
Emerging Interoperability Standards for Unmanned Aerial Systems

Kerry Fisherkeller Engineering Fellow - Systems Engineering & Architecture Unmanned Systems Center of Excellence Northrop Grumman Corporation

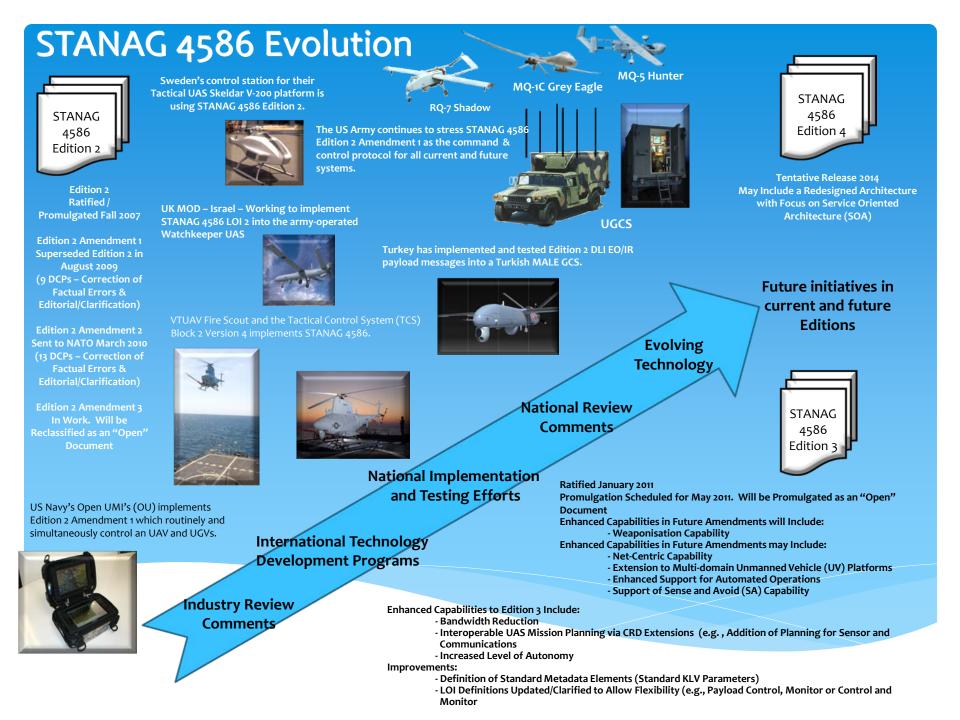
19th Annual INCOSE Region II Fall Mini-Conference
 1 November 2014 - San Diego CA
 Model-based Systems Engineering and Beyond

Approved for Public Release, Distribution Unlimited

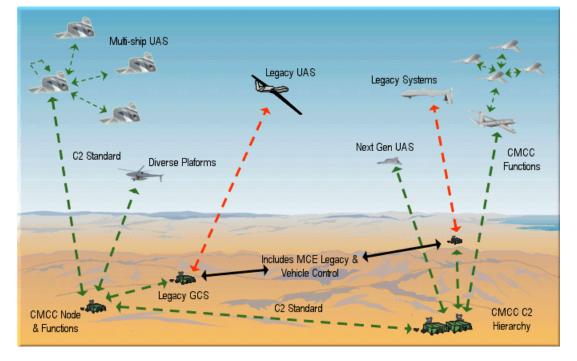
Open System Interconnection (OSI), but not Open Architecture nor Interoperable

UCS – UAS Control Segment

Emergence of Standards


- * As defined by Checkland, <u>emergence</u> is "the principle that entities exhibit properties which are meaningful only when attributed to the whole, not to its parts."
- Emergent system <u>behavior</u> can be viewed as a consequence of the interactions and relationships between <u>system elements</u> rather than the behavior of individual elements.
- * Our challenge is to develop standards that enhance interoperability of systems, but do not limit beneficial emergent behavior of UAS developers and operators

