers.

Designing for Runtime Configuration

There is some tension between the desire to build standardized, reusable
components and the requirements involved in adapting applications to
their runtime environment. Runtime configuration is one of the best
methods to bridge the gap between these concerns. Components are built
to be both general and flexible and the required behavior is outlined at
runtime by providing the software with additional configuration
information. This standard approach works for containers as well as it
does for applications.

Building with runtime configuration in mind requires you to think ahead
during both the application development and containerization steps.
Applications should be designed to read values from command line
parameters, configuration files, or environment variables when they are
launched or restarted. This configuration parsing and injection logic must
be implemented in code prior to containerization.

When writing a Dockerfile, the container must also be designed with
runtime configuration in mind. Containers have a number of mechanisms
for providing data at runtime. Users can mount files or directories from
the host as volumes within the container to enable file-based
configuration. Likewise, environment variables can be passed into the
internal container runtime when the container is started. The CMD and

ENTRYPOINT Dockerfile instructions can also be defined in a way that
allows for runtime configuration information to be passed in as command
parameters.

Since Kubernetes manipulates higher level objects like pods instead of
managing containers directly, there are mechanisms available to define
configuration and inject it into the container environment at runtime.
Kubernetes ConfigMaps and Secrets allow you to define configuration
data separately and then project the values into the container environment
as environment variables or files at runtime. ConfigMaps are general
purpose objects intended to store configuration data that might vary based
on environment, testing stage, etc. Secrets offer a similar interface but are
specifically designed for sensitive data, like account passwords or API
credentials.

By understanding and correctly using the runtime configuration options
available throughout each layer of abstraction, you can build flexible
components that take their cues from environment-provided values. This
makes it possible to reuse the same container images in very different
scenarios, reducing development overhead by improving application
flexibility.

Implementing Process Management with Containers

When transitioning to container-based environments, users often start by
shifting existing workloads, with few or no changes, to the new system.
They package applications in containers by wrapping the tools they are
already using in the new abstraction. While it is helpful to use your usual
patterns to get migrated applications up and running, dropping in previous

implementations within containers can sometimes lead to ineffective
design.

Treating Containers like Applications, Not Services

Problems frequently arise when developers implement significant service
management functionality within containers. For example, running
systemd services within the container or daemonizing web servers may be
considered best practices in a normal computing environment, but they
often conflict with assumptions inherent in the container model.

Hosts manage container life cycle events by sending signals to the
process operating as PID (process ID) 1 inside the container. PID 1 is the
first process started, which would be the init system in traditional
computing environments. However, because the host can only manage PID
1, using a conventional init system to manage processes within the
container sometimes means there is no way to control the primary
application. The host can start, stop, or kill the internal init system, but
can’t manage the primary application directly. The signals sometimes
propagate the intended behavior to the running application, but this adds
complexity and isn’t always necessary.

Most of the time, it is better to simplify the running environment within
the container so that PID 1 is running the primary application in the
foreground. In cases where multiple processes must be run, PID 1 is
responsible for managing the life cycle of subsequent processes. Certain
applications, like Apache, handle this natively by spawning and managing
workers that handle connections. For other applications, a wrapper script
or a very simple init system like dumb-init or the included tini init system
can be used in some cases. Regardless of the implementation you choose,

https://github.com/Yelp/dumb-init
https://github.com/krallin/tini

the process running as PID 1 within the container should respond
appropriately to TERM signals sent by Kubernetes to behave as expected.

Managing Container Health in Kubernetes

Kubernetes deployments and services offer life cycle management for
long-running processes and reliable, persistent access to applications, even
when underlying containers need to be restarted or the implementations
themselves change. By extracting the responsibility of monitoring and
maintaining service health out of the container, you can leverage the
platform’s tools for managing healthy workloads.

In order for Kubernetes to manage containers properly, it has to
understand whether the applications running within containers are healthy
and capable of performing work. To enable this, containers can implement
liveness probes: network endpoints or commands that can be used to
report application health. Kubernetes will periodically check defined
liveness probes to determine if the container is operating as expected. If
the container does not respond appropriately, Kubernetes restarts the
container in an attempt to reestablish functionality.

Kubernetes also provides readiness probes, a similar construct. Rather
than indicating whether the application within a container is healthy,
readiness probes determine whether the application is ready to receive
traffic. This can be useful when a containerized application has an
initialization routine that must complete before it is ready to receive
connections. Kubernetes uses readiness probes to determine whether to
add a pod to or remove a pod from a service.

Defining endpoints for these two probe types can help Kubernetes
manage your containers efficiently and can prevent container life cycle

problems from affecting service availability. The mechanisms to respond
to these types of health requests must be built into the application itself
and must be exposed in the Docker image configuration.

Conclusion

In this guide, we’ve covered some important considerations to keep in
mind when running containerized applications in Kubernetes. To reiterate,
some of the suggestions we went over were:

Use minimal, shareable parent images to build images with minimal
bloat and reduce startup time
Use multi-stage builds to separate the container build and runtime
environments
Combine Dockerfile instructions to create clean image layers and
avoid image caching mistakes
Containerize by isolating discrete functionality to enable flexible
scaling and management
Design pods to have a single, focused responsibility
Bundle helper containers to enhance the main container’s
functionality or to adapt it to the deployment environment
Build applications and containers to respond to runtime configuration
to allow greater flexibility when deploying
Run applications as the primary processes in containers so
Kubernetes can manage life cycle events
Develop health and liveness endpoints within the application or
container so that Kubernetes can monitor the health of the container

Throughout the development and implementation process, you will need
to make decisions that can affect your service’s robustness and
effectiveness. Understanding the ways that containerized applications
differ from conventional applications, and learning how they operate in a
managed cluster environment can help you avoid some common pitfalls
and allow you to take advantage of all of the capabilities Kubernetes
provides.

How To Scale a Node.js Application with
MongoDB on Kubernetes Using Helm

Written by Kathleen Juell
In this tutorial, you will deploy your Node.js shark application with a

MongoDB database onto a Kubernetes cluster using Helm charts. You will
use the official Helm MongoDB replica set chart to create a StatefulSet
object consisting of three Pods, a Headless Service, and three
PersistentVolumeClaims. You will also create a chart to deploy a multi-
replica Node.js application using a custom application image.

By the end of this tutorial you will have deployed a replicated, highly-
available shark information application on a Kubernetes cluster using Helm
charts. This demo application and the workflow outlined in this tutorial can
act as a starting point as you build custom charts for your application and
take advantage of Helm’s stable repository and other chart repositories.

Kubernetes is a system for running modern, containerized applications at
scale. With it, developers can deploy and manage applications across clusters
of machines. And though it can be used to improve efficiency and reliability
in single-instance application setups, Kubernetes is designed to run multiple
instances of an application across groups of machines.

When creating multi-service deployments with Kubernetes, many
developers opt to use the Helm package manager. Helm streamlines the
process of creating multiple Kubernetes resources by offering charts and
templates that coordinate how these objects interact. It also offers pre-
packaged charts for popular open-source projects.

https://www.digitalocean.com/community/tutorials/how-to-scale-a-node-js-application-with-mongodb-on-kubernetes-using-helm
https://kubernetes.io/
https://helm.sh/

In this tutorial, you will deploy a Node.js application with a MongoDB
database onto a Kubernetes cluster using Helm charts. You will use the
official Helm MongoDB replica set chart to create a StatefulSet object
consisting of three Pods, a Headless Service, and three
PersistentVolumeClaims. You will also create a chart to deploy a multi-
replica Node.js application using a custom application image. The setup you
will build in this tutorial will mirror the functionality of the code described
in Containerizing a Node.js Application with Docker Compose and will be a
good starting point to build a resilient Node.js application with a MongoDB
data store that can scale with your needs.

Prerequisites

To complete this tutorial, you will need: - A Kubernetes 1.10+ cluster with
role-based access control (RBAC) enabled. This setup will use a
DigitalOcean Kubernetes cluster, but you are free to create a cluster using
another method. - The kubectl command-line tool installed on your local
machine or development server and configured to connect to your cluster.
You can read more about installing kubectl in the official documentation.
- Helm installed on your local machine or development server and Tiller
installed on your cluster, following the directions outlined in Steps 1 and 2 of
How To Install Software on Kubernetes Clusters with the Helm Package
Manager. - Docker installed on your local machine or development server. If
you are working with Ubuntu 18.04, follow Steps 1 and 2 of How To Install
and Use Docker on Ubuntu 18.04; otherwise, follow the official
documentation for information about installing on other operating systems.
Be sure to add your non-root user to the docker group, as described in Step

https://nodejs.org/
https://github.com/helm/charts/tree/master/stable/mongodb-replicaset
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/services-networking/service/#headless-services
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://www.digitalocean.com/community/tutorials/containerizing-a-node-js-application-for-development-with-docker-compose
https://www.digitalocean.com/products/kubernetes/
https://www.digitalocean.com/community/tutorials/how-to-create-a-kubernetes-1-11-cluster-using-kubeadm-on-ubuntu-18-04
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://www.digitalocean.com/community/tutorials/how-to-install-software-on-kubernetes-clusters-with-the-helm-package-manager
https://www.docker.com/
https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-18-04
https://docs.docker.com/install/

2 of the linked tutorial. - A Docker Hub account. For an overview of how to
set this up, refer to this introduction to Docker Hub.

Step 1 — Cloning and Packaging the Application

To use our application with Kubernetes, we will need to package it so that
the kubelet agent can pull the image. Before packaging the application,
however, we will need to modify the MongoDB connection URI in the
application code to ensure that our application can connect to the members
of the replica set that we will create with the Helm mongodb-
replicaset chart.

Our first step will be to clone the node-mongo-docker-dev repository from
the DigitalOcean Community GitHub account. This repository includes the
code from the setup described in Containerizing a Node.js Application for
Development With Docker Compose, which uses a demo Node.js application
with a MongoDB database to demonstrate how to set up a development
environment with Docker Compose. You can find more information about
the application itself in the series From Containers to Kubernetes with
Node.js.

Clone the repository into a directory called node_project:
git clone https://github.com/do-community/node-

mongo-docker-dev.git node_project

Navigate to the node_project directory:
cd node_project

The node_project directory contains files and directories for a shark
information application that works with user input. It has been modernized
to work with containers: sensitive and specific configuration information has
been removed from the application code and refactored to be injected at

https://hub.docker.com/
https://docs.docker.com/docker-hub/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://docs.mongodb.com/manual/reference/connection-string/
https://github.com/do-community/node-mongo-docker-dev.git
https://github.com/do-community
https://www.digitalocean.com/community/tutorials/containerizing-a-node-js-application-for-development-with-docker-compose
https://www.digitalocean.com/community/tutorial_series/from-containers-to-kubernetes-with-node-js

runtime, and the application’s state has been offloaded to a MongoDB
database.

For more information about designing modern, containerized applications,
please see Architecting Applications for Kubernetes and Modernizing
Applications for Kubernetes.

When we deploy the Helm mongodb-replicaset chart, it will create:
- A StatefulSet object with three Pods — the members of the MongoDB
replica set. Each Pod will have an associated PersistentVolumeClaim and
will maintain a fixed identity in the event of rescheduling. - A MongoDB
replica set made up of the Pods in the StatefulSet. The set will include one
primary and two secondaries. Data will be replicated from the primary to the
secondaries, ensuring that our application data remains highly available.

For our application to interact with the database replicas, the MongoDB
connection URI in our code will need to include both the hostnames of the
replica set members as well as the name of the replica set itself. We
therefore need to include these values in the URI.

The file in our cloned repository that specifies database connection
information is called db.js. Open that file now using nano or your
favorite editor:
nano db.js

Currently, the file includes constants that are referenced in the database
connection URI at runtime. The values for these constants are injected using
Node’s process.env property, which returns an object with information
about your user environment at runtime. Setting values dynamically in our
application code allows us to decouple the code from the underlying
infrastructure, which is necessary in a dynamic, stateless environment. For
more information about refactoring application code in this way, see Step 2

https://www.digitalocean.com/community/tutorials/architecting-applications-for-kubernetes
https://www.digitalocean.com/community/tutorials/modernizing-applications-for-kubernetes
https://docs.mongodb.com/manual/replication/
https://www.digitalocean.com/community/tutorials/understanding-variables-scope-hoisting-in-javascript#constants
https://nodejs.org/api/process.html#process_process_env
https://www.digitalocean.com/community/tutorials/containerizing-a-node-js-application-for-development-with-docker-compose#step-2-%E2%80%94-configuring-your-application-to-work-with-containers

of Containerizing a Node.js Application for Development With Docker
Compose and the relevant discussion in The 12-Factor App.

The constants for the connection URI and the URI string itself currently
look like this:

~/node_project/db.js
...

const {

 MONGO_USERNAME,

 MONGO_PASSWORD,

 MONGO_HOSTNAME,

 MONGO_PORT,

 MONGO_DB

} = process.env;

...

const url =

`mongodb://${MONGO_USERNAME}:${MONGO_PASSWORD}@${MON

GO_HOSTNAME}:${MONGO_PORT}/${MONGO_DB}?

authSource=admin`;

...

In keeping with a 12FA approach, we do not want to hard code the
hostnames of our replica instances or our replica set name into this URI
string. The existing MONGO_HOSTNAME constant can be expanded to include
multiple hostnames — the members of our replica set — so we will leave
that in place. We will need to add a replica set constant to the options
section of the URI string, however.

https://www.digitalocean.com/community/tutorials/containerizing-a-node-js-application-for-development-with-docker-compose
https://12factor.net/config
https://docs.mongodb.com/manual/reference/connection-string/#components

Add MONGO_REPLICASET to both the URI constant object and the
connection string:

~/node_project/db.js
...

const {

 MONGO_USERNAME,

 MONGO_PASSWORD,

 MONGO_HOSTNAME,

 MONGO_PORT,

 MONGO_DB,

 MONGO_REPLICASET

} = process.env;

...

const url =

`mongodb://${MONGO_USERNAME}:${MONGO_PASSWORD}@${MON

GO_HOSTNAME}:${MONGO_PORT}/${MONGO_DB}?

replicaSet=${MONGO_REPLICASET}&authSource=admin`;

...

Using the replicaSet option in the options section of the URI allows
us to pass in the name of the replica set, which, along with the hostnames
defined in the MONGO_HOSTNAME constant, will allow us to connect to the
set members.

Save and close the file when you are finished editing.
With your database connection information modified to work with replica

sets, you can now package your application, build the image with the
docker build command, and push it to Docker Hub.

https://docs.mongodb.com/manual/reference/connection-string/#urioption.replicaSet
https://docs.docker.com/engine/reference/commandline/build/

Build the image with docker build and the -t flag, which allows you
to tag the image with a memorable name. In this case, tag the image with
your Docker Hub username and name it node-replicas or a name of
your own choosing:
docker build -t your_dockerhub_username/node-

replicas .

The . in the command specifies that the build context is the current
directory.

It will take a minute or two to build the image. Once it is complete, check
your images:
docker images

You will see the following output:

Output
REPOSITORY TAG

IMAGE ID CREATED SIZE

your_dockerhub_username/node-replicas latest

56a69b4bc882 7 seconds ago 90.1MB

node 10-alpine

aa57b0242b33 6 days ago 71MB

Next, log in to the Docker Hub account you created in the prerequisites:
docker login -u your_dockerhub_username

When prompted, enter your Docker Hub account password. Logging in
this way will create a ~/.docker/config.json file in your non-root
user’s home directory with your Docker Hub credentials.

Push the application image to Docker Hub with the docker push
command. Remember to replace your_dockerhub_username with your
own Docker Hub username:

https://docs.docker.com/engine/reference/commandline/push/

docker push your_dockerhub_username/node-replicas

You now have an application image that you can pull to run your
replicated application with Kubernetes. The next step will be to configure
specific parameters to use with the MongoDB Helm chart.

Step 2 — Creating Secrets for the MongoDB Replica Set

The stable/mongodb-replicaset chart provides different options
when it comes to using Secrets, and we will create two to use with our chart
deployment: - A Secret for our replica set keyfile that will function as a
shared password between replica set members, allowing them to authenticate
other members. - A Secret for our MongoDB admin user, who will be created
as a root user on the admin database. This role will allow you to create
subsequent users with limited permissions when deploying your application
to production.

With these Secrets in place, we will be able to set our preferred parameter
values in a dedicated values file and create the StatefulSet object and
MongoDB replica set with the Helm chart.

First, let’s create the keyfile. We will use the openssl command with the
rand option to generate a 756 byte random string for the keyfile:
openssl rand -base64 756 > key.txt

The output generated by the command will be base64 encoded, ensuring
uniform data transmission, and redirected to a file called key.txt,
following the guidelines stated in the mongodb-replicaset chart
authentication documentation. The key itself must be between 6 and 1024
characters long, consisting only of characters in the base64 set.

You can now create a Secret called keyfilesecret using this file with
kubectl create:

https://docs.mongodb.com/manual/tutorial/enforce-keyfile-access-control-in-existing-replica-set/#enforce-keyfile-access-control-on-existing-replica-set
https://docs.mongodb.com/manual/reference/built-in-roles/#root
https://www.openssl.org/docs/man1.1.1/man1/openssl.html
https://en.wikipedia.org/wiki/Base64
https://github.com/helm/charts/tree/master/stable/mongodb-replicaset#authentication
https://docs.mongodb.com/manual/core/security-internal-authentication/#keyfiles
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#create

kubectl create secret generic keyfilesecret --from-

file=key.txt

This will create a Secret object in the default namespace, since we have
not created a specific namespace for our setup.

You will see the following output indicating that your Secret has been
created:

Output
secret/keyfilesecret created

Remove key.txt:
rm key.txt

Alternatively, if you would like to save the file, be sure restrict its
permissions and add it to your .gitignore file to keep it out of version
control.

Next, create the Secret for your MongoDB admin user. The first step will
be to convert your desired username and password to base64.

Convert your database username:
echo -n 'your_database_username' | base64

Note down the value you see in the output.
Next, convert your password:

echo -n 'your_database_password' | base64

Take note of the value in the output here as well.
Open a file for the Secret:

nano secret.yaml

Note: Kubernetes objects are typically defined using YAML, which
strictly forbids tabs and requires two spaces for indentation. If you would
like to check the formatting of any of your YAML files, you can use a linter

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://docs.mongodb.com/manual/tutorial/enforce-keyfile-access-control-in-existing-replica-set/#create-a-keyfile
https://git-scm.com/docs/gitignore
https://kubernetes.io/docs/concepts/overview/object-management-kubectl/imperative-config/
https://yaml.org/
http://www.yamllint.com/

or test the validity of your syntax using kubectl create with the --
dry-run and --validate flags:
kubectl create -f your_yaml_file.yaml --dry-run --

validate=true

In general, it is a good idea to validate your syntax before creating
resources with kubectl.

Add the following code to the file to create a Secret that will define a
user and password with the encoded values you just created. Be sure to
replace the dummy values here with your own encoded username and
password:

~/node_project/secret.yaml
apiVersion: v1

kind: Secret

metadata:

 name: mongo-secret

data:

 user: your_encoded_username

 password: your_encoded_password

Here, we’re using the key names that the mongodb-replicaset chart
expects: user and password. We have named the Secret object mongo-
secret, but you are free to name it anything you would like.

Save and close the file when you are finished editing.
Create the Secret object with the following command:

kubectl create -f secret.yaml

You will see the following output:

Output

secret/mongo-secret created

Again, you can either remove secret.yaml or restrict its permissions
and add it to your .gitignore file.

With your Secret objects created, you can move on to specifying the
parameter values you will use with the mongodb-replicaset chart and
creating the MongoDB deployment.

Step 3 — Configuring the MongoDB Helm Chart and Creating
a Deployment

Helm comes with an actively maintained repository called stable that
contains the chart we will be using: mongodb-replicaset. To use this
chart with the Secrets we’ve just created, we will create a file with
configuration parameter values called mongodb-values.yaml and then
install the chart using this file.

Our mongodb-values.yaml file will largely mirror the default
values.yaml file in the mongodb-replicaset chart repository. We
will, however, make the following changes to our file: - We will set the
auth parameter to true to ensure that our database instances start with
authorization enabled. This means that all clients will be required to
authenticate for access to database resources and operations. - We will add
information about the Secrets we created in the previous Step so that the
chart can use these values to create the replica set keyfile and admin user. -
We will decrease the size of the PersistentVolumes associated with each Pod
in the StatefulSet to use the minimum viable DigitalOcean Block Storage
unit, 1GB, though you are free to modify this to meet your storage
requirements.

https://github.com/helm/charts/blob/master/stable/mongodb-replicaset/values.yaml
https://docs.mongodb.com/manual/reference/program/mongod/#cmdoption-mongod-auth
https://www.digitalocean.com/docs/volumes/overview/

Before writing the mongodb-values.yaml file, however, you should
first check that you have a StorageClass created and configured to provision
storage resources. Each of the Pods in your database StatefulSet will have a
sticky identity and an associated PersistentVolumeClaim, which will
dynamically provision a PersistentVolume for the Pod. If a Pod is
rescheduled, the PersistentVolume will be mounted to whichever node the
Pod is scheduled on (though each Volume must be manually deleted if its
associated Pod or StatefulSet is permanently deleted).

Because we are working with DigitalOcean Kubernetes, our default
StorageClass provisioner is set to dobs.csi.digitalocean.com
— DigitalOcean Block Storage — which we can check by typing:
kubectl get storageclass

If you are working with a DigitalOcean cluster, you will see the following
output:

Output
NAME PROVISIONER

AGE

do-block-storage (default)

dobs.csi.digitalocean.com 21m

If you are not working with a DigitalOcean cluster, you will need to create
a StorageClass and configure a provisioner of your choice. For details
about how to do this, please see the official documentation.

Now that you have ensured that you have a StorageClass configured, open
mongodb-values.yaml for editing:
nano mongodb-values.yaml

You will set values in this file that will do the following: - Enable
authorization. - Reference your keyfilesecret and mongo-secret

https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://www.digitalocean.com/products/kubernetes/
https://www.digitalocean.com/products/block-storage/
https://kubernetes.io/docs/concepts/storage/storage-classes/

objects. - Specify 1Gi for your PersistentVolumes. - Set your replica set
name to db. - Specify 3 replicas for the set. - Pin the mongo image to the
latest version at the time of writing: 4.1.9.

Paste the following code into the file:

~/node_project/mongodb-values.yaml
replicas: 3

port: 27017

replicaSetName: db

podDisruptionBudget: {}

auth:

 enabled: true

 existingKeySecret: keyfilesecret

 existingAdminSecret: mongo-secret

imagePullSecrets: []

installImage:

 repository: unguiculus/mongodb-install

 tag: 0.7

 pullPolicy: Always

copyConfigImage:

 repository: busybox

 tag: 1.29.3

 pullPolicy: Always

image:

 repository: mongo

 tag: 4.1.9

 pullPolicy: Always

extraVars: {}

metrics:

 enabled: false

 image:

 repository: ssalaues/mongodb-exporter

 tag: 0.6.1

 pullPolicy: IfNotPresent

 port: 9216

 path: /metrics

 socketTimeout: 3s

 syncTimeout: 1m

 prometheusServiceDiscovery: true

 resources: {}

podAnnotations: {}

securityContext:

 enabled: true

 runAsUser: 999

 fsGroup: 999

 runAsNonRoot: true

init:

 resources: {}

 timeout: 900

resources: {}

nodeSelector: {}

affinity: {}

tolerations: []

extraLabels: {}

persistentVolume:

 enabled: true

 #storageClass: "-"

 accessModes:

 - ReadWriteOnce

 size: 1Gi

 annotations: {}

serviceAnnotations: {}

terminationGracePeriodSeconds: 30

tls:

 enabled: false

configmap: {}

readinessProbe:

 initialDelaySeconds: 5

 timeoutSeconds: 1

 failureThreshold: 3

 periodSeconds: 10

 successThreshold: 1

livenessProbe:

 initialDelaySeconds: 30

 timeoutSeconds: 5

 failureThreshold: 3

 periodSeconds: 10

 successThreshold: 1

The persistentVolume.storageClass parameter is commented
out here: removing the comment and setting its value to "-" would disable
dynamic provisioning. In our case, because we are leaving this value

undefined, the chart will choose the default provisioner — in our case,
dobs.csi.digitalocean.com.

Also note the accessMode associated with the persistentVolume
key: ReadWriteOnce means that the provisioned volume will be read-
write only by a single node. Please see the documentation for more
information about different access modes.

To learn more about the other parameters included in the file, see the
configuration table included with the repo.

Save and close the file when you are finished editing.
Before deploying the mongodb-replicaset chart, you will want to

update the stable repo with the helm repo update command:
helm repo update

This will get the latest chart information from the stable repository.
Finally, install the chart with the following command:

helm install --name mongo -f mongodb-values.yaml

stable/mongodb-replicaset

Note: Before installing a chart, you can run helm install with the --
dry-run and --debug options to check the generated manifests for your
release:
helm install --name your_release_name -f

your_values_file.yaml --dry-run --debug your_chart

Note that we are naming the Helm release mongo. This name will refer to
this particular deployment of the chart with the configuration options we’ve
specified. We’ve pointed to these options by including the -f flag and our
mongodb-values.yaml file.

Also note that because we did not include the --namespace flag with
helm install, our chart objects will be created in the default

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes
https://github.com/helm/charts/tree/master/stable/mongodb-replicaset#configuration
https://helm.sh/docs/helm/#helm-repo-update

namespace.
Once you have created the release, you will see output about its status,

along with information about the created objects and instructions for
interacting with them:

Output
NAME: mongo

LAST DEPLOYED: Tue Apr 16 21:51:05 2019

NAMESPACE: default

STATUS: DEPLOYED

RESOURCES:

==> v1/ConfigMap

NAME DATA AGE

mongo-mongodb-replicaset-init 1 1s

mongo-mongodb-replicaset-mongodb 1 1s

mongo-mongodb-replicaset-tests 1 0s

...

You can now check on the creation of your Pods with the following
command:
kubectl get pods

You will see output like the following as the Pods are being created:

Output
NAME READY STATUS

RESTARTS AGE

mongo-mongodb-replicaset-0 1/1 Running 0

67s

mongo-mongodb-replicaset-1 0/1 Init:0/3 0

8s

The READY and STATUS outputs here indicate that the Pods in our
StatefulSet are not fully ready: the Init Containers associated with the Pod’s
containers are still running. Because StatefulSet members are created in
sequential order, each Pod in the StatefulSet must be Running and Ready
before the next Pod will be created.

Once the Pods have been created and all of their associated containers are
running, you will see this output:

Output
NAME READY STATUS

RESTARTS AGE

mongo-mongodb-replicaset-0 1/1 Running 0

2m33s

mongo-mongodb-replicaset-1 1/1 Running 0

94s

mongo-mongodb-replicaset-2 1/1 Running 0

36s

The Running STATUS indicates that your Pods are bound to nodes and
that the containers associated with those Pods are running. READY indicates
how many containers in a Pod are running. For more information, please
consult the documentation on Pod lifecycles.

Note: If you see unexpected phases in the STATUS column, remember that
you can troubleshoot your Pods with the following commands:
kubectl describe pods your_pod

kubectl logs your_pod

https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/#deployment-and-scaling-guarantees
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/

Each of the Pods in your StatefulSet has a name that combines the name of
the StatefulSet with the ordinal index of the Pod. Because we created three
replicas, our StatefulSet members are numbered 0-2, and each has a stable
DNS entry comprised of the following elements: $(statefulset-
name)-$(ordinal).$(service

name).$(namespace).svc.cluster.local.
In our case, the StatefulSet and the Headless Service created by the

mongodb-replicaset chart have the same names:
kubectl get statefulset

Output
NAME READY AGE

mongo-mongodb-replicaset 3/3 4m2s

kubectl get svc

Output
NAME TYPE

CLUSTER-IP EXTERNAL-IP PORT(S) AGE

kubernetes ClusterIP

10.245.0.1 <none> 443/TCP 42m

mongo-mongodb-replicaset ClusterIP None

<none> 27017/TCP 4m35s

mongo-mongodb-replicaset-client ClusterIP None

<none> 27017/TCP 4m35s

This means that the first member of our StatefulSet will have the
following DNS entry:
mongo-mongodb-replicaset-0.mongo-mongodb-

replicaset.default.svc.cluster.local

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/#ordinal-index
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/#stable-network-id
https://kubernetes.io/docs/concepts/services-networking/service/#headless-services

Because we need our application to connect to each MongoDB instance,
it’s essential that we have this information so that we can communicate
directly with the Pods, rather than with the Service. When we create our
custom application Helm chart, we will pass the DNS entries for each Pod to
our application using environment variables.

With your database instances up and running, you are ready to create the
chart for your Node application.

Step 4 — Creating a Custom Application Chart and
Configuring Parameters

We will create a custom Helm chart for our Node application and modify the
default files in the standard chart directory so that our application can work
with the replica set we have just created. We will also create files to define
ConfigMap and Secret objects for our application.

First, create a new chart directory called nodeapp with the following
command:
helm create nodeapp

This will create a directory called nodeapp in your ~/node_project
folder with the following resources: - A Chart.yaml file with basic
information about your chart. - A values.yaml file that allows you to set
specific parameter values, as you did with your MongoDB deployment. - A
.helmignore file with file and directory patterns that will be ignored
when packaging charts. - A templates/ directory with the template files
that will generate Kubernetes manifests. - A templates/tests/
directory for test files. - A charts/ directory for any charts that this chart
depends on.

The first file we will modify out of these default files is values.yaml.
Open that file now:
nano nodeapp/values.yaml

The values that we will set here include: - The number of replicas. - The
application image we want to use. In our case, this will be the node-
replicas image we created in Step 1. - The ServiceType. In this case, we
will specify LoadBalancer to create a point of access to our application for
testing purposes. Because we are working with a DigitalOcean Kubernetes
cluster, this will create a DigitalOcean Load Balancer when we deploy our
chart. In production, you can configure your chart to use Ingress Resources
and Ingress Controllers to route traffic to your Services. - The targetPort to
specify the port on the Pod where our application will be exposed.

We will not enter environment variables into this file. Instead, we will
create templates for ConfigMap and Secret objects and add these values to
our application Deployment manifest, located at
~/node_project/nodeapp/templates/deployment.yaml.

Configure the following values in the values.yaml file:

~/node_project/nodeapp/values.yaml
Default values for nodeapp.

This is a YAML-formatted file.

Declare variables to be passed into your

templates.

replicaCount: 3

image:

 repository: your_dockerhub_username/node-replicas

https://www.digitalocean.com/community/tutorials/how-to-scale-a-node-js-application-with-mongodb-using-helm#step-1-%E2%80%94-cloning-and-packaging-the-application
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer
https://www.digitalocean.com/products/load-balancer/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://kubernetes.io/docs/concepts/services-networking/service/#defining-a-service

 tag: latest

 pullPolicy: IfNotPresent

nameOverride: ""

fullnameOverride: ""

service:

 type: LoadBalancer

 port: 80

 targetPort: 8080

...

Save and close the file when you are finished editing.
Next, open a secret.yaml file in the nodeapp/templates

directory:
nano nodeapp/templates/secret.yaml

In this file, add values for your MONGO_USERNAME and
MONGO_PASSWORD application constants. These are the constants that your
application will expect to have access to at runtime, as specified in db.js,
your database connection file. As you add the values for these constants,
remember to the use the base64-encoded values that you used earlier in Step
2 when creating your mongo-secret object. If you need to recreate those
values, you can return to Step 2 and run the relevant commands again.

Add the following code to the file:

~/node_project/nodeapp/templates/secret.yaml
apiVersion: v1

kind: Secret

metadata:

https://www.digitalocean.com/community/tutorials/how-to-scale-a-node-js-application-with-mongodb-using-helm#step-2-%E2%80%94-creating-secrets-for-the-mongodb-replica-set

 name: {{ .Release.Name }}-auth

data:

 MONGO_USERNAME: your_encoded_username

 MONGO_PASSWORD: your_encoded_password

The name of this Secret object will depend on the name of your Helm
release, which you will specify when you deploy the application chart.

Save and close the file when you are finished.
Next, open a file to create a ConfigMap for your application:

nano nodeapp/templates/configmap.yaml

In this file, we will define the remaining variables that our application
expects: MONGO_HOSTNAME, MONGO_PORT, MONGO_DB, and
MONGO_REPLICASET. Our MONGO_HOSTNAME variable will include the
DNS entry for each instance in our replica set, since this is what the
MongoDB connection URI requires.

According to the Kubernetes documentation, when an application
implements liveness and readiness checks, SRV records should be used when
connecting to the Pods. As discussed in Step 3, our Pod SRV records follow
this pattern: $(statefulset-name)-$(ordinal).$(service

name).$(namespace).svc.cluster.local. Since our MongoDB
StatefulSet implements liveness and readiness checks, we should use these
stable identifiers when defining the values of the MONGO_HOSTNAME
variable.

Add the following code to the file to define the MONGO_HOSTNAME,
MONGO_PORT, MONGO_DB, and MONGO_REPLICASET variables. You are
free to use another name for your MONGO_DB database, but your
MONGO_HOSTNAME and MONGO_REPLICASET values must be written as
they appear here:

https://docs.mongodb.com/manual/reference/connection-string/
https://kubernetes.io/docs/tutorials/stateful-application/basic-stateful-set/#using-stable-network-identities
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/#srv-records
https://www.digitalocean.com/community/tutorials/how-to-scale-a-node-js-application-with-mongodb-using-helm#step-3-%E2%80%94-configuring-the-mongodb-helm-chart-and-creating-a-deployment

~/node_project/nodeapp/templates/configmap.yaml
apiVersion: v1

kind: ConfigMap

metadata:

 name: {{ .Release.Name }}-config

data:

 MONGO_HOSTNAME: "mongo-mongodb-replicaset-0.mongo-

mongodb-replicaset.default.svc.cluster.local,mongo-

mongodb-replicaset-1.mongo-mongodb-

replicaset.default.svc.cluster.local,mongo-mongodb-

replicaset-2.mongo-mongodb-

replicaset.default.svc.cluster.local"

 MONGO_PORT: "27017"

 MONGO_DB: "sharkinfo"

 MONGO_REPLICASET: "db"

Because we have already created the StatefulSet object and replica set, the
hostnames that are listed here must be listed in your file exactly as they
appear in this example. If you destroy these objects and rename your
MongoDB Helm release, then you will need to revise the values included in
this ConfigMap. The same applies for MONGO_REPLICASET, since we
specified the replica set name with our MongoDB release.

Also note that the values listed here are quoted, which is the expectation
for environment variables in Helm.

Save and close the file when you are finished editing.
With your chart parameter values defined and your Secret and ConfigMap

manifests created, you can edit the application Deployment template to use
your environment variables.

https://github.com/helm/helm/blob/master/docs/charts_tips_and_tricks.md#quote-strings-dont-quote-integers

Step 5 — Integrating Environment Variables into Your Helm
Deployment

With the files for our application Secret and ConfigMap in place, we will
need to make sure that our application Deployment can use these values. We
will also customize the liveness and readiness probes that are already
defined in the Deployment manifest.

Open the application Deployment template for editing:
nano nodeapp/templates/deployment.yaml

Though this is a YAML file, Helm templates use a different syntax from
standard Kubernetes YAML files in order to generate manifests. For more
information about templates, see the Helm documentation.

In the file, first add an env key to your application container
specifications, below the imagePullPolicy key and above ports:

~/node_project/nodeapp/templates/deployment.yaml
apiVersion: apps/v1

kind: Deployment

metadata:

...

 spec:

 containers:

 - name: {{ .Chart.Name }}

 image: "{{ .Values.image.repository }}:{{

.Values.image.tag }}"

 imagePullPolicy: {{ .Values.image.pullPolicy

}}

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/
https://helm.sh/docs/chart_template_guide/#the-chart-template-developer-s-guide

 env:

 ports:

Next, add the following keys to the list of env variables:

~/node_project/nodeapp/templates/deployment.yaml
apiVersion: apps/v1

kind: Deployment

metadata:

...

 spec:

 containers:

 - name: {{ .Chart.Name }}

 image: "{{ .Values.image.repository }}:{{

.Values.image.tag }}"

 imagePullPolicy: {{ .Values.image.pullPolicy

}}

 env:

 - name: MONGO_USERNAME

 valueFrom:

 secretKeyRef:

 key: MONGO_USERNAME

 name: {{ .Release.Name }}-auth

 - name: MONGO_PASSWORD

 valueFrom:

 secretKeyRef:

 key: MONGO_PASSWORD

 name: {{ .Release.Name }}-auth

 - name: MONGO_HOSTNAME

 valueFrom:

 configMapKeyRef:

 key: MONGO_HOSTNAME

 name: {{ .Release.Name }}-config

 - name: MONGO_PORT

 valueFrom:

 configMapKeyRef:

 key: MONGO_PORT

 name: {{ .Release.Name }}-config

 - name: MONGO_DB

 valueFrom:

 configMapKeyRef:

 key: MONGO_DB

 name: {{ .Release.Name }}-config

 - name: MONGO_REPLICASET

 valueFrom:

 configMapKeyRef:

 key: MONGO_REPLICASET

 name: {{ .Release.Name }}-config

Each variable includes a reference to its value, defined either by a
secretKeyRef key, in the case of Secret values, or configMapKeyRef
for ConfigMap values. These keys point to the Secret and ConfigMap files
we created in the previous Step.

Next, under the ports key, modify the containerPort definition to
specify the port on the container where our application will be exposed:

https://kubernetes.io/docs/concepts/configuration/secret/#using-secrets-as-environment-variables
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#define-container-environment-variables-using-configmap-data

~/node_project/nodeapp/templates/deployment.yaml
apiVersion: apps/v1

kind: Deployment

metadata:

...

 spec:

 containers:

 ...

 env:

 ...

 ports:

 - name: http

 containerPort: 8080

 protocol: TCP

 ...

Next, let’s modify the liveness and readiness checks that are included in
this Deployment manifest by default. These checks ensure that our
application Pods are running and ready to serve traffic: - Readiness probes
assess whether or not a Pod is ready to serve traffic, stopping all requests to
the Pod until the checks succeed. - Liveness probes check basic application
behavior to determine whether or not the application in the container is
running and behaving as expected. If a liveness probe fails, Kubernetes will
restart the container.

For more about both, see the relevant discussion in Architecting
Applications for Kubernetes.

In our case, we will build on the httpGet request that Helm has provided
by default and test whether or not our application is accepting requests on

https://www.digitalocean.com/community/tutorials/architecting-applications-for-kubernetes#implementing-readiness-and-liveness-probes
https://www.digitalocean.com/community/tutorials/architecting-applications-for-kubernetes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/#define-a-liveness-http-request

the /sharks endpoint. The kubelet service will perform the probe by
sending a GET request to the Node server running in the application Pod’s
container and listening on port 8080. If the status code for the response is
between 200 and 400, then the kubelet will conclude that the container is
healthy. Otherwise, in the case of a 400 or 500 status, kubelet will either
stop traffic to the container, in the case of the readiness probe, or restart the
container, in the case of the liveness probe.

