Interpretation of DNA Typing Results for Kinship Analysis

Kristen Lewis O'Connor, Ph.D.

National Institute of Standards and Technology
USCIS Working Group on DNA Policy
Washington, DC
January 25, 2011

Questions to Be Addressed

- How is DNA typing used to assess relatedness?
- How do we interpret kinship analysis results?
- What are some issues that need consideration?

What is kinship analysis?

Evaluation of relatedness between individuals

Applications
Parentage testing (civil or criminal)
Disaster victim identification

Missing persons identification
Familial searching
Immigration

Fundamentals of Paternity Testing

Focusing on 5 markers...

Mom

Fundamentals of Paternity Testing

Focus on 5 markers...

Parent-offspring will share one allele at every locus

Kinship Analysis：Full Siblings

Focusing on 5 markers．．．

Child $1{ }^{100}$ ，1200，${ }^{100}$	${ }^{10}$ ， 1180	${ }^{20}$	${ }^{220}$ ，${ }^{20}$	${ }^{20}{ }^{20}$ ，${ }^{200}$	30	${ }^{309}$ ，${ }^{\text {3／9，}}$	${ }^{380}$
Child 1 ．．．	1		16	，			
（14） 10	同		910	$1{ }^{12}$		20 ［25	
	－10 ${ }_{180}$	${ }^{20}$	${ }_{20} \dagger^{20}$	$280 \quad 280$	${ }^{30}$	${ }_{30}^{30}$	${ }_{30} 0$
anoof．－．	，						
［14 18	陌		面	1112		－ 17	

Full siblings may share two，one，or zero alleles at a locus $+$

For more distant familial relationships， allele sharing decreases

\dagger

Uncertainty Increases

Why can kinship analysis be complex?

For more distant familial relationships, allele sharing decreases \rightarrow uncertainty increases

Probability of Sharing Alleles from a Common Ancestor

High	Relationship	0 alleles	1 allele	2 alleles
	Parent-child	0	1	0
.	Full siblings	1/4	1/2	1/4
※	Half siblings	1/2	1/2	0
웅	Uncle-nephew	1/2	1/2	0
-	Grandparent-grandchild	1/2	1/2	0
\downarrow	First cousins	3/4	1/4	0

Half siblings, uncle-nephew, and grandparent-grandchild are genetically identical

What information is required for kinship analysis?

1. Alleged relationship
2. Genotypes at specific markers
3. Method to assess the relationship

What information is required for kinship analysis?

1. Pedigree of claimed relationships

Paternity trio

Full siblings

Complex pedigree

Define relationships in a pedigree ("family tree")
Collect DNA samples from informative individuals

What information is required for kinship analysis?

2. Genotypes for individuals making a claim

Autosomal (passed on in part, from all ancestors)

- Typically test 13-25 STR loci
- Work well for close relatives (parentage and full siblings)
- Need more family references for distant relatives

What information is required for kinship analysis?

3. Method to assess the relationship

The question is NOT "Are they related?"
The question is "Is the claimed relationship supported by the genetic and non-genetic evidence?"

Remainder of this presentation will cover the method to assess relatedness:
Likelihood ratio, prior probability, posterior probability

Likelihood Ratio (LR)

Describes how strongly the genotypes support one relationship versus the other relationship

Expresses the likelihood of obtaining the DNA profiles under two mutually exclusive hypotheses
$L R=\frac{\text { Probability of genotypes if individuals are related as claimed }}{\text { Pro }}$ Probability of genotypes if individuals are unrelated

The LR takes into account:

- the probability of allele sharing for individuals with a specific relationship
- the allele frequency of alleles
- a possible mutation event (if necessary)

Likelihood Ratio (LR)

The LR is also called the relationship index (RI) or kinship index (KI).

Each independent locus tested produces its own relationship index, which can be multiplied by those of other independent loci to calculate a combined relationship index (CRI).

$$
\text { CRI }=\frac{\text { Probability of genotypes if } 1,2 \text { are full siblings }}{\text { Probability of genotypes if } 1,2 \text { are unrelated }}
$$

By the definition of a LR:
CRI > 1 supports the numerator (claimed relationship)
 CRI <1 supports the denominator (alternative relationship)

Larger CRI values provide more support for the claimed relationship

Likelihood Ratio (LR)

