
 

  

INTERNSHIP 

REPORT 

CSC410 

Shantanu Chaudhary 
2010CS50295 

Abstract 
This report is being presented as part of CSC410 course to 

describe the details of the internship done as part of the 
summer internship process of the IIT-Delhi curriculum. 



Internship at Future Captcha 

PVT. LTD, Gurgaon 
About the company: 
The company is a start-up founded by Mr Lokesh Jaiswal in November, 2012. 

The company works in the domain of game development and electronic 

commerce. 

Company Division: 
The company has two divisions: 

1. Game Development Studio 

2. Innovation Studio 

The game development studio carries out various projects of developing games 

for different platforms such as android, IOS, windows. 

The innovation studio is responsible for development of an e-commerce 

website. Their first venture is a food ordering website for cheap and convenient 

delivery of food to customers. 



Tools used: 
 SVN: For version control 

 Unity3D: SDK for development of games 

 Mono Develop: Editor for programming behavioural scripts  

 3DS Max: For modelling characters and game objects 

 Photoshop: For making GUI Textures 

 Unity Script/JavaScript: For programming behaviour of game objects 

Working methodology 
The development model used as part of project development was the 

Evolutionary Development Model (Software Engineering). Under this model, the 

product (game) is divided into a set of features. Basic game is developed and 

released in the marketplace and other features are added gradually over time. 

These features are developed as part of weekly sprints. Two sprints would be 

held every week (Sprint 1: Mon-Wed & Sprint 2: Thur-Sat). On completion of a 

sprint the developed features would be checked for bugs. After this check, a 

platform (android, IOS, windows) build for the project would be presented to 

the Chief Technical Officer for approval. After approval, the developed feature 

would be merged with the master build in the project repository, tagged with 

appropriate version and then it would be deployed in the market place of 

respective platforms (Google Play store). 

  



About the Projects 
We were required to work on the following games as part of our internship at 

the game studio. 

Training games:  
These games were assigned to us as individual exercises so that we are able to 

learn about the tools we would use in the development of the main projects. 

These games were built for android platform. These included development of 

2D and 3D games with touch interface: 

Screen shot of Fruit Ninja spoof 

 Fruit Ninja Spoof- This game was just a spoof of the famous android game 

Fruit Ninja. By developing this game as an exercise we learnt to deal with 

rigid body and how it is handled by the Unity engine. 

Screen shot of Space Fighter 



 Space Fighter- This was actually a 2D aeroplane game flying through a star 

field. Through this game we learnt about generating particle effect (to 

simulate the effect of falling stars) and how to simulate fire and blasts and 

maintain control over powers of the player. 

Screen shot of Mario 2D 

 2D Mario- This was a spoof of the classic Nintendo Mario game. This game 

was our first exercise as a team. This game taught us the essentials of 2D 

animation (sprite sheet animation). We as a team of 3 developers divided 

the development of this game into 3 parts and developed these parts 

independently and then integrated these parts to make the final build. 



Screen shot of 6Packman 

6-Packman: 
This game is just a 3D variant of the classic 2D game PACMAN. The gameplay 

involves the player running through a maze tackling enemies and picking up 

collectibles so as to attain a certain high score and clear the level. The game had 

time attack and arcade modes so as to offer a variety to the user. 

Screen shot of Mareon 

Mareon: 
This game is the 3D variant of Nintendo’s Super Mario Brothers. This project 

threw all sorts of challenges at the developers such as 3D animation, optimised 

rendering of world elements, efficient and easy gameplay controls for the player 

based on touch input and many more. The special feature which this game 

offered was that the world elements in the game had been derived from real 



world elements (such as continents, mountains, monuments and historic 

places). 

 

Screen shot of Down the Hatch 

Down the Hatch: 
This game is a story of a micro-organism which is flushed down a drain and 

comes across organisms which are larger than it and pose a danger to its 

existence. The player must tackle the enemies and consume certain collectibles 

which would enable the player to kill enemy organisms and attain certain score. 

  



About my role 
The team of the game development was part of a hierarchy described by the 

following diagram: 

 

Since this company was in its start-up phase, we as interns had to assume 

multiple roles of designing gameplay, debugging as well as GUI development. 

Broadly our team consisted of the following people: 

 

 

 

 

 

 

  

Chief Technical 

Officer 

Game Designer 

Level 

Development & 

Integration 

Player 

Development & 

Control 

Enemy 

Development & 

Control 



About my work 
I worked as a developer responsible for level development and integration in 

the team. Under this designation, I was required to work on the following 

features: 

 Developing world elements such as terrain, platforms, collectibles, 

animations in the world, and stimuli for player interaction. 

