Internet access and backbone technology

Henning Schulzrinne Columbia University COMS 6181 – Spring 2015

Key objectives

- How does the Internet backbone work?
- How does Internet routing work?
- What is spectrum and its characteristics?
- What is the difference between Wi-Fi and cellular?

1901 "data" backbone

Submarine cable map

http://www.telegeography.com/

Backbone: Internet2 architecture

http://atlas.grnoc.iu.edu/l2.html

7

Internet topology

- AS (Autonomous System)
- EGP (External Gateway Protocol)

Nina Taft

Purpose: to share connectivity information

9

BGP sessions

- One router can participate in many BGP sessions.
- Initially ... node advertises ALL routes it wants neighbor to know (could be >50K routes)
- Ongoing ... only inform neighbor of changes

10

Routing protocols

Address arithmetic: address blocks

- The <address/prefix> pair defines an address block:
- Examples:
 - 128.15.0.0/16 => [128.15.0.0 128.15.255.255]
 - 188.24.0.0/13 => [188.24.0.0 188.31.255.255] consider 2nd octet in binary:

Address block sizes

- a /13 address block has 2³²⁻¹³ addresses (/16 has 2³²⁻¹⁶)
- a /13 address block is 8 times as big as a /16 address block because 2³²⁻¹³ = 2³²⁻¹⁶ * 2³

12

CIDR: longest prefix match

- Because prefixes of arbitrary length allowed, overlapping prefixes can exist
- Example:

router hears 124.39.0.0/16 from one neighbor and 124.39.11.0/24 from another neighbor

- Router forwards packet according to most specific forwarding information, called *longest prefix match*
 - Packet with destination 124.39.11.32 will be forwarded using /24 entry.
 - Packet w/destination 124.39.22.45 will be forwarded using /16 entry

Four basic BGP messages

• Open:

Establishes BGP session (uses TCP port 179)

• Notification:

Report unusual conditions

• Update:

Inform neighbor of new routes that have become active Inform neighbor of old routes that have become inactive

• Keepalive:

Inform neighbor that connection is still viable

BGP attributes

- ORIGIN:
 - Who originated the announcement? Where was a prefix injected into BGP?
 - IGP, EGP or Incomplete (often used for static routes)
- AS-PATH:
 - a list of AS's through which the announcement for a prefix has passed
 - each AS prepends its AS # to the AS-PATH attribute when forwarding an announcement
 - pick shortest route
 - useful to detect and prevent loops

Prefix	Next hop	AS Path
128.73.4.21/21	232.14.63.4	1239 701 3985 631

http://www.cogentco.com/en/network/looking-glass (ASN 174)

AIS 2015

 University)

 BGP routing table entry for 130.231.0.0/16, version 3124599241

 Paths: (1 available, best #1, table Default-IP-Routing-Table)

 2914 2914 2603 1741

 130.117.14.102 (metric 10190091) from 154.54.66.76 (154.54.66.76)

 Origin IGP, metric 4294967294, localpref 100, valid, internal, best

 Community: 174:11100 174:20666 174:21100 174:22012

 NORDUNET
 FUNET

oulu.fi

AS whois: http://viewdns.info/asnlookup/

15

WIRELESS NETWORKS

Frequencies

- Licensed vs. unlicensed
 - Unlicensed = ISM (door openers to WiFi) + UNII
 - 902-928 MHz (26 MHz UHF)
 - 2.450 2.5 GHz (50 MHz 802.11b/g)
 - 5.125-5.25 (125 MHz), 5.25-5.35, 5.5250-5.8250, 5.650 5.925 GHz
 - + whiteband
- Roughly:
 - lower frequency \rightarrow longer range
 - but smaller capacity (smaller bands)
 - 2.45 GHz: microwave oven (interference)
 - 2.5 GHz: foliage issues (beware pine needles!)
 - visible light (~380-750 nm) = 400-789 THz
- Same technology may be used in different frequency bands
 - e.g., WiMAX: 700 MHz, 2.3, 2.4, 2.5, 5.8 GHz

Visible light spectrum

Radio spectrum 1-3 GHz

http://www.ntia.doc.gov/osmhome/allochrt.pdf

But often lightly used

The wireless "stack"

WiFi

- 802.11b: spread-spectrum
 - 83.5 MHz @ 2.4 GHz: CCK using QPSK
 - 1 Mb/s 11 Mb/s nominal, 4.5 Mb/s typical
 - 11 channels, some countries 2, 4 or 14; 1-6-11 typical
- 802.11a: OFDM
 - 480 MHz in 24 (US) 20 MHz channels @ 5 GHz
 - 23 Mb/s typical, 54 Mb/s max.
- 802.11g
 - 2.4 GHz
 - 23 Mb/s typical, 54 Mb/s max.
- 802.11n: MIMO
 - 2.4 or 5 GHz
 - 74 Mb/s typical, 300 Mb/s max.

Cellular wireless technologies

- Cell radius: hundreds of m to 35 km (GSM)
 - power-controlled
 - also: macro cell (tower), micro cell (below roof level), pico cell (indoor)
 - 900 or 1800 MHz
 - US: 850, 1900 MHz
 - Scandinavia: 400, 450 MHz (range!)
 - GSM: 25 MHz uplink + downlink, 200 kHz channels
- Generations:
 - 1G: analog
 - 2G: digital voice (GSM, CDMA)
 - 3G: digital data
 - 4G: LTE, MIMO, high bandwidth
 - 5G: higher frequencies (> 5 GHz), low latency

Evolution of Cellular Networks

Basic LTE architecture

Generations

Standardized QoS Characteristics

QCI: QoS Class Identifier

Classes vary by Bit rate guarantee Latency Packet loss probability

UE will typically have three bearers: Signalling QCI=5

> VoLTE QCI=1 All other data QCI=9

Bearers may also have an "Allocation and Retention Priority" – priority level for establishing and retaining the bearer.

Resource Type	Priority	Packet Delay	Packet Error	Example Services
V I		Budget	Loss	
			Rate	
	2	100 ms	10 ⁻²	Conversational Voice
	4	150 ms	10^{-3}	Conversational Video (Li
guaranteed				Streaming)
bit rate (GBR)				
	5	300 ms	10-6	Non-Conversational Vide
				(Buffered Streaming)
	3	50 ms	10^{-3}	Real Time Gaming
	1	100 ms	10-6	IMS Signalling
	7	100 ms	10 ⁻³	Voice, Video (Live Streaming) Interactive Gaming
Non-GBR	6			Video (Buffered Streamin
	8	300 ms	10 ⁻⁶	TCP-based (e.g., www mail, chat, ftp, p2p file sharing, progressive video, etc.)
	9			

Wireless backhaul

- BS → backbone network
 - one of the largest carrier OpEx components (30-40%)
- Traditional: T1 (1.5 Mb/s) \$600/month
- New solutions:
 - microwave
 - 800 Mb/s to 3 Gb/s (future)
 - CableCo fiber (\$100/month/Mb/s)
 - bonded DSL
 - FiOS
 - Femtocells in subscriber home

