
ECE3411 – Fall 2016

Marten van Dijk
Department of Electrical & Computer Engineering

University of Connecticut

Email: marten.van_dijk@uconn.edu

Interrupts & Interrupt Service Routines (ISRs)

Lecture 2c.

Based on the Atmega328P datasheet and material

from Bruce Land’s video lectures at Cornel

Copied from Lecture 2c, ECE3411 – Fall 2015, by

Marten van Dijk and Syed Kamran Haider

Interrupts

2

Lower range of program storage in flash:
If you want to set the mask bit of an interrupt, i.e., you

enable a certain interrupt, then you must write a

corresponding ISR (interrupt service routine).

The table contains the address of the ISR that you write

(upon the HW event that will cause the interrupt, the

program counter will jump to the address indicated by the

table to execute the programmed ISR).

Program memory has 2^16 registers

 an address has 16 bits, e.g., 0xabcd

 0xabcd is stored in two 8-bit registers

 Interrupt vector table associates interrupt

vectors to addresses 0x0000, 0x0002,

0x0004 etc. (by increments of 2)

Program Layout

 Initialization procedure:

 Set up tables,

 Initialize timers,

 Do bookkeeping before you can put on interrupts

 Turn on the master interrupt bit: This is the I-bit in register SREG, the C-macro sei() does this for you

3

Program Layout

 Main() executes slow background code forever  you never exit main in a MCU

 Interrupt driven tasks are asynchronously called from main, for example:

 a HW timer may cause a HW event every 1000 cycles, upon which in the corresponding ISR a SW counter is incremented;

 upon reaching an a-priori defined maximum value, the background code calls a corresponding procedure which executes some
task, and upon returning the SW counter is reset to 0

 ISRs have no parameters, no return value, they save CPU state (and C does this for
you); they are called by HW events:

 E.g., the bit value for position RXC0 in UCSR0A goes to high when receiving a character is completed

 If the mask bit in UCSR0B for position RXCIE0 is set [meaning that an interrupt is enabled for the flag
(UCSR0A & (1<<RXC0))], then the MCU will jump to the address of the ISR as indicated by the
interrupt vector table for source USART, RX.

 It takes about 75 cycles to go in and out of a ISR; another 32 cycles to safe state of the MCU (32
registers); another 7/8 cycles overhead.

4

AVR Architecture

5

Execution of an ISR

6

Address space of

program memory:

Program memory

values (in flash)

0xabcd

Interrupt

vector

table

Instructions

(binary) main

program

Instructions

(binary) ISR

of UART, RX

Instruction

First Instruction

0x0024

0x70a1

0xabcd

Interrupt unit scans flags in

table in round-robin fashion

Execution of main code

Two processes that run in parallel

1. Character receive complete

 UART RX HW event which makes

flag UCSR0A & (1<<RXC0) non-zero

 If UCSR0B |= (1<<RXCIE0), i.e., ISR UART RX is

enabled, then the interrupt unit sees flag when

checking for the UART RX HW event

 Interrupt unit looks at the Interrupt vector table

at position 0x0024 for UART RX, and reads

address 0xabcd

2. Program counter (PC) points at 0x70a1,

corresponding instruction is executed to

completion

 0x70a1 is pushed on to the PC stack

 PC becomes 0xabcd

 ISR UART RX is executed

 Upon return from interrupt, the PC stack

pops the value 0x70a1

 PC gets the next address and main

program continues its execution

Execution of an ISR
1. Some HW event sets a flag in some register, e.g., (UCSR0A & (1<<RXC0)) goes to high

 If the corresponding interrupt is enabled, e.g., by initially programming UCSR0B |=
(1<<RXCIE0), then this flag is detected by the Interrupt Unit of the MCU which scans the
flags which correspond to the vector table in round robin fashion

2. If the CPU is executing an ISR, then finish the ISR, else finish current instruction

3. Push the Program Counter (PC) on the stack

4. Clear the I-bit in SREG (after this, none of the interrupts are enabled)

5. Clear flag in register UCSR0A as in UCSR0A &= ~(1<<RXC0)

6. The CPU jumps to the vector table and clears the corresponding flag

7. The CPU jumps to the ISR indicated by the address in the vector table

8. The compiler created a binary which saves state, executes your ISR code, restores state,
and returns: return from interrupt (RETI)

9. RETI enables the I-bit in SREG and re-checks the interrupt flag registers in the vector table
(since other HW events may have occurred in the meantime)

7

Problems

 Example: An ISR with print statement calls the print procedure, which buffers the
characters to be printed in HW since printing is slow.