Add the following modification to the stated path for the liveness and
readiness probes:

~/node_project/nodeapp/templates/deployment.yaml
apiVersion: apps/v1

kind: Deployment

metadata:

...

 spec:

 containers:

 ...

 env:

 ...

 ports:

 - name: http

 containerPort: 8080

 protocol: TCP

 livenessProbe:

 httpGet:

 path: /sharks

 port: http

https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/

 readinessProbe:

 httpGet:

 path: /sharks

 port: http

Save and close the file when you are finished editing.
You are now ready to create your application release with Helm. Run the

following helm install command, which includes the name of the
release and the location of the chart directory:
helm install --name nodejs ./nodeapp

Remember that you can run helm install with the --dry-run and -
-debug options first, as discussed in Step 3, to check the generated
manifests for your release.

Again, because we are not including the --namespace flag with helm
install, our chart objects will be created in the default namespace.

You will see the following output indicating that your release has been
created:

Output
NAME: nodejs

LAST DEPLOYED: Wed Apr 17 18:10:29 2019

NAMESPACE: default

STATUS: DEPLOYED

RESOURCES:

==> v1/ConfigMap

NAME DATA AGE

nodejs-config 4 1s

https://helm.sh/docs/helm/#helm-install
https://www.digitalocean.com/community/tutorials/how-to-scale-a-node-js-application-with-mongodb-using-helm#step-3-%E2%80%94-configuring-the-mongodb-helm-chart-and-creating-a-deployment

==> v1/Deployment

NAME READY UP-TO-DATE AVAILABLE AGE

nodejs-nodeapp 0/3 3 0 1s

...

Again, the output will indicate the status of the release, along with
information about the created objects and how you can interact with them.

Check the status of your Pods:
kubectl get pods

Output
NAME READY STATUS

RESTARTS AGE

mongo-mongodb-replicaset-0 1/1 Running

0 57m

mongo-mongodb-replicaset-1 1/1 Running

0 56m

mongo-mongodb-replicaset-2 1/1 Running

0 55m

nodejs-nodeapp-577df49dcc-b5fq5 1/1 Running

0 117s

nodejs-nodeapp-577df49dcc-bkk66 1/1 Running

0 117s

nodejs-nodeapp-577df49dcc-lpmt2 1/1 Running

0 117s

Once your Pods are up and running, check your Services:
kubectl get svc

Output
NAME TYPE

CLUSTER-IP EXTERNAL-IP PORT(S) AGE

kubernetes ClusterIP

10.245.0.1 <none> 443/TCP 96m

mongo-mongodb-replicaset ClusterIP

None <none> 27017/TCP 58m

mongo-mongodb-replicaset-client ClusterIP

None <none> 27017/TCP 58m

nodejs-nodeapp LoadBalancer

10.245.33.46 your_lb_ip 80:31518/TCP

3m22s

The EXTERNAL_IP associated with the nodejs-nodeapp Service is
the IP address where you can access the application from outside of the
cluster. If you see a <pending> status in the EXTERNAL_IP column, this
means that your load balancer is still being created.

Once you see an IP in that column, navigate to it in your browser:
http://your_lb_ip.

You should see the following landing page:

Application Landing Page

Now that your replicated application is working, let’s add some test data
to ensure that replication is working between members of the replica set.

Step 6 — Testing MongoDB Replication

With our application running and accessible through an external IP address,
we can add some test data and ensure that it is being replicated between the
members of our MongoDB replica set.

First, make sure you have navigated your browser to the application
landing page:

Application Landing Page

Click on the Get Shark Info button. You will see a page with an entry form
where you can enter a shark name and a description of that shark’s general
character:

Shark Info Form

In the form, add an initial shark of your choosing. To demonstrate, we will
add Megalodon Shark to the Shark Name field, and Ancient to the
Shark Character field:

Filled Shark Form

Click on the Submit button. You will see a page with this shark
information displayed back to you:

Shark Output

Now head back to the shark information form by clicking on Sharks in the
top navigation bar:

Shark Info Form

Enter a new shark of your choosing. We’ll go with Whale Shark and
Large:

Enter New Shark

Once you click Submit, you will see that the new shark has been added to
the shark collection in your database:

Complete Shark Collection

Let’s check that the data we’ve entered has been replicated between the
primary and secondary members of our replica set.

Get a list of your Pods:
kubectl get pods

Output
NAME READY STATUS

RESTARTS AGE

mongo-mongodb-replicaset-0 1/1 Running

0 74m

mongo-mongodb-replicaset-1 1/1 Running

0 73m

mongo-mongodb-replicaset-2 1/1 Running

0 72m

nodejs-nodeapp-577df49dcc-b5fq5 1/1 Running

0 5m4s

nodejs-nodeapp-577df49dcc-bkk66 1/1 Running

0 5m4s

nodejs-nodeapp-577df49dcc-lpmt2 1/1 Running

0 5m4s

To access the mongo shell on your Pods, you can use the kubectl
exec command and the username you used to create your mongo-secret
in Step 2. Access the mongo shell on the first Pod in the StatefulSet with the
following command:
kubectl exec -it mongo-mongodb-replicaset-0 -- mongo

-u your_database_username -p --

authenticationDatabase admin

When prompted, enter the password associated with this username:

https://docs.mongodb.com/manual/reference/program/mongo/#bin.mongo
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#exec
https://www.digitalocean.com/community/tutorials/how-to-scale-a-node-js-application-with-mongodb-using-helm#step-2-%E2%80%94-creating-secrets-for-the-mongodb-replica-set

Output
MongoDB shell version v4.1.9

Enter password:

You will be dropped into an administrative shell:

Output
MongoDB server version: 4.1.9

Welcome to the MongoDB shell.

...

db:PRIMARY>

Though the prompt itself includes this information, you can manually
check to see which replica set member is the primary with the
rs.isMaster() method:
rs.isMaster()

You will see output like the following, indicating the hostname of the
primary:

Output
db:PRIMARY> rs.isMaster()

{

 "hosts" : [

 "mongo-mongodb-replicaset-0.mongo-

mongodb-replicaset.default.svc.cluster.local:27017",

 "mongo-mongodb-replicaset-1.mongo-

mongodb-replicaset.default.svc.cluster.local:27017",

 "mongo-mongodb-replicaset-2.mongo-

mongodb-replicaset.default.svc.cluster.local:27017"

https://docs.mongodb.com/manual/reference/command/isMaster/#dbcmd.isMaster

],

 ...

 "primary" : "mongo-mongodb-replicaset-

0.mongo-mongodb-

replicaset.default.svc.cluster.local:27017",

 ...

Next, switch to your sharkinfo database:
use sharkinfo

Output
switched to db sharkinfo

List the collections in the database:
show collections

Output
sharks

Output the documents in the collection:
db.sharks.find()

You will see the following output:

Output
{ "_id" : ObjectId("5cb7702c9111a5451c6dc8bb"),

"name" : "Megalodon Shark", "character" : "Ancient",

"__v" : 0 }

{ "_id" : ObjectId("5cb77054fcdbf563f3b47365"),

"name" : "Whale Shark", "character" : "Large", "__v"

: 0 }

Exit the MongoDB Shell:

exit

Now that we have checked the data on our primary, let’s check that it’s
being replicated to a secondary. kubectl exec into mongo-mongodb-
replicaset-1 with the following command:
kubectl exec -it mongo-mongodb-replicaset-1 -- mongo

-u your_database_username -p --

authenticationDatabase admin

Once in the administrative shell, we will need to use the
db.setSlaveOk() method to permit read operations from the secondary
instance:
db.setSlaveOk(1)

Switch to the sharkinfo database:
use sharkinfo

Output
switched to db sharkinfo

Permit the read operation of the documents in the sharks collection:
db.setSlaveOk(1)

Output the documents in the collection:
db.sharks.find()

You should now see the same information that you saw when running this
method on your primary instance:

Output
db:SECONDARY> db.sharks.find()

{ "_id" : ObjectId("5cb7702c9111a5451c6dc8bb"),

"name" : "Megalodon Shark", "character" : "Ancient",

"__v" : 0 }

{ "_id" : ObjectId("5cb77054fcdbf563f3b47365"),

"name" : "Whale Shark", "character" : "Large", "__v"

: 0 }

This output confirms that your application data is being replicated
between the members of your replica set.

Conclusion

You have now deployed a replicated, highly-available shark information
application on a Kubernetes cluster using Helm charts. This demo
application and the workflow outlined in this tutorial can act as a starting
point as you build custom charts for your application and take advantage of
Helm’s stable repository and other chart repositories.

As you move toward production, consider implementing the following: -
Centralized logging and monitoring. Please see the relevant discussion in
Modernizing Applications for Kubernetes for a general overview. You can
also look at How To Set Up an Elasticsearch, Fluentd and Kibana (EFK)
Logging Stack on Kubernetes to learn how to set up a logging stack with
Elasticsearch, Fluentd, and Kibana. Also check out An Introduction to
Service Meshes for information about how service meshes like Istio
implement this functionality. - Ingress Resources to route traffic to your
cluster. This is a good alternative to a LoadBalancer in cases where you are
running multiple Services, which each require their own LoadBalancer, or
where you would like to implement application-level routing strategies (A/B
& canary tests, for example). For more information, check out How to Set
Up an Nginx Ingress with Cert-Manager on DigitalOcean Kubernetes and the
related discussion of routing in the service mesh context in An Introduction
to Service Meshes. - Backup strategies for your Kubernetes objects. For

https://github.com/bitnami/charts/tree/master/bitnami
https://www.digitalocean.com/community/tutorials/modernizing-applications-for-kubernetes#deploying-on-kubernetes
https://www.digitalocean.com/community/tutorials/modernizing-applications-for-kubernetes
https://www.digitalocean.com/community/tutorials/how-to-set-up-an-elasticsearch-fluentd-and-kibana-efk-logging-stack-on-kubernetes
https://www.elastic.co/
https://www.fluentd.org/
https://www.elastic.co/products/kibana
https://www.digitalocean.com/community/tutorials/an-introduction-to-service-meshes
https://istio.io/
https://www.digitalocean.com/community/tutorials/how-to-set-up-an-nginx-ingress-with-cert-manager-on-digitalocean-kubernetes
https://www.digitalocean.com/community/tutorials/an-introduction-to-service-meshes#routing-and-traffic-configuration
https://www.digitalocean.com/community/tutorials/an-introduction-to-service-meshes

guidance on implementing backups with Velero (formerly Heptio Ark) with
DigitalOcean’s Kubernetes product, please see How To Back Up and Restore
a Kubernetes Cluster on DigitalOcean Using Heptio Ark.

To learn more about Helm, see An Introduction to Helm, the Package
Manager for Kubernetes, How To Install Software on Kubernetes Clusters
with the Helm Package Manager, and the Helm documentation.

https://github.com/heptio/velero
https://www.digitalocean.com/community/tutorials/how-to-back-up-and-restore-a-kubernetes-cluster-on-digitalocean-using-heptio-ark
https://www.digitalocean.com/community/tutorials/an-introduction-to-helm-the-package-manager-for-kubernetes
https://www.digitalocean.com/community/tutorials/how-to-install-software-on-kubernetes-clusters-with-the-helm-package-manager
https://helm.sh/docs/

How To Set Up a Private Docker Registry
on Top of DigitalOcean Spaces and Use It
with DigitalOcean Kubernetes

Written by Savic
In this tutorial, you’ll deploy a private Docker registry to your

Kubernetes cluster using Helm. A self-hosted Docker Registry lets you
privately store, distribute, and manage your Docker images. While this
tutorial focuses on using DigitalOcean’s Kubernetes and Spaces products,
the principles of running your own Registry in a cluster apply to any
Kubernetes stack.

At the end of this tutorial, you’ll have a secure, private Docker registry
that uses DigitalOcean Spaces (or another S3-compatible object storage
system) to store your images. Your Kubernetes cluster will be configured
to use the self-hosted registry so that your containerized applications
remain private and secure.

The author selected the Free and Open Source Fund to receive a
donation as part of the Write for DOnations program.

A Docker registry is a storage and content delivery system for named
Docker images, which are the industry standard for containerized
applications. A private Docker registry allows you to securely share your
images within your team or organization with more flexibility and control
when compared to public ones. By hosting your private Docker registry
directly in your Kubernetes cluster, you can achieve higher speeds, lower
latency, and better availability, all while having control over the registry.

https://www.digitalocean.com/community/tutorials/how-to-set-up-a-private-docker-registry-on-top-of-digitalocean-spaces-and-use-it-with-digitalocean-kubernetes
https://docs.docker.com/registry/
https://www.brightfunds.org/funds/foss-nonprofits
https://do.co/w4do-cta
https://docs.docker.com/registry/

The underlying registry storage is delegated to external drivers. The
default storage system is the local filesystem, but you can swap this for a
cloud-based storage driver. DigitalOcean Spaces is an S3-compatible
object storage designed for developer teams and businesses that want a
scalable, simple, and affordable way to store and serve vast amounts of
data, and is very suitable for storing Docker images. It has a built-in CDN
network, which can greatly reduce latency when frequently accessing
images.

In this tutorial, you’ll deploy your private Docker registry to your
DigitalOcean Kubernetes cluster using Helm, backed up by DigitalOcean
Spaces for storing data. You’ll create API keys for your designated Space,
install the Docker registry to your cluster with custom configuration,
configure Kubernetes to properly authenticate with it, and test it by
running a sample deployment on the cluster. At the end of this tutorial,
you’ll have a secure, private Docker registry installed on your
DigitalOcean Kubernetes cluster.

Prerequisites

Before you begin this tutorial, you’ll need:

Docker installed on the machine that you’ll access your cluster from.
For Ubuntu 18.04 visit How To Install and Use Docker on Ubuntu
18.04. You only need to complete the first step. Otherwise visit
Docker’s website for other distributions.
A DigitalOcean Kubernetes cluster with your connection
configuration configured as the kubectl default. Instructions on
how to configure kubectl are shown under the Connect to your

https://www.digitalocean.com/products/spaces/
https://www.digitalocean.com/products/kubernetes/
https://helm.sh/
https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-18-04
https://docs.docker.com/install/

Cluster step shown when you create your cluster. To learn how to
create a Kubernetes cluster on DigitalOcean, see Kubernetes
Quickstart.
A DigitalOcean Space with API keys (access and secret). To learn
how to create a DigitalOcean Space and API keys, see How To Create
a DigitalOcean Space and API Key.
The Helm package manager installed on your local machine, and
Tiller installed on your cluster. Complete steps 1 and 2 of the How To
Install Software on Kubernetes Clusters with the Helm Package
Manager. You only need to complete the first two steps.
The Nginx Ingress Controller and Cert-Manager installed on the
cluster. For a guide on how to do this, see How to Set Up an Nginx
Ingress with Cert-Manager on DigitalOcean Kubernetes.
A domain name with two DNS A records pointed to the DigitalOcean
Load Balancer used by the Ingress. If you are using DigitalOcean to
manage your domain’s DNS records, consult How to Manage DNS
Records to create A records. In this tutorial, we’ll refer to the A
records as registry.example.com and k8s-

test.example.com.

Step 1 — Configuring and Installing the Docker Registry

In this step, you will create a configuration file for the registry
deployment and install the Docker registry to your cluster with the given
config using the Helm package manager.

During the course of this tutorial, you will use a configuration file
called chart_values.yaml to override some of the default settings

https://www.digitalocean.com/docs/kubernetes/quickstart/
https://www.digitalocean.com/community/tutorials/how-to-create-a-digitalocean-space-and-api-key
https://www.digitalocean.com/community/tutorials/how-to-install-software-on-kubernetes-clusters-with-the-helm-package-manager
https://www.digitalocean.com/community/tutorials/how-to-set-up-an-nginx-ingress-with-cert-manager-on-digitalocean-kubernetes
https://www.digitalocean.com/docs/networking/dns/how-to/manage-records/

for the Docker registry Helm chart. Helm calls its packages, charts; these
are sets of files that outline a related selection of Kubernetes resources.
You’ll edit the settings to specify DigitalOcean Spaces as the underlying
storage system and enable HTTPS access by wiring up Let’s Encrypt TLS
certificates.

As part of the prerequisite, you would have created the echo1 and
echo2 services and an echo_ingress ingress for testing purposes; you
will not need these in this tutorial, so you can now delete them.

Start off by deleting the ingress by running the following command:
kubectl delete -f echo_ingress.yaml

Then, delete the two test services:
kubectl delete -f echo1.yaml && kubectl delete -f

echo2.yaml

The kubectl delete command accepts the file to delete when passed
the -f parameter.

Create a folder that will serve as your workspace:
mkdir ~/k8s-registry

Navigate to it by running:
cd ~/k8s-registry

Now, using your text editor, create your chart_values.yaml file:
nano chart_values.yaml

Add the following lines, ensuring you replace the highlighted lines with
your details:

chart_values.yaml
ingress:

 enabled: true

 hosts:

 - registry.example.com

 annotations:

 kubernetes.io/ingress.class: nginx

 certmanager.k8s.io/cluster-issuer:

letsencrypt-prod

 nginx.ingress.kubernetes.io/proxy-body-size:

"30720m"

 tls:

 - secretName: letsencrypt-prod

 hosts:

 - registry.example.com

storage: s3

secrets:

 htpasswd: ""

 s3:

 accessKey: "your_space_access_key"

 secretKey: "your_space_secret_key"

s3:

 region: your_space_region

 regionEndpoint:

your_space_region.digitaloceanspaces.com

 secure: true

 bucket: your_space_name

The first block, ingress, configures the Kubernetes Ingress that will
be created as a part of the Helm chart deployment. The Ingress object
makes outside HTTP/HTTPS routes point to internal services in the
cluster, thus allowing communication from the outside. The overridden
values are:

enabled: set to true to enable the Ingress.
hosts: a list of hosts from which the Ingress will accept traffic.
annotations: a list of metadata that provides further direction to
other parts of Kubernetes on how to treat the Ingress. You set the
Ingress Controller to nginx, the Let’s Encrypt cluster issuer to the
production variant (letsencrypt-prod), and tell the nginx
controller to accept files with a max size of 30 GB, which is a
sensible limit for even the largest Docker images.
tls: this subcategory configures Let’s Encrypt HTTPS. You populate
the hosts list that defines from which secure hosts this Ingress will
accept HTTPS traffic with our example domain name.

Then, you set the file system storage to s3 — the other available option
would be filesystem. Here s3 indicates using a remote storage system
compatible with the industry-standard Amazon S3 API, which
DigitalOcean Spaces fulfills.

In the next block, secrets, you configure keys for accessing your
DigitalOcean Space under the s3 subcategory. Finally, in the s3 block,
you configure the parameters specifying your Space.

Save and close your file.
Now, if you haven’t already done so, set up your A records to point to

the Load Balancer you created as part of the Nginx Ingress Controller
installation in the prerequisite tutorial. To see how to set your DNS on
DigitalOcean, see How to Manage DNS Records.

Next, ensure your Space isn’t empty. The Docker registry won’t run at
all if you don’t have any files in your Space. To get around this, upload a
file. Navigate to the Spaces tab, find your Space, click the Upload File
button, and upload any file you’d like. You could upload the configuration
file you just created.

Empty file uploaded to empty Space

https://www.digitalocean.com/docs/networking/dns/how-to/manage-records/

Before installing anything via Helm, you need to refresh its cache. This
will update the latest information about your chart repository. To do this
run the following command:
helm repo update

Now, you’ll deploy the Docker registry chart with this custom
configuration via Helm by running:
helm install stable/docker-registry -f

chart_values.yaml --name docker-registry

You’ll see the following output:

Output
NAME: docker-registry

...

NAMESPACE: default

STATUS: DEPLOYED

RESOURCES:

==> v1/ConfigMap

NAME DATA AGE

docker-registry-config 1 1s

==> v1/Pod(related)

NAME READY STATUS

RESTARTS AGE

docker-registry-54df68fd64-l26fb 0/1

ContainerCreating 0 1s

==> v1/Secret

NAME TYPE DATA AGE

docker-registry-secret Opaque 3 1s

==> v1/Service

NAME TYPE CLUSTER-IP

EXTERNAL-IP PORT(S) AGE

docker-registry ClusterIP 10.245.131.143 <none>

5000/TCP 1s

==> v1beta1/Deployment

NAME READY UP-TO-DATE AVAILABLE AGE

docker-registry 0/1 1 0 1s

==> v1beta1/Ingress

NAME HOSTS ADDRESS

PORTS AGE

docker-registry registry.example.com 80, 443 1s

NOTES:

1. Get the application URL by running these

commands:

 https://registry.example.com/

Helm lists all the resources it created as a result of the Docker registry
chart deployment. The registry is now accessible from the domain name

you specified earlier.
You’ve configured and deployed a Docker registry on your Kubernetes

cluster. Next, you will test the availability of the newly deployed Docker
registry.

Step 2 — Testing Pushing and Pulling

In this step, you’ll test your newly deployed Docker registry by pushing
and pulling images to and from it. Currently, the registry is empty. To have
something to push, you need to have an image available on the machine
you’re working from. Let’s use the mysql Docker image.

Start off by pulling mysql from the Docker Hub:
sudo docker pull mysql

Your output will look like this:

Output
Using default tag: latest

latest: Pulling from library/mysql

27833a3ba0a5: Pull complete

...

e906385f419d: Pull complete

Digest:

sha256:a7cf659a764732a27963429a87eccc8457e6d4af0ee

9d5140a3b56e74986eed7

Status: Downloaded newer image for mysql:latest

You now have the image available locally. To inform Docker where to
push it, you’ll need to tag it with the host name, like so:
sudo docker tag mysql registry.example.com/mysql

Then, push the image to the new registry:
sudo docker push registry.example.com/mysql

This command will run successfully and indicate that your new registry
is properly configured and accepting traffic — including pushing new
images. If you see an error, double check your steps against steps 1 and 2.

To test pulling from the registry cleanly, first delete the local mysql
images with the following command:
sudo docker rmi registry.example.com/mysql && sudo

docker rmi mysql

Then, pull it from the registry:
sudo docker pull registry.example.com/mysql

This command will take a few seconds to complete. If it runs
successfully, that means your registry is working correctly. If it shows an
error, double check what you have entered against the previous commands.

You can list Docker images available locally by running the following
command:
sudo docker images

You’ll see output listing the images available on your local machine,
along with their ID and date of creation.

Your Docker registry is configured. You’ve pushed an image to it and
verified you can pull it down. Now let’s add authentication so only certain
people can access the code.

Step 3 — Adding Account Authentication and Configuring
Kubernetes Access

In this step, you’ll set up username and password authentication for the
registry using the htpasswd utility.

The htpasswd utility comes from the Apache webserver, which you
can use for creating files that store usernames and passwords for basic
authentication of HTTP users. The format of htpasswd files is
username:hashed_password (one per line), which is portable
enough to allow other programs to use it as well.

To make htpasswd available on the system, you’ll need to install it by
running:
sudo apt install apache2-utils -y

Note: If you’re running this tutorial from a Mac, you’ll need to use the
following command to make htpasswd available on your machine:
docker run --rm -v ${PWD}:/app -it httpd htpasswd

-b -c /app/htpasswd_file sammy password

Create it by executing the following command:
touch htpasswd_file

Add a username and password combination to htpasswd_file:
htpasswd -B htpasswd_file username

Docker requires the password to be hashed using the bcrypt algorithm,
which is why we pass the -B parameter. The bcrypt algorithm is a
password hashing function based on Blowfish block cipher, with a work
factor parameter, which specifies how expensive the hash function will be.

Remember to replace username with your desired username. When
run, htpasswd will ask you for the accompanying password and add the
combination to htpasswd_file. You can repeat this command for as
many users as you wish to add.

https://en.wikipedia.org/wiki/Bcrypt

Now, show the contents of htpasswd_file by running the following
command:
cat htpasswd_file

Select and copy the contents shown.
To add authentication to your Docker registry, you’ll need to edit

chart_values.yaml and add the contents of htpasswd_file in the
htpasswd variable.

Open chart_values.yaml for editing:
nano chart_values.yaml

Find the line that looks like this:

chart_values.yaml
 htpasswd: ""

Edit it to match the following, replacing
htpasswd_file_contents with the contents you copied from the
htpasswd_file:

chart_values.yaml
 htpasswd: |-

 htpasswd_file_contents

Be careful with the indentation, each line of the file contents must have
four spaces before it.

Once you’ve added your contents, save and close the file.
To propagate the changes to your cluster, run the following command:

helm upgrade docker-registry stable/docker-

registry -f chart_values.yaml

The output will be similar to that shown when you first deployed your
Docker registry:

Output
Release "docker-registry" has been upgraded. Happy

Helming!

LAST DEPLOYED: ...

NAMESPACE: default

STATUS: DEPLOYED

RESOURCES:

==> v1/ConfigMap

NAME DATA AGE

docker-registry-config 1 3m8s

==> v1/Pod(related)

NAME READY STATUS

RESTARTS AGE

docker-registry-6c5bb7ffbf-ltnjv 1/1 Running

0 3m7s

==> v1/Secret

NAME TYPE DATA AGE

docker-registry-secret Opaque 4 3m8s

==> v1/Service

NAME TYPE CLUSTER-IP

EXTERNAL-IP PORT(S) AGE

docker-registry ClusterIP 10.245.128.245 <none>

5000/TCP 3m8s

==> v1beta1/Deployment

NAME READY UP-TO-DATE AVAILABLE AGE

docker-registry 1/1 1 1

3m8s

==> v1beta1/Ingress

NAME HOSTS ADDRESS

PORTS AGE

docker-registry registry.example.com

159.89.215.50 80, 443 3m8s

NOTES:

1. Get the application URL by running these

commands:

 https://registry.example.com/

This command calls Helm and instructs it to upgrade an existing
release, in your case docker-registry, with its chart defined in
stable/docker-registry in the chart repository, after applying the
chart_values.yaml file.

Now, you’ll try pulling an image from the registry again:
sudo docker pull registry.example.com/mysql

The output will look like the following:

Output
Using default tag: latest

Error response from daemon: Get

https://registry.example.com/v2/mysql/manifests/la

test: no basic auth credentials

It correctly failed because you provided no credentials. This means that
your Docker registry authorizes requests correctly.

To log in to the registry, run the following command:
sudo docker login registry.example.com

Remember to replace registry.example.com with your domain
address. It will prompt you for a username and password. If it shows an
error, double check what your htpasswd_file contains. You must
define the username and password combination in the htpasswd_file,
which you created earlier in this step.

To test the login, you can try to pull again by running the following
command:
sudo docker pull registry.example.com/mysql

The output will look similar to the following:

Output
Using default tag: latest

latest: Pulling from mysql

Digest:

sha256:f2dc118ca6fa4c88cde5889808c486dfe94bccecd01

ca626b002a010bb66bcbe

Status: Image is up to date for

registry.example.com/mysql:latest

You’ve now configured Docker and can log in securely. To configure
Kubernetes to log in to your registry, run the following command:
sudo kubectl create secret generic regcred --from-

file=.dockerconfigjson=/home/sammy/.docker/config.

json --type=kubernetes.io/dockerconfigjson

You will see the following output:

Output
secret/regcred created

This command creates a secret in your cluster with the name regcred,
takes the contents of the JSON file where Docker stores the credentials,
and parses it as dockerconfigjson, which defines a registry
credential in Kubernetes.

You’ve used htpasswd to create a login config file, configured the
registry to authenticate requests, and created a Kubernetes secret
containing the login credentials. Next, you will test the integration
between your Kubernetes cluster and registry.

Step 4 — Testing Kubernetes Integration by Running a
Sample Deployment

In this step, you’ll run a sample deployment with an image stored in the
in-cluster registry to test the connection between your Kubernetes cluster
and registry.

In the last step, you created a secret, called regcred, containing login
credentials for your private registry. It may contain login credentials for

multiple registries, in which case you’ll have to update the Secret
accordingly.

You can specify which secret Kubernetes should use when pulling
containers in the pod definition by specifying imagePullSecrets.
This step is necessary when the Docker registry requires authentication.

You’ll now deploy a sample Hello World image from your private
Docker registry to your cluster. First, in order to push it, you’ll pull it to
your machine by running the following command:
sudo docker pull paulbouwer/hello-kubernetes:1.5

Then, tag it by running:
sudo docker tag paulbouwer/hello-kubernetes:1.5

registry.example.com/paulbouwer/hello-

kubernetes:1.5

Finally, push it to your registry:
sudo docker push

registry.example.com/paulbouwer/hello-

kubernetes:1.5

Delete it from your machine as you no longer need it locally:
sudo docker rmi

registry.example.com/paulbouwer/hello-

kubernetes:1.5

Now, you’ll deploy the sample Hello World application. First, create a
new file, hello-world.yaml, using your text editor:
nano hello-world.yaml

Next, you’ll define a Service and an Ingress to make the app accessible
to outside of the cluster. Add the following lines, replacing the highlighted

https://github.com/paulbouwer/hello-kubernetes/blob/master/Dockerfile

lines with your domains:

hello-world.yaml
apiVersion: extensions/v1beta1

kind: Ingress

metadata:

 name: hello-kubernetes-ingress

 annotations:

 kubernetes.io/ingress.class: nginx

 nginx.ingress.kubernetes.io/rewrite-target: /

spec:

 rules:

 - host: k8s-test.example.com

 http:

 paths:

 - path: /

 backend:

 serviceName: hello-kubernetes

 servicePort: 80

apiVersion: v1

kind: Service

metadata:

 name: hello-kubernetes

spec:

 type: NodePort

 ports:

 - port: 80

 targetPort: 8080

 selector:

 app: hello-kubernetes

apiVersion: apps/v1

kind: Deployment

metadata:

 name: hello-kubernetes

spec:

 replicas: 3

 selector:

 matchLabels:

 app: hello-kubernetes

 template:

 metadata:

 labels:

 app: hello-kubernetes

 spec:

 containers:

 - name: hello-kubernetes

 image:

registry.example.com/paulbouwer/hello-

kubernetes:1.5

 ports:

 - containerPort: 8080

 imagePullSecrets:

 - name: regcred

First, you define the Ingress for the Hello World deployment, which you
will route through the Load Balancer that the Nginx Ingress Controller
owns. Then, you define a service that can access the pods created in the
deployment. In the actual deployment spec, you specify the image as the
one located in your registry and set imagePullSecrets to regcred,
which you created in the previous step.

Save and close the file. To deploy this to your cluster, run the following
command:
kubectl apply -f hello-world.yaml

You’ll see the following output:

Output
ingress.extensions/hello-kubernetes-ingress

created

service/hello-kubernetes created

deployment.apps/hello-kubernetes created

You can now navigate to your test domain — the second A record, k8s-
test.example.com in this tutorial. You will see the Kubernetes Hello
world! page.

Hello World page

The Hello World page lists some environment information, like the
Linux kernel version and the internal ID of the pod the request was served
from. You can also access your Space via the web interface to see the
images you’ve worked with in this tutorial.

If you want to delete this Hello World deployment after testing, run the
following command:
kubectl delete -f hello-world.yaml

You’ve created a sample Hello World deployment to test if Kubernetes
is properly pulling images from your private registry.

Conclusion

You have now successfully deployed your own private Docker registry on
your DigitalOcean Kubernetes cluster, using DigitalOcean Spaces as the
storage layer underneath. There is no limit to how many images you can
store, Spaces can extend infinitely, while at the same time providing the
same security and robustness. In production, though, you should always
strive to optimize your Docker images as much as possible, take a look at
the How To Optimize Docker Images for Production tutorial.

https://www.digitalocean.com/community/tutorials/how-to-optimize-docker-images-for-production

How To Deploy a PHP Application with
Kubernetes on Ubuntu 18.04

Written by Amitabh Dhiwal
In this tutorial, you will deploy a PHP application on a Kubernetes

cluster with Nginx and PHP-FPM running in separate Pods. You will also
learn how to keep your configuration files and application code outside the
container image using DigitalOcean’s Block Storage system. This
approach will allow you to reuse the Nginx image for any application that
needs a web/proxy server by passing a configuration volume, rather than
rebuilding the image.

The author selected Electronic Frontier Foundation to receive a
donation as part of the Write for DOnations program.

Kubernetes is an open source container orchestration system. It allows
you to create, update, and scale containers without worrying about
downtime.

To run a PHP application, Nginx acts as a proxy to PHP-FPM.
Containerizing this setup in a single container can be a cumbersome
process, but Kubernetes will help manage both services in separate
containers. Using Kubernetes will allow you to keep your containers
reusable and swappable, and you will not have to rebuild your container
image every time there’s a new version of Nginx or PHP.

In this tutorial, you will deploy a PHP 7 application on a Kubernetes
cluster with Nginx and PHP-FPM running in separate containers. You will
also learn how to keep your configuration files and application code

https://www.digitalocean.com/community/tutorials/how-to-deploy-a-php-application-with-kubernetes-on-ubuntu-18-04
https://www.brightfunds.org/organizations/electronic-frontier-foundation-inc
https://do.co/w4do-cta
http://php.net/manual/en/install.fpm.php

outside the container image using DigitalOcean’s Block Storage system.
This approach will allow you to reuse the Nginx image for any application
that needs a web/proxy server by passing a configuration volume, rather
than rebuilding the image.

Prerequisites

A basic understanding of Kubernetes objects. Check out our
Introduction to Kubernetes article for more information.
A Kubernetes cluster running on Ubuntu 18.04. You can set this up by
following the How To Create a Kubernetes 1.14 Cluster Using
Kubeadm on Ubuntu 18.04 tutorial.
A DigitalOcean account and an API access token with read and write
permissions to create our storage volume. If you don’t have your API
access token, you can create it from here.
Your application code hosted on a publicly accessible URL, such as
Github.

Step 1 — Creating the PHP-FPM and Nginx Services

In this step, you will create the PHP-FPM and Nginx services. A service
allows access to a set of pods from within the cluster. Services within a
cluster can communicate directly through their names, without the need
for IP addresses. The PHP-FPM service will allow access to the PHP-FPM
pods, while the Nginx service will allow access to the Nginx pods.

Since Nginx pods will proxy the PHP-FPM pods, you will need to tell
the service how to find them. Instead of using IP addresses, you will take

https://www.digitalocean.com/products/block-storage/
https://www.digitalocean.com/community/tutorials/an-introduction-to-kubernetes#kubernetes-objects-and-workloads
https://www.digitalocean.com/community/tutorials/how-to-create-a-kubernetes-cluster-using-kubeadm-on-ubuntu-18-04
https://www.digitalocean.com/docs/api/create-personal-access-token/
https://github.com/

advantage of Kubernetes’ automatic service discovery to use human-
readable names to route requests to the appropriate service.

To create the service, you will create an object definition file. Every
Kubernetes object definition is a YAML file that contains at least the
following items:

apiVersion: The version of the Kubernetes API that the definition
belongs to.
kind: The Kubernetes object this file represents. For example, a pod
or service.
metadata: This contains the name of the object along with any
labels that you may wish to apply to it.
spec: This contains a specific configuration depending on the kind
of object you are creating, such as the container image or the ports on
which the container will be accessible from.

First you will create a directory to hold your Kubernetes object
definitions.

SSH to your master node and create the definitions directory that
will hold your Kubernetes object definitions.
mkdir definitions

Navigate to the newly created definitions directory:
cd definitions

Make your PHP-FPM service by creating a php_service.yaml file:
nano php_service.yaml

Set kind as Service to specify that this object is a service:

php_service.yaml

apiVersion: v1

kind: Service

Name the service php since it will provide access to PHP-FPM:

php_service.yaml
...

metadata:

 name: php

You will logically group different objects with labels. In this tutorial,
you will use labels to group the objects into “tiers”, such as frontend or
backend. The PHP pods will run behind this service, so you will label it as
tier: backend.

php_service.yaml
...

 labels:

 tier: backend

A service determines which pods to access by using selector labels.
A pod that matches these labels will be serviced, independent of whether
the pod was created before or after the service. You will add labels for
your pods later in the tutorial.

Use the tier: backend label to assign the pod into the back-end
tier. You will also add the app: php label to specify that this pod runs
PHP. Add these two labels after the metadata section.

php_service.yaml
...

spec:

 selector:

 app: php

 tier: backend

Next, specify the port used to access this service. You will use port
9000 in this tutorial. Add it to the php_service.yaml file under
spec:

php_service.yaml
...

 ports:

 - protocol: TCP

 port: 9000

Your completed php_service.yaml file will look like this:

php_service.yaml
apiVersion: v1

kind: Service

metadata:

 name: php

 labels:

 tier: backend

spec:

 selector:

 app: php

 tier: backend

 ports:

 - protocol: TCP

 port: 9000

Hit CTRL + O to save the file, and then CTRL + X to exit nano.
Now that you’ve created the object definition for your service, to run

the service you will use the kubectl apply command along with the -
f argument and specify your php_service.yaml file.

Create your service:
kubectl apply -f php_service.yaml

This output confirms the service creation:

Output
service/php created

Verify that your service is running:
kubectl get svc

You will see your PHP-FPM service running:

Output
NAME TYPE CLUSTER-IP EXTERNAL-

IP PORT(S) AGE

kubernetes ClusterIP 10.96.0.1 <none>

443/TCP 10m

php ClusterIP 10.100.59.238 <none>

9000/TCP 5m

There are various service types that Kubernetes supports. Your php
service uses the default service type, ClusterIP. This service type
assigns an internal IP and makes the service reachable only from within
the cluster.

https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types

Now that the PHP-FPM service is ready, you will create the Nginx
service. Create and open a new file called nginx_service.yaml with
the editor:
nano nginx_service.yaml

This service will target Nginx pods, so you will name it nginx. You
will also add a tier: backend label as it belongs in the back-end tier:

nginx_service.yaml
apiVersion: v1

kind: Service

metadata:

 name: nginx

 labels:

 tier: backend

Similar to the php service, target the pods with the selector labels
app: nginx and tier: backend. Make this service accessible on
port 80, the default HTTP port.

nginx_service.yaml
...

spec:

 selector:

 app: nginx

 tier: backend

 ports:

 - protocol: TCP

 port: 80

The Nginx service will be publicly accessible to the internet from your
Droplet’s public IP address. your_public_ip can be found from your
DigitalOcean Control Panel. Under spec.externalIPs, add:

nginx_service.yaml
...

spec:

 externalIPs:

 - your_public_ip

Your nginx_service.yaml file will look like this:

nginx_service.yaml
apiVersion: v1

kind: Service

metadata:

 name: nginx

 labels:

 tier: backend

spec:

 selector:

 app: nginx

 tier: backend

 ports:

 - protocol: TCP

 port: 80

 externalIPs:

 - your_public_ip

https://cloud.digitalocean.com/

Save and close the file. Create the Nginx service:
kubectl apply -f nginx_service.yaml

You will see the following output when the service is running:

Output
service/nginx created

You can view all running services by executing:
kubectl get svc

You will see both the PHP-FPM and Nginx services listed in the output:

Output
NAME TYPE CLUSTER-IP EXTERNAL-

IP PORT(S) AGE

kubernetes ClusterIP 10.96.0.1 <none>

443/TCP 13m

nginx ClusterIP 10.102.160.47

your_public_ip 80/TCP 50s

php ClusterIP 10.100.59.238 <none>

9000/TCP 8m

Please note, if you want to delete a service you can run:
kubectl delete svc/service_name

Now that you’ve created your PHP-FPM and Nginx services, you will
need to specify where to store your application code and configuration
files.

