
Interrupts in AVR Microcontrollers
(Chapter 10 of the text book)

Microprocessors, Lecture 9:

University of Tehran 2

Contents

• Interrupts ATmega32

• Using interrupts in C programming

University of Tehran 3

Interrupts in AVR

Interrupts: A way o improve performance

University of Tehran 4

How do interrupts work?

University of Tehran 5

Interrupt vs. polling

• Polling:

– Continuously check the flags to know when the
expected event occurs, then go for the next
event

– Example: Timer time-out problem of the previous lecture:

University of Tehran 6

Interrupt vs polling

• Polling: wasting time to check the devices
continuously

• What if we are to generate two delays at the
same time?

– Example: Toggle bit PB.5 every 1s and PB.4 every 0.5s.

• What if there are some task to be done
simultaneously with the timers?

– Example: (1) read the contents of port A, process the
data, and send them to port D continuously, (2) toggle bit
PB.5 every 1s, and (3) PB.4 every 0.5s.

University of Tehran 7

Interrupt vs polling

• Interrupts
– A mechanism to work with peripheral devices

• No need for the processor to monitor the status of
the devices and events

• Let the events notify the processor when they
occur

– By sending an interrupt signal to processor

University of Tehran 8

Interrupt vs polling

• Interrupts:
– Example: Copy the contents of port A to port D

continuously and toggle bit PB.5 every 1s and PB.4
every 0.5s.

– Solution:
» Copying the contents of port A to port D as the main program

» Get timers 0 and 1 to generate the delays

» Define two interrupts for timers 0 and 1 to notify the processor
when they finish counting

» Upon an interrupt, stop the main program, service the timers and
continue the main program

University of Tehran 9

Interrupts

• Interrupting mechanism in all microprocessors and
microcontrollers is almost the same:

– Define the set of devices and events that can generate
an interrupt

– Write a function for each interrupt that will be executed
when the corresponding interrupt is activated

» The address of this function must be saved somewhere

– Set a priority scheme among interrupts

– A mechanism is needed to disable all or some interrupts

University of Tehran 10

Interrupts

• ISR: Interrupt Service Routine

– The function that is executed when an interrupt
is enabled

• Interrupt Vector Table: a table that keeps the
address of each ISR in the instruction memory

University of Tehran 11

Interrupt sources in AVR
.

University of Tehran 12

External interrupts

• 3 pins of ATmega32

University of Tehran 13

Interrupts in AVR
• Just 2-bytes for each

interrupt service routine

• Too small to write the
interrupt service routine

• Write the routine
somewhere in the memory
and put a code to jump to the
address of the function in the
2-byte assigned to the ISR

University of Tehran 14

Interrupts in AVR

• How is an interrupt serviced?
1. Stop fetching the next instruction and save PC

2. Go to Interrupt Vector Table to find the address of the ISR of
the interrupting device

3. Execute the function

4. Resume normal execution by retrieving PC

University of Tehran 15

Enabling Interrupts

• Interrupts can be enabled or disabled by
programmer

– Bit7 (I) in SREG (status register)

– SREG keeps the processor status (remember the first
lecture on AVR)

– Disabled on reset (I=0)

University of Tehran 16

Enabling Interrupts
• In addition to Bit7 (I) in SREG each interrupt

should be enabled independently

• The enable bit of each interrupt is in some register
– Example: TIMSK register to enable/disable timer

interrupts

– TIMSK= Timer Interrupt Mask

– Mask? پوشاندن ، غيرفعال کردن

• To enable timer1 overflow interrupt:
– Bit7 (I) in SREG 1

– Bit 0 of TIMSK (TOIE0) 1

University of Tehran 17

Interrupt priority

• What if two or more interrupts occur
at the same time?

– The interrupt with lower ISR address
is prioritized (external int. 0 has the
highest priority)

• When an interrupt is serviced, the I
bit becomes automatically 0 to
disable interrupts

– Will be enabled when returning from
the ISR

University of Tehran 18

TIMSK register

University of Tehran 19

Interrupt programming in C

• Enable interrupts
• Set the mask register (TIMSK for timers)

– Example: TIMSK=0x01;
• Write the ISR function to specify what

operation should be done when the interrupt
occurs
Compiler dependent: different in different

compilers!

University of Tehran 20

Interrupt programming in C
• A way to use assembly

instructions in C:
#asm(“instruction”)

• SEI: (Set I) an assembly
instruction that enables
interrupts (bit 7 of
SREG=1)

• CLI: Clear I
• #asm(“sei”); enable

interrupts in C
• No way to access

SREG.7 in C
• Mazidi’s book uses a different

compiler different
instructions: sei() instead of
#asm(“sei”), different ISR
names

#asm(“sei”);

interrupt [TIM0_OVF] void timer0_ovf_isr(void)

On entering the timers ISR, the TOV0
bit is automatically cleared, no need to
be cleared by software

University of Tehran 21

Interrupt programming in C

• In codevision, ISR is generated during
project setup. Just fill the function body!

University of Tehran 22

External Interrupts

• To allow external
sources interrupt the
microcontroller

• Can be masked by CIGR
register

• GICR: General interrupt
control register

University of Tehran 23

External Interrupts- GICR

University of Tehran 24

External interrupts

• Interrupts can be edge triggered or level triggered
• Edge trigger: activated when a change in signal

level occurs
• Level trigger: activated when a signal has a

specific value
• INT0 and INT1 can be programmed to be edge or

level triggered
– Low-level active by default

• INT 2 is only edge triggered

University of Tehran 25

External interrupts

• A register called ISC (interrupt sense control) can
set the interrupt type of INT0 and INT1

ISC Register

ISC10 and ISC11 set the same setting for INT1

University of Tehran 26

External Interrupts- C
programming

#asm(“sei”);