Hypothesis 1 = Paternity Trio, Hypothesis 2 = Unrelated

Paternity trio

$L R=168,468,800$

Locus	Probability (Hypothesis 1)	Probability (Hypothesis 2)	Likelihood Ratio
D8S1179	0.001545163	0.000574194	2.691012
D21S11	0.0003079	0.000171693	1.793322
D7S820	0.00078148	0.000138664	5.635774
CSF1PO	0.003673636	0.000798261	4.602047
D3S1358	0.002522579	0.001086988	2.320706
THO1	0.001420379	0.00032926	4.313852
D13S317	0.000454644	$4.37 \mathrm{E}-05$	10.39317
D16S539	$9.47 \mathrm{E}-05$	$2.80 \mathrm{E}-05$	3.38817
D2S1338	$4.87 \mathrm{E}-05$	$1.15 \mathrm{E}-05$	4.250356
D19S433	0.004076747	0.000661891	6.159245
VWA	0.000131184	$5.26 \mathrm{E}-05$	2.492709
TPOX	0.008606737	0.005087928	1.691599
D18S51	0.000328927	$9.07 \mathrm{E}-05$	3.625514
D5S818	0.002742154	0.000772507	3.549682
FGA	0.000532767	0.000198233	2.687581
Total	$\mathbf{2 . 2 7 E}-47$	$\mathbf{1 . 3 5 E}-55$	$\mathbf{1 6 8 , 4 6 8 , 8 0 0}$

It is $\mathbf{1 6 8}$ million times more likely that we observe these DNA profiles if the Alleged Father is the true father than if an unrelated man is the father of the child.

How do 13 loci perform for kinship analysis?

The degree of overlap corresponds with possible values for false positive or false negative results.

Do additional loci improve kinship determination?

Prior Probability

Describes the weight of non-genetic evidence PRIOR to DNA analysis

Case	Prior Probability	Comment
Paternity- U.S. courts	0.5	Both hypotheses are equally likely. Different priors could be claimed in court.
Missing Persons (ICMP)	$1 / \mathrm{N}$ missing persons	Closed event (e.g., mass grave)
Immigration- U.S.	0.5	How do you assign weight to non-genetic evidence?

Relationship between Prior Probability and Prior Odds

Calculation of prior odds is necessary to combine the non-genetic information with the DNA information.

Prior odds are calculated using the prior probability as follows:
Prior Odds = Prior Probability/(1-Prior Probability)

$$
=\operatorname{Pr} /(1-P r)
$$

Example 1: Prior prob $=0.5$

Prior Odds $=0.5 /(1-0.5)$

$$
=1
$$

Example 2: Prior prob $=0.75$

$$
\begin{aligned}
\text { Prior Odds } & =0.75 /(1-0.75) \\
& =3
\end{aligned}
$$

Posterior Odds

The posterior odds provide a numerical weight to the opinion of identification.

The mathematics for the combination of the kinship index and the prior odds is as follows:

Posterior Odds $=$ Likelihood Ratio \times Prior Odds

$$
=C R I \times P
$$

Example with prior probability $=0.5$ (prior odds $=1$), and $L R=168,468,800$

Posterior Odds $=168,468,800 \times 1$
= 168,468,800

Relationship between Posterior Odds and

Posterior Probability

The probability of relationship (posterior probability) allows one to render an opinion about a relationship in understandable terms for the general public.

The probability of the relationship expressed as a percentage is calculated by the following equation:

Probability of Relationship $=P O /(P O+1) \times 100$ or
Probability of Relationship $=(C R I \times \operatorname{Pr} /[C R I \times \operatorname{Pr}+(1-\operatorname{Pr})]) \times 100$ where $\mathrm{PO}=$ Posterior Odds, $\mathrm{Pr}=$ Prior Probability, and CRI = Combined Relationship Index

Relationship between Posterior Odds and Posterior Probability

Example with prior probability $=0.5$ (prior odds $=1$), and $L R=168,468,800$:

Probability of Relationship $=(C R I \times P r /[C R I \times P r+(1-P r)]) \times 100$
$=(168,468,800 \times 0.5 /[168,468,800 \times 0.5+(1-0.5)]) \times 100$
= 99.999999406418%

Posterior Probability

The probability of relationship (posterior probability) allows one to render an opinion about a relationship in understandable terms for the general public.

Case	Posterior Probability	Probability of Random Match
Paternity- U.S. courts	$99.0-99.9 \%$	$0.1-1 \%$ (civil cases)
Missing Persons-ICMP	99.95%	0.05%
Immigration	99.5% (currently)	0.5%

Posterior Probability

The probability of relationship (posterior probability) allows one to render an opinion about a relationship in understandable terms for the general public.