Step 2 — Installing the DigitalOcean Storage Plug-In

Kubernetes provides different storage plug-ins that can create the storage
space for your environment. In this step, you will install the DigitalOcean
storage plug-in to create block storage on DigitalOcean. Once the
installation is complete, it will add a storage class named do-block-
storage that you will use to create your block storage.

You will first configure a Kubernetes Secret object to store your
DigitalOcean API token. Secret objects are used to share sensitive
information, like SSH keys and passwords, with other Kubernetes objects
within the same namespace. Namespaces provide a way to logically
separate your Kubernetes objects.

Open a file named secret.yaml with the editor:
nano secret.yaml

You will name your Secret object digitalocean and add it to the
kube-system namespace. The kube-system namespace is the default
namespace for Kubernetes’ internal services and is also used by the
DigitalOcean storage plug-in to launch various components.

secret.yaml
apiVersion: v1

kind: Secret

metadata:

 name: digitalocean

 namespace: kube-system

Instead of a spec key, a Secret uses a data or stringData key to
hold the required information. The data parameter holds base64 encoded
data that is automatically decoded when retrieved. The stringData
parameter holds non-encoded data that is automatically encoded during

https://github.com/digitalocean/csi-digitalocean
https://www.digitalocean.com/products/storage/

creation or updates, and does not output the data when retrieving Secrets.
You will use stringData in this tutorial for convenience.

Add the access-token as stringData:

secret.yaml
...

stringData:

 access-token: your-api-token

Save and exit the file.
Your secret.yaml file will look like this:

secret.yaml
apiVersion: v1

kind: Secret

metadata:

 name: digitalocean

 namespace: kube-system

stringData:

 access-token: your-api-token

Create the secret:
kubectl apply -f secret.yaml

You will see this output upon Secret creation:

Output
secret/digitalocean created

You can view the secret with the following command:
kubectl -n kube-system get secret digitalocean

The output will look similar to this:

Output
NAME TYPE DATA AGE

digitalocean Opaque 1 41s

The Opaque type means that this Secret is read-only, which is standard
for stringData Secrets. You can read more about it on the Secret design
spec. The DATA field shows the number of items stored in this Secret. In
this case, it shows 1 because you have a single key stored.

Now that your Secret is in place, install the DigitalOcean block storage
plug-in:
kubectl apply -f

https://raw.githubusercontent.com/digitalocean/csi

-

digitalocean/master/deploy/kubernetes/releases/csi

-digitalocean-v1.1.0.yaml

You will see output similar to the following:

Output
csidriver.storage.k8s.io/dobs.csi.digitalocean.com

created

customresourcedefinition.apiextensions.k8s.io/volu

mesnapshotclasses.snapshot.storage.k8s.io created

customresourcedefinition.apiextensions.k8s.io/volu

mesnapshotcontents.snapshot.storage.k8s.io created

customresourcedefinition.apiextensions.k8s.io/volu

mesnapshots.snapshot.storage.k8s.io created

storageclass.storage.k8s.io/do-block-storage

created

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/auth/secrets.md
https://github.com/digitalocean/csi-digitalocean

statefulset.apps/csi-do-controller created

serviceaccount/csi-do-controller-sa created

clusterrole.rbac.authorization.k8s.io/csi-do-

provisioner-role created

clusterrolebinding.rbac.authorization.k8s.io/csi-

do-provisioner-binding created

clusterrole.rbac.authorization.k8s.io/csi-do-

attacher-role created

clusterrolebinding.rbac.authorization.k8s.io/csi-

do-attacher-binding created

clusterrole.rbac.authorization.k8s.io/csi-do-

snapshotter-role created

clusterrolebinding.rbac.authorization.k8s.io/csi-

do-snapshotter-binding created

daemonset.apps/csi-do-node created

serviceaccount/csi-do-node-sa created

clusterrole.rbac.authorization.k8s.io/csi-do-node-

driver-registrar-role created

clusterrolebinding.rbac.authorization.k8s.io/csi-

do-node-driver-registrar-binding created

error: unable to recognize

"https://raw.githubusercontent.com/digitalocean/cs

i-

digitalocean/master/deploy/kubernetes/releases/csi

-digitalocean-v1.1.0.yaml": no matches for kind

"VolumeSnapshotClass" in version

"snapshot.storage.k8s.io/v1alpha1"

For this tutorial, it is safe to ignore the errors.
Now that you have installed the DigitalOcean storage plug-in, you can

create block storage to hold your application code and configuration files.

Step 3 — Creating the Persistent Volume

With your Secret in place and the block storage plug-in installed, you are
now ready to create your Persistent Volume. A Persistent Volume, or PV, is
block storage of a specified size that lives independently of a pod’s life
cycle. Using a Persistent Volume will allow you to manage or update your
pods without worrying about losing your application code. A Persistent
Volume is accessed by using a PersistentVolumeClaim, or PVC,
which mounts the PV at the required path.

Open a file named code_volume.yaml with your editor:
nano code_volume.yaml

Name the PVC code by adding the following parameters and values to
your file:

code_volume.yaml
apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: code

The spec for a PVC contains the following items:

accessModes which vary by the use case. These are:

ReadWriteOnce – mounts the volume as read-write by a
single node

ReadOnlyMany – mounts the volume as read-only by many
nodes
ReadWriteMany – mounts the volume as read-write by many
nodes

resources – the storage space that you require

DigitalOcean block storage is only mounted to a single node, so you
will set the accessModes to ReadWriteOnce. This tutorial will guide
you through adding a small amount of application code, so 1GB will be
plenty in this use case. If you plan on storing a larger amount of code or
data on the volume, you can modify the storage parameter to fit your
requirements. You can increase the amount of storage after volume
creation, but shrinking the disk is not supported.

code_volume.yaml
...

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 1Gi

Next, specify the storage class that Kubernetes will use to provision the
volumes. You will use the do-block-storage class created by the
DigitalOcean block storage plug-in.

code_volume.yaml

...

 storageClassName: do-block-storage

Your code_volume.yaml file will look like this:

code_volume.yaml
apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: code

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 1Gi

 storageClassName: do-block-storage

Save and exit the file.
Create the code PVC using kubectl:

kubectl apply -f code_volume.yaml

The following output tells you that the object was successfully created,
and you are ready to mount your 1GB PVC as a volume.

Output
persistentvolumeclaim/code created

To view available Persistent Volumes (PV):
kubectl get pv

You will see your PV listed:

Output
NAME

CAPACITY ACCESS MODES RECLAIM POLICY STATUS

CLAIM STORAGECLASS REASON AGE

pvc-ca4df10f-ab8c-11e8-b89d-12331aa95b13 1Gi

RWO Delete Bound

default/code do-block-storage 2m

The fields above are an overview of your configuration file, except for
Reclaim Policy and Status. The Reclaim Policy defines what
is done with the PV after the PVC accessing it is deleted. Delete
removes the PV from Kubernetes as well as the DigitalOcean
infrastructure. You can learn more about the Reclaim Policy and
Status from the Kubernetes PV documentation.

You’ve successfully created a Persistent Volume using the DigitalOcean
block storage plug-in. Now that your Persistent Volume is ready, you will
create your pods using a Deployment.

Step 4 — Creating a PHP-FPM Deployment

In this step, you will learn how to use a Deployment to create your PHP-
FPM pod. Deployments provide a uniform way to create, update, and
manage pods by using ReplicaSets. If an update does not work as
expected, a Deployment will automatically rollback its pods to a previous
image.

The Deployment spec.selector key will list the labels of the pods
it will manage. It will also use the template key to create the required
pods.

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/

This step will also introduce the use of Init Containers. Init Containers
run one or more commands before the regular containers specified under
the pod’s template key. In this tutorial, your Init Container will fetch a
sample index.php file from GitHub Gist using wget. These are the
contents of the sample file:

index.php
<?php

echo phpinfo();

To create your Deployment, open a new file called
php_deployment.yaml with your editor:
nano php_deployment.yaml

This Deployment will manage your PHP-FPM pods, so you will name
the Deployment object php. The pods belong to the back-end tier, so you
will group the Deployment into this group by using the tier: backend
label:

php_deployment.yaml
apiVersion: apps/v1

kind: Deployment

metadata:

 name: php

 labels:

 tier: backend

For the Deployment spec, you will specify how many copies of this
pod to create by using the replicas parameter. The number of

https://gist.github.com/

replicas will vary depending on your needs and available resources.
You will create one replica in this tutorial:

php_deployment.yaml
...

spec:

 replicas: 1

This Deployment will manage pods that match the app: php and
tier: backend labels. Under selector key add:

php_deployment.yaml
...

 selector:

 matchLabels:

 app: php

 tier: backend

Next, the Deployment spec requires the template for your pod’s
object definition. This template will define specifications to create the pod
from. First, you will add the labels that were specified for the php service
selectors and the Deployment’s matchLabels. Add app: php and
tier: backend under template.metadata.labels:

php_deployment.yaml
...

 template:

 metadata:

 labels:

 app: php

 tier: backend

A pod can have multiple containers and volumes, but each will need a
name. You can selectively mount volumes to a container by specifying a
mount path for each volume.

First, specify the volumes that your containers will access. You created
a PVC named code to hold your application code, so name this volume
code as well. Under spec.template.spec.volumes, add the
following:

php_deployment.yaml
...

 spec:

 volumes:

 - name: code

 persistentVolumeClaim:

 claimName: code

Next, specify the container you want to run in this pod. You can find
various images on the Docker store, but in this tutorial you will use the
php:7-fpm image.

Under spec.template.spec.containers, add the following:

php_deployment.yaml
...

 containers:

 - name: php

 image: php:7-fpm

https://hub.docker.com/explore/

Next, you will mount the volumes that the container requires access to.
This container will run your PHP code, so it will need access to the code
volume. You will also use mountPath to specify /code as the mount
point.

Under spec.template.spec.containers.volumeMounts,
add:

php_deployment.yaml
...

 volumeMounts:

 - name: code

 mountPath: /code

Now that you have mounted your volume, you need to get your
application code on the volume. You may have previously used FTP/SFTP
or cloned the code over an SSH connection to accomplish this, but this
step will show you how to copy the code using an Init Container.

Depending on the complexity of your setup process, you can either use a
single initContainer to run a script that builds your application, or
you can use one initContainer per command. Make sure that the
volumes are mounted to the initContainer.

In this tutorial, you will use a single Init Container with busybox to
download the code. busybox is a small image that contains the wget
utility that you will use to accomplish this.

Under spec.template.spec, add your initContainer and
specify the busybox image:

php_deployment.yaml

...

 initContainers:

 - name: install

 image: busybox

Your Init Container will need access to the code volume so that it can
download the code in that location. Under
spec.template.spec.initContainers, mount the volume code
at the /code path:

php_deployment.yaml
...

 volumeMounts:

 - name: code

 mountPath: /code

Each Init Container needs to run a command. Your Init Container will
use wget to download the code from Github into the /code working
directory. The -O option gives the downloaded file a name, and you will
name this file index.php.

Note: Be sure to trust the code you’re pulling. Before pulling it to your
server, inspect the source code to ensure you are comfortable with what
the code does.

Under the install container in
spec.template.spec.initContainers, add these lines:

php_deployment.yaml
...

 command:

https://raw.githubusercontent.com/do-community/php-kubernetes/master/index.php
https://github.com/do-community/php-kubernetes

 - wget

 - "-O"

 - "/code/index.php"

 - https://raw.githubusercontent.com/do-

community/php-kubernetes/master/index.php

Your completed php_deployment.yaml file will look like this:

php_deployment.yaml
apiVersion: apps/v1

kind: Deployment

metadata:

 name: php

 labels:

 tier: backend

spec:

 replicas: 1

 selector:

 matchLabels:

 app: php

 tier: backend

 template:

 metadata:

 labels:

 app: php

 tier: backend

 spec:

 volumes:

 - name: code

 persistentVolumeClaim:

 claimName: code

 containers:

 - name: php

 image: php:7-fpm

 volumeMounts:

 - name: code

 mountPath: /code

 initContainers:

 - name: install

 image: busybox

 volumeMounts:

 - name: code

 mountPath: /code

 command:

 - wget

 - "-O"

 - "/code/index.php"

 - https://raw.githubusercontent.com/do-

community/php-kubernetes/master/index.php

Save the file and exit the editor.
Create the PHP-FPM Deployment with kubectl:

kubectl apply -f php_deployment.yaml

You will see the following output upon Deployment creation:

Output

deployment.apps/php created

To summarize, this Deployment will start by downloading the specified
images. It will then request the PersistentVolume from your
PersistentVolumeClaim and serially run your initContainers.
Once complete, the containers will run and mount the volumes to the
specified mount point. Once all of these steps are complete, your pod will
be up and running.

You can view your Deployment by running:
kubectl get deployments

You will see the output:

Output
NAME DESIRED CURRENT UP-TO-DATE

AVAILABLE AGE

php 1 1 1 0

19s

This output can help you understand the current state of the
Deployment. A Deployment is one of the controllers that maintains a
desired state. The template you created specifies that the DESIRED
state will have 1 replicas of the pod named php. The CURRENT field
indicates how many replicas are running, so this should match the
DESIRED state. You can read about the remaining fields in the Kubernetes
Deployments documentation.

You can view the pods that this Deployment started with the following
command:
kubectl get pods

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

The output of this command varies depending on how much time has
passed since creating the Deployment. If you run it shortly after creation,
the output will likely look like this:

Output
NAME READY STATUS

RESTARTS AGE

php-86d59fd666-bf8zd 0/1 Init:0/1 0

9s

The columns represent the following information:

Ready: The number of replicas running this pod.
Status: The status of the pod. Init indicates that the Init
Containers are running. In this output, 0 out of 1 Init Containers have
finished running.
Restarts: How many times this process has restarted to start the
pod. This number will increase if any of your Init Containers fail. The
Deployment will restart it until it reaches a desired state.

Depending on the complexity of your startup scripts, it can take a
couple of minutes for the status to change to podInitializing:

Output
NAME READY STATUS

RESTARTS AGE

php-86d59fd666-lkwgn 0/1 podInitializing

0 39s

This means the Init Containers have finished and the containers are
initializing. If you run the command when all of the containers are
running, you will see the pod status change to Running.

Output
NAME READY STATUS

RESTARTS AGE

php-86d59fd666-lkwgn 1/1 Running 0

1m

You now see that your pod is running successfully. If your pod doesn’t
start, you can debug with the following commands:

View detailed information of a pod:

kubectl describe pods pod-name

View logs generated by a pod:

kubectl logs pod-name

View logs for a specific container in a pod:

kubectl logs pod-name container-name

Your application code is mounted and the PHP-FPM service is now
ready to handle connections. You can now create your Nginx Deployment.

Step 5 — Creating the Nginx Deployment

In this step, you will use a ConfigMap to configure Nginx. A ConfigMap
holds your configuration in a key-value format that you can reference in

other Kubernetes object definitions. This approach will grant you the
flexibility to reuse or swap the image with a different Nginx version if
needed. Updating the ConfigMap will automatically replicate the changes
to any pod mounting it.

Create a nginx_configMap.yaml file for your ConfigMap with
your editor:
nano nginx_configMap.yaml

Name the ConfigMap nginx-config and group it into the tier:
backend micro-service:

nginx_configMap.yaml
apiVersion: v1

kind: ConfigMap

metadata:

 name: nginx-config

 labels:

 tier: backend

Next, you will add the data for the ConfigMap. Name the key config
and add the contents of your Nginx configuration file as the value. You can
use the example Nginx configuration from this tutorial.

Because Kubernetes can route requests to the appropriate host for a
service, you can enter the name of your PHP-FPM service in the
fastcgi_pass parameter instead of its IP address. Add the following to
your nginx_configMap.yaml file:

nginx_configMap.yaml

https://www.digitalocean.com/community/tutorials/how-to-set-up-nginx-server-blocks-virtual-hosts-on-ubuntu-16-04#step-three-create-server-block-files-for-each-domain

...

data:

 config : |

 server {

 index index.php index.html;

 error_log /var/log/nginx/error.log;

 access_log /var/log/nginx/access.log;

 root /code;

 location / {

 try_files $uri $uri/ /index.php?

$query_string;

 }

 location ~ \.php$ {

 try_files $uri =404;

 fastcgi_split_path_info ^(.+\.php)

(/.+)$;

 fastcgi_pass php:9000;

 fastcgi_index index.php;

 include fastcgi_params;

 fastcgi_param SCRIPT_FILENAME

$document_root$fastcgi_script_name;

 fastcgi_param PATH_INFO

$fastcgi_path_info;

 }

 }

Your nginx_configMap.yaml file will look like this:

nginx_configMap.yaml
apiVersion: v1

kind: ConfigMap

metadata:

 name: nginx-config

 labels:

 tier: backend

data:

 config : |

 server {

 index index.php index.html;

 error_log /var/log/nginx/error.log;

 access_log /var/log/nginx/access.log;

 root /code;

 location / {

 try_files $uri $uri/ /index.php?

$query_string;

 }

 location ~ \.php$ {

 try_files $uri =404;

 fastcgi_split_path_info ^(.+\.php)

(/.+)$;

 fastcgi_pass php:9000;

 fastcgi_index index.php;

 include fastcgi_params;

 fastcgi_param SCRIPT_FILENAME

$document_root$fastcgi_script_name;

 fastcgi_param PATH_INFO

$fastcgi_path_info;

 }

 }

Save the file and exit the editor.
Create the ConfigMap:

kubectl apply -f nginx_configMap.yaml

You will see the following output:

Output
configmap/nginx-config created

You’ve finished creating your ConfigMap and can now build your Nginx
Deployment.

Start by opening a new nginx_deployment.yaml file in the editor:
nano nginx_deployment.yaml

Name the Deployment nginx and add the label tier: backend:

nginx_deployment.yaml
apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx

 labels:

 tier: backend

Specify that you want one replicas in the Deployment spec. This
Deployment will manage pods with labels app: nginx and tier:
backend. Add the following parameters and values:

nginx_deployment.yaml
...

spec:

 replicas: 1

 selector:

 matchLabels:

 app: nginx

 tier: backend

Next, add the pod template. You need to use the same labels that you
added for the Deployment selector.matchLabels. Add the
following:

nginx_deployment.yaml
...

 template:

 metadata:

 labels:

 app: nginx

 tier: backend

Give Nginx access to the code PVC that you created earlier. Under
spec.template.spec.volumes, add:

nginx_deployment.yaml
...

 spec:

 volumes:

 - name: code

 persistentVolumeClaim:

 claimName: code

Pods can mount a ConfigMap as a volume. Specifying a file name and
key will create a file with its value as the content. To use the ConfigMap,
set path to name of the file that will hold the contents of the key. You
want to create a file site.conf from the key config. Under
spec.template.spec.volumes, add the following:

nginx_deployment.yaml
...

 - name: config

 configMap:

 name: nginx-config

 items:

 - key: config

 path: site.conf

Warning: If a file is not specified, the contents of the key will replace
the mountPath of the volume. This means that if a path is not explicitly
specified, you will lose all content in the destination folder.

Next, you will specify the image to create your pod from. This tutorial
will use the nginx:1.7.9 image for stability, but you can find other
Nginx images on the Docker store. Also, make Nginx available on the port
80. Under spec.template.spec add:

nginx_deployment.yaml
...

 containers:

 - name: nginx

 image: nginx:1.7.9

 ports:

 - containerPort: 80

Nginx and PHP-FPM need to access the file at the same path, so mount
the code volume at /code:

nginx_deployment.yaml
...

 volumeMounts:

 - name: code

 mountPath: /code

The nginx:1.7.9 image will automatically load any configuration
files under the /etc/nginx/conf.d directory. Mounting the config
volume in this directory will create the file
/etc/nginx/conf.d/site.conf. Under volumeMounts add the
following:

nginx_deployment.yaml

https://hub.docker.com/explore/

...

 - name: config

 mountPath: /etc/nginx/conf.d

Your nginx_deployment.yaml file will look like this:

nginx_deployment.yaml
apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx

 labels:

 tier: backend

spec:

 replicas: 1

 selector:

 matchLabels:

 app: nginx

 tier: backend

 template:

 metadata:

 labels:

 app: nginx

 tier: backend

 spec:

 volumes:

 - name: code

 persistentVolumeClaim:

 claimName: code

 - name: config

 configMap:

 name: nginx-config

 items:

 - key: config

 path: site.conf

 containers:

 - name: nginx

 image: nginx:1.7.9

 ports:

 - containerPort: 80

 volumeMounts:

 - name: code

 mountPath: /code

 - name: config

 mountPath: /etc/nginx/conf.d

Save the file and exit the editor.
Create the Nginx Deployment:

kubectl apply -f nginx_deployment.yaml

The following output indicates that your Deployment is now created:

Output
deployment.apps/nginx created

List your Deployments with this command:
kubectl get deployments

You will see the Nginx and PHP-FPM Deployments:

Output
NAME DESIRED CURRENT UP-TO-DATE

AVAILABLE AGE

nginx 1 1 1 0

16s

php 1 1 1 1

7m

List the pods managed by both of the Deployments:
kubectl get pods

You will see the pods that are running:

Output
NAME READY STATUS

RESTARTS AGE

nginx-7bf5476b6f-zppml 1/1 Running 0

32s

php-86d59fd666-lkwgn 1/1 Running 0

7m

Now that all of the Kubernetes objects are active, you can visit the
Nginx service on your browser.

List the running services:
kubectl get services -o wide

Get the External IP for your Nginx service:

Output
NAME TYPE CLUSTER-IP EXTERNAL-

IP PORT(S) AGE SELECTOR

kubernetes ClusterIP 10.96.0.1 <none>

443/TCP 39m <none>

nginx ClusterIP 10.102.160.47

your_public_ip 80/TCP 27m

app=nginx,tier=backend

php ClusterIP 10.100.59.238 <none>

9000/TCP 34m app=php,tier=backend

On your browser, visit your server by typing in
http://your_public_ip. You will see the output of php_info()
and have confirmed that your Kubernetes services are up and running.

Conclusion

In this guide, you containerized the PHP-FPM and Nginx services so that
you can manage them independently. This approach will not only improve
the scalability of your project as you grow, but will also allow you to
efficiently use resources as well. You also stored your application code on
a volume so that you can easily update your services in the future.

How To Automate Deployments to
DigitalOcean Kubernetes with CircleCI

Written by Jonathan Cardoso
Having an automated deployment process is a requirement for a

scalable and resilient application. Tools like CircleCI allow you to test and
deploy your code automatically every time you make a change to your
source code repository. When this kind of CI/CD is combined with the
flexibility of Kubernetes infrastructure, you can build an application that
scales easily with changing demand.

In this article you will use CircleCI to deploy a sample application to a
DigitalOcean Kubernetes cluster. After reading this tutorial, you’ll be able
to apply these same techniques to deploy other CI/CD tools that are
buildable as Docker images.

The author selected the Tech Education Fund to receive a donation as
part of the Write for DOnations program.

Having an automated deployment process is a requirement for a
scalable and resilient application, and GitOps, or Git-based DevOps, has
rapidly become a popular method of organizing CI/CD with a Git
repository as a “single source of truth.” Tools like CircleCI integrate with
your GitHub repository, allowing you to test and deploy your code
automatically every time you make a change to your repository. When this
kind of CI/CD is combined with the flexibility of Kubernetes
infrastructure, you can build an application that scales easily with
changing demand.

https://www.digitalocean.com/community/tutorials/how-to-automate-deployments-to-digitalocean-kubernetes-with-circleci
https://www.brightfunds.org/funds/tech-education
https://do.co/w4do-cta
https://www.weave.works/blog/gitops-operations-by-pull-request
https://circleci.com/

In this article you will use CircleCI to deploy a sample application to a
DigitalOcean Kubernetes (DOKS) cluster. After reading this tutorial,
you’ll be able to apply these same techniques to deploy other CI/CD tools
that are buildable as Docker images.

Prerequisites

To follow this tutorial, you’ll need to have:

A DigitalOcean account, which you can set up by following the Sign
up for a DigitalOcean Account documentation.
Docker installed on your workstation, and knowledge of how to build,
remove, and run Docker images. You can install Docker on Ubuntu
18.04 by following the tutorial on How To Install and Use Docker on
Ubuntu 18.04.
Knowledge of how Kubernetes works and how to create deployments
and services on it. It’s highly recommended to read the Introduction
to Kubernetes article.
The kubectl command line interface tool installed on the computer
from which you will control your cluster.
An account on Docker Hub to be used to store your sample
application image.
A GitHub account and knowledge of Git basics. You can follow the
tutorial series Introduction to Git: Installation, Usage, and Branches
and How To Create a Pull Request on GitHub to build this knowledge.

For this tutorial, you will use Kubernetes version 1.13.5 and
kubectl version 1.10.7.

https://cloud.digitalocean.com/registrations/new
https://www.digitalocean.com/docs/getting-started/sign-up/
https://www.docker.com/
https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-18-04
https://www.digitalocean.com/community/tutorials/an-introduction-to-kubernetes
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://hub.docker.com/
https://github.com/
https://www.digitalocean.com/community/tutorial_series/introduction-to-git-installation-usage-and-branches
https://www.digitalocean.com/community/tutorials/how-to-create-a-pull-request-on-github

Step 1 — Creating Your DigitalOcean Kubernetes Cluster

Note: You can skip this section if you already have a running
DigitalOcean Kubernetes cluster.

In this first step, you will create the DigitalOcean Kubernetes (DOKS)
cluster from which you will deploy your sample application. The
kubectl commands executed from your local machine will change or
retrieve information directly from the Kubernetes cluster.

Go to the Kubernetes page on your DigitalOcean account.
Click Create a Kubernetes cluster, or click the green Create button at the

top right of the page and select Clusters from the dropdown menu.

Creating a Kubernetes Cluster on DigitalOcean

The next page is where you are going to specify the details of your
cluster. On Select a Kubernetes version pick version 1.13.5-do.0. If this

https://cloud.digitalocean.com/kubernetes/clusters

one is not available, choose a higher one.
For Choose a datacenter region, choose the region closest to you. This

tutorial will use San Francisco - 2.
You then have the option to build your Node pool(s). On Kubernetes, a

node is a worker machine, which contains the services necessary to run
pods. On DigitalOcean, each node is a Droplet. Your node pool will consist
of a single Standard node. Select the 2GB/1vCPU configuration and
change to 1 Node on the number of nodes.

You can add extra tags if you want; this can be useful if you plan to use
DigitalOcean API or just to better organize your node pools.

On Choose a name, for this tutorial, use kubernetes-

deployment-tutorial. This will make it easier to follow throughout
while reading the next sections. Finally, click the green Create Cluster
button to create your cluster.

After cluster creation, there will be a button on the UI to download a
configuration file called Download Config File. This is the file you will be
using to authenticate the kubectl commands you are going to run
against your cluster. Download it to your kubectl machine.

The default way to use that file is to always pass the --kubeconfig
flag and the path to it on all commands you run with kubectl. For
example, if you downloaded the config file to Desktop, you would run
the kubectl get pods command like this:
kubectl --kubeconfig ~/Desktop/kubernetes-

deployment-tutorial-kubeconfig.yaml get pods

This would yield the following output:

Output

No resources found.

This means you accessed your cluster. The No resources found.
message is correct, since you don’t have any pods on your cluster.

If you are not maintaining any other Kubernetes clusters you can copy
the kubeconfig file to a folder on your home directory called .kube.
Create that directory in case it does not exist:
mkdir -p ~/.kube

Then copy the config file into the newly created .kube directory and
rename it config:
cp current_kubernetes-deployment-tutorial-

kubeconfig.yaml_file_path ~/.kube/config

The config file should now have the path ~/.kube/config. This is
the file that kubectl reads by default when running any command, so
there is no need to pass --kubeconfig anymore. Run the following:
kubectl get pods

You will receive the following output:

Output
No resources found.

Now access the cluster with the following:
kubectl get nodes

You will receive the list of nodes on your cluster. The output will be
similar to this:

Output
NAME STATUS

ROLES AGE VERSION

kubernetes-deployment-tutorial-1-7pto Ready

<none> 1h v1.13.5

In this tutorial you are going to use the default namespace for all
kubectl commands and manifest files, which are files that define the
workload and operating parameters of work in Kubernetes. Namespaces
are like virtual clusters inside your single physical cluster. You can change
to any other namespace you want; just make sure to always pass it using
the --namespace flag to kubectl, and/or specifying it on the
Kubernetes manifests metadata field. They are a great way to organize the
deployments of your team and their running environments; read more
about them in the official Kubernetes overview on Namespaces.

By finishing this step you are now able to run kubectl against your
cluster. In the next step, you will create the local Git repository you are
going to use to house your sample application.

Step 2 — Creating the Local Git Repository

You are now going to structure your sample deployment in a local Git
repository. You will also create some Kubernetes manifests that will be
global to all deployments you are going to do on your cluster.

Note: This tutorial has been tested on Ubuntu 18.04, and the individual
commands are styled to match this OS. However, most of the commands
here can be applied to other Linux distributions with little to no change
needed, and commands like kubectl are platform-agnostic.

First, create a new Git repository locally that you will push to GitHub
later on. Create an empty folder called do-sample-app in your home
directory and cd into it:

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

mkdir ~/do-sample-app

cd ~/do-sample-app

Now create a new Git repository in this folder with the following
command:
git init .

Inside this repository, create an empty folder called kube:
mkdir ~/do-sample-app/kube/

This will be the location where you are going to store the Kubernetes
resources manifests related to the sample application that you will deploy
to your cluster.

Now, create another folder called kube-general, but this time
outside of the Git repository you just created. Make it inside your home
directory:
mkdir ~/kube-general/

This folder is outside of your Git repository because it will be used to
store manifests that are not specific to a single deployment on your
cluster, but common to multiple ones. This will allow you to reuse these
general manifests for different deployments.

With your folders created and the Git repository of your sample
application in place, it’s time to arrange the authentication and
authorization of your DOKS cluster.

Step 3 — Creating a Service Account

It’s generally not recommended to use the default admin user to
authenticate from other Services into your Kubernetes cluster. If your keys

https://kubernetes.io/docs/concepts/services-networking/service/

on the external provider got compromised, your whole cluster would
become compromised.

Instead you are going to use a single Service Account with a specific
Role, which is all part of the RBAC Kubernetes authorization model.

This authorization model is based on Roles and Resources. You start by
creating a Service Account, which is basically a user on your cluster, then
you create a Role, in which you specify what resources it has access to on
your cluster. Finally, you create a Role Binding, which is used to make the
connection between the Role and the Service Account previously created,
granting to the Service Account access to all resources the Role has access
to.

The first Kubernetes resource you are going to create is the Service
Account for your CI/CD user, which this tutorial will name cicd.

Create the file cicd-service-account.yml inside the ~/kube-
general folder, and open it with your favorite text editor:
nano ~/kube-general/cicd-service-account.yml

Write the following content on it:

~/kube-general/cicd-service-account.yml
apiVersion: v1

kind: ServiceAccount

metadata:

 name: cicd

 namespace: default

This is a YAML file; all Kubernetes resources are represented using one.
In this case you are saying this resource is from Kubernetes API version

https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/

v1 (internally kubectl creates resources by calling Kubernetes HTTP
APIs), and it is a ServiceAccount.

The metadata field is used to add more information about this
resource. In this case, you are giving this ServiceAccount the name
cicd, and creating it on the default namespace.

You can now create this Service Account on your cluster by running
kubectl apply, like the following:
kubectl apply -f ~/kube-general/

You will recieve output similar to the following:

Output
serviceaccount/cicd created

To make sure your Service Account is working, try to log in to your
cluster using it. To do that you first need to obtain their respective access
token and store it in an environment variable. Every Service Account has
an access token which Kubernetes stores as a Secret.

You can retrieve this secret using the following command:
TOKEN=$(kubectl get secret $(kubectl get secret |

grep cicd-token | awk '{print $1}') -o

jsonpath='{.data.token}' | base64 --decode)

Some explanation on what this command is doing:
$(kubectl get secret | grep cicd-token | awk

'{print $1}')

This is used to retrieve the name of the secret related to our cicd
Service Account. kubectl get secret returns the list of secrets on
the default namespace, then you use grep to search for the lines related to

https://kubernetes.io/docs/concepts/configuration/secret/

your cicd Service Account. Then you return the name, since it is the first
thing on the single line returned from the grep.
kubectl get secret preceding-command -o

jsonpath='{.data.token}' | base64 --decode

This will retrieve only the secret for your Service Account token. You
then access the token field using jsonpath, and pass the result to
base64 --decode. This is necessary because the token is stored as a
Base64 string. The token itself is a JSON Web Token.

You can now try to retrieve your pods with the cicd Service Account.
Run the following command, replacing server-from-kubeconfig-
file with the server URL that can be found after server: in
~kube/config. This command will give a specific error that you will
learn about later in this tutorial:
kubectl --insecure-skip-tls-verify --

kubeconfig="/dev/null" --server=server-from-

kubeconfig-file --token=$TOKEN get pods

--insecure-skip-tls-verify skips the step of verifying the
certificate of the server, since you are just testing and do not need to verify
this. --kubeconfig="/dev/null" is to make sure kubectl does
not read your config file and credentials but instead uses the token
provided.

The output should be similar to this:

Output
Error from server (Forbidden): pods is forbidden:

User "system:serviceaccount:default:cicd" cannot

https://jwt.io/

list resource "pods" in API group "" in the

namespace "default"

This is an error, but it shows us that the token worked. The error you
received is about your Service Account not having the neccessary
authorization to list the resource secrets, but you were able to access
the server itself. If your token had not worked, the error would have been
the following one:

Output
error: You must be logged in to the server

(Unauthorized)

Now that the authentication was a success, the next step is to fix the
authorization error for the Service Account. You will do this by creating a
role with the necessary permissions and binding it to your Service
Account.

Step 4 — Creating the Role and the Role Binding

Kubernetes has two ways to define roles: using a Role or a
ClusterRole resource. The difference between the former and the latter
is that the first one applies to a single namespace, while the other is valid
for the whole cluster.

As you are using a single namespace on this tutorial, you will use a
Role.

Create the file ~/kube-general/cicd-role.yml and open it
with your favorite text editor:
nano ~/kube-general/cicd-role.yml

The basic idea is to grant access to do everything related to most
Kubernetes resources in the default namespace. Your Role would look
like this:

~/kube-general/cicd-role.yml
kind: Role

apiVersion: rbac.authorization.k8s.io/v1

metadata:

 name: cicd

 namespace: default

rules:

 - apiGroups: ["", "apps", "batch", "extensions"]

 resources: ["deployments", "services",

"replicasets", "pods", "jobs", "cronjobs"]

 verbs: ["*"]

This YAML has some similarities with the one you created previously,
but here you are saying this resource is a Role, and it’s from the
Kubernetes API rbac.authorization.k8s.io/v1. You are naming
your role cicd, and creating it on the same namespace you created your
ServiceAccount, the default one.

Then you have the rules field, which is a list of resources this role has
access to. In Kubernetes resources are defined based on the API group they
belong to, the resource kind itself, and what actions you can do on then,
which is represented by a verb. Those verbs are similar to the HTTP ones.

In our case you are saying that your Role is allowed to do everything,
*, on the following resources: deployments, services,
replicasets, pods, jobs, and cronjobs. This also applies to those

https://kubernetes.io/docs/reference/access-authn-authz/authorization/#determine-the-request-verb

resources belonging to the following API groups: "" (empty string),
apps, batch, and extensions. The empty string means the root API
group. If you use apiVersion: v1 when creating a resource it means
this resource is part of this API group.

A Role by itself does nothing; you must also create a RoleBinding,
which binds a Role to something, in this case, a ServiceAccount.

Create the file ~/kube-general/cicd-role-binding.yml and
open it:
nano ~/kube-general/cicd-role-binding.yml

Add the following lines to the file:

~/kube-general/cicd-role-binding.yml
kind: RoleBinding

apiVersion: rbac.authorization.k8s.io/v1

metadata:

 name: cicd

 namespace: default

subjects:

 - kind: ServiceAccount

 name: cicd

 namespace: default

roleRef:

 kind: Role

 name: cicd

 apiGroup: rbac.authorization.k8s.io

Your RoleBinding has some specific fields that have not yet been
covered in this tutorial. roleRef is the Role you want to bind to

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#rolebinding-and-clusterrolebinding

something; in this case it is the cicd role you created earlier. subjects
is the list of resources you are binding your role to; in this case it’s a
single ServiceAccount called cicd.

Note: If you had used a ClusterRole, you would have to create a
ClusterRoleBinding instead of a RoleBinding. The file would be
almost the same. The only difference would be that it would have no
namespace field inside the metadata.

With those files created you will be able to use kubectl apply
again. Create those new resources on your Kubernetes cluster by running
the following command:
kubectl apply -f ~/kube-general/

You will receive output similar to the following:

Output
rolebinding.rbac.authorization.k8s.io/cicd created

role.rbac.authorization.k8s.io/cicd created

serviceaccount/cicd created

Now, try the command you ran previously:
kubectl --insecure-skip-tls-verify --

kubeconfig="/dev/null" --server=server-from-

kubeconfig-file --token=$TOKEN get pods

Since you have no pods, this will yield the following output:

Output
No resources found.

In this step, you gave the Service Account you are going to use on
CircleCI the necessary authorization to do meaningful actions on your

cluster like listing, creating, and updating resources. Now it’s time to
create your sample application.

Step 5 — Creating Your Sample Application

Note: All commands and files created from now on will start from the
folder ~/do-sample-app you created earlier. This is becase you are
now creating files specific to the sample application that you are going to
deploy to your cluster.

The Kubernetes Deployment you are going to create will use the
Nginx image as a base, and your application will be a simple static HTML
page. This is a great start because it allows you to test if your deployment
works by serving a simple HTML directly from Nginx. As you will see
later on, you can redirect all traffic coming to a local address:port to
your deployment on your cluster to test if it’s working.

Inside the repository you set up earlier, create a new Dockerfile file
and open it with your text editor of choice:
nano ~/do-sample-app/Dockerfile

Write the following on it:

~/do-sample-app/Dockerfile
FROM nginx:1.14

COPY index.html /usr/share/nginx/html/index.html

This will tell Docker to build the application container from an nginx
image.