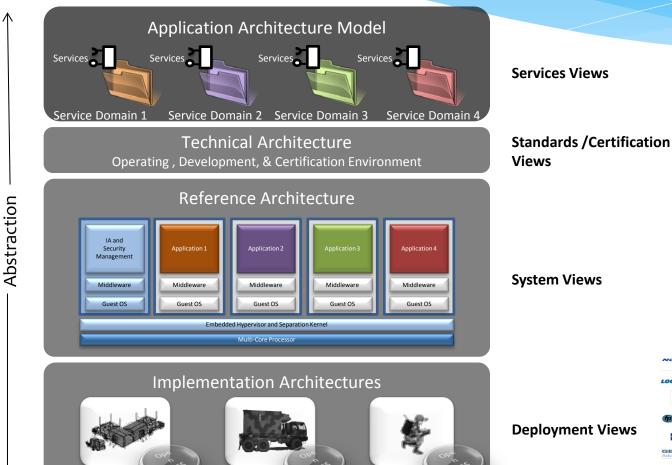
Evolution of UAS Interoperability Standards


UAS Standard	ORG	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	
4586	NATO	North Atlantic Treaty Organization - Standardization Agreement (STANAG) 4586											
UCI	USAF			COS UCI - UAS Control Initiative									
ΙΟΡ	Army			IOP – Interoperability Profile									
UCS	OSD						UC	UCS - UAS Control Segment Architecture					
OMS	USAF							OMS - Open Mission Systems					
FACE	Navy							Future Airborne Capability Environment					
NIOP	Navy								Navy	Inter-O	perabili	ty Profil	le
СоТ	Mitre	CoT - Cursor on Target											

Open System Architecture 2011 DoD Mandate "Procure Open Systems"

- * The <u>Defense Acquisition Guidebook Chapter 4</u> states that "OSA is identified as a key tenet of Better Buying Power, under Promoting Effective Competition, because it enhances system interoperability and the ability to integrate new capabilities without redesign of entire systems or large portions of the enterprise."
- * OSA Benefits (GAO-13-651, July 2013)
 - Reduced life-cycle cost
 - * Increased innovation
 - * Reduced schedule to field
 - * Faster & less costly repairs and upgrades
 - * Enhanced interoperability
 - Increased competition

UCI - UAS Control Initiative



XML Messaging Schema

Developed by Government-Industry Consortium

UCS - UAS Control Segment Service Oriented Architecture (SOA) Approach

Sponsored by: OUSD/AT&L Office of Under Secretary of Defense / Acquisition, **Technology & Logistics**