 The development had to be as modular as possible so as to support easy 

integration with the work of other developers. 

 Moreover the elements should be scalable so that they can be used in 

other levels. Hence they should offer scalability when the project scales. 

 Using finite state machine models to maintain pause/resume states of the 

game play scene. 

 Maintain parameters such as health, score, and powers of the player by 

means of global scene scripts. 

 Manipulate camera view as required by game designer. (First person view 

or Third person view) 

 Optimising performance of game for mobile devices such as checking 

tearing of textures, calibrating anisotropy, culling game objects in order 

to reduce rendering load etc. 

6Packman: 
The main challenge faced during the development of this game was to develop 

game objects in such a way so that they can be used in a modular way. This 

would be helpful when we would add more stages to the game. Hence the player 

control scripts, collectibles objects, and behavioural scripts were generic. The 

important thing we learnt in this developmental exercise is that we came to 

know about the notion of “prefabs”. For example, if we had a collectible power 

up, we could frame it as a prefab and then simply place it in the game scene or 

any other scenes we wanted it to be in. Unity SDK provides sophisticated tools 

which allows the developers to handle the instantiation as well as destruction of 

these prefab game objects. So to sum up, all the labour is applied in designing 

the role of different game objects, generating their prefabs and then developing 

world by placing them in the scene. 

Another important challenge was to develop an AI for enemies. As described 

before, during the gameplay, the player has to make way through the maze and 



tackle enemy. At the same time, the enemy should be intelligent enough to 

determine the position of player and is able to catch the player. Various 

strategies were used to develop an AI for the enemy ghosts. We worked on the 

following two options: 

1. Greedy algorithm: This algorithm queried the position of the player and 

determined the path to the player by geometry and knowledge of maze. 

2. A* Algorithm: This approach provided us with exploiting every possible 

best path to the player and choosing the right path from a set of options 

arranged in the form of a tree. 

Another important aspect we worked on is saving data to the device filesystem 

in order to track the progress of game. Important user information had to be 

stored onto the device filesystem (with encryption) whenever the game reached 

crucial points in the game. Unity provides “PlayerPrefs()” calls in order to save 

certain integers and strings to the mobile device file system. On starting the 

game application, the information is read from the filesystem during loading 

stage. 

Mareon: 
In this game, most of the challenges were similar to previous game project but 

a new challenge in this project was to make a strict path following character. 

That is the player character must stick to the designated path in the free world.  

That meant whenever the path turned right or left, the character should also 
turn right or left respectively. And these turns were not perfect 90 degree turns, 
there were all sorts of curved paths all over the terrain. To make the character 
translate in a linear direction was easy but to turn the character such that it 
sticks to the path was the challenge we faced. So we researched different unity 
forums to come with a scheme that would enable us to achieve our aim. After 
carefully researching out the forums we came up with 2 approaches:  

1) Waypoint approach  

2) By use of vectors  
In the waypoint approach, we place planes along the path which act as 
checkpoints. As the player passes through them, a signal is triggered which 
keeps the player on the path. This scheme is effective and accurate but the 
problem with this scheme is that if we place such waypoints along the curves of 
the whole path then the rendering of the game on mobile devices would be 
slowed down ruining the gaming experience.  



The use of vectors eliminated the use of waypoints. Now we had to take care of 

only the curved paths and the turns. In this approach, when we want the 

character to walk/run around a certain curve, we find the radius of curvature of 

the curved path, place a marker object at the centre identified by the radius of 

curvature. Now when the character comes across the curved path we extend a 

vector from the character to the marker object and then rotate that vector 

around the object in a specific region along the curve. This strategy perfectly 

executes the curve of any curvature. 

 

Optimisations: 
Both the projects required significant optimisations in terms of build size, 

rendering, texture quality, gaming experience. We tested our projects on 

devices with different CPU/GPU specs. We tested our builds on Sony Xperia Z 

cell phone, Sony Xperia Neo cell phone and Samsung Galaxy tab 800. The aim 

was to test texture and render quality for different devices. Based upon the 

performance, we applied camera culling so as to minimise the rendering load on 

the CPU/GPU. We also optimised textures by calibrating their anisotropy and 

level of detail which in turn reduced the size of build package. Another 

important lesson we learnt was to optimise the game display for devices with 

varying display resolutions. Our games were optimised for Full HD displays with 

Qualcomm Adreno GPUs. Thorough effort was put to minimise variations across 

devices. 