Now create a new index.html file and open it:
nano ~/do-sample-app/index.html

https://hub.docker.com/_/nginx

Write the following HTML content:

~/do-sample-app/index.html
<!DOCTYPE html>

<title>DigitalOcean</title>

<body>

 Kubernetes Sample Application

</body>

This HTML will display a simple message that will let you know if your
application is working.

You can test if the image is correct by building and then running it.
First, build the image with the following command, replacing

dockerhub-username with your own Docker Hub username. You must
specify your username here so when you push it later on to Docker Hub it
will just work:
docker build ~/do-sample-app/ -t dockerhub-

username/do-kubernetes-sample-app

Now run the image. Use the following command, which starts your
image and forwards any local traffic on port 8080 to the port 80 inside
the image, the port Nginx listens to by default:
docker run --rm -it -p 8080:80 dockerhub-

username/do-kubernetes-sample-app

The command prompt will stop being interactive while the command is
running. Instead you will see the Nginx access logs. If you open
localhost:8080 on any browser it should show an HTML page with
the content of ~/do-sample-app/index.html. In case you don’t

have a browser available, you can open a new terminal window and use the
following curl command to fetch the HTML from the webpage:
curl localhost:8080

You will receive the following output:

Output
<!DOCTYPE html>

<title>DigitalOcean</title>

<body>

 Kubernetes Sample Application

</body>

Stop the container (CTRL + C on the terminal where it’s running), and
submit this image to your Docker Hub account. To do this, first log in to
Docker Hub:
docker login

Fill in the required information about your Docker Hub account, then
push the image with the following command (don’t forget to replace the
dockerhub-username with your own):
docker push dockerhub-username/do-kubernetes-

sample-app

You have now pushed your sample application image to your Docker
Hub account. In the next step, you will create a Deployment on your
DOKS cluster from this image.

Step 6 — Creating the Kubernetes Deployment and
Service

With your Docker image created and working, you will now create a
manifest telling Kubernetes how to create a Deployment from it on your
cluster.

Create the YAML deployment file ~/do-sample-app/kube/do-
sample-deployment.yml and open it with your text editor:
nano ~/do-sample-app/kube/do-sample-deployment.yml

Write the following content on the file, making sure to replace
dockerhub-username with your Docker Hub username:

~/do-sample-app/kube/do-sample-deployment.yml
apiVersion: apps/v1

kind: Deployment

metadata:

 name: do-kubernetes-sample-app

 namespace: default

 labels:

 app: do-kubernetes-sample-app

spec:

 replicas: 1

 selector:

 matchLabels:

 app: do-kubernetes-sample-app

 template:

 metadata:

 labels:

 app: do-kubernetes-sample-app

 spec:

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

 containers:

 - name: do-kubernetes-sample-app

 image: dockerhub-username/do-kubernetes-

sample-app:latest

 ports:

 - containerPort: 80

 name: http

Kubernetes deployments are from the API group apps, so the
apiVersion of your manifest is set to apps/v1. On metadata you
added a new field you have not used previously, called
metadata.labels. This is useful to organize your deployments. The
field spec represents the behavior specification of your deployment. A
deployment is responsible for managing one or more pods; in this case it’s
going to have a single replica by the spec.replicas field. That is, it’s
going to create and manage a single pod.

To manage pods, your deployment must know which pods it’s
responsible for. The spec.selector field is the one that gives it that
information. In this case the deployment will be responsible for all pods
with tags app=do-kubernetes-sample-app. The
spec.template field contains the details of the Pod this deployment
will create. Inside the template you also have a
spec.template.metadata field. The labels inside this field must
match the ones used on spec.selector. spec.template.spec is
the specification of the pod itself. In this case it contains a single
container, called do-kubernetes-sample-app. The image of that
container is the image you built previously and pushed to Docker Hub.

This YAML file also tells Kubernetes that this container exposes the
port 80, and gives this port the name http.

To access the port exposed by your Deployment, create a Service.
Make a file named ~/do-sample-app/kube/do-sample-

service.yml and open it with your favorite editor:
nano ~/do-sample-app/kube/do-sample-service.yml

Next, add the following lines to the file:

~/do-sample-app/kube/do-sample-service.yml
apiVersion: v1

kind: Service

metadata:

 name: do-kubernetes-sample-app

 namespace: default

 labels:

 app: do-kubernetes-sample-app

spec:

 type: ClusterIP

 ports:

 - port: 80

 targetPort: http

 name: http

 selector:

 app: do-kubernetes-sample-app

This file gives your Service the same labels used on your
deployment. This is not required, but it helps to organize your applications
on Kubernetes.

The service resource also has a spec field. The spec.type field is
responsible for the behavior of the service. In this case it’s a ClusterIP,
which means the service is exposed on a cluster-internal IP, and is only
reachable from within your cluster. This is the default spec.type for
services. spec.selector is the label selector criteria that should be
used when picking the pods to be exposed by this service. Since your pod
has the tag app: do-kubernetes-sample-app, you used it here.
spec.ports are the ports exposed by the pod’s containers that you want
to expose from this service. Your pod has a single container which exposes
port 80, named http, so you are using it here as targetPort. The
service exposes that port on port 80 too, with the same name, but you
could have used a different port/name combination than the one from the
container.

With your Service and Deployment manifest files created, you can
now create those resources on your Kubernetes cluster using kubectl:
kubectl apply -f ~/do-sample-app/kube/

You will receive the following output:

Output
deployment.apps/do-kubernetes-sample-app created

service/do-kubernetes-sample-app created

Test if this is working by forwarding one port on your machine to the
port that the service is exposing inside your Kubernetes cluster. You can do
that using kubectl port-forward:
kubectl port-forward $(kubectl get pod --

selector="app=do-kubernetes-sample-app" --output

jsonpath='{.items[0].metadata.name}') 8080:80

The subshell command $(kubectl get pod --

selector="app=do-kubernetes-sample-app" --output

jsonpath='{.items[0].metadata.name}') retrieves the name
of the pod matching the tag you used. Otherwise you could have retrieved
it from the list of pods by using kubectl get pods.

After you run port-forward, the shell will stop being interactive,
and will instead output the requests redirected to your cluster:

Output
Forwarding from 127.0.0.1:8080 -> 80

Forwarding from [::1]:8080 -> 80

Opening localhost:8080 on any browser should render the same
page you saw when you ran the container locally, but it’s now coming
from your Kubernetes cluster! As before, you can also use curl in a new
terminal window to check if it’s working:
curl localhost:8080

You will receive the following output:

Output
<!DOCTYPE html>

<title>DigitalOcean</title>

<body>

 Kubernetes Sample Application

</body>

Next, it’s time to push all the files you created to your GitHub
repository. To do this you must first create a repository on GitHub called
digital-ocean-kubernetes-deploy.

https://help.github.com/en/articles/creating-a-new-repository

In order to keep this repository simple for demonstration purposes, do
not initialize the new repository with a README, license, or
.gitignore file when asked on the GitHub UI. You can add these files
later on.

With the repository created, point your local repository to the one on
GitHub. To do this, press CTRL + C to stop kubectl port-forward
and get the command line back, then run the following commands to add a
new remote called origin:
cd ~/do-sample-app/

git remote add origin https://github.com/your-

github-account-username/digital-ocean-kubernetes-

deploy.git

There should be no output from the preceding command.
Next, commit all the files you created up to now to the GitHub

repository. First, add the files:
git add --all

Next, commit the files to your repository, with a commit message in
quotation marks:
git commit -m "initial commit"

This will yield output similar to the following:

Output
[master (root-commit) db321ad] initial commit

 4 files changed, 47 insertions(+)

 create mode 100644 Dockerfile

 create mode 100644 index.html

 create mode 100644 kube/do-sample-deployment.yml

 create mode 100644 kube/do-sample-service.yml

Finally, push the files to GitHub:
git push -u origin master

You will be prompted for your username and password. Once you have
entered this, you will see output like this:

Output
Counting objects: 7, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (7/7), done.

Writing objects: 100% (7/7), 907 bytes | 0

bytes/s, done.

Total 7 (delta 0), reused 0 (delta 0)

To github.com:your-github-account-

username/digital-ocean-kubernetes-deploy.git

 * [new branch] master -> master

Branch master set up to track remote branch master

from origin.

If you go to your GitHub repository page you will now see all the files
there. With your project up on GitHub, you can now set up CircleCI as
your CI/CD tool.

Step 7 — Configuring CircleCI

For this tutorial, you will use CircleCI to automate deployments of your
application whenever the code is updated, so you will need to log in to
CircleCI using your GitHub account and set up your repository.

First, go to their homepage https://circleci.com, and press
Sign Up.

circleci-home-page

You are using GitHub, so click the green Sign Up with GitHub button.
CircleCI will redirect to an authorization page on GitHub. CircleCI

needs some permissions on your account to be able to start building your
projects. This allows CircleCI to obtain your email, deploy keys and
permission to create hooks on your repositories, and add SSH keys to your
account. If you need more information on what CircleCI is going to do
with your data, check their documentation about GitHub integration.

https://circleci.com/
https://circleci.com/docs/2.0/gh-bb-integration

circleci-github-authorization

After authorizing CircleCI you will be redirected to their dashboard.

circleci-project-dashboard

Next, set up your GitHub repository in CircleCI. Click on Set Up New
Projects from the CircleCI Dashboard, or as a shortcut, open the following
link changing the highlighted text with your own GitHub username:
https://circleci.com/setup-project/gh/your-github-

username/digital-ocean-kubernetes-deploy.
After that press Start Building. Do not create a config file in your

repository just yet, and don’t worry if the first build fails.

circleci-start-building

Next, specify some environment variables in the CircleCI settings. You
can find the settings of the project by clicking on the small button with a
cog icon on the top right section of the page then selecting Environment
Variables, or you can go directly to the environment variables page by
using the following URL (remember to fill in your username):

https://circleci.com/gh/your-github-

username/digital-ocean-kubernetes-deploy/edit#env-

vars. Press Add Variable to create new environment variables.
First, add two environment variables called DOCKERHUB_USERNAME

and DOCKERHUB_PASS which will be needed later on to push the image
to Docker Hub. Set the values to your Docker Hub username and
password, respectively.

Then add three more: KUBERNETES_TOKEN, KUBERNETES_SERVER,
and KUBERNETES_CLUSTER_CERTIFICATE.

The value of KUBERNETES_TOKEN will be the value of the local
environment variable you used earlier to authenticate on your Kubernetes
cluster using your Service Account user. If you have closed the terminal,
you can always run the following command to retrieve it again:
kubectl get secret $(kubectl get secret | grep

cicd-token | awk '{print $1}') -o

jsonpath='{.data.token}' | base64 --decode

KUBERNETES_SERVER will be the string you passed as the --
server flag to kubectl when you logged in with your cicd Service
Account. You can find this after server: in the ~/.kube/config file,
or in the file kubernetes-deployment-tutorial-

kubeconfig.yaml downloaded from the DigitalOcean dashboard when
you made the initial setup of your Kubernetes cluster.
KUBERNETES_CLUSTER_CERTIFICATE should also be available on

your ~/.kube/config file. It’s the certificate-authority-
data field on the clusters item related to your cluster. It should be a
long string; make sure to copy all of it.

Those environment variables must be defined here because most of
them contain sensitive information, and it is not secure to place them
directly on the CircleCI YAML config file.

With CircleCI listening for changes on your repository, and the
environment variables configured, it’s time to create the configuration
file.

Make a directory called .circleci inside your sample application
repository:
mkdir ~/do-sample-app/.circleci/

Inside this directory, create a file named config.yml and open it with
your favorite editor:
nano ~/do-sample-app/.circleci/config.yml

Add the following content to the file, making sure to replace
dockerhub-username with your Docker Hub username:

~/do-sample-app/.circleci/config.yml
version: 2.1

jobs:

 build:

 docker:

 - image: circleci/buildpack-deps:stretch

 environment:

 IMAGE_NAME: dockerhub-username/do-

kubernetes-sample-app

 working_directory: ~/app

 steps:

 - checkout

 - setup_remote_docker

 - run:

 name: Build Docker image

 command: |

 docker build -t $IMAGE_NAME:latest .

 - run:

 name: Push Docker Image

 command: |

 echo "$DOCKERHUB_PASS" | docker login

-u "$DOCKERHUB_USERNAME" --password-stdin

 docker push $IMAGE_NAME:latest

workflows:

 version: 2

 build-master:

 jobs:

 - build:

 filters:

 branches:

 only: master

This sets up a Workflow with a single job, called build, that runs for
every commit to the master branch. This job is using the image
circleci/buildpack-deps:stretch to run its steps, which is an
image from CircleCI based on the official buildpack-deps Docker
image, but with some extra tools installed, like Docker binaries
themselves.

The workflow has four steps:

checkout retrieves the code from GitHub.
setup_remote_docker sets up a remote, isolated environment
for each build. This is required before you use any docker
command inside a job step. This is necessary because as the steps are
running inside a docker image, setup_remote_docker allocates
another machine to run the commands there.
The first run step builds the image, as you did previously locally.
For that you are using the environment variable you declared in
environment:, IMAGE_NAME (remember to change the
highlighted section with your own information).
The last run step pushes the image to Dockerhub, using the
environment variables you configured on the project settings to
authenticate.

Commit the new file to your repository and push the changes upstream:
cd ~/do-sample-app/

git add .circleci/

git commit -m "add CircleCI config"

git push

This will trigger a new build on CircleCI. The CircleCI workflow is
going to correctly build and push your image to Docker Hub.

CircleCI build page with success build info

Now that you have created and tested your CircleCI workflow, you can
set your DOKS cluster to retrieve the up-to-date image from Docker Hub
and deploy it automatically when changes are made.

Step 8 — Updating the Deployment on the Kubernetes
Cluster

Now that your application image is being built and sent to Docker Hub
every time you push changes to the master branch on GitHub, it’s time
to update your deployment on your Kubernetes cluster so that it retrieves
the new image and uses it as a base for deployment.

To do that, first fix one issue with your deployment: it’s currently
depending on an image with the latest tag. This tag does not tell us
which version of the image you are using. You cannot easily lock your

deployment to that tag because it’s overwritten everytime you push a new
image to Docker Hub, and by using it like that you lose one of the best
things about having containerized applications: Reproducibility.

You can read more about that on this article about why depending on
Docker latest tag is a anti-pattern.

To correct this, you first must make some changes to your Push
Docker Image build step in the ~/do-sample-

app/.circleci/config.yml file. Open up the file:
nano ~/do-sample-app/.circleci/config.yml

Then add the highlighted lines to your Push Docker Image step:

~/do-sample-app/.circleci/config.yml:16-22
...

 - run:

 name: Push Docker Image

 command: |

 echo "$DOCKERHUB_PASS" | docker login

-u "$DOCKERHUB_USERNAME" --password-stdin

 docker tag $IMAGE_NAME:latest

$IMAGE_NAME:$CIRCLE_SHA1

 docker push $IMAGE_NAME:latest

 docker push $IMAGE_NAME:$CIRCLE_SHA1

...

Save and exit the file.
CircleCI has some special environment variables set by default. One of

them is CIRCLE_SHA1, which contains the hash of the commit it’s
building. The changes you made to ~/do-sample-

https://vsupalov.com/docker-latest-tag/

app/.circleci/config.yml will use this environment variable to
tag your image with the commit it was built from, always tagging the most
recent build with the latest tag. That way, you always have specific images
available, without overwriting them when you push something new to your
repository.

Next, change your deployment manifest file to point to that file. This
would be simple if inside ~/do-sample-app/kube/do-sample-
deployment.yml you could set your image as dockerhub-

username/do-kubernetes-sample-app:$COMMIT_SHA1, but
kubectl doesn’t do variable substitution inside the manifests when you
use kubectl apply. To account for this, you can use envsubst.
envsubst is a cli tool, part of the GNU gettext project. It allows you to
pass some text to it, and if it finds any variable inside the text that has a
matching environment variable, it’s replaced by the respective value. The
resulting text is then returned as their output.

To use this, you will create a simple bash script which will be
responsible for your deployment. Make a new folder called scripts
inside ~/do-sample-app/:
mkdir ~/do-sample-app/scripts/

Inside that folder create a new bash script called ci-deploy.sh and
open it with your favorite text editor:
nano ~/do-sample-app/scripts/ci-deploy.sh

Inside it write the following bash script:

~/do-sample-app/scripts/ci-deploy.sh
#! /bin/bash

exit script when any command ran here returns

https://www.gnu.org/software/gettext/manual/html_node/envsubst-Invocation.html

with non-zero exit code

set -e

COMMIT_SHA1=$CIRCLE_SHA1

We must export it so it's available for envsubst

export COMMIT_SHA1=$COMMIT_SHA1

since the only way for envsubst to work on files

is using input/output redirection,

it's not possible to do in-place substitution,

so we need to save the output to another file

and overwrite the original with that one.

envsubst <./kube/do-sample-deployment.yml

>./kube/do-sample-deployment.yml.out

mv ./kube/do-sample-deployment.yml.out ./kube/do-

sample-deployment.yml

echo "$KUBERNETES_CLUSTER_CERTIFICATE" | base64 --

decode > cert.crt

./kubectl \

 --kubeconfig=/dev/null \

 --server=$KUBERNETES_SERVER \

 --certificate-authority=cert.crt \

 --token=$KUBERNETES_TOKEN \

 apply -f ./kube/

Let’s go through this script, using the comments in the file. First, there
is the following:
set -e

This line makes sure any failed command stops the execution of the
bash script. That way if one command fails, the next ones are not
executed.
COMMIT_SHA1=$CIRCLE_SHA1

export COMMIT_SHA1=$COMMIT_SHA1

These lines export the CircleCI $CIRCLE_SHA1 environment variable
with a new name. If you had just declared the variable without exporting it
using export, it would not be visible for the envsubst command.
envsubst <./kube/do-sample-deployment.yml

>./kube/do-sample-deployment.yml.out

mv ./kube/do-sample-deployment.yml.out ./kube/do-

sample-deployment.yml

envsubst cannot do in-place substitution. That is, it cannot read the
content of a file, replace the variables with their respective values, and
write the output back to the same file. Therefore, you will redirect the
output to another file and then overwrite the original file with the new one.
echo "$KUBERNETES_CLUSTER_CERTIFICATE" | base64 --

decode > cert.crt

The environment variable $KUBERNETES_CLUSTER_CERTIFICATE
you created earlier on CircleCI’s project settings is in reality a Base64
encoded string. To use it with kubectl you must decode its contents and
save it to a file. In this case you are saving it to a file named cert.crt
inside the current working directory.

./kubectl \

 --kubeconfig=/dev/null \

 --server=$KUBERNETES_SERVER \

 --certificate-authority=cert.crt \

 --token=$KUBERNETES_TOKEN \

 apply -f ./kube/

Finally, you are running kubectl. The command has similar
arguments to the one you ran when you were testing your Service Account.
You are calling apply -f ./kube/, since on CircleCI the current
working directory is the root folder of your project. ./kube/ here is your
~/do-sample-app/kube folder.

Save the file and make sure it’s executable:
chmod +x ~/do-sample-app/scripts/ci-deploy.sh

Now, edit ~/do-sample-app/kube/do-sample-

deployment.yml:
nano ~/do-sample-app/kube/do-sample-deployment.yml

Change the tag of the container image value to look like the following
one:

~/do-sample-app/kube/do-sample-deployment.yml
 # ...

 containers:

 - name: do-kubernetes-sample-app

 image: dockerhub-username/do-kubernetes-

sample-app:$COMMIT_SHA1

 ports:

 - containerPort: 80

 name: http

Save and close the file. You must now add some new steps to your CI
configuration file to update the deployment on Kubernetes.

Open ~/do-sample-app/.circleci/config.yml on your
favorite text editor:
nano ~/do-sample-app/.circleci/config.yml

Write the following new steps, right below the Push Docker Image
one you had before:

~/do-sample-app/.circleci/config.yml
...

 - run:

 name: Install envsubst

 command: |

 sudo apt-get update && sudo apt-get -y

install gettext-base

 - run:

 name: Install kubectl

 command: |

 curl -LO

https://storage.googleapis.com/kubernetes-

release/release/$(curl -s

https://storage.googleapis.com/kubernetes-

release/release/stable.txt)/bin/linux/amd64/kubect

l

 chmod u+x ./kubectl

 - run:

 name: Deploy Code

 command: ./scripts/ci-deploy.sh

The first two steps are installing some dependencies, first envsubst,
and then kubectl. The Deploy Code step is responsible for running
our deploy script.

To make sure the changes are really going to be reflected on your
Kubernetes deployment, edit your index.html. Change the HTML to
something else, like:

~/do-sample-app/index.html
<!DOCTYPE html>

<title>DigitalOcean</title>

<body>

 Automatic Deployment is Working!

</body>

Once you have saved the above change, commit all the modified files to
the repository, and push the changes upstream:
cd ~/do-sample-app/

git add --all

git commit -m "add deploy script and add new steps

to circleci config"

git push

You will see the new build running on CircleCI, and successfully
deploying the changes to your Kubernetes cluster.

Wait for the build to finish, then run the same command you ran
previously:

kubectl port-forward $(kubectl get pod --

selector="app=do-kubernetes-sample-app" --output

jsonpath='{.items[0].metadata.name}') 8080:80

Make sure everything is working by opening your browser on the URL
localhost:8080 or by making a curl request to it. It should show the
updated HTML:
curl localhost:8080

You will receive the following output:

Output
<!DOCTYPE html>

<title>DigitalOcean</title>

<body>

 Automatic Deployment is Working!

</body>

Congratulations, you have set up automated deployment with CircleCI!

Conclusion

This was a basic tutorial on how to do deployments to DigitalOcean
Kubernetes using CircleCI. From here, you can improve your pipeline in
many ways. The first thing you can do is create a single build job for
multiple deployments, each one deploying to different Kubernetes clusters
or different namespaces. This can be extremely useful when you have
different Git branches for development/staging/production environments,
ensuring that the deployments are always separated.

You could also build your own image to be used on CircleCI, instead of
using buildpack-deps. This image could be based on it, but could

already have kubectl and envsubst dependencies installed.
If you would like to learn more about CI/CD on Kubernetes, check out

the tutorials for our CI/CD on Kubernetes Webinar Series, or for more
information about apps on Kubernetes, see Modernizing Applications for
Kubernetes.

https://www.digitalocean.com/community/tutorial_series/webinar-series-ci-cd-on-kubernetes
https://www.digitalocean.com/community/tutorials/modernizing-applications-for-kubernetes

How To Set Up a CD Pipeline with
Spinnaker on DigitalOcean Kubernetes

Written by Savic
In this tutorial, you’ll deploy Spinnaker, an open-source resource

management and continuous delivery application, to your Kubernetes
cluster. Spinnaker enables automated application deployments to many
platforms and can integrate with other DevOps tools, like Jenkins and
TravisCI. Additionally, it can be configured to monitor code repositories
and Docker registries for completely automated Continuous Delivery
development and deployment processes.

By the end of this tutorial you will be able to manage applications and
development processes on your Kubernetes cluster using Spinnaker. You
will automate the start of your deployment pipelines using triggers, such
as, when a new Docker image has been added to your private registry, or
when new code is pushed to a git repository.

The author selected the Free and Open Source Fund to receive a
donation as part of the Write for DOnations program.

Spinnaker is an open-source resource management and continuous
delivery application for fast, safe, and repeatable deployments, using a
powerful and customizable pipeline system. Spinnaker allows for
automated application deployments to many platforms, including
DigitalOcean Kubernetes. When deploying, you can configure Spinnaker
to use built-in deployment strategies, such as Highlander and Red/black,
with the option of creating your own deployment strategy. It can integrate

https://www.digitalocean.com/community/tutorials/how-to-set-up-a-cd-pipeline-with-spinnaker-on-digitalocean-kubernetes
https://www.brightfunds.org/funds/foss-nonprofits
https://do.co/w4do-cta
https://www.spinnaker.io/
https://www.digitalocean.com/products/kubernetes/
https://www.spinnaker.io/concepts/#deployment-strategies

with other DevOps tools, like Jenkins and TravisCI, and can be configured
to monitor GitHub repositories and Docker registries.

Spinnaker is managed by Halyard, a tool specifically built for
configuring and deploying Spinnaker to various platforms. Spinnaker
requires external storage for persisting your application’s settings and
pipelines. It supports different platforms for this task, like DigitalOcean
Spaces.

In this tutorial, you’ll deploy Spinnaker to DigitalOcean Kubernetes
using Halyard, with DigitalOcean Spaces as the underlying back-end
storage. You’ll also configure Spinnaker to be available at your desired
domain, secured using Let’s Encrypt TLS certificates. Then, you will
create a sample application in Spinnaker, create a pipeline, and deploy a
Hello World app to your Kubernetes cluster. After testing it, you’ll
introduce authentication and authorization via GitHub Organizations. By
the end, you will have a secured and working Spinnaker deployment in
your Kubernetes cluster.

Note: This tutorial has been specifically tested with Spinnaker 1.13.5.

Prerequisites

Halyard installed on your local machine, according to the official
instructions. Please note that using Halyard on Ubuntu versions
higher than 16.04 is not supported. In such cases, you can use it via
Docker.
A DigitalOcean Kubernetes cluster with your connection configured
as the kubectl default. The cluster must have at least 8GB RAM
and 4 CPU cores available for Spinnaker (more will be required in the

https://www.spinnaker.io/reference/halyard/#halyard
https://www.spinnaker.io/setup/install/storage/
https://www.digitalocean.com/products/spaces/
https://www.spinnaker.io/setup/install/halyard/
https://www.spinnaker.io/setup/install/halyard/#install-halyard-on-docker

case of heavier use). Instructions on how to configure kubectl are
shown under the Connect to your Cluster step shown when you create
your cluster. To create a Kubernetes cluster on DigitalOcean, see the
Kubernetes Quickstart.
An Nginx Ingress Controller and cert-manager installed on the
cluster. For a guide on how to do this, see How to Set Up an Nginx
Ingress with Cert-Manager on DigitalOcean Kubernetes.
A DigitalOcean Space with API keys (access and secret). To create a
DigitalOcean Space and API keys, see How To Create a DigitalOcean
Space and API Key.
A domain name with three DNS A records pointed to the
DigitalOcean Load Balancer used by the Ingress. If you’re using
DigitalOcean to manage your domain’s DNS records, consult How to
Create DNS Records to create A records. In this tutorial, we’ll refer to
the A records as spinnaker.example.com, spinnaker-
api.example.com, and hello-world.example.com.
A GitHub account, added to a GitHub Organization with admin
permissions and public visibility. The account must also be a member
of a Team in the Organization. This is required to complete Step 5.

Step 1 — Adding a Kubernetes Account with Halyard

In this section, you will add a Kubernetes account to Spinnaker via
Halyard. An account, in Spinnaker’s terms, is a named credential it uses to
access a cloud provider.

As part of the prerequisite, you created the echo1 and echo2 services
and an echo_ingress ingress for testing purposes; you will not need

https://www.digitalocean.com/docs/kubernetes/quickstart/
https://www.digitalocean.com/community/tutorials/how-to-set-up-an-nginx-ingress-with-cert-manager-on-digitalocean-kubernetes
https://www.digitalocean.com/community/tutorials/how-to-create-a-digitalocean-space-and-api-key
https://www.digitalocean.com/docs/networking/dns/how-to/manage-records/
https://github.com/

these in this tutorial, so you can now delete them.
Start off by deleting the ingress by running the following command:

kubectl delete -f echo_ingress.yaml

Then, delete the two test services:
kubectl delete -f echo1.yaml && kubectl delete -f

echo2.yaml

The kubectl delete command accepts the file to delete when
passed the -f parameter.

Next, from your local machine, create a folder that will serve as your
workspace:
mkdir ~/spinnaker-k8s

Navigate to your workspace by running the following command:
cd ~/spinnaker-k8s

Halyard does not yet know where it should deploy Spinnaker. Enable the
Kubernetes provider with this command:
hal config provider kubernetes enable

You’ll receive the following output:

Output
+ Get current deployment

 Success

+ Edit the kubernetes provider

 Success

Problems in default.provider.kubernetes:

- WARNING Provider kubernetes is enabled, but no

accounts have been

 configured.

+ Successfully enabled kubernetes

Halyard logged all the steps it took to enable the Kubernetes provider,
and warned that no accounts are defined yet.

Next, you’ll create a Kubernetes service account for Spinnaker, along
with RBAC. A service account is a type of account that is scoped to a
single namespace. It is used by software, which may perform various tasks
in the cluster. RBAC (Role Based Access Control) is a method of
regulating access to resources in a Kubernetes cluster. It limits the scope
of action of the account to ensure that no important configurations are
inadvertently changed on your cluster.

Here, you will grant Spinnaker cluster-admin permissions to allow
it to control the whole cluster. If you wish to create a more restrictive
environment, consult the official Kubernetes documentation on RBAC.

First, create the spinnaker namespace by running the following
command:
kubectl create ns spinnaker

The output will look like:

Output
namespace/spinnaker created

Run the following command to create a service account named
spinnaker-service-account:
kubectl create serviceaccount spinnaker-service-

account -n spinnaker

You’ve used the -n flag to specify that kubectl create the service
account in the spinnaker namespace. The output will be:

https://kubernetes.io/docs/reference/access-authn-authz/rbac/

Output
serviceaccount/spinnaker-service-account created

Then, bind it to the cluster-admin role:
kubectl create clusterrolebinding spinnaker-

service-account --clusterrole cluster-admin --

serviceaccount=spinnaker:spinnaker-service-account

You will see the following output:

Output
clusterrolebinding.rbac.authorization.k8s.io/spinn

aker-service-account created

Halyard uses the local kubectl to access the cluster. You’ll need to
configure it to use the newly created service account before deploying
Spinnaker. Kubernetes accounts authenticate using usernames and tokens.
When a service account is created, Kubernetes makes a new secret and
populates it with the account token. To retrieve the token for the
spinnaker-service-account, you’ll first need to get the name of
the secret. You can fetch it into a console variable, named
TOKEN_SECRET, by running:
TOKEN_SECRET=$(kubectl get serviceaccount -n

spinnaker spinnaker-service-account -o

jsonpath='{.secrets[0].name}')

This gets information about the spinnaker-service-account
from the namespace spinnaker, and fetches the name of the first secret
it contains by passing in a JSON path.

Fetch the contents of the secret into a variable named TOKEN by
running:

TOKEN=$(kubectl get secret -n spinnaker

$TOKEN_SECRET -o jsonpath='{.data.token}' | base64

--decode)

You now have the token available in the environment variable TOKEN.
Next, you’ll need to set credentials for the service account in kubectl:
kubectl config set-credentials spinnaker-token-

user --token $TOKEN

You will see the following output:

Output
User "spinnaker-token-user" set.

Then, you’ll need to set the user of the current context to the newly
created spinnaker-token-user by running the following command:
kubectl config set-context --current --user

spinnaker-token-user

By setting the current user to spinnaker-token-user, kubectl is
now configured to use the spinnaker-service-account, but
Halyard does not know anything about that. Add an account to its
Kubernetes provider by executing:
hal config provider kubernetes account add

spinnaker-account --provider-version v2

The output will look like this:

Output
+ Get current deployment

 Success

+ Add the spinnaker-account account

 Success

+ Successfully added account spinnaker-account for

provider

 kubernetes.

This commmand adds a Kubernetes account to Halyard, named
spinnaker-account, and marks it as a service account.

Generally, Spinnaker can be deployed in two ways: distributed
installation or local installation. Distributed installation is what you’re
completing in this tutorial—you’re deploying it to the cloud. Local
installation, on the other hand, means that Spinnaker will be downloaded
and installed on the machine Halyard runs on. Because you’re deploying
Spinnaker to Kubernetes, you’ll need to mark the deployment as
distributed, like so:
hal config deploy edit --type distributed --

account-name spinnaker-account

Since your Spinnaker deployment will be building images, it is
necessary to enable artifacts in Spinnaker. You can enable them by
running the following command:
hal config features edit --artifacts true

Here you’ve enabled artifacts to allow Spinnaker to store more
metadata about the objects it creates.

You’ve added a Kubernetes account to Spinnaker, via Halyard. You
enabled the Kubernetes provider, configured RBAC roles, and added the
current kubectl config to Spinnaker, thus adding an account to the
provider. Now you’ll set up your back-end storage.

Step 2 — Configuring the Space as the Underlying Storage

In this section, you will configure the Space as the underlying storage for
the Spinnaker deployment. Spinnaker will use the Space to store its
configuration and pipeline-related data.

To configure S3 storage in Halyard, run the following command:
hal config storage s3 edit --access-key-id

your_space_access_key --secret-access-key --

endpoint spaces_endpoint_with_region_prefix --

bucket space_name --no-validate

Remember to replace your_space_access_key with your Space
access key and spaces_endpoint_with_region_prefix with the
endpoint of your Space. This is usually region-

id.digitaloceanspaces.com, where region-id is the region of
your Space. You can replace space_name with the name of your Space.
The --no-validate flag tells Halyard not to validate the settings given
right away, because DigitalOcean Spaces validation is not supported.

Once you’ve run this command, Halyard will ask you for your secret
access key. Enter it to continue and you’ll then see the following output:

Output
+ Get current deployment

 Success

+ Get persistent store

 Success

+ Edit persistent store

 Success

+ Successfully edited persistent store "s3".

Now that you’ve configured s3 storage, you’ll ensure that your
deployment will use this as its storage by running the following command:
hal config storage edit --type s3

The output will look like this:

Output
+ Get current deployment

 Success

+ Get persistent storage settings

 Success

+ Edit persistent storage settings

 Success

+ Successfully edited persistent storage.

You’ve set up your Space as the underlying storage that your instance of
Spinnaker will use. Now you’ll deploy Spinnaker to your Kubernetes
cluster and expose it at your domains using the Nginx Ingress Controller.

Step 3 — Deploying Spinnaker to Your Cluster

In this section, you will deploy Spinnaker to your cluster using Halyard,
and then expose its UI and API components at your domains using an
Nginx Ingress. First, you’ll configure your domain URLs: one for
Spinnaker’s user interface and one for the API component. Then you’ll
pick your desired version of Spinnaker and deploy it using Halyard.
Finally you’ll create an ingress and configure it as an Nginx controller.

First, you’ll need to edit Spinnaker’s UI and API URL config values in
Halyard and set them to your desired domains. To set the API endpoint to
your desired domain, run the following command:

hal config security api edit --override-base-url

https://spinnaker-api.example.com

The output will look like:

Output
+ Get current deployment

 Success

+ Get API security settings

 Success

+ Edit API security settings

 Success

...

To set the UI endpoint to your domain, which is where you will access
Spinnaker, run:
hal config security ui edit --override-base-url

https://spinnaker.example.com

The output will look like:

Output
+ Get current deployment

 Success

+ Get UI security settings

 Success

+ Edit UI security settings

 Success

+ Successfully updated UI security settings.

Remember to replace spinnaker-api.example.com and
spinnaker.example.com with your domains. These are the domains
you have pointed to the Load Balancer that you created during the Nginx
Ingress Controller prerequisite.

You’ve created and secured Spinnaker’s Kubernetes account, configured
your Space as its underlying storage, and set its UI and API endpoints to
your domains. Now you can list the available Spinnaker versions:
hal version list

Your output will show a list of available versions. At the time of writing
this article 1.13.5 was the latest version:

Output
+ Get current deployment

 Success

+ Get Spinnaker version

 Success

+ Get released versions

 Success

+ You are on version "", and the following are

available:

 - 1.11.12 (Cobra Kai):

 Changelog: https://gist.GitHub.com/spinnaker-

release/29a01fa17afe7c603e510e202a914161

 Published: Fri Apr 05 14:55:40 UTC 2019

 (Requires Halyard >= 1.11)

 - 1.12.9 (Unbreakable):

 Changelog: https://gist.GitHub.com/spinnaker-

release/7fa9145349d6beb2f22163977a94629e

 Published: Fri Apr 05 14:11:44 UTC 2019

 (Requires Halyard >= 1.11)

 - 1.13.5 (BirdBox):

 Changelog: https://gist.GitHub.com/spinnaker-

release/23af06bc73aa942c90f89b8e8c8bed3e

 Published: Mon Apr 22 14:32:29 UTC 2019

 (Requires Halyard >= 1.17)

To select a version to install, run the following command:
hal config version edit --version 1.13.5

It is recommended to always select the latest version, unless you
encounter some kind of regression.

You will see the following output:

Output
+ Get current deployment

 Success

+ Edit Spinnaker version

 Success

+ Spinnaker has been configured to update/install

version "version".

 Deploy this version of Spinnaker with `hal

deploy apply`.

You have now fully configured Spinnaker’s deployment. You’ll deploy
it with the following command:
hal deploy apply

This command could take a few minutes to finish.

The final output will look like this:

Output
+ Get current deployment

 Success

+ Prep deployment

 Success

+ Preparation complete... deploying Spinnaker

+ Get current deployment

 Success

+ Apply deployment

 Success

+ Deploy spin-redis

 Success

+ Deploy spin-clouddriver

 Success

+ Deploy spin-front50

 Success

+ Deploy spin-orca

 Success

+ Deploy spin-deck

 Success

+ Deploy spin-echo

 Success

+ Deploy spin-gate

 Success

+ Deploy spin-rosco

 Success

...

Halyard is showing you the deployment status of each of Spinnaker’s
microservices. Behind the scenes, it calls kubectl to install them.

Kubernetes will take some time—ten minutes on average—to bring all
of the containers up, especially for the first time. You can watch the
progress by running the following command:
kubectl get pods -n spinnaker -w

You’ve deployed Spinnaker to your Kubernetes cluster, but it can’t be
accessed beyond your cluster.

You’ll be storing the ingress configuration in a file named
spinnaker-ingress.yaml. Create it using your text editor:
nano spinnaker-ingress.yaml

Add the following lines:

spinnaker-ingress.yaml
apiVersion: extensions/v1beta1

kind: Ingress

metadata:

 name: spinnaker-ingress

 namespace: spinnaker

 annotations:

 kubernetes.io/ingress.class: nginx

 certmanager.k8s.io/cluster-issuer:

letsencrypt-prod

spec:

 tls:

 - hosts:

 - spinnaker-api.example.com

 - spinnaker.example.com

 secretName: spinnaker

 rules:

 - host: spinnaker-api.example.com

 http:

 paths:

 - backend:

 serviceName: spin-gate

 servicePort: 8084

 - host: spinnaker.example.com

 http:

 paths:

 - backend:

 serviceName: spin-deck

 servicePort: 9000

Remember to replace spinnaker-api.example.com with your
API domain, and spinnaker.example.com with your UI domain.

The configuration file defines an ingress called spinnaker-

ingress. The annotations specify that the controller for this ingress will
be the Nginx controller, and that the letsencrypt-prod cluster issuer
will generate the TLS certificates, defined in the prerequisite tutorial.