 Now, the HW executes the printing statement in parallel with the rest of the ISR.

 The ISR finishes.

 Before the print statement is finished the ISR is triggered again

 Not even a single character may be printed!!

8

Problems

 In your ISR you may enable the master interrupt bit  this creates a nested interrupt
 not recommended

 Memory of one event deep: e.g.,

 MCU handles a first flag of (UCSR0A & (1<<RXC0))

 After clearing this flag, the same HW event happens again which will again set the interrupt flag
vector for (UCSR0A & (1<<RXC0)) (which will be handled after the current interrupt)

 But more interrupts for (UCSR0A & (1<<RXC0)) are forgotten while handling the current interrupt
(first flag)!!

 You need to write efficient ISR code to avoid missing HW events, which may cause your application to
be unreliable.

9

Interrupt Service Routine (ISR)

 http://www.atmel.com/webdoc/AVRLibcReferenceManual/group__avr__interrupts.
html

 #include <avr/interrupt.h>

 We need to program ISR(USART_RX_vect)

10

http://www.atmel.com/webdoc/AVRLibcReferenceManual/group__avr__interrupts.html

ISR(USART_RX_vect)

 fscanf uses:

 During the while loop other tasks need to wait  fscanf’s implementation is blocking

 Need non-blocking code: write a ISR which waits until the character is there

11

int uart_getchar(FILE *stream)

{

…

while (!(UCSR0A & (1<<RXC0))) ;

c = UDR0;

…

uart_putchar(c, stream);

…

}

ISR(USART_RX_vect)

12

….

// To make sure that the program does not need to wait

// we write our own get_string procedure.

// This requires a circular buffer, index, and a ready flag.

#define r_buffer_size 50

char r_buffer[r_buffer_size];

int r_index;

volatile char r_ready;

// After getstr(), the USART receive interrupt is enabled.

// The interrupt loads r_buffer, when done r_ready is set to 1.

void getstr(void)

{

r_ready = 0; // clear ready flag

r_index = 0; // clear buffer

UCSR0B |= (1<<RXCIE0);

}

….

The volatile keyword warns the compiler that the declared

variable can change at any time without warning and that

the compiler shouldn’t optimize it away no matter how

static it seems

ISR(USART_RX_vect)

13

int main(void)

{

// Initializations etc.

sei(); // Enable global interrupt

getstr();

etc.

while(1)

{

if (r_ready == 1) {Task_InterpretReadBuffer(); getstr();}

if Condition2 { Task2(…); ResetCond2; }

etc.

}

return 0;

}

• The while loop represents task-based programming,

which we repeat throughout the course: While a

string is being inputted by the user, other tasks (e.g.

Task2) can be executed in parallel

• No stalling  Efficient execution

• Modularity as a Computer System Design

Principle

• The getstr() can be called in any subroutine, not only

in the main while loop

• Inside getstr() r_ready and r_index are reset to 0 

Task_InterpretReadBuffer() may also call getstr() at

the end of its code; Here we show the reset explicitly

in the main while loop.

• It is often more natural to merge Task() and

ResetCond(), especially if the reset should happen at

the start of a task rather than at the end

ISR(USART_RX_vect)

14

ISR(USART_RX_vect)

{

char r_char = UDR0;

// Echo character back out over the system such that a human user

//can see this

UDR0 = r_char;

if (r_char != '\r') // compare to the enter character

{

if (r_char == 127) // compare to the backspace character

// (using '\b' instead of 127 does not work!)

{

putchar(' '); // erase character on screen

putchar('\b'); // backspace

--r_index; // erase previously read character in r_buffer

}

else

else

{

r_buffer[r_index] = r_char;

if (r_index < r_buffer_size-1) {r_index++;}

else {r_index = 0;}

}

}

else

{

putchar('\n'); // new line

r_buffer[r_index]=0; //strings are terminated

// with a 0

r_ready = 1;

UCSR0B ^=(1<<RXCIE0); // turn off receive

interrupt

}

}

Implements a simple line editor; we can add more line editing commands from the original uart_getchar(…)!