Case	Posterior Probability	Conclusion
Paternity- U.K. (paternity or maternity)	99.99%	Positive: Very strong evidence of paternity/maternity
	0%	Negative: No support for relationship
Sibship- U.K. (full or half sibs)	$90.00-99.99 \%$	Positive: Very strong evidence of full/half siblingship
	$10.00-89.99 \%$	Inconclusive for relationship
	$0-9.99 \%$	Negative: No support for relationship

Posterior Probability Varies with Different Priors

Table of posterior probabilities for different prior probabilities and likelihood ratios

Prior Probability	Paternity Index (LR)			
	$\mathbf{1}$	$\mathbf{1 0}$	$\mathbf{1 0 0}$	$\mathbf{1 , 0 0 0}$
0	0	0	0	0
0.001	0.001	0.00991	0.09099	0.5002501
0.010	0.010	0.09174	0.50251	0.9099181
0.100	0.100	0.52631	0.91743	0.9910803
0.500	0.500	0.90909	0.99009	0.9990010
0.900	0.900	0.98901	0.99889	0.9998889
0.990	0.990	0.99899	0.99989	0.9999899
0.999	0.999	0.99989	0.99999	0.9999990
1	1	1	1	1

Range of Posterior Probabilities

Simulated pairs of individuals, either as true parent-child, full siblings, half siblings, or unrelated. 13 CODIS markers.

Table shows the proportion of simulations within ranges of posterior probabilities (prior probability $=0.5$)

Posterior Probability	True Parent-Child	Unrelated Parent-Child	True Full Siblings	Unrelated Full Siblings	True Half Siblings	Unrelated Half Siblings
$0-10.0$	0	0	0.0076	0.9008	0.017	0.451
$10.0-20.0$	0	0.995	0.0040	0.0356	0.030	0.161
$20.0-30.0$	0	0.002	0.0060	0.0170	0.034	0.099
$30.0-40.0$	0	0.002	0.0068	0.0096	0.035	0.074
$40.0-50.0$	0	0	0.0082	0.0096	0.057	0.060
$50.0-60.0$	0	0.001	0.0088	0.0056	0.055	0.039
$60.0-70.0$	0	0	0.0086	0.0060	0.077	0.035
$70.0-80.0$	0	0	0.0166	0.0060	0.090	0.027
$80.0-90.0$	0	0	0.0322	0.0050	0.137	0.028
$90.0-95.0$	0	0	0.0352	0.0020	0.145	0.017
$95.0-99.0$	0.019	0	0.1070	0.0018	0.213	0.009
$99.0-99.5$	0.024	0	0.0614	0.0006	0.046	0
$99.5-99.9$	0.121	0	0.1302	0.0004	0.049	0
$99.9-100.0$	0.836	0	0.5674	0	0.015	0

Range of Posterior Probabilities

Simulated pairs of individuals, either as true parent-child, full siblings, half siblings, or unrelated. $\mathbf{2 0}$ markers (CODIS + 7 European markers).

Table shows the proportion of simulations within ranges of posterior probabilities (prior probability $=0.5$)

Posterior Probability	True Parent-Child	Unrelated Parent-Child	True Full Siblings	Unrelated Full Siblings	True Half Siblings	Unrelated Half Siblings
$0-10.0$	0	1.000	0.0022	0.9724	0.012	0.683
$10.0-20.0$	0	0	0.0018	0.0106	0.023	0.097
$20.0-30.0$	0	0	0.0008	0.0054	0.017	0.053
$30.0-40.0$	0	0	0.0014	0.0032	0.021	0.039
$40.0-50.0$	0	0	0.0022	0.0024	0.020	0.041
$50.0-60.0$	0	0	0.0004	0.0012	0.020	0.015
$60.0-70.0$	0	0	0.0020	0.0012	0.034	0.023
$70.0-80.0$	0	0	0.0026	0.0012	0.049	0.016
$80.0-90.0$	0	0	0.0092	0.0008	0.084	0.017
$90.0-95.0$	0	0	0.0094	0.001	0.101	0.008
$95.0-99.0$	0	0	0.0266	0.0004	0.198	0.007
$99.0-99.5$	0	0	0.0120	0	0.106	0.001
$99.5-99.9$	0	0	0.0578	0.0002	0.155	0
$99.9-100.0$	1.000	0	0.8716	0	0.160	0

Issues to Consider

- Make sure the markers tested can meet/exceed your threshold for true relationships in question.
- What is the appropriate prior probability?
- Prior probability of 0.5 may not adequately reflect prior information.
- What if strong legal documents are presented?
- What if you suspect fraud before DNA typing?
- What allele frequency databases will be used?
- Need population-specific databases
- Or calculate the range of relationship values using different databases and use the lowest value (most conservative)
- Mutations are possible and should be accounted for in the LR calculations

DNA Biometrics Project

Recommended Reference

AABB (2010) Guidelines for mass fatality DNA identification operations. Available at http://www.aabb.org/programs/disasterresponse/Documents〈aabbdnamassfatalityguidelines.pdf

Final version of this presentation available at:

 http://www.cstl.nist.gov/strbase/NISTpub.htm kristen.oconnor@nist.gov
Funding

NRC - Postdoctoral fellowship support for Kristen O'Connor
FBI - Application of DNA Typing as a Biometric Tool
NIJ - Forensic DNA Standards, Research, and Training