Then, it specifies that TLS will secure the UI and API domains. It sets
up routing by directing the API domain to the spin-gate service
(Spinnaker’s API containers), and the UI domain to the spin-deck

service (Spinnaker’s UI containers) at the appropriate ports 8084 and
9000.

Save and close the file.
Create the Ingress in Kubernetes by running:

kubectl create -f spinnaker-ingress.yaml

You’ll see the following output:

Output
ingress.extensions/spinnaker-ingress created

Wait a few minutes for Let’s Encrypt to provision the TLS certificates,
and then navigate to your UI domain, spinnaker.example.com, in a
browser. You will see Spinnaker’s user interface.

Spinnaker’s home page

You’ve deployed Spinnaker to your cluster, exposed the UI and API
components at your domains, and tested if it works. Now you’ll create an
application in Spinnaker and run a pipeline to deploy the Hello World
app.

Step 4 — Creating an Application and Running a Pipeline

In this section, you will use your access to Spinnaker at your domain to
create an application with it. You’ll then create and run a pipeline to
deploy a Hello World app, which can be found at paulbouwer/hello-
kubernetes. You’ll access the app afterward.

Navigate to your domain where you have exposed Spinnaker’s UI. In the
upper right corner, press on Actions, then select Create Application. You
will see the New Application form.

https://hub.docker.com/r/paulbouwer/hello-kubernetes/

Creating a new Application in Spinnaker

Type in hello-world as the name, input your email address, and
press Create.

When the page loads, navigate to Pipelines by clicking the first tab in
the top menu. You will see that there are no pipelines defined yet.

No pipelines defined in Spinnaker

Press on Configure a new pipeline and a new form will open.

Creating a new Pipeline in Spinnaker

Fill in Deploy Hello World Application as your pipeline’s
name, and press Create.

On the next page, click the Add Stage button. As the Type, select Deploy
(Manifest), which is used for deploying Kubernetes manifests you specify.
For the Stage Name, type in Deploy Hello World. Scroll down, and
in the textbox under Manifest Configuration, enter the following lines:

Manifest Configuration
apiVersion: extensions/v1beta1

kind: Ingress

metadata:

 name: hello-world-ingress

 namespace: spinnaker

 annotations:

 kubernetes.io/ingress.class: nginx

 certmanager.k8s.io/cluster-issuer:

letsencrypt-prod

spec:

 tls:

 - hosts:

 - hello-world.example.com

 secretName: hello-world

 rules:

 - host: hello-world.example.com

 http:

 paths:

 - backend:

 serviceName: hello-kubernetes

 servicePort: 80

apiVersion: v1

kind: Service

metadata:

 name: hello-kubernetes

 namespace: spinnaker

spec:

 type: ClusterIP

 ports:

 - port: 80

 targetPort: 8080

 selector:

 app: hello-kubernetes

apiVersion: apps/v1

kind: Deployment

metadata:

 name: hello-kubernetes

 namespace: spinnaker

spec:

 replicas: 3

 selector:

 matchLabels:

 app: hello-kubernetes

 template:

 metadata:

 labels:

 app: hello-kubernetes

 spec:

 containers:

 - name: hello-kubernetes

 image: paulbouwer/hello-kubernetes:1.5

 ports:

 - containerPort: 8080

Remember to replace hello-world.example.com with your
domain, which is also pointed at your Load Balancer.

In this configuration, you define a Deployment, consisting of three
replicas of the paulbouwer/hello-kubernetes:1.5 image. You
also define a Service to be able to access it and an Ingress to expose the
Service at your domain.

Press Save Changes in the bottom right corner of the screen. When it
finishes, navigate back to Pipelines. On the right side, select the pipeline
you just created and press the Start Manual Execution link. When asked to
confirm, press Run.

This pipeline will take a short time to complete. You will see the
progress bar complete when it has successfully finished.

Successfully ran a Pipeline

You can now navigate to the domain you defined in the configuration.
You will see the Hello World app, which Spinnaker just deployed.

Hello World App

You’ve created an application in Spinnaker, ran a pipeline to deploy a
Hello World app, and accessed it. In the next step, you will secure
Spinnaker by enabling GitHub Organizations authorization.

Step 5 — Enabling Role-Based Access with GitHub
Organizations

In this section, you will enable GitHub OAuth authentication and GitHub
Organizations authorization. Enabling GitHub OAuth authentication forces
Spinnaker users to log in via GitHub, therefore preventing anonymous
access. Authorization via GitHub Organizations restricts access only to
those in an Organization. A GitHub Organization can contain Teams

https://help.github.com/en/articles/about-teams

(named groups of members), which you will be able to use to restrict
access to resources in Spinnaker even further.

For OAuth authentication to work, you’ll first need to set up the
authorization callback URL, which is where the user will be redirected
after authorization. This is your API domain ending with /login. You
need to specify this manually to prevent Spinnaker and other services from
guessing. To configure this, run the following command:
hal config security authn oauth2 edit --pre-

established-redirect-uri https://spinnaker-

api.example.com/login

You will see this output:

Output
+ Get current deployment

 Success

+ Get authentication settings

 Success

+ Edit oauth2 authentication settings

 Success

+ Successfully edited oauth2 method.

To set up OAuth authentication with GitHub, you’ll need to create an
OAuth application for your Organization. To do so, navigate to your
Organization on GitHub, go to Settings, click on Developer Settings, and
then select OAuth Apps from the left-hand menu. Afterward, click the New
OAuth App button on the right. You will see the Register a new OAuth
application form.

Creating a new OAuth App on GitHub

Enter spinnaker-auth as the name. For the Homepage URL, enter
https://spinnaker.example.com, and for the Authorization
callback URL, enter https://spinnaker-

api.example.com/login. Then, press Register Application.
You’ll be redirected to the settings page for your new OAuth app. Note

the Client ID and Client Secret values—you’ll need them for the next
command.

With the OAuth app created, you can configure Spinnaker to use the
OAuth app by running the following command:

hal config security authn oauth2 edit --client-id

client_id --client-secret client_secret --provider

GitHub

Remember to replace client_id and client_secret with the
values shown on the GitHub settings page.

You output will be similar to the following:

Output
+ Get current deployment

 Success

+ Get authentication settings

 Success

+ Edit oauth2 authentication settings

 Success

Problems in default.security.authn:

- WARNING An authentication method is fully or

partially

 configured, but not enabled. It must be enabled

to take effect.

+ Successfully edited oauth2 method.

You’ve configured Spinnaker to use the OAuth app. Now, to enable it,
execute:
hal config security authn oauth2 enable

The output will look like:

Output

+ Get current deployment

 Success

+ Edit oauth2 authentication settings

 Success

+ Successfully enabled oauth2

You’ve configured and enabled GitHub OAuth authentication. Now
users will be forced to log in via GitHub in order to access Spinnaker.
However, right now, everyone who has a GitHub account can log in, which
is not what you want. To overcome this, you’ll configure Spinnaker to
restrict access to members of your desired Organization.

You’ll need to set this up semi-manually via local config files, because
Halyard does not yet have a command for setting this. During deployment,
Halyard will use the local config files to override the generated
configuration.

Halyard looks for custom configuration under
~/.hal/default/profiles/. Files named service-name-

*.yml are picked up by Halyard and used to override the settings of a
particular service. The service that you’ll override is called gate, and
serves as the API gateway for the whole of Spinnaker.

Create a file under ~/.hal/default/profiles/ named gate-
local.yml:
nano ~/.hal/default/profiles/gate-local.yml

Add the following lines:

gate-local.yml
security:

 oauth2:

 providerRequirements:

 type: GitHub

 organization: your_organization_name

Replace your_organization_name with the name of your GitHub
Organization. Save and close the file.

With this bit of configuration, only members of your GitHub
Organization will be able to access Spinnaker.

Note: Only those members of your GitHub Organization whose
membership is set to Public will be able to log in to Spinnaker. This
setting can be changed on the member list page of your Organization.

Now, you’ll integrate Spinnaker with an even more particular access-
rule solution: GitHub Teams. This will enable you to specify which
Team(s) will have access to resources created in Spinnaker, such as
applications.

To achieve this, you’ll need to have a GitHub Personal Access Token for
an admin account in your Organization. To create one, visit Personal
Access Tokens and press the Generate New Token button. On the next
page, give it a description of your choice and be sure to check the read:org
scope, located under admin:org. When you are done, press Generate token
and note it down when it appears—you won’t be able to see it again.

To configure GitHub Teams role authorization in Spinnaker, run the
following command:
hal config security authz github edit --

accessToken access_token --organization

organization_name --baseUrl https://api.github.com

https://github.com/settings/tokens

Be sure to replace access_token with your personal access token
you generated and replace organization_name with the name of the
Organization.

The output will be:

Output
+ Get current deployment

 Success

+ Get GitHub group membership settings

 Success

+ Edit GitHub group membership settings

 Success

+ Successfully edited GitHub method.

You’ve updated your GitHub group settings. Now, you’ll set the
authorization provider to GitHub by running the following command:
hal config security authz edit --type github

The output will look like:

Output
+ Get current deployment

 Success

+ Get group membership settings

 Success

+ Edit group membership settings

 Success

+ Successfully updated roles.

After updating these settings, enable them by running:

hal config security authz enable

You’ll see the following output:

Output
+ Get current deployment

 Success

+ Edit authorization settings

 Success

+ Successfully enabled authorization

With all the changes in place, you can now apply the changes to your
running Spinnaker deployment. Execute the following command to do
this:
hal deploy apply

Once it has finished, wait for Kubernetes to propagate the changes. This
can take quite some time—you can watch the progress by running:
kubectl get pods -n spinnaker -w

When all the pods’ states become Running and availability 1/1,
navigate to your Spinnaker UI domain. You will be redirected to GitHub
and asked to log in, if you’re not already. If the account you logged in with
is a member of the Organization, you will be redirected back to Spinnaker
and logged in. Otherwise, you will be denied access with a message that
looks like this:

{"error":"Unauthorized", "message":"Authentication

The effect of GitHub Teams integration is that Spinnaker now translates
them into roles. You can use these roles in Spinnaker to incorporate
additional restrictions to access for members of particular teams. If you
try to add another application, you’ll notice that you can now also specify
permissions, which combine the level of access—read only or read and
write—with a role, for that application.

You’ve set up GitHub authentication and authorization. You have also
configured Spinnaker to restrict access to members of your Organization,
learned about roles and permissions, and considered the place of GitHub
Teams when integrated with Spinnaker.

Conclusion

You have successfully configured and deployed Spinnaker to your
DigitalOcean Kubernetes cluster. You can now manage and use your cloud
resources more easily, from a central place. You can use triggers to
automatically start a pipeline; for example, when a new Docker image has
been added to the registry. To learn more about Spinnaker’s terms and
architecture, visit the official documentation. If you wish to deploy a
private Docker registry to your cluster to hold your images, visit How To
Set Up a Private Docker Registry on Top of DigitalOcean Spaces and Use
It with DO Kubernetes.

https://www.spinnaker.io/setup/security/authorization/#role-providers
https://www.spinnaker.io/guides/user/applications/
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-private-docker-registry-on-top-of-digitalocean-spaces-and-use-it-with-do-kubernetes

Kubernetes Networking Under the Hood

Written by Brian Boucheron
This tutorial discusses how data moves inside a Pod, between Pods, and

between Nodes. It also shows how a Kubernetes Service can provide a
single static IP address and DNS entry for an application, easing
communication with services that may be distributed among multiple
constantly scaling and shifting Pods. This tutorial also includes detailed
hop-by-hop explanations of the different journeys that packets can take
depending on the network configuration.

Kubernetes is a powerful container orchestration system that can
manage the deployment and operation of containerized applications across
clusters of servers. In addition to coordinating container workloads,
Kubernetes provides the infrastructure and tools necessary to maintain
reliable network connectivity between your applications and services.

The Kubernetes cluster networking documentation states that the basic
requirements of a Kubernetes network are:

all containers can communicate with all other containers
without NAT
all nodes can communicate with all containers (and vice-versa)
without NAT
the IP that a container sees itself as is the same IP that others
see it as

https://www.digitalocean.com/community/tutorials/kubernetes-networking-under-the-hood
https://kubernetes.io/docs/concepts/cluster-administration/networking/

In this article we will discuss how Kubernetes satisfies these networking
requirements within a cluster: how data moves inside a pod, between pods,
and between nodes.

We will also show how a Kubernetes Service can provide a single static
IP address and DNS entry for an application, easing communication with
services that may be distributed among multiple constantly scaling and
shifting pods.

If you are unfamiliar with the terminology of Kubernetes pods and
nodes or other basics, our article An Introduction to Kubernetes covers the
general architecture and components involved.

Let’s first take a look at the networking situation within a single pod.

Pod Networking

In Kubernetes, a pod is the most basic unit of organization: a group of
tightly-coupled containers that are all closely related and perform a single
function or service.

Networking-wise, Kubernetes treats pods similar to a traditional virtual
machine or a single bare-metal host: each pod receives a single unique IP
address, and all containers within the pod share that address and
communicate with each other over the lo loopback interface using the
localhost hostname. This is achieved by assigning all of the pod’s
containers to the same network stack.

This situation should feel familiar to anybody who has deployed
multiple services on a single host before the days of containerization. All
the services need to use a unique port to listen on, but otherwise
communication is uncomplicated and has low overhead.

https://www.digitalocean.com/community/tutorials/an-introduction-to-kubernetes

Pod to Pod Networking

Most Kubernetes clusters will need to deploy multiple pods per node. Pod
to pod communication may happen between two pods on the same node, or
between two different nodes.

Pod to Pod Communication on One Node

On a single node you can have multiple pods that need to communicate
directly with each other. Before we trace the route of a packet between
pods, let’s inspect the networking setup of a node. The following diagram
provides an overview, which we will walk through in detail:

Networking overview of a single Kubernetes node

Each node has a network interface – eth0 in this example – attached to
the Kubernetes cluster network. This interface sits within the node’s root
network namespace. This is the default namespace for networking devices
on Linux.

Just as process namespaces enable containers to isolate running
applications from each other, network namespaces isolate network devices
such as interfaces and bridges. Each pod on a node is assigned its own
isolated network namespace.

Pod namespaces are connected back to the root namespace with a virtual
ethernet pair, essentially a pipe between the two namespaces with an
interface on each end (here we’re using veth1 in the root namespace, and
eth0 within the pod).

Finally, the pods are connected to each other and to the node’s eth0
interface via a bridge, br0 (your node may use something like cbr0 or
docker0). A bridge essentially works like a physical ethernet switch, using
either ARP (address resolution protocol) or IP-based routing to look up
other local interfaces to direct traffic to.

Let’s trace a packet from pod1 to pod2 now:

pod1 creates a packet with pod2’s IP as its destination
The packet travels over the virtual ethernet pair to the root network
namespace
The packet continues to the bridge br0
Because the destination pod is on the same node, the bridge sends the
packet to pod2’s virtual ethernet pair
the packet travels through the virtual ethernet pair, into pod2’s
network namespace and the pod’s eth0 network interface

Now that we’ve traced a packet from pod to pod within a node, let’s
look at how pod traffic travels between nodes.

Pod to Pod Communication Between Two Nodes

Because each pod in a cluster has a unique IP, and every pod can
communicate directly with all other pods, a packet moving between pods
on two different nodes is very similar to the previous scenario.

Let’s trace a packet from pod1 to pod3, which is on a different node:

Networking diagram between two Kubernetes nodes

pod1 creates a packet with pod3’s IP as its destination
The packet travels over the virtual ethernet pair to the root network
namespace

The packet continues to the bridge br0
The bridge finds no local interface to route to, so the packet is sent
out the default route toward eth0
Optional: if your cluster requires a network overlay to properly route
packets to nodes, the packet may be encapsulated in a VXLAN packet
(or other network virtualization technique) before heading to the
network. Alternately, the network itself may be set up with the proper
static routes, in which case the packet travels to eth0 and out the the
network unaltered.
The packet enters the cluster network and is routed to the correct
node.
The packet enters the destination node on eth0
Optional: if your packet was encapsulated, it will be de-encapsulated
at this point
The packet continues to the bridge br0
The bridge routes the packet to the destination pod’s virtual ethernet
pair
The packet passes through the virtual ethernet pair to the pod’s eth0
interface

Now that we are familiar with how packets are routed via pod IP
addresses, let’s take a look at Kubernetes services and how they build on
top of this infrastructure.

Pod to Service Networking

It would be difficult to send traffic to a particular application using just
pod IPs, as the dynamic nature of a Kubernetes cluster means pods can be

moved, restarted, upgraded, or scaled in and out of existence. Additionally,
some services will have many replicas, so we need some way to load
balance between them.

Kubernetes solves this problem with Services. A Service is an API
object that maps a single virtual IP (VIP) to a set of pod IPs. Additionally,
Kubernetes provides a DNS entry for each service’s name and virtual IP,
so services can be easily addressed by name.

The mapping of virtual IPs to pod IPs within the cluster is coordinated
by the kube-proxy process on each node. This process sets up either
iptables or IPVS to automatically translate VIPs into pod IPs before
sending the packet out to the cluster network. Individual connections are
tracked so packets can be properly de-translated when they return. IPVS
and iptables can both do load balancing of a single service virtual IP into
multiple pod IPs, though IPVS has much more flexibility in the load
balancing algorithms it can use.

Note: this translation and connection tracking processes happens
entirely in the Linux kernel. kube-proxy reads from the Kubernetes API
and updates iptables ip IPVS, but it is not in the data path for individual
packets. This is more efficient and higher performance than previous
versions of kube-proxy, which functioned as a user-land proxy.

Let’s follow the route a packet takes from a pod, pod1 again, to a
service, service1:

https://www.digitalocean.com/community/tutorials/a-deep-dive-into-iptables-and-netfilter-architecture

Networking diagram between two Kubernetes nodes, showing DNAT translation of virtual

IPs

pod1 creates a packet with service1’s IP as its destination
The packet travels over the virtual ethernet pair to the root network
namespace
The packet continues to the bridge br0
The bridge finds no local interface to route the packet to, so the
packet is sent out the default route toward eth0
Iptables or IPVS, set up by kube-proxy, match the packet’s
destination IP and translate it from a virtual IP to one of the service’s

pod IPs, using whichever load balancing algorithms are available or
specified
Optional: your packet may be encapsulated at this point, as discussed
in the previous section
The packet enters the cluster network and is routed to the correct
node.
The packet enters the destination node on eth0
Optional: if your packet was encapsulated, it will be de-encapsulated
at this point
The packet continues to the bridge br0
The packet is sent to the virtual ethernet pair via veth1
The packet passes through the virtual ethernet pair and enters the pod
network namespace via its eth0 network interface

When the packet returns to node1 the VIP to pod IP translation will be
reversed, and the packet will be back through the bridge and virtual
interface to the correct pod.

Conclusion

In this article we’ve reviewed the internal networking infrastructure of a
Kubernetes cluster. We’ve discussed the building blocks that make up the
network, and detailed the hop-by-hop journey of packets in different
scenarios.

For more information about Kubernetes, take a look at our Kubernetes
tutorials tag and the official Kubernetes documentation.

https://www.digitalocean.com/community/tags/kubernetes?type=tutorials
https://kubernetes.io/docs/home/

How To Inspect Kubernetes Networking

Written by Brian Boucheron
Maintaining network connectivity between all the containers in a cluster

requires some advanced networking techniques. Thankfully Kubernetes
does all of the work to set up and maintain its internal networking.
However, when things do not work as expected, tools like kubectl, Docker,
nsenter, and iptables are invaluable for inspecting and troubleshooting a
Kubernetes cluster’s network setup. These tools are useful for debugging
routing and connectivity issues, investigating network throughput
problems, and generally exploring Kubernetes to learn how it operates.

Kubernetes is a container orchestration system that can manage
containerized applications across a cluster of server nodes. Maintaining
network connectivity between all the containers in a cluster requires some
advanced networking techniques. In this article, we will briefly cover
some tools and techniques for inspecting this networking setup.

These tools may be useful if you are debugging connectivity issues,
investigating network throughput problems, or exploring Kubernetes to
learn how it operates.

If you want to learn more about Kubernetes in general, our guide An
Introduction to Kubernetes covers the basics. For a networking-specific
overview of Kubernetes, please read Kubernetes Networking Under the
Hood.

Getting Started

https://www.digitalocean.com/community/tutorials/how-to-inspect-kubernetes-networking
https://www.digitalocean.com/community/tutorials/an-introduction-to-kubernetes
https://www.digitalocean.com/community/tutorials/kubernetes-networking-under-the-hood

This tutorial will assume that you have a Kubernetes cluster, with
kubectl installed locally and configured to connect to the cluster.

The following sections contain many commands that are intended to be
run on a Kubernetes node. They will look like this:
echo 'this is a node command'

Commands that should be run on your local machine will have the
following appearance:
echo 'this is a local command'

Note: Most of the commands in this tutorial will need to be run as the
root user. If you instead use a sudo-enabled user on your Kubernetes
nodes, please add sudo to run the commands when necessary.

Finding a Pod’s Cluster IP

To find the cluster IP address of a Kubernetes pod, use the kubectl get
pod command on your local machine, with the option -o wide. This
option will list more information, including the node the pod resides on,
and the pod’s cluster IP.
kubectl get pod -o wide

Output
NAME READY STATUS

RESTARTS AGE IP NODE

hello-world-5b446dd74b-7c7pk 1/1 Running

0 22m 10.244.18.4 node-one

hello-world-5b446dd74b-pxtzt 1/1 Running

0 22m 10.244.3.4 node-two

The IP column will contain the internal cluster IP address for each pod.

If you don’t see the pod you’re looking for, make sure you’re in the
right namespace. You can list all pods in all namespaces by adding the flag
--all-namespaces.

Finding a Service’s IP

We can find a Service IP using kubectl as well. In this case we will list
all services in all namespaces:
kubectl get service --all-namespaces

Output
NAMESPACE NAME TYPE

CLUSTER-IP EXTERNAL-IP PORT(S) AGE

default kubernetes ClusterIP

10.32.0.1 <none> 443/TCP 6d

kube-system csi-attacher-doplugin ClusterIP

10.32.159.128 <none> 12345/TCP 6d

kube-system csi-provisioner-doplugin ClusterIP

10.32.61.61 <none> 12345/TCP 6d

kube-system kube-dns ClusterIP

10.32.0.10 <none> 53/UDP,53/TCP 6d

kube-system kubernetes-dashboard ClusterIP

10.32.226.209 <none> 443/TCP 6d

The service IP can be found in the CLUSTER-IP column.

Finding and Entering Pod Network Namespaces

Each Kubernetes pod gets assigned its own network namespace. Network
namespaces (or netns) are a Linux networking primitive that provide

isolation between network devices.
It can be useful to run commands from within a pod’s netns, to check

DNS resolution or general network connectivity. To do so, we first need to
look up the process ID of one of the containers in a pod. For Docker, we
can do that with a series of two commands. First, list the containers
running on a node:
docker ps

Output
CONTAINER ID IMAGE

COMMAND CREATED

STATUS PORTS NAMES

173ee46a3926 gcr.io/google-samples/node-

hello "/bin/sh -c 'node se…" 9 days ago

Up 9 days k8s_hello-

world_hello-world-5b446dd74b-

pxtzt_default_386a9073-7e35-11e8-8a3d-

bae97d2c1afd_0

11ad51cb72df k8s.gcr.io/pause-amd64:3.1

"/pause" 9 days ago Up 9

days k8s_POD_hello-

world-5b446dd74b-pxtzt_default_386a9073-7e35-11e8-

8a3d-bae97d2c1afd_0

. . .

Find the container ID or name of any container in the pod you’re
interested in. In the above output we’re showing two containers:

The first container is the hello-world app running in the hello-
world pod
The second is a pause container running in the hello-world pod.
This container exists solely to hold onto the pod’s network namespace

To get the process ID of either container, take note of the container ID
or name, and use it in the following docker command:
docker inspect --format '{{ .State.Pid }}'

container-id-or-name

Output
14552

A process ID (or PID) will be output. Now we can use the nsenter
program to run a command in that process’s network namespace:
nsenter -t your-container-pid -n ip addr

Be sure to use your own PID, and replace ip addr with the command
you’d like to run inside the pod’s network namespace.

Note: One advantage of using nsenter to run commands in a pod’s
namespace – versus using something like docker exec – is that you
have access to all of the commands available on the node, instead of the
typically limited set of commands installed in containers.

Finding a Pod’s Virtual Ethernet Interface

Each pod’s network namespace communicates with the node’s root netns
through a virtual ethernet pipe. On the node side, this pipe appears as a
device that typically begins with veth and ends in a unique identifier,

such as veth77f2275 or veth01. Inside the pod this pipe appears as
eth0.

It can be useful to correlate which veth device is paired with a
particular pod. To do so, we will list all network devices on the node, then
list the devices in the pod’s network namespace. We can then correlate
device numbers between the two listings to make the connection.

First, run ip addr in the pod’s network namespace using nsenter.
Refer to the previous section Finding and Entering Pod Network
Namespaces for details on how to do this:
nsenter -t your-container-pid -n ip addr

Output
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc

noqueue state UNKNOWN group default qlen 1

 link/loopback 00:00:00:00:00:00 brd

00:00:00:00:00:00

 inet 127.0.0.1/8 scope host lo

 valid_lft forever preferred_lft forever

10: eth0@if11: <BROADCAST,MULTICAST,UP,LOWER_UP>

mtu 1450 qdisc noqueue state UP group default

 link/ether 02:42:0a:f4:03:04 brd

ff:ff:ff:ff:ff:ff link-netnsid 0

 inet 10.244.3.4/24 brd 10.244.3.255 scope

global eth0

 valid_lft forever preferred_lft forever

The command will output a list of the pod’s interfaces. Note the if11
number after eth0@ in the example output. This means this pod’s eth0

is linked to the node’s 11th interface. Now run ip addr in the node’s
default namespace to list out its interfaces:
ip addr

Output
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc

noqueue state UNKNOWN group default qlen 1

 link/loopback 00:00:00:00:00:00 brd

00:00:00:00:00:00

 inet 127.0.0.1/8 scope host lo

 valid_lft forever preferred_lft forever

 inet6 ::1/128 scope host

 valid_lft forever preferred_lft forever

. . .

7: veth77f2275@if6:

<BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc

noqueue master docker0 state UP group default

 link/ether 26:05:99:58:0d:b9 brd

ff:ff:ff:ff:ff:ff link-netnsid 0

 inet6 fe80::2405:99ff:fe58:db9/64 scope link

 valid_lft forever preferred_lft forever

9: vethd36cef3@if8:

<BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc

noqueue master docker0 state UP group default

 link/ether ae:05:21:a2:9a:2b brd

ff:ff:ff:ff:ff:ff link-netnsid 1

 inet6 fe80::ac05:21ff:fea2:9a2b/64 scope link

 valid_lft forever preferred_lft forever

11: veth4f7342d@if10:

<BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc

noqueue master docker0 state UP group default

 link/ether e6:4d:7b:6f:56:4c brd

ff:ff:ff:ff:ff:ff link-netnsid 2

 inet6 fe80::e44d:7bff:fe6f:564c/64 scope link

 valid_lft forever preferred_lft forever

The 11th interface is veth4f7342d in this example output. This is the
virtual ethernet pipe to the pod we’re investigating.

Inspecting Conntrack Connection Tracking

Prior to version 1.11, Kubernetes used iptables NAT and the conntrack
kernel module to track connections. To list all the connections currently
being tracked, use the conntrack command:
conntrack -L

To watch continuously for new connections, use the -E flag:
conntrack -E

To list conntrack-tracked connections to a particular destination
address, use the -d flag:
conntrack -L -d 10.32.0.1

If your nodes are having issues making reliable connections to services,
it’s possible your connection tracking table is full and new connections are

being dropped. If that’s the case you may see messages like the following
in your system logs:

/var/log/syslog
Jul 12 15:32:11 worker-528 kernel: nf_conntrack:

table full, dropping packet.

There is a sysctl setting for the maximum number of connections to
track. You can list out your current value with the following command:
sysctl net.netfilter.nf_conntrack_max

Output
net.netfilter.nf_conntrack_max = 131072

To set a new value, use the -w flag:
sysctl -w net.netfilter.nf_conntrack_max=198000

To make this setting permanent, add it to the sysctl.conf file:

/etc/sysctl.conf
. . .

net.ipv4.netfilter.ip_conntrack_max = 198000

Inspecting Iptables Rules

Prior to version 1.11, Kubernetes used iptables NAT to implement virtual
IP translation and load balancing for Service IPs.

To dump all iptables rules on a node, use the iptables-save
command:
iptables-save

Because the output can be lengthy, you may want to pipe to a file
(iptables-save > output.txt) or a pager (iptables-save |
less) to more easily review the rules.

To list just the Kubernetes Service NAT rules, use the iptables
command and the -L flag to specify the correct chain:
iptables -t nat -L KUBE-SERVICES

Output
Chain KUBE-SERVICES (2 references)

target prot opt source

destination

KUBE-SVC-TCOU7JCQXEZGVUNU udp -- anywhere

10.32.0.10 /* kube-system/kube-dns:dns

cluster IP */ udp dpt:domain

KUBE-SVC-ERIFXISQEP7F7OF4 tcp -- anywhere

10.32.0.10 /* kube-system/kube-dns:dns-

tcp cluster IP */ tcp dpt:domain

KUBE-SVC-XGLOHA7QRQ3V22RZ tcp -- anywhere

10.32.226.209 /* kube-system/kubernetes-

dashboard: cluster IP */ tcp dpt:https

. . .

Querying Cluster DNS

One way to debug your cluster DNS resolution is to deploy a debug
container with all the tools you need, then use kubectl to exec
nslookup on it. This is described in the official Kubernetes
documentation.

https://kubernetes.io/docs/tasks/administer-cluster/dns-debugging-resolution/

Another way to query the cluster DNS is using dig and nsenter from
a node. If dig is not installed, it can be installed with apt on Debian-
based Linux distributions:
apt install dnsutils

First, find the cluster IP of the kube-dns service:
kubectl get service -n kube-system kube-dns

Output
NAME TYPE CLUSTER-IP EXTERNAL-IP

PORT(S) AGE

kube-dns ClusterIP 10.32.0.10 <none>

53/UDP,53/TCP 15d

The cluster IP is highlighted above. Next we’ll use nsenter to run
dig in the a container namespace. Look at the section Finding and
Entering Pod Network Namespaces for more information on this:
nsenter -t 14346 -n dig

kubernetes.default.svc.cluster.local @10.32.0.10

This dig command looks up the Service’s full domain name of service-
name.namespace.svc.cluster.local and specifics the IP of the cluster DNS
service IP (@10.32.0.10).

Looking at IPVS Details

As of Kubernetes 1.11, kube-proxy can configure IPVS to handle the
translation of virtual Service IPs to pod IPs. You can list the translation
table of IPs with ipvsadm:
ipvsadm -Ln

Output
IP Virtual Server version 1.2.1 (size=4096)

Prot LocalAddress:Port Scheduler Flags

 -> RemoteAddress:Port Forward Weight

ActiveConn InActConn

TCP 100.64.0.1:443 rr

 -> 178.128.226.86:443 Masq 1 0

0

TCP 100.64.0.10:53 rr

 -> 100.96.1.3:53 Masq 1 0

0

 -> 100.96.1.4:53 Masq 1 0

0

UDP 100.64.0.10:53 rr

 -> 100.96.1.3:53 Masq 1 0

0

 -> 100.96.1.4:53 Masq 1 0

0

To show a single Service IP, use the -t option and specify the desired
IP:
ipvsadm -Ln -t 100.64.0.10:53

Output
Prot LocalAddress:Port Scheduler Flags

 -> RemoteAddress:Port Forward Weight

ActiveConn InActConn

TCP 100.64.0.10:53 rr

 -> 100.96.1.3:53 Masq 1 0

0

 -> 100.96.1.4:53 Masq 1 0

0

Conclusion

In this article we’ve reviewed some commands and techniques for
exploring and inspecting the details of your Kubernetes cluster’s
networking. For more information about Kubernetes, take a look at our
Kubernetes tutorials tag and the official Kubernetes documentation.

https://www.digitalocean.com/community/tags/kubernetes?type=tutorials
https://kubernetes.io/docs/home/

An Introduction to Service Meshes

Written by Kathleen Juell
A service mesh is an infrastructure layer that allows you to manage

communication between your application’s microservices. Service meshes
are designed to facilitate service-to-service communication through
service discovery, routing and internal load balancing, traffic
configuration, encryption, authentication and authorization, and metrics
and monitoring.

This tutorial will use Istio’s Bookinfo sample application — four
microservices that together display information about particular books —
as a concrete example to illustrate how service meshes work.

A service mesh is an infrastructure layer that allows you to manage
communication between your application’s microservices. As more
developers work with microservices, service meshes have evolved to make
that work easier and more effective by consolidating common
management and administrative tasks in a distributed setup.

Taking a microservice approach to application architecture involves
breaking your application into a collection of loosely-coupled services.
This approach offers certain benefits: teams can iterate designs and scale
quickly, using a wider range of tools and languages. On the other hand,
microservices pose new challenges for operational complexity, data
consistency, and security.

Service meshes are designed to address some of these challenges by
offering a granular level of control over how services communicate with

https://www.digitalocean.com/community/tutorials/an-introduction-to-service-meshes
https://istio.io/docs/examples/bookinfo/

one another. Specifically, they offer developers a way to manage:

Service discovery
Routing and traffic configuration
Encryption and authentication/authorization
Metrics and monitoring

Though it is possible to do these tasks natively with container
orchestrators like Kubernetes, this approach involves a greater amount of
up-front decision-making and administration when compared to what
service mesh solutions like Istio and Linkerd offer out of the box. In this
sense, service meshes can streamline and simplify the process of working
with common components in a microservice architecture. In some cases
they can even extend the functionality of these components.

Why Services Meshes?

Service meshes are designed to address some of the challenges inherent to
distributed application architectures.

These architectures grew out of the three-tier application model, which
broke applications into a web tier, application tier, and database tier. At
scale, this model has proved challenging to organizations experiencing
rapid growth. Monolithic application code bases can grow to be unwieldy
“big balls of mud”, posing challenges for development and deployment.

In response to this problem, organizations like Google, Netflix, and
Twitter developed internal “fat client” libraries to standardize runtime
operations across services. These libraries provided load balancing, circuit
breaking, routing, and telemetry — precursors to service mesh

https://kubernetes.io/
https://istio.io/
https://linkerd.io/
http://www.laputan.org/mud/

capabilities. However, they also imposed limitations on the languages
developers could use and required changes across services when they
themselves were updated or changed.

A microservice design avoids some of these issues. Instead of having a
large, centralized application codebase, you have a collection of discretely
managed services that represent a feature of your application. Benefits of a
microservice approach include: - Greater agility in development and
deployment, since teams can work on and deploy different application
features independently. - Better options for CI/CD, since individual
microservices can be tested and redeployed independently. - More options
for languages and tools. Developers can use the best tools for the tasks at
hand, rather than being restricted to a given language or toolset. - Ease in
scaling. - Improvements in uptime, user experience, and stability.

At the same time, microservices have also created challenges: -
Distributed systems require different ways of thinking about latency,
routing, asynchronous workflows, and failures. - Microservice setups
cannot necessarily meet the same requirements for data consistency as
monolithic setups. - Greater levels of distribution necessitate more
complex operational designs, particularly when it comes to service-to-
service communication. - Distribution of services increases the surface
area for security vulnerabilities.

Service meshes are designed to address these issues by offering
coordinated and granular control over how services communicate. In the
sections that follow, we’ll look at how service meshes facilitate service-to-
service communication through service discovery, routing and internal
load balancing, traffic configuration, encryption, authentication and
authorization, and metrics and monitoring. We will use Istio’s Bookinfo

https://istio.io/docs/examples/bookinfo/

sample application — four microservices that together display
information about particular books — as a concrete example to illustrate
how service meshes work.

Service Discovery

In a distributed framework, it’s necessary to know how to connect to
services and whether or not they are available. Service instance locations
are assigned dynamically on the network and information about them is
constantly changing as containers are created and destroyed through
autoscaling, upgrades, and failures.

Historically, there have been a few tools for doing service discovery in a
microservice framework. Key-value stores like etcd were paired with other
tools like Registrator to offer service discovery solutions. Tools like
Consul iterated on this by combining a key-value store with a DNS
interface that allows users to work directly with their DNS server or node.

Taking a similar approach, Kubernetes offers DNS-based service
discovery by default. With it, you can look up services and service ports,
and do reverse IP lookups using common DNS naming conventions. In
general, an A record for a Kubernetes service matches this pattern:
service.namespace.svc.cluster.local. Let’s look at how this
works in the context of the Bookinfo application. If, for example, you
wanted information on the details service from the Bookinfo app, you
could look at the relevant entry in the Kubernetes dashboard:

https://istio.io/docs/examples/bookinfo/
https://coreos.com/etcd/
https://github.com/gliderlabs/registrator
https://www.consul.io/

Details Service in Kubernetes Dash

This will give you relevant information about the Service name,
namespace, and ClusterIP, which you can use to connect with your
Service even as individual containers are destroyed and recreated.

A service mesh like Istio also offers service discovery capabilities. To
do service discovery, Istio relies on communication between the
Kubernetes API, Istio’s own control plane, managed by the traffic
management component Pilot, and its data plane, managed by Envoy
sidecar proxies. Pilot interprets data from the Kubernetes API server to
register changes in Pod locations. It then translates that data into a
canonical Istio representation and forwards it onto the sidecar proxies.

This means that service discovery in Istio is platform agnostic, which
we can see by using Istio’s Grafana add-on to look at the details
service again in Istio’s service dashboard:

https://istio.io/docs/concepts/what-is-istio/#pilot
https://www.envoyproxy.io/
https://istio.io/docs/tasks/telemetry/using-istio-dashboard/

Details Service Istio Dash

Our application is running on a Kubernetes cluster, so once again we can
see the relevant DNS information about the details Service, along with
other performance data.

In a distributed architecture, it’s important to have up-to-date, accurate,
and easy-to-locate information about services. Both Kubernetes and
service meshes like Istio offer ways to obtain this information using DNS
conventions.

Routing and Traffic Configuration

Managing traffic in a distributed framework means controlling how traffic
gets to your cluster and how it’s directed to your services. The more
control and specificity you have in configuring external and internal
traffic, the more you will be able to do with your setup. For example, in
cases where you are working with canary deployments, migrating

applications to new versions, or stress testing particular services through
fault injection, having the ability to decide how much traffic your services
are getting and where it is coming from will be key to the success of your
objectives.