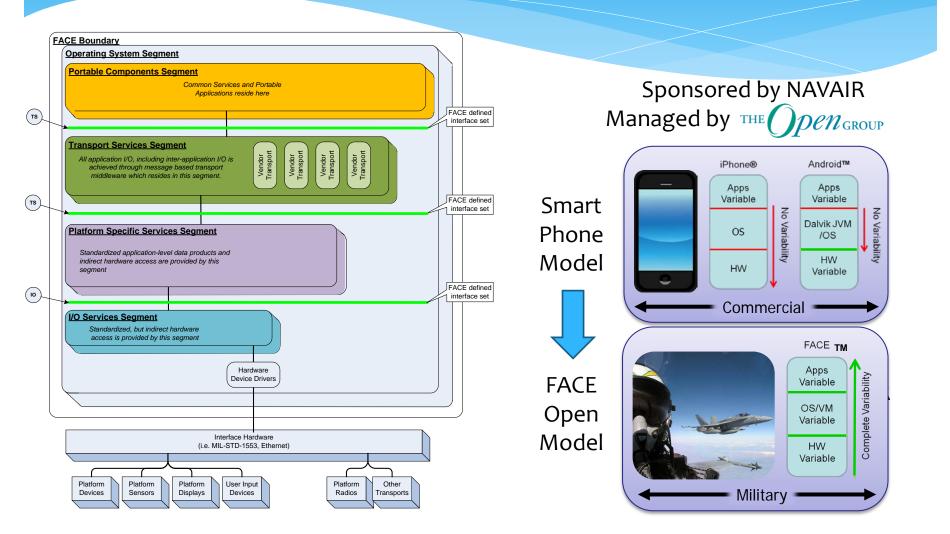
RTI

WINTEC. Inc. M neya GENERAL DYNAMICS DProgeny System

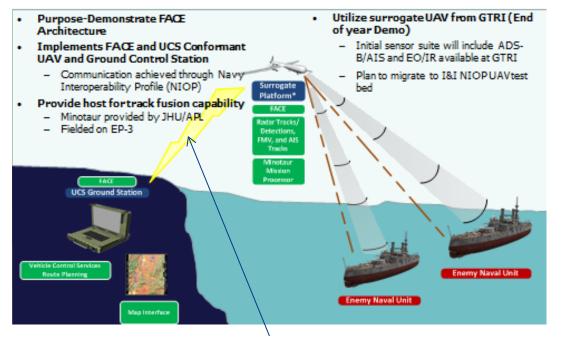
VEROCEL

() BOEING

Deployment Views

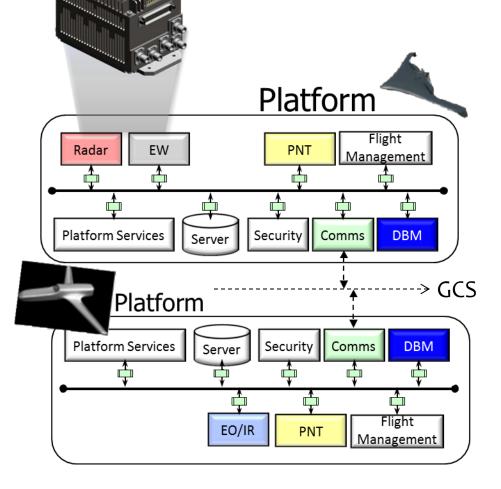

GENERAL DYNAMICS

fastpilot software


LOCKHEED MARTIN

WIND RIVER

Future Airborne Capability Environment (FACE) Interoperability Provided via Units of Portability (UoPs)


Naval Interoperability Profile (NIOP) XML Based Messaging Schemas

- Sponsored by NAVAIR
- Developed via joint
 government-industry
 Interface Control Working
 Group (ICWG)
- Capture of common commands in XML based messaging schemas

NIOP Messages

Open Mission Systems (OMS) Airborne Avionics Architecture

- * Developed by USAF/RCO
- * Adopted by DARPA for System of System (SoS) integration programs
- Utilizes commercially developed Service Oriented Architecture (SOA) concepts and middleware

Cursor on Target (CoT) Schema Captures What, When, Where

12 Mandatory fields minimum

Field	Description
Version	Schema version, stable at 2.0 since about May 2003
UID	Unique ID much like IP address
Туре	What is this event? friendly tank, hostile target?
Time	Time event was generated
Start	Start of "valid" interval for event
Stale	End of "valid" interval for event
Lat	Latitude based on WGS84 in decimal degrees
Lon	Longitude based on WGS84 in decimal degrees
CE	Circular error about point (Gaussian 1 Sigma) in meters
HAE	Height above ellipsoid based on WGS84 in meters
LE	Linear error about HAE (Gaussian 1 Sigma) in meters
How	Indication of how event was generated (machine, human)

* Example XML message

<?xml version='1.0' standalone='yes'?>

<event version="2.0" uid="J-01334" type="a-h-A-M-F-U-M"

> time="2005-04-05T11:43:38.07Z" start="2005-04-05T11:43:38.07Z" stale="2005-04-05T11:45:38.07Z" >

<detail>

</detail>

Use in military and medical research

Summary

- * UAS C2 Standards are now contract requirements for control nodes, C2 messaging and payload interfaces
- Refinement will continue based on demonstration feedback and user evaluations

References

- 1. Systems Thinking, Systems Practice. Peter Checkland, July 1999 p.314
- 2. OSA https://acc.dau.mil/adl/en-US/664093/file/73330/OSAGuidebook%20v%201_1%20final.pdf
- 3. STANAG 4586- http://nso.nato.int/nso/
- 4. UCS- https://ucsarchitecture.org/
- 5. UCI- http://ucistandard.org/about-uci.html
- 6. DOD Efforts to Adopt Open Systems for Its Unmanned Aircraft Systems Have Progressed Slowly, GAO GAO-13-651, July 2013, <u>http://www.gao.gov/assets/660/656419.pdf</u>
- 7. NIOP http://www.navair.navy.mil/pma209/_Documents/FACE_Industry_Day.pptx
- 8. FACE https://www2.opengroup.org/ogsys/catalog/C137
- 9. OMS http://www.darpa.mil/WorkArea/DownloadAsset.aspx?id=2147487878
- 10. CoT https://www.mitre.org/sites/default/files/pdf/09_4937.pdf