Kubernetes offers different tools, objects, and services that allow
developers to control external traffic to a cluster: kubectl proxy,
NodePort, Load Balancers, and Ingress Controllers and Resources. Both
kubectl proxy and NodePort allow you to quickly expose your
services to external traffic: kubectl proxy creates a proxy server that
allows access to static content with an HTTP path, while NodePort
exposes a randomly assigned port on each node. Though this offers quick
access, drawbacks include having to run kubectl as an authenticated
user, in the case of kubectl proxy, and a lack of flexibility in ports
and node IPs, in the case of NodePort. And though a Load Balancer
optimizes for flexibility by attaching to a particular Service, each Service
requires its own Load Balancer, which can be costly.

An Ingress Resource and Ingress Controller together offer a greater
degree of flexibility and configurability over these other options. Using an
Ingress Controller with an Ingress Resource allows you to route external
traffic to Services and configure internal routing and load balancing. To
use an Ingress Resource, you need to configure your Services, the Ingress
Controller and LoadBalancer, and the Ingress Resource itself, which
will specify the desired routes to your Services. Currently, Kubernetes
supports its own Nginx Controller, but there are other options you can
choose from as well, managed by Nginx, Kong, and others.

Istio iterates on the Kubernetes Controller/Resource pattern with Istio
Gateways and VirtualServices. Like an Ingress Controller, a Gateway

https://kubernetes.io/docs/tasks/access-kubernetes-api/http-proxy-access-api/
https://kubernetes.io/docs/concepts/services-networking/service/#nodeport
https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer
https://kubernetes.io/docs/concepts/services-networking/ingress/#ingress-controllers
https://github.com/kubernetes/ingress-nginx/blob/master/README.md
https://www.nginx.com/products/nginx/kubernetes-ingress-controller
https://konghq.com/blog/kubernetes-ingress-controller-for-kong/
https://istio.io/docs/reference/config/istio.networking.v1alpha3/#Gateway
https://istio.io/docs/reference/config/istio.networking.v1alpha3/#VirtualService

defines how incoming traffic should be handled, specifying exposed ports
and protocols to use. It works in conjunction with a VirtualService, which
defines routes to Services within the mesh. Both of these resources
communicate information to Pilot, which then forwards that information
to the Envoy proxies. Though they are similar to Ingress Controllers and
Resources, Gateways and VirtualServices offer a different level of control
over traffic: instead of combining Open Systems Interconnection (OSI)
layers and protocols, Gateways and VirtualServices allow you to
differentiate between OSI layers in your settings. For example, by using
VirtualServices, teams working with application layer specifications could
have a separation of concerns from security operations teams working
with different layer specifications. VirtualServices make it possible to
separate work on discrete application features or within different trust
domains, and can be used for things like canary testing, gradual rollouts,
A/B testing, etc.

To visualize the relationship between Services, you can use Istio’s
Servicegraph add-on, which produces a dynamic representation of the
relationship between Services using real-time traffic data. The Bookinfo
application might look like this without any custom routing applied:

https://en.wikipedia.org/wiki/OSI_model
https://istio.io/docs/tasks/telemetry/servicegraph/

Bookinfo service graph

Similarly, you can use a visualization tool like Weave Scope to see the
relationship between your Services at a given time. The Bookinfo
application without advanced routing might look like this:

Weave Scope Service Map

https://www.weave.works/docs/scope/latest/introducing/

When configuring application traffic in a distributed framework, there
are a number of different solutions — from Kubernetes-native options to
service meshes like Istio — that offer various options for determining how
external traffic will reach your application resources and how these
resources will communicate with one another.

Encryption and Authentication/Authorization

A distributed framework presents opportunities for security
vulnerabilities. Instead of communicating through local internal calls, as
they would in a monolithic setup, services in a microservice architecture
communicate information, including privileged information, over the
network. Overall, this creates a greater surface area for attacks.

Securing Kubernetes clusters involves a range of procedures; we will
focus on authentication, authorization, and encryption. Kubernetes offers
native approaches to each of these: - Authentication: API requests in
Kubernetes are tied to user or service accounts, which need to be
authenticated. There are several different ways to manage the necessary
credentials: Static Tokens, Bootstrap Tokens, X509 client certificates, and
external tools like OpenID Connect. - Authorization: Kubernetes has
different authorization modules that allow you to determine access based
on things like roles, attributes, and other specialized functions. Since all
requests to the API server are denied by default, each part of an API
request must be defined by an authorization policy. - Encryption: This can
refer to any of the following: connections between end users and services,
secret data, endpoints in the Kubernetes control plane, and communication
between worker cluster components and master components. Kubernetes

https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://openid.net/connect/
https://kubernetes.io/docs/reference/access-authn-authz/authorization/

has different solutions for each of these: - Ingress Controllers and
Resources, which can be used in conjunction with add-ons like cert-
manager to manage TLS certificates. - Encryption of secret data at rest for
encrypting the secrets resources in etcd. - TLS bootstrapping to bootstrap
client certificates for kubelets and secure communication between worker
nodes and the kube-apisever. You can also use an overlay network
like Weave Net to do this.

Configuring individual security policies and protocols in Kubernetes
requires administrative investment. A service mesh like Istio can
consolidate some of these activities.

Istio is designed to automate some of the work of securing services. Its
control plane includes several components that handle security: - Citadel:
manages keys and certificates. - Pilot: oversees authentication and naming
policies and shares this information with Envoy proxies. - Mixer: manages
authorization and auditing.

For example, when you create a Service, Citadel receives that
information from the kube-apiserver and creates SPIFFE certificates
and keys for this Service. It then transfers this information to Pods and
Envoy sidecars to facilitate communication between Services.

You can also implement some security features by enabling mutual TLS
during the Istio installation. These include strong service identities for
cross- and inter-cluster communication, secure service-to-service and
user-to-service communication, and a key management system that can
automate key and certificate creation, distribution, and rotation.

By iterating on how Kubernetes handles authentication, authorization,
and encryption, service meshes like Istio are able to consolidate and

https://kubernetes.io/docs/concepts/services-networking/ingress/
https://github.com/jetstack/cert-manager
https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet-tls-bootstrapping/
https://www.weave.works/docs/net/latest/concepts/encryption-implementation/
https://www.weave.works/docs/net/latest/concepts/encryption-implementation/
https://spiffe.io/
https://istio.io/docs/concepts/security/#mutual-tls-authentication

extend some of the recommended best practices for running a secure
Kubernetes cluster.

Metrics and Monitoring

Distributed environments have changed the requirements for metrics and
monitoring. Monitoring tools need to be adaptive, accounting for frequent
changes to services and network addresses, and comprehensive, allowing
for the amount and type of information passing between services.

Kubernetes includes some internal monitoring tools by default. These
resources belong to its resource metrics pipeline, which ensures that the
cluster runs as expected. The cAdvisor component collects network usage,
memory, and CPU statistics from individual containers and nodes and
passes that information to kubelet; kubelet in turn exposes that
information via a REST API. The Metrics Server gets this information
from the API and then passes it to the kube-aggregator for
formatting.

You can extended these internal tools and monitoring capabilities with a
full metrics solution. Using a service like Prometheus as a metrics
aggregator allows you to build directly on top of the Kubernetes resource
metrics pipeline. Prometheus integrates directly with cAdvisor through its
own agents, located on the nodes. Its main aggregation service collects and
stores data from the nodes and exposes it though dashboards and APIs.
Additional storage and visualization options are also available if you
choose to integrate your main aggregation service with backend storage,
logging, and visualization tools like InfluxDB, Grafana, ElasticSearch,
Logstash, Kibana, and others.

https://kubernetes.io/docs/tasks/debug-application-cluster/resource-usage-monitoring/#resource-metrics-pipeline
https://kubernetes.io/docs/tasks/debug-application-cluster/resource-usage-monitoring/#cadvisor
https://kubernetes.io/docs/tasks/debug-application-cluster/core-metrics-pipeline/#metrics-server
https://github.com/kubernetes/kube-aggregator
https://prometheus.io/
https://www.influxdata.com/time-series-platform/influxdb/
https://grafana.com/
https://www.elastic.co/
https://www.elastic.co/products/logstash
https://www.elastic.co/products/kibana

In a service mesh like Istio, the structure of the full metrics pipeline is
part of the mesh’s design. Envoy sidecars operating at the Pod level
communicate metrics to Mixer, which manages policies and telemetry.
Additionally, Prometheus and Grafana services are enabled by default
(though if you are installing Istio with Helm you will need to specify
granafa.enabled=true during installation). As is the case with the
full metrics pipeline, you can also configure other services and
deployments for logging and viewing options.

With these metric and visualization tools in place, you can access
current information about services and workloads in a central place. For
example, a global view of the BookInfo application might look like this in
the Istio Grafana dashboard:

Bookinfo services from Grafana dash

https://istio.io/docs/concepts/policies-and-telemetry/
https://helm.sh/
https://github.com/istio/istio/tree/master/install/kubernetes/helm/istio#configuration
https://istio.io/docs/tasks/telemetry/fluentd/

By replicating the structure of a Kubernetes full metrics pipeline and
simplifying access to some of its common components, service meshes
like Istio streamline the process of data collection and visualization when
working with a cluster.

Conclusion

Microservice architectures are designed to make application development
and deployment fast and reliable. Yet an increase in inter-service
communication has changed best practices for certain administrative
tasks. This article discusses some of those tasks, how they are handled in a
Kubernetes-native context, and how they can be managed using a service
mesh — in this case, Istio.

For more information on some of the Kubernetes topics covered here,
please see the following resources: - How to Set Up an Nginx Ingress with
Cert-Manager on DigitalOcean Kubernetes. - How To Set Up an
Elasticsearch, Fluentd and Kibana (EFK) Logging Stack on Kubernetes. -
An Introduction to the Kubernetes DNS Service.

Additionally, the Kubernetes and Istio documentation hubs are great
places to find detailed information about the topics discussed here.

https://www.digitalocean.com/community/tutorials/how-to-set-up-an-nginx-ingress-with-cert-manager-on-digitalocean-kubernetes
https://www.digitalocean.com/community/tutorials/how-to-set-up-an-elasticsearch-fluentd-and-kibana-efk-logging-stack-on-kubernetes
https://www.digitalocean.com/community/tutorials/an-introduction-to-the-kubernetes-dns-service
https://kubernetes.io/docs/home/
https://istio.io/docs/

How To Back Up and Restore a
Kubernetes Cluster on DigitalOcean
Using Velero

Written by Hanif Jetha and Jamon Camisso
In this tutorial you will learn how to back up and restore your

Kubernetes cluster. First you will set up and configure the backup client on
a local machine, and deploy the backup server into your Kubernetes
cluster. You’ll then deploy a sample Nginx app that uses a Persistent
Volume for logging and simulate a disaster recovery scenario. After
completing all the recovery steps you will have restored service to the test
Nginx application.

Velero is a convenient backup tool for Kubernetes clusters that
compresses and backs up Kubernetes objects to object storage. It also
takes snapshots of your cluster’s Persistent Volumes using your cloud
provider’s block storage snapshot features, and can then restore your
cluster’s objects and Persistent Volumes to a previous state.

The DigitalOcean Velero Plugin allows you to use DigitalOcean block
storage to snapshot your Persistent Volumes, and Spaces to back up your
Kubernetes objects. When running a Kubernetes cluster on DigitalOcean,
this allows you to quickly back up your cluster’s state and restore it should
disaster strike.

In this tutorial we’ll set up and configure the velero command line
tool on a local machine, and deploy the server component into our
Kubernetes cluster. We’ll then deploy a sample Nginx app that uses a

https://www.digitalocean.com/community/tutorials/how-to-back-up-and-restore-a-kubernetes-cluster-on-digitalocean-using-velero
https://velero.io/
https://github.com/digitalocean/velero-plugin

Persistent Volume for logging and then simulate a disaster recovery
scenario.

Prerequisites

Before you begin this tutorial, you should have the following available to
you:

On your local computer: - The kubectl command-line tool,
configured to connect to your cluster. You can read more about installing
and configuring kubectl in the official Kubernetes documentation. - The
git command-line utility. You can learn how to install git in Getting
Started with Git.

In your DigitalOcean account: - A DigitalOcean Kubernetes cluster, or a
Kubernetes cluster (version 1.7.5 or later) on DigitalOcean Droplets. - A
DNS server running inside of your cluster. If you are using DigitalOcean
Kubernetes, this is running by default. To learn more about configuring a
Kubernetes DNS service, consult Customizing DNS Service from the
official Kuberentes documentation. - A DigitalOcean Space that will store
your backed-up Kubernetes objects. To learn how to create a Space,
consult the Spaces product documentation. - An access key pair for your
DigitalOcean Space. To learn how to create a set of access keys, consult
How to Manage Administrative Access to Spaces . - A personal access
token for use with the DigitalOcean API. To learn how to create a personal
access token, consult How to Create a Personal Access Token. Ensure that
the token you create or use has Read/Write permissions or snapshots
will not work.

Once you have all of this set up, you’re ready to begin with this guide.

https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://git-scm.com/
https://www.digitalocean.com/community/tutorials/how-to-contribute-to-open-source-getting-started-with-git
https://www.digitalocean.com/products/kubernetes/
https://kubernetes.io/docs/tasks/administer-cluster/dns-custom-nameservers/
https://www.digitalocean.com/docs/spaces/
https://www.digitalocean.com/docs/spaces/how-to/administrative-access/
https://www.digitalocean.com/docs/api/create-personal-access-token/

Step 1 — Installing the Velero Client

The Velero backup tool consists of a client installed on your local
computer and a server that runs in your Kubernetes cluster. To begin, we’ll
install the local Velero client.

In your web browser, navigate to the Velero GitHub repo releases page,
find the release corresponding to your OS and system architecture, and
copy the link address. For the purposes of this guide, we’ll use an Ubuntu
18.04 server on an x86-64 (or AMD64) processor as our local machine,
and the Velero v1.2.0 release.

Note: To follow this guide, you should download and install v1.2.0 of
the Velero client.

Then, from the command line on your local computer, navigate to the
temporary /tmp directory and cd into it:
cd /tmp

Use wget and the link you copied earlier to download the release
tarball:
wget https://link_copied_from_release_page

Once the download completes, extract the tarball using tar (note the
filename may differ depending on the release version and your OS):
tar -xvzf velero-v1.2.0-linux-amd64.tar.gz

The /tmp directory should now contain the extracted velero-
v1.2.0-linux-amd64 directory as well as the tarball you just
downloaded.

Verify that you can run the velero client by executing the binary:
./velero-v1.2.0-linux-amd64/velero help

You should see the following help output:

https://github.com/vmware-tanzu/velero/releases
https://github.com/vmware-tanzu/velero/releases/tag/v1.2.0

Output
Velero is a tool for managing disaster recovery,

specifically for Kubernetes

cluster resources. It provides a simple,

configurable, and operationally robust

way to back up your application state and

associated data.

If you're familiar with kubectl, Velero supports a

similar model, allowing you to

execute commands such as 'velero get backup' and

'velero create schedule'. The same

operations can also be performed as 'velero backup

get' and 'velero schedule create'.

Usage:

 velero [command]

Available Commands:

 backup Work with backups

 backup-location Work with backup storage

locations

 bug Report a Velero bug

 client Velero client related commands

 completion Output shell completion code

for the specified shell (bash or zsh)

 create Create velero resources

 delete Delete velero resources

 describe Describe velero resources

 get Get velero resources

 help Help about any command

 install Install Velero

 plugin Work with plugins

 restic Work with restic

 restore Work with restores

 schedule Work with schedules

 snapshot-location Work with snapshot locations

 version Print the velero version and

associated image

. . .

At this point you should move the velero executable out of the
temporary /tmp directory and add it to your PATH. To add it to your
PATH on an Ubuntu system, simply copy it to /usr/local/bin:
sudo mv velero-v1.2.0-linux-amd64/velero

/usr/local/bin/velero

You’re now ready to configure secrets for the Velero server and then
deploy it to your Kubernetes cluster.

Step 2 — Configuring Secrets

Before setting up the server component of Velero, you will need to prepare
your DigitalOcean Spaces keys and API token. Again navigate to the
temporary directory /tmp using the cd command:
cd /tmp

Now we’ll download a copy of the Velero plugin for DigitalOcean. Visit
the plugin’s Github releases page and copy the link to the file ending in
.tar.gz.

Use wget and the link you copied earlier to download the release
tarball:
wget https://link_copied_from_release_page

Once the download completes, extract the tarball using tar (again note
that the filename may differ depending on the release version):
tar -xvzf v1.0.0.tar.gz

The /tmp directory should now contain the extracted velero-
plugin-1.0.0 directory as well as the tarball you just downloaded.

Next we’ll cd into the velero-plugin-1.0.0 directory:
cd velero-plugin-1.0.0

Now we can save the access keys for our DigitalOcean Space and API
token for use as a Kubernetes Secret. First, open up the
examples/cloud-credentials file using your favorite editor.
nano examples/cloud-credentials

The file will look like this:

/tmp/velero-plugin-1.0.0/examples/cloud-credentials
[default]

aws_access_key_id=<AWS_ACCESS_KEY_ID>

aws_secret_access_key=<AWS_SECRET_ACCESS_KEY>

Edit the <AWS_ACCESS_KEY_ID> and
<AWS_SECRET_ACCESS_KEY> placeholders to use your DigitalOcean
Spaces keys. Be sure to remove the < and > characters.

https://github.com/digitalocean/velero-plugin/releases/tag/v1.0.0

The next step is to edit the 01-velero-secret.patch.yaml file
so that it includes your DigitalOcean API token. Open the file in your
favourite editor:
nano examples/01-velero-secret.patch.yaml

It should look like this:

apiVersion: v1

kind: Secret

stringData:

digitalocean_token: <DIGITALOCEAN_API_TOKEN>

type: Opaque

Change the entire <DIGITALOCEAN_API_TOKEN> placeholder to use
your DigitalOcean personal API token. The line should look something
like digitalocean_token: 18a0d730c0e0..... Again, make
sure to remove the < and > characters.

Step 3 — Installing the Velero Server

A Velero installation consists of a number of Kubernetes objects that all
work together to create, schedule, and manage backups. The velero
executable that you just downloaded can generate and install these objects
for you. The velero install command will perform the preliminary
set-up steps to get your cluster ready for backups. Specifically, it will:

Create a velero Namespace.
Add the velero Service Account.
Configure role-based access control (RBAC) rules to grant
permissions to the velero Service Account.

Install Custom Resource Definitions (CRDs) for the Velero-specific
resources: Backup, Schedule, Restore, Config.
Register Velero Plugins to manage Block snapshots and Spaces
storage.

We will run the velero install command with some non-default
configuration options. Specifically, you will to need edit each of the
following settings in the actual invocation of the command to match your
Spaces configuration:

--bucket velero-backups: Change the velero-backups
value to match the name of your DigitalOcean Space. For example if
you called your Space ‘backup-bucket’, the option would look like
this: --bucket backup-bucket
--backup-location-config

s3Url=https://nyc3.digitaloceanspaces.com,regio

n=nyc3: Change the URL and region to match your Space’s settings.
Specifically, edit both nyc3 portions to match the region where your
Space is hosted. For example, if your Space is hosted in the fra1
region, the line would look like this: --backup-location-
config

s3Url=https://fra1.digitaloceanspaces.com,regio

n=fra1. The identifiers for regions are: nyc3, sfo2, sgp1, and
fra1.

Once you are ready with the appropriate bucket and backup location
settings, it is time to install Velero. Run the following command,
substituting your values where required:

https://velero.io/docs/v1.2.0/overview-plugins/

velero install \

 --provider velero.io/aws \

 --bucket velero-backups \

 --plugins velero/velero-plugin-for-

aws:v1.0.0,digitalocean/velero-plugin:v1.0.0 \

 --backup-location-config

s3Url=https://nyc3.digitaloceanspaces.com,region=n

yc3 \

 --use-volume-snapshots=false \

 --secret-file=./examples/cloud-credentials

You should see the following output:

Output
CustomResourceDefinition/backups.velero.io:

attempting to create resource

CustomResourceDefinition/backups.velero.io:

created

CustomResourceDefinition/backupstoragelocations.ve

lero.io: attempting to create resource

CustomResourceDefinition/backupstoragelocations.ve

lero.io: created

CustomResourceDefinition/deletebackuprequests.vele

ro.io: attempting to create resource

CustomResourceDefinition/deletebackuprequests.vele

ro.io: created

CustomResourceDefinition/downloadrequests.velero.i

o: attempting to create resource

CustomResourceDefinition/downloadrequests.velero.i

o: created

CustomResourceDefinition/podvolumebackups.velero.i

o: attempting to create resource

CustomResourceDefinition/podvolumebackups.velero.i

o: created

CustomResourceDefinition/podvolumerestores.velero.

io: attempting to create resource

CustomResourceDefinition/podvolumerestores.velero.

io: created

CustomResourceDefinition/resticrepositories.velero

.io: attempting to create resource

CustomResourceDefinition/resticrepositories.velero

.io: created

CustomResourceDefinition/restores.velero.io:

attempting to create resource

CustomResourceDefinition/restores.velero.io:

created

CustomResourceDefinition/schedules.velero.io:

attempting to create resource

CustomResourceDefinition/schedules.velero.io:

created

CustomResourceDefinition/serverstatusrequests.vele

ro.io: attempting to create resource

CustomResourceDefinition/serverstatusrequests.vele

ro.io: created

CustomResourceDefinition/volumesnapshotlocations.v

elero.io: attempting to create resource

CustomResourceDefinition/volumesnapshotlocations.v

elero.io: created

Waiting for resources to be ready in cluster...

Namespace/velero: attempting to create resource

Namespace/velero: created

ClusterRoleBinding/velero: attempting to create

resource

ClusterRoleBinding/velero: created

ServiceAccount/velero: attempting to create

resource

ServiceAccount/velero: created

Secret/cloud-credentials: attempting to create

resource

Secret/cloud-credentials: created

BackupStorageLocation/default: attempting to

create resource

BackupStorageLocation/default: created

Deployment/velero: attempting to create resource

Deployment/velero: created

Velero is installed! ⛵ Use 'kubectl logs
deployment/velero -n velero' to view the status.

You can watch the deployment logs using the kubectl command from
the output. Once your deploy is ready, you can proceed to the next step,
which is configuring the server. A successful deploy will look like this
(with a different AGE column):
kubectl get deployment/velero --namespace velero

Output
NAME READY UP-TO-DATE AVAILABLE AGE

velero 1/1 1 1 2m

At this point you have installed the server component of Velero into
your Kubernetes cluster as a Deployment. You have also registered your
Spaces keys with Velero using a Kubernetes Secret.

Note: You can specify the kubeconfig that the velero command
line tool should use with the --kubeconfig flag. If you don’t use this
flag, velero will check the KUBECONFIG environment variable and
then fall back to the kubectl default (~/.kube/config).

Step 4 — Configuring snapshots

When we installed the Velero server, the option --use-volume-
snapshots=false was part of the command. Since we want to take
snapshots of the underlying block storage devices in our Kubernetes
cluster, we need to tell Velero to use the correct plugin for DigitalOcean
block storage.

Run the following command to enable the plugin and register it as the
default snapshot provider:
velero snapshot-location create default --provider

digitalocean.com/velero

You will see the following output:

Output
Snapshot volume location "default" configured

successfully.

Step 5 — Adding an API token

In the previous step we created block storage and object storage objects in
the Velero server. We’ve registered the digitalocean/velero-
plugin:v1.0.0 plugin with the server, and installed our Spaces secret
keys into the cluster.

The final step is patching the cloud-credentials Secret that we
created earlier to use our DigitalOcean API token. Without this token the
snapshot plugin will not be able to authenticate with the DigitalOcean API.

We could use the kubectl edit command to modify the Velero
Deployment object with a reference to the API token. However, editing
complex YAML objects by hand can be tedious and error prone. Instead,
we’ll use the kubectl patch command since Kubernetes supports
patching objects. Let’s take a quick look at the contents of the patch files
that we’ll apply.

The first patch file is the examples/01-velero-

secret.patch.yaml file that you edited earlier. It is designed to add
your API token to the secrets/cloud-credentials Secret that
already contains your Spaces keys. cat the file:
cat examples/01-velero-secret.patch.yaml

It should look like this (with your token in place of the
<DIGITALOCEAN_API_TOKEN> placeholder):

examples/01-velero-secret.patch.yaml
. . .

apiVersion: v1

kind: Secret

https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/

stringData:

 digitalocean_token: <DIGITALOCEAN_API_TOKEN>

type: Opaque

Now let’s look at the patch file for the Deployment:
cat examples/02-velero-deployment.patch.yaml

You should see the following YAML:

examples/02-velero-deployment.patch.yaml
. . .

apiVersion: v1

kind: Deployment

spec:

 template:

 spec:

 containers:

 - args:

 - server

 command:

 - /velero

 env:

 - name: DIGITALOCEAN_TOKEN

 valueFrom:

 secretKeyRef:

 key: digitalocean_token

 name: cloud-credentials

 name: velero

This file indicates that we’re patching a Deployment’s Pod spec that is
called velero. Since this is a patch we do not need to specify an entire
Kubernetes object spec or metadata. In this case the Velero Deployment is
already configured using the cloud-credentials secret because the
velero install command created it for us. So all that this patch
needs to do is register the digitalocean_token as an environment
variable with the already deployed Velero Pod.

Let’s apply the first Secret patch using the kubectl patch

command:
kubectl patch secret/cloud-credentials -p "$(cat

examples/01-velero-secret.patch.yaml)" --namespace

velero

You should see the following output:

Output
secret/cloud-credentials patched

Finally we will patch the Deployment. Run the following command:
kubectl patch deployment/velero -p "$(cat

examples/02-velero-deployment.patch.yaml") --

namespace velero

You will see the following if the patch is successful:

Output
deployment.apps/velero patched

Let’s verify the patched Deployment is working using kubectl get
on the velero Namespace:
kubectl get deployment/velero --namespace velero

You should see the following output:

Output
NAME READY UP-TO-DATE AVAILABLE AGE

velero 1/1 1 1 12s

At this point Velero is running and fully configured, and ready to back
up and restore your Kubernetes cluster objects and Persistent Volumes to
DigitalOcean Spaces and Block Storage.

In the next section, we’ll run a quick test to make sure that the backup
and restore functionality works as expected.

Step 6 — Testing Backup and Restore Procedure

Now that we’ve successfully installed and configured Velero, we can
create a test Nginx Deployment, with a Persistent Volume and Service.
Once the Deployment is running we will run through a backup and restore
drill to ensure that Velero is configured and working properly.

Ensure you are still working in the /tmp/velero-plugin-1.0.0
directory. The examples directory contains a sample Nginx manifest
called nginx-example.yaml.

Open this file using your editor of choice:
nano examples/nginx-example.yaml

You should see the following text:

Output
. . .

apiVersion: v1

kind: Namespace

metadata:

 name: nginx-example

 labels:

 app: nginx

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: nginx-logs

 namespace: nginx-example

 labels:

 app: nginx

spec:

 storageClassName: do-block-storage

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 5Gi

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deploy

 namespace: nginx-example

 labels:

 app: nginx

spec:

 replicas: 1

 selector:

 matchLabels:

 app: nginx

 template:

 metadata:

 labels:

 app: nginx

 spec:

 volumes:

 - name: nginx-logs

 persistentVolumeClaim:

 claimName: nginx-logs

 containers:

 - image: nginx:stable

 name: nginx

 ports:

 - containerPort: 80

 volumeMounts:

 - mountPath: "/var/log/nginx"

 name: nginx-logs

 readOnly: false

apiVersion: v1

kind: Service

metadata:

 labels:

 app: nginx

 name: nginx-svc

 namespace: nginx-example

spec:

 ports:

 - port: 80

 targetPort: 80

 selector:

 app: nginx

 type: LoadBalancer

In this file, we observe specs for:

An Nginx namespace called nginx-example
An Nginx Deployment consisting of a single replica of the
nginx:stable container image
A 5Gi Persistent Volume Claim (called nginx-logs), using the
do-block-storage StorageClass
A LoadBalancer Service that exposes port 80

Create the objects using kubectl apply:
kubectl apply -f examples/nginx-example.yaml

You should see the following output:

Output
namespace/nginx-example created

persistentvolumeclaim/nginx-logs created

deployment.apps/nginx-deploy created

service/nginx-svc created

Check that the Deployment succeeded:
kubectl get deployments --namespace=nginx-example

You should see the following output:

Output
NAME READY UP-TO-DATE AVAILABLE

AGE

nginx-deploy 1/1 1 1

1m23s

Once Available reaches 1, fetch the Nginx load balancer’s external
IP using kubectl get:
kubectl get services --namespace=nginx-example

You should see both the internal CLUSTER-IP and EXTERNAL-IP for
the my-nginx Service:

Output
NAME TYPE CLUSTER-IP

EXTERNAL-IP PORT(S) AGE

nginx-svc LoadBalancer 10.245.147.61

159.203.48.191 80:30232/TCP 3m1s

Note the EXTERNAL-IP and navigate to it using your web browser.
You should see the following NGINX welcome page:

Nginx Welcome Page

This indicates that your Nginx Deployment and Service are up and
running.

Before we simulate our disaster scenario, let’s first check the Nginx
access logs (stored on a Persistent Volume attached to the Nginx Pod):

Fetch the Pod’s name using kubectl get:
kubectl get pods --namespace nginx-example

Output
NAME READY STATUS

RESTARTS AGE

nginx-deploy-694c85cdc8-vknsk 1/1 Running

0 4m14s

Now, exec into the running Nginx container to get a shell inside of it:

kubectl exec -it nginx-deploy-694c85cdc8-vknsk --

namespace nginx-example -- /bin/bash

Once inside the Nginx container, cat the Nginx access logs:
[environment second]

cat /var/log/nginx/access.log

You should see some Nginx access entries:
[environment second]

[secondary_label Output]

10.244.0.119 - - [03/Jan/2020:04:43:04 +0000] "GET

/ HTTP/1.1" 200 612 "-" "Mozilla/5.0 (X11; Linux

x86_64; rv:72.0) Gecko/20100101 Firefox/72.0" "-"

10.244.0.119 - - [03/Jan/2020:04:43:04 +0000] "GET

/favicon.ico HTTP/1.1" 404 153 "-" "Mozilla/5.0

(X11; Linux x86_64; rv:72.0) Gecko/20100101

Firefox/72.0" "-"

Note these down (especially the timestamps), as we will use them to
confirm the success of the restore procedure. Exit the pod:
exit

We can now perform the backup procedure to copy all nginx
Kubernetes objects to Spaces and take a Snapshot of the Persistent Volume
we created when deploying Nginx.

We’ll create a backup called nginx-backup using the velero
command line client:
velero backup create nginx-backup --selector

app=nginx

The --selector app=nginx instructs the Velero server to only
back up Kubernetes objects with the app=nginx Label Selector.

You should see the following output:

Output
Backup request "nginx-backup" submitted

successfully.

Run `velero backup describe nginx-backup` or

`velero backup logs nginx-backup` for more

details.

Running velero backup describe nginx-backup --

details should provide the following output after a short delay:

Output
Name: nginx-backup

Namespace: velero

Labels: velero.io/backup=nginx-backup

 velero.io/pv=pvc-6b7f63d7-752b-4537-

9bb0-003bed9129ca

 velero.io/storage-location=default

Annotations: <none>

Phase: Completed

Namespaces:

 Included: *

 Excluded: <none>

Resources:

 Included: *

 Excluded: <none>

 Cluster-scoped: auto

Label selector: app=nginx

Storage Location: default

Snapshot PVs: auto

TTL: 720h0m0s

Hooks: <none>

Backup Format Version: 1

Started: 2020-01-02 23:45:30 -0500 EST

Completed: 2020-01-02 23:45:34 -0500 EST

Expiration: 2020-02-01 23:45:30 -0500 EST

Resource List:

 apps/v1/Deployment:

 - nginx-example/nginx-deploy

 apps/v1/ReplicaSet:

 - nginx-example/nginx-deploy-694c85cdc8

 v1/Endpoints:

 - nginx-example/nginx-svc

 v1/Namespace:

 - nginx-example

 v1/PersistentVolume:

 - pvc-6b7f63d7-752b-4537-9bb0-003bed9129ca

 v1/PersistentVolumeClaim:

 - nginx-example/nginx-logs

 v1/Pod:

 - nginx-example/nginx-deploy-694c85cdc8-vknsk

 v1/Service:

 - nginx-example/nginx-svc

Persistent Volumes:

 pvc-6b7f63d7-752b-4537-9bb0-003bed9129ca:

 Snapshot ID: dfe866cc-2de3-11ea-9ec0-

0a58ac14e075

 Type: ext4

 Availability Zone:

 IOPS: <N/A>

This output indicates that nginx-backup completed successfully.
The list of resources shows each of the Kubernetes objects that was
included in the backup. The final section shows the PersistentVolume was
also backed up using a filesystem snapshot.

To confirm from within the DigitalOcean Cloud Control Panel, navigate
to the Space containing your Kubernetes backup files.

You should see a new directory called nginx-backup containing the
Velero backup files.

Using the left-hand navigation bar, go to Images and then Snapshots.
Within Snapshots, navigate to Volumes. You should see a Snapshot
corresponding to the PVC listed in the above output.

We can now test the restore procedure.
Let’s first delete the nginx-example Namespace. This will delete

everything in the Namespace, including the Load Balancer and Persistent
Volume:
kubectl delete namespace nginx-example

Verify that you can no longer access Nginx at the Load Balancer
endpoint, and that the nginx-example Deployment is no longer
running:
kubectl get deployments --namespace=nginx-example

Output
No resources found in nginx-example namespace.

We can now perform the restore procedure, once again using the
velero client:
velero restore create --from-backup nginx-backup

Here we use create to create a Velero Restore object from the
nginx-backup object.

You should see the following output:

Output
Restore request "nginx-backup-20200102235032"

submitted successfully.

Run `velero restore describe nginx-backup-

20200102235032` or `velero restore logs nginx-

backup-20200102235032` for more details.

Check the status of the restored Deployment:
kubectl get deployments --namespace=nginx-example

Output
NAME READY UP-TO-DATE AVAILABLE

AGE

nginx-deploy 1/1 1 1

58s

Check for the creation of a Persistent Volume:
 kubectl get pvc --namespace=nginx-example

Output
NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

nginx-logs Bound pvc-6b7f63d7-752b-4537-9bb0-

003bed9129ca 5Gi RWO do-block-

storage 75s

The restore also created a LoadBalancer. Sometimes the Service will be
re-created with a new IP address. You will need to find the EXTERNAL-IP
address again:
kubectl get services --namespace nginx-example

Output
NAME TYPE CLUSTER-IP

EXTERNAL-IP PORT(S) AGE

nginx-svc LoadBalancer 10.245.15.83

159.203.48.191 80:31217/TCP 97s

Navigate to the Nginx Service’s external IP once again to confirm that
Nginx is up and running.

Finally, check the logs on the restored Persistent Volume to confirm that
the log history has been preserved post-restore.

To do this, once again fetch the Pod’s name using kubectl get:
kubectl get pods --namespace nginx-example

Output
NAME READY STATUS

RESTARTS AGE

nginx-deploy-694c85cdc8-vknsk 1/1 Running

0 2m20s

Then exec into it:
kubectl exec -it nginx-deploy-694c85cdc8-vknsk --

namespace nginx-example -- /bin/bash

Once inside the Nginx container, cat the Nginx access logs:
[environment second]

cat /var/log/nginx/access.log

[environment second]

[secondary_label Output]

10.244.0.119 - - [03/Jan/2020:04:43:04 +0000] "GET

/ HTTP/1.1" 200 612 "-" "Mozilla/5.0 (X11; Linux

x86_64; rv:72.0) Gecko/20100101 Firefox/72.0" "-"

10.244.0.119 - - [03/Jan/2020:04:43:04 +0000] "GET

/favicon.ico HTTP/1.1" 404 153 "-" "Mozilla/5.0

(X11; Linux x86_64; rv:72.0) Gecko/20100101

Firefox/72.0" "-"

You should see the same pre-backup access attempts (note the
timestamps), confirming that the Persistent Volume restore was
successful. Note that there may be additional attempts in the logs if you
visited the Nginx landing page after you performed the restore.

At this point, we’ve successfully backed up our Kubernetes objects to
DigitalOcean Spaces, and our Persistent Volumes using Block Storage
Volume Snapshots. We simulated a disaster scenario, and restored service
to the test Nginx application.

Conclusion

In this guide we installed and configured the Velero Kubernetes backup
tool on a DigitalOcean-based Kubernetes cluster. We configured the tool to
back up Kubernetes objects to DigitalOcean Spaces, and back up Persistent
Volumes using Block Storage Volume Snapshots.

Velero can also be used to schedule regular backups of your Kubernetes
cluster for disaster recovery. To do this, you can use the velero
schedule command. Velero can also be used to migrate resources from
one cluster to another.

To learn more about DigitalOcean Spaces, consult the official Spaces
documentation. To learn more about Block Storage Volumes, consult the
Block Storage Volume documentation.

This tutorial builds on the README found in StackPointCloud’s ark-
plugin-digitalocean GitHub repo.

https://velero.io/docs/v1.2.0/disaster-case/
https://velero.io/docs/v1.2.0/migration-case/
https://www.digitalocean.com/docs/spaces/
https://www.digitalocean.com/docs/volumes/
https://github.com/StackPointCloud/ark-plugin-digitalocean

How To Set Up an Elasticsearch, Fluentd
and Kibana (EFK) Logging Stack on
Kubernetes

Written by Hanif Jetha
When running multiple services and applications on a Kubernetes

cluster, a centralized, cluster-level logging stack can help you quickly sort
through and analyze the heavy volume of log data produced by your Pods.
In this tutorial, you will learn how to set up and configure Elasticsearch,
Fluentd, and Kibana (the EFK stack) on your Kubernetes cluster.

To start, you will configure and launch a scalable Elasticsearch cluster
on top of your Kubernetes cluster. From there you will create a Kubernetes
Service and Deployment for Kibanaso that you can visualize and work
with your logs. Finally, you will set up Fluentd as a Kubernetes
DaemonSet so that it runs on every worker Node and collects logs from
every Pod in your cluster.

When running multiple services and applications on a Kubernetes
cluster, a centralized, cluster-level logging stack can help you quickly sort
through and analyze the heavy volume of log data produced by your Pods.
One popular centralized logging solution is the Elasticsearch, Fluentd, and
Kibana (EFK) stack.

Elasticsearch is a real-time, distributed, and scalable search engine
which allows for full-text and structured search, as well as analytics. It is
commonly used to index and search through large volumes of log data, but
can also be used to search many different kinds of documents.

https://www.digitalocean.com/community/tutorials/how-to-set-up-an-elasticsearch-fluentd-and-kibana-efk-logging-stack-on-kubernetes

Elasticsearch is commonly deployed alongside Kibana, a powerful data
visualization frontend and dashboard for Elasticsearch. Kibana allows you
to explore your Elasticsearch log data through a web interface, and build
dashboards and queries to quickly answer questions and gain insight into
your Kubernetes applications.

In this tutorial we’ll use Fluentd to collect, transform, and ship log data
to the Elasticsearch backend. Fluentd is a popular open-source data
collector that we’ll set up on our Kubernetes nodes to tail container log
files, filter and transform the log data, and deliver it to the Elasticsearch
cluster, where it will be indexed and stored.

We’ll begin by configuring and launching a scalable Elasticsearch
cluster, and then create the Kibana Kubernetes Service and Deployment.
To conclude, we’ll set up Fluentd as a DaemonSet so it runs on every
Kubernetes worker node.

Prerequisites

Before you begin with this guide, ensure you have the following available
to you:

A Kubernetes 1.10+ cluster with role-based access control (RBAC)
enabled

Ensure your cluster has enough resources available to roll out
the EFK stack, and if not scale your cluster by adding worker
nodes. We’ll be deploying a 3-Pod Elasticsearch cluster (you can
scale this down to 1 if necessary), as well as a single Kibana
Pod. Every worker node will also run a Fluentd Pod. The cluster

in this guide consists of 3 worker nodes and a managed control
plane.

The kubectl command-line tool installed on your local machine,
configured to connect to your cluster. You can read more about
installing kubectl in the official documentation.

Once you have these components set up, you’re ready to begin with this
guide.

Step 1 — Creating a Namespace

Before we roll out an Elasticsearch cluster, we’ll first create a Namespace
into which we’ll install all of our logging instrumentation. Kubernetes lets
you separate objects running in your cluster using a “virtual cluster”
abstraction called Namespaces. In this guide, we’ll create a kube-
logging namespace into which we’ll install the EFK stack components.
This Namespace will also allow us to quickly clean up and remove the
logging stack without any loss of function to the Kubernetes cluster.

To begin, first investigate the existing Namespaces in your cluster using
kubectl:
kubectl get namespaces

You should see the following three initial Namespaces, which come
preinstalled with your Kubernetes cluster:

Output
NAME STATUS AGE

default Active 5m

https://kubernetes.io/docs/tasks/tools/install-kubectl/

kube-system Active 5m

kube-public Active 5m

The default Namespace houses objects that are created without
specifying a Namespace. The kube-system Namespace contains objects
created and used by the Kubernetes system, like kube-dns, kube-
proxy, and kubernetes-dashboard. It’s good practice to keep this
Namespace clean and not pollute it with your application and
instrumentation workloads.

The kube-public Namespace is another automatically created
Namespace that can be used to store objects you’d like to be readable and
accessible throughout the whole cluster, even to unauthenticated users.

To create the kube-logging Namespace, first open and edit a file
called kube-logging.yaml using your favorite editor, such as nano:
nano kube-logging.yaml

Inside your editor, paste the following Namespace object YAML:

kube-logging.yaml
kind: Namespace

apiVersion: v1

metadata:

 name: kube-logging

Then, save and close the file.
Here, we specify the Kubernetes object’s kind as a Namespace

object. To learn more about Namespace objects, consult the Namespaces
Walkthrough in the official Kubernetes documentation. We also specify
the Kubernetes API version used to create the object (v1), and give it a
name, kube-logging.

https://kubernetes.io/docs/tasks/administer-cluster/namespaces-walkthrough/

Once you’ve created the kube-logging.yaml Namespace object
file, create the Namespace using kubectl create with the -f
filename flag:
kubectl create -f kube-logging.yaml

You should see the following output:

Output
namespace/kube-logging created

You can then confirm that the Namespace was successfully created:
kubectl get namespaces

At this point, you should see the new kube-logging Namespace:

Output
NAME STATUS AGE

default Active 23m

kube-logging Active 1m

kube-public Active 23m

kube-system Active 23m

We can now deploy an Elasticsearch cluster into this isolated logging
Namespace.

Step 2 — Creating the Elasticsearch StatefulSet

Now that we’ve created a Namespace to house our logging stack, we can
begin rolling out its various components. We’ll first begin by deploying a
3-node Elasticsearch cluster.

In this guide, we use 3 Elasticsearch Pods to avoid the “split-brain”
issue that occurs in highly-available, multi-node clusters. At a high-level,

“split-brain” is what arises when one or more nodes can’t communicate
with the others, and several “split” masters get elected. With 3 nodes, if
one gets disconnected from the cluster temporarily, the other two nodes
can elect a new master and the cluster can continue functioning while the
last node attempts to rejoin. To learn more, consult A new era for cluster
coordination in Elasticsearch and Voting configurations.

Creating the Headless Service

To start, we’ll create a headless Kubernetes service called
elasticsearch that will define a DNS domain for the 3 Pods. A
headless service does not perform load balancing or have a static IP; to
learn more about headless services, consult the official Kubernetes
documentation.

Open a file called elasticsearch_svc.yaml using your favorite
editor:
nano elasticsearch_svc.yaml

Paste in the following Kubernetes service YAML:

elasticsearch_svc.yaml
kind: Service

apiVersion: v1

metadata:

 name: elasticsearch

 namespace: kube-logging

 labels:

 app: elasticsearch

spec:

https://www.elastic.co/blog/a-new-era-for-cluster-coordination-in-elasticsearch
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-discovery-voting.html
https://kubernetes.io/docs/concepts/services-networking/service/#headless-services

 selector:

 app: elasticsearch

 clusterIP: None

 ports:

 - port: 9200

 name: rest

 - port: 9300

 name: inter-node

Then, save and close the file.
We define a Service called elasticsearch in the kube-

logging Namespace, and give it the app: elasticsearch label. We
then set the .spec.selector to app: elasticsearch so that the
Service selects Pods with the app: elasticsearch label. When we
associate our Elasticsearch StatefulSet with this Service, the Service will
return DNS A records that point to Elasticsearch Pods with the app:
elasticsearch label.

We then set clusterIP: None, which renders the service headless.
Finally, we define ports 9200 and 9300 which are used to interact with
the REST API, and for inter-node communication, respectively.

Create the service using kubectl:
kubectl create -f elasticsearch_svc.yaml

You should see the following output:

Output
service/elasticsearch created

Finally, double-check that the service was successfully created using
kubectl get:

kubectl get services --namespace=kube-logging

You should see the following:

Output
NAME TYPE CLUSTER-IP EXTERNAL-

IP PORT(S) AGE

elasticsearch ClusterIP None <none>

9200/TCP,9300/TCP 26s

Now that we’ve set up our headless service and a stable
.elasticsearch.kube-logging.svc.cluster.local domain
for our Pods, we can go ahead and create the StatefulSet.

Creating the StatefulSet

A Kubernetes StatefulSet allows you to assign a stable identity to Pods and
grant them stable, persistent storage. Elasticsearch requires stable storage
to persist data across Pod rescheduling and restarts. To learn more about
the StatefulSet workload, consult the Statefulsets page from the
Kubernetes docs.

Open a file called elasticsearch_statefulset.yaml in your
favorite editor:
nano elasticsearch_statefulset.yaml

We will move through the StatefulSet object definition section by
section, pasting blocks into this file.

Begin by pasting in the following block:

elasticsearch_statefulset.yaml

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

apiVersion: apps/v1

kind: StatefulSet

metadata:

 name: es-cluster

 namespace: kube-logging

spec:

 serviceName: elasticsearch

 replicas: 3

 selector:

 matchLabels:

 app: elasticsearch

 template:

 metadata:

 labels:

 app: elasticsearch

In this block, we define a StatefulSet called es-cluster in the
kube-logging namespace. We then associate it with our previously
created elasticsearch Service using the serviceName field. This
ensures that each Pod in the StatefulSet will be accessible using the
following DNS address: es-cluster-

[0,1,2].elasticsearch.kube-

logging.svc.cluster.local, where [0,1,2] corresponds to the
Pod’s assigned integer ordinal.

We specify 3 replicas (Pods) and set the matchLabels selector to
app: elasticseach, which we then mirror in the
.spec.template.metadata section. The

.spec.selector.matchLabels and

.spec.template.metadata.labels fields must match.
We can now move on to the object spec. Paste in the following block of

YAML immediately below the preceding block:

elasticsearch_statefulset.yaml
. . .

 spec:

 containers:

 - name: elasticsearch

 image:

docker.elastic.co/elasticsearch/elasticsearch:7.2.

0

 resources:

 limits:

 cpu: 1000m

 requests:

 cpu: 100m

 ports:

 - containerPort: 9200

 name: rest

 protocol: TCP

 - containerPort: 9300

 name: inter-node

 protocol: TCP

 volumeMounts:

 - name: data

 mountPath: /usr/share/elasticsearch/data

 env:

 - name: cluster.name

 value: k8s-logs

 - name: node.name

 valueFrom:

 fieldRef:

 fieldPath: metadata.name

 - name: discovery.seed_hosts

 value: "es-cluster-0.elasticsearch,es-

cluster-1.elasticsearch,es-cluster-

2.elasticsearch"

 - name: cluster.initial_master_nodes

 value: "es-cluster-0,es-cluster-1,es-

cluster-2"

 - name: ES_JAVA_OPTS

 value: "-Xms512m -Xmx512m"

Here we define the Pods in the StatefulSet. We name the containers
elasticsearch and choose the
docker.elastic.co/elasticsearch/elasticsearch:7.2.

0 Docker image. At this point, you may modify this image tag to
correspond to your own internal Elasticsearch image, or a different
version. Note that for the purposes of this guide, only Elasticsearch
7.2.0 has been tested.

We then use the resources field to specify that the container needs at
least 0.1 vCPU guaranteed to it, and can burst up to 1 vCPU (which limits
the Pod’s resource usage when performing an initial large ingest or dealing

with a load spike). You should modify these values depending on your
anticipated load and available resources. To learn more about resource
requests and limits, consult the official Kubernetes Documentation.

We then open and name ports 9200 and 9300 for REST API and inter-
node communication, respectively. We specify a volumeMount called
data that will mount the PersistentVolume named data to the container
at the path /usr/share/elasticsearch/data. We will define the
VolumeClaims for this StatefulSet in a later YAML block.

Finally, we set some environment variables in the container:

cluster.name: The Elasticsearch cluster’s name, which in this
guide is k8s-logs.
node.name: The node’s name, which we set to the
.metadata.name field using valueFrom. This will resolve to
es-cluster-[0,1,2], depending on the node’s assigned ordinal.
discovery.seed_hosts: This field sets a list of master-eligible
nodes in the cluster that will seed the node discovery process. In this
guide, thanks to the headless service we configured earlier, our Pods
have domains of the form es-cluster-

[0,1,2].elasticsearch.kube-

logging.svc.cluster.local, so we set this variable
accordingly. Using local namespace Kubernetes DNS resolution, we
can shorten this to es-cluster-[0,1,2].elasticsearch. To
learn more about Elasticsearch discovery, consult the official
Elasticsearch documentation.
cluster.initial_master_nodes: This field also specifies a
list of master-eligible nodes that will participate in the master

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
https://www.elastic.co/guide/en/elasticsearch/reference/7.x/discovery-settings.html

election process. Note that for this field you should identify nodes by
their node.name, and not their hostnames.
ES_JAVA_OPTS: Here we set this to -Xms512m -Xmx512m which
tells the JVM to use a minimum and maximum heap size of 512 MB.
You should tune these parameters depending on your cluster’s
resource availability and needs. To learn more, consult Setting the
heap size.

The next block we’ll paste in looks as follows:

elasticsearch_statefulset.yaml
. . .

 initContainers:

 - name: fix-permissions

 image: busybox

 command: ["sh", "-c", "chown -R 1000:1000

/usr/share/elasticsearch/data"]

 securityContext:

 privileged: true

 volumeMounts:

 - name: data

 mountPath: /usr/share/elasticsearch/data

 - name: increase-vm-max-map

 image: busybox

 command: ["sysctl", "-w",

"vm.max_map_count=262144"]

 securityContext:

https://www.elastic.co/guide/en/elasticsearch/reference/current/heap-size.html

 privileged: true

 - name: increase-fd-ulimit

 image: busybox

 command: ["sh", "-c", "ulimit -n 65536"]

 securityContext:

 privileged: true

In this block, we define several Init Containers that run before the main
elasticsearch app container. These Init Containers each run to
completion in the order they are defined. To learn more about Init
Containers, consult the official Kubernetes Documentation.

The first, named fix-permissions, runs a chown command to
change the owner and group of the Elasticsearch data directory to
1000:1000, the Elasticsearch user’s UID. By default Kubernetes mounts
the data directory as root, which renders it inaccessible to Elasticsearch.
To learn more about this step, consult Elasticsearch’s “Notes for
production use and defaults.”

The second, named increase-vm-max-map, runs a command to
increase the operating system’s limits on mmap counts, which by default
may be too low, resulting in out of memory errors. To learn more about
this step, consult the official Elasticsearch documentation.

The next Init Container to run is increase-fd-ulimit, which runs
the ulimit command to increase the maximum number of open file
descriptors. To learn more about this step, consult the “Notes for
Production Use and Defaults” from the official Elasticsearch
documentation.

Note: The Elasticsearch Notes for Production Use also mentions
disabling swapping for performance reasons. Depending on your

https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
https://www.elastic.co/guide/en/elasticsearch/reference/current/docker.html#_notes_for_production_use_and_defaults
https://www.elastic.co/guide/en/elasticsearch/reference/current/vm-max-map-count.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/docker.html#_notes_for_production_use_and_defaults
https://www.elastic.co/guide/en/elasticsearch/reference/current/docker.html#_notes_for_production_use_and_defaults

Kubernetes installation or provider, swapping may already be disabled. To
check this, exec into a running container and run cat /proc/swaps
to list active swap devices. If you see nothing there, swap is disabled.

Now that we’ve defined our main app container and the Init Containers
that run before it to tune the container OS, we can add the final piece to
our StatefulSet object definition file: the volumeClaimTemplates.

Paste in the following volumeClaimTemplate block:

elasticsearch_statefulset.yaml
. . .

 volumeClaimTemplates:

 - metadata:

 name: data

 labels:

 app: elasticsearch

 spec:

 accessModes: ["ReadWriteOnce"]

 storageClassName: do-block-storage

 resources:

 requests:

 storage: 100Gi

In this block, we define the StatefulSet’s volumeClaimTemplates.
Kubernetes will use this to create PersistentVolumes for the Pods. In the
block above, we name it data (which is the name we refer to in the
volumeMounts defined previously), and give it the same app:
elasticsearch label as our StatefulSet.

We then specify its access mode as ReadWriteOnce, which means
that it can only be mounted as read-write by a single node. We define the
storage class as do-block-storage in this guide since we use a
DigitalOcean Kubernetes cluster for demonstration purposes. You should
change this value depending on where you are running your Kubernetes
cluster. To learn more, consult the Persistent Volume documentation.

Finally, we specify that we’d like each PersistentVolume to be 100GiB
in size. You should adjust this value depending on your production needs.

The complete StatefulSet spec should look something like this:

elasticsearch_statefulset.yaml
apiVersion: apps/v1

kind: StatefulSet

metadata:

 name: es-cluster

 namespace: kube-logging

spec:

 serviceName: elasticsearch

 replicas: 3

 selector:

 matchLabels:

 app: elasticsearch

 template:

 metadata:

 labels:

 app: elasticsearch

 spec:

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

 containers:

 - name: elasticsearch

 image:

docker.elastic.co/elasticsearch/elasticsearch:7.2.

0

 resources:

 limits:

 cpu: 1000m

 requests:

 cpu: 100m

 ports:

 - containerPort: 9200

 name: rest

 protocol: TCP

 - containerPort: 9300

 name: inter-node

 protocol: TCP

 volumeMounts:

 - name: data

 mountPath: /usr/share/elasticsearch/data

 env:

 - name: cluster.name

 value: k8s-logs

 - name: node.name

 valueFrom:

 fieldRef:

 fieldPath: metadata.name

 - name: discovery.seed_hosts

 value: "es-cluster-0.elasticsearch,es-

cluster-1.elasticsearch,es-cluster-

2.elasticsearch"

 - name: cluster.initial_master_nodes

 value: "es-cluster-0,es-cluster-1,es-

cluster-2"

 - name: ES_JAVA_OPTS

 value: "-Xms512m -Xmx512m"

 initContainers:

 - name: fix-permissions

 image: busybox

 command: ["sh", "-c", "chown -R 1000:1000

/usr/share/elasticsearch/data"]

 securityContext:

 privileged: true

 volumeMounts:

 - name: data

 mountPath: /usr/share/elasticsearch/data

 - name: increase-vm-max-map

 image: busybox

 command: ["sysctl", "-w",

"vm.max_map_count=262144"]

 securityContext:

 privileged: true

 - name: increase-fd-ulimit

 image: busybox

 command: ["sh", "-c", "ulimit -n 65536"]

 securityContext:

 privileged: true

 volumeClaimTemplates:

 - metadata:

 name: data

 labels:

 app: elasticsearch

 spec:

 accessModes: ["ReadWriteOnce"]

 storageClassName: do-block-storage

 resources:

 requests:

 storage: 100Gi

Once you’re satisfied with your Elasticsearch configuration, save and
close the file.

Now, deploy the StatefulSet using kubectl:
kubectl create -f elasticsearch_statefulset.yaml

You should see the following output:

Output
statefulset.apps/es-cluster created

You can monitor the StatefulSet as it is rolled out using kubectl
rollout status:
kubectl rollout status sts/es-cluster --

namespace=kube-logging

You should see the following output as the cluster is rolled out:

Output
Waiting for 3 pods to be ready...

Waiting for 2 pods to be ready...

Waiting for 1 pods to be ready...

partitioned roll out complete: 3 new pods have

been updated...

Once all the Pods have been deployed, you can check that your
Elasticsearch cluster is functioning correctly by performing a request
against the REST API.

To do so, first forward the local port 9200 to the port 9200 on one of
the Elasticsearch nodes (es-cluster-0) using kubectl port-

forward:
kubectl port-forward es-cluster-0 9200:9200 --

namespace=kube-logging

Then, in a separate terminal window, perform a curl request against
the REST API:
curl http://localhost:9200/_cluster/state?pretty

You shoulds see the following output:

Output
{

 "cluster_name" : "k8s-logs",

 "compressed_size_in_bytes" : 348,

 "cluster_uuid" : "QD06dK7CQgids-GQZooNVw",

 "version" : 3,

 "state_uuid" : "mjNIWXAzQVuxNNOQ7xR-qg",

 "master_node" : "IdM5B7cUQWqFgIHXBp0JDg",

 "blocks" : { },

 "nodes" : {

 "u7DoTpMmSCixOoictzHItA" : {

 "name" : "es-cluster-1",

 "ephemeral_id" : "ZlBflnXKRMC4RvEACHIVdg",

 "transport_address" : "10.244.8.2:9300",

 "attributes" : { }

 },

 "IdM5B7cUQWqFgIHXBp0JDg" : {

 "name" : "es-cluster-0",

 "ephemeral_id" : "JTk1FDdFQuWbSFAtBxdxAQ",

 "transport_address" : "10.244.44.3:9300",

 "attributes" : { }

 },

 "R8E7xcSUSbGbgrhAdyAKmQ" : {

 "name" : "es-cluster-2",

 "ephemeral_id" : "9wv6ke71Qqy9vk2LgJTqaA",

 "transport_address" : "10.244.40.4:9300",

 "attributes" : { }

 }

 },

...

This indicates that our Elasticsearch cluster k8s-logs has
successfully been created with 3 nodes: es-cluster-0, es-

cluster-1, and es-cluster-2. The current master node is es-
cluster-0.

Now that your Elasticsearch cluster is up and running, you can move on
to setting up a Kibana frontend for it.

Step 3 — Creating the Kibana Deployment and Service

To launch Kibana on Kubernetes, we’ll create a Service called kibana,
and a Deployment consisting of one Pod replica. You can scale the number
of replicas depending on your production needs, and optionally specify a
LoadBalancer type for the Service to load balance requests across the
Deployment pods.

This time, we’ll create the Service and Deployment in the same file.
Open up a file called kibana.yaml in your favorite editor:
nano kibana.yaml

Paste in the following service spec:

kibana.yaml
apiVersion: v1

kind: Service

metadata:

 name: kibana

 namespace: kube-logging

 labels:

 app: kibana

spec:

 ports:

 - port: 5601

 selector:

 app: kibana

apiVersion: apps/v1

kind: Deployment

metadata:

 name: kibana

 namespace: kube-logging

 labels:

 app: kibana

spec:

 replicas: 1

 selector:

 matchLabels:

 app: kibana

 template:

 metadata:

 labels:

 app: kibana

 spec:

 containers:

 - name: kibana

 image:

docker.elastic.co/kibana/kibana:7.2.0

 resources:

 limits:

 cpu: 1000m

 requests:

 cpu: 100m

 env:

 - name: ELASTICSEARCH_URL

 value: http://elasticsearch:9200

 ports:

 - containerPort: 5601

Then, save and close the file.
In this spec we’ve defined a service called kibana in the kube-

logging namespace, and gave it the app: kibana label.
We’ve also specified that it should be accessible on port 5601 and use

the app: kibana label to select the Service’s target Pods.
In the Deployment spec, we define a Deployment called kibana and

specify that we’d like 1 Pod replica.
We use the docker.elastic.co/kibana/kibana:7.2.0

image. At this point you may substitute your own private or public Kibana
image to use.

We specify that we’d like at the very least 0.1 vCPU guaranteed to the
Pod, bursting up to a limit of 1 vCPU. You may change these parameters
depending on your anticipated load and available resources.

Next, we use the ELASTICSEARCH_URL environment variable to set
the endpoint and port for the Elasticsearch cluster. Using Kubernetes DNS,
this endpoint corresponds to its Service name elasticsearch. This
domain will resolve to a list of IP addresses for the 3 Elasticsearch Pods.
To learn more about Kubernetes DNS, consult DNS for Services and Pods.

Finally, we set Kibana’s container port to 5601, to which the kibana
Service will forward requests.

Once you’re satisfied with your Kibana configuration, you can roll out
the Service and Deployment using kubectl:

https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/#services

kubectl create -f kibana.yaml

You should see the following output:

Output
service/kibana created

deployment.apps/kibana created

You can check that the rollout succeeded by running the following
command:
kubectl rollout status deployment/kibana --

namespace=kube-logging

You should see the following output:

Output
deployment "kibana" successfully rolled out

To access the Kibana interface, we’ll once again forward a local port to
the Kubernetes node running Kibana. Grab the Kibana Pod details using
kubectl get:
kubectl get pods --namespace=kube-logging

Output
NAME READY STATUS

RESTARTS AGE

es-cluster-0 1/1 Running 0

55m

es-cluster-1 1/1 Running 0

54m

es-cluster-2 1/1 Running 0

54m

kibana-6c9fb4b5b7-plbg2 1/1 Running 0

4m27s

Here we observe that our Kibana Pod is called kibana-

6c9fb4b5b7-plbg2.
Forward the local port 5601 to port 5601 on this Pod:

kubectl port-forward kibana-6c9fb4b5b7-plbg2

5601:5601 --namespace=kube-logging

You should see the following output:

Output
Forwarding from 127.0.0.1:5601 -> 5601

Forwarding from [::1]:5601 -> 5601

Now, in your web browser, visit the following URL:
http://localhost:5601

If you see the following Kibana welcome page, you’ve successfully
deployed Kibana into your Kubernetes cluster:

Kibana Welcome Screen

You can now move on to rolling out the final component of the EFK
stack: the log collector, Fluentd.

Step 4 — Creating the Fluentd DaemonSet

In this guide, we’ll set up Fluentd as a DaemonSet, which is a Kubernetes
workload type that runs a copy of a given Pod on each Node in the
Kubernetes cluster. Using this DaemonSet controller, we’ll roll out a

Fluentd logging agent Pod on every node in our cluster. To learn more
about this logging architecture, consult “Using a node logging agent” from
the official Kubernetes docs.

In Kubernetes, containerized applications that log to stdout and
stderr have their log streams captured and redirected to JSON files on
the nodes. The Fluentd Pod will tail these log files, filter log events,
transform the log data, and ship it off to the Elasticsearch logging backend
we deployed in Step 2.

In addition to container logs, the Fluentd agent will tail Kubernetes
system component logs like kubelet, kube-proxy, and Docker logs. To see
a full list of sources tailed by the Fluentd logging agent, consult the
kubernetes.conf file used to configure the logging agent. To learn
more about logging in Kubernetes clusters, consult “Logging at the node
level” from the official Kubernetes documentation.

Begin by opening a file called fluentd.yaml in your favorite text
editor:
nano fluentd.yaml

Once again, we’ll paste in the Kubernetes object definitions block by
block, providing context as we go along. In this guide, we use the Fluentd
DaemonSet spec provided by the Fluentd maintainers. Another helpful
resource provided by the Fluentd maintainers is Kuberentes Fluentd.

First, paste in the following ServiceAccount definition:

fluentd.yaml
apiVersion: v1

kind: ServiceAccount

metadata:

https://kubernetes.io/docs/concepts/cluster-administration/logging/#using-a-node-logging-agent
https://www.digitalocean.com/community/tutorials/how-to-set-up-an-elasticsearch-fluentd-and-kibana-efk-logging-stack-on-kubernetes#step-2-%E2%80%94-creating-the-elasticsearch-statefulset
https://github.com/fluent/fluentd-kubernetes-daemonset/blob/master/docker-image/v0.12/debian-elasticsearch/conf/kubernetes.conf
https://kubernetes.io/docs/concepts/cluster-administration/logging/#logging-at-the-node-level
https://github.com/fluent/fluentd-kubernetes-daemonset/blob/master/fluentd-daemonset-elasticsearch-rbac.yaml
https://docs.fluentd.org/v/0.12/articles/kubernetes-fluentd

 name: fluentd

 namespace: kube-logging

 labels:

 app: fluentd

Here, we create a Service Account called fluentd that the Fluentd
Pods will use to access the Kubernetes API. We create it in the kube-
logging Namespace and once again give it the label app: fluentd.
To learn more about Service Accounts in Kubernetes, consult Configure
Service Accounts for Pods in the official Kubernetes docs.

Next, paste in the following ClusterRole block:

fluentd.yaml
. . .

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: fluentd

 labels:

 app: fluentd

rules:

- apiGroups:

 - ""

 resources:

 - pods

 - namespaces

 verbs:

https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/

 - get

 - list

 - watch

Here we define a ClusterRole called fluentd to which we grant the
get, list, and watch permissions on the pods and namespaces
objects. ClusterRoles allow you to grant access to cluster-scoped
Kubernetes resources like Nodes. To learn more about Role-Based Access
Control and Cluster Roles, consult Using RBAC Authorization from the
official Kubernetes documentation.

Now, paste in the following ClusterRoleBinding block:

fluentd.yaml
. . .

kind: ClusterRoleBinding

apiVersion: rbac.authorization.k8s.io/v1

metadata:

 name: fluentd

roleRef:

 kind: ClusterRole

 name: fluentd

 apiGroup: rbac.authorization.k8s.io

subjects:

- kind: ServiceAccount

 name: fluentd

 namespace: kube-logging

https://kubernetes.io/docs/reference/access-authn-authz/rbac/

In this block, we define a ClusterRoleBinding called fluentd
which binds the fluentd ClusterRole to the fluentd Service Account.
This grants the fluentd ServiceAccount the permissions listed in the
fluentd Cluster Role.

At this point we can begin pasting in the actual DaemonSet spec:

fluentd.yaml
. . .

apiVersion: apps/v1

kind: DaemonSet

metadata:

 name: fluentd

 namespace: kube-logging

 labels:

 app: fluentd

Here, we define a DaemonSet called fluentd in the kube-logging
Namespace and give it the app: fluentd label.

Next, paste in the following section:

fluentd.yaml
. . .

spec:

 selector:

 matchLabels:

 app: fluentd

 template:

 metadata:

 labels:

 app: fluentd

 spec:

 serviceAccount: fluentd

 serviceAccountName: fluentd

 tolerations:

 - key: node-role.kubernetes.io/master

 effect: NoSchedule

 containers:

 - name: fluentd

 image: fluent/fluentd-kubernetes-

daemonset:v1.4.2-debian-elasticsearch-1.1

 env:

 - name: FLUENT_ELASTICSEARCH_HOST

 value: "elasticsearch.kube-

logging.svc.cluster.local"

 - name: FLUENT_ELASTICSEARCH_PORT

 value: "9200"

 - name: FLUENT_ELASTICSEARCH_SCHEME

 value: "http"

 - name: FLUENTD_SYSTEMD_CONF

 value: disable

Here, we match the app: fluentd label defined in
.metadata.labels and then assign the DaemonSet the fluentd
Service Account. We also select the app: fluentd as the Pods
managed by this DaemonSet.

Next, we define a NoSchedule toleration to match the equivalent taint
on Kubernetes master nodes. This will ensure that the DaemonSet also
gets rolled out to the Kubernetes masters. If you don’t want to run a
Fluentd Pod on your master nodes, remove this toleration. To learn more
about Kubernetes taints and tolerations, consult “Taints and Tolerations”
from the official Kubernetes docs.

Next, we begin defining the Pod container, which we call fluentd.
We use the official v1.4.2 Debian image provided by the Fluentd

maintainers. If you’d like to use your own private or public Fluentd image,
or use a different image version, modify the image tag in the container
spec. The Dockerfile and contents of this image are available in Fluentd’s
fluentd-kubernetes-daemonset Github repo.

Next, we configure Fluentd using some environment variables:

FLUENT_ELASTICSEARCH_HOST: We set this to the Elasticsearch
headless Service address defined earlier: elasticsearch.kube-
logging.svc.cluster.local. This will resolve to a list of IP
addresses for the 3 Elasticsearch Pods. The actual Elasticsearch host
will most likely be the first IP address returned in this list. To
distribute logs across the cluster, you will need to modify the
configuration for Fluentd’s Elasticsearch Output plugin. To learn
more about this plugin, consult Elasticsearch Output Plugin.
FLUENT_ELASTICSEARCH_PORT: We set this to the Elasticsearch
port we configured earlier, 9200.
FLUENT_ELASTICSEARCH_SCHEME: We set this to http.
FLUENTD_SYSTEMD_CONF: We set this to disable to suppress
output related to systemd not being set up in the container.

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://hub.docker.com/r/fluent/fluentd-kubernetes-daemonset/
https://github.com/fluent/fluentd-kubernetes-daemonset/tree/master/docker-image/v1.4/debian-elasticsearch
https://docs.fluentd.org/v1.0/articles/out_elasticsearch#hosts-(optional)

Finally, paste in the following section:

fluentd.yaml
. . .

 resources:

 limits:

 memory: 512Mi

 requests:

 cpu: 100m

 memory: 200Mi

 volumeMounts:

 - name: varlog

 mountPath: /var/log

 - name: varlibdockercontainers

 mountPath: /var/lib/docker/containers

 readOnly: true

 terminationGracePeriodSeconds: 30

 volumes:

 - name: varlog

 hostPath:

 path: /var/log

 - name: varlibdockercontainers

 hostPath:

 path: /var/lib/docker/containers

Here we specify a 512 MiB memory limit on the FluentD Pod, and
guarantee it 0.1vCPU and 200MiB of memory. You can tune these resource

limits and requests depending on your anticipated log volume and
available resources.

Next, we mount the /var/log and
/var/lib/docker/containers host paths into the container using
the varlog and varlibdockercontainers volumeMounts.
These volumes are defined at the end of the block.

The final parameter we define in this block is
terminationGracePeriodSeconds, which gives Fluentd 30
seconds to shut down gracefully upon receiving a SIGTERM signal. After
30 seconds, the containers are sent a SIGKILL signal. The default value
for terminationGracePeriodSeconds is 30s, so in most cases this
parameter can be omitted. To learn more about gracefully terminating
Kubernetes workloads, consult Google’s “Kubernetes best practices:
terminating with grace.”

The entire Fluentd spec should look something like this:

fluentd.yaml
apiVersion: v1

kind: ServiceAccount

metadata:

 name: fluentd

 namespace: kube-logging

 labels:

 app: fluentd

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-terminating-with-grace

metadata:

 name: fluentd

 labels:

 app: fluentd

rules:

- apiGroups:

 - ""

 resources:

 - pods

 - namespaces

 verbs:

 - get

 - list

 - watch

kind: ClusterRoleBinding

apiVersion: rbac.authorization.k8s.io/v1

metadata:

 name: fluentd

roleRef:

 kind: ClusterRole

 name: fluentd

 apiGroup: rbac.authorization.k8s.io

subjects:

- kind: ServiceAccount

 name: fluentd

 namespace: kube-logging

apiVersion: apps/v1

kind: DaemonSet

metadata:

 name: fluentd

 namespace: kube-logging

 labels:

 app: fluentd

spec:

 selector:

 matchLabels:

 app: fluentd

 template:

 metadata:

 labels:

 app: fluentd

 spec:

 serviceAccount: fluentd

 serviceAccountName: fluentd

 tolerations:

 - key: node-role.kubernetes.io/master

 effect: NoSchedule

 containers:

 - name: fluentd

 image: fluent/fluentd-kubernetes-

daemonset:v1.4.2-debian-elasticsearch-1.1

 env:

 - name: FLUENT_ELASTICSEARCH_HOST

 value: "elasticsearch.kube-

logging.svc.cluster.local"

 - name: FLUENT_ELASTICSEARCH_PORT

 value: "9200"

 - name: FLUENT_ELASTICSEARCH_SCHEME

 value: "http"

 - name: FLUENTD_SYSTEMD_CONF

 value: disable

 resources:

 limits:

 memory: 512Mi

 requests:

 cpu: 100m

 memory: 200Mi

 volumeMounts:

 - name: varlog

 mountPath: /var/log

 - name: varlibdockercontainers

 mountPath: /var/lib/docker/containers

 readOnly: true

 terminationGracePeriodSeconds: 30

 volumes:

 - name: varlog

 hostPath:

 path: /var/log

 - name: varlibdockercontainers

 hostPath:

 path: /var/lib/docker/containers

Once you’ve finished configuring the Fluentd DaemonSet, save and
close the file.

Now, roll out the DaemonSet using kubectl:
kubectl create -f fluentd.yaml

You should see the following output:

Output
serviceaccount/fluentd created

clusterrole.rbac.authorization.k8s.io/fluentd

created

clusterrolebinding.rbac.authorization.k8s.io/fluen

td created

daemonset.extensions/fluentd created

Verify that your DaemonSet rolled out successfully using kubectl:
kubectl get ds --namespace=kube-logging

You should see the following status output:

Output
NAME DESIRED CURRENT READY UP-TO-DATE

AVAILABLE NODE SELECTOR AGE

fluentd 3 3 3 3

3 <none> 58s

This indicates that there are 3 fluentd Pods running, which
corresponds to the number of nodes in our Kubernetes cluster.

We can now check Kibana to verify that log data is being properly
collected and shipped to Elasticsearch.

With the kubectl port-forward still open, navigate to
http://localhost:5601.

Click on Discover in the left-hand navigation menu:

Kibana Discover

You should see the following configuration window:

Kibana Index Pattern Configuration

This allows you to define the Elasticsearch indices you’d like to explore
in Kibana. To learn more, consult Defining your index patterns in the
official Kibana docs. For now, we’ll just use the logstash-* wildcard
pattern to capture all the log data in our Elasticsearch cluster. Enter
logstash-* in the text box and click on Next step.

You’ll then be brought to the following page:

https://www.elastic.co/guide/en/kibana/current/tutorial-define-index.html

Kibana Index Pattern Settings

This allows you to configure which field Kibana will use to filter log
data by time. In the dropdown, select the @timestamp field, and hit Create
index pattern.

Now, hit Discover in the left hand navigation menu.
You should see a histogram graph and some recent log entries:

Kibana Incoming Logs

At this point you’ve successfully configured and rolled out the EFK
stack on your Kubernetes cluster. To learn how to use Kibana to analyze
your log data, consult the Kibana User Guide.

In the next optional section, we’ll deploy a simple counter Pod that
prints numbers to stdout, and find its logs in Kibana.

Step 5 (Optional) — Testing Container Logging

To demonstrate a basic Kibana use case of exploring the latest logs for a
given Pod, we’ll deploy a minimal counter Pod that prints sequential
numbers to stdout.

https://www.elastic.co/guide/en/kibana/current/index.html

Let’s begin by creating the Pod. Open up a file called counter.yaml
in your favorite editor:
nano counter.yaml

Then, paste in the following Pod spec:

counter.yaml
apiVersion: v1

kind: Pod

metadata:

 name: counter

spec:

 containers:

 - name: count

 image: busybox

 args: [/bin/sh, -c,

 'i=0; while true; do echo "$i:

$(date)"; i=$((i+1)); sleep 1; done']

Save and close the file.
This is a minimal Pod called counter that runs a while loop,

printing numbers sequentially.
Deploy the counter Pod using kubectl:

kubectl create -f counter.yaml

Once the Pod has been created and is running, navigate back to your
Kibana dashboard.

From the Discover page, in the search bar enter
kubernetes.pod_name:counter. This filters the log data for Pods
named counter.

You should then see a list of log entries for the counter Pod:

Counter Logs in Kibana

You can click into any of the log entries to see additional metadata like
the container name, Kubernetes node, Namespace, and more.

Conclusion

In this guide we’ve demonstrated how to set up and configure
Elasticsearch, Fluentd, and Kibana on a Kubernetes cluster. We’ve used a
minimal logging architecture that consists of a single logging agent Pod
running on each Kubernetes worker node.

Before deploying this logging stack into your production Kubernetes
cluster, it’s best to tune the resource requirements and limits as indicated
throughout this guide. You may also want to set up X-Pack to enable built-
in monitoring and security features.

The logging architecture we’ve used here consists of 3 Elasticsearch
Pods, a single Kibana Pod (not load-balanced), and a set of Fluentd Pods
rolled out as a DaemonSet. You may wish to scale this setup depending on
your production use case. To learn more about scaling your Elasticsearch
and Kibana stack, consult Scaling Elasticsearch.

Kubernetes also allows for more complex logging agent architectures
that may better suit your use case. To learn more, consult Logging
Architecture from the Kubernetes docs.

https://www.elastic.co/guide/en/elasticsearch/reference/current/setup-xpack.html
https://www.elastic.co/blog/small-medium-or-large-scaling-elasticsearch-and-evolving-the-elastic-stack-to-fit
https://kubernetes.io/docs/concepts/cluster-administration/logging/

How to Set Up an Nginx Ingress with
Cert-Manager on DigitalOcean
Kubernetes

Written by Hanif Jetha
Kubernetes Ingresses allow you to flexibly route traffic from outside

your Kubernetes cluster to Services inside of your cluster. This routing is
accomplished using Ingress Resources, which define rules for routing
HTTP and HTTPS traffic to Kubernetes Services, and Ingress Controllers,
which implement the rules by load balancing traffic and routing it to the
appropriate backend Services.

In this guide, you will set up the Kubernetes-maintained Nginx Ingress
Controller, and create some Ingress Resources to route traffic to several
dummy backend services. Once the Ingress is in place, you will install
cert-manager into your cluster to manage and provision TLS certificates
using Let’s Encrypt for encrypting web traffic to your applications.

Kubernetes Ingresses allow you to flexibly route traffic from outside
your Kubernetes cluster to Services inside of your cluster. This is
accomplished using Ingress Resources, which define rules for routing
HTTP and HTTPS traffic to Kubernetes Services, and Ingress Controllers,
which implement the rules by load balancing traffic and routing it to the
appropriate backend Services. Popular Ingress Controllers include Nginx,
Contour, HAProxy, and Traefik. Ingresses provide a more efficient and
flexible alternative to setting up multiple LoadBalancer services, each of
which uses its own dedicated Load Balancer.

https://www.digitalocean.com/community/tutorials/how-to-set-up-an-nginx-ingress-with-cert-manager-on-digitalocean-kubernetes
https://github.com/kubernetes/ingress-nginx
https://github.com/jetstack/cert-manager
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://github.com/kubernetes/ingress-nginx/blob/master/README.md
https://github.com/heptio/contour
https://www.haproxy.com/blog/haproxy_ingress_controller_for_kubernetes/
https://github.com/containous/traefik

In this guide, we’ll set up the Kubernetes-maintained Nginx Ingress
Controller, and create some Ingress Resources to route traffic to several
dummy backend services. Once we’ve set up the Ingress, we’ll install cert-
manager into our cluster to manage and provision TLS certificates for
encrypting HTTP traffic to the Ingress. This guide does not use the Helm
package manager. For a guide on rolling out the Nginx Ingress Controller
using Helm, consult How To Set Up an Nginx Ingress on DigitalOcean
Kubernetes Using Helm.

Prerequisites

Before you begin with this guide, you should have the following available
to you:

A Kubernetes 1.10+ cluster with role-based access control (RBAC)
enabled
The kubectl command-line tool installed on your local machine
and configured to connect to your cluster. You can read more about
installing kubectl in the official documentation.
A domain name and DNS A records which you can point to the
DigitalOcean Load Balancer used by the Ingress. If you are using
DigitalOcean to manage your domain’s DNS records, consult How to
Manage DNS Records to learn how to create A records.
The wget command-line utility installed on your local machine. You
can install wget using the package manager built into your operating
system.

https://github.com/kubernetes/ingress-nginx
https://github.com/jetstack/cert-manager
https://helm.sh/
https://www.digitalocean.com/community/tutorials/how-to-set-up-an-nginx-ingress-on-digitalocean-kubernetes-using-helm
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://www.digitalocean.com/docs/networking/dns/how-to/manage-records/

Once you have these components set up, you’re ready to begin with this
guide.

Step 1 — Setting Up Dummy Backend Services

Before we deploy the Ingress Controller, we’ll first create and roll out two
dummy echo Services to which we’ll route external traffic using the
Ingress. The echo Services will run the hashicorp/http-echo web
server container, which returns a page containing a text string passed in
when the web server is launched. To learn more about http-echo,
consult its GitHub Repo, and to learn more about Kubernetes Services,
consult Services from the official Kubernetes docs.

On your local machine, create and edit a file called echo1.yaml using
nano or your favorite editor:
nano echo1.yaml

Paste in the following Service and Deployment manifest:

echo1.yaml
apiVersion: v1

kind: Service

metadata:

 name: echo1

spec:

 ports:

 - port: 80

 targetPort: 5678

 selector:

 app: echo1

https://hub.docker.com/r/hashicorp/http-echo/
https://github.com/hashicorp/http-echo
https://kubernetes.io/docs/concepts/services-networking/service/

apiVersion: apps/v1

kind: Deployment

metadata:

 name: echo1

spec:

 selector:

 matchLabels:

 app: echo1

 replicas: 2

 template:

 metadata:

 labels:

 app: echo1

 spec:

 containers:

 - name: echo1

 image: hashicorp/http-echo

 args:

 - "-text=echo1"

 ports:

 - containerPort: 5678

In this file, we define a Service called echo1 which routes traffic to
Pods with the app: echo1 label selector. It accepts TCP traffic on port
80 and routes it to port 5678,http-echo’s default port.

We then define a Deployment, also called echo1, which manages Pods
with the app: echo1 Label Selector. We specify that the Deployment

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

should have 2 Pod replicas, and that the Pods should start a container
called echo1 running the hashicorp/http-echo image. We pass in
the text parameter and set it to echo1, so that the http-echo web
server returns echo1. Finally, we open port 5678 on the Pod container.

Once you’re satisfied with your dummy Service and Deployment
manifest, save and close the file.

Then, create the Kubernetes resources using kubectl apply with the
-f flag, specifying the file you just saved as a parameter:
kubectl apply -f echo1.yaml

You should see the following output:

Output
service/echo1 created

deployment.apps/echo1 created

Verify that the Service started correctly by confirming that it has a
ClusterIP, the internal IP on which the Service is exposed:
kubectl get svc echo1

You should see the following output:

Output
NAME TYPE CLUSTER-IP EXTERNAL-IP

PORT(S) AGE

echo1 ClusterIP 10.245.222.129 <none>

80/TCP 60s

This indicates that the echo1 Service is now available internally at
10.245.222.129 on port 80. It will forward traffic to containerPort
5678 on the Pods it selects.

Now that the echo1 Service is up and running, repeat this process for
the echo2 Service.

Create and open a file called echo2.yaml:

echo2.yaml
apiVersion: v1

kind: Service

metadata:

 name: echo2

spec:

 ports:

 - port: 80

 targetPort: 5678

 selector:

 app: echo2

apiVersion: apps/v1

kind: Deployment

metadata:

 name: echo2

spec:

 selector:

 matchLabels:

 app: echo2

 replicas: 1

 template:

 metadata:

 labels:

 app: echo2

 spec:

 containers:

 - name: echo2

 image: hashicorp/http-echo

 args:

 - "-text=echo2"

 ports:

 - containerPort: 5678

Here, we essentially use the same Service and Deployment manifest as
above, but name and relabel the Service and Deployment echo2. In
addition, to provide some variety, we create only 1 Pod replica. We ensure
that we set the text parameter to echo2 so that the web server returns
the text echo2.

Save and close the file, and create the Kubernetes resources using
kubectl:
kubectl apply -f echo2.yaml

You should see the following output:

Output
service/echo2 created

deployment.apps/echo2 created

Once again, verify that the Service is up and running:
kubectl get svc

You should see both the echo1 and echo2 Services with assigned
ClusterIPs:

Output
NAME TYPE CLUSTER-IP

EXTERNAL-IP PORT(S) AGE

echo1 ClusterIP 10.245.222.129 <none>

80/TCP 6m6s

echo2 ClusterIP 10.245.128.224 <none>

80/TCP 6m3s

kubernetes ClusterIP 10.245.0.1 <none>

443/TCP 4d21h

Now that our dummy echo web services are up and running, we can
move on to rolling out the Nginx Ingress Controller.

Step 2 — Setting Up the Kubernetes Nginx Ingress
Controller

In this step, we’ll roll out v0.26.1 of the Kubernetes-maintained Nginx
Ingress Controller. Note that there are several Nginx Ingress Controllers;
the Kubernetes community maintains the one used in this guide and Nginx
Inc. maintains kubernetes-ingress. The instructions in this tutorial are
based on those from the official Kubernetes Nginx Ingress Controller
Installation Guide.

The Nginx Ingress Controller consists of a Pod that runs the Nginx web
server and watches the Kubernetes Control Plane for new and updated
Ingress Resource objects. An Ingress Resource is essentially a list of
traffic routing rules for backend Services. For example, an Ingress rule can
specify that HTTP traffic arriving at the path /web1 should be directed
towards the web1 backend web server. Using Ingress Resources, you can

https://github.com/kubernetes/ingress-nginx
https://github.com/nginxinc/kubernetes-ingress/blob/master/docs/nginx-ingress-controllers.md
https://github.com/nginxinc/kubernetes-ingress
https://kubernetes.github.io/ingress-nginx/deploy/

also perform host-based routing: for example, routing requests that hit
web1.your_domain.com to the backend Kubernetes Service web1.

In this case, because we’re deploying the Ingress Controller to a
DigitalOcean Kubernetes cluster, the Controller will create a
LoadBalancer Service that spins up a DigitalOcean Load Balancer to
which all external traffic will be directed. This Load Balancer will route
external traffic to the Ingress Controller Pod running Nginx, which then
forwards traffic to the appropriate backend Services.

We’ll begin by first creating the Kubernetes resources required by the
Nginx Ingress Controller. These consist of ConfigMaps containing the
Controller’s configuration, Role-based Access Control (RBAC) Roles to
grant the Controller access to the Kubernetes API, and the actual Ingress
Controller Deployment which uses v0.26.1 of the Nginx Ingress Controller
image. To see a full list of these required resources, consult the manifest
from the Kubernetes Nginx Ingress Controller’s GitHub repo.

To create these mandatory resources, use kubectl apply and the -f
flag to specify the manifest file hosted on GitHub:
kubectl apply -f

https://raw.githubusercontent.com/kubernetes/ingre

ss-nginx/nginx-0.26.1/deploy/static/mandatory.yaml

We use apply here so that in the future we can incrementally apply
changes to the Ingress Controller objects instead of completely
overwriting them. To learn more about apply, consult Managing
Resources from the official Kubernetes docs.

You should see the following output:

Output

https://quay.io/repository/kubernetes-ingress-controller/nginx-ingress-controller?tag=0.26.1&tab=tags
https://raw.githubusercontent.com/kubernetes/ingress-nginx/nginx-0.26.1/deploy/static/mandatory.yaml
https://kubernetes.io/docs/concepts/cluster-administration/manage-deployment/#kubectl-apply

namespace/ingress-nginx created

configmap/nginx-configuration created

configmap/tcp-services created

configmap/udp-services created

serviceaccount/nginx-ingress-serviceaccount

created

clusterrole.rbac.authorization.k8s.io/nginx-

ingress-clusterrole created

role.rbac.authorization.k8s.io/nginx-ingress-role

created

rolebinding.rbac.authorization.k8s.io/nginx-

ingress-role-nisa-binding created

clusterrolebinding.rbac.authorization.k8s.io/nginx

-ingress-clusterrole-nisa-binding created

deployment.apps/nginx-ingress-controller created

This output also serves as a convenient summary of all the Ingress
Controller objects created from the mandatory.yaml manifest.

Next, we’ll create the Ingress Controller LoadBalancer Service, which
will create a DigitalOcean Load Balancer that will load balance and route
HTTP and HTTPS traffic to the Ingress Controller Pod deployed in the
previous command.

To create the LoadBalancer Service, once again kubectl apply a
manifest file containing the Service definition:
kubectl apply -f

https://raw.githubusercontent.com/kubernetes/ingre

ss-nginx/nginx-

0.26.1/deploy/static/provider/cloud-generic.yaml

You should see the following output:

Output
service/ingress-nginx created

Confirm that the Ingress Controller Pods have started:
kubectl get pods --all-namespaces -l

app.kubernetes.io/name=ingress-nginx

Output
NAMESPACE NAME

READY STATUS RESTARTS AGE

ingress-nginx nginx-ingress-controller-

7fb85bc8bb-lnm6z 1/1 Running 0

2m42s

Now, confirm that the DigitalOcean Load Balancer was successfully
created by fetching the Service details with kubectl:
kubectl get svc --namespace=ingress-nginx

After several minutes, you should see an external IP address,
corresponding to the IP address of the DigitalOcean Load Balancer:

Output
NAME TYPE CLUSTER-IP

EXTERNAL-IP PORT(S) AGE

ingress-nginx LoadBalancer 10.245.247.67

203.0.113.0 80:32486/TCP,443:32096/TCP 20h

Note down the Load Balancer’s external IP address, as you’ll need it in
a later step.

Note: By default the Nginx Ingress LoadBalancer Service has
service.spec.externalTrafficPolicy set to the value Local,
which routes all load balancer traffic to nodes running Nginx Ingress Pods.
The other nodes will deliberately fail load balancer health checks so that
Ingress traffic does not get routed to them. External traffic policies are
beyond the scope of this tutorial, but to learn more you can consult A Deep
Dive into Kubernetes External Traffic Policies and Source IP for Services
with Type=LoadBalancer from the official Kubernetes docs.

This load balancer receives traffic on HTTP and HTTPS ports 80 and
443, and forwards it to the Ingress Controller Pod. The Ingress Controller
will then route the traffic to the appropriate backend Service.

We can now point our DNS records at this external Load Balancer and
create some Ingress Resources to implement traffic routing rules.

Step 3 — Creating the Ingress Resource

Let’s begin by creating a minimal Ingress Resource to route traffic
directed at a given subdomain to a corresponding backend Service.

In this guide, we’ll use the test domain example.com. You should
substitute this with the domain name you own.

We’ll first create a simple rule to route traffic directed at
echo1.example.com to the echo1 backend service and traffic directed at
echo2.example.com to the echo2 backend service.

Begin by opening up a file called echo_ingress.yaml in your
favorite editor:

https://www.asykim.com/blog/deep-dive-into-kubernetes-external-traffic-policies
https://kubernetes.io/docs/tutorials/services/source-ip/#source-ip-for-services-with-type-loadbalancer

nano echo_ingress.yaml

Paste in the following ingress definition:

echo_ingress.yaml
apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

 name: echo-ingress

spec:

 rules:

 - host: echo1.example.com

 http:

 paths:

 - backend:

 serviceName: echo1

 servicePort: 80

 - host: echo2.example.com

 http:

 paths:

 - backend:

 serviceName: echo2

 servicePort: 80

When you’ve finished editing your Ingress rules, save and close the file.
Here, we’ve specified that we’d like to create an Ingress Resource

called echo-ingress, and route traffic based on the Host header. An
HTTP request Host header specifies the domain name of the target server.
To learn more about Host request headers, consult the Mozilla Developer

Network definition page. Requests with host echo1.example.com will be
directed to the echo1 backend set up in Step 1, and requests with host
echo2.example.com will be directed to the echo2 backend.

You can now create the Ingress using kubectl:
kubectl apply -f echo_ingress.yaml

You’ll see the following output confirming the Ingress creation:

Output
ingress.extensions/echo-ingress created

To test the Ingress, navigate to your DNS management service and
create A records for echo1.example.com and
echo2.example.com pointing to the DigitalOcean Load Balancer’s
external IP. The Load Balancer’s external IP is the external IP address for
the ingress-nginx Service, which we fetched in the previous step. If
you are using DigitalOcean to manage your domain’s DNS records,
consult How to Manage DNS Records to learn how to create A records.

Once you’ve created the necessary echo1.example.com and
echo2.example.com DNS records, you can test the Ingress Controller
and Resource you’ve created using the curl command line utility.

From your local machine, curl the echo1 Service:
curl echo1.example.com

You should get the following response from the echo1 service:

Output
echo1

This confirms that your request to echo1.example.com is being
correctly routed through the Nginx ingress to the echo1 backend Service.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Host
https://www.digitalocean.com/docs/networking/dns/how-to/manage-records/

Now, perform the same test for the echo2 Service:
curl echo2.example.com

You should get the following response from the echo2 Service:

Output
echo2

This confirms that your request to echo2.example.com is being
correctly routed through the Nginx ingress to the echo2 backend Service.

At this point, you’ve successfully set up a minimal Nginx Ingress to
perform virtual host-based routing. In the next step, we’ll install cert-
manager to provision TLS certificates for our Ingress and enable the more
secure HTTPS protocol.

Step 4 — Installing and Configuring Cert-Manager

In this step, we’ll install cert-manager into our cluster. cert-manager is a
Kubernetes service that provisions TLS certificates from Let’s Encrypt
and other certificate authorities and manages their lifecycles. Certificates
can be requested and configured by annotating Ingress Resources with the
cert-manager.io/issuer annotation, appending a tls section to
the Ingress spec, and configuring one or more Issuers or ClusterIssuers to
specify your preferred certificate authority. To learn more about Issuer and
ClusterIssuer objects, consult the official cert-manager documentation on
Issuers.

Before we install cert-manager, we’ll first create a Namespace for it to
run in:
kubectl create namespace cert-manager

https://github.com/jetstack/cert-manager
https://letsencrypt.org/
https://cert-manager.io/docs/concepts/issuer/

Next, we’ll install cert-manager and its Custom Resource Definitions
(CRDs) like Issuers and ClusterIssuers. Do this by applying the manifest
directly from the cert-manager GitHub repository :
kubectl apply --validate=false -f

https://github.com/jetstack/cert-

manager/releases/download/v0.12.0/cert-

manager.yaml

You should see the following output:

Output
customresourcedefinition.apiextensions.k8s.io/cert

ificaterequests.cert-manager.io created

customresourcedefinition.apiextensions.k8s.io/cert

ificates.cert-manager.io created

customresourcedefinition.apiextensions.k8s.io/chal

lenges.acme.cert-manager.io created

customresourcedefinition.apiextensions.k8s.io/clus

terissuers.cert-manager.io created

. . .

deployment.apps/cert-manager-webhook created

mutatingwebhookconfiguration.admissionregistration

.k8s.io/cert-manager-webhook created

validatingwebhookconfiguration.admissionregistrati

on.k8s.io/cert-manager-webhook created

To verify our installation, check the cert-manager Namespace for
running pods:
kubectl get pods --namespace cert-manager

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://github.com/jetstack/cert-manager/

Output
NAME READY

STATUS RESTARTS AGE

cert-manager-5c47f46f57-jknnx 1/1

Running 0 27s

cert-manager-cainjector-6659d6844d-j8cbg 1/1

Running 0 27s

cert-manager-webhook-547567b88f-qks44 1/1

Running 0 27s

This indicates that the cert-manager installation succeeded.
Before we begin issuing certificates for our Ingress hosts, we need to

create an Issuer, which specifies the certificate authority from which
signed x509 certificates can be obtained. In this guide, we’ll use the Let’s
Encrypt certificate authority, which provides free TLS certificates and
offers both a staging server for testing your certificate configuration, and a
production server for rolling out verifiable TLS certificates.

Let’s create a test Issuer to make sure the certificate provisioning
mechanism is functioning correctly. Open a file named
staging_issuer.yaml in your favorite text editor:
nano staging_issuer.yaml

Paste in the following ClusterIssuer manifest:

staging_issuer.yaml
apiVersion: cert-manager.io/v1alpha2

kind: ClusterIssuer

metadata:

 name: letsencrypt-staging

 namespace: cert-manager

spec:

 acme:

 # The ACME server URL

 server: https://acme-staging-

v02.api.letsencrypt.org/directory

 # Email address used for ACME registration

 email: your_email_address_here

 # Name of a secret used to store the ACME

account private key

 privateKeySecretRef:

 name: letsencrypt-staging

 # Enable the HTTP-01 challenge provider

 solvers:

 - http01:

 ingress:

 class: nginx

Here we specify that we’d like to create a ClusterIssuer object called
letsencrypt-staging, and use the Let’s Encrypt staging server.
We’ll later use the production server to roll out our certificates, but the
production server may rate-limit requests made against it, so for testing
purposes it’s best to use the staging URL.

We then specify an email address to register the certificate, and create a
Kubernetes Secret called letsencrypt-staging to store the ACME
account’s private key. We also enable the HTTP-01 challenge mechanism.

https://kubernetes.io/docs/concepts/configuration/secret/

To learn more about these parameters, consult the official cert-manager
documentation on Issuers.

Roll out the ClusterIssuer using kubectl:
kubectl create -f staging_issuer.yaml

You should see the following output:

Output
clusterissuer.cert-manager.io/letsencrypt-staging

created

Now that we’ve created our Let’s Encrypt staging Issuer, we’re ready to
modify the Ingress Resource we created above and enable TLS encryption
for the echo1.example.com and echo2.example.com paths.

Open up echo_ingress.yaml once again in your favorite editor:
nano echo_ingress.yaml

Add the following to the Ingress Resource manifest:

echo_ingress.yaml
apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

 name: echo-ingress

 annotations:

 kubernetes.io/ingress.class: "nginx"

 cert-manager.io/cluster-issuer: "letsencrypt-

staging"

spec:

 tls:

https://cert-manager.io/docs/concepts/issuer/

 - hosts:

 - echo1.hjdo.net

 - echo2.hjdo.net

 secretName: echo-tls

 rules:

 - host: echo1.hjdo.net

 http:

 paths:

 - backend:

 serviceName: echo1

 servicePort: 80

 - host: echo2.hjdo.net

 http:

 paths:

 - backend:

 serviceName: echo2

 servicePort: 80

Here we add some annotations to specify the ingress.class, which
determines the Ingress Controller that should be used to implement the
Ingress Rules. In addition, we define the cluster-issuer to be
letsencrypt-staging, the certificate Issuer we just created.

Finally, we add a tls block to specify the hosts for which we want to
acquire certificates, and specify a secretName. This secret will contain
the TLS private key and issued certificate.

When you’re done making changes, save and close the file.

We’ll now update the existing Ingress Resource using kubectl
apply:
kubectl apply -f echo_ingress.yaml

You should see the following output:

Output
ingress.networking.k8s.io/echo-ingress configured

You can use kubectl describe to track the state of the Ingress
changes you’ve just applied:
kubectl describe ingress

Output
Events:

 Type Reason Age

From Message

 ---- ------ ---- ---

- -------

 Normal CREATE 14m

nginx-ingress-controller Ingress default/echo-

ingress

 Normal CreateCertificate 67s cert-manager

Successfully created Certificate "echo-tls"

 Normal UPDATE 53s nginx-ingress-

controller Ingress default/echo-ingress

Once the certificate has been successfully created, you can run an
additional describe on it to further confirm its successful creation:
kubectl describe certificate

You should see the following output in the Events section:

Output
Events:

 Type Reason Age From

Message

 ---- ------ ---- ---- -----

--

 Normal GeneratedKey 2m12s cert-manager

Generated a new private key

 Normal Requested 2m12s cert-manager

Created new CertificateRequest resource "echo-tls-

3768100355"

 Normal Issued 47s cert-manager

Certificate issued successfully

This confirms that the TLS certificate was successfully issued and
HTTPS encryption is now active for the two domains configured.

We’re now ready to send a request to a backend echo server to test that
HTTPS is functioning correctly.

Run the following wget command to send a request to
echo1.example.com and print the response headers to STDOUT:
wget --save-headers -O- echo1.example.com

You should see the following output:

Output
. . .

HTTP request sent, awaiting response... 308

Permanent Redirect

. . .

ERROR: cannot verify echo1.example.com's

certificate, issued by ‘CN=Fake LE Intermediate

X1’:

 Unable to locally verify the issuer's authority.

To connect to echo1.example.com insecurely, use `-

-no-check-certificate'.

This indicates that HTTPS has successfully been enabled, but the
certificate cannot be verified as it’s a fake temporary certificate issued by
the Let’s Encrypt staging server.

Now that we’ve tested that everything works using this temporary fake
certificate, we can roll out production certificates for the two hosts
echo1.example.com and echo2.example.com.

Step 5 — Rolling Out Production Issuer

In this step we’ll modify the procedure used to provision staging
certificates, and generate a valid, verifiable production certificate for our
Ingress hosts.

To begin, we’ll first create a production certificate ClusterIssuer.
Open a file called prod_issuer.yaml in your favorite editor:

nano prod_issuer.yaml

Paste in the following manifest:

prod_issuer.yaml
apiVersion: cert-manager.io/v1alpha2

kind: ClusterIssuer

metadata:

 name: letsencrypt-prod

 namespace: cert-manager

spec:

 acme:

 # The ACME server URL

 server: https://acme-

v02.api.letsencrypt.org/directory

 # Email address used for ACME registration

 email: your_email_address_here

 # Name of a secret used to store the ACME

account private key

 privateKeySecretRef:

 name: letsencrypt-prod

 # Enable the HTTP-01 challenge provider

 solvers:

 - http01:

 ingress:

 class: nginx

Note the different ACME server URL, and the letsencrypt-prod
secret key name.

When you’re done editing, save and close the file.
Now, roll out this Issuer using kubectl:

kubectl create -f prod_issuer.yaml

You should see the following output:

Output

clusterissuer.cert-manager.io/letsencrypt-prod

created

Update echo_ingress.yaml to use this new Issuer:
nano echo_ingress.yaml

Make the following change to the file:

echo_ingress.yaml
apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

 name: echo-ingress

 annotations:

 kubernetes.io/ingress.class: "nginx"

 cert-manager.io/cluster-issuer: "letsencrypt-

prod"

spec:

 tls:

 - hosts:

 - echo1.hjdo.net

 - echo2.hjdo.net

 secretName: echo-tls

 rules:

 - host: echo1.hjdo.net

 http:

 paths:

 - backend:

 serviceName: echo1

 servicePort: 80

 - host: echo2.hjdo.net

 http:

 paths:

 - backend:

 serviceName: echo2

 servicePort: 80

Here, we update the ClusterIssuer name to letsencrypt-prod.
Once you’re satisfied with your changes, save and close the file.
Roll out the changes using kubectl apply:

kubectl apply -f echo_ingress.yaml

Output
ingress.networking.k8s.io/echo-ingress configured

Wait a couple of minutes for the Let’s Encrypt production server to
issue the certificate. You can track its progress using kubectl
describe on the certificate object:
kubectl describe certificate echo-tls

Once you see the following output, the certificate has been issued
successfully:

Output
Events:

 Type Reason Age From

Message

 ---- ------ ---- ----

 Normal GeneratedKey 8m10s cert-

manager Generated a new private key

 Normal Requested 8m10s cert-

manager Created new CertificateRequest resource

"echo-tls-3768100355"

 Normal Requested 35s cert-

manager Created new CertificateRequest resource

"echo-tls-4217844635"

 Normal Issued 10s (x2 over 6m45s) cert-

manager Certificate issued successfully

We’ll now perform a test using curl to verify that HTTPS is working
correctly:
curl echo1.example.com

You should see the following:

Output
<html>

<head><title>308 Permanent Redirect</title></head>

<body>

<center><h1>308 Permanent Redirect</h1></center>

<hr><center>nginx/1.15.9</center>

</body>

</html>

This indicates that HTTP requests are being redirected to use HTTPS.
Run curl on https://echo1.example.com:

curl https://echo1.example.com

You should now see the following output:

Output
echo1

You can run the previous command with the verbose -v flag to dig
deeper into the certificate handshake and to verify the certificate
information.

At this point, you’ve successfully configured HTTPS using a Let’s
Encrypt certificate for your Nginx Ingress.

Conclusion

In this guide, you set up an Nginx Ingress to load balance and route
external requests to backend Services inside of your Kubernetes cluster.
You also secured the Ingress by installing the cert-manager certificate
provisioner and setting up a Let’s Encrypt certificate for two host paths.

There are many alternatives to the Nginx Ingress Controller. To learn
more, consult Ingress controllers from the official Kubernetes
documentation.

For a guide on rolling out the Nginx Ingress Controller using the Helm
Kubernetes package manager, consult How To Set Up an Nginx Ingress on
DigitalOcean Kubernetes Using Helm.

https://kubernetes.io/docs/concepts/services-networking/ingress/#ingress-controllers
https://www.digitalocean.com/community/tutorials/how-to-set-up-an-nginx-ingress-on-digitalocean-kubernetes-using-helm

How to Protect Private Kubernetes
Services Behind a GitHub Login with
oauth2_proxy

Written by Kamal Nasser
Kubernetes ingresses make it easy to expose web services to the

internet. When it comes to private services, however, you will likely want
to limit who can access them. In this tutorial you’ll use oauth2_proxy with
GitHub to protect your services. oauth2_proxy is a reverse proxy server
that provides authentication using different providers, such as GitHub, and
validates users based on their email address or other properties.

By the end of this tutorial you will have setup oauth2_proxy on your
Kubernetes cluster and protected a private service behind a GitHub login.
oauth2_proxy also supports other OAuth providers like Google and
Facebook, so by following this tutorial you will be able to protect your
services using the provider of your choice.

Kubernetes ingresses make it easy to expose web services to the
internet. When it comes to private services, however, you will likely want
to limit who can access them. oauth2_proxy can serve as a barrier between
the public internet and private services. oauth2_proxy is a reverse proxy
and server that provides authentication using different providers, such as
GitHub, and validates users by their email address or other properties.

In this tutorial you’ll use oauth2_proxy with GitHub to protect your
services. When you’re done, you will have an authorization system that
looks like the one in the following diagram:

https://www.digitalocean.com/community/tutorials/how-to-protect-private-kubernetes-services-behind-a-github-login-with-oauth2_proxy
https://pusher.github.io/oauth2_proxy/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://pusher.github.io/oauth2_proxy/

A diagram of a request flow end-result

Prerequisites

To complete this tutorial, you’ll need:

A Kubernetes cluster with two web services running with an Nginx
ingress and Let’s Encrypt. This tutorial builds on How to Set Up an
Nginx Ingress with Cert-Manager on DigitalOcean Kubernetes. Be
sure to follow it to the very end in order to complete this tutorial.
A GitHub account.
Python installed on your local machine. If you do not have it
installed, follow the installation instructions for your operating

https://www.digitalocean.com/community/tutorials/how-to-set-up-an-nginx-ingress-with-cert-manager-on-digitalocean-kubernetes
https://github.com/
https://www.digitalocean.com/community/tags/python?type=tutorials#install-and-configure-python

system.

Step 1 — Configuring Your Domains

After following the tutorial linked in the Prerequisites section, you will
have two web services running on your cluster: echo1 and echo2. You
will also have one ingress that maps echo1.your_domain and
echo2.your_domain to their corresponding services.

In this tutorial, we will use the following conventions:

All private services will fall under the .int.your_domain
subdomain, like service.int.your_domain. Grouping private
services under one subdomain is ideal because the authentication
cookie will be shared across all *.int.your_domain

subdomains.
The login portal will be served on auth.int.your_domain.

Note: Be sure to replace your_domain with your own domain name
wherever it appears in this tutorial.

To start, update the existing ingress definition to move the echo1 and
echo2 services under .int.your_domain. Open
echo_ingress.yaml in your text editor so you can change the
domains:
nano echo_ingress.yaml

Rename all instances of echo1.your_domain to
echo1.int.your_domain, and replace all instances of
echo2.your_domain with echo2.int.your_domain:

https://www.digitalocean.com/community/tags/python?type=tutorials#install-and-configure-python

echo_ingress.yaml
apiVersion: extensions/v1beta1

kind: Ingress

metadata:

 name: echo-ingress

 annotations:

 kubernetes.io/ingress.class: nginx

 certmanager.k8s.io/cluster-issuer:

letsencrypt-prod

spec:

 tls:

 - hosts:

 - echo1.int.your_domain

 - echo2.int.your_domain

 secretName: letsencrypt-prod

 rules:

 - host: echo1.int.your_domain

 http:

 paths:

 - backend:

 serviceName: echo1

 servicePort: 80

 - host: echo2.int.your_domain

 http:

 paths:

 - backend:

 serviceName: echo2

 servicePort: 80

Save the file and apply the changes:
kubectl apply -f echo_ingress.yaml

This will update the TLS certificates for your echo1 and echo2
services as well.

Now update your DNS configuration to reflect the changes you made.
First, look up the IP address of your Nginx ingress by running the
following command to print its details:
kubectl get svc --namespace=ingress-nginx

You will see the IP address under EXTERNAL-IP in the output:

Output
NAME TYPE CLUSTER-IP

EXTERNAL-IP PORT(S) AGE

ingress-nginx LoadBalancer 10.245.247.67

203.0.113.0 80:32486/TCP,443:32096/TCP 20h

Copy the external IP address to your clipboard. Browse to your DNS
management service and locate the A records for echo1-

2.your_domain to point to that external IP address. If you are using
DigitalOcean to manage your DNS records, see How to Manage DNS
Records for instructions.

Delete the records for echo1 and echo2. Add a new A record for the
hostname *.int.your_domain and point it to the External IP address
of the ingress.

Now any request to any subdomain under *.int.your_domain will
be routed to the Nginx ingress, so you can use these subdomains within

https://www.digitalocean.com/docs/networking/dns/how-to/manage-records/

your cluster.
Next you’ll configure GitHub as your login provider.

Step 2 — Creating a GitHub OAuth Application

oauth2_proxy supports various login providers. In this tutorial, you will
use the GitHub provider. To get started, create a new GitHub OAuth App.

In the OAuth Apps tab of the Developer settings page of your account,
click the New OAuth App button.

The Application name and Homepage URL fields can be anything you
want. In the Authorization callback URL field, enter
https://auth.int.your_domain/oauth2/callback.

After registering the application, you will receive a Client ID and
Secret. Note the two as you will need them in the next step.

Now that you’ve created a GitHub OAuth application, you can install
and configure oauth2_proxy.

Step 3 – Setting Up the Login Portal

You’ll use Helm to install oauth2_proxy onto the cluster. First, you’ll
create a Kubernetes secret to hold the GitHub application’s Client ID and
Secret, as well as an encryption secret for browser cookies set by
oauth2_proxy.

Run the following command to generate a secure cookie secret:
python -c 'import os,base64; print

base64.b64encode(os.urandom(16))'

Copy the result to your clipboard

https://github.com/settings/developers

Then, create the Kubernetes secret, substituting the highlighted values
for your cookie secret, your GitHub client ID, and your GitHub secret key:
kubectl -n default create secret generic oauth2-

proxy-creds \

--from-literal=cookie-secret=YOUR_COOKIE_SECRET \

--from-literal=client-id=YOUR_GITHUB_CLIENT_ID \

--from-literal=client-secret=YOUR_GITHUB_SECRET

You’ll see the following output:

Output
secret/oauth2-proxy-creds created

Next, create a new file named oauth2-proxy-config.yaml which
will contain the configuration for oauth2_proxy:
nano oauth2-proxy-config.yaml

The values you’ll set in this file will override the Helm chart’s defaults.
Add the following code to the file:

oauth2-proxy-config.yaml
config:

 existingSecret: oauth2-proxy-creds

extraArgs:

 whitelist-domain: .int.your_domain

 cookie-domain: .int.your_domain

 provider: github

authenticatedEmailsFile:

 enabled: true

 restricted_access: |-

 allowed@user1.com

 allowed@user2.com

ingress:

 enabled: true

 path: /

 hosts:

 - auth.int.your_domain

 annotations:

 kubernetes.io/ingress.class: nginx

 certmanager.k8s.io/cluster-issuer:

letsencrypt-prod

 tls:

 - secretName: oauth2-proxy-https-cert

 hosts:

 - auth.int.your_domain

This code does the following:

1. Instructs oauth2_proxy to use the secret you created.
2. Sets the domain name and provider type.
3. Sets a list of allowed email addresses. If a GitHub account is

associated with one of these email addresses, it will be allowed
access to the private services.

4. Configures the ingress that will serve the login portal on
auth.int.your_domain with a TLS certificate from Let’s

Encrypt.

Now that you have the secret and configuration file ready, you can
install oauth2_proxy. Run the following command:
helm repo update \

&& helm upgrade oauth2-proxy --install

stable/oauth2-proxy \

--reuse-values \

--values oauth2-proxy-config.yaml

It might take a few minutes for the Let’s Encrypt certificate to be issued
and installed.

To test that the deployment was successful, browse to
https://auth.int.your_domain. You’ll see a page that prompts
you to log in with GitHub.

With oauth2_proxy set up and running, all that is left is to require
authentication on your services.

Step 4 — Protecting the Private Services

In order to protect a service, configure its Nginx ingress to enforce
authentication via oauth2_proxy. Nginx and nginx-ingress support this
configuration natively, so you only need to add a couple of annotations to
the ingress definition.

Let’s protect the echo1 and echo2 services that you set up in the
prerequisite tutorial. Open echo_ingress.yaml in your editor:
nano echo_ingress.yaml

Add these two additional annotations to the file to require
authentication:

echo_ingress.yaml
 annotations:

 kubernetes.io/ingress.class: nginx

 certmanager.k8s.io/cluster-issuer:

letsencrypt-prod

 nginx.ingress.kubernetes.io/auth-url:

"https://auth.int.your_domain/oauth2/auth"

 nginx.ingress.kubernetes.io/auth-signin:

"https://auth.int.your_domain/oauth2/start?

rd=https%3A%2F%2F$host$request_uri"

Save the file and apply the changes:
kubectl apply -f echo_ingress.yaml

Now when you browse to https://echo1.int.your_domain,
you will be asked to log in using GitHub in order to access it. After
logging in with a valid account, you will be redirected back to the echo1
service. The same is true for echo2.

Conclusion

In this tutorial, you set up oauth2_proxy on your Kubernetes cluster and
protected a private service behind a GitHub login. For any other services
you need to protect, simply follow the instructions outlined in Step 4.

oauth2_proxy supports many different providers other than GitHub. To
learn more about different providers, see the official documentation.

Additionally, there are many configuration parameters that you might
need to adjust, although the defaults will suit most needs. For a list of

https://pusher.github.io/oauth2_proxy/auth-configuration

parameters, see the Helm chart’s documentation and oauth2_proxy’s
documentation.

https://github.com/helm/charts/tree/master/stable/oauth2-proxy
https://pusher.github.io/oauth2_proxy/configuration

	About DigitalOcean
	Preface - Getting Started with this Book
	Introduction
	An Introduction to Kubernetes
	How To Create a Kubernetes Cluster Using Kubeadm on Ubuntu 18.04
	Webinar Series: A Closer Look at Kubernetes
	An Introduction to Helm, the Package Manager for Kubernetes
	How To Install Software on Kubernetes Clusters with the Helm Package Manager
	Architecting Applications for Kubernetes
	Modernizing Applications for Kubernetes
	How To Build a Node.js Application with Docker
	Containerizing a Node.js Application for Development With Docker Compose
	How to Set Up DigitalOcean Kubernetes Cluster Monitoring with Helm and Prometheus Operator
	How To Set Up Laravel, Nginx, and MySQL with Docker Compose
	How To Migrate a Docker Compose Workflow to Kubernetes
	Building Optimized Containers for Kubernetes
	How To Scale a Node.js Application with MongoDB on Kubernetes Using Helm
	How To Set Up a Private Docker Registry on Top of DigitalOcean Spaces and Use It with DigitalOcean Kubernetes
	How To Deploy a PHP Application with Kubernetes on Ubuntu 18.04
	How To Automate Deployments to DigitalOcean Kubernetes with CircleCI
	How To Set Up a CD Pipeline with Spinnaker on DigitalOcean Kubernetes
	Kubernetes Networking Under the Hood
	How To Inspect Kubernetes Networking
	An Introduction to Service Meshes
	How To Back Up and Restore a Kubernetes Cluster on DigitalOcean Using Velero
	How To Set Up an Elasticsearch, Fluentd and Kibana (EFK) Logging Stack on Kubernetes
	How to Set Up an Nginx Ingress with Cert-Manager on DigitalOcean Kubernetes
	How to Protect Private Kubernetes Services Behind a GitHub Login with oauth2_proxy